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Foreword

Dear reader, On behalf of the four Scientific Statistical Societies – the SEIO,
Sociedad de Estadı́stica e Investigación Operativa (Spanish Statistical Society and
Operation Research); SFdS, Société Française de Statistique (French Statistical
Society); SIS, Società Italiana di Statistica (Italian Statistical Society); and the SPE,
Sociedade Portuguesa de Estatı́stica (Portuguese Statistical Society) – we would
like to inform you that this is a new book series of Springer entitled “Studies in
Theoretical and Applied Statistics,” with two lines of books published in the series:
“Advanced Studies” and “Selected Papers of the Statistical Societies.”

The first line of books offers constant up-to-date information on the most recent
developments and methods in the fields of theoretical statistics, applied statistics,
and demography. Books in this series are solicited in constant cooperation between
the statistical societies and need to show a high-level authorship formed by a team
preferably from different groups so as to integrate different research perspectives.

The second line of books presents a fully peer-reviewed selection of papers on
specific relevant topics organized by the editors, also on the occasion of conferences,
to show their research directions and developments in important topics, quickly and
informally, but with a high level of quality. The explicit aim is to summarize and
communicate current knowledge in an accessible way. This line of books will not
include conference proceedings and will strive to become a premier communication
medium in the scientific statistical community by receiving an Impact Factor, as
have other book series such as “Lecture Notes in Mathematics.”

The volumes of selected papers from the statistical societies will cover a broad
range of theoretical, methodological as well as application-oriented articles, surveys
and discussions. A major goal is to show the intensive interplay between various,
seemingly unrelated domains and to foster the cooperation between scientists in
different fields by offering well-founded and innovative solutions to urgent practice-
related problems.

On behalf of the founding statistical societies I wish to thank Springer,
Heidelberg and in particular Dr. Martina Bihn for the help and constant cooperation
in the organization of this new and innovative book series.

Rome, Italy Maurizio Vichi
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Preface

This volume of the selected papers from Portugal is a product of the Seventeenth
Congress of the Portuguese Statistical Society. The meeting took place at the
beautiful resort seaside city of Sesimbra in 2009. At the meeting there were 5 invited
1-hour conferences, 118 papers presented in 20-min talks, and 68 in poster sessions.
Following all these presentations, 72 papers were submitted by March 2010. More
than 200 participants had fruitful opportunities for learning about the latest ideas
and methods being developed in a broad variety of statistical domains such as linear
models and regression, survival analysis, extreme value theory, and statistics of
diffusions and other Markov processes. Many of the papers and posters presented
were applied studies in areas where statistics has a powerful and recognized role as
an intelligence-gathering and management tool. The works presented at the congress
that were submitted for publication in this volume were thoroughly refereed by a
rigorous team of scientific experts, which the editorial team would like to express
its heartfelt thanks to. The papers selected were carefully edited in order to provide
readers with an extensive, reliable reference work on the subjects treated, as well as
a thorough account of the best contributions presented at this major scientific event.

Lisbon, Portugal João Lita da Silva
June 9, 2012 Frederico Caeiro

Isabel Natário
Carlos A. Braumann
Manuel L. Esquı́vel

João Tiago Mexia
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Youden Square with Split Units

Stanisław Franciszek Mejza and Shinji Kuriki

Abstract
In this chapter we present the most important problems connected with the design
of experiments using Youden squares with split units. In fact we consider two
types of designs. The first is connected with different arrangements of subplot
treatments on the units of Youden squares. The second is connected with the
design of experiments when one or more treatments arranged in Youden squares
are control or standard treatments. We characterize some of these designs with
respect to general balance property and with respect to design efficiency factors.

1 Introduction

In performing experiments we quite often use a row–column design in order
to eliminate real or potential orthogonal disposed heterogeneity of experimental
material. In this case the Latin square is the appropriate design. This design
possesses many desirable and optimal statistical properties. In the Latin square every
treatment occurs once in each row and once in each column. It means that this design
uses many experimental units. We can reduce the number of experimental units by
using a design in which every treatment occurs once in each row (and not in each
column) or vice versa. Then the Youden square is the proper design, with many

S.F. Mejza (�)
Department of Mathematical and Statistical Methods, Poznan University of Life Sciences,
Wojska Polskiego 28, PL-60-637 Poznań, Poland
e-mail: smejza@up.poznan.pl

S. Kuriki
Department of Mathematical Sciences, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
e-mail: kuriki@ms.osakafu-u.ac.jp

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 1,
© Springer-Verlag Berlin Heidelberg 2013
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4 S.F. Mejza and S. Kuriki

desirable statistical properties (see, e.g., [3]). In the Youden square the treatments
occur in completely randomized blocks with respect to rows (columns), while with
respect to columns (rows) they occur in a balanced incomplete block design (BIBD).
In the experiments considered here the units of a Youden square are subdivided into
the same number of subunits. The structure of the experimental material is described
formally below.

Let us assume that the experimental material is divided into k0 superblocks. Each
superblock constitutes a row–column design with k1 rows and k2 columns. On each
unit of the row–column design that is treated as a whole plot, the levels of a factor
A .A1; A2; � � � ; Aa/ are arranged. These levels will be called whole-plot treatments.
Additionally, each whole plot is divided into k3 small plots called subplots; on each
subplot the levels of the second factor B .B1; B2; � � � ; Bb/ are arranged. These levels
are called subplot treatments.

In this chapter we will examine the statistical properties of a design in which
each superblock has a Youden square structure with q rows and a columns. It is
assumed that a subdesign of the Youden square with respect to columns is a BIBD.
More important is the problem of arranging the subplot treatments. We will consider
some statistical properties of designs in which subplot treatments will be arranged in
BIBD or in a group divisible (GD) partially balanced incomplete block design with
two association classes (GDPBIBD(2)) in such a way that the contents of whole
plots within a superblock are the same with respect to subplot treatments.

There exist designs for experiments which serve to compare existing treatments
(also called test treatments) with a set of control treatments or standards. In this
chapter we consider a case in which we wish to compare only whole-plot treatments
with certain controls (whole-plot controls).

2 Modelling

In this chapter the statistical properties of the above designs are examined under
a mixed linear model of observations. The dispersion structure of a linear model
results from the scheme of randomization applied. This scheme includes random-
ization of superblocks, rows (columns), columns (rows) and subplots. As a result
of such randomizations and some additional assumptions, we can describe the
observations by a linear mixed model with random superblock, row and column
effects and fixed treatment combination effects.

The randomization scheme leads to a linear mixed model having an orthogonal
block structure (cf. [10]). Details concerning modelling and analysis of observation
obtained in experiments carried out in row–column designs with split units are
given in [6]. The design considered here is a particular case of the above-mentioned
designs.
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3 Analysis

As mentioned above, the linear model of observations being considered has an
orthogonal block structure. Thus the overall analysis can be split into so-called
strata, as in multistratum experiments (cf. [4]). In our case we have five strata,
namely the inter-superblock stratum, inter-column stratum, inter-row stratum, inter-
whole-plot stratum and finally inter-subplot stratum (cf. [6]).

In this chapter the treatment combinations will be considered as treatments with
the actually used lexicographical order of combinationsAtBs .t D 1; 2; � � � ; aI s D
1; 2; � � � ; b/ and the usual expression of the treatment effect as the sum of the factor
effects and the interaction effects. Let v D ab denote the number of treatments.

The statistical properties of the design are connected with the algebraic properties
of the so-called information matrices Ai , i D 1; 2; 3; 4; 5, which in the considered
design have the forms:

A1 D .k0k1k2k3/
�1 �k0N0N

0
0 � rr0

� D q

abBkB
Ja ˝ �

bBNBN0B � r2BJb
�

A2 D .k1k2k3/
�1 �k1N1N

0
1 � N0N

0
0

� D O;

A3 D .k1k2k3/
�1 �k2N2N

0
2 � N0N

0
0

� D a � q
.a � 1/kB

�
Ia � 1

a
Ja

�
˝ NBN0B;

A4 D .k1k2k3/
�1 �N0N

0
0 C k1k2N3N

0
3 � k2N2N

0
2 � k1N1N

0
1

�

D a.q � 1/

.a � 1/kB

�
Ia � 1

a
Ja

�
˝ NBN0B;

A5 D rı � k�13 N3N
0
3 D qIa ˝

�
rBIb � 1

kB
NBN0B

�
;

where

rr0 D q2r2BJa ˝ Jb; rı D qrBIa ˝ Ib; N0N
0
0 D q2Ja ˝ NBN0B;

N1N
0
1 D qJa ˝ NBN0B; N2N

0
2 D NAN0A ˝ NBN0B; N3N

0
3 D qIa ˝ NBN0B;

NAN0A D .rA � �A/Ia C �AJa D q.a � q/

a � 1 Ia C q.q � 1/

a � 1
Ja:

The matrix Jt denotes the t � t matrix of ones; N0, N1, N2, N3 are the incidence
matrices: treatments vs. superblocks, treatments vs. columns, treatments vs. rows
and treatments vs. whole plots, respectively; r denotes the vector of treatment
replicates; and rı stands for the diagonal matrix with diagonal elements equal to
the numbers of treatment replicates. The other parameters are defined in the next
sections.

The statistical properties of a design are related to the eigenvectors and eigenval-
ues of these matrices. It can be checked that Af 1v D 0, i.e., one of the eigenvectors
(corresponding to the eigenvalue 0) is proportional to 1v. This means that the other
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eigenvectors define (basic) contrasts of treatment parameters. These eigenvectors
can be the same or different in the strata. The property of a design guaranteeing that
all information matrices have the same set of eigenvectors is called general balance
(cf. [4, 10]). This property simplifies the analysis of variance and further statistical
inference. For details, readers are referred to, for example, [1, 7]

The design is generally balanced iff (cf. [7])

Af r�ıAf 0 D Af 0r�ıAf ; f ¤ f 0; f; f 0 D 1; 2; 3; 4; 5:

In this chapter we will focus our investigations on the general balance property
and the efficiency factors of the designs proposed.

4 Constructions

4.1 Characterization of Youden Square

In this chapter we will examine the statistical properties of a design in which each
superblock has a Youden square structure with q rows and a columns. Moreover,
let us assume that the subdesign of the Youden square with respect to columns is a
symmetrical BIBD with parameters as follows: BIBD.vA; bA; rA; kA; �A/.

Then the following relationships hold:

k1 D kA D rA D q and k2 D bA D vA D a; �A D q.q � 1/
a � 1 :

Let NA be the treatment � column incidence matrix in a Youden square. Then
the so-called C matrix for the Youden square subdesign with respect to columns
is equal to CA D rAI � k�1A NAN0A. With this matrix is connected the so-called
efficiency factor that is equal to "A D a.q�1/

q.a�1/ with multiplicity �A D a � 1.
The design with respect to rows is a complete randomized block design.

4.2 Subplot Designs

Case 1. Subplot Treatments in BIBD
Let the subplot treatments be arranged in the BIBD with the parameters vB D b,
bB , rB , kB , �B , k0 D bB , k3 D kB .

Let CB denote the C matrix of BIBD for subplot treatments and let "B D b.k3�1/
k3.b�1/

denote the efficiency factor with multiplicity �B D b � 1.
The final design is generally balanced and the efficiency factors are presented in

Table 1 (cf. [5]).

Case 2. Subplot Treatments in GDPBIBD(2)
Let the subplot treatments be arranged in a group divisible (GD) partially balanced
incomplete block design with two association classes (GDPBIBD(2)) (cf. [2]). In the
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Table 1 Stratum efficiency factors

Type of Number of Strata

contrasts contrasts I II III IV V

A a � 1 0 0 1� "A "A 0

B b � 1 1� "B 0 0 0 "B

A�B .a � 1/.b � 1/ 0 0 .1� "A/.1� "B/ "A.1� "B/ "B

Table 2 Stratum efficiency factors

Type of Number of Strata

contrasts contrasts I II III IV V

A a � 1 0 0 1� "A "A 0

B.1/ �B1 1� "B1 0 0 0 "B1

B.2/ �B2 1� "B2 0 0 0 "B2

A�B.1/ .a � 1/�B1 0 0 .1� "A/.1� "B1/ "A.1� "B1/ "B1

A�B.2/ .a � 1/�B2 0 0 .1� "A/.1� "B2/ "A.1� "B2/ "B2

GDPBIBD(2) the number of treatments is equal tomn, wherem denotes the number
of groups each of n treatments. Generally, the parameters of the GDPBIBD(2)
for subplot treatments are as follows: vB D b D mn, bB , rB , kB , �B1, �B2.
The parameters �B1, �B2 denote the numbers of occurring pairs of treatments from
the same group and different groups in the blocks, respectively. The statistical
properties of the GDPBIBD(2) are connected with the algebraic properties of the
concurrence matrix NBN0B , where NB denotes the incidence matrix for subplot treat-
ments. The concurrence matrix NBN0B has three eigenvalues !i with multiplicities
�i , where

!0 D rBkB; !1 D rB � �B1; !2 D rBkB � vB�B2;

�0 D 1; �1 D m.n� 1/; �2 D m� 1:

Let us note that in the incomplete case, as we have for subplot treatments, only
a few of the treatments occur on whole plots. In this chapter we assume that the
contents of whole plots within each superblock are all the same with respect to
subplot treatments. Hence the following relationships hold:

k0 D bB; k1 D q; k2 D a; k3 D kB:

Let CB denote the C matrix of the GDPBIBD(2) for subplot treatments and let
"Bi D 1 � !i

rBkB
denote the efficiency factors with multiplicities �Bi , i D 0; 1; 2,

where
P2

iD0 �Bi D vB . The overall statistical properties of the final design (Table 2)
are connected with those efficiency factors (cf. [9]). The ranks of the information
matrices Ai , i D 1; 2; 3; 4; 5, depend on the type of the GDPBIBD(2).
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Table 3 Stratum efficiency factors

Type of Number of Strata

contrasts contrasts I II III IV V

A.1/ a � 1 0 0 1� "�

A1 "�

A1 0

A.2/ s � 1 0 1 0 0 0

A.3/ 1 0 1 0 0 0

B b � 1 1� "B 0 0 0 "B

A.1/ �B .a � 1/.b � 1/ 0 0 .1� "�

A1/.1� "B/ "�

A1.1� "B/ "B

A.2/ �B .s � 1/.b � 1/ 0 1� "B 0 0 "B

A.3/ �B b � 1 0 1� "B 0 0 "B

5 Control Treatments

Experiments are performed in order to compare existing treatments (also called test
treatments) with a set of control treatments or standards. In the chapter we consider
a case in which we wish to compare only whole-plot treatments with certain controls
(whole-plot controls). Then, the supplementation of the Youden square we can
express by the following incidence matrix:

N�A D
�

NA

Js�bA

�
:

More exactly, a test treatments of the factor A are assigned in the .q�a/ Youden
square, and additionally s control treatments are added.

Using the characterization of the Youden square from Sect. 4.1 with the whole-
plot test treatments � columns incidence matrix NA, we have kA D rA D q, k2 D
bA D vA D a, �A D q.q�1/

a�1 , "A D a.q�1/
q.a�1/ , with multiplicity �A D a � 1.

The final design with respect to the whole-plot treatments has the following
parameters:

v�A D a C s; k�A D q C s; b�A D bA; r�A D Œq10a
::: a10s�0

"�A0 D 1; ��A0 D s; "�A1 D 1� kA.1 � "A/

kA C s
; ��A1 D a � 1:

Similarly, using characterization of subplot treatments occurring in the BIBD
with the parameters: vB D b, bB , rB , kB , �B and incidence matrix NB , we have the
parameters of the design with respect to subplot treatments k0 D bB , k1 D a C s,
k3 D kB and �B D rB.k3�1/

b�1 , "B D b.k3�1/
k3.b�1/ , with multiplicity �B D b � 1.

Finally, the stratum efficiency factors of that design are presented in Table 3.
In the above table, A.1/ represents the set of contrasts among effects of whole-

plot test treatments only; A.2/ represents the set of contrasts among the effects of the
whole-plot control treatments only; and A.3/ represents the set of contrasts among
the effects of the whole-plot test and control treatments only.
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Table 4 Stratum efficiency factors

Type of Number of Strata

contrasts contrasts I II III IV V

A.1/ 3 0 0 1=15 14=15 0

A.2/ 1 0 1 0 0 0

A.3/ 1 0 1 0 0 0

B 2 1=4 0 0 0 3=4

A.1/ �B 6 0 0 1=60 7=30 3=4

A.2/ �B 2 0 1=4 0 0 3=4

A.3/ �B 2 0 1=4 0 0 3=4

6 Example

Let us consider a two factor experiment, in which there are a D 4 whole-plot test
treatments as well as s D 2 whole-plot control treatments and b D 3 subplot
treatments. Moreover, the experiment is set up in k0 D 3 superblocks divided into
k1 D 5 rows and k2 D 4 columns. This means that in each of the superblock we have
20 whole-plots that are additionally divided into 2 subplots. Then on the three rows
we arrange the whole-plot test treatments according to the Youden square scheme.

A2 A4 A3 A1

A3 A1 A4 A2

A4 A2 A1 A3

C C C C
C C C C

The subplot treatments occur in all whole plots in the BIB design according to
the scheme:

B1 B1 B2
B2 B3 B3

The final stratum efficiency factors are presented in Table 4.
Finally, the most general case of the considered designs is considered by [8].
In particular, the whole-plot treatments occur in a repeated Youden square, while
the subplot treatments occur on subplots in a proper incomplete block design. The
statistical properties of the final design are examined.
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Likelihood and PLS Estimators for Structural
Equation Modeling: An Assessment of Sample
Size, Skewness and Model Misspecification
Effects

Manuel J. Vilares and Pedro S. Coelho

Abstract
This chapter aims to contribute to a better understanding of partial least
squares (PLS) and maximum likelihood (ML) estimators’ properties, through the
comparison and evaluation of these estimation methods for structural equation
models with latent variables based on customer satisfaction data. Although PLS
is a well-established tool to estimate structural equation models, more work is
still needed in order to better understand its properties and relative merits when
compared to likelihood methods. Despite the controversy over these two estima-
tion techniques, their complexity makes any analytical comparison very difficult
to be made. Therefore, it constitutes a fertile ground for conducting simulation
studies. This chapter continues the research of Vilares et al. [Comparison of
likelihood and PLS estimators for structural equation modelling: a simulation
with customer satisfaction data. In: Vinzi, W.E., Chin, W.W., Henseler, J.,
Wang, H. (eds.) Handbook of Partial Least Squares. Concepts, Methods and
Applications, pp. 289–307. Springer Handbooks of Computational Statistics,
Springer (2010)], which has compared PLS and ML estimators using Monte
Carlo simulation within three different frameworks (symmetric data, skewed
data and formative blocks). It also continues to generate the data according to
the ECSI (European Customer Satisfaction Index) model with the assumption
that the coefficients of the structural and measurement models are known. This
new chapter introduces the effect of sample size and includes two different
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simulations. The first one is conducted in a context of both symmetric data
and skewed response data. This simulation is conducted for the sample sizes
n D 50, 100, 150, 250, 500, 1,000 and 2,000 and uses reflective blocks. A second
simulation includes the presence of model misspecifications (omissions of an
existent path) for a sample size of 250 observations and symmetric data. In all
simulations the ability of each method to adequately estimate the inner model
coefficients and indicator loadings is evaluated. The estimators are analysed
in terms of bias and dispersion (standard deviation). Results have shown that
overall PLS estimates are generally better than covariance-based estimates. This
is particularly true when the data is asymmetric, when estimating the model for
smaller sample sizes and for the inner model structure.

1 Introduction

Structural equation modeling (SEM) inspires enthusiastic praise as well as persistent
rejection. In an Internet survey carried on 2003 [12] one can see quotes emphasizing
different points of view, like “the technique of Structural Equation Modeling
represents the future of data analysis” and “Nobody really understands SEM.”
Nevertheless SEM is getting more and more popular. Indeed, the citation frequency
in psychological literature has steadily increased since the 1970s, reaching the
popularity of ANOVA as it can be checked in the citation frequencies of SEM
and (M) ANOVA in the APA PsyncINFO [12]. In terms of estimation methods for
SEM, covariance-based methods are undoubtedly the most well-known methods
with the result that many social researchers use the terms SEM and covariance-
based methods synonymously. Partial least squares (PLS) methods constitute one
alternative to estimating SEM. However, in spite of the growing usage of PLS
methods in several fields (for instance in customer satisfaction studies), these
methods are still often seen as ad hoc algorithms that have generally not been
formally analysed [11]. Several authors (e.g. [3,7]) argue that PLS methods present
several advantages when compared to covariance-based methods. In fact, it is
argued that in order to these later methods produce consistent parameter estimates,
the empirical conditions of the data require multivariate normal distribution and
independence of observations. Moreover, indicators are typically required to be
reflective and unique case values for latent variables cannot be obtained. On the
contrary, beyond being based on simpler algorithms, PLS methods don’t require
any assumptions regarding the joint distribution of indicators or the independence
of observations. On the other hand, unique case values for the latent variables are
estimated. Also indicators can be modelled in either direction (i.e. formative or
reflective). However, there is not neither a formal proof nor a simulation study in
the framework of a realistic model that sow these advantages of PLS techniques
over covariance-based methods. In fact, Fornell and Bookstein [7] conducted
a simulation study for the two kinds of estimation methods, but they used an
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extremely simple model1 and they only consider the framework of colinearity
between indicators. Cassel et al. [2] also conducted a simulation study to access
the performance of PLS estimates. The authors have also used a simplified version
of ECSI (European Customer Satisfaction Index) model and access the robustness
of PLS estimators in the presence of multicollinearity between manifest or latent
variables, in the presence of skewness of manifest variables and in the presence of
misspecification (erroneous omission of manifest and latent variables). Nevertheless
covariance-based estimates are not obtained in this study and therefore the relative
merits of PLS cannot be accessed. Chin and Newsted [4] organize an experiment
allowing to access both sample size and block size effects on PLS estimators.
However, they do not compare the two estimation methods.

In a very recent chapter, Vilares et al. [16] proceed to a simulation study
comparing PLS and ML estimators in the context of two assumptions: the symmetric
distribution and the reflective modelling of the indicators. They compare how the
two kinds of methods (PLS and covariance-based methods) perform both when
these assumptions hold and when they are violated, i.e. when the distribution of
the observations is skewed and the indicators are modelled according to a formative
scheme. They do this analysis in the framework of the ECSI model and for a fixed
sample size of 250 observations. The main goal of this research is to contribute
to a deeper comparison of the two estimation methods, through the simulation
with a realistic model and on conditions of different sample sizes and model
misspecification. We release some of the assumptions carried on [16] in order to
overcome some of its shortcomings. More specifically we use the ECSI model and
the present simulation will have two goals. The first one is to access the sample size
effect on the comparison of PLS and ML estimators in the context of symmetric
and skewed response data. It is particularly interesting to evaluate the robustness
of the two estimation methods to the presence of small sample sizes and skewed
response data. These are usual situations in the typical areas of application for SEM
(marketing, psychology, information systems, etc.). The second goal of this research
is to compare the robustness of the PLS and ML estimators in the presence of a
model misspecification (omission of an existent path in the structural model). In
this case, we will use a sample size of 250 observations.

The structure of the remaining part of this chapter is as follows. Section 2
presents ECSI model. Two different estimation procedures for structural equation
models are presented in Sect. 3: Sects. 3.1 and 3.2 synthesize the covariance-based
methods and PLS, respectively. The organization of the simulation study, including
the data-generating process, is shown in Sect. 4. Section 5 presents and analyses
the main results obtained in this simulation. The main conclusions are presented in
Sect. 6. The chapter concludes with the references (Sect. 6) and an appendix with
detailed results of the simulations.

1The model has only three latent variables (two endogenous and one exogenous). Moreover no
relation is assumed between the two endogenous variables.
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Fig. 1 The ECSI model

2 The ECSI Model

The ECSI model is a framework that aims to harmonize the national customer
satisfaction indices in Europe. It is an adaptation of the Swedish Customer
Satisfaction Barometer [6] and of the ACSI-American Customer Satisfaction Index
[9]. The ECSI model is presented in detail in ECSI (1998) and some of the more
relevant issues discussed there are briefly presented in this section.

The ECSI model is composed of two sub-models: the structural model and the
measurement model. The structural model includes the relations between the latent
or non-observable variables and is represented in Fig. 1. Customer satisfaction is the
central variable of this model, having as antecedents or drivers the corporate image
of the company, customer expectations, perceived quality of products and services
and perceived value. The main consequent of customer satisfaction as specified by
the model is customer loyalty. The model is therefore constituted by one exogenous
latent variable (image) and five endogenous variables. The measurement model
defines the relations between the latent variables and the observed indicators or
manifest variables. One may have two kinds of measurement models:
• A reflective model when the observed indicators are assumed to be the reflex of

the latent variables (the arrow is directed to the observed indicator from its latent
variable)

• A cause or formative model when the observed indicators are assumed to cause
or form the latent variables (the arrows are directed to the latent variables from
their indicators)

The ECSI structural and measurement models may be described by the following
equations:
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2.1 Structural Model

We have five equations (i.e. the same number of endogenous variables) that can be
written in a compact form as

� D ˇ�C �� C � (1)

where � is a vector .5� 1/ of endogenous latent variables (all except image), �
is th exogenous latent variable (image), ˇ and � are impact matrices and � is a
vector .5� 1/ of specification errors. We will assume the usual properties about
these errors (zero mean, homocedasticity and zero covariance between the errors).
More specifically the matrices of structural coefficients ˇ and � are the following:

ˇ D

2

6
66
6
6
4

0 0 0 0 0

ˇ21 0 0 0 0

ˇ31 ˇ32 0 0 0

ˇ41 ˇ42 ˇ43 0 0

0 0 0 ˇ54 0

3

7
77
7
7
5
; � D

2

6
66
6
6
4

�1
0

0

�4
�5

3

7
77
7
7
5

(2)

with �: image; �1: customer expectations; �2: perceived quality of products and
services; �3: perceived value; �4: customer satisfaction; �5: customer loyalty.

2.2 Measurement Model

The ECSI measurement model uses a reflective scheme, described by the equations:

y D 	y�C 
 (3)

x D 	x� C ı (4)

E.
/ D E.ı/ D E.
j�/ D E.ıj�/ D 0

where y0 D �
y1; y2; : : : ; yp

�
and x0 D �

x1; x2; : : : ; xq
�

are the manifest endogenous
and exogenous variables, respectively.	y and	x are the corresponding parameters
matrices (loadings) and 
 and ı are specification errors.

Representing by y0i D .yi1; y2; : : : ; yiHi / the vector of manifest variables related
to the latent endogenous variable �i and by x0 D .x1; : : : ; xG/ the vector of manifest
variables related to the latent exogenous variable �, we can also write the model in
the form

yij D �yij �i C 
ij ; i D 1; : : : ; 5I j D 1; : : : ;Hi

xj D �xj � C ıj ; j D 1; : : : ; G

where Hi is the number of manifest variables associated with variable �i and G is
the number of manifest variables associated with variable �.
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All the indicators are obtained through the administration of a questionnaire to
customers, using a scale from 1 to 10 where the value 1 expresses a very negative
opinion from the customer and the vale 10 a very positive opinion.

3 Estimation Procedures

The ECSI model to estimate is composed by Eqs. (1)–(4). The estimation of ECSI
model as well as of other structural equation models (SEM) faces several difficulties,
from which we emphasize:
• The latent variables are not observed.
• The measurement indicators that correspond to the answers to a customer

satisfaction questionnaire may not follow a normal distribution. The distribution
of the frequencies of these indicators is in general not symmetric and typically
presents skewness to the right.

• The measurement variables often present some level of multicollinearity.
• Some blocks hardly can be seen as reflective. This is the case of the exogenous

latent variable (image), where theory behind the measurement model suggests
that the latent variable may be of a formative nature, i.e. the indicators may be
viewed as the cause of the latent variable.

Two families of methods have been used to estimate this type of models: the PLS
methods and the covariance-based methods. We will present in this section a brief
introduction of these two groups of methods.

3.1 Covariance-Based Methods

This group of methods is the most widely adopted. According to [13], the different
covariance-based methods are variations on the minimization of a common general
discrepancy function:

F D .S �˙/0w�1.S �˙/ (5)

where S is a vector of the unique (no redundant) elements of the sample covariance
or correlation matrix, ˙ is a parallel vector of elements from the model-implied
matrix and w is a matrix of weights. The different methods correspond to different
matrices w. The two most widely used estimation methods are the generalized least
squares (GLS) (with w as the variance and covariance matrix of the residuals)2

2This GLS used in SEM estimation methods is analogous to Generalized Least Square methods
used in regression context with an important difference, however. The residuals considered in
the discrepancy function F correspond to differences between two types of covariances (of the
sample and of the model). On the other hand the residuals in the regression context usually mean
differences between observed and estimated values for endogenous variables.
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and the maximum likelihood (ML) method (that uses the fitting function lnj˙ j C
trace.S=˙/� lnjS j � p, with p being the number of indicators).

There are different softwares to minimize Eq. (5) or to maximize the likelihood
corresponding function. Among these softwares the most known is LISREL (linear
structural relations) that is a ML method and it is so much associated to the
estimation of structural equation models that it is often confused with the SEM itself.
ML methods produce asymptotically unbiased, consistent and efficient estimators
under the empirical conditions that the indicators follow a multivariate normal
distribution; the sample is large and independence of observations [1]. When
these assumptions are not verified, these methods may produce, according to
several authors (e.g. [3, 7]), improper solutions such as negative variance estimates.
Moreover, these methods do not provide unique values for the scores or case values
of latent variables since there is an infinite set of possible scores that are consistent
with the parameter estimates. Finally all the indicators must be treated in a reflective
manner because to model otherwise would create a situation where we are unable to
explain the covariances of all indicators, which is the rationale for this approach [3].

3.2 PLS Methods

PLS for structural equation modelling may be seen as a distribution-free method,
since no assumption is made about the distribution of measurement variables or
even about the independence of observations. The PLS approach has two stages: in
the first one estimates the observations of the latent variables (case values) with an
iterative scheme. In the second stage one estimates the parameters of the structural
equations and measurement model. In opposition to covariance-based methods,
PLS aims to minimize the variance of the dependent variables (both latent and
measurement variables).

PLS is supported by an iterative process that iterates between two approximations
to the latent variables: the inner approximation and the outer approximation. In each
iteration the outer approximation produces an estimate for each latent variable as a
linear combinations of their manifests. The inner approximation produces another
estimate for the latent variables. Here each variable is obtained as a combination
of the external approximation of the other latent variables directly connected to
it. Various weighting schemes have been used in this context, being the best
well-known: the centroid, the factor and the path weighting scheme. The two
estimations are iterated until convergence is reached, i.e. when the weights obtained
in outer approximation stabilize. Finally, the structural model (1) is estimated, using
Ordinary Least Squares for each equation and each latent variable replaced by its
estimate. The adoption of OLS is possible since model (1) is recursive and as a
consequence the matrix of the parameters of endogenous variables is triangular.

The case values of the latent variables are inconsistent due to the fact that
they are estimated as aggregates of the observed or manifest variables (cf. outside
approximation), which include a measurement error. This bias that is the differences
between the estimated and the “true” latent variable scores will tend to zero as the



18 M.J. Vilares and P.S. Coelho

number of indicators per both block and sample size increases. This limiting case is
termed “consistency” at large and this property has been argued as a justification for
using PLS as an estimation method to estimate LISREL parameters in case where
the number of manifest variables is large [14].

PLS is the estimation method adopted for estimating ECSI model. There are
several presentations of the PLS methodology in this framework (e.g. [2, 5]). More
general descriptions of the PLS methodology may be found in [8, 10, 15, 17].

4 The Simulation Study

In reason of the complexity of either SEM models and PLS and covariance-based
methods, the analysis of their relative merits and their robustness when some of their
assumptions are violated can hardly be assessed in analytical form, particularly in
the framework of a realistic model. This is a fertile ground to the use of simulation
studies.

4.1 Sample Size and Skewed Response Data

In order to access the sample size effect on the comparison of PLS and ML
estimators in the context of symmetric and skewed response data, we have set-
tled a Monte Carlo simulation using two models: one, named symmetric data
model but also referred as base model, where all blocks are reflective and the
measurement variables show a symmetric distribution; the other, named skewed
data model, where all blocks are reflective but the measurement variables show
an asymmetric right skewed distribution. This violation was motivated for being
typical of customer satisfaction data that frames the study. We used sample sizes of
n D 50; 150; 250; 500; 1; 000 and 2,000 observations.

The simulation aims to analyse the quality of PLS and ML estimates of structural
model coefficients (matrices ˇ and �) and of measurement model coefficients
.	y;	x and ��/ in the context of the two variants: symmetric or base model and
skewed data model. PLS and ML estimators of model coefficients are analysed in
terms of bias and dispersion (as measured by the standard deviation). The bias of an
estimator of a generic coefficient ˇij is obtained as Bˇij D K�1

PK
kD1. Ǒ

ij;k � ˇij /

and the standard deviation by SDˇij D
q
K�1

PK
kD1. Ǒ

ij;k � NǑ
ij /2, where K repre-

sents the number of replicates in the simulation and Ǒ
ij;k the estimate of ˇij obtained

with replicate k by one estimation method (PLS or ML). To access the validity of
simulation results we have additionally computed the simulation error regarding the

estimator biases as ESˇij D 1:96

q
.K.K � 1//�1PK

kD1. Ǒ
ij;k � NǑ

ij /2.
The simulation was run using the SAS system. The PLS approach was imple-

mented through a SAS macro and the ML estimation using CALIS procedure.
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Fig. 2 The postulated ECSI model

4.2 The Data-Generating Process

The starting point of our simulation is the ECSI model (cf. Fig. 1). The data are
generated according to the ECSI model, where we have assumed that the coefficients
of both models (structural and measurement models) were known.

The values for inner and outer model coefficients were chosen in order to be as
similar as possible to the ones that would be obtained with real-world data. For
that we have observed typical estimates of model coefficients obtained through
the estimation of ECSI model applied to different companies and industries and
postulated a model structure consistent with those estimates (Fig. 2).

Thus, the postulated structural model is:

�1 D 0:9�1 C �1

�2 D 0:8�1 C �2

�3 D 0:3�1 C 0:7�2 C �3

�4 D 0:3�1 C 0:4�2 C 0:3�3 C �4

�5 D 0:3�1 C 0:7�4 C �5

where �1 is the exogenous variable image and �1 � �5 are endogenous variables
that represent customer expectations, perceived quality, perceived value, customer
satisfaction and customer loyalty. The measurement models for the endogenous
variables are of reflective kind, assuming the following values for the parameters:
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Table 1 Simulation errors with symmetric and asymmetric data

n D 50 n D 100 n D 150 n D 250 n D 500 n D 1;000 n D 2;000

PLS ML PLS ML PLS ML PLS ML PLS ML PLS ML PLS ML

Symmetric data
Outer 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00
Inner 0.01 0.10 0.01 0.05 0.01 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.01
Asymmetric data

Outer 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00
Inner 0.01 0.10 0.01 0.05 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02

�1j D 1:2, 0.8, 1.0 for j D 1; 2; 3, �2j D 0:8, 1.1, 1.0, 0.7, 0.9 for j D 1; : : : ; 5,
�3j D 1:2, 0.75 for j D 1; 2, �4j D 1:1, 0.8, 0.6 for j D 1; 2; 3, �5j D 0:9; 0.7,
0.6, for j D 1; 2; 3. The measurement scheme for the exogenous variable, image, is
also reflective assuming the following values for parameters: �j D 1:0, 0.75, 1.15,
0.9, 0.8 for j D 1; : : : ; 5.

For the base model, the cases of the exogenous latent variable were generated
using a ˇ.4I 4/ symmetric distribution in the interval Œ1I 10� and all the errors both in
the inner and outer models were generated using a ˇ.3I 3/ symmetric distribution in
the interval Œ�1:5I 1:5�. For the skewed data model, we used both for the cases of the
exogenous latent variable and the errors a right skewed distribution ˇ.10I 4/. In the
two models, the values of the measurement variables were converted into scores in
the ten-point scale 1–10, which is the scale used in ECSI and ACSI questionnaires.

For the simulation, we have generated 1,500 data sets of 50 observations and
1; 000 data sets of 100; 150; 250; 500; 1,000 and 2; 000 observations. A total of
75; 000; 100; 000; 150; 000; 250,000; 1; 000; 000 and 2; 000; 000 observations for
the 21 measurement variables were obtained.

We have computed the simulation errors regarding the estimator biases for the
inner and outer model and using both estimation methods (PLS and ML) in case of
symmetric data and of asymmetric data. The results are shown in Table 1. These
results show that the simulation errors are very small. They decrease as the sample
size increases and they are always smaller when we adopt PLS (instead of ML)
estimation procedure.

4.2.1 The Model Misspecification
To compare the performance of PLS and ML estimators in the presence of a model
misspecification, we have omitted, in the structural model see Fig. 2, the image-
satisfaction path that is of medium size (it is estimated in 0; 3) and also the perceived
quality–perceived value path that is of large size (it is estimated in 0; 7). We have
estimated by the two methods the symmetric data model with a sample size of 250
observations. We have compared the new biases with the ones obtained with the
base symmetric data model to access the robustness of PLS and ML estimators to
these model misspecifications.
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Fig. 3 Bias—outer structure (left) and Bias—inner structure (right)

5 Simulation Results

The goal of our simulation study is to analyse and compare Maximum Likelihood
and PLS estimators properties for structural equation models based on customer
satisfaction data, both in terms of bias and precision.

5.1 Sample Size and Skewed Response Data

Simulation results are illustrated in Figs. 3 and 4. Figure 3 illustrates the bias of
model parameters (loadings and inner model coefficients) both for the PLS and ML
techniques and for the two model formulations (symmetric response data model
and skewed response data). The precision of the estimates is assessed through the
standard deviations of these parameter estimates and they are presented in Fig. 4.
In both figures, the averages of the absolute bias and the averages of standard
deviations for the inner and outer structures are also shown3.
In terms of the biases of the parameters, Fig. 3 illustrates that:
• PLS estimators always show smaller biases than ML estimators (particularly with

asymmetric data).
• The bias of PLS estimators is approximately independent of the sample size and

it is very similar when using symmetric and asymmetric data.

3Detailed simulation results regarding the symmetric data model are shown in Tables 2 and 3 and
results referring to asymmetric data appear in Tables 4 and 5 in appendix. Tables 2 and 4 show
the bias of model parameters (loadings and inner model coefficients) both for the PLS and ML
techniques. The dispersion of the estimators is accessed through the standard deviations which are
presented in Tables 3 and 5.
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Fig. 4 Standard deviations—outer structure (left) and standard deviations—inner structure (right)

• ML estimators have a significantly higher biases with asymmetric data; for
symmetric data bias is relatively constant after n D 150, but with asymmetric
data it tends to grow with the sample size, at least until n D 950.

• The patterns shown for the outer structure remain in the inner structure.
• The relative advantages of PLS performance in terms of bias are more noticeable

in this structure, especially when we deal with small sample sizes.
• With asymmetric data, the differences between biases of both estimators tend to

increase, as the bias of ML estimators increase with n (for n > 150).
On the other hand, in terms of the precision of the estimators, the following points

should be emphasized (see Fig. 4 ):
• PLS estimators show smaller dispersion than ML estimators for any sample size

with sym /asym data.
• With symmetric data both for PLS and ML standard deviation always decrease

as n increases.
• PLS tends to show similar dispersion both with symmetric and asymmetric data

for n > 500. However ML estimators always show higher dispersion in the
presence of asymmetries.

• With asymmetric data ML shows a bad property of increase standard deviation
with n (after n D 100).

• PLS estimators show again smaller dispersion for any sample size.
• PLS shows similar performance both with symmetric and asymmetric data, but

ML estimators always show higher standard deviations with asymmetric data.
• The dispersion of the ML estimators reduces as n increases, but the difference

with PLS estimators in terms of dispersion never decreases.

5.2 Model Misspecification

Figures 5–8 summarize the results regarding the model misspecifications. Figures 5
and 6 show the results for the outer model in case of the omission of the path
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between image and satisfaction and in case of omission of the path between
perceived quality and perceived value, respectively. Figures 7 and 8 deal with the
inner model for the same omissions.

The first two figures show that in the PLS context, the bias of the loadings
is very small in both cases and their estimates remain almost unchanged. On the
contrary, when using ML estimators, the bias increases, especially when estimating
the loadings included in the explained latent variable in the omitted relationship
(satisfaction and perceived value, respectively).
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When we analyse the behaviour of the estimates of inner model parameters,
Figs. 7 and 8 show that PLS methods offer in general better results. However, there
is an exception that is illustrated in Fig. 8. In fact, the variation in the dispersion of
the PLS estimators is higher than the ML one when we estimate the impacts that are
antecedents to perceived value, in case of omitting the perceived quality perceived
value link.

6 Conclusions

Although the covariance-based procedures are by far the most well-known tech-
niques among structural equation modelling, the PLS approach can also be a very
useful tool that can be applied by researchers.

Our chapter gives some insights into the quality of PLS estimation when applied
to a structural equation model representing customer satisfaction data. We have
postulated a model similar to the ECSI model composed by six latent variables
(image, expectations, quality, value, satisfaction and loyalty). Within a simulation
study we have evaluated both PLS and ML estimates in terms of bias and dispersion
when estimating the inner and outer model coefficients for sample sizes ranging
from n D 50 to n D 2; 000. We have used two models: one with symmetric data
and one variant where data are obtained with a right-skewed distribution. This is a
situation that is typical of customer satisfaction data.

Overall, results have shown that PLS estimates are generally better than ML esti-
mates both in terms of bias and dispersion. This is particularly true when using small
sample sizes, asymmetric data and when estimating the inner model structure. ML
estimators seem to be much more sensitive to the introduction of asymmetries and
to the use of small sample sizes, usually producing very poor results for n < 250.
This means that in the symmetric context, the use of PLS estimators is crucial when
using small sample sizes, especially when estimating the inner coefficients. For
large sample sizes both methods tend to converge. Nevertheless, when estimating
the structural model, the PLS estimators still tend to show slightly better properties.
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PLS estimators seem also to be more robust, to the introduction of asymmetric data,
for all sample sizes (bias and standard deviations are almost unchanged). The quality
of ML estimators is usually very poor (particularly in the inner model and for small
sample sizes) and bias shows a bad property of increasing with sample size.

The consideration of PLS and ML simulation errors does not change these
conclusions. The PLS estimators are never outperformed by the ML ones, even with
large sample sizes. Another interesting result is that when data is symmetric, there
is a tendency of PLS estimators to overestimate measurement model coefficients
and to underestimate structural model coefficients that seem to be independent of
the sample size. The ML method shows exactly the opposite tendency. But with
asymmetric data, the ML estimators no longer show a systematic underestimation
of the outer model from n D 50 to n D 2; 000.

Finally, concerning sample size effects, the simulation results show that PLS per-
formance, in terms of bias, is superior when estimating the inner model coefficients
than when estimating the measurement model coefficients. ML methodology has the
opposite tendency, generating smaller biases when estimating the outer structure.

Now, when we incur in model misspecifications, the PLS estimators seem to
be more robust to such situation. When a structural path is omitted, the bias and
the dispersion of the PLS estimators always show smaller increases than the ML
results (with one exception). Moreover, the omission of a path in the structural
model influences less the estimation of the outer structure of blocks involved in the
omission than the inner structure of the model. For PLS, loadings estimation remain
almost unchanged. On the other hand, the paths associated to the latent variables
(LV) involved in the omitted link (especially to the explained LV) are the ones whose
estimation quality is more affected by the model misspecification. The estimation
quality of the other structural coefficients is less affected, especially if PLS is used
(ML shows more contamination to the estimation of other coefficients).

The simulations also show that the size of the omitted link in the structural model
seems to be important in the estimation of the inner coefficients. The degradation
of the estimators properties is higher when omitting the P.Quality–P.Value link than
when omitting the image-satisfaction link. A major limitation of this simulation is
the fact that we have not considered different levels of skewness in data. Further
research should be done in order to understand how different levels of skewness
in the measurement variables affect the properties of the two estimators (PLS and
ML). Also, further research is needed to validate the sensitivity of both methods to
the estimation of blocks with different number of indicators. In our simulation we
have accessed the properties of PLS and ML estimators (bias and dispersion) but
not the performance of statistical tests based on these estimates. In particular, the
ability of each method to detect significant coefficients (of different sizes) should
be accessed in future work. Finally, future work should also access the performance
of both methods in the presence of multicollinearity and or model misspecification.
In fact, with real-world applications, erroneous omissions of model coefficients or
manifest and latent variables are common. Also erroneous inclusions of nonexistent
relationships between variables may arise. This is fertile ground to a more in-dept
study of ML and PLS performance.
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Appendix

Table 2 Estimators biases—base model (symmetric data)

n D 50 n D 100 n D 150 n D 250 n D 500 nD 1;000 nD 2;000

Parameter PLS ML PLS ML PLS ML PLS ML PLS ML PLS ML PLS ML

Indicator loadings

�x1 0:08 0:06 0:08 0:04 0:08 0:04 0:08 0:04 0:08 0:04 0:08 0:04 0:08 0:04

�x2 0:06 0:05 0:06 0:03 0:06 0:03 0:06 0:03 0:06 0:03 0:06 0:03 0:06 0:03

�x3 0:09 0:07 0:09 0:05 0:09 0:05 0:09 0:05 0:09 0:05 0:09 0:05 0:09 0:04

�x4 0:07 0:06 0:07 0:04 0:07 0:04 0:07 0:04 0:07 0:04 0:07 0:04 0:07 0:04

�x5 0:07 0:05 0:07 0:03 0:07 0:03 0:07 0:03 0:07 0:04 0:07 0:03 0:07 0:03

�y11 �0:01 �0:10 �0:01 �0:14 �0:01 �0:14 �0:01 �0:16 �0:01 �0:17 �0:01 �0:18 �0:01 �0:19
�y12 0:00 �0:07 0:00 �0:09 0:00 �0:10 0:00 �0:11 0:00 �0:11 0:00 �0:12 0:00 �0:13
�y13 �0:01 �0:08 0:00 �0:12 �0:01 �0:12 �0:01 �0:13 �0:01 �0:14 �0:01 �0:15 �0:01 �0:16
�y21 0:09 0:14 0:09 0:10 0:09 0:09 0:09 0:09 0:09 0:08 0:09 0:09 0:09 0:10

�y22 0:12 0:22 0:12 0:15 0:12 0:13 0:12 0:12 0:12 0:11 0:12 0:13 0:12 0:14

�y23 0:11 0:20 0:11 0:14 0:11 0:12 0:11 0:11 0:11 0:10 0:11 0:11 0:11 0:12

�y24 0:08 0:14 0:08 0:10 0:08 0:08 0:08 0:08 0:08 0:07 0:08 0:08 0:08 0:09

�y25 0:10 �0:18 0:10 �0:20 0:10 �0:19 0:10 �0:19 0:10 �0:20 0:10 �0:20 0:10 �0:20
�y31 0:02 �0:19 0:02 �0:22 0:02 �0:22 0:02 �0:23 0:02 �0:27 0:02 �0:27 0:02 �0:27
�y32 0:01 �0:12 0:01 �0:14 0:01 �0:14 0:01 �0:15 0:01 �0:17 0:01 �0:17 0:01 �0:17
�y41 0:20 �0:36 0:20 �0:28 0:20 �0:27 0:20 �0:26 0:20 �0:23 0:20 �0:23 0:20 �0:22
�y42 0:15 �0:26 0:15 �0:21 0:15 �0:20 0:15 �0:19 0:15 �0:17 0:15 �0:17 0:15 �0:16
�y43 0:11 �0:20 0:11 �0:16 0:11 �0:15 0:11 �0:14 0:11 �0:13 0:11 �0:13 0:11 �0:12
�y51 0:32 �0:12 0:32 �0:08 0:32 �0:08 0:32 �0:08 0:32 �0:08 0:32 �0:08 0:32 �0:08
�y52 0:25 �0:09 0:25 �0:06 0:25 �0:06 0:25 �0:06 0:25 �0:06 0:25 �0:06 0:25 �0:06
�y53 0:21 �0:08 0:21 �0:05 0:21 �0:05 0:21 �0:05 0:21 �0:05 0:21 �0:06 0:21 �0:05
Average
(abs)

0:10 0:13 0:10 0:12 0:10 0:11 0:10 0:11 0:10 0:11 0:10 0:11 0:10 0:11

Inner model coefficients

�1 �0:03 0:19 �0:03 0:19 �0:03 0:20 �0:03 0:21 �0:03 0:21 �0:03 0:22 �0:03 0:23

ˇ21 0:05 �0:16 0:05 �0:17 0:05 �0:16 0:05 �0:17 0:05 �0:17 0:05 �0:18 0:05 �0:19
ˇ31 0:05 0:06 0:04 0:04 0:04 0:03 0:04 0:04 0:04 0:04 0:04 0:04 0:04 0:03

ˇ32 �0:16 0:31 �0:16 0:29 �0:15 0:29 �0:15 0:29 �0:15 0:31 �0:15 0:30 �0:15 0:31

�4 �0:03 0:24 �0:03 0:14 �0:03 0:15 �0:04 0:14 �0:03 0:13 �0:03 0:14 �0:03 0:13

ˇ41 0:06 0:24 0:05 0:06 0:06 0:04 0:06 0:03 0:06 0:01 0:06 0:00 0:06 �0:01
ˇ42 �0:09 0:40 �0:09 0:18 �0:09 0:17 �0:09 0:16 �0:09 0:13 �0:09 0:14 �0:09 0:13

ˇ43 �0:09 0:13 �0:08 0:03 �0:08 0:03 �0:08 0:02 �0:08 0:00 �0:08 �0:01 �0:08 �0:01
�5 0:06 0:13 0:07 0:06 0:07 0:06 0:07 0:06 0:07 0:07 0:07 0:07 0:07 0:07

ˇ54 �0:15 �0:15 �0:15 �0:14 �0:15 �0:14 �0:15 �0:12 �0:15 �0:11 �0:15 �0:10 �0:15 �0:09
Average
(abs)

0:07 0:20 0:08 0:13 0:08 0:13 0:07 0:12 0:07 0:12 0:08 0:12 0:06 0:12
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A Parametric Cure Model with Covariates

Ana M. Abreu and Cristina S. Rocha

Abstract
Cure models were developed to deal with situations where it is plausible to
assume that there are non-susceptible (or cured) individuals within the study
population. Usually, in a cure model, the aim is to estimate the proportion of non-
susceptible individuals, the survival function of the susceptible individuals and
the effect of the covariates, if they have been included in the model. Therefore,
researchers are interested in knowing if the event will occur (which is called
incidence) and when it will occur, given that it can occur (which is called
latency). For each covariate there are two parameters: one that describes how
the covariate affects incidence and the other that describes how it affects latency.
In this context, the population under study is heterogeneous not only because
there are susceptible and non-susceptible individuals but also due to the different
values of their covariates. This chapter follows another one Abreu and Rocha
[Um novo modelo de cura paramétrico. In: Castro, L.C., Martins, E.G., Rocha,
C., Oliveira, M.F., Leal, M.M., Rosado, F. (eds.) Ciência Estatı́stica, pp. 151–
162. Edições SPE, Lisboa (2006)], where we proposed a cure model based on the
Chen distribution [Chen, A new two-parameter lifetime distribution with bathtub
shape or increasing failure rate function. Stat. Probab. Lett. 49, 155–161 (2000)].
The good results obtained with this new model when fitted to real data was a
motivation for including covariates into the model.
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1 Introduction

Survival analysis is strongly stimulated by the constant evolution of medicine. In
particular, new models were developed to take into account the possibility of cure
of certain diseases. It is in this context that cure models appear, because they allow
the analysis of survival data in which some subjects can eventually experience, and
others never experience, the event of interest. An important property of cure models
(mixture and non-mixture) is the fact that they have an improper survival function,
which is equivalent to the cumulative hazard function being limited.

Although, frequently, the cure is not observable, the suspicion is based on some
features of the data, namely the existence of many censored observations beyond
the last observed survival time. Therefore, a long and stable plateau of the Kaplan–
Meier survival curve [5] suggests the applicability of the mixture cure model
approach [8].

Usually, in a cure model, we want to estimate the proportion of cured individuals,
the survival function of the susceptible individuals and the effect of the covariates,
if they have been included in the model. There are several ways of modelling the
effect of the covariates, x, on the survival of the susceptible individuals. For instance,
the accelerated failure time model, that is, Sd.t jx/ D Sd0.te

ˇ0x/, where Sd0.:/ is
independent of the covariates and can be formulated either parametrically [9] or non-
parametrically [7]. Another possibility is the proportional odds model, which is used
when the hazard functions of individuals with different values of their covariates
converge after some time. The most widely used model is undoubtedly the
proportional hazards model Sd .t jx/ D Sd0.t/

exp.ˇ0x/ where, usually, Sd0.t/ is non-
parametric [10]. Another alternative is to consider a mixture cure model with more
than one survival function for susceptible individuals [4]. The logistic regression
model is the most common choice to model the effects of the covariates, z,
on the cure proportion.

In this chapter, we propose a new mixture cure model with covariates based on
the Chen distribution [2]. Section 2 describes the general structure of this model,
while in Sect. 3 some parameter estimation details are presented. In Sect. 4 the
applicability of our model is illustrated with the analysis of leukaemia data and
Sect. 5 is reserved to concluding remarks.

2 A Cure Model with Covariates

In this section we describe the structure of the mixture cure model, some features of
the Chen distribution and present our new model.

2.1 The Mixture Cure Model

We denote by T the random variable that represents the survival time in a population
where there are susceptible and non-susceptible individuals. Let Y denote a binary
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random variable indicating that an individual is either susceptible (Y D 1) or not
(Y D 0). The mixture cure model can be formulated through the survival function

S.t/ D p C .1 � p/Sd .t/; (1)

where p D P.Y D 0/ represents the non-susceptible proportion and Sd .t/ D
S.t jY D 1/ is the (proper) survival function of the susceptible individuals. As
S.t/ ! p when t ! 1, then S.t/ is an improper survival function. Note that,
if an individual has censored survival time, then Y is not observable, so we do not
know if that individual is susceptible or not.

If we introduce covariates in model (1), we have

S.ti jxi ; zi / D p.zi /C .1 � p.zi //Sd .ti jxi /; (2)

where xi and zi are the vectors of covariates associated to the i th individual (i D
1; : : : ; n), p.zi / D P.Y D 0jzi / is the probability that the i th individual is non-
susceptible given a covariate vector zi and Sd .ti jxi / D P.Ti > ti jYi D 1; xi / is
the probability that an individual survives longer than ti , given that the individual is
susceptible and has a covariate vector xi . Note that xi and zi can include the same
covariates.

2.2 The Chen Distribution

The distribution function proposed by Chen [2] is

F.t/ D 1 � expŒ�1.1 � exp.t�2 //�; t > 0; �1; �2 > 0; (3)

where �1 is the scale parameter and �2 is the shape parameter. The corresponding
survival and hazard functions are, respectively,

F .t/ D expŒ�1.1 � exp.t�2 //�; t > 0; (4)

h�.t/ D �1�2t
�2�1 exp.t�2 /; t > 0:

The author refers that h�.t/ can be bathtub-shaped when �2 < 1 and that it
increases when �2 � 1, which is unusual in most distributions used in survival
analysis. In fact, as

h�0

.t/ D �1�2t
�2�2 exp.t�2 /..�2 � 1/C �2t

�2 /;

for �2 < 1 we have h�.t/ decreasing for t 2 Œ0; . 1
�2

� 1/ 1
�2 � and, for t � . 1

�2
� 1/ 1

�2 ,
h�.t/ is an increasing function. Hence, the range of the interval where h�.t/ is
decreasing will increase as �2 decreases. Therefore, if �2 is near zero, for example,
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�2 D 0:1, the interval is so large that, from the practical point of view, it is just like
having a decreasing hazard function. Reciprocally, as �2 approaches 1, the interval
where the hazard function is decreasing is so small that it is almost like if the hazard
function was always increasing.

2.3 The Cure Model Based on the Chen Distribution
with Covariates

Admit that the survival time of susceptible individuals follows the Chen distribution,
given by Eq. (3). As stated by Abreu and Rocha [1], the cure model obtained by
substituting in Eq. (1) Sd .t/ by the expression (4) is

S.t/ D p C .1 � p/ expŒ�1.1 � exp.t�2//�; t > 0; �1; �2 > 0: (5)

If the model is defined in terms of hazard function, we have

h.t/ D .1 � p/�1�2t�2�1 exp.t�2 / expŒ�1.1 � exp.t�2 //�

p C .1 � p/ expŒ�1.1 � exp.t�2 //�
:

Consider the proportional hazards model for the survival time of susceptible
individuals. Then we have

Sd .t jx/ D Sd .t jˇ0x; �1; �2/ D Sd0.t j�1; �2/exp.ˇ0x/;

where �1 and �2 are the parameters of the Chen distribution corresponding to the
baseline survival function, that is,

Sd .t jx/ D ŒexpŒ�1.1 � exp.t�2 //��exp.ˇ0x/: (6)

Let

p.z/ D P.Y D 0jz/ D 1

1C exp.� 0z/
(7)

be the function that models the effect of the covariates on the proportion of non-
susceptible individuals. In fact, in this context, the logistic regression model is the
most commonly used binary regression model.

The mixture cure model of proportional hazards specified by Eqs. (2), (6) and (7)
can be written in the form

S.t jx; z/ D 1

1C exp.� 0z/
C exp.� 0z/
1C exp.� 0z/

ŒexpŒ�1.1 � exp.t�2 //��exp.ˇ0x/: (8)
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3 Parameters Estimation

In this section, the parameters estimation process for the proposed model is
presented. With this purpose, we apply the maximum likelihood method, making
use of the EM algorithm [3], since here we are dealing with missing data.

3.1 Maximum Likelihood Function

Let us assume that censoring is noninformative. Denote the observed survival time
for the i th individual by ti , i D 1; : : : ; n. Suppose we have data in the form
.ti ; ıi ; xi ; zi /, i D 1; : : : ; n, where ıi D 1 if ti is uncensored and ıi D 0 otherwise,
and xi and zi are two covariate vectors. Without loss of generality, suppose that the
first m .m < n/ survival times are censored. Then ıi D 0 if 1 � i � m and ıi D 1

if mC 1 � i � n.
The contribution to the likelihood of an individual for whom the event of interest

was observed at ti is .1 � p.zi //fd .ti jxi /; where fd .ti jxi / represents the density
function of the susceptible individuals, conditional on the corresponding covariates.
If the event of interest is not observed until time ti , then the contribution of the
individual to the likelihood is p.zi /C .1 � p.zi //Sd .ti jxi /:

Then, the observed likelihood function is

LO D
nY

iD1

n�
1 � p.zi /

	
fd .ti jxi /

oıi n
p.zi /C �

1 � p.zi /
	
Sd .ti jxi /

o1�ıi
;

which can be written as

LO D
nQ

iD1

n
Œ1 � p.zi /��1�2t

�2�1
i exp.t�2i C ˇ0xi /

˚
expŒ�1.1 � exp.t�2i //�


exp.ˇ0xi /
oıi

�
n˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

o1�ıi

when the Chen distribution is used for the survival time of susceptible individuals.
Let y1; : : : ; yn be such that yi D 1 if the individual is susceptible and yi D 0

otherwise. If all y0i s were observed, the complete likelihood would be

LC D
nY

iD1

n�
.1 � p.zi //fd .ti jxi /

	yi
oıi n

p.zi /1�yi
�
.1� p.zi //Sd .ti jxi /

	yi
o1�ıi

:

Considering q.zi / D 1�p.zi /, after some calculations the previous expression can
be rewritten as

LC D
nY

iD1
q.zi /yi Œ1 � q.zi /�1�yi

nY

iD1
hd .ti jxi /yi ıi Sd .ti jxi /yi : (9)
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The logarithm of Eq. (9) is given by

logLC D Pn
iD1Œyi log q.zi /C .1� yi / log.1 � q.zi //C

Pn
iD1 yi ıi loghd .ti jxi /C yi logSd .ti jxi /�:

(10)

3.2 EM Algorithm

The fact that in most cases cure is not observable, gives origin to an incomplete data
situation. In this context, the EM algorithm is a widely used tool for maximizing the
likelihood function. In general terms, the maximization of the likelihood is replaced
by maximizing its expectation conditional to the current parameter values and
the observed data. Thus, the missing values are identified with the corresponding
conditional expected value.

In fact, the E step of the EM algorithm consists in obtaining the expectation
of the logarithm of the complete likelihood with respect to the distribution of the
unobserved Yi ’s, given the current parameter values and the observed data O , where
O D fobserved y0i s; .ti ; ıi ; xi ; zi /; i D 1; : : : ; ng. However, since logLC is linear in
Yi , to compute the expected value of logLC , we only need to replace in Eq. (10)
each unobserved Yi by its expected value, denoted by �i . Therefore, we have

�i D E.Yi jO/ D P.Yi D 1jTi > ti ; ıi D 0;�/ D Œ1 � p.zi /�Sd .ti jxi /
S.ti jxi ; zi / (11)

where � D .ˇ; �; �/ is the vector parameter of model (8) and � D .�1; �2/. Thus, in
the logarithm of the complete likelihood, each yi is replaced by !i , the probability
of the i th individual being susceptible, where !i D 1 if ıi D 1 and !i D �i if
ıi D 0.

At the M step, we need to maximize the following two components of the
expected log-likelihood:

logLE1 D Pn
iD1Œ!i log q.zi /C .1 � !i/ log.1 � q.zi //�

D .n�m/ log q.zi /Cm log.1 � q.zi //CPm
iD1 �i Œlog q.zi /� log.1� q.zi //�;

logLE2 D Pn
iD1Œıi!i loghd .ti jxi /C !i logSd .ti jxi /�

D Pm
iD1 �i logSd .ti jxi /CPn

iDmC1Œloghd .ti jxi /C logSd.ti jxi /�:
From logLE1 , after some algebra, we obtain the following explicit expression for
the estimate of q.zi / at the (k C 1)th iteration:

q.zi /.kC1/ D 1

n

h
.n �m/C

mX

iD1
�
.k/
i

i
;
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but only in the case where the covariates are not included in the cure proportion.
Making use of the Chen distribution for the survival time of the susceptible
individuals, by Eq. (11), we get

�i D q.zi /
˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

1 � q.zi /C q.zi /
˚

expŒ�1.1 � exp.t�2i //�

exp.ˇ0xi /

: (12)

In what concerns logLE2 , since it can be written as

logLE2 D �1
Pm

iD1 �iexp.ˇ0xi /Œ1 � exp.t�2i /�C .n �m/.log�1 C log�2/C

.�2 � 1/
Pn

iDmC1 log ti CPn
iDmC1.exp.ˇ0xi /C t

�2
i /C

�1
Pn

iDmC1 exp.ˇ0xi /Œ1 � exp.t�2i /�;

after some algebra, we obtain an explicit formula for the estimator of �1,

O�1 D n �m
Pm

iD1 �iexp.ˇ0xi /
�

exp.t�2i /� 1
	CPn

iDmC1 exp.ˇ0xi /
�

exp.t�2i /� 1
	 ;

where �i is given by Eq. (12). No explicit formula was obtained for the estimator
of �2. Therefore, we recommend using simultaneously another maximization
procedure, such as the Newton–Raphson method.

4 Application to Leukaemia Data

Kersey et al. [6] reported data on patients with refractary acute lymphoblastic
leukaemia. Patients receive either an allogeneic transplant (group 1) or an autolo-
gous transplant (group 2) and are followed until a recurrence occurs.

If we fit model (5) for each group separately, the estimated survival functions are

OS1.t/ D 0:2714C 0:7286 � exp.0:76112� .1 � exp.t0:61397///

for group 1 and

OS2.t/ D 0:1799C 0:8201� exp.1:15842� .1 � exp.t0:6853///

for group 2. We can consider the data from the two groups jointly and fit the same
model. The result is

OS.t/ D 0:22739C 0:77261� exp.0:92261� .1 � exp.t0:63706///:
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For the moment, we restrict our analysis to the case of one binary covariate. So,
defining a covariate, x, as the indicator of the patients group, we obtain

OS.t jx/ D 0:22821C0:77179�.exp.1:15379�.1�exp.t0:65037////exp.�0:42x/: (13)

This covariate had no significant effect on the non-susceptible proportion,
something expected given the proximity of the values in the two previous models.
Note that the survival time of the susceptible individuals follows a Chen distribution
with parameters �1 and �2 when x D 0 and with parameters �1 � eˇ and �2
when x D 1. Due to difficulties in the implementation of the EM algorithm,
namely convergence problems, the estimate of ˇ was obtained making use of this
characteristic.

5 Concluding Remarks

The aim of this article is to increase the options for survival distributions when the
use of cure models is relevant. The Chen distribution is very versatile, resulting in
a good fit in many cases where other parametric models were unsatisfactory. We
introduced covariates in the model in order to make it more suitable for practical
situations. So far, some issues in the estimation process are not completely solved.
Nevertheless, we obtained significant correlation coefficients (rD0.9946, pD0.000
for group 1 and rD0.9512, pD0.000 for group 2) between the Kaplan–Meier
estimates and the fitted values obtained using model (13), indicating a good fit for
both groups.
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Survival Analysis Applied to the Study of Time
from Diagnosis of HIV-1 Infection to AIDS
in Portugal
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Abstract
HIV infection is characterized by a progressive destruction of the immune
system, allowing for the occurrence of several, severe, opportunistic infections
and diseases, leading to the clinical stage of AIDS. In Portugal, the national
surveillance system for HIV/AIDS registered 17,825 pre-AIDS cases since
January 1993 until 31 March 2008. The national database collects clinical,
epidemiological and virological data, including dates of onset of major health
events. The objective of this work is to study the time from diagnosis of
HIV infection to the development of AIDS. Often, a patient may die prior to
the development of AIDS, in a pre-symptomatic stage. This is a situation of
competing risks because the individual may experience more than one event. The
cumulative incidence function was used to estimate the probability of an event
and a competing risks proportional hazards model was used to identify important
prognostic factors. In this study, the main determinants towards disease progres-
sion to AIDS, as well as death prior to the occurrence of opportunistic infections,
are the year of diagnosis, which reflects the availability of antiretroviral drugs
(HAART), gender, age and transmission category.
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1 Introduction

Since the 1980s, HIV infection and AIDS are a major public health problem
worldwide. HIV infection is characterized by a progressive destruction of the
immune system, allowing for the occurrence of several, severe, opportunistic
infections and diseases, leading to the clinical stage of AIDS [1]. The quality of life
of HIV and AIDS affected persons is closely related to the different incidences of the
AIDS-associated opportunistic diseases and to inequalities in access to health care
services, which are jointly responsible for the survival pattern observed globally.
AIDS has changed from an acute disease with a very short survival time to what
is generally described as a chronic disease, due to the advent of HAART (highly
active antiretroviral therapy) and improvement in the prevention and treatment of
opportunistic infections. The assessment of factors with direct influence in the
survival of affected persons is of the utmost importance for the health services
in general, and specifically to the development of appropriate support services, as
cases, nowadays, have a better life prospect due to therapeutical advances.

In Portugal, HIV infection and AIDS are one of the leading causes of morbidity.
However, persons affected by HIV are living longer disease-free periods, and
they expect to benefit from the availability of new antiretroviral drugs to extend
their survival time. The national database collects clinical, epidemiological and
virological data, including dates of onset of major health events as well as death
when notified.

Over the years, many studies have focused on HIV-infected persons and the
development of a particular health event, either an AIDS-defining disease or death,
in order to compare several health-related interventions. In these studies, survival
curves estimated by the Kaplan–Meier method [2], as well as Cox proportional
hazards model [2], have been used in order to identify factors that influence the
occurrence of the event. These methods are based on the existence of only one
event of interest and the censoring mechanism is assumed to be noninformative.
Although the end point of the natural history of HIV infection is AIDS, during the
natural history of the infection, other events may occur, which will prevent the case
of progressing in the course of disease, namely death as asymptomatic HIV-1 or
symptomatic non-AIDS (symptoms and illnesses which do not classify the case as
AIDS). Consequently, we are in a competing risks situation as the case is exposed
to more than one type of adverse health event.

2 Study Population

Since 1985, in Portugal, the National Health Institute Doutor Ricardo Jorge has
been responsible for collecting reports of HIV/AIDS cases diagnosed in health
services (e.g. hospitals, outpatients medical units and private practices).

In Portugal, the notification of HIV/AIDS cases has been mandatory since 2005
and AIDS is defined on the basis of the clinical condition of the patient. The diagnos-
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tic criteria include the three AIDS-defining diseases (extrapulmonary tuberculosis,
recurrent bacterial pneumonia and invasive cervical carcinoma), according to the
1993 revised European AIDS case definition [3].

The aim of this work is to study the time between the date of diagnosis
of HIV-1 infection and the onset of AIDS. With this purpose, we performed a
statistical analysis of data from the national surveillance system, concerning cases of
HIV/AIDS that have been diagnosed between January 1993 and March 2008. There
are 17,825 asymptomatic HIV-1 or symptomatic non-AIDS cases in the dataset.
Information was collected on sociodemographic characteristics (age, gender, origin,
vital status) as well as clinical and epidemiological data (transmission category,
lymphocyte CD4 cell counts and year of diagnosis). The year of diagnosis was
used as a proxy for the availability of antiretroviral agents and we defined 1996
as a period of transition from bitherapy to HAART. Some cases were excluded
for the following reasons: individuals aged under 13 years at date of diagnosis;
individuals infected with HIV-2, double seropositivity or serological status not
reported; individuals infected through mother-to-child transmission, haemophilia,
transfusion, blood derivative recipient, nosocomial and other/unknown; individuals
with follow-up time less than 1 day.

3 Statistical Methods

In studies where the event of interest is the development of AIDS, a patient can
experience an event different from the event of interest. In fact, a patient may die
as asymptomatic HIV-1 or symptomatic non-AIDS infected case. The occurrence
of this event hinders the development of AIDS and so changes the probability of
occurrence of the event of interest. This is a situation of competing risks events
because the individual may experience more than one type of event.

In the presence of competing risks, the usual survival statistical methods should
be applied with caution and one has to be aware of the consequences of their use.
Methods of standard survival analysis such as Kaplan–Meier method for estimation
of cumulative incidence lead to incorrect and biased results. In fact, if the Kaplan–
Meier method is used to estimate the cumulative incidence of development of AIDS,
then patients who died without developing AIDS are censored. However, censoring
is informative because those patients will never develop AIDS. So, ignoring the
competing risk of death can result in substantial overestimation of the cumulative
incidence of progression to AIDS.

In this study we analyse data using the nonparametric estimation of cumulative
incidence of the event of interest taking into account the informative nature of
censoring due to competing risks. To estimate the probability of occurrence of an
event we used the cumulative incidence function (CIF) proposed by Kalbfleisch and
Prentice [4]. Time was measured in years from the date of diagnosis to the date
of occurrence of the event or to last follow-up when the patient did not experience
any event. The outcome variables are time to the development of AIDS and time
to death as asymptomatic HIV-1 or symptomatic non-AIDS infection, i.e, death
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without developing AIDS. The CIF, for an event of type c .c D 1; 2; : : : :; m/, is
defined as

Fc.t/ D P.T � t; C D c/ D
Z t

0

hc.u/S.u/du:

The CIF at time t is the probability that an event of type c occurs at or before time
t , where hc.t/ is the cause-specific hazard function and S.t/ D P.T > t/ is the
overall survival function. The nonparametric estimate of the CIF is given by

OFc.t/ D
X

i Wti�t
Ohci OS.ti�1/;

where Ohci is the estimated cause-specific hazard for an event of type c at ti and
OS.ti�1/ is the estimated probability of remaining event free prior to ti . Thus, OFc.t/

is the estimate of the joint probability of being event free immediately prior to ti and
experiencing an event of type c at ti .

To compare the CIF of a particular type of event among different groups in the
presence of competing risks, we used a test proposed by Gray based on the hazard
of the CIF [5].

After testing for the difference between cumulative incidence curves using
Gray’s method, we performed a competing risks regression analysis using a model
proposed by Fine and Gray [6]. This is an extension of the Cox proportional hazards
model to account for competing risks. Fine and Gray method was used to identify
important prognostic factors, modelling the effect of covariates on the hazard of
the CIF for competing risks data. Thus, the hazard function of the CIF is defined
as �.t I z/ D �0.t/ exp.ˇ0z/; where �0.t/ is the baseline hazard of the CIF, z is
the vector of the covariates and ˇ D .ˇ1; : : : ; ˇp/

0 is a vector of p regression
coefficients.

We used R software version 2.6.2 to perform the statistical analysis.

4 Results

From a total of 17,825 cases diagnosed as asymptomatic HIV-1 or symptomatic
non-AIDS, 890 (5.0 %) cases died while 2,103 (11.8 %) cases have progressed to
AIDS. For the remaining 14,832 (83.2 %) none of the events was observed (censored
observations).

Of the 17,825 cases with a positive HIV-1 diagnosis, 3,705 (20.8 %) were
diagnosed previously to 1997 and 14,120 (79.2 %) were diagnosed between 1997
and 2008.

The analysis of HIV-1 cases by gender and age shows that 70.9 % are males and
21.9 % females and that the age group 13–29 years is the most frequently reported,
representing 38.8 % of all notified cases. In males the most frequently notified age
group is between 30 and 39 years, while females are younger, aged between 13 and
29 years.
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Fig. 1 Cumulative incidence function estimates for the two events by year of diagnosis

The mean age at diagnosis was 34.23 years, age ranging from 13 to 86 years, and
a median age of 32 years (31 years for females and 32 for males).

The main routes of transmission of HIV-1 infection are either sexual or related
with the intravenous use of drugs (IVDU). In this study, 47 % of HIV-1-infected
cases are associated with transmission through IVDU, 40.4 % report sexual (het-
erosexual) transmission and 11.3 % are male homosexuals (MSM). In males, IVDU
are 54.8 % of notified cases, while in females the majority of cases report sexual
transmission (71 %) and 28 % of cases are IVDU.

In the natural history of infection, the estimated probabilities of developing AIDS
at 5, 10, 15 and 20 years after diagnosis are 0.08, 0.15, 0.20 and 0.37, respectively.
The estimated probabilities of dying before developing signs and symptoms, i.e.,
dying in an asymptomatic HIV-1 or symptomatic non-AIDS stage, up to 5, 10, 15
and 20 years after diagnosis are 0.04, 0.06, 0.08 and 0.16, respectively.

The CIF estimates according to the year of diagnosis (Fig. 1) show that cases
diagnosed before 1997 have a greater probability of developing an AIDS indicator
disease, as well as dying either in an asymptomatic stage or before developing
any opportunistic disease or infection, when compared with those cases diagnosed
since 1997.

The CIF estimates (Fig. 2) show that males have a higher probability of devel-
oping AIDS and also to die either in an asymptomatic stage or not developing any
opportunistic disease or infection, when compared with females. For both males
and females, the estimated CIF shows that the probability of developing AIDS at 5,
10 and 15 years is always higher than the corresponding probability of dying in an
asymptomatic stage or with a symptomatic non-AIDS infection.

The results of the CIF estimates (Fig. 3) for HIV transmission categories show
that cases reporting IVDU are at a greater risk of developing AIDS, as well as dying
in an asymptomatic or non-AIDS stage, than cases in any of the other transmission
categories. The estimated probabilities of developing an AIDS indicator disease
up to 5, 10, 15 and 20 after diagnosis are always higher than the corresponding
probabilities of dying asymptomatic or without an opportunistic disease for any of
the remaining transmission categories.



52 M. Alves et al.

Time to progression to AIDS (Years)

C
um

ul
at

iv
e 

in
ci

de
nc

e 
fu

nc
tio

n
Female
Male

Gray’s test: p−value <0.0001

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

Time to death without development of AIDS (Years)

C
um

ul
at

iv
e 

in
ci

de
nc

e 
fu

nc
tio

n

Female
Male

Gray’s test: p−value <0.0001

Fig. 2 Cumulative incidence function estimates for the two events by gender
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Fig. 3 Cumulative incidence function estimates for the two events by transmission category

For each event, using Gray’s test, we found statistically significant differences
between the groups defined by year of diagnosis, gender and HIV transmission
category.

Table 1 shows the results obtained from fitting Fine and Gray’s regression model
to data representing time to the onset of AIDS and time to death as asymptomatic
HIV-1 or symptomatic non-AIDS. For each variable in turn, considering cases with
equal values of the remaining variables, we concluded that:
• Year of diagnosis: cases diagnosed since 1997 have a risk reduction of 54 % of

developing AIDS and a risk reduction of 37 % of dying as asymptomatic HIV-1
or symptomatic non-AIDS when compared to the cases diagnosed before 1997.

• Gender: both males and females have the same risk of progression to AIDS, but
males have a poorer prognosis than females, as they have 53 % of increased risk
of dying as asymptomatic HIV-1 or symptomatic non-AIDS.

• Transmission category: at any time the risk of developing AIDS of injecting drug
users is twice the risk associated with cases reporting heterosexual transmission.
Injecting drug users have a poorer prognosis as they have a 65 % increased risk
of dying before developing AIDS relatively to cases in which HIV infection was
acquired by heterosexual transmission.
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Table 1 Results of the regression analysis by Fine and Gray model

Progression to AIDS Death without developing AIDS

Classes Ǒ exp( Ǒ) se( Ǒ) p-value Ǒ exp( Ǒ) se( Ǒ) p-value

� 1997 �0.78 0.46 0.06 < 0.0001 �0.46 0.63 0.09 3:6� 10�6

Male 0.01 1.01 0.07 9:7 � 10�1 0.43 1.53 0.13 9:7� 10�4

30–39 years 0.44 1.56 0.07 7:7 � 10�11 0.09 1.10 0.11 4:0� 10�1

40–49 years 0.62 1.86 0.09 1:1 � 10�12 0.34 1.41 0.16 3:1� 10�2

� 49 years 0.56 1.75 0.12 4:1 � 10�6 1.15 3.14 0.16 2:1� 10�12

African origin 0.18 1.20 0.11 8:6 � 10�2 �0.18 0.83 0.22 3:8� 10�1

Other origin �0.39 0.67 0.26 1:2 � 10�1 �0.95 0.39 0.58 1:0� 10�1

IVDU 0.69 2.01 0.08 < 0.0001 0.50 1.65 0.13 1:3� 10�4

Homosexual 0.12 1.13 0.12 3.0�10�1 �0.21 0.81 0.20 3:0� 10�1

200–499 CD4 cell �1.43 0.24 0.07 < 0.0001 �0.27 0.77 0.11 1:7� 10�2

> 499 CD4 cell �2.09 0.12 0.09 < 0.0001 �0.57 0.56 0.13 8:5� 10�6

5 Discussion

The study was conducted to assess several clinical, epidemiological and behavioural
events, which have an influence in the natural history of HIV infection, namely
progression to AIDS and death, in cases diagnosed and notified in Portugal,
taking into account the major therapeutic achievements in the past two decades.
The national surveillance system has the usual limitations of completeness and
timeliness, but results are consistent with those reported at international level.

In this study, on time elapsed from diagnosis of HIV-1 infection (asymptomatic
or symptomatic non-AIDS) to AIDS, there were 2,103 cases that developed full-
blown AIDS during the study period.

A study carried out in Spain showed a risk reduction of 66 % in disease
progression to AIDS, for cases diagnosed between 1997 and 1999, when comparing
with cases diagnosed between 1992 and 1996 [7]. In our study, cases diagnosed
after 1997 have a reduction in the risk of developing AIDS, of approximately 54 %,
when compared with those cases diagnosed prior to 1997 and with equal values of
the other variables.

Several studies have shown that there are no differences in gender in the clinical
progression to AIDS, while other have opposite results. In the present study,
when accounting for the effect of the other variables, gender showed no statistical
significance in what concerns progression to AIDS. This result may be related
with the unbalanced number of cases diagnosed (and notified) in each transmission
category. Also, males showed a 53 % increased risk of dying AIDS-free, when
compared to females. Another study carried out in Spain has shown that, for
intravenous drug users, progression to AIDS is slower in females than in males [8].

In this study, the main determinants towards disease progression to AIDS as well
as death prior to the occurrence of opportunistic infections are year of diagnosis
of HIV infection, age, intravenous drug use and the number of CD4 cell count
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at time of diagnosis. The year of diagnosis is the critical factor associated with
disease progression to AIDS, as well as death before developing full-blown AIDS,
which reflects the availability of antiretroviral drugs and specifically the general
implementation of HAART.

This is one of the first studies performed in this country on survival analysis
with this kind of data and further studies, with a more all-inclusive case series, are
planned to better clarify issues associated with determinants of living AIDS-free
and disease progression to AIDS.
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A New Independence Test for VaR Violations

P. Araújo Santos and M.I. Fraga Alves

Abstract
Interval forecasts evaluation can be reduced to examining the unconditional
coverage and independence properties of the hit sequence. In this work we
propose a definition for tendency to clustering of violations and an exact
independence test for the hit sequence. This test is suitable to detect models with
a tendency to generate clusters of violations and is based on an exact distribution
that does not depend on any unknown parameter. Moreover, we provide evidence
through a simulation study that the suggested test performs better than other tests
presented in the literature.

1 Introduction

We consider a time series of daily log returns, RtC1 D log.VtC1=Vt /, where
Vt is the value of the portfolio at time t . The corresponding 1-day-ahead VaR
forecasts made at time t for time t C 1, VaRtC1jt .p/, are defined by P ŒRtC1 �
VaRtC1jt .p/j˝t� D p, where ˝t is the information set-up to time t and p is the
coverage rate. Considering a violation in the event that a return on the portfolio is
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lower than the reported VaR, we define the hit function, also represented by It , as

ItC1.p/ D
�
1 if RtC1 < VaRtC1jt .p/
0 if RtC1 � VaRtC1jt .p/:

(1)

Christoffersen [6] showed that evaluating interval forecasts can be reduced to
examining whether the hit sequence, fItgTtD1, satisfies the unconditional coverage
(UC) and independence (IND) properties. UC hypothesis means P ŒItC1.p/ D 1� D
p, 8t . IND hypothesis means that past violations do not hold information about
future violations. A problematic non-verification of the IND hypothesis is the one
that leads to clustering of violations, which corresponds to several large losses
occurring in a short period of time. As noted by Campbell [4], comparatively
with the UC property, the IND property represents a more subtle yet equally
important property. When both properties are valid then we write P ŒItC1.p/ D
1j˝t� D p;8t , and we say that forecasts have a correct conditional coverage (CC).
In Lemma 1 of Christoffersen [6] it is shown that condition CC is equivalent to

ItC1.p/
iid� Bernoulli.p/, where iid denotes independent and identically distributed.

In a recent paper, Berkowitz et al. [1] extend and unify the existing tests by noting
that the demeaned hits fItC1 � pg form a martingale difference sequence. The
hit function and condition CC, imply that EŒ.ItC1 � p/j˝t � D 0 and then for
any variable Zt in the time-t information set, EŒ.ItC1 � p/Zt � D 0. This is the
motivation for tests based on the martingale property. There are several backtesting
procedures for evaluating intervals forecasts; for a detailed review see Campbell
[4] and Berkowitz et al. [1]. The Christoffersen [6] Markov IND and CC likelihood
ratio tests (Markov), are perhaps the most widely used in the literature. These tests,
based on asymptotic distributions, are only sensible to one violation immediately
followed by other, ignoring all other patterns of clustering. If we set Zt D It�k
for any k � 0, we have EŒ.ItC1 � p/.It�k � p/� D 0. Based on this condition
Berkowitz et al. [1] suggested the Ljung-Box statistic (LB), for a joint test of
whether the first m autocorrelations of .ItC1 � p/ and .ItC1�k � p/, k D 1; : : : ; m,
are zero. Considering other data in the information set such as past returns, under CC
we have EŒ.ItC1 � p/g.It ; It�1; : : : ; Rt ; Rt�1; : : :/� D 0 for any non-anticipating
function g.:/. In the same line as Engle and Manganelli [11], Berkowitz et al. [1]
consider the autoregression

It D ˛ C
nX

kD1
ˇ1kIt�k C

nX

kD1
ˇ2kg.It�k; It�k�1; : : : ; Rt�k; Rt�k�1/C "t (2)

with n D 1 and g.It�k; It�k�1; : : : ; Rt�k; Rt�k�1/ D VaRt�kC1jt�k.p/. These
authors proposed the logit model and test the CC hypothesis with a likelihood ratio
test considering for the null hypothesis P.It D 1/ D 1=.1 C e�˛/ D p and the
coefficients ˇ11 and ˇ21 equal to zero. For the IND hypothesis, the test is adapted
considering ˇ11 and ˇ21 equal to zero. We refer these tests as the CAViaR tests
of Engle and Manganelli (CAViaR). A duration-based approach emerged in the
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literature (e.g. [7, 8, 13]). In this set-up, let us define the duration between two
consecutive violations as

Di WD ti � ti�1 (3)

where ti denotes the day of violation number i . If the IND hypothesis is valid

then ItC1.p/
iid� Bernoulli.�/, with 0 < � < 1, and the common distribution of

durations Eq. (3) is geometric with probability mass function (pmf)

fD.d I�/ D .1 � �/.d�1/�; d 2 N; 0 < � < 1: (4)

The exponential distribution with density function (df)

fD.d Iˇ/ D ˇ exp.�ˇd/; d > 0 and ˇ > 0; (5)

is the continuous analogue of the geometric distribution. Based on the exponential,
Christoffersen and Pelletier [7] suggested tests using the duration based approach.
Haas [13] showed that tests based on discrete distributions for durations, have
higher power. The generalised method of moments test framework suggested by
Bontecamps [3] to test for distributional assumptions was extended by Candelon
et al. [5] to the case of VaR forecasts accuracy. In the group of duration-based tests
it is shown that the proposed GMM tests are the best performers. For the CC and
IND hypothesis, the Markov tests are perhaps the most widely used in the literature
and this is why we have chosen the Markov independence test for the comparative
study. In the group of available duration-based tests we chose the best performers
GMM tests. We also selected the CAViaR test, the best performer in the comparative
simulation study done by Berkowitz et al. [1]. The rest of the chapter is organized
as follows. In Sect. 2 we present the new independence test. Finally, in Sect. 3, we
compare its performance with other tests.

2 A New Independence Test

Let D1WN � : : : � DN WN be the order statistics (o.s.’s) of durations D1; : : : ;DN

defined in Eq. (3). The first motivation behind the class proposed is the following:
when violations generated by the hit function (1) occur in clusters, the majority of
durations are short (the short durations between violations in the clusters) and some
durations are very long (the durations between the last violation of one cluster and
the first violation of the following cluster). If the majority of durations are short then
the median, DŒN=2�WN , is short (notation: Œx� denotes the integer part of x). If some
durations are very long, the maximum, DN WN , is very long. Finally, with a short
median and a very long maximum, the ratio DN WN =DŒN=2�WN is large. We illustrate
this motivation with an example: we have chosen the returns from the Deutscher
Aktien index (DAX) from January 2, 1997 up until December 30, 2008, and we
have calculated durations between violations using the popular historical simulation
(HS) method for VaR(0.05) with a moving window of size 250. Figure 1 shows the
geometric pmf, with � D 0:05, and the frequency of durations. For short durations,
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Fig. 1 Geometric (� D 0:05) pmf (left) and frequency of durations (right) between violations for
DAX index from 2 January 1997 until 30 December 2008

the frequencies in the frequency plot are much higher than the corresponding proba-
bility masses in the geometric pmf. The majority of durations are short, either equal
or lower than 6 days, and the empirical median is 6, contrasting with the expected
value of D85W170, under IND, which is close to 14. Moreover, for durations above
60 days, we note higher frequencies in the frequency plot than the probability masses
in the geometric pmf. The maximum duration, d170W170, is 208 days, almost double
the expected value under IND, which is close to 112. The ratio is 34.66, much higher
than the median of D170W170=D85W170 under IND, which is 8.03 (see the cumulative
distribution function (cdf) of Proposition 2.1). In this example, where violations
occur in clusters, the majority of durations are short, some durations are very long
and, as mentioned before, a high ratioDN WN =DŒN=2�WN gives strong evidence against
the IND hypothesis. Based on this motivation, we suggest the following definition.

Definition 1 (Tendency to Clustering of Violations). A hit function (1) has a
tendency to clustering of violations if the median of DN WN =DŒN=2�WN is higher than
the median under the IND hypothesis.

For explicitly testing the IND hypothesis versus tendency to clustering of violations,
we propose the following test statistic:

RN;ŒN=2� WD DN WN � 1
DŒN=2�WN

: (6)

The correction �1 made to DN WN allows us to obtain a pivotal test. Proposition 2.2
allows us to do that as well as to present in Proposition 2.3 a level ˛ test. We will
denote Yi instead ofDi , the durations, when we use the exponential model (5). From
now on, we denote

aw D
 
N � ŒN=2�� 1

w

!

; bs D
 
ŒN=2�� 1

s

!

; cw;s D N � ŒN=2�� w C s
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�N D NŠ

.ŒN=2�� 1/Š.N � ŒN=2�� 1/Š and REN D YN WN=YŒN=2�WN :

Proposition 2.1. Let Y1; : : : ; YN be iid exponential random variables (rvs) with
common df Eq. (5). The cdf of REN is

1��N
N�ŒN=2��1X

wD0

ŒN=2��1X

sD0
.�1/wCsawbs

�
Œcw;s .wC1/��1�Œcw;s .wC1Ccw;s=r�

�1�; (7)

with 1 � r � 1.

Proof. For the Weibull distribution with density function fX.xIpI / D
p.xp/�1e�.px/ , x > 0, p > 0,  > 0, Malik and Trudel [14] proved that
the density of the ratio of the i th and j th o.s.’s with i < j � N , is

fZN .zIpI / D Cj
.i�1/Š.j�i�1/Š

Pj�i�1
wD0

Pi�1
sD0.�1/wCs

�
j�i�1

w

��
��i�1

s

�
z�1ŒN � j C w C 1C .j � i � w C s/z ��2;

(8)

with 0 � w � 1 and where Cj D Qj
vD1.N � v C 1/. To obtain the ratio of the i th

and j th o.s.’s, with i < j � N , from the (5) model, in Eq. (8) we substitute  by 1.
We also replace i and j , respectively, by ŒN=2� and N . Calculating the integral, the
cdf for the ratio ZN D YŒN=2�WN =YN WN is

�N

N�ŒN=2��1X

wD0

ŒN=2��1X

sD0
.�1/wCsawbs

�
Œcw;s .w C 1/��1 � Œcw;s .w C 1C cw;sz/�

�1�;

with 0 � z � 1. For REN D 1=ZN the cdf is 1 � FZN .1=r/, and the result follows.
ut

Proposition 2.2. Let D1; : : : ;DN be iid rv’s whose common distribution is geo-
metric with pmf Eq. (4). If we consider RN;ŒN=2� and REN , then we have

F�
RN;ŒN=2�

.1 � ˛/ < F�
REN
.1 � ˛/; for all 0 < p < 1; and 0 < ˛ < 1:

Proof. Let Y be an exponential rv with df Eq. (5) and denote ŒY � the integer part of
Y and < Y > the fractional part of Y . If we define X D ŒY �C 1, then

fX.x/ D FY .x/ � FY .x � 1/ D �
exp.�ˇ/�.x�1/�1� exp.�ˇ/�
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with x 2 N. Note that X is distributed as geometric with � D .1� exp.�ˇ//. Now,

for � D .1 � exp.�ˇ//, Di WN
dD Xi WN D ŒY �i WN C 1

dD ŒYi WN � C 1, and since

Yˇ
dD E , we have

DN WN � 1

DŒN=2�WN
dD ŒYN WN �
ŒYŒN=2�WN �C 1

<
ŒYN WN �C < YN WN >

ŒYŒN=2�WN �C < YŒN=2�WN >
D YN WN
YŒN=2�WN

dD REN :

ut

Proposition 2.3. Let us consider D� WD fDigNiD1, the sample of the N durations

defined in Eq. (3). Denote by Med.RN;ŒN=2�/ the median of RN;ŒN=2� and r�1=2;N;ŒN=2�
the particular value under geometric distribution with pmf Eq. (4). At level ˛, for
testing the IND hypothesis

H0;IND W Di
iid� D � Geometric.�/; with 0 < � < 1 and i D 1; : : : ; N

against alternatives expressing tendency to clustering patterns

H1 W Med.RN;ŒN=2�/ > r
�
1=2;N;ŒN=2� ;

the rejection region is defined by RN;ŒN=2� > r˛;N;k , where r˛;N;ŒN=2� denotes a
quantile 1 � ˛ of REN .

Proof. The proof follows straightforward using Propositions 2.1 and 2.2. ut

Remark 1. The critical point r˛;N;ŒN=2� implies a conservative approach with a test of
level ˛ and not of size ˛, i.e., we have P Œtype I error� � ˛.The test is pivotal in the
sense that is based on a distribution that does not depend on an unknown parameter.

Remark 2. The test suggested in Proposition 2.3 is based on an exact distribution.
The other independence tests, referred in Sect. 1, are based on asymptotic distribu-
tions and suffer from small sample bias. To aggravate the problem, the presence of
the nuisance parameter p makes it impossible to control the size of the tests using
the Monte Carlo testing approach of Dufour [10] as other authors do for the case of
joint testing UC and IND (e.g. [1, 5, 7]); see the paper of Dufour [10] for details.

3 Comparative Simulation Study

In the context of a Monte Carlo study, we compare the power of the test we suggest
in Proposition 2.3 with the Markov, the CAViaR and the GMM independence tests,
denoted by MIND, CAViaR and JIND.k/. We employ the R language [15] and the
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fGarch package of Wuertz et al. [16] in order to develop the programs. Following
other authors (e.g. [1, 5–7, 13]) we consider a GARCH specification for the returns
process. Additionally, we use an APARCH model which nests some of the GARCH
models with leverage effect.
• Gaussian GARCH(1,1) model [2],

rtC1 D �tC1ztC1 with �2tC1 D w C ˛r2t C ˇ�2t ; (9)

where the innovations ztC1s are drawn independently from a standard normal
distribution. As in Christofferson [6], we chose the parameterization w D 0:05,
˛ D 0:1 and ˇ D 0:85.

• APARCH(1,1) model [9],

rtC1 D �tC1ztC1 with �ıtC1 D w C ˛.jrt j � �rt /
ı C ˇ�ıt ; (10)

where the innovations ztC1s are drawn independently from a skewed Student’s
t(�) distribution with asymmetry coefficient ', proposed by Fernandez and
Steel [12]. We assume a portfolio that replicates the DAX index and we use
daily data from beginning of 1997 until the end of 2008, for estimation. The
parameterization achieved was w D 0:03, ˛ D 0:086, � D 0:64, ˇ D 0:91,
ı D 1:15, ' D 0:88 and � D 10.

As in other power studies with the same purpose, we have chosen the HS method
which generates clusters of violations when applied to heteroscedastic processes.
We conducted our study with p D 0:01; 0:05, T D 250; 500; 750; 1;000 and set
the size of the rolling window equal to 500. For each T and p, we have simulated
returns using the models (9) and (10) over 10,000 replications. The empirical power
of the tests is obtained by rejection frequencies with 0.1 significance level, excluding
the samples with less than 2 violations. The frequencies of excluded samples (FES)
are presented in the tables. To explicitly test the IND hypothesis, it is impossible
to have a test of size ˛ using a Monte Carlo approach. Therefore, and for all test
statistics except Eq. (6), we apply the asymptotic distributions in order to find critical
values, conscious of the limitations in the small sample cases. From Table 1, it is
clear that the proposed test performs better than the other tests under study. In order
to study the empirical type I error rates, we have simulated iid Bernoulli samples.
In the CAViaR test we have generated the VaR regressors with a GARCH model
that are independent of the Bernoulli samples. Table 2 shows that the Markov and
CAViaR tests are undersized for small sample sizes and oversized for large sample
sizes. The GMM tests are extremely undersized for small samples. These results
confirm that the asymptotic critical values are misleading.
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for their comments and suggestions which led to improvements of an earlier version of this chapter.
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Table 1 Empirical power of tests (˛ D 0:1)

p D 0:01 p D 0:05

TD 250 TD 500 TD 750 TD 1,000 TD 250 TD 500 TD 750 TD 1,000

Gaussian GARCH(1,1)
RN;ŒN=2� 0.295 0.452 0.567 0.630 0.377 0.575 0.694 0.757
MIND 0.115 0.156 0.210 0.214 0.144 0.247 0.327 0.374
CAViaR 0.316 0.411 0.507 0.566 0.334 0.483 0.596 0.667
JIND.3/ 0.098 0.182 0.284 0.378 0.205 0.448 0.638 0.748
JIND.5/ 0.080 0.165 0.262 0.362 0.162 0.374 0.556 0.673
FES 0.292 0.041 0.002 0.000 0.003 0.000 0.000 0.000
Skewed t APARCH(1,1)
RN;ŒN=2� 0.375 0.603 0.762 0.854 0.496 0.809 0.928 0.969
MIND 0.145 0.217 0.287 0.338 0.205 0.384 0.527 0.633
CAViaR 0.392 0.505 0.605 0.675 0.436 0.619 0.748 0.829
JIND.3/ 0.214 0.386 0.559 0.697 0.378 0.745 0.910 0.970
JIND.5/ 0.166 0.354 0.535 0.676 0.314 0.681 0.876 0.953
FES 0.373 0.093 0.009 0.001 0.041 0.001 0.000 0.000

Table 2 Empirical type I error rates with ˛ D 0:1

p D 0:01 p D 0:05

TD 250 TD 500 TD 750 TD 1,000 TD 250 TD 500 TD 750 TD 1,000

RN;Œ0:5N � 0.088 0.092 0.095 0.093 0.077 0.078 0.084 0.081
MIND 0.023 0.029 0.039 0.037 0.054 0.111 0.158 0.134
CAViaR 0.080 0.056 0.066 0.057 0.083 0.099 0.130 0.124
JIND.3/ 0.003 0.006 0.011 0.015 0.018 0.032 0.045 0.045
JIND.5/ 0.001 0.004 0.007 0.012 0.012 0.021 0.028 0.033
FES 0.292 0.038 0.004 0.000 0.000 0.000 0.000 0.000
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Discrimination Between Parametric Survival
Models for Removal Times of Bird Carcasses
in Scavenger Removal Trials at Wind
Turbines Sites

Regina Bispo, Joana Bernardino, Tiago A. Marques,
and Dinis Pestana

Abstract
Wind power is one of the most promising energy sources found in nature. Despite
being considered a clean energy source, the existence of potential environmental
impacts, namely, on flying vertebrates, is broadly recognized. In monitoring
studies, estimation of avian (or bats) mortality caused by collision has particular
interest and must take into account carcass removal by scavengers. For this
purpose, scavenger removal trials are conducted at wind turbine sites. Data
from scavenger removal trials refer to time until removal of the carcass and are
“classical” examples of survival times.

Parametric survival models based on the exponential, Weibull, log-logistic,
and lognormal distributions are among the most repeatedly used throughout

R. Bispo (�)
ISPA - Instituto Universitário, Lisboa, Portugal

CEAUL - Centro de Aplicações e Estatı́stica da Universidade de Lisboa, Lisbon, Portugal
e-mail: rbispo@ispa.pt

J. Bernardino
Bio3 - Estudos e Projectos em Biologia e Valorização de Recursos Naturais, Almada, Portugal
e-mail: joana.bernardino@bio3.pt

T.A. Marques
Centre for Research into Ecological and Environmental Modeling, The Observatory, Buchanan
Gardens, St Andrews, Scotland, UK

CEAUL - Centro de Aplicações e Estatı́stica da Universidade de Lisboa, Lisbon, Portugal
e-mail: tiago@mcs.st-and.ac.uk

D. Pestana
Departamento de Estatı́stica e Investigação Operacional, Faculdade de Ciências da Universidade
de Lisboa, Lisboa, Portugal

CEAUL - Centro de Aplicações e Estatı́stica da Universidade de Lisboa, Lisbon, Portugal
e-mail: ddpestana@fc.ul.pt

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 6,
© Springer-Verlag Berlin Heidelberg 2013

65



66 R. Bispo et al.

literature. In this study we aim to discriminate between these four competing
parametric models to analyze removal data from trials conducted in ten
Portuguese wind farms. Plotting procedures and model selection strategies are
used and discussed.

1 Introduction

Nowadays, wind is considered as one of the most promising energy sources found
in nature. Despite being considered a clean energy source, the existence of potential
environmental impacts, namely, on flying vertebrates, is broadly recognized [8].
There is a major concern with the mortality caused by collision with wind
plant structures [4]. To fully understand the importance of this impact, mortality
estimation is necessary.

Mortality assessment is based on counting bird carcasses in the wind farms.
However, the observed number of fatalities is different from the true fatality namely
because carcasses are removed either by predators/scavengers or decomposition.
To account for carcass removal, the observed mortality must be corrected by the
probability of permanence of a carcass. To estimate this probability, wind farm
monitoring plans include scavenger removal trials. Typically, in these trials, a certain
number of carcasses are randomly placed underneath the wind turbines for a a priori
fixed period of time. For each placed carcass, time until removal, i.e., time until a
carcass is no longer available for detection (corpses absent from the location of
placement), is recorded.

Time until removal is typically positively skewed and often includes censored
observations. Hence, proper survival analysis should be used to analyze this type
of data [2]. Parametric survival methods, by assuming a specific form for the
underlying data distribution, have the advantage to enable probability estimation
and allow more precise inferences [2]. However, because the parametric survival
methods are strictly dependent on the validity of the distributional assumption, the
selection of the lifetime distribution has crucial importance.

Several methods are described in the literature to assess the distributional form
of the survival times. Plotting procedures based on a linear transformation of
the survivor function are often used. Also, empirical and parametrical estimated
functions can be drawn together to visually check the model adjustment. Both types
of plots may be constructed in strata defined by the components of the regression
vector, whenever models include covariates [9]. The comparison of the adjustment
between several plausible models can also be made on the basis of statistics such
as the Akaike’s information criteria (AIC) or the Bayesian’s information criteria
(BIC). These statistics are suitable for comparisons between non-nested models.
Additionally, procedures based on residual analysis are important as they enable
to check the models assumptions and assess special features of the data, such as
extreme observations [11].

To avoid reporting removal rates exclusively on the grounds of empirical
estimates or based on an eventually misspecified lifetime distribution, we propose
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the use of parametric survival models based on a proper comparative goodness-of-fit
analysis regarding diverse plausible models. The focus of this chapter is, therefore,
(1) to propose a methodological strategy to discriminate between several plausible
parametric survival models suitable for modeling the removal times of bird carcasses
in scavenger removal trials and (2) to exemplify the proposed methodology using
the data collected in trials conducted at ten Portuguese wind farms.

2 Motivating Data

Carcass removal trials were conducted in ten wind farms located in the north and
center of Portugal (for confidentiality reasons sites names are coded from WF1 to
WF10). The number of carcasses placed in each trial varied between 20 and 80,
according to the size of the farm. Trials were spread over two seasons (May/June
and September/October or January/February and July/August) to account for
weather conditions influence on removal. Additionally, three bird size classes were
considered (small: � 15 cm; medium: between 15 and 25 cm; large: > 25 cm).
Carcasses were placed in randomly chosen locations beneath the wind turbines,
independently of size class. To avoid scavenger swamping, carcasses were placed
at a minimum distance of 500 m from each other. The carcasses were checked daily
and time until removal was recorded for a maximum period of 20 days. Hence,
observations are type I right censored and carcasses not removed until day 20, have
censored times of removal all equal to 20 days.

3 Discrimination Between Parametric Survival Models

Time until removal was modeled using the accelerated failure time model as, in this
context, covariates can affect the rate at which carcass persistence proceeds along
the time axis. This is a general model for survival data that encompasses a wide
range of lifetime distributions, in which exploratory variables measured on a subject
are assumed to act multiplicatively on the timescale [2]. Plausible expected hazard
behaviors include either decreasing or hump-shaped removal hazards. Hence, the
Weibull, the log-logistic, and the log-normal distributions seemed to be plausible
models as they exhibit monotonic decreasing and asymmetric with positive mode
hazard behaviors. Despite its implicit hazard of removal being constant, which is
implausible under this context, the exponential distribution was included because it
is the most commonly used distribution in wind farm mortality estimation (e.g., [7]).

Plots based on the linearization of the survivor function, through an appropriated
transformation, can give information on the underlying lifetime distribution [11].
The linear relationships regarding the exponential, the Weibull, the log-logistic, and
the log-normal lifetime distributions are summarized in Table 1. For a given sample,
plots of time (or log(time)) versus the appropriate transformation of the estimated
(Kaplan–Meier) survivor function should be roughly linear if the assumed model
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Table 1 Required linear transformations of survival probability and time (t ) scales for different
lifetime distributions for graphical inspection of the parametric survival models adequacy

Lifetime distribution Survivor function Time scale Probability scale

Exponential S.t/ D exp.��t/ t � logS.t/
Weibull S.t/ D expŒ�.�t/� � log t log.� log S.t//

Log-logistic S.t/ D Œ1C .�t/���1 log t log
�

S.t/

1�S.t/



Log-normal S.t/ D 1�ˆŒ.log t � �/=�� log t ˆ�1.1� S.t//

is correct. The linear agreement can then be appreciated by eye (which can be
misleading) or be measured using the standard coefficient of determination.

Another graphical procedure can be achieved by superimposing graphically the
empirical (Kaplan–Meier) and the parametricaly estimated survivor functions to
check visually the adjustment between the observed and the fitted functions.

For censored data, the described plotting procedures are probably the
most widely useful graphical approaches for comparing competing parametric
models [3].

As, in this context, the final goal of inference is to use fitted parametric
models to estimate carcass persistence probabilities; model selection procedures
are particularly important. To choose among competing models, we used the AIC
(defined by AIC D �2 log OL C 2k, where OL is the maximized likelihood and k
is the number of the unknown parameters in the model) and the BIC (defined by
BIC D �2 log OL C k ln.n/, where n denotes the number of observations). The
lower these measures, the more parsimonious is the fit.

Additionally, fitted model adequacy can be assessed by residual analysis. In this
study both deviance and Cox-Snell residuals were analyzed.

Data were analyzed using R software [12]. In particular, we used the survival
package [13].

4 Results

The percentage of censored observations varied across the wind farm trials ranging
from 0 % (at WF6, median time of removal of 2.5 days) to 35 % (at WF2, median
time of removal of 8.5 days), depending on the speed of the carcass removal. On
average, as expected, an increase in carcass removal speed was associated with the
decrease of the censoring degree.

The data analysis showed consistently that removal times were not affected
significantly by season and body size factors in 6 out of the 10 wind farms (WF1 to
WF6). In WF7 and WF8 wind farms, season proved to have a significant effect (p <
0:001) and in WF9 and WF10 wind farms, both covariates had a significant effect
on the removal times (p < 0:001). Although the described plotting procedures were
used for all the ten analyzed data sets, plots based on the linearization of the survivor
function are shown only for WF1 to WF6 wind farm data sets (in which covariates
were found not to affect significantly the removal times) and plots superimposing



Discrimination Between Parametric Survival Models for Removal Times 69

(1A)

r 2 = 0.913

(1B)

r2 = 0.953

(1C)

r2 = 0.979

(1D)

r2 = 0.973

(2A)

r2 = 0.837

(2B)

r 2 = 0.902

(2C)

r2 = 0.956

(2D)

r2 = 0.95

(3A)

r2 = 0.8

(3B)

r 2 = 0.96

(3C)

r2 = 0.968

(3D)

r2 = 0.968

(4A)

r2 = 0.954

(4B)

r 2 = 0.982

(4C)

r2 = 0.911

(4D)

r2 = 0.945

(5A)

r2 = 0.758

(5B)

r2 = 0.853

(5C)

r 2 = 0.919

(5D)

r 2 = 0.904

0 5 10 15 20

−4

0

2

4

−4

0

2

4

−4

0

2

4

−4

0

2

4

−4

0

2

4

−4

0

2

4
(6A)

r2 = 0.931

0.0 1.0 2.0 3.0

(6B)

r 2 = 0.982

0.0 1.0 2.0 3.0

(6C)

r 2 = 0.981

0.0 1.0 2.0 3.0

(6D)

r 2 = 0.983

Fig. 1 Plots based on a linear transformation of the survivor function for the inspection of the fitted
parametric survival models adequacy in 1-WF1, 2-WF2, 3-WF3, 4-WF4, 5-WF5 and 6-WF6 wind
turbine sites, regarding A-exponential, B-Weibull, C-log-logistic and D-log-normal fitted models

the empirical and the adjusted models are used to illustrate the adequacy of the
models accounting for dependency on explanatory variables (WF7 to WF10).

AIC and BIC statistics showed a very strong agreement between them, pointing
to the same model selection in all the ten analyzed data sets. Hence, we refer here
only the results according to the AIC. For the WF1, WF3, WF4, and WF6 wind
farms, the AIC was found to be the lowest for the log-normal model, while the
best fitting model was the log-logistic for the WF2 and WF5 wind farms. However,
differences between AIC values for the log-logistic and log-normal models were
minimal, suggesting similar model adjustment, which, in fact, was expected, since
these models are very similar. Consequently, inferences based on either model will
be, in this case, very similar.

Plots based on a linear transformation of the survivor function (Fig. 1) show that
the exponential model has the poorest fit in all six wind farms (smaller coefficients of
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Fig. 2 Empirical (step functions) and fitted parametric survivor functions at 7-WF7 (step solid
line, Jan/Feb and step dashed line, Jul/Aug); 8-WF8 (step solid line, May/Jun and step dashed line,
Sep/Oct); 9-WF9 (step solid line, small-size carcasses; step dashed line, medium-size carcasses
and step dotted line, large-size carcasses) and 10-WF10 (step dashed line, medium-size carcasses
and step dotted line, large-size carcasses) wind turbine sites, regarding A-exponential; B-Weibull;
C-log-logistic and D-log-normal models

determination), which reflects the relative inadequacy of the exponential distribution
to model removal times under this context. The remaining parametric models give
fairly good approximated linear relationships, with slight differences between them.
The coefficients of determination point to the log-logistic and the log-normal models
as the most suitable, matching the results from AIC. For the WF4 wind farm the best
linear relationship was found for the Weibull model.

Comparisons between the four fitted models, based on plots shown in Fig. 2,
seem hard as differences between the models are almost eye imperceptible. Hence,
model selection based on these type of plots is risky and can be misleading. The
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relative goodness-of-fit measures assume, therefore, a specially important role in
this context.

Regarding the WF7 and the WF8 wind farms, lowest AIC values were found
for the log-normal and the Weibull models, respectively, suggesting these models
as the most suitable to model carcass removal times at these wind farms. For the
WF9 and WF10 data, AIC indicates the Weibull and the log-logistic models as
the most suitable. However, AIC values were very similar for the Weibull, the log-
logistic, and the log-normal models, which, in fact, was expected given the minor
differences between corresponding plots displayed in Fig. 2. The analysis of the
residuals revealed no major problems with any of the best fitting models.

5 Concluding Remarks

While we focus on wind farm wildlife fatalities, the methodological approach
proposed and explored here is, nonetheless, broadly applicable in many other
contexts. In particular, we propose the use of the described methods in all the
situations in which mortality by collision with anthropogenic structures is a source
of concern and, hence, whenever mortality estimation is mandatory. Among these
situations we underline wildlife mortality resulting, e.g., from collision with power
lines [5, 6], communication towers [1], or cars on roads [14], or from pesticide
applications in agricultural systems [10]. In these situations monitoring studies
are conducted aiming to estimate the number of fatalities. In all of them, to
correctly estimate mortality it is important to consider carcass removal. For that
reason it is a standard procedure to conduct carcass removal trials, collecting data
regarding carcass removal times. Carcass removal trials results are always site-
specific and the permanence probability estimated for a specific wind farm should
never be used to correct the observed mortality at another site. As the estimation
of this probability through the use of parametric models implies a distributional
assumption, procedures used to check model adequacy are particularly important.
Lawless (2003) [11] underlines that

Often data are analysed under a particular model simply because (1) the model has been
used before in similar situations, or (2) it fits the data on hand. This does not imply any
absolute validity of the model, and we should ask whether inferences change much if
another similar “plausible” model is used instead.

So, recognizing that the carcass persistence probability can, in fact, depend
heavily on the model selected, this study proposes and applies a methodology to
discriminate between competing survival models when analyzing data from carcass
removal trials.

We found plotting procedures to be insufficient for model selection. Eye
judgment of differences between the statistical models based on plots analysis
was difficult. The analysis of the plots based on a linear transformation of the
survivor function has the advantage of being interpreted in terms of coefficients
of determination, leading to less ambiguous choices. Although plotting procedures
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do not discriminate sufficiently enough the fitted models, they enable to illustrate
model adjustment after model choice. The use of the AIC allowed to choose the
best relative fitted model.

The discrimination between the competitive parametric survival models is strictly
dependent on sample size and on censoring degree. Small sample sizes and higher
censoring degrees lead to, in general, a less efficient estimation process and,
therefore, the efficiency in discriminating between alternative competing models
may be compromised. These sources of error are still poorly explored. Hence, future
work should be considered to evaluate extensively these effects under the context of
modeling carcass removal time for wildlife mortality assessment.
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Uniformity

M.F. Brilhante, M. Malva, S. Mendonça, D. Pestana, F. Sequeira,
and S. Velosa

Abstract
Transformations such as V D X C Y � I ŒX C Y � or W D min

�
X
Y
; 1�X
1�Y

�
and

Sukhatme’s transformation can be used to augment uniform random samples and
uniform order statistics, respectively. We discuss the bearing of these facts in
testing uniformity, an important issue in the field of combiningp-values in meta-
analytical syntheses.

1 Introduction

Let us assume that the p-values fpkgnkD1 are known from testing H0k vs. HAk ,
k D 1; : : : ; n, in n independent studies on some common issue, and our aim is
to achieve a decision on the overall question H�0 W all the H0k are true vs: H�A W
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some of the HAk are true. As there are many different ways in which H�0 can be
false, selecting an appropriate test is in general unfeasible. On the other hand,
combining the available pk’s so that T .p1; : : : ; pn/ is the observed value of a
random variable whose sampling distribution under H�0 is known is a simple
issue, since underH�0 , p D .p1; : : : ; pn/ is the observed value of a random sample
P D .P1; : : : Pn/ from a standard uniform population. In fact, several different
sensible combined testing procedures are often used [6, 11].

Therefore an important issue is to test whether a given sequence fpkgnkD1 is
or is not a sample from a standard uniform population. Paul [10] discussed new
characterizations of the uniform population, but as they are formulated in terms of
expected values, they did not lead directly to new simple tests of uniformity. Gomes
et al. [5] exploited the possibility of using computationally augmented samples
to test uniformity, with the surprising result that power can decrease with sample
augmentation in the class of alternatives they used. Sequeira [12] explains why this
is so, and in Sect. 2 below we further discuss the question. In this chapter we use
Sukhatme’s transformation to suggest new ways of dealing with the matter.

Sukhatme’s [13] transformation, from which Rényi’s representation of expo-
nential order statistics can easily be derived, appears in David and Nagaraja ([2],
p. 17–18) and in Johnson et al. ([8], p. 305), with slightly different presentations,
applied to the study of exponential and of uniform order statistics, respectively.
Durbin [4] used ordered spacings of the uniform to investigate the construction of
exact tests. In Sect. 3 we use a Sukhatme’s like transformation to augment the set
of order statistics from a uniform parent, and in Sect. 4 we investigate power issues
when they are used in testing uniformity.

2 Uniformity Versus Mixtures of Uniform and Beta(1,2)

Gomes et al. [5] introduced the family fXmgm2Œ�2;2� of absolutely continuous
random variables, with probability density function fXm.x/ D �

mx � m�2
2

�
I.0;1/.x/

(the uniform density corresponds to mD 0; for m2 .0; 2�, Xm is a convex mixture
of Beta(1,1) and Beta(2,1), and for m2 Œ�2; 0�, Xm is a mixture of Beta(1,1) and
Beta(1,2)). Observe that for all m 2 Œ�2; 0/, P ŒXm � x� � P ŒU � x� D m

2
x .x �

1/ > 0 for all x 2 .0; 1/, and thus pseudorandom numbers generated by Xm tend to
be closer to 0 than pseudorandom numbers generated by a standard uniform random
variable U . Thus this family can give important hints on nonuniformity of the set
of p-values, cf. the concepts of random p-values in Kulinskaya et al. [9] and of
generalized p-values in Hartung et al. [6].

Observe also that for m 2 .0; 2�, Xm tends to take values closer to 1 than the
X0 _ Uniform.0; 1/ random variable, and hence in that range of values it provides
a suitable alternative in the case of right one-tailed alternative tests. Moreover, the
inverse of the corresponding distribution function is

F�1Xm .u/ D
m
2

� 1C
q�

m
2

� 1�2 C 2mu

m
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and the generation of pseudo-random numbers from Xm for simulation studies is
therefore straightforward.

Let U and X be two independent standard uniform random variables. The
random variables V D U C X � IŒU C X�, where IŒx� denotes the largest integer
not greater than x, and W D min

�
U
X
; 1�U
1�X

�
are uniform and independent of X (see

Deng and George [3]). This fact was used by Gomes et al. [5] for computationally
augmenting samples and to assess the power of detecting non-uniformity when the
sample comes in fact from Xm,m 2 Œ�2; 0�, with the strange result that power does
not improve for increased samples.

The explanation is however simple: if Xm and Xp are two independent random

variables, with m;p 2 Œ�2; 2�, then min
�
Xm
Xp
; 1�Xm
1�Xp


dD Xmp

6
(see Brilhante

et al. [1]). Hence, in case the algorithm uses uniform pseudorandom numbers to
augment the sample, the augmented slice will in fact be a uniform subsample, and
power decreases. Brilhante et al. [1] present better results using left-skewed parent
pseudorandom numbers.

Still, the use of the family fXmgm2Œ�2;2� has many advantages, and instead of
augmenting the sample externally, as in the above-mentioned papers, by using

Vm D U CXm � IŒU CXm� and Wm D min
�
U
Xm
; 1�U
1�Xm


, with the spurious effect

of always generating uniform pseudo p-values, we can use an alternative approach
when the purpose is to test the null hypothesis of uniformity vs. Xm parent:
• Choose at random one pj 2 fpkgnkD1.
• Generate n � 1 pseudo p’s of the form min

�
pj
pk
;
1�pj
1�pk


; k ¤ j .

3 Order Statistics, Spacings and Sukhatme’s Transformation

Let X D .X1;X2; : : : ; Xn/ be a random sample from the absolutely contin-
uous positive random variable X with probability density function fX and
.X1Wn; X2Wn; : : : ; XnWn/ the corresponding vector of ascending order statistics. For
convenience we assume that left-endpoint ˛X D 0 and we define X0Wn D ˛X D 0.

The joint probability density function of the spacings Sk D XkWn � Xk�1Wn, k D
1; : : : ; n, is

f.S1;S2;:::;Sn/.s1; s2; : : : ; sn/ D nŠ f.X1;X2;:::;Xn/.s1; s1 C s2; : : : ; s1 C � � � C sn/

(sk > 0, k D 1; : : : ; n, and if the right-endpoint !X is finite,
Pn

kD1 sk < !X ; in
this case we can consider the rightmost spacing SnC1 D !X � XnWn, but this can
be expressed as a function !X � Pn

kD1 Sk). Hence, the joint probability density
function of the ascending reordering of those n spacings is

f.S1Wn;S2Wn;:::;SnWn/.y1; y2; : : : ; yn/ D .nŠ/2f.X1;X2;:::;Xn/.y1; y1Cy2; : : : ; y1C� � �Cyn/

where 0 < y1 < : : : < yn and
Pn

kD1 yk < !X .
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Now define

Wk D .nC 1 � k/.SkWn � Sk�1Wn/; k D 1; : : : ; n;

(similar to Sukhatme’s transformation, as defined in David and Nagaraja [2], but
applied to ascendingly ordered spacings), again with the convention S0Wn D 0.

The joint probability density function of .W1;W2; : : : ;Wn/ is

f.W1;W2;:::;Wn/.w1;w2; : : : ;wn/ D nŠ f.X1;X2;:::;Xn/
�w1
n
; 2w1
n

C w2
n�1

; : : : ;w1 C � � � C wn
�

wk > 0, k D 1; : : : ; n, (observe that the k-th argument is

kw1
n

C .k � 1/w2
n � 1

C � � � C .k C 1 � j /wj
nC 1 � j C � � � C wk

nC 1 � k ; k D 1; : : : ; n/;

and the joint probability density function of the vector of partial sums Yk DPk
jD1 Wj , k D 1; : : : ; n, is

f.Y1;Y2;:::;Yn/.y1; y2; : : : ; yn/ D nŠ f.X1;X2;:::;Xn/

�
y1
n
; : : : ;

kX

jD1

.kC1�j /.yj�yj�1/

nC1�j
; : : : ; yn



with 0 < y1 < : : : < yn and the convention y0 D 0.
If X _ Uniform.0; !X/, then

f.X1;X2;:::;Xn/

�
y1
n
; : : : ;

kX

jD1

.kC1�j /.yj�yj�1 /

nC1�j
; : : : ; yn


D 1

!nX
D f.X1;X2;:::;Xn/.y1; y2; : : : ; yn/;

and hence .Y1; Y2; : : : ; Yn/
dD .X1Wn; X2Wn; : : : ; XnWn/. 1

This suggests that uniformity can be investigated testing whether fXkWngnkD1 and
fYkgnkD1 can be considered samples from the same distribution. Unfortunately, under
the null hypothesis that the parent distribution is standard uniform, the two vectors
are not independent since we can re-express Yk D Pk

jD1 Sj Wn C .n � k/SkWn; and
consequently Yn D XnWn. Thus, the Smirnov two-sample test is of no use in the
present situation.

However, the observation of Fig. 1, where we compare the empirical distribution
function (edf) corresponding to the order statistics xkWn (black) and the yk (gray), in

1Observe that if !X < 1, we can consider n C 1 spacings, with SnC1 D !X � XnWn; of
course in this situation SnC1; SnC1WnC1 and WnC1 (where in this case it is convenient to use the
transformation

Wk D .nC 2� k/.SkWnC1 � Sk�1WnC1/;

as in Johnson et al. [8], p. 305) can be expressed as simple functions of the predecessor members

of the sequence. We still get the result that .Y1; Y2; : : : ; Yn/
dD .X1Wn; X2Wn; : : : ; XnWn/ in case of

standard uniform parent X .
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case of uniform and Beta(1,2) parents, suggests that D�n D supx jF �n .x/ �G�n .x/j,
where F �n stands for the order statistics edf and G�n for the accumulated yk edf, will
be greater under the alternative HA W X nonuniform with support (0,1) than under
the null hypothesisH0 W X _ Uniform.0; 1/.

For uniformity testing purposes we present in Table 1 the upper critical points of

D�n , n D 3.1/30.5/100, when the underlying parent is standard uniform .U
dDX0/.

These points were obtained by generating 10,000 independent replicates of the
sample .D�n;1;D�n;2; : : : ;D�n;50/ and defining the quantile of order p of D�n as the
mean of the samples quantiles for p D 0:9, 0.925, 0.95, 0.975, 0.99, 0.995, 0.999.

We also performed a simulation study of the proportion of rejections of unifor-
mity when the underlying parent was Xm, m 2 Œ�2; 0� and when making pairwise
comparisons of the order statistics fxkWng edf and the fykg edf (the process of
generating fykg was iteratively repeated 10,000 times). Observe that the rationale
for this procedure relies on the fact that if the original observations fpkg are indeed
uniform, the “Sukhatme’s” fykg would be order statistics of standard uniform, and
hence repeating Sukhatme’s algorithm we would obtain again a set of order statistics
of standard uniform.

From Fig. 2 we observe that the proportion of rejections of uniformity increases
with n. However, the extended Sukhatme’s like transformed data performs badly
in detecting departures from uniformity when n < 20. This situation can obviously
constitute a problem when combining p-values in meta-analytical syntheses since
the number of available (reported) p-values is usually small.

Another way of assessing the usefulness of this extended Sukhatme’s
transformation in testing uniformity is by calculating the area limited by the edf’s
F �n and G�n , since under the validity of the null hypothesis X _ Uniform.0; 1/,
the area between the two curves should be zero—big area values should indicate a
departure from uniformity. In Table 2 we compare the areas obtained by simulation
(10,000 runs) for some values of n when the underlying parents are standard
uniform and Beta(1,2). Analyzing Table 2 we see that the area is indeed inferior for
the standard uniform parent, except for some few cases. However, the differences
between the two areas can be very small, which can difficult the task of testing
uniformity with this procedure.
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Table 1 Critical points of D�

n when the underlying parent is Uniform (0,1)a

n 0.9 0.925 0.95 0.975 0.99 0.995 0.999

3 0.667 0.667 0.667 0.667 0.667 0.667 0.667
4 0.605 0.656 0.703 0.734 0.747 0.747 0.747
5 0.600 0.610 0.634 0.682 0.753 0.753 0.753
6 0.548 0.580 0.62 0.666 0.736 0.736 0.736
7 0.542 0.563 0.589 0.632 0.712 0.712 0.712
8 0.509 0.529 0.558 0.605 0.686 0.686 0.686
9 0.484 0.509 0.540 0.582 0.660 0.660 0.660
10 0.470 0.491 0.518 0.558 0.635 0.635 0.635
11 0.454 0.472 0.498 0.537 0.612 0.612 0.612
12 0.436 0.455 0.482 0.520 0.592 0.592 0.592
13 0.422 0.441 0.466 0.503 0.574 0.574 0.574
14 0.410 0.429 0.452 0.487 0.557 0.557 0.557
15 0.398 0.415 0.438 0.472 0.539 0.539 0.539
16 0.387 0.404 0.427 0.460 0.525 0.525 0.525
17 0.377 0.393 0.416 0.447 0.511 0.511 0.511
18 0.368 0.385 0.406 0.437 0.498 0.498 0.498
19 0.359 0.376 0.396 0.427 0.486 0.486 0.486
20 0.352 0.367 0.387 0.416 0.474 0.474 0.474
21 0.345 0.360 0.379 0.408 0.463 0.463 0.463
22 0.337 0.352 0.371 0.399 0.453 0.453 0.453
23 0.331 0.345 0.363 0.391 0.444 0.444 0.444
24 0.325 0.339 0.357 0.384 0.435 0.435 0.435
25 0.319 0.332 0.350 0.376 0.427 0.427 0.427
26 0.313 0.326 0.344 0.370 0.419 0.419 0.419
27 0.308 0.321 0.338 0.363 0.411 0.411 0.411
28 0.302 0.315 0.332 0.357 0.404 0.404 0.404
29 0.298 0.311 0.327 0.352 0.400 0.400 0.400
30 0.293 0.306 0.322 0.345 0.392 0.392 0.392
35 0.273 0.285 0.300 0.321 0.363 0.363 0.363
40 0.257 0.268 0.282 0.302 0.341 0.341 0.341
45 0.243 0.253 0.267 0.286 0.322 0.322 0.322
50 0.231 0.241 0.254 0.272 0.306 0.306 0.306
55 0.221 0.230 0.242 0.260 0.292 0.292 0.292
60 0.212 0.221 0.232 0.249 0.280 0.280 0.280
65 0.204 0.212 0.224 0.239 0.269 0.269 0.269
70 0.197 0.205 0.216 0.231 0.260 0.260 0.260
75 0.190 0.198 0.209 0.223 0.251 0.251 0.251
80 0.185 0.193 0.202 0.217 0.244 0.244 0.244
85 0.179 0.186 0.196 0.210 0.236 0.236 0.236
90 0.174 0.182 0.191 0.204 0.229 0.229 0.229
95 0.170 0.177 0.186 0.199 0.223 0.223 0.223
100 0.166 0.172 0.181 0.194 0.217 0.217 0.217
aThe standard errors of the critical points are less than or equal to 0.001
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Fig. 2 Proportion of
rejections of uniformity at
level 0.05 using Sukhatme’s
like transformation when the
underlying parent is Xm,
m 2 Œ�2; 0�

Table 2 Area limited by the
functions F �

n and G�

n when
the underlying parents are
Uniform(0,1) and Beta(1,2)

Beta(1,2) Uniform(0,1)

n Area s.e. Area s.e.

5 0.0366 0.00188 0.0333 0.00179
10 0.0848 0.00279 0.1027 0.00304
15 0.0794 0.00270 0.1216 0.00327
20 0.0860 0.00280 0.0820 0.00274
25 0.0620 0.00241 0.0608 0.00239
30 0.0823 0.00275 0.0495 0.00217
35 0.0699 0.00255 0.0526 0.00223
40 0.0742 0.00262 0.0411 0.00199
45 0.0665 0.00249 0.0450 0.00207
50 0.1005 0.00301 0.0319 0.00176
55 0.0927 0.00290 0.0370 0.00189
60 0.0774 0.00267 0.0376 0.00190
65 0.0830 0.00276 0.0247 0.00155
70 0.0648 0.00246 0.0425 0.00202
75 0.0371 0.00189 0.1369 0.00344
80 0.0682 0.00252 0.0388 0.00193
85 0.0702 0.00256 0.0403 0.00197
90 0.0901 0.00286 0.0395 0.00195
95 0.0701 0.00255 0.0358 0.00186
100 0.0730 0.00260 0.0498 0.00218

4 Conclusion

It seems worth to point out that the entropy of Xm, m 2 Œ�2; 2�, is

H.Xm/ D �
Z 1

0
fXm.x/ ln.fXm.x//dx D 0:5C ln.2/C ln

h�
2�m
2Cm

mi

8 � ln.4�m2/
2 C ln

�
2�m
2Cm



2m ;

(for a detailed study of entropy, cf. [7]), whose graph is concave, and hence the

entropy of min
�
Xm
Xp
; 1�Xm
1�Xp


dD Xmp

6
is, for m;p 2 Œ�2; 2�, nearer to the entropy
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Fig. 3 Comparison of the
proportion of rejections of
uniformity using Sukhatme’s
like method and the method
described in Sect. 2

of X0 than to the entropy of Xm and Xp . We would thus expect that Sukhatme’s
like method of sample augmentation would provide better results than the method
explained in Sect. 2. Observe however that further investigation of the matter seems
to indicate the reverse, as shown in Fig. 3 (the solid lines correspond to Sukhatme’s
like method and the dashed lines to the method described in Sect. 2). The general
question of comparing analytically edfs of correlated samples remains unsolved,
even for simple forms of weak dependence only simulation results in well-defined
situations seem feasible.
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Asymptotic Comparison at Optimal Levels
of Minimum-Variance Reduced-Bias
Tail-Index Estimators

Frederico Caeiro and M. Ivette Gomes

Abstract
In this chapter we are interested in the asymptotic comparison of a set of semi-
parametric minimum-variance reduced-bias tail-index estimators, at optimal
levels and for a wide class of models. Again, as in the classical case, there is
not any estimator that can always dominate the alternatives, but interesting clear-
cut patterns are found. Consequently, and in practice, a suitable choice of a set
of tail-index estimators will jointly enable us to better estimate the tail index, the
primary parameter of extreme events.

1 The Estimators Under Study and Scope of the Paper

Let us consider the common set-up of independent, identically distributed (i.i.d.)
random variables (r.v.’s) X1;X2; � � � ; Xn with a common distribution function (d.f.)
F and denote the associated ascending order statistics (o.s.) byX1Wn � X2Wn � � � � �
XnWn. Let us assume a first-order condition, i.e., that there exist sequences of real
constants fan > 0g and fbn 2 Rg such that .XnWn � bn/ =an converges in distribution
towards a non-degenerate r.v. Then F belongs to the max domain of attraction of an
extreme value (EV) d.f.:
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EV�.x/ D exp.�.1C �x/�1=� /; 1C �x > 0; � 2 R; (1)

and we write F 2 DM

�
EV�

�
. The parameter � is the tail index, the primary

parameter of extreme events, with a low frequency, but a high impact. This index
measures the heaviness of the right tail function F WD 1 � F , and the heavier the
tail, the larger � is. In this chapter we shall work with heavy-tailed models, i.e.,
Pareto-type underlying d.f.’s, with a strict positive tail index.

The second-order parameter, � (� 0), rules the rate of convergence in the first-
order condition, and is the non-positive parameter appearing in the limiting relation

lim
t!1

lnU.tx/ � lnU.t/ � � ln x

A.t/
D x� � 1

�
; (2)

which is assumed to hold for every x > 0 and where jAj must then be of regular
variation with index � [7]. To obtain information on the order of the asymptotic
bias of second-order reduced-bias tail-index estimators, it is necessary to further
assume a third-order condition, ruling the rate of convergence in Eq. (2), and which
guarantees that, for all x > 0,

lim
t!1

lnU.tx/�lnU.t/�� ln x
A.t/

� x��1
�

B.t/
D x�C�0 � 1

�C �0
; (3)

where jB.t/j must then be of regular variation with index �0 � 0.
In this chapter, similarly to what has been done in Gomes et al. [11], we consider

a Pareto-type class of models with a tail function

1 � F.x/ D Cx�1=�
�
1CD1x

�=� CD2x
2�=� C o

�
x2�=�

��
; as x ! 1; (4)

with C > 0, D1; D2 6D 0, � < 0. Note that to assume Eq. (4) is equivalent to say
that Eq. (3) holds with � D �0 < 0 and that we may there choose

A.t/ D ˛ t� DW � ˇ t�; B.t/ D ˇ0 t� D ˇ0A.t/=.ˇ�/; ˇ; ˇ0 6D 0; (5)

with ˇ and ˇ0 “scale” second and third-order parameters, respectively.
For heavy-tailed models, the classical tail-index estimator is Hill’s estimator [14],

the average of the scaled log-spacings Ui or of the log-excesses Vik :

Hn.k/ � H.k/ WD 1

k

kX

iD1
Ui D 1

k

kX

iD1
Vik; (6)

where

Ui WD i

�
ln
Xn�iC1Wn
Xn�i Wn

�
and Vik WD ln

Xn�iC1Wn
Xn�kWn

; 1 � i � k < n: (7)
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For intermediate k, i.e., for a sequence of integers k D kn, 1 � k < n, such that

k D kn ! 1 and kn D o.n/; as n ! 1; (8)

the Hill estimator in Eq. (6) is consistent for � > 0 whenever F 2 DM .EV�/�>0
holds.

The adequate accommodation of the bias of Hill’s estimator has been extensively
addressed in recent years in the literature. Recently, several authors [4, 10–12]
consider, in different ways and under the second-order framework in Eq. (2),
minimum-variance reduced-bias (MVRB) tail-index estimators based on the joint
external estimation of both the ‘scale’ and the ‘shape’ parameters, ˇ and �,
respectively. These estimators are called MVRB due to the fact that, under adequate
restrictions, they are able to reduce the bias without increasing the asymptotic
variance, which is shown to be kept at the value �2, the asymptotic variance of
Hill’s estimator, at least for values k such that

p
kA.n=k/ ! �, finite, as n ! 1.

Gomes et al. [11] consider a tail-index estimator based on a linear combination of
the log-excesses Vik in Eq. (7) and given by

WH Ǒ; O�.k/ WD 1

k

kX

iD1
e� Ǒ .n=k/ O�  ik. O�/ Vik;  ik.�/ D � .i=k/

�� � 1

� ln.i=k/
; (9)

WH standing here for weighted Hill estimator. Caeiro et al. [4] consider two
estimators of this same type, here denoted:

CH Ǒ; O�.k/ WD H.k/
�
1 �

Ǒ
1 � O�

�n
k

 O� 
; (10)

CH Ǒ; O�.k/ WD H.k/ exp
�

�
Ǒ

1 � O�
�n
k

 O� 
; (11)

where the dominant component of the bias of Hill’s estimator in Eq. (6), given
by A.n=k/ = .1 � �/ D � ˇ .n=k/� =.1 � �/, is thus essentially estimated
through H.k/ Ǒ .n=k/ O� =.1 � O�/, and directly removed from Hill’s classical tail-
index estimator. The notation CH stands for corrected Hill. A third class has been
introduced in Gomes et al. [11], and it has the functional form

ML Ǒ; O�.k/ WD H.k/ � Ǒ �n
k

 O� � 1
k

kX

iD1

� i
k

�O�
Ui


; (12)

with Ui given in Eq. (7). These authors consider also

ML Ǒ; O�.k/ WD 1

k

kX

iD1
exp

� � Ǒ.n=i/ O��Ui ; (13)

the estimator directly derived from the likelihood equation for � with ˇ and � fixed
and based upon the exponential approximationUi 	 � exp.ˇ.n=i/�/Ei , 1 � i � k,
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being claimed a better performance of the ML estimator, comparatively to the ML
estimator, for a large class of models. This is the reason why we shall also work
with the bias-corrected Hill estimator

WH Ǒ; O�.k/ WD H.k/ � Ǒ �n
k

 O�� 1
k

kX

iD1
 ik. O�/ Vik


; (14)

with  ik. O�/ given in Eq. (9).

Remark 1. In all the above MVRB tail-index estimators, Ǒ and O� need to be
adequate consistent estimators of the second-order parameters ˇ and �, respectively.
For more details related with the estimation of these parameters, see, for instance,
Fraga Alves et al. [6], Gomes and Martins [9] and Caeiro and Gomes [2].

In this chapter, we compare asymptotically, at optimal levels, the above-
mentioned MVRB statistics, denoted generically UHˇ;�.k/ (assuming thus that ˇ
and � are known or adequately estimated). In Sect. 2, we shall state for the class of
models in Eq. (4), the asymptotic properties of UHˇ;�.k/, and in Sect. 3, we provide
a full asymptotic comparison, at optimal levels, of UHˇ;�.k/ for UH D CH , ML
andWH .

2 The Asymptotic Behaviour of the MVRB Tail-Index
Estimators

Let fEig denote a sequence of i.i.d. standard exponential r.v.’s and define

Zk WD 1

k

kX

iD1
Ei and Zk WD

p
k
�
Zk � 1�: (15)

Assuming the third-order framework in Eq. (4), we state the following result, a
particular case, with a few additions related to the UH statistics, of Theorem 3.1
in [5].

Theorem 1. Under the third-order framework in Eq. (4), with A.t/ given in Eq. (5),
Zk given in Eq. (15), and for intermediate k, i.e., if Eq. (8) holds, we can write

UHˇ;�.k/
dD � C � Zkp

k
C
�
bUHA

2.n=k/COp

�A.n=k/p
k


.1C op.1//; (16)

where, with � D ˇ0=ˇ and a2.�/ WD � 1
�2
.ln.1 � 2�/� 2 ln.1 � �// ;

bCH D 1

�

� �

1 � 2�
� 1

.1 � �/2


; b

CH
D 1

�

� �

1 � 2� � 1

2.1 � �/2

;
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bML D � � 1

�.1� 2�/
; b

ML
D 2� � 1
2�.1� 2�/

;

bWH D 1

�

� �

1 � 2�
� a2.�/


; b

WH
D 1

�

� �

1 � 2� � a2.�/

2


:

Consequently, even if
p
k A.n=k/ ! 1, with

p
k A2.n=k/ ! �

A
, finite,

p
k
�
UHˇ;�.k/ � �� d�!

n!1 Normal
�
�AbUH ; �

2
UH

D �2
�
:

Remark 2. If
p
k A2.n=k/ ! 1,

�
UHˇ;�.k/ � �

�
is Op.A2.n=k//.

Remark 3. Note that b
ML

D b
ML

D 0 whenever � D 1. This happens for important
models like the Burr and the GP , and it is a point in favour of the ML-statistic.

Remark 4. We also add that the results for UH follow straightforwardly from the
results for UH . Indeed, as n ! 1, WHˇ;� � WHˇ;�

p� a2.�/A
2.n=k/=.2�/,

CHˇ;��CHˇ;�
p� A2.n=k/=.2�.1��/2/ andMLˇ;��MLˇ;� p� A2.n=k/=.2�.1�

2�//.

Remark 5. Note that, as already mentioned in Caeiro et al. [5], since �A �
0 and 1=.2a2.�// > .1 � �/2 > 1=a2.�/ > 1 � 2� for any � < 0,
b
WH

� bCH � bWH � bML . All depends then on the sign of the bias.

3 Asymptotic Comparison of the MVRB Tail-Index
Estimators

We shall next proceed to the comparison of the MVRB estimators under study at
their optimal levels. This is again done in a way similar to the one used in de Haan
and Peng [13] and Gomes and Martins [8] for the classical tail-index estimators. Let
us assume thatb�	n;k denotes any arbitrary reduced-bias semi-parametric estimator of
the tail index � , for which we have, for any intermediate k D kn,

b�	n;k D � C �	p
k
Z	k C b	 A2.n=k/C op.A

2.n=k//; (17)

with Z	k an asymptotically standard normal r.v. Then,
p
k
�
b�	n;k � �	�!d N.�Ab	;

�2	 / provided that k is such that
p
k A2.n=k/ ! �A , finite, as n ! 1. We then

write Bias1
�
b�	n;k

	 WD b	 A2.n=k/ and Var1
�
b�	n;k

	 WD �2	=k: The so-called
asymptotic mean square error (AMSE/ is then given by

AMSE
�
b�	n;k

	 WD �2	=k C b2	 A4.n=k/:
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1≤ AREFF < 1.25 0.8 ≤ AREFF < 1AREFF ≥1.25 AREFF < 0.8

'x=b  § b

r

Fig. 1 AREFF
CH jCH

, in the .�; �/-plane

Regular variation theory [1], enables us to show that, whenever b	 ¤ 0, there exists
a function '.n/ D '.n; �; �/, such that

lim
n!1'.n/ AMSE

�
b�	n0

	 D �
�2	
�� 4�

1�4�
�
b2	
� 1
1�4� DW LMSE �b�	n0

	
;

where b�	n0 WD b�	n;k�

0 .n/
and k	0 .n/ WD arg inf

k

AMSE
�
b�	n;k

	
. It is then sensible to

consider the following:

Definition 1. Given two biased estimatorsb�.1/n;k andb�.2/n;k , for which a distributional
representation of the type of the one in Eq. (17) holds, with constants .�1; b1/
and .�2; b2/, b1; b2 6D 0, respectively, both computed at their optimal levels, the
asymptotic root efficiency .AREFF/ ofb�.1/n0 relatively tob�.2/n0 is

AREFF1j2 � AREFFb�.1/n0 jb�.2/n0 WD
vuu
tLMSE

�
b�.2/n0

	

LMSE
�
b�.1/n0

	 D
���2
�1

�4�ˇˇ
ˇ
b2

b1

ˇ
ˇ
ˇ
 1
1�4�

: (18)

Remark 6. Note that this AREFF indicator has been conceived so that the highest
the AREFF indicator is, the better is the first estimator.

We first present in Figs. 1–3 the measure AREFF
UH jUH

for UH D CH;ML;WH,
respectively, in the .�; �/-plane. Figure 4 shows us the MVRB tail-index estimator
with minimum LMSE in the .�; �/-plane.
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Fig. 2 AREFF
MLjML

, in the .�; �/-plane
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-0.5 0.91 0.91 0.90 0.89 0.89 0.88 0.87 0.85 0.84 0.82 0.79 0.76 0.71 0.64 0.51 0.40 0.72 0.98 1.32 2.16 2.09 1.59 1.41 1.32 1.27 1.23 1.20 1.17 1.16 1.14 1.13

-0.6 0.92 0.92 0.91 0.91 0.90 0.89 0.88 0.87 0.86 0.84 0.82 0.79 0.74 0.67 0.54 0.49 0.77 1.01 1.34 2.29 1.79 1.47 1.34 1.27 1.22 1.19 1.17 1.15 1.13 1.12 1.11

-0.7 0.93 0.93 0.92 0.92 0.91 0.90 0.89 0.88 0.87 0.85 0.83 0.80 0.76 0.70 0.56 0.56 0.82 1.04 1.35 2.72 1.61 1.38 1.28 1.23 1.19 1.16 1.14 1.13 1.11 1.10 1.10

-0.8 0.94 0.93 0.93 0.92 0.92 0.91 0.90 0.89 0.88 0.87 0.85 0.82 0.78 0.72 0.57 0.62 0.86 1.07 1.37 2.80 1.48 1.32 1.24 1.19 1.16 1.14 1.12 1.11 1.10 1.09 1.08

-0.9 0.94 0.94 0.94 0.93 0.93 0.92 0.91 0.90 0.89 0.88 0.86 0.83 0.80 0.73 0.58 0.67 0.89 1.09 1.39 1.94 1.39 1.27 1.21 1.17 1.14 1.12 1.11 1.10 1.09 1.08 1.07

-1.0 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.91 0.90 0.89 0.87 0.85 0.81 0.75 0.58 0.72 0.91 1.10 1.42 1.66 1.33 1.23 1.18 1.15 1.13 1.11 1.10 1.09 1.08 1.07 1.07

-1.1 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.91 0.90 0.88 0.86 0.82 0.76 0.58 0.75 0.94 1.12 1.46 1.51 1.28 1.20 1.16 1.13 1.11 1.10 1.09 1.08 1.07 1.06 1.06

-1.2 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.92 0.91 0.90 0.89 0.87 0.83 0.77 0.57 0.79 0.96 1.14 1.52 1.41 1.24 1.18 1.14 1.12 1.10 1.09 1.08 1.07 1.06 1.06 1.05

-1.3 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.92 0.91 0.89 0.87 0.84 0.78 0.55 0.82 0.98 1.15 1.62 1.34 1.21 1.16 1.13 1.10 1.09 1.08 1.07 1.06 1.06 1.05 1.05

-1.4 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.93 0.93 0.91 0.90 0.88 0.85 0.79 0.48 0.84 0.99 1.17 1.87 1.29 1.19 1.14 1.11 1.09 1.08 1.07 1.06 1.06 1.05 1.05 1.05

-1.5 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.92 0.91 0.89 0.85 0.79 0.51 0.86 1.01 1.18 1.80 1.25 1.17 1.13 1.10 1.09 1.07 1.07 1.06 1.05 1.05 1.04 1.04

-1.6 0.97 0.96 0.96 0.96 0.96 0.95 0.95 0.94 0.93 0.92 0.91 0.89 0.86 0.80 0.61 0.88 1.02 1.20 1.51 1.22 1.15 1.11 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 1.04

-1.7 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.94 0.93 0.91 0.90 0.87 0.80 0.67 0.90 1.03 1.22 1.39 1.19 1.13 1.10 1.09 1.07 1.06 1.06 1.05 1.05 1.04 1.04 1.04

-1.8 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.93 0.92 0.90 0.87 0.81 0.71 0.91 1.04 1.23 1.32 1.17 1.12 1.09 1.08 1.07 1.06 1.05 1.05 1.04 1.04 1.04 1.03

-1.9 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.94 0.93 0.92 0.90 0.87 0.81 0.74 0.93 1.05 1.26 1.27 1.15 1.11 1.09 1.07 1.06 1.05 1.05 1.04 1.04 1.04 1.03 1.03

-2.0 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.94 0.93 0.91 0.88 0.81 0.77 0.94 1.06 1.29 1.23 1.14 1.10 1.08 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 1.03

-2.1 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.91 0.88 0.82 0.80 0.95 1.07 1.32 1.21 1.13 1.09 1.07 1.06 1.05 1.05 1.04 1.04 1.03 1.03 1.03 1.03

-2.2 0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.93 0.91 0.89 0.82 0.82 0.96 1.08 1.39 1.18 1.12 1.09 1.07 1.06 1.05 1.04 1.04 1.04 1.03 1.03 1.03 1.03

-2.3 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.93 0.92 0.89 0.82 0.83 0.97 1.09 1.55 1.16 1.11 1.08 1.06 1.05 1.05 1.04 1.04 1.03 1.03 1.03 1.03 1.02

-2.4 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.92 0.89 0.82 0.85 0.98 1.10 1.48 1.15 1.10 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02

-2.5 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.92 0.89 0.82 0.86 0.99 1.11 1.34 1.13 1.09 1.07 1.06 1.05 1.04 1.04 1.03 1.03 1.03 1.02 1.02 1.02

-2.6 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.93 0.90 0.82 0.88 0.99 1.11 1.27 1.12 1.08 1.06 1.05 1.04 1.04 1.03 1.03 1.03 1.03 1.02 1.02 1.02

-2.7 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.93 0.90 0.82 0.89 1.00 1.12 1.23 1.11 1.08 1.06 1.05 1.04 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.02

-2.8 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.95 0.94 0.93 0.90 0.81 0.90 1.01 1.13 1.20 1.10 1.07 1.06 1.05 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02

-2.9 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.93 0.90 0.81 0.91 1.01 1.14 1.18 1.10 1.07 1.05 1.04 1.04 1.03 1.03 1.03 1.02 1.02 1.02 1.02 1.02

-3.0 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.93 0.91 0.81 0.92 1.02 1.15 1.16 1.09 1.06 1.05 1.04 1.04 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02

1 ≤ AREFF < 1.25 0.8 ≤ AREFF < 1AREFF ≥ 1.25 AREFF < 0.8

'x=b  § b

r

Fig. 3 AREFF
WH jWH

, in the .�; �/-plane
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Fig. 4 Minimum LMSE among the CH, ML and WH statistics

From these figures it is possible to see that there is practically no difference
between the relative behaviour betweenUH andUH forUH D CH;ML andCH .
Figure 4 also shows us that, at optimal levels, none of these estimators outperform
the others in all the .�; �/-plane, but their simultaneous use will for sure enable us
to better estimate � . For a more detailed comparison, see Caeiro and Gomes, [3].
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Extremal Behavior of the Generalized
Integer-Valued Random Coefficient
Autoregressive Process

Luı́sa Canto e Castro, Dulce Gomes, and Maria da Graça Temido

Abstract
A stationary generalized random coefficient integer auto-regressive model of
order 1 (Generalized RCINAR(1)), based on a thinning random operation, is
presented. It is proved that the process satisfies a long-range condition as well as a
local dependence condition, which are appropriate extensions of the well-known
D.un/ andD0.un/ conditions of Leadbetter. Assuming that the marginal discrete
distribution function belongs to Anderson’s class, and then it does not belong to
the domain of attraction of any max-stable distribution, the limit in distribution of
the maximum of kn random variables, being fkng a geometric growing sequence,
is obtained. This limit is a discrete max-semistable distribution function usually
called discretized Gumbel.

1 Introduction

The analysis of integer-valued time series has become an important area of research
in the last decades partially because its wide applicability to real data analysis.
Within the reasonably large spectrum of integer-valued models proposed in the
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literature, rather little is known about its extremal properties. Most of the work done
deals with stationary sequences.

In this work we consider a strictly stationary process, named Generalized
RCINAR(1) (Generalized Random Coefficient Integer AutoRegressive). The Gen-
eralized RCINAR(1) model has a form similar to that of the INAR(1) (INteger
AutoRegressive) process proposed by [4], which, in turn, has a similar form to the
well-known AR(1) process. As mentioned in [2] “the class of models presented
here extends a Generalized AR(1) structure from which many new ideas can
be established. The binomial “thinning” operation is replaced by a Generalized
thinning operation and the vector of fixed covariates by a sequence of independent
and identically distributed (i.i.d.) random variables (r.v’s). In fact, the mentioned
operation is defined in such a way that a large value can follow a previous one
(“expanding” and not “thinning” it). However, in order to obtain stationarity of the
time series the probability of this kind of occurrences must be very small (the mean
and variance of thinning coefficient must be less than one).”

Note now that the fact of not having to require each coefficient to have support
in [0,1], allows the use of this type of models in situations where time series present
sporadic large peaks being therefore important to the analysis of their extremal
behavior. As in [3], a basic assumption is that the innovations fZtgt2Z have common
distribution function (d.f.) belonging to the class of Anderson. In this context we
prove that the maximum, under linear normalization, has a non degenerate limiting
distribution which is a discrete max-semistable d.f..

2 Generalized Random Coefficient Integer
AutoRegressive Process

We start by presenting a Generalized Random Coefficient Integer AutoRegressive
model of order 1 (Generalized RCINAR(1)). This model has a similar form to the
one of the INAR(1) (INteger AutoRegressive) process proposed by [4]. Although
with this similarity, they have two main differences: the binomial thinning operation
is replaced by a generalized thinning operation and the coefficients are random.

The generalized thinning operation, represented by ıG , between two r.v’s ˛
and Y was defined by [2] as follows: given two r.v’s, ˛ and Y , and a family of
distribution functions (d.f’s) G.�; �/, parameterized by the mean � and standard
deviation � , the operation ıG was defined imposing the following condition on the
random variable (r.v.) ˛ ıG Y :

˛ ıG Y j˛; Y _ G.˛Y; �/ ; (1)

that is, the r.v. ˛ ıG Y , conditional to the values of ˛ and Y , has a d.f. G with mean
�D˛Y and standard deviation � . Note that the standard deviation � can also
depend on ˛ and Y . We would like to emphasize that the binomial thinning
operation used in the INAR(1) model is a particular case of the previous one, where
the parameter ˛ is real in Œ0; 1� and G.�; �/ is a family of d.f’s of a binomial r.v’s.
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The construction of models for count data, based on operation ıG , can then be
made in a similar way to what has been done using the binomial thinning operation.
More precisely, a stochastic process fYtgt2Z of discrete parameter and with support
on nonnegative integers is said to be a Generalized RCINAR(1) if there exist a
sequence of i.i.d. r.v’s f˛t gt2Z, with support onRC and finite second moment, and an
uncorrelated sequence of nonnegative integer-valued r.v’s, fZtgt2Z, with mean �Z
and finite variance �2Z , such that fYtgt2Z satisfies the stochastic difference equation

Yt D ˛t ıG Yt�1 CZt ; t 2 Z; (2)

where:
1. For each t , the r.v. ˛t ıG Yt�1j˛t ; Yt�1 is independent of Yt�1�k , ˛t�k and Zt�k

for all k � 1.
2. The variable Yt j˛t is independent of ˛tCk and ZtCk for all k � 1.

Gomes and Canto e Castro [2] gave necessary conditions on f˛tg such that Eq. (2)
is a second-order process. Specifically, it is proved that a stationary solution exists
for Eq. (2) since the second moment of ˛t is less than one.

In what follows we assume that fZt g is an i.i.d. sequence and denote by ˛ and Z
the r.v’s with the d.f. of f˛t g and fZt g, respectively.

Proposition 1. Suppose that the process fYtg satisfies, for all t 2 Z,

˛ ıG .˛ ıG Yt C Zt /
dD ˛ ıG .˛ ıG Yt/ C ˛ ıG Zt and ˛ ıG Yt � Yt . Then the

Generalized RCINAR(1) process fYtgt2Z is strictly stationary. A strictly stationary
solution of Eq. (2) is given by

Yt D
C1X

iD1
˛t ıG � � � ıG .˛t�iC1 ıG Zt�i /CZt : (3)

Proof. Since f˛t g and fZt g are i.i.d. sequences it is easily proved, from the
expression of the P.Yt D i jYt�1 D i � 1/ [[2], p. 4093], that fYtg is an irreducible
and aperiodic Markov chain. Moreover following similar arguments to the ones of
the proof of Proposition 2.2 of [8], we get that fYtg is a positive recurrent Markov
chain. Consequently it is strictly stationary.

Moreover, from Eq. (2), we deduce Yt
dD ˛t ıG � � � ıG .˛1 ıG Y0/CPC1

iD1 Vi .t/C
Zt with fVi .t/ WD ˛t ıG � � � ıG .˛t�iC1 ıG Zt�i /gi�1. Due to the fact that
˛ ıG Yt � Yt ; 8t , we prove that ˛t ıG � � � ıG .˛1 ıG Y0/ converges almost surely
to zero. Since

PC1
iD1 Vi .t/ is almost surely convergent it represents a mensurable

function of the strictly stationary process fVi.t/g and so
PC1

iD1 Vi .t/ is also strictly
stationary. The same holds with

PC1
iD1 Vi .t/CZt :

Thus,
PC1

iD1 Vi .t/ C Zt exists, is a solution of Eq. (2) and defines a strictly
stationary process. ut
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3 The Anderson’s Class and the Max-Semistable Class

As we said before, little is known about the extremal properties of many integer-
valued models. In part, this is due to the fact that many integer-valued distributions
do not belong to the domain of attraction on any max-stable (MS) distribution.
Anderson [1] gave an important contribution to solve this problem by obtaining
asymptotic upper and lower bounds for the distribution of the maximum of some
particular i.i.d. sequences. Indeed, Anderson proved that an integer-valued d.f. F ,
with infinite right endpoint, satisfies

lim
n!C1

1 � F.n � 1/
1 � F.n/ D r; r 2 �1;C1Œ; (4)

if and only if lim supn!1 F n.xCbn/ � exp.�r�x/ and lim infn!1 F n.xCbn/ �
exp.�r�.x�1//; for any real x and bn appropriately chosen. We shall say that a d.f.
belongs to Anderson’s class if and only if it satisfies Eq. (4). An example is the
negative binomial d.f.. In order to overcome these limiting bounds and establish
of a well-defined limiting distribution, Temido [6] proved that Eq. (4) is necessary
and sufficient for the existence of a nondecreasing positive integer sequence fkng
satisfying

lim
n!C1

knC1
kn

D r; r 2 �1;C1Œ; (5)

and of a real sequence fung such that kn.1�F.un// ! � > 0; n ! C1, for some
� >0. So, considering the maximum of kn r.v’s, where fkng satisfies Eq. (5), we
can obtain a nondegenerate limiting distribution for the maximum Mkn . The limit
is not a MS distribution but belongs to a larger class of distributions, introduced
by [5], known as max-semistable (MSS) distributions. This class includes the
class MS and discrete or multimodal continuous d.f’s. Following [5] we say
that a real d.f. G is MSS if there are reals r > 1; aD a.r/> 0, and bD b.r/

such that G.x/DGr (ax C b), x 2R; or equivalently, if there exist a sequence
of i.i.d. r.v’s with d.f. F and two real sequences fan > 0g and fbng for which

lim
n!C1F

kn.anx C bn/ D G.x/; for each continuity point of G, where fkng is a

nondecreasing positive integer sequence satisfying the limit in Eq. (5) with r � 1.
A d.f. in the class MSS can be written as follows:

G�;�.x/ D
(

exp
˚�.1C �x/�1=��.log.1C �x//



x 2 R; 1C �x > 0 and � ¤ 0

expf�e�x�.x/g x 2 R and � D 0
;

where � is a positive, bounded, and periodic function. If � is a suitable constant, we
get the class MS.

Temido [6] proved that if F is an integer-valued d.f. with infinite upper endpoint
and there are fkng satisfying Eq. (5), fan > 0g, and fbng such that F kn.anxCbn/ !
G.x/; n ! C1; thenG.x/ D exp.��r�Œx�/; x 2 R; for some � > 0; if and only if
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Eq. (4) holds. As we can transform fkng and fbng in order to obtain an D 1; � D 1,
we have

lim
n!C1F

kn.x C bn/ D exp.�r�Œx�/; x 2 RnZ: (6)

The d.f. G.x/ D exp.��r�Œx�/; � > 0, usually called discretized Gumbel, is
MSS. Using these results, the limiting distribution of the maximum Mkn of a large
class of stationary integer-valued models can be obtained. Indeed, considering that
these models satisfy a suitable extension of the long-range dependence condition of
Leadbetter,D.un/, the limiting distribution ofMkn can be inferred from the limiting
behavior of the maximum of kn i.i.d. r.v’s with the some d.f. (see [3, 7]). This
extended long-range dependence condition was introduced in [7] and was denoted
by Dkn.un/. According to these authors, the sequence fXtg satisfies Dkn.un/ if,
for any nondecreasing sequence of positive integers fkng and for any integers
1 � i1 < : : : < ip < j1 < : : : < jq � kn with j1 � ip > `n; we have

ˇ
ˇP
� p\

sD1
fXis � ung;

q\

mD1
fXjm � ung

��P �
p\

sD1
fXis � ung

�
P
� q\

mD1
fXjm � ung

�ˇˇ�˛n;`n ;

where lim
n!C1˛n;`n D 0 for some sequence `n D on.kn/:

Considering stationary sequences fXtg satisfying Dkn.un/ with fkng satisfy-
ing Eq. (5), Temido and Canto e Castro [7] prove that the limit in distribution of
Mkn , under linear normalization, is MSS, whenever it exists. As well as long-range
dependence conditions, the study of extremal properties of stationary sequences
of r.v’s is frequently based on the establishment of appropriate local dependence
conditions. The generalized RCINAR(1) process satisfies the condition D0kn.un/
(introduced in [6]), which holds for stationary sequences fXtg if there is a sequence
of positive integers fsng such that kn=sn ! C1, sn˛n;ln ! 0 and

lim
n!C1kn

Œkn=sn�X

tD2
P .Xt > un; X1 > un/ D 0:

As it is expected, underDkn.un/ and D0kn.un/, the limiting distribution of Mkn , it is
the one of the associated i.i.d. sequence.

4 The Main Result

In this section we consider that the d.f. F of fZt g belongs to the Anderson’s
class and that fYtg is strictly stationary. We write Wt WD ˛t ıG Yt�1 and
W

a;y
t WDWt jf˛t D a; Yt Dyg and denote byW a r.v. with the d.f. of fWtg.

Lemma 1. If E.rW / exists and fung are normalized levels for fZt g, then fung are
also normalized levels for fYtg, with �Y D E.rW /�Z:
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Proof. Since �Z WD �Z.x/ D r�Œx�, for n large enough we have

knP
�
˛t ıG Yt�1 CZt � un

�

D kn

Z

S˛t

X

y2SYt�1
P .Wt CZt � un j ˛t D a; Yt�1 D y/P .Yt�1 D y/ f˛t .a/da

D
Z

S˛t

X

y2SYt�1

X

w2S
W
a;y
t

knP .Zt � un � w/ P
�
W

a;y
t D w

�
P .Yt�1 D y/ f˛t .a/ da

D
Z

S˛t

X

y2SYt�1

X

w2S
W
a;y
t

�
r�Œx�Cw C on.1/

�
P
�
W

a;y
t D w

�
P .Yt�1 D y/ f˛t .a/da

D r�Œx�
Z

S˛t

X

y2SYt�1

X

w2S
W
a;y
t

rwP
�
W

a;y
t D w

�
P .Yt�1 D y/ f˛t .a/daC on.1/

D r�Œx�E
�
rW
�C on.1/ ! �Y ; n ! C1:

ut

Observe now that from the last lemma we conclude that if there are fbng and fkng
such that Eq. (6) holds, then for the d.f. H of fYtg we get

lim
n!C1H

kn.x C bn/ D exp
��E.rW /r�Œx�� ; x 2 RnZ: (7)

Lemma 2. If the d.f. ofZ belongs to Anderson’s class then the same holds withH .

Proof. Due to

kn.1 �H.un//

kn.1 � F.un// D 1 �H.un/

1 �H.unC1/
� kn.1 �H.unC1//
kn.1� F.unC1//

� 1 � F.unC1/
1� F.un/

and taking into account that the first, the third, and the fourth quotients converge,
we conclude that the second quotient also converges and the limit is r . ut

We need the following lemma to prove that conditionD0kn .un/ holds:

Lemma 3. Under conditions above, for all j 2 N0, we have
1.

X

j2;:::;jt�12N0
P .Yt > un; Yt�1 D jt�1; : : : ; Y2 D j2; Y1 D j /

�
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/ P .Y1 D j / ;

2. knP .Yt > un j Yt�1 D jt�1/ D r�Œx�
Z

S˛

E
�
rW

a;jt�1

f˛ .a/ C on .1/ ;

n ! C1:

Proof. Taking into account that
X

jm2N0
P .Ym D jm j Ym�1 D jm�1/ D 1, we have
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X

j2;:::;jt�12N0
P .Yt > un; Yt�1 D jt�1; : : : ; Y2 D j2; Y1 D j /

D
X

j2;:::;jt�12N0
P .Yt > un j Yt�1 D jt�1/

(
t�1Y

lD3
P .Yl D jl j Yl�1 D jl�1/

)

�

� P .Y2 D j2; Y1 D j /

D
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/

X

jt�22N0
P .Yt�1 D jt�1 j Yt�2 D jt�2/�

�
X

jt�32N0
P .Yt�2 D jt�2 j Yt�3 D jt�3/ � � � � �

X

j32N0
P .Y4 D j4 j Y3 D j3/�

�
X

j22N0
P .Y3 D j3 j Y2 D j2/ P .Y2 D j2; Y1 D j /

�
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/

X

jt�32N0

X

jt�22N0
P .Yt�2 D jt�2 j Yt�3 D jt�3/�

� � � � �
X

j32N0
P .Y4 D j4 j Y3 D j3/

X

j22N0
P .Y3 D j3 j Y2 D j2/ P .Y2 D j2; Y1 D j /

D
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/�

�
X

jt�42N0

X

jt�32N0
P .Yt�3 D jt�3 j Yt�4 D jt�4/ P .Yt�4 D jt�4 j Yt�5 D jt�5/�

� � � � �
X

j32N0
P .Y4 D j4 j Y3 D j3/

X

j22N0
P .Y3 D j3 j Y2 D j2/ P .Y2 D j2; Y1 D j /

D
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/

X

j22N0

X

j32N0
P .Y3 D j3 j Y2 D j2/�

� P .Y2 D j2 j Y1 D j / P .Y1 D j /

D
X

jt�12N0
P .Yt > un j Yt�1 D jt�1/ P .Y1 D j / :

To prove 2, observe that

knP .Yt > un j Yt�1 D jt�1/

D
Z

S˛t

knP
�
˛t ıG Yt�1 CZt � un j Yt�1 D jt�1; ˛t D a


f˛t .a/da

D
Z

S˛t

P
�
W a;jt�1 C Zt � un j Yt�1 D jt�1; ˛t D a


f˛t .a/da

D
Z

S˛t

X

w2W a;jt�1

knP .Zt > un � w/ P
�
W a;jt�1 D w j Yt�1 D jt�1; ˛t D a


f˛t .a/da
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D r�Œx�
Z

S˛t

X

w2W a;jt�1

rwP
�
W a;jt�1 D w j Yt�1 D jt�1; ˛t D a


f˛t .a/da

D r�Œx�
Z

S˛t

E
�
rW

a;jt�1

f˛t .a/da C on .1/ ; n ! C1:

ut
Now we can present our main result.

Theorem 1. For the stationary Generalized RCINAR(1) process assume that F
belongs to Anderson’s class and E.rW / < C1. Let fkng be a nondecreasing
integer sequence satisfying Eq. (4) and fxC bng be a sequence of normalized levels
for F :
1. The process fYtg satisfies conditionDkn.x C bn/.

2. If
X

k2N0

Z

S˛

E
�
rW

a;k

f˛.a/da < C1, then fYt g satisfies conditionD0kn.xCbn/.

3. Consequently lim
n!C1P.Mkn � x C bn/ D exp

��E.rW /r�Œx�� ; x 2 RnZ:

Proof. Due to the fact that the process fYtg is regenerative and aperiodic it is strong
mixing. So Dkn.vn/ holds for any real sequence fvng. Write un WD x C bn. In order
to prove that D0kn.un/ occurs, note that, by Lemma 3, we get

P .Yt > un; Y1 > un/ D
C1X

jDŒun�C1
P .Yt > un; Y1 D j / D

D
C1X

jDŒun�C1

X

j2;:::jt�12N0
P .Yt > un; Yt�1 D jt�1; : : : ; Y2 D j2; Y1 D j /

�
C1X

jDŒun�C1

X

jt�12N0
P .Yt > un j Yt�1 D jt�1/ P .Y1 D j / :

Hence, using the second part of Lemma 3, we deduce

kn

Œkn=sn�X

tD2
P .Yt > un; Y1 > un/ � kn

Œkn=sn�X

tD2

C1X

jDŒun�C1

X

k2N0
P .Yt > un j Yt�1 D k/P .Y1 D j /

� r�Œx�
8
<

:

X

k2N0

Z

S˛t

E
�
rW

a;k

f˛.a/da

9
=

;
kn
sn
P.Y1 > un/C on.1/ D on.1/; n ! C1:

Since fun WD x C bng are also normalized levels for H (by Lemma 1) we
obtain Eq. (7). Finally, with Dkn.un/ and D0kn.un/, the maximum Mkn has the
limit distribution of the associated i.i.d. sequence. ut



Extremal Behavior of the Generalized RCINAR(1) Process 101

Example 1. Considering f˛tg with distribution U .0; 1/ andG binomial, we deduce

that
X

k2N0

Z

S˛

E
�
rW

a;k

f˛t .a/da < C1 which implies E.rW / < C1.
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Models of Individual Growth in a Random
Environment: Study and Application of First
Passage Times

Clara Carlos, Carlos A. Braumann, and Patrı́cia A. Filipe

Abstract
We study the first-passage times for models of individual growth of animals in
randomly fluctuating environments. In particular, we present results on the mean
and variance of the first-passage time by a high threshold value (higher than the
initial size). The models considered are stochastic differential equations of the
form dY.t/ D ˇ .˛ � Y.t// dtC�dW.t/; Y.t0/ D y0, where Y.t/ D g.X.t// is
a transformed size, g being a strictly increasing C1 function of the actual animal
size X.t/ at time t , � measures the effect of random environmental fluctuations
on growth, W.t/ is the standard Wiener process, and y0 is the transformed size
(assumed known) at the initial instant t0. Results are illustrated using cattle
weight data, to which we have applied the Bertalanffy-Richards (g.x/ D xc)
and the Gompertz (g.x/ D lnx) stochastic models.

1 Introduction

In previous work [1,3,4], in order to study the extinction of populations growing in
random environments, we have obtained results about the first-passage time through
a low threshold (below the initial population). We will now study the first-passage
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time through a high threshold value (higher than the initial size) for somewhat
similar models, namely models of individual growth in random environments.

Let X.t/ be the size of an individual (animal or plant) at age t , for example,
weight, length, height, or volume. Many of the deterministic models proposed in
the literature for the growth of an individual animal from birth to maturity can be
written in the form

dY.t/ D ˇ.˛ � Y.t//dt; (1)

where Y.t/Dg.X.t// is a rescaled or modified size, with g a strictly increasing con-
tinuously differentiable function. We consider ˛Dg.A/, where A is the asymptotic
(maturity) size and ˇ describes how fast is the approach to this asymptotic value. We
will assume the initial sizeX.t0/Dx0 to be known and denote y0 D g.x0/ the initial
modified size. Two of the most commonly used models are the Gompertz model
and the Bertalanffy-Richards model, corresponding to g.x/D ln x and g.x/ D xc ,
c > 0, respectively.

In a randomly fluctuating environment, we propose (see [5–8]) as a general
model of individual growth stochastic differential equations (SDE) of the form

dY.t/ D ˇ.˛ � Y.t//dt C �dW.t/; (2)

with Y.t0/ D y0, where � is an environmental noise intensity parameter and W.t/
is a standard Wiener process.

In Sect. 2 we present the basic properties of these models.
In Sect. 3, we present explicit results on the mean and variance of first-passage

times for ergodic solutions of sufficiently regular autonomous SDE with a stationary
density. We have obtained these results by solving known differential equations (see
[10]) that are satisfied by the first-passage time non-centered moments, considering
two thresholds (high and low). To obtain the solution, we have applied some changes
of variable and other algebraic manipulations and then obtained the limit when a
threshold is approaching the lower (or higher) boundary of the state space. Our
expression for the variance is considerably simpler them the one presented by [12].
We then considered the particular case of our individual growth models.

In Sect. 4, we present an application of these results. We use data on the weight
of Mertolengo cattle of the rosilho strain (provided by Carlos J. Roquete) and
consider two models (the Bertalanffy-Richards and the Gompertz models), taking as
parameters the maximum likelihood estimates (see [5, 6, 8]) based on the available
data. Models of this type have also been used to describe tree growth (see [9]) and
fish growth (see [11]), for example. We characterize the time for an animal to reach
a given weight, for example, the weight at which the animal is sold to the meat
market, determining the mean and standard deviation of the time required for the
animal to reach such weight.

Section 5 presents the conclusions.
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2 Stochastic Differential Equations Growth Models

The solution of model (2) is a homogeneous diffusion process with drift coefficient

a.y/ D ˇ.˛ � y/ (3)

and diffusion coefficient
b2.y/ D �2: (4)

The drift coefficient represents the mean speed of growth described by Y.t/ and the
diffusion coefficient gives a measure of the local magnitude of the fluctuations.

Putting Z.t/D Y.t/eˇt , we can write dZ.t/D .dY.t/ C Y.t/ˇdt/eˇt D
˛ˇeˇtdt C �eˇt dW.t/. Integrating between t0 and t , we get Z.t/DZ.t0/ C
˛.eˇt � eˇt0/C �

R t
t0
eˇudW.u/, and, inverting the change of variableZ, we obtain

the explicit solution of Eq. (2):

Y.t/ D ˛ � .˛ � y0/e
�ˇ.t�t0/ C �e�ˇt

Z t

t0

eˇudW.u/: (5)

From here, we can see that Y.t/ is Gaussian with mean ˛ � .˛ � y0/e
�ˇ.t�t0/ and

variance �2

2ˇ
.1� e�2ˇ.t�t0//. Letting t ! C1, we see that the modified weight Y.t/

is asymptotically Gaussian with mean ˛ and variance �2

2ˇ
.

We shall need the scale and speed measures of Y.t/, which can be characterized
by their densities, defined in the interior of the state space. For any homogeneous
diffusion process with sufficiently regular drift a.y/ and diffusion b2.y/ coeffi-
cients, the scale density is defined up to a multiplicative constant by

s.y/ WD exp

�
�
Z y

y�

2a./

b2./
d

�
D c exp

�
�2ˇ˛
�2

y C ˇ

�2
y2
�
; (6)

where c is constant and y� is an arbitrary, but fixed point in the interior of the state
space and the speed density is defined by

m.y/ WD 1

s.y/b2.y/
D 1

�2s.y/
: (7)

The distribution functions of these measures are the scale and speed functions
defined by S.y/D R y

y�� s.v/dv andM.y/D R y
y�� m.v/dv;where y�� is an arbitrary

point in the interior of the state space.
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3 First-Passage Time

Let us consider thresholds q� and Q�, one low and one high, for the animal size
X.t/. We are interested in the time required for the animal to reach size q� and
Q� for the first time. Since X.t/ and Y.t/ are related by the strictly increasing
function g, this is the first-passage time of the modified size Y.t/ by q D g.q�/ and
Q D g.Q�/. Let us denote it by Tq and TQ, where

Tq D infft > 0 W Y.t/ D qg and TQ D infft > 0 W Y.t/ D Qg; (8)

and assume that �1 < q < y0 < Q < C1, with q and Q both in the interior
of the state space of Y . Let TqQ D minfTq; TQg be the first-passage time of Y.t/
through either of the thresholds q andQ. One can see in [10] that the probability of
Y.t/ to reach Q before reaching q is

u.y0/ D P ŒTQ < TqjY.0/ D y0� D
R y0
q
s.z/d z

R Q
q
s.z/d z

: (9)

The k-th order moment of the first-passage time of Y.t/ by q or Q is

M
.k/
qQ .y0/ D EŒ.TqQ/

kjY.0/ D y0� (10)

and satisfies the differential equation (see [10])

1

2
b2.y0/

d 2M
.k/
qQ .y0/

dy20
C a.y0/

dM
.k/
qQ .y0/

dy0
C kM

.k�1/
qQ .y0/ D 0; (11)

for q < y0 < Q, with M.k/
qQ .q/ D M

.k/
qQ .Q/ D 0 (k D 1; 2; : : :). The solution is

EŒ.TqQ/
kjY.0/ D y0� D 2

n
u.y0/

Z Q

y0

Z Q

�

s.�/d� k M
.k�1/
qQ .�/m.�/d�

C.1 � u.y0//
Z y0

q

Z �

q

s.�/d� kM
.k�1/
qQ .�/m.�/d�

o
: (12)

FromM
.0/
qQ.y0/ D 1; one can iteratively obtain the moments of any order of TqQ:

Since the process Y.t/ is ergodic, we can obtain EŒ.Tq/
kjY.0/Dy0� as the

limiting case of EŒ.TqQ/kjY.0/ D y0� when Q ! C1. One gets

M.k/
q .y0/ WD EŒ.Tq/

kjY.0/ D y0� D 2

Z y0

q

s.�/

Z C1

�

k M .k�1/
q ./m./dd�:

(13)
Using M.0/

q .y0/ D 1 and expression (13) with k D 1, one obtains the mean time
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M.1/
q .y0/ D EŒTqjY.0/ D y0� D 2

Z y0

q

s.�/

Z C1

�

m./dd�

D
Z �

q

2s.�/.M.C1/�M.�//d�: (14)

Using Eq. (13) with k D 2, one gets

M.2/
q .y0/ D 2

Z y0

q

s.�/

Z C1

�

2M .1/
q ./m./dd� D H1 CH2; (15)

with

H1 D 2

Z y0

q

s.�/

Z C1

�

2
�
M.1/
q ./ �M.1/

q .�/

m./dd�; (16)

H2 D 2

Z y0

q
2s.�/M

.1/
q .�/

Z C1

�
m./dd� D 2

Z y0

q
2s.�/M

.1/
q .�/ .M.C1/�M.�// d�:

(17)
Using Eq. (14) andM.1/

q .q/ D 0, one obtains

H2 D
Z y0

q

2M .1/
q .�/

dM
.1/
q .�/

d�
d� D

�
M.1/
q .y0/

2
: (18)

So, from Eqs. (15) and (18), one gets VarŒTq jY.0/ D y0� D M
.2/
q .y0/ �

�
M

.1/
q .y0/

2 DH1. Using Eqs. (14) and (16), it results

VarŒTq jY.0/Dy0�D 2

Z y0

q

2s.�/

Z C1

�

2

Z 

�

s.�/.M.C1/�M.�//d�m./dd�:
(19)

Exchanging the order of integration between � and  , the variance becomes
2
R y0
q
2s.�/

RC1
�

2s.�/.M.C1/ �M.�// R C1
�

m./dd�d�, which simplifies to

VarŒTq jY.0/ D y0� D 8

Z y0

q

s.�/

Z C1

�

s.�/

�Z C1

�

m./d

�2
d�d�: (20)

Similarly, making q ! �1, we obtain the k-th order moments of the first-
passage time of Y.t/ by Q:

M
.k/
Q .y0/ WD EŒ.TQ/

kjY.0/ D y0� D 2

Z Q

y0

s.�/

Z �

�1
kM

.k�1/
Q ./m./dd�:

(21)
Adapting the reasoning above for q, one obtains for the mean and variance of TQ:
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Table 1 Maximum likelihood estimates and asymptotic half-width of 95 % confidence intervals
for the parameters A; ˇ, and � using data from 97 Mertolengo cows

A ˇ �

Gompertz 411:2˙ 8:1 1:676˙ 0:056 0:302˙ 0:009
Bertalanffy-Richards (c=1/3) 425:7˙ 9:5 1:181˙ 0:056 0:597˙ 0:019

EŒTQjY.0/ D y0� D 2

Z Q

y0

s.�/

Z �

�1
m./dd�; (22)

VarŒTQjY.0/ D y0� D 8

Z Q

y0

s.�/

Z �

�1
s.�/

� Z �

�1
m./d

2
d�d�: (23)

The expressions obtained above are valid for sufficiently regular homogeneous
ergodic diffusion processes with drift coefficient a.y/ and diffusion coefficient
b2.y/. For the particular case of our models (2), using Eqs. (3) and (4), we obtain,
making the change of variables y D p

2ˇ. � ˛/=� and z D p
2ˇ.� � ˛/=� and

denoting by ˚ and � the distribution function and the probability density function
of a standard normal random variable,

EŒTQjY.0/ D y0� D 1

ˇ

Z p

2ˇ
� .Q�˛/

p

2ˇ
� .y0�˛/

˚.z/

�.z/
d z; (24)

VarŒTQjY.0/ D y0� D 2

ˇ2

Z p

2ˇ
� .Q�˛/

p

2ˇ
� .y0�˛/

1

�.z/

Z z

�1
˚2.y/

�.y/
dyd z: (25)

Notice that TQ is both the time required for the modified weight Y.t/ to reach Q
and the time required for the actual weight X.t/ to reach the Q� D g�1.Q/.

4 Application

The data we have used for illustration was taken from cattle, namely Mertolengo
cattle breed, and was collected by C. J Roquete. This cattle breed is considered
by many as the Portuguese breed with higher progression in terms of population
increment and market potential. These data come from animals raised in “Herdade
da Abóboda” in Serpa region at the left margin of the Guadiana river. The
animals were raised in pasture, together with their mothers during nursing, and
later supplemented witch silage when pasture was in shortage (from August till
January). In [2], we have applied the maximum likelihood estimation method for
the parameters of model (2) to the weights (in kg) of 97Mertolengo cows at several
ages, for which we have a total of 2,129 observations. The results are shown in
Table 1.
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Fig. 1 Gompertz model: expected value and standard deviation of the time, in years, required for
a Mertolengo cow to reach 390:6Kg (95% of the average asymptotic size) for the first time as a
function of the initial weight X.t0/. We have used as parameters the estimates presented in Table 1

For example, using the Kg as weight unit, let us consider the case of a Mertolengo
cow with weight at birth X.0/D 40 and assume we want to determine the time
required for the animal to reach 95% of the asymptotic weight. Assuming the
cow grows according to a Gompertz model with AD 411:2, ˇD 1:676 per year,
and �2 D .0:302/2 per year, we have Q�D 390:6; QD ln 390:6, y0 D ln 40, and
˛D ln 411:2. We have obtained 1:75 years for the mean time to reach the desired
threshold and 0:54 years for the standard deviation of that time. If we assume that
the cow grows according to a Bertalanffy-Richards (with cD 1=3) model with
AD 425:7, ˇD 1:181 per year, and �2 D .0:597/2 per year, we have Q�D 404:4,
QD 3

p
404:4, y0 D 3

p
40, and ˛D 3

p
425:7, and the mean time to reach the desired

threshold is 2:22 years, the standard deviation of that time being 0:53 years. If we
have instead a non-newborn cow having now a weight X.0/D200 and want to
determine the time required for the animal to reach the asymptotic size under the
same Bertalanffy-Richards model, we haveQ�D 425:7; QD 3

p
425:7, y0 D 3

p
200,

and ˛D 3
p
425:7, obtaining for the mean and standard deviation of the time to reach

the desired threshold 1:80 years and 0:65 years, respectively.
Using the maximum likelihood estimates of the parameters given in Table 1,

we show in Figs. 1 and 2, for both Gompertz and Bertalanffy-Richards models, the
mean and standard deviation of the time required for a Mertolengo cow to reach for
the first time 95% of the asymptotic weight as a function of the initial weightX.t0/.

5 Conclusions

We have determined explicit expressions for the mean and variance of the first-
passage times in models describing individual growth in a randomly varying
environment. These results can be very important from the economic point of view,
since they can be used to study the time it takes for an animal to achieve a certain
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Fig. 2 Bertalanffy-Richards model: Expected value and standard deviation of the time, in years,
required for a Mertolengo cow to reach 404:4Kg (95% of the average asymptotic size) for the first
time as a function of the initial weight X.t0/. We have used as parameters the estimates presented
in Table 1

weight of interest, for instance, a weight appropriate to sell the animal for the meat
market.
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a Ciência e Tecnologia). This work was partially financed by FCT within the research project
PTDC/MAT/64297/2006.

References

1. Braumann, C.A.: Growth and extinction of populations in randomly varying environments.
Comput. Math. Appl. 56, 631–644 (2008)

2. Braumann, C.A., Filipe, P.A., Carlos C., Roquete, C.J.: Growth of individuals in randomly
fluctuating environments. In: Vigo-Aguiar, J., Alonso, P., Oharu, S., Venturino, E., Wade, B.
(eds.) Proceedings of the International Conference in Computational and Mathematical
Methods in Science e Engineering, pp. 201–212. Gijon (2009)

3. Carlos, C., Braumann, C.A.: Tempos de extinção para populações em ambiente aleatório. In:
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(2008)

9. Garcia, O.: A stochastic differential equation model for the height of forest stands. Biometrics
39, 1059–1072 (1983)

10. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic, New York
(1981)

11. Qiming, Lv., Pitchford, J.: Stochastic Von Bertalanffy models, with applications to fish
recruitment. J. Theor. Biol. 244, 640–655 (2007)

12. Thomas, M.U.: Some mean first-passage time approximations for the Ornstein-Uhlenbeck
process. J. Appl. Prob. 12, 600–604 (1975)



Generalized Linear Mixed Effects Model
in the Analysis of Longitudinal Discrete Data

Eunice Carrasquinha, M. Helena Gonçalves, and M. Salomé Cabral

Abstract
In many cancer studies and clinical research, repeated observations of response
variables are taken over time for each subject in one or more treatment groups.
Such research is commonly referred to longitudinal studies and the repeated
observations of each vector response are likely to be correlated. The autocor-
relation structure for the repeated data plays a significant role in the analysis of
such data. The generalized linear mixed effects model (GLMM) is one of the
approaches used to analyze discrete longitudinal data, where the use of random
effects in the linear predictor accounts for the within-subject association. The
goal of this chapter is to introduce this model in the analysis of longitudinal
discrete data, taking into account the theoretical and computational difficulties
as well as the problems related to parameters interpretation. The methodology
is illustrated by analyzing data sets containing longitudinal measures of number
of tumors in an experiment of carcinogenesis to study the influence of lipids
in the development of breast cancer. The library lme4 [Bates, D., Maechler,
M., Bolker, B.: lme4: Linear mixed-effects models using S4 classes. R package
version 0.999375-39. http://CRAN.R-project.org/package=lme4 (2011)] in R
software is used.
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1 Introduction

The generalized linear mixed effects model [2], usually denoted by GLMM, is an
extension of the generalized linear model (GLM) that allows additional components
of variability due to unobserved effects. The basic premise underlying GLMM
for longitudinal data is the assumption of heterogeneity across individuals in the
study population in a subset of the regression coefficients from the GLM. That
is, a subset of the regression coefficients is assumed to vary across individuals
according to some distribution [7]. The GLMMs are GLMs that permit both fixed
and random effects in the linear predictor rather than only fixed effects. The use of
random effects in the linear predictor accounts for the within-subject association.
The correlation among the repeated observations on an individual can be thought of
as arising from sharing a set of underlying random effects bi . The basic premise of
the GLMMs is to describe the change in the mean response of each individual. As a
result, the goal of these models is to make inferences about individuals rather than
the study population [7]. The nonlinear link function and the presence of random
effects lead to problems related to the interpretation of the regression coefficients
as well as computational ones. In this chapter the methodology of the GLMMs
is introduced, focused either on theoretical and computational aspects, and it is
illustrated by analyzing discrete longitudinal data for the count of the number of
tumors, from an experiment of carcinogenesis to study the influence of lipids in the
development of breast cancer. The library lme4 in R software is used [1].

2 Generalized Linear Mixed Effects Model

2.1 Model Structure

Let yit be the response value at time t .t D 1; : : : ;Ti / for subject i .i D 1; : : : ; n/
and Yit its generating random variable. Associated to each observation time and each
subject, a set of p covariates is available, denoted by xit and ˇ as the p � 1 vector
of unknown parameters. Let zit be a .q � 1/ vector of covariates (in general a subset
of xit) associate to a q � 1 vector of random effects bi . The equation of the GLMM
assumes the form

gfE.Yitjbi /g D xTit ˇ C zTit bi ; (1)

where conditional on bi Yi1; : : : ;YiTi are mutually independent and their distribution
comes from an exponential family with density function f .yitjbi / D expŒ !it

�
.yitit �

c.it//Cd.yit; �/�. The conditional mean value and variance are given, respectively,
byE.Yitjbi /D�bit D c0.it/ and Var.Yitjbi / D �bit D c00.it/

�

!it
, and satisfy g.�bit/ D

xTit ˇ C zTit bi and �bit D V.�bit/
�

!it
, where g and V are known as link and variance

functions, respectively, � is a dispersion or scale parameter, and !it are known
constants. The random effects are mutually independent with bi � N.0;D/.
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2.2 Consequences of Having Random Effects

Since the model specification in Eq. (1) is conditional on the value of bi we now
derive aspects of the marginal distribution of Yit related with the mean value,E.Yit/,
and correlation between Yit and Yit0 (t and t 0 two distinct time points to subject i )
[9]. As for the mean value, E.Yit/ is given by

E.Yit/ D EŒE.Yitjbi /� D EŒg�1.xTit ˇ C zTit bi /�I
this, in general, cannot be simplified due to the nonlinear function g�1.�/. A direct
relation between the marginal and GLMM parameters only exists in some spe-
cial cases [10]. Assuming conditional independence of the elements of Yi D
.Yi1; : : : ; YiTi/

T , we have ([9], Sect. 8.3)

Cov.Yit; Yit0/ D Cov.EŒYitjbi �; EŒYit0 jbi �/C EŒCov.Yit; Yit0 jbi /�
D Cov.�biit ; �

bi
it0/C EŒ0�

D CovŒg�1.xTit ˇ C zTit bi /; g�1.xTit0ˇ C zTit0 bi /�:

Another aspect to take into account is the interpretation of the regression
parameters, ˇ, in the GLMM. In this case we must have in mind that the insertion
of the random terms alters the meaning of the ˇ’s with respect to their meaning
in a model with fixed effects only, as the marginal model. The covariates and
random effects determine the person-specific or conditional mean and the regression
parameters ˇ can therefore be interpreted as subject-specific or conditional effects
of covariates xit given the random effect bi . Conditional effects express comparisons
holding the subject-specific random effects (and covariates) constant. For this
reason, the components of the fixed effects, ˇ, are often referred to as subject-
specific regression coefficients. A way of interpreting estimated standard deviations
of the random effects is to produce percentiles of the effects based on the normality
assumption and plotting the �bit for given covariates values [8].

2.3 Likelihood Inference and Approaches to Estimation

For the n individuals the likelihood is given by

LR.ˇ; �;D/ D
nY

iD1

Z TiY

tD1
fyitjbi .yitjbi ;ˇ; �/fbi .bi jD/dbi ; (2)

where LR.ˇ; �;D/ indicates the likelihood for the random-effects model. As bi �
N.0;D/, the log-likelihood for the whole sample is given by

lR.ˇ; �;D/ D 1

.2�/q=2

nX

iD1
log

Z
LFi .ˇ; �jD/jDj�1=2 � exp.�1

2
bTi D�1bi /dbi ;

(3)
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where LFi .ˇ; �;D/ indicates the likelihood for the fixed effects model. The key
problem in the maximization of Eq. (3) is the presence of n integrals over the
q-dimensional random effects bi , which, in general, does not have an analytic
solution and so likelihood inference requires numerical evaluation.

The computational approach has also several limitations due to the complexity of
the integrals. The numerical approximations can be subdivided in three categories.
We remark those that are based on the approximation of data and those that are
based on the approximation of the integral itself [10].

Those that are based on the approximation of data share the same idea, the
decomposition of the data into the mean, and an appropriate error term, with a Taylor
series expansion of the mean that is a nonlinear function of the linear predictor.
Two of these methods are the method of penalized quasi-likelihood (PQL) and the
method of marginal quasi-likelihood (MQL). The essential difference between PQL
and MQL is that the later does not incorporate the random effects bi in the linear
predictor. The methods based on the approximation of the integral
itself, i.e., numerical integration, proof to be the more appropriate. In the context
of random-effects models, so-called adaptive quadrature rules can be used. In
these methods the numerical integration is centered around empirical Bayes (EB)
estimates of random effects, and the number of quadrature points (Q) is then
selected in terms of desired accuracy. In fitting GLMMs the adaptive Gaussian
quadrature is very powerful. In general, the higher the order Q, the better the
approximation will be of the n integrals in the likelihood. Convergence problems
are present when q is high dimensional. We refer to [10] for more details. As
the maximum likelihood (ML) method was used to fit GLMM, inferences for the
parameters are obtained from classical maximum likelihood theory. The Wald test
is used to test the value of a fixed parameter or of a linear combination of fixed
parameters. To compare nested models with the same random effects the likelihood
ratio test is used. When the interest is testing for the presence of random effects
themselves the null hypothesis is on the boundary of the parameter space and
standard asymptotic results on the null distribution on the likelihood ratio test do
not hold. Taking into account [11], the null distribution is a mixture of chi-squared
distributions.

3 An Illustrative Example

3.1 Data and Models

To illustrate the method, we use data from a study of the influence of lipids on
the development of cancer in which fifty-seven 22-day-old virgin female Sprague-
Dawley rats were housed four per cage and maintained in an environmentally
controlled room at 24 ˙ 1C, 50% humidity in a 12 h light/12 h dark cycle. Upon
arrival, the rats were fed ad libitum one of two different semisynthetic diets, either
low-fat .N3/, n D 38, or high-fat .HL20/, n D 19. At 53 days of age, animals were
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each given a single dose of 5 mg of carcinogen (7,12-dimethylbenz (˛) anthracene;
DMB, Sigma) per rat, administered in corn oil by means of a gastric gavage. One
day post-administration of the carcinogen, 19 animals from the low-fat-diet group
were fed this same diet for the whole study (Diet 1/group 1), 19 animals from the
high-fat-diet group were fed this diet (Diet 2/group 2), and the remaining nineteen
animals, initially fed on a low-fat-diet, were permanently transferred to the high-
fat-diet (Diet 3/group 3) [4, 5]. The rats were examined and palpated for mammary
tumors once per week during 25 weeks. When a tumor was first detected, the
date and tumors location were recorded. At the end of the study, 201 days after
carcinogen administration, the rats were decapitated. At necropsy, tumors were
rapidly removed, measured, rinsed in normal saline, and divided for histopathology.
Only confirmed mammary adenocarcinomas were reported in the results. The data
analyzed in this chapter are the number of tumors. Each group is designed by the
respective diet: Diet 1 (low-fat/low-fat-diet); Diet 2 (high-fat/high-fat-diet); Diet 3
(low-fat/high-fat-diet). Following the methodology presented in the chapter, four
models were considered to analyze the data:
(i) Model I

logŒE.Yitjbi /� D .ˇ0 C b0i /C ˇ1.Time � 1/C ˇ2.Time � 1/2

C ˇ3Diet1 C ˇ4Diet3;

(ii) Model II

logŒE.Yitjbi /� D .ˇ0 C b0i /C ˇ1.Time � 1/C ˇ2.Time � 1/2
C ˇ3Diet1 C ˇ4Diet3 C ˇ5..Time � 1/ � Diet1/

C ˇ6..Time � 1/ � Diet3/C ˇ7..Time � 1/2 � Diet1/

C ˇ8..Time � 1/2 � Diet3/;

(iii) Model III

logŒE.Yitjbi /� D .ˇ0 C b0i /C ˇ1.Time � 1/C ˇ2Diet1 C ˇ3Diet3;

(iv) Model IV

logŒE.Yitjbi /� D .ˇ0 C b0i /C ˇ1.Time � 1/C ˇ2Diet1 C ˇ3Diet3

C ˇ4..Time � 1/ � Diet1/C ˇ5..Time � 1/ � Diet3/;

where Yit is a random variable, which has a Poisson distribution, that gives the
number of tumors of subject i at time t ; Diet1 is a binary variable taking the value
1 if the i th rat receives Diet 1; Diet3 is a binary variable for Diet 3; and Diet2 is
the reference diet in the models. The variable time was centered at 1 to allow that
the comparison among diets was made in the intercept, 1 week after administration
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Table 1 Log-likelihood, reduction in deviance and p-value between
the models considered

Model LogL � D p-value

I �348.20
II �341.78 12.84 0.01206
III �389.67
IV �388.8 1.7297 0.4211
IV �388.8
II �341.78 94.048 ' 0
III �389.67
II �341.78 95.778 ' 0

Table 2 Parameter estimates, standard errors, Wald test, and p-value for Model II

Parameter Estimate SE W -test p-value

ˇ0 �3.501465 0.558922 �6.255 3.74e�10
ˇ1 0.290707 0.040942 7.101 1.24e�12
ˇ2 �0.005288 0.001300 �4.068 4.75e�05
ˇ3 �4.630175 1.176438 �3.936 8.29e�05
ˇ4 �2.106021 0.843074 �2.498 0.01249
ˇ5 0.341514 0.116943 2.920 0.00350
ˇ6 0.140857 0.065469 2.152 0.03144
ˇ7 �0.009707 0.003464 �2.802 0.00507
ˇ8 �0.004093 0.002030 �2.016 0.04381
d11 3.9844

of the carcinogen. In all models the vector bi consists only of a random intercept,
b0i � N.0; d11/.

3.2 Results and Discussion

The analysis was performed using the glmer function of the lme4 library [1].
A brief study was carried out to know the order Q to evaluate the adaptive
Gauss-Hermite approximation to the log-likelihood and QD 25 was chosen [3].
Based on the results of Table 1, Model II was selected and the results of this fit are
given in Table 2.

The residual analysis of Model II (Fig. 1) consisted of the identification of
outliers and the half-normal plot [6] was used.
The numbers 576 and 1,310, that appear in Fig. 1, are observations corresponding to
rat 53 (Diet 3). Model II was fitted again to the data without rat 53 and no alteration
was reported in the parameters estimates, standard errors, Wald test’s values, or
p-values.

The ML estimates of the regression parameters given in Table 2 provide evidence,
at the level of significance 5%, that the subject-specific number of tumors increase



GLMM in the Analysis of Longitudinal Discrete Data 119

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Half−normal quantiles

S
or

te
d 

D
at

a

576
1310

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 1 Half-normal plot of Pearson residuals to Model II
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Fig. 2 Estimated conditional expected trajectories for a rat at 25th percentile, a “typical” rat, and
at 75th percentile

over the 25 weeks of the experiment and depend on the diet. Figure 2 displays
the plots of the estimate conditional expected trajectories for three hypothetical
rats, one from each diet, at different percentiles. The 25th and 75th percentiles of
the random effect (b0i � N.0; d11/) correspond to a predicted random effect of
b0i.0:25/ D �0:67449p3:9844 D �1:34635 and b0i.0:75/ D 0:67449

p
3:9844 D

1:34635, respectively. A “typical” rat is a rat with unobserved random effect b0i D 0

(the mean and median of the distribution of b0i ). In all cases the rats in Diet 1 reveal
lower time evolution of the expected number of tumors. Note that, in all the three
diets, the rats at the 25th percentile do not developed tumors until the end of the
experiment. To illustrate how the model fitted the data, Fig. 3 gives the individual
mean profiles for two rats in each one of the diets as well as the observed data. The
rats were chosen to provide different profiles in the same diet.
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Risk Assessment on Campylobacter in Broiler
Meat at Slaughter Level in Portugal

Marta Castel-Branco, Marı́lia Antunes, Patrı́cia Inácio,
and Miguel Cardo

Abstract
A logistic regression model is used to assess the association between Campy-
lobacter contamination in broiler meat at the slaughter level and general
operating and hygienic aspects of the slaughterhouses and characteristics of the
batches. Campylobacter was found in 62:6% of the carcasses. The presence
of Campylobacter in the caeca (RRD 1:47), the presence of hepatitis or
perihepatitis (RRD 1:71), and conspurcation of carcasses with faeces during
slaughter (RRD 1:59) increase the risk of Campylobacter contamination. The
relative risk of contamination associated to the slaughterhouse location and
capacity vary from 0.95 to 3.14, depending on the combination of the two
characteristics.

1 Introduction

Campylobacteriosis is a zoonosis caused by thermophilic Campylobacter spp. and
is referred as an important public health problem in most areas of the world [5].
According to the European Community summary report of zoonoses and zoonotic
agents published in 2010, Campylobacter is one of the most commonly reported
gastrointestinal bacterial pathogen in humans in the EU, with 190,566 reported
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confirmed human campylobacteriosis cases in 2008 (40.7 cases per 100,000 pop.)
[7]. Humans can be infected by direct contact with contaminated animals or animal
carcasses or indirectly through the ingestion of contaminated food or drinking water
[5]. Most case-control studies have identified poultry meat as an important risk
factor for human campylobacteriosis [1, 4, 7].

Broilers are commonly colonized by Campylobacter spp., being symptomless
intestinal carriers of the organism. Studies in Europe indicate flock prevalence
ranging from 18% to over 90%, with northern countries showing a lower proportion
of positive flocks [1, 6]. Poultry meat becomes contaminated with Campylobacter
during slaughter by faecal material from Campylobacter colonized broilers. These
birds usually have high numbers of Campylobacter in the intestine, and also
harbour Campylobacter spp. on the outer surface due to spread of faecal material
during rearing and transport. The hygienic standards during processing influence the
numbers of Campylobacter found on the final chicken meat product and thereby the
human exposure to Campylobacter spp. through poultry meat [5].

2 Materials and Methods

2.1 Sampling Design

For the purpose of estimating the prevalence of Campylobacter in poultry carcasses
and to investigate the risk factors associated with the contamination at slaughter
level, it was decided to analyse carcasses for Campylobacter presence, collected
at the slaughterhouses. The number of carcasses to be sampled was calculated
considering a prevalence of Campylobacter equal to 50%, a confidence level of
95% and a precision of 0:05. Assuming that the population is infinite, the number
of samples to be collected was 384, increased by 10% to prevent problems arising
from nonresponse. This resulted in a sample size of 422.

Analysed data come from a monitoring programme on Salmonella and Campy-
lobacter in broiler meat carried out, in 2008, by the European Commission,
advised by the European Food Safety Authority (EFSA). The sampling plan of
the programme is based on a multistage design. The first stage represents the
slaughterhouses and, for practical reasons, the largest slaughterhouses were selected
for sampling until their combined slaughter capacity covers at least 80 % of the
annual kill in the country. EFSA justifies the “80 % approach” with the argument
that it “provides a reasonable indication of the exposure to these hazards on a
population risk basis” [6]. Accordingly, the 35 existing Portuguese slaughterhouses
were ranked by decreasing slaughter capacity and the 15 top ones, responsible for
81 % of the previous year’s slaughter, were selected.

The second stage corresponds to the number of carcasses to be sampled
from each slaughterhouse. The allocation of the number of samples between the
selected slaughterhouses was made proportionally to the number of broiler chickens
processed annually, with the programme requiring sampling to be distributed evenly
over a 12 month period to allow for observation of any variation in risk during
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the year. In Portugal, due to implementation difficulties, the Portuguese Veterinary
Authority decided that sampling would take place only from June to December
(excluding August), with one-fifth of the total sample being collected per month
[3]. For each selected slaughterhouse, the day (or days) of the month, the batch,
carcass and caeca to be sampled were selected randomly [6].

2.2 The Data

The 422 collected carcasses and caeca (both from the same batch but different
birds) correspond to 422 different batches. Data refer to characteristics of the
slaughterhouses, hygienic and health conditions of the batches and Campylobacter
presence in caeca (reflecting the prevalence of Campylobacter in the poultry farms)
and in carcasses (the outcome variable). Test positiveness of the carcass reflects the
contamination at the slaughter level, since the test positiveness of the caeca does not
necessarily imply that the meat is contaminated. A batch is considered positive if
the sampled carcass tested positive. The 12 risk factors evaluated in this study are
described in Table 1. They concern the characteristics of the slaughterhouse and of
the batch and reasons for post-mortem condemnation in the batch.

2.3 Statistical Analysis

We applied a logistic regression model for the probability of Campylobacter
positiveness of a carcass (and hence of the corresponding batch). A three-stage
procedure was used to assess the relationship between the explanatory variables
and the Campylobacter status of the carcass, according to the method described by
Hosmer and Lemeshow [8]. In the first stage, a univariable analysis was performed
to relate Campylobacter contamination of the carcass to each explanatory variable.
Only factors for which Wald test p-value was smaller than 0.25 were considered as
candidates to a multivariable model. The second stage involved a logistic multiple
regression model with the contribution of each factor being tested using a likelihood-
ratio �2 test through a stepwise procedure. In the third stage, the model containing
the selected variables from the stepwise procedure was compared with the models
containing the same principal effects plus each of the possible interactions, again
using likelihood-ratio test.

Pearson and deviance residuals were used to detect possible outliers. Goodness
of fit of the final model was assessed using Pearson �2 and deviance statistics.
The influence of the batches with a particular covariate pattern in Pearson’s �2

and in deviance statistics was evaluated using �X2
j and �Dj , respectively [8].

Covariate patterns showing �X2
j or �Dj above �20:95.1/ D 3:84 are considered

to be influential, since the difference in the goodness-of-fit statistics caused by their
exclusion from the model building is statistically significant. Cook’s distance was
used to evaluate the influence of each case in the model. Observations presenting
values above 1.0 were considered to have a significant effect on the estimated
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Table 1 Summary of potential risk factors available for analysis

Categorical
Description Value

Number %
% Camp.Cavariable of batches of batches

lvt Slaughterhouse in LVTb

region
Yes 267 63.3 94.2

No 155 36.7 44.2
caphcat Slaughter capacity (/hour) � 7,000 174 41.2 71.3

<7,000 248 58.8 56.5
eviscmec Mechanical evisceration Yes 350 82.9 63.4

No 72 17.1 58.3
chillier Type of carcass chillier Air 290 68.7 60.7

AirCspray 132 31.3 66.7
hom Homogeneity of the batch Yes 337 79.9 61.1

No 85 20.1 68.2
crop Full crop Yes 17 4.0 76.5

No 397 84.1 61.4
Missing 8 1.9 –

dirt Dirty feathers Yes 55 13.0 89.1
No 360 85.3 57.8
Missing 7 1.7 –

consp Conspurcation with faeces
during slaughter

Yes 25 5.9 96.0

No 397 94.1 60.5
campycaeca Presence of Campylobac-

ter in the caeca
Yes 351 83.2 67.8

No 71 16.8 36.6
h.ph Presence of hepatitis or

perihepatitis
Yes 65 15.4 98.5

No 357 84.6 56.0
fpl Presence of fibrinopuru-

lent lesions
Yes 33 7.8 90.9

No 389 92.2 60.2
peric Presence of pericarditis Yes 41 9.7 95.1

No 381 90.3 59.0
a Campylobacter-positive (contaminated) batches for each level of the categorical variables
b LVT: Lisbon and Tagus Valley (Greater Lisbon, Setúbal Peninsula, Middle Tagus, and Lezı́ria

West Coast). All other slaughterhouses in this study are located in the north or centre regions

coefficients [8]. Sensitivity, specificity and discriminating ability of the model were
evaluated through a ROC curve. For classification purposes, a cutpoint was chosen
such that both sensitivity and specificity were maximized. The predictive ability
of the model, considering the referred cutpoint, was assessed using leave-one-out
cross-validation [9].

Odds ratio (ORD .p1=.1�p1//=.p0=.1�p0//, p1 andp0 being the probability of
Campylobacter positiveness in the exposed and the unexposed group, respectively),
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is useful to evaluate the strength of the association between each risk factor and the
outcome. OR describes the ratio of the odds of Campylobacter positiveness in the
exposed group .p1=.1 � p1// and the odds in the unexposed group .p0=.1 � p0//,
being interpreted as a multiplicative factor of the risk of positiveness when exposed.
However, it is well known that ORs always overestimate the strengths of relative risk
(RRD p1=p0), especially when the outcome is not considered rare [2]. According
to Beaudeau and Fourichon [2], the estimates of OR and RR ( OOR and ORR) relate
through

n1: ORR2 C
h
n0: � n:1.1 � OOR/ � n1: OOR

i ORR � n0: OOR D 0;

which is a second-degree equation on ORR, where n1: and n0: are the number of
exposed and not exposed to the risk factor, respectively, and n:0 is the number of
Campylobacter positive. The above equation allows to estimate the RR from the
OR estimates issued from logistic regression.

3 Results

Data were available for 422 batches. The total number of Campylobacter spp.
positive batches (carcasses) was 264 (62.6 %; CI95%: 57.9 %, 67.2 %). Crude
descriptive statistics for the explanatory variables can be found in Table 1. The final
multivariable model, presented in Table 2, included five significant (p-value<0.05)
main-effects (lvt, campycaeca, caphcat, consp and h.ph) and one interaction
(lvt�caphcat). Because all the explanatory variables are categorical, data resumed
to 17 covariate patterns (Table 3).
Deviance residuals for the individual observations are shown in the first graph in
Fig. 1, with the covariate pattern label indicated for the cases presenting values
outside the interval .�2; 2/. The number of individual observations laying outside
.�2; 2/ is equal to 4, 3, 1 and 1 for covariate patterns 3, 9, 15 and 16, respectively.
Except for the case from covariate pattern 16, all the cases correspond to Campy-
lobacter spp. negative batches that belong to covariate patterns with large number of
positive cases and high estimated probability of positiveness. Values from Pearson
�2 (�2 D 15:27; df D 10; p-value D0:122) and deviance (DD 12:01; df D 10,
p-valueD 0:284) statistics calculated for the covariate patterns indicate that the
fitted model is adequate.

The observation from covariate pattern 16 (case 127) is a particular case which
deserves some attention. Although it is considered influential and it has a large
residual, we decided not to exclude this case from the analysis. It corresponds to
the only batch in the study (batch 127) for which hepatitis or perihepatitis was
found (h.phDYes) and Campylobacter tested negative (campycarDNo) and hence,
to exclude this observation raises a quasi-separability problem with implications
in the convergence of the estimation procedure, making the inclusion of h.ph in
the model not viable. Moreover, because h.ph is considered biologically relevant
and because it is a plausible occurrence, we decided to keep this observation in the
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Table 2 Risk factors for Campylobacter-positive batches from a multivariable generalized linear
model (logistic regression)a

Variable Description Ǒ OSE. Ǒ/ p-value 95 % CI

lvt Slaughterhouse in LVT region 3.65 0.4966 0.000 2.68,4.62
consp Conspurcation with faeces 2.72 1.0712 0.011 0.62,4.82
h.ph Hepatitis or perihepatitis 3.05 1.0418 0.003 1.01,5.09
campycaeca Campylobacter in the caeca 0.87 0.3354 0.010 0.21,1.53
caphcat Slaughter capacity � 7; 000/hour 0.76 0.2918 0.009 0.19,1.33
lvt�caphcat LVT� slaughter capacity �1:64 0.7699 0.033 �3:15,�0:13
a Intercept D �1:60, model deviance D 355:73, null deviance D 558:10; d.f. D 7 (p-value<
0:001), AICD 369:73

Table 3 Covariate patternsa

id
campy-

consp h.ph lvt
caphcat caphacat Nr. Campy- Number of Estimated

caeca � 7000 �lvt lobacter C batches probabilityb

1 0 0 0 0 1 0 7 23 0.3031
2 0 0 0 0 0 0 7 32 0.1686
3 1 0 0 1 0 0 82 86 0.9488
4 1 0 0 0 0 0 36 113 0.3261
5 1 0 0 0 1 0 29 58 0.5093
6 1 0 1 1 1 1 24 24 0.9939
7 1 1 0 0 1 0 12 12 0.9404
8 1 1 1 0 1 0 11 11 0.9970
9 1 0 0 1 1 1 18 21 0.8853
10 1 0 1 0 1 0 15 15 0.9562
11 1 0 1 1 0 0 11 11 0.9974
12 0 1 0 0 0 0 0 1 0.7551
13 0 0 1 1 1 1 2 2 0.9855
14 0 0 0 1 1 1 5 6 0.7639
15 0 0 0 1 0 0 4 5 0.8860
16 0 0 1 0 1 0 0 1 0.9014
17 0 1 1 0 1 0 1 1 0.9929
a 0:No; 1:Yes
b Estimated probability of Campylobacter spp. positiveness for each covariate pattern

study. The other influential observation (batch 33, covariate pattern 12) did not show
a particularly large residual.

The ROC curve, showing the model sensitivity .70:1%/ and specificity .93:7%/
for a cutpoint of 0:7635, as well as the overall ability of the model to discriminate
between negative and positive batches (AUC D 0.859), is displayed in Fig. 2.
Considering the referred cutpoint, the accuracy of the classification rule (positive
if fitted value>0.7635) is 78.93 %. This value was confirmed by the leave-one-out
cross-validation procedure, which led to an estimate of 78.91 % for the accuracy.



Risk Assessment on Campylobacter in Broiler Meat at Slaughter Level in Portugal 127

0 100 200 300 400

−4

−2

0

2

4

Index

D
ev

ia
nc

e 
re

si
du

al
s

9
163

3

9
3

15
9

3

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Index

C
oo

k’
s 

di
st

an
ce

33
127

12
16

Fig. 1 Deviance residuals for the individual observations, with the covariate pattern label for the
cases with values outside .�2; 2/ interval; Cook’s distance, with observation label on the left side
and covariate pattern label on the right side of the dots above 1.0 threshold
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Fig. 2 ROC curve

4 Discussion

In this study 62:6% of the analysed broiler carcasses were contaminated with
Campylobacter spp. Because carrier flocks introduce large numbers of Campy-
lobacter into the processing plant, equipment and surfaces, process water and
the hands of operatives readily become contaminated. During defeathering and
evisceration, an increase in contamination usually occurs as a consequence of
expulsion of faecal matter or viscera rupture. Cross-contamination between birds
within a flock and between Campylobacter-positive and negative flocks is inevitable
[4, 5]. These aspects are reflected in the values of the relative risk associated
to the variables campyceco (RRD 1:47) and consp (RRD 1:59). The presence
of Campylobacter in the caeca and conspurcation of the carcasses with faeces
increase the probability of positiveness of the batch in 47% and 59%, respectively.
The existence of hepatitis or perihepatitis increase the probability of positiveness in
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Table 4 Odds ratio and relative risk estimates from output of logistic regression

Variable % Camp.Ca OOR 95% CI(OR) ORR
b

95 % CI(RR)

campycaeca Yes 67.8 2.39 1.24,4.61 1.47 1.09,2.13
No 36.6 1 – 1 –

consp Yes 96.0 15.18 1.86,124.13 1.59 1.22,1.65
No 60.5 1 – 1 –

h.ph Yes 98.5 21.12 2.73,161.99 1.71 1.35,1.78
No 56.0 1 – 1 –

lvtj(caphcat D 0) Yes 73.5 38.47 14.48,101.39 3.14 2.58,3.51
No 29.5 1 – 1 –

lvtj(caphcat D 1) Yes 92.5 7.46 0.62,89.33 1.49 0.87,1.68
No 80.2 1 – 1 –

caphcatj(lvt D 0) Yes 80.2 2.14 1.21,3.80 1.52 1.11,2.07
No 29.5 1 – 1 –

caphcatj(lvt D 1) Yes 92.5 0.41 0.05,3.32 0.95 0.86,1.06
No 73.5 1 – 1 –

a Campylobacter contaminated batches for each level of the categorical variables
b Relative risk obtained according to Beaudeau and Fourichon [2]

71% (RRD 1:71), since focal hepatitis are seen in infected broilers [4]. Because
variables concerning location and slaughter capacity interact, the relative risk for
each of these variables varies according to the status of the other. Comparing the
slaughterhouses located in LVT region with the ones from centre or north regions,
the probability of contamination triples for the lower capacity slaughterhouses
(RRD 3:14), whereas it increases for 50% for the high capacity ones (RRD 1:49).
When comparing slaughterhouses by their slaughter capacity, if located in LVT
region, there is no significant difference on the probability of contamination (RRD
0:95), whereas outside LVT region the farthest ones have the probability of posi-
tiveness increased by 50% (RRD 1:52). See Table 4. The risk management options
available for the processing level, like good hygienic practices and techniques to
reduce faecal spread (feed withdrawal, cloacal plugging, higher water pressure and
longer washing after evisceration), can reduce the concentration of organisms and
thereby reduce the exposure to consumers [5].
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Predicting and Treating Missing Data
with Boot.EXPOS

Clara Cordeiro and M. Manuela Neves

Abstract
The Boot.EXPOS procedure is an algorithm that combines the use of exponential
smoothing methods with the bootstrap methodology for obtaining forecasts. It
starts with the selection of an exponential smoothing method and evolves to a
bootstrapping design based on the residuals. The time series is reconstructed and
forecasts are obtained. That procedure, now extended to “predict” missing values,
is named NABoot.EXPOS.

1 Introduction

The most interesting and ambitious task in time series analysis is to forecast
future values. Models are commonly fitted in order to predict future values of a
time series. Exponential smoothing methods (EXPOS) are the most widely used
forecasting methods because of its versatility and with very few prerequisites.
Through EXPOS application, time series pattern (trend and/or seasonality) and error
term are obtained. Thus, the preliminary phase of this study is the selection of the
“best” EXPOS model, Table 1, using the AIC criterion.

The procedure proposed by the authors, Boot.EXPOS, is inspired on the sieve
bootstrap; see [1]: an AR(p) is used to filter the random series and the centered
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Table 1 Classification of the exponential smoothing methods

Seasonal component

Trend component N (none) A (additive) M (multiplicative)

N (none) N,N N,A N,M
A (additive) A,N A,A A,M
Ad (additive damped) Ad,N Ad,A Ad,M
M (multiplicative) M,N M,A M,M
Md (multiplicative damped) Md,N Md,A Md,M

residuals are resampled. Then the procedure works backwards: using the previous
bootstrap residuals series, an AR(p) is obtained recursively. Adding the patterns
found in the preliminary phase, a time series sample path is obtained. This series
is forecasted using the EXPOS model and the smoothing parameters estimates
obtained in the preliminary phase. The process is repeatedB times and h step-ahead
forecasts are obtained. At the end with a matrix B � h, the mean is taken for each
column. To perform an empirical evaluation of the Boot.EXPOS procedure, a case
study with six time series, with different patterns, is used.

Given the good performance of the Boot.EXPOS procedure, the authors have
extended its use to the missing data case. A procedure that detects, estimates,
and replaces missing data is planned. NABoot.EXPOS is the designation of this
procedure. It is applied to the complete time series previously used in the application
of the Boot.EXPOS algorithm. For each time series some blocks and also some
isolated observations are randomly removed. Then NABoot.EXPOS and two well-
known functions in environment, [15], for imputing missing data in time series,
na.interp() and amelia(), are used and compared.

This chapter is organized as follows: Sect. 2 describes the bootstrap and EXPOS
methodologies. Boot.EXPOS and NABoot.EXPOS are described in Sect. 3. Exam-
ples on using both procedures are presented in Sect. 4 and some closing comments
in Sect. 5.

2 Methodologies

2.1 EXPOS Methods

EXPOS refers to a set of methods that can be used to model and to obtain forecasts.
This is a versatile approach that continually updates a forecast emphasizing the most
recent experience, that is, recent observations are given more weight than the older
observations; see [6]. Many researchers have investigated and developed the EXPOS
methods in a total of fifteen methods; see Table 1 [6, 11]. For each method in the
framework, additive error and multiplicative error versions are considered.

Then a total of thirty EXPOS models are available and the selection is made
by minimizing the AIC criterion. The estimates of the smoothing parameters are
obtained by minimizing the mean squared error of the one-step-ahead forecasts
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errors, over the fitted period. In a previous study (see [5]), only four EXPOS
methods were considered in Boot.EXPOS algorithm: single EXPOS, Holt’s linear
trend, and Holt–Winters seasonal smoothing with either additive or multiplicative
seasonality. These methods were applied to the M3 competition data set, with 3,003
time series of different patterns and time intervals. Our procedure stayed within the
six best among twenty-four procedures; see [13]. By that time, a large set of EXPOS
methods was included in the environment through the ets() function, [10].
A selection set of thirty EXPOS models were then incorporated in our algorithm.

2.2 Bootstrap

In previous works (see [2–4]) the authors have studied and analyzed the possibility
of joining EXPOS methods and the bootstrap methodology. From these studies
the idea behind the sieve bootstrap (see [1]) permitted to connect those two
procedures. Sieve bootstrap considers first an autoregressive process that is fitted to
a stationary time series. A bootstrap model-based approach, which resamples from
approximately i.i.d. residuals (see [1, 12]) can be applied.

3 Computational Procedures

Boot.EXPOS is an automatic procedure developed by the authors for modeling
and forecasting. For a time series with missing observations the procedure can
not de applied. For replacing the missing values in the series the authors propose
the extension of Boot.EXPOS. This extension, denoted NABoot.EXPOS, allows to
detect and to impute missing observations. A sequential inspection of the time series
is performed. Whenever an observation or a sequence of observations is missing the
NABoot.EXPOS calls the Boot.EXPOS for “predicting.” Below is the description
of both procedures.

3.1 Boot.EXPOS: To Forecast

The initial step before applying the Boot.EXPOS procedure, is to select the “best”
EXPOS method. Time series patterns and the optimized smoothing parameters are
obtained and kept for later use, while the residual series r1; � � � ; rn is used in the
Boot.EXPOS procedure (it is now the input time series).

Due to the sieve bootstrap inspiration, this algorithm starts also by fitting an
autoregressive model to a stationary time series. In autoregressive time series models
the presence of a unit root means that the time series is nonstationary.

Much of the relevant literature concentrates on the unit roots in the AR
polynomial; see [14]. The most common parametric unit root test is the augmented
Dickey–Fuller (ADF) test. This test considers as the null hypothesis the nonstation-
ary (random walk) v.s. the stationarity (an AR(p)).
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In our automatic procedure, similar to what is done in auto.arima() function
(that permits the possibility of choosing among ADF, KPSS, and PP) (see [9]),
the ADF test is applied to r1; � � � ; rn and in case of rejection of nonstationarity the
Boot.EXPOS will be applied, as described next:
1. Use AIC criterion to select an AR(p) to the EXPOS residuals (r1; � � � ; rn).
2. Obtain the AR residuals and center them.
3. Draw a random sample from the centered residuals.
4. Use AR model recursively for obtaining a bootstrap residuals series.
5. Add the bootstrap residuals series and the EXPOS patterns. The time series is

now reconstructed.
6. Obtain h step-ahead forecasts for the time series using the EXPOS model

selected in the initial step and the smoothing parameter estimates.
7. Repeat step 3 to step 6, B times.
8. Calculate the mean for each column of the B � h matrix.

3.2 NABoot.EXPOS: To Detect and Replace Missing Data

The basic idea of NABoot.EXPOS is to detect and to impute missing observations,
through the application of Boot.EXPOS on the past observations with non-missing
values. Let fy1; y2; � � � ; yng be a time series with missing observations. The
procedure starts by detecting the first missing observation, for example, yi . Let
k � 0 the number of consecutive missing observations, fyi ; yiC1; � � � ; yiCkg.
Use Boot.EXPOS to obtain the estimated missing values f Oyi ; OyiC1 � � � ; OyiCkg and
replace them in the series. Proceed to the next missing observation and the cycle
goes on until there is no missing observation in the time series.

4 Case Studies

The objective of this section is to use six time series to empirically evaluate the
performance of Boot.EXPOS and NABoot.EXPOS. Some accuracy measures are
used. Let yt denote the observation at time t and Oyt the forecast of yt , t D 1; � � � ; n.
The forecast error is defined by et D yt � Oyt . The forecasts are computed for
a hold-out period. Thus the out-of-sample forecasts f Oyn.1/; � � � ; Oyn.h/g, where h
is the forecast horizon, are computed based on the data. Note that all time series
are split into a sample set fy1; � � � ; yn�hg and a validation set fyn�hC1; � � � ; yng for
the procedures’ evaluation. The accuracy measures here considered are defined in
Table 2.

4.1 In Forecasting

Figure 1 shows the different behaviour of the time series, available in [8] and
basis, described in Table 3.
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Table 2 Accuracy measures

Acronyms Definition Formula

RMSE Root mean squared error
q
mean .yt � Oyt /2

MAE Mean absolute error mean.jyt � Oyt j/
MAPE Mean absolute percentage error mean
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Fig. 1 Time series path

Each time series is forecasted with a time horizon h D 12, using Boot.EXPOS
and the function ets() for EXPOS; see [9]. Table 4 gives the model selected using
Hyndmann et al. [11] terminology (second column) and the accuracy measures
obtained for the forecasts (lower values in bold).

4.2 In Missing Data

For the complete series shown in Fig. 1, some blocks and also some isolated
observations are randomly removed. For the shortest time series, ukdeaths and
writing, one individual observation and two blocks of length 6 and 12 were removed.
For time series UKDriverDeaths and nav two blocks of size 6 and 12 and two
individual values were removed. For the longest time series, dole and gas, three
blocks of length 6 and 12 and three individual observations were chosen as missing.
The true values are kept for using as a validation set in the determination of the out-
of-sample measures. In software two functions can be used for imputing missing
data in time series: na.interp() that uses linear interpolation and amelia() [7] that
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Table 3 The data set description

Time series Description Time period Length package

nav Monthly total of airplanes in
flight information region of
Lisbon

Jan 1985–Mar 2009 291 a

dole Monthly total of people on
unemployment benefits in
Australia

Jan 1965–Jul 1992 439 fma

ukdeaths Monthly total deaths and
serious injuries on UK roads

Jan 1975–Dec 1984 120 fma

writing Industry sales for printing
and writing paper

Jan 1963–Dec 1972 120 fma

UKDriverDeaths Monthly totals of car drivers
in Great Britain killed or
seriously injured

Jan 1969–Dec 1984 192 data sets

gas Australian monthly gas pro-
duction

Jan 1956–Aug 1995 476 forecast

a Data kindly provided by the Portugal Navigation-NAV Portugal, E.P.E

Table 4 Accuracy measures results: in forecasting

Time series (Error, trend, seasonality) Method RMSE MAE MAPE

nav (M,A,M) ets() 3661.23 3369.51 10.15
Boot.EXPOS 3456.60 3128.17 9.44

dole (A,Ad,A) ets() 15271.15 10927.08 1.45
Boot.EXPOS 11156.44 8147.94 1.05

ukdeaths (M,N,M) ets() 156.84 143.16 10.13
Boot.EXPOS 89.84 71.28 4.89

writing (A,A,A) ets() 58.61 44.96 5.97
Boot.EXPOS 57.21 43.95 5.92

UKDriverDeaths (M,N,A) ets() 205.63 198.49 14.68
Boot.EXPOS 87.78 70.60 5.09

gas (M,Md,M) ets() 2773.72 2097.73 4.22
Boot.EXPOS 2348.16 1908.15 3.84

uses the bootstrap with the EM algorithm. NABoot.EXPOS procedure is applied
and the three procedures’ performance is evaluated.

Figure 2 shows the six series with missing values and Table 5 presents the accu-
racy measures after the application of the above procedures to impute unobserved
data (lower values in bold). We see that in series dole the linear interpolation
presented better results. Perhaps it can be sensible to make a previous analysis of
the series behavior in the neighbourhood of the missing observations to choose the
method to be applied. This is a point for future research.
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Fig. 2 Block of missing observations

Table 5 Accuracy measures results: in missing data

Time series Method RMSE MAE MAPE

nav NABoot.EXPOS 242.77 46.72 0.16
na.interp 415.10 91.23 0.35
amelia 897.86 191.39 0.69

dole NABoot.EXPOS 17433.24 3260.22 0.78
na.interp 5642.78 907.20 0.31
amelia 36411.61 7063.74 11.21

ukdeaths NABoot.EXPOS 83.49 29.78 2.10
na.interp 131.63 55.50 3.74
amelia 173.82 64.30 4.11

writing NABoot.EXPOS 21.33 6.48 0.86
na.interp 79.64 21.72 4.13
amelia 81.83 25.70 3.96

UKDriverDeaths NABoot.EXPOS 46.36 11.36 0.62
na.interp 89.88 22.04 1.19
amelia 119.02 33.28 1.84

gas NABoot.EXPOS 344.92 49.83 0.27
na.interp 1415.73 198.61 0.93
amelia 1946.46 357.95 8.69
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5 Closing Comments

In this chapter the authors propose the Boot.EXPOS procedure to forecast time
series and an extension for missing data imputation, NABoot.EXPOS. The empirical
performance of the procedures is evaluated using some accuracy measures. There-
fore a validation set is used to obtain values for that measures.

In forecasting situation the Boot.EXPOS procedure has revealed a good behavior,
so the “optimal” combination of EXPOS methods and bootstrap seems to provide
accurate forecasts.

In missing data, the authors have calculated the accuracy of methods using the
estimated missing values and the true ones. The empirical results suggest that our
procedure, NABoot.EXPOS, can be a good tool for replacing missing data.

Acknowledgements Research partially supported by DM/FCT/Ualg and National Funds through
FCT—Fundação para a Ciência e a Tecnologia, project PEst-OE/MAT/UI0006/2011, and
PTDC/FEDER.
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Bayesian Genetic Mapping of Binary Trait Loci

César Correia, Nuno Sepúlveda, and Carlos Daniel Paulino

Abstract
Genetic mapping aims to find genomic regions affecting a given phenotype.
This task is typically made by means of likelihood-ratio tests carried out on a
large data set of genetic markers. As an alternative we present some Bayesian
methods to map binary trait loci (BTL). All methods are based on (1) a mixture
probability structure relating a single or two adjacent markers to the putative
BTL and (2) Bayes factors to detect the set of markers most associated with the
phenotype. As an example of application, we perform a genetic mapping analysis
on experimental cerebral malaria susceptibility.

1 Introduction

The goal of experimental genetic mapping is to identify the genomic regions
(loci) controlling a certain phenotype of interest. Two animal strains with distinct
phenotypes are commonly crossed up to the second generation. Using data on a
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large set of genetic markers, one typically uses likelihood-ratio tests to find the
loci most associated with the phenotype [6, 7]. Statistical significance of a given
genomic region (or marker) is established by stringent thresholds for the p-value
aiming to control the global significance level due to multiple testing. Thus, the
success of genetic mapping under a frequentist framework is intimately dependent
on the underlying sample size and the number of markers considered.

Recent years have revealed Bayesian analysis as a good alternative to tackle
genetic mapping problems [12,13]. Current proposals use powerful simulation tech-
niques allied to genetic models with increased complexity. This chapter aims then to
present some Bayesian genetic mapping methods to map binary trait loci (BTL). All
methods are based on a mixture probability structure describing the recombination
rates between markers and BTL and the underlying penetrance (the probability of
phenotypic expression given the genotype of the true BTL). To contemplate different
genetic actions, penetrance of the putative BTL is described through single-locus
allelic penetrance models [9, 10]. The strength of association between markers and
the phenotype is assessed by Bayes factors estimated through different methods, as
discussed in Sepúlveda et al. [10]. As an example of application, a genetic mapping
concerning experimental cerebral malaria susceptibility is performed. A detailed
description of this work can be found elsewhere [3].

2 Genetic Mapping in Experimental Populations

Genetic mapping in experimental populations usually contemplates the crossing of
two animal strains exhibiting distinct phenotypes. Such experimental design leads
to a diallelic system in the sense that each genetic marker considered has only
two possible alleles—one from each strain—segregating in the cross. To detect a
putative BTL, let us first consider the analysis of two adjacent markers M (with
allelesM1 andM2) andN (with allelesN1 andN2). Let us also assume the existence
of a single putative BTL Q (with alleles Q1 and Q2) between M and N . The core
of genetic mapping modelling is based on the fact that recombination events might
occur between M , Q and N during gamete formation and, thus, the genotype of
the markers and the putative BTL may differ. The probability at which those events
happen is called recombination rate and is included in the statistical modelling to
describe the probabilistic relationship between the genotypes of the markers and the
putative BTL.

The detection of a BTL is based on the following decomposition of the
probability for the expression of the phenotype given a marker genotype

P.Y D 1jGm/ D
X

g

P.Y D 1jGt D g/P.Gt D gjGm/; (1)

where Y is the random variable regarding the expression of the phenotype,Gt and
Gm are the genotypes of BTL and markers, respectively, and P.Y D 1jGt D g/
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is the so-called penetrance of the BTL with genotype g. It is worth noting that
the above equation assumes that the phenotypic expression does not depend on the
markers under analysis.

The probabilities P.Gt D gjGm/ are defined according to the recombination
events that might occur during gamete formation. Under the assumption of a single
recombination event (crossover) occurring between M , N and Q, one can easily
derive these probabilities for intercrosses or backcrosses; a detailed discussion on
how to obtain these probabilities can be found elsewhere [3, 7].

Given the above equation, different genetic mapping methods can be obtained by
modelling the penetrance P.Y D 1jGt D g/ accordingly. The most general model
for penetrance is to consider the following parametric structure:

P.Y D 1jGt D g/ D
8
<

:

p1; if g D Q1Q1;

p2; if g D Q1Q2;

p3; if g D Q2Q2:

(2)

If no BTL is present at a given position between M and N , one expects that all
genotypic penetrances would be the same. Therefore, detecting the presence of a
BTL is done by testing H0 W p1 D p2 D p3 against H1 W 9i;j pi ¤ pj . It is worth
noting that the above model provides little information on the genetic nature of
the putative BTL. Such limitation can be easily surpassed by describing penetrance
properly through models based on known genetic concepts.

The allelic penetrance approach has been recently proposed to model different
gene actions acting upon a complex binary trait [9,10]. This approach embodies the
idea that penetrance may have two components: internal and external. The internal
component models the stochastic expression of the alleles composing the BTL
genotype towards the phenotype (the allelic penetrance). The external penetrance
describes the probability of phenotypic expression by the action of factors other than
the BTL under analysis. Assuming independence between these two components,
the penetrance of a putative BTL can be decomposed into

P.Y D 1jGt/ D � int
Gt

C �ext � � int
Gt
�ext ; (3)

where � int
Gt

and �ext are the internal and external components, respectively. Different
genetic actions for a single or two loci can be obtained by modelling � int

Gt
appropriately [9]. For the matter of genetic mapping, the allelic penetrance models
for a single-locus action are applied as it was assumed above the existence of a
single BTL between any two adjacent markers.

Let us assume that Q1 is a dominant allele towards the phenotype. Under the
allelic penetrance approach, the dominance model is defined by the condition that
the phenotype is observed by the expression of at least one dominant allele in the
genotype. Under the assumption of independent allelic expressions, the internal
component of penetrance of a putative BTL is given by
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� int
Gt

D
8
<

:

21 C 21.1 � 1/; if Gt D Q1Q1;

1; if Gt D Q1Q2;

0; if Gt D Q2Q2;

(4)

where 1 is the penetrance of allele Q1 towards the phenotype.
Two definitions are possible for the action of a recessive allele, both compatible

with classical Mendelian recessiveness inheritance [10]: (1) the expression of both
recessive alleles are required to observe the phenotype (type I recessiveness), or
(2) the expression of a single recessive allele is enough to observe phenotype
as long as the dominant allele is not active (type II recessiveness). In this work,
type II recessive allele model is applied to genetic mapping because of its generality
[10]. In the same line of the allelic dominance model, the internal component of
penetrance for the recessive allele model is described by

� int
Gt

D
8
<

:

21 C 21.1 � 1/; if Gt D Q1Q1;

1.1 � 2/; if Gt D Q1Q2;

0; if Gt D Q2Q2;

(5)

where 2 stands for the penetrance of allele Q2.
In both dominant and recessive allele models, the detection of a BTL requires

testing the hypothesis of no expression of the phenotype-conferring allele Q1

against its opposite hypothesis (that is, H0 W 1 D 0 againstH1 W 1 ¤ 0).

3 Bayesian Analysis

Two-marker data is typically represented by a G � 2 frequency table, where
G stands for the number of possible genotypic combinations between any two
markers (G D 4 and G D 9 for backcross and intercross experiments, respec-
tively) and the two columns refer to the binary trait under study. The respective
sampling model is given by the product of G independent binomial distributions˚
Bin.mg; P.Y D 1jGm D g//



where mg is the frequency of individuals with joint

genotype g of the two markers and P.Y D 1jGm D g/ is modelled by Eq. (1).
Detection of a putative BTL between any two markers is carried out as follows:

(1) estimate the recombination rate between the markers and consider it throughout
as a fixed constant, (2) assume the left marker as the putative BTL and draw
inferences over model parameters, (3) increment the position of the BTL by a small
value and make inferences again and (4) repeat previous step until the location of the
putative BTL coincides with the right marker. For each location considered for the
putative BTL, Bayes factors favouring H1 are calculated using different estimation
methods. A large enough Bayes factor shows evidence for a putative BTL; Congdon
[2] provides some guidelines for Bayes factor analysis. A non-informative Bayesian
analysis is followed in all genetic mapping models. Thus, for the general and allelic
penetrance models, uniform prior distributions can be specified for the respective
parameters modelling penetrance of the putative BTL.
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For Bayes factor calculations, three methods are applied to estimate the predic-
tive prior probability (PPP) of each competing hypothesis: ordinary Monte Carlo
(MC), Markov Chain Monte Carlo (MCMC) and numerical integration, which
might be considered as the most “exact” method [10]. Ordinary MC-based estimates
are given by the average of the likelihood function evaluated at the parameter
values simulated from their prior distributions. In this regard, it was shown that PPP
estimates based on this method are not accurate when analysing allelic penetrance
models [10]. According to Raftery et al. [8], a robust and stable PPP estimate can
be obtained as below

log OPPP BIC�MC.fnggjHi/ D l � s2l .logm � 1/; (6)

wherem D P
g mg is the sample size, l and s2l are the posterior mean and variance

of the log-likelihood function, respectively.

4 Application

Bayesian genetic mapping is now illustrated with a data set regarding the genetic
control of experimental cerebral malaria in two mouse strains, one susceptible and
another resistant to the disease [1]. Phenotypic data refers to 190 F2 backcrossed
animals generated from a first progeny bred with the susceptible parental strain.
Marker data encompasses about 130 genetic markers scattered around the mouse
genome. Using Pearson’s independence test for two-way tables, two putative BTL
were previously identified at chromosomes 1 and 11 [1]. In the same line of
analysis, Correia [3] applied a simple Bayesian homogeneity test using uniform
prior distributions for the “penetrances” of the markers. This analysis detected the
same BTL at chromosomes 1 and 11 and another at chromosome 14. It is worth
noting that both analyses provide a crude estimate for the true location of three
BTL. Interval genetic mapping can be then applied to refine previous results.

Since data at hand refers to a backcross experiment, there are four combined
genotypes for any two adjacent markers. The probabilities P.Gt jGm/ in Eq. (1)
can be easily derived (Table 1) as one allele in each marker genotype is fixed by
experimental design due to backcrossing. Penetrances of the putative BTL are given
by Eqs. (2) and (3) with � int

g given by Eqs. (4) and (5), but considering only the ones
for genotypes Q1Q1 and Q1Q2. Bayesian interval mapping was then performed
on data regarding chromosomes 1, 11, and 14. All calculations were done in the
R software using several packages, namely, the cubature and R2WinBUGS for
numerical integration and posterior simulation, respectively.

Figure 1 shows the Bayes factors for the genetic mapping of chromosome 1 using
different models. In this application, the MC-based Bayes factors are very close to
the “exact” ones, in contrast to those obtained through BIC-MC approximation.
In fact, the Bayes factors based on this approximation seem to underestimate the
“exact” ones, as opposed to previous findings when dissecting genetic interaction of
two loci [10].
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Table 1 Marginal, joint and conditional probabilities of genotypic inheritance between two
markers M and N and a putative BTL Q in a backcross between strains 1 and 2, where the
first progeny was crossed again with parental strain 1. Recombination rates between the respective
markers M and N , and the putative BTL are given by �MQ and �NQ . The subscripts in the alleles
indicate the strains where the alleles are derived from

Genotype Gm P.Gm/ Genotype Gt P.Gt ; Gm/ P.Gt jGm/
M1M1=N1N1

1
2
.1� �MN / Q1Q1

1
2
.1� �MQ/.1� �NQ/ .1��MQ/.1��NQ/

1��MN

Q1Q2
1
2
�MQ�NQ

�MQ�NQ

1��MN

M1M1=N1N2
1
2
�MN Q1Q1

1
2
.1� �MQ/�NQ .1��MQ/�NQ

�MN

Q1Q2
1
2
�MQ.1� �NQ/ �MQ.1��NQ/

�MN

M1M2=N1N1
1
2
�MN Q1Q1

1
2
�MQ.1� �NQ/ �MQ.1��NQ/

�MN

Q1Q2
1
2
.1� �MQ/�NQ .1��MQ/�NQ

�MN

M1M2=N2N2
1
2
.1� �MN / Q1Q1

1
2
�MQ�NQ

�MQ�NQ

1��MN

Q1Q2
1
2
.1� �MQ/.1� �NQ/ .1��MQ/.1��NQ/

1��MN

Fig. 1 Interval mapping of chromosome 1 using Bayes factors (towards H1): (a) General model;
(b) Allelic dominance model; (c) Allelic recessiveness model. Ordinary Monte Carlo estimates
were calculated according to 100,000 generated values. Good convergence of MCMC-generated
chains was obtained using 1,010,000 iterations with a burn-in period of 10,000 iterations and a lag
of ten iterations
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Table 2 Genomic positions of the maximum Bayes factors (BF) for chromosomes 1, 11, and 14,
using numerical integration for the calculations. Distance from the nearest left marker is given in
centimorgan

Chromosome Left marker Distance Model log10.BFH1/

1 Mit213 28 General 2.31
Mit221 17 Allelic dominance 1.29
Mit213 29 Allelic recessiveness 2.12

11 Mit199 12 General 1.13
Mit100 0 Allelic dominance 1.12
Mit199 12 Allelic recessiveness 1.21

14 Mit37 0 General 1.33
Mit37 0 Allelic dominance 1.26
Mit37 0 Allelic recessiveness 1.45

The general and the recessive allele models lead to similar Bayes factor profiles
along chromosome 1. According to these models, a putative BTL might be present
around Mit213 and Mit221. In contrast, Bayes factors obtained from the dominant
allele model provide a weaker signal for BTL detection than those from the
remaining models. This is in agreement with previous results that cerebral malaria
susceptibility in these mice might be controlled by a cumulative action model
requiring the expression of at least three alleles derived from the susceptible strain
at different loci [9, 10].

The remaining results are summarized in Table 2. All models agree that BTL
at chromosomes 11 and 14 show weaker signals of detection than the one(s) at
chromosome 1. Moreover, maximum Bayes factors implied by these models are
close to each other, which suggests a complex inheritance of the trait under analysis.

Concluding Remarks

Different penetrance models were applied to Bayesian interval genetic mapping.
The results show that the location and strength of BTL detection are dependent
on the model used. One way to overcome this problem is to undertake a Bayesian
model averaging analysis, as previously suggested for weather forecasting [11].
Another solution is to take into account available information of genes known to
affect the phenotype. On the one hand, it seems possible to learn the location of BTL
for certain phenotypes, such as the HbS gene in human malaria [5] and the MHC
locus in autoimmune diseases [4]. On the other hand, it seems difficult to elicit prior
information on the genetic effects or allelic penetrances from the experts.

Finally, most interesting phenotypes are affected by a large number of genes
and, thus, the estimation of the number of underlying BTL may be of interest.
In a Bayesian framework one can consider the overall number of putative BTL
as a model parameter. This modelling task has already been carried out for a
liability-based model [13]. Similar exercise remains to be done for the proposed
methodology.
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9. Sepúlveda, N., Paulino, C.D., Carneiro, J., Penha-Gonçalves, C.: Allelic penetrance approach
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Concomitant Latent Class Models Applied
to Mathematics Education

Maria Eugénia Ferrão and José G. Dias

Abstract
The research project School Effectiveness in Teaching-Learning of Mathematics
allowed a longitudinal study in the primary, elementary and lower secondary
education which was conducted between 2004 and 2009 in Portugal. It stated
as one of the specific objectives the development and promotion of quantitative
methods in education, particularly in mathematics education. This chapter
presents a latent class model with concomitant variables applied to the data of
a paired sample (data collected at the beginning and at the end of the academic
year) of 276 students enrolled in the 7th grade. The response variable represents
whether learning has or has not occurred during the year and the concomitant
variables are scores to assess the level of fluid intelligence components. Model
parameter estimates suggest that there are two distinct latent classes explained
by verbal and spatial reasoning.

1 Introduction

The field of research on the learning of mathematics deals with “what happens
around, in and with students who engage in acquiring such knowledge, skills, among
others, with particular regard to the processes and products of learning. A closely
related area of investigation is the outcomes (results and consequences) of the
teaching and the learning of mathematics, respectively” [14]. There is a general
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consensus that prior achievement is an important predictor of mathematics learning.
Primi et al. [16] applied a multilevel growth curve model to a Portuguese data set,
where learning is considered over two academic years for a sample of students
ranging in age from 11 to 14. Results confirm that initial math ability predicts math
ability 2 years later. The authors also showed that fluid intelligence [3, 4, 12] and
numerical reasoning predict initial math ability; that there are significant between-
student differences in the growth rate of mathematics learning across 2 years; and
that the rate of growth was higher for those higher in fluid intelligence. Considering
a sample of 11-year-old students, Irwin and Irwin [11] applied a latent class model to
identify two groups of students: those who have not developed certain mathematical
abilities (addition, multiplication and proportional reasoning) over one academic
year (called stayers) and those who have (called movers). However, the authors
do not present what students’ attributes explain differences between stayers and
movers.

This chapter serves two main purposes. The first is to illustrate how concomitant
variables in a latent class model could help understand the population heterogeneity
towards the fluid intelligence components such as numerical, abstract, verbal and
spatial reasoning. The second is to determine the number of latent classes underlying
that heterogeneity and to estimate the odds ratio for a correct answer to every item
of the mathematics test.

Latent class models with concomitant variables are applied to data collected in a
representative random sample of students enrolled at the 7th grade (lower secondary
education) in the region of Cova da Beira, Portugal. Data collection took place in
the context of a school effectiveness research project [7] with the support of the
Portuguese Ministry of Science Technology and Higher Education and the Calouste
Gulbenkian Foundation.

The structure of this chapter is the following: Sect. 2 presents the methodology;
Sect. 3 summarizes the main results of the statistical analysis; and Sect. 4 contains a
discussion of the results and concluding remarks.

2 Methodology

2.1 The Sample

The sample comprises 276 students (52.7 % boys) enrolled in the 7th grade in the
region of Cova da Beira, Portugal. The survey design is longitudinal. Data were
collected at the beginning and at the end of academic years 2005/2006, 2006/2007
and 2007/2008. Two cohorts of students were considered. In 2005/2006 the 1st, 3rd,
5th, 7th and 8th grade students were involved. They were monitored in the 2nd, 4th,
6th, 8th and 9th years, respectively, and a new cohort at the 1st, 3rd, 5th, and 7th
years was surveyed. In 2007/8 these students were monitored again. The random
sample is representative at county and region levels [17]. Data considered for the
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purpose of this chapter were collected at the beginning and at the end of academic
year 2005/2006. Students’ age varied from 11 to 17, and 62 % were 11- or 12-year-
old students when they started the 7th grade.

2.2 Assessment Instruments

Math Tests. 3EMat is a battery of tests designed for the assessment of math
skills, knowledge, and abilities throughout primary, elementary and lower secondary
education [8]. Each test includes around 30 multiple-choice selected items covering
the core curriculum for each grade and adjacent grades. Item calibration (the
estimation of coefficients of discrimination, difficulty and its contribution for test
information) was done during the pretest at the end of 2004/2005. The test booklets
include common items (about 30 %) from adjacent grades in order to allow posterior
vertical equating [5]. Standard norms on development, revision and administration
of tests were followed, including those norms concerning test security [2]. In the
7th grade the distribution of items per subject is approximately as follows: geometry
24 %; numbers 36 %; equations 27 %; statistics 13 %. Response or manifest variable
represents whether learning has or has not occurred during the academic year. The
learning outcomes were measured considering common items administered at the
beginning and at the end of academic year. Primary data on test items correction
were recoded in order to get a categorical variable (1—an incorrect answer at the
beginning followed by an incorrect answer at the end; 2—an incorrect followed by a
correct answer; 3—a correct followed by an incorrect answer; 4—a correct followed
by a correct answer). This is the response scale for each item included in the model
presented below. Thus, the response variable represents whether learning has or has
not occurred during the year.
Intelligence Tests. Cognitive abilities were assessed using the Differential Reasoning
Tests Battery [1]. Although tests are based on analogy or series tasks combining
different contents, the same cognitive operation—reasoning or fluid intelligence—
is evaluated for each of the different components: numerical reasoning (NR)
consisting of 30 numerical series items involving simple arithmetic operations;
abstract reasoning (AR) consisting of 40 items involving abstract analogies of
geometric figures; verbal reasoning (VR) consisting of 40 items involving verbal
analogies; and spatial reasoning (SR) consisting of 30 spatial series related to the
rotation of the six faces of a cube. There is a score related to each domain which is
included as concomitant variables in the model presented in the following section.

2.3 Latent Class Model with Concomitant Variables

The popularity of latent class models has recently increased, mainly due to the
availability of software implementations of this type of models [6]. The latent
class model assumes a discrete latent variable with S classes, in which units’
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class membership is unknown. The latent class concomitant model [18] is a finite
mixture model in which the prior probabilities or cluster sizes are regressed on
some variables known as concomitant variables. Let us have a sample of size n.
An observation is denoted by i .i D 1; : : : ; n/ and is measured by J items. Let yi
be the vector of the J items defined by yi D .yi1; : : : ; yiJ /. Then, the latent class
concomitant model with S latent classes for yi is defined by the density

f .yi I ';wi / D
SX

sD1
�is.wi ;�s/fs.yi I �s/; (1)

where the discrete latent variable, zi , has a multinominal distribution, such that
zi � MultiS�1.� i /; with � i D .�i1.wi ;�1/; : : : ; �i;S�1.wi ;�S�1//, �is.wi ;� s/ >

0 and
PS

sD1 �is.wi ;�s/ D 1. The vector of the K concomitant variables is
wi D .wi1; : : : ;wiK/. Each manifest variable has nominal scale with four categories.
Thus, the distribution of the items within in latent class s, fs.yi I �s/, is a product
of J conditionally independent multinominal distributions. The parameters of
the model are defined by ' D .�1; : : : ;�S�1;�1; : : : ;�S /, where �s and �s
are the vector of parameters in each class s. McHugh [13] and Goodman [10]
give sufficient conditions for the identifiability of the latent class model. All our
models are identified. The maximum likelihood estimation of latent class models is
not available in close-form, being the expectation–maximization (EM) algorithm,
a popular iterative procedure in this context. This algorithm allows maximum
likelihood estimation with incomplete data by reintroducing the additivity in the log-
likelihood function, using data augmentation. This algorithm has two steps, first the
E-step, that consists of associating each individual observation with its conditional
expectation of class membership, given the observed values. The next M-step
consists in maximizing the full data log-likelihood function using the complete data
as the observed data. The optimal number of latent classes is traditionally identified
as the model that minimizes the Bayesian information criterion (BIC)

BICs D �2`s. O'I y;w/CNs � log.m/; (2)

where Ns represents the number of parameters in the model and m is the sample
size. We consider two possibilities for m: (1) n, the sample size of individuals; (2)
n �J , the total number of answers. Model estimation was implemented in MATLAB.
As the log-likelihood surface is extremely complex and with many local maxima,
we report the solution with the maximum log-likelihood value out of 300 runs for
each model (random starting parameters). Convergence tolerance is 10�6.

3 Results

Thirteen models were fitted with varying number of latent classes, number of items
and number of concomitant variables (Table 1). The gradual reduction in the number
of items is justified by the exclusion of those that belong to the 6th and 8th grades.
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Table 1 Model selection and goodness of fit

Models # Classes # Items # Concomitants LL # Param. BIC.n/ BIC.nJ/

I. Original data
Model I.1 1 28 6 �8459:350 84 17387.71 17668.56
Model I.2 2 28 6 �7982:043 183 16991.45 17597.71
II. Reduced number of concomitant variables
Model II.1 1 28 3 �8556:669 84 17583.29 17863.20
Model II.2 2 28 3 �8132:977 181 17278.60 17881.72
III. Exclusion of non-significant concomitants
Model III.1 1 28 2 �8556:669 84 17583.29 17863.20
Model III.2 2 28 2 �8141:506 171 17239.71 17809.51
Model III.3 3 28 2 �7998:570 258 17440.58 18300.28
IV. Exclusion of non-significant items
Model IV.1 1 23 2 �7282:655 69 14951.34 15181.27
Model IV.2 2 23 2 �6878:707 141 14546.27 15016.11
Model IV.3 3 23 2 �6748:453 213 14688.58 15398.34
V. Exclusion of items of the previous year
Model V.1 1 17 2 �5370:189 51 11025.71 11195.65
Model V.2 2 17 2 �5117:232 105 10821.91 11171.79
Model V.3 3 17 2 �5049:552 159 10988.66 11518.48

Table 2 Correlation structure between concomitant variables

w1 w2 w3 w4 w5

Correlation matrix
Score7 (w1) 1.00 0.59 *** 0.46 *** 0.45 *** 0.50 ***
Numerical reasoning (w2) 1.00 0.50 *** 0.53 *** 0.53 ***
Verbal reasoning (w3) 1.00 0.43 *** 0.45 ***
Spatial reasoning (w4) 1.00 0.53 ***
Abstract reasoning (w5) 1.00
Principal components
1 component loadings (exp. var. D 59.93 %) 0.78 0.82 0.72 0.76 0.79
2 components (exp. var. D 72.01 %)
Component 1 loading (varimax) 0.4 0.54 0.16 0.86 0.77
Component 2 loading (varimax) 0.7 0.63 0.87 0.21 0.34

***p < 0:001

The first group of models (I.1 and I.2) included two scores in math test and four
components of fluid intelligence as concomitant variables. The second math score
was dropped from the analysis as it was too correlated with the first one (score7).
Correlations and principal component analysis (Table 2) show that the remaining
concomitant variables are moderately correlated and that 72 % of total variance is
explained by two linear-dependent components of verbal reasoning (factor loading
is 0.87) and spatial reasoning (factor loading is 0.86). Thus, only these components
of fluid intelligence were retained in the analysis.
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Table 3 Latent class profiles

Concomitant variables Cluster 1 Cluster 2 Aggregate

Verbal reasoning
1–8 0.356 0.057 0.216
9–11 0.234 0.202 0.219
12–13 0.149 0.172 0.160
14–17 0.179 0.241 0.208
18–24 0.081 0.328 0.197
Mean 15.474 19.871 17.539
Spatial reasoning
1–7 0.328 0.049 0.197
8–10 0.248 0.148 0.201
11–13 0.200 0.170 0.186
14–16 0.149 0.267 0.205
17–25 0.076 0.365 0.212
Mean 8.930 13.749 11.193

The Bayesian Information Criterion was used for model selection, implying the
Model V.2 (see bold values in Table 1) as the best. The results suggest that there are
two latent classes with dimensions 0.53 and 0.47. Class profiles (Table 3) show that
pupils belonging to class 2 tend to have higher levels of verbal and spatial reasoning.

The odds ratio of being a stayer (incorrect answer at the beginning and incorrect
answer at the end of the academic year) in class 2 compared with class1 was
calculated for every item of the test. Results obtained are 0.422, 0.331, 0.149, 0.26,
0.391, 0.308, 0.002, 0.160, 0.233, 0.332, 0.021, 0.162, 0.082, 0.065, 0.463, 0.099
and 0.5 giving evidence that is more plausible to find stayers in class 1 than in
class 2.

4 Discussion and Conclusion

The methodological approach presented reveals itself as a powerful method to a
better understanding of how learning happens. We illustrated the use of a latent
class model with concomitant variables that represent verbal and spatial reasoning.
Model parameter estimates allowed us to calculate the probability of being a stayer
in mathematics learning over an academic year. Results showed that the students
who belong to the cluster with higher verbal and spatial reasoning are less likely
to be classified as stayers (pupils who have not developed expected mathematical
abilities over the academic year 2005/2006) since the odds ratio determined for
test items is lower than one. The underlying relationship between mathematics
learning and verbal or spatial reasoning corroborates some findings from quasi-
experiments or qualitative methodological approaches on the topic, such as those
described in [9, 15]. However, further work should be conducted considering other
relevant variables potentially related to the heterogeneity of population, such as
socioeconomic status [11]. It would also constitute an important contribution if
we could associate patterns of curriculum content to the dimensions of fluid
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intelligence. In other words, depending on items used we might expect different
abilities to be predictive—e.g. numerical ability for statistics, numbers or equations,
and spatial ability for geometry. This requires extending the method across every
grade and cohorts in the longitudinal study.
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M.A., Dias, J.G., Salgueiro, M.F., Carvalho, H., Vicente, P., Braumann, C.A. (eds.) Estatı́stica
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Evaluating Discriminant Analysis Results

Ana Sousa Ferreira and Margarida Cardoso

Abstract
In discrete discriminant analysis (DDA) different models often exhibit differ-
ent classification performances. Therefore, the idea of combining models has
increasingly gained importance. In the present work we focus on the evaluation
of alternative DDA models, including combined models. The proposed approach
uses not only the classic indicators of classification precision but also indices of
agreement that regard the relationship between the actual classes and the ones
predicted by discriminant analysis. The performance of the DDA methods is
analyzed based on simulated binary data, using small and moderate sample sizes.
The results obtained illustrate the potential of combining DDA models, offering
different evaluation perspectives.

1 Introduction

In discrete discriminant analysis (DDA) different models often exhibit different
classification performances for different individuals or observations. This seems to
be a particularly relevant issue in the small or moderate sample setting and when the
classes are not well separated. Therefore, the idea of combining models currently

A.S. Ferreira (�)
LEAD, FP, Universidade de Lisboa, CEAUL and UNIDE, Alameda da Universidade,
1649-013 Lisboa, Portugal
e-mail: asferreira@fp.ul.pt

M. Cardoso
Department of Quantitative Methods and UNIDE, ISCTE-Lisbon University Institute,
Avenida das Forças Armadas, 1600-083 Lisboa, Portugal
e-mail: mgsc@iscte.pt

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 16,
© Springer-Verlag Berlin Heidelberg 2013

155



156 A.S. Ferreira and M. Cardoso

appears in an increasing number of DDA papers, in an attempt to obtain more robust
and stable models.

In this chapter we compare the performance of the full multinomial model
(FMM) [9] and the first-order independence model (FOIM) [9] with a model based
on the two referred models that produce an intermediate model between them.
In order to deal with the multi-class case we use the hierarchical coupling model
(HIERM) (e.g., [3, 15]) that enables to reduce the problem into several bi-class
problems embedded in a binary tree. The comparison is extended to the results of
the classification and regression trees (CART) algorithm [2], a classical approach
within the classification domain.

The performance of the alternative models considered is compared based on
simulated data. To evaluate this performance we consider several measures of
precision including traditional classification indices and indices of agreement
between the actual classes and the ones predicted by the DDA methods. Results
obtained refer to two-fold cross-validation.

2 Methodological Approach

In the present study, a new methodology is proposed for the evaluation of DDA
results. It enables the comparison of DDA classical models with the DDA combining
models approach. The proposed methodology relies on indices of agreement
between the actual and predicted (by DDA) classes and is illustrated using simulated
data according to the Bahadur model.

2.1 Indices for Evaluating Classification Results

When evaluating results from classification we focus on theK�K confusion matrix
M D Œnij � which is a contingency table of the actual classes (lines refer to partition
QK
a with K classes) by the ones predicted by discriminant analysis (columns refer

to partition
QK
b with K classes). The row totals are ni:, .i D 1; : : : ; K/.

Some commonly used indices depend only on the diagonal of the referred matrix,
which adds up to the number of correctly classified observations (see Table 1).
The percent agreement varies between 0 (null classification precision) and 100 %
(perfect classification precision). The Cohen’s Kappa deducts agreement by chance
and the Huberty index deducts the percentage of correctly classified by default
(majority class rule).

In this work we suggest further exploring the confusion matrix to evaluate the
agreement between

QK
a and

QK
b . We thus consider the indices on Tables 1 and 2

(see [4], for further details). The Cramer’s V statistic quantifies simple agreement
and variation of information (VI) considers entropy and mutual information. They
vary between 0 and 1 (0 indicating null agreement for Cramer’s V and perfect
agreement for the normalized VI). The Adjusted Rand quantifies paired agreement
deducting agreement by chance. A priori, the advantage of using these indices is to
complement the evaluation of agreement between partitions

QK
a and

QK
b .
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Table 1 Indices of agreement based on the diagonal of the confusion matrix

Indices Definition

Percent agreement Perc-agree.
QK

a ,
QK
b / D .

PK
kD1 nkk/=n

Cohen’s Kappa [6] Kappa.
QK
a ,
QK
b / D .

PK
kD1 nkk �

PK
kD1 nk:n:k=n/=.n�

PK
kD1 nk:n:k=n/

Huberty [12] Huberty.
QK
a ;
QK
b / D ..

PK
kD1 nkk/=n�maxi ni:=n/=.1�maxi ni:=n/;

where ni:, .i D 1; : : : ; K/ are the row totals

Table 2 Indices of agreement based on the complete confusion matrix

Indices Definition

Cramer’s V [7] V.
QK
a ;
QK
b / D

q
Chi� sq.QK

a ;
QK
b /=.nK � n/

where
Chi� sq.QK

a ;
QK
b / D

PK
kD1

PK
qD1.nkq � nk:n:q

n
/2=

nk:n:q

n

Adjusted rand [11] Adj-Rand.
QK
a ;
QK
b / D

PK
kD1

PK
qD1 C

nkq
2 �

PK
kD1 C

nk:
2

PK
qD1 C

n:q
2 =Cn2

1
2 Œ
PK
kD1 C

nk:
2 C

PK
qD1 C

n:q
2 ��

PK
kD1 C

nk:
2

PK
qD1 C

n:q
2 =Cn2

Normalized variation N�VI.
QK
a ,
QK
b / D ŒH.

QK
a /C H.

QK
b /� 2I.

QK
a ,
QK
b /�= logn

of information [14] where H indicates the entropy
H.
QK

/ DPK
kD1

n:k
n

log n:k
n

and I indicates the mutual information
I.
QK
a ;
QK
b / D

PK
kD1

PK
qD1

nkq

n
log

nkq

nk:n:q=n

2.2 Simulated Data

The performance of the DDA methods is analyzed based on simulated binary data.
We use the Bahadur model, as proposed in Godstein and Dillon [5, 9], to simulate
the predictive binary variables’ values. This model representation defines class
conditional probabilities for class Ck; .k D 1; : : : ; K/ as

P.xjCk/ D
Y

p


xp
kp .1 � kp/

.1�xp/Œ1C
X

g¤p
�k.p; g/ZkpZkg� (1)

where Xkp is a Bernoulli variable with parameter kp D E.Xkp/; p D 1; : : : ; P

such that

Zkp D Xkp � kp
Œkp.1 � kp/�2 and �k.p; g/ D E.ZkpZkg/: (2)

We consider two types of population structures with P D 6 variables and for
illustrative purposes, let us consider the case of K D 2 classes and one of the most
usual multi-class case, K D 4 classes. Location parameters are described on Table 3.

For each structure, data sets generated have small sample sizes (60 observations
for each class) and moderate sample sizes (200 observations for each class). The
training and test samples represent 50 % of the total of observations.
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Table 3 Parameters for simulated Bernoulli variables

K D 2 KD 4

1 D .0:6; 0:4; 0:6; 0:5; 0:5; 0:6/ 1 D .0:6; 0:4; 0:6; 0:5; 0:5; 0:6/

2 D .0:5; 0:3; 0:5; 0:4; 0:4; 0:5/ 2 D .0:5; 0:3; 0:5; 0:4; 0:4; 0:5/

3 D .0:6; 0:3; 0:6; 0:4; 0:5; 0:5/

4 D .0:6; 0:4; 0:6; 0:5; 0:5; 0:6/

The first structure, denoted IND (Independent), is generated according to FOIM
.�k.p; p/ D 1 and �k.p; g/ D 0 , if p ¤ g, k D 1; : : : ; KI p; g D 1; : : : ; 6/,
for all classes.

The second one, called DIF (Different), is implemented considering the existence
of different relations among the variables, for different classes:
• In the bi-class case �1.p; p/ D 1 and �1.p; g/ D 0:2; if p ¤ g, p; g D
1; : : : ; 6I �2.p; p/ D 1 e �2.p; g/ D 0:4; if p ¤ g, p; g D 1; : : : ; 6:

• In the multi-class case �k.p; p/ D 1 and �k.p; g/ D 0:1; if p ¤ g; k D
1; 2; 3I p; g D 1; : : : ; 6I and �4.p; p/ D 1 and �4.p; g/ D 0:3; if p ¤ g;

p; g D 1; : : : ; 6.
The prior probabilities are considered equal.

2.3 Discrete Discriminant Analysis

In discrete classification problems the most natural model is the FMM where the
conditional probabilities are estimated by the observed frequencies [9]. This model
involves 2P � 1 parameters to be estimated in each class. Hence, even for moderate
P (e.g., ten binary variables lead to 1; 023 parameters to be estimated), generally,
not all of the parameters are identifiable.

One way to deal with this problem consists in reducing the number of parameters
to be estimated. The FOIM assumes that the P binary variables are independent in
each class Ck , k D 1; : : : ; K [9]. Then, the number of parameters to be estimated
for each class is reduced from 2P � 1 to P.

Since we are mainly concerned with small or moderate sample sizes, we may
encounter a problem of sparseness in which some of the multinomial cells may
have no data in the training sets. Therefore, we suggest to smooth the observed
frequencies of model FMM as follows:

P.xj�/ D 1

n

nX

iD1
�P�kx�xi k.1� �/kx�xik; 0 < � � 1 (3)

where � D 1:00, � D 0:99, � D 0:95 or � D 0:90 according to the training sample
size.

In this work, taking into account the size of our samples, we consider � D 1:00

(no smoothing) or � D 0:95 (moderate smoothing) for all samples.
Note that according to Hand [10], we opt for a computationally less demanding

method since the choice of the smoothing method is not particularly important.
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FMM and FOIM provide different classifications in many circumstances. There-
fore, we expect a combining model (using a single coefficient ˇ for the linear
combination of FMM and FOIM) to yield better results.

There are several strategies to estimate the coefficient ˇ (e.g., [3, 15]) that
combines the two referred models. A natural way of deriving this coefficient is
by minimizing the fitting error using a least squares criterion [15, 16]. For the two
classes case, we use an approach to estimate the coefficient ˇ using a least squares
regression (LSR) criterion:

b̌
LSR D

Pn
iD1.l2.xi /� l1.xi //l2.xi /�Pn

iD1 yi .l2.xi / � l1.xi //Pn
iD1.l2.xi /� l1.xi //2

(4)

where yi denotes an indicator of class membership for observation i and l1 and l2
represent, respectively, the log ratio of the class conditional probabilities for model
FMM and FOIM (denoted by LSR1) or the a posteriori probabilities of the first class
for FOIM and FMM models (denoted by LSR2), estimated by cross-validation in a
sample of size n.

In the multi-class case, we use the HIERM, inspired by Friedman’s approach [8],
for reducing the multi-class problem into several bi-class problems embedded in a
binary tree. HIERM needs two decisions at each level:
1. Selecting the hierarchical coupling among the 2K�1 � 1 possible classes couple
2. In each node of the tree, selecting the combining model that gives the best

classification rule for the chosen couple
At the beginning we have K classes that we want to reorganize into two classes.

So, we propose to select the two new classes that are the most separable. The basic
affinity coefficient [1, 13] can be used to select the hierarchical coupling at each
level of the tree.

Denoting F1 D q1j and F2 D q2j , j D 1; : : : ; P two discrete distributions defined
in the same space, the affinity coefficient is defined by

�.F1; F2/ D
X

j

q
q1j

q
q2j ; j D 1; : : : P (5)

and is easily computed in our classification problem. The individual vector x is
assigned to the class associated with the last node of the tree on which x falls.
The main aim of this approach is to obtain a better prediction performance and
improve results stability.

3 Experimental Results

After running discriminant analysis for the simulated data we obtain the results
presented in Tables 4 and 5.
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Table 4 Small samples results/cross-validation (two-fold results)

Data Methods Perc-agree (%) Kappa (%) Huberty (%) Cramer’s V Adj-Rand N-VI

IND CART 52 5 �7 0.048 �0:019 0.355
KD2 FMM 31 21 �2 0.226 0.040 0.340

FOIM 58 16 4 0.198 0.013 0.328
LSR2 60 21 11 0.222 0.025 0.320

DIF CART 77 54 48 0.559 0.291 0.242
KD2 FMM 65 50 30 0.520 0.286 0.245

FOIM 58 17 0 0.165 0.004 0.335
LSR2 76 52 46 0.400 0.097 0.278

IND CART 28 5 �1 0.156 �0:005 0.536
KD4 FMM 0 � 0 � � �

FOIM 30 6 3 0.173 0.005 0.534
LSR2 50 34 30 0.505 0.208 0.368

DIF CART 23 �1 �6 � �0:010 �
KD4 FMM 10 �20 �23 0.347 0.083 0.472

FOIM 32 12 6 0.241 0.036 0.510
LSR1 48 31 29 0.426 0.135 0.474

�Not defined (null observed frequency in denominator)

Table 5 Moderate samples results/cross-validation (two-fold results)

Data Methods Perc-agree (%) Kappa (%) Huberty (%) Cramer’s V Adj-Rand N-VI

IND CART 54 8 6 0.078 0.004 0.258
KD2 FMM 55 14 10 0.139 0.014 0.259

FOIM 59 17 15 0.172 0.025 0.255
LSR2 60 19 17 0.195 0.031 0.253

DIF CART 69 37 36 0.398 0.138 0.219
KD2 FMM 61 32 23 0.346 0.120 0.208

FOIM 50 �1 �3 0.039 �0:022 0.261
LSR2 63 30 24 0.333 0.100 0.224

IND CART 33 11 9 0.154 0.016 0.447
KD4 FMM 0 � 0 � � �

FOIM 35 13 12 0.225 0.043 0.429
LSR2 44 26 25 0.327 0.093 0.407

DIF CART 29 6 4 0.105 0.002 0.425
KD4 FMM 11 �18 �20 0.221 0.039 0.431

FOIM 35 13 12 0.220 0.038 0.433
LSR1 46 28 27 0.393 0.130 0.362

�Not defined (null observed frequency in denominator)

When referring to the combining models we simply present the results yielded
by the best strategy (LSR1 or LSR2). For the sake of simplicity, we only report the
best FMM results (smoothed or not).

In these results, the DDA methods seem to perform similarly for the small- and
moderate-sized samples. Except for the case of DIF and KD2 (where the best results
are attained by CART) the combined models evidence the best performances.
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Table 6 Pearson correlations (r)

Methods Perc-agree Kappa Huberty Cramer’s V Adj-Rand N-VI

Perc-agree 1
Kappa 0.807 1
Huberty 0.790 0.952 1
Cramer’s V 0.339 0.709 0.699 1
Adj-Rand 0.436 0.739 0.711 0.948 1
N-VI �0:807 �0:516 �0:464 �0:181 �0:307 1

4 Discussion and Perspectives

In general, the best DDA results are obtained using the combining models approach,
with the LSR2 strategy where the a posteriori probabilities characterize the class
conditional probabilities.

The various indicators used to evaluate DDA results offer different insights
regarding the confusion matrix and the corresponding results do not necessarily
agree (see correlations in Table 6). Note that we consider small and moderate
size samples when computing correlations, since they exhibit similar (correlation)
patterns.

The percent agreement index is strongly related with the normalized variation
of information index which has the advantage of quantifying not only the correctly
classified cases but also the relationship between the incorrectly classified ones.
The Cramer’s V statistic and the Adjusted Rand index are strongly related as well
as the Kappa and the Huberty indices. These indicators offer a different perspective,
quantifying simple agreement and paired agreement between the actual classes and
the predicted ones.

In future research, the advantages of using indices of agreement for evaluating
DDA results should be further explored. In addition, real data should be used to
further illustrate the utility of the proposed approach.
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Distribution of the Number of Losses
in Busy-Periods of MX=G=1=n Systems

Fátima Ferreira, António Pacheco, and Helena Ribeiro

Abstract
This chapter addresses MX=G=1=n queues, i.e., single server batch Markovian
arrival queues with finite customer waiting space of size n. Taking profit of the
Markov regenerative structure of these systems, we develop an efficient recursive
procedure to compute the probability mass function of the number of losses
in busy-periods starting with an arbitrary number of customers in the system.
The derived computational procedure is easy to implement and leads to a fast
numerical computation of the loss probabilities. To illustrate the effectiveness of
the procedure, loss probabilities are computed for a wide variety of queues, with
different capacities, batch size distributions, and arrival and service parameters.

1 Introduction

Queues, or waiting lines, in which customers arrive, wait for service, are served,
and then leave the system are a familiar feature of daily life. In the pioneer queueing
problems it was assumed that customers arrive single at a service facility and find an
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infinite waiting room. However, these assumptions are violated in many real world
queueing situations. Letters arriving to a post office, customers arriving to a terminal
gate of an airport, and data files arriving to a computer system are a few examples of
queuing situations in which, in general, customers do not arrive in a single form but
in batches (of fixed or random size). In turn, while infinite (waiting space) queuing
systems are analytically easier to handle, finite queues are more realistic as infinite
waiting spaces do not exist in the real-world. The relevance of finite capacity batch
arrival queues for applications is well reflected by the abundance of studies of such
systems in the literature (see, e.g., [1, 2, 6, 7, 12] and the references therein).

The study of queues is performed either from the user’s perspective or from the
operator’s perspective. While measures such as the distribution of the customer wait-
ing time in the system, the number of customers in queue, and the loss probability
are oriented toward the user’s perspective, the analysis of such quantities during
busy-period cycles, i.e., during effective system utilization periods, is relevant from
the operator’s point of view. In fact, the analysis of busy-period characteristics
such as the busy-period length, the number of customers served, or the number of
customers lost (due to overflow) during the busy-period, can provide crucial useful
information for the management of congested systems. An intensive care unit of a
hospital, where losses in system may result in losses of lives, is an example of such
situation.

In recent years, there has been in fact an increased interest in the study of the
number of losses in busy-periods. In this context, Abramov [1], Wolff [16], and
Peköz et al. [12] showed the interesting phenomenon that the mean number of losses
during busy-periods in MX=G=1=n queues is invariant in the queue capacity (n)
when the traffic intensity (�) is unitary, varying with n otherwise. In particular, case
� D 1,

EŒLi;n� D i and EŒLn� D ˇ; for all n � 1;

where Li;n denotes the number of losses during a busy-period initiated with i

customers and Ln the corresponding measure for a busy-period initiated with a
random number of customers, X , with mean ˇ. As shown in [12], this invariance
property for mean losses when � D 1 does not extend to general arrival processes.
For MX=G=1=n, if � < 1 (� > 1), these quantities are decreasing (increasing)
functions of n for all i and n � 1, and, in particular, for n � 1,

EŒLi;n� < i and EŒLn� < ˇ; case � < 1;

EŒLi;n� > i and EŒLn� > ˇ; case � > 1:

Moreover, it was shown in [12] that if a GI=M=1=n queue is such that the mean
number of losses during a busy-period is unitary and invariant on the system
capacity, then it must be an M=M=1=n queue with � D 1. Wolff [16] showed
the validity of the above relations for GIX=G=1=n systems, under certain specific
conditions on the interarrival times.

Moments of higher order for the number of losses during a busy-period for
the M=G=1=n and GI=M=1=n queues were derived in Peköz [11]. At the same
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time, Righter [13] showed that the loss probabilities during a busy-period initiated
with a single customer may be used recursively to compute the mean number of
losses in busy-periods of M=G=1=m systems, m D 1; 2; : : :, all with the same
parameters except the queue capacity. Additionally, Pacheco and Ribeiro [8–10]
obtained recursive procedure on the system capacity to compute the probability
of consecutive losses in busy-periods of M=G=1=n and GI=M.m/=n queueing
systems and moments of the duration of busy-periods of MX=G=1=n systems.

To our knowledge, the literature on losses in busy-periods of MX=G=1=n

systems is confined to studies of the mean number of losses during such periods.
The main contribution of this work is to provide a recursive procedure to compute
the distribution of the number of losses in busy-periods of these queueing systems.

The structure of the remaining sections of this chapter is the following. In Sect. 2
the MX=G=1=n queue model is presented, with the accompanying definitions and
notation. Section 3 discusses the proposed approach to compute the distribution
of the number of losses in a busy-period. Finally, to illustrate the computational
procedure, we compute the distribution of the number of losses in busy-periods of
severalMX=G=1=n systems in Sect. 4.

2 The M X =G=1=n Queue

In this chapter we investigate customer loss characteristics of an MX=G=1=n

queueing system. Customers arrive into such a system (in batches) according to
a compound Poisson process with batch arrival rate �, and the batch sizes are
independent random variables identically distributed to a random variable X with
probability mass function (p.m.f.)P.X D i/ D bi , i D 1; 2; : : :, with finite mean Nb.

The queue has finite capacity of size n, including the customer in service (if
any), so that at any time a maximum of n customers can be present in the system.
The batches which upon arrival are unable to find enough space in the buffer for
all the customers of the batch are partially rejected—partial batch rejection policy.
Specifically, if at arrival of a batch of l customers there are only m, m < l ,
free positions available in the system, then m customers of the batch enter the
system and the remaining l � m customers of the batch are blocked. Customers
accepted in system are served by a single server. The service time is characterized
by the (general) distribution function A with mean ��1. Customer service times are
independent of the customer arrival process and of previous customer service times.

The process of interest is Y D fY.t/; t � 0g, where Y.t/ denotes the number
of customers in the system at time t . This process is non-Markovian, but it is a
well-known fact that it constitutes a Markov regenerative process associated with
the renewal sequence .Tn/n2N of customer post-departure epochs (i.e., instants
immediately after customer service completions); see, e.g., [3, 5] for more details
on Markov regenerative processes. Therefore, the embedded process at customer
post-departure epochs, fY.TnC/; n � 1g will be considered.

The main purpose of this chapter is to derive the p.m.f. of the number of losses
in i -busy-periods, i.e., in busy-periods starting with i , i � 1, customers in the
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system. For that, we let C denote the total number of customer arrivals during
the first service taking place in a 1-busy-period and .rj /j2N denote its p.m.f.
Conditioning on the number of batches that arrive during an interval of length
t , the probability that a total of j customers arrive in such period is given by

rj .t/ D Pj

lD0 e��t
.�t/l

lŠ
b
.l/
j where b.l/j denotes the probability that the total number

of customers in l customer batches is equal to j , i.e., b.0/j D ı0j , and b.l/j D
Pj�1

iDl�1 b
.l�1/
i bj�i , for l 2 N and j D l; lC 1; : : :, where ıij is the Kronecker delta

function, i.e., ıij D 1 if i D j and ıij D 0 otherwise. Therefore, the conditional
probability that exactly j customers arrive during the first service taking place in

the 1-busy-period is rj D Pj

lD0 ˛lb
.l/
j where ˛l D R1

0 e��t .�t/
l

lŠ
A.dt/ denotes the

l-th mixed Poisson probability with arrival rate � and mixing distribution A, that,
for many distributions, can be computed in a fast recursive way (cf., e.g., [15]).

3 Customer Loss Probability Distribution

In this section, it is assumed that the system is in steady state and, to address
the computation of customer loss probabilities in busy-periods of an MX=G=1=n

system, we let Li;n denote the number of customer losses in an i -busy-period of the
system. The Markov regenerative property at post-departure epochs implies that on
fY.0/ D i; Y.0�/ D 0g, with i > 1, the time the system takes to reach state 1—
from state i—and the subsequent time it takes to reach state 0—from state 1—are
independent. Therefore, by putting apart one of the customers initially present in the
system and supposing that such a customer will start being served only when being
alone in the system, we can straightforwardly argue that on fY.0/ D i; Y.0�/ D 0g,
with i > 1, the time the system takes to reach state 1—from state i—has the same
distribution as the duration of an .i � 1/-busy-period of an MX=G=1=n� 1 system
with the same parameters as the originalMX=G=1=n system, except for the capac-
ity of the system (that now has one position less). Thus, the following result holds.

Lemma 1. For 1 � i � n,

Li;n
dD Li�1;n�1 ˚ L1;n (1)

where
dD denotes equality in distribution, ˚ denotes the sum of independent random

variables, and L0;m D 0.

As a result, that follows immediately by induction, we have Li;n
dDLn

jDnC1�i L1;j . This shows that the distribution of the number of losses in an
i -busy-period of an MX=G=1=n system is a direct function of the distribution of
the number of customer losses in 1-busy-periods of MX=G=1=m systems with
smaller or equal system capacity, namely, n C 1 � i � m � n, but otherwise
with the same parameters as the former system. Accordingly, we will next focus
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explicitly on the characterization of the p.m.f. of the number of customer losses in
1-busy-periods of MX=G=1=n systems.

For that, conditioning on the number of customers that arrive to the system during
the service of the customer that initiates a 1-busy-period, we express the loss p.m.f.
as a mixture of the conditional distributions of i -busy-periods given each possible
number of customer that may arrive to the system during the service of the customer
that initiates the 1-busy-period, as next explained. If no customers arrive to the
system during the service time of the customer that starts the 1-busy-period, the
busy-period ends at the departure of that customer. In this case no costumer is lost.
Otherwise, the customers that arrive to the system during the service time of that
customer and are not blocked initiate at his departure from the system a multiple
busy-period that is part of the busy-period under consideration. As a consequence,

ŒL1;njC D l�
dD

8
ˆ̂<

ˆ̂
:

0 l D 0

Ll;n 1 � l � n � 1

l � .n � 1/C Ln�1;n l � n

; for n � 1: (2)

Taking into account (2), from the total probability law, it follows that

P ŒL1;n D k� D r0ı0k C
n�1X

lD1
P ŒLl;n D k�rl C

n�1CkX

lDn
P Œl � .n� 1/CLn�1;n D k�rl ;

(3)
which allows one to establish the following result.

Theorem 1. The customer loss probabilities in i -busy-periods of MX=G=1=n

systems are such that
P ŒL1;1 D k� D rk; k 2 N; (4)

and, for n � 2:

P ŒL1;n D k� D r0 ı0k CPn�1
lD1 ˚

.n/

l;k rl CPk
jD1 P ŒLn�1;n D k � j �rjC.n�1/

1 �Pn�1
lD1 P ŒLl�1;n�1 D 0�rl

(5)

with

P ŒLl;n D j � D
jX

iD0
P ŒL1;n D j � i �P ŒLl�1;n�1 D i � (6)

for 2 � l � n, where L0;n D 0 and

˚
.n/

l;i D
iX

jD1
P ŒL1;n D i � j �P ŒLl�1;n�1 D j �: (7)
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Proof. Rewriting the loss probabilities in Eq. (3) in the form

P ŒL1;n D k� D r0 ı0k C
n�1X

lD1
P ŒL1;n D k�rl C

kX

jD1
P ŒLn�1;n D k� j �rjC.n�1/ (8)

taking into account (1), it follows that for 1 � l � n � 1,

P ŒLl;n D k� D P ŒLl�1;n�1 ˚ L1;n D k� D
kX

jD0
P ŒL1;n D k � j �P ŒLl�1;n�1 D j �:

(9)
Separating in Eq. (9) the j D 0 term from the remaining terms, we conclude that

P ŒLl;n D k� D P ŒL1;n D k�P ŒLl�1;n�1 D 0�C ˚
.n/

l;k

with˚.n/

l;k defined in Eq. (7), and the statement (5) follows directly from the previous
equation and Eq. (8). Finally, the statement (6) follows from Eq. (1). ut

Theorem 1 has immediate application in the computation of the loss probabilities
of an i -busy-period in anMX=G=1=n system, P ŒLi;n D K�, 1 � i � n andK 2 N.
This can be done recursively from Eqs. (4)–(7), using the following algorithm:

Compute P ŒL1;1 D k�, k 2 N, from Eq. (4)
For k D 0; 1; : : : ; K

For m D 2; 3; : : : ; n

Compute P ŒL1;m D k� from Eq. (5)
Compute P ŒLl;m D k�, 2 � l � m � 1, from Eq. (6).

The algorithm computes the loss probabilities in i -busy-periods of MX=G=1=n

systems using O.n3/ operations. The highest computational effort is needed,
in general, to compute the convolution probabilities of the customer batch size
distribution, which are required to obtain the probability function .ri /i�0 of the
number of customer arrivals during the service of a customer.

4 Numerical Illustration

To end this chapter, the procedure derived in the previous section is applied to com-
pute and analyze the sensitivity of costumer losses in busy-periods of MX=G=1=n

systems with respect to the batch size and service time distributions. The results
presented were computed with MATLAB algorithms using the recursions proposed
in [15] for computing the mixed Poisson probabilities .˛l /.

To investigate the influence of the batch size distribution on the loss probabilities,
the latter were computed for MX=G=1=n systems with five different batch size
distributions with common mean Nb: deterministic with the constant Nb, D. Nb/,
geometric with success probability 1= Nb, Geo.1= Nb), uniform discrete on the set
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Fig. 1 Loss probability in 1-busy-periods of MX=G=1=30 systems with traffic intensity � D 0:9

and unitary service rate, as a function of the mean batch size, for deterministic, geometric, discrete
uniform, and shifted binomial batch size distributions

f1; 2; � � � ; 2 Nb � 1g, U f1; � � � ; 2 Nb � 1g, shifted binomial—a binomial with a trials—
and success probability . Nb � 1/=a added of one unit, 1 C B.a; . Nb � 1/=a/. In
turn, to study the sensitivity of loss probabilities on the service time distribution,
four different service time distributions with common mean ��1 were considered:
exponential with rate �, M.�/, deterministic, D.��1/, uniform on the interval
.0; 2=�/, (U.0; 2=�/), and Pareto with parameters ˇ and k, P.ˇ; k/, with ˇ > 1

and k D .ˇ � 1/=ˇ�. The latter are specially useful, e.g., to model Internet traffic
service [4, 14].

As expected, the results presented in Fig. 1 show that the loss probability
(probability that at least one customer is lost during a busy-period) increases with
the mean batch size. Nevertheless, we observe that, independently of the mean
batch size, the batch size distribution may have great impact on the performance
of the queue. The loss probability shows a tendency to decrease for batch size
distributions with higher variability. In fact, among the service times and the batch
size distributions considered, we observe that the systems with deterministic batch
size distributions may experience a higher loss probability in contrast with the
systems with geometric batch sizes, which present the smallest loss probabilities.
Obviously, when the mean batch size becomes sufficiently high compared with the
queue capacity, in which case all systems experience high loss probabilities, the
effect of the batch size distribution becomes weak.

Figures 2 and 3 illustrate the sensitivity of the loss probability with respect
to the traffic intensity and the service time distribution, respectively. Among the
studied systems, one can observe that congested light tail service systems experience
higher loss probabilities, in contrast with systems with heavy tail service time
distribution—here represented by the Pareto service times with small value of ˇ
(cf. Fig. 2). In general, in all the studied systems we observe high probability
of a small number of costumer losses and that the loss probabilities tend to
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decrease as the number of customer lost increases (cf. Fig. 3). Among the light
tail service time distributions considered, we observe that the lighter ones tend
to assign more probability to small numbers of costumer lost and very small
probabilities to experiencing a large number of costumer losses. In contrast, due to
their heavy tail distribution, the MGeo.0:5/=P.ˇ; :/=1=30 queues with small values
of ˇ have the interesting behavior of having higher probability of experiencing a
very small number of losses but also have small but persistent positive probabilities
of experiencing a huge number of losses. This is explained by the fact that in these
systems, in general, most of the customers require small service times causing a
null or small number of losses but, with small probability, customers requiring huge
service times may appear, causing in turn a large number of customer losses during
their service times.
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Misleading Signals in Simultaneous Residual
Schemes for the Process Mean and Variance
of AR(1) Processes: A Stochastic Ordering
Approach

Patrı́cia Ferreira Ramos, Manuel Cabral Morais,
and António Pacheco

Abstract
Assessing the performance of simultaneous schemes for the process mean and
variance requires the use of the probability of misleading signals (PMS). This
chapter discusses the impact of autocorrelation on the PMS of simultaneous
Shewhart and EWMA residual schemes for the mean and the variance of a
stationary autoregressive process of order 1, AR(1). The assessment of this
impact is done numerically and by means of stochastic ordering.

1 Introduction

When we want to monitor both the mean and the variance of a process it is common
to run two individual charts at the same time, one for the mean (�) and another one
for the variance (�2). The schemes that make use of two individual charts are the
popular simultaneous (or joint) schemes. According to [11,17], when a simultaneous
scheme is at use, the following misleading signals (MS) are likely to happen:

Since the assignable causes on charts for� can differ from those on charts for �2,
the diagnostic procedures that follow a signal can differ depending on whether the
signal is given by the chart for � or the one for �2 ([8], p. 189). Thus, misleading
signals are valid signals that can lead the quality control operator or engineer to
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of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
e-mail: maj@math.ist.utl.pt; apacheco@math.ist.utl.pt

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 18,
© Springer-Verlag Berlin Heidelberg 2013

173



174 P.F. Ramos et al.

Type of MS � �2 First chart to signal

III On-target Off-target Chart for �
IV Off-target On-target Chart for �2

misdiagnose assignable causes and deploy incorrect actions to bring the process
back to target. Awareness of this phenomenon can be traced back to [17], and
it has been addressed for i.i.d. and Gaussian output by some authors [9, 11–14].
More recently, [2, 7] presented a numerical discussion on simultaneous residual
schemes for the process mean and variance of AR.1/ output.

This chapter discusses and assesses the monotone behaviour of the PMS in
simultaneous residual schemes. Let us remind the reader that a residual scheme
is a traditional scheme were residuals of a time-series model are plotted instead of
the original data [1].

2 Simultaneous Residual Schemes and the Phenomenon
of Misleading Signals

Let us denote by fYi;j g the target process where i is the sample number and the
index j is the number of the observation within the sample. The sample size is
fixed and equal to n, and we will assume that different samples are independent.
However, .Yi;1; : : : ; Yi;n/ is a stationary AR.1/ process with known mean �0 and
autocovariance function f�0; �1; : : : ; �n�1g:

Yi;j D �0 C �.Yi;j�1 � �0/C "i;j ; (1)

where �1 < � < 1 and "i;j
i:i:d:� N .0; �2" /.

The observed process is denoted by Xi;j and is related to the target process as
follows:

Xi;j D �0 C ı
p
�0 C .Yi;j � �0/; i D 1; 2; : : : ; (2)

where ı � 0 (resp.  � 1) represents the magnitude of the shift in the process mean
(resp. variance).

Following [5], the standardized residuals fO"i;j g for a fixed i are obtained
assuming that the process is in control (ı D 0;  D 1). Since the best linear predictor
for Xi;j givenXi;j�1; : : : ; Xi;1 is OXi;1 D �0 and OXi;j D �0 C �.Xi;j�1 ��0/ .j D
2; : : : ; n/ we get

O"i;j D
8
<

:

p
1��2.Xi;1��0/

�"
for j D 1,

Xi;j��0��.Xi;j�1��0/
�"

for j D 2; : : : ; n:
(3)

In this chapter we consider Shewhart and EWMA residual charts with the control
statistics and limits in Table 1. It is important to note that upper one-sided residual
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Table 1 Control statistics and upper control limits for the upper one-sided Shewhart (S��; S�� )
and EWMA (E � �;E � � ) individual residual charts (the lower control limits are all equal to
zero), where �fS��;S��;E��;E��g are the critical values chosen such that the ARL of the individual
residual charts are equal and �f�;�g are the smoothing parameters of the EWMA charts)

Control statistic Upper control limit

maxf0; O"i g UCLS�� D �S��
p

n

OS2i UCLS�� D 1C �S��

q
2

n�1

W
O";i
D
(
0; i D 0

maxf0; .1� ��/WO";i�1
C �� O"ig; i > 0

UCLE�� D �E��

q
��

n.2���/

W OS2i ;i
D
(
1; i D 0

.1� ��/W OS2i ;i�1 C �� OS2i ; i > 0
UCLE�� D 1C �E��

q
2��

.n�1/.2��� /

charts for � are at use, so the corresponding limits and statistics result from an
adaptation of the ones in [7]. According to [6], the sample mean ( O"i ) and variance
( OS2i ) of the standardized residuals are independent and

O"i i:i:d:� N
�
ı
n

�
1C .n� 1/

q
1��

1C�


; 

2

n


and .n�1/ OS2i

2
i:i:d:� �2n�1;� , (4)

where �2n�1;� denotes the noncentral �2 distribution with n � 1 degrees of freedom
and noncentrality parameter equal to

� D n� 1
n

�
ı



�2  

1�
s
1� �
1C �

!2

: (5)

Capitalizing on the distributional properties of O"i and OS2i , we conclude that the
RL of the individual Shewhart residual charts for � (RLS��) and for �2 (RLS�� )
have geometric distributions with parameters

�S��.ı; ; �/ D 1� ˚
h
1


�
�S�� � ı

p

n

�
1C .n� 1/

q
1��

1C�

i
; (6)

�S�� .ı; ; �/ D 1� F�2n�1;�

h
n�1
2

�
1C �S��

q
2

n�1

i
: (7)

Since O"i and OS2i are independent, the RL of the simultaneous residual scheme (S �
�; �) also has geometric distribution with parameter

�S��;� .ı; ; �/D �S��.ı; ; �/C �S�� .ı; ; �/� �S��.ı; ; �/� �S�� .ı; ; �/: (8)

As for the EWMA individual and simultaneous scheme, the Markov chain
approach [3] provides the following approximations to the survival functions of the
run lengths RLE��.ı; ; �/, RLE�� .ı; ; �/ and RLE��;� .ı; ; �/:
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F RLE��.ı;;�/.m/ ' eT�ŒQ�.ı; ; �I x�/�m1�; (9)

FRLE�� .ı;;�/.m/ ' eT� ŒQ� .ı; ; �I x� /�m1� ; (10)

FRLE��;� .ı;;�/.m/ D FRLE��.ı;;�/.m/ � F RLE�� .ı;;�/.m/; (11)

form D 0; 1; 2; : : :, where
• e� (resp. e� ) denotes the first [resp. .x� C 1/=UCLE��/th] vector of the

orthonormal basis for Rx�C1 (resp. Rx�C1), associated with the state related to
the initial value of the control statistic.

• 1� (resp. 1� ) is a column vector of .x� C 1/ [resp. .x� C 1/] ones.
• The entries of the sub-stochastic matrix Q�.ı; ; �I x�/ [resp. Q� .ı; ; �I x�/]

follow from an adaptation of (resp. are equal to) the ones defined in [7].
Moreover, the left partial row sums of the entries of Q�.ı; ; �I x�/ and
Q�.ı; ; �I x� / are given, respectively, by

a�;ij .ı; ; �I x�/ D ˚

�
1


�
�E��Œ.jC1/�.1���/.iC1=2/�

.x�C1/
p
��.2���/

� ı
p

n

�
1C .n� 1/

q
1��

1C�

��
; (12)

for i; j D 0; : : : ; x�;

a�;ij .ı; ; �I x�/ D F�2n�1;�

h
.n�1/Œ.jC1/�.1��� /.iC1=2/�

2�� .x�C1/

�
1C �E��

q
2��

.n�1/.2��� /

i
; (13)

for i; j D 0; : : : ; x� .

2.1 Probability of a Misleading Signal

When dealing with simultaneous schemes for � and �2, the main question is not
whether MS will occur or not but rather how frequently they occur. This obviously
suggests the use of an additional performance measure—the probability of mis-
leading signal (PMS)—whose definition and (stochastic) monotonicity properties
depend on those of the RL of the two individual residual charts. According to the
definition of MS of types III and IV, the corresponding PMS can be written as

PMSIII.; �/ D P ŒRL�.0; ; �/ < RL�.0; ; �/� (14)

D
C1X

iD1

�
F RL�.0;;�/.i � 1/� FRL�.0;;�/.i/

	 � FRL� .0;;�/.i/; (15)

for  > 1, and

PMSIV.ı; �/ D P ŒRL�.ı; 1; �/ < RL�.ı; 1; �/� (16)

D
C1X

iD1

�
FRL� .ı;1;�/.i � 1/� FRL� .ı;1;�/.i/

	 � F RL�.ı;1;�/.i/; (17)

for ı > 0.
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A close inspection of the noncentrality parameter in Eq. (5) and of expressions (6)
and (12) leads to the conclusion that, when ı D 0, the RL of the individual residual
charts for � and �2 do not depend on the autocorrelation parameter �. Therefore,
we will denote the PMS of type III as PMSIII./.

It is worthy of note that we are able to obtain exact values for the PMS of the
Shewhart simultaneous residual schemes and approximate values in the EWMA
case. The exact expressions of the PMS of the simultaneous Shewhart residual
schemes are obtained by plugging in the expressions of the survival functions of
the RL into Eqs. (15) and (17):

PMSIII�S ./ D �S��.0; ; �/ � Œ1 � �S�� .0; ; �/�
�S��;� .0; ; �/

; (18)

PMSIV�S .ı; �/ D Œ1 � �S��.ı; 1; �/� � �S�� .ı; 1; �/
�S��;� .ı; 1; �/

: (19)

As for the EWMA schemes, we use the approximate expressions of the survival
functions of the RL and truncate the series Eqs. (15) and (17).

In the next subsection we present some numerical results for the PMS of types
III and IV for simultaneous Shewhart and EWMA residual schemes. These results
suggest some monotonicity properties of this performance measure and provide
insights into how the simultaneous residual schemes work in practice.

2.1.1 Numerical Results
The numerical values presented in this subsection were obtained by considering:
• Sample size equal to n D 5.
• Nominal values of the process mean and variance equal to �0 D 0 and �20 D 1.
• �� D �� D � 2 f1; 0:5; 0:05g, allowing the comparative assessment of a She-

whart and two EWMA schemes.
• x� C 1 D x� C 1 D 101 transient states used in the Markov approach.
• Magnitude of the shift in the process standard deviation  2 f1:01; 1:5; 2; 3; 4g.
• Magnitude of the shift in the process mean ı 2 f0:05; 0:5; 1; 1:5g.
• Autoregressive parameter � 2 f�0:9;�0:3; 0; 0:3; 0:9g.

The control limits of the individual residual charts depend on the so called
critical values. These are obtained so that the in-control average run length (ARL)
of the simultaneous residual schemes would be approximately 500 samples; and the
individual residual charts would have the same in-control ARL. The critical values
for the individual residual charts for �2 were obtained from [5]. The remaining
critical values were calculated using the regula falsi method. The critical values for
both individual residual charts are condensed in Table 2. Interestingly enough, these
critical values can be used regardless of the value of the autocorrelation parameter.

The values of PMS of types III and IV are summarized in Tables 3 and 4 and
surely deserve some comments. The PMS of type III can be larger than 0.48 for
very small shifts in � . Moreover, this PMS seems to be larger in the simultaneous
Shewhart residual schemes than in the EWMA ones and it tends to decrease with
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Table 2 Critical values for
the individual residual charts

� �� ��

1.00 3.0901 5.1144
0.50 3.1598 4.6439
0.05 2.8296 2.9103

Table 3 PMS of type III for
simultaneous Shewhart
(� D 1) and EWMA residual
schemes

�

 1.00 0.50 0.05

1.01 0.48434 0.47557 0.41372
1.50 0.17627 0.11108 0.01046
2.00 0.11093 0.07190 0.00471
3.00 0.05402 0.04169 0.00359
4.00 0.02762 0.02395 0.00442

Table 4 PMS of type IV for simultaneous Shewhart (� D 1) and
EWMA residual schemes

�

ı �0:9 �0:3 0 0.3 0.9 �

0.05 0.21989 0.38296 0.40806 0.42711 0.46452 1
0.13380 0.32932 0.36466 0.39207 0.44700 0.5
0.03591 0.17686 0.22642 0.27166 0.37966 0.05

0.5 0.00233 0.01979 0.03862 0.06979 0.24436 1
0.00340 0.00680 0.01325 0.02654 0.15325 0.5
0.00184 0.00132 0.00269 0.00570 0.05015 0.05

1 0.00000 0.00171 0.00407 0.01099 0.14811 1
0.00000 0.00108 0.00182 0.00412 0.07071 0.5
0.01131 0.00013 0.00024 0.00074 0.03010 0.05

1.5 0.00000 0.00019 0.00066 0.00265 0.11218 1
0.00000 0.00028 0.00054 0.00148 0.05459 0.5
0.00009 0.00004 0.00005 0.00020 0.03357 0.05

 for the Shewhart schemes. The values in bold in Table 3 indicate the absence of
monotonicity behaviour in terms of  for the EWMA case.

As for the PMS of type IV, we ought to state that these probabilities can be larger
than 0.46 for small shifts in�. Like PMSIII./, these probabilities appear to be larger
in the Shewhart case when the autoregressive parameter � is positive. PMSIV.ı; /

seems to increase with nonnegative values of � and shows signs of decreasing with
ı for the Shewhart schemes. The values in bold (resp. italic) in Table 4 show that
there is no monotonic behaviour in terms of ı for the EWMA schemes (resp. in
terms of � for nonpositive values of this parameter).

Proving the monotonicity properties suggested by the analysis of these tables
requires the use of stochastic ordering [16], as shown in the next section.
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3 Stochastic Monotonicity Properties

We start the section with some auxiliary results which play a major role in the
assessment of the stochastic monotonicity properties of the RL of the individual
residual charts and therefore in the monotonicity properties of the PMS.

Lemma 1 ([9], p. 16). Let RL.�/ � geometric.�.�// be the RL of a Shewhart-
type control chart, where �.�/ represents the probability of detecting a shift
of magnitude �. Then, if �.�/ increases (") with �, RL.�.�// stochastically
decreases (#st ) with �, i.e., FRL.�.�//.m/ decreases (#) with �, for all m.

Lemma 2 ([10]). Let fSN .�/; N 2 N0g be an absorbing Markov chain with single
absorbing state x C 1, state space f0; 1; : : : ; x; x C 1g, governed by the transition
matrix P.�/ D Œpij .�/�. If all left partial sums of P.�/,

Pk
jD1 pij .�/, decrease

with i and decrease with �, then RL.�/ #st with �.

Lemma 3. Let X� � �2n�1;� be a continuous random variable with noncentral chi-
squared distribution. Then, X� stochastically increases ("st ) with �.

Proof. According to ([4], p. 435), the distribution function of X can be written as
an expected value F�2n�1;�

.x/ D EY ŒF�2
n�1C2Y�=2

.x/�, where Y�=2 � Poisson.�=2/.

On one hand �2� "st with �, i.e., F�2�.x/ # with �, for any fixed x. On the other hand
Y�=2 increases in likelihood ratio ("lr ) with � ([15], p. 281). Thus, EŒ'.Y�/� " with
�, for any nondecreasing function '.:/, according to ([16], p. 4). Consequently, we
conclude that F�2n�1;�

.x/ # with � for any x, i.e., X� "st with �. ut

3.1 RL of Individual Residual Charts

Making use of the previous lemmas, the monotonicity properties of the survival
functions of the RL and the left partial sums of the matrices Q�.ı; ; �I x�/, and
Q�.ı; ; �I x� /, we are able to state the following stochastic monotonicity properties
of the RL.

Theorem 1. The following results are, respectively, valid for the RL of the Shewhart
and EWMA upper one-sided individual residual charts for the mean and variance
of an AR.1/ process.

Proof. Results (1.1), (1.2) and (1.3) follow in a straightforward manner from
Lemma 1 in view of expressions (6) and (7).

As for the EWMA charts, result (1.8) [resp. (1.9)] follows from Lemma 2 due
to the decreasing (resp. increasing) behaviour of the partial row sum Eq. (12) [resp.
Eq. (13)].
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Individual
residual chart � �

Shewhart (1.1) RLS��.0; ; �/ #st with  (1.4) RLS�� .ı; ; �/ "st with 
(1.2) RLS��.ı; ; �/ #st with ı (1.5) RLS�� .ı; ; �/ #st with ı
(1.3) RLS��.ı; ; �/ "st with � (1.6) RLS�� .ı; ; �/ "st with � 2 .�1; 0�

(1.7) RLS�� .ı; ; �/ #st with � 2 .0; 1/
EWMA (1.8) RLE��.ı; ; �/ #st with ı (1.10) RLE�� .ı; ; �/ #st with ı

(1.9) RLE��.ı; ; �/ "st with � (1.11) RLE�� .ı; ; �/ "st with � 2.�1; 0�
(1.12) RLE�� .ı; ; �/ #st with � 2.0; 1/

For both individual residual charts, results (1.4)–(1.7) and (1.10)–(1.12) follow
from Lemmas 2 and 3, in view of Eq. (13). For example, to prove (1.6) and (1.11)
it suffices to show that � decreases with � when � 2 .�1; 0� and apply Lemma 3.
In fact, Œ1 � p

.1 � �/=.1C �/�2 decreases with � 2 .�1; 0�, and so does �, thus
proving results (1.6) and (1.11). ut

3.2 Probabilities of Misleading Signals

Using the definitions of PMS and on Theorem 1, we are able to derive the following
monotonicity properties of PMS of types III and IV.

Theorem 2. The following monotonicity properties are valid for the PMS of types
III and IV of simultaneous Shewhart and EWMA schemes based on upper one-sided
individual residual charts for the mean and the variance of an AR.1/ process.

Simultaneous scheme PMSIII./ PMSIV.ı/

Shewhart (2.1) PMSIII�S./ # wi th  (2.2) PMSIV�S .ı; �/ # with ı
(2.3) PMSIV�S .ı; �/ " with �

EWMA (C1) PMSIII�E./
a (C2) PMSIV�E.ı; �/

b

(C3) PMSIV�E.ı; �/
c

(2.4) PMSIV�E.ı; �/ " with � 2 .0; 1/
aNon-monotonic in 
bNon-monotonic in ı
cNon-monotonic in � 2 .�1; 0�

Proof. To prove result (2.1) we need to rewrite PMSIII�S ./ as follows:

0

@1� 1�

�
F
�2n�1

h
n�1

2

�
1C�S��

p
2

n�1

i��1

1�˚
�
�S��




1

A

�1

(20)
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and remind the reader that F�2n�1

�
n�1
2

�
1C �S��

q
2
n�1

��
and ˚

� �S��



�
decrease

with  .
Similarly, PMSIV�S .ı; �/ can be rewritten as

 

1� 1�

n
˚

h
�S���

ı
p

n

�
1C.n�1/

q
1��
1C�

io�1

1�F
�2n�1;�

h
.n�1/

�
1C�S��

p
2

n�1

i

!�1

: (21)

SinceF�2n�1;�

�
.n � 1/

�
1C �S��

q
2
n�1

��
and˚

h
�S�� � ıp

n

�
1C .n� 1/

q
1��
1C�

i

decrease with ı, we immediately conclude that PMSIV�S .ı; �/ # with ı.
To prove result (2.3) we need to consider two different cases:
• Case � 2 .0; 1/

According to results (1.3) and (1.7) of Theorem 1, RL�.ı; ; �/ "st with � 2
.0; 1/ and RL�.ı; ; �/ #st with � 2 .0; 1/. Having in mind these two results
and Eq. (17), we conclude PMSIV.ı; �/ " with � 2 .0; 1/.

• Case � 2 .�1; 0�
On one hand, when  D 1, the noncentrality parameter

� D n � 1
n

ı2
�
1 �

p
.1 � �/=.1C �/

2 # � 2 .�1; 0�I (22)

thus, from Lemma 3, F�2n�1;�
.x/ " with � 2 .�1; 0�. As on the other hand,

˚

�
�S�� � ıp

n

�
1C .n � 1/

p
.1 � �/.1C �/

�
" with � 2 .�1; 0�; (23)

PMSIV .ı; �/ " with � 2 .�1; 0� in view of Eq. (17).
Since PMSIV .ı; �/ D P ŒRL� .ı; 1; �/ < RL�.ı; 1; �/�, and RL?��.ı; ; �/ "st
with � and RL?�� .ı; ; �/ #st with � 2 .0; 1/ by results (1.3), (1.7), (1.9) and
(1.12) from Theorem 1, where ? D S;E , we prove results (2.3) and (2.4). ut

We ought to end this subsection by noting that conjectures (C1), (C2) and (C3) in
Theorem 2 refer to the nonexistence of monotonic behaviour in terms of  , ı and
� 2 .�1; 0�, respectively, and are supported by the numerical results in Tables 3
and 4.

4 Concluding Remarks

The results presented in this chapter show that MS of types III and IV are very likely
to happen in simultaneous residual schemes, in particular for very small shifts in the
process mean and variance. In this respect, we note that MS of type III are not
affected by the autocorrelation of the process, as previously noted by [2, 7].
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The use of stochastic ordering allowed us to make a qualitative assessment of
the impact of the presence of autocorrelation on the performance of simultaneous
residual schemes. For instance, we have proved that the PMS of type III is a
decreasing function of the shift in � which means that an underestimation of the
magnitude of this shift results in an overestimation of the PMS. We have also shown
that larger nonnegative values of the autocorrelation parameter are associated to
more frequent MS of type IV.
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Conditional EVT for VAR Estimation:
Comparison with a New Independence Test

M.I. Fraga Alves and P. Araújo Santos

Abstract
We compare the out-of-sample performance of methods for value-at-risk (VaR)
estimation, using a new exact independence test. This test is appropriate for
detecting risk models with a tendency to generate clusters of violations and
evaluating the performance under heteroscedastic time series. We focus the
comparison on a two-stage hybrid method which combines a GARCH filter
with an extreme value theory (EVT) approach, known as conditional EVT.
Previous comparative studies show that this method performs better for VaR
estimation. Our contributions are comparing the performance with the new exact
independence test and considering recent developments in EVT involving bias
reduction.

1 Introduction

The desire for a less fragile financial system, increase the demand for quantitative
risk management tools. The value-at-risk (VaR) aggregates several components of
risk into a single number and has emerged as the standard measure that financial
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Departamento de Informática e Métodos Quantitativos, Escola Superior de Gestão e Tecnologia,
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analysts use to quantify risk. In terms of regulation, the Basel Committee on banking
and supervision [4] imposes capital requirements to banks and investment firms,
based on VaR estimation; see, for example, Kuester et al. [24] and the references
therein for a survey of competing methods. For a detailed discussion of VaR, see
Jorion [23].

Let RtC1 D log.VtC1=Vt / be the log returns at time t C 1, where Vt is the value
of the portfolio at time t . The one-day-ahead VaR forecasts made at time t for time
t C 1, VaRtC1jt .p/, is defined by

P ŒRtC1 � VaRtC1jt .p/j˝t � D p;

where˝t is the information setup to time t and p is the coverage rate. In Sect. 2, we
summarize some of the major approaches to VaR estimation. In Sect. 3, we present
the results of our comparative out-of-sample study. The final section, provides
final remarks.

2 VaR Methods

We consider, for the out-of-sample study, the following methods.

2.1 Historical Simulation

The simplest way to estimate VaRtC1jt .p/ is to use the unconditional quantile of the
past nw returns:

VaRHS
tC1jt .p/ WD quantile.fRsgnw

sD1; 100p/:

2.2 Filtered Historical Simulation (FHS)

Barone-Adesi et al. [3] proposed the combination of a volatility model and the
historical simulation (HS) method:

VaRFHS
tC1jt .p/ WD O�tC1jt C O�tC1jtquantile.fZsgnw

sD1; 100p/;

whereZs are the standardized residuals using a AR(1) GARCH(1,1) process; O�tC1jt
and O�tC1jt are the conditional mean estimators and conditional volatility at time
t C 1. We denote this method with normal innovations Zt (presented in Sect. 2.4)
by N-HS and with Skewed-t innovations by ST-HS.

2.3 Unconditional Skewed t

We choose one popular parametric unconditional model, the Skewed-t (ST). With
this model, we assume for the returns Rt D�C �Zt , where � and � are the
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unconditional mean and standard deviation andZt are iid to a random variable (r.v.)
Z with Skewed-t (Fernandez and Steel [12]):

VaRST
tC1jt .p/ WD O�tC1 C O�tC1F�1Z .p/:

Here F �1Z .p/ WD inffx W Fz.x/ � pg denotes the generalized inverse function of
the distribution function Fz.x/ of the r.v. Z.

2.4 Heteroscedastic Parametric Models

We consider a model, denoted by AR(1) GARCH(1,1), such that Rt D �t C 
t D
�t C �tZt , with �t D �Rt�1; � 2 < and �2t D ˛0 C ˛1


2
t�1 C ˇ1�

2
t�1; ˛0 > 0;

˛1 > 0 andˇ1 >0. We denote this method with Normal innovations Zt by
N-GARCH and with Skewed-t innovations Zt by ST-GARCH. Several studies
showed excellent forecast results with GARCH type with Skewed-t. See, for
example, Mittnik and Paolella [27] and Giot and Laurent [15].

2.5 Unconditional Peaks over Threshold from EVT

The peaks over threshold (POT) method is based on Balkema–de Haan–Pickands
theorem on the distribution of excesses over a high threshold. See Balkema and
de Haan [2] and Pickands [29] for details. We apply the method with the MLE
implemented in the POT package [31] of the R software [30]:

VaRPOT
tC1jt .p/ WD u C

Oı
O�
� �

k

np

� O�
� 1

�

where n is the sample size, k is the number of excesses over u O� and Oı are estimates
of the parameters � and ı of the generalized Pareto distribution (GPD):

H�;ı.x/ D
�
1 � .1C �x=ı/�1=� ; 1C �x=ı > 0; � ¤ 0

1 � exp.�x=ı/; � D 0:

2.6 Unconditional Minimum Variance Reduced Bias from EVT

The classical Weissman estimator [32] is defined by

VaRWtC1jt .p/ WD Xn�kWn
�
k

np

� O�
;

with Xn�kWn the .k C 1/ top order statistic of a random sample fXi; 1 � i � ng
and O� some consistent estimator of the tail index � > 0. The Hill estimator for the
positive tail index [22],
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H.k/ WD 1

k

kX

jD1
log

Xn�jC1Wn
Xn�kWn

;

may exhibit a strong bias for moderate k, if the underlying model is not a strict
Pareto model. Recent developments in EVT involve the reduction of bias. For
example, Peng [28], Beirlant et al. [5], Gomes et al. [16, 17], Gomes and Martins
[18], Caeiro and Gomes [8], among others. They achieved � estimators with
asymptotic variance equal or higher than .�.1 � �/=�/2 > �2, with � the second-
order parameter.

Recently, Caeiro et al. [9], Gomes and Pestana [19], Gomes et al. [20], and
Gomes et al. [21] proposed minimum variance and reduced bias (MVRB) estimators
for � . They reduce bias without increasing the asymptotic variance, which is kept
at the value �2. Here we consider the MVRB � estimator introduced by Caeiro
et al. [9]

NH.k/ WD H.k/

(

1 �
Ǒ

1 � O�
�n
k

 O�
)

where O� and Ǒ are estimates of the second-order parameters � and ˇ. See Fraga
Alves et al. [13] for � estimation and Gomes et al. [21] for ˇ estimation. We obtain
the estimates of � and ˇ using the algorithm suggested in Gomes and Pestana [19].

2.7 Conditional EVT

Diebold et al. [11] proposed in a first step the standardization of the returns through
the conditional standard deviations estimated with a volatility model. In a second
step, estimation of a p quantile using the EVT and the standardized returns. McNeil
and Frey [26] combine a AR(1) GARCH(1,1) assuming normal innovations with
the POT method from EVT. This is the conditional EVT method. Formally

VaRcEVT
tC1jt .p/ WD O�tC1jt C O�tC1jt Ozp

where O�tC1jt and O�tC1jt are the conditional mean estimates and conditional volatility
at time t C 1, obtained with a AR(1) GARCH(1,1) process. Ozp is a quantile p
estimate, obtained with an EVT method and the standardized residuals. Several
studies conclude that conditional EVT is the method with better out-of-sample
performance, to estimate VaRtC1jt .p/, for example, McNeil and Frey [26], Bystrom
[7], Bekiros and Georgoutsos [6], Kuester et al. [24], and Ghorbel and Trabelsi [14].

For the comparative study in Sect. 3, we combine the POT and MVRB methods
with two filters: one involving normal innovations and the other, Skewed-t innova-
tions, reaching four conditional EVT methods: N-POT, ST-POT, N-MVRB, and
ST-MVRB. In our study we consider recent developments in EVT involving bias
reduction, and not only the classical POT or Block Maxima methods. Additionally,
we use in the backtesting a new independence test with several advantages.
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3 Out-of-Sample Study

Considering a violation the event that a return on the portfolio is lower than the
reported VaR, the “hit” function is defined by

ItC1.p/ D
�
1 se RtC1 < VaRtC1jt .p/
0 se RtC1 � VaRtC1jt .p/:

Christoffersen [10] showed that a forecast model is accurate when the hit
sequence, fItgTtD1, satisfies the unconditional coverage (UC) and independence
properties (IND). UC hypothesis means P ŒItC1.p/D 1�Dp; 8tt . IND hypothesis
means that past information does not hold information about future violations. We
test the UC hypothesis with the Kupiec [25] test. This test measures whether the
number of violations is consistent with the coverage rate and is a likelihood ratio
test and the test statistic is asymptotically chi-squared distributed with one degree
of freedom.

Let us define the duration between two violations as Di WD ti � ti�1, where
ti denotes the day of violation number i and t0 D 0. The IND hypothesis can be
expressed as

Di
iid� D � Geometric.�/; with 0 < � < 1:

Considering the order statistics D1WN ; : : : ;DN WN of durations D1; : : : ;DN , for
testing the IND hypothesis versus tendency to clustering of violations, we apply the
test statistic proposed in Araújo Santos and Fraga Alves [1]

RN;ŒN=2� D DN WN � 1

DŒN=2�WN
: (1)

The asymptotic distribution for the test is Gumbel and the exact distribution is
given in Proposition 3.1 of Araújo Santos and Fraga Alves [1]. The methods were
backtested with two historical series: 20326 log returns from Dow Jones Industrial
Average index (October 2, 1928, to September 11, 2009) and 15019 log returns from
Standard and Poor’s 500 index (January 4, 1950, to September 11, 2009). The data
come from the Web site http://finance.yahoo.com/. We calculate VaRtC1jt .p/ using
moving windows of size nw D 1; 000 days and pD 0:05; 0:01; 0:0025; 0:001; 0:005.
As in previous studies, for the EVT methods, we choose the number of .k C 1/ top
order statistics with k D 100. The programs were written in the R language, with
the fGarch (Wuertz et al. [33]) and POT (Ribatet [31]) packages. Tables 1 and 2
present the percentage of violations and the p values for the Kupiec test. Tables 3
and 4 present the observed values of the independence test statistic Eq. (1) and the
p values computed with Monte Carlo simulations.

http://finance.yahoo.com/
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Table 1 Dow Jones industrial average index

Kupiec Kupiec Kupiec
100p Model % Viol. p value Model % Viol. p value Model % Viol. p value

5 HS 5.231 0.143 N-HS 5.195 0.216 ST-HS 5.159 0.313
1 1.325 0.000 1.133 0.068 1.185 0.012
0.1 0.279 0.000 0.207 0.000 0.217 0.000
5 ST 5.449 0.005 N-GARCH 5.211 0.182 ST-GARCH 5.329 0.037
1 1.242 0.001 1.718 0.000 1.164 0.025
0.1 0.160 0.015 0.595 0.000 0.124 0.306
5 POT 5.211 0.182 N-POT 5.143 0.326 ST-POT 5.117 0.455
1 1.252 0.001 1.004 0.957 1.035 0.628
0.1 0.181 0.001 0.160 0.015 0.160 0.015
5 MVRB 6.711 0.000 N-MVRB 6.540 0.000 ST-MVRB 6.556 0.000
1 1.842 0.000 1.557 0.000 1.511 0.000
0.1 0.098 0.941 0.083 0.435 0.083 0.435

UC Unconditional coverage

Table 2 Standard and Poor’s 500 index

Kupiec Kupiec Kupiec
100p Model % Viol. p value Model % Viol. p value Model % Viol. p value

5 HS 5.849 0.000 N-HS 5.207 0.263 ST-HS 5.243 0.190
1 1.569 0.000 1.191 0.027 1.170 0.049
0.1 0.314 0.000 0.243 0.000 0.214 0.000
5 ST 6.077 0.000 GARCH-N 5.393 0.035 GARCH-ST 5.443 0.018
1 1.405 0.000 1.698 0.000 1.006 0.945
0.1 0.143 0.133 0.585 0.000 0.143 0.133
5 POT 5.877 0.000 N-POT 5.172 0.354 ST-POT 5.200 0.280
1 1.384 0.000 1.006 0.945 1.006 0.945
0.1 0.221 0.001 0.164 0.028 0.150 0.083
5 MVRB 7.276 0.000 N-MVRB 6.648 0.000 ST-MVRB 6.648 0.000
1 2.061 0.000 1.591 0.000 1.591 0.000
0.1 0.157 0.049 0.107 0.796 0.100 0.996

UC Unconditional coverage

4 Final Remarks

• We confirm the poor performance of the unconditional methods. In almost all
cases, the new independence test rejects the IND hypothesis with high ratios (1).

• With p D 0:01, the conditional POT methods perform better than all other
methods, in most cases.

• With the very small coverage rate p D 0:001, the MVRB and ST-GARCH
methods are the best performers.
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Table 3 Dow Jones industrial average index

100p Model r obs. p value Model r obs. p value Model r obs. p value

5 HS 94:6 0.000 N-HS 10:2 0.589 ST-HS 16:6 0.011
1 76:0 0.000 7:6 0.692 7:5 0.736
0.1 24:9 0.000 4:5 0.831 4:5 0.822
5 ST 74:1 0.000 GARCH-N 10:2 0.594 GARCH-ST 10:2 0.596
1 64:5 0.000 10:0 0.293 8:6 0.467
0.1 10:1 0.075 15:3 0.007 9:5 0.096
5 POT 94:6 0.000 N-POT 10:1 0.603 ST-POT 16:6 0.011
1 70:6 0.000 7:2 0.729 7:7 0.634
0.1 9:2 0.148 3:7 0.920 3:5 0.945
5 MVRB 80:0 0.000 N-MVRB 10:3 0.634 ST-MVRB 11:4 0.378
1 89:8 0.000 9:3 0.410 9:1 0.439
0.1 8:3 0.199 3:9 0.711 4:0 0.676

IND Independence

Table 4 Standard and Poor’s 500 index

100p Model r obs. p value Model r obs. p value Model r obs. p value

5 HS 112:2 0.000 N-HS 19:4 0.001 ST-HS 19:4 0.001
1 89:8 0.000 9:7 0.227 7:4 0.630
0.1 36:8 0.000 5:4 0.587 5:5 0.552
5 ST 112:2 0.000 GARCH-N 19:4 0.001 GARCH-ST 21:2 0.000
1 70:6 0.000 13:8 0.024 14:1 0.016
0.1 15:6 0.018 15:1 0.007 9:0 0.113
5 POT 112:2 0.000 N-POT 19:4 0.001 ST-POT 19:4 0.001
1 76:0 0.000 13:9 0.017 12:9 0.032
0.1 19:2 0.000 3:7 0.881 3:5 0.892
5 MVRB 134:6 0.000 N-MVRB 12:0 0.213 ST-MVRB 12:0 0.217
1 89:8 0.000 11:6 0.095 9:7 0.268
0.1 10:3 0.095 13:8 0.039 10:0 0.082

IND Independence
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Asymptotic Distribution of the Maximum
for a Chaotic Economic Model

Ana Cristina Moreira Freitas

Abstract
In this work we study the asymptotic distribution of the partial maximum of
observable random variables evaluated along the orbits of the tent map, which is
frequently used as a model in the economic literature.

1 Introduction

Chaos has become a subject of great interest in several domains like, for example,
economics, biology, physics and meteorology. Its relevance in economics has been
explored in models of consumer behaviour, growth cycles, overlapping generations
and stock market behaviour, among others (see, e.g. [1,8,9] and references therein).

In this work, we study the tent map defined by f .x/ D 1� 2jxj, for x 2 Œ�1; 1�;
which has been used extensively in applied economics. It is well known that there
is a unique, ergodic, f -invariant probability measure, absolutely continuous with
respect to Lebesgue measure, that is given by �.A/ D R

A
1=2dx.

The tent map is chaotic and highly sensitive on initial conditions. Actually,
after some iterates, the behaviour of most orbits becomes erratic and uniformly
distributed on the set Œ�1; 1�. Hence, from the applications point of view, it is
meaningful to study the statistical properties of this system. In fact, the statistical
properties of one-dimensional chaotic systems, like the tent map, have been a
subject of much interest and investigation. We refer, among many others, the works
[3, 6, 9, 10], that give, in particular, some applications of the tent map in economic
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models. In this work, we are particularly concerned with the extreme type behaviour
of the orbits of this system.

Given an observable ' W Œ�1; 1� ! R[f˙1g achieving a global maximum at 0,
consider the stationary stochastic process X0;X1; : : : defined by

Xn D ' ı f n; for each n 2 N: (1)

Here, our main goal is to study of the statistical properties of the partial maximum
Mn WD maxfX0; : : : ; Xn�1g, when properly normalised.

2 Extreme Value Laws

We are interested in knowing if there are normalising sequences fangn2N 
 R
C and

fbngn2N 
 R such that

� .fx W an.Mn � bn/ � yg/ D � .fx W Mn � ung/ ! H.y/; (2)

for some non-degenerate distribution function (d.f.) H , as n ! 1. Here un WD
un.y/ D y=an C bn is such that

n�.X0 > un/ ! �; as n ! 1, (3)

for some � D �.y/ � 0 and in fact H.y/ D H.�.y//. When this happens we say
that we have an extreme value law (EVL) forMn.

Classical extreme value theory asserts that there are only three types of nonde-
generate asymptotic distributions for the maximum of an independent and identi-
cally distributed (i.i.d.) sample under linear normalisation. They will be referred to
as classical EVL and we denote them by:

Type 1: EV1.y/ D e�e�y
, y 2 R; this is also known as the Gumbel extreme value

distribution (e.v.d.).

Type 2: EV2.y/ D
(

e�y�˛
; y > 0

0 ; y � 0
(˛ >0); this family of distribution

functions is known as the Fréchet e.v.d.

Type 3: EV3.y/ D
(

e�.�y/˛ ; y � 0

1 ; y > 0
(˛ >0); this family of distribution

functions is known as the Weibull e.v.d.

The study of the limiting behaviour for maxima of a stationary process can be
reduced, under adequate conditions on the dependence structure, to the classical
extreme value theory for sequences of i.i.d. random variables (r.v.). Hence, to the
stationary process X0;X1; : : : we associate an independent sequence of r.v. denoted
by Z0;Z1; : : :, whose d.f. is the same of X0. For each n 2 N, consider

cMn D maxfZ0; : : : ; Zn�1g: (4)
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Leadbetter et al. established, in Theorem 3.5.2 of [7], conditions on the depen-
dence structure that allow us to relate the asymptotic distribution of Mn with that
of cMn. They denoted those conditions byD.un/ and D0.un/.

Freitas and Freitas stated, in [5], that the usual conditionD.un/ can be weakened
in such a way that Theorem 3.5.2 of [7] still holds, that is, the asymptotic distribu-
tions of Mn and cMn are the same. The condition proposed in [5] is the following
mixing-type condition.

Condition (D.un/). We say that D.un/ holds for the sequence X0;X1; : : : if for
any integers `; t and n

j� f.X0 > un/\ .Xt � un \ : : : \XtC`�1 � un/g
��fX0 > ung�fX0 � un \ : : : \X`�1 � ungj � �.n; t/;

where �.n; t/ is nonincreasing in t for each n and n�.n; tn/ ! 0 as n ! 1 for
some sequence tn D o.n/, that is, for some sequence tn verifying tn=n ! 0 as
n ! 1.

While conditionD.un/ is a long range type of dependence requirement, the next
one imposes some restrictions on the dependence structure but on a short range
scope.

Condition (D0.un/). We say that D0.un/ holds for the sequence X0;X1; : : : if

lim
k!1 lim sup

n!1
n

Œn=k�X

jD1
�fX0 > un \ Xj > ung D 0:

This condition D0.un/ restricts the occurrence of a large number of
“exceedances” of the level un close together in time.

The result of [5] that we present below establishes that Mn and cMn share the
same asymptotic distribution under conditionsD.un/ and D0.un/, for any sequence
.un/n2N such that n�fX0 > ung ! � , as n ! 1, for some � � 0.

Proposition 1 ([5], Theorem 1). Let .un/n2N be a sequence such that n�fX0 >
ung ! � as n ! 1, for some � � 0. Assume that conditions D.un/ and D0.un/
hold for the stationary stochastic process X0;X1; : : :. Then, limn!1 �fMn �
ung D limn!1�fcMn � ung:

Based on this proposition, in [4], we obtained a result for the particular case of
Eq. (1), where ' � Id . We stated that, in this case, under appropriate normalisation,
the limiting law ofMn is the same as if X0;X1; : : : were independent with the same
marginal d.f., that is, it is of type III (Weibull) with parameter equal to 1.

Theorem 1 ([4], Theorem 1). For the stochastic process X0;X1; : : : given by
Eq. (1) where ' � Id , we have
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P
nn
2
.Mn � 1/ � x

o
! H.x/ D

(
ex ; x � 0

1 ; x > 0
; as n ! 1:

In the next section we will generalise this result for general observables. The
advantage of using these general forms for the observables is that in this way we
allow any kind of behaviour near the point where the maximum is achieved and for
which a nondegenerate limiting law is attainable.

3 Characterisation of the Observables and Main Result

Consider again the general case Xn D ' ı f n; for each n 2 N; for an observable
' W Œ�1; 1� ! R [ f˙1g achieving a global maximum at 0.

We assume that the observable ' is of the form

'.x/ D g.jxj/; (5)

where the function g W Œ0;C1/ ! R [ fC1g has a global maximum at 0, is a
strictly decreasing bijection g W V ! W in a neighbourhood V of 0 and has one of
the following three types of behaviour:

Type 1: There exists some strictly positive function p W W ! R such that for all
y 2 R

lim
s!g1.0/

g�11 .s C yp.s//

g�11 .s/
D e�y:

Type 2: g2.0/ D C1 and there exists ˇ > 0 such that for all y > 0

lim
s!C1

g�12 .sy/
g�12 .s/

D y�ˇ:

Type 3: g3.0/ D D < C1 and there exists � > 0 such that for all y > 0

lim
s!0

g�13 .D � sy/
g�13 .D � s/ D y� :

Examples of each one of the three types are as follows: g1.x/D �logx, g2.x/ D
x�1=˛ for some ˛ > 0 and g3.x/ D D � x1=˛ for some D 2 R and ˛ > 0.

In the following result we characterise the limiting law ofMn, which depends on
the form of the observable ' defined in Eq. (5).

Theorem 2. Suppose the stochastic processX0;X1; : : : is given by Eq. (1), where '
is of the form (5) and g has one of the three types of behaviour defined above. Then
we have an EVL for Mn which coincides with that of cMn. Moreover, if g is of type
gi , for some i 2 f1; 2; 3g, then we have an EVL for Mn of type i .
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4 Proof of Theorem 2

In this section, we start by noting that, by Proposition 1, for proving Theorem 2 it is
enough to prove the following three lemmas.

Lemma 1. Consider the stochastic processX0;X1; : : : defined as in Theorem 2 and
to this process associate a sequence of i.i.d. r.v. Z0;Z1; : : : whose d.f. is the same of
X0. Then, if g is of type gi , for some i 2 f1; 2; 3g, then we have an EVL for cMn of
type i .

Lemma 2. Let .un/n2N be a sequence such that n�fX0 > ung ! � , as n ! 1,
for some � � 0. Then, conditionD.un/ holds for the stochastic process X0;X1; : : :
defined as in Theorem 2.

Lemma 3. Let .un/n2N be a sequence such that n�fX0 > ung ! � , as n ! 1,
for some � � 0. Then, conditionD0.un/ holds for the stochastic process X0;X1; : : :
defined as in Theorem 2.

Proof of Lemma 1. We start by noting that the f -invariant probability measure � is
such that, for �1 � x � 1, �fŒ�1; x�g D xC1

2
:

Let F be the d.f. of X0, that is, F.x/ D �fX0 � xg and let ' be defined as in
Eq. (5). We may write

1� F.x/ D �fw W X0.w/ � xg D �fw W '.w/ � xg D �fw W g.jwj/ � xg
D �fw W jwj � g�1.x/g D g�1.x/:

Moreover, xF WD supx2Rfx W F.x/ < 1g D g.0/:

First suppose that g D g1 is of type 1. Then, there exists some strictly positive
function p W W ! R such that for all y 2 R

lim
s!g1.0/

g�11 .s C yp.s//

g�11 .s/
D e�y:

So,

lim
s!xF

1 � F.s C yp.s//

1 � F.s/ D e�y:

By Theorem 1.6.2 of [7], we conclude that we have an EVL for cMn of type 1.
Suppose now that g D g2 is of type 2. Then g2.0/ D C1 and there exists ˇ > 0

such that for all y > 0

lim
s!C1

g�12 .sy/
g�12 .s/

D y�ˇ:
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Thus, xF D C1 and

lim
s!C1

1 � F.sy/
1 � F.s/ D y�ˇ:

By Theorem 1.6.2 of [7], we conclude that we have an EVL for cMn of type 2.
Finally, suppose that g D g3 is of type 3. Then g3.0/ D D < C1 and there

exists � > 0 such that for all y > 0

lim
s!0

g�13 .D � sy/
g�13 .D � s/

D y� :

Consequently, xF D D < C1 and

lim
s!0

1 � F.D � sy/

1 � F.D � s/
D y� :

By Theorem 1.6.2 of [7], we conclude that we have an EVL for cMn of type 3. ut
The proofs of Lemmas 2 and 3 are similar to the proofs of Lemmas 2 and 3 of [4].

Proof of Lemma 2. For proving Lemma 2 we will use the fact that the tent map
has exponential decay of correlations. In fact, by Theorem 8.3.2 of [2], for any
functions ',  W Œ0; 1� ! R with bounded variation, there are positive constants C
and 0 < r < 1, independent of '; and t , such that

ˇ
ˇ
ˇ
ˇ

Z
' � . ı f t /d��

Z
'd�

Z
 d�

ˇ
ˇ
ˇ
ˇ � CVar.'/k k1rt ; 8t � 0; (6)

where Var.'/ denotes the total variation of '.
Taking ' D 1fX0>ung and  D 1fX0�un\:::\X`�1�ung in Eq. (6), we obtain

j� f.X0 > un/\ .Xt � un \ : : : \XtC`�1 � un/g
��fX0 > ung�fX0 � un \ : : : \X`�1 � ungj

� CVar.1fX0>ung/k1fX0�un\:::\X`�1�ungk1rt � 2Crt :

Consider now the function �.t/ D 2Crt and observe that it is decreasing in t
and taking, for example, tn D p

n we clearly have n�.tn/ ! 0 as n ! 1. Many
other choices for tn suit our purposes. In this way, we have just proved that condition
D.un/ is valid for the stochastic process X0;X1; : : : ut

Proof of Lemma 3. Let .un/n2N be a sequence such that

n�fX0 > ung ! �; as n ! 1; (7)
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for some � � 0. Consider the interval Uı WD .�ı; ı/, for ı D ın such that if x 2 Uı
then '.x/ > un. By Eq. (7), we have, in particular, that un ! 1 as n ! 1, and so
ı D ın ! 0 as n ! 1.

Fix j 2 f1; : : : ; Œn=k�g, let wi WD �
i�1
2j
; i
2j

	
and w�i WD �� i

2j
;� i�1

2j

	
, for

i D 1; : : : ; 2j , and consider the partition of Œ�1; 1� defined by Pj WD fwi W i D
�2j ; : : : ;�1; 1; : : : ; 2j g. Note that, for each wi 2 Pj , we have that f ,f 2,. . .f j

are one-to-one on wi . Moreover, since jf 0.x/j D 2 for all x ¤ 0, we have

jf j .wi /j D 1: (8)

Define ` WD maxfi 2 N0 W i
2j

� ıg.
If ` � 1, we have

jUıj D 2

 
X̀

iD1
jwi j C jw�j

!

;

where w� D Œ `
2j
; ı�. So,

jUıj D 2

 
X̀

iD1

1

2j
C ˛

1

2j

!

D 2.`C ˛/

2j
; (9)

where 0 � ˛ < 1. We also have

jUı \ f �j .Uı/j D 2

 
X̀

iD1
jwi \ f �j .Uı/j C jw� \ f �j .Uı/j

!

: (10)

Since jf 0.x/j D 2 for all x ¤ 0 and f j is one-to-one on wi , we have

jwi \ f �j .Uı/j
jwi j D jf j .wi \ f �j .Uı//j

jf j .wi /j D jf j .wi /\ Uıj
jf j .wi /j � jUıj

jf j .wi /j :

Using now Eq. (8), we obtain jwi \ f �j .Uı/j � jUıjjwi j:
So, by Eq. (10), and noting that w� 
 w`C1, we have

jUı\f �j .Uı/j � 2

0

@
X̀

iD1
jUı jjwi j C jUı jjw`C1j

1

A D 2

0

@
X̀

iD1

jUı j
2j

C jUı j
2j

1

A D 2.`C1/ jUı j
2j

:

Dividing by jUıj, and using Eq. (9), we obtain

jUı \ f �j .Uı/j
jUıj � 2.`C 1/ jUı j

2j

2.`C˛/
2j

D `C 1

`C ˛
jUıj:
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So, for ` � 1,
jUı \ f �j .Uı/j � 2jUıj2: (11)

Consider now the case where `D 0. We start by observing that f .Uı/ D
.f .ı/; 1�D .un; 1� and, for j � 2, f j .Uı/D Œ�1; f j .ı//. Choose now n sufficiently
large such that ı < 1=2. In this way, if f j .Uı/ \ Uı ¤ ;, then jf j .Uı/j > 1=2:

Thus,

jUı \ f �j .Uı/j
jUıj D jf j .Uı \ f �j .Uı//j

jf j .Uı/j � jUıj
1=2

;

and so, also for ` D 0, we obtain the same estimate of Eq. (11).
Since, for x 2 Œ�1; 1�, �fŒx; 1�g D xC1

2
, we have that

jUıj D 2�fUıg D 2�fX0 > ung

and

jUı \ f �j .Uı/j D 2�fX0 > un \Xj > ung:

Now, rewriting Eq. (11), we obtain

2�fX0 > un \ Xj > ung � 8.�fX0 > ung/2:

Consequently,

n

Œn=k�X

jD1
�fX0 > un \ Xj > ung � 4nŒn=k�.�fX0 > ung/2 � 4

k
.n�fX0 > ung/2:

Now, by Eq. (7), 4
k
.n�fX0 > ung/2 ! 4

k
�2 as n ! 1.

So,

lim
k!1 lim sup

n!1
n

Œn=k�X

jD1
�fX0 > un \ Xj > ung D lim

k!1
4

k
�2 D 0:

ut
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Adaptive Choice of Thresholds and the
Bootstrap Methodology: An Empirical Study

M. Ivette Gomes, Fernanda Figueiredo, and M. Manuela Neves

Abstract
In this chapter, we discuss an algorithm for the adaptive estimation of a positive
extreme value index, � , the primary parameter in Statistics of Extremes. Apart
from classical extreme value index estimators, we suggest the consideration
of associated second-order corrected-bias estimators, and propose the use of
bootstrap computer-intensive methods for the adaptive choice of thresholds.

1 Introduction and Outline of the Chapter

Heavy-tailed models appear often in practice in fields like telecommunications,
insurance, finance, bibliometrics and biostatistics. We shall deal with the estimation
of a positive extreme value index (EVI), � , the primary parameter in Statistics
of Extremes. Apart from the classical Hill, moment and generalized-Hill semi-
parametric estimators of � , detailed in Sect. 2, we shall consider the associated
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classes of second-order reduced-bias estimators, based on an adequate estimation
of generalized scale and shape second-order parameters, valid for a large class of
heavy-tailed underlying parents, and appealing in the sense that we are able to
reduce the asymptotic bias of a classical estimator without increasing its asymptotic
variance. We shall call these estimators “classical-variance reduced-bias” (CVRB)
estimators.

After the introduction, in Sect. 2, of a few technical details in the area of extreme
value theory (EVT), related with the EVI-estimators under consideration in this
chapter, we shall briefly discuss, in Sect. 3, the kind of second-order parameters’
estimation which enables the building of reduced-bias estimators with the same
asymptotic variance, �2

C
, of the associated classical estimator. After the discussion,

in Sect. 4, of the asymptotic behaviour of the estimators under consideration, we
propose and discuss in Sect. 5, in the lines of [13] and, more recently, [14],
an algorithm for the adaptive estimation of a positive EVI, through the use of
bootstrap computer-intensive methods. The algorithm is described for a classical
EVI-estimator and associated CVRB estimator, but it works similarly for the
estimation of any other parameter of extreme events, like a high quantile, the
probability of exceedance or the return period of a high level. Section 6 is entirely
dedicated to the application of the algorithm to the analysis of environmental data,
the number of hectares burned during all wildfires recorded in Portugal in the period
1999–2003.

2 The EVI-Estimators Under Consideration

In the area of EVT, and for large values, a model F is said to be heavy-tailed
whenever the right-tail function, F WD 1 � F , is a regularly varying function with
a negative index of regular variation, denoted �1=� , i.e., if for all x > 0, there
exists � > 0, such that F .tx/=F .t/ ! x�1=� ; as t ! 1. If this holds, we use
the notation F 2 RV�1=� , and we are working in the whole domain of attraction
(for maxima) of heavy-tailed models, denoted DM

�
EV�

�
�>0

. Equivalently, with

U.t/ WD F 
�
1 � 1=t

� D inf fx W F.x/ � 1 � 1=tg, F 2 DM

�
EV�

�
�>0

”
F 2 RV�1=� ” U 2 RV�; the so-called first-order conditions. For these heavy-
tailed parents, given a sample Xn WD .X1; : : : ; Xn/ and the associated sample of
ascending order statistics (o.s.’s), .X1Wn � � � � � XnWn/, the classical EVI-estimator
is the Hill estimator [16],

Hk � Hk;n WD 1

k

kX

iD1
flnXn�iC1Wn � lnXn�kWng; (1)

the average of the k log-excesses over a high random threshold Xn�kWn, an
intermediate o.s., i.e., with k such that

k D kn ! 1 and k=n ! 0; as n ! 1: (2)
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But the Hill-estimator Hk , in Eq. (1), reveals usually a high non-null asymptotic
bias at optimal levels, i.e., levels k where the mean squared error (MSE) is
minimum. This non-null asymptotic bias, together with a rate of convergence of the
order of 1=

p
k, leads to sample paths with a high variance for small k, a high bias

for large k, and a very sharp MSE pattern, as function of k. Recently, several authors
have been dealing with bias reduction in the field of extremes (for an overview, see
[18], Chap. 6, as well as the more recent paper, [4]). For technical details, we then
need to work in a region slightly more restrict than DM

�
EV�

�
�>0

. In this chapter,
we shall consider parents such that, with � > 0, � < 0 and ˇ 6D 0,

U.t/ D C t�
�
1C A.t/=�CO.A2.t//

�
; as t ! 1; A.t/ DW �ˇt�: (3)

The most simple class of second-order minimum-variance reduced-bias (MVRB)
EVI-estimators is the one in [3], used for a semi-parametric estimation of high
quantiles in [10]. This class, here denoted H � Hk , is the CVRB-estimator
associated with the Hill estimator H DHk , in Eq. (1), and depends upon the
estimation of the second-order parameters .ˇ; �/, in Eq. (3). Its functional form is

Hk � H
k;n; Ǒ; O� WD Hk

�
1 � Ǒ.n=k/ O�=.1 � O�/�; (4)

where . Ǒ; O�/ is an adequate consistent estimator of .ˇ; �/. Algorithms for the
estimation of .ˇ; �/ are provided, for instance, in [10], and will be reformulated
in Sect. 3 of this chapter.

Apart from the Hill estimator, in Eq. (1), we suggest the consideration of two
other classical estimators, valid for all � 2R, but taken here exclusively for heavy
tails, the moment [6] and the generalized-Hill [1, 2] estimators. The moment
estimator (M) has the functional expression

Mk � Mk;n WD M
.1/

k;n C 1
2

˚
1 � �

M
.2/

k;n=.M
.1/

k;n/
2 � 1

��1

; (5)

withM.j /

k;n WD 1
k

Pk
iD1

�
lnXn�iC1Wn � lnXn�kWn

�j
, j � 1

�
M

.1/

k;n � Hk; in Eq. (1)
�
:

The generalized Hill estimator (GH), based on Hk;n, in Eq. (1), is given by

GHk � GHk;n WD Hk;n C 1

k

kX

iD1

˚
lnHi;n � lnHk;n



: (6)

The associated CVRB estimators have similar expressions, due to the same domi-
nant component of asymptotic bias of the estimators in Eqs. (5) and (6), for a positive
EVI. Denoting W either M or GH , and with the notation W for either M or GH,
we get

W k � W
k;n; Ǒ; O� WD Wk

�
1 � Ǒ .n=k/ O� =.1� O�/� � Ǒ O� .n=k/ O� =.1 � O�/2: (7)

In the sequel, we generally denoteC any of the classical EVI-estimators, in Eqs. (1),
(5) and (6), and C the associated CVRB-estimator.
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3 Estimation of Second-Order Parameters

The estimation of � , ˇ and � at the same value k leads to a high increase in the
asymptotic variance of CVRB estimators C

k;n; Ǒ; O�, which becomes �2
C
..1 � �/=�/4

(see [17], among others). The external estimation of � at k1, but the estimation of �
and ˇ at k D o.k1/, slightly decreases the asymptotic variance to �2

C
..1 � �/=�/2,

still greater than �2
C

(see [8], among others). The external estimation of both ˇ and
� at a level k1 and the estimation of � at a level k D o.k1/, or even k D O.k1/,
can lead to a CVRB estimator with an asymptotic variance �2

C
, provided we choose

adequately k1 (see [3,11,12]). Such a choice is theoretically possible (see [4], among
others), but under conditions difficult to guarantee in practice. As a compromise
between theoretical and practical results, we have so far advised any choice k1 D
Œn1�
 �, with 
 small and Œx� denoting the integer part of x. We shall consider here

 D 0:001.

Algorithm. (second-order parameters’ estimation) :
1. Given an observed sample .x1; : : : ; xn/, plot the observed values of O�� .k/, the

most simple estimator in [7], for the tuning parameters � D 0 and � D 1.
2. Consider f O�� .k/gk2K , with K D .Œn0:995�; Œn0:999�/, compute their median,

denoted �� , and compute I� WD P
k2K . O�� .k/� �� /

2, � D 0; 1. Next choose the
tuning parameter �� D 0 if I0 � I1; otherwise, choose �� D 1.

3. Work with O� � O��� WD O���.k1/ and Ǒ � Ǒ
�� WD Ǒ O���

.k1/, with k1 D Œn0:999�,

being Ǒ O�.k/, the estimator in [8].

Remark 1. This algorithm leads usually to the tuning parameter � D 0 whenever
j�j � 1 and � D 1, otherwise. For details on this and similar algorithms, see [10].

4 Asymptotic Distributional Behaviour of the Estimators

In order to obtain a nondegenerate behaviour for any semi-parametric EVI-estimator,
it is convenient to assume a second-order condition, measuring the rate of conver-
gence in the first-order condition. Such a condition, valid for all x > 0, involves a
parameter � � 0, a rate function A, with jAj 2 RV� and is given by

lim
t!1 .U.tx/=U.t/ � x� /=A.t/ D x� .x� � 1/=�: (8)

In this chapter, and mainly because of the reduced-bias estimators in Eqs. (4) and
(7), generally denoted Ck � C

k;n; Ǒ; O�, we shall assume that Eq. (3) holds. Then,
Eq. (8) holds, with A.t/ D � ˇt� . Let Ck be the associated classical estimator of
� . Trivial adaptations of the results in the above-mentioned papers (see also [15])
enable us to state, without proof, the following theorem, again for models with
� >0.
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Fig. 1 General patterns of
asymptotic variances (Var),
squared bias .BIAS2) and
mean squared errors (MSE)
of a classical EVI-estimator
and associated CVRB
estimator

Theorem 1. Assume that condition (8) holds and let k D kn be an intermediate
sequence, i.e., Eq. (2) holds. Then, there exist a sequence ZC

k of asymptoti-
cally standard normal random variables, �C > 0 and real numbers bC;1 such that

CkDd � C �
C
ZC
k =

p
k C b

C;1
A.n=k/ .1 C op.1//: If we further assume that

Eq. (3) holds and estimate ˇ and � consistently through Ǒ and O�, in such a way
that O� � � D op.1= lnn/, we can guarantee that there exists a pair of real numbers
.b

C;1
; b

C ;2
/, with b

C;1
D 0, such that C

k;n; Ǒ; O� Dd � C �CZ
C
k =

p
k C b

C;1
A.n=k/C

b
C;2
A2.n=k/ .1C op.1//:

As n! 1, let kD kn be intermediate such that
p
k A.n=k/ ! �, finite, the

levels k where the MSE of Ck is minimum. Let O�k denote either Ck or Ck . Then,

we have
p
k
� O�k � �� d! Normal.� b O�;1; �2C /, even if we work with CVRB EVI-

estimators. If
p
k A.n=k/ ! 1, with

p
kA2.n=k/ ! �A , finite, the levels k

where the MSE of Ck is minimum,
p
k
�
Ck � �� d! Normal

�
�AbC;2 ; �

2
C

�
:We

have �2
H

D �2, �2
M

D �2
GH

D 1 C �2,bH;1 D 1=.1� �/; bM;1 D bGH;1 D .� � ��C �/=

.�.1� �/2/, and b
H;1

D b
M;1

D b
GH;1

D 0. Consequently, since bC;1 6D 0 whereas

b
C;1

D 0, the C -estimators outperform the C -estimators for all k, as can be seen
in Fig. 1.

5 The Bootstrap Methodology and Adaptive EVI-Estimation

With AMSE standing for “asymptotic MSE”, and k O�0 .n/ WD arg mink MSE. O�k/;

k0j O� .n/ WD arg min
k

AMSE
�
b�k
�

(9)

D arg min
k

8
<̂

:̂

�
�2

O�
=k C b2

O�;1
A2.n=k/

�
.ifb� D C/

�
�2

O�
=k C b2

O�;2
A4.n=k/

�
.ifb� D C/

D k
O�
0 .n/.1C o.1//;
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as shown in Theorem 1 of [5]. The bootstrap methodology can thus enable us to
consistently estimate the optimal sample fraction (OSF), k O�0 .n/=n, on the basis of
a consistent estimator of k0j O� .n/, in Eq. (9), in a way similar to the one used for
classical EVI-estimation (see, for instance, [9]). We shall here use the most obvious
auxiliary statistics, the statistics Tkj O� � Tk;nj O� WD b�Œk=2� �b�k; k D 2; : : : ; n � 1;

which converge in probability to zero, for intermediate k, and have an asymptotic
behaviour strongly related with the asymptotic behaviour ofb�k . Indeed, under the
above-mentioned third-order framework in Eq. (3), we easily get

Tkj O�
dD �

O�
P
O�
kp
k

C
(
b

O�;1
.2� � 1/ A.n=k/.1C op.1// .ifb� D C/

b
O�;2
.22� � 1/ A2.n=k/.1C op.1// .ifb� D C/

with P
O�
k asymptotically standard normal. Consequently, denoting k0jT .n/ WD

arg mink AMSE.Tkj O� /; we have

k0j O� .n/ D k0jT .n/
(
.1 � 2�/

2
1�2� .1C o.1// .ifb� D C/

�
1 � 22�� 2

1�4� .1C o.1// .ifb� D C/:

How Does The Bootstrap Methodology Then Work?
Given the sample Xn D .X1; : : : ; Xn/ from an unknown modelF , and the functional
Tk;n � Tk;nj O� DW �k.Xn/, 1 < k < n, consider for any n1 D O.n1�
/, 0 <

 < 1, the bootstrap sample X�n1 D .X�1 ; : : : ; X�n1/; from F �n .x/ D 1

n

Pn
iD1 IŒXi�x�;

the empirical d.f. associated to the available sample, Xn. Next, associate to the
bootstrap sample the corresponding bootstrap auxiliary statistic, T �k1;n1 WD �k1.X

�
n1
/,

1<k1 <n1: Then, with k�
0jT .n1/ D arg mink1 AMSE

�
T �k1;n1

�
,

k�
0jT .n1/
k0jT .n/

D
�n1
n

� c �
1�c �

.1C o.1//; c D
�
2 .ifb� D C/

4 .ifb� D C/:
(10)

Consequently, for another sample size n2 and for every ˛ > 1,

�
k�
0jT .n1/

�˛

k�
0jT .n2/

�
n˛1
n˛

n

n2

�� c �
1�c �

D ˚
k0jT .n/


˛�1
.1C o.1//:

It is then enough to choose n2 D Œn .n1=n/
˛�, to have independence of �. If we

put n2 D Œn21=n�, i.e., ˛D 2, we have
�
k�
0jT .n1/

�2
=k�

0jT .n2/ D k0jT .n/.1 C o.1//;

as n ! 1: We are now able to estimate k O�0 .n/, on the basis of any estimate O� of �.
With Ok�

0jT denoting the sample counterpart of k�
0jT , and O� the �-estimate in Step 3 of

the algorithm, initiated in Sect. 3, we have the k0-estimate
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Ok O�0 .nIn1/ WD min
�
n � 1;

�
c O� . Ok�0jT .n1//2= Ok�0jT .Œn21=n�C 1/

	C 1

; (11)

with c O� D
�
1 � 2c O�=2

 2
1�c O�

, c given in Eq. (10).

Again, withb� denoting either C or C , we proceed with the algorithm.

Algorithm. (cont.) (bootstrap adaptive estimation of � ):
4. Computeb�k , k D 1; 2; : : : ; n � 1

5. Next, consider the sub-sample size n1 D Œn0:955� and n2 D Œn21=n�C 1

6. For l from 1 till BD 250, generate independently, from the empirical d.f.
F �n .x/D 1

n

Pn
iD1 IŒXi�x�; associated with the observed sample, B bootstrap

samples .x�1 ; : : : ; x�n2/ and .x�1 ; : : : ; x�n2 ; x
�
n2C1; : : : ; x

�
n1
/, of sizes n2 and n1,

respectively
7. Denoting T �k;n the bootstrap counterpart of Tk;n, obtain .t�k;n1;l ; t

�
k;n2;l

/, 1� l �B ,
the observed values of the statistic T �k;ni ; i D 1; 2, compute MSE�.ni ; k/ D
1
B

PB
lD1

�
t�k;ni ;l

�2
; k D 2; : : : ; ni � 1 and obtain Ok�

0jT
.ni / WD arg min

1�k�ni�1
MSE�

.ni ; k/, i D 1; 2

8. Compute Ok O�0 .nIn1/ in Eq. (11)
9. Computeb��

n;n1jT WDb� Ok O�
0 .nIn1/

6 An Application to Burned Areas Data

Most of the wildfires are extinguished within a short period of time, with almost
negligible effects. However, some wildfires go out of control, burning hectares of
land and causing significant and negative environmental and economical impacts.
The data we analyse here consists of the number of hectares, exceeding 100 ha,
burnt during wildfires recorded in Portugal during 14 years (1990–2003). The data
(a sample of size n D 2; 627) do not seem to have a significant temporal structure,
and we have used it as a whole, although we think also sensible, to try avoiding
spatial heterogeneity, considering at least three different regions: the north, the
centre and the south of Portugal (a study out of the scope of this note).

The box plot and a histogram of the available data provide evidence on the
heaviness of the right tail. We shall next consider, for this type of data, the
performance of the adaptive CVRB-EVI estimates H , in Eq. (4), which are MVRB.
These MVRB estimators exhibit stabler sample paths thanH , as functions of k, and
often enable us to take a decision upon the estimates to be used, even with the help of
any heuristic stability criterion. The algorithm in this chapter, valid asymptotically,
enables us to better and adaptively estimate the OSF associated with the MVRB
or CVRB estimates. For a sub-sample size n1 D Œn0:955� D 1843, and B D 250

bootstrap generations, we have got OkH�

0 D 1319 and the bootstrap MVRB-EVI-
estimateH

�D 0:658, the value pictured in Fig. 2, jointly with the above-mentioned
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Fig. 2 Estimates of the EVI,
� , through the Hill estimator,
H , in Eq. (1), and the MVRB
estimator, H , in Eq. (4), for
the burned areas under
analysis, together with the
bootstrap adaptive estimates
H� and H

�

adaptive bootstrap Hill estimate, H�D 0:73. Note the fact that the MVRB EVI-
estimators look practically “unbiased” for the data under analysis, but different
patterns can occur for other data sets.

A few practical questions may be raised under the set-up developed: is the
method strongly dependent on the choice of n1? What is its sensitivity with respect
to the choice of �-estimate? Although aware of the need of n1 D o.n/, what happens
if we choose n1 D n? Answers to these questions are expected not to be a long way
from the ones given for classical estimation (see [9]), have lightly been addressed in
[13, 14], for reduced-bias estimation, but are out of the scope of this chapter.
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Distributional Properties of Generalized
Threshold ARCH Models

E. Gonçalves and N. Mendes-Lopes

Abstract
The aim of this chapter is to give a contribution for the estimation of the law of
stationary generalized threshold ARCH (GTARCH) processes. Firstly we present
bounds for the marginal distribution of a threshold ARCH process, ", with an
independent generator process Z, as well as for the laws of finite dimension
of the absolute value of this process. The results are illustrated by a simulation
study considering several distributions forZ, in particular with different behavior
in what concerns the tails’ height, and estimating the distribution function of
the model by the empirical one. Secondly, with the same goal we establish
a dependence property for strictly stationary GTARCH processes from which,
as an application of Berkes and Horváth [Ann. Appl. Probab. 11(2), 789–809
(2001)] results, the convergence in law and the almost sure uniform convergence
of the empirical process are obtained.

1 Introduction

In this chapter, we present distributional properties of generalized threshold auto-
regressive conditionally heteroscedastic (GTARCH) processes (Zakoian [8]).
We observe that this class of nonlinear models has advantage over the GARCH
one (Engle [3], Bollerslev [2]). In fact, contrary to what happens with GARCH
models, its conditional variance depends, not necessarily symmetrically, on the past
observations, being therefore more adequate to take into account the asymmetries
in the volatility so often found in financial time series.
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The studies here presented concern stationary processes. Namely, the theoretical
results are presented in a weakly stationary frame while the simulation analysis use
the more general frame, in this case, of strictly stationary processes.

A real stochastic process, " D ."t ; t 2 Z/ ; follows a GTARCH model with
orders p and q, GTARCH .p; q), if

(
"t D �tZt
�t D ˛0 CPq

iD1˛i "
C
t�i �Pq

iD1ˇi "�t�i CPp
jD1�j �t�j

(1)

where ˛0 > 0; ˛i � 0; ˇi � 0; �j � 0, Z D .Zt ; t 2 Z/ is a sequence of
independent and identically distributed real random variables, with zero mean and
unit variance and such thatZt is independent of "t�1 D � ."t�1; "t�2; : : :/ and where
"Ct D "tIf"t�0g; "�t D "tIf"t<0g: We note that Z is called the generating process of
". We say that " follows a TARCH .q/ model if �j D 0, j D 1; : : : ; p:

The stationarity (weak and strict) of the general model (1) is equivalent to the
stationarity of the vectorial process of RpC2q�2, X D .Xt ; t 2 Z), defined by

Xt D
�
�t ; �t�1; : : : ; �t�pC1; "Ct�1; : : : ; "

C
t�qC1;�"�t�1; : : : ;�"�t�qC1

T
;

satisfying the autoregressive equationXtC1 D AtXt CB , with B D .˛0; 0; : : : ; 0/
T

and .At ; t 2 Z/ a specific sequence of independent and identically distributed
random square matrices of pC 2q � 2 order. Sufficient conditions for the existence
of the strictly stationary and ergodic solution of the general model (1) are stated in
Gonçalves and Mendes-Lopes [4, 6].

In some particular cases the stationarity study of " may be undertaken without
the vectorial frame. For example, let us consider the TARCH (q) model defined by

(
"t D �tZt
�t D ˛0 C ˛q"

C
t�q � ˇq"

�
t�q:

(2)

Taking Xt D �t and the random variables At D ˛qZ
C
t � ˇqZ�t ; we clearly have

XtCq D AtXt C ˛0: A necessary and sufficient condition of strict stationarity of
" is E Œlog .At /� exists and E Œlog .At/� < 0 (Gonçalves and Mendes-Lopes [4]):
Moreover, a sufficient condition of weak (and strict) stationarity is E

�
A2t
�
< 1 :

When the Z law is symmetrical, this condition is equivalent to
�
˛q
�2 C �

ˇq
�2
< 2:

In particular, if the processZ follows the standard Gaussian law, we have

E Œlog .At /� < 0 , ˛qˇq <
1

2
exp

�
��

�
1

2

��
' 3:569

where � is the Euler function. Moreover, if " is weakly stationary, its variance is
given by
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�2" D 2˛20

2 �
�
˛2q C ˇ2q



p
2� C �

˛q C ˇq
�

p
2� � �

˛q C ˇq
� :

Starting from the theoretical study held in Gonçalves and Mendes-Lopes [5], we
develop in Sects. 2 and 3 a simulation analysis to illustrate both its applicability
in the estimation of the process distribution and its behavior in a more general
framework. So, we present bounds for the corresponding marginal distribution
function; bounds for the finite dimensional laws distribution functions of the process
j"j are also evaluated. Some examples and simulation results are considered in both
Sects.; in particular, in Sect. 2 we discuss the hypothesis of " weak stationarity,
imposed by the theoretical results. For clarity and simplicity, this simulation study
is undertaken only for TARCH models.

The simulation analysis makes use of the empirical distribution function of
TARCH processes. The consistence of that estimation is analyzed by studying the
asymptotic behavior of the empirical process associated. In this sense in Sect. 4,
we state, for the general class of GTARCH processes, a m-dependence property,
which allows to reduce that behavior study to that of independent clusters of
random variables. As in Berkes and Horváth [1], the strong approximation for the
empirical process of n observed elements of GTARCH processes is then obtained.
As consequences, the weak convergence of the empirical process and the law of the
iterated logarithm are deduced.

2 TARCH Processes: Bounds for the Distribution Function

In the following theorem, bounds for the marginal distribution function of " are
established showing that the law of " is, in certain regions, strongly controlled by
the law of the white noise associated. This fact is very relevant as we know that
these laws have in general quite different characteristics (e.g., the marginal law of "
is leptokurtic even if it doesn’t happen with the Z marginal law).

Theorem 1. Let "D ."t ; t 2Z) be a weakly stationary TARCH.q/ process with
V ."t / D �2" . If Zt is absolutely continuous with a differentiable density of proba-
bility fZt , we have for every t 2 Z

(a) FZt

�
x

˛0

�
� F"t .x/ � FZt

�
x

˛0 C �"
p
ck

�
; if x < 0 and h .x/ � 0

(b) FZt

�
x

˛0 C �"
p
ck

�
� F"t .x/ � FZt

�
x

˛0

�
; if x > 0 and h .x/ � 0

where

h.x/ D 2fZt

� x
m


C x

m
f

0

Zt

� x
m


;
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c D Pq
iD1

�
˛2i C ˇ2i

�
; k D

�
1; q D 1

q � 1; q � 2
; m D ˛0 C y; y � 0; and f

0

Zt
the

derivative of fZt :
The proof of this result in a more general setting may be found in Gonçalves

and Mendes-Lopes [5]. We point out that the inequalities FZt
�
x
˛0


� F"t .x/ for

x < 0 and F"t .x/ � FZt

�
x
˛0


for x > 0 are verified without demanding the weak

stationarity of the process. Nevertheless, in the other bounds this hypothesis plays
an important role, namely on the application of Jensen’s inequality.

The result presented is valid for a large class of probability laws of the process
Z: In order to evaluate the sets of R where the bounds obtained for the point value
of the marginal distribution function of " are valid, we consider in the following
two distributions for Z with different characteristics, namely in what concerns the
behavior of the corresponding tails.

Examples. For Zt distributed according to the standard Gaussian law, we have

h.x/ D 1p
2�
fZt

� x
m

 �
2 �

� x
m

2�
;

and so h.x/ � 0 if x 2 �� ˛0
p
2; ˛0

p
2
	
: If Zt follows a Cauchy law, C .0; 1/ ; we

get h.x/ D 2
�

1h
1C. xm /

2
i2 ; which is strictly positive for every x 2 R:

We illustrate now the theoretical result established in Theorem 1, using 10; 000
simulated realizations of a particular TARCH (2) model, defined by Eq. (2).

Firstly, we suppose that Z follows the standard Gaussian law and choose
˛0 D 10; ˛2 Dˇ2 D 0:8: The process " is strict and weakly stationary and �" ' 35:6:

The distribution function of "t is estimated, using the generated trajectory, by the
empirical one (represented by DISTE in Fig. 1a). The distribution function of Zt
on x

˛0
(DISTZMIN) and on x

˛0C�"
p
ck

(DISTZMIN1) is also plotted in Fig. 1a. The

bounds for the distribution function of "t stated in Theorem 1 are clearly respected,
in particular in the interval

� � 10
p
2; 10

p
2
	

obtained in the Examples.
Let us remark that the bounds obtained for the marginal distribution of " involve

the variance of "t : In order to explore the need of this moment, we consider now
two situations where the strict stationarity is preserved but "t has no variance.

Under the previous setting, we take now ˛0 D 10:0; ˛2 D ˇ2 D 1:2: The process
" is still strictly stationary, but the parameter �" is no longer the standard deviation
of ": Nevertheless, it may be interpreted as a scale parameter. It is this interpretation

that we use to “pseudo” estimate �" taking hereb� D 1
2

�
bQ0:841 � bQ0:159


with bQa

denoting the 100a% quantile of the empirical distribution of ": In Fig. 1b we plot
the estimated distribution function of "t on x (DISTE), the distribution function
of Zt on x

˛0
(DISTZMIN) and on x

˛0Cb�
p
ck

(DISTZMIN1). We see that the order
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Fig. 1 (a) Plots of FZt

�
x
˛0


; (DISTZMIN), the estimation of F"t .x/, (DISTE), and

FZt

�
x

˛0C�"
p

ck


, (DISTZMIN1). (b) Plots of FZt

�
x
˛0


; (DISTZMIN), the estimation of F"t .x/,

(DISTE), and FZt

�
x

˛0Cb�
p

ck

�
, (DISTZMIN1)

relation between FZt
�
x
˛0


and the estimation of F"t .x/ is coherent with the result

of Theorem 1 for all x. The relation between FZt
�

x

˛0Cb�
p
ck


and the estimation of

F"t .x/ is still coherent with that result but only for small or moderate values of jxj ;
in particular for jxj � 10

p
2:

Finally we consider that the generating process Zt follows a Cauchy law,
C .0; 1/ : The strict stationarity of " is, in this case, equivalent to ˛2ˇ2 < 1. So,
we consider ˛0 D 10:0; ˛2 D ˇ2 D 0:2, and we use the analogous interquantile
interval to estimate the parameter �". In the simulations we expect to find the
same coherence with the result of Theorem 1, for all x; in the order relation

between FZt
�
x
˛0


and the estimation of F"t .x/, as these relations are satisfied for

all GTARCH processes even those without moments. Nevertheless, in Fig. 2 we
observe the coherence with that result in the set ��1;�6:31Œ [ �0;C1Œ : In what

concerns FZt
�

x

˛0Cb�
p
ck


and the estimation of F"t .x/ ; for which the second order

moment is needed, the simulations are also coherent in the same domain. As the
result fails for the two bounds in the same region, it is likely to believe that the
noncoherence in Œ�6:31; 0:0� is not due to the non existence of the second-order
moments but, eventually, to the estimate of �". The use of inequalities not requiring
the existence of moments in the statement of bounds for F"t when " is not a weakly
stationary process certainly deserves further analysis.
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Fig. 2 Plots of FZt

�
x
˛0


; (DISTZMIN), the estimation of F"t .x/, (DISTE), and

FZt

�
x

˛0Cb�
p

ck

�
, (DISTZMIN1)

3 TARCH Processes: Bounds for a Related Distribution
Function

In accordance to Pawlak and Schmid [7], in certain problems related to assessing
the performance of control charts, it is important to evaluate the probabilities
P .j"t j � xt ; t D 1; : : : ; n/ : In this sense, we deduce an upper and a lower bound
for these probabilities when " is a TARCH.q/ process. The proof of the following
result in a more general setting is in Gonçalves and Mendes-Lopes [5].

Theorem 2. Let " D ."t ; t 2 Z) be a weakly stationary TARCH.q/process with
V ."t / D �2" . We suppose Zt absolutely continuous with a differentiable density of
probability fZt and denote by f

0

jZt j the derivative of fjZt j: If q � n; then1

FjZ1j
�

x1

˛0 C �"
Pq

iD1 ˛i

� qY

tD2
FjZt j

 
xt

˛0 CPt�1
iD1˛ixt�i C �"

Pq
iDt˛i

!

�
nY

tDqC1
FjZt j

�
xt

˛0 CPq
iD1˛ixt�i

�

� F.j"1j;:::;j"nj/ .x1; : : : ; xn/ �
nY

tD1

�
FjZt j

�
xt

˛0

��

1If q D 1 we take
Qq
tD2g.t/ D 1:
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for every .x1; : : : ; xn/ 2 �0;C1Œn such that ht .xt / � 0; t D 1; : : : ; q; where

ht .x/ D 2fjZt j
�
x

mt

�
C x

mt

f
0

jZt j
�
x

mt

�
; t 2 f1; : : : ; qg

mt D
(

u; t D 1; u � 0
Pt�1

iD1˛ixt�i C u; t D 2; : : : ; q; u � 0:

Following Pawlak and Schmid [7], these bounds for F.j"1j;:::;j"nj/ .x1; : : : ; xn/may
be related with the run length of control charts. Let us suppose, for example, that "
follows a TARCH.q/ process and that q � n: Let us consider x1 D : : : D xn D x:

Then, for x under the conditions stated in Theorem 2,we obtain

P

�
max
1�t�n j"t j � x

�

� FjZ1j
�

x

˛0 C �"
Pq

iD1˛i

� qY

tD2
FjZt j

 
x

˛0 C �"
Pq

iD1˛i CPt�1
iD1˛i .x � �"/

!

nY

tDqC1
FjZt j

�
x

˛0 CPq
iD1˛ix

�
:

In particular, if x < �"; P .max1�t�n j"t j � x/ �
h
FjZ1j

�
x

˛0C�"Pq
iD1˛i

in
:

Then
h
FjZ1j

�
�"x

˛0C�"Pq
iD1˛i

in � P
�

max1�t�n j"t j�" � x


�
h
FjZ1j

�
�"
˛0
x
in

:

The last inequality may have an interesting interpretation in statistical quality

control. In fact, as P
�

max1�t�n j"t j�" � x


is the probability of no alarm until time

n in the in-control state,
h
FjZ1j

�
�"
˛0
x
in

is the analogical probability if the process

becomes independent (˛i D 0; ˇi D 0; i D 1; : : : ; q). Thus, for a TARCH process,
the probability of no alarm shall be evaluated, for certain values of x; using the
independent generator processZ:

We illustrate now this result in Fig. 3 considering n D 3 and using 5; 000
realizations of the max1�t�3 j"t j where " is the TARCH (2) process with �t D
10:0 C 0:8"Ct�2 � 0:8"�t�2 and Z following the standard Gaussian law. The sample
was generated using the previous 10,000 observations of the process and choosing
three-dimensional subsamples of consecutive indices, the first one of them randomly
selected. We estimate the distribution function of max1�t�3 j"t j�" on x (represented

by DISTMAXEREDUZ). We also plot the functions
h
FjZ1j

�
�"x

˛0C�"Pq
iD1˛i

i3
(DIS-

TINF) and
h
FjZ1j

�
�"
˛0
x
i3

(DISTSUP). The announced bounds for the distribution

function of max1�t�3 j"t j�" are clearly respected.
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P
�
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� x


,

(DISTMAXEREDUZ), andh
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�
�"
˛0
x
i3

, (DISTSUP)

4 GTARCH Processes: The Empirical Process

The study of the empirical process associated to a GTARCH process is a usual way
to consistently estimate the process distribution. This study is here particularly rele-
vant as in Sects. 2 and 3 empirical distribution functions were used systematically to
estimate the distributions related with the process ": Thus, in this section the results
of Berkes and Horvath [1] for GARCH models are applied to GTARCH ones to
analyze the asymptotical behavior of the empirical process. We begin by stating the
existence of a m-dependent sequence

�
"

0

n

�
that is close to ."n/ ; where m D Œn��,

0 < � < 1. So, variables "
0

n with indices differing more than Œn�� are independent.
Let us consider the strictly stationary GTARCH .p; q/ process " defined by

.1/, the corresponding matrices .At ; t 2 Z/, and the random vectorial process
X D .Xt ; t 2 Z/, defined in Sect. 1. Considering any norm in RpC2q�2 and the
corresponding induced norm on the set of the square matrices of order p C 2q � 2,
we also assume the existence ofE

�
logC kA0k

��
for some� > 2: Let’s defineX

0 D�
X

0

n; n 2 N


by X
0

n D B CPŒn��

kD1An�1An�2 : : : An�kB , with some 0 < � < 1:

Property 3. Under the previous hypotheses, there exist measurable functions fn W
RŒn�� ! R .n D 1; 2; : : :/ such that, setting "

0

n D fn
�
Zn;Zn�1; : : : ; Zn�Œn��

�
; we

have, for some c > 0;

P
nˇˇ
ˇ"n � "0

n

ˇ
ˇ
ˇ > cn��.��2/=2

o
� cn��.��2/=2:

Proof. Let "
0

n be such that
�
"

0

n

�C
is the pC1 component ofX

0

nC1 and ��"0

n

��
is the

pCq component ofX
0

nC1: So, "
0

n is a measurable function ofZn;Zn�1; : : : ; Zn�Œn��:
Moreover, taking into account Lemma 2.3 of Berkes and Horvath [1], we have
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P
���
�XnC1 �X 0

nC1
�
�
� > c .nC 1/��.��2/=2


� c .nC 1/��.��2/=2 :

Denoting by Xi;nC1 the i -component of XnC1; this is equivalent to

P

�
max

1�i�pC2q�2

ˇ
ˇ
ˇXi;nC1 � X

0

i;nC1
ˇ
ˇ
ˇ > an;�

�
� an;�;

where an;� D c .nC 1/��.��2/=2. So, for every i 2 f1; : : : ; p C 2q � 2g ;

P
�ˇ̌
ˇXi;nC1 � X

0

i;nC1
ˇ̌
ˇ > an;�


� an;�;

in particular for P
�ˇ̌
ˇ"Cn �

�
"

0

n

C ˇ̌
ˇ > an;�


and for P

�ˇ̌
ˇ�"�n �

h
�
�
"

0

n

�iˇ̌
ˇ > an;�


:

Finally,

P
�ˇˇ
ˇ"n � "0

n

ˇ
ˇ
ˇ > c .nC 1/��.��2/=2



� P

�� ˇ̌
ˇ
ˇ"
C
n �

�
"

0

n

C ˇ̌
ˇ
ˇ >

an;�

2

�
[
nˇ̌
ˇ"�n �

�
"

0

n

�ˇ̌
ˇ >

an;�

2

o�
� an;�:

ut

The strong approximation for the empirical process of n observed elements of
GTARCH processes is deduced from this property via standard blocking techniques
as in Berkes and Horváth [1] for GARCH models, taking into account that most of
their lemmas apply in our case. Let us summarize the final form of this result.

The empirical process of n observations, "1; "2; : : : ; "n; of the strictly stationary
solution, " D ."t ; t 2 Z), of the model GTARCH defined in Eq. (1), is

R .s; t/ D
tX

iD1

�
1f"i�sg � F"1.s/

	
; s 2 R; t 2 f1; : : : ; ng

with F"1 the distribution function of "1: Let "k .s/ D 1f"k�sg � F"1.s/;

k 2 f1; : : : ; ng and � .s; s0/ D E
h
"0 .s/ "0

�
s

0

i
C PC1

nD1E
h
"0 .s/ "n

�
s

0

i
C

PC1
nD1E

h
"0

�
s

0


"n .s/

i
:

The strong approximation for the empirical process is stated now.

Theorem 4. Let us assume the strict stationarity of " defined on .1/. If
• jFZ1 .t/ � FZ1 .s/j � C jt � sj ; with some 0 < C < C1, 0 <  � 1 where
FZ1 is the distribution function of Z1.

• E
�
logC kA0k

��
exists with some � > 2C 16


.
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then the series � .s; s0/ is absolutely convergent for any �1 < s; s0 < C1 and
there is a Gaussian process K .s; t/ with EK .s; t/ D 0; EK .s; t/ K .s0; t 0/ D
min .t; t/ � .s; s0/ such that, with some � > 0;

sup
0�t�T

sup
�1<s<C1

jR .s; t/ �K .s; t/j D 0
�
T

1
2 .logT /��


; a:s:

The weak convergence of the empirical process and the law of the iterated loga-
rithm follow from this result. In fact, if bK .s/ is a Gaussian process withEbK .s/ D 0

and E
h
bK .s/ bK

�
s

0

i
D � .s; s0/ ; then n

1
2

�
1
n

Pn
iD1

�
1f"i�sg � F"1.s/

		 DŒ�1;C1�!
bK .s/, as n ! C1; where

DŒ�1;C1�! denotes the weak convergence of a random
variable in the Skorokhod space Œ�1;C1� : Moreover,

lim sup
n!C1

�
n

2 log logn

� 1
2

sup
�1<s<C1

ˇ̌
ˇ
ˇ
ˇ
1

n

nX

iD1

�
1f"i�sg � F"1.s/

	
ˇ̌
ˇ
ˇ
ˇ

D c; a:s:;

with some 0 < c < C1:
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Preliminary Results on Confidence Intervals for
Open Bonus Malus

Gracinda R. Guerreiro, João T. Mexia, and Maria F. Miguens

Abstract
Considering open portfolios, we analyze bonus–malus systems (BMS) under a
realistic approach, as we already did in Guerreiro and Mexia (Discuss. Math.
Probab. Stat. 24(2):197–213, 2004). Using stochastic vortices model we are now
able to predict long-run distribution through confidence intervals.

1 Introduction

A bonus–malus system (BMS), in automobile insurance, is a rating system from
which Insurers, through premiums, are able to, simultaneously, penalize drivers who
are responsible for accidents and reward claim-free policyholders. It is, in fact, an a
posteriori classification from which the a priori premium is adjusted, according to
past experience information. This a posteriori premium aims to better measure the
risk that the policyholder represents to the insurer: in the long run, he will pay the
premium corresponding to his claim frequency.

The design and evaluation of BMS is based on Markov chains (for detailed pre-
sentations of BMS techniques, see [9]). Many authors proposed models for the study
of BMS. However, most models are based on the assumption of closed portfolios
with a pre-defined entry class for all new policyholders. In Portugal, as stated in
[2, 3, 6], there are many movements among different insurers and frequently, due
to commercial goals, a priori discounts are given to new policyholders. This facts
clearly reveal unrealistic restrictions in classic models. We consider that analyzing
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BMS under open portfolio approaches renders a more realistic perspective. For open
portfolio models, see, for instance, [2, 6].

In this chapter, availing ourselves of the stochastic vortices (SV) model (see
[6–8]), we estimate long-run distribution through confidence intervals. In this way,
we are able to obtain intervals for bonus scales which can be useful to define optimal
and competitive premiums. SV model has already been developed for populations
with complex characteristics. In this paper, we focus on BMS application, so the
presented model is congruent to it’s structure. For general results, see [8].

2 Stochastic Vortices Model for Bonus Malus Systems

2.1 Transition Matrix

Let us consider:
• A BMS with s bonus classes in one Markov chain communication class
• One recurrent state, representing the withdrawals of policyholders

The one-step transition matrix of the Markov chain will be

P D
�

K q1
0 1

�
(1)

with

K—s � s transition matrix between bonus classes
q1—s components vector of annulment probabilities

With qn D Pn�1
jD0 K j q1 ; n 2 N, the n step transition matrix will be

Pn D
�

Kn qn
0 1

�
; n 2 N: (2)

2.2 Policyholders Entries

We assume that entries into the portfolio occur at the beginning of time periods,
which we will consider as years. Moreover, we assume that:
• Numbers of new policyholders in year i ,Ei ; i 2 N, are independent and Poisson-

distributed random variables with means �0i ; i 2 N.
• Mean values �0i are given by

�0i D aC b i ; a; b 2 R ; 0 <  < 1 ; i 2 N: (3)

Note that we are focusing on 0 <  < 1, but the model was developed for
 > 0; see [7]. Equation (3) represents a quite general assumption and applies
to a variety of population entries. We point out the next example: when a D 0,
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(3) represents a population with a geometric growth on entrances; if b D �a
and  D e�ı ; ı > 0, (3) will represent a population with an asymptotic growth
on entrances; for the situations  D 1 or b D 0, (3) reflects a constant rate on
entrances.

• New policyholders are subject to an initial classification. Elements entered in
the i th year will be allocated to any of the bonus classes, according to the
components of probabilities vector ci ; i 2 N. We assume that new elements
do not leave the portfolio immediately after initial classification; thus c Ti D�
tTi j 0 	, with t i corresponding to the probabilities of a new element entering

into transient states, in year i . For details about initial classification criteria,
see [7].

2.3 Expected Subpopulations Dimension

Let N i be the number of policyholders initially placed in each bonus class in time
period i ; i 2 N.

The next proposition (see [4]) has a fundamental role in our developments:

Proposition 1. IfE � Poisson.�/ and .X jE D e/ � Multinomial.e; c/ with cT D
.c1; : : : ; ck/, then X is a random vector whose margins, X1; : : : ; Xk, are indepen-
dent and Poisson-distributed random variables with mean values .�1; : : : ; �k/T D
.�c1; : : : ; �ck/

T , respectively.

We will say that X has a multivariate Poisson distribution with mean vector
� D .�1; : : : ; �k/

T and will be represented by X � Poisson.�/.

Theorem 1. Consider a population with k subpopulations and that the numbers
Ei; i 2 N, of new elements arriving to the population in year i are Poisson dis-
tributed with mean value �0i ; i 2 N. New elements are allocated in subpopulations,
in year i; i 2 N, according to probabilities vector ci ; i 2 N. After entry, future
periodic re-classifications follow stable probability transition matrices. In a time
period m, the number N i;m of elements in each sub-population, entered in the i th
year, will have been subject to m � i reclassifications and are Poisson distributed
with parameter

�T
i;m D �0i cTi Pm�i : (4)

Proof. According to Proposition 1, we may acknowledge that N i , number of
elements initially placed in each subpopulation in year i , is Poisson distributed with
mean vector �0i ci , N i � Poisson.�0i ci /.

In each time period m;m � i , the Ni;j ; i 2 N; j D 1; : : : ; k, elements entered
in year i , and initially placed in subpopulation j , have been subject to m � i

reclassifications and distributed over the subpopulations according to transition
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matrix P . The vector of the number of elements N T
i;m;j D .Ni;m;j;1; : : : ; Ni;m;j;k/;

will, according once again to Proposition 1, also be Poisson distributed,

N i;m;j � P
�
�0i ci;j ıTj Pm�i


; i; m 2 N; j D 1; : : : ; k;

with ıj a vector whose components are null, except the j th one, which is 1.
Since the components of N i ; i 2 N, are independent random variables, vectors

N i;m;j ; i; m 2 N ; j D 1; : : : ; k, will also be independent. To complete the proof
we only need to point out that the vector of total sizes, in time period m, will be
given by N i;m D Pk

jD1 N i;m;j . Thus, due to Poisson distribution reproducibility,

we obtain N i;m � P.�i;m/ with �Ti;m D Pk
jD1 �0i ci;j ıTj Pm�i D �0i cTi Pm�i . ut

Using (4) (see [7]), we are able to estimate bonus classes dimension, according
to stochastic vortices model. The estimator for bonus classes dimension now reflects
entrances intensities, initial classification, transition, and annulment probabilities.

For total number of policyholders in each bonus class in time period m, we have

NCCm D
mX

iD1
N i;m � P.�CCm / (5)

with
�CC Tm D �Pm

iD1 �0i tTi Km�i ˇˇ Pm
iD1 �0i tTi qm�i

	
: (6)

2.4 Asymptotic Results for Transient States

The existence of stochastic vortices in transient states implies stable limit relative
dimension for the bonus classes.

Let us assume that sub-matrix K is a s � s diagonalizable matrix. Under very
general conditions (see [11]), we will have

K D
sX

jD1
�j ˛j ˇ T

j Km D
sX

jD1
�mj ˛j ˇ T

j (7)

with �j
h
˛j ;ˇ

T
j

i
; j D 1; : : : ; s matrix K eigenvalues [left and right eigenvectors].

Considering the first block of (6), as well as assumption (3), let

�C Tm D
mX

iD1
�0i tTi Km�i D

mX

iD1
.a C b i / tTi Km�i (8)

be the mean vector for transient states (bonus classes), in time periodm.
Using (7), we identified conditions for convergence of (8). Proposition 2 is

established in [7]. For computational simplicity, we obtained last expression in [8].
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Proposition 2. If entries intensities are given by �0i D a C b i ; i 2 N; .a; b/ 2
R
2; 0 <  < 1 and limi!C1 ti;j D tj ; j D 1; : : : ; s, we then have

�CT1 D lim
m!C1�CTm D

sX

jD1

tT ˛j a

1 � �j ˇTj D a tT .I s � K /�1 : (9)

This proposition guarantees, under general conditions, the existence of finite
limits for the parameters vector of sub-populations in transient states, if 0 <  < 1.

Long-run distribution of BMS corresponds to limit relative dimensions for
transient states, which will be stable as m ! C1 (see [7]) and given by

�1;j D lim
m!C1�m;j D lim

m!C1
�Cm;j

Ps
jD1 �

C
m;j

D �C1;j
Ps

jD1 �
C
1;j

; j D 1; : : : ; s (10)

so a stochastic vortex is established in transient states and long-run distribution
for BMS can be easily obtained. Note that initial classification will not interfere
in long-run distribution. However, regarding weighted distributions (see [1]), initial
classification renders more realistic models.

2.4.1 Confidence Intervals for Bonus Classes
Due to (5), for large portfolios we obtain level q confidence intervals for �Cm;j ; j D
1; : : : ; s ; m 2 N:

P

�
NCm;j � zq=2

q
NCm;j � �Cm;j � NCm;j � zq=2

q
NCm;j

�
D 1 � q

2

where zq=2 is the upper 1 � q

2
critical value for standard normal distribution.

Using delta method (see [12]), we obtain level q confidence intervals for
�m;j ; j D 1; : : : ; s ; m 2 N:

P

2

4
NCm;j

Pk
jD1 NCm;j

� zq=2
q
Vj N

C
m;j � �m;j �

NCm;j
Pk
jD1 NCm;j

C zq=2
q
Vj N

C
m;j

3

5 D 1 � q

2

(11)
with

Vj D �
�C1

��2 h
.1� �m;j /

2 C C�2 �2m;j � 2C�1 �m;j .1 � �m;j /
i

(12)

or
Vj D �

�C1
��2

�2m;j : (13)

considering �C1 D Ps
jD1 �

C
1;j and Sj D Ps

i¤j O�Cm;j .
Equation (12) holds if limm!C1 ��C

1;j
=�Sj D C > 0 and (13) holds if, for class

j , we have limm!C1 ��CC

j
=�Sj D 0.
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Table 1 Number of new policyholders per year

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
4,107 9,607 15,829 22,443 29,216 34,770 39,686 32,588 46,692 49,283

3 An Example

3.1 Transition Rules and Claim Frequency

Consider data from a Portuguese insurer portfolio. BMS has s D 20 classes with
premium increasing with class index. For each claim-free year, index decreases by
one. The first [each of the next] claim increases the class index by three [five]. The
zero bonus/malus class is the tenth.

To C.t/, the number of claims in Œ0; t/, we adjusted a mixed Poisson distribution
with Gamma structural distribution: C.t/ � P.	/ ; 	 � Gamma.˛; ˇ/. From the
data we obtained the ML estimates Ǫ D 0:70523 and Ǒ D 10:10695.

3.2 New Policyholders Estimation

Table 1 resumes insurer information about new policies for automobile insurance.
Let .E1; : : : ; Em/ be the random sample of the number of entries in m consecu-

tive years. Let us assume that Ei � P.�0i / with �0i D �.1� e�ı i /; .�; ı/ 2 R
2. Note

that this is a particular case of (3) with  D e�ı and � D �b D a.
ML estimators for � and ı are the solutions of

O� D
Pm

iD1 ei
m �Pm

iD1 e�
Oı i (14)

O�
mX

iD1
i e�Oıi D

mX

iD1

i e�Oıi

1 � e�Oıi
ei : (15)

From (14) and (15), ML estimates were obtained: O� D 212109 and Oı D
0:026692. This implies, for general model (3), that O D e�Oı D 0:973661.

We note that the ML estimate for � is unrealistic for this insurer. Due to the
Portuguese market and the insurer’s quota share, it is not likely that they attain such
number of new annual entries. An alternative estimate relies on fix � as the insurer’s
long run perspective on growth and estimate ı, based on that assumption.

3.3 Initial Classification and Annulment Probabilities

Initial classification and annulment probabilities were considered not depending on
year and estimated from data. Results are presented in Table 2.
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Table 2 Initial classification and annulment probabilities per bonus class

j 1 2 3 4 5 6 7 8 9 10

c.j / 0.2394 0.0537 0.1914 0.0696 0.1886 0.0061 0.0342 0.0104 0.0625 0.1424
q.j / 0.1043 0.1275 0.1542 0.1833 0.2248 0.2179 0.2473 0.2350 0.2375 0.4533
j 11 12 13 14 15 16 17 18 19 20
c.j / 0.0006 0.0004 0.0003 0.0002 0.0002 2 � 10�5 3 � 10�5 3 � 10�5 4 � 10�6 2 � 10�5

q.j / 0.3909 0.4718 0.5621 0.5964 0.5703 0.7353 0.9487 0.4815 0.7364 0.8276

Table 3 Long run distributions and optimal bonus scales—S. vortices and C. model approaches

j �C .j / bGC .j / �S .j / �S.j / N�S .j / bGS .j /

1 0.7943 0.0531 0.6879157898 0.6879163605 0.6879169313 0.06086
2 0.0412 0.0764 0.0735734532 0.0736314416 0.0736894300 0.07082
3 0.0462 0.0996 0.0854663157 0.0854859575 0.0855055993 0.08078
4 0.0134 0.1228 0.0435894748 0.0435998164 0.0436101579 0.09074
5 0.0113 0.1461 0.0428224948 0.0428325975 0.0428427002 0.10070
6 0.0081 0.1693 0.0152794230 0.0152815824 0.0152837419 0.11067
7 0.0077 0.1926 0.0158469193 0.0158492070 0.0158514948 0.12063
8 0.0074 0.2158 0.0111921268 0.0111934917 0.0111948565 0.13059
9 0.0055 0.2390 0.0101670336 0.0101682137 0.0101693938 0.14055
10 0.0050 0.2623 0.0103512971 0.0103525116 0.0103537261 0.15051
11 0.0045 0.2855 0.0013487107 0.0013487707 0.0013488308 0.16047
12 0.0044 0.3088 0.0009259372 0.0009259720 0.0009260068 0.17043
13 0.0043 0.3320 0.0004858670 0.0004858807 0.0004858945 0.18039
14 0.0044 0.3552 0.0003050116 0.0003050186 0.0003050255 0.19035
15 0.0047 0.3785 0.0002083131 0.0002083171 0.0002083212 0.20031
16 0.0051 0.4017 0.0001247669 0.0001247688 0.0001247707 0.21027
17 0.0058 0.4250 0.0001169801 0.0001169818 0.0001169835 0.22023
18 0.0069 0.4482 0.0000559784 0.0000559790 0.0000559796 0.23019
19 0.0086 0.4714 0.0000377499 0.0000377502 0.0000377506 0.24016
20 0.0113 0.4947 0.0000793801 0.0000793812 0.0000793823 0.25012

Note that policyholders entered through all classes and a large number of insured
nullified his policy when arrived to maluses classes. This highlights that assuming
closed models and a “starting class” for all new policyholders in rather unrealistic.

3.4 Long Run Distribution and Optimal Bonus Scale—Stochastic
Vortices and Closed Model Approach

Using (10) for SV model and classical results for BMS (see [9]), long-run distri-
butions were obtained. For SV model we are able to predict long-run distribution
through confidence intervals using (11). Following [5] after [10], an optimal bonus
scale was obtained for each approach.
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Table 3 presents results for both models. IndexesC and S refer to closed and SV
model, respectively. bG represents Gilde and Sundt’s linear optimal bonus scale and
�S.j / and N�S.j / the 95% confidence intervals. Note that long-run distributions
differ significantly and closed model overestimates probabilities in maluses classes
as well as in higher discount class. This, naturally, has impacts on optimal bonus
scales.

With the ML estimates for � and ı, the SV model converges slowly to stationarity.
This implies that Borgan et al. [1], optimal bonus scale should be implemented
instead of Norberg’s [10]. In this chapter we illustrate Norberg’s optimal bonus scale
in order to evaluate portfolio performance in a long-run perspective.

Acknowledgments This work was partially supported by Financiamento Base 2009 ISFL-1-297
from FCT/MCTES/PT.
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Study of the Electrocardiographic Fluctuations
on Brugada Syndrome Screening

Carla Henriques, Ana Cristina Matos, and Luı́s Ferreira dos Santos

Abstract
Brugada syndrome (BS) is a cardiologic disorder which favours cardiac arrhyth-
mias and is thought to be responsible for about 20–50 % of sudden cardiac
death (SCD) in individuals with a structurally normal heart. There are three
electrocardiogram (ECG) characteristic patterns associated with BS. From an
index case, 130 family members were screened for BS and data collected in order
to identify possible influential factors for the manifestation, and fluctuations, of
Brugada patterns in ECG results. Moreover, data collected from family members
were analysed in order to evaluate the necessity for more than one ECG in
screening for BS. Also, the effect of displacing ECG electrodes in the sensitivity
and specificity of the exam was analysed.

1 Introduction

Brugada syndrome (BS) is a recent clinical cardiologic entity, described for the first
time in 1992 (Brugada and Brugada [1]), which is reputed to be responsible for
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Politécnico de Repeses, 3504-510, Viseu, Portugal
e-mail: carlahenriq@estv.ipv.pt

A.C. Matos
Escola Superior Tecnologia e Gestão, Instituto Politécnico de Viseu, Campus Politécnico de
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about 4–12 % of all cases of sudden cardiac death (SCD) and for 20–50 % of SCD
in subjects with a structurally normal heart (Brugada et al. [3]). This syndrome is
characterized by a dysfunction of a cardiac ionic channel, which favours cardiac
arrhythmias. It is an inherited disorder, but there are also fortuitous cases (absent
in other relatives). For the diagnosis of BS, a special characteristic pattern in
an electrocardiogram (ECG) must be found. In fact, there are three special ECG
patterns associated with BS—type 1, type 2 and type 3 ECG patterns—but only type
1 is considered to be diagnostic of the syndrome. Type 2 and type 3 are regarded
as Brugada suggestive patterns. The diagnosis is made when a type 1 ECG pattern
is found and the subject presents one or more of some clinical symptoms which are
easily detected, such as nocturnal agonal respiration, syncope and family history of
sudden death at < 45 years old. However, the diagnosis is not as simple as it might
appear. In fact, Brugada ECG patterns are dynamic, meaning that a Brugada patient
may exhibit intermittently normal ECGs and Brugada pattern ECGs. Genetic tests
may be done, but these are too expensive and the mutations related to the syndrome
are not easy to identify. In this study we aim to identify possible influential factors
for the manifestation and fluctuations of Brugada ECG patterns. Also we analyse
some measures that confirm the importance of more than one ECG on screening
for BS. Another interesting question which is analysed in this study, is related
to the known important fact that raising the ECG electrodes, with respect to the
conventional positions, affects the ECG patterns. It is consensual that this procedure
increases the type 1 ECG patterns found, thus leading to a greater sensitivity.
However, some authors question the benefit of this procedure because there is no
guarantee that this does not increase the number of false positives, thus decreasing
the specificity (cf. p. 287 of [2]). We analyse this issue in the final section of this
chapter by comparing the sensitivity and the specificity of ECGs obtained for three
different positions of the electrodes.

Our data were collected from an index case to whom BS was diagnosed. Given
the hereditary character of the syndrome, family members were screened providing
useful information which allowed the analysis made in this study. We note that,
given the family history of sudden death of the individuals under study, a type 1
ECG pattern is enough to diagnose BS. For the statistical analysis, the SPSS version
15 software was used.

2 Determinant Factors for the Manifestation of Brugada
ECG Patterns

As said before, ECG results in patients with BS often fluctuate between diagnostic
(type 1) and non-diagnostic patterns, making the diagnosis more difficult. In this
section, age, body mass index (BMI) and gender are considered as possible influence
factors for the manifestation of Brugada ECG patterns. In this analysis, type 1 ECG
pattern is assumed to be detached from the other types, as is the diagnostic pattern.
So, we start by analysing the influence of those covariates on the manifestation of
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Table 1 Comparing diagnostic with non-diagnostic cases with respect to gender, age and BMI

Diagnostic Non-diagnostic
(type 1 ECG ) (no type 1 ECG ) p-value

Gender Frequency (% within gender) Fisher’s exact test

(n D 130) F 6 (9.7 %) F 56 (90.3 %) 0.782
M 8 (11.7 %) M 60 (88.2 %)
Mean˙ standard deviation Mann–Whitney test

Age (n D 130) 37:43˙ 11:07 23:74˙ 16:63 0.001
BMI (n D 46) 21:91˙ 2:77 23:33˙ 3:07 0.14

type 1 pattern, that is, on the diagnosis of BS (comparing relatives for whom a
type 1 ECG pattern was found with the others). Next, we analyse their influence on
the manifestation of one of the Brugada patterns (comparing relatives for whom a
Brugada pattern ECG was found with those which have always had normal ECGs).
The association between age, BMI and gender with ECG manifestation of Brugada
patterns is assessed via an univariable analysis, through logistic regression, Fisher’s
exact test and Mann–Whitney test, and also via a multivariable analysis through
logistic regression. Our data consist of 130 subjects, family relatives of the index
case, which were screened with two ECGs within an interval of 6 months. Yet,
information for the BMI was collected for only 46 of these 130.

2.1 Diagnostic Versus Non-diagnostic

Table 1 summarizes some informative statistics about age, BMI and gender in the
group of subjects for whom BS has been diagnosed (type 1 ECG found) compared
with the others.

The results presented in Table 1 give evidence that age has an influence
on diagnosis (diagnostic cases are significantly older), but not BMI nor gender.
Univariable logistic regression models were adjusted for age, gender and BMI and
the results agreed with those in Table 1: only age was identified as a significant
predictor. Multivariable analysis, however, showed that both age and BMI are
somewhat related to the diagnosis, meaning that, in the presence of age, BMI
becomes a useful predictor of the diagnosis. Results for the multivariate model
containing the three covariates are shown in Table 2. In fact, age and BMI, but not
gender, are identified as significant predictors of diagnosis by both Wald test and
likelihood ratio test. Akaike information criterion (AIC) also supports the model
with age and BMI but not gender, since it decreases if we remove gender from the
model, but it increases if we remove any of the other two covariates (see Burnham
and Anderson [4] for an exposition about model comparisons and AIC use).

Interaction between age and BMI was examined in the model with the two
covariates, but it was not significant. Indeed, the Wald test statistic for the interaction
term is equal to 0.484 with p-value D 0.487 and the likelihood ratio test comparing
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Table 2 Multivariable logistic regression models containing age, BMI and gender as covariates
(n D 46)

Covariate Wald test (p-value) Likelihood ratio testa(p-value) Change in AICb

Gender 0.000 (p D 0:991) 0.000 (p D 0:991) 2
Age 5.53 (p D 0:019) 6.918 (p D 0:009) �4:92
BMI 4.39 (p D 0:036) 5.664 (p D 0:017) �3:66
aComparing the complete model with the model without the covariate
bDifference between the AIC of the complete model (49.8) and of the model without the covariate

Fig. 1 Standardized pearson
residuals against predicted
probability for the logistic
model with age and BMI

the complete model with the model without the interaction term is equal to 0.51
with p-value D 0.475. Furthermore, the AIC decreases when the interaction term is
removed (AIC D 49.29 for the complete model and 47.8 for the model without
the interaction term). We also analyse the goodness of fit and other diagnostic
statistics for the model with covariates age and BMI. The value of the likelihood
ratio test statistic, for overall significance of the two covariates in the model, is 8.811
(p-value D 0.012), so we can conclude that at least one of those covariates is
important to predict the diagnosis. Furthermore, the Hosmer and Lemeshow test
statistic is equal to 1.808 (p-value D 0.97), which indicates that the model fits
reasonably well. The standardized Pearson residuals are plotted in Fig. 1 against the
predicted probabilities. As we can see, with the exception of one, all values are less
than 2. This again reveals that the model fits quite well, the exception being subject
27 which may be considered less well fitted. However, we note that this subject
does not have any abnormal value. Furthermore, this is a diagnostic case, therefore
an important case from the clinical point of view, which rules out the possibility of
excluding this case from the analysis.

To analyse the influence of each subject on the values of the estimated parame-
ters, we have plotted in Fig. 2 the difference in beta values (dfbeta) for age against
the dfbeta for BMI with the size of the symbol proportional to the analog of Cook’s
influence statistic. All values are small indicating that no subject has a strong
influence on the estimated coefficients.

Detailed information about estimated coefficients for the final model is included
in Table 3.
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Fig. 2 Dfbeta for age against
dfbeta for BMI from the
logistic model with age and
BMI, with size of the symbols
proportional to the analog of
Cook’s influence statistics

Table 3 Multivariable model with age and BMI as predictor variables (n D 46)

Coeff. Std. err. Wald test (p-value) Odds ratio (OR) 95 % CI for OR

BMI �0:384 0.179 4.59 (p D 0:032) 0.681 0.479 0.968
Age 0.09 0.038 5.534 (p D 0:019) 1.094 1.015 1.179
Constant 4.344 3.206 1.835(p D 0:176)

Table 4 Comparing subjects for whom a Brugada pattern was found with the others, with respect
to gender, age and BMI

DiagnosticC suggestive Normal
(type 1, 2 or 3 ECG ) (no Brugada pattern) p-value

Gender Frequency (% within gender) Fisher’s exact test

(n D 130) F 8 (12.9 %) F 54 (87.1 %) 0.349
M 14 (20.6 %) M 54 (79.4 %)
Mean˙ standard deviation Mann–Whitney test

Age (n D 130) 35:05˙ 11:15 23:21˙ 16:9 0.000
BMI (n D 46) 21:34˙ 2:73 23:87˙ 2:86 0.007

We can finally conclude that both age and BMI appear to affect the odds of
diagnosis, and we can estimate the effect of 1 year increase in age as increasing the
odds of diagnosis by 9.4 % [(1.094–1)100%] and the effect of one unit increment
on the BMI as decreasing the odds of diagnosis by 31.9 % [(0.681–1)100%]. We
also note that the area under the ROC curve generated by the model is 0.78 (p D
0:006), which means, according to Hosmer and Lemeshow [5], that the model has
an acceptable ability to discriminate between diagnostic and non-diagnostic cases.

2.2 Normal Versus Abnormal ECG

In Table 4 we compare the group of subjects which have had at least one Brugada
pattern ECG (type 1, type 2 or type 3) with the other subjects.

The results in Table 4 indicate no significant association between gender and
the manifestation of Brugada ECG patterns, but a lower BMI and an older age
appear to be significant predictors of abnormal ECG patterns (type 1, 2 or 3). Again,
univariable and multivariable logistic regression models were adjusted with these
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Table 5 Multivariable model with age and BMI as predictor variables (n D 46)

Coeff. Std. err. Wald test (p-value) Odds ratio (OR) 95 % CI for OR

BMI �0:484 0.165 8.547 (p D 0:003) 0.617 0.446 0.853
Age 0.071 0.034 4.377 (p D 0:036) 1.073 1.004 1.147
Constant 7.871 3.089 6.493 (p D 0:011)

three covariates. The results obtained were similar to those discussed previously
when the outcome was the diagnosis of BS. In fact, again age and BMI, but not
gender, revealed some association with the outcome, the manifestation of a Brugada
pattern (Wald test p-value for gender D 0.537). No significant interaction between
age and BMI was found (Wald test p-value for the interaction term D 0.7). As in the
previous subsection, we also have AIC supporting the model with only the BMI and
age (AIC for the model with BMI and age D 52.65; adding gender AIC D 54.27;
adding the interaction term AIC D 54.5). The value of the likelihood ratio test
for the model with age and BMI as covariates (12.8, p-value D 0.002) indicates
that at least one of these has significant influence on the outcome. Hosmer and
Lemeshow test statistic being equal to 4.75 (p-value D 0.69) is indicative of a
fairly good fit. Also, standardized Pearson residuals and influence statistics were
analysed, to reveal no distinguishable subjects. Table 5 resumes some information
about the estimated coefficients for the model with age and BMI. We can again
assert that these two covariates appear to have some importance on the manifestation
of Brugada patterns, and estimate the odds of this manifestation to increase by 7.3 %
for each year older and to decrease by 38.3 % for each BMI unit increase.

3 Analysis of the Intermittency of Brugada Type 1 ECG
Pattern

The fluctuations of Brugada ECG patterns demand the need to screen individuals
with more than one ECG in the diagnosis of BS. As said before, the 130 individuals
were screened with two ECGs separated by 6 months. Of the fourteen to whom BS
was diagnosed (type 1 ECG pattern found), 79 % exhibited one non-diagnostic ECG
and 43 % had a normal ECG. Furthermore, for these diagnostic subjects, we find
no agreement between the first and the second ECG, according to Cohen’s Kappa
coefficient which is negative (k D �0:45). Note also that for the 22 subjects who
exhibited a Brugada pattern ECG, the Cohen’s Kappa coefficient equals 0.02 which,
according to Landis and Koch [6], may be interpreted as just slight agreement. Also,
McNemar’s test finds significant the increase in percentage of diagnosis made with
two serial ECGs (10.8 %) compared to the percentage made with one ECG (4.6 %)
(p D 0:004). All these results emphasize the need for more than one ECG on
screening for BS.

We now wish to investigate if age, gender and BMI are related to the instability
of ECG results in Brugada patients. This could help physicians to assess the
importance of doing more than one ECG in the screening of a given individual. Of
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Table 6 Comparing stable diagnostic cases (two type 1 ECGs) with diagnostic dynamic cases
(one non-diagnostic ECG)

Diagnostic and stable Diagnostic and dynamic
(2 type 1 ECGs ) (one non-diagnostic ECG ) p-value

Gender Frequency (% within gender) Fisher’s exact test

(n D 130) F 1 (33.3 %) F 5 (45.5 %) 0.6
M 2 (66.7 %) M 6 (54.5 %)
Mean˙ standard deviation Mann–Whitney test

Age (n D 130) 43:7˙ 15:6 35:7˙ 9:8 0.6
BMI (n D 46) 24:1˙ 0:5 21:4˙ 2:8 0.4

Table 7 Comparing sensitivities and specificities of ECGs for three
different electrodes placements

ECG Conv ECG 2IS ECG 1IS Cochran’s test
Sensitivity 8.3 % 45.8 % 54.2 % p D 0:000

Specificity 100 % 97.1 % 94.3 % p D 0:67

the fourteen subjects with diagnosis of BS, we compare those who have maintained
the type 1 ECG pattern with those who have presented fluctuations between
diagnostic and non-diagnostic ECG pattern. The results are given in Table 6. In
fact, there is no evidence of age, BMI or gender being related to fluctuations in
ECG results in patients with BS.

4 Placement of Electrodes in the ECG

It is consensual that raising the positions of the electrodes from the conventional
positions increases the number of type 1 ECG patterns, that is, increases the
sensitivity of the ECG. Nevertheless, the doubt persists whether it also increases
the number of false positives, thus decreasing the specificity. For 59 relatives a
genetic test was conducted and ECG recordings were performed with the electrodes
in conventional positions (fourth intercostal space—ECG Conv) as well as with
upward displacement of the electrodes (second intercostal space—ECG 2IS—and
first intercostal space—ECG 1IS). Sensitivity and specificity for these three types
of ECG recordings were calculated and the significance of their difference was
assessed through Cochran’s test. The results are shown in Table 7.

As seen, our data support the consensual idea that raising the electrodes positions
leads to a significant increase in the sensitivity. Also, we have registered a decrease
on the specificity, yet, no significant difference was found between those.
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5 Conclusion

Age and BMI were identified as significant predictors of the manifestation of
Brugada patterns. Not only type 1 (diagnostic pattern) but also type 2 and type 3
pattern manifestations tend to occur in older subjects and with low BMI. No
significant relation between gender and Brugada pattern manifestations was found.
Gender, age and BMI do not seem to be significantly related to fluctuations in ECG
results of BS patients. We found a significant increase in the percentage of diagnosis
with two serial ECGs (10,8 %) against only one ECG (4,6 %). Besides that, Cohen’s
Kappa coefficient is indicative of a low degree of agreement between the first and
the second ECGs within subjects which have had a Brugada pattern ECG. So, with
only one ECG, a BS patient may well not be identified, leading the physician to
a misleading prognosis. It then seems important to do more than one ECG on the
screening for BS. As for the displacement of the ECG electrodes with respect to the
conventional positions, we have found significant increase in the sensitivity for the
upward displacements, according to the general consensus, but the accompanying
decrease of specificity was not significant.
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Mortality on Older Portuguese Population due
to Circulatory System Diseases and Neoplasms:
A Spatio-Temporal Analysis by Age and Sex
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Abstract
There are indicators that suggest that the Portuguese population is aging uneven
(Índice de dependência de idosos (N.) por Local de residência; Índice de
envelhecimento (N.) por Local de residência; Índice de envelhecimento (N.) por
Local de residência). Considering this fact, we propose to identify mortality
patterns and regional differences amongst the older Portuguese population (65
or more years). The study of the spatio-temporal distribution of mortality in
older people is essential to understand its dynamics and emergent trends as
well as to promote health in aging populations. It was used the spatial scan
statistic Kulldorff (Commun. Stat. Theor. Meth. 26, 1481–1496, 1997), a method
for detecting space-time clusters. This method has a long tradition in spatial
epidemiology, particularly, in many applications of public health areas Elliott and
Wartenberg (Environ. Health Perspect. 112, 998–1006, 2004) and Nunes et al.
(Rev. Port. Sau. Pub. 26, 5–14, 2008). We use stochastic space-time processes
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7000–671 Évora, Portugal
e-mail: dmog@uevora.pt

M.F. Mendes
CIDEHUS-UE, Department of Sociology, Largo dos Colegiais, 2, 7002–554 Évora, Portugal
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(according to the level of available geographical disaggregation data) to describe
the mortality rates of the older Portuguese population (from 1992 to 2006)
associated with diseases of the circulatory system and neoplasms. Results show
statistically significant space-time clusters, for different age groups, by sex and
cause of death. Those space-time units correspond to simultaneous occurrence
of high mortality rates in different regions of the Portuguese mainland. These
critical areas were consistent over age groups and sex, concerning diseases of
the circulatory system as cause of death; for neoplasm, space-time critical areas
presented some variations over age groups for both males and females.

1 Introduction

In Portugal, like in most European countries, the older population doubled in the last
four decades of the twentieth century and is still increasing [1]. This phenomenon
seems determined to continue and it is expected that the proportion of people aged
65 years, or more, will double again in forty years–reaching 40 % of the population
in almost all territory [15]. Population aging is becoming a very pertinent issue,
in several and different contexts. The study of mortality in older ages is getting
more and more important, especially on population projections and analysis of
social–economic impacts resulting from the changes in the classical population
structure.

There are many studies on health care in Portugal. Some focus on health care
and external death causes [16], others characterize mortality trends without a
spatial desegregation [2]. Those which characterize mortality at a subnational level
usually apply classical statistical techniques (descriptive or inferential) or some
common spatio-temporal approaches based on classical mappings [10, 11]. Also,
in recent studies, spatio-temporal clustering analyses identify high-incidence areas
of some particular diseases in the Portuguese population [4, 12–14].

Considering that older population is not distributed equally throughout the
country and that there are indicators that suggest that the Portuguese population
is aging uneven [6], what are the mortality trends and regional differences? The
aim of this work is to identify where and when the high mortality rates occur
simultaneously in the different regions of the Portuguese mainland for the two
major causes of death of Portuguese older population: diseases of the circulatory
system (CIRS) and neoplasms (NEO). Also, it is analysed if these critical areas
are consistent among age groups, i.e. if critical areas are similar (in a space-time
referential) for all ages, per sex and cause of death. For this purpose, spatio-temporal
clusters were identified for each cause of death, by age and sex, and a stability
indicator was also proposed. The present study can be considered part of the vast
area of spatial epidemiology–geography of the causes of death.
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2 Methodology

We applied a space-time scanning method, spatial scan statistic, proposed by Martin
Kulldorff [9], to identify sets of homogeneous space-time units, clusters, a method
widely used in public health [3, 5, 7, 8]. The scan statistic is based on a maximum
likelihood ratio for each potential cluster that expresses how much more likely
the observed cluster units are, under the hypothesis of clustering, than under the
hypothesis of uniformity. Since the exact distribution of the test statistic cannot be
determined, Monte Carlo simulation is used to perform the hypothesis test. Scan
statistics were applied independently for each age group, per sex and cause of death,
identifying critical areas in all sub-levels. The spatio-temporal scanning method was
applied using the SaTScan v8.0, developed by M. Kulldorff and available at http://
www.satscan.org.

After that, a stability indicator (SI) was built to characterize the regularity of
the identified space-time clusters between age groups among older population, by
cause of death and by sex. This indicator allows us to understand if the identified
clusters (critical areas) were stable in space and time, regarding a reference age
group. In this case, we chose the first age group (65–69), because it was the biggest
group, in terms of frequencies, providing more robust results. It is also the most
import class considering both economic and social impact of lives lost. Cross-tables
between the reference age group and other ages groups were built separately for
each two age groups, by cause of death and sex, to identify the proportion of areas
(considering 420 space-time units D 15 years per 28 regions) which maintain the
same classification (belong or not belong to critical areas: cluster or non-clusters)
on both age groups. The SI is achieved through the sum of cross-table diagonals,
quantifying the clusters proportions which remain constant considering each age
pair. Note that for SI definition it is not important if clusters are “the most likely” or
secondary clusters, because they are always statistical significant (p < 0.001).

3 Case Study

We present a mortality analysis, at a subnational level, focused on two specific
causes of death (CIRS and NEO, as mentioned above), only considering Portuguese
older population death rates. For that purpose, we identify spatio-temporal clusters
for the occurrence of deaths from 1992 to 2006. The space-time referential is defined
by NUTIII (Portuguese territorial units for statistical purposes), per year, and the
analysis was done, independently, by age group and sex for each specific cause of
death. The 28 NUTIII mainland map is available in http://www.ine.pt/.

For individuals aged 65 and over, data was available grouped in age classes: 65–
69; 70–74; 75–79; 80–84; 85C (age 85C represents the last age group). Annual
data–number of deaths–by NUTIII, cause of death, age group and sex, as well as
estimates of the average subnational resident population for the selected time period,
were provided by INE (Statistical National Institute).

http://www.satscan.org
http://www.satscan.org
http://www.ine.pt/
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Fig. 1 Average mortality rate
by cause of death: females,
age 65–69 (1992–2006)

3.1 Main Causes of Death in Portugal

Based on descriptive analysis, we find some regional differences on the selected
death causes. These occur only occasionally, especially at ages 65–69 and 85C,
by sex. Also, in general, there is an increased range in mortality rates by cause
of death in males compared to females. For CIRS, the range in mortality rate
values is higher for males, predominantly in the northern and central regions. In
the south, on the contrary, the range of NEO deaths rates is wider. The maximum
rates are associated to males for both causes of death, with higher dispersion in
CIRS. Figure 1 illustrates, as an example, regional average female death rates for
age group 65–69. In this particular case, CIRS are the dominant cause, although
overlapping (Minho-Lima, Algarve) or even occasionally being exceeded in certain
regions (Grande Lisboa or Médio Tejo) by NEO. Still, in some regions, we can only
identify a small gap between the two dominant causes (Tâmega, Pinhal Interior
Norte or Baixo Alentejo).

3.2 Identified Clusters by Cause of Death, Age and Sex

Clusters were identified for all age groups, for both males/females, and each cause
of death, through retrospective analysis, assuming a Poisson distribution for death
occurrences. We used circular windows in the scan (cylinders in the space-time),
up to 50 % of the population at risk, looking for high mortality values clusters. The
statistical significance of the test was determined by the Monte Carlo method.

For deaths associated with CIRS, three clusters were identified by age group,
for all ages and for both males and females (p<0:001). The main (or most likely)
cluster–a temporal cluster–is common to all ages, for both males and females, in the
period from 1993 to 1999, throughout the territory; the other two space-time clusters
(secondary clusters) divide the territory roughly in half, from north to south. The
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Fig. 2 Identified clusters for CIRS: Males, per age

results point to a certain lack of spatial variation in the Portuguese mainland by age
and sex. Figure 2 illustrates identified clusters for CIRS (males, per age).

Figure 2 shows gray scale for the secondary clusters 2 and 3–the most likely as
dark gray–while the main cluster 1, in this case, only temporal, is referred in the
right bottom corner of each map. Comparing results, there are differences in the
ages 75–79 and 80–84 (reversal of primary and secondary clusters, when compared
to ages 65–74), however, with no practical impact: test statistic values are similar.

In Table 1 we show the spatio-temporal clustering results. CIRS.2 (M; 65–69),
for instance, is an identified cluster on south Portugal (see Fig. 2), with an estimated
observed/expected ratio of 1.29, which means that, in that area, 29 % more deaths
have occurred compared to the expected ones.

Observing Table 1, one can see that ratios do not present big differences
across age and by sex. However, the import issue in discussion, in a space-time
referential, is the identification and characterization of critical areas, considering
observed/expected ratios. Based on Fig. 2 and Table 1, CIRS deaths have similar
patterns by sex. We can only point that the clusters identified for females were more
restricted, geographically, than those identified for males, especially aged 75 and
over. As for NEO deaths, we identified spatio-temporal clusters, for all ages, for
both males and females. The clusters were also located in north and south of the
country, occupying a more restricted area, mainly associated with the metropolitan
areas of Lisbon and Oporto. For males aged 85C and females aged 65–69, there was
a single spatio-temporal cluster in Lisbon region. Also, for females aged 70–74, it
was identified a cluster that covers the entire south of the country.
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Fig. 3 Spatio-temporal clusters stability by cause of death, age and sex (left); “Y axis” detail
regarding CIRS deaths (right)

3.3 Comparative Analysis by Cause of Death, Age and Sex

As already presented in methodology section, a stability indicator (SI) was built
to identify the stability of critical areas, through age groups (using 65–69 as the
reference age group), per sex and per cause of death. To this SI (which was
built based on contingency tables) we assume that the higher the ratio, the higher
the spatio-temporal coincidence of critical areas over studied ages. This SI varies
between 0 and 1: 1 means that clusters are precisely the same (space and time) for
the two age groups being compared, by sex and cause of death; 0 represents that all
space-time units change their status (e.g. areas that belong to clusters in a specific
age change to a non-cluster area in other age).

Figure 3 presents stability indicators for the two selected causes of death, across
older Portuguese ages, by sex. Note that the age group 65–69 does not appear in the
graph because it is the reference comparison group.

For females, the identified clusters of deaths from CIRS remained substantially
constant (SI ' 1), when we compare the age groups 65–69 and 70–74 (we illustrate
CIRS deaths stability across ages, in more detail, in Fig. 3 on the right side). It
means that the regions maintain the same classification as to their inclusion (or not)
in some cluster, within these two age groups. In fact, clusters from CIRS show no
significant differences between each age group and the reference group. Under these
conditions, stability is maximum, so the space-time overlap of clusters is almost
total for all ages. That implies that clusters are almost defined in the same way.
Minimal differences occur on females at ages groups 75–79 and 85C.

As for the NEO deaths clusters, the pattern differs by sex and age, with large
fluctuations. Differences are larger in ages 70–74 and 85C for females. For males,
the major oscillations occur mainly between age group 75–79. Thus, if one considers
the entire older population, there is less stability in clusters related with this cause
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Fig. 4 Homogeneous spatio-temporal units for CIRS (left) and NEO (right) deaths, by sex

of death. However, when comparing ages 70–74 to the reference group, SI D 0.933,
which indicates, in general, a small space-time variability.

Analysing the oscillations by cause of death, age and sex, it is possible to
represent the clusters that remained the same in the reviewed time period (Fig. 4).
For instance, the second representation on the left (CIRS, males) shows homoge-
neous areas which are subgroups of the identified clusters in Fig. 2, resulting from
clusters overlapping in space and time.

In the identified units of Fig. 4 we highlight the overlapping of large spatio-
temporal clusters. For CIRS deaths (Fig. 4, on the left), these critical areas occur
for all ages, for both males and females, differentiating north and south regions.

Additionally, considering CIRS deaths, the identified critical areas are mostly
common for both male and female (except for some minor regions on central-
south, interior centre and northeast of the country). As for clusters from NEO deaths
(Fig. 4, on the right), there is also a strong spatio-temporal coincidence by sex, with
critical regions located in the Lisbon and Oporto metropolitan areas.

4 Conclusions and Discussion

This work has characterized different spatio-temporal patterns in causes of death
among Portuguese older population, at a subnational level. Several spatio-temporal
clusters were identified, detecting critical areas with a high number of deaths, in
Portuguese mainland, by sex, age and cause of death, from 1992 to 2006.

Identified clusters from neoplasms are associated with metropolitan areas (in this
case, on the coast). Considering this cause of death, identified clusters are distinct
by sex and age group. As for mortality rates for diseases of the circulatory system,
they seem to be mostly connected with the north/south division and the identified
clusters are similar by sex and age group.
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The dynamics of each cause of death is different throughout the studied period.
However, it was possible to identify space-time homogeneous units (in terms of the
expected number of mortality rates), but with different temporal patterns.

This is an introductory work to the application of this methodology to Portugal’s
demographical data. Therefore, further developments are being prepared, like
testing other variables or using alternative methods, regarding results assessment.
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Absolute Diffusion Process: Sensitivity
Measures

Manuela Larguinho, José Carlos Dias, and Carlos A. Braumann

Abstract
The constant elasticity of variance (CEV) model of Cox (Notes on Option Pricing
I: Constant Elasticity of Variance Diffusions. Working paper, Stanford University
(1975)) captures the implied volatility smile that is similar to the volatility curves
observed in practice. This diffusion process has been used for pricing several
financial option contracts.

In this paper we present the analytical expressions of sensitivity measures
for the absolute diffusion process, commonly known as Greeks, and we analyze
numerically the behavior of the measures for European options under the CEV
model.

1 Introduction

Under the risk-neutral probability measure Q, the constant elasticity of variance
(CEV) process of [4] assumes that the asset price fSt I t � 0g is described by the
following stochastic differential equation:
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dSt D .r � q/St dt C ı S
ˇ=2
t dWQ

t ; (1)

whereW Q
t is a Wiener process under Q, r � 0 represents the instantaneous riskless

interest rate, which is assumed to be constant, q � 0 denotes the dividend yield for
the underlying asset price, with a local volatility function given by

�.St / D ı S
ˇ=2�1
t ; (2)

where ˇ is a real number, and ı is a positive constant.
The elasticity of return variance with respect to price is equal to ˇ � 2 given

that dv.St /=v.St / D .ˇ � 2/ dSt =St where v.St / D ı2 S
ˇ�2
t is the instantaneous

variance of asset returns. Since volatility is proportional to a power of the underlying
asset price, the elasticity of variance is independent of the asset price. The model
parameter ı can be interpreted as the scale parameter fixing the initial instantaneous
volatility at time t D t0, �0 D �.St0/ D ı S

ˇ=2�1
t0 .

The CEV specification given by Eq. (1) nests the lognormal assumption of [3, 9]
.ˇ D 2/, as well as the square-root diffusion .ˇ D 1/ and the absolute diffusion
.ˇ D 0/models of [5], as special cases. For ˇ < 2 .ˇ > 2/ the local volatility given
by Eq. (2) is a decreasing (increasing) function of the asset price. If ˇ D 2, the stock
price has no influence on the volatility, since the volatility will be a constant over
time, �.St / D ı, regardless of the underlying asset price.

2 European Options Under the CEV Diffusion

The CEV call option pricing formula for valuing European options has been initially
expressed in terms of the standard complementary gamma distribution by [4] for
ˇ < 2, and by [8] for ˇ > 2. The CEV model was subsequently extended in [10]
by expressing the corresponding formulae in terms of the noncentral chi-square
distribution as

ct WD

8
<̂

:̂

St e
�q� Q.2yI 2C 2

2�ˇ ; 2x/ �X e�r� Œ1 � Q.2xI 2
2�ˇ ; 2y/� if ˇ < 2;

St e
�q� Q.2xI 2

ˇ�2 ; 2y/ �X e�r� Œ1 � Q.2yI 2C 2
ˇ�2 ; 2x//� if ˇ > 2;

(3)

with X being the strike price of option, Q.wI v; �/ being the complementary
distribution function of a noncentral chi-square law with v degrees of freedom and
noncentrality parameter �, and where

k D 2.r � q/
ı2.2 � ˇ/Œe.r�q/.2�ˇ/� � 1�

; (4)

x D kS
2�ˇ
t e.r�q/.2�ˇ/� ; (5)
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r D 0:1, and q D 0

y D kX2�ˇ; (6)

ı D �0S
1�ˇ=2
0 ; (7)

� D T � t: (8)

By put–call parity, the CEV put option pricing formulae are

pt WD

8
<̂

:̂

X e�r� Q.2xI 2
2�ˇ ; 2y/� St e

�q� Œ1 � Q.2yI 2C 2
2�ˇ ; 2x/� if ˇ < 2;

X e�r� Q.2yI 2C 2
ˇ�2 ; 2x/ � St e�q� Œ1 � Q.2xI 2

ˇ�2 ; 2y//� if ˇ > 2;
(9)

In general terms, the underlying asset of the CEV diffusion can be thought of as
a stock, a stock index, an exchange rate, or a financial future contract, so long as
the parameter q is understood as, respectively, a dividend yield, an average dividend
yield, the foreign default-free interest rate, or the domestic risk-free interest rate.

There are several alternative methods for computing the cumulative distribution
function of the noncentral chi-square in the literature (see, for instance, [2, 7, 10]).
In this work, we use a method based on series of incomplete gamma functions to
compute the complementary noncentral chi-square distribution function given by

Q.wI v; �/ D
1X

iD0

.�=2/ie��=2

i Š

� .v=2C i;w=2/

� .v=2C i/
; (10)

with � .m; n/ and � .m/ being, respectively, the complementary incomplete gamma
function and the Euler gamma function as defined by [1, Eqs. 6.5.3 and 6.1.1].

The next figures show the behavior of European call and put option prices
(Fig. 1). We consider the following parameters for our analysis: the initial asset
price is S0 D 100, the strike price is X D 100, the instantaneous volatility
at this price level is 25% per annum (�0 D 0:25), the risk-free interest rate
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is 10% per annum .r D 0:1/, the asset pays no dividends .q D 0/, and all
options have six months to expiration .� D 0:5/. We employ seven different values
to ˇ .�6;�4;�2; 0; 1; 2; 4/ to show its effects on options prices. The constant
volatility case .ˇ D 2/ corresponds to the Black and Scholes model. Let �0 be
the instantaneous volatility for Black and Scholes model, then the value of ı to be
used for models with different ˇ values is adjusted to be ı D �0 S

1�ˇ=2
0 .

3 Sensitivity Measures for the Absolute Diffusion

The absolute diffusion process proposed by [5] is a particular case of the CEV
diffusion process in Eq. (1) with ˇ D 0.

Proposition 1. Under the CEV diffusion (1) with ˇ D 0, that is, with a local
volatility function given by �.St / D ı S�1t , the European call and put option prices
are equal to:1

ct D .Ste
�q� �Xe�r� / N.y1/C.St e�q� CXe�r� / N.y2/Cu Œn.y1/�n.y2/�; (11)

pt D .Xe�r� � Ste�q� / N.�y1/C .Ste
�q� CXe�r� / N.y2/C u Œn.y1/ � n.y2/�;

(12)

where N.x/ is the cumulative univariate standard normal distribution function,
n.x/ is the standard normal density function, and

u D ı

�
e�2q� � e�2r�

2.r � q/

�1=2
; (13)

y1 D Ste
�q� � Xe�r�

u
; (14)

y2 D �Ste�q� � Xe�r�

u
: (15)

The sensitivity measures, commonly referred in financial literature as “greek
letters” or simply “greeks,” are vital tools for risk management and they all represent
sensitivity measures of the option price to a small change of a given parameter. The
most common greeks are the first-order derivatives: delta, theta, vega, and rho as
well as gamma, a second-order derivative of the value function.

1Equation (11) of Proposition 1 is standard in the literature and can be found, for example, in [5].
Equation (12) is then easily obtained through the put–call parity relation.
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In the following we give the analytical expressions for the greek letters under the
absolute diffusion process.2

3.1 Delta

The delta,�, of an option is defined as the rate of change of the option price, V , with
respect to the price of the underlying asset, St , that is, � D @V=@St . It is the slope
of the curve that relates the option price to the underlying asset price (Fig. 2). The
delta plays a crucial role for hedging portfolios. For European call and put options
under the absolute diffusion process on an asset paying a dividend yield q we have

�call D e�q�
�
N.y1/CN.y2/


; (16)

�put D e�q�
�

�N.�y1/CN.y2/

; (17)

where y1 and y2 are defined as in Eqs. (14) and (15).

3.2 Theta

The theta, �, of an option is the rate of change of the option price, V , with respect
to the passage of time, t , with all else remaining the same, that is, � D @V=@t .
Theta is sometimes referred to a time decay effect of the option (Fig. 3). The thetas
of European call and put options under the absolute diffusion process, are found,
respectively, to be

�call D Stqe�q�
�
N.y1/CN.y2/


� Xre�r�

�
N.y1/ �N.y2/


C A; (18)

2Due to constraints of space, we have not included proofs of the analytical expressions of sensitivity
measures, but they are available upon request.
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�put D �Stqe�q�
�
N.�y1/ �N.y2/


C Xre�r�

�
N.�y1/CN.y2/


C A;

(19)

where

A D u
�
n.y1/� n.y2/

qe�2q� � re�2r�

e�2q� � e�2r�
; (20)

with u, y1, and y2 being defined as in Eqs. (13), (14), and (15).

3.3 Vega

The vega, V , of an option is defined to be the rate of change of the value of
option, V , with respect to asset price volatility, � , that is, V D @V=@� (Fig. 4).
For European call and put options under the absolute diffusion process, their vegas
are found to be

Vcall D Vput D u

�

�
n.y1/� n.y2/


; (21)

where u, y1, and y2 are defined as in Eqs. (13)–(15).
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3.4 Rho

The rho, �, of an option is defined to be the rate of change of the value of an option,
V , with respect to the interest rate, r , that is, � D @V=@r (Fig. 5). The rhos of the
European call and put option prices under absolute diffusion process are found to be

�call D X�e�r�
�
N.y1/�N.y2/


C B; (22)

�put D �X�e�r�
�
N.�y1/CN.y2/


C B; (23)

where

B D u
�
n.y1/ � n.y2/


 

�e�2r�

e�2q� � e�2r�
� 1

2.r � q/

!

; (24)

with u, y1, and y2 being defined as in Eqs. (13)–(15).

3.5 Gamma

The gamma,� , of an option is defined as the rate of change of delta,�, with respect
to the asset price, St , that is, � D @2V=@S2t D @�=@St (Fig. 6). For European call
and put options under the absolute diffusion process, their gammas are found to be

�call D �put D e�2q�

u

�
n.y1/� n.y2/


; (25)

where u, y1, and y2 are defined as in Eqs. (13)–(15).
The following tables report values of call and put European options under the

absolute diffusion process and the Black and Scholes model, as well as their
corresponding greeks. Overall, our results show that the misspecification of ˇ may
result in significant errors. Thus, similarly to other numerical analysis available in
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Table 1 Values for call options and greeks under absolute and GBM diffusion processes

X Call price Delta Theta Vega Rho Gamma

95 ˇ D 0 12:7426 0:7118 �12:0286 23:5433 30:7141 0.0198
ˇ D 2 12:5880 0:7458 �11:8663 22:6677 30:9969 0.0181
% Diff 1:23 4:56 1:37 3:86 0:91 9.14

100 ˇ D 0 9:5915 0:6113 �12:1002 26:4399 27:4513 0.0222
ˇ D 2 9:5822 0:6448 �12:0722 26:3311 27:4472 0.0211
% Diff 0:10 5:18 0:23 0:41 0:01 5.52

105 ˇ D 0 6:9403 0:5028 �11:5632 27:5180 23:4182 0.0231
ˇ D 2 7:0996 0:5379 �11:6899 28:0819 23:3470 0.0225
% Diff 2:24 6:53 1:08 2:01 0:31 2.97

Note: Parameters used in calculations: S0 D 100; �0 D 0:25; � D 0:5; r D 0:1, and q D 0

Table 2 Values for put options and greeks under absolute and GBM diffusion processes

X Put price Delta Theta Vega Rho Gamma

95 ˇ D 0 3.1094 �0:2882 �2:9920 23:5433 �14:4693 0.0198
ˇ D 2 2.9548 �0:2542 �2:8296 22:6677 �14:1865 0.0181
% Diff 5.23 13:39 5:74 3:86 1:99 9.14

100 ˇ D 0 4.7145 �0:3887 �2:5879 26:4399 �20:1102 0.0222
ˇ D 2 4.7052 �0:3552 �2:5599 26:3311 �20:1142 0.0211
% Diff 0.20 9:41 1:09 0:41 0:02 5.52

105 ˇ D 0 6.8194 �0:4972 �1:5752 27:5180 �26:5213 0.0231
ˇ D 2 6.9786 �0:4621 �1:7019 28:0819 �26:5926 0.0225
% Diff 2.28 7:60 7:44 2:01 0:27 2.97

Note: Parameters used in calculations: S0 D 100; �0 D 0:25; � D 0:5; r D 0:1, and q D 0

the literature (e.g., [6]), we conclude that care must be taken when choosing the
appropriate diffusion process for pricing and hedging options (Tables 1 and 2).

4 Conclusion

The results of this chapter clearly highlight the importance of the model choice
for option pricing and hedging purposes. In fact, we have obtained quite different
results when using the Black and Scholes model, the absolute diffusion model, or
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some other more generalized CEV model that is able to capture both direct .ˇ < 2/
and inverse .ˇ > 2/ leverage effects frequently observed in option market.
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Scaling Exponents in Heart Rate Variability

Argentina Leite, Maria Eduarda Silva, and Ana Paula Rocha

Abstract
Long recordings of heart rate variability (HRV) display non-stationary char-
acteristics and exhibit long- and short-range correlations. The nonparametric
methodology detrended fluctuation analysis (DFA) has become a widely used
technique for the detection of long-range correlations in non-stationary HRV
data. Recently, we have proposed an alternative approach based on fractional
integrated autoregressive moving average (ARFIMA) modelling. These models
are an extension of the AR models usual in HRV analysis and have special
interest for applications because of their ability for modelling both short- and
long-term behaviour of a time series. In this work, DFA is used to assess also
short-range scales, further characterizing the data. The methods are applied
to 24 h HRV recordings from the Noltisalis database, collected from healthy
subjects, patients suffering from congestive heart failure and heart transplanted
patients. The analysis of short-range scales leads to a better discrimination
between the different groups.
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Fig. 1 Schematic representation of electrocardiogram signal and relevant information in each
cardiac beat: QRS complexes and RR intervals (RRi D ti � ti�1)

1 Introduction

The characterization of the dynamics of a system has become an important
and interdisciplinary problem, namely in biomedical applications. Cardiovascular
variables such as heart rate, arterial blood pressure and the shape of the QRS
complexes in the electrocardiogram, Fig. 1, show variability on a beat to beat
basis [14]. This variability reflects the interaction between perturbations to the
cardiovascular variables and the corresponding response of the cardiovascular
regulatory systems. Therefore, the analysis of such variability can provide a
quantitative and non-invasive method to assess the integrity of the cardiovascular
system. The discrete series of successive RR intervals, the tachogram, Fig. 2a, is
the simplest signal that can be used to characterize heart rate variability (HRV) and
has been applied in various clinical situations. The analysis of ambulatory long-
term HRV series has become important for clinical diagnosis and risk assessment
[14]. These series correspond typically to 24 h recordings and exhibit non-stationary
characteristics.

It is well known in the literature that HRV series exhibit not only short
but also long-range correlations which were firstly studied with DFA [9]. An
alternative parametric approach to describe long-range correlation in HRV data
has been proposed by the authors [6], using Fractional integrated autoregressive
moving average (ARFIMA) models which are an extension of AR models. The
parametric approach has the advantage of allowing the removal of the long-memory
component by applying the adequate fractional differencing filter. The remaining
short-memory component may then give further insights of the data, as illustrated
in Fig. 2.

In this work, ARFIMA models combined with selective adaptive segmentation
[6] and DFA scaling exponents are used to describe long- and short-range correla-
tions in 24 h HRV recordings of 30 subjects from the Noltisalis database [13].
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Fig. 2 (a) Tachogram of a normal subject; (c) same tachogram after removing the long-range
correlations with an ARFIMA(0,0.47,0) filter; (b) and (d) corresponding SACFs

2 Scaling Exponents

DFA [9] has become an important non-parametric tool to assess the correlation
properties in non-stationary processes. This methodology was first developed to
quantify long-range correlations in non-stationary time series, x.1/; : : : ; x.N /. The
scaling exponent ˛ at time scale k is obtained by fitting a linear model to the log–log
relationship

F.k/ � k˛; where

F.k/ D
vu
ut 1

N

NX

iD1
Œy.i/ � yk.i/�2 with y.i/ D

iX

tD1
Œx.t/ � Nxi �

and yk.i/ is the local linear trend in each segment of length k.
For stationary processes with long-range correlations, random walk theory

implies that the scaling behaviour of F.k/ is related to the spectral density function,
which satisfies f .!/ � cf j!j�ˇ; ! ! 0; where ˇ 2�0; 1Œ and cf > 0. Then, the
relation between the exponent ˇ and the mean fluctuation function exponent ˛ is
given by ˇ D 2˛ � 1 [10].

For uncorrelated data, the scaling exponent is ˛ D 0:5. Values of ˛ > 0:5 for
large scales k indicate long-range correlations in the data. In particular, for 24 h
HRV recordings (approximately 100,000 beats) k is taken in the ranges 100 � k �
100000 [9] or 128 � k � 4096 [3]. This methodology has the disadvantage of
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Table 1 Typical values of time scale intervals for HRV data

Length Exponents Time scales References

2 h (� 8192 beats) ˛
Peng
1 4 � k � 16 Peng et al. [9]
˛

Peng
2 16 � k � 64
˛Pikk
1 4 � k � 11 Pikkujämsä et al. [12]
˛Pikk
2 k > 11

˛Leite
2 64 � k � 1024 Leite et al. [7]

10 min (� 700 beats) ˛Penzel
1 10 � k � 40 Penzel et al. [10]
˛Penzel
2 70 � k � 300

0,5 1 1,5

−2

−1,5

−1

−0,5

log10k

lo
g 10

 F
(k

)
α
1,SM

=1.13

α
1

Pikk
=1.62

Fig. 3 Results of short-range
scaling exponents ˛Pikk

1 (ı)
and ˛1;SM (G) in the range
4 � k � 11 with DFA for the
data represented in Fig. 2a
and Fig. 2c, respectively

requiring large sample sizes for an unbiased estimation of the long memory [9].
Further studies with smaller samples indicated that different ranges of values for k
lead to the estimation of other scaling exponents, ˛1 and ˛2; which may be used to
characterize the correlation of the series on small and large time scales [9, 10, 12].
Table 1 summarizes typical values of time scale intervals reported in literature for
HRV. For short-range correlated data, ˛1 is larger than 0.5 on small scales k (namely,
˛

Peng
1 , ˛Pikk

1 and ˛Penzel
1 ), and, for long-range correlated data, ˛2 is larger than 0.5 on

large scales k (namely, ˛Leite
2 and ˛Penzel

2 ). In this work ˛1 and ˛2 are used to estimate
short and long range correlations in HRV, respectively.

An alternative approach to describe both long- and short-term correlations is to
use ARFIMA(p; d; 0) models, [4], with spectral density function given by f .!/ D
fSM .!/j1 � e�i!j�2d ; �� � ! � �; where the parameter d characterizes the
long-range dependence and fSM .!/ is the spectral density of the corresponding
short-memory AR(p) process. For stationary data with long-range correlations, the
parameter d is related to the exponentˇ and the mean fluctuation function exponent
˛ by d D 0:5ˇ and d D ˛ � 0:5, respectively [2].

The ARFIMA models have been found adequate to capture and remove long-
range correlations in HRV recordings [6]. This suggests studying short-range scaling
exponents of the data obtained after removing long memory. Such an exponent is
hereafter denoted by ˛1;SM and is calculated in the range 4 � k � 11. In fact,
the application of DFA in short-range scales to the data represented in Fig. 2a, c
(a tachogram before and after filtering by an ARFIMA(0; 0:47; 0)) is represented in
Fig. 3 and suggests that ˛1;SM may provide different information about the data.
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To describe short-range and long-range correlations in the long-term HRV series
(24 h, approximately 100,000 beats), ARFIMA modelling combined with selective
adaptive segmentation is used [6]: the long record is decomposed into short records
of variable length and the break points, which mark the end of consecutive short
records, are determined using the AIC criterion for ARFIMA models. The short
records thus obtained have a minimum length of 512 and are subsequently modelled
using ARFIMA models, to estimate long-range scaling exponent d , and analysed by
DFA, to calculate the short-range scaling exponents ˛Pikk

1 and ˛1;SM .

3 Results and Discussion

The methodology presented above is applied to 24 h HRV recordings of 30 subjects
from the Noltisalis database [13]: ten healthy subjects (N, 34–56 years), ten patients
suffering from congestive heart failure (C, 36–68 years) and ten heart transplanted
patients (T, 18–60 years).

Figure 4 illustrates the results for a healthy subject(N6) (a), a patient affected
by congestive heart failure(C10) (d) and a heart transplanted patient(T3) (g). The
corresponding estimated long-range scaling exponent d in (b), (e) and (h) changes
over time and the recordings present multifractality characteristics in concordance
with Baillie et al. [1] and Leite et al. [5–7]. Moreover, these estimates present a
circadian variation, with lowest values during the night periods. The estimated short-
range scaling exponents ˛Pikk

1 and ˛1;SM for the healthy subject(N6) (c), decrease
during the night period, for the heart transplanted patient(T3) (i), increase during
this period and for the patients affected by congestive heart failure(C10) (f), are
stable during 24 h.

The results, d , ˛Pikk
1 and ˛1;SM , for the three groups of patients during the

24 h, 6 h of night and 6 h of day periods using selective adaptive segmentation
(SAS) are summarized in Table 2. For comparison with the results reported in the
literature by Peng et al. [9], Table 2 also includes the results for ˛Peng

2 , ˛Leite
2 , ˛Peng

1

and ˛Pikk
1 calculated using segmentation combined with DFA (S), where the long

record is decomposed into short records of constant length, L D 8192 beats, and
the short records are subsequently analysed by DFA. Kruskal–Wallis rank sum test
and multiple comparison procedures [11] are used to compare the three groups of
patients during 24 h, as well as in the night and day time periods considered.

The long-range scaling exponents, ˛Leite
2 and d C 0:5, increase for patients

suffering from congestive heart failure and heart transplanted patients, both during
night and day periods, with the highest values for the transplanted group. These
results are in concordance with the results obtained by Cerutti et al. [3] and Leite
et al. [5]. Moreover, the exponent ˛Peng

2 for patients suffering from congestive heart
failure is higher than that for the healthy group. This is consistent with previous
results reported in literature by Peng et al. [9], indicated in parentheses in Table 2.
However, the exponent ˛Peng

2 for the transplanted group is lower than for patients
suffering from congestive heart failure. The Kruskal–Wallis test followed by a
multiple comparison procedure indicates that both groups N and C differ from group
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Fig. 4 Tachograms of three subjects, 24 h Holter recordings: (a) healthy subject(N6) (d) patient
affected by congestive heart failure(C10) and (g) heart transplanted patient(T3). Corresponding
evolution over 24 h of d in (b), (e) and (h) and ˛1;SM (–) and ˛Pikk

1 ( - -) in (c), (f) and (i). d is
estimated using ARFIMA models combined with selective adaptive segmentation and ˛1;SM and
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Table 2 Scaling exponent values for the three groups of patients from the Noltisalis database:
healthy (N), subjects affected by congestive heart failure (C) and transplanted (T), during 24 h, 6 h
of night and 6 h of day periods, using segmentation with 8,192 beats (S) and selective adaptive
segmentation (SAS)

Method Exponent Period N C T p-value

S ˛
Peng
2 24 h 0:97˙ 0:13 1:16˙ 0:21 1:03˙ 0:32 0:052

(1:00˙ 0:12) (1:13˙ 0:22) –
S ˛Leite

2 24 h 0:95˙ 0:16 1:04˙ 0:17 1:35˙ 0:23 < 0:001

SAS 24 h 0:94˙ 0:06 1:02˙ 0:14 1:26˙ 0:10 < 0:001

d C 0:5 Night(6 h) 0:84˙ 0:07 0:88˙ 0:16 1:17˙ 0:17 < 0:001

Day(6 h) 0:96˙ 0:09 1:09˙ 0:16 1:28˙ 0:12 < 0:001

S ˛
Peng
1 24 h 1:39˙ 0:20 1:22˙ 0:29 0:76˙ 0:32 < 0:001

(1:20˙ 0:18) (0:80˙ 0:26) –
S ˛Pikk

1 24 h 1:46˙ 0:23 1:18˙ 0:30 0:72˙ 0:28 < 0:001

SAS 24 h 1:46˙ 0:18 1:18˙ 0:28 0:70˙ 0:25 < 0:001

˛Pikk
1 Night(6 h) 1:33˙ 0:16 1:15˙ 0:26 0:76˙ 0:29 < 0:001

Day(6 h) 1:52˙ 0:27 1:19˙ 0:32 0:67˙ 0:28 < 0:001

SAS 24 h 1:16˙ 0:22 0:72˙ 0:24 0:32˙ 0:12 < 0:001

˛1;SM Night(6 h) 1:05˙ 0:19 0:77˙ 0:25 0:40˙ 0:20 < 0:001

Day(6 h) 1:25˙ 0:30 0:71˙ 0:26 0:29˙ 0:13 < 0:001

Exponents ˛Peng
1 and ˛Peng

2 reported by Peng et al. [9] in parentheses
For each case the average estimates˙ standard deviations are presented
The p-values for the difference between the three groups during the 24 h, night and day time
periods, from Kruskal–Wallis rank sum test

T with respect to the long-range scaling exponents ˛Leite
2 and d C0:5 at a 10 % level

of significance. However, the exponent ˛Peng
2 differs only between N and C groups

at the same significance level.
The short-range scaling exponents ˛Peng

1 and ˛Pikk
1 decrease for patients suffering

from congestive heart failure and heart transplanted patients, both during night and
day periods, with the lowest values for the transplanted group. For healthy subjects
and patients suffering from congestive heart failure, these results are in concordance
with the results obtained by Peng et al. [9], reported in parentheses in Table 2.
However, the values obtained by Peng et al. are lower than those obtained in this
work. This result may be due to the fact that the individuals in the database used
by Peng et al. have different characteristics from the individuals in the Noltisalis
database regarding age and gender: for example, Platisa and Gal [8] conclude that
female subjects had significantly smaller ˛Peng

1 than the male subjects.
The short-range scaling exponent proposed in this chapter, ˛1;SM , also decreases

for patients suffering from congestive heart failure and transplanted patients, both
during night and day periods, with the lowest values for the transplanted group. The
short-range scaling exponents˛Peng

1 , ˛Pikk
1 and ˛1;SM differ for groups N and T and C

and T. Additionally, the exponent ˛1;SM differs also for the groups N and C, during
24 h (Fig. 5) and day period.
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Fig. 5 Average estimates
and standard deviations of
˛P ikk1 (ı) and ˛1;SM (�) for
the three groups of patients:
healthy (N), subjects affected
by congestive heart failure
(C) and transplanted (T)
during 24 h

4 Final Remarks

It is well know that HRV recordings exhibit long-range correlations. In this work,
long memory is removed by fractional differences filtering combined with selective
adaptive segmentation. This approach leads to enhanced short-range scaling expo-
nents and a corresponding better discrimination between the different groups of the
Noltisalis database.
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Prediction of Dementia Patients:
A Comparative Approach Using Parametric
Versus Nonparametric Classifiers

João Maroco, Dina Silva, Manuela Guerreiro,
Alexandre de Mendonça, and Isabel Santana

Abstract
In this chapter, we report a comparison study of seven nonparametric classifiers
(multilayer perceptron neural networks, radial basis function neural networks,
support vector machines, CART, CHAID and QUEST classification trees, and
random forests) as compared to linear discriminant analysis, quadratic discrim-
inant analysis and logistic regression tested in a real data application of mild
cognitive impaired elderly patients conversion to dementia. When classification
results are compared both on overall accuracy, specificity and sensitivity, linear
discriminant analysis and random forests rank first among all the classifiers.

1 Introduction

Traditional parametric statistical classification methods like Fisher’s linear discrimi-
nant analysis (LDA) and logistic regression (LR) have been extensively used in
the past in classification problems for which the criterion variable is dichotomous
[1–3]. More recently, attention has been steadily building on the accuracy and
efficiency of nonparametric classifiers like neural networks (NN), support vector
machines (SVM), classification trees (CART) and random forests (RF) as applied
to classification problems [1, 4–6]. Research on the comparative accuracy for both
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parametric and nonparametric methods has been growing steadily. Some authors
defend that nonparametric classifiers have higher accuracy and lower error rates
than the traditional parametric methods [7–9]. However, this superiority is not
apparent with all data sets, especially with real data [10–14]. Results regarding
classification accuracy and stability of the findings are still controversial [6, 15].
Most comparisons are based only on total classification accuracy and/or error rates;
they involve human intervention for training and optimization of the nonparametric
classifiers vs. out-of-the-box results for the parametric classifiers. According to
Duin [16] “(. . . ) a straight forward fair comparison demands automatic classifiers
with no user interaction”. It also requires a large base comparison taking into
account not only total accuracy but also sensitivity, specificity and discriminant
power. Having prevented inadequate parametrizations of nonparametric classifiers,
we compared total accuracy, sensitivity and specificity of traditional parametric
classifiers (LDA, quadratic discriminant analysis (QDA), LR) vs. nonparametric
methods derived from data mining and machine learning (NN, SVM, CART, RF).
These methods were used to predict the evolution into dementia of 383 elderly
people with mild cognitive impairment from several neuropsychological tests with
predictive validity. When sensitivity and specificity were taken into account along
with total classification accuracy, LDA reveals itself, with random forests, as one
of the best classifiers. It is worthwhile to mention that LDA, a classifier devised ca.
100 years ago, still resists the challenges of the new classifiers who required large
computing power and user intervention.

2 Classifiers

2.1 Discriminant Analysis

Fisher’s LDA estimates discriminant function scores (D) for each of n subjects
classified into k groups from p linearly independent predictor variables (Xp) as

Dj D wj1X1 C wj 2X2 C : : :C wjpXp (1)

where j D 1,. . . ,min(k-1,p). Discriminant weights (wj ) are estimated by ordinary
least squares so that the ratio of the variance within the k groups to the variance
between the k groups is minimal. Classification functions of the type

Cj D cj 0 C cj1X1 C cj 2X2 C : : :C cjpXp (2)

for each of the j D 1,. . . ,k groups can be constructed. The coefficients of the
classification function for the j group are estimated from within sum of squares
matrices (W) of the discriminant scores for each group and from the means of the
p discriminant predictors in each of the classifying groups (M) as Cj D W�1M
with cjo D logp � 1=2CjMj . QDA uses the same within vs. between groups
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sum of square minimization optimization but on a quadratic form discriminant
function:

Dj D
PX

pD1
wjpXp C

PX

pD1
qjpX

2
p C

P�1X

pD1
rjpXpXpC1 (3)

with classification functions

Cj D c0j C
PX

pD1
cjpXp C

PX

pD1
ojpX

2
p C

P�1X

pD1
mjpXpXpC1 (4)

Both on LDA and QDA, a subject is classified into the group for which its
classification function score is higher.

2.2 Logistic Regression

Logistic regression (LR) models the probability of occurrence of one (success) of
the two classes of a dichotomous criterion. A Logit transformation of the probability
of success for each subject (�i ) is iteratively fitted to a linear combination of
predictors accordingly to the model

LnŒ O�i=.1 � O�i /� D ˇ0 C ˇ1X1i C ˇ2X2i C : : :C ˇpXpi (5)

by means of maximum likelihood estimation. Probability of success for each subject
is estimated with the Logit model, and if the estimated probability is greater than 0.5
(or other pre-defined threshold value), the subject is classified in the success group;
otherwise, it is classified into the failure group.

2.3 Neural Networks

Neural network (NN) methods have been used in classification problems and this
is one of the most active research and application areas in the neural network field.
An NN is a multi-stage, multi-unit classifier, with input, hidden or processing, and
output layers. For a binary criterion yk the NN can be described by the general
model

Oyk D fk.x;w; o; x0; o0k/ D f

0

@
hX

jD1
okj � h

 
pX

iD1
wj ixi C x0j

!

C o0k

1

A (6)

where x is the vector of predictors, w is the vector of input weights, o is the vector
of hidden weights, x0 and o0k are bias constants and h(.) and f (.) are activation
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functions for the hidden layer and output layer, respectively. Activation functions
are one of the general linear, logistic, exponential or Gaussian function families.
Several topologies of neural networks (NN) can be used in binary classification
problems. Two of the most used NN are the multilayer perceptron (MLP) and the
radial basis function (RBF). The main differences between the two NN reside in
the activation function of the hidden layer which belongs to the linear family in the
MLP and to the Gaussian family in the RBF function. An NN is generally trained
in a set of iterations (epochs) for a subset of the data (train set) and tested for the
remained subset (test set). Synaptic weights of the NN are upgraded in each iteration
in way to maximize the correct classification rate and/or minimize a function of the
classification errors (for a detailed description of NN see [17]).

2.4 Support Vector Machines

SVM are machine-learning-derived classifiers which map a vector of predictors
into a higher-dimensional linear plane through both linear and non-linear kernel
� functions. In a binary classification problem, the two groups, say f�1g and fC1g,
are then separated by a higher-dimension hyperplane w0�.x/Cb D 0 where x is the
vector of predictors, w is the weight vector and b is a bias offset. The classification
function is then

f .x/ D Sign.w0�.x/C b/ (7)

To find the optimum plane for both f�1g and fC1g groups, one strategy is to
maximize the distance or margin of separation from the supporting planes, respec-
tively, w0�.x/ C b � C1 for the fC1g group and w0�.x/C b � �1 for the f�1g
group. These support planes are pushed apart until they bum into a small number of
observations called “support vectors”. This is equivalent to minimize a cost function

C.w/ D kwk2
2

C c

nX

iD1
�i D 1

2
w0�.w/C c

nX

iD1
�i (8)

under the constraints yi .w0�.xi / C b/ � 1 � �i and �i � 0 where c > 0 is
penalty parameter for classification errors and �i is the penalty of a misclassified
observation. In classification problems the usual kernel functions are the linear
kernel �.xi ; xj / D xi 0xj and the Gaussian �.xi ; xj / D exp.����xi � xj

�
�2/ where

� is a kernel parameter (for a complete description of SVM see [7, 18]).

2.5 Classification Trees

Classification trees (CT) are nonparametric classifiers that construct decision trees
by splitting a node, accordingly to an “if-then criteria” applied to a set of predictors,
into two child nodes repeatedly, from a root node that contains the whole sample.
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Thus, CT can select the predictors and its interactions that are most important
in determining an outcome for a criterion variable. The development of a CT is
supported on three major elements: (1) choosing a sampling–splitting rule that
defines the tree branch which connect the classification nodes; (2) the evaluation
of the goodness of fit produced by the splitting rule at each node and (3) the criteria
used for choosing an optimal or final tree for classification proposes. Accordingly to
the features of these major elements, CT can be classified into CART, CHAID and
QUEST. In CART trees, the predictors are split (if they are continuous) or classes
are separated (if they are qualitative) with the objective of reducing the impurity of
the final node produced at each t branch of the tree. The Gini impurity index

IG.t/ D 1 �
CX

cD1
P .cjt/2 D

CX

cD1

CX

c¤jD1
P.cjt/P.j jt/ (9)

is frequently used as a measure of group heterogeneity in CART. P.cjt/ is the
conditional probability of a class c given the node t :

P.cjt/ D P.c; t/

P.t/
with P.c; t/ D �.c/nc.t/

nc
and P.t/ D

CX

cD1
P.c; t/ (10)

where �.c/ is the probability of observing the group c and nc(t) is the number of
elements in group c at a given node t . The tree grows until no further predictors
can be used or the impurity of each group at the final branch of the tree cannot
be reduced further. Nonsignificant branches can be pruned from the final tree. In
CHAID trees, the homogeneity of the groups is evaluated by a Bonferroni-corrected
p-value from the Pearson chi-square statistic applied to two-way classification
tables with C classes and K splits. In QUEST, the homogeneity of groups at each
branch is evaluated with the ratio of the within group variance and between group
variances for continuous predictors or a chi-square like statistic for categorical
predictors. Although several other alternative algorithms are also available, in this
study we only compared well-established CART, CHAID and QUEST algorithms
(see [19]).

2.6 Random Forests

Random forests (RF) construct a series of CART using different bootstrap samples
of the original data sample. Each of these CART trees is build from a random sub-
set of the total predictors who maximize the classification criteria at each node. An
estimate of the classification error rate can be obtained using each of the CART to
predict the data not in the bootstrap sample (“out-of-the bag”) used to grow the tree
and average the out-of-the bag predictions for the grown forest. These out-of-the bag
estimates of the error rate can be quite accurate if enough trees have been grown.
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Table 1 Sample demographicsa

Groups MCI Dementia p-value

Size 262 (68 %) 121 (32 %) 0.001�
Age (mean˙ SD) 68.3˙8.5 71.1˙8.6 0.003#
Sex (male/female) 157 / 103 75 / 46 0.822�
Schooling years (mean˙ SD) 8.2˙ 4.7 8.6˙ 5.0 0.436#
Time between assessments (year)(mean ˙ SD) 2.4˙ 1.6 2.4˙ 1.7 0.881#
a“MCI”—patients who remained in MCI; and “Dementia”—patients who progressed to dementia
p-values for group comparison were obtained from Student’s t-test (#) or �2test(�)

Although this classification strategy may lack a perceivable advantage over single
CART, accordingly to its creator (Leo Breiman [20]), it has unexcelled accuracy
when compared to many classifiers including LDA, NN and SVM.

3 A Classification Application

3.1 Sample

The described classifiers were used to predict the conversion of 383 elderly
patients with mild cognitive impairment (MCI) to dementia (see Table 1 for sample
demographics).

Thirty-two percent of participants showed dementia (the event to predict).
Distributions of sex, schooling years and time between assessments did not differ
significantly between the dementia vs. MCI groups. However, mean age was
significantly lower for the MCI group (p � 0:05).

3.2 Criterion and Predictors

The criterion was a dichotomous variable with two groups: MCI and dementia.
Predictors used to predict the conversion of MCI into dementia were a set of
nine quantitative neuropsychological tests which have previously shown criterion
validity (i.e., statistically significant different scores for the MCI vs. dementia
groups): Digit Span backward (evaluates working memory), the Logical Memory
test (evaluates episodic memory), Verbal Paired Associates Learning (evaluates
learning ability), Word Recall (evaluates short-term memory), Orientation (eval-
uates personal, spatial, and temporal orientation), Semantic Fluency (evaluates
verbal initiative), Clock Drawing (evaluates visual constructive abilities), the Raven
Progressive Matrices (evaluates non-verbal abstract reasoning), and Proverbs test
(evaluates verbal abstract reasoning). Figure 1 shows the scatter plot of these
predictors and their frequency histograms. Predictors lack homogeneity of group
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Fig. 1 Scatter plots for MCI (	) and dementia (ı) patients in the 9 predictors and its histograms
(DSB—Digit Span Backward test; SF—Semantic Fluency; Or—Orientation; WR—Word Recall;
VPAL—Verbal Paired Associates Learning; LM—Learning Memory; Clock—Clock Drawing;
MPR—Raven Progressive Matrices; Prov—Proverbs)

variances and their histograms show several predictors with a considerable departure
from the Gaussian distribution. There were also several outliers.

3.3 Classification Settings

A fivefold cross-validation strategy was followed to train and evaluate all the
classifiers. The total sample was divided into 5 proportional subsamples. In each
of the 5 steps, 4/5 of the sample was used for training and 1/5 was used for testing.
Test results for the 5 runs were then aggregated and the comparative performances
of the different classifiers evaluated with Friedman’s ANOVA on ranks followed by
Dunn’s multiple comparisons on mean ranks. Statistical significance was assumed
for p<0.05. Linear and quadratic discriminant analysis and logistic regression
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used equal a priori classification probabilities. Data was checked for univariate
and multivariate outliers. As far as the parametric assumptions of LDA (normality
of predictors and homogeneity of group variances), no considerable deviation of
normality for most predictors and no large differences between group variances
were observed. As it is well known, LDA is quite robust to moderate violations
of its assumptions. The MLP neural network was trained in a 80:20 % train:test
setup, with 9 inputs, 1 hidden layer with 4–7 neurons and a hyperbolic tangent
activation function. The activation function for the output layer was the Softmax
with a cross-entropy error function. The RBF neural network had 9 inputs, one
hidden layer with 2–8 neurons and a Softmax activation function. The activation
function for the output layer was the identity function with a sum of squares error
function. The SVM kernel was the radial basis (Gaussian) function with cost (c)
and � parameters optimized by a grid search in the intervals Œ2�3I 215� for c and
Œ2�15I 23� for � , followed by internal tenfold cross-validation. The classification
function was the sign of the optimum margin of separation. Classification Trees used
the CHAID, CART and QUEST algorithms, with ˛ to split and ˛ to merge of 0.05,
with 10 intervals. Tree growth and pruning (for CART) was set with a minimum
parent size of 5 and minimum child size of 1. Classification priors were 0.5:0.5.
Random forests were grown on 500 CART with 2–6 predictors per tree and tree
optimization by cross-validation. Discriminant analysis, logistic regression, neural
networks and classification trees were performed with PASW Statistics (v. 18, SPSS
Inc., Chicago, Il). Support vector machines and random forests were performed
with R (v. 2.8, R Foundation for Statistical Computing, Vienna, Austria) with the
e1071[21] and randomForest [22] packages, respectively.

3.4 Results

Classification accuracy, sensitivity and specificity were evaluated in the 5 test sets
resulting from the fivefold cross-validation strategy. Data gathered are shown as
box plots for the different classifiers. Figure 2 shows the box plots of the total
classification accuracy for the 10 classifiers studied. When the distributions of total
accuracy are compared with the Friedman test, the observed differences were not
statistically significant (X2

F r (9) D 13.6; p D 0.137).
The distributions of specificity (that is the proportion of subjects that did not

convert into dementia and were correctly predicted by the classifier) are shown in
Fig. 3. There were statistical significant differences in the specificity distributions
of the different classifiers X2

F r (9) D 34.868; p < 0:001). SVM, MLP, LR and RF
presented the highest specificity values which were significantly different from a
second group composed by LDA, QDA and CART.

Figure 4 shows the distributions of sensitivity (proportion of subjects that were
correctly predicted to convert into dementia). There were statistically significant
differences in the distributions of sensitivity (X2

F r .9/ D 37:9Ip < 0:001). LDA,
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Fig. 2 Box-plot distributions of classification accuracy (number of correct classifications / total
sample size) for the 5 test samples resulting from the fivefold cross-validation procedure (see text
for abbreviations)

Fig. 3 Box-plot distributions of specificity (number of MCI predicted / number of MCI observed)
for the 5 test samples resulting from the fivefold cross-validation procedure (see text for
abbreviations). Different letters indicate statistically significant differences between classifiers on
a multiple mean rank comparison procedure

CART, QUEST and RF had the highest sensitivity values which were significantly
different from a second group composed by LR, MLP, RBF and CHAID. It is
worthwhile to mention that this second group had sensitivity lower than 0.5 and
that SVM was the classifier with lowest sensitivity.
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Fig. 4 Box-plot distributions of sensitivity (number of dementia predicted/number of dementia
observed) (see text for abbreviations). Different letters indicate statistically significant differences
between classifiers on a multiple mean rank comparison procedure

4 Discussion

Although no statistically significant differences were found in total accuracy of
the 10 evaluated classifiers (Medians between 0.60 and 0.74), a quite different
picture emerges from the analysis of specificity and sensitivity of the classifiers.
Median specificity ranged from a minimum of 0.53 (QUEST) to a maximum of 1
(SVM). With the exception of QUEST, all the other classifiers were quite efficient
in predicting group membership in the group with larger number of elements (the
MCI group corresponding to 68 % of the sample) (median specificity larger than
0.6). However, predictions for the group with lower frequency (the dementia group,
corresponding to 32 % of the sample) were quite unsatisfactory. Minimum median
sensitivity was 0.14 (SVM) and maximum median sensitivity was 0.7 (LDA).
Only five of the ten classifiers tested showed median sensitivity larger than 0.5.
Conversion into dementia is the key prediction in this biomedical application,
requiring classifiers with high sensitivity. Thus, on this real data example, classifiers
like logistic regression, neural networks, support vector machines and CHAID
trees are inappropriate for this binary classification task. Also, total accuracy of
classifiers is misleading since some classifiers are good only at predicting the larger
group membership (high specificity) but quite bad at predicting the smaller group
memberships (low sensitivity). Some of the classifiers with the highest specificity
(NN and SVM) were also the classifiers with the lowest sensitivity. Unbalance of
classification efficiency for small frequency vs. large frequency groups has been
found in other real-data studies for logistic regression and neural networks [10, 23–
25]. Taking in account both total accuracy, specificity and sensitivity, the oldest
Fisher’s linear discriminant analysis ranks top with random forests, the newest
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member of the binary classification family. Similar observations have been made by
other authors. For example, Breiman et al. [19] state that LDA does as well as other
classifiers in most applications. Meyer et al. [24] point out in their comparison study
of data mining classifiers, including NN and SVM, that LDA is a very competitive
classifier, “producing good results out-of-the-box without the inconvenience of
delicate and computationally expensive hyperparameter tuning”. For simple binary
classification problems, where sample size may compromise training and testing
of nonparametric data mining and machine learning classifiers, Fisher’s linear
discriminant analysis stands up as a simple, efficient and time-proof classifier.
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de pilotos militares. Comparação da precisão classificatória de Redes Neuronais, Regressão
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Pareto Scale Mixtures

Miguel Martins Felgueiras

Abstract
Pareto scale mixtures are very effective for modelling heavy-tailed data. A new
class of models is described, generalizing commonly used slash distributions.
Mixture properties and possible applications are discussed.

1 Introduction

Simple models assume a fixed scale parameter. However, in many situations it is
advisable to randomize the scale parameter in order to increase variability [4]. For
instance, in biostatistical studies, the negative binomial model is sometimes referred
to as a “more flexible Poisson” since it is the result of modelling the number of eggs
laid by females of certain species, the individual being Poisson.�/, but considering
that the �’s are values from a Gamma.˛; ı/ random variable. This procedure leads
to a hierarchical model randomizing the former one and hence more flexible.

In many applications the Gamma.˛; ı/ is considered a suitable scale mixing
model, because its natural connection with the Laplace transforms brings in a
useful toolbox of ready-to-use formulas, and in many cases the resulting mixture
is reasonably tractable. But any positive random variables can be used to randomize
a scale parameter, although in most cases the resulting mixture is difficult to work
with, since usually the corresponding density function is not expressible in a closed
form.

The family of Pareto distributions is a suitable randomization subordinator for
two main reasons. First, it has a simple analytical form, leading to straightforward
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mixture density computation. Second, Pareto’s fat tail implies that the resulting
densities will have higher kurtosis, useful in heavy-tailed data modelling.

The mixture can be defined, following [6] notation, as

Y D �X (1)

where� andX are independent random variables with X absolutely continuous and
� Ï Pareto .˛/ ;

f� ./ D ˛�˛�1;  � 1; ˛ > 0: (2)

The fact that we use Pareto with left-endpoint ˛� D 1 is in a sense a severe
restriction, since it implies that PŒjY j> jX j�D 1. Pareto random variables e� D
� � 1 with support  � 0 could also be considered, covering all positive values.
However, explicit density functions and interesting mixture distributions were not
found in that more general setting. On the other hand, as  > 1, the above mentioned
expression has important consequences tied to stochastic ordering.

2 Mixture Densities and Other Properties

The probability density function of the mixture Y D �X can be written as

fY .y/ D
Z 1

1

˛�˛�2fX
�
y



�
d; (3)

originating for some usual X distributions the incomplete gamma-based densities
(see [2]) presented in Table 1 (see next page) where

� .a; y/ D
Z y

0

ta�1e�t dt: (4)

Since the support of� is S� D Œ1;1Œ;multiplyingX by� implies expansion of
the X values. Clearly, the absolute values of the existing moments of such mixtures
are always greater than the corresponding X moments. Further, Y stochastic
dominatesX , since

P .Y > t/ > P .X > t/ ” F Y .t/ > F X .t/ ; t > 0; (5)

a potentially important fact in reliability modelling and in premium computing
policies in actuarial applications [1].

When ˛ increases,

lim
˛!C1F�˛ ./ D lim

˛!C1
�˛ D

�
0;  > 1

1;  D 1
(6)

and�˛ converges to the degenerate random variable at 1.
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Table 1 Some Pareto scale mixture densities

Distribution Density Mixture density

X � N .0; 1/ fX .x/ D 1p
2�
e

�

x2

2
fY .y/ D

˛20:5˛�1�
�
˛C1
2 ;

y2

2



p
� jyj˛C1

; y ¤ 0

2�
3Cˇ
2 exp

h
�0:5 jxj 2

1Cˇ

i

�
�
3Cˇ

2

 ; � 1 < ˇ � 11

fY .y/ D
˛.1Cˇ/�

0

@ ˇC1

2
.˛C1/;0:5jyj

2
1Cˇ

1

A

2
�˛

ˇC1

2 4�

�
3Cˇ

2

�

jyj˛C1

; y ¤ 0

X � Cauchy.0; 1/ fX .x/ D 1

�

1

1C x2 fY .y/ D ˛y�˛�1

�

R y
0

z˛

1C z2
d z; y ¤ 0

X � Gama.ˇ; 1/ fX .x/ D 1

� .ˇ/
xˇ�1e�x

fY .y/ D ˛y�˛�1

� .ˇ/
� .˛C ˇ; y/ ; y > 0

X � Beta.p; q/ fX .x/ D .1� x/q�1

x1�pB.p; q/ fY .y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

˛B .pC ˛; q; y/
y˛C1B.p; q/

; 0 < y < 1

˛B .pC ˛; q/
y˛C1B.p; q/

; y � 1

X � Weibull .ˇ; 1/ fX .x/ D ˇxˇ�1e�xˇ

fY .y/ D ˛�
�
˛ˇ�1 C 1; yˇ�
y˛C1

; y > 0

X � Pareto .ˇ/ fX .x/ D ˇx�ˇ�1

fY .y/ D

8
ˆ̂̂
<

ˆ̂
:̂

˛2y�˛�1 ln y; ˛ D ˇ; y > 0

˛ˇ
�
y�˛�1 � y�ˇ�1

�

ˇ � ˛ ; ˛ ¤ ˇ; y > 0

Convergence in distribution to a constant implies convergence in probability, and
by convergence in probability properties, when ˛ ! C1, then

Y D �˛X
dH)

˛!1 X: (7)

Thus, the mixture model can be near the original, for large values of ˛; or more far
apart when ˛ is small, leading to a wide range of solutions.

Denoting E 0
�
Xk
�

and E
�
Xk
�

as the raw and the central k moments and ˇ2 .X/
as the kurtosis ofX random variable, we can now study the mixture kurtosis as an ˛
function. Assuming that E .X/ D 0 (otherwise perform a location transformation)
and that ˇ2 .X/ exist, simple calculation show that

1Denoted sometimes as the extended Gaussian–Laplace distribution. For ˇ D 0 we have the
Gaussian distribution and for ˇ D 1 the Laplace distribution.
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ˇ2 .Y / D E.Y 4/

E.Y 2/2
D E 0.Y 4/
E 0.Y 2/2

D E 0
�
�4
�
E 0
�
X4
�

.E 0 .�2/E 0 .X2//
2

D ˇ2 .X/

˛
˛�4�
˛
˛�2

�2 D

D ˇ2 .X/
.˛ � 2/2
˛ .˛ � 4/ ; ˛ > 4: (8)

Thus, ˇ2 .Y / > ˇ2 .X/ and the mixture can be used to increase the tailweight of the
original X distribution.

As for the mixture moments, they can only exist for k < ˛, as we prove in the
following theorem.

Theorem 1. Let Y D �X; where� andX are independent random variables, X is
absolutely continuous and� Ï Pareto .˛/ : Then for k � ˛; E

�
Y k
�

does not exist.

Proof. We prove the result for the border case k D ˛, because it is a well-known
result that if E .Y ˛/ does not exist, then E

�
Y k
�

does not exist, for k � ˛: When
E .X˛/ D c ¤ 0; then if E .Y ˛/ exist,

E .Y ˛/ D E .�˛/E .X˛/ D cE .�˛/ :

SinceE .�˛/ does not exist for� Ï Pareto .˛/ ; then it is obvious that also E .Y ˛/
does not exist. For E .X˛/ D 0; note that

fY .y/ D
Z C1

1

˛�˛�2fX
�y
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The expectation of Y ˛ exists if and only if
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is convergent. In what concerns the second integral in the right-hand side of that
expression,

Z C1

0

jy˛j
�
˛

y

Z y

0

�
x

y

�˛
fX .x/ dx

�
dy D

Z C1

0

˛

y

�Z y

0

x˛fX .x/ dx

�
dy:

If P .X > b/ D 0 for some b > 0 and using straightforward inequalities,

Z
C1

0

˛

y

�Z y

0

x˛fX .x/ dx

�
dy D

Z
C1

0

˛

y

"Z min.b;y/

0

x˛fX .x/ dx

#

dy >

>

Z
C1

b

˛

y

"Z b

0

x˛fX .x/ dx

#

dy >
C>0

Z
C1

b

˛

y
C dy;

which is divergent and therefore the expectation of Y ˛ does not exist.
If P .X > b/ ¤ 0 for all b > 0 and using straightforward inequalities,

Z C1

0

˛

y

�Z y

0

x˛fX .x/ dx

�
dy >

Z C1

1

˛

y

�Z y

1

x˛fX .x/ dx

�
dy >

>

Z C1

1

˛

y

�Z y

1

fX .x/ dx

�
dy D

Z C1

1

˛

y
ŒFX .y/� FX .1/� dy:

As
lim

y!C1y � ˛

y
ŒFX .y/ � FX .1/� D ˛ Œ1 � FX .1/� D C > 0;

we conclude that Z C1

1

˛

y
ŒFX .y/ � FX .1/� dy

is divergent and hence the expectation of Y ˛ does not exist.

3 Mixture and Slash Distribution Extensions

The mixture can also be regarded as a random variable quotient,

Y D �X D X

��1
; (9)

where
f��1 ./ D f�

�
�1

�
�2 D ˛˛�1; 0 <  � 1; ˛ > 0;

and so
��1 Ï Beta.˛; 1/: (10)
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When ˛ D 1; the expressions above simplify, and since ��1 Ï U .0; 1/ we obtain
slash distribution family, often used in reliability and robustness studies [3, 5].

In this context, it is obvious that Pareto scale mixtures generalize the class of
slash distributions and therefore share their wide range of applications, namely in
situations where symmetrical distributions with fat tails are appropriated. For 0 <
˛ < 1, Pareto scale mixtures have heavier tailweight than the slash distributions,
and for ˛ > 1 we have the reverse situation.

As a side result, note that for ˛ D 1 Theorem 1 implies that slash distributions
do not have mean value.

4 Examples

4.1 Pareto Mixtures of Normal Random Variables

Pareto mixtures of normals exhibit some of the important features of Pareto mixtures
of a symmetrical population and are potentially the more widely useful. In fact,
when X � N .0; 1/, we obtain an infinitely divisible mixture [6] with density

fY .y/ D ˛20:5˛�1 jyj�˛�1 ��0:5�
�
˛ C 1

2
;
y2

2

�
; y ¤ 0; (11)

For instance, for ˛ D 1,

fY .y/ D 1 � e�y2=2p
2�y2

; y ¤ 0; (12)

and for ˛ D 3

fY .y/ D 3
�
2 � �

2C y2
�
e�y2=2

�

p
2�y4

; y ¤ 0: (13)

As previously stated, �˛X
d�!

˛!1 X: This can be seen in Fig. 1.

Note that the ˛ parameter works in a similar way as the n parameter in Student’s
t-distributions. However, in this situation, the Y distribution as heavier tails (for
small values of ˛/ and the rate of convergence towards the Gaussian limit are slower
than in the t family. The mixture kurtosis can be calculated as (see Eq. 8)

ˇ2 .Y / D 3
.˛ � 2/2
˛ .˛ � 4/

and can assume very large values, as showed in Fig. 2.
Another symmetrical mixture with even heavier tails can be generated for X �

Cauchy.0; 1/ and ˛ D 1; originating the slash Cauchy density
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Table 2 Probability quantiles for the Cauchy, the slash Gaussian and the slash Cauchy

˛ 0.5 0.75 0.90 0.95 0.99 0.999

q˛ Cauchy 0 1.00 3.08 6.31 31.82 318.31
q˛ slash Gaussian 0 1.47 3.99 7.98 39.89 398.94
q˛ slash Cauchy 0 2.45 10.75 27.46 200.57 2,850.55

fY .y/ D ln
�
y2 C 1

�

2�y2
; y ¤ 0: (14)

In Table 2, we can observe that Cauchy and slash Gaussian quantiles are not far
apart, but the slash Cauchy has very large quantiles and therefore can be useful in
modelling very extreme situations.

4.2 Pareto Mixtures of Positive Random Variables

To exemplify Pareto mixtures of positive random variables we choose exponential
parent, since it exhibits the more important features of mixtures of a positive support
population and it is the more readily useful in applications.
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1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0Fig. 3 Some exponential
mixtures densities. The thick
line represents Exp .1/ and
the other lines the mixture for
˛ D 1; : : : ; 5; 20; 30

When X � Exp .1/ we obtain the infinitely divisible mixture [7] with density

fY .y/ D ˛� .˛ C 1; y/

y˛C1
; y > 0; (15)

replacing ˇ D 1 in the gamma mixture density presented in Table 1.
The procedures and the results are similar to that we presented for the gaussian

mixtures. We are performing scale transformations, so mixture density shape always
look alike to the original X density shape. As observed previously, varying the ˛
parameter leads to versatile control of the tailweight of the resulting mixtures, as
showed in Fig. 3.
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Fitting Johnson’s SB Distribution
to Forest Tree Diameter

Ayana Mateus and Margarida Tomé

Abstract
The simulation of diameter distributions is an essential aid for a more efficient
planning of the harvesting operations which usually represents a high percentage
in costs associated with production of pulp. In this chapter Johnson’s SB
probability density function has been used to model diameter distribution of
Eucalyptus globulus Labill. in Portugal.

1 Introduction

Eucalyptus globulus Labill. is one of the most important economic forest species in
Portugal, occupying an area of 875;000ha of a total forest area of 3;346;000ha. It is
a fast-growing species that is mainly used commercially by the pulp industry.

The objective of the research report here is to model the diameter distribution of
eucalyptus plantations in Portugal.

To achieve this objective the following partial objectives were needed: to identify
the probability density function (pdf ) that better reproduced the set of observed
frequencies based on the estimates obtained for coefficients of skewness (ˇ1) and
kurtosis (ˇ2) in each plot at each measurement age; to develop a system of equations
that relates stand basal area (G) with the noncentral moments of the distribution in
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Table 1 Characteristics of tree variable used

Tree variable Minimum Mean Maximum

Diameter at breast height (d , cm) 0.1 11.38 45.40

Table 2 Characteristics of stand variables used

Stand variable Minimum Mean Maximum

Basal area (G, m2ha�1) 0:05 16.16 64:55

Number of trees per hectare (N , ha�1) 450 1237.34 2811

Productivity (S , m) 10:33 20.20 33:93

Age (t , years) 0:6 9.36 34:70

order to obtain estimates of the pdf . The stand basal area is the sum of squared
diameter multiplied by a factor to express it on area per hectare, and it is related
to the second noncentral moment of the distribution. This variable expresses the
competition between trees as it is the area occupied with tree stems. It has a great
importance because in the growth of trees, the competition reflects itself mainly
by growth in diameter. The algorithm proposed by Parresol [12] was selected as a
starting point for the parameter recovery.

2 Methods

2.1 Data

The data used in this study to model diameter distributions of eucalyptus (Euca-
lyptus globulus Labill.) plantations were collected in Portugal in permanent plots
installed in first rotation stands.

The information concerning all the trees within a plot includes successive mea-
surements, usually annually, of diameter at breast height (d ).

The plots used in the present research have drawn on a very large data set
covering stands with different characteristics, namely age (t), stocking (N, number
of trees per hectare), and productivity (S) (see Tables 1 and 2).

2.2 Testing the Performance of Johnson SB Distribution

The analysis of the coefficients of skewness (ˇ1) and kurtosis (ˇ2) of the distribution
of the diameters could be used to indicate the appropriate pattern followed by a
certain population.

For a first identification of the distribution that better reproduced the set of
observed frequencies, the estimates of the coefficients of skewness (ˇ1) and kurtosis
(ˇ2), in each plot at each measurement age, were first analyzed.
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The estimators used were, respectively,

b1 D m3

m
3=2
2

and b2 D m4

m2
2

with

m2 D

nX

iD1
.di � d/2

n � 1
mj D

nX

iD1
.di � d/j

n
j D 3; 4:

di is the diameter at breast height of tree i , d is the average diameter of the plot,
and n is the number of trees measured in the plot.

The choice of the Johnson SB distribution as the null hypothesis for the modeling
of diameter distributions of eucalyptus has been based on its flexibility to model
distributions with different shapes. It has a broader range of the .ˇ1; ˇ2/ space than
other distributions and includes most of the alternative pdf [5, 6].

Since Hafley and Schreuder [4] introduced the four parameter Johnson’s SB
distribution into forest literature, this probability density function has been widely
used in forest diameter (and height) distribution modeling by several authors, such
as [1, 3, 7, 9, 12, 13, 15, 16].

To test the performance of Johnson SB distribution to model diameter distribu-
tions of eucalyptus plantations in Portugal, the b1 and b2 estimates were computed
in each plot at each measurement age on the fitting data set in order to check if
the pairs .b1; b2/ occur mainly in the parametric space that corresponds to this
distribution [12].

In order to complement the methodology used, based on the analysis of coeffi-
cients .ˇ1; ˇ2/ for a first identification of the distribution to be used, the goodness-
of-fit Kolmogorov–Smirnov test was also used in order to test the hypothesis that the
Johnson SB distribution fits the diameter distributions on individual plots [11, 14].
We used the modified Kolmogorov–Smirnov test because the parameters were
unknown and estimated from the data [10]. The test of the qui-square was not used,
for being dependent of the grouping of data in classes.

2.3 The Johnson System of Probability Density Functions

The Johnson system corresponds to the distribution of a random variable X , in
which a particular transformation is applied, in order to obtain a normal distribution
to the random variable processed. This system is composed by three kinds of
distributions (Johnson SL, SB , and SU ), depending on the transformation applied
to the random variable [5].

When the transformation Z D � C ıg.X/ is made on the random variable X ,
an infinite system of distribution functions (or random variables) is being defined,
clearly identified by the transformation g.X/, necessary to obtain a transformed
with standard normal distribution.
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Johnson introduced four parameters �; ı; 
, and �, with �; 
 2 R, � 2 R
C,

ı 2 Rn f0g and expressed the generic transformation defined above in the following
way:

Z D � C ıg

�
X � 

�

�
; (1)

where � and ı are shape parameters and 
 and � are location and scale parameters,
respectively. Although the parameters � and ı affecting both the skewness and the
kurtosis of distribution, the parameter � is particularly associated with the asymme-
try and an increase in the parameter ı corresponds to an increase in the kurtosis [5].

In order to generate distributions with limited support, the transformed chosen is

g.Y / D ln

�
Y

1 � Y

�
(2)

that in terms of the variable Y D X � 


�
results in

Z D �Cı ln

�
X � 



 C � �X

�
; 
 < X < 
C�;�1 < � < 1; ı > 0;�1 < 
 < 1; � > 0

(3)
or

Z D �Cı ln

�
Y

1 � Y

�
; 0 < y < 1; �1 < � < 1; ı > 0; �1 < 
 < 1; � > 0:

(4)
The system of random variables generated by Eq. (3) or (4) is called the Johnson

SB system of distributions.

2.4 Algorithm to Estimate the Parameters of the Johnson SB

Distribution

The parameters of the Johnson SB distribution were estimated using the methodol-
ogy proposed by Parresol [12].

If Eq. (4) is expressed in terms of the variable Y, the following expression is
obtained for Y :

Y D
�
1C exp

�
�Z � �

ı

���1
: (5)

When the variableZ assumes the null value the median of the variable Y (or X )
is obtained:

y1=2 D �
1C e�=ı

��1
: (6)

Note that the median of Y and X are related, since y1=2 D x1=2�

�

.
Equation (6) enables the estimation of the shape parameter � , according to the

median value of the diameter distribution, provided that the shape parameter ı is
known:
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� D ı ln

�
1

y1=2
� 1

�
D ı ln

�
�

x1=2 � 
 � 1

�
: (7)

However, another equation is needed to estimate the shape parameter ı. As we
said in Sect. 1, a variable of great interest in the elaboration of stand models with
diameter distribution simulation is the stand basal area .G/. This variable is related
to the second noncentral moment, E.X2/ of X , through the relation,

G D 1

10000

NX

iD1

�

4
d2i D c N E

�
X2
�

.m2ha�1/ (8)

with N D number of trees alive, per hectare, di D diameter at breast height (cm)
measured of tree i , and cD �

40000
is a conversion constant.

As

E
�
X2
� D E .
 C � Y /2 D 
2 C 2
�E .Y /C �2E

�
Y 2
�
;

then
G D c N

�

2 C 2
�E .Y /C �2E

�
Y 2
��
: (9)

The noncentral moments of order r (E.Y r/) r D 1; 2 may be determined through
the moment-generating function ' of the variable Y

'Y .t/ D
Z C1

�1
1p
2�

exp

�
t

1C e�
z��
ı

�
e�z2=2d z

which shows the following relationship:

E .Y r/ D dr

dtr
'Y .t/ jtD0 D 1p

2�

Z C1

�1

�
1C e�

z��
ı

�r
e�z2=2d z:

The resolution of the system formed by Eqs. (7) and (9), based on known values
of the median variable Y (or X ), G, and N , allows, by assuming some reasonable
values for 
 and �, to obtain estimates for the parameters � and ı. The solution
requires the use of numerical iterative methods of numerical integration, as the
calculation of moments of the distribution does not have an analytical solution [2,8].

As in any iterative process it is necessary to assign initial values to the
parameters. Parresol [12] suggests the attribution of an initial value to ı for a first
approach of � obtained from Eq. (7). Thus the parameter ı was initialized with
the estimate obtained for the kurtosis because an increase of ı corresponds to an
increase in the kurtosis [5]. The parameter 
 was fixed as equal to the minimum
value of the observed diameter and � to the difference between the maximum and
minimum value of the observed diameter. The values for G and N were obtained
from the measurement of each plot in study.
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Fig. 1 Comparison of real and estimated diameter distribution from a plot at ages (years) 5.2, 9.7,
14.8, 19.7, 24.7, and 30.6 (dark D real values)

3 Results and Conclusions

The ranges for the coefficients .b1; b2/ estimated with the data set described in
Tables 1 and 2 were �1:3977 � b1 � 1:0805 and 1:8112 � b2 � 6:8685, which
indicates the existence of a huge variety of empirical diameter distributions for
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eucalyptus plantations. This supports the choice of a very flexible distribution. The
values observed for the pairs .b1; b2/ are included in the range of variation for the
coefficients of skewness and kurtosis of the Johnson SB distribution [5].

It was also verified that in the great majority of the plots, the coefficients of
skewness assume negative values. In the growth of trees, competition between
trees affects growth in tree diameter; this fact explains the negative values for the
coefficients of skewness. In other words, the trees that had a higher initial growth
in diameter (d ) will compete, mainly for light, with the smaller ones making those
to continue to have lower growth rates, and the differences between small and large
trees tended to increase.

The modified Kolmogorov–Smirnov test with a significance level of 5% showed
that the distribution Johnson SB did not significantly differ from the empirical distri-
bution in 106 out of 111 studied stands, each of them with several remeasurements
between 5 and 32 years.

In conclusion, modeling diameter distributions of eucalyptus (Eucalyptus glob-
ulus Labill.) plantations in Portugal through a probability density function, namely
Johnson SB , using a parameter recovery approach seems to be a good methodology
that can be generally applied to the most common values of the pair .b1; b2/.
The main advantage of using parameter recovery models is that the stand variable
that was used in the parameter recovery, namely basal area, assures compatibility
between the characteristics of the observed population and those obtained through
simulation of diameter distribution. This means that basal area computed with the
simulated distribution is fairly closed to the one observed.

As an example Fig. 1 shows the evolution of the observed and simulated diameter
distribution from 5.2 to 30.6 years of age in one of the permanent plot from the
fitting data set when the initialization was made with the measurement at 5.2 years
of age. As can be seen the agreement is very good, even for ages far away from the
initial one. The results in other long-term series plots were similar.
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On a Continuous-Time Stock Price Model
with Two Mean Reverting Regimes

Pedro P. Mota

Abstract
Motivated by the need to describe regime switching in stock prices, we introduce
and study a stochastic process in continuous time with two regimes and one
threshold driving the change in regimes. When the difference between the
regimes is simply given by different sets of real-valued parameters for the drift
and diffusion coefficients, we show that there are consistent estimators for the
threshold as long as we know how to classify a given observation of the process
as belonging to one of the two regimes.

1 Introduction

It seems reasonable to suggest that when stock prices are below a certain threshold
they could have a mean reverting dynamics being attracted to a mean value, smaller
than the threshold, at a certain velocity and with a certain volatility. In the same way
when the stock prices are above the threshold the mean reverting dynamics could be
different.

The study of some nonlinear time series models has received renewed attention,
namely the threshold models (see [4, 5, 12] or [13]). One of our goals is to study
an extension of threshold processes to continuous time and to obtain estimation
methods for the parameters of this kind of processes. In [1–3, 6, 7] or [10]
some results for threshold continuous-time processes are given when discrete time
observations are available.

In this chapter we consider stochastic processes where, in each regime, the
process follows the dynamics of a simple continuous-time process and the change
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in regime will happen when the process crosses a threshold. We note that the regime
switching here proposed is not driven by some external random source and our
goal is to define and study some main aspects of the model, namely, parameter
estimation and usefulness for practical applications. To build this regime switching
process we will define a sequence of stopping times corresponding to the times of
the regime changes. The problem that arises is how to ensure the existence of this
sequence when we know that by a change of measure, using the Girsanov theorem,
the process can be transformed into Brownian motion. Then the problem of defining
the threshold hitting times is the same of studying the level sets of the Brownian
process, those level sets are perfect sets, that is, closed sets consisting only of limit
points of the set itself. One way to overcome this problem is defining the process, in
Sect. 2 below, using an auxiliary threshold band �m � �;mŒ for a fixed (and small)
� , instead of a single threshold m. In Sect. 3 we define consistent estimators for the
limits of the threshold band, but the same kind of estimators could be defined, for
the single threshold m, if the existence of the process could be ensured with that
single threshold.

2 On the Existence of a Solution for the Model

In a context of practical applications, like pricing contingent claims, there is no
generality loss if we suppose that t 2 Œ0; T � with T as deterministic finite time
horizon. In order to define our process .Xt /t2Œ0;T �, we will suppose that for t D 0

a parameter choice, for instance, �1 D .�1; �1/ will give diffusion coefficients
�.t; Xt ;�1/ D �.t; Xt ;�1/ and �.t; Xt ;�1/ D �.t; Xt ; �1/ such that the stochastic
differential equation

dX
�1
t D �.t; X

�1
t ;�1/dt C �.t; X

�1
t ; �1/dBt ; X

�1
0 D x0 (1)

has a unique continuous solution .X�1;x0
t /t2Œ0;T � for the chosen time horizon T > 0

(see [8, p. 289] or [9, p. 73], for instance). For simplicity suppose that x0 < m and
let �1 be the first stopping time at which the solution process hits the upper limit,m,
from below, of the threshold band, that is:

�1 WD inf
n
0 < t < T W X�1;x0

t D m
o
: (2)

By definition, for 0 � t � �1 ^ T , we will have that Xt D X
�1;x0
t . Now, a regime

switch having occurred at time �1, consider (if �1 < T ) the stochastic differential
equation given by

dX
�2
t D �.t; X

�2
t ;�2/dt C �.t; X

�2
t ; �2/dBt ; �1 � t � T; X�2

�1
D m: (3)
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Note that this equation should be read, for all t 2 Œ0; T �, as

X
�2
t D mIŒ�1^T;T �.t/C R t

0
�.u; X�2;x0

u ;�2/IŒ�1^T;T �.u/ du C (4)

C R t
0
�.u; X�2;x0

u ; �2/IŒ�1^T;T �.u/dBu

and then it is clear that if the diffusion coefficients of the equation

dX
�2
t D �.t; X

�2
t ;�2/dt C �.t; X

�2
t ; �2/dBt ; s � t � T; X�2

s D m; (5)

are such that a unique continuous solution exists for all s 2 Œ0; T �, then a continuous
unique solution .X�2;m/

t /t2Œ�1^T;T � exists also for Eq. (4). In fact, consider a standard
theorem, for instance, the one in [8, p. 289] or [11, p. 66]. The sufficient condition
for the initial value is verified and it is clear that the integrability, Lipschitz, and
sublinear growth conditions verified by the drift and diffusion coefficients of Eq. (5)
are still verified by the drift and diffusion coefficients of Eq. (4).

Let now �2 be the first stopping time, following �1, at which the process hits the
lower limit m � � , from above, of the threshold band, that is,

�2 WD inf
n
�1 < t < T W X�2;m

t D m � �
o
: (6)

By definition, for �1 � t � �2 ^ T we will have that Xt D X
�2;m
t . The process may

be defined inductively in this way by concatenating together solutions to standard
stochastic differential equations defined between stopping times.

3 Consistent Estimators

Under certain assumptions it is possible to define consistent estimators for the
limits, m and m � � , of the auxiliary threshold band. For each integer n, let
Cn D fXt1; Xt2 ; : : : ; Xtng be the observations of the process at times t1; t2; : : : ; tn,
not necessarily equally spaced, with �i

n D tiC1 � ti ; i D 1; : : : ; n � 1 being such
that

lim
n!C1 max

1�i�n�
i
n D 0:

We admit that in the observation protocol, from one step to the next, we keep the
observations from the previous step; this implying that for each n, Cn 
 CnC1.

We suppose that we observe the random variablesR1;R2; : : : ; Rn where Ri D 1

if Xti belongs to regime 1 or Ri D 2 if Xti belongs to regime 2.
With these hypothesis we can define consistent estimators for m and m � � . In

fact, knowing the sequence R1;R2; : : : ; Rn, we can split the observations into two
sets using the fact that Rj D 1 ) Xtj � m and Rj D 2 ) Xtj � m � � . For that,
define the sets

C�n D fXi W Ri D 1; i D 1; : : : ; ng (7)
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and
CCn D fXi W Ri D 2; i D d; : : : ; ng: (8)

Finally, we can estimate the threshold band limits in a consistent way.

Theorem 1. If the process .Xt/t�0 has continuous trajectories and if there is at
least a change from the first to the second regime, then

with Om�n D maxC�n we have lim
n!C1 Om�n D m a.s. (9)

that is, Om�n is a consistent estimator of the threshold m, and if there is at least a
change from the second to the first regime, then

with OmCn D minCCn we have lim
n!C1 OmCn D m � � a.s. (10)

that is, OmCn is a consistent estimator of m � � .

Proof. We will only prove that Om�n D maxC�n is a strongly consistent estimator
for m, the proof being similar for OmCn . Note that as C�n 
 C�nC1 we have that
Om�n � Om�nC1 and for each n, by definition, Om�n � m. This implies that limn!1 Om�n

exists and that lim supn!C1 Om�n � m. Suppose that

lim
n!C1 Om�n D lim

n!C1
�
maxC�n

� D lim sup
n!C1

�
maxC�n

�
< m : (11)

Then, for some " > 0, there exists p � 1 such that for all n � p:

8i; Xi 2 C�n ) Xi < m � ": (12)

Let � be the first random time at which the process has a change in regime from the
first to the second. Recall that this implies that X� D m and because the process
has continuous trajectories we can choose ı D ı.!/ such that for all t verifying
j �� t j< ı we have jXt.!/�X�.!/j < " and choose q D q."; !/ such that for n �
q we have that max1�i�n �i

n < ı. Then, for n � max.q; p/ and the observation time
ti D ti .!/ 2 f1; : : : ; ng such that � 2 Œti ; tiC1� (notice that, ti < � ) Xti 2 C�n ),
we have that

� � ti � tiC1 � ti D �i
n < ı (13)

and so

j Xti .!/� X�.!/ jDj Xti .!/ �m j< " ; (14)

a contradiction with Eq. (12).
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Notice that we can use the usual estimators to estimate the other model parameters
as if the process has no regimes.

4 Conditional Least Squares Estimators

For practical purposes we do not need the auxiliary threshold band. For instance,
when working with stock prices, the smallest unit used is, usually, one cent, so, if in
the definition of the threshold band we consider � smaller than one cent, the band
will be indistinguishable from a singular thresholdm. In this section our purpose is
to implement a practical way of estimating this threshold and the other parameters
of the process when we do not know the regime for each observation. The procedure
is implemented as follows:
1. For fixed threshold,m, we split the observations in two sets, corresponding to the

two regimes. Each observation, Xi , is considered in the first regime if Xi � m,
otherwise is considered as belonging to the second regime, 8i D 1; : : : ; n:

2. Next, we can compute the conditional estimators for the diffusion parameters,
namely the drift �.t; Xt ;�/ and the volatility �.t; Xt ;�/, using the observations
in each of the regimes and the usual estimators for the parameters in the single
regime process context.

3. We define the conditional least squares function,

CLSn.m/ D
n�1X

jD1

�
XjC1 � E� ;m

h
XjC1jXj ; : : : ; X1;bRj ; : : : ;bR1

i2
(15)

4. Finally we choose as threshold estimate the value that minimizes CLSn.m/,
that is,

bmn D argminmCLSn.m/: (16)

Remark 1. The conditional expectation in Eq. (15) is not explicitly known and
we will approximate it by the conditional expectation of the underlying process,
in each regime.

4.1 Simulation Study

We are now in conditions to illustrate this procedure with a simulation study for
a particular type of process. We define the geometric Ornstein–Uhlenbeck process
with regimes (GOUR)

dXt D �.t; Xt ;�/dt C �.t; Xt ;�/dBt ; X0 D x0; (17)
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Table 1 Estimates for the GOUR process with ˛1 D 0:05; ˇ1 D 20, ˛2 D 0:05; ˇ2 D 35, and
m D 30 and for different values of �

m ˛1 ˇ1 �1 ˛2 ˇ2 �2

�1 D 0:04 Mean 29:157 0:053 20:035 0:041 0:055 35:065 0:021

�2 D 0:02 sd 1:034 0:007 0:280 0:001 0:010 0:357 0:001

�1 D 0:08 Mean 29:600 0:068 19:215 0:082 0:062 35:400 0:031

�2 D 0:03 sd 0:694 0:008 0:514 0:001 0:009 0:394 0:001

where � 2 � D f.˛1; ˇ1; �1/; .˛2; ˇ2; �2/g 
 R3 and

�.t; Xt ;�/ D ˛i .ˇi � ln.Xt//Xt ; �.t; Xt ;�/ D �iXt ; i D 1; 2; �i > 0; (18)

if at time t the process is in regime i; i D 1; 2.
The simulations started with 250 trajectories with 5; 000 observations in each

one, considering the process parameters, ˛1 D 0:05; ˇ1 D 20, ˛2 D 0:05; ˇ2 D 35,
and m D 30 for different values of � (reasonable values as we will see in the next
section). For the estimating procedure we introduce the auxiliary conditional least
squares contrast function,

CLSn.m/ D
2X

kD1

n�1X

i�0

�
XiC1 � exp

�
ln.Xi /e�b̨k� C

�
b̌
k � b�2k

2b̨k

��
1 � e�b̨k�



Cb�k
4b̨k

�
1 � e�2b̨k�

i2
1bRi .m/Dk;

where the exponential term corresponds to the conditional expectation of the
geometric Ornstein–Uhlenbeck process and where the estimators b̨k , b̌k , and b�k
for k D 1; 2 are the usual ones for the considered process and will be computed
with the observations in each one of the regimes.

We perform a grid search for m in Œ10; 45� with grid step of 0:1. The results for
the different values of � under consideration are presented in Table 1 and, as we can
see, the results suggest that the procedure works well, getting good approximations
for the original values and, as expected, the standard deviation for the estimators
gets larger when � increases.

5 Application with Real-World Data

In this section we apply the procedure to real-world data gathered from Yahoo
Finance. The data presented consists of stock daily prices of 15 companies from
the Dow Jones Industrial Average index. We have applied the estimation procedure
to the complete set of 30 companies from the considered index, but, for 15 of
them, the minimum value for the contrast function is obtained when we consider
the process with only one regime. In Table 2 we present the results of the
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Table 2 Estimated parameters for various stocks; data range from January 2005 to March 2011

Stock bm b̨1 b̌
1 b�1 b̨2 b̌

2 b�2
Alcoa 29:1 0:0036 17:14 0:0342 0:0494 34:21 0:0243

Cisco 19:0 0:0901 17:35 0:0244 0:0103 24:65 0:0179

City Group 36:4 0:0052 5:85 0:0604 0:0078 43:04 0:0106

Coca-Cola 43:8 0:0218 38:93 0:0143 0:0071 56:45 0:0110

General Electric 26:3 0:0107 15:58 0:0310 0:0116 29:64 0:0115

Hewlett Packard 40:6 0:0060 36:63 0:0220 0:0323 46:40 0:0169

Merck 26:5 0:0835 24:00 0:0253 0:0065 36:49 0:0162

Monsanto 95:3 0:0034 71:37 0:0238 0:1047 113:01 0:0337

Moodys 56:9 0:0050 33:76 0:0307 0:0527 63:12 0:0165

Motorola 91:6 0:0135 45:01 0:0378 0:0050 122:02 0:0166

NY Times 15:5 0:0108 8:79 0:0415 0:0048 19:13 0:0161

Pfizer 18:7 0:0183 15:90 0:0194 0:0270 20:52 0:0119

Pacific Gas and Electricity 36:6 0:0238 33:29 0:0170 0:0173 42:33 0:0118

Philip Morris 41:4 0:0537 36:76 0:0269 0:0059 55:98 0:0140

Walt Disney 25:9 0:0329 22:68 0:0278 0:0074 33:75 0:0142

estimation procedure for the remaining 15 companies. Remark that from the 30
companies analyzed from the Dow Jones Industrial Average index, 15 of them
can be characterized with two very distinctive regimes and in all of them (except
Monsanto) the volatility coefficient is larger in the second regime (higher prices)
than in the first regime (lower prices). This could happen because for higher prices
we can observe larger oscillations in prices (even if in percentage the oscillation is
the same). In Fig. 1 we present the estimated regimes and thresholds for these stock
prices. The horizontal lines in each figure are at the levels of the Ǒ

1 estimate, the Om
estimates and the Ǒ

2 estimate. It is not difficult to accept the existence of regimes
and a threshold which makes sense for this stocks. The existence of returning values
for financial prices is not a new idea, but it seems reasonable that could exist more
than one returning value, one for lower prices and another for higher prices.

6 Conclusions

We introduced and studied a SDE model that can be well fitted for the price
evolution of stocks by dividing the phase space in two regions and considering that
the solution process follows, in each region, a different diffusion.

We developed a practical and useful procedure for the estimation for all the
parameters of the model (the diffusion parameters for the two regimes and threshold)
in the particular case in which the SDE defining the diffusion, in each region,
corresponds to a geometric Ornstein–Uhlenbeck process. We showed that, for the
general case, if we have known to what regime each of the observations belongs,
then we can define consistent estimators for the threshold. A simulation study
induced us to think that the estimation procedure can give satisfactory results.
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Fig. 1 Estimated regimes and thresholds for various stocks; the two colors differentiate the
regimes

We applied the estimation procedure to the 30 components of the Dow Jones
Industrial Average index. In half of these companies the procedure enables us to
find fairly differentiated regimes for the stock prices. For future work a comparison
with alternative linear and nonlinear SDE models could be an interesting line of
research.

Acknowledgments This work was partially supported by the Fundação para a Ciência e a Tec-
nologia (Portuguese Foundation for Science and Technology) through PEst-OE/MAT/UI0297/2011
(CMA).



Continuous Time Stock Price Model with Regimes 305

References

1. Brockwell, P.J.: On continuous time threshold ARMA processes. J. Statist. Plann. Inference
39, 291–303 (1994)

2. Brockwell, P.J., Stramer, O.: On the approximation of continuous time threshold ARMA
processes. Ann. Inst. Statist. Math. 47, 1–20 (1995)

3. Brockwell, P.J., Williams, R.J.: On the existence and application of continuous-time threshold
autoregressions of order two. Adv. Appl. Prob. 29, 205–227 (1997)

4. Chan, K.S.: Consistency and limiting distribution of the least squares estimator of a threshold
autoregressive model. Ann. Stat. 2(1), 520–533 (1993)

5. Chan, K.S., Tsay, R.S.: Limiting properties of the least squares estimator of a continuous
threshold autoregressive model. Biometrica 85(2), 413–426 (1998)

6. Freidlin, M., Pfeiffer, R.: A threshold estimation problem for processes with hysteresis.
Finance. Stochast. 36, 337–347 (1998)

7. Hansen A.T., Poulsen, R.: A simple regime switching term structure model. Finance. Stochast.
4(4), 409–429 (2000)

8. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin
(1991)

9. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance, 2nd edn.
Chapman and Hall/CRC, Boca Raton (2008)

10. Mota, P.P.: Brownian motion with drift threshold model. PhD dissertation, FCT/UNL (2008)
11. Øksendal, B.: Stochastic Differential Equations. Springer, New York (2007)
12. Petrucelli, J.D.: On the consistency of least squares estimators for a threshold AR(1) model.

J. Time. Anal. 7(4), 269–278 (1986)
13. Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press,

Oxford (1990)



Generalized F Tests in Models with Random
Perturbations: The Truncated Normal Case

Célia Nunes, Dário Ferreira, Sandra Ferreira, and João T. Mexia

Abstract
This paper shows how to obtain explicit expressions for non-central generalized
F distributions with random non-centrality parameters. We consider the case
when these parameters are random variables with truncated Normal distribution,
for the usual F distribution and for the generalized F distribution.

1 Introduction

Quotients of linear combinations of chi-squares have relevant applications. For ins-
tance, the statistics of the generalized F tests are such quotients. These tests were
introduced by [5, 6], first for variance components and later for linear combinations
of parameters in mixed linear models.

These tests are derived when we have a quadratic unbiased estimator e for a
parameter  and we want to test H0 W  D 0 against H1 W  > 0: Assuming
this quadratic estimator to be a linear combination of statistics we can consider,
following [5] and [6], the positive part, where the coefficients are positive, and the
negative parte, where the coefficients are negative. Let eC and e� be the positive
and the negative parts, respectively, ofe ; thus we are led to use the test statistic

= D
eC
e�

:
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In [2] the exact expressions of generalized F distributions are given when the
degrees of freedom in the numerator or the denominator are even. In [7] this result
was extended to the non-central case.

When the vector of observations is the sum of a vector corresponding to the
theoretical model plus an independent perturbation vector, the distribution of the
generalized F statistics has, see [7–9], random non-centrality parameters. This kind
of model perturbation is worthwhile to study since it would cover situations in which
the collection of the observations was made on non-standardized conditions. Since
we have full control of the observations collection, the usual model assumptions
would hold.

In this chapter we obtain the expressions of the usual and generalized non-
central F distributions, when the non-centrality parameters are random variables
with truncated normal distribution.

It is important to refer that our aim is mainly theoretical. We must point out that
if practical applications are the main goal, an alternative for our treatment is given,
for example, by [1, 4]. This way, the previous approaches such as the one given by
[3, 12] may be improved.

This chapter is organized as follows. In Sect. 2 we present the expressions of
the central and non-central generalized F distributions. In Sect. 3 we develop the
case when the non-centrality parameters are random. This section is divided in two
sections. Section 3.1 deals with the expression of the usualF distributions where the
non-centrality parameters have truncated normal distribution. Finally, in Sect. 3.2
we present the results for the generalized case.

2 Generalized F and Related Distributions

In this section we present the expressions of the central and non-central generalized
F distributions as a preparation for further expansions of random non-centrality
parameters. These expressions were obtained in [2, 7].

2.1 Central Generalized F Distributions

Let us consider the independent random variables Ui � �2g1;i , i D 1; : : : ; r , and
Vj � �2g2;j , j D 1; : : : ; s, and the vectors ar1 and as2, with non-negative components
and being at least one of them not null. Thus, the distribution of

rX

iD1
a1;iUi

sX

jD1
a2;j Vj

will be FC.zjar1; as2; gr1; gs2/.
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With .vm/�1 the vector whose components are the inverses of the components of
vm, the central generalized F distribution will be given by

F.zjgr1; gs2/ D FC.zj.gr1/�1; .gs2/�1; gr1; gs2/:

If ar1 and as2 have all components equal to 1 we will have

F .zjgr1; gs2/ D FC.zj1r ; 1s; gr1; gs2/:

Consider that r D sD 1, in the first case one will have the usual central F
distribution with g1 and g2 degrees of freedom, F.zjg1; g2/, while for the second
case one will have the F distribution, which is the distribution of the quotient of
independent central chi-squares with g1 and g2 degrees of freedom, F .zjg1; g2/.

2.2 Non-central Generalized F Distributions

Distributions �2g;ı are a mixture of the distributions �2gC2j , j D 0; : : : . The
coefficients in this mixture are the probabilities for non-negative integers of the
Poisson distribution with parameter ı

2
, Pı=2. Thus, if U � �2g;ı, it can be assumed

that there is an indicator variable J � Pı=2 such that U � �2gC2`, when J D `,
` D 0; : : :.

So, if Ui � �2g1;i ;ı1;i , i D 1; : : : ; r , and Vj � �2g2;j ;ı2;j , j D 1; : : : ; s, are

independent, their joint distribution �2
gr1;g

s
2;ı

r
1 ;ı

s
2

D
rY

iD1
�2g1;i ;ı1;i

sY

jD1
�2g2;j ;ı2;j will be

a mixture with coefficients

c.`r1; `
s
2; ı

r
1; ı

s
2/ D

rY

iD1
e�

ı1;i
2
.
ı1;i
2
/`1;i

`1;i Š

sY

jD1
e�

ı2;j
2
.
ı2;j
2
/`2;j

`2;j Š
(1)

of the �2
gr1C2`r1;gs2C2`s2 D

rY

iD1
�2g1;iC2`1;i

sY

jD1
�2g2;jC2`2;j .

Moreover, using the mixtures method (see [10] and [11]) the distribution of
rX

iD1
a1;iUi

sX

jD1
a2;j Vj

will be
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FC.zjar1; as2; gr1; gs2; ır1; ıs2/ D

D
C1X

`1;1D0
: : :

C1X

`1;rD0

C1X

`2;1D0
: : :

C1X

`2;sD0
c.`r1; `

s
2; ı

r
1; ı

s
2/F
C.zjar1; as2; gr1 C 2`r1; g

s
2 C 2`s2/:

(2)

If, as above, we consider indicator variables, the conditional distribution of

rX

iD1
a1;iUi

sX

jD1
a2;j Vj

;

when J1;i D `1;i , i D 1; : : : ; r and J2;j D `2;j , j D 1; : : : ; s, will be
FC.zjar1; as2; gr1C2`r1; gs2C2`s2/. Thus, the expression ofFC.zjar1; as2; gr1 ; gs2; ır1; ıs2/
can be obtained unconditioning with respect to the indicator variables.

3 Random Non-centrality Parameters

Up to now we have considered the indicator variables J1;i , i D 1; : : : ; r , and J2;j ,
j D 1; : : : ; s, to have Poisson distributions with fixed parameters. In this section we
assume that these parameters are random variables and we obtain the expressions of
the distributions for the truncated normal case.

Consider the random variables Lr1 and Ls2 with components L1;i , i D 1; : : : ; r ,
and L2;j , j D 1; : : : ; s. With �Lr1;Ls2.t

r
1 ; t

s
2 / the joint moment-generating function

for these variables and

�
<`r1;`

s
2>

Lr1;L
s
2
.t r1 ; t

s
2 / D @

Pr
iD1 `1;iC

Ps
jD1 `2;j �Lr1;L

s
2
.t r1 ; t

s
2 /

rY

iD1
@t
`1;i
1;i

sY

jD1
@t
`2;j
2;j

; (3)

unconditioning

FC.zjar1; as2; gr1; gs2; lr1 ; l s2 / D

D
C1X

`1;1D0
: : :

C1X

`1;rD0

C1X

`2;1D0
: : :

C1X

`2;sD0
c.`r1; `

s
2; l

r
1 ; l

s
2/F

C.zjar1; as2; gr1 C 2`r1; g
s
2 C 2`s2/

(4)
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in order to the random parameters vectors Lr1 and Ls2, there will be

FC.zjar1; as2; gr1 ; gs2; �Lr1;Ls2 / D

D
C1X

`1;1D0

: : :

C1X

`1;rD0

C1X

`2;1D0

: : :

C1X

`2;sD0

�
<`r1;`

s
2>

Lr1;L
s
2
.� 1

2
1r ;� 1

2
1s/

rY

iD1

`1;i Š2
`1;i

sY

jD1

`2;j Š2
`2;j

FC.zjar1; as2; gr1 C 2`r1; gs2 C 2`s2/:

(5)

3.1 Non-centrality Parameters with Truncated Normal
Distribution: The Usual Case

As it was previously seen, if ar1 D 1r and as2 D 1s, with r D s D 1, we will have the
F distribution, which is the distribution of the quotient of independent chi-squares
with g1 and g2 degrees of freedom. So, (5) can be rewritten as

F .zjg1; g2; �X;Y / D
C1X

iD0

C1X

jD0

�
<i;j>
X;Y .� 1

2
;� 1

2
/

2iCj i Šj Š
F .zjg1 C 2i; g2 C 2j /: (6)

Let X be a random variable with normal distribution with mean value �x and
variance �2x , X � N.�x; �

2
x /, independent of Y , also with normal distribution with

mean value �y and variance �2y , Y � N.�y; �
2
y /.

We want to consider the density of those random variables if X and Y take only
non-negative values. SoX and Y have truncated normal distribution bounded below
by zero.

The density of X will be given by

f .xj�x; �x; 0;C1/ D
1p
2��x

e
� .x��x /

2

2�2x

F .C1j�x; �x/ � F.0j�x; �x/ ; x � 0;

with F.xj�x; �x/ the distribution function of X .
So, the moment-generating function of X will be

�X.t1/ D 1

1 � F.0j�x; �x/
Z C1

0

et1x
1p
2��

e
� .x��x /

2

2�2x dx

D 1

K0.�x/
e�xt1

C1X

p1D0

Kp1.�x/

p1Š
.t1�x/

p1 ; (7)
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with

8
ˆ̂
ˆ̂
ˆ̂̂
<

ˆ̂
ˆ̂̂
ˆ̂
:

K0.�x/ D 1 � F.0j�x; �x/ D 1
2

C 1p
2�

PC1
p1D0

.�1/p1
p1Š2

p1

�
� �x�x

2p1C1

.2p1C1/

K1.�x/ D e
�
�2x

2�2xp
2�

Kp1.�x/ D .p1 � 1/Kp1�2.�x/C
�
� �x�x

p1�1
e

�
�2x

2�2x

p
2�

:

Let us consider �X.t1/ D g.t1/ � h.t1/, where

g.t1/ D 1

K0.�x/
e�xt1

and

h.t1/ D
C1X

p1D0

Kp1.�x/

p1Š
.t1�x/

p1 :

We will obtain

�<i>X .t1/ D
iX

h1D0

�
i

h1

�
g<h1>.t1/h

<i�h1>.t1/

D
iX

h1D0

�
i

h1

�
�h1x e

�xt1

K0.�x/

C1X

p1Di�h1

Kp1.�x/�
p1
x t

.p1�iCh1/
1

.p1 � i C h1/Š
:

(8)

This way, and because the variables are independent,

�
<i;j>
X;Y .t1; t2/ D �<i>X .t1/�

<j>
Y .t2/

D
iX

h1D0

�
i

h1

�
�h1x e

�xt1

K0.�x/

C1X

p1Di�h1

Kp1.�x/�
p1
x t

.p1�iCh1/
1

.p1 � i C h1/Š

�
jX

h2D0

�
j

h2

�
�h2y e

�yt2

K0.�y/

C1X

p2Dj�h2

Kp2.�y/�
p2
y t

.p2�jCh2/
2

.p2 � j C h2/Š

(9)
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and (6) will be given by

F .zjg1; g2; �X;Y / D
C1X

iD0

C1X

jD0

iX

h1D0

�
i

h1

�
�h1x e

� �x2
2i i ŠK0.�x/

�
C1X

p1Dh1

Kp1.�x/�
p1
x .� 1

2
/.p1�iCh1/

.p1 � i C h1/Š

jX

h2D0

�
j

h2

�
�h2y e

� �y2
2j j ŠK0.�y/

�
C1X

p2Dh2

Kp2.�y/�
p2
y .� 1

2
/.p2�jCh2/

.p2 � j C h2/Š
F .zjg1 C 2i; g2 C 2j /: (10)

3.2 Non-centrality Parameters with Truncated Normal
Distribution: The Generalized Case

Consider now the generalized case and the independent random variables Xr and
Y s with non-negative components

Xi � N.�xi I �2xi /; i D 1; : : : ; r;

and

Yj � N.�yj I �2yj /; j D 1; : : : ; s:

The moment-generating function of Xr will be

�Xr .t
r
1 / D

rY

iD1
�Xi .t1;i / D

rY

iD1

1

K0.�xi /
e�xi t1;i

C1X

p1;iD0

Kp1;i .�xi /

p1;i Š
.t1;i �xi /

p1;i ;

with

8
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂:

K0.�xi / D 1
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C 1p
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2p1C1

.2p1C1/
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�
� �x;i
�x;i

p1;i�1
e

�

�2xi

2�2x;i

p
2�
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and consequently

�
<`r1>

Xr .t r1 / D
rY

iD1
�
<`1;i>

Xi
.t1;i /

D
rY

iD1

`1;iX
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: (11)

Since the variablesXr and Y s are independent,

�
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This way, (5) can be rewritten as
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(13)
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Generalized Linear Models, Generalized
Additive Models and Neural Networks:
Comparative Study in Medical Applications
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Abstract
During the last two decades, evaluating severity of illness and predicting
mortality of critical patients became a major concern of all professionals that
work in intensive care units all over the world. Due to the binary nature of the
response variable, logistic regression models were a natural choice for modelling
this kind of data. The objective of this study is to compare the performance
of generalized linear models (GLMs) with binary response (McCullagh and
Nelder, Generalized Linear Models. Chapman and Hall, London, 1989), with
the performance of generalized additive models (GAMs) with binary response
(Hastie and Tibshirani, Generalized Additive Models. Chapman and Hall, New
York, 1990) and also with the performance of artificial neural networks (ANNs)
(Bishop, Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995), in what concerns their predictive and discriminative power. A dataset of
996 patients was collected and the entire sample was used for the development
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of the models and also for the validation process, due to the nonexistence of an
external, independent dataset. The performance of the proposed methodologies
was assessed, not only by the evaluation of the agreement between observed
mortality and predicted probabilities of death through the use of calibration plots,
but also by their discriminating ability, measured by the area under the receiver
operating characteristic (ROC) curve.

1 Introduction

Since 1981 numerical scoring systems and multivariable statistical models have
been used to assess the severity of illness of critically ill patients. The former assign,
subjectively, weights to variables reflecting the degree of physiologic derangement.
In fact, the acute physiology and chronic health evaluation score, referred to as
APACHE [4], the simplified acute physiology score, referred to as SAPS [7] and
the APACHE II score [5] were built using a panel of experts to select variables and
weights. More recently, and because the subjectivity of these procedures may lead to
undesired discrepancies, multivariable statistical models were considered. Mortality
probability models, referred to as MPM [9–11], the APACHE III score [6] and
the SAPS II [8], were then developed, making use of more objective methods
such as multiple logistic regression. However, the fact that a non-linear dependence
between the binary response variable and the continuous covariates may exist led
us to adopt generalized additive models (GAMs) to accomplish the fitting process.
In fact, the more recently developed severity of illness scores, SAPS 3 [14, 15]
and APACHE IV [17] also make use of more flexible strategies, such as splines
and regression trees, to model the data. So, in this chapter, we propose the use of
GAMs to estimate the probabilities of death and/or to obtain new adjusted cut-off
points with the purpose of categorizing the continuous independent variables, if the
main interest is the obtainment of a severity of illness score. SAPS II variables were
used because this was the severity of illness score adopted by the clinicians of the
Portuguese intensive care unit (ICU) where the dataset analysed in the present study
was collected. Since artificial neural networks (ANNs) are an alternative to some
statistical methodologies, namely, regression models [16], this study also aims to
evaluate the performance of ANNs to predict the outcome under study. Finally, a
comparison of the several approaches was carried out.

All statistical analyses were performed using S-PLUS (version 8.0, 2007;
Insightful Corporation, Seattle, WA) and, to implement the ANNs, a new software
was developed using a standard commercially available mathematics package
format (MATLAB R2006b, The Math-Works Inc., 3 Apple Hill Drive, Natick, MA
01760).
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Fig. 1 Multi-layer perceptron architecture

2 Generalized Linear Models and Generalized Additive
Models

Let Y be a response variable and .X1; : : : ; Xp/ a vector of p associated covariates
that characterize each of n individuals. A GAM is defined by the expression
E.Y jX1; : : : ; Xp/ D h.ˇ0 C Pp

jD1 fj .Xj //, where Y has a probability mass or
density function that belongs to the exponential family, h.�/ is the link function and
fj .Xj /, j D 1; : : : ; p, known as the partial functions, are arbitrary univariable
functions that must be estimated from the data and represent the effect of the
covariates on the response [3]. A generalized linear model (GLM) is a particular
case of a GAM when fj .Xj / D ˇjXj [12].

3 Artificial Neural Networks

An ANN is, fundamentally, a mathematical model composed by a set of units
(nodes), where information is processed [2]. These units are connected through
unidirectional communication links, which carry numerical data. One of the most
studied and used ANN architecture is the multi-layer perceptron (MLP). Funda-
mentally, one MLP consists of an input–output network, which has the neurons
distributed by several layers, fully connected between adjacent layers, and where
the flow of information is done in a feed-forward way. The following figure shows
an MLP with three layers: an input layer, without neurons, a hidden layer and a layer
with one output neuron.

If we have an MLP such as the one represented in Fig. 1 and with the same
activation function, f, in all its neurons, then it can be described mathematically as

y.x/ D f .!T0 f .!
T
Hx//;
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where x is the input pattern and !0 and !H are the matrices of the parameters
related with the links of the output and hidden layers, respectively. As it can be
seen from the equation above, this is a relatively complex model since it is non-
linear in the parameters. Therefore, it is difficult to identify and estimate it correctly.
The method traditionally used to perform the training of such networks is the error
backpropagation algorithm [2], which consists of a variant of the instantaneous
gradient descent procedure. The network is trained, using the steepest descent
algorithm, in order to minimize an error such as the mean squared error (MSE)
given by

MSE � EN D 1

2N

X

x

.e.x//2 D 1

2N

X

x

.y.x/ � d.x//2;

where d.x/ corresponds to the desired output for the input pattern x and N is the
number of individuals of the training dataset. It can be viewed as a sort of non-linear
and non-parametric regression. The updating of the synaptic weights is

! D ! � ˛
@EN

@!ij
;

where ˛ is the learning rate. However, this kind of searching methods does not
guarantee convergence of the objective function to a global minimum, and the
convergence rate is typically very slow during most of the training process. To help
in both respects, it is common to consider the inclusion of a momentum term in the
weights updates:

�!
.k/
ij D �˛@EN

@!ij
C ˇ�!

.k�1/
ij :

4 The New Simplified Acute Physiology Score (SAPS II)

The SAPS II is a severity of illness score, used in ICUs, that has received a lot
of attention in Europe for its simplicity and applicability. It includes 17 variables:
12 physiology variables (heart rate, systolic blood pressure, body temperature, the
ratio PaO2

F iO2
for ventilated patients, urinary output, serum urea level, white blood cells

count, serum potassium, serum sodium level, serum bicarbonate level, bilirubin level
and Glasgow coma score), age, type of admission (scheduled surgical, unscheduled
surgical or medical) and three underlying disease variables (acquired immunodefi-
ciency syndrome, metastatic cancer and hematologic malignancy). To develop and
validate this score, a large international sample of surgical and medical patients,
collected by an European/North American multicentre study, was used [8]. The
development phase used 65 % of the available patients, randomly selected, while
the remaining 35 % became the validation set. The cut-off points for each of the
continuous covariates that revealed to be statistically significant in the univariable
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analysis were found by using the LOWESS (locally weighted scatterplot smoothing)
technique. After the categories were defined, a multiple logistic regression was used
and the total severity score was obtained by adding the estimated coefficients of
the corresponding design variables multiplied by 10 and rounded off to the nearest
integer. Finally, for converting the SAPS II into a probability of hospital mortality, a
multiple logistic regression model was fitted with SAPS II and ln(SAPS II C 1) as
independent variables. However, when applied to different populations, this model
is often unable to adequately predict the outcome, and so, a customization may be
done by fitting that model to the new datasets.

Model calibration was evaluated by analysing the agreement between the
estimated probabilities of death and the actual observed mortality using the Hosmer–
Lemeshow goodness-of-fit test, having obtained a p-value D 0.104 for the valida-
tion sample. To evaluate the ability of the model to distinguish between patients who
live from patients who die, usually referred to as discrimination, receiver operating
characteristic (ROC) curves were used and an area under the curve of 0.86 was
achieved for the validation sample. Indeed, both results are highly satisfactory;
however, when SAPS II was applied to some external databases, the results obtained
were far worse (e.g. [1, 13]).

5 Results

Data from 996 patients, consecutively admitted to a Portuguese mixed (medical and
surgical) ICU, were analysed. All SAPS data were collected during the first 24
hours after ICU admission. The mean age of the patients was 60.3 (95 % C.I. :
59.3,61.4) years with a median SAPS score of 41 (interquartile range 20–60) and
a hospital mortality of 36 %. The original SAPS II scoring system did not produce
very good results, namely, in what concerns calibration (p-value < 0:001) (Fig. 2,
left), although an area under the ROC curve of 0.82 (95 % C.I. : 0.79, 0.84) was
achieved, showing a satisfactory discrimination ability. After customization, by
using a logistic regression model with SAPS II and ln(SAPS II C 1) as independent
variables, a new equation for the hospital mortality prediction was derived and a
better performance was obtained (Fig. 2, right), with a p-value D 0.517 attained by
the Hosmer–Lemeshow goodness-of-fit test and with the same area under the ROC
curve.

The same dataset was used to implement a 3-layered perceptron with 17 input
nodes, 5 hidden units, a single output node and a sigmoidal activation function.
Firstly, this network was trained using the steepest descent algorithm so to minimize
the MSE (Fig. 3, left). The obtained area under the ROC curve was 0.82 (95 % C.I.
: 0.79, 0.84). Secondly, the Kullback–Leibler (KL) distance was used instead of the
MSE criterium (Fig. 3, right) and the obtained area under the ROC curve was 0.81
(95 % C.I. : 0.78, 0.84).

At last, GAMs were used to analyse the data. Based on the partial functions
estimates, we found new cut-off values for each continuous covariate adjusted by
the remaining covariates and we fitted a logistic regression model with these new
categorical independent variables (Fig. 4, left).
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Fig. 2 Predicted versus observed probability of death. Original SAPS II (left) and customized
SAPS II (right)
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Fig. 3 Predicted versus observed probability of death. Artificial neural network using MSE (left)
and using the Kullback–Leibler distance (right)
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Fig. 4 Predicted versus observed probability of death. Logistic regression with the new categorical
covariates (left) and a GAM without categorizing the continuous covariates (right)

The entire sample was used for model estimation and validation was accom-
plished by randomly splitting the whole sample into five mutually exclusive groups.
Five regression models were then fitted, with each model excluding one group and
used to calculate predictions for the excluded group (fivefold cross validation). An
area below the ROC curve equal to 0.85 (95 % C.I. : 0.82, 0.87) and a calibration
p-value D 0.74 were obtained. The substantial improvements in both calibra-
tion and discrimination, even without introducing new prognostic variables, were
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interesting findings. However, since some information is lost in the categorization
process, we also used GAMs to estimate the probabilities of death without catego-
rizing the continuous covariates. After fitting a GAM to our cross-validated sample,
good calibration curves (Fig. 4, right) and an area under the ROC curve of 0.87 (95 %
C.I. : 0.85, 0.89) were obtained. As it can be seen from Fig. 4, GAMs obtained better
results than those presented by the other approaches.

6 Conclusions and Future Work

The performance of GAMs is clearly superior to the GLMs and neural networks
used in this study. When comparing these last two approaches, in what concerns
their discriminative power, results are according to the ones referred elsewhere
(no substantial differences between the areas under the ROC curve). The same
did not happen for the predictive power since neural network calibration plots
showed a weaker performance, independently of the used criterium (MSE or
KL distance). This means that, in our study, there was no relevant advantage in
using ANN-MLPs. As future work, other ANN structures, such as Generalized
Additive Neural Networks, will be implemented with the purpose of obtaining better
results.
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Joint-Regression Analysis and Incorporation
of Environmental Variables in Stochastic
Frontier Production Function: An Application
to Experimental Data of Winter Rye

Dulce Gamito Pereira and Ana Sampaio

Abstract
This chapter joins the main properties of two specific regression techniques,
joint-regression analysis (JRA) and stochastic frontier approach (SFA) in the
analysis of experimental data sets from a breeding program of winter rye (Secale
cereale L.), conducted in Poland, Research Center for Cultivar Testing de Słupia
Wielka, over the period 1997–1998. With JRA, a meta-model, based on several
linear regressions, had been estimated in order to analyze multilocation trials
of winter rye production and to select the best cultivars (more productive) for
a related stratum (locality/genotype). With SFA, another regression model had
been investigated to predict production rankings of cultivars, through individual
efficiency estimates. These measures resulted from a stochastic production
frontier on experimental data of production and different climate conditions.
Both techniques show similar dominant cultivars for the same environments.

1 Introduction

Joint-regression analysis (JRA) has been a widely used technique in the analysis of
series of experiments designed for cultivar comparison. The series of experiments
to be analyzed must cover sufficiently large areas so to make the choice of
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cultivars worthwhile. Formerly, such series consisted of randomized block designs.
Nowadays, these have been replaced, in most of Europe, by ˛-designs, which consist
of incomplete blocks. Thus, the usual technique, see Gusmão [16] and [17], of
estimating the environmental indexes of the blocks by their average yields, can no
longer be used. Mexia et al. [21], introduced L2 environmental indexes which can
be applied to series of experiments using incomplete block.

Stochastic frontier approach (SFA) was originally developed in 1977 by Aigner,
Lovell, and Schmidt (ALS) and it has been published, almost simultaneously,
by Meusen and van den Broeck (MB), Battese and Corra (BC), and ALS. This
technique shares with JRA the linear regression methodology although it considers
in the model specification a composed error structure ("DV �U ), where the
first error component V �N.0; �2v ) is intended to capture the effects of statistical
noise and the second component, U, is intended to capture the effects of technical
inefficiency, being U � 0, as the observation lies on or beneath this stochastic
production frontier [12, 14]. Because of the asymmetric component of statisti-
cal error, four different distributional assumptions, such as half normal, normal
truncated, exponential, and gamma, have been proposed and developed (BC for
half normal, ALS for half normal and normal truncated, Greene [13] for gamma,
Stevenson [32] for gamma and normal truncated). Distributional assumption on U
leads that the composed error is negatively skewed requiring maximum likelihood
estimation (MLE). Although the main applications of SFA have been developed in
the competitive market context [2, 29], SFA appears also in experimental designs
for improving agriculture productivity [3, 6]. Indeed, as the ability of converting
inputs into outputs also accounts for environmental variables, the literature allows
their inclusion in the production frontier in order to directly [18] or indirectly [8]
influence the stochastic component or the nonstochastic component, respectively.
In this study we investigate environmental variables’ incorporation on the model,
by specifying their direct and indirect influence on the dependent variable, through
their additional inclusion on the asymmetrical error component [28].

This study seeks to analyze the production of winter rye crop in the year
1997/1998, conducted by Research Center for Cultivar Testing of Słupia Wielka
in different experimental stations in Poland, from the application of two different
regression techniques: JRA and SFA. We examine how certain variables may
directly or indirectly affect production, as these variables had been incorporated
into the deterministic and stochastic components of the production frontier [9]. By
specifying the general model it investigated the direct influence of the environmental
index (already obtained with the JRA) and of the two annual environmental factors
(average air temperature and average rainfall), on the production of winter rye.
The objective is to select the more productive genotype(s) and to identify the
impact of some environmental factors in the level of production of winter rye crop
(cereal). We also investigate possible relationships between genotypes and levels of
fertility.
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2 Methodologies

2.1 Joint-Regression Analysis

JRA may be used for the analysis of series of experiments for cultivar comparison.
The technique is based on the adjustment of a linear regression, per cultivar, of the
yield on a synthetic variable measuring productivity, the environmental index.

The principles of JRA were first developed by Mooers [23] and, after an
ephemerous revival by Yates and Cochran [34], were resumed by Finlay and
Wilkinson [11] forty-two years later. Important improvements to this technique were
given by Eberhart and Russell [10], thus enabling to compare cultivars under a large
range of fertility levels.

Despite the criticism still prevailing [19, 33] for not considering specific envi-
ronmental variables, the technique continues to be largely used as a complement
of traditional statistical analysis and is applied, mainly, in the assessment of the
genotype x environmental interaction.

Initially the field trials were designed as randomized blocks. Gusmão [15–17]
showed that the precision in analyzing series of randomized block experiments
was highly increased by considering environmental indexes for individual blocks
instead of only one environmental index per experiment. Following Gusmão [16] the
(classic) environmental indexes of the blocks were measured by their average yields.

When incomplete blocks are used, such as is the case with ˛-designs, the classic
environmental indexes can no longer be used, since it would lead to highly biased
estimates for the environmental indexes corresponding to blocks. To overcome this
problem Mexia et al. [21] introduced the L2 environmental indexes obtained mini-
mizing the sum of sums of squares of residuals, both in order to the coefficients of
the regressions and to the environmental indexes.

The upper contour defined by the adjusted regression lines is a convex polygon
which, see Mexia et al. [20, 22], can be used to carry out cultivar selection. The
cultivars whose regression lines partake of the upper contour are the dominant
ones (Fig. 1). The other cultivars are compared with the dominant ones. For each
dominant cultivar there is a range of environmental indexes in which it has the
highest yields.

This technique was systematically studied by Pereira [25] considering how to use
it in cultivar selection.

2.1.1 ˛-Designs
When using incomplete blocks it is worthwhile to consider designs in which the
blocks are grouped in superblocks, each containing any cultivar ˛ times. We thus
get, for all cultivars, yields obtained under similar conditions. Such designs will be
resolvable in the sense of Shrikhande and Raghavarao [30, 31]. Those with ˛ D 1

are more and more used in agriculture and especially in cultivar testing. A very
flexible family of resolvable designs is constituted by the ˛-designs introduced by
Patterson and Williams [24]. While we could take ˛ > 1, it is usually preferable to
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Fig. 1 Adjusted regressions using L2 environmental indexes for a series of 17 experiments of
˛-designs of winter rye cultivars, in the years of 1997 and 1998

use ˛ D 1 in order to increase the within superblock homogeneity. Per experiment
there will be a superblock. Thus, for each cultivar, we will have a replicate per
location. As we will see, the choice of ˛ D 1 does not raise any problem while
using L2 environmental indexes.

2.1.2 L2 Environmental Indexes
For convenience, let us consider data arranged in a two-way array with b rows
and J columns. Suppose Yij is a continuous response variate (e.g., yield) for
cultivar/genotype j in block i if present. The joint-regression model is

Yij D ˛j C ˇjxi C eij ; i D 1; 2; : : : ; b; j D 1; 2; : : : ; J; (1)

with .˛j ; ˇj / the regression coefficients, for the J cultivars and the xi , the block
environmental indexes.

The goal function to be minimized will be

S.˛J ; ˇJ ; xb/ D
bX

iD1

JX

jD1
pij .Yij � ˛j � ˇjxi /

2: (2)

Usually the weight pij is 1 [0] when cultivar j is present [absent] from block i. When
the cultivar occurs we take pij D pi . These weights may differ from block to block
to express differences in representativity of the blocks.

The main problem in such modeling is how to estimate the parameters. One can
observe that the lately proposed and so-called zigzag algorithm is very efficient
in finding the estimates of .˛j ; ˇj / and the xi (cf. [21, 22, 27]), but it has not
been established that it converges to the absolute minimum of the goal function.
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We presented an alternative algorithm, double minimization algorithm, for the
adjustment of JRA and showed that, in the complete case, it converges to the
absolute minimum (cf. [26]). In the incomplete case we are developing a stochastic
search algorithm to validate the use of the zigzag algorithm.

2.2 Stochastic Frontier Approach

Generally, SFA approach and efficiency analysis have two objectives [9]. The first
purpose is to estimate a stochastic frontier for benchmarking uses through compar-
isons between productive units based on individual efficiency estimates. The second
purpose is concerned with the incorporation of environmental variables, assumed
to influence the global context of production, but which are neither inputs to the
production process nor outputs of it. The stochastic frontier model is characterized
by the utilization of a two-component error term. The symmetric component of
the error term, or the statistical noise, captures the random variation of the frontier
across observations, measurement errors, or random shocks’ external to control.
The other component is a one-sided variable which captures the inefficiency of the
process or the deviance from the technological frontier. Following the specification
proposed by Battese and Coelli [4] and Coelli, Perelman, and Romano [8], this study
employs a stochastic production frontier function to measure technical efficiency of
winter rye crop production. The theoretical model can be expressed as

yj D f .xj Iˇ/ exp"j ; j D 1; 2; : : : ; J; (3)

where

yj is the production of the j th cultivar;
f .xj Iˇ/ is a suitable production function;
xj is a .1 � k/ vector of inputs for the j th cultivar;
ˇ is a .k � 1/ vector of unknown parameters to be estimated;

"j D vj � uj represents a stochastic component error, where V is assumed to
be independently and identically distributed (i.i.d.) N.0; �v/ random error and
independently distributed of the U ; and U is a nonnegative random variable,
associated with technical inefficiency of production, which is assumed to be
independently distributed, such that U is obtained by truncation (at zero) of the
normal distribution with mean Z0ı and variance �2u . The main idea is that the first
random variable (V ) represents a noise component with an identical role to the
error in the classical linear regression model and that the second random variable
(U ) represents the impact of management (or decisions about experimental design)
inefficiencies on the dependent variable. So, when the value of U comes out to be
equal to zero, the j th cultivar is located on the frontier, meaning that the greater the
magnitude of U far away will be the production unit from the production frontier.
In the stochastic frontier model (1), U can be specified as

uj D z0j ı C wj ; (4)
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where Z is a .1 � m/ vector of explanatory variables associated with technical
inefficiency of production, ı is an .m�1/ vector of unknown coefficients, andW is a
random variable defined by the truncation of the normal distribution with zero mean
and variance �2u , such that the point of truncation is �zj ı, i.e., Wj > � zj ı. These
assumptions are consistent with U being a nonnegative truncation of theN.zj ı; �2u /
distribution. The method of maximum likelihood is applied for simultaneous
estimation of the parameters of the stochastic frontier and of the model for the
technical inefficiency effects [5].

2.2.1 The General Model
As Eq. (3) specifies the stochastic frontier production function in terms of the
original production values, it follows the logarithmic version as

lnyj D ˇ0 C ˇ1ln.x1j /C ˇ2ln.x2j /C ˇ3ln.x3j /C vj � uj ; (5)

where:

ln.yj / is the natural logarithm (i.e., logarithm to the base e) of rye crop
production per acre (kg) and for j cultivar/genotype;
ln.x1/ is the natural logarithm of the block environmental index (used in joint
regression);
ln.x2/ is the natural logarithm of average air temperature (air) (ıC);
ln.x3/ is the natural logarithm of monthly average amount of precipitation (pre)
(in mm/ms).

2.2.2 The Inefficiency Effects Model
Following Eq. (4) the asymmetric component of error (U ) is function of some
controllable attributes (locality and variety) that can be written as

uj D ı0 C ı1z1j C ı2z2j C wj ; (6)

where:

z1 is the natural logarithm of average air temperature (air) (ıC);
z2 is the natural logarithm of monthly average amount of precipitation (pre)
(in mm/ms);

W is a random noise assumed to follow a normal distribution. Aigner, Lovell, and
Schmidt [1] parameterized the log-likelihood function for the half-normal model in
terms of �2 D �2v C �2u and �2 D �2u =�

2
v � 0. The main idea is that if � D 0, there

are no technical inefficiency effects and all the deviations from the frontier are due
to noise. The technical efficiency of production for the j th cultivar can be computed
as TEj D exp.�uj / D Yj =Y

�
j , where Yj represents the level of observed output

and Y �j represents the maximum possible output using the given level of inputs.
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Table 1 Adjusted and determination coefficients

Cultivar Q̨ Q̌ R2

URSUS �1;59 1,29 0,96
RAH 797 �1;60 1,22 0,97
05RAPID �0;78 1,12 0,97
1MARDER �0;73 1,12 0,94
RAH 897 �0;55 1,09 0,95
ESPRIT �0;22 1,07 0,92
WID 196 �0;38 1,06 0,96
03NAD 195 �0;68 1,05 0,93
02ZDUNO �0;82 1,02 0,97
1RAH 596 �0;15 1,01 0,95
RAH 496 0;20 1,00 0,95
1WARKO �0;63 0,99 0,96
CHD 296 �0;55 0,98 0,93
04CHD 396 �0;54 0,98 0,95
1SMH 1195 �0;45 0,96 0,93
ADAR �0;35 0,96 0,96
RAH 697 0,77 0,95 0,91
01AMILO �0;27 0,93 0,93
1SMH 1295 �0;16 0,93 0,96
1SMH 1094 0,65 0,80 0,90

3 Results

3.1 Joint-Regression Analysis Results

The data set used in this chapter is from a plant-breeding program of winter
rye (Secale cereale L.) experiments carried out between 1997 and 1998 by the
Research Center for Cultivar Testing of Słupia Wielka (Poland). 20 cultivars of
winter rye are compared through these experimental designs. By design, there are
four superblocks, each with five blocks of four plots. Each cultivar is present in a
plot by superblock. Final results of adjustments made by applying the algorithm
zigzag are presented in Figure 1 and Table 1.

In order to compare the cultivars that participate in the upper contour (dominant)
with the others, we first used unilateral t tests (Table 2).

In addition to the dominant cultivars (URSUS and RAH 697) only the cultivars
ESPRIT and RAH 496 are not significantly dominated at the 5 % level of probability,
the range of the average superblocks. If we work at the 1 %, we must also include
the 1MARDER as nonsignificantly dominated. We also used more robust methods
such as the Scheffé and Bonferroni multiple comparison methods (Table 3).

The number of cultivars not dominated increase considerably. These results
would point to a high performance of same cultivars.
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Table 2 Significantly dominated cultivars at the significance level of 5 %, using the one-sided
t test

Dominant cultivars RAH 697 URSUS

Range of dominance [5,42 ; 6,84] [6,84 ; 13,47]
Dominated cultivars at
5 % significance level

RAH 797; 05RAPID; 1MARDER;
RAH 897; WID 196; 03NAD
195; 02ZDUNO; 1RAH 596;
1WARKO; CHD 296; 04CHD 396;
1SMH 1195; ADAR; 01AMILO;
1SMH 1295; 1SMH 1094

RAH 797; 05RAPID; 1MARDER;
RAH 897; WID 196; 03NAD
195; 02ZDUNO; 1RAH 596;
1WARKO; CHD 296; 04CHD 396;
1SMH 1195; ADAR; 01AMILO;
1SMH 1295; 1SMH 1094

Table 3 Significantly dominated cultivars at the significance level of 5 %, using the Scheffé and
Bonferroni multiple comparisons methods

Dominant cultivars RAH 697 URSUS

Range of dominance [5,42 ; 6,84] [6,84 ; 13,47]
Scheffé method 01AMILO; 1SMH 1295; 1SMH

1094; 03NAD 195; 02ZDUNO;
1WARKO; CHD 296; 04CHD 396;
1SMH 1195; ADAR

03NAD 195; 02ZDUNO;
1WARKO; CHD 296; 04CHD
396; 1SMH 1195; ADAR;
01AMILO; 1SMH 1295; 1SMH
1094

Bonferroni method 01AMILO; 1SMH 1295; 1SMH
1094; RAH 797; WID 196;
03NAD 195; 02ZDUNO; 1RAH
596; 1WARKO; CHD 296; 04CHD
396; 1SMH 1195; ADAR

RAH 797; WID 196; 03NAD
195; 02ZDUNO; 1RAH 596;
1WARKO; CHD 296; 04CHD
396; 1SMH 1195; ADAR;
01AMILO; 1SMH 1295; 1SMH
1094

3.2 Stochastic Frontier Approach Results

The general stochastic frontier production model defined by Eq. (5) and the technical
inefficiency model defined by Eq. (6) were jointly estimated by the maximum
likelihood method, using Frontier 4.1 [7]. For the distributional specification of
asymmetric component error, two different distributional assumptions have been
assumed, half-normal and normal-truncated distributions. This solution gave rise
to alternative prediction ranks of inefficiency. The validity of the model had
been investigated through some tests of hypotheses performed using generalized
likelihood-ratio statistics, LR. From the maximized log-likelihood values, the first
null hypothesis that we tested is concerned with the adequability of the half-normal
model (H0 W � D 0) against the alternative hypothesis (normal truncated, or H1 W
� ¤ 0). As the likelihood-ratio (LR) statistic [LR D �2lnŒL.H0=L.H1/ D 12]
exceeds the 5 % critical value of the chi-square value with one degree of freedom,
it leads to the rejection that the half-normal model is adequate. The second null
hypothesis tested is H0 W � D ı0 D ı1 D ı2 D 0 which specifies that technical
inefficiency effects are not present in the model. This implies that the stochastic
frontier function is not appropriate, or not so different from the traditional average
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Table 4 Maximum
likelihood estimates for SFA

Estimate (t ratio)

Variables Parameters Normal truncated

Stochastic production frontier
Constant ˇ0 �8;37.�17; 1/��

ln.X1/ ˇ1 1;11.9; 85/��

ln.X2/ ˇ2 1;90.7; 42/��

ln.X3/ ˇ3 0;56.7; 28/��

Inefficiency effects model
Constant ı0 �1;83.�50; 1/��

ln.Z1/ ı1 1;97.8; 89/��

ln.Z2/ ı2 0,57(6,46)
�2 73;9.36; 9/��

� 0;9999.43; 2/��

�� Significant at the 0.01 probability level

production function (ordinary least squares—OLS—estimation procedure should
be more adequate). This hypothesis was rejected because the LR statistic exceed the
5 % critical value of the chi-square value (9,488) with 4 degrees of freedom (four
restrictions). Nine parameters are estimated in the stochastic production frontier
model: four in the stochastic frontier model, three in the inefficiency effects model,
and two parameters associated with the variances of the component error term
(�2 D �2v C�2u and �). All the seven estimated parameters are statistically significant
at five percent level (Table 4).

These results imply that all the selected variables improve wheat productivity
significantly. The positive signals of all coefficients (except the constant) are as
expected as well as the magnitude of t-ratios either associated with the stochastic
production frontier or associated with the inefficiency effects model. Results also
show that the average measure of efficiency is 0,70 (sd. 0,11) ranging from 0,43
to 0,999. The major reason for this discrepancy appears to be associated with
environmental heterogeneity of experimental data design.

The results indicate that the three most efficient cultivars (URSUS) are located in
Rarwino locality and the less productive cultivar (02ZDUNO) is located in Lubli-
niec Nowy (Table 5). The obtained ranking of efficiency highlights the importance
of URSUS in Rarwino local, as this combination (cultivar, location) was the most
efficient (0,999). Additionally, and with the same ranking, it was obtained the less
efficiency cultivar (0,43) as being 02ZDUNO, growing in the Lubliniec Nowy local.

4 Conclusion

This study is concerned with an experimental design developed in agricultural area.
This chapter uses two specific regression techniques for rye crop productivity esti-
mation proposes: JRA and SFA. Both methodologies are concerned with research
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Table 5 Spatial distribution
of efficiency measures by
genotype

Most efficiency

Locality Variety Efficiency

1: Rarwino URSUS 0,999
2: Glodowo URSUS 0,997
3: Glodowo URSUS 0,992
Less efficiency
1: Lubliniec Nowy 02ZDUNO 0,431
2: Lubliniec Nowy 01AMILO 0,446
3: Dukla 1SMH1195 0,449

on winter rye production level of cultivars obtained from experimental data. With
JRA it was adjusted, per cultivar, a linear regression of yield on a summarized
productivity variable. Using a new algorithm (zigzag algorithm) two cultivars were
selected (RAH 697 and URSUS in Pokoj and Rarwino local, respectively) as the
most appropriated for less fertile land and for more fertile land, respectively. URSUS
cultivar is the dominant variety on the right of the upper contour and so should
be selected to grow in more fertile land. As RAH 697 cultivar is the dominant
variety on the left of the upper contour it should be selected to grow in less fertile
land.

With SFA approach it had been estimated a stochastic frontier production
function with a normal truncated distribution for the asymmetric component
of the error term and with the incorporation of an inefficient effects model
in the global specification. With this technique, URSUS cultivar, in Rarwino
local, was also selected as being the most efficient cultivar (or the most pro-
ductive) and the 02ZDUNO cultivar, in Lubliniec Nowy local, was selected as
the cultivar less productive. We point out that this cultivar was significantly
dominated in the range of the average of superblocks, obtained with the JRA
technique.

Although both techniques have been widely applied in agricultural field, the use
of SFA in order to analyze the impact of genotype x environmental interaction on the
production of winter rye represents an innovation as it is a technique mostly applied
on economic modeling. Combination of SFA optimization potentialities with the
strongness of the JRA technique in cultivar selection task represents an interesting
field, especially in the empirical research domain. Using SFA, a rank of cultivars in
terms of efficiency was obtained, just applying the MLE method. With JRA, OLS
was used in order to select cultivars with the same goal. It is interesting to note
the excellent agreement reached with both estimation techniques. JRA and SFA
both indicate the URSUS cultivar as being the most efficient and productive one.
Nevertheless future research should make an attempt:
1. To cross information between efficiency rankings and two clusters of productivity

(left-dominant and right-dominant ones) obtained with JRA
2. To estimate partial efficiency rankings for subsamples of productivity, as sug-

gested by JRA results
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On the Maximum and Minimum of a Stationary
Random Field

Luı́sa Pereira

Abstract
We determine the class of nondegenerate joint-limiting distributions for the
maximum and minimum of stationary random fields X D fXngn2N2 satisfying a
long-range dependence restriction for each coordinate direction at a time. Unlike
the classical result for i.i.d. random fields the maximum and minimum of X
may be asymptotically dependent. We also give a sufficient condition for the
asymptotic independence of the maximum and minimum. Additional conditions
are given in order to obtain the asymptotic independence of the locations of
maximum and minimum.

1 Introduction

Let X D fXngn2N2 be a stationary random field on N
2 with common distribution

function F and, for a subset I of the rectangle of points Rn D f1; : : : ; n1g �
f1; : : : ; n2g 
 N

2, Mn.I/ D max fXi W i 2 Ig and Wn.I/ D min fXi W i 2 Ig. When
I D Rn, we simply write Mn and Wn.

For n D .n1; n2/, the condition n ! 1 means ns ! 1, s D 1; 2.
We say the pair I 
 N

2 and J 
N
2 is in Si.l/, for each i D 1; 2, if the distance

between ˘i.I/ and ˘i.J/ is greater or equal to l; where ˘i ; i D 1; 2; denote
the cartesian projections. The distance, d.I; J/, between sets I and J of N2; is the
minimum of distances d.i; j/ D max fjis � js j W s 2 f1; 2gg, i 2 I and j 2 J.

Denote by cM n and bW n the corresponding maximum and minimum of the
associated random field, bX D fbXngn2N2 , of independent and identically distributed
(i.i.d.) random variables having the same distribution function F .
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We shall assume that there are sequences of constants fan > 0gn2N2 , fbngn2N2 ,
fcn > 0gn2N2 and fdngn2N2 such that for fun.x/ D anx C bngn2N2 and fvn.y/ D
cny C dngn2N2 , x; y 2 R,

P.cM n � un.x// !n!1 bG.x/ (1)

and
P.bW n � vn.y// !n!1 bH.y/; (2)

where bH and bG are nondegenerate distribution functions.
The classes of the possible nondegenerate distribution functions which may occur

as limits in Eqs. (1) and (2) form, respectively, the classes of max-stable and min-
stable distributions.

The asymptotic independence of maximum and minimum, under linear
normalizations, holds for bX, id est,

P.cM n � un.x/; bW n � vn.y// !n!1 bQ.x; y/ D bG.x/bH.y/; (3)

and it can be used, for instance, to approximate the distribution of the sample range.
Using the ideas of [2], in Sect. 2, we determine the class of all joint-limiting

distributions for the maximum and minimum of stationary random fields, X, under
appropriate long-range dependence restrictions. Unlike the result established in
Eq. (3) for the i.i.d. case, the maximum and minimum of stationary random fields
may be asymptotically dependent, as we shall see here. We also give a necessary and
sufficient condition for asymptotic independence also to hold for stationary random
fields.

In Sect. 3 we deal with the asymptotic joint distribution of the locations of
maximum and minimum, L.Max/

n and L.Min/
n , defined in [6] as

L.i/n D
8
<

:

j.1/ if Pi D ˚
j.1/



j.2/ if jPi j > 1 ^ Qi D ˚
j.2/



j.3/ if jQi j > 1 ^ Ri D ˚
j.3/

 ; i 2 fMax;Ming ;

where jAj denotes the cardinal of a set A, =Max D ˚
j 2 N

2 W Xj D Mn


,

=Min D ˚
j 2 N

2 W Xj D Wn


, and for each i 2 fMax;Ming,

Pi D ˚
j 2 =i W 8j0 2 =i ; d.j; 1/ � d.j0; 1/



; wi th 1 D .1; 1/;

Qi D ˚
j 2 Pi W 8j0 2 Pi ; j1 � j 01



and Ri D ˚

j 2 Qi W 8j0 2 Qi ; j2 � j 02


:

The study of the relationship between extreme values and their locations has
important practical applications, for instance, when dealing with censored data.

In Pereira [6] it was shown that the normalized location of the maximum of
a stationary random field with extremal index  2 .0; 1� satisfying a long-range



On the Maximum and Minimum of a Stationary Random Field 339

dependence condition for each coordinate at a time converges to a uniform variable
on Œ0; 1�2 and is asymptotically independent of the height of the maximum.

Here, by assuming the asymptotic independence of Mn and Wn, we establish
conditions under which, for each 
11; 
12; 
21; 
22 2 .0; 1/, the random vectors
.Mn.Œ1; n1
11� � Œ1; n2
12� \ N

2/;Mn.Rn � .Œ1; n1
11� � Œ1; n2
12� \ N
2/// and

.Wn.Œ1; n1
21� � Œ1; n2
22� \ N
2/;Wn.Rn � .Œ1; n1
21� � Œ1; n2
22� \ N

2///; under
linear normalizations, are asymptotically independent, which, in turn, will lead to
the asymptotic independence of the locations of maximum and minimum.

2 Asymptotic Independence of Maximum and Minimum

The dependence structure used here is a coordinatewise-mixing condition, which
restricts dependence by limiting

jP.vn < Wn.I1/ < Mn.I1/ � un; vn < Wn.I2/ < Mn.I2/ � un/

� P.vn < Wn.I1/ < Mn.I1/ � un/P.vn < Wn.I2/ < Mn.I2/ � un/j

with the two index sets I1; I2 
 Rn being “separated” from each other by a certain
distance along each direction.

Definition 1. Let fungn2N2 and fvngn2N2 be sequences of real numbers. The random
field X satisfies the condition �.un; vn/ if there exist integer sequences fkni gni�1 ;flni gni�1 ; i D 1; 2; such that, as n D .n1; n2/ ! 1, we have

.kn1 ; kn2/ ! 1
�
kn1 ln1
n1

;
kn2 ln2
n2


! 0

�
kn1�

.1/

n;ln1
; kn1kn2�

.2/

n;ln2


! 0; (4)

where the coefficients�.i/

n;lni
, i D 1; 2, are defined as follows:

�
.1/

n;ln1
D sup jP .vn < Wn.I1/ < Mn.I1/ � un; vn < Wn.I2/ < Mn.I2/ � un/

� P .vn < Wn.I1/ < Mn.I1/ � un/ P .vn < Wn.I2/ < Mn.I2/ � un/j ; (5)

where the supremum is taken over pairs I1 and I2 in S1.ln1/, such that j˘1.I2/j �
n1
kn1

,

�
.2/

n;ln2
D sup jP .vn < Wn.I1/ < Mn.I1/ � un; vn < Wn.I2/ < Mn.I2/ � un/

� P .vn < Wn.I1/ < Mn.I1/ � un/ P .vn < Wn.I2/ < Mn.I2/ � un/j ; (6)

where the supremum is taken over pairs I1 and I2 in S2.ln2/ such that ˘1.I1/ D
˘1.I2/ and j˘2.I2/j � n2

kn2
:
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If in Eqs. (5) and (6) we consider the events fMn.I1/ � ung and fMn.I2/ � ung
instead of fvn < Wn.I1/ < Mn.I1/ � ung and fvn < Wn.I2/ < Mn.I2/ � ung,
respectively, we obtain the coordinatewise-mixing condition of Leadbetter and
Rootzén [3], under which the Extremal Types Theorem for stationary random fields
is proved.

The extremal index of X, introduced in Choi [1], is the key parameter to relate
the limiting distributions for the maxima of X and bX.

Definition 2. The random field X has extremal index  , 0 <  � 1 if for each
� > 0 there exists

n
u.�/n

o

n2N2 such that, as n ! 1, n1n2P
�
X1 > u.�/n


! � and

P
�
Mn � u.�/n


! exp.��/.

The extremal indexes of X and �X D f�Xngn2N2 , which are, respectively,
measures of clustering of high and low values of the random field X, will be
denominated, respectively, by superior and inferior extremal indexes. We denote
them by  and  , respectively.

The existence of the superior and inferior extremal indexes of X allows us to
write

lim
n!1P.Mn � un.x// D bG.x/; lim

n!1P.Wn > vn.y// D .1 � bH.y// (7)

and un.x/ D u.�.x//n , vn.y/ D v.�
0.y//

n with �.x/ D � logbG.x/, � 0.y/ D � log.1 �
bH.y//, 8x; y 2 R.

The condition �.un; vn/ allows us to obtain the asymptotic independence of
certain class of events.

Lemma 1. Let
n
u.�/n

o

n2N2 and
n
v.�

0/
n

o

n2N2 be sequences of real numbers such that

n1n2P
�
X1 > u.�/n

� ����!
n!1 � and n1n2P

�
X1 < v.�

0/
n


����!
n!1 � 0; (8)

where �; � 0 < C1. If X verifies �.u.�/n ; v.�
0/

n /, for sequences fkni gni�1 ; flni gni�1,
i D 1; 2,

n
u.�/n

o

n2N2 , and
n
v.�

0/
n

o

n2N2 , satisfying Eq. (4) and Vs;t D Is � Js;t 
 Rn,

s D 1; : : : ; kn1 , t D 1; : : : ; kn2 , are disjoint rectangles, then

ˇ
ˇ̌
ˇ
ˇ
ˇ
P

0

@
kn1\

sD1

kn2\

tD1

\

i2Vs;t

n
v.�

0/
n <Xi � u.�/n

o
1

A �
kn1Y

sD1

kn2Y

tD1
P

0

@
\

i2Vs;t

n
v.�

0/
n <Xi � u.�/n

o
1

A

ˇ
ˇ̌
ˇ
ˇ
ˇ

����!
n!1 0:

Proof. Since Eq. (8) holds, from Eq. (4) we can assume, for each s D 1; : : : ; kn1 ,
t D 1; : : : ; kn2 , that ˘i.Vs;t / consists of at least lni integers, i D 1; 2. If all pairs of
rectangles Vs;t are in S1.ln1/ [ S2.ln2/ then the result follows inductively from the
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condition�.u.�/n ; v.�
0/

n /. If some pair of rectangles Vs;t are not in S1.ln1/[S2.ln2/we
can eliminate ln1 columns or ln2 rows in order to obtain V�s;t 
 Vs;t , s D 1; : : : ; kn1 ,

t D 1; : : : ; kn2 , to which we can apply inductively the condition�.u.�/n ; v.�
0/

n /. ut

In the following result we obtain the class of nondegenerate joint-limiting
distributions for the maximum and minimum of stationary random fields verifying
condition�.un; vn/.

Proposition 1. Let X be a stationary random field and fan > 0gn2N2 , fbngn2N2 ,
fcn > 0gn2N2 and fdngn2N2 given sequences of real numbers such that

P.a�1n .Mn � bn/ � x; c�1n .Wn � dn/ � y/ ����!
n!1 Q.x; y/;

for all x; y 2 R, where Q is a nondegenerate distribution function. Suppose that
�.un.x/; vn.�y// is satisfied for un.x/ D anx C bn, vn.y/ D cny C dn, for each
x; y 2 R. ThenQ.x; y/ D R.x;1/ �R.x;�y/ where

R.x; y/ D lim
n!1P.Mn � un.x/;Wn > vn.�y//

is a bivariate extreme value distribution.

Proof. Since X verifies�.un.x/; vn.�y//, by Lemma 1, we have

P.Mn � unk.x/;Wn > vnk.�y// ����!
n!1 R

1
k .x; y/; k 2 N:

Employing the multivariate analogue of the convergence of types result, there exist
constantsAk > 0;Bk; Ck > 0;Dk such that Rk.AkxCBk; CkyCDk/ D R.x; y/.
So, the dependence function of R, DR, verifies Dk

R.u
1
k ; v

1
k / D DR.u; v/; k � 1;

u; v 2 Œ0; 1� ; and the marginals of R verify R.1; y/ D Rk.1; Cky C Dk/ and
R.x;1/ D Rk.Akx C Bk;1/; that is, they are max-stable and consequently they
are of extreme value type. So, it follows at once, that R is a bivariate extreme value
distribution.

Finally,

P.a�1
n .Mn � bn/ � x; c�1

n .Wn � dn/ � y/ D P.Mn � un.x//� P.Mn � un.x/;Wn > vn.y//

converges to R.x;1/ �R.x;�y/, as n ! 1, concluding the proof. ut

We can relate Q.x;1/ � Q.x; y/ with bQ.x;1/ � bQ.x; y/ through the two-
sided extremal index of X, which is a direct extension of the two-sided extremal
index of a stationary sequence given in Martins et al. [4].
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Definition 3. The random field X has two-sided extremal index  2 Œ0; 1�, if there
exist sequences fungn2N2 , fvngn2N2 such that n1n2P.X1 � vn _ X1 > un/ ����!

n!1 �

and
P .Mn � un;Wn > vn/ ����!

n!1 exp.�/: (9)

For sequences
n
u.�/n

o

n2N2 and
n
v.�

0/
n

o

n2N2 , � > 0; � 0 > 0, verifying Eq. (8) we

have

limn!1P.Mn � u.�/n ;Wn > v.�
0/

n / D

D
�
limn!1P.cM n � u.�/n ; bW n > v.�

0/
n /

 D exp.�.� C � 0//: (10)

From Eqs. (7) and (10) we extend to random fields the characterization of the
asymptotic independence of the maximum and minimum of a stationary sequence
Y D fYngn�1 through a linear relation between the extremal indexes,  ,  and  of
Y (Martins et al.,[4]).

Proposition 2. Let X be a random field with superior, inferior and two-sided

extremal indexes. Then, for
n
u.�/n

o

n2N2 and
n
v.�

0/
n

o

n2N2 , � > 0; � 0 > 0, verifying

Eq. (8), we have

lim
n!1P

�
Mn � u.�/n ;Wn > v.�

0/
n


D exp.��/ exp.�� 0/

if and only if

 D 
�

� C � 0
C 

� 0

� C � 0
: (11)

We now give an example illustrating Proposition 2.

Example 1. Let X D fXngn2N2 be a stationary random field with E.X1/ D 0,
E.X2

1 / D 1 and covariance function rn D cov.X1; Xn/, n � 1. It was shown in [1]
(see also [5]) that if

rn log.n1n2/ ����!
n!1 0; r.n1;0/ logn1 ����!

n1!1
0; r.0;n2/ logn2 ����!

n2!1
0; (12)

then P.Mn � un/ !n!1 exp.��/, � < 1, if and only if n1n2P.X1 >

un/ !n!1 � .

Moreover, if bn D .2 log.n1n2//
1
2 � 1

2
.2 log.n1n2//

� 12 .log log.n1n2/C log 4�/

and an D .2 log.n1n2//
� 12 , it follows P

�
a�1n .Mn � bn/ � x

� !n!1
exp .� exp.�x// and P

�
a�1n .Wn C bn/ � y

� !n!1 1 � exp .� exp.�y//. Using
methods similar to those in [1] (see also [5]) it can be shown that the maximum
and minimum are asymptotically independent, so, for un.x/ D anx C bn,
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vn.y/ D �any � bn, �.x/ D exp .�x/ and �.y/ D exp .�y/ we have
 D 

�.x/

�.x/C�.y/ C 
�.y/

�.x/C�.y/ D 1.

3 Asymptotic Independence Between the Locations
of Maximum and Minimum

In the following we generalize the condition�.un; vn/ to deal with the joint behavior
of maxima and minima in disjoint rectangles of indexes and then use this to obtain
the asymptotic independence of the locations of maximum and minimum.

Definition 4. Let
n
u.i/n

o

n2N2 ,
n
v.i/n

o

n2N2 , i D 1; 2, be sequences of real numbers.

The random field X satisfies the condition ��2 ..u
.1/
n ; u

.2/
n /; .v

.1/
n ; v.2/n // if in Eqs. (5)

and (6) we consider, respectively, the events
n
v.i/

�

n < Wn.I1/ < Mn.I1/ � u.i/
�

n

o
and

n
v.i/

�

n < Wn.I2/ < Mn.I2/ � u.i/
�

n

o
, where u.i/

�

n 2
n
u.1/n ; u

.2/
n

o
, v.i/

�

n 2
n
v.1/n ; v.2/n

o
.

If u.1/n D u.2/n D un and v.1/n D v.2/n D vn, we obtain the condition�.un; vn/.
It is worth noting that if in Eqs. (5) and (6) we consider the eventsn
Mn.I1/ � u.i/

�

n

o
and

n
Mn.I2/ � u.i/

�

n

o
where u.i/

�

n 2
n
u.1/n ; u

.2/
n

o
, we obtain

the condition ��2 .u
.1/
n ; u

.2/
n / of Pereira [6] under which it is proved that the

normalized location of the maximum converges to a uniform variable on Œ0; 1�2

and is asymptotically independent of the height of the maximum.

As a consequence of condition ��2 ..u
.�1/
n ; u.�2/n /; .v

.� 0

1/
n ; v

.� 0

2/
n //, where

n
u.�i /n

o

n2N2 ,n
v
.� 0

i /
n

o

n2N2 are sequences of real numbers such that

n1n2P.X1 > u.�i /n / ����!
n!1 �i ; n1n2P.X1 � u

.� 0

i /
n / ����!

n!1 � 0i ; i D 1; 2; (13)

it follows that, if V1; : : : ;Vk are disjoint rectangles of Rn, then

ˇ
ˇ̌
ˇ
ˇ
ˇ
P

0

@
k\

sD1

\

i2Vs

fvn;s < Xi � un;sg
1

A �
kY

sD1
P

0

@
\

i2Vs

fvn;s < Xi � un;sg
1

A

ˇ
ˇ̌
ˇ
ˇ
ˇ

����!
n!1 0;

where, for each s D 1; : : : ; k, un;s 2
n
u.�1/n ; u.�2/n

o
and vn;s 2

n
v
.� 0

1/
n ; v

.� 0

2/
n

o
.

Lemma 2. Let X be a stationary random field with superior, inferior and two-
sided extremal indexes verifying Eq. (11). If X verifies the conditions��2 .u

.�1/
n ; u.�2/n /

and ��2 ..u
.�1/
n ; u.�2/n /; .v

.� 0

1/
n ; v

.� 0

2/
n // and �X verifies ��2 .�v

.� 0

1/
n ;�v.�

02/
n /, where
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n
u.�i /n

o

n2N2 ,
n
v
.� 0

i /
n

o

n2N2 are sequence of real numbers verifying Eq. (13), then, for

each "11; "12; "21, "22 2 .0; 1�, as n ! 1, we have

P
�
Mn .Œ1; n1"11� � Œ1; n2"12�/ � u.�1/n ;Mn .Rn� Œ1; n1"11� � Œ1; n2"12�/ � u.�2/n /;

Wn .Œ1; n1"21� � Œ1; n2"22�/ > v
.� 0

1/
n ;Wn .Rn � Œ1; n1"21� � Œ1; n2"22�/ > v

.� 0

2/
n



�P �Mn .Œ1; n1"11�� Œ1; n2"12�/�u.�1/n ;Mn .Rn � Œ1; n1"11� � Œ1; n2"12�/ � u.�2/n

�

�P
�
Wn.Œ1; n1"21�� Œ1; n2"22�/ >v

.� 0

1/
n ;Wn.Rn�Œ1; n1"21�� Œ1; n2"22�/ >v

.� 0

2/
n


!0:

Proof. Let us suppose, for example, that "11 < "21 and "12 < "22 and consider
In;1 D Œ1; n1"11� � Œ1; n2"12�, In;2 D Rn � In;1, In;3 D Œ1; n1"21� � Œ1; n2"22� � In;1

and In;4 D Rn � In;1 [ In;3. We have

lim
n!1P

�
Mn.In;1/ � u.�1/n ;Mn.In;2/ � u.�2/n ;Wn.In;1/ > v

.� 0

1/
n ;Wn.In;2/ > v

.� 0

2/
n



D lim
n!1P

�
Mn.In;1/ � u.�1/n ;Wn.In;1/ > v

.� 0

1/
n ;Mn.In;3/ � u.�2/n ;Wn.In;3/ > v

.� 0

2/
n ;

Mn.In;4/ � u.�2/n ;Wn.In;4/ > v
.� 0

2/
n



D lim
n!1P

�
v
.� 0

1/
n < Wn.In;1/ < Mn.In;1/ � u.�1/n


�

Y

i2f3;4g
lim

n!1P
�

v
.� 0

2/
n < Wn.In;i / < Mn.In;i / � u.�2/n



D exp.��1"11"12/ exp.�� 01"11"12/ exp.��2."21"22 � "11"12//

exp.�� 02."21"22 � "11"12// exp.��2.1 � "21"22// exp.�� 02.1 � "21"22//:

By calculating the limit of the second term we obtain the same result. ut

As an application of the previous results the asymptotic independence of the
locations of maximum and minimum is obtained.

Proposition 3. Let X be a stationary random field with extremal indexes  ,  and
 verifying Eq. (11). Let fan > 0gn2N2 , fbngn2N2 , fcn > 0gn2N2 and fdngn2N2 be
sequences of constants verifying Eqs. (1) and (2). If, for each x1; x2; y1; y2 2 R

and un.xi / D u.�i /n D anxi C bn, vn.yi / D v
.� 0

i /
n D cnyi C dn, i D 1; 2, the

stationary random field X verifies the conditions ��2 ..u
.�1/
n ; u.�2/n /; .v

.� 0

1/
n ; v

.� 0

2/
n // and

��2 .u
.�1/
n ; u.�2/n / and �X verifies ��2 .�v

.� 0

1/
n ;�v

.� 0

2/
n /, then, for each "11; "12; "21; "22 2

.0; 1�, we have
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P
�
L.Max/n 2 �Œ1; n1"11� � Œ1; n2"12� \ N

2
�
; a�1n .Mn � bn/ � x;

L.Min/
n 2 �Rn � Œ1; n1"21� � Œ1; n2"22� \ N

2
�
; cn.Wn � dn/ > y

�

����!
n!1 "11"12.1 � "21"22/bG.x/.1 � bH.y//

We omit the proof since it follows the same line of argument as in the proof of
Proposition 3.1. of Pereira and Ferreira [7].
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Abstract
Aside from more traditional methods of combining p-values, a test based on
the geometric mean Gn of a uniform random sample of size n is developed. As
E .Gn/ D �

n
nC1

�n #
n!1

1
e , it is obvious that publication bias has a bearing on the

overall rejection of the null hypothesis and that the recent concepts of random
and of generalized p-values deserve full attention.

1 Introduction

Meta-analysis is a successful development of former systematic reviews and is
nowadays considered the gold standard of reporting the previous findings by other
researchers in medicine (cf. the collection of invited papers by Egger and his
co-authors [5–10], published in the British Medical Journal), demography [21],
epidemiology [31] and pharmacology [25]. The original development has been
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made by Glass [12, 13], an expert in education sciences, cf. also his interesting
overview [14]. Recent developments appear in [2, 16, 17].

Meta-analysis can be used to build up evidence from several inconclusive studies
(namely, when sample size is small and thus the power of tests is scarce) or
to resolve conflicting evidence when different studies, eventually conducted with
different methodologies, seem to provide antagonistic results. A recent development
of meta-analysis, christened cumulative meta-analysis, builds up evidence from
costly and eventually ethically challenging studies to draw the line when pooled
significant results have been achieved.

Important journals in the area of medicine, such as the British Medical Journal,
nowadays recommend that substantial papers present a meta-analysis of former
results. This is possible because the publishing standards of research in medicine
attained some form of standardization in the presentation of evidence, which
requires that statistical evidence is clearly reported, namely, providing means and
standard deviations, observed values of the test statistics or at least observed
p-values. Under those circumstances proper meta-analysis can be performed, either
presenting a global estimate of some measured effect or combining p-values to
achieve a global decision on some null hypothesis. This is so even when the
studies have been conducted with very different precisions (a technique based on
funnel plots provides in general interesting evidence), and even when very different
treatments are compared, as, for instance, the celebrated studies on pre-eclampsia
of pregnant women, where different treatments have been globally compared with a
baseline diuretic.

Combining p-values is an important method in meta-analysis (Pestana [23]),
since in most systematic reviews the only common reported statistical findings are
p-values of tests on the same issue. The rationale is as follows: let us assume
that the p-values pk are known for testing H0k vs. HAk , k D 1; : : : ; n, in n

independent studies on some common issue, and our aim is to achieve a decision on
the overall question H�0 W all the H0k are true vs: H�A W some of the HAk are true.
As there are many different ways in whichH�0 can be false, selecting an appropriate
test is in general unfeasible. On the other hand, combining the available pk’s so
that T .p1; : : : ; pn/ is the observed value of a random variable whose sampling
distribution underH�0 is known is a simple issue, since underH�0 , p D .p1; : : : ; pn/

is the observation of a random sample P D .P1; : : : ; Pn/ from a Uniform.0; 1/
population. As usual, the corresponding vector of ascending order statistics is
denoted .P1Wn; P2Wn; : : : ; PnWn/, and the observed k-th ascending order statistic in
a sample of size n is denoted pkWn.

In what follows we describe methods that deal directly with the p-values
(Tippett, Wilkinson, arithmetic mean) and methods that use transformed p-values
(Fisher, Stouffer, logistic).

We also derive a new method using directly the p-values, using the fact that the
density function and the distribution function of the geometric mean of a uniform
random sample are easily obtained and that the expected value, variance, skewness
and kurtosis can easily be computed, either using the independence of the random
variables or directly using the density of the geometric mean. Publication bias is
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an important issue in meta-analysis and thus can be used as a rationale for ranking
methods of combining p-values.

2 Methods of Combining p-Values

A rational combined procedure should of course be monotone, in the sense that if
one set ofp-values p D .p1; : : : ; pn/ leads to rejection of the overall null hypothesis
H�0 , any set of componentwise smaller p-values p0 D .p01; : : : ; p0n/, p0k � pk; k D
1; : : : ; n, must also reject H�0 .

Tippett [29] used the fact that P1Wn D minfP1; : : : ; Pngj
H�

0

_ Beta.1; n/ to

reject H�0 if the minimum observed p-value p1Wn < 1 � .1 � ˛/1=n. This Tippett’s
minimum method is a special case of Wilkinson’s method [30], advising rejection of
H�0 when some low-rank order statistic pkWn < c; as PkWn _ Beta.k; n C 1 � k/,
to reject H�0 at level ˛ the cutoff point c is the solution of

R c
0 uk�1.1 � u/n�kdu D

˛ B.k; n C 1 � k/.
Another way of using directly the observed p-values is to compute their arith-

metic mean. However, the exact distribution of Pn D 1
n

Pn
kD1 Pk is cumbersome

since under the null hypothesis P1 C � � � C Pn is the sum of independent uniforms,
with density function

fn.x/ D fP1C���CPn.x/ D 1

.n� 1/Š

2

4
kX

jD0
.�1/j

 
n

j

!

.x � j /n�j IŒk;kC1/.x/

3

5 IŒ0;n/.x/;

an expression easily proved by induction using fn.x/ D R k
x�1 fn�1.x/ dx CR x

k fn�1.x/ dx; x 2 Œk; k C 1/; k 2 f0; 1; : : : ; n � 1g, cf. also [24]. For large n
an approximation based on the central limit theorem can be used to perform an
approximate overall test on H�0 vs. H�A . This is the least used method of combining
p-values, and rightly so, since the overall test based on the arithmetic mean is
not consistent in the sense that it can fail to reject the overall test null hypothesis,
although the result of one of the partial tests is extremely significant.

In Sect. 2 we use the geometric mean Gn D
�Qn

jD1 Pj
1=n

of n independent

uniform random variables, whose distribution function is readily computed, leading
to a consistent and more powerful test based on the direct use of all observed p-
values; see, also, the discussion on publication bias in Sect. 4.

Alternatively, the construction of combined p-values using additive properties
of simple functions of uniform random variables is a popular approach. Fisher
[11] used the fact that Pk _ Uniform.0; 1/ H) �2 ln.Pk/ _ �22, and
therefore, �2Pn

kD1 ln.Pk/j
H�

0

_ �22n. Then H�0 is rejected at the significance

level ˛ if the �2Pn
kD1 ln.pk/ > �22n;1�˛ . Stouffer et al. ([28]) used as test

statistic
Pn

kD1
˚�1.Pk/p

n j
H�

0

_ Gaussian.0; 1/, where ˚�1 denotes the inverse of

the distribution function of the standard gaussian, rejecting H�0 at level ˛ if
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ˇ
ˇ
ˇ
Pn

kD1
˚�1.Pk/p

n

ˇ
ˇ
ˇ > z1�˛ , where z1�˛ stands for the 1 � ˛ probability quantile of

the standard gaussian. Stouffer’s method has been further refined by Liptak [19],
using sensible weights.

Another simple transformation of uniform random variables Pk is the logit

transformation, ln Pk
1�Pk _ Logistic.0; 1/. As �Pn

kD1 ln
�

Pk
1�Pk


=

q
n
�2.5nC2/
3.5nC4/ 	

t5nC4, reject H�0 at the significance level ˛ if �Pn
kD1 ln

�
pk
1�pk


=

q
n
�2.5nC2/
3.5nC4/ >

t5nC4; 1�˛ .
Birnbaum [1] has shown that every monotone combined test procedure is

admissible, i.e. provides a most powerful test against some alternative hypothesis
for combining some collection of tests, and is therefore optimal for some combined
testing situation whose goal is to harmonize eventually conflicting evidence or to
pool inconclusive evidence. In the context of social sciences Mosteller and Bush
[22] recommend Stouffer’s method, but Littel and Folks [20] have shown that
under mild conditions Fisher’s method is optimal for combining independent tests.
Observe however that H�A states that some of the HAk are true, and so a meta-
decision on H�0 implicitly assumes that some of the Pk may have non-uniform
distribution, cf. [16] (p. 81–84) and [17] (pp. 117–119) and references therein, on
the promising concepts of generalized and of random p-values.

3 The Geometric Mean of a Uniform Random Sample

The density function of the product of n independent standard uniform random
variables P1; : : : ; Pn is

fP1:::Pn.x/ D .� ln.x//n�1

.n � 1/Š IŒ0;1/.x/: (1)

(This follows easily from fP1P2 .x/ D R 1
x

dy
y

IŒ0;1/.x/ D � ln.x/ IŒ0;1/.x/ together

with fP1:::PnC1
.x/ D

Z 1

x

.� ln.x=y//n�1

.n � 1/Š

dy

y
IŒ0;1/.x/ D .� ln.x//n

nŠ
IŒ0;1/.x/ if

(1) is assumed. The result also follows easily from the relationship between standard
exponential random variables and standard uniforms, recalling that the sum of n iid
standard exponentials is a Gamma.n; 1/.) Although below we use the geometric
mean as a suitable statistic to perform a consistent overall test on H�0 vs. H�A , any
power of the p-value product would provide a useful test statistic, as keenly pointed
out by the referee; for more on products and products of powers of uniforms, cf. [3].

Hence the density function of the geometric mean Gn D
�Qn

jD1 Pj
1=n

of a

random sample of size n from the standard uniform population is

fGn.x/ D d

dx
FP1:::Pn .x

n/ D fP1:::Pn .x
n/ n xn�1 IŒ0;1/.x/ D n Œx.�n ln.x//�n�1

� .n/
IŒ0;1/.x/:



Publication Bias and Meta-analytic Syntheses 351

Fig. 1 Probability density functions of Gn, n D 1; : : : ; 20 (for n D 1, standard uniform;
peakedness increases with n)

Table 1 Mean value �,
variance � 2, skewness �1 and
kurtosis �2 of Gn,
n D 1; : : : ; 20

n � � 2 �1 �2

1 0.500000 0.0833333 0 �1.200000
2 0.444444 0.0524691 0.187180 �0.854118
3 0.421875 0.0380215 0.242030 �0.640618
4 0.409600 0.0297587 0.260104 �0.505923
5 0.401878 0.0244288 0.264457 �0.415154
6 0.396569 0.0207112 0.262968 �0.350538
7 0.392696 0.0179723 0.258854 �0.302510
8 0.389744 0.0158715 0.253580 �0.265570
9 0.387420 0.0142095 0.247859 �0.236365
10 0.385543 0.0128620 0.242051 �0.212747
11 0.383995 0.0117475 0.236342 �0.193284
12 0.382697 0.0108106 0.230825 �0.176991
13 0.381592 0.0100119 0.225543 �0.163163
14 0.380640 0.0093230 0.220513 �0.151291
15 0.379812 0.0087227 0.215736 �0.140993
16 0.379085 0.0081950 0.211205 �0.131980
17 0.378442 0.0077274 0.206908 �0.124029
18 0.377868 0.0073103 0.202834 �0.116965
19 0.377354 0.0069359 0.198968 �0.110650
20 0.376889 0.0065980 0.195296 �0.104971

Figure 1 shows the density functions of Gn for nD 1; : : : ; 20. The k-th-
order raw moment of Gn is E

�
Gk
n

� D �
n

nCk
�n �!

n!1 e�k , and in particular

E .Gn/ D �
n

nC1
�n #
n!1

1
e 	 0:3679, the standard deviation decreases to zero,

the skewness steadily decreases after a maximum 0.2645 for n D 5 and the
kurtosis increases from -1.2 (n D 1) towards 0. In Table 1 we give the mean,
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Table 2 Critical quantiles gn;1�˛ W FGn.gn; 1�˛/ D � �.n;�n ln.gn; 1�˛//

� .n/
D 1� ˛ of the geometric

mean of uniform random samples

n n 1� ˛ 0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99

2 0.0362 0.0617 0.0933 0.1430 0.7665 0.8372 0.8859 0.9284
3 0.0607 0.0900 0.1226 0.1696 0.6926 0.7614 0.8137 0.8647
4 0.0812 0.1117 0.1439 0.1882 0.6465 0.7106 0.7615 0.8140
5 0.0982 0.1290 0.1603 0.2022 0.6148 0.6743 0.7227 0.7743
6 0.1125 0.1430 0.1734 0.2131 0.5914 0.6469 0.6928 0.7426
7 0.1247 0.1548 0.1842 0.2221 0.5733 0.6254 0.6689 0.7169
8 0.1353 0.1648 0.1933 0.2296 0.5588 0.6080 0.6494 0.6954
9 0.1446 0.1735 0.2011 0.2360 0.5468 0.5935 0.6330 0.6772
10 0.1528 0.1811 0.2079 0.2416 0.5368 0.5813 0.6191 0.6616
11 0.1602 0.1879 0.2139 0.2464 0.5282 0.5707 0.6070 0.6481
12 0.1668 0.1939 0.2193 0.2508 0.5208 0.5616 0.5965 0.6361
13 0.1728 0.1994 0.2241 0.2547 0.5142 0.5535 0.5872 0.6255
14 0.1783 0.2044 0.2285 0.2582 0.5084 0.5463 0.5789 0.6160
15 0.1833 0.2089 0.2324 0.2614 0.5033 0.5399 0.5714 0.6075
16 0.1880 0.2130 0.2361 0.2643 0.4986 0.5341 0.5646 0.5997
17 0.1923 0.2169 0.2394 0.2670 0.4944 0.5288 0.5585 0.5926
18 0.1963 0.2204 0.2425 0.2694 0.4905 0.5240 0.5529 0.5861
19 0.2000 0.2237 0.2454 0.2717 0.4870 0.5195 0.5477 0.5801
20 0.2035 0.2268 0.2481 0.2739 0.4837 0.5154 0.5429 0.5746
25 0.2180 0.2397 0.2592 0.2827 0.4706 0.4989 0.5235 0.5520
30 0.2292 0.2495 0.2677 0.2894 0.4610 0.4869 0.5093 0.5354
40 0.2456 0.2637 0.2799 0.2990 0.4478 0.4701 0.4895 0.5121
50 0.2572 0.2737 0.2884 0.3058 0.4389 0.4587 0.4761 0.4963
100 0.2873 0.2996 0.3104 0.3230 0.4172 0.4311 0.4432 0.4574

variance, skewness and kurtosis of the geometric mean Gn of standard uniform
random samples of size n, n D 1; : : : ; 20. The distribution function of Gn is

FGn.x/ D � �.n; �n ln.x//

� .n/
IŒ0;1/.x/C IŒ1;1/.x/ where � �.n; z/ is the incomplete

Gamma function � �.n; z/ D R1
z xn�1e�xdx. The critical quantiles gn; 1�˛ such

that FGn.gn; 1�˛/ D 1 � ˛ are easily computed. Table 2 records the quantiles
of probability 1 � ˛, ˛ D 0:10; 0:05; 0:025; 0:01 of Gn, n D 1.1/20 and
n 2 f25; 30; 40; 50; 100g. Further quantiles are easily computed using the built-
in function FindRoot in Mathematica or GAMMA.INV in Excel (gn; 1�˛ D
EXP.�GAMMA.INV.˛; n; 1/=n/).

4 Publication Bias

The first step to carry out a meta-analysis is to select properly the evidence.
In principle, a clear and fair criterion of inclusion must be adopted. Even so,
publication bias must be taken into account, since non-significant results are rarely
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published in peer-reviewed journals (a general recommendation is to try to include
properly chosen unpublished reports). In fact, most (if not all!) available p-values
come only from studies considered worth publishing because the observed p-values
were small, seeming to point out significant results. Thus the assumption that
the pk’s are observations from independent Uniform.0; 1/ random variables is
questionable, since in general they are in fact a set of low-order statistics, given
that p-values greater than 0.05, say, have not been recorded.

Observe, for instance, that whenever pnWn falls below the critical rejection point,
the geometrical mean test studied in Sect. 3 will lead to the rejection ofH�0 , but pnWn
smaller than the critical point (for n � 14, the expected value of Gn is greater than
0.36 and the standard deviation is smaller than 0.1) is what should be expected as a
consequence of publication bias. This obviously enhances one of the ill-resolved
problems in meta-analysis: published results have in general significant values,
typically less than 0.05. Hence most of the published studies point out thatH0 ought
to be rejected and that instead of combining p-values it would be more sensible to
combine either generalized p-values [16] or random p-values [17].

A practical way of dealing with publication bias is to compute the number of
unpublished studies with non-significant p-values that would be needed to reverse
an overall decision of rejection of the null hypothesis; see [26] for details. A meta-
analysis on desmoplastic malignant melanoma, using the systematic review [18]
and further evidence collected in [27], consultancy for researchers for other areas
and extensive simulation, namely, with computationally augmented samples of p-
values [4, 15], led to the following ranking of methods of combining p-values, by
decreasing power and increasing number of unreported cases needed to reverse the
overall conclusion of the meta-analysis:

1. Arithmetic mean (with the caveat: inconsistent overall test)
2. Geometric mean
3. Chi-square transformation (Fisher’s method)
4. Logistic transformation
5. Gaussian transformation (Stouffer–Liptak’s method)
6. Selected order statistics (Wilkinson’s method)
7. Minimum (Tippett’s method)

Acknowledgements Research partially sponsored by national funds through the Fundação
Nacional para a Ciência e Tecnologia, Portugal FCT under the project (PEst-OE/MAT/UI0006/
2011). We are thankful to the referee for insightful comments and for sharing his knowledge of the
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Self-perception of Health Status
and Socio-Economic Differences
in the Use of Health Services

Alexandra Pinto, Victor Lobo, Fernando Bação,
and Helena Bacelar-Nicolau

Abstract
A problem that Portugal is facing, which needs urgent effective health policies,
is the socio-economic differences and inequalities that arise in access to health
care. In this study we used data from National Health Survey of 2005/2006
to investigate if socio-economic differences are related both to the frequency
which health services are used and to self-perception of health status (SP-HS).
We considered all data (Portugal) and also each region of NUTS II (Standard
Nomenclature of Territorial Units for Statistics purposes), separately. The study
points to a strong association between the SP-HS and the factors: gender,
age, education level and income. The number of medical appointments showed
weaker results with these factors.

1 Introduction

The social and economic factors have an important role in the development of
disease, leading to inequalities not only in health but also in their use of health
services [2, 7].
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In mortality studies, in all social classes, it has been found that the gap between
low and high social classes is increasing. Portugal is the EU country with the largest
gap between the 20 % richest and the 20 % poorest. According to data from a study
conducted in 2006, published by the INE,1 the yield of the 20 % employees with
best income is 6.8 more times the income of the population with lower income [5].
Carlos Farinha Rodrigues argues that the strong discrimination in wages is due to
educational level [6]. Despite these differences, the improved access to health care
has helped to reduce mortality remarkably [1].

Studies carried out in European countries shows that morbidity is higher in lower
socio-economic groups, although the prevalence of some diseases is decreasing
[1]. Prevalences among the lower classes have also been identified as an important
factor to explain these disparities. Self-perception of health status (SP-HS), i.e. how
health status is perceived, physical and mental by the individual, has proved to be an
interesting factor to study inequalities. Other aspects such as gender, age, income,
education and number of medical appointments are also emphasized and they will
be taken into account in this study [2, 7].

Other studies suggest that health care (either treatment or disease prevention)
is less used by those who most need it, supporting “the inverse care law”, where
Hart argues that available medical care tends to vary inversely with the needs of the
population [3, 4].

In recent years, health promotion has had a major impact on social classes (more)
privileged through the disclosure of information [4].

2 Objective

The aim of this chapter is to investigate whether, in Portugal and in the regions
of NUTS II,2 differences between socio-economic classes may be associated either
with disparities in the use of health services or with SP-HS. Another purpose of this
study is to establish whether the use of health services increases with poor SP-HS.

3 Material and Methods

This study has been based on data from the 4th National Health Survey (NHS),
an instrument that assesses the health of population. This survey was conducted in
2005/2006 and it is the first Portuguese survey on health which includes Açores
and Madeira. This survey collected information of some characteristics, among
which stand out the most relevant for this study: gender, age, self-perception of
health status, education level, family income and number of medical appointments
within three months prior to participation in the survey. From the original sample all

1National Institute of Statistics of Portugal.
2Standard Nomenclature of Territorial Units for statistics purposes.
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individuals aged equal or greater than 15 years were selected. It was also necessary
to regroup some categories of variables. For example, education level has seven
categories which were grouped into two sub-categories: “� primary” (individuals
with no studies or primary education) and “> primary” (individuals with secondary
education or/and university).

Univariate and bivariate statistical analyses were used. Chi-square test and
residual analysis were conducted to find significant associations between the rel-
evant response variables (number of medical appointments and SP-HS) and factors
(gender, age, education level, income and regions of NUTS II). All significant
statistical values showed p < 0:001 and the lower significant adjusted residual
mentioned in this study was 4.2. We also present a map of response variables for all
regions of NUTS II. Statistical analysis was performed in SPSS 16 and the map was
constructed in ArcGIS 9.3.

This study was carried out for the whole country and for each of the seven NUTS
II regions (Norte, Centro, LVT, 3 Alentejo, Algarve, Açores and Madeira).

4 Results

The sample consists of 35,229 individuals (85 % of the initial sample) of which
52.3 % are women. The age groups have amplitudes of 10 years, varying from
13.5 % to 16.6 % of individuals, until the retirement age (� 65). There is a single
age group above 65 years old which includes 24.6 % of individuals.

In this sample, there are 15 % (5,282) of individuals with no education and only
10.3 % (3,636) attended the post-secondary education.

Table 1 shows the absolute and relative frequencies observed for response varia-
bles.

Chi-square tests were applied and significant associations (p < 0:001) were
obtained between factors and response variables. We also found significant associ-
ations between the two response variables. The results presented (Tables 2 through
Table 4) correspond to significant associations and significant relevant residuals.
Table 2 shows these results for all sample (Portugal). Tables 3 and 4 show the
relevant results to each region of NUTS II. In these tables, an empty cell means no
findings of strong patterns of association between two variables.

From the analysis of residuals that led to Table 2 it was concluded that:
• Men are associated with the absence of medical appointments. Women are

associated with at least two medical appointments during the same period.
Women are also associated with moderate and negative SP-HS.

• Individuals aged less than 45 years are associated with the absence of medical
appointments and very good or good self-perception of health status. Ages of 55
and over are associated with the occurrence of medical appointments and poor or
very poor SP-HS.

3National Institute of Statistics of Portugal.
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Table 1 Absolute and relative frequencies of SP-HS and number of medical appointments of all
sample

# Medical
SP-HS N % appointments N %

Very good/good 9,674 27.5 0 16,808 47.7
Moderate 9,483 26.9 1 9,571 27.2
Poor/very poor 4,683 13.3 2 4,019 11.4

�3 4,785 13.6
Total 23,840 67.7 35,183 99.9

Table 2 More relevant and significant associations between factors and response variables—
Portugal

Factors

Response variables Sex Age Education Income

Portugal # Medical 0 M < 45 > Primary Higher
appointments 1 � 55

2 F � 55 � Primary
� 3 F � 55 � Primary Lower

SP-HS Very good/good < 45 > Primary Higher
Moderate F � 45 � Primary
Poor/very poor F � 55 � Primary Lower

Table 3 More relevant and significant associations—Açores and Madeira

Factors

NUTS II Response variables Sex Age Education Income

Açores # Medical 0 M < 45 > Primary
appointments 1 F � 65

2 F � 65
� 3 F � 65 � Primary

SP-HS Very good/good M < 45 > Primary Higher
Moderate F 55-64 � Primary
Poor/very poor F � 65 � Primary Lower

Madeira # Medical 0 M < 45 > Primary Higher
appointments 1 F � 65

2 F � 65 � Primary
� 3 F � 65 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate F � Primary Lower
Poor/very poor � 65 � Primary Lower

• Individuals with more than four years of education are associated with the
absence of medical appointments and very good or good of SP-HS. Individuals
with no studies and with primary education (� primary) are associated with the
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Table 4 More relevant and significant associations—Norte, Centro, LVT, Alentejo and Algarve

Factors

NUTS II Response variables Sex Age Education Income

Norte # Medical 0 M < 45 > Primary
appointments 1

2 F � 55 � Primary
� 3 F � 55 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate � Primary
Poor/very poor F � 55 � Primary Lower

Centro # Medical 0 M < 45 > Primary Higher
appointments 1

2 � 65
� 3 F � 65 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate � Primary
Poor/very poor F � 55 � Primary Lower

LVT # Medical 0 M < 45 > Primary
appointments 1

2 F
� 3 F � 65 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate � 55 � Primary
Poor/very poor F � 65 � Primary Lower

Alentejo # Medical 0 M < 45 > Primary Higher
appointments 1

2 F
� 3 F � 65 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate � Primary
Poor/very poor F � 65 � Primary Lower

Algarve # Medical 0 M < 45 > Primary Higher
appointments 1

2 F � 65 � Primary
� 3 F � 65 � Primary Lower

SP-HS Very good/good M < 45 > Primary Higher
Moderate � 55 � Primary
Poor/very poor F � 65 � Primary Lower

occurrence of two or more medical appointments. These individuals are also
associated with moderate and poor or very poor SP-HS.

• More privileged classes appear associated with the absence of medical appoint-
ments and very good or good SP-HS, while the lower classes are associated with
the occurrence of three or more medical appointments and poor or very poor
SP-HS (Fig. 1).
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Fig. 1 Distribution of frequencies of SP-HS by income

From the analysis of residuals and the following map (Fig. 2) it can be concluded
that:
• Açores and Madeira are associated with the absence of medical appointments and

Norte, Centro and LVT tend to be associated with the existence of two or more
medical appointments. Algarve and Açores are associated with very good or good
SP-HS, while Centro, Alentejo and Madeira appear associated with moderate
SP-HS.

• The absence of medical appointments is strongly associated with good or very
good SP-HS, while the occurrence of three or more medical appointments is
more associated with poor or very poor SP-HS (Fig. 3).
From the analysis of residuals and Tables 3 and 4 it is possible to identify

common patterns in regions of NUTS II, namely:
• The trend for the absence of medical appointments and positive SP-HS in men,

the opposite to women.
• Younger individuals are associated with the absence of medical appointments

and positive SP-HS.
• Individuals with more education go to the doctor less often and have better

SP-HS than individuals with few or no qualifications.
• All regions of NUTS II show strong association between SP-HS and family

income. Individuals with higher incomes have better SP-HS.
Also from the analysis of Tables 3 and 4 we can conclude that:

• Açores can be distinguished from other regions for not having relevant associa-
tions between the number of medical appointments and family income.

• The group of individuals of 45–54 years old appears uncharacterized in this study.
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Fig. 2 Map representing the average of medical appointments and SP-HS, at NUTS II

Fig. 3 Distribution of frequencies of number of medical appointments by SP-HS
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5 Conclusion

Data from NHS showed significant associations between all the factors under study
(gender, age, education level, income and regions NUTS II) and the two response
variables (number of medical appointments and self-perception of health status).
SP-HS is notoriously higher associated with these factors.

In this study men appear associated with the absence of medical appointments
while women are associated with at least two medical appointments and moderate
or negative SP-HS.

Furthermore, it was found that for those aged under 45 years, higher education
level and higher income are associated with the absence of medical appointments
and very good or good SP-HS. It was also found that the absence of medical
appointments is strongly associated with good or very good SP-HS.

Finally, it was concluded that there is a pattern of similar behaviour among
regions of NUTS II, with only a few exceptions.
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Comparison of Modal Variables Using
Multivariate Analysis

Isabel Pinto Doria, Áurea Sousa, Helena Bacelar-Nicolau,
and Georges Le Calvé

Abstract
Domiciliary palliative care satisfaction and quality were estimated by caregivers
via five perception scales with partly ordered answering modalities. The per-
ception scales were codified as symbolic modal variables and analyzed using
two multivariate approaches based on complex (symbolic) data to compare
modal variables. This study compares the outcomes of previous work by
Doria (Representações euclidianas de dados: Uma abordagem para variáveis
heterogéneas. Tese de doutoramento, Universidade de Lisboa, Lisboa, 2008),
Doria et al.(Livro de Resumos da XI Conferencia Española de Biometria e
Primer Encuentro Iberoamericano de Biometria (CEIB2007) 101–102, 2007) and
Bacelar-Nicolau et al.(Revista Portuguesa de Filosofia 66(2):427–460, 2010). In
particular, it focuses on the differences and similarities of the results obtained
with principal component analysis and ascendant hierarchical cluster analysis,
directly applied to the similarity matrix SLC and to the generalized affinity
matrix, adapted to the comparison of modal variables.
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1 Introduction

This study continues the work done by Doria [9], Doria et al. [11], and Bacelar-
Nicolau et al. [6]. It deals with the comparison of modal variables using multivariate
methods. Its main goal is to make a comparative study of the results obtained from
the generalized similarity coefficient sLC and from the generalized affinity coeffi-
cient to symbolic data adapted to comparison of symbolic modal variables, when
comparing the five perception scales of the Modified SERVQUAL Questionnaire,
in the context of multivariate analysis.

A Modified SERVQUAL Questionnaire1 was used to determine the quality and
satisfaction with domiciliary cares performed on oncological patients and to identify
their needs. This questionnaire is comprised of five perception scales: A—Tangible
Elements, B—Reliability of Treatments and Cares, C—Security/Guarantee (Assur-
ance), D—Interest/Response capability (i.e., capability of inspiring credibility and
trust) and E—Empathy Capability, each respectively composed of seven, five, eight,
nine and eleven items. These items are measured in a scale with partly ordered
modalities (1—Total disagreement, 2—Disagreement, 3—Neither Agreement or
Disagreement, 4—Agreement, 5—Total agreement, 6—Does not apply, 9—Doesn’t
know/Doesn’t answer).

The initial classical data matrix (58 x 39) is constituted by 58 palliative caregivers
(individuals) and 39 items. In order to compare the scales, the codification of the
five scales as symbolic modal variables resulted in a three-dimensional symbolic
data matrix M.58 � 5 � 7/, in which each individual is described according to the
profile obtained from their answers to the set of items of each of the scales.

As we know, in a symbolic data matrix, rows correspond to symbolic objects,
whereas columns correspond to symbolic variables, which may take values such as
subsets of categories, intervals of real axes, or frequency distributions. Each cell can
contain just one value, as usual, or several values that can be weighted and linked
by logical rules and taxonomies [7].

Formally, a modal variable Y , with domain Y , defined in a set E D fa; b; : : :g
of objects, is a mapping Y.a/ D .U.a/; �a/, a 2 E , where �a is a non-negative
measure in Y , generally a frequency distribution (absolute or relative), a probability
or weight distribution on the domain Y of possible observed values and U.a/ �
Y is the support for �a in domain Y [7]. In this study’s data matrix the entries
correspond to the relative frequency distributions. As an example, the corresponding
sub-table for scale A is presented in Table 1. For instance, in this table the value
0.286 means that in the total of answers (one for each item of the scale) the modality
2 (Disagreement) was indicated 2 times by individual 1 (i.e. 28.6 % of the answers
given by the individual 1 to the set of seven items of scale A corresponding to the
modality 2).

1Project SDH. MD/P.I.01.13, subsidized by the Calouste Gulbenkian Foundation and coordinated
by Professor Manuel Silvério Marques from IPOFG.
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Table 1 Extract from the M(58,5,7) three-dimensional data
matrix–Scale A, with the relative frequencies of aggregated
answers to the 7 items of the scale, from 1 (Total disagreement)
to 5 (Total agreement), plus 6 (Does not apply) and 9 (Doesn’t
know/Doesn’t answer)

1 2 3 4 5 6 9

1 0.00 0.286 0.143 0.143 0.143 0.286 0.000
2 0.00 0.143 0.000 0.429 0.143 0.286 0.000
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

58 0.00 0.000 0.143 0.000 0.857 0.000 0.000

2 Methods

Five perception scales from Modified SERVQUAL Questionnaire, codified as
symbolic/complex modal variables, were compared using principal component
analysis (PCA) and ascendant hierarchical cluster analysis (AHCA) directly applied
to the generalized similarity matrix SLC . In the case of PCA, the focus is on a
representation of lower dimension, so that the scalar products between the vectors
are the nearest possible of the similarity table. The classic situation of the principal
component analysis on a given data table corresponds to the case in which we use
the covariance matrix as a similarity table; thus, when all variables are metric, the
PCA of the similarity matrix SLC matches the traditional PCA (e.g., [9, 10, 12]).
In addition, the AHCA of the scales–based on the similarity matrix containing
the values of the generalized affinity coefficient–was applied to the comparison of
modal variables, as defined by formula (2).

In the AHCA, the values from the two similarity coefficients were combined
with five aggregation criteria, two of which are classical (single linkage (SL) and
complete linkage (CL)), and three of which are probabilistic (AVL, AV1, and
AVB—for these aggregation criteria see [3, 16]). The results obtained with the two
similarity coefficients were compared.

2.1 The Generalized Similarity Coefficient sLC

The similarity coefficients between variables s, sLC , and PL were inspired on an
idea originally from Daniels [8], later developed by Lerman [14] and generalized
by Le Calvé [13]. In this approach, each variable is associated with a score matrix,
whose definition depends on the nature of the variable, as well as on the nature of
the variable with which it is to be compared. The basic coefficient, s, is defined as
the scalar product between the score matrices, the sLC coefficient is the standardized
coefficient s, under a certain reference hypothesis, and PL coefficient corresponds
to the probabilistic coefficient. For detailed information on these measures see
Doria [9].
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Table 2 Three-way data
matrix

X1 . . . Xp

1 . . . m . . . 1 . . . m

1 x1.1/1 . . . x1.1/m . . . 1 x1.p/1 . . . x1.p/m
2 x2.1/1 . . . x2.1/m . . . 2 x2.p/1 . . . x2.p/m
:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

N xN.1/1 . . . xN.1/m . . . N xN.p/1 . . . xN.p/m

Recently, coefficients s, sLC , and PL were generalized to the comparison of
symbolic variables, including modal variables [9, 11]. Given the modal variables
Xj D �

xi.j /1; xi.j /2; : : : ; xi.j /m
�
, j D 1; : : : ; p, all of which with the same number

m of modalities, in which xi.j /k .i D 1; : : : ; N I k D 1; : : : ; m/ is the value taken by
the Xj variable for statistical unity i (in this case, a relative frequency distribution)
(Table 2), the score of the modal variable is defined as follows:

xii 0 D aff
�
i; i 0

�
; if i ¤ i 0

xii D 0; (1)

where aff .i; i 0/ indicates the basic affinity coefficient (e.g., [2, 3]) between the
profiles from the answers given by individuals i and i 0. The basic affinity coefficient
aff .i; i 0/ is defined as

aff
�
i; i 0

� D
Xm

jD1
p
�ij � �i 0j

in the case of i D .�i1; : : : ; �im/ and i 0 D .�i 01; : : : ; �i 0m/ being probability
distributions or relative frequencies of statistical units i and i 0, associated to the
variable j with m categories.

2.2 The Generalized Affinity Coefficient

In the approach based on the affinity coefficient which is being presented here, let
us consider a three-way data matrix (Table 2), containing a sequence of p modal
variables, Xj , j D 1; : : : ; p, all of which with the same number of modalities.

For each of the variables Xj (briefly, j ), i is the index which refers to the data
units (i D 1; : : : ; N / and k is the index which corresponds to the columns (k D
1; : : : ; m), where m is the number of answering modalities. Under such conditions,
one can compare two variables, j and j 0, based on the following formula:

a.j; j 0/ D 1

N

NX

iD1
aff
�
j; j 0I i� ; (2)
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where

aff
�
j; j 0I i� D

mX

kD1

s
xi.j /k

xi.j /	
� xi.j 0/k

xi.j 0/	
(3)

and xi.j /	 D Pm
kD1 xi.j /k and xi.j 0/	 D Pm

kD1 xi.j 0/k. Note that aff .j; j 0I i/ is
the local affinity between variables j and j 0 on what data unit i is concerned and
formula (2) gives the affinity coefficient generalized to the comparison of modal
variables [4, 5, 17].

3 Results

The five perception scales, codified as symbolic/complex modal variables, were
compared using PCA directly applied to the generalized similarity matrix SLC (e.g.,
[9]). In addition, AHCA was applied to the scales based on the similarity matrix SLC
and on the similarity matrix containing the values of the similarity coefficient cor-
responding to formula (2). In the AHCA, the values from the two similarity coeffi-
cients were combined with five aggregation criteria (SL, CL, AVL, AV1, and AVB).

3.1 Generalized Similarity Coefficient sLC

In conformity with the “level statistics” criterion [1, 2, 15], the best result obtained
from the AHCA (sLCCSingle Linkage) is given by the partition in two clusters
(Fig. 1):
• Cluster 1 D fA.Tangible Elementsg. This cluster refers to the equipment and

has a different answering profile from all others, as it shows a higher degree of
dissatisfaction of caregivers.

• Cluster 2 D fB.Reliability, E.Empathy, C.Security/Guarantee, D.Response capa-
bilityg. This cluster refers to the ability to correctly apply treatments, to pay per-
sonal attention to patients, to promptly conduct the services and to inspire cred-
ibility and trust, in which there is a higher number of answers “4—Agreement”
and “5—Total agreement”.
The PCA directly applied to the similarity matrix SLC , shows that the first

principal component explains 42.27 % of the total data variability. The scale “D.
Response Capability” stands out (Fig. 2), having a larger proportion of “Total
agreement” and “Does not apply” answers. The second principal component, which
explains 22.85 % of the variability, corresponds to scale “A.Tangible Elements”
showing a higher degree of dissatisfaction (Fig. 2). The third principal component,
which explains 17.48 % of the variability, corresponds to the two contrasting scales
“D. Response Capability” and “B. Reliability”.

When applied to that same matrix, the results of AHCA (sLCCSingle Linkage)
(Fig. 1) and PCA allow similar interpretations. In the partition obtained from level
3 in two clusters, we recognize the first factorial plane: Cluster 1 D fA.Tangible
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Fig. 1 Dendrogram obtained
from the Ascendant
Hierarchical Cluster Analysis
(sLCCSingle Linkage). Level
3 is the most important one,
followed by level 2, according
to the “statistics of levels”
[1, 2, 15], STAT(3)D2.13,
STAT(2)D2.09
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Fig. 2 Representation of the five perception scales from the Modified SERVQUAL Questionnaire
in the plane defined by the first two principal components, obtained from the PCA based on the
SLC matrix

Elementsg and Cluster 2 D f“B.Reliability”, “E.Empathy”, “C.Security/Guarantee”,
“D.Response capability”g.

3.2 Generalized Affinity coefficient

The best result obtained from the hierarchical clustering model AHCA (a.j; j 0/C
Single Linkage) is given by the two clusters partition described in the previous
section, according to the same “level statistics” criterion. Moreover, in the three
clusters partition obtained at level 2, we recognize the three clusters partition shown
in the plane defined by the first two principal components of the PCA: Cluster 1
D fA.Tangible Elementsg, Cluster 2 D f“B.Reliability”, “C.Security/Guarantee”,
“E.Empathy”g, and Cluster 3 D f“D.Response capability”g (see Figs. 2 and 3):
separation between clusters fDg and fB, C, Eg explained by (the first principal com-
ponent of) the PCA is explained by (the second level partition of) the hierarchical
clustering model as well.



Comparison of Modal Variables Using Multivariate Analysis 369

Fig. 3 Dendrogram obtained
from the Ascendant
Hierarchical Cluster Analysis
(a.j; j 0/CSingle Linkage)

4 Conclusion

The two approaches led to a similar conclusion in what concerns the best partition:
Scale “A. Tangible Elements” stands out.

The codification of the perception scales as symbolic/complex modal variables
does not imply loss of information and as such presents a clear advantage to tradi-
tional multivariate methods. Two approaches were used to compare modal variables.
In the first approach the similarities between these scales (modal variables) were
evaluated using the generalized similarity coefficient sLC . The second approach
is based on the generalized affinity coefficient and provides an alternative way to
measure the referred similarities. The results of this study, based on modal symbolic
data, support the conclusion that the two approaches lead to similar conclusions and
therefore are robust.

Future work on this area may include the application of PCA to the similarity
matrix obtained with the generalized affinity coefficient.
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12. Le Calvé, G.: Quelques remarques sur certains aspects de l’analyse factorielle. Cahier 2 du
Laboratoire d’Analyse et de Traitement des Données en Sciences Humaines, Universit de
Haute-Bretagne, Rennes II (1976)
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Disentangling the Relationship Between
Entrepreneurship and Job Creation
by Poisson Mixture Regressions

Leandro P. Pontes and José G. Dias

Abstract
Entrepreneurship and firm creation are very important drivers of the European
policy. We estimate the effect of the characteristics of the new entrepreneurs
on job creation, using a sample of 1198 new Portuguese entrepreneurs. The
Poisson mixture regression model shows that the population is heterogeneous
across three segments. The first segment presents a low growth of employment
and the level of education and management experience does not have a significant
effect on employment. In the other two segments—moderate and high growth of
employment—those variables register a significant effect.

1 Introduction

Entrepreneurship and small- and medium-size business growth are essential in order
to foster competition and economic growth in European economies. Entrepreneur
characteristics are included in many theoretical and empirical research frameworks
as factors that affect the business performance. Most of the research conducted
in this field diverges on the causal links between those factors and job creation.
This divergence may be due to the underlying hypothesis that population of new
entrepreneurs is homogeneous concerning the effect of its characteristics on job
creation.

L.P. Pontes (�)
Statistics Portugal and Instituto Universtário de Lisboa (ISCTE-IUL), BRU, Portugal
e-mail: leandro.pontes@ine.pt

J.G. Dias
Instituto Universtário de Lisboa (ISCTE-IUL), BRU, Portugal
e-mail: jose.dias@iscte.pt

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 39,
© Springer-Verlag Berlin Heidelberg 2013

371



372 L.P. Pontes and J.G. Dias

The hypothesis of heterogeneity is implicit in many empirical investigations
on the segmentation of the population of new entrepreneurs [12]. However, those
results have been neglected when it comes to assess the effect of the entrepreneur’s
characteristics on business performance. More recently, Gartner [5] reintroduced
this hypothesis, for whom progress in entrepreneurship research depends on
assuming the heterogeneity of the population of new entrepreneurs. The main
purpose of this study is to discuss the heterogeneity hypothesis in the process of
assessing the impact of entrepreneur’ socioeconomic profile on job creation. Thus,
this chapter models the number of jobs created per firm in the period between the
moments of creation of the firm and of the data collection using a Poisson mixture
regression model. The structure of the chapter is the following: Sect. 2 presents the
methodology; Sect. 3 describes the data used; and Sect. 4 provides the results and its
discussion. The chapter ends with concluding remarks and suggestions for further
research.

2 Poisson Mixture Regression Model

The Poisson regression model assumes equal mean and variance for the dependent
variable yi . In empirical research, this condition is violated in most economic
models as variance tends to exceed the mean. This phenomenon is known as
overdispersion and can express the heterogeneity of the sample concerning the
mean or the number of occurrences in the period, �i , the expected value of yi .
The Poisson mixture regression model [10] extends Poisson regression by allowing
model parameters to vary across the mixture components.

The Poisson mixture regression model with concomitant variables contains four
types of variables: one independent variable (y); a discrete latent variable or latent
class (z), which indicates the segment or latent class; K explanatory variables (x),
which explain the mean of y; and L concomitant variables (w), explaining the prior
probability that observation i belongs to a given class [7].

The Poisson mixture regression model is defined by

Pi.yi I '; xi ;wi / D
SX

sD1
h.zi I � s;wi /Pis.yi I ˇs; xi /;

where:
• Pis.yi I ˇs; xi / is the distribution of yi in segment s. The vector of parameters ˇs

and explanatory variables xi represent the systematic component of the GLM for
segment s and are linked to the expected value of yi by the log link function [8]:
(1) systematic component: �is D ˇ0sCPK

jD1 ˇjsxij ; (2) link function: log�is D
�is; and E Œyi jxi ; zi � D �is .

• h.zi I �s;wi / is the prior probability (�is) that observation i belongs to segment
s. Thus, the latent class variable (zi ) is multinomial distributed with categories
s D 1; : : : ; S and probabilities �is , with �is > 0 and

PS
sD1 �is D 1. Thus, the
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prior probability �is D h.zi I �s;wi / is regressed on the concomitant variables
and varies across individuals. Let L be the number of concomitant variables in
vector wi and �s the regression parameters [3, 11]. Then, the logistic submodel
is given by

�is D exp.�0s CPL
lD1 �lswi l /PS

rD1 exp.�0r CPL
lD1 �lrwi l /

;

where for the latent class S , �S D 0 for identification purposes. This submodel
allows the profiling of the classes or segments as well as the allocation of new
individuals into the classes.

• Pi .yi I '; xi ;wi / is the marginal distribution of yi , with parameters ' D .�1; : : : ;

�S�1;ˇ1; : : : ;ˇS /.
This model is identified [9]. The estimated posterior probability that observation i
belongs to segment s is given by

Ǫ is D O�isPis.yi I Ǒ
s ; xi /PS

rD1 O�irPir .yi I Ǒ
r ; xi /

:

Maximum likelihood estimates are obtained by the maximization of the log-
likelihood function:

`S.'I y; x;w/ D
nX

iD1
logPi.yi I '; xi ;wi /;

where ' is the set of parameters to be estimated. This estimation can be done by
combining the EM algorithm [2] with the Newton-Raphson algorithm [3]. As the
log-likelihood surface is extremely complex and with many local maxima, we report
the solution with the maximum log-likelihood value out of 500 runs of the algorithm
for each S , from 1 to 7, and 10�6 as the convergence tolerance.

The number of latent classes, S , is unknown and has to be estimated (model
selection). A common model selection strategy based on information criteria is
adopted in this chapter. Let CS D �2`S. O'I y; x;w/ C dNS be the general
information criterion, where `S. O'I y; x;w/ is the maximum log-likelihood value,
NS is the number of free parameters, and d is the penalizing constant. For different
values of d , one has the AIC—Akaike Information Criterion (d D 2), the BIC—
Bayesian Information Criterion (d D logn), the AIC3—Modified Akaike Criterion
(d D 3), and the CAIC—Consistent Akaike Criterion (d D logn C 1). For every
criterion, the best solution (S ) minimizes the criterion. BIC and CAIC are consistent
criteria [1], whereas the AIC is a biased estimate of the true number of latent
classes [4, 6]. Thus, in case of lack of agreement, we select the solution suggested
by BIC and CAIC.
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3 Population, Sample, and Questionnaire

Data were collected by Statistics Portugal between April and October of 2005.
The project was co-funded by the Portuguese Government and the European
Commission. The target population comprises all Portuguese firms created in 2002,
which were still active in 2005. The target population did not include firms created
by other firms, reactivated ones, firms purchased by other firms, and changes of the
legal status. This is in order to select just the de novo creations in 2002. The random
sample is stratified by region and industry. A total of 1198 valid responses are
used in this research. The survey questionnaire includes eleven nominal variables
that describe the entrepreneur and the firm. An additional variable—classes of
motivations for start-ups—results from prior research (see Tables 1 and 2).

4 Results

Information criteria BIC and CAIC both register the minimum value for the solution
with three segments. The other two criteria, AIC and AIC3, stabilize for the same
number of segments. We adopt the solution with three segments based on the
consistency properties of the criteria BIC and CAIC [1].

The larger segment represents 58.7 % of the observations and it was labeled as
the low growth segment. It has an average employment of 5.3 individuals; segments
2 and 3 were labeled as moderate growth (33.7 %) and high growth (7.6 %), as they
present an average employment of 10.4 and 44.5, respectively. Table 1 depicts the
profiles of the entrepreneurs in each segment.

The low growth segment includes entrepreneurs whose prior occupation was
employee, without having much experience in business start-ups and having the
lowest level of education. The desire of independence is their main motivation
for the creation of a new business. The moderate growth segment presents a
larger proportion of individuals (50 %) for whom the prior occupation was the
management of another firm. They are also motivated mainly by the desire of
independence. The high growth segment is characterized by the largest proportion
of individuals with higher education (30 %) and experience in business start-ups. In
this segment, the creation of the firm bases is driven by the desire of expanding their
business activity.

Table 2 shows the parameter estimates. Significance tests on individual parame-
ters are performed using the Wald statistic either to test whether a set of parameters
is equal to zero – Wald(0) – or whether they are invariant across segments—
Wald(D). The coefficients of the variables Sex, Nationality, Cooperation with
other firms, and Professional education in business start-ups were restricted to
be invariant across segments. All the explanatory variables are in nominal scale
and consequently, the exponential of the coefficient estimate exp. Ǒ

km/ represents
the multiplicative effect of the category m of the variable k on the average of the
dependent variable Employment.
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Table 1 Socioeconomic profile of the entrepreneur

Segments

1 2 3 Aggregate sample

Segment dimension 0.58 0.34 0.08 1.00
Average employment 5.25 10.42 44.52 9.92
Age
< 30 0.13 0.11 0.11 0.12
30� 39 0.35 0.33 0.28 0.34
40� 49 0.30 0.31 0.38 0.31
50 or more 0.22 0.25 0.23 0.23

Education level
Primary education/lower secondary 0.54 0.55 0.40 0.53
Upper secondary education 0.27 0.22 0.22 0.25
Postsecondary non-tertiary education 0.05 0.08 0.08 0.06
Tertiary education 0.15 0.15 0.30 0.16

Firms started before
No 0.62 0.52 0.39 0.57
Yes, once 0.27 0.40 0.38 0.32
Yes, more than once 0.10 0.09 0.23 0.11

Sex
Male 0.84 0.89 0.88 0.86
Female 0.16 0.11 0.12 0.14

Prior occupation
Other 0.06 0.09 0.11 0.08
Worked as an employee 0.54 0.41 0.43 0.49
Ran another business 0.40 0.50 0.46 0.44

Branch of activity of the new firm
Manufacturing 0.19 0.22 0.30 0.21
Building 0.16 0.36 0.19 0.23
Trade 0.30 0.19 0.22 0.25
Hotels 0.01 0.03 0.05 0.02
Restaurants 0.07 0.10 0.09 0.08
Cleaning and employment placement agencies 0.01 0.02 0.08 0.02
Other services 0.25 0.10 0.07 0.19

Experience in the branch of activity
No 0.14 0.17 0.22 0.16
Yes 0.86 0.83 0.78 0.84

Carrying out another paid activity
No 0.84 0.84 0.61 0.82
Yes 0.16 0.17 0.39 0.18

Classes of motivations for start-ups
Independence 0.48 0.43 0.31 0.45
Continuity 0.40 0.38 0.36 0.39
Expansion 0.13 0.18 0.34 0.16

Nationality
Portuguese 0.96 0.97 0.88 0.96
Other 0.04 0.03 0.12 0.04
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The coefficients of Age are negative for all segments. It suggests that older
entrepreneurs are less prone to expand their firms by contracting new workers than
younger ones. This effect is especially strong in the first and third segments. In
the moderate growth segment coefficients are negative though are not significantly
different from the base category.

Variable Education suggests important insights. First, there is no significant
difference between the base category (primary education) and the two categories
immediately above, i.e., entrepreneur education only impacts job creation after
reaching the high level of education. Second, the level of education may be
important only for the new firms with large dimension; for smaller ones in the slow
growth segment, the parameter estimates of the three categories are not significantly
different from the base category of primary education. Finally, the higher level of
education may have opposite impact across segments: while in moderate growth
segment high education has a positive effect, in the high growth segment the signal
reverses. Thus, for larger firms, entrepreneurs with higher education are less prone
to job creation than their less educated counterparts. The impact of running another
business on job creation is positive in moderate and high growth segments. For the
low growth segment, the effects are not different across the prior occupations.

Prior experience in starting a new business is highly significant for those
entrepreneurs who have started a new business more than once. Although we do
not have information about the success or failure of the prior start-ups, these results
suggest that society and public policies should support those entrepreneurs who
insist in the path of entrepreneurship. They have more chances of paying back
through the creation of jobs. Another type of experience, branch experience, has a
highly significant impact on job creation as well, although invariant across segments.

5 Conclusion

Job creation is one of the main goals of economic policy and this research suggests
directions for an efficient promotion of entrepreneurship. Most of prior research
assumes that the dependent variable (Employment) is either normal distributed or
its log transformation is normally distributed. This research focused on the Poisson
distribution. Using a mixture of Poisson distributions, we showed that the population
of new entrepreneurs is heterogeneous concerning the effects of their socioeconomic
characteristics on job creation, as the impact of the covariates tends to be different
across segments. We concluded that entrepreneurs with previous knowledge of
the branch of activity and experience on starting up new businesses should be
encouraged in order to foster employment growth. Further research can replicate
this methodology for other measures of firm performance.
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Simulation Study of the Calibration Technique
in the Extremal Index Estimation

D. Prata Gomes, João T. Mexia, and M. Manuela Neves

Abstract
Classical extreme value methods were first derived when the underlying process
is assumed to be a sequence of independent and identically distributed random
variables. However, when observations are taken along the time and/or the space,
the independence is an unrealistic assumption. A relevant parameter that arises
in this situation is the extremal index,  , characterizing the degree of local
dependence in the extremes of a stationary series. Most of the semi-parametric
estimators of this parameter show a strong dependence on the threshold un, with
an increasing bias and a decreasing variance as such a threshold decreases. A
procedure based on the calibration methodology is here considered as a way of
controlling the bias of an estimator. Point and interval estimates for the extremal
index are obtained. A simulation study has been performed to illustrate the
procedure.

1 Introduction

Classical extreme value theory gives conditions for the existence of normalizing
sequences fan > 0g and fbng such that for un D anx C bn, P fMn � ung ! G.x/

as n ! 1, where G.�/ is a non-degenerate distribution function that necessarily
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belongs to one of the Gumbel, Fréchet and Weibull families that are usually termed
as the extreme value distributions and Mn is the maximum of a sequence of
independent and identically distributed (i.i.d.) random variables. However, in real
situations, extreme events often occur in clusters of large values. So, for a dependent
structure, the exceedances over a high level tend to occur in clusters instead
of happening in an isolated way. The characterization of extremes of stationary
processes, the most natural generalization of a sequence of i.i.d random variables,
appeared then.

Let fXng be a stationary sequence, where Mn is the maximum and fbXng the
associated i.i.d. sequence, with the same marginal distribution F . Let cMn be the
maximum of the i.i.d. sequence. If the distribution of the maximum cMn suitably
normalized by constants fan > 0g and fbng converges to a non-degenerate law, i.e.,
P ŒcMn � anxC bn� ! G.x/, where G.�/ is the extreme value distribution, denoted
by GEV.�; ı; �/, then the distribution of Mn also converges with the same set of
normalizing constants to G.�/, where  is the extremal index, see [14]. G.�/ is a
GEV.� ; ı ; � / distribution with

� D �C ı
� � 1

�
; ı D ı� ; � D �:

In a dependent setup the estimation of  is then important not only by itself but
also because of its influence in the estimation of other parameters of extreme events.
Most of the semi-parametric estimators of  show the same type of behaviour: nice
asymptotic properties, but a strong dependence on the level un, with an increasing
bias and a decreasing variance as the level decreases.

In this chapter we shall illustrate the behaviour of one of the most well-known
estimators, the up-crossing estimator, given in Sect. 2. Extremal properties of two
stationary sequences will be reviewed and conditions for the existence of the
extremal index will be presented. The stationary models considered in this chapter
are:

Model I. The Moving-Maximum Process of order q, see [5], or MM(q) in short,
where q � 1 is a fixed integer, defined by

Xt D max
0�i�q Zt�i ; t > q; (1)

where the fZi gi�1 are independent standard Fréchet random variables.
Model II. The Max-Autoregressive Process of order one, or ARMAX, see [2],

defined by

X1 D Z1; Xi D maxfˇXi�1; .1 � ˇ/Zi g; i � 2; (2)

where the fZi gi�1 are independent standard Fréchet random variables and ˇ 2
Œ0; 1/.

In Sect. 3 a brief description of the calibration technique will be given and used
as a suggestion for dealing with the bias–variance trade-off in the extremal index
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estimation. A simulation study using the two aforementioned stationary sequences
will be carried out. Some concluding remarks will end the chapter.

2 Extremal Index: Definition and Estimation

The extremal index,  , measures the relationship between the dependence structure
of the data and the behaviour of the exceedances over a high threshold un. This
threshold un is such that, with � fixed, the underlying distribution functionF verifies

F.un/ D 1 � �=nC o.1=n/ as n ! 1: (3)

Definition 1 (See [14]). Let fXngn�1 be a strictly stationary sequence with
marginal distribution function F and Mn D max1�k�n Xk . We say that the
process has an extremal index,  2 Œ0; 1�, if for every � > 0, there exists
a sequence of thresholds fun.�/gn�1 such that nP.Xn > un.�// ! � and
P.Mn � un.�// ! expf��g as n ! 1.

This definition does not involve any dependence restriction on the sequence fXng.
However, some results do exist characterizing the extremal behaviour of a stationary
sequence under some dependence conditions. One form of short range dependence
is formulated in D.un/ condition of Leadbetter et al., see [14], that makes precise
the notion of extreme events near independent if they are sufficiently distant.

Definition 2 (See [14]). A stationary series fXngn�1 is said to satisfy the D.un/
condition if, for all i1 < � � � < ip < j1 < � � � < jq , with j1 � ip > l;

jP fXi1 � un; : : : ; Xip � un; Xj1 � un; : : : ; Xjq � ung

�P fXi1 � un; : : : ; Xip � ungP fXj1 � un; : : : ; Xjq � ungj � ˛.n; ln/;

where ˛.n; ln/ ! 0 for some sequence ln such that ln=n ! 0; as n ! 1.

If fXngn�1 is a stationary sequence withD.un.�// holding for each � > 0 (un.�/
satisfying (3)) it may be shown that if P.Mn � un.�// converges for some � > 0,
then P.Mn � un.�// ! expf��g for all � > 0 and fXng has an extremal index,
 2 Œ0; 1�, see [13]. Leadbetter [12] gave a condition restricting the clustering of
high level exceedances, known as D0.un/ condition. If this condition holds, then
 D 1.

Apart from some few models for whichD.un/ andD0.un/ conditions are easy to
verify and the extremal index value can be obtained, those conditions are, in general,
difficult to study.

For Model I it is easy to show that in the limit, clusters of high exceedances are
of size q C 1 (with probability 1) and the extremal index of the MM(q) process is
 D 1=.q C 1/, see [19].
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Fig. 1 Simulated data of n D 1000 observations of a i.i.d sequence (top-left) and MM(q) process
with q D 9 and q D 1 (top); ARMAX process with ˇ D 0:1; 0:5; 0:9 (bottom)

For Model II it is easy to show that the marginal distribution of fXng is Fréchet
andD.un/ condition holds.D0.un/ condition fails if ˇ > 0, see [3]. For 0 < x < 1
and un D nx,

P ŒMn � un� ! expf�.1� ˇ/=xg as n ! 1:

The extremal index of the ARMAX process is  D 1�ˇ with 0 <  � 1, see [2–4].
Although for some pathological cases where D.un/ holds there is no extremal

index, most practical interesting situations are those for which the extremal index 
does exist and is nonzero.

An illustration of a partial realization of i.i.d Fréchet variables and variables
following Model I (q D 9 and 1, which corresponds to  D 0:1 and 0:5,
respectively) and Model II (ˇ D 0:9; 0:5 and 0:1, which gives  D 0:1; 0:5 and 0:9,
respectively) is shown in Fig. 1.

As we can see the high values behave differently in the process, depending on
the degree of dependence.

One way of interpreting the extremal index of a stationary sequence is in terms
of the tendency of the process to cluster at extreme levels. A rough interpretation of
 is to consider it as the inverse of the limiting mean cluster size, where the limiting
is in the sense of clusters of exceedances of increasingly high thresholds. If  D 1

exceedances occur singly at the limit, while if  < 1 they tend to cluster at the limit.
The clusters of exceedances may be identified asymptotically as runs of con-

secutive exceedances and cluster sizes as run lengths. Under regularity conditions,
the conditional expected run length is approximately equal to 1= , see [15].
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kkk

Fig. 2 Estimated mean squared error, squared bias and variance of O�UC in Model II, for  D
0:1; 0:5 and 0:9 (from left to right)

A suggestion was then to estimate  by the reciprocal of the sample average run
length.

Given a sequence of random variables, X1;X2; : : : ; Xn, from a process which
satisfies the D.un/ condition, where n is large and un is a high threshold, the
most basic form of cluster identification (that does not require any knowledge of
clustering characteristics of the process) leads to a naive nonparametric estimator
of  , the up-crossing estimator, b�UC

n .un/, see [6–8, 15], defined as

b�UC
n WD

Pn�1
iD1 I .Xi � un < XiC1/Pn

iD1 I.Xi > un/
:

The asymptotic properties of the up-crossing estimator were established in
[15, 18, 20], under several different conditions. Nandagopalan, see [15], showed that,
for random levels un, b�UC

n .un/ is a weakly consistent estimator of  .
The asymptotic normality of b�UC

n .un/ was derived in [10,20]. The first moments
of the estimator b�UC

n .un/, the variance and the bias were obtained in [10].
Figure 2 illustrates the estimates of mean squared error, squared bias and variance

of the estimator for Model II and for finite sample size with n D 1000, using 1000
replicates and some values of  . The estimates are plotted at a range of thresholds
chosen up to 20 % of the sample length, where un WD XkWn, (5 � k � 0:2 � n) and
X1Wn � X2Wn � : : : � XnWn are the descending ordered statistics associated to the
sample.

A problem that arises is how to choose the level un (or k) for obtaining
the estimates. Intensive computational methods such as Bootstrap, Jackknife and
subsampling, see [9, 11], have been considered to obtain estimates of the level.
However, this is out of the scope of this chapter. The objective of this study is
to show how calibration methodology can be used for reducing the bias of the
estimator as well as for providing confidence intervals for the extremal index. This
is a preliminary study; some simulation results already obtained are encouraging,
but more work is needed.
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3 The Calibration Technique and a Simulation Study

Calibration aims at estimating the values of a variable from values of a related vari-
able. We have linear calibration when we assume that there is a linear relationship
between both variables. For our case we then shall have b�UC D ˇ1 C ˇ2 where
we use the values of b�UC in order to estimate the values of  . In the general case
we would have b�UC D g./, with g known. To carry out calibration we obtain the
values of b�UC ,bUC , for given values of  and adjust the function g.

In the case of linear calibration we are led to fit a linear regression of b�UC on  ,
see [1, 17, 21].

In our case, known values of  , .1; � � � ; n / are considered, the up-crossing

estimates bUC are obtained for each value of k (un WD XkWn) and the linear
regression is estimated

bUC D b̌
1.k/C b̌

2.k/; (4)

where b̌1.k/ and b̌2.k/ are the least squares estimates for the coefficients. Besides
adjusting the linear regression we can obtain the corresponding confidence band.

The ˛ level confidence band is bounded by

b̌
1.k/C b̌

2.k/.�1/hb�
�
c1 C c2

�
n�1 CQ. � /2

1=2�
; (5)

where h D 1 (for lower), 2 (for upper) andb� is the estimate for the variance error.
Constants c1 and c2 are calculated as follows. Let us define S1 D n

�1=2
 and S2 D

�
n�1 CQM2

�1=2
, whereM D max

n
 � .1/;  .2/ � 

o
,Q D 1=

nP

iD1
.i �/2,  D

nP

iD1
i=n and .1/ and .2/ are the minimum and the maximum of i , respectively.

After c has been obtained by entering tables in [17] with s1 D S1=z˛ and s2 D S2=z˛
where z˛ is the upper ˛=2-point of the standard normal distribution, c1 and c2 are

given by c1 D cz˛�1=2
�
�
�2�
1�ı
�1=2

and c2 D c
�
p �

Fp;�
ı

1=2
, with p D 2 where

�
Fp;�
ı is the upper ı-point of the F -distribution with p and � df and ��

2
�

1�ı is the lower
ı-point of the chi-square distribution with � df. We can now invert the Eq. (4)

 D a.k/bUC C b.k/ (6)

and obtain the limits (5) as

UP D  C C�1
�
b̌
2.k/D1 Cb�c2

�
n�1 C CQD2

1

�1=2
; (7)

LOW D  C C�1
�
b̌
2.k/D2 �b�c2

�
n�1 C CQD2

2

�1=2
; (8)

with C D b̌2
2.k/ � .b�c2/2b; D1 D D1.bUC / DbUC � b̌1.k/� b̌2.k/ Cb�c1;
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Fig. 3 OUC against the true value of  , for Model I (top) and Model II (bottom) for three values
of k chosen within a “stability” region of the trajectories of .k; OUC .k//

D2 D D2.bUC / DbUC � b̌1.k/ � b̌2.k/ �b�c1:
These expressions give the confidence bands of  for the ˛ level, once bUC is
obtained. To use Eqs. (6), (7) and (8) we need the endpoints of the three calibration
intervals:
• For v D 1; 2,bUC.v/ D ˇ1 C ˇ2

.v/.
• bUC.I1/ (bUC.I2/) is found by putting  D .1/ (.2/) in Eq. (5) with h D 2.1/.
• bUC.01/ (bUC.02/) was found by putting  D .1/ (.2/) in Eq. (5) with h D 1.2/.
OncebUC is obtained:
• ForbUC.1/ � bUC � bUC.2/, the point estimate of  is given by puttingbUC in

Eq. (6).
• For bUC.01/ � bUC � bUC.I2/ (bUC.I1/ � bUC � bUC.02/), the upper (lower)

endpoint of the interval estimate for  is given by puttingbUC in Eqs. (7) and (8).
In Prata Gomes, see [16], a simulation study considering several stationary

processes was carried out. Here we shall show results for Model I and Model II.
For several values of q and ˇ, a sample of size n D 1000was obtained. For the same
values of k used in Fig. 2, i.e., 5 � k � 0:2� n, estimatesbUC were plotted to look
for a stability region. Three values of k for both regions were chosen for illustrating
the application of the method. Figure 3 represents the n pairs, .;bUC /. The good
results for R2 led us to use the linear calibration technique, described above.

To illustrate the application of the calibration technique, Table 1 shows the upper
and lower confidence limits for a set of  values. Given a sample of observed values
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Table 1 Real values and confidence intervals (CI) for —Model I (top) and Model II (bottom)

CI (LOW) CI (UP) CI (LOW) CI (UP) CI (LOW) CI (UP)
 k D 103 k D 103 k D 104 k D 104 k D 105 k D 105

0.1 0 0.158898 0 0.15864 0 0.157282
0.1111 0 0.170274 0 0.17 0 0.168642
0.125 0 0.184648 0 0.184352 0 0.182989
0.1429 0.100246 0.203397 0.100651 0.203071 0.101763 0.201694
0.1667 0.127416 0.228792 0.127762 0.22842 0.128815 0.227012
0.2 0.164797 0.265251 0.165067 0.264806 0.166048 0.263331
0.25 0.219072 0.321707 0.219245 0.321139 0.220158 0.319536
0.3333 0.304702 0.418379 0.30476 0.417593 0.305688 0.415743
0.5 0.468591 1 0.468491 1 0.469676 1

CI (LOW) CI (UP) CI (LOW) CI (UP) CI (LOW) CI (UP)
 k D 103 k D 103 k D 104 k D 104 k D 105 k D 105

0.1 0 0.336 0 0.320 0 0.318
0.2 0 0.434 0 0.418 0 0.417
0.3 0.103 0.539 0.131 0.522 0.130 0.521
0.4 0.229 0.653 0.254 0.633 0.254 0.633
0.5 0.350 0.774 0.372 0.752 0.373 0.752
0.6 0.464 1 0.483 0.875 0.484 0.876
0.7 0.568 1 0.587 1 0.588 1
0.8 0.666 1 0.685 1 0.686 1
0.9 0.761 1 0.779 1 0.781 1

and once fitted a model for which the extremal index exists, after constructing the
table, the estimate of  is obtained through the inverse reading of the table.

Although this is a preliminary study, we think that it deserves some more
attention, mainly because it is based on a very popular and well-studied technique.
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Semi-parametric Building of the Optimal
Screening Region in Supervised Classification

Sandra Ramos, Maria Antónia Amaral Turkman,
and Marı́lia Antunes

Abstract
In the screening problem, in addition to the classification of a new individual
according to the possible outcomes of a categorical variable Y , it is possible
to calculate a set of predictive probabilities, called operational characteristics,
which constitutes an advantage over the known and well-established classifica-
tion methods. The procedure consists on the determination a specification region
CX based on a feature vector X from each individual. In general, a multivariate
normal distribution was admitted for X conditional to the category. In this work,
we describe a semi-parametric Bayesian approach that relaxes the distributional
assumptions (possibly invalid) using kernel methods to estimate the predictive
densities of X in each group. We demonstrate its usefulness when applied to
pairs of gene expression levels for binary classification purposes.

1 Introduction

Supervised classification methods have important applications in a wide variety
of contexts such as engineering, medicine, and biology; see, for example, [4, 9].
Ramos et al. [12] proposed a Bayesian optimal screening method (BOSc) based
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on the observation of pairs of covariates, X, for binary classification purposes.
This method gives a simple parametric and flexible decision boundary and allows
calculating a set of operating characteristics, which is an advantage over all the
other classification methods. It allows also to incorporate prior information on
the prevalence of population success in the model, improving the performance of
the classifier.

The screening procedure may be described by a specification region CX for the
feature vector X, where an individual passes the screen only if X 2 CX. Therefore,
and assuming a Bayesian framework, an optimal region CX contains the values x
for which the Bayesian predictive probability of success conditional on x is above
a certain threshold [14]. The procedures are derived assuming certain parametric
models, namely, a bivariate normal for X conditional to the group. However, in many
practical situations, a parametric model cannot be expected to describe in an appro-
priate manner the mechanism which generates the observed dataset, and unrealistic
modelling can lead to unsatisfactory classifiers. In such cases, it is important that
parametric assumptions are relaxed in order to gain modelling flexibility. The aim
of this work is to develop optimal screening methods for classification purposes
within a Bayesian framework but without assuming parametric models for XjY . A
semi-parametric solution was obtained using bivariate kernel estimates (see [7, 15])
for predictive densities of X in each group and then the predictive probability of
success conditional on x is calculated. Note that the proposed method is particularly
useful when the sampling is done separately from the two populations.

We illustrate the usefulness of this methodology on three public microarrays data
sets. The results are compared with those obtained from the parametric approach,
assuming a bivariate normal model for XjY (BOSc method). The rest of this chapter
is organized as follows. A semi-parametric method for classification based on the
observation of pairs of covariates is described in Sect. 2. In Sect. 3, we test our
method and the results, including comparisons with the parametric solution, are
presented. Finally, we draw some conclusions and make final remarks in Sect. 4.

2 Method

We introduce a semi-parametric solution for classification based on the observation
of pairs of covariates by using kernel smoothing techniques. In this section we
explain the main theoretical derivations that are necessary to fully understand the
methodology and its application.

2.1 Model

Let X D .X1;X2/ be a pair of covariates, with each X having a true class label in
f0; 1g. Let Y be a binary random variable that assumes value 1 (success) if X has
class 1 and assumes value 0 otherwise. Suppose that the data consist of a random
sample of n individuals, D D f.y1; x11; x21/ ; .y2; x12; x22/ � � � ; .yn; x1n; x2n/g,
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from the unscreened population and that the binary classifications are known with
certainty. The optimal screening problem has been stated by Turkman and Amaral
Turkman [14] and, accordingly, in this particular case, the optimal classification
region of size ˛ is

CX D
(

x 2 R
2 W P .Y D 1jx;D/ D P .Y D 1jD/ p .xjY D 1;D/

P
iD0;1 P .Y D i jD/ p .xjY D i;D/

� k

)

;

(1)
where k is such that P .X 2 CXjD/ D ˛:

We consider the case where Y follows a Bernoulli distribution with parameter  .
If a beta distribution is considered as a prior distribution for the  ( � Beta.a; b/,
a > 0, b > 0), the predictive probability of a future individual to be a success, and
the predictive probability of a future individual not being a success are (see [12]),

respectively, P .Y D 1jD/ D n1 C a

nC aC b
and P .Y D 0jD/ D n0 C b

nC a C b
, where

ni is the number of individuals in the sample for which Y D i; i D 0; 1 .n D
n0 C n1/.

The predictive densities of a future observation in class Y D i , p.xjY D i;D/,
are estimated by using kernel smoothing techniques, namely,

bp .xI Hi jY D i;D/ D n�1i
niX

jD1
KHi

�
x � Xj

�
; (2)

where x D .x1; x2/
t and Xj D �

Xj1;Xj2
�t

, j D 1; 2; � � � ; ni ; i D 0; 1:

Here K .x/ is the bivariate kernel (which we assume to be a probability density
function); Hi is the bandwidth matrix of group i which is symmetric and positive-

definite; and KHi .x/ D jHi j�1=2K
�

H�1=2i x


. The choice of K is not crucial:

we take the standard normal. In contrast, the choice of Hi is very important in
determining the performance of bp .xI Hi jY D i;D/. Bivariate bandwidth selection
is a difficult problem. Duong [1] introduced a new R package ks—available form
the Comprehensive R Archive Network at http://CRAN.R-project.org/—which
implements diagonal and unconstrained data-driven bandwidth matrices for kernel
density estimation based on cross-validation (least squares, biased and smoothed),
bootstrap, and plug-in methods. We recommend [2, 3] and references therein for
more details on the multivariate bandwidth selection problem. In this chapter, we
make use of ks package and thep.xjY D i;D/ estimates are from the unconstrained
smoothed cross-validation selectors. Hence our semi-parametric solution is

bCX D
(

x 2 R
2 W P .Y D 1jD/bp .xI H1jY D 1;D/
P

iD0;1 P .Y D i jD/bp .xI Hi jY D i;D/
� k

)

: (3)

The following posterior predictive probabilities are called operating characteris-
tics (OC) of the screening problem:

http://CRAN.R-project.org/
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1. Predictive probability of a randomly selected individual to be a success

� D P .Y D 1jD/ : (4)

2. Size of the screening region

˛ D P .X 2 CXjD/

	 �

Z

bCX

bp .xI H1jY D 1;D/ dx C .1 � �/

Z

bCX

bp .xI H0jY D 0;D/ dx: (5)

3. Predictive probability of an individual selected by the screening procedure to be
a success

ı D P .Y D 1jX 2 CX;D/ 	 �

˛

Z

bCX

bp .xI H1jY D 1;D/ dx: (6)

4. Predictive probability of an individual excluded by the screening procedure to be
a success


 D P .Y D 1jX … CX;D/ D .� � ı˛/=.1 � ˛/: (7)

The region bCX does not have a closed form, so the screening region boundaries
have to be approximated. The procedure implemented was the following:
1. Build a fine grid G D ˚

.x1; x2/ 2 R
2



such that P Œ.X1;X2/ 2 GjD � 	 1:

2. For each .x1; x2/ 2 G calculate

bP ŒY D 1j .x1; x2/ ;D � D P .Y D 1jD/bp .x1; x2I H1jY D 1;D/
P

iD0;1 P .Y D i jD/bp .x1; x2I Hi jY D i;D/
:

3. For several values of k .� < k < 1/, form the sets bCX;k indexed by k,

bCX;k D
n
.x1; x2/ 2 G W bP ŒY D 1j .x1; x2/ ;D � � k

o
:

4. Fit a smooth function lk to the boundaries of each of these sets, to approximate
the optimal region bCX;k by f.x1; x2/ W x1 2 R; x2 2 Ilk.x1/g, where Ilk.x1/ is an
interval of the form ��1; lk.x1/� or Œlk.x1/;C1Œ, depending on the shape of the
screening region. The functions lk.x1/ can be polynomials in x1 or polynomial
splines in x1 with a small number of knots, depending on the shape of the region.
To avoid problems of overfitting, as well as for simplicity of the whole process,
low-order polynomials should be considered.

The construction of the boundaries for bCX;k can be made more efficient if solution˚
.x1; x2/ W x2 2 R; x1 2 Ifk.x2/


 �
Ifk.x2/ is an interval of the form �� 1; fk.x2/� or

Œfk.x2/;C1Œ/ is also considered and the most efficient among the two is chosen.
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2.2 Classification Procedure

Let P D ˚
Xj D �

Xj1;Xj2
�
; j D 1; : : : ; m



be a family ofm distinct, independent

pairs of covariates. For each pair in P , the optimal screening region estimate,
bCXj ;k , and the OC are obtained for several values of k. The optimal k, kopt , is
the one which renders the best collection of OC and gives the smallest number of
individuals incorrectly classified (see [12] for details of the algorithm involved in
the kopt selection scheme).

Consider a new individual, with family P withm pairs. Based on the j th pair, the
individual is classified in Cj D 1 if the observed xj belongs to OCXj ;kopt . Otherwise
the individual is classified in Cj D 0. Let ıj;kopt be the predictive probability of

success given that the xj belongs to bCXj ;kopt . The classifications based on each of
them pairs, Cj ; j D 1; : : : ; m; are then combined to produce the final classification
of the individual [12], given by

C D IŒ0:5;1�

 
C1ı1;kopt C C2ı2;kopt C � � � C Cmım;kopt

ı1;kopt C ı2;kopt C � � � C ım;kopt

!

; (8)

where IA.:/ represents the indicator function of the set A.

3 Application

Classification methods have several important applications in the field of microarray
data analysis, namely, to classify individuals into one of two or more categories of
a disease, particularly cancer; see, for example, [4,6,10]. One feature of microarray
studies is the fact that the number of samples collected tends to be much smaller
than the number of genes per chip. The small-sample dilemma in statistical methods
for classification is well documented in the literature (see [4]), with some type of
regularization or variable reduction appearing as necessary. Geman et al. [5] propose
the use of marker gene pairs (pairs of genes with expression levels that allow class
separation) for classification purposes. Once the family of gene pairs is chosen, a
profile is classified based on a rule which aggregates the results involving each gene
pair in the family.

3.1 The Data

We considered three real microarray data sets (prostate, leukemia, and breast) to
illustrate the application of the proposed methodology. Here X D .X1;X2/ are
expression levels of a gene pair (measured using DNA microarrays). The prostate
study (see [13]) assigns profiles to either tumor or normal tissue classes. There are
n1 D 49 prostate tumor samples and n0 D 43 non-tumor samples. The leukemia
study (see [6]) compares two different types of leukemia with 7129 probes from
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Fig. 1 Scatterplot for a top scoring pair of genes for each study. Classes are represented using dots
.C1/ and stars .C0/. The curves represent the decision boundary (quadratic decision rule)

Table 1 Performance of semi-parametric screening region defined by a quadratic decision rule

Study kopt � D P .Y D 1jD/ ˛ D P .X 2 CXjD/ ı D P .Y D 1jX 2 CXID/ 
 D P .Y D 1jX … CXID/

Prostate 0:67 0:5319 0:5186 0:9420 0:0921

Leukemia 0:79 0:6486 0:5796 0:9896 0:1786

Breast 0:56 0:3519 0:3848 0:7787 0:0849

47 samples of ALL and 25 of AML. The breast data set (see [8]) consists of gene
expression profiles measured on 52 women with breast cancer. Of these, n0 D 34

women did not experience recurrence of the tumor during a three-year time period
and n1 D 18 experienced the recurrence.

In the leukemia study, three pairs are considered for P while both in the prostate
and breast examples, there is only one such pair.

3.2 Classification Results

In this section, we present the results of classification based on the proposed
methodology. For each study, and for each gene pair in the corresponding P family,
the approximate screening region is computed together with the OC (computed
numerically, [11]) for several values of k. The approximate regions were computed
over the same 100�100 grid for the different values of k. The results were obtained
by considering non-informative prior distributions. An intuitive appreciation of
the nature of the decision boundaries defined by semi-parametric solution can be
achieved in Fig. 1. For each data set and for the kopt , the figure displays the
scatterplot of the log expression levels for gene pair—the unique pair for prostate
and breast data and one of the three pairs for the leukemia data. The optimal regions
and decision boundaries are also plotted for each case.

Table 1 displays the OC of the semi-parametric optimal screening region defined
by a quadratic function for each study reported in Fig. 1.
In predicting the presence of disease in the prostate study, the results obtained show
good discriminative power of the semi-parametric solution. It can be seen in Table 1
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Table 2 Performance of parametric screening region defined by a quadratic decision rule

Study kopt � D P .Y D 1jD/ ˛ D P .X 2 CXjD/ ı D P .Y D 1jX 2 CXID/ 
 D P .Y D 1jX … CXID/

Prostate 0:63 0:5319 0:5267 0:8956 0:0931

Leukemia 0:86 0:6486 0:5675 0:9918 0:1985

Breast 0:42 0:3519 0:3128 0:8458 0:1269

that the predictive power of the semi-parametric screening classifier is very high.
The predictive probability of success is raised from 0:5319 to 0:9420 when X 2 CX

is considered and the predictive probability of an excluded individual to be a success
is 0:0921. In order to distinguish AML from ALL leukemias the semi-parametric
screening classifier produces very satisfactory results. The predictive probability
of success is raised from 0:6486 to 0:9896 (Table 1). For the classification of
nodal metastatic states and relapse for breast cancer patients, the semi-parametric
solution also gives good results (Fig. 1). In this study the predictive probability of
an excluded individual to be a success is 0:0849 and the predictive probability of
success is raised from 0:3518 to 0:3848.

3.3 Comparison with the Parametric Approach

Table 2 summarizes the OC of the parametric optimal screening region (assuming a
bivariate normal model for log.XjY/ [12]) defined by a quadratic function for each
pair reported in Fig. 1. It is useful to note that, for all studies, the bivariate normal
distribution was considered adequate to model the log.XjY/.

The values of OC from the two approaches, parametric and semi-parametric,
are similar (Table 2 and Table 1). For the breast and leukemia studies, the
semi-parametric solution tends to give smaller classification regions .˛/ than
the parametric approach, and, consequently, the predictive probabilities ı and 

decrease.

3.4 Comparison with Other Methods

For performance comparison purposes between the proposed method and traditional
classification procedures (LDA—linear discriminant analysis, QDA—quadratic dis-
criminant analysis, and SVMs—support vector machines), the estimation prediction
errors of the classifiers for each study, based on 0.632+ bootstrap rule, were
calculated. All methods gave good results but, in general, the proposed method
produced the best or second best prediction error estimates (in terms of average and
dispersion). The proposed method gives a simple parametric and flexible decision
rule, which is an advantage over both LDA and QDA which produce non-flexible
decision rules in terms of shape.
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4 Conclusions

We have derived a semi-parametric methodology for classification purposes based
entirely on the observation of pairs of covariates. The effectiveness of this solution
is illustrated in three microarray data sets, with the method proving to be able to
distinguish different classes with high accuracy. We compared this approach with
the parametric approach. All solutions gave good results, which means that the
semi-parametric solution is an adequate alternative to the parametric approach when
assumptions about parametric models are not acceptable. Our approach produced
the best or second best prediction error estimate when compared with some well-
known classification methods. This method also allows the calculation of OC, which
is an advantage over all the other classification methods.
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An Application of Statistical Methods of
Indirect Estimation and Projection of Internal
Migration Flows Within the Portuguese
Mainland

Maria Filomena Mendes, Antonio Caleiro, Sandra Lagarto,
and Filipe Ribeiro

Abstract
The study of migration flows is always problematic, essentially because there
is not a systematic process of collecting background information. In the case of
internal migration, restrictions on the available data are even more problematic
and make it totally unfeasible to measure directly those movements. When
the data on (regional) migration is incomplete, inadequate, or unavailable, the
estimation or quantification of regional migration flows is made possible by the
application of indirect methods of estimation. Andrei Rogers, along with several
others, developed and tested over several years methodologies that allow us to
analyze and quantify indirectly the different behaviors of regional migration.
These methodologies are applied in the chapter, considering the case of Portugal.

1 Introduction

Mainly due to its temporary nature, migrations are always difficult to study, and
the demographic lethargy that characterizes the mortality does not happen in
migrations. Furthermore, the lack of register in changes of residence, especially at
internal level, does not allow knowing the behavior of the migrants that could help
to support the demographic projections, especially at regional level.
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We can make projections for the country and separate at regional level, or project
for the regions and group for the country. However, in one case or another, the
estimation of internal migration is essential not only in demographic terms but
also in terms of planning, because information about the attractiveness of regions
must be taken into account in the design for a balanced future, and for a sustainable
development of regions and country. Not taking the demographic lethargy as a scale
of the scenario of the next 20 years (mortality without great variation and fertility
with a great break down of 1980 for 2009), we still have to realize in which measure
we can find a standard of internal migratory behaviors in function of gender and age
that could provide us a reasonable future visibility.

Also, the exchanges between regions are extremely important for the demo-
graphic projections, since in terms of migratory flows it is important to know the
origin of the migrants that settle down in a different region or even know if the rela-
tion of exchanges between two regions has remaining stable along the last decades.

In addition to the volume of migration flows and its movements (origin/destiny),
it is still crucial to know the causes leading to the decision of migrating from a
region to another one, as well as defining a profile for ages that allow to identify the
ages where migration trends are more evident.

2 Context and Data

Data for this chapter was collected through the Census of Portuguese Population in
1991 and 2001 and made available by the IPUMS International Database (Integrated
Public Use Microdata Series)/INE (National Statistics Institute Portugal). Such as
in most countries, the questionnaire used for the Portuguese census contained a
question about the location (region) of residence at the present time and in a given
period of time in the past (in this case, 5 years before the census).

We used the resident population by age group and gender, at the level of the
geographical area of residence in agreement with the mainland Portuguese NUTS II
(North, Center, Lisbon and Tejo Valley, Alentejo and Algarve) in 31 of December of
1985 and 1995, and resident population, by age groups and gender, according to the
NUT II of residence of the mother at date of the birth. This analysis excluded those
who living or born abroad (the latter were not considered relevant to the analysis of
individuals in the age group 0–4 years old).

3 Method

A close observation of migration flows allows us to detect the existence of some
specific features of its own, such as the differences in the odds of migrating
associated with age [2], and a linear relationship between those at ages 0–4 and
their parents.

Furthermore, given the existence of real observed values, the associated error
predictions can be measured.
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3.1 Age-Specific Regularities

We found that the higher odds occur early in adult life, when individuals are leaving
home to attend a degree of higher education, join the military service, to raise a
family, or simply get to work. This is an often result known to be called as “labor
peak” [7]. Moreover, the odds of migrating lower rates occur in late adolescence
and usually after entering the labor market until the beginning of retirement.

As for the probability of migrating children, it appears that this reflects the
migration of parents, usually young adults. Despite migration childhood reaches
values higher than in adolescence, the retirement age, especially in developed
countries, leads to an increased migration probability resulting in a “return peak”
close to 65 years old.

The complete model migration schedule has four components [1, 6]: (1) the pre-
labor force stage (children), (2) the labor force (adults), (3) the post-labor force
stage (elderly), and (4) a constant curve, which can be translated by the following
expression:

m(x) D N1.x/CN2.x/CN3.x/C c

m(x) D a1exp.�˛1x C a2exp�˛2.x � �2/ � expŒ��2.x � �2/�

Ca3exp�˛3.x � �3/� expŒ��3.x � �3/�C c (1)

where m(x) is the migration probability at age x; N1 the pre-labor force stage
(children); N2 the labor force (adults); N3 the post-labor force stage (elderly); c
the constant curve; ˛ and � the parameters; and x the age.

Its implementation is based on the assumption that migrations of adults are
linearly linked to migration of children between 0 and 4 years old , which provides
the identification of three key assumptions:
1. Regardless of the size or intensity of migration flows and regions of ori-

gin/destination, the rates associated with migration have a very similar pattern
when analyzed by age groups.

2. The question on region of birth is present in almost all censuses of population for
children from the age group of 0–4 years old [3, 4], and because it is a five-year
period, it is representative of a recent pattern in relation to migration.

3. As children migrate always (or mostly) with parents, young adults, their migra-
tion reflect, in a larger scale, the migration of other age groups.

3.2 The Linear Relationship

This method uses the technique of linear regression between the proportions of
children aged 0–4 years old, which were born in region i and living in region j at
the time of census, and the proportions of people in each age group that lived in
region i five years before the census, and at time census is living in region j. This
relation can explain the specific probability of migration, by age, from a parameter
estimate based on information from the child migration [5].
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The above-mentioned assumptions, that in similarity with the indirect estimates
of mortality are based on a single infant mortality rate to estimate the mortality curve
at all ages, result in estimates of the “survival rates” of migrants in a given age x,
represented by Sij (x):

Sij .x/ D Migrantsij .x/

Total Populationi .x/
; x D age (2)

In this sense, Migrantsij (x) denotes the number of individuals that at the time
of the census are living in a location j, but 5 years before were living in i, and
Total Populationi (x) represents the sum of all individuals, aged x, who lived in i,
5 years before the census date. In this way, Sij (x) is a measure that translates, for a
person with age x, and lives in i, the probability of survival in j, t years later (in this
case t D 5).

To estimate the specific survival rates for migration, we first take a ratio of
child migration—rij (x;�5)—also known as ATI (age infant-to-migration ratio),
which reflects the ratio of the probability of migrating at any age and probability
of migration for children aged 0 to 4 years (i.e., all those born to 5 years before):

rij .x;�5/ D Sij .x/

Sij .�5/ ; x D 0; 5; 10; : : : ; 70C (3)

This ratio allows us to obtain estimates Sij (x) for 10 years later (the usual interval
between census):

OS t
ij .x/ D r t�10

ij S t
ij .�5/ (4)

That results in an approach to a simple linear relationship type: OSij .x/ D a C b
Sij .�5/ C ", where the estimated values Sij (x) are explained in terms of Sij .�5/
through the line of regression line and its associated error (").

3.3 Measuring Error

Once all estimates are associated with a certain level of error and that we had access
to the data from two censuses, it is convenient to use a measure of goodness of fit,
like mean absolute percentage error (MAPE), to evaluate the results:

MAPE D
P

x

k OSij .x/�Sij .x/k
Sij .x/

N
� 100 .for a particular flow/ (5)

MAPEij D
Pn

iD1
Pn

j¤i
P

x

k OSij .x/�Sij .x/k
Sij .x/

n.n � 1/N � 100 .for all the flows/ (6)
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Table 1 Regression statistics for full samples by ages

Age group ˛ ˇ S.E. R2 MAPE(%)

0–4 – – – – –
5–9 �0.00005 1.57279 0.06102 0.97 34.02
10–14 0.00030 1.40662 0.06579 0.96 31.35
15–19 �0.00033 1.57709 0.05386 0.98 29.88
20–24 �0.00145 1.73924 0.06062 0.98 30.15
25–29 �0.00158 1.73977 0.07231 0.97 32.21
30–34 �0.00066 1.78629 0.09220 0.95 38.85
35–39 0.00007 1.67198 0.06608 0.97 39.54
40–44 0.00025 1.53799 0.10456 0.92 37.51
45–49 0.00011 1.41712 0.08149 0.94 30.88
50–54 0.00014 1.40917 0.10944 0.90 35.27
55–59 0.00028 1.33062 0.12396 0.86 37.15
60–64 0.00040 1.11801 0.05143 0.96 36.20
65–69 0.00045 0.95372 0.07001 0.91 28.76
70C 0.00018 1.23467 0.03602 0.98 33.48
Totals �0.00039 1.64892 0.01892 0.96 31.68

4 Analysis

Turning to examine the explanatory capacity of the estimates made by age groups
(Table 1), results revealed that in all groups the recorded R2 values are very high.
On the whole, the estimates have an explanatory power higher than 90.0 %, except
for the age group 55–59, which only explains about 86.0 % of the values actually
observed.

However, these numbers only indicate the suitability of the model to each age
group, and so, it is also essential to evaluate the associated error, which varies
between 28.8 % and 38.9 %.

Note also that the method used has an explanatory power of 96.0 % and an
associated error of 31.7 % for all the movements, including the analysis by region
or by age group in Portugal (except islands).

A similar situation can be seen in the observation of Table 2, where there is no
overall explanatory power below 70.0 %. Of relevance also are some differences
with respect to the associated error, which varies between 13.3 % and 49.6 %.

5 Results

Taking into account the total estimated and observed migration flows (Fig. 1), we
observe that they are mainly from the region of Lisbon and Tejo Valley (L.V.T.),
which contributes with approximately 40.0 % of the total. Of relevance are the
North and Center areas, with approximately 20.0 % each, and finally the regions
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Table 2 Observed and predicted flows, R2 and MAPE

Reg. 91 Reg. 01 Predicted Observed R2 MAPE(%)

North Center 8; 627 11; 669 0.96 21.22
North L.V.T. 9; 990 14; 376 0.98 27.21
North Alentejo 596 1; 015 0.94 38.50
North Algarve 1; 427 2; 446 0.99 46.83
Center North 6; 826 10; 247 0.98 29.06
Center L.V.T. 12; 568 19; 933 0.98 32.28
Center Alentejo 1; 037 1; 335 0.95 21.70
Center Algarve 1; 236 2; 112 0.94 38.02
L.V.T. North 10; 466 13; 788 0.82 23.59
L.V.T. Center 18; 056 20; 644 0.88 13.32
L.V.T. Alentejo 6; 666 11; 032 0.96 38.84
L.V.T. Algarve 6; 201 8; 832 0.94 30.27
Alentejo North 971 985 0.95 18.03
Alentejo Center 902 1; 400 0.96 35.93
Alentejo L.V.T. 7; 362 11; 421 0.99 30.63
Alentejo Algarve 19; 22 3; 380 0.91 39.66
Algarve North 689 1; 334 0.78 49.64
Algarve Center 1; 025 1; 132 0.71 24.87
Algarve L.V.T. 3; 802 5; 660 0.98 29.14
Algarve Alentejo 945 1; 688 0.84 44.91

Fig. 1 Migrations flows by the outcoming region

of Alentejo and Algarve with 12.0 % and 7.0 %, respectively. These values are
obviously related to the size of populations resident in each of the Portuguese
NUTS II.

Considering now, the observed and predicted migration flows between all
regions, it was found that, from all NUTS II, the region of Lisbon and Tejo Valley
was the one that attracted more migrants, registering very close to 50.0 % or more
of the total (Fig. 2).
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Fig. 2 Migration flows between all regions

Fig. 3 Migrations flows by age

In the case of Lisbon and Tejo Valley, we found that although about 40.0 % of
the migrants moving to the center region, the distribution of these migrations flows
occurred more evenly.

At this point we tend to identify from the outset a migratory pattern, the
geographical proximity, in that, firstly, the majority of registered movements have
always had in common the same fate as the preferred region of Lisbon and Tejo
Valley, and moreover, the second option, even in terms of preferential movement,
was to the regions that are geographically closer.

By age, was we can see in Fig. 3, the results allowed to identify three distinct
phases, where the first corresponds to the children had ages up to 9 years old; the
second identifies individuals aged between 20 and 34 years old; and finally, the third,
consisting of those aged 70 years old or even more.

The analysis of the differences between the estimates made and the observed
values shows that, despite the existence of a lag, it denotes a good approximation to
the behavior patterns actually recorded.

In any of the presented situations, the difference between the estimates and the
actual values results in an underestimation of the proportion of migration flows by
age and regions.
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6 Conclusion

The main conclusion of this work is that it is possible to identify a pattern of
migration in Portugal, taking into account the economic attractiveness based upon
geographic proximity, in that, firstly, most movements were recorded having the
most rich region of Lisbon and Tejo Valley as the preferred destination and, in the
second place, that the closest regions are also important.

According to this methodology, one can only indirectly estimate migration when
the data is regular, which we assumed by considering that the migration observed
from 2001 did not suffer from structural changes. Only based on this assumption
was possible to determine the standards in relation to age structure of internal
migration in Portugal.

Spatial analysis of the migration flows is one of the next steps, within the
possible lines of investigation to follow. Once that we are treating an original
approach that fits into a broader effort aimed to identify the best methodology for
internal migration estimation using recently developed indirect methods, another
via for further examination in future work will depend on the application of indirect
methods, including those linked to the work of A. Rogers and J. Raymer.

Acknowledgements The authors gratefully acknowledge the helpful comments and suggestions
from the referee.
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Abstract
In Santos-Pereira and Pires (Computational Statistics, pp. 291–296. Physica,
Heidelberg, 2002) we proposed a method to detect outliers in multivariate data
based on clustering and robust estimators. To implement this method in practice
it is necessary to choose a clustering method, a pair of location and scatter
estimators, and the number of clusters, k. After several simulation experiments
it was possible to give a number of guidelines regarding the first two choices.
However, the choice of the number of clusters depends entirely on the structure
of the particular data set under study. Our suggestion is to try several values
of k (e.g., from 1 to a maximum reasonable k which depends on the number
of observations and on the number of variables) and select k minimizing an
adapted AIC. In this chapter we analyze this AIC-based criterion for choosing
the number of clusters k (and also the clustering method and the location and
scatter estimators) by applying it to several simulated data sets with and without
outliers.
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1 Methodology

The procedure most commonly used to detect outliers in multivariate data sets is

based on the Mahalanobis distances, .xi � O�/T Ȯ �1.xi � O�/, i D 1; : : : ; n. To avoid
the masking effect it is recommended to use robust estimates, O� and Ȯ , instead
of the classical estimates, i.e., the sample mean vector and the sample covariance
matrix (see, e.g., [5, 12]). However the performance of that procedure is still highly
dependent of multivariate normality of the bulk of the data [2], or on the data
being elliptically contoured. To avoid this dependency, a method to detect outliers in
multivariate data based on clustering and robust estimators was introduced in [14].
A somehow similar method designed to work with nonoverlapping clusters was
proposed later in [4]. Both [14] and [4] have been referenced recently in relation to
robust clustering [3, 8].

Consider a multivariate data set with n observations in p variables. The basic
ideas of the method proposed in [14] are described in the following steps:
1. Segment the n point cloud (of perhaps complicated shape) in k smaller subclouds

using a partitioning clustering method with the hope that each subcloud (cluster)
looks “more normal” than the original cloud.

2. Then apply a simultaneous multivariate outlier detection rule to each cluster
by computing Mahalanobis-type distances from all the observations to all the
clusters. An observation is considered an outlier if it is an outlier for every cluster.
All the observations in a cluster may also be considered outliers if the size of
that cluster is small taking into account the number of variables (our proposal
is less than 2p C 2, since in that case the covariance matrix estimates are very
unreliable).

3. Remove the observations detected in 2 and repeat 1 and 2 until no more
observations are detected.

4. The final decision on whether all the observations belonging to a given cluster
(not previously removed, i.e., with size at least 2pC 2) are outliers is based on a
table of between clusters Mahalanobis-type distances.

In [14] we presented results from a simulation study with several distributional
situations, three clustering methods (k-means, pam, and mclust) and three pairs
of location and scatter estimators (classical and two robust), from which it was
possible to conclude that for normal data all the methods behave well, whereas for
non-normal data the best performance is usually achieved by mclust, without large
differences between the classical and the robust estimators of location and scatter.
A general conclusion from [14] is that the exploratory method proposed for outlier
detection works well both under elliptical and non-elliptical data configurations.

The aim of this chapter is to propose a criterion for selecting an appropriate
number of clusters, k, to use in the above algorithm, and to assess the robustness
of that criterion. In the next section we introduce the new criterion; in Sect. 3 we
present the results of a simulation study and in Sect. 4 we state some conclusions.
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2 AIC-Based Criterion

One of the difficulties encountered in the implementation of the method was the
choice of the number of clusters, k, as well as the clustering method and the location
and scatter estimators. In [14] it is suggested to try several values of k (e.g., from
1 to a maximum possible k which depends on the number of observations and on
the number of variables) and decide after a careful analysis of the results. A less
subjective way for choosing k (and also the clustering method and the location and
scatter estimators) is to minimize an adapted AIC (see [13]):

AIC D �2
nX

iD1
log Of .xi /C 2k

�
p C p.p C 1/

2

�
: (1)

The full specification of AIC needs Of . This can be either a nonparametric estimate
or the density from a parametric model with estimated parameters. The model we
consider in this chapter is a finite mixture of multivariate normal densities:

Of .x/ D
kX

jD1

nj

nT
fN .xI O�j ;

Ȯ
j /; and nT D

kX

jD1
nj ; (2)

where
fN (xI O�; Ȯ / is the density of Np. O�; Ȯ /: (3)

The number of components of the mixture (i.e., the number of clusters), k, is limited
in practice (Kmax). As a generic guidance we can take the advice given in [6], that
one should have at least 5–10 observations per variable. This means to choose kmax

somewhere between 0:1n=p and 0:2n=p.
In this chapter we assess the robustness of the AIC-based criterion (1) for

choosing the number of clusters, k. This is done by comparing results of simulations
with and without outliers, for some non-normal distributional situations described
in [14].

3 Simulation Study

In order to evaluate the robustness of this AIC-based criterion (1) for choosing the
number of clusters, k, we conducted a simulation study with:
• Three clustering methods, k-means, pam (partitioning around medoids [7]), and

mclust (model-based clustering for gaussian distributions [1]), each of them with
k D 2; 3; 4; 5; 6. The case k D 1, for which the clustering method is irrelevant,
was also considered.

• Three pairs of location and scatter estimators: classical (Nx;S) with asymptotic
detection limits, RMCD25 [11], and OGK.2/.0:9/ [9] with detection limits
determined previously by simulation with 10,000 normal data sets.
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Table 1 Proportion of
simulations for which each k
was chosen within each
clustering � estimator
combination (the proportion
corresponding to the more
often chosen K is represented
in Bold)

(a) distributional situation 1, theoretical k D 3

k MCD Classical OGK

k-means 1 0.00 0.00 0.00
2 0.01 0.00 0.02
3 0.28 0.01 0.32
4 0.26 0.28 0.14
5 0.15 0.26 0.19
6 0.30 0.45 0.33

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.29 0.02 0.27
4 0.20 0.23 0.19
5 0.14 0.23 0.11
6 0.37 0.52 0.43

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.61 0.48 0.66
4 0.30 0.28 0.24
5 0.06 0.15 0.08
6 0.03 0.09 0.02

(b) distributional situation 2, theoretical k D 4

k-means 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.03 0.00 0.00
4 0.17 0.18 0.12
5 0.31 0.31 0.33
6 0.49 0.51 0.55

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.27 0.03 0.31
5 0.43 0.44 0.30
6 0.30 0.53 0.39

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.13 0.07 0.14
4 0.46 0.40 0.56
5 0.27 0.21 0.14
6 0.14 0.32 0.16

• Four distributional situations:
1. Non-normal (p D 2) without outliers, 50 observations from N2.�1; ˙1/,

50 observations from N2.�2; ˙2/, and 50 observations from N2.0; ˙1/, with
�1 D .0; 12/T , ˙1 D diag(1,0.3), �2 D .1:5; 6/T , and ˙2 D diag(0.2,9)

2. Non-normal (p D 2) with outliers, 150 observations as in the previous case
plus ten outlying observations from N2..�2; 6/T ; 0:01I/
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Table 2 Proportion of
simulations for which each k
was chosen within each
clustering � estimator
combination (the proportion
corresponding to the more
often chosen K is represented
in Bold)

(a) distributional situation 3, theoretical k D 2

k MCD Classical OGK

k-means 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.04 0.00 0.01
4 0.16 0.09 0.10
5 0.41 0.47 0.38
6 0.39 0.44 0.51

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.14 0.02 0.03
4 0.13 0.04 0.02
5 0.30 0.36 0.47
6 0.43 0.58 0.48

mclust 1 0.00 0.00 0.00
2 0.68 0.46 0.56
3 0.12 0.12 0.18
4 0.06 0.16 0.12
5 0.09 0.11 0.07
6 0.05 0.15 0.07

(b) distributional situation 4, theoretical k D 3

k-means 1 0.00 0.00 0.00
2 0.01 0.00 0.03
3 0.07 0.00 0.02
4 0.05 0.03 0.04
5 0.19 0.25 0.25
6 0.68 0.72 0.66

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.02 0.00 0.01
4 0.02 0.00 0.00
5 0.16 0.05 0.07
6 0.80 0.95 0.92

mclust 1 0.00 0.00 0.00
2 0.02 0.02 0.01
3 0.68 0.47 0.60
4 0.17 0.21 0.21
5 0.08 0.15 0.12
6 0.05 0.15 0.06

3. Non-normal (p D 2) without outliers, 75 observations fromN2.0; ˙3/ and 75
observations from N2.0; ˙4/, with ˙3 D diag(1,81) and ˙4 D diag(81,1)

4. Non-normal (p D 2) with outliers, 150 observations as in the previous case
plus 20 outlying observations from N2.10; 0:1I/
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Fig. 1 Distributional situations 1 and 2 with contours (theoretical k D 3; 4, respectively)

-40 -20 0 20 40

-40

-20

0

20

40

-40 -20 0 20 40

-40

-20

0

20

40

Fig. 2 Distributional situations 3 and 4 with contours (theoretical k D 2; 3, respectively)

We have not considered normal data in this simulation study because we have
concluded in [14] that in that case the choice of k is not critical. For each
distributional situation one hundred data sets were generated.

In each distributional situation we recorded (in each simulation) the chosen k
for each clustering � estimator combination (i.e., the value of k minimizing AIC),
and also the overall minimizing combination (i.e., the specific values of (clustering,
estimator, k) which minimizes AIC, at each simulation). Tables 1 and 2 give, for the
four distributional situations, the proportion of simulations for which each k was
chosen (within each clustering � estimator combination).

The overall minimizing combination was always the mclust � classical, which
agrees with the simulations in [14] and shows that this choice can be recommended
irrespective of the characteristics of the data sets. This conclusion, which may look
unexpected, can be justified as follows: the algorithm either isolates or removes the
outliers, leaving almost exclusively “good” observations, and it is well known that
in this case, the classical estimators are more efficient.

For the mclust cases, the value of k chosen more often is the expected according
to the distributional situation (see Figs. 1 and 2). Note that k must be increased by 1
when the outliers are introduced and this is captured by the AIC criterion.
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4 Conclusions

The results of the limited simulation study presented in Sect. 3 how that the
adapted AIC criterion (1) for selecting k and the clustering method is a useful tool.
Moreover, we can also conclude that this criterion is, in association with the present
algorithm, robust, since it works well both with and without outliers. An explanation
for this robust behavior is that the outliers are either deleted or isolated in their own
clusters, before computing the AIC. We thus conclude that in this setup there is
no need to consider other more complicated criteria such as the adapted AIC with
M-estimators, introduced in [10].

In spite of the good results of this promising technique, one shall not forget that
outlier detection in multivariate data is a very difficult task and will always remain
an open problem.
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suggestions.
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Abstract
Genes in human leucocyte antigens (HLA) System are important in the study
of autoimmune diseases and responsible for the rejection of transplants of
organs and tissues. HLA genes are part of the human major histocompatibility
complex (MHC) which is characterized by the presence of several multigene
families, extensive polymorphism at many loci and significant linkage dise-
quilibrium between alleles at particular loci. We analysed HLA-A,-B,-DRB1
locus phenotypes through a sample of 1,021 subjects that were randomly
selected among the volunteers recruited by the Portuguese Bone Marrow Donors
Registry (Cedace) in order to evaluate allele, gene, haplotype and phenotype
frequencies. Allelic frequencies in each of the studied locus were obtained
by direct counting. Maximum-likelihood haplotype frequencies were estimated
using an expectation-maximization (EM) algorithm [2]. Locus phenotype and
gene relative frequencies were estimated according to Baur and Danilov [1].
Hardy–Weinberg equilibrium were tested. The data presented is a definition of
HLA genetic repertoire of Cedace with relevance on the strategic management
for the increase of a more diverse register with clinical utility.
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Fig. 1 Gene map of the human leucocyte antigen (HLA) region the HLA region spans 4 � 106
nucleotides on chromosome 6p21.1 to p21.3, with class II, class III and class I genes located from
the centromeric (Cen) to the telomeric (Tel) end. Figure from http://www.expertreviews.org/ with
authors’, Narinder K. Mehra and Gurvinder Kaur, consent

1 Introduction

As a species, man has had his development supported in the capacity to generate
human leucocyte antigens (HLA) diversity, as T cell restriction molecules. This
evolution results in great antigen diversity that renders it virtually impossible to
find two identical individuals, with the exception of twins. HLA antigens are
also responsible for tissue compatibility and for that reason they are target for
allogeneic immunological response, which means they are a biological barrier to
cell, tissue and organ transplantation. In organ transplantation new imunossupressor
therapies allow transplant between donor–recipient pairs without full HLA identity.
In haematopoietic stem cell transplantation, on the contrary, a high degree of HLA
compatibility is necessary in order to achieve better patient survival. HLA identity
is firstly sought by a low-resolution technique, looking for three main loci, HLA
A, B and DRB1, and only after this first successful match, is another technical
approach for allelic resolution run. In fact, due to intensive polymorphism of HLA
genes, the selection of a non-related donor with the necessary degree of HLA
gene compatibility to a patient is a difficult task, only possible at large databases
of volunteers haematopoietic stem cell donors genotypes. A large database was
created, the National Donor Registry, known as CEDACE (Centro Nacional de
Dadores de Células de Medula Óssea, Estaminais ou de Sangue do Cordão) typed
for more than 95 % at HLA main loci A,B and DRB1.

The HLA system is located in the short arm of chromosome 6 (see Fig. 1).
Within the HLA system, three constituent regions are distinguished. Near the

centromere (Cen) of chromosome 6 is the class II region that contains the class II
genes, while nearest the telomere (Tel) of the short arm of chromosome 6 is the class
I region that contains the class I genes.

http://www.expertreviews.org/
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2 Data

The human major histocompatibility complex, of which the HLA class I and class II
genes are part, is characterized by the presence of several multigene families, exten-
sive polymorphism at many loci and significant linkage disequilibrium between
alleles at particular loci. In most populations, a few alleles are frequent (gene
frequency greater than 10 %) but most occur at low frequency (gene frequency
lower than 10 %) and a number of the latter may be rare (gene frequency lower
than 1 %). As is the case for other genetic polymorphisms, the frequency of HLA
alleles differs among populations. An allele that is common in one population
may be rare in another. Some alleles are limited to particular ethnic populations,
while others are widely shared among ethnically distinct populations. We analysed
HLA-A,-B,-DRB1 locus phenotypes through a sample of 1,021 subjects that
were randomly selected among the volunteers recruited by Cedace in order to
evaluate allele, gene, haplotype and phenotype frequencies. These data represent an
important resource for investigators in the fields of transplantation and population
genetics.The key limiting factor in the use of bone marrow transplantation (BMT) is
the lack of donors. Because only 25–30 % of patients have an HLA-identical sibling,
alternative donors are often required. Marrow can be procured from unrelated living
donors; marrow donation is a simple, safe procedure. National and international
registries of prospective volunteer donors are being expanded to increase the
likelihood of finding an exact HLA match for any given recipient. The gene and
haplotype frequencies of a registry can be used in advice clinicians and patients
about the probability of finding an HLA match for BMT.

3 Methodology

3.1 Hardy–Weinberg Equilibrium

In population genetics, it is very important to study the relationship between allele
and genotype frequencies. Godfrey Harold Hardy [4] and Wilhelm Weinberg [7],
in 1908, detected, independently, a principle that describes the referred relationship
and is known as the Hardy–Weinberg law (HWL). It says that, in a large random-
mating population with no selection, mutation or migration, the genotype and allele
frequencies remain stable from generation to generation and that there is a fixed
relationship between allele and genotype frequencies.

If, for an m-allele autosomal locus with alleles A1;A2; � � � ; Am, the genotypic
array is given by

X

i

p2i AiAi C
X

i<j

2pipjAiAj ;

where pi is the allelic frequency of Ai , it is said that the population with
these genotype frequencies, known as Hardy–Weinberg proportions (HWP), is in
Hardy–Weinberg equilibrium at that locus.
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For a sample of size n, data may be organized as an array f D .f11; f21; f22; � � � ;
fmm/, where fij .1 � j � i � m/ is the observed number of genotype AiAj . If
we consider fi D fii C Pk

jD1 fij (where fij D fj i if j > i ), then fi represents
the number of Ai alleles in the sample. Assuming Hardy–Weinberg equilibrium,
the probability of obtaining f, conditional on ffig is [6]:

P r.f/ D nŠ
Qm
iD1 fi Š

.2n/Š
Q
j>i fij Š

2
P
j>i fij :

In order to compare the observed genotype counts to those expected under HWL,
the exact test of Guo–Thompson was used [3]. Given the observed sample f, this
test has to evaluate

P D
X

g2'
P r.g/;

where ' D fg W P r.g � P r.f/; g 2 �0g, and �0 D � .f/ D fg W g has the same
allele countsfgig as fg. Rejection of the null hypothesis occurs when the value of P
is lower than the considered significance level ˛.

3.2 Allele, Haplotype and Genotype Frequencies

HLA haplotypes are specific sets of HLA-A,-B,-DR locus alleles inherited together
from a parent. Haplotypes are usually determined by genotyping a sufficient
number of family members to establish a gametic assignment of the detected
alleles. It is possible to estimate population haplotype frequencies by genotyping
a sufficient number of unrelated individuals to estimate the allele associations
that are consistent with the observed genotype data. In fact, this estimation is
based on a maximum-likelihood approach and haplotype frequencies are estimated
using an expectation-maximization (EM) algorithm [2]. For large populations that
are in Hardy–Weinberg equilibrium, it is possible to estimate even relatively rare
haplotypes (e.g. frequency 0.01 %) with reasonably accuracy. Locus phenotype and
gene relative frequencies were estimated according to Baur and Danilov [1]. Allelic
frequencies in each of the studied locus were obtained by direct counting.

4 Results

4.1 Single-Locus Analysis

HLA-A,-B,-DRB1 locus phenotypes were analysed through a sample of 1,021
subjects, selected randomly among the volunteers recruited by Cedace, in order
to evaluate allele, phenotype and genotype frequencies. Table 1 presents the three
locus phenotype and gene relative frequencies calculated according to the method



HLA Allele and Haplotype Frequencies of the Portuguese BMDR 421

Table 1 Counts, phenotype, genotype and standard deviations (SD)
frequencies of HLA-A,-B,-DRB1 loci allele groups

Phenotype Genotype
Allele # of frequency frequency Std
N# alleles (4.802) (4.802) deviations

A*01 1:021 0,2126 0,1127 0,00343
A*02 2:730 0,5686 0,3432 0,00598
A*03 899 0,1872 0,0985 0,00320
A*11 627 0,1306 0,0676 0,00265
A*23 412 0,0858 0,0439 0,00214
A*24 1:006 0,2095 0,1109 0,00340
A*25 137 0,0285 0,0144 0,00122
A*26 346 0,0721 0,0367 0,00196
A*29 491 0,1023 0,0525 0,00234
A*30 334 0,0696 0,0354 0,00192
A*31 233 0,0485 0,0246 0,00160
A*32 359 0,0748 0,0381 0,00199
A*33 344 0,0716 0,0365 0,00195
A*34 43 0,0090 0,0045 0,00068
A*36 12 0,0025 0,0013 0,00036
A*43 1 0,0002 0,0001 0,00010
A*66 67 0,0140 0,0070 0,00085
A*68 479 0,0998 0,0512 0,00231
A*69 27 0,0056 0,0028 0,00054
A*74 24 0,0050 0,0025 0,00051
A*80 11 0,0023 0,0011 0,00035
B*07 606 0,1239 0,0640 0,00258
B*08 611 0,1250 0,0646 0,00259
B*13 139 0,0284 0,0143 0,00122
B*14 744 0,1522 0,0792 0,00287
B*15 500 0,1023 0,0525 0,00234
B*18 563 0,1151 0,0593 0,00249
B*27 287 0,0587 0,0298 0,00176
B*35 1:250 0,2556 0,1372 0,00378
B*37 115 0,0235 0,0118 0,00111
B*38 271 0,0554 0,0281 0,00171
B*39 143 0,0292 0,0147 0,00124
B*40 332 0,0679 0,0345 0,00190
B*41 112 0,0229 0,0115 0,00110
B*42 18 0,0037 0,0018 0,00044
B*44 1:439 0,2943 0,1599 0,00408
B*45 132 0,0270 0,0136 0,00119
B*46 1 0,0002 0,0001 0,00010
B*47 29 0,0059 0,0030 0,00056
B*48 5 0,0010 0,0005 0,00023

(continued)
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Table 1 (continued)

Phenotype Genotype
Allele # of frequency frequency Std
N# alleles (4.802) (4.802) deviations

B*49 344 0,0704 0,0358 0,00193
B*50 288 0,0589 0,0299 0,00176
B*51 975 0,1994 0,1052 0,00331
B*52 92 0,0188 0,0095 0,00099
B*53 127 0,0260 0,0131 0,00117
B*54 0 0 0 –
B*55 117 0,0239 0,0120 0,00112
B*56 41 0,0084 0,0042 0,00066
B*57 241 0,0493 0,0250 0,00161
B*58 223 0,0456 0,0231 0,00155
B*59 0 0 0 –
B*67 2 0,0004 0,0002 0,00015
B*73 11 0,0022 0,0011 0,00034
B*78 19 0,0039 0,0019 0,00045
B*81 1 0,0002 0,0001 0,00010
B*82 1 0,0002 0,0001 0,00010
B*83 0 0 0 –
DRB1*01 1:352 0,2377 0,1269 0,00363
DRB1*03 1:302 0,2289 0,1219 0,00356
DRB1*04 1:618 0,2844 0,1541 0,00401
DRB1*07 1:661 0,2920 0,1586 0,00406
DRB1*08 432 0,0759 0,0387 0,00201
DRB1*09 77 0,0135 0,0068 0,00084
DRB1*10 165 0,0290 0,0146 0,00123
DRB1*11 1:332 0,2341 0,1249 0,00361
DRB1*12 176 0,0309 0,0156 0,00127
DRB1*13 1:893 0,3327 0,1831 0,00437
DRB1*14 336 0,0591 0,0300 0,00177
DRB1*15 928 0,1631 0,0852 0,00298
DRB1*16 320 0,0562 0,0285 0,00172

described by Baur and Danilov [1]. For locus A the most frequent specificities are
A?02 (34,3 %), A?01 (11,3 %), A?24 (11,1 %), A?03 (9,8 %) and A?11 (6,8 %),
which are the classical alleles of European Caucasoid populations. The rare alleles
are A?43 (0,01 %), A?80 (0,11 %), A?36 (0,13 %) and A?74 (0,25 %), specificities
normally described in anthropological different populations. At locus B the most
frequent specificities are B?44 (16 %), B?35 (13,7 %), B?51 (10,5 %), B?14
(7,9 %) and B?08 (6,5 %), all alleles typical of Caucasians. This locus has groups
of alleles extremely rare such as B?81(0,01 %), B?82 (0,01 %), B?67 (0,02 %),
B?73 (0,11 %) and others completely absent � B?54, B?59 and B?83. The fact
that we can detect with one or two examples of extremely rare HLA-B specificities
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even in closed and distant ethnic groups is significant to describe the degree of
genetic heterogeneity of the Portuguese population. DRB1 locus has only 13 allele
groups, all of them represented in the probed population. The most common are
DRB1?13 (18,3 %), DRB1?07 (15,9 %),DRB1?04 (15,4 %), DRB1?01 (12,7 %)
and DRB1?11 (12,5 %). Less frequent are DRB1?09 (0,68 %), DRB1?10 (1,4 %),
DRB1?12 (1,6 %) and DRB1?16(2,8 %).

4.2 Multi-locus Analysis

HLA haplotypes are specific sets of HLA-A,-B,-DR locus alleles inherited together
from a parent. Haplotypes are usually determined by genotyping a sufficient number
of family members to establish a gametic assignment of the alleles detected. Because
of the extraordinarily large number of possible HLA haplotypes, it is impractical to
determine anything but the most common haplotype frequencies by doing family
studies. Nevertheless, it is possible to estimate population haplotype frequencies
by genotyping a sufficient number of unrelated individuals and using a computer
algorithm, to estimate the allele associations that are consistent with the observed
genotype data. For large populations that are in Hardy–Weinberg equilibrium, it is
possible to estimate even relatively rare haplotypes (e.g. frequency <0.01 %) with
reasonably accuracy. In this study we used the Lencaster and Nelson [5] population
genetics analysis package, PyPop (http://allele5.biol.berkeley.edu/pypop/). This
program implements an iterative expectation-maximization (EM) [2] algorithm on
the genotyping data of a maximum of 1,021 randomly selected samples leading
to the maximum-likelihood estimate of haplotype frequency for loci: A:B:DRB1.
From the sample of 1,021 individuals it was reported 996 unique phenotypes, 3,381
genotypes and 2,082 haplotypes with an estimated frequency above 0.00001 and
a log likelihood obtained via the EM algorithm ln.L1/ D �11296.3. The exact
test of Guo and Thompson [3] was performed for deviations of HWP. The p-value
provided describes how probable the observed set of genotypes is, with respect to
a large sample of other genotypic configurations (conditioned on the same allele
frequencies and 2n). p-values lower than 0.05 can be interpreted as evidence that
the sample does not fit HWP. Table 2 presents the HLA-A:B:DRB1 haplotypes
with an estimated frequency greater than or equal to 0.5 %. The well-known
Caucasoid haplotype A?01-B?08-DRB1?03, due to hard disequilibrium linkage,
comes out as the most frequent in the probed population. The five most frequent
HLA HLA-A:B:DRB1 haplotypes are 01:08:03 (3,1 %), 02:44:07 (2,3 %), 02:44:04
(2,1 %), 02:51:11 (1,9 %) and 29:44:07 (1,6 %) which are all typical haplotypes of
European Caucasian populations. In fact from this analysis we can detect only 11
haplotypes with frequencies greater than or equal to 1 %.

The Guo and Thompson exact test for HWP (see Table 3) reveals that the popu-
lation submitted to haplotype estimation does fit the Hardy–Weinberg equilibrium.
To be in HW equilibrium means that the sampled of individuals have random
mating and does not suffer of evolutive pressures, which turns possible to apply
the frequency data to a larger population.

http://allele5.biol.berkeley.edu/pypop/
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Table 2 Sample output of HLA-A-B-DRB1 haplotype frequency estimation

Haplotypes sorted by frequency

Haplotype # Copies Frequency SD

01:08:03 63.2 0.03097 0,0038
02:44:07 47.6 0.02332 0,0033
02:44:04 42.5 0.02079 0,0031
02:51:11 39.2 0.01918 0,0030
29:44:07 32.0 0.01569 0,0027
33:14:01 30.8 0.01510 0,0027
03:07:15 27.2 0.01331 0,0025
03:35:01 23.5 0.01150 0,0023
02:44:13 22.9 0.01124 0,0023
02:18:03 20.6 0.01007 0,0022
23:44:07 20.1 0.00982 0,0022
02:51:13 19.3 0.00946 0,0021
02:50:07 17.8 0.00871 0,0020
11:35:01 16.3 0.00800 0,0020
02:51:08 16.3 0.00797 0,0019
30:18:03 15.9 0.00778 0,0019
68:51:13 14.9 0.00730 0,0019
24:35:11 14.4 0.00706 0,0018
02:14:01 14.0 0.00687 0,0018
26:38:13 13.8 0.00678 0,0018
02:18:11 13.8 0.00673 0,0018
24:35:07 13.3 0.00653 0,0018
02:15:04 12.7 0.00622 0,0017
01:57:07 12.3 0.00602 0,0017
24:35:13 11.2 0.00548 0,0016
02:07:01 10.9 0.00534 0,0016
03:14:01 10.4 0.00511 0,0016
02:51:04 9.9 0.00485 0,0015
33:44:13 9.9 0.00483 0,0015

Table 3 Guo and Thompson
exact test for
Hardy–Weinberg proportions

Guo and Thompson exact test for HWP

p-value SD
HLA-A 0.6110 0.01086
HLA-B 0.6383 0.01185
HLA-DRB1 0.6557 0.008386

4.3 Most Common Phenotypes at PBMRD

In a sample of 20.000 individuals of Cedace it was detected 17,055 different
HLA-A,-B-DRB1 phenotypes. The 2,945 that remains are repeated phenotypes at
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Table 4 Output of HLA-A-B-DRB1 phenotype frequency in a random sample of 20,000
individuals

HLA-A HLA-B HLA-DRB1 Count Frequency � 104
A?01,29 B?08,44 DRB1?03,07 28 14,13
A?01,02 B?08,44 DRB1?03,04 17 8,58
A?02,29 B?44,51 DRB1?07,11 16 8,07
A?01,02 B?08,44 DRB1?03,07 15 7,57
A?01,03 B?08,51 DRB1?03,08 13 6,56
A?01,11 B?08,35 DRB1?01,03 12 6,06
A?02,33 B?14,44 DRB1?01,04 11 5,55
A?01,33 B?08,14 DRB1?01,03 10 5,05
A?02,03 B?35,44 DRB1?01,04 10 5,05
A?01,02 B?08,18 DRB1?03,11 10 5,05
A?01,23 B?08,44 DRB1?03,07 10 5,05
A?01,68 B?08,53 DRB1?03,13 10 5,05
A?02,29 B?44 DRB1?07,13 10 5,05
A?03,29 B?07,44 DRB1?07,15 10 5,05
A?01,02 B?08,50 DRB1?03,07 9 4,54
A?01 B?08 DRB1?03 9 4,54
A?01,02 B?44,57 DRB1?04,07 9 4,54
A?02,03 B?07,44 DRB1?04,15 9 4,54
A?02,29 B?44 DRB1?04,07 9 4,54

different proportions. Table 4 identifies the most common phenotypes, the absolute
counts and relative frequency in the probed population. As expected, it is noted the
influence of HLA-A,-B-DRB1 haplotypes frequencies on phenotype frequencies,
the A?01-B?08-DRB1?03 appears on 63 % of the 19 most frequent phenotypes.
In fact the 100 most frequent ABDRB1 phenotypes at the south PBMDR, are direct
combinations of the haplotypes with a frequency greater than 0.5 % (28 haplotypes).

5 Conclusions

From the obtained results, the population under study revealed an anthropologic
proximity with the European Caucasian* populations [1]. The characterization of
HLA gene and haplotype frequencies of a Bone Marrow Donors Registry, is a
valuable resource not only in the prediction of the probability of finding a matched
haematopoietic stem cell donor, considering the receptor HLA phenotype, but also
to determine donor recruitment goals and strategies.

Furthermore, the extend of the populations at the registry represent an impor-
tant source of information for investigators interested in population genetics and
HLA-disease association studies.
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Independent Component Analysis
for Extended Time Series in Climate Data

Fernando Sebastião and Irene Oliveira

Abstract
Various techniques of multivariate data analysis have been proposed to study
time series, including the multi-channel singular spectrum analysis (MSSA).
This technique is a principal component analysis (PCA) of the extended matrix of
initial lagged series, also called extended empirical orthogonal function (EEOF)
analysis in a climatological context. This work uses independent component
analysis (ICA) as an alternative to the MSSA method, when studying the
extended time series matrix. Often, ICA is more appropriate than PCA to analyse
time series, since the extraction of independent components (ICs) involves
higher-order statistics whereas PCA only uses the second-order statistics to
obtain the principal components (PCs), which are not correlated and are not
necessarily independent. An example of time series for meteorological data and
some comparative results between the techniques under study are given. Different
methods of ordering ICs are also presented, including a new one, which may
influence the quality of the reconstruction of the original data.

F. Sebastião (�)
Department of Mathematics, School of Technology and Management, Polytechnic Institute of
Leiria, and CM-UTAD, Campus 2, Morro do Lena - Alto do Vieiro, Apartado 4163, 2411-901
Leiria, Portugal
e-mail: fsebast@ipleiria.pt

I. Oliveira
Department of Mathematics, University of Trás-os-Montes and Alto Douro, and CM-UTAD,
Apartado 1013, 5001-801 Vila Real, Portugal
e-mail: ioliveir@utad.pt

J. Lita da Silva et al. (eds.), Advances in Regression, Survival Analysis, Extreme Values,
Markov Processes and Other Statistical Applications, Studies in Theoretical
and Applied Statistics, DOI 10.1007/978-3-642-34904-1 45,
© Springer-Verlag Berlin Heidelberg 2013

427



428 F. Sebastião and I. Oliveira

1 Introduction

Independent component analysis (ICA) is a technique widely used in areas such
as image processing, biomedical signals, telecommunications and econometric time
series among others [10]. ICA is beginning to be applied in climatology (e.g., [1,5])
as an alternative to the classical principal component analysis (PCA) [11], which
does not extract all the essential information underlying a data set in space and time,
since it uses only second-order statistics to obtain the principal components (PCs).
The series can be analysed using the multi-channel singular spectrum analysis
(MSSA) which uses the matrix of the extended series of original data, which can
be also employed for the ICA implementation.

This work presents a brief description of the classical linear ICA model. The
objectives of using MSSA as well as some of its aspects are also considered. A large
number of existing algorithms to extract independent components (ICs) do not rank
the ICs according to any criterion. We present some existing methods of ordering
ICs and suggest a new one, involving the comparison of correlations between PCs
and ICs. In this work we consider a data set on monthly mean pressure, at sea
level in the North Pacific Ocean. We present some comparisons of the coordinates
of the first five components between the three techniques described in the study.
We also analysed the quality of the reconstructions of the original data between
techniques through the sum of squared errors, taking into account the different
methods of ordering ICs. The new method will produce some good results and may
be considered as a good alternative for ordering ICs.

2 Description of ICA and MSSA

ICA is a statistical and computational technique introduced in the early 1980s by
Hérault and Ans [6] and Hérault et al. [7] and presented in a clear way by Comon [4].
In the last decade some books have appeared showing the development and the
applicability of this technique in several areas of science (e.g. [10, 14, 15]). The
main objective of ICA is to find hidden components or factors that relate sets
of random variables. In the model, we assume that variables of observed data
are linear mixtures (combinations) of latent variables, which cannot be observed
directly and are independent. ICA is distinct from other similar methods, since we
must assume that components are statistically independent and have nongaussian
distributions. This technique is related to PCA, but has greater affinity with factor
analysis (although the latter does not take into account the nongaussianity of the
data). Usually ICA is a more powerful technique for finding hidden factors when
classical methods fail completely.

To apply ICA, we consider the classical linear model (without noise) for a sample
consisting of p multivariate time series of n observations, which can be modelled in
a matrix form by X D SA, where:
• X is the n � p matrix of observed data (the matrix of p mixtures).



Independent Component Analysis for Extended Time Series in Climate Data 429

• S is the n � k matrix of k independent components.
• A is the k�p matrix of coefficients of the mixtures (unknown parameters), whose

columns must be linearly independent.
To estimate the model, we must admit that components si (i D 1; : : : ; k) are

statistically independent, that at least k � 1 components of si (i D 1; : : : ; k) have
nongaussian distributions and, for simplicity, that p � k [10].

Before applying an algorithm to implement ICA in a data set, some pre-
processing techniques are generally used, which help in estimating the model
parameters, such as centering and whitening. Whitening is used to estimate ICs
and consists in linearly transforming the matrix of observed data and multiplying
it by a certain matrix with the goal to obtain a new whitened matrix consisting
of uncorrelated components and with variances equal to unity. The new matrix of
coefficients of the mixtures will be orthogonal, which is useful due to its algebraic
properties.

There are many algorithms that allow the extraction of ICs [10]. In this work
we used the FastICA [9] to extract the ICs simultaneously (in parallel), since it is
considered one of the most efficient algorithms and has a fast convergence. This
algorithm uses the classic method of approximating negentropy as a measure of
optimization of nongaussianity to estimate the sample components that should be
close to independence.

MSSA, a generalization of singular spectrum analysis (SSA), is also an extension
of PCA applied to multivariate time series lagged in time. In the climatological
context this is called extended empirical orthogonal function (EEOF) analysis [17].
Its aim is to identify spatio-temporal patterns from a sequential series of maps over
a given timescale.

MSSA analyses the periodicity, trend and oscillatory behaviour of multivariate
time series, but the main objective is the extraction of joint temporal information
of the interrelations between observations of the variables and the interrelations
between lagged original variables. One problem in studies with lagged time series
is to decide which size to choose for the lagged vector called lag or window length
m. Based on some empirical results, Plaut and Vautard [13] suggest that the use of
a window length m allows the distinction of oscillations with periods in the range
.m=5;m/. Consequently, the n�p data matrix X becomes a .n � m C 1/ � .mp/
matrix, known as “augmented matrix of lagged data”, where we can extract
information of covariances between variables (time series) in each lag up to
lag m � 1.

After retaining the most important components, we obtain the series recon-
structed with a subset of k components. Since k depends on the choice of m, there
is no consensus on the number of components to retain in the reconstruction. So, a
possible solution is to retain the components whose eigenvalues have a value greater
than a obvious break point. It is assumed that the first k components will retain the
dominant information in the data, while the remainingm� k components represent
some external noise [16].
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3 Methods of Ordering Independent Components

In many practical applications it is necessary to order ICs with a view to comparing
or identifying the components that extract the most meaningful information in the
study. In some ICA algorithms, such as FastICA, ICs are not sorted out according
to any criterion, in contrast to PCA where PCs are ranked by decreasing order of
variances. We must take into account that different methods may rank components
differently, according to their statistical properties.

We consider a brief description of some of the methods in the literature on
ordering ICs. We consider also the introduction of a new criterion (M5), which can
be applied when using ICA and PCA on the same data set.
1. (M1) — Maximization of kurtosis of ICs:

This method ranks the ICs according to the decrease of the absolute value of
the difference between its kurtosis and the kurtosis of a normal random variable
[3, 12].
2. (M2) — Maximization of the vector norms of the estimated matrix of mixtures,A:

ICs are ordered according to decreasing values of the vector norms of the rows of
the estimated matrix of mixtures, A. This is reminiscent of the PCA ordering, since
the vector norms of the rows of A provide the contributions of the corresponding
ICs to the variances of observed variables [8].
3. (M3) — Minimization of the sum of squared errors when reconstructing the

original data matrix:
ICs are ranked by an algorithm that is based on the increase in the sum of squared

errors, which is similar to a method proposed by Cheung and Xu [2]. Residuals were
obtained by the differences between the original data and the reconstructions made
from subsets of components.
4. (M4) — Canonical correlation analysis (CCA):

The canonical correlations between the reconstructions of the original data using
the ICs and the original data can be used to order ICs. Sorting is done according to
the decrease in the value of canonical correlations between the original data and each
of the subsets formed by ICs. This process starts with the IC that is most correlated
with the original data. After fixing the first IC and using multiple correlations, we
choose the subset of two ICs most correlated with the original data and that includes
the first fixed IC. A third IC is then added to the subset of two ICs obtained in
the previous step, again using the largest multiple correlation as a criterion. The
process is repeated until the final ordering. A similar method of CCA application can
be found in Youssef et al. [18], which presents an algorithm to analyse functional
magnetic resonance imaging (fMRI).
5. (M5) — Correlations between principal components and ICs:

When PCA can be applied in parallel with ICA to a given data set, the
method of comparing the correlations between PCs and ICs can be presented as
a new alternative criterion for ordering ICs. Since the PCs are naturally ranked by
decreasing order of their variance, for a fixed order of PCs, the ICs are ranked by
maximizing their correlation with each PC. This is a natural way of ordering ICs,
since in general, each IC is highly correlated with a distinct single PC.
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Fig. 1 Methodology for techniques I, II and III with m D 50. Z is the matrix of scores, P is
the matrix of eigenvectors, S is the matrix of independent components and A is the matrix of
coefficients of the mixtures

4 Case Study

4.1 Data and Methodology

Consider 216 values of monthly mean-sea-level pressure (from January 1979 to
December 1996), for eight weather stations (1 — Crescent City; 2 — San Diego;
3 — San Francisco; 4 — Hilo; 5 — Honolulu; 6 — NeahBay; 7 — Seldovia and
8 — Sitka) in the North Pacific Ocean in the states of Alaska, California, Hawaii
and Washington.

The matrix of original data (Pacific2) was transformed into an extended matrix
of original time series with a lagm D 50, since this value is close to n=4 as Vautard
et al. [16] suggested. In terms of methodology, we applied three different techniques
that are described below by steps and illustrated in Fig. 1 for a lag m D 50.



432 F. Sebastião and I. Oliveira

0

0.0

0.2

0.4

0.6

E
ig

en
va

lu
es

50 100 150

Fig. 2 Scree plot for PCA
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4.1.1 Technique I Using PCA:
• Perform the usual PCA on the lagged matrix (MSSA).
• Retain only the first 5 PCs since their eigenvalues have higher values when

compared to the remaining, which allows to separate PCs that capture the
dominant variability from the remaining PCs that represent noise (Fig. 2).

• From the matrices of scores and eigenvectors of the 5 retained PCs, obtain the
reconstructions of the matrices of lagged data and original data.

• Compare the reconstructions with the original series.

4.1.2 Technique II Using ICA:
• Apply ICA using the FastICA algorithm on the lagged matrix (MSSA).
• Extract only five ICs (to compare them with the first five PCs) and apply the

different methods of post-processing of ordering ICs, as defined in Sect. 3.
• From the matrix of scores of previously ordered ICs and the matrix of mixtures,

obtain the reconstructions of the matrices of lagged data and original data.
• Compare the reconstructions with the original series.

4.1.3 Technique III Using ICA After PCA:
• Perform the usual PCA on the lagged matrix (MSSA) as pre-processing for ICA,

as a way to retain the higher variability of the data in a small number of PCs and
ignoring much of the noise.

• From the matrices of scores and eigenvectors of 5 retained PCs, obtain the
reconstruction of the lagged matrix.

• Apply ICA using the FastICA algorithm on the reconstructed lagged matrix.
• Extract only 5 ICs (in order to compare them with the 5 components extracted in

the other two techniques) and apply the different methods of post-processing of
ordering ICs, as defined in Sect. 3.

• From the matrix of scores of previously ordered ICs and the matrix of mixtures,
obtain the reconstructions of the matrices of lagged data and original data.

• Compare the reconstructions with the original series.

4.2 Results

For the three presented techniques, we obtained some comparative results associated
with the components that are shown in the next figures. We also present some
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Fig. 3 Scores for k D 5 extracted components obtained by techniques I, II and III, for a lag
m D 50

tables to describe the sum of squared errors in order to analyse the quality of the
reconstructions of the original data according to the ordering methods of ICs. In
this case study, when we apply PCA to the lagged matrix with lag m D 50, we can
consider two relevant eigenvalues before the noise floor (Fig. 2), although we retain
the first five eigenvalues since they are clearly higher than the others. The percentage
of variance explained by the first five (in a total of 167) PCs is close to 55 %, while
the percentage explained by the first two PCs is only 36.8 %.

Fig. 3 compares the coordinates (scores) of the first five components for
techniques I, II and III for m D 50. The PCs are ranked as usual, while the ICs
are ranked in an arbitrary order. A visual inspection of the temporal behaviour, it is
obvious that ICs are not ranked as the PCs, and therefore we consider the various
methods of ordering described in Sect. 3.

To decide what are the most appropriate methods of ordering ICs we compared
the reconstructions with the original data. We calculated the sum of squared errors
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Table 1 Sum of squared errors for the reconstructions with techniques I, II and III using a number
of distinct components

Order PC1 PC12 PC123 PC1234 PC12345

Technique I Natural order (1,2,3,4,5) 12.103 10.433 8.666 7.751 7.344

Ordering methods Order IC1 IC12 IC123 IC1234 IC12345
Technique II Arbitrary order (1,2,3,4,5) 12.120 10.941 9.264 8.610 7.344

M1 (1,3,5,4,2) 12.120 10.430 8.683 7.887 7.344
M2; M3; M5 (1,3,5,2,4) 12.120 10.430 8.683 7.749 7.344
M4 (1,5,3,4,2) 12.120 10.460 8.683 7.887 7.344

Technique III Arbitrary order (1,2,3,4,5) 12.251 10.238 9.455 9.057 7.344
M1 (5,1,4,2,3) 12.118 10.415 9.387 7.722 7.344
M2; M5 (5,1,2,3,4) 12.118 10.415 8.467 7.718 7.344
M3 (5,2,1,3,4) 12.118 10.261 8.467 7.718 7.344
M4 (1,2,5,4,3) 12.251 10.238 8.467 7.722 7.344
Alternative of M4 (5,2,1,4,3) 12.118 10.261 8.467 7.722 7.344

Techniques II and III presents each of the orders in the different methods of ordering ICs
Techniques used lagged series with lag m D 50 and k D 5 extracted components

(by time series) and we synthesized in Table 1 the sums of these values for all
weather stations, using a number of distinct components for techniques I, II and III
in the reconstruction of the original data for m D 50.

In Table 1, in techniques II and III, the row that represents the arbitrary order
(1, 2, 3, 4, 5) of ICs is obtained by application of the FastICA algorithm. From the
arbitrary order, ICs are reordered according to the corresponding methods to obtain a
new order. For example, in technique II in the row of M1 (maximization of kurtosis),
the order (1, 3, 5, 4, 2) means that the first IC is the same in the arbitrary order, the
new second IC is the third IC in the arbitrary order, the new third IC is the fifth IC
in the arbitrary order, the new fourth IC is the fourth IC in the arbitrary order and
finally the new fifth IC is the second IC in the arbitrary order.

In each of the techniques, the last five columns represent the sum of squared
errors for reconstructions from one component until five components according to
the order in the corresponding method. For example, in technique II in the row of
M1, the value 8.683 represents the sum of squared errors for the reconstruction by
first three ICs (IC1, IC3 and IC5) in the respective order (1, 3, 5, 4, 2).

After comparing the various methods of ordering ICs used in the technique II,
three (M2, M3 and M5) of the five methods provide the same order (1, 3, 5, 2, 4) to
minimize the sums of sum of squared errors for all weather stations. Moreover,
technique III suggests the algorithm of minimization of sum of squared errors
(M3) with the order (5, 2, 1, 3, 4) as the best method to minimize the sums of
sum of squared errors of the weather stations, but an alternative to maximize the
correlations of CCA (alternative of M4) with the order (5, 2, 1, 4, 3) shows similar
results.

A comparative analysis between the sum of squared errors of the reconstructions
for the three techniques emphasizes very similar results between technique I and
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the order (1, 3, 5, 2, 4) that minimizes the sum of squared errors in technique II, for
three methods including the new method M5. Results seem to be relatively better
in technique III when compared with techniques I and II.

5 Conclusions

Three techniques involving PCA and ICA were proposed to analyse extended time
series, emphasizing the application of ICA to the augmented lagged matrix in two
of them. The five dominant components that are naturally ranked in PCA, do not
appear in the same order in ICA. We examined five methods of ordering ICs. In the
three techniques, similar results were obtained in the scores of components for a lag
m D 50, after reordering the ICs. The quality of the reconstructions of the original
data was analysed through tables of sum of squared errors, with similar results for
techniques I and II, while technique III shows slightly better results.

The new method M5 appears to be one of the best, mainly for technique I and
therefore can be considered as a good method of ordering ICs. One data set is not
sufficient to ensure a conclusive comparative assessment and other data sets must
be assessed in similar ways in order to compare the new method’s performance with
that of the remaining methods.
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Life Satisfaction: A MIMIC Approach
with a Discrete Latent Variable

Patrı́cia Serra, José G. Dias, and Maria de Fátima Salgueiro

Abstract
This chapter proposes modeling a battery of items concerning life satisfaction
using a Multiple Indicator Multiple Cause (MIMIC) model with a discrete latent
variable. Portuguese data from year 2001 of the European Community Household
Panel (ECHP) are used. Life satisfaction variables include satisfaction with work
or main activity, financial situation, housing situation, and the amount of leisure
time. Some personal characteristics are considered as explanatory variables of
the latent life satisfaction variable. Four classes of individuals are obtained, with
distinct patterns of association between dependent and concomitant variables.

1 Introduction

The popularity of finite mixture models has recently increased, mainly due to
the availability of fast computing technology able to support this type of models.
In particular, the social sciences area, with a big tradition in latent class models, has
contributed for the popularity of finite mixture models [3].

A finite mixture model for discrete data is known as a latent class model. The
units of a latent class model are assumed to belong to some discrete class .s D
1; : : : ; S/ and class membership is unknown. Moreover, the classes can be viewed
as the categories of a categorical latent variable.
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In order to investigate heterogeneity in both measurement and structural rela-
tionships, a latent class model with latent and manifest variables called Multiple
Indicator Multiple Cause (MIMIC) model is used in this chapter to model life
satisfaction. Indeed, life satisfaction is a very common proxy to measure subjective
well-being (SWB). SWB reflects the extent to which a person thinks or feels that
his/her life is going well. Thus, life satisfaction is supposed to reflect a personal
assessment of the general living conditions, taking into account the background of
individual aspirations, expectations, and guidance [1].

SWB is associated with several indicators either at an individual level or at a
contextual level. As far as sex is concerned, there is some evidence that males are
less satisfied than females. According to [4] and [5], elder people report higher
levels of satisfaction, and so do married people. A good health status increases
life satisfaction and housing has a positive relationship with life satisfaction. The
more hours people work per week, the less satisfied they are. Individuals with
higher income tend to be more satisfied and promotion opportunities increase life
satisfaction. Clark et al. [2] proposed a latent class approach to model the relation-
ship between income and self-reported well-being, for twelve European countries.
Four classes of individuals were identified, in which individual characteristics and
country of residence were found to be strong predictors of class membership.

This chapter uses data from the European Community Household Panel (ECHP).
Four life satisfaction variables are used and ten possible determinants of life
satisfaction are considered. The statistical package Latent Gold 3.0 is used. The
structure of the chapter is the following: Sect. 2 presents the sample under analysis.
Section 3 describes the proposed MIMIC model. Section 4 summarizes the main
results of the statistical modeling undertaken and Sect. 5 provides a discussion of
the results.

2 The Data

The ECHP is a longitudinal household survey conducted between 1994 and 2001
and representative of several European Union countries [6]. The ECHP collects data
on perceptions of life satisfaction and on demographic characteristics, employment,
income, health, education and training, housing, among others. The current study
uses the 2001 Portuguese data. The four following questions have been considered
as indicators of life satisfaction: satisfaction with work or main activity; satisfaction
with financial situation; Satisfaction with housing situation; and satisfaction with
amount of leisure time. Respondents have been asked to rate their satisfaction level
using a Likert-type scale from 1—not satisfied to 6—totally satisfied.

A subsample of 5,742 individuals is used. Individuals are aged 17 years old
or more, work more than 15 h per week, and gave valid answers to all four life
satisfaction variables under analysis. Figure 1 summarizes the distribution of the
responses concerning the life satisfaction variables. It is possible to conclude that
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Fig. 1 Distribution of life satisfaction variables

the majority of the responses are at the level 4 of satisfaction for all items. Housing
situation and work itself are the dimensions with the highest mean satisfaction
levels, whereas satisfaction with financial situation has the lowest mean levels.

Explanatory variables used in this study as possible determinants of life satisfac-
tion include sex, age, marital status, existence of children under twelve years old
in the household, education, personal income, health status, degree of urbanization,
number of hours worked per week, and job status.

In terms of sex, 55.3 % of the 5,742 respondents are male. The average age of
the sample is 38 years old. As far as marital status is concerned, 64.6 % of the
respondents are married. Regarding the existence of children under 12 years old in
the household, 39 % have children and 61 % do not have. In terms of education,
only 13.4 % have the recognized third level of education (ISCED 5–7), 16.4 % have
the second stage of secondary level education (ISCED 3), and 70.2 % have less than
the second stage of secondary education (ISCED 0–2). The distribution of personal
income is the following: earnings under 500e, 48.3 %; 500 to 1,000e, 37.9 %;
1,000 to 1,750e, 10.6 %; the remaining 3.2 % of the sample earns 1,750e—or
more. In terms of perceived health status, 65.1 % of the respondents consider it very
good or good, 30.8 % fair, and only 4.2 % rate it as bad or very bad. Regarding
the degree of urbanization, almost half of the respondents (48 %) live in a densely
populated area, 28.2 % live in an intermediate area, and the remaining 23.8 % live
in a thinly populated area. In terms of the number of hours worked per week, 1.8 %
work less than 20 h; 86.7 % work between 21 and 45 h, 9.8 % work between 46 and
60 h, and the remaining 1.8 % work 61 h or more per week. The large majority of
the respondents are nonsupervisory employees (90.6 %), 5.2 % are intermediate, and
4.2 % are supervisors. This aggregate sample descriptive statistics are displayed in
the last column of Table 1.
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Table 1 Percentage deviations in each class against the aggregate sample

Classes

Variables Categories 1 2 3 4 Aggregate sample

Sex Male �3:6% 1.0 % 0.8 % 3.1 % 55.3 %
Female 3.6 % �1:0% �0:8% �3:1% 44.7 %

Age 17–24 �0:1% 3.6 % �10:2% �5:2% 15.9 %
25–34 �2:7% �1:6% 8.5 % 4.7 % 33.7 %
35–44 3.1 % �2:0% 4.7 % �3:2% 23.4 %
45–54 0.1 % �0:8% 0.6 % 2.8 % 18.2 %
55–65 �0:4% 0.8 % �3:6% 0.9 % 8.8 %

Marital Married �2:6% �2:3% 7.5 % 8.3 % 64.6 %
status Not married 2.6 % 2.3 % �7:5% �8:3% 35.4 %
Children Yes 5.0 % �2:8% 5.2 % �4:5% 39.0 %
< 12 years old No �5:0% 2.8 % �5:2% 4.5 % 61.0 %
Education ISCED 5–7 �7:5% �5:0% 25.1 % 14.0 % 13.4 %

ISCED 3 �2:5% �1:6% 7.4 % 5.3 % 16.4 %
ISCED 0–2 9.9 % 6.7 % �32:5% �19:4% 70.2 %

Personal income < 500e 14.6 % 5.0 % �39:3% �16:4% 48.3 %
500–1000e �4:0% 1.6 % 2.4 % 0.1 % 37.9 %
1000–1750e �7:5% �4:7% 26.0 % 11.8 % 10.6 %
> 1750e �3:1% �1:9% 10.9 % 4.5 % 3.2 %

Health status Very good �11:0% �0:6% 12.9 % 15.2 % 65.1 %
Fair 8.2 % 0.9 % �8:7% �14:1% 30.8 %
Very bad 2.8 % �0:3% �4:1% �1:1% 4.2 %

Degree of Densely populated 2.5 % �5:3% 13.2 % 4.4 % 48.0 %
urbanization Intermediate 1.3 % 0.5 % �4:2% �0:8% 28.2 %

Thinly populated �3:7% 4.9 % �9:0% �3:6% 23.8 %
Number < 20 0.7 % �0:2% �1:1% 0.2 % 1.8 %
of hours 21–45 �2:7% 4.8 % �19:3% 4.3 % 86.7 %
worked 46–60 1.3 % �3:6% 16.6 % �3:4% 9.8 %
per week > 61 0.7 % �1:0% 3.8 % �1:1% 1.8 %
Job status Supervisory �2:3% �1:5% 8.8 % 2.9 % 4.2 %

Intermediate �2:4% �1:7% 12.3 % 0.7 % 5.2 %
Nonsupervisory 4.7 % 3.1 % �21:1% �3:6% 90.6 %

3 The Proposed MIMIC Model

In latent class models individuals are assumed to belong to some discrete class .s D
1; : : : ; S/, and class membership is unknown. Moreover, classes can be viewed as
the categories of a categorical latent variable.

A latent class MIMIC model is a one-factor model where the factor (a categorical
latent variable) is measured by multiple indicators and regressed on several observed
covariates. The MI component is the measurement component and models the
relationship between the observed items (in this case the four life satisfaction
variables). The MIC component is the structural component of the model (in this
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case the impacts of the ten determinants of life satisfaction on the categories
of the life satisfaction latent variable). Consider a sample of n observations. An
observation is denoted by i .i D 1; : : : ; n/ and is characterized by J attributes.
Let yi be the vector of the J dependent variables. The MIMIC model with S latent
classes for yi is defined by the composite density

f .yi I ';wi / D
SX

sD1
�is.wi ;�s/fs.yi I �s/; (1)

where the discrete latent variable, zi , has a multinominal distribution, such that zi �
MultiS�1.� i /, with � i D .�i1.wi ;�1/; � � � ; �i;S�1.wi ;�S�1/, �is.wi ;�s/ > 0, andPS

sD1 �is.wi ;�s/ D 1. The vector of the J dependent variables is defined by yi D
.yi1; : : : ; yiJ / and the vector of theK concomitant variables is wi D .wi1; : : : ;wiK/.
The conditional probability function (of class s) is fs.yi I � s/, and the parameters of
the model are defined by ' D .�1; : : : ;�S�1;�1; : : : ;�S /, where � s and �s are the
vector of parameters to estimate in each class s.

An important issue in finite mixture modeling is estimation. The maximum
likelihood estimate of a set of independent observations can only be obtained by
iterative procedures, such as the expectation-maximization (EM) algorithm. This
algorithm is a method for maximum likelihood estimation with incomplete data that
reintroduces the additivity of the log-likelihood function, using data augmentation.
This algorithm is divided into two steps: first, the E-step that consists on associating
each individual observation with its conditional expectation of class membership,
given the observed values. The next, the M-step that consists in maximizing
the full data log-likelihood function (`s. O'I y;w/) using the complete data as the
observed data.

To find the optimal number of classes for the latent variable in the model, one
has to select the model that minimizes

Cs D �2`s. O'I y;w/C d �Ns; (2)

where Ns represents the number of parameters in the model. According to different
criteria we can give different values to d . For the Akaike information criterion (AIC)
d D 2, for the modified Akaike information criterion (AIC3) d D 3, and for the
Bayesian information criterion d D logn.

4 Results

The diagram of the MIMIC model proposed to model life satisfaction and its
determinants is shown in Fig. 2. The dependent variables in the model are the four
life satisfaction variables. Ten explanatory variables are considered: sex, age, marital
status, existence of children under twelve years old in the household, education,
personal income, health status, degree of urbanization, number of hours worked per



442 P. Serra et al.

Fig. 2 Diagram of the proposed MIMIC model

week, and job status. The latent class MIMIC model implies that (1) items on satis-
faction are conditionally independent given the latent class (local independence) (2)
dependent items are conditionally independent of the concomitant variables, given
the latent class.

Latent class models with different number of classes, ranging from S D 1 to
S D 8, were estimated. For the EM algorithm random initialization was considered
and the convergence tolerance level equals 10�6. The decision concerning the choice
of the number of classes of the latent variable was made based on the BIC. A (global)
minimum for BIC was reached when S D 4 and therefore a solution with four latent
classes was chosen. The characterization of the four classes in terms of size and
distribution of the four life satisfaction variables follows.

Class 1 corresponds to 26.6 % of the sample and includes the least satisfied
respondents with all four components of life satisfaction. In terms of opinion
about work or main activity, 43.4 % present a level of satisfaction lower than 3,
in contrast with the 16.8 % for the aggregate sample. Responses about satisfaction
with financial situation are dominated by the levels 1 and 2 of satisfaction (50.74 %).
In terms of satisfaction with housing situation, levels 1, 2, and 3 are dominant (for
54.7 % of respondents), in contrast with the 15.7 % of the aggregate sample.

Class 2 is the largest, representing 50.2 % of the sample. It corresponds to
respondents with an intermediate level of life satisfaction, namely, level 4, although
in the case of satisfaction with the financial situation, level 3 prevails (45.1 % of
respondents). 70.6 % of the individuals chose level 4 for satisfaction with work or
main activity, in contrast with the 57.2 % in the sample. As far as the amount of
leisure time is concerned, 83.3 % of the individuals answered level 4, compared to
60.41 % of the aggregate sample.
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Class 3 corresponds to a group of respondents (11.3 % of the sample) with high
levels of satisfaction with work, financial, and housing situation, but very low levels
of satisfaction with amount of leisure time. In terms of the financial situation, 67.9 %
of the participants respond level 4 of satisfaction (versus 39.2 % in the aggregate).
Regarding the amount of leisure time, levels 1, 2, and 3 of satisfaction are dominant
(67.24 %), contrasting with the 28.2 % in the aggregate sample.

Class 4 corresponds to 11.9 % of the respondents and includes the individuals
most satisfied with life. In fact, for this class, 86.5 % of the respondents have high
levels (5 and 6) of satisfaction with work or main activity, while in the aggregate
sample such percentage equals 26 %. In terms of satisfaction with financial situation,
41.2 % state levels 5 and 6 of satisfaction, contrasting with the 7.1 % in the aggregate
sample. Levels 5 and 6 of satisfaction with the housing situation and the amount of
leisure time are responded by 85.3 % and 61 %, respectively, versus 33.4 % and
11.4 % for the aggregate sample.

The four classes are now characterized in terms of the ten explanatory variables:
the determinants of life satisfaction. Since concomitant variables are categorical,
the probabilities associated with each category of each explanatory variable were
estimated for each of the four categories of the latent variable. Table 1 displays such
probabilities in terms of percentage deviations, in each class, against the sample
aggregate.

The variables that best distinguish the four classes are education, personal
income, perception of health status, degree of urbanization, and number of hours
worked per week, since they lead to the highest deviations against the aggregate
sample. In class 1, and in comparison to the sample aggregate, there are 9.9 % more
individuals with less than the second stage of education; 14.6 % more individuals
earning less than 500e; and 11 % less individuals with a good or very good
perception of health status. In class 2 there are 6.7 % more individuals with less
than the second stage of education than in the sample aggregate and 5 % more
individuals earning less than 500e. In comparison with the aggregate sample, 4.8 %
more individuals work 21–45 hours per week and 3.1 % more individuals have a
nonsupervisory position. Class 3 has 25.1 % more individuals with the third level
of education and 32.5 % less individuals with the lowest education level, when
compared to the aggregate sample. The percentage of individuals with income
1,000–1,750eis 26 % higher than in the aggregate sample; 12.9 % more individuals
perceive their health status as very good, 13.2 % more individuals live in densely
populated areas, 16.6 % more respondents work 46–60 h per week, and 21.1 % less
individuals have nonsupervisory positions. In class 4, and in comparison to the
aggregate sample, there are 8.3 % more individuals married, 4.5 % more individuals
with no children under 12 years old in the household, 11.8 % more individuals with
income 1,000–1,750e, 15.2 % more respondents with perceptions of good or very
good health status, and 4.3 % more individuals working 21–45 h per week.
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5 Discussion

In this chapter we have proposed modeling four life satisfaction items, using a
MIMIC model: a discrete latent variable model where the latent variable is explained
by a set of characterization variables at the individual level. Four distinct classes
of individuals were obtained. Class 1 includes individuals less satisfied with life,
with low levels of education, low income, worse perceptions of health status, and
nonsupervisory positions. Class 2 has intermediate levels of satisfaction and differs
from class 1 mostly in terms of a better perception of health status and a higher
income. Class 3 includes individuals that are very happy with their job and financial
situation, but very dissatisfied with their amount of leisure time. They work long
hours per week, have supervisory positions and high earnings. Class 4 has high
levels of life satisfaction and includes individuals with high levels of education,
earning more than 1,000e, with a good perception of health status, living in a
densely populated area, and working 21 to 45 h per week.

Future research could address dealing with missing values in life satisfaction
variables and taking into account the complex survey design.
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An Application of MRMC ROC Curves
on Radiology

Carina Silva-Fortes, Maria Antónia Amaral Turkman, Luis Lança,
Ricardo Silva, and Gonçalo Marques

Abstract
The scientific area of radiology of the Higher School of Health Technology
of Lisbon, conducted an experimental study with the goal of investigating the
influence of the tube potential (kV) on the detection of simulate chest lesions in a
chest phantom. Exposure parameters influence the quality and quantity of a X-ray
beam and consequently image quality, therefore influencing the observer capac-
ity to detect lesions. To produce images with high quality, readers’ performances
were compared as well as the accuracy of lesions detection associated with
different tube potential and ROC (receiver operating characteristic) methodology
was used to select the best ones. The proper binormal ROC curve model was
used to select the reader with best performance. However, the conventional ROC
curve is not adequate to select the best tube potential, because the evaluation of
the images also depends on the reader’s interpretation. So, the MRMC (multiple
readers multiple cases) ROC curves were proposed and, for their estimation,
Dorfman–Berbaum–Metz method was used. All calculations were performed on
the PROPROC, DBM-MRMC 2.2 and R free softwares.
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1 Introduction

Chest radiography is the most often performed exam in Portugal on the radiology
area. Due to the fact that in thoracic region there exist areas with different densities
and contrasts, it is important to adopt the best techniques and procedures in the
execution of chest X-ray, in order to produce images with high diagnostic quality.

Radiographs were obtained in a chest phantom. The phantom includes the heart,
the lungs, the liver and the thorax skeleton. The images were acquired using a
chest phantom for two reasons: ethical (avoiding unnecessary exposures to patients)
technical (due to the need to control the variations in lesion localization and tube
potential intensities).

The adjustment of the energy of the X-ray beam is an important practical action
to be taken by the radiographer to contribute for a valuable clinical image [9].
So, this study aims to investigate the readers’ performances and the accuracy on
the detection of simulated chest lesions in a computed radiography (CR) system
associated with different tube potential (kV).

2 Materials and Methods

The radiological images were obtained using a chest phantom at the radiology
skill lab of the Higher School of Health Technology of Lisbon. This phantom has
regions with different densities corresponding to the structures which constitute a
human chest. To achieve an overall representativeness of the chest, we selected
six different regions where the lesions were placed. We also considered five tube
potential intensities (81 kV, 90 kV, 109 kV, 125 kV and 141 kV). These values agree
with the ones used elsewhere [8–11].

Seven trials were considered, six corresponding to the phantom with each lesion
at a time and one with the phantom without lesions. Each trial contained five
images, corresponding to each tube potential intensity, resulting the experiment in
a total of 35 radiographs. The images were randomly observed by six radiologists
(readers) who did not know where the lesion positions were and if the images had
lesion or not. The readers gave to each image a score according to a five points
scale (1—very confident case is normal, 2—confident case is normal, 3—somewhat
confident case is abnormal, 4—confident case is abnormal and 5—very confident
case is abnormal). All readers evaluated the images obtained using all tube potential
intensities. This study is namely fully crossed design [16] (Table 1).

A receiver operating characteristics (ROC) graph is a technique for visualizing,
organizing and selecting classifiers based on their performance. ROC graphs have
long been used in signal detection theory to depict the trade off between hit rates
and false alarm rates of classifiers [19]. ROC analysis has been extended for use in
visualizing and analysing the behaviour of diagnostic systems [20].

Metz [12] proposed a binormal model for estimating ROC curves when we have
rating data and a latent variable under the binormal assumption is used to construct
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Table 1 Fully crossed experimental design

81 kV i kV 141 kV

Rdr. 1 Rdr. j Rdr. 6 Rdr. 1 Rdr. j Rdr. 6 Rdr. 1 Rdr. j Rdr. 6

No lesion x110 x1j0 x160 xi10 xij0 xi60 x510 x5j0 x560

Lesion 1 x111 x1j1 x161 xi11 xij1 xi61 x511 x5j1 x561

Lesion k x11k x1jk x16k xi1k xijk xi6k x51k x5jk x56k

Lesion 6 x116 x1j6 x166 xi16 xij6 xi66 x516 x5j6 x566

xijk is the score given by reader (Rdr.) j to an image with a lesion on position k and obtained with
a potential intensity i

a smooth curve. When degenerated ROC curves are produced (curves that cross
the 45ı chance line), Metz and Pan [13] developed a proper binormal model and
a software entitled PROPROC which uses that model to fit convex ROC curves by
maximum likelihood estimation. This method is called proper because it forces the
curve shape always to be convex. Accordingly, a ROC curve cannot drop below the
45ı chance line.

One way to quantify the diagnostic accuracy of a classifier is to express his
performance by a single number. The most common global measure is the area
under the ROC curve (AUC). By convention, the AUC ranges between 0.5 (no
apparent distributional difference between the two groups of test values) and 1
(perfect separation). To compare the performances between classifiers it is usual
to select the one that corresponds to the maximum value of AUC.

The decision of which tube potential intensity produces X-rays with better
quality, depends on the comparison of the accuracy with which the tube potential
produces the images. However, identification of the lesions depends not only on
the tube potential, but also on the readers. Therefore, we will have to consider
variability between observers, variability inherent to lesions positions, correlation
between intensities and correlation between readers for the same intensity.

ROC curves are the most commonly used tool to compare diagnostic systems
in their ability to discriminate between two mutually exclusive populations (in this
case presence vs no presence of a lesion). The MRMC (multiple cases multiple
readers) [2–6,15] ROC curve is the most appropriate for this experiment, because we
have to include in the analysis the variability between readers. MRMC methodology
accounts for multiple readers, each one reading multiple cases. In general, we will
assume that a reader analyses an image (case) and produces a value that reflects his
confidence about the existence of a lesion.

Several statistical methods have been developed for analysing data using MRMC
ROC curve methodology. Obuchowski et al. [15] compared five methods, namely,
Dorfman–Berbaum–Metz (DBM) method [2], Obuchowski–Rockette (OR) method
[14], Beiden–Wagner–Campbell (BWC) method [1], multivariate WMW statistic
[18] and hierarchical ordinal regression for ROC curves (HROC) [7].

In this study, we used the DBM method. Dorfman et al. [2] proposed an ANOVA
of pseudovalues to analyse multireader ROC data. Their basic idea is to compute
jackknife pseudovalues. The jackknife pseudovalue of the k-th case is simply the



448 C. Silva-Fortes et al.

weighted difference in the accuracy, estimated from all cases, minus the accuracy
estimated without the kth case (1). These pseudovalues are transformations of the
original data:

Oyijk D c Oij � .c � 1/ Oij.k/; (1)

where Oyijk denotes the estimated AUC pseudovalue for treatment (intensity) i ,
reader j and case (lesion) k; Oij denotes the estimated AUC based on the i th

treatment and j -th reader, for all cases; Oij.k/ denotes the estimated AUC based
on the same data after removing the kth case; c is the total number of cases.

AUC pseudovalues are computed using the jackknife separately for each
reader/treatment combination (2):

1AUC ij D 1

c
˙c
kD1 Oyijk: (2)

A mixed-effects ANOVA model is performed (3) on the pseudovalues to test the
null hypothesis that the mean accuracy of readers is the same for all intensities. The
model is

yijk D �C ˛i CBj CCk C .˛B/ij C .˛C /ik C .BC /jk C .˛BC/ijk C "ijk; (3)

where � denotes the global mean; ˛i denotes the fixed effect of treatment i ; Bj
denotes the random effect of reader j ; Ck denotes the random effect of case k;
the multiple symbols in parentheses denote interactions; and "ijk is the error term.
The interaction terms are all random effects and they are assumed to be mutually
independent and normally distributed with zero means and variances corresponding
to each random effect.

In this study, accuracy is characterized by AUC, but any summary measure (e.g.,
sensitivity, specificity, partial area under the ROC curve and sensitivity at a fixed
false-positive rate) can also be used. Furthermore, these measures of accuracy can
be estimated parametrically or nonparametrically.

The software MRMC DBM 2.2 from Medical Image Perception Laboratory
[21] and Kurt Rossman Laboratories for Radiologic Image Research [22] imple-
ments this method.

3 Application

3.1 Comparison of Readers’ Performances

To estimate the correspondent ROC curve for each reader (Fig. 1) we used the proper
binormal ROC model [13], since the binormal model [12] produced degenerated
ROC curves. The AUC for each reader was calculated under the proper binormal
ROC model (Table 2).

Analysing Fig. 1 and Table 2 we verified that reader four had the best perfor-
mance.
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Fig. 1 ROC curves
corresponding to each reader

Table 2 AUCs under proper
binormal assumption for the
six readers

Reader AUC

1 0.7289
2 0.7731
3 0.8432
4 0.8593
5 0.8424
6 0.7207

3.2 Comparison of Tube Potential Accuracies

Typically, MRMC ROC curves involve c patients (with or without disease), t � 2

treatments and r readers. In our case we have cD 7 (phantom with no lesions
and phantom with each lesion position), t D 5 tube potential intensities and r D 6

radiologists. In this experiment the readers and the lesions were not selected
randomly, so, in order to test the hypothesis that the mean value of the AUC
pseudovalues values did not differ significantly, (H0 W ˛1 D˛2 D : : : D ˛5), we used
the factorial model with fixed effects without replicates:

yijk D �C ˛i C ˇj C �k C .˛ˇ/ij C .˛�/ik C .ˇ�/jk C "ijk: (4)

The DBM MRMC 2.2 software only considers the following types of analysis:
(i) both readers and cases as random samples (the traditional MRMC analysis),
(ii) only cases as random samples and (iii) treating readers as random samples.
In our experiment we do not have any of these situations. Hence, we used
DMB MRMC 2.2 to estimate the AUC pseudovalues and R software to make the
variance analysis of factorial fixed effects.
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The AUCs used to calculate the pseudovalues were estimated using the con-
taminated binormal model [17]. These was due to the fact that the binormal
model produced degenerated ROC curves and the application of PROPROC model
produced very low false positive fractions.

We obtained a p-value of 0.89 for the ANOVA and we concluded that there are
no differences between tube potential intensities. Naturally, we chose the one with
less risk for the patients. Because higher values of the tube potential correspond to a
lower radiation exposure, we concluded that tube potential intensity which produces
higher quality with less risk for the patients is 141 kV.

4 Future Work

For further studies we recommend the selection and randomization of a previous
defined number of readers and images so that a desired power may be achieved [20].
The model should take into account not only the lesions but also their locations
because it is important that a reader correctly identifies a lesion as well as its
location.
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Some Remarks About Gibbs Variable
Selection Performance

Júlia Teles and Maria Antónia Amaral Turkman

Abstract
Gibbs variable selection is one of the Bayesian approaches to the variable selec-
tion problem in generalized linear models and, in particular, in linear regression.
One of the advantages of this method is that it can be easily implemented in
WinBUGS. The results obtained after Gibbs sampling convergence enable us
to estimate, in a straightforward manner, the posterior model probabilities and
the posterior variable inclusion probabilities. These probabilities allow us to
identify the maximum a posteriori model and, if it exists, the median probability
model, respectively. A simulation study was performed to study the importance
of sample dimension and the number of predictors in the Gibbs variable selection
performance in the scope of linear regression models. The results attained
suggest that Gibbs variable selection is more demanding in terms of minimum
sample sizes requirements than other well-known techniques.

1 Introduction

Model selection and, in particular, variable selection in regression problems is a
much studied and discussed matter. In the classical approach, several solutions
are often used. Usually they combine a search method, like forward selection,
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backward elimination or stepwise, with a model evaluation criteria, such as partial F-
tests, adjusted R squared, mean squared error, Mallows’ Cp statistic, and penalized
likelihood criteria [10].

The Bayesian approach to variable selection in regression problems includes
several types of methods. Some methods, inspired by those used in the classical
approach, combine a search method with a model evaluation criteria, usually a
penalized likelihood criteria or a discrepancy function [2]. The informal manual
selection [14], and the forward variable selection or the backward variable elimi-
nation via DIC [18], are examples of these type of variable selection methods.
The Monte Carlo model composition [9] and the “Occam’s Window” method
[8] are examples of model selection methods based on the search in the model
space. However, the intrinsically Bayesian solution to the variable selection problem
is often viewed as a problem of parameter estimation, i.e., the estimation of the
posterior model probabilities and the estimation of the posterior variable inclusion
probabilities. The use of Gibbs sampler and the inclusion of a vector of binary
indicator variables in the sampling algorithm allow us to estimate the above-
mentioned probabilities. This strategy gave rise to several Bayesian methods for
variable selection where the search is over the model and the parameter space jointly
[2], namely stochastic search variable selection [5], unconditional priors’ method
[7], Gibbs variable selection [3], and the reversible jump MCMC [6].

Dellaportas et al. [4] reviewed some Bayesian variable selection methods based
on Gibbs sampling and emphasized that their main advantages is that they can be
easily implemented in WinBUGS. These authors mentioned that it is impossible
to provide guidelines for the most appropriate method for the variable selection
problem within generalized linear models framework. O’Hara and Sillanpää [13]
also carried out a review of these methods and stated that stochastic search
variable selection and reversible jump MCMC methods can all provide good results.
However, they claimed that the choice of the better method depends on the choice
of the priors and the method of implementation used.

The focus of this chapter will be on the Gibbs variable selection (GVS) method.
In this work, a simulation study was performed to investigate the influence of sample
dimension and the number of predictors in the GVS performance in the context of
linear regression models; besides that, an example was used to illustrate some issues
on this subject.

2 Gibbs Variable Selection

Let n represent the number of subjects and p the number of predictors. Denoting
by Yi the response variable, by xi1; : : : ; xip the observations of p predictors, and
by ˇ D .ˇ0; ˇ1; : : : ; ˇp/ the vector of unknown parameters, the linear regression
model for the i th subject is Yi D ˇ0 C ˇ1xi1 C � � � C ˇpxip C 
i , i D 1; : : : ; n,
where the random errors 
i are independent and identically distributed N.0; �2/,
with � D 1=�2.
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Considering that the uncertainty about the model only refers to the choice of the
predictors being included in the linear predictor, assuming that the constant term
is included in the model and that possible interactions are not taken into account,
the set of all regression models under consideration, represented by M , is such
that #M D 2p . In the GVS method, each model m 2 M is identified by a vector
� D .�1; : : : ; �p/, with �j D 1 if the j th predictor is included in the model and
�j D 0 otherwise, j D 1; : : : ; p. The linear predictor of the linear regression
model for the i th subject is �i D ˇ0 C �1ˇ1xi1 C � � � C �pˇpxip, i D 1; : : : ; n.
The components of the vector � are included in the modelling process through
the linear predictor and through the prior distribution of ˇj conditional to �j , for
j D 1; : : : ; p [4, 11]. As the vector � identifies the model m 2 M , the samples
f�.t/gNtD1, obtained after the convergence of MCMC algorithm, enable us to estimate
the posterior probability of each modelm:

bPr.m j D/ D # ft W � .t/ D �g
N

; (1)

where D represents the data. These probabilities allow us to identify the maximum a
posteriori (MAP) model [12], i.e., the model with the highest posterior probability.
Estimates of posterior variable inclusion probabilities are also easily obtained:

O�j D bPr.ˇj ¤ 0jD/ D # ft W �.t/j D 1g
N

: (2)

With these probabilities we can identify, if it exists, the median probability (MP)
model, that is defined as the model that includes the variables whose posterior
inclusion probabilities are at least 0:5 [1].

In the absence of information about the importance of each predictor it is
usual to consider �j independent and identically distributed Bern.1=2/, i.e., a
prior probability of 1=2p for each model. We assume independent priors for
ˇ0; ˇ1; : : : ; ˇp , � , and � . After centering and scaling xij we consider that (i) the
prior distribution of ˇ0 is normal with zero mean and large variance (say equal to
100000); (ii) the prior distribution of ˇj , conditional on �j , is normal with zero
mean and variance equal to 0:011��j � 1000, j D 1; : : : ; p. Note that if the j th
predictor is to be included in the model then the prior variance should be large, so
that the prior distribution of ˇj is sufficiently diffuse; if the j th predictor is to be
excluded from the model then the prior distribution of ˇj has all its mass around
zero; (iii) the prior distribution of � is diffuse gamma with both shape and inverse
scale parameter equal to 0:001 [4, 11].

3 Example

The aerobic fitness data [15] is an example of data that have been used by
several authors to illustrate variable selection methods. The aerobic fitness, which
is measured by the ability to consume oxygen, could be fit by the results of some
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Table 1 Estimates of posterior variable inclusion probabilities and posterior model probabilities

Variables included in the model

Model bPr.mith jD/ x1 x2 x3 x4 x5 x6

m1st 0:812 	
m2nd 0:044 	 	
m3rd 0:038 	 	
m4rd 0:032 	 	 	
m5rd 0:018 	 	 	
� � � � � �
m9th 0:004 	 	 	 	
� � � � � �
O�j D bPr.ˇj ¤ 0jD/ 0.071 0.017 1.000 0.018 0.095 0.055

trivial exercise tests, instead of expensive and cumbersome oxygen consumption
measurements. So, the goal is to develop a model to predict aerobic fitness based on
the results of some exercise tests. The response variable is oxygen uptake rate (y)
measured in ml per kg body weight per minute. The candidate predictors are age in
years (x1), weight in kg (x2), time in minutes to run 1.5 miles (x3), heart rate while
resting (x4), heart rate while running (x5), and maximum heart rate records while
running (x6). The data consist of n D 31 observations of these seven variables.
The Pearson correlation coefficients between some of the predictors are high, in
particular, as expected, the correlation between x5 and x6.

The estimates of posterior variable inclusion probabilities and the estimates of
posterior model probabilities are presented in Table 1. There is only one variable
with posterior inclusion probability greater than 0:5, the variable x3, and so we can
say that the MP model only includes this variable. This model is the one that stands
out by presenting the highest posterior probability, i.e., m1st is the MAP model and,
in this particular case, it stands out by presenting a posterior probability much higher
than the other models.

In this example, the number of possible models is 26 D 64. So, the choice of the
model that minimizes the DIC [17] and bBIC [2] measures was made using forward
variable selection (FVS) and backward variable elimination (BVE) methods. The
FVS and the BVE procedures via DIC favored the model m9th , i.e., the model that
includes the variables x1, x3, x5, and x6. When using the bBIC as model evaluation
criterion, the two above-mentioned search methods did not lead to the choice of the
same model: the FVS favored model m1st , which includes the variable x3, and the
BVE favored model m5th , which includes variables x1, x3, and x5. When there are
high correlations between the predictors, it is usual that these two methods yield
different models [10].
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Table 2 Simulation results for p D 2 and n D 25

Model that gave rise to data

m1 m2 m3 m4

x1; x2 x1 x2 const.

bPr.m1jD/ 0.145 0.012 0.005 0.000
bPr.m2jD/ 0.416 0.695 0.016 0.019
bPr.m3jD/ 0.075 0.006 0.277 0.017
bPr.m4jD/ 0.364 0.287 0.702 0.964

O�1 D bPr.ˇ1 ¤ 0jD/ 0.561 0.708 0.021 0.019

O�2 D bPr.ˇ2 ¤ 0jD/ 0.220 0.018 0.282 0.017
bBIC selection m1 m2 m3 m4

bBIC value 121.7 117.5 118.3 114.1
DIC selection m1 m2 m3 m4

DIC value 113.0 110.9 111.7 109.7

4 Simulation Study

A simulation study was carried out to evaluate the performance of GVS under
several combinations of sample sizes and number of predictors. The data generation
scheme was adapted from Kuo and Mallick [7]. We considered p predictors,
x1 : : : ; xp , obtained through the generation of p independent n-dimensional vectors
of a standard normal random variable. A random sample of n observations
from N.0; 2:52/ was assigned to the random error and for each combination of
predictors, a sample of the response variable for the model mk, kD 1; : : : ; 2p, was
obtained, giving the same weight to the predictors. Several simulation conditions
were considered: p D 2; 3; 4 and n D 25; 50; 75; 100; 125; 150; 175; 200. Using
WinBUGS, v. 1.4.3, GVS was applied to each sample, and estimates of posterior
model probabilities and posterior variable inclusion probabilities were obtained.
We used the MAP and MP models to evaluate the performance of GVS under the
simulated conditions.

In this section, only the most relevant results of the simulation study will be
presented and commented.

We start by examining the results of the case p D 2 and n D 25, presented in
Table 2. The models from which the data were generated and the variables included
in each one of these models were indicated in the header of the table. The following
comments may help in interpreting the table. When the data is generated from the
model m1 (that includes x1 and x2), the MAP model is m2 (that only includes x1),
with a posterior model probability equal to 0:416, followed bym4 that only includes
the constant term. In the case of data generated from the modelm2, the MAP model
is actually m2, with a posterior model probability equal to 0:695. If the data is
generated from m3 (that only includes x2), the MAP model is m4. In the case of
data generated fromm4, GVS method gives the highest posterior probability to this
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Table 3 Simulation results for p D 2 and n D 75

Model that gave rise to data

m1 m2 m3 m4

x1; x2 x1 x2 const.

bPr.m1jD/ 0.615 0.014 0.010 0.000
bPr.m2jD/ 0.003 0.571 0.000 0.010
bPr.m3jD/ 0.377 0.010 0.987 0.026
bPr.m4jD/ 0.005 0.405 0.003 0.964

O�1 D bPr.ˇ1 ¤ 0jD/ 0.618 0.586 0.010 0.010

O�2 D bPr.ˇ2 ¤ 0jD/ 0.993 0.024 0.997 0.027
bBIC selection m1 m2 m3 m4

bBIC value 377.4 374.1 372.3 369.0
DIC selection m1 m2 m3 m4

DIC value 364.2 364.2 362.4 362.3

model. In the second part of the table, we present estimates of posterior variable
inclusion probabilities. When the data is generated fromm1, the posterior inclusion
probabilities for variables x1 and x2 are, respectively, 0:561 and 0:220. In this case,
the MP model is m2, which matches with the MAP model. In the third and fourth
parts of the table are indicated the models selected by bBIC and DIC criteria, with
the corresponding criteria values. With the data generated from each of the models,
using the exhaustive search method and the above-mentioned penalized likelihood
criteria, the selected model matches the model from which the data was generated.
In the case p D 2 and n D 50 (table of results omitted), the performance of GVS
method is quite similar to the previous case. Only the models selected by the bBIC
criterion differ from the previous case. When considering p D 2 and n D 75

(Table 3), the MAP models coincide with the models from which the data were
generated, though in some cases the probabilities of the models with the highest
posterior probabilities are not much higher than 0.5. In the case p D 2 and n D 100

(table of results omitted), the performance of GVS increases and the probabilities
of the models with the highest posterior probabilities are also a little closer to one.

Let us now consider what happens when we have three possible predictors. In
this case we have to monitor eight models and the table to summarize the results is
more complex. In the case p D 3 and n D 25 (table of results omitted), regardless
of the model from which the data was generated, the MAP model is the one that only
includes the constant. The GVS method is unable to identify the model from which
the data was generated. The posterior variable inclusion probabilities do not present
any value greater than 0.5, so the MP model is never identified. When considering
p D 3 and n D 50 (table of results omitted), the performance of the GVS method is
not very distinct from the previous case. In the case p D 3 and n D 75 (Table 4), the
performance of the GVS method has a little improvement. In some situations (when
the models that gave rise to data are m3, m5, m7, and m8) the MAP model and
the MP model were correctly identified; however, the results attained are still poor.
For p D 3 and n D 100 (Table 5), the performance of the GVS method improves
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Table 4 Simulation results for p D 3 and n D 75

Model that gave rise to data

m1 m2 m3 m4 m5 m6 m7 m8

x1;x2;x3 x1;x2 x1;x3 x2;x3 x1 x2 x3 const.

bPr.m1jD/ 0.156 0.001 0.010 0.002 0.000 0.000 0.000 0.000
bPr.m2jD/ 0.025 0.189 0.001 0.000 0.010 0.002 0.000 0.000
bPr.m3jD/ 0.689 0.008 0.854 0.009 0.009 0.000 0.010 0.000
bPr.m4jD/ 0.001 0.000 0.000 0.175 0.000 0.001 0.009 0.000
bPr.m5jD/ 0.124 0.797 0.129 0.001 0.976 0.009 0.001 0.011
bPr.m6jD/ 0.000 0.001 0.000 0.024 0.000 0.209 0.001 0.010
bPr.m7jD/ 0.004 0.000 0.004 0.682 0.000 0.008 0.865 0.009
bPr.m8jD/ 0.001 0.004 0.002 0.107 0.005 0.771 0.114 0.970

O�1 D bPr.ˇ1 ¤ 0jD/ 0.994 0.996 0.994 0.012 0.995 0.012 0.011 0.011

O�2 D bPr.ˇ2 ¤ 0jD/ 0.182 0.192 0.011 0.202 0.011 0.212 0.010 0.010

O�3 D bPr.ˇ3 ¤ 0jD/ 0.849 0.009 0.868 0.868 0.009 0.009 0.884 0.009
bBIC selection m1 m2 m3 m4 m5 m6 m7 m8

bBIC value 359.9 354.5 355.1 355.0 349.7 349.7 350.2 344.8
DIC selection m1 m2 m3 m4 m5 m6 m7 m8

DIC value 343.3 341.3 341.9 341.8 339.8 339.7 340.2 338.1

Table 5 Simulation results for p D 3 and n D 100

Model that gave rise to data

m1 m2 m3 m4 m5 m6 m7 m8

x1;x2;x3 x1;x2 x1;x3 x2;x3 x1 x2 x3 const.

bPr.m1jD/ 0.438 0.010 0.004 0.009 0.000 0.000 0.000 0.000
bPr.m2jD/ 0.281 0.817 0.004 0.007 0.008 0.017 0.000 0.000
bPr.m3jD/ 0.107 0.002 0.627 0.003 0.012 0.000 0.012 0.000
bPr.m4jD/ 0.001 0.000 0.000 0.492 0.000 0.010 0.005 0.000
bPr.m5jD/ 0.173 0.169 0.362 0.005 0.978 0.004 0.008 0.020
bPr.m6jD/ 0.000 0.001 0.000 0.291 0.000 0.858 0.004 0.008
bPr.m7jD/ 0.000 0.000 0.002 0.074 0.000 0.001 0.626 0.011
bPr.m8jD/ 0.000 0.001 0.001 0.119 0.002 0.110 0.345 0.961

O�1 D bPr.ˇ1 ¤ 0jD/ 0.998 0.999 0.998 0.024 0.998 0.021 0.020 0.020

O�2 D bPr.ˇ2 ¤ 0jD/ 0.720 0.829 0.008 0.800 0.008 0.885 0.009 0.008

O�3 D bPr.ˇ3 ¤ 0jD/ 0.546 0.012 0.633 0.579 0.012 0.012 0.643 0.011
bBIC selection m1 m2 m3 m4 m5 m6 m7 m8

bBIC value 496.5 491.8 490.9 492.9 486.2 488.1 487.2 482.4
DIC selection m1 m2 m3 m4 m5 m6 m7 m8

DIC value 478.5 477.4 476.5 478.5 475.4 477.3 476.4 475.2
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significantly. For the data generated from any of the models, the MAP model is the
model that gave rise to data. In this case, when there is a MP model, it coincides
with the MAP model.

The tables of results for p D 4 (four possible predictors) are not presented here;
nevertheless the simulations results lead us to think that we need a minimum sample
size of 150 observations to achieve good results.

5 Discussion

The simulation results show that sample size has an important role in the perfor-
mance of GVS. Smaller sample sizes tend to favor models with less predictors than
the ones that gave rise to data. It seems that a balance between sample size and
the number of candidate predictors is essential to achieve good results. In the case
p D 2, a sample of size n D 50 is definitely insufficient, but with n D 75 the results
are satisfactory; forp D 3, a sample of size n D 75 does not lead to good results, but
with n D 100 the results suggest that GVS performs well in identifying the correct
model; for p D 4, it seems that a minimum sample size of n D 150 is required to
attain good results. The simulation results suggest that, to have a good performance
of GVS, we need at least 35 data points for each variable in the model. However,
more simulation should be made for p > 4. From a classical point of view, Sheskin
[16] summarized several rules for the reliability of linear regression results. One
of these rules is a minimum of ten observations for each candidate predictor. The
simulation study results seem to point out that GVS is more demanding in terms of
minimum sample sizes requirements than the classical linear regression techniques.
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Dependence of Multivariate Extremes

C. Viseu, L. Pereira, A.P. Martins, and H. Ferreira

Abstract
We give necessary and sufficient conditions for two sub-vectors of a random
vector with a multivariate extreme value (MEV) distribution, corresponding to
the limit distribution of the maximum of a multidimensional stationary sequence
with extremal index, to be independent or totally dependent. Those conditions
involve first relations between the multivariate extremal indices of the sequences
and secondly a coefficient that measures the strength of dependence between both
sub-vectors. The main results are illustrated with an auto-regressive sequence and
a 3-dependent sequence.

1 Introduction

Multivariate extreme value (MEV) analysis is frequently applied in the context of
modeling environmental data, for which the phenomenon of dependence is often
intrinsic. This chapter focuses on the characterization of total dependence and of
independence of two MEV distributions.

Let X D fX.d/
n D .Xn;1; : : : ; Xn;d /gn�1 be a d -dimensional stationary sequence

with common distribution function (d.f.) Q.x.d// D Q.x1; : : : ; xd /; x.d/ 2 R
d ;

and Mn D .Mn;1; : : : ;Mn;d / the vector of pointwise maxima, where Mn;i is the
maximum of i th component of X. Denote bMn D .cMn;1; : : : ;cMn;d / the corre-
sponding vector of pointwise maxima of the associated d -dimensional sequence,
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bX D fbX.d/
n gn�1, of independent and identically distributed (i.i.d.) random vectors

having the same distribution functionQ:
In this multivariate setting operations among vectors are defined componentwise,

that is, for each d > 1 and a.d/;b.d/ 2 R
d , a.d/ � b.d/, if and only if aj � bj , for

all j D 1; 2; : : : ; d .
If there exist sequences f.an;1 > 0; : : : ; an;d > 0/gn�1 and f.bn;1; : : : ; bn;d /gn�1;

such that for u.x.d// D fun.x.d// D .an;1x1 C bn;1; : : : ; an;dxd C bn;d /gn�1;

P
�
bMn � un.x.d//


D P

0

@
d\

jD1

n
cMn;j � an;j xjCbn;j

o
1

A����!
n!1 G.x.d//; x.d/2R

d ;

where G is a d.f. with nondegenerate margins, then Q is said to be in the max-
domain of attraction of G (Q 2 D.G/) and G is said to be a MEV distribution
function.

We will assume, without loss of generality, that the univariate marginal distribu-
tions of G are equal to F .

It is well known that the relationship between the d.f. G.x.d//, x.d/ 2 R
d ; and its

marginal distributionsF.xj /; j D 1; : : : ; d; can be characterized by its copula func-
tion which is a d.f. DG W Œ0; 1�d ! Œ0; 1� that satisfies DG.F.x1/; : : : ; F .xd // D
G.x.d//; x.d/ 2 R

d : The copula function exhibits a number of interesting properties,
namely, its stability equation:

Dt
G.y1; : : : ; yd / D DG.y

t
1; : : : ; y

t
d /; 8t > 0 and .y1; : : : ; yd / 2 Œ0; 1�d : (1)

If the stationary sequence X satisfies some mixing conditions, D.un.x.d/// of
Hsing [4] or �.un.x.d/// of Nandagopalan [7], and

P
�
Mn � un.x.d//

� ����!
n!1 H.x.d//; x.d/ 2 R

d ;

where H is a d.f. with nondegenerate components, then H is also a MEV d.f.. The
MEV d.f.H andG can be related through the multivariate extremal index function,
.�.d// D  .�1; : : : ; �d / introduced by Nandagopalan [7], which is a measure of
clustering among the extreme values of a multivariate stationary sequence.

Definition 1. A d -dimensional stationary sequence X is said to have multivariate
extremal index X.�.d// 2 Œ0; 1� ; if for each �.d/ D .�1; : : : ; �d / 2 R

dC there exists

u.�
.d//

n D .u.�1/n;1 ; : : : ; u
.�d /

n;d /; n � 1; satisfying

nP.X1;j > u
.�j /

n;j / ����!
n!1 �j ; j D 1; 2; : : : ; d; P

�
bMn � u.�

.d//
n


����!
n!1 �.�.d// and

P
�

Mn � u.�
.d//

n


����!
n!1 �X.�.d//.�.d//:
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If d D 1 we say that X has extremal index ; 0 �  � 1; when 8� 2 RC; 9u.�/n ;
n � 1; satisfying nP.X1 > u.�/n / ����!

n!1 � and P.Mn � u.�/n / ����!
n!1 exp.��/ [5].

Similarly to one dimension, the multivariate extremal index is a key parameter
that enables one to relate the properties of extreme values of a stationary sequence
to those of independent random vectors from the same d -dimensional marginal
distribution. However, unlike the one dimensional case, it is not a constant for the
whole process, but instead depends on the vector �.d/.

It is now clear that the existence of X.�.d// allows us to write

H.x.d// D GX.�.d//.x.d// with �j � �j .xj / D � logF.xj /; j D 1; 2; : : : ; d:

Taking d D pCq, it follows, as a consequence of the definition of the multivari-
ate extremal index, that the sequences X.p/ D fX.p/

n D .Xn;1; : : : ; Xn;p/gn�1 and

X.q/ D fX.q/
n D .Xn;pC1; : : : ; Xn;pCq/gn�1 have, respectively, extremal indexes

X.p/ .�.p// D lim
�j!0C

jDpC1;:::;pCq

X.�.pCq// and X.q/ .�.q// D lim
�j!0C

jD1;:::;p

X.�.pCq//:

The marginal sequence fXnign�1 has extremal index i D lim
�j!0C

j¤i

X.�.pCq//; 8i D

1; : : : ; p C q:

In the notation of the extremal index we shall omit the sequence, whenever it is
clear by the context and the argument of the function.

Hereinafter, let Y D .Y1; : : : ; YpCq/ and bY D .bY 1; : : : ;bY pCq/ be, respectively,

two random vectors with distribution functions GX.�.pCq// and G, where Y.p/ D
.Y1; : : : ; Yp/ and Y.q/ D .YpC1; : : : ; YpCq/ denote two sub-vectors of Y andbY.p/ D
.bY 1; : : : ;bY p/ and bY.q/ D .bY pC1; : : : ;bY pCq/ two sub-vectors of bY.

In Sect. 2 we discuss conditions under which Y.p/ and Y.q/ are independent
or totally dependent. These conditions are established first by relations between
the extremal indices X.�.pCq//, X.p/ .�.p//, and X.q/ .�.q// and secondly by a
coefficient that measures the strength of dependence between Y.p/ and Y.q/.

The main results are illustrated in Sect. 3 with an auto-regressive sequence and a
3-dependent sequence.

2 Main Results

If the d.f. Q belongs to the domain of attraction of a MEV distribution, G, and X
has extremal index .�.pCq//; �.pCq/ D .�1; : : : ; �pCq/ 2 R

pCq
C ; then we have

G.�.p//.x.p//G.�.q//.x.q//�G.�.pCq//.x.pCq//� minfG.�.p//.x.p//; G.�.q//.x.q//g;
(2)

for each x.pCq/ 2 R
pCq and �j D � logF.xj /; j D 1; : : : ; p C q:
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The inequality on the right of Eq. (2) holds true for every multivariate distribu-
tion, while the inequality on the left is a property of MEV distributions. The lower
and upper bounds are achieved, respectively, when Y.p/ and Y.q/ are independent or
totally dependent.

From Eq. (2) we obtain the following bounds for the multivariate extremal index
function .�.pCq//;�.pCq/ 2 R

pCq
C .

maxf.�.p//�.�.p//; .�.q//�.�.q//g
�.�.pCq//

� .�.pCq// � .�.p//�.�.p//C .�.q//�.�.q//

�.�.pCq//
;

(3)

where

�.�.pCq//D�logG.F�1.e��1 /; : : : ; F�1.e��pCq //D lim
n!1nP

�
X.pCq/
1 6� u.�

.pCq//
n



�.�.p// D lim
�j !0C

jDpC1;:::;pCq

�.�.pCq// and �.�.q// D lim
�j !0C

jD1;:::;p

�.�.pCq//:

The next result follows immediately from these bounds.

Proposition 1. Suppose that Q 2 D.G/ and X has extremal index .�.pCq//;
�.pCq/ 2 R

pCq
C :

(i) If bY.p/ and bY.q/ are independent, then Y.p/ and Y.q/ are independent if and
only if

.�.pCq// D .�.p//�.�.p//C .�.q//�.�.q//

�.�.p//C �.�.q//
; �.pCq/ 2 R

pCq
C :

(ii) If bY.p/ andbY.q/ are totally dependent, then Y.p/ and Y.q/ are totally dependent
if and only if

.�.pCq// D maxf.�.p//�.�.p//; .�.q//�.�.q//g
maxf�.�.p//; �.�.q//g ; �.pCq/ 2 R

pCq
C :

The necessary and sufficient conditions for Y.p/ and Y.q/ to be independent or
totally dependent given in the previous result demand the evaluation of the extremal
index function .�.pCq// in each point �.pCq/ 2 R

pCq
C : Nevertheless, this task can

be simplified with the characterizations, given in Ferreira [3], for independence
and total dependence of the multivariate marginals of a MEV distribution. These
characterizations are essential to prove the following propositions which guarantee
that the independence or total dependence between Y.p/ and Y.q/ only depends on
the value of the extremal index in some points.
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Proposition 2. Suppose that Q 2 D.G/ and the sequence X D fX.pCq/
n gn�1 has

extremal index .�.pCq//; �.pCq/ 2 R
pCq
C :

The sub-vectors Y.p/ and Y.q/ are independent if and only if

.1.pCq// D .1.p//�.1.p//C .1.q//�.1.q//
�.1.pCq//

; (4)

where 1.k/ D .1; : : : ; 1/; k > 1, denotes the k-dimensional unitary vector.

Proof. Suppose that Y.p/ and Y.q/ are independent. Since Eq. (3) holds for all
�.pCq/ 2 R

pCq
C , we have in particular for �.pCq/ D .�; : : : ; �/ 2 R

pCq
C , with

� � �.x/ D � logF.x/; x 2 R;

.�.pCq// D .�.p//�.�.p//C .�.q//�.�.q//

�.�.pCq//
:

Now from the fact that .c�.k// D .�.k// for each �.k/ 2 R
kC; k > 1 and c > 0,

we can write

.�.pCq// D .1.pCq//; .�.p// D .1.p//; .�.q// D .1.q//;

and from Eq. (1), for all �.pCq/ D .�; : : : ; �/ 2 R
pCq
C ,

�.�.pCq// D � logG.F�1.e�� /; : : : ; F�1.e�� // D � logDG.e
�� ; : : : ; e�� /

D � logD�
G.e
�1; : : : ; e�1/ D ��.1.pCq//; (5)

�.�.p// D ��.1.p// and �.�.q// D ��.1.q//: Equality (4) is now straightforward.
On the other hand if Eq. (4) is verified, then for x.pCq/ D .x; : : : ; x/ we have

GY.x.pCq// D G.1.pCq//.x.pCq// D D
.1.pCq//
G .e�� ; : : : ; e�� /

D D
.1.pCq//�
G .e�1; : : : ; e�1/ D exp.���.1.pCq//.1.pCq///

D exp.��..1.p//�.1.p//C .1.q//�.1.q//// D GY.p/ .x
.p//GY.q/ .x

.q//

and from Proposition 2.1 [3] we conclude that Y.p/ and Y.q/ are independent. ut

Proposition 3. Suppose that Q 2 D.G/, X D fX.pCq/
n gn�1 has extremal index

.�.pCq//; �.pCq/ 2 R
pCq
C :

(i) If Y.p/ and Y.q/ are totally dependent then there exists �.pCq/ 2 R
pCq
C with

�j � �j .xj / D � logF.xj /; xj 2 R; j D 1; : : : ; p C q, such that

�.�.p//.�.p// D �.�.q//.�.q// D 1�1 : : : D pCq�pCq D d > 0

and .�.pCq// D
h
�
�

�.pCq/

d

i�1
.
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(ii) If there exists �.pCq/ 2 R
pCq
C with �j � �j .xj / D � logF.xj /; xj 2 R; j D

1; : : : ; p C q, such that

�.�.pCq//.�.pCq// D 1�1 : : : D pCq�pCq D d > 0;

then Y.p/ and Y.q/ are totally dependent.

Proof. (i) From Proposition 2.1 [3], if Y.p/ and Y.q/ are totally dependent, then there
exists �.pCq/ 2 R

pCq
C such that

.�.p//�.�.p// D .�.q//�.�.q// D .�.pCq//�.�.pCq// D d

D 1�1 D : : : D pCq�pCq;

with d 2�0; 1Œ: Hence

.�.pCq// D d

�.�.pCq//
D d

� logDG.exp.��1/; : : : ; exp.��pCq//

D 1

� logDG

�
exp

�� �1
d

�
; : : : ; exp

�� �pCq

d

�� D 1

�
�

�.pCq/

d

 :

ut

Another way to look at issues concerning independence or total dependence is to
use parameters that measure the strength of dependence between Y.p/ and Y.q/. We
therefore define, in the following result, the dependence structure of Y.p/ and Y.q/

through the coefficient 
.Y
.p/;Y.q// of Ferreira [3]. This coefficient emerged from the

extremal coefficient of Y, 
Y, defined in Martins and Ferreira [6] as

G.1.pCq//.x.pCq// D F 
Y
.x/; x 2 R;

and the relationship

P
�
Y.p/ � x.p/;Y.q/ � x.q/

� D
�
G
.p/
Y .x.p//G.q/

Y .x.q//
 
Y


Y
.p/

C
Y
.q/
:

It is then defined as 
.Y
.p/;Y.q// D 
Y


Y.p/C
Y.q/
and has the following properties.

Proposition 4. (i) 
.Y
.p/;Y.q// D .1.pCq//�.1.pCq//

.1.p//�.1.p//C.1.q//�.1.q// .
(ii) 
.Y

.p/;Y.q// D 1 if and only if Y.p/ and Y.q/ are independent.

(iii) If Y.p/ and Y.q/ are totally dependent, then 
.Y
.p/;Y.q// D maxf
Y.p/ ;
Y.q/ g


Y.p/C
Y.q/
:
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Proof. (i) Since


.Y
.p/;Y.q// D .1.pCq// logG.x.pCq//

.1.p// logG.x.p//C .1.q// logG.x.q///
;

the result follows from Eq. (5).
(ii) It is an immediate consequence of (i) and Proposition 2.

(iii) If Y.p/ and Y.q/ are totally dependent, then from Eq. (2), we have


.Y
.p/;Y.q// D � log minfG.1.p//.x.p//; G.1.q//.x.q//g

.1.p// logG.x.p//C .1.q// logG.x.q//
Dmaxf
Y.p/ ; 
Y.q/g


Y.p/ C 
Y.q/
: ut

3 Examples

Example 1. Let fYngn�1 be a sequence of i.i.d. random variables with common d.f.
PF and consider an auto-regressive sequence of maxima fXngn�1 defined by

Xn D maxfYn; YnC1g; n � 1;

with marginal distribution function PF 2:

Let fu.�i /n gn�1; i D 1; : : : ; p; and fv
.� 0

j /

n gn�1; j Dp C 1; : : : ; p C q; be
sequences of real numbers such that limn!1 n.1 � PF 2.u.�i /n // D �i and

limn!1 n PF 2.�v
.� 0

j /

n // D � 0j :
The sequences fXngn�1 and f�Xngn�1 have, respectively, extremal indexes

1 D 1=2 and 2 D 1:

For sequences X.pCq/
n D

�
Xn;i D Xn ; i D 1; : : : p

Xn;i D �Xn ; i D p C 1; : : : ; p C q
, X.p/

n D
.Xn; : : : ; Xn/ and X.q/

n D .�Xn; : : : ;�Xn/, we have

lim
n!1P.M

.p/
n � u.�

.p//
n / D exp

�
�1
2

max
1�j�p�j

�
;

lim
n!1P.

bM.p/
n � u.�

.p//
n / D exp

�
� max
1�j�p�j

�
;

lim
n!1P

�
M.q/
n � .v

.� 0

pC1/

n ; : : : ; v
.� 0

pCq/

n /

�
D exp

�
� max
pC1�j�pCq�

0
j

�
:

Since the order statistics maximum and minimum are asymptotically independent
[2, 8] we obtain

P.Mn � .u.�1/n ; : : : ; u
.�p/
n ; v

.� 0

pC1/

n ; : : : ; v
.� 0

pCq/

n // ����!
n!1

exp
�

� 1
2

max
1�j�p

�j � max
pC1�j�pCq

� 0

j
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and consequently �.�.pCq// D �.�.p//C �.�.q// D max
1�j�p�j C max

pC1�j�pCq�
0
j and

.�.pCq//�.�.pCq// D 1
2

max
1�j�p�j C max

pC1�j�pCq�
0
j : Therefore

.�.pCq// D .�.p//�.�.p//C .�.q//�.�.q//

�.�.p//C �.�.q//
:

Example 2. Let U D fUngn�1 be a sequence of i.i.d. random variables with
common d.f. H in the domain of attraction of the extreme value distribution F ,
and independent of the i.i.d. chain J D fJngn�1 such that P.J1 D 0/ D P.J1 D
1/ D 1=2.

Let us consider a stationary 1-dependent sequence Z D fZngn�1; defined as
Zn D Un if Jn D 0 and Zn D UnC1 otherwise, and let v D fvngn�1 be a sequence
of normalized levels to Z, and consequently also to U.

We can now define a 3-dependent stationary sequence X D fXn D
.Xn;1; Xn;2; Xn;3/g as

.Xn;1; Xn;2; Xn;3/ D .Zn;ZnC2; ZnC1/; n � 1;

with common distribution function

T .x1; x2; x3/ D 1

2

3Y

iD1
H.xi /C 1

4
H.x1/H.min fx2; x3g/C 1

4
H.x2/H.min fx1; x3g/

belonging to the domain of attraction of

G.x1; x2; x3/ D

8
ˆ̂
<̂

ˆ̂
:̂

F.x1/F.x2/F
1
2 .x3/ ; x1 < x3 ^ x2 < x3

F.x1/F
3
4 .x2/F

3
4 .x3/ ; x1 < x3 ^ x3 � x2

F
3
4 .x1/F.x2/F

3
4 .x3/ ; x3 � x1 ^ x2 < x3

F
3
4 .x1/F

3
4 .x2/F.x3/ ; x3 � x1 ^ x3 � x2

Now applying Proposition 2.1 of Smith and Weissman [9] to the sequence U X D
fmaxfXn;1; Xn;2; Xn;3g D maxfZn;ZnC1; ZnC2ggn�1 which verifies the condition
D.k/.vn/; k D 2, of Chernick et al. [1], we easily obtain

X.1; 1; 1/ D lim
n!1

P .max fZ1;Z2;Z3g > vn � max fZ2;Z3;Z4g/
P .max fZ1;Z2;Z3g > vn/

D 3

10
:

For random vectorsbY D
�
bY 1;bY 2;bY 3


and Y D .Y1; Y2; Y3/ with d.f. GbY � G and

GY � G.�.3//, Y.2/ D .Y1; Y2/ and Y.1/ D Y3 we obtain 
bY D 5
2
, 
Y D 3

4
, 
bY

.2/

D 2,


bY
.1/

D 1, 
Y.1/ D 3
4

D 
Y.2/ . Consequently 
.Y
.2/;Y.1// D 1

2
; 


�
bY.2/;bY.1/



D 5
6

and
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from Proposition 4 we conclude that neither Y.1/ and Y.2/ nor bY.1/ and bY.2/ are
independent.
Nevertheless, there exists �.3/ D .1; 1; 1/ such that �.�.3//.�.3// D 1�1 D 2�2 D
3�3 D 3

4
and from Proposition 3 we can say that Y.1/ and Y.2/ are totally dependent.
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