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Preface

Animal populations are always challenging to sample especially if the animals are
rare or if they occur in clusters that are widely dispersed, such as schools of fish.
Ordinary sampling methods tend to fail because animals generally get missed. In
1988 and the early 1990s, Steven Thompson published several important papers
that introduced a new way of sampling called adaptive cluster sampling. This
method used the information coming in during the sampling to change the way
further sampling was to be carried out. Since those early papers there has an
upsurge of research on the topic covering a wide range of underlying populations
in addition to animal populations. In this monograph we consider not only this
work but also other ‘‘adaptive methods’’ such as sequential and inverse sampling
and methods of allocating further sample observations that come under the
umbrella of so-called ‘‘adaptive allocation’’. Our main focus is on the sampling
design and design-based estimation and not model-base estimation where the
underlying observations are assume to follow some statistical distribution as in a
‘‘super-population’’ approach.

Since the subject is fairly extensive and can be complex at times, one aim in
writing this monograph is to get across the basic ideas and the supporting math-
ematics for those unfamiliar with the subject matter. Our second aim is to give a
review of the literature for those wishing to carry out research on the topic.

The reader is assumed to have some basic ideas about sampling from a finite
population such as simple random sampling and stratification. Chapter 1 deals
briefly with some popular types of sampling designs and the role of adaptive
methods. An important technique called adaptive cluster sampling is introduced in
Chap. 2 and various methods of estimation along with confidence intervals are
given. Chapter 3 summarizes some of the foundational theory behind adaptive
sampling including the Rao–Blackwell theorem for improving the efficiency of
estimation. The role of primary and secondary units, including stratified and
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two-stage adaptive sampling, is considered in Chap. 4. The last two Chaps. 5 and 6
focus on a range of adaptive allocation methods including inverse sampling and
two-stage procedures.

Auckland, New Zealand, October 2012 George A. F. Seber
Doha, Qatar, October 2012 Mohammad M. Salehi
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Chapter 1
Basic Ideas

Abstract In this chapter we consider the problem of estimating such quantities as
the number of objects, the total biomass, or total ground cover in a finite population
from a sample. Various traditional methods of sampling such as sampling with or
without replacement, inverse sampling, and unequal probability sampling are often
inadequate when the population is rare but clustered. We briefly introduce the idea of
adaptive sampling that includes a variety of so-called adaptive methods. For example,
adaptive cluster sampling allows us to sample the rest of a cluster when one is
located. We can also have adaptive allocation in stratified sampling where the initial
observations in the strata determine the allocation of future observations.

Keywords Adaptive sampling ·Adaptive cluster sampling ·Adaptive cluster double
sampling · Unequal probability sampling · Adaptive allocation · Stratified sampling

1.1 The Estimation Problem

In its simplest form, the main problem we are interested in is estimating the total
number, mean number, or density of certain objects (e.g., animals ) in a population of
area A. A general method is to divide up the population into N plots or units and then
sample some of the units. The units can have a variety of shapes including squares
and circles. If yi (i = 1, 2, . . . , N ) is the number of objects in the i th unit, then we
are interested in estimating the total τ = ∑N

i=1 yi , the mean per unit μ = τ/N ,
the density D = τ/A, or some other function of the population y-values. Here yi

can be continuous (e.g., biomass, pollution level) or discrete (e.g., number of plants
or animals), and this includes an indicator variable which takes the value of 1 if a
certain characteristic is present in the unit or 0 if it is absent.

G. A. F. Seber and M. M. Salehi, Adaptive Sampling Designs, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-3-642-33657-7_1, © The Author(s) 2013
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1.1.1 Examples

The types of additional problems that one can meet are seen in the following exam-
ples.

Example 1. Suppose yi is the total area of plot i covered by a certain species of plant
so that D now becomes the proportion of the population covered by the plant. If
we are interested in k species of plants and yi j is the measurement for the j th
species, then yi now becomes a k-dimensional vector yi = (yi1, yi2 . . . , yik)

′.
This can lead to comparing the abundances of various species.

Example 2. Sometimes a population area has certain well defined regions or strata
that may affect the distribution of the objects. For example, heavy ground cover
that can act as camouflage, or difficult terrain, may affect the distribution of a
small animal. In this case the strata generally need to be considered separately by
having plots in each stratum and then the results can be combined in some way.

Example 3. A powerful technique that can be used for designing experiments and
determining how many plots should be sampled is the method of two-stage sam-
pling. Here the population is divided up into larger plots called primary units and
then each primary unit is divided into smaller plots or secondary units. The sam-
pling method is to first choose a sample of primary units (stage 1) and then in each
of those chosen units choose a sample of secondary units (stage 2). The number
of primary units selected largely helps us to determine how accurate we want
our final estimate to be. Also the units in a primary unit need not be contiguous
(together).

Example 4. Different shapes can be used for plots. For example, strip transects are
frequently used as the sampling unit in wildlife studies (e.g., aerial and ship sur-
veys of animals and marine mammals). Each strip can be regarded as a “primary”
unit that is then divided into smaller plots to simplify the counting. Other shapes
can be used.

Example 5. Suppose we have a population of animals, but not all animals are seen
on a unit. In this case we can introduce the notion of the probability of detection,
and the theory can be modified accordingly to allow for incomplete detectability.

1.2 Sampling Designs

We now consider some of the more common methods of choosing a sample of n1 units
from the population of N units. These are referred to as sampling designs and do not
require any assumptions about the population, for example whether it is randomly
dispersed or not. In the latter case of random dispersion, the yi observations can
be modeled by a statistical distribution. This approach will be discussed briefly in
Sect. 1.5 below.
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1.2.1 Traditional Designs

The most common design is choosing a unit at random without replacement after
each selection, usually referred to as simple random sampling. A second method
used in some situations is sampling with replacement, where a particular unit can
be chosen more than once. A third design uses a form of systematic sampling with
a random start. A fourth design uses unequal probability sampling, as in sampling a
tree with probability proportional to its basal area. A fifth design is inverse sampling
where units are sampled without replacement until the sum of the y-values reaches
or exceeds a prescribed value. A sixth design called sequential sampling typically
involves choosing a first sample, then, on the basis of the information obtained, a
second sample is drawn as well. A number of variations of this method are avail-
able. We now provide some theory for simple random sampling, unequal probability
sampling, and stratified sampling for later use.

1.2.2 Simple Random Sampling

Suppose y is the mean of the y values obtained from simple random sample of n
units. Then, from standard theory (e.g., Cochran 1977; Thompson 2002) E[y] = μ

and

var[y] = 1

n
· 1

N − 1

N∑

i=1

(yi − μ)2
(

1 − n

N

)
, (1.1)

with unbiased estimate

v̂ar[y] = 1

n
· 1

n − 1

n1∑

i=1

(yi − y)2
(

1 − n

N

)
. (1.2)

Note that we have followed a standard misuse of notation where we have treated the
sample of values as y1, y2, . . . , yn instead of yi1 , yi2 , . . . , yin .

1.2.3 Unequal Probability Sampling

Suppose that the N population units are labeled i = 1, 2, . . . , N , and we have a
sample of fixed size n selected without replacement using any sampling design for
which the selection probability of unit i is pi in the first draw (i = 1, 2, . . . , N ).
Let sR = {i1, i2, . . . , in} denote the unordered sequence of distinct labels in the
sample (we use sR instead of s because of a later extension in Chap. 5), and let
dR denote the observed unordered set of distinct pairs (i, yi ) in the sample so that

http://dx.doi.org/10.1007/978-3-642-33657-7_5
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dR = {(i, yi ) : i ∈ sR}. Murthy (1957) obtained the following estimator of μ,
namely

μ̂M = 1

N

n∑

i=1

yi
P(sR | i)

P(sR)
, (1.3)

where P(sR | i) denotes the conditional probability of getting sample sR , given the
i th unit was selected first. From Murthy (1957),

var[μ̂M ] = 1

N 2

N∑

i=1

N∑

j<i

⎛

⎝1 −
∑

sR�i, j

P(sR | i)P(sR | j)

P(sR)

⎞

⎠
(

yi

pi
− y j

p j

)2

pi p j ,

(1.4)
with unbiased estimator

v̂ar[μ̂M ] = 1

N 2

n∑

i=1

n∑

j<i

(
P(sR | i, j)

P(sR)
− P(sR | i)P(sR | j)

[P(sR)]2

)(
yi

pi
− y j

p j

)2

pi p j ,

(1.5)

where P(sR | i, j) denotes the probability of getting the sample sR given that the
units i and j were selected (in either order) in the first two draws. Using the theory
of Chap. 3 we shall show in Sect. 5.2 that Murthy’s estimator can be applied to quite
general sampling designs.

Under the umbrella of unequal probability sampling there are two other estimators
that can be used in certain situations, namely the Horvitz-Thompson and Hansen-
Hurwitz estimators. Modifications of these estimators are considered in the next
chapter for adaptive cluster sampling.

1.2.4 Stratified Sampling

Suppose the population area is divided into H strata with Nh units in stratum h
(h = 1, 2, . . . , H ) and N = ∑H

h=1 Nh , the total number of population units. Let yih

be the y-value for unit i in stratum h, and let μh be the mean of the y-values for
stratum h. We assume that any sampling is carried out independently in each stratum.
If μ̂h is an unbiased estimate of μh based on the sample in stratum h, and v̂ar[μ̂h] is
an unbiased estimate of var[μ̂h], then we have the following unbiased estimate of μ

for the whole population and an unbiased estimate of its variance, namely

μ̂ =
H∑

h=1

Nh

N
μ̂h and v̂ar[μ̂] =

H∑

h=1

N 2
h

N 2 v̂ar[μ̂h]. (1.6)

http://dx.doi.org/10.1007/978-3-642-33657-7_3
http://dx.doi.org/10.1007/978-3-642-33657-7_5
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If μ̂h = yh is the sample mean of a simple random sample of nh observations in
stratum h, then from (1.1),

var[μ̂] = 1

N 2

H∑

h=1

Nh(Nh − nh)
σ 2

h

nh
, (1.7)

where1

σ 2
h = 1

Nh − 1

Nh∑

i=1

(yhi − μh)2

is the population variance of the y-values for stratum h. An unbiased estimate of
var[μ̂] is given by replacing each σ 2

h by its unbiased estimate

s2
h = 1

nh − 1

nh∑

i=1

(yhi − yh)2.

If we are able to take n = ∑H
h=1 nh observations altogether, an important question

is how do we allocate the nh to minimise var[μ̂]. The answer is given by the so-called
Neyman allocation nh ∝ Nhσh , or

nh = n
Nhσh

∑H
r=1 Nrσr

. (1.8)

The above theory for stratified sampling can be found in any standard sampling book
(e.g., Cochran 1977; Thompson et al. 1992).

1.2.5 Some Problems

Problems can arise with the above methods for some populations, especially if the
individuals are rare or elusive. General methods for handling such problem popula-
tions are discussed by various authors in Thompson (2004). In particular, if a pop-
ulation is sparse but clustered, for example a fish population forming large widely
scattered schools with few fish in between, then using simple random sampling may
lead to a lot of empty plots with schools largely missed. With inverse sampling an
unreasonably large number of units might need to be sampled. To get round this prob-
lem of missed clusters, one approach is to use a method called adaptive sampling,
the main topic of this book.

1 We use the traditional divisor Nh − 1 instead of Nh as it simplifies expressions.
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1.3 Adaptive Sampling

One aspect of adaptive sampling can be described very simply as follows. We go
fishing in a lake using a boat and, assuming complete ignorance about the population,
we select a location at random and fish. If we don’t catch anything we select another
location at random and try again. If we do catch something, we fish in a specific
neighborhood of that location and keep expanding the neighborhood until we catch
no more fish. We then move on to a second selected location. This process continues
until we have, for example, fished at a fixed number of initial locations or until our
total catch has exceeded a certain number of fish. In brief, adaptive sampling refers to
adapting the sampling pattern to what turns up at each stage of the sampling process.
Such a method can be applied to each of the five examples in Sect. 1.1.1. Another
method of locating more individuals is to simply increase the size of a sample plot
by a fixed factor when a certain criterion is satisfied by the sample plot (Yang et al.
2011).

1.3.1 Adaptive Cluster Sampling

The most popular of the adaptive methods is adaptive cluster sampling developed by
Thompson (1988, 1990, 2002). A review of the topic from 1990 to 2003 is given by
Turk and Borkowski (2005). We now describe this design mathematically using the
notation of Thompson and Seber (1996). It consists of (1) defining a neighborhood
where further sampling might be carried out, (2) defining a condition for choosing
when to sample the neighborhood, and (3) choosing a method for selecting the initial
locations.

A neighborhood of a unit can be defined in a number of ways and have a variety
of patterns. For example, a simple neighborhood of a unit i could consist of adjacent
units (e.g., plots) with a common boundary which, together with unit i , form a “cross.”
Although the units in a neighborhood do not have to be next to each other, they must
have a “symmetry” property, so that if unit j is in the neighborhood of unit i, then
unit i is in the neighborhood of unit j .

The next step is specify a condition C such as yi > c that determines when we
sample the neighborhood of the i th plot; typically c = 0 if yi is a count. If C for
the i th unit is satisfied, we sample all the units in its neighborhood and if the rule
is satisfied for any of those units we sample their neighborhoods as well, and so on,
thus leading to a cluster of units. This cluster has the property that all the units on its
“boundary” (called “edge units”) do not satisfy C . Because of a dual role played by
the edge units, the underlying theory is based on the concept of a network for unit
i , which is the cluster minus its edge units. We denote it by Ai . It should be noted
that if the initial unit selected is any one of the units in the cluster except an edge
unit, then all the units in the cluster end up being sampled. Thus some of the Ai are
duplicated. The choice of c for the condition C is critical. If it is too low it can lead
to a “feast” of plots, while if it is too high it can lead to a “famine.”
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If the unit selected is an edge unit, C is not satisfied and there is no augmentation
so that we have a cluster of one unit. The same is true for any other selected unit that
doesn’t satisfy C . This means that all clusters of size one are also networks of size
one. Thus any cluster consisting of more than one unit can be split into a network
and further networks of size 1 (one for each edge unit). In contrast to having clusters
that may overlap on their edge units, the distinct networks are disjoint and form a
partition of the N units.

If a unit is chosen at random, the probability of selecting the cluster it belongs to
will depend on the size of the cluster. For this reason adaptive cluster sampling can
be described as unequal probability cluster sampling—a form of biased sampling.

The final step is to decide on n1 the size of the initial sample. Each time we select
an initial unit we add to it adaptively so that the final number of units selected, n
say, will be a random variable. The usual methods for selecting an initial sample are
sampling either with or without replacement, and these two designs are considered
in the next chapter. We shall see later, however, that all of the sampling designs
mentioned in Sect. 1.2 have been used in various situations.

1.3.2 Adaptive Cluster Double Sampling

Félix-Medina and Thompson (2004) proposed an extension of the above method
that they called adaptive cluster double sampling. It requires the availability of
an inexpensive and easy-to-measure auxiliary variable (e.g., a so-called “rapid-
assessment”variable) that is used to select a first-phase adaptive cluster sample. The
network structure of this first-phase sample is used to select the subsequent subsam-
ples, which are selected using conventional designs. For example, we can choose a
first-phase random sample of networks from those initially selected (or use all those
networks) and then take a conventional second-phase subsample from each of the
selected networks. One variation is to omit the second phase altogether. We only
record the y-values of the units in the final-phase subsample. This scheme has the
following advantages: (1) the number of y-measurements can controlled, (2) the final
sample is near places of interest, (3) the second-phase sampling can be started before
the first-phase sampling is completed, and (4) the auxiliary variable can be used to
construct a regression-type estimator. Muttlak and Khan (2002) consider a similar
scheme in which large clusters are sampled, but small clusters are fully included.

1.3.3 Stratified Sampling

Sometimes we have prior information about how a population is dispersed so that we
can divide up the population area into distinct areas or strata. We can then carry out
adaptive cluster sampling in each stratum and either truncate the adaptive process
at each stratum boundary or allow the clusters to overlap boundaries. These two
scenarios are discussed in Sect. 4.5.

http://dx.doi.org/10.1007/978-3-642-33657-7_4
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1.3.4 Adaptive Allocation

In stratified sampling, one of the difficulties is to determine the optimal way of
allocating observations to each stratum since we find from Eq. (1.8) that this involves
knowing the stratum population variances. These can be estimated using past survey
information or else using a pilot survey so that the sampling is effectively done
in two phases. Variance estimates from the initial stages (phase 1) can be used to
allocate further samples in a sequential fashion (phase 2). For example, we can
choose a stratum at each stage of phase 2 to give the greatest reduction in the overall
estimated variance. The phase-2 allocation is, in this sense, adaptive. A simple two-
phase design would be to take a simple random selection of units in each stratum
for the first phase and then return to those strata with, say, the largest y-values and
sample more units.

The main problem with the above methods is that they require two “passes”
over the population area. Here the first pass provides the phase-1 sample, and this
determines the phase-2 sampling effort in the second pass. An alternative method
is to use one pass in a sequential fashion. The strata are sampled one at a time in a
particular order with the level of sampling in a particular stratum depending on what
happens in the preceding stratum. Some theory for adaptive allocation methods is
given in Chap. 6.

1.4 Related Methods

We observe that inverse and sequential sampling can be regarded as adaptive methods
of sampling, but with the sample size rather than the method of selecting the units
being adaptive. We note that the network (multiplicity) sampling introduced by Sirken
(1970) and others (see Kalton and Anderson 1986, for references) is different from
adaptive sampling, though they both use the idea of a network. Snowball sampling,
a form of adaptive sampling, has also been suggested as a potential method in the
detection and study of rare or hidden human populations (Kalton and Anderson
1986). For further comments the reader is referred to Sect. 2.5.

1.5 Model-Based Methods

Our focus in this monograph is on design-based estimation where any distribution
theory used is based solely on the randomness of the sampling method, that is on
the sampling design used. Sometimes it is not possible to use an appropriate form
of random sampling in selecting sample units. There are two alternative ways of
dealing with this problem. If one is simply interested in numbers of objects so that yi

is the number of objects in unit i , then one can make assumptions about the spatial
distribution of the objects. The simplest assumption is that the objects are randomly

http://dx.doi.org/10.1007/978-3-642-33657-7_6
http://dx.doi.org/10.1007/978-3-642-33657-7_2
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distributed so that we find that the joint distribution of the yi is multinomial and
the sum of the sampled y-values is binomial. If the individuals tend to be clustered,
one can use a distribution like the negative binomial distribution (Seber 2002, pp.
450–451). If the yi are measurements, then a model-based approach assumes that
y = (y1, y2, . . . , yN )′ is the observed value of a random vector with a specified
distribution such as, for example, the multivariate normal or lognormal distribution.
This underlying stochastic model is sometimes refereed to as a “super population”
and the theoretical foundations of this approach are set out in Thompson and Seber
(1996, Chap. 3). In comparing the design- and model-based approaches Rapley and
Welsh (2008) make the following comment:

At a pragmatic level, in very simple, general terms, the design-based approach trades off
efficiency for wide applicability while the model-based approach which is usually more
efficient when the assumed model holds, trades off wide applicability for increased efficiency.

In the case of adaptive sampling, Rapley and Welsh combine both the design- and
model-based methods using a Bayesian approach. For an example using Poisson
modeling see Thompson et al. (1992) and Thompson and Seber (1996, pp. 196–199).

1.6 Optimal Designs

It is well-known that, with a design-based approach, there is no sampling strategy
that is uniformly optimal over all possible (unknown) y-values (Godambe 1955;
Godambe and Joshi 1965). However, under a population stochastic model, an optimal
design strategy often does exist and in general it is an adaptive one (Thompson and
Seber 1996, pp. 236–237). An adaptive sample is essentially a multi-phase design
where the “phase” of a survey is defined as a point at which a selection of units may
be made based on what has already been observed. This occurs every time an initial
sample unit is chosen. The simplest such scheme is a two-phase design where one
chooses an initial sample of n1 units (non-adaptively) and the result of this is used to
determine a further sample of n2 units, a method we have called adaptive allocation
in Chap. 6. Thompson and Seber (1996, pp. 237–240) showed that under a stochastic
population model, an optimal two-phase procedure does at least as good as using
an optimal conventional design with sample size n1 + n2 in terms of mean-square
error. This theory is applied to the case where yi is an observation from a known
multivariate lognormal distribution by Chao and Thompson (2001). Chao (2003)
also provides a strategy for the two-phase model.
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Chapter 2
Adaptive Cluster Sampling

Abstract One of the main methods of adaptive sampling is adaptive cluster sam-
pling. As it involves unequal probability of sampling, standard Horvitz-Thompson
and Hansen-Hurwitz estimators can be modified to provide unbiased estimates of
finite population parameters along with unbiased variance estimators. These esti-
mators are compared with each other and with conventional estimators. Confidence
intervals are discussed, including bootstrap and empirical likelihood methods, and a
biased estimator that we call Hájek’s estimator is described because of its link with
this topic. The chapter closes with some theory about selecting networks without
replacement.

Keywords Indicator variables · Horvitz-Thompson estimator · Hansen-Hurwitz
estimator · Bootstrap · Hájek’s estimator · Empirical likelihood confidence interval ·
Networks selected without replacement

2.1 Unbiased Estimation

2.1.1 Notation

In addition to estimating the population mean μ = ∑N
1=1 yi/N of the population

y-values, we shall also be interested in estimating the population variance defined as
σ 2 = ∑N

i=1(yi − μ)2/(N − 1). We consider taking a simple random sample of size
n1 and adding adaptively to give a final sample of size n, which will be a random
variable. As adaptive cluster sampling (ACS) is essentially about sampling clusters,
we shall consider two methods, sampling clusters with or without replacement. As
the size of a cluster determines its probability of selection, we find, not surprisingly,
that the standard Horvitz-Thompson (Horvitz and Thompson 1952) and Hansen-
Hurwitz (Hansen and Hurwitz 1943) estimators for unequal probability sampling
can be modified to provide unbiased estimators. We now consider these below. But
first we introduce some theory of indicator functions.

G. A. F. Seber and M. M. Salehi, Adaptive Sampling Designs, SpringerBriefs in Statistics, 11
DOI: 10.1007/978-3-642-33657-7_2, © The Author(s) 2013
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2.1.2 Indicator Variables

Let I j ( j = 1, 2, . . . , r ) be an indicator variable that takes the value 1 with probability
π j and 0 with probability 1 − π j . Then I j Ik is also an indicator variable taking the
value of 1 with probability πjk , where

πjk = P([J j = 1] ∩ [Jk = 1])
= P(I j = 1) + P(Ik = 1) − P([I j = 1] ∪ [Ik = 1])
= P(I j = 1) + P(Ik = 1) − (1 − P([Ii �= 1] ∩ [I j �= 1]). (2.1)

As we shall see below, we are often interested in finding the mean and variance
of an expression like

Z =
r∑

j=1

z j I j , (2.2)

where the z j are constants. To do this we first note that I j is a binomial random
variable based on a single binomial trial so that E[I j ] = π j and var[I j ] = π j (1−π j ).
Also

cov[I j , Ik] = E[I j Ik] − E[I j ] E[Ik] = πjk − π jπk . (2.3)

Hence

E[Z ] =
r∑

j=1

z j E[I j ] =
r∑

j=1

z jπ j , (2.4)

and

var[Z ] =
r∑

j=1

r∑

k=1

z j zkcov[I j , Ik]

=
r∑

j=1

z2
j var[I j ] +

r∑

j=1

∑

k �= j

z j zkcov[I j , Ik]

=
r∑

j=1

z2
i π j (1 − π j ) +

r∑

j=1

∑

k �= j

z j zk(πjk − π jπk)

=
r∑

j=1

r∑

k=1

z j zk(πjk − π jπk), (2.5)

with the convention that π j j = π j . Since I2
j = I j , an unbiased estimate of var[Z ] is

given by
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v̂ar[Z ] =
r∑

j=1

z2
j (1 − π j )I j +

r∑

j=1

∑

k �= j

(πjk − π jπk)

πjk
I j Ik

=
r∑

j=1

r∑

k=1

z j zk I j Ik

(
πjk − π jπk

πjk

)

. (2.6)

2.1.3 Modified Horvitz-Thompson (HT) Estimator

We begin by taking an initial random sample of units without replacement. Since
clusters can overlap on their edge units, we avoid this problem by using networks.
We recall from Sect. 1.3.1 that Ai is the network of units (the cluster minus its edge
units) associated with unit i , and it has mi units, say. Since every item in a network
will lead to the same network being selected, we effectively have some networks
selected with replacement. In order to use the Horvitz-Thompson estimator we need
to know the probability of selection of each unit in the final sample. Unfortunately
these probabilities are only known for units in networks selected by the initial sample,
and not for the edge units attached to these networks, as an edge unit may belong
to another unselected cluster. Therefore, in what follows, we ignore all edge units
that are not in the initial sample and use only network information when it comes to
computing the final estimators.

Suppose there are K distinct networks in the population forming a partition of
the population, and let xk (k = 1, 2, . . . , K ) be the number of units in the kth
network. Note that all the mi will be the same and equal to xk for every unit i in
the kth network. If αk is the probability of selecting the kth network, then it is the
probability of selecting any unit in that network so that αi = αk for every unit i in
network k. Thompson (1990) proposed the following estimator, which is of the form
of Z in the previous section, namely

μ̂HT = 1

N

K∑

i=1

y∗
k Jk

αk

= 1

N

κ∑

k=1

y∗
k

αk
, (2.7)

where y∗
k is the sum of the y-values for the kth network, κ is the number of distinct

networks in the sample, and Jk is an indicator variable taking the value of 1 (with
probability αk) if the initial sample intersects the kth network, and 0 otherwise. If pk

is the probability that the kth network is not selected, then

αk = 1 − pk = 1 −
[(

N − xk

n1

)/(
N

n1

)]

. (2.8)

http://dx.doi.org/10.1007/978-3-642-33657-7_1
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Hence

E[μ̂HT ] = 1

N

K∑

k=1

y∗
k = 1

N

N∑

i=1

yi = μ,

showing that μ̂HT is an unbiased estimate. To find its variance, we require the prob-
abilities pjk that the j th and kth networks are not intersected and αjk the probability
that both are intersected. Then

pjk = P([J j �= 1] ∩ [Jk �= 1])
=

(
N − x j − xk

n1

)/(
N

n1

)

,

and, from (2.1),

αjk = α j + αk − (1 − pjk)

= 1 −
[(

N − x j

n1

)

+
(

N − xk

n1

)

−
(

N − x j − xk

n1

)] /(
N

n1

)

. (2.9)

We now substitute π for α, z j for y∗
j /α j in the previous section and obtain

var[μ̂HT ] = 1

N 2

⎡

⎣
K∑

j=1

K∑

k=1

y∗
j y∗

k

(
αjk − α jαk

α jαk

)
⎤

⎦ , (2.10)

with an unbiased estimate

v̂ar[μ̂HT ] = 1

N 2

⎡

⎣
K∑

j=1

K∑

k=1

y∗
j y∗

k

(
αjk − α jαk

αjkα jαk

)

J j Jk

⎤

⎦

= 1

N 2

⎡

⎣
κ∑

j=1

κ∑

k=1

y∗
j y∗

k

αjk

(
αjk

α jαk
− 1

)
⎤

⎦ , (2.11)

where α j j is interpreted as α j .
The estimator μ̂HT can be expressed in the form (Thompson and Seber 1996,

pp. 95–97)

μ̂HT = 1

N

N∑

i=1

yi
J ′

i

E[J ′
i ]

, (2.12)

where J ′
i = 1 if the initial sample intersects Ai and 0 otherwise. This shows that the

estimator is also unbiased if sampling is with replacement. We then still have (2.10)
and (2.11) but with
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αk = 1 −
(

1 − xk

N

)n1
,

and

αjk = 1 −
{(

1 − x j

N

)n1 +
(

1 − xk

N

)n1 −
(

1 − x j + xk

N

)n1
}

.

We observe that all the above selection probabilities of the networks depend on
n1. This means that we can’t use a pilot survey to try and determine the size of
n1 to achieve a certain accuracy. We come back to this problem when we consider
two-stage sampling in Chap. 4.

2.1.4 Modified Hansen-Hurwitz (HT) Estimator

Another estimator proposed by Thompson (1990) is a generalization of the Hansen-
Hurwitz (HH) estimator, namely

μ̂HH = 1

N

N∑

i=1

yi
fi

E[ fi ] , (2.13)

where fi is the number of units in the initial sample that fall in (intersect) the network
Ai . This estimate is clearly unbiased. Once again ignoring the edge units of clusters
in the estimation process, fi is the number of times that the i th unit in the final
sample occurs in the estimator. We note that fi = 0 if no units in the initial sample
intersect Ai . The above equation refers to a weighted sum of all the y-values in the
final sample including repeats, where the weight 1/E[ fi ] is the same for every unit
in Ai . Since the fi units are selected from the mi units in Ai , fi has a hypergeometric
distribution with parameters (N , mi , n1) so that E[ fi ] = n1mi/N . Combining these
two ideas,

μ̂HH = 1

n1

N∑

i=1

yi fi

mi

= 1

n1

n1∑

i=1

1

mi

∑

j∈Ai

y j

= 1

n1

n1∑

i=1

wi

= w, say, (2.14)

where wi is the mean of the mi observations in Ai (Thompson 1990). It follows from
Eqs. (1.1) and (1.2) that

http://dx.doi.org/10.1007/978-3-642-33657-7_4
http://dx.doi.org/10.1007/978-3-642-33657-7_1
http://dx.doi.org/10.1007/978-3-642-33657-7_1
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var[μ̂HH ] = N − n1

Nn1(N − 1)

N∑

i=1

(wi − μ)2, (2.15)

with unbiased estimate

v̂ar[μ̂HH ] = N − n1

Nn1(n1 − 1)

n1∑

i=1

(wi − μ̂HH)2. (2.16)

We now give another form for μ̂HH . Since wi (= vk , say) is the same for each
unit in the kth network, we have

μ̂HH = 1

n1

κ∑

k=1

bkvk,

where bk is the number of times the kth network appears in μ̂HH , and κ is the number
of distinct networks intercepted by the initial sample. Since bk = 0 for those networks
not intersected and has a hypergeometric distribution with parameters (N , xk, n1)
otherwise, E[bk] = n1xk/N and

μ̂HH = 1

n1

K∑

k=1

bkvk

= 1

n1

K∑

k=1

bk y∗
k

xk

= 1

N

K∑

k=1

y∗
k

bk

E[bk] , (2.17)

where y∗
k is the sum of the y-values in the kth network. We see then that μ̂HH can

be expressed in terms of units or networks. Examples showing the calculation of the
HT and HH estimators (defined as μ̂ and μ̃ respectively) are given by Thompson and
Seber (1996, pp. 113–117).1

From (2.13) we see that μ̂HH is still unbiased when sampling is with replacement.
As fi ∼ Bin(n1, mi/n), we still have Ex[ fi ] = n1mi/N . This means that (2.14) is
still the same and μ̂HH is still a sample mean, but for sampling with replacement.
We can define a random variable W that takes the value wi with probability 1/N , so
that

σ 2
W = var[W ] =

N∑

i=1

(wi − μ)2 P(W = wi ) = 1

N

N∑

i=1

(wi − μ)2.

1 See also http://www.cee.vt.edu/ewr/environmental/teach/smprimer/adaptive/adaptv.html.

http://www.cee.vt.edu/ewr/environmental/teach/smprimer/adaptive/adaptv.html
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Hence

var[μ̂HH ] = var[w] = σ 2
W

n1

with unbiased estimator

v̂ar[μ̂HH ] = 1

n1(n1 − 1)

n1∑

i=1

(wi − μ̂HH)2.

Both of the above HT and HH estimators were proposed by Thompson (1990).

2.1.5 Comparison of the HT and HH Estimators

These two estimators have been compared by Salehi (2003) and further comments
about their corresponding confidence intervals are made in the Sect. 2.3 below. Both
variances are unchanged by within-network variation because they involve the sum
of the y-values over networks. However, as noted by Salehi, the within-network
variation does affect the variance of the sample mean from a simple random sample
(SRS) so that the relative efficiency of these adaptive estimators to SRS will increase
as the within-network variance increases. In comparing the efficiencies of the two
estimators, Salehi concludes that the HT estimator is preferred to the HH estima-
tor from both theoretical considerations and from numerical examples provided by
various authors. However the HH estimator and its unbiased variance estimator are
easier to compute.

2.1.6 Efficiency Gains Over Conventional Methods

A number of writers have focused on the efficiency of estimators under ACS designs
and indicate that they may be more efficient than conventional designs. The efficiency
strongly depends on the spatial distribution of the population, and the efficiency gain
is not guaranteed (e.g., Smith et al. 2004; Smith et al. 2003). As might be expected, an
ACS design can significantly increase the likelihood of observing rare elements. The
two factors that interact to determine the efficiency of ACS are the within network
variance relative to the population variance and the final sample fraction relative
to initial sample fraction (Thompson 1990; Smith et al. 1995). Adaptive cluster
sampling, as with conventional cluster sampling, is efficient when the within network
(or within cluster) variance is close to the population variance, which occurs when
the population is clustered. Simultaneously, ACS is efficient when the final sample
size is close to the initial sample size, which occurs when the population is rare.
However, the two aims can be at odds with each other because small differences
between initial and final sample size usually mean small within-network variance.
Brown (2003) concludes that a compromise is needed so that “networks that are
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small enough to ensure the final sample size is not excessively large compared with
the initial sample size but large enough to ensure the within-network variance is a
reasonable fraction of the population variance.”

ACS suffers from two problems: (1) its efficiency depends on the degree of rarity
and clustering, which is unknown prior to sampling, and (2) the final sample size is
unknown, which makes planning difficult. We can end up with too few observations so
that the desired precision is not attained or there are too many observations (e.g., from
a big cluster) that blow the survey budget! One way of getting of round this problem is
to truncate the sampling at some point using a stopping rule, called restricted adaptive
sampling (Brown and Manly 1998; Lo et al. 1997; Chao and Thompson 1999). This
leads to biased estimators, which can be assessed using, for example, bootstrapping
(Hanselman et al. 2003). The latter paper is an interesting study as it endeavors to look
at a number of design problems such as choosing the criterion C . Brown and Manly
(1998) estimated the biases using the bootstrap method and evaluated their method
using simulation. They generated 27 populations with different degrees of patchiness.
Bootstrapping was successful for removing the bias in only eight populations using
the HT estimator and 17 populations using the HH estimator. Salehi and Seber (2002)
presented unbiased estimators and their variance estimators for restricted adaptive
cluster sampling and its without-replacement networks version. They found in their
simulated example that the unbiased estimator had smaller mean-square errors than
biased estimators for small sample sizes. However, the biased estimators had smaller
mean-square errors when the final sample fractions are greater than 0.2.

Muttlak and Khan (2002) suggested an approach for populations in which some
networks are large and others are small. After an initial simple random sample,
subsamples are taken from the large networks, but the small networks are all included.
Another recent method of trying to control the final sample size that has been applied
to forestry is to simply enlarge a selected sample plot by a fixed factor when the
criterion C is achieved on that plot (Yang et al. 2011).

2.1.7 Some Applications

Adaptive cluster sampling can be used for a wide diversity of populations. For exam-
ple, Thompson and Seber (1996) described a number of applications to waterfowl,
trees, contamination, household surveys for estimating rare characteristics (e.g., drug
use, rare diseases), caterpillar infestations, and bark stripping by red deer. Some recent
examples using ACS are: sediment load in rivers (Arabkhedri et al. 2010), larval sea
lampreys (Sullivan et al. 2008), seaweed (Goldberg et al. 2006), herptofauna (Noon
et al. 2006), trees (Roesch 1993; Magnussen et al. 2005; Talvitie et al. 2006; Acharya
et al. 2000), plants (Acworth 1999; Philippi 2005; Ojiambo and Scherm 2010), pest
density (Zhang et al. 2000), marsupials (Smith et al. 2004), hydroacoustic surveys
(Conners and Schwager 2002), fish populations (Hanselman et al. 2003), fish eggs
(Smith et al. 2004), sea urchins (Woodby 1998), fresh water mussels (Smith et al.
2011), thermal hotspots (Hung 2011), and robotics (Low et al. 2007).
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2.1.8 Incomplete Detectability

Imperfect detectability is an issue when sampling rare species using adaptive clus-
ter sampling. Detectability can influence the selection of adaptively sampled units
because the condition to add more sampling units is typically based on a count of
detected species. Thompson and Seber (1994) (see also Thompson and Seber 1996,
Chap. 9) provided a solution to this problem by using estimated detection proba-
bilities to correct estimates of population parameters. Smith et al. (2011) studied
the effect of imperfect detectability on adaptive cluster sampling using a simulation
study of freshwater mussels in the upper Mississippi River. The causes of imperfect
detection in freshwater mussel surveys are varied. Some species are more cryptic
(appear identical but are genetically quite distinct) or tend to be more endobenthic
(living within the sediment on the seafloor) and are thus harder to detect than other
more easily seen or epibenthic species (those living on the surface of the seafloor).
Sampling was simulated using the computer program, SAMPLE, which can be down-
loaded with documentation.2 As expected it was found that, under perfect detection,
estimates from conventional and adaptive designs were unbiased and adaptive sam-
pling resulted in a higher probability of sampling occupied habitat than conventional
sampling.

Imperfect detection caused biased estimates for both designs and degraded the
relative performance of adaptive designs. Modified inclusion probabilities in adaptive
cluster sampling are affected by imperfect detection. Nevertheless, bias in estimates
was similar for conventional and adaptive designs. Adaptive sampling did result in
encounter rates that exceeded those seen under conventional sampling. This finding
arose because adaptive designs allocate sampling effort in the vicinity of clusters of
individuals, such as mussel beds. However, this enhanced performance was degraded
as detectability declined. Relative to conventional designs, adaptive sampling designs
outperformed conventional designs on efficiency criterion only at the lowest density
(0.2 mussels m−2; rare species) when detection was imperfect.

2.2 Hájek’s Estimator

We now introduce another estimator of the population mean μ that is mentioned
below with regard to empirical likelihood confidence intervals. It uses the HT esti-
mator but with an estimator of the population size N (whether it is known or not),
and is given as follows:

μ̂HJ = 1

N̂

K∑

i=1

y∗
k Jk

αk
= 1

N̂

κ∑

k=1

y∗
k

αk
, (2.18)

2 See http://www.lsc.usgs.gov/AEB/davids/acs/ for single stage, two stage, or stratified sampling.

http://dx.doi.org/10.1007/978-3-642-33657-7_9
http://www.lsc.usgs.gov/AEB/davids/acs/
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where

N̂ =
κ∑

k=1

xk

αk

is the HT estimator of N (i.e., we set yk = 1) and xk is the number of units in the kth
network. Setting zk = y∗

k − xkμ and using Taylor linearization (sometimes refereed
to as the delta-method), an approximate variance of μ̂HJ is given by

var[μ̂HJ ] ≈ 1

N 2

K∑

r=1

K∑

s=1

(αrs − αrαs)
zr

αr

zs

αs
≡ VHJ . (2.19)

An approximate estimator of VHJ is

V̂HJ = 1

N 2

κ∑

r=1

κ∑

s=1

(
αrs − αrαs

αrs

)
ẑr

αr

ẑs

αs
, (2.20)

where ẑk = y∗
k − xkμ̂HJ . The estimator μ̂HJ is often attributed to Hájek (1971).

For some self-weighting designs such as simple random sampling, μ̂HJ and μ̂HT

are the same. The two estimators, however, are different for designs with unequal
weights 1/αk , and the unbiasedness of μ̂HJ holds only approximately. In general, the
Hájek estimator is less efficient than the HT estimator for a fixed sample size with αk

approximately proportional to the associated y-value. However, μ̂HJ may be more
efficient when the sample size is random (Särndal et al. 1992, p. 183).

2.3 Confidence Intervals

Di Consiglio and Scanu (2001) studied the asymptotic behaviors of μ̂HT and μ̂HH

and proved that, under some complicated theoretical conditions, both estimators are
asymptotically normally distributed. Using simulation they demonstrated that μ̂HT

can be approximately normal when the population is composed of a large number
of segregated small clusters. On the other hand, μ̂HH has the advantage of having
the form of a sample mean (albeit for dependent observations) and requires less
conditions for approximate normality, particularly when the cluster means are not
widely different. When these estimators are based on small samples they often have
highly skewed distributions. In such situations, confidence intervals based on tradi-
tional normal approximations can lead to unsatisfactory results, with poor coverage
properties.

Félix-Medina (2003) showed that if the number of units in the initial sample as
well as the number of units and networks in the population tend to infinity, but that
the network sizes are bounded, then the HT and HH estimators are asymptotically
normally distributed. He showed this for two cases: selecting the initial sample by



2.3 Confidence Intervals 21

simple random sampling without replacement and by unequal probability sampling
with replacement.

2.3.1 Bootstrap Confidence Intervals

Christman and Pontius (2000) showed that bootstrap percentile methods are appro-
priate for constructing confidence intervals from the HH estimator. Perez and Pontius
(2006) used the same methods as Christman and Pontius for constructing confidence
intervals from the HH estimator. They showed that their bootstrap confidence inter-
vals from the HT estimator are even worse than the normal approximation confidence
intervals. Mohammadi (2011) proved that their bootstrap methods provide highly
biased bootstrap estimates. He showed that the resampling techniques used by Perez
and Pontius are inconsistent in the sense that they do not produce unbiased resample
estimators and the bootstrap variances do not match the variance estimators. He pro-
posed three bootstrap methods; a PPS Bootstrap With Replacement (BWR), simple
BBW and the Gross’s method (1980), which have those desired properties of unbi-
asedness and matching the variances. He developed bootstrap methods for μ̂HT as
well as μ̂HJ . His simulation study has shown that the bootstrap confidence intervals
based on his proposed methods have better coverage intervals than those available
from bootstrap methods and normal approximation.

2.3.2 Empirical Likelihood Confidence Intervals

Another non-parametric technique for constructing confidence intervals is the empir-
ical likelihood method, using a non-parametric likelihood ratio function. The key idea
behind this method is to restrict consideration to distributions with support on the
observed data, making limited assumptions about the population distributions of the
estimators without specifying a known parametric form. The method was first pro-
posed by Hartley and Rao (1968) in the context of survey sampling and they called it
the scale-load approach. Owen (1988) introduced this method under the name empir-
ical likelihood as a device for constructing confidence intervals from independent
observations.

Salehi et al. (2010) considered two pseudo empirical likelihood functions under
the ACS design. One leads to μ̂HH and the other to μ̂HJ . Based on these two empirical
likelihood functions, they derived confidence intervals for the population mean.
Using a simulation study, they showed that the confidence intervals obtained from
the first empirical likelihood function perform as good as the bootstrap confidence
intervals from μ̂HH , but the confidence intervals obtained from the second empiri-
cal likelihood function perform much better than the bootstrap confidence intervals
from μ̂HT used by Perez and Pontius (2006). A comparison between the empirical
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likelihood confidence intervals for μ̂HJ and the bootstrap confidence intervals intro-
duced by Mohammadi (2011) needs to be done.

2.4 Networks Selected Without Replacement

In the above adaptive cluster sampling (ACS) the number of distinct networks selected
is random, as a network may be selected more than once. If the main sampling
expense is the cost of traveling to the sites of the initial sample units, then we could
control this cost better if we could fix the number of networks selected in advance.
We now consider a sampling design in which, after each initial unit is selected,
the corresponding network (which excludes its edge units) is “removed” from the
population. The next initial unit is selected from what is left and we continue the
process until we have selected n initial units thus giving n distinct networks without
replacement.

Let xk be the number of units in network k (k = 1, 2, . . . n), and define y∗
k =∑xk

j=1 y j , the y-value of the network, and wk = y∗
k /xk , the mean of the y-values

in network k. Then τ = ∑N
i=1 yi = ∑k

k=1 y∗
k and μ = τ/N . We can use Murthy’s

estimator from Eq. (1.3) with the basic sampling unit now being the network (with
yi replaced by y∗

i ). An unbiased estimate of μ is therefore

μ̂M = 1

N

n∑

i=1

y∗
i

P(sR | i)

P(sR)
,

where P(sR | i) denotes the conditional probability of getting sample sR , given
the i th network was selected first, sR is the unordered sample of n networks, and
P(sR | i) is the probability of choosing sample sR given network i has been chosen
as the first network. Now if pi is the probability of getting network i in the first draw,
we have pi = xi/N . Substituting in Eqs. (1.4) and (1.5) we get

var[μ̂M ] = 1

N 2

K∑

i=1

K∑

j<i

xi x j

⎛

⎝1 −
∑

sR�i, j

P(sR | i)P(sR | j)

P(sR)

⎞

⎠ (wi − w j )
2,

with unbiased estimator

v̂ar[μ̂M ] = 1

N 2

n∑

i=1

n∑

j<i

xi x j

(
P(sR | i, j)

P(sR)
− P(sR | i)P(sR | j)

[P(sR)]2

)

(wi − w j )
2,

where P(sR | i, j) denotes the probability of getting the sample sR given that the
networks i and j were selected (in either order) in the first two draws. As the compu-
tation of P(sR) requires the consideration of n! permutations, it is clear that in using

http://dx.doi.org/10.1007/978-3-642-33657-7_1
http://dx.doi.org/10.1007/978-3-642-33657-7_1
http://dx.doi.org/10.1007/978-3-642-33657-7_1
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μ̂M substantial computations are required when n is large. For further details see
Salehi and Seber (1997). Estimators for the case of sampling without replacement
of clusters rather than networks are given Dryver and Thompson (2006).

2.5 Further Extensions

We shall mention several extensions to the above theory. The first relates to the
situation where the initial sample is no longer a simple random sample but is selected
using unequal probability sampling, usually under the name of PPS sampling or
probability proportional to size sampling. An important application of this is in
forestry where trees are initially sampled with replacement and with probability
proportional to the basal area of a tree. Adaptive sampling in forestry was proposed
by Roesch (1993) who used circular neighborhoods. We can use the HT and HH
estimators with different values for the network selection probabilities αk and αrs

and for the expected frequencies E[ fi ]. Details are given in Thompson and Seber
(1996, pp. 100–108). For a general reference on tree sampling see Mandallaz (2008).
Smith et al. (1995) also used a PPS method where the probability was proportional to
the available habitat. The method can also be used in the selection of unequal sized
primary units as for example in strip sampling (Pontius 1997).

A second application involves the use of order statistics. Here the observations
from the initial sample of size n1 taken without replacement are ordered according
to their magnitude, namely y(1) < y(2), . . . , < y(n1). We then decide to sample the
neighborhoods of the units with the (ni − r) largest values, namely with y-values
y(r+1), y(r+2), . . . , y(n1). Our criterion C for further adaptive sampling is yi ≥ y(r+1)

which, in contrast to the above theory, now depends on the data. This sampling
design, introduced by Thompson (1996), with simple examples, (see also Thompson
and Seber 1996, pp. 164–175) is particularly useful for investigating pollution. Since
the probability that the initial sample intersects the kth network depends on the other
units in the sample, the HT estimator is no longer appropriate. However, the HH
estimate is still unbiased and can be improved using the Rao-Blackwell theorem. Su
and Quinn II (2003) used order statistics but with a stopping rule that led to biased
estimators. The HT estimator was preferred as it was less sensitive to the stopping
level.

One area of development relates to the problem of dealing with hidden human
populations such as the Internet and other networked structures. These can be concep-
tualized mathematically as graphs and are hard to sample by conventional methods.
The most effective sampling method is an adaptive one following links from one
node to another, rather like a random walk. For some research related to this topic
see Thompson (2006a,b). A related topic is link-tracing designs such as snowball
sampling, random walk methods, and network sampling. These can be combined
with adaptive sampling to sample hidden and hard-to-access human populations such
as drug users, homeless persons, or undocumented worker populations (Thompson
and Collins 2002). Model-based methods are particularly useful for such designs
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(Thompson and Frank 2000; Félix-Medina and Thompson 2004). Bayesian models
are discussed by Chow and Thompson (2003) and St. Clair and O’Connell (2011).

A natural extension of the above theory is the replacement of each observation
yi by a vector of observations yi . The above theory along with the Rao-Blackwell
theorem can be readily applied to each of the j th elements of the y vectors indepen-
dently. However, there are two main differences from the univariate case. First is the
estimation of the covariances of the mean estimators and second is that the choice of
the criterion C is not straightforward (Thompson 1993; Thompson and Seber 1996,
Chap. 8; Dryver 2003). The effectiveness of the adaptive method depends on the rela-
tionships among the variables in the vectors and the formulation of the criterion C .
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Chapter 3
Rao-Blackwell Modifications

Abstract This chapter summarizes some foundational theory for adaptive sam-
pling methods. The Rao-Blackwell theorem can be applied to unbiased estimators
to provide more efficient estimators. Closed form expressions for these and related
estimators are discussed. The theory is also applied to selecting networks without
replacement, and the question of ignoring information from labels is considered.

Keywords Sufficient statistic ·Complete statistic ·Rao-Blackwell theorem ·Adap-
tive cluster sampling ·Networks selected without replacement ·Adaptive allocation ·
Order statistics

3.1 Notation

The theory underlying adaptive sampling from finite populations is more difficult
than that associated with infinite populations. We therefore don’t propose to consider
it in depth as it is developed in detail in Thompson and Seber (1996, Chap. 2). Instead
we shall summarize the basic results. To do this we need further notation.

We define θ = (y1, y2, . . . , yN )′, the unknown population parameter of interest,
where θ ∈ �. All other parameters are functions of θ . We then define an ordered
sample of size n as the sequence s0 = (i1, i2, . . . , in) of the labels, some of which
may be the same, as in for example sampling with replacement. The data d0 then
consists of the ordered pairs

d0 = ((i1, yi1), (i2, yi2), . . . , (in, yin )) = ((i, yi ) : i ∈ s0).

The notation may be shortened to d0 = (s0, y0), where y0 is the set of ordered sample
y-values; that is, y0 = (yi : i ∈ s0). We shall also be interested in s consisting of
the reduced set of ν (= ν(s)) distinct labels in s0, but uniquely ordered from the
smallest to the largest label. We define ys to be the ordered set of corresponding
y-values (in the same order as s). Then, given s0, we only need ys to provide all the
information about d0. To do this we simply match the y-values with the labels in s0 to

G. A. F. Seber and M. M. Salehi, Adaptive Sampling Designs, SpringerBriefs in Statistics, 27
DOI: 10.1007/978-3-642-33657-7_3, © The Author(s) 2013
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get y0. We could therefore redefine d0 as d = (s0, ys), which in some cases is more
convenient. The order of s0 is usually provided by the order in which the sample
is taken, while the reduced sample s is arbitrarily arranged in ascending label order
for uniqueness. We will also need the unordered reduced set sR = {i1, i2, . . . , iν}
of the ν distinct labels in the sample, and we define dR = {(i, yi ) : i ∈ sR}. We
can express dR in the form (sR, yR), where yR denotes the unordered set of y-values
{yi1 , yi2 , . . . , yiν } (that may not be distinct) corresponding to the labels in sR . In
this chapter, random variables will sometimes be denoted by capital letters to avoid
confusion so that, for example, D0 takes the value d0.

3.2 Sufficiency and Completeness

For reference we give some definitions.1 The statistic W = h(D0) is sufficient for θ

if Pθ (D0 = d0 | W = w) is independent of θ for all θ such that Pθ (W = w) > 0.
(Here P denotes “probability.”) A statistic W1 is said to be minimal sufficient if for
every sufficient statistic W there exists a function f such that W1 = f (W ). If f
is a one-to-one function, then W is also minimal sufficient. Finally, W is said to be
complete for θ if for any function h(W ), E[h(W )] = 0 for all θ ∈ � implies that
h(W ) = 0 with probability 1 for all θ ∈ �.

We now have the following results from Thompson and Seber (1996).

Theorem 1 Consider an adaptive or conventional design in which the selection
probability of the sample does not depend on any of the y-values outside the sample.
(The probability may depend on y-values within the sample and may depend on the
order of selection.) Then DR is a minimal sufficient statistic for θ .

Theorem 2 (Rao-Blackwell Theorem) Let T = T (D0) be any (not necessarily
unbiased) estimator of a parameter φ = φ(θ), and let W be sufficient for θ . Define

TW = E[T | W ] = η(W ).

Then

1. TW is an estimator.
2. E[TW ] = E[T ].
3. If MSE is the Mean-Squared Error, then MSE[TW ] ≤ MSE[T ] with strict

inequality for all θ ∈ � such that Pθ (T �= TW ) > 0.
4. If T is unbiased, then mean-squared errors become variances and

var[TW ] = var[T ] − EW {E(T − TW )2 | W }
= var[T ] − EW {var[T | W ]}.

1 These concepts are more difficult for a finite population.
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The new estimator TW is unbiased and has smaller variance provided T is not a
function of the minimal sufficient statistic.

Theorem 3 It follows from Theorems 1 and 2 with W = DR that

TW = TR = E[T | DR]

is an unbiased estimator with variance at least as small as the variance of T .
For the adaptive designs that follow, the Rao-Blackwell method can be used

repeatedly to find practical unbiased estimators. We can start with a simple though
perhaps inefficient estimator and then take its conditional expectation given a suffi-
cient statistic to get a better estimator. This raises the question of whether there exists
an unbiased estimator of a parameter such as μ that has the smallest variance of all
unbiased estimators for all μ, namely the uniformly minimum variance unbiased
estimator (UMVUE). This will happen if W is a complete. Unfortunately we have
the following result.

Theorem 4 DR is not complete.
In practice this means that we may be able to derive more than one unbiased

estimator that is a function of the minimal sufficient statistic, but one is not uniformly
better than any other.

3.3 Rao-Blackwell Applications

We now demonstrate how the above theory can be applied to adaptive cluster sampling
(ACS) using a sufficient statistic. We have three unbiased candidates, μ̂HT, μ̂HH, and
we can add the obvious inefficient estimator y1 = ∑n1

i=1 yi that only uses the initial
selection of units and not any units added adaptively. Since all three estimators depend
on the order of selection, as they depend on which n1 of all the units selected are
in the initial sample, they are not functions of DR . Furthermore the HT and HH
estimators do not use all the data information, namely the edge units of the clusters
selected. We can therefore apply the Rao-Blackwell theorem to all three estimators.

3.3.1 Adaptive Cluster Sampling

Let T be any one of three estimators, namely the HT and HH estimators and the
initial sample mean, with an unbiased estimate of its variance v̂ar[T ]. Then TR B =
E[T | DR] will be unbiased with smaller variance given by

var[TR B] = var[T ] − E{var[T | DR]}. (3.1)
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Let ν denote the number of distinct units in the final adaptive sample, and define
G = (

ν
n1

)
, the number of possible combinations or “groups” of n1 distinct units from

the ν in the sample. Suppose these combinations are indexed in an arbitrary way
by the label g (g = 1, 2, . . . , G). Let tg be the value of T when the initial sample
consists of combination g, and let v̂arg[T ] denote the value of the unbiased estimator
v̂ar[T ] when computed using the gth combination. We define the indicator variable
Ig to be 1 if the gth combination could give rise to dR (i.e., is compatible with dR),
and 0 otherwise. The number of compatible combinations is then

ξ =
G∑

g=1

Ig

and, conditional on dR , each of these is equally likely. Hence given dR , T = tg with
probability 1/ξ for all compatible g so that

TR B = E[T | DR] = 1

ξ

ξ∑

g=1

tg = 1

ξ

G∑

g=1

tg Ig. (3.2)

Since var[T ] is also a function θ and v̂ar[T ] is an unbiased estimator, we can apply
the Rao-Blackwell theorem once again to obtain another unbiased estimator with
smaller variance, namely

v̂arR B[T ] = E{v̂ar[T ] | DR}

= 1

ξ

ξ∑

g=1

v̂arg[T ]. (3.3)

Also

var[T | DR] = E[(T − TR B)2 | DR]

= 1

ξ

ξ∑

g=1

(tg − TR B)2 (3.4)

is an unbiased estimator of its expected value. Combining (3.3) and (3.4) and using
(3.1), we get

v̂ar[TR B] = 1

ξ

ξ∑

g=1

{v̂arg[T ] − (tg − TR B)2}

= 1

ξ

G∑

g=1

{v̂arg[T ] − (tg − TR B)2}Ig. (3.5)
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Before applying the above theory to our three estimators we note that μ̂H H was
based on the frequencies fi of the number of times that the i th unit appears in the
estimator, so we introduce another statistic D f that consists of DR together with
these frequencies, namely D f = {(i, yi , fi ) : i ∈ sR}. One further statistic is of
interest, namely DJ = {(i, yi , Ji ) : i ∈ sR}, where Ji is an indicator variable that
takes the value 1 when the initial sample intersects the network that contains unit i ,
and 0 otherwise. From Thompson and Seber (1996, p. 110) and Saheli (2003, p. 118)
we have the following results that establish some relationships between the three
statistics.

Theorem 5

1. As D f and DJ are functions of DR the minimal sufficient statistic (by dropping
the fi and the Ji , respectively), they are sufficient for θ .

2. E[y1 | D f ] = μ̂H H .
3. E[y1 | DR] = E[μ̂H H | DR] (= μ̂H H,R B).
4. E[μ̂H T | DJ ] = μ̂H T .

The above results (1) and (2) tell us that when we apply the Rao-Blackwell theorem
to both y1 and μ̂H H we end up with the same estimator μ̂H H,R B that will have
smaller variance than μ̂H H . However, from (4), when we condition on the statistic
DJ we have no improvement when we apply the Rao-Blackwell theorem to μ̂H T .
On the other hand, Saheli (2003, p. 120) showed that there is an improvement when
we apply the theorem to μ̂H H conditioning on DJ to get μ̃H H , say. This indicates
that, in some sense, the HT estimator is preferred to the HH estimator. The former
has already used all the information in DJ while the latter has not.

We now summarize how we find μ̂H T,R B and its unbiased variance estimate. In
what follows, the subscript g indicates that computations are carried out using the
gth data combination. If ξ is the number of values of g compatible with dR , we have
from Eq. (3.2),

μ̂H T,R B = 1

ξ

ξ∑

g=1

μ̂H T,g

and, from (3.5),

v̂ar[μ̂H T,R B] = 1

ξ

ξ∑

g=1

{v̂arg[μ̂H T ] − (μ̂H T,g − μ̂H T,R B)2}.

To obtain similar results for the HH estimator we simply replace HT by HH
in the above expressions to get μ̂H H,R B and its variance estimator. Substantial
computations are required to obtain ξ and to compute expressions for each of the
g combinations compatible with DR . More helpful formulae are needed. For exam-
ple, Salehi (1999) introduced closed forms for both μ̂H H,R B and μ̂H T,R B along
with unbiased estimators of their variances using the “inclusion–exclusion” formula
which can be more readily computed. He illustrated his computations, notation, and
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conclusions via a small population example and an analysis of a set of data from Smith
et al. (1995). For the latter, he deliberately selected an initial sample demanding the
most computation. In both examples, μ̂H H,R B was more efficient than μ̂H T,R B .
Even though these results suggested otherwise, Thompson and Seber (1996, p. 111)
mentioned that neither μ̂H H,R B nor μ̂H T,R B is uniformly better than the other (see
also Turk and Borkowski 2005).

Felix-Medina (2000) derived closed-form expressions of Rao-Blackwell modified
HT estimators for ACS with an initial simple random sample and for ACS with an
initial unequal probability sample with replacement. Expressions for the variances
of these estimators, as well as closed-forms for unbiased Rao-Blackwell estimators
of those variances, were also derived. Derivations were based on the multivariate
hypergeometric distribution for ACS. These closed-forms allow users of ACS to take
advantage of computer software that compute probabilities from the hypergeometric
distribution.

Low et al. (2005) implemented the ACS design for multi-robot wide area prospect-
ing. Robots could exploit the clustering nature of the environmental phenomena (i.e.,
hotspots) and therefore perform better than simple random sampling and systematic
sampling in such environments. Quantitative experimental results in the simulation
of the mineral prospecting task showed that the ACS design was the most efficient
in exploration by yielding more minerals and information with fewer resources.
Low et al. used Salehi’s closed form formulas for μ̂H H,R B and μ̂H T,R B to evaluate
the Rao-Blackwellized estimators. Their results showed that these estimators also
provided more efficient mineral density estimates than the estimators using other
sampling methods. In their study, μ̂H T,R B was more efficient than μ̂H H,R B .

Low et al. (2005) commented that since (3.2) and (3.5) are based on compatible
sample sets, the ξ compatible samples have to be identified from the G combina-
tions and their corresponding ξ estimators have to be evaluated. Here ξ and G can
be potentially large, which would render the Rao-Blackwellized method computa-
tionally difficult. However, closed-form expressions exist for the Rao-Blackwellized
estimators. These expressions are computationally efficient if relatively few networks
of size larger than 1 are intersected by the initial sample. This assumption is valid if
the prospecting region contains only a few hotspots. It is therefore sensible to look at
an intermediate solution. Dryver and Thompson (2005) derived two easy-to-compute
estimators of higher efficiency than their corresponding original estimators μ̂H T and
μ̂H T by taking the expected value of the usual estimators conditional on a sufficient
statistic that is not minimally sufficient. They incorporated only those edge units that
were in the initial sample.

Deriving Rao-Blackwell versions of the HT and HH estimators of a ratio (see
Salehi 2001) or of the ratio estimators (see Dryver and Chao 2007) for ACS is much
more complicated. Chao et al. (2011) noted that the approaches used by Salehi (1999)
and Felix-Medina (2000) do not provide simplified analytical forms of their Rao-
Blackwellized versions. They proposed four alternative improved ratio estimators in
which the Rao-Blackwellization technique is utilized in a straightforward manner. By
dropping the population mean of the auxiliary variable from the proposed estimators
one can readily have improved estimators of a ratio.
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3.3.2 Selecting Networks Without Replacement

Adaptive cluster sampling with networks selected without replacement was discussed
in Sect. 2.4. We recall the following estimates:

μ̂M = 1

N

n∑

i=1

P(sR | i)

P(sR)
y∗

i , (3.6)

where y∗
i is the sum of the y values in the i th network, and unbiased variance estimate

v̂ar[μ̂M ] = 1

N 2

n∑

i=1

n∑

j<i

xi x j

(
P(sR | i, j)

P(sR)
− P(sR | i)P(sR | j)

P(sR)2

)

(wi − w j )
2,

(3.7)
where wi = y∗

i /xi is the mean of the y values in the i th network. As we don’t use
some information from edge units, we can improve on the above estimates using the
Rao-Blackwell theorem.

Following Salehi and Seber (1997), we have ν distinct networks in the final sample
of which n are initially selected. The difference ν − n consists of the edge units (net-
works of size one) that are part of the clusters but are not part of the initial sample. Let
dR = {(i1, y∗

i1
), . . . , (iν, y∗

iν
)} represent the final unordered sample of the ν distinct

networks with their labels; ν is now random. Applying the above theory to networks
rather than units we have that for any adaptive sampling scheme, DR is a minimal
sufficient statistic for (y∗

1 , y∗
2 , . . . , y∗

K ). Since μ̂M is not a function of dR as it does
not use any of the (ν − n) edge units added adaptively and not selected in the initial
sample, we can use the Rao-Blackwell theorem to improve on our estimate as follows.

Suppose there are h edge units in the final sample, that is in dR , then h − (ν − n)

of these are initially selected as networks of size one not satisfying the condition C
and are successively “removed” from the population, but are later found to be among
the edge units of the initially selected clusters. Let sg be the subset of size n of dR

which, when taken as the initial sample of networks, leads to dR , and let μ̂M,g be
Murthy’s estimator associated with sg . To specify the number of such subsets we
must have all the (ν − h) non-edge units belong to sg: we denote this part of sg by
s(1). To add to s(1) to make up sg we can choose {n − (ν − h)} of the h edge units in
dR which can be done in

Gh =
(

h

n − (ν − h)

)

ways. If s(2)g represents one of these subsets, then sg is made up of s(1) and s(2)g

(g = 1, 2, . . . , Gh). The Rao-Blackwell estimator is given by

μ̂R B = E[μ̂M | DR = dR] = 1

Gh

Gh∑

g=1

μ̂M,g = 1

N Gh

Gh∑

g=1

∑

i∈sg

P(sg | i)

P(sg)
y∗

i .
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Since all the sg contain s(1), and the networks corresponding to edge units contain
just one unit, P(sg | i)/P(sg) has a common a value for all g that we denote by
P(s | i)/P(s), where s is the initial sample of n networks. Since each of the networks
in each s(2)g contains just one unit, P(s | i) is the same for all i so we can denote it
by P(s | i1), say. Then

μ̂R B = 1

N Gh

Gh∑

g=1

∑

i∈s(1)

P(s | i)

P(s)
y∗

i + 1

N Gh

Gh∑

g=1

∑

i∈s(2)g

P(s | i1)

P(s)
y∗

i

= 1

N

∑

i∈s(1)

P(s | i)

P(s)
y∗

i + P(s | i1)

P(s)

1

N Gh

Gh∑

g=1

∑

i∈s(2)g

y∗
i .

For simplicity we let the networks in dR be indexed as i = 1, 2, . . . , ν − h, and
those corresponding to edge units indexed as i = ν −h +1, . . . , ν. Since the number
of times a particular y∗

i appears in the second double summation is Gh−1, we have

μ̂R B =
ν−h∑

i=1

P(s | i)

N P(s)
y∗

i + P(s | i1)

N P(s)

Gh−1

Gh

ν∑

i=ν−h+1

y∗
i

=
ν−h∑

i=1

P(s | i)

N P(s)
y∗

i + P(s | i1)

N P(s)
{n − (ν − h)}ye,

where ye is the mean of the h edge units in dR . We know from (3.1) that

var[μ̂R B] = var[μ̂M ] − E{var[μ̂M | dR]},

and Saheli and Seber (1997, pp. 213–214) proved that an unbiased estimator of the
above variance is

v̂ar[μ̂R B] = 1

Gh

Gh∑

g=1

v̂arg[μ̂M ] −
{

P(s | i1)

N P(s)

}2

{n − (ν − h)}2 s2
e ,

where

s2
e = 1

Gh

Gh∑

i=1

(y∗
g − ye)

2, y
∗
g = 1

n − (ν − h)

∑

i∈ss(2)g

y∗
i ,

and v̂arg[μ̂M ] is Eq. (3.7) applied to sg . They also give a small numerical example
of the method.
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3.4 Ignoring the Labels

In Chap. 6, where we consider adaptive allocation, we don’t focus on adaptive cluster
sampling as it is the allocation that is adaptive. There are sampling situations such as
simple random sampling (SRS) when we don’t need to use the labels. In fact it is the
use of the labels in DR that leads to Theorem 4 and the lack of completeness. Assum-
ing SRS and using the notation of Sect. 3.2, we have ν = n and yR is the unordered
set of (not necessarily distinct) y-values. We define yrank = (y(1), y(2), . . . , y(n)) to
be the set of y’s in yR ranked according to size, namely y(1) ≤ y(2) ≤ · · · , y(n). We
note that the reduced set yR and the order statistics yrank are equivalent in the sense
that the knowledge of one implies knowledge of the other. Let V be a subset of R

and define � to be the Cartesian product

� = V × V × · · · × V = R
N (V ), say.

We then have the following theorem (Thompson and Seber 1996, pp. 47–48).

Theorem 6 The order statistics yrank are complete for θ when θ ∈ � = R
N (V ).

In applying this theorem we assume that sR is unknown or knowledge of sR is
discarded from DR . The labels are only used to carry out a particular sampling design.
We shall use the above theorem in Chap. 6.
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Chapter 4
Primary and Secondary Units

Abstract In adaptive sampling, the sampling units can sometimes be divided into
primary and secondary units. After a sample of primary units is taken, adaptive
cluster sampling can be carried out within each primary unit selected using either
a sample or all of its secondary units. Primary units can be a variety of shapes
such as strip transects or Latin squares. Two procedures are possible depending
on whether adaptive clusters are allowed to cross primary unit boundaries or not.
Stratified sampling is a special case in which all the primary units or strata are
sampled. Two stage-sampling can be used for carrying out a pilot survey to determine
how to design a full-scale survey.

Keywords Primary units · Two-stage adaptive sampling · Stratified adaptive sam-
pling · Design an adaptive survey

4.1 Introduction

In some surveys of natural or human populations it is more convenient to group the
units (referred to here as secondary units) into larger units called primary units, and
then sample these first. For example, if the population is a rectangle, it can be divided
up into equal-width strips as primary units running the full length of the population
area. In its adaptive modification each strip is divided up into smaller secondary units
of the same size. We sample all the secondary units in a chosen primary unit and, if
condition C(yi > c) is satisfied for any secondary unit, we then sample adaptively in
the neighborhood of the unit (say a “cross” of units). This gives us a cluster of units,
as before, which can overlap with other primary units. Unit (i, j), the j th secondary
unit in the i th primary unit, is said to satisfy the condition of interest C if yi j is in a
specified set such as defined by yi j > c (often c = 0).

Strip transects have been widely used, for example, in aerial and ship surveys of
animals and marine mammals. The aircraft (airplane or helicopter) or vessel travels
down a line and the area is surveyed on either side out to a given distance. Also
used are line transects that are divided up into shorter transects (secondary units).

G. A. F. Seber and M. M. Salehi, Adaptive Sampling Designs, SpringerBriefs in Statistics, 37
DOI: 10.1007/978-3-642-33657-7_4, © The Author(s) 2013
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Here the adaptive part of the sampling relates to the intensity of the sampling effort
(Pollard et al. 2002). Thompson (1991a) introduced the idea of primary and secondary
units for adaptive cluster sampling and his theory from Thompson and Seber (1996,
Sect. 4.7) is now given.

4.2 Simple Random Sample of Primary Units

Suppose we have N primary units each consisting of M secondary units. The popu-
lation parameters of interest are

τ =
N∑

i=1

M∑

j=1

yij and μ = τ/MN .

As before, we divide up the population of MN secondary units into K distinct net-
works using clusters without their edge units. We define y∗

k to be the sum of the
y-values in the kth network (k = 1, 2, . . . , K ), and now xk denotes the number of
primary units in the population that intersect the kth network. Suppose that we take
a simple random sample of n1 primary units and then sample all the secondary units
in the primary unit with adaptive additions that cross primary unit boundaries. We
define Jk to take the value of 1 with (intersection) probability αk if the initial sample
of primary units intersects the kth network, and 0 otherwise. The HT estimator is
again given by Eq. (2.7), namely

μ̂HT = 1

MN

K∑

i=1

y∗
k Jk

αk
= 1

MN

κ∑

k=1

y∗
k

αk
, (4.1)

where N is replaced by MN , κ is the number of distinct networks in the sample, and
αk is given by Eq. (2.8). Using the same argument that led to Eq. (2.9),we have

αrs = 1 −
[(

N − xr

n1

)

+
(

N − xs

n1

)

−
(

N − xr − xs + xrs

n1

)] /(
N

n1

)

,

where αrs is the probability that the initial sample of primary units intersects both
networks r and s, and xrs is the number of primary units that intersect both networks.
The variance of μ̂HT and it unbiased estimator are given by Eqs. (2.10) and (2.11),
but with N replaced by MN , namely

var[μ̂HT ] = 1

M2 N 2

⎡

⎣
K∑

j=1

K∑

k=1

y∗
j y∗

k

(
α jk − α jαk

α jαk

)
⎤

⎦ , (4.2)
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with an unbiased estimate

v̂ar[μ̂HT ] = 1

M2 N 2

⎡

⎣
K∑

j=1

K∑

k=1

y∗
j y∗

k

(
α jk − α jαk

α jkα jαk

)

J j Jk

⎤

⎦

= 1

M2 N 2

⎡

⎣
κ∑

j=1

κ∑

k=1

y∗
j y∗

k

α jk

(
α jk

α jαk
− 1

)
⎤

⎦ , (4.3)

where αjj is interpreted as α j .
If bk is the number of times network k is intersected by the initial sample of

primary networks, we can also use the HH estimator from Eq. (2.17), namely

μ̂HH = 1

MN

K∑

k=1

y∗
k

bk

E[bk] ,

= 1

Mn1

K∑

k=1

bk y∗
k

xk
,

since bk has the hypergeometric distribution with parameters (N , xk, n1) and mean
n1xk/N . We note that

bk =
n1∑

i=1

Jik,

where Jik = 1 if the i th primary unit intersects the kth network, and 0 otherwise.
Hence

μ̂HH = 1

n1 M

n1∑

i=1

K∑

k=1

Jik y∗
k

xk

= 1

n1

n1∑

i=1

wi

= w, (4.4)

where

wi = 1

M

K∑

k=1

Jik y∗
k

xk
= 1

M

κi∑

k=1

y∗
k

xk
,

and κi is the number of networks that intersect the i th primary unit. From Eqs. (2.15)
and (2.16) we have

http://dx.doi.org/10.1007/978-3-642-33657-7_2
http://dx.doi.org/10.1007/978-3-642-33657-7_2
http://dx.doi.org/10.1007/978-3-642-33657-7_2
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var[μ̂HH ] = N − n1

Nn1(N − 1)

N∑

i=1

(wi − μ)2,

with unbiased estimate

v̂ar[μ̂HH ] = N − n1

Nn1(n1 − 1)

n1∑

i=1

(wi − μ̂HH)2.

4.3 Other Primary Units

Other shapes are possible for the primary units. For example, a single primary
unit may consist of a collection of small same-shaped clusters of secondary units
spaced systematically throughout the population area instead of being contiguous
(all together). One then chooses the primary units systematically but using a ran-
dom starting point. Unfortunately we don’t get unbiased estimation of the variance.
Munholland and Borkowski (1993, 1996) and Borkowski (1999) suggested using a
Latin square +1 design selected from a square grid of secondary units. The Latin
square gives a secondary unit in every row and column of the grid, and the extra (i.e.
+1) unit ensures that any pair of units has a positive probability of being included in
the initial sample. The latter requirement is needed for unbiased variance estimation.
It essentially combines the features of a systematic sample with additional random
sampling and allows for unbiased estimation of the variance using a HT estimator. It
can be regarded as a type of “space-filling” design. For some details and examples
see Thompson (1991a) and Thompson and Seber (1996, pp. 128–134). There are two
major restrictions for the simple Latin square design +1: (i) populations units must
be arranged in a square and (ii) the sample size must be N + 1 from a population
of size N 2. Borkowski (2003) introduced a class of sampling designs called Simple
Latin Square Sampling ±k that reasonably deals with restriction (ii) as they have
the flexibility to allow for different sample sizes. Salehi (2006) introduced a row and
column elimination sampling design that deals with both restrictions. Hung (2011)
introduced an adaptive version of a space-filling design called the probability-based
Latin hypercube design.

Adaptive cluster sampling has greater efficiency and higher probabilities of
observing rare events for a rare and clustered population when the initial sampling has
a good coverage of the population area. Acharya et al. (2000) used systematic adaptive
cluster sampling to assess rare tree species. The tree species under study were found in
clusters, and they concluded that efficiency of adaptive sampling depended on cluster
size, with greatest efficiency observed for the species that formed the largest clusters.
Salehi (2004) proved that optimal sampling under a spatial correlation model for any
population of units arranged in a rectangle will be a combination of systematic and
Latin square sampling whenever the optimal design exists. Salehi (2002) suggested
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using a systematic Latin square sampling +1 design selected from a rectangular grid
of secondary units.

Félix-Medina and Thompson (2004) presented a multi-phase variant of adaptive
cluster sampling that allows the sampler to control the number of measurements
of the variable of interest. A first-phase sample is selected using an adaptive cluster
sampling design based on an easy-to-measure auxiliary variable that is correlated with
the variable of interest. The network structure of the adaptive cluster sample is used to
select either an ordinary one-phase or two-phase subsample of units. They estimated
the population mean by either a regression-type estimator or a Horvitz-Thompson-
type estimator. The results of their simulation study showed a good performance of
the proposed design.

4.4 Two-Stage Adaptive Cluster Sampling

This design is similar to the simple random sample of primary units described in
Sect. 4.2 except that after the initial selection of the primary units we don’t sample
all the units in each selected primary unit. Instead we take a simple random sample
of primary sampling units (PSUs) as before, but then take a subsample of secondary
units within each of the selected PSUs and add adaptively. We then have the choice of
two designs. As we add secondary units adaptively we can either stop at the boundary
of the PSU or allow overlap into neighboring PSUs. We focus on this method as it
also provides one way of carrying out a pilot survey that can be used to design a full
survey to achieve a given accuracy.

4.4.1 Notation

Suppose that we have a total population of NT secondary units that are partitioned
into M primary units of size Ni units (i = 1, 2, . . . , M). Usually we endeavor to
have all the Ni the same. Let the unit (i, j) denote the j th unit in the i th primary
unit with an associated measurement or count yij. Let τi = ∑Ni

j=1 yij be the sum of

the y-values in the i th primary unit, and let τ = ∑M
i=1 τi be the total for the whole

population. The population mean per unit is then given by μ = τ/NT . In the first
stage of the sampling, we choose a simple random sample of m of the M primary
units without replacement, though this requirement of simple random sampling can
be relaxed in some situations, as we shall see later. At the second stage, we take
an initial simple random sample of ni secondary units without replacement from
primary unit i (i = 1, 2, . . . , M) so that n0 = ∑m

i=1 ni is the total initial sample
size.
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4.4.2 Overlapping Scheme

Ignoring PSU boundaries, suppose that the NT units are partitioned into K networks
by the condition C and the type of neighborhood used. Once again we can use our
usual HT estimator without the edge units, namely,

μ̂HT = 1

NT

K∑

k=1

y∗
k Jk

αk
, (4.5)

where the K distinct networks are labeled 1, 2, . . . , K regardless of primary bound-
aries, Jk is an indicator variable taking the value 1 (with probability αk , say) if the
initial sample of size n0 intersects network k (i.e., contains at least one unit from the
network k) and 0 otherwise, and y∗

k is the usual sum of the y-values for network k.
We obtain the variance of μ̂HT and its estimate from Eqs. (4.2) and (4.3) by replacing
MN by NT . Expressions for the αi and αrs are complex and are given in the Appendix
of Salehi and Seber (1997). Also an HH-type estimator is derived in that paper.

4.4.3 Non-Overlapping Scheme

When the clusters are truncated at primary unit boundaries, each primary unit can be
treated separately. Thus if the i th primary unit is selected, an unbiased estimate of
that unit’s total y-value is τ̂i = ∑Ki

k=1 y∗
ik Jik/αik , where Ki is the number of networks

in the primary unit i , y∗
ik is the sum of the y-values associated with network k, and αik

(= E[Jk]) is the probability that the initial sample of units in primary unit i intersects
network k. If xik is the number of units in network k that are located in primary unit
i , then

αik = 1 −
(

Ni − xik

ni

)/(
Ni

ni

)

. (4.6)

From the theory of sampling without replacement, an unbiased “estimator” of∑M
i=1 τi/M is

∑m
i=1 τi/m so that replacing τi by τ̂i , an estimate of the overall mean is

μ̂1 = 1

NT
M

m∑

i=1

τ̂i

m
= Mw

NT
, say, (4.7)

where wi = τ̂i . To find its variance, we need the probability that the initial sample
of units in primary unit i intersects both the r and s networks, namely [c.f. Eq. (2.9)]

αirs = αir + αis −
[

1 −
(

Ni − xir − xis

ni

)/(
Ni

ni

)]

. (4.8)

http://dx.doi.org/10.1007/978-3-642-33657-7_2


4.4 Two-Stage Adaptive Cluster Sampling 43

Also, from Eq. (4.2),

Vi = var[̂τi ] =
Ki∑

r=1

Ki∑

s=1

y∗
ir y∗

is

(
αirs − αirαis

αirαs

)

.

Applying the theory of two-stage sampling from Särndal, Swensson, and Wretman
(1992, p.137) to the sample mean w, Salehi and Seber (1997) showed that

var[μ̂1] = 1

N 2
T

M(M − m)
σ 2

M

m
+ 1

N 2
T

M

m

M∑

i=1

Vi , (4.9)

where

σ 2
M = 1

M − 1

M∑

i=1

(τi − τ)2 and τ = 1

M

M∑

i=1

τi .

An unbiased estimate of the above variance is

v̂ar[μ̂1] = 1

N 2
T

M(M − m)
s2

M

m
+ 1

N 2
T

M

m

m∑

i=1

V̂i , (4.10)

where

s2
M = 1

m − 1

m∑

i=1

(̂τi − 1

m

m∑

i=1

τ̂i )
2, (4.11)

and

V̂i =
κi∑

r=1

κi∑

s=1

y∗
ir y∗

is

(
αirs − αirαis

αirsαirαis

)

. (4.12)

Here κi is the number of distinct networks intersected in primary unit i . As the distinct
unordered units and their labels form a minimal sufficient statistic for any adaptive
sampling scheme, the Rao-Blackwell theorem can be used to provide unbiased esti-
mators with smaller variances. For example, the estimators τ̂i in μ̂1 can be replaced
by their Rao-Blackwell versions.

An HH estimator can also be derived and details are given briefly by Salehi
and Seber (1997). The HT μ̂1 estimator seems to be preferred for a number of
reasons, such as better efficiency in many situations. It can be also used, for the non-
overlapping case, to design such an experiment using a pilot survey, which we now
consider briefly. One disadvantage of this estimator is that individual PSU variance
estimates V̂i in (4.12) may be negative. If constant ni is used, we recommend keeping
ni small. If ni = 2, then it is shown in Appendix 3 of Salehi and Seber (1997) that
V̂i is always nonnegative. Finally we note that Rocco (2008) proposed a restricted
version of two-stage adaptive cluster sampling, adopting a similar approach to Salehi
and Seber (2002).
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4.4.4 Pilot Survey

It transpires that when m/M is small (say less then 0.1) the second term of (4.9) is
generally negligible (Särndal et al. 1992, p. 139) and var[μ̂1] < v, where

v = E

(
M2s2

M

N 2
T m

)

.

Suppose that a pilot survey has been run in which a sample of size m0 PSUs has
been chosen and the ni are selected according to the same rules to be used for the
full survey being planned. From the pilot survey, we can use the formula for s2

M but
with m0 instead of m to get s2

0 , say, which can be shown to have the same expected
value as s2

M . Then the number of PSUs that we need to sample in the full survey to
achieve a desired value of v is approximately given by

m = M2s2
0

N 2
T v

.

Cost considerations can also be taken into account as in Salehi and Seber (1997),
who also gave an example demonstrating the calculations.

4.5 Stratified Adaptive Cluster Sampling

If we happen to know some prior information about where aggregations are likely
to occur we can use stratification to reduce some of the variability in the estimators.
Christman (2000) suggests that the best form of stratification is when rare objects
are in a single small stratum that is disproportionately oversampled. In stratified
sampling each stratum is like a primary unit and all primary units are selected.
Once again we have two scenarios depending on whether we allow overlapping of
stratum boundaries or not. We assume simple random sampling in each stratum. This
theory is based on Thompson (1991b) and also given by Thompson and Seber (1996,
Sect. 4.9).

4.5.1 Overlapping Strata

Suppose the total population of N units is partitioned into H strata, with Nh units
in the hth stratum (h = 1, 2, . . . , H ). Define unit (h, i) to be the i th unit in the hth
stratum with associated y-value yhi . A simple random sample of nh units is taken
from the hth stratum so that n0 = ∑H

h=1 nh is the initial total sample size. Further
units are added adaptively without regard to stratum boundaries. Ignoring the edge
units, we then have the usual HT estimator [cf. (4.5)] and, using the same notation,



4.5 Stratified Adaptive Cluster Sampling 45

μ̂HT ,st = 1

NT

K∑

k=1

y∗
k Jk

αk
,

with αk , the probability of intersecting network k with initial samples in each of the
strata, is now given by

αk = 1 −
H∏

h=1

[(
Nh − xhk

nk

)/(
Nh

nh

)]

,

where xhk is the number of units in stratum h that lie in network k. This will be zero
if network k lies totally outside stratum h. If the network straddles a boundary, then
we ignore the network units that lie outside stratum h in the definition of xhk . Since
E[Jk] = αk , μ̂HH,st is unbiased. To find its variance we need αrs, the probability that
the initial sample intersects both networks r and s, namely [cf. ( 2.9)]

αrs = 1 − (1 − αr ) − (1 − αs) +
H∏

h=1

[(
Nh − xhr − xhs

nh

)/(
Nh

nh

)]

.

Its variance and unbiased estimate are given by Eqs. (2.10) and ( 2.11).
We now consider an HH-type estimator based on the numbers of initial inter-

sections. To do this we define Ahi to be the network containing unit (h, i), and
Aghi, that part of Ahi in stratum g. Let fghi be the number of units from the initial
sample in stratum g that fall in Aghi, and let mghi be the number of units in Aghi.
Then

f·hi =
H∑

g=1

fghi

is the number of units from the initial sample of n0 units that fall in Ahi . This will be
zero if no initial units in the hth stratum intersect Ahi . Equation (2.13) now translates
into

μ̂HH,st = 1

N

H∑

h=1

Nh∑

i=1

yhi
f·hi

E[ f·hi ] ,

which is unbiased. Since fghi has a hypergeometric distribution with parameters
(Ng, mghi, ng), E[ fghi] = ngmghi/Ng and

E[ f·hi ] =
H∑

g=1

ng

Ng
mghi.

http://dx.doi.org/10.1007/978-3-642-33657-7_2
http://dx.doi.org/10.1007/978-3-642-33657-7_2
http://dx.doi.org/10.1007/978-3-642-33657-7_2
http://dx.doi.org/10.1007/978-3-642-33657-7_2


46 4 Primary and Secondary Units

To find var[μ̂HH,st], we express μ̂HH,st in terms of weighted means. The term yhi f·hi

tells us that Ahi is intersected f·hi times so that μ̂HH,st is the weighted sum of all the
units eventually sampled, with some networks repeated. Also, the weight E[ f·hi ] is
the same for each unit in Ahi . If Yhi is the sum of the y-values in Ahi , then

μ̂HH,st = 1

N

H∑

h=1

nh∑

i=1

Yhi

E[ f·hi ] ,

=
H∑

h=1

Nh

N
wh, (4.13)

where

wh = 1

nh

nh∑

i=1

whi and whi = nh

Nh
· Yhi

E[ f·hi ] .

We see that (4.13) takes the form of a stratified sample mean of a stratified random
sample taken without replacement in which the variable of interest is whi . The stratum
mean and variance for this variable are

W h = 1

Nh

Nh∑

i=1

whi and σ 2
h = 1

Nh − 1

Nh∑

i=1

(whi − W h)2,

and, from the stratified sampling theory (Sect. 1.2.4),

var[μ̂HH,st] = 1

N 2

H∑

h=1

Nh(Nh − nh)
σ 2

h

nh
. (4.14)

An unbiased estimate of this variance is obtained by replacing σ 2
h by

s2
h = 1

nh − 1

nh∑

i=1

(whi − wh)2.

Other unbiased estimates are available including less efficient ones obtained by
stopping the adaptive process at the stratum boundary or by not using any units
added through crossing stratum boundaries. Here one can use an HT or HH esti-
mator for each stratum and, since the stratum estimates are independent, they can
be combined using weights in the usual manner (see Thompson and Seber 1996,
Sect. 4.9, and Thompson 1991b). The Rao-Blackwell method can also be applied
here.

http://dx.doi.org/10.1007/978-3-642-33657-7_1
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Chapter 5
Inverse Sampling Methods

Abstract Inverse sampling is an adaptive method whereby it is the sample size that
is adaptive. On the basis of a new proof, Murthy’s estimator can now be applied
with or without adaptive cluster sampling to inverse sampling to provide unbiased
estimators of the mean and variance of the mean estimator. A number of sequential
plans along with parameter estimates are considered including a general inverse
sampling design, multiple inverse sampling when subpopulation sizes are known,
quota sampling, multiple inverse sampling, and truncated multiple inverse sampling.

Keywords Inverse sampling · Murthy’s estimator · General inverse sampling
design · Quota sampling · Multiple inverse sampling · Truncated multiple inverse
sampling

5.1 Introduction

Inverse sampling is an adaptive sampling technique where the sample size is adaptive
in that it depends on the incoming information. The technique is credited to Haldane
(1945)1 when he used inverse sampling to estimate the frequency of a rare event. The
inclusion probability of a rare event may be so small that, under a fixed-sample size
design, not enough cases of interest are selected to estimate either the attribute of
interest or to use a statistical method like the contingency table to analysis the data.
Inverse sampling can be described generally as a method that requires observations
to be continued until certain specified conditions that depend on the results of those
observations have been fulfilled. Under this definition many sequential sampling
plans can be consider as inverse sampling such as fixed cost sequential sampling
(Pathak 1976) and restricted adaptive cluster sampling (Brown and Manly 1998).
However, we shall focus on the more traditional inverse sampling where the sampling

1 See Berzofsky, 2008.
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is continued until a predetermined number of individuals have been observed. In
Sect. 1.2.3 we introduced Murthy’s estimator and we now give a different proof from
Salehi and Seber (2001) using the Rao-Blackwell theorem that allows the estimator
to be used for more general sampling schemes.

5.2 New Proof of Murthy’s Estimator

We begin by assuming that the sample size may be random and we define ν to be the
number of distinct units in the sample so that sR = {i1, i2, . . . , iν}, the unordered
distinct units. Let Ji be an indicator variable that takes the value 1 (with probability
pi ) when the i th unit is selected as the first unit, and 0 otherwise. As E[Ji ] = pi , a
trivial unbiased estimator of μ is given by

μ̂ = 1

N

N∑

i=1

yi

pi
Ji .

Since DR , the random variable with value dR = {(i, yi ) : i ∈ sR} is sufficient for
θ = (y1, y2, . . . , yN )′ (by Theorem 1 in Sect. 3.2), we can use the Rao-Blackwell
theorem to obtain the unbiased estimator

μ̂R B = E[μ̂ | DR]

= 1

N

N∑

i=1

yi

pi
E[Ji | DR]

= 1

N

N∑

i=1

yi

pi
Pr(Ji = 1 | DR)

= 1

N

N∑

i=1

yi

pi

Pr(Ji = 1, sR)

P(sR)
(5.1)

= 1

N

ν∑

i=1

P(sR | i)

P(sR)
yi (5.2)

= μ̂M ,

as P(sR | i) = 0 if the unit i is not in sR . We see then that μ̂R B is Murthy’s
estimate (Murthy 1957) given in Sect. 1.2.3, and the fraction P(sR | i)/P(sR) can
be evaluated when the associated probabilities are known for the units in sR , whether
or not the sample size ν is random. With this new derivation, the estimator μ̂R B can
now be applied to sequential and adaptive designs as well as to fixed-size sampling

http://dx.doi.org/10.1007/978-3-642-33657-7_1
http://dx.doi.org/10.1007/978-3-642-33657-7_3
http://dx.doi.org/10.1007/978-3-642-33657-7_1
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designs. Salehi and Seber (2001) showed that the variance formula and its unbiased
estimate in Sect. 1.2.3 still hold for these more general sampling schemes.

5.3 Inverse Sampling Design

Following Salehi and Seber (2004), we begin by dividing the population into two
subpopulations according to whether or not the units satisfy a certain condition C . A
possible condition might be C = {yi > 0} where yi is the number of individuals in
unit i . Denote the two subpopulations by P M , satisfying the condition and containing
M units with population mean μM and variance σ 2

M (with a divisor of M − 1), and
by PN−M , not satisfying the condition and containing N − M units with population
mean μN−M and variance σ 2

N−M (with a divisor of N − M − 1). Suppose we have
simple random sampling (i.e., without replacement) and the sampling stops when k
units from PM are sampled, where k is predetermined.The final sample size, say n1,
will be random. Let SM and SN−M respectively denote the index set of units in the
inverse sample that are members of PM and PN−M .

To use Eq. (5.1), we need to evaluate the ratio r = P(sR | i)/P(sR) by deter-
mining the number of ordered samples leading to sR and {Ji = 1, sR}. Now let
sC denote those k selected units satisfying C which, for convenience, we index as
i = 1, 2, . . . , k. Similarly we let sC̄ denote the n1 − k units that do not satisfy C and
index these as i = k +1, k +2, . . . , n1. Since the last observation must satisfy C , we
see that after allocating one of the k sample units satisfying C the rest can be ordered
in (n1 −1)! ways. The sample sR can therefore be constructed in k × (n1 −1)! ways.
For the unit i in the set sC the event {Ji = 1, sR} can occur in (k − 1) × (n1 − 2)!
ways, while if it is in the set sC̄ it can occur in k × (n1 − 2)! ways. Since pi = 1/N
for all i , the ratio r will have only two values so that from (5.1) with ν = n1 we get
a weighted sample mean

μ̂R B =
k∑

i=1

yi
(k − 1) × (n1 − 2)!

k × (n1 − 1)! +
n1∑

i=k+1

yi
k × (n1 − 2)!
k × (n1 − 1)!

= P̂ yM + (1 − P̂)yN−M , (5.3)

where

P̂ = k − 1

n1 − 1
, yM = 1

k

∑

i∈SM

yi , and yN−M = 1

n1 − k

∑

i∈SN−M

yi .

It turns out, as we shall see below, that P̂ is an unbiased estimator of M/N . To find
an unbiased estimator of the variance of μ̂R B , we can use the formulas in Sect. 1.2.3.
We need to compute P(sR | i, j), the probability that units i and j are the first two
selected units. Arguing as above, we find that for k > 2,

http://dx.doi.org/10.1007/978-3-642-33657-7_1
http://dx.doi.org/10.1007/978-3-642-33657-7_1
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P(sR | i, j)

P(sR)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (N − 1)(k − 2)

(n1 − 1)(n1 − 2)k
, if i, j ∈ sC ,

N (N − 1)(k − 1)

(n1 − 1)(n1 − 2)k
, if i ∈ sC and j ∈ sC̄ ,

N (N − 1)

(n1 − 1)(n1 − 2)
, if i ∈ sC̄ .

Substituting for the various probabilities, we have from Sect. 1.2.3 the following
unbiased variance estimator, namely (Salehi and Seber 2004)

v̂ar[μ̂R B] =
n1∑

i=1

n1∑

j<i

(
P(sR | i, j)

P(sR)
− P(sR | i)P(sR | j)

[P(sR)]2

) (
yi

N pi
− y j

N p j

)2

pi p j

= 1

N (n1 − 1)2(n1 − 2)

⎧
⎨

⎩
c

k∑

i=1

k∑

j<i

(yi − y j )
2

+ N − n1 + 1

N 2

⎛

⎝k − 1

k

k∑

i=1

n1∑

j=k+1

(yi − y j )
2 +

n1∑

i=k+1

n1∑

j>i

(yi − y j )
2

⎞

⎠

⎫
⎬

⎭

= P̂2
(

(N − n1 + 1)(n1k − n1 − k) − N (n1 − 2)

N (n1 − 2)(k − 1)

)
s2

M

k

+ v̂ar[P̂](ȳM − ȳN−M )2 +
(

(N − n1 + 1)(n1 − k − 1)

N (n1 − 1)(n1 − 2)

)

s2
N−M ,

= as2
M + v̂ar[P̂](ȳM − ȳN−M )2 + bs2

N−M , (5.4)

where

c = k(k − 2)(N − n1 + 1) − N (n1 − 2)

k2 ,

a = P̂2(N − n1 + 1)(n1k − n1 − k) − N (n1 − 2)

N (n1 − 2)k(k − 1)
,

b = (N − n1 + 1)(n1 − k − 1)

N (n1 − 1)(n1 − 2)
(5.5)

v̂ar[P̂] = (n1 − k)(k − 1)(N − n1 + 1)

N (n1 − 1)2(n1 − 2)
=

(

1 − n1 − 1

N

)
P̂(N − P̂)

n1 − 2
,

s2
M = 1

k − 1

k∑

i=1

(yi − yM )2, and s2
N−M = 1

n1 − k − 1

n1∑

i=k+1

(yi − yN−M )2.

http://dx.doi.org/10.1007/978-3-642-33657-7_1
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The above formulas can also be derived using properties of the hypergeometric
distribution, as in Greco and Naddeo (2007). They also derived formulas for inverse
sampling with replacement.

In some situations we are particularly interested in the ratio P = M/N , the
number of units with a particular characteristic. This is the same as estimating μ

when yi is an indicator variable taking the value 1 if the unit possesses the desired
characteristic and zero otherwise. From (5.1) we have the estimator

P̂ = k − 1

n1 − 1
.

Since n1 pi = 1, the second equation of (5.4) contains terms of the form yi − y j that
will be zero when yi and y j are both 1, or equal to one if just one is zero. We therefore
need to evaluate only

∑k
i=1

∑n1
j=k+1(yi − y j )

2 = k(n1 − k) and then substitute into
the second equation of (5.4) to get the unbiased variance estimate (Salehi and Seber
2001, p. 284)

v̂ar[P̂] = (n1 − k)(k − 1)(N − n1 + 1)

N (n1 − 1)2(n1 − 2)
=

(

1 − n1 − 1

N

)
P̂(1 − P̂)

n1 − 1
.

A special case of this is when the unit contains only one object so that P is the
population proportion of objects with a certain characteristic (e.g., left-handedness).
The above theory can be readily modified to take care of the case when sampling is
with replacement (See Salehi and Seber 2001, p. 284).

Aggarwal and Pandey (2010) have used inverse sampling to estimate the preva-
lence of the disease burden due to leprosy in an endemic area of Uttar Pradesh, India.
They concluded that inverse sampling was found to be feasible as compared to con-
ventional sampling in terms of less time consumed, low cost, and less population
covered. They believed that the method could be adopted at a national level.

Greco and Naddeo (2007) derived an unbiased estimator of the population total
as well as unbiased estimators of the two subpopulations totals, their variances, and
the corresponding variance estimators in inverse sampling with replacement when
the units have unequal selection probabilities.

In some situations we may know the size of subpopulations (Chang et al. 1998).
Mohammadi and Salehi (2011) derived the Horvitz-Thompson estimator for the
population mean under inverse sampling designs when the sizes of subpopulations
are known. They also considered another unbiased weighted estimator based on
post-stratification. They compared the precisions of the proposed estimators and
found that they depend on the coefficient of variation of two subpopulations and the
square of the less-interesting subpopulation mean. The Horvitz-Thompson estimator
is sensitive to distance of the subpopulation mean from zero, while the alternative
estimator is more stable.
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5.4 General Inverse Sampling Design

Christman and Lan (2001) considered the following three inverse sampling designs
that use stopping rules based on the number of rare units observed in the sample:

(i) We select units one at a time until we have obtained a predetermined number
of rare units, say k, in the sample, which is “ordinary” inverse sampling.

(ii) We first select an initial simple random sample of size n0. If the number of rare
units is greater than or equal to k we stop sampling, otherwise we keep sampling
until we observe k rare units.

(iii) This is similar to design (ii) but with the difference that we stop sampling if
the initial sample of size n0 contains at least one rare unit. Otherwise we keep
sampling until we observe k rare units.

The authors presented unbiased estimators and some intermediate expressions for
their variances for designs (i) and (ii). They also presented a biased estimator for
design (iii). Appropriate variance estimators were not provided, apart from some
bounds based on Mikulski and Smith (1976).

Salehi and Seber (2004) derived an unbiased estimator for the sampling design (iii)
as well as unbiased variance estimators for the three sampling designs using Murthy’s
formula. They introduced a more practical sampling design which is essentially
sampling design (ii), but with sampling stopping when one runs out of resources
(e.g., money or time). They called it the General Inverse Sampling (GIS) design as
simple random sampling and sampling designs (i) and (ii) are special cases of it. This
design begins with a simple random sample of size n0 with sampling stopping if at
least k units from PM are selected. Otherwise, we sequentially continue sampling
until either exactly k units from PM are selected or n2 units are selected in total.
This sampling design is design (ii), but a limit is put on final sample size; design
(ii) corresponds to n2 = N . If n2 = n1, general inverse sampling reduces to simple
random sampling, while if n0 = 1 and n2 = N we have design (i).

We now apply Murthy’s estimator to the GIS design to get

μ̂G I S =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

n0

n0∑

i=1

yi , if [Q1],

P̂ ȳM + (1 − P̂)ȳN−M , if [Q2],

1

n2

n2∑

i=1

yi , if [Q3],

(5.6)

where [Q1] = {n1 = n0}, [Q2] = {n0 < n1 < n2} or {n1 = n2 and |SM | = k},
[Q3] = {n1 = n2 and |SM | < k}, and |SM | is the cardinality (size) of SM . An
unbiased estimator of var[μ̂G I S] is
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v̂ar[μ̂G I S] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − n0

N

) s2
0

n0
, if [Q1],

as2
M + v̂ar[P̂](ȳM − ȳN−M )2 + bs2

N−M , if [Q2],
(

1 − n2

N

) s2
2

n2
, if [Q3],

(5.7)

where a and b are given by (5.5), s2
r = (nr − 1)−1 ∑nr

i=1(yi − ȳr )
2 and ȳr =

(nr )
−1 ∑nr

i=1 yi (for r = 0, 2).
Salehi and Seber (2004) also incorporated adaptive cluster sampling with general

inverse sampling designs for the case when the rare events tend to be clumped—the
typical sparse but clustered population.

Moradi et al. (2007) considered the problem of estimating a ratio for which the
denominator of the estimator can take a zero value. Under a simple random sampling
(SRS) design, if all observations of the denominator variable are zero, the ratio
estimator would be undefined. A natural solution is to use an inverse sampling design
for which one continues sampling until at least a predetermined number of nonzero
values is observed for the denominator variable. Using Taylor linearization, they
derived an asymptotic unbiased estimator of the ratio and an approximate variance
estimator of its variance for a general inverse sampling design.

Their simulation study was based on a survey of honey production in the Kurdistan
Province of Iran conducted by the Statistical Center of Iran (SCI). On the basis of
a request from an organization, the SCI enumerated all cities and villages with the
aim of measuring the total amount of honey produced, as well as the amount of
honey produced per family in Kurdistan. The major objective of this census was to
construct a sampling frame for an annual sample survey which will be performed by
that organization. Families in villages of Kurdistan live together in a relatively small
region and they know what other people do in their home village. It is not difficult
to find out which families have honey farms by asking an adult in the village. Also,
there are some organizations in the cities that know honey farm owners. Therefore, a
preliminary proposal was to consider cities and villages as sampling units and to use
a simple random sampling of cities and villages. If, however, we were to use simple
random sampling, it would be likely that none of the families sampled in the selected
villages has a honey farm since the number of such farms is not large. In this instance,
the estimator of the ratio would be undefined. If we were to use inverse sampling,
its ratio estimator would always be well-defined, but, the lack of a predefined fixed
sample size would make it difficult to plan budgets and survey logistics. However,
use of a general inverse sampling approach would avoid the scenario of an undefined
estimator and allow us to plan the costs and operations of the survey.

Moradi et al. (2011) introduced regression estimators for the general inverse sam-
pling design and inverse sampling with unequal selection probabilities. For both, the



56 5 Inverse Sampling Methods

variances of regression estimators as well as variance estimators were developed.
Using a simulation study on a real population, that is, arsenic contamination in a
region of Kurdistan, they showed that regression estimators are more efficient than
their counterparts. In inverse sampling with unequal selection probabilities, arsenic
concentration in the plant was the y-value (or response variable in a regression con-
text), the arsenic concentration in the water (zi ) was used to compute the probability
of selection pi (= zi/

∑
z j ), and the arsenic concentration in the soil was considered

as an auxiliary sampling variable (the explanatory variable in a regression model).

5.5 Multiple Inverse Sampling

Chang et al. (1998) introduced a sequential sampling procedure named Multiple
Inverse Sampling (MIS) and supposed that the population can be partitioned into
subpopulations with known sizes. They employed the MIS to avoid the undesirable
events of obtaining no sample unit or a very small number of sampled units from
some post-strata in a post-stratified sampling design. Through simulation they found
the MIS reasonably efficient. There are many situations where we don’t know the
subpopulation that a unit belongs to until the unit is sampled, nor know the subpopu-
lation sizes. There are also situations where one of the objectives of a sample survey
is to estimate subpopulation sizes, for example, the estimation of animal numbers in
different age categories, and the estimation of household frequencies using different
heating or cooling systems in energy consumption surveys.

Salehi and Chang (2005) extended the use of Murthy’s estimator from the tra-
ditional inverse sampling to the multiple case. They developed unbiased estimators
(and their unbiased variance estimators) of τ , the total population y-value, as well
as the y-totals for subpopulations using Murthy’s estimator. They also incorporated
the sampling design in Chang et al. (1998) of starting with a simple random sample
but truncating the sampling at some stage (Chang et al. 1999).

5.5.1 Quota Sampling

Quota sampling (see Scheaffer et al. 1990, p. 25) can be a version of the MIS design
in the finite population context. In fact quota sampling is somewhat notorious as
it has been misused by some inexperienced practitioners. The MIS improves quota
sampling in the sense that it provides some theoretical basis, including a properly
designed stopping rule followed by a well-developed estimation methodology, as
opposed to the misuse of human subjectivity in quota sampling. In this sampling
design, researchers first select a simple random sample from the whole population.
If it happens that some of the subpopulations are under-represented in the sample
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set, the researchers would select more units one at a time until the sample sizes of
those under-represented subpopulations reach some satisfactory level. Practitioners
usually use quota sampling and then suppose that the sample was selected at random
using simple random sampling estimators, which are biased. For example, Sarraf-
Zadegan et al. (2003) used a similar sampling procedure in a study on cardiovascular
disease. They partitioned Isfahan into 93 Primary Sample Units (PSUs). Each PSU
had approximately 1000 households, and they randomly selected 25 PSUs. Approx-
imately 5–10 percent of households within those selected PSUs were selected. One
individual with age over 19 years per household was randomly selected if mentally
competent, and not pregnant if a woman. In practice, whenever the sample sizes from
some of age subpopulations (19–24, 25–34, 35–44, 45–54, 55–64 and ≥65) were
smaller than predetermined values (which were set to match the community age dis-
tribution), more households were randomly selected. This was done one household
at a time, and one individual aged over 19 years was randomly selected from each
selected household until the sample sizes of all age subpopulations were as large as
the predetermined values. They referred to their sampling design as quota sampling.
If the desired sample sizes in each subpopulation are set before the field work, then
quota sampling is actually the MIS design.

The properties of the introduced sampling designs and their estimators of the total
y-values of subpopulations depend on the distribution of the variable of interest. In
order to evaluate the introduced sampling design and their estimators regardless of the
distribution of the variable of interest, Salehi and Chang (2005) developed estimators
and their variance estimators for the proportions (weights) of subpopulations when
the sampling design is Truncated Multiple Inverse Sampling (Chang et al. 1999).
Using a simulation study, it was found that for this sampling design the estimators
are reasonably efficient for estimating the proportions of rare subpopulations. We
now give some theory for this method.

5.5.2 Truncated Multiple Inverse Sampling

Suppose that population P = {u1, u2, . . . , uN }, where ui is the i th unit, can be
divided into L subpopulations Ph (h = 1, . . . , L). Sampling is without replacement
and it is desired that the sample size nh from subpopulation h be greater than or equal
to a predetermined number mh for all h. Beginning with a simple random sample of
size n0, one sequentially continues sampling until either at least mh sample units are
selected from subpopulation h, for all h = 1, . . . , L , or until nT units are selected in
total. The sample set is partitioned into a set of sampled units for which nh = mh , say
SM , and a set of sampled units for which nh > mh , say SM . Let p̂ = (k −1)/(n −1),
where k is the cardinality of the sample set SM and n = ∑

h nh . Using Murthy’s
estimator, we have from Salehi and Chang (2005, with corrections to the Qi ), the
following unbiased estimator of the population mean:
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μ̂ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L∑

h=1

nh

n0
ȳh, if [Q1],

∑

h∈SM

nh p̂

k
ȳh +

∑

h∈SM̄

nh(1 − p̂)

n − k
ȳh, if [Q2],

L∑

h=1

nh

nT
ȳh, if [Q3],

where [Q1] = {n = n0}, [Q2] = {n0 < n < nT } or {n = nT and nh ≥
mh for all h}, and [Q3] = {n = nT and nh < mh for at least one h}. Its variance
estimator is given by

v̂ar[μ̂] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − n0

N
)

s2
0

n0
, if [Q1],

p̂2
(

(N − n + 1)(nk − n − k) − N (n − 2)

N (n − 2)(k − 1)

)
s2

M

k
if [Q2]

+ v̂ar[ p̂](ȳM − ȳM̄ )2 +
(

(N − n + 1)(n − k − 1)

N (n − 1)(n − 2)

)

s2
M̄

,

(1 − nT

N
)

s2
1

nT
, if [Q3],

where s2
1 = (nT − 1)−1 ∑nT

i=1(yi − ȳ1)
2, ȳ1 = n−1

T

∑nT
i=1 yi , ȳM = (1/k)

∑
i∈SM

yi

and ȳM̄ = [1/(n − k)]∑i∈SM̄
yi . An estimator of the mean for subpopulation h, say

μ̂h , is

μ̂h =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nh

n0
ȳh, if [Q1],

nh p̂

k
ȳh, if [Q2] and Sh ⊆ SM ,

nh(1 − p̂)

n − k
ȳh if [Q2] and Sh⊆SM̄ ,

nh

nT
ȳh, if [Q3],

where Sh is the sample set from subpopulation h. Its variance estimator is
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v̂ar[μ̂h] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − n0

N
)

s∗2
0

n0
, if [Q1],

p̂2
(

(N − n + 1)(nk − n − k) − N (n − 2)

N (n − 2)(k − 1)

)
s∗2

M

k
if [Q2] and Sh ⊆ SM ,

+N 2v̂ar[ p̂] ȳ∗2
M ,

(
(N − n + 1)(n − k − 1)

N (n − 1)(n − 2)

)

s∗2
M̄

if [Q2] and Sh ⊆ SM̄ ,

+v̂ar[ p̂] ȳ∗2
M̄

,

(1 − nT

N
)

s∗2
1

nT
, if [Q3],

where s∗2
0 , s∗2

1 , ȳ∗2
M and ȳ∗2

M̄
are respectively s2

0 , s2
1 , ȳ2

M and ȳ2
M̄

, evaluated for the
following variable

y∗
i =

{
yi if i is in subpopulation h
0 if i is not in subpopulation h.

Multiple inverse sampling is an appropriate sampling design for collecting data
for categorical data analysis. Salehi et al. (2006) extended the methods for using
multiple logistic regression to sample surveys that have MIS designs.
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Chapter 6
Adaptive Allocation

Abstract Adaptive allocation is a form of sampling whereby information from an
initial phase of sampling is use to allocate the effort for further sampling, usually
referred to as the the second phase. The material in this chapter is an extension of
the material of the previous chapter with its emphasis on stratified sampling and
two-stage sampling. A number of allocation schemes from several authors including
those of Francis, Jolly and Hampton, Salehi and Smith, Brown et al., Salehi et al.,
and Salehi and Brown are described.

Keywords Adaptive allocation · Stratified sampling · Two-phase designs

6.1 Introduction

In conventional stratified sampling, the population is divided into regions or strata
and a simple random sample is taken from each stratum, with the sample selection in
one stratum being independent of selections in the others. We wish to obtain the best
estimate of τ , the population total of y-values, subject to having a prescribed total
sample size or total survey cost, or else achieving a desired precision with minimum
cost. It transpires that the optimal allocation of the total sample among the strata
results in larger sample sizes in strata that are larger, more variable, and less costly
to sample (Cochran 1977; Thompson and Seber 1996).

If prior knowledge of the strata variances is not available, it would be natural
to carry out the sampling in two phases and compute either sample variances or
use measurements representing the variances from the first phase. These are then
used to adaptively allocate the reminder of the sampling effort among the strata.
This allocation could be based on the stratum sample mean or on the number of
large values in the first phase sample rather than sample variances, since with many
natural populations high means or large values are associated with high variances.
As we saw in Sect. 1.2.4, the standard stratified sampling estimator gives an unbiased
estimator of the population total with conventional stratified random sampling but it
is not in general unbiased with adaptive allocation designs.

G. A. F. Seber and M. M. Salehi, Adaptive Sampling Designs, SpringerBriefs in Statistics, 61
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In this chapter, we first present the basic theory. We then review some recently
developed adaptive allocation sampling designs. We may classify such a design as
either having a variable sample size or fixed sample size. The former has the advantage
that the allocation of the second-phase effort can also be done during the first phase,
which means that the stratum that is to be surveyed in the second phase will not
need to be revisited; such a revisit may be costly. However, it has the disadvantage
of having an unknown final sample size prior to surveying. This can make planning
the survey difficult. On the other hand, one knows the size of the final sample for a
fixed sample-size design, but some strata may have to be revisited.

6.2 Basic Theory

6.2.1 Initial Simple Random Samples

Suppose we have H strata with nh units in stratum h (h = 1, 2, . . . , H ) so that the
total number of units is N = ∑H

h=1 Nh . Let yhj be the y-value for the j th unit in
stratum h. In the first phase we take a simple random sample (without replacement)
of size nh1 from stratum h for each stratum. If a certain criterion C such as yh1 > c
is satisfied, where yh1 is the sample mean for the units sampled in stratum h, we take
a second sample of size nh2 from that stratum. Our first step is to find an unbiased
estimate of the mean μh and of its associated variance estimate. Any pair will do to
use the Rao-Blackwell modification for stratum h, so we can use the data from just
phase 1 to begin with. This leads to unbiased estimates yh1 and s2

h1 of μh and σ 2
h ,

respectively, where

σ 2
h = 1

Nh − 1

Nh∑

j=1

(yhj − μh)2 and s2
h1 = 1

nh1 − 1

nh1∑

j=1

(yhj − y2
h1)

2. (6.1)

Since the unit labels are not used for estimation within strata, we have from
Theorem 6 in Sect. 3.4 that yh R , the set of y-values corresponding to the unordered
units for the total sample (phases 1 and 2) in stratum h, is equivalent to yh,rank and is
therefore a complete sufficient statistic for μh . This is good news as, when nh2 > 0,
we can now use the Rao-Blackwell theorem to obtain minimum variance unbiased
estimates of μh and σ 2

h , namely μ̂h R B = E[yh1 | yh R] and s2
h R B = E[s2

h1 | yh R].
We now focus on stratum h (with nh2 > 0) and, to simplify the notation, we drop

the suffix h. If n = n1 + n2 is the total number of observations, we can compute
the mean y1g of the first n1 observations using permutation g (g = 1, 2, . . . , G),
where G = n! is the number of possible permutations of yR . Let Jg be an indicator
variable taking the value of 1 when condition C is satisfied, and 0 otherwise. Since
all G permutations are equally likely, we see that the ξ = ∑G

g=1 Jg permutations
satisfying C are also equally likely and

http://dx.doi.org/10.1007/978-3-642-33657-7_3
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μ̂R B = E[y1 | yR]

=

⎧
⎪⎨

⎪⎩

1

ξ

G∑

g=1

y1g Jg, ξ > 1,

y1, ξ = 1.

(6.2)

To find an unbiased estimator of var[μ̂R B] we see that (6.2) takes the same form as
(3.2) so that the theory of Sect. 3.3 can be applied here. From Eq. (3.1),

var[μ̂R B] = var[y1] − E{var[y1 | yR]},

and an unbiased estimator of var[y1] is s2
1 (N − n1)/n1 N (from Sect. 1.2.2). Hence

an unbiased estimator of var[μ̂R B] is

v̂ar[μ̂R B] = E{v̂ar[y1] | yR} − var[y1 | yR]
= E[s2

1 | yR]
(

1

n1
− 1

N

)

− var[y1 | yR]

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

ξ

ξ∑

g=1

{

s2
1g

(
1

n1
− 1

N

)

− (y1g − μ̂R B)2
}

, ξ > 1,

s2
1

(
1

n1
− 1

N

)

, ξ = 1,

(6.3)

where s2
1g is the value of s2

1 calculated from the first n1 observations using permu-
tation g. The estimators (6.2) and (6.3) were obtained by Kremers (1987). Some
simplification of the calculations is possible (Thompson and Seber 1996, p.186).
The final step is to combine the stratum estimates in the form (see Sect. 1.2.4)

μ̂R B =
H∑

h=1

Nh

N
μ̂h R B and v̂ar[μ̂R B] =

H∑

h=1

N 2
h

N 2 v̂ar[μ̂h R B],

using (6.2) and (6.3) for each stratum to give unbiased estimators. We note that the
rule of sampling further if condition C holds makes good sense in fisheries where
the stratum variances tend to increase with stratum means. We take further samples
in the strata with greater variability.

6.2.2 Using Observations from Previously Located Strata

We begin with a simple example from shrimp fishing. Suppose the survey area is a
bay divided into a grid of strata. Within each stratum a tow is located at random. If
more than 50lbs of shrimp per mile are caught, a full mile-tow is made in the next
stratum, otherwise a short tow of 1/2 mile is made. The process begins with a 1-mile

http://dx.doi.org/10.1007/978-3-642-33657-7_3
http://dx.doi.org/10.1007/978-3-642-33657-7_3
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tow. We now develop the theory for a more general scheme from Thompson et al.
(1992).

We use a similar notation to that above, but we shall concentrate on population
density D = τ/A, where A is the population area. The study region is partitioned
into H strata of area Ah (h = 1, 2, . . . , H ), and there are Nh units each of area ah in
stratum h so that Ah = Nhah . Let τh be the sum of the y-values in stratum h and let
μh = τh/Nh . A simple random sample of nh units is taken from stratum h and yhi

(h = 1, 2, . . . , nh) is the associated y-value (e.g., number of animals or biomass)
in unit i in the sample. Let yh = ∑nh

i=1 yhi be the sample mean for stratum h. The
stratum density Dh = τh/Ah (= μh/ah) can be estimated by the sample estimate
D̂h = yh/ah .

The sampling design is as follows. We take a simple random sample of n1 units
from the first stratum.We then take a simple random sample of n2 units from the
second stratum depending on D̂1. We continue in this fashion selecting nh units
from stratum h with nh depending on the observed density D̂h−1 in the preceding
stratum. The appropriate stratified estimate of D is then

D̂ =
H∑

h=1

Wh D̂h, where Wh = Ah

A
. (6.4)

If ch denotes “the set of all D̂k for k < h”, then, since ch determines nh , we have
that

E[D̂h | ch] = 1

ah
E[yh | nh] = μh

ah
= Dh and E[D̂h] = Dh . (6.5)

This implies that

E[D̂] =
∑

h

WhE[D̂h] =
∑

h

Wh Dh =
∑

h

Ah

A
Dh = τ

A
= D. (6.6)

We also have the following well-known result involving conditional means and
variances, namely

var[D̂h] = Ech [var(D̂h | ch)] + varch [E(D̂h | ch)] = Ech [var(D̂h | ch)] (6.7)

with the second term being zero by (6.5). Now for h < i , ci will determine D̂h so
that by (6.5)

E[(D̂h − Dh)(D̂i − Di ) | ci ] = (D̂h − Dh) E[(D̂i − Di ) | ci ] = 0.

Taking expectations with respect to ci gives us

E[(D̂h − Dh)(D̂i − Di )] = 0. (6.8)
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Applying (6.6) and (6.8)

var[D̂] = E

⎧
⎨

⎩

[
H∑

h=1

Wh(D̂h − D)

]2
⎫
⎬

⎭

= E

⎧
⎨

⎩

[
H∑

h=1

Wh(D̂h − Dh)

]2
⎫
⎬

⎭

= E

[
H∑

h=1

W 2
h (D̂h − Dh)2

]

+
H∑

h=1

∑

i �=h

Wh Wi E[(D̂h − Dh)(D̂i − Di )]

=
∑

h

W 2
h var[D̂h] (6.9)

=
∑

h

W 2
h Ech [var(D̂h | ch)] (6.10)

=
∑

h

W 2
h Enh

{
1

a2
h

[var(yh | nh)]
}

. (6.11)

If

s2
h = 1

nh − 1

nh∑

j=1

(yhj − yh)2,

we have the usual unbiased estimate of var[yh | nh] and this leads to the unbiased
estimate of var[D̂], namely,

v̂ar[D̂] =
∑

h

W 2
h

s2
h

a2
hnh

(

1 − nh

Nh

)

=
∑

h

W 2
h vh, say. (6.12)

It is interesting to note that the formulas (1.6) for nonadaptive stratified sampling are
still unbiased for the adaptive allocation method.

Thompson and Seber (1996, p. 195) note that the above theory can be extended
to the case when ah also depends on ch . We have that

E[D̂h | ch] = E[D̂h | nh, ah] = Dh,

so that D̂ is still unbiased. Also var[D̂] is still given by (6.10) and (6.11) if the
expectation is with respect to both ah and nh . Then

E[vh] = EE[vh | nh, ah]

and v̂ar[D̂] of (6.12) is still unbiased.

http://dx.doi.org/10.1007/978-3-642-33657-7_1
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6.3 Some Adaptive Allocation Sampling Designs

We now consider some variations on our two-phase sampling theme. The appropri-
ateness of a particular method depends very much on the population being sampled.
The estimates obtained are generally biased, though the bias is usually small.

6.3.1 Francis’s Design

Francis (1984), in his fisheries research, allocated his total fixed-sample size n to
the strata in two phases, with the first-phase sample being n·1 and the second-phase
sample of size n−n·1 being carried out in a sequential fashion. His design is based on
a variance estimate of the total weight of fish (biomass) from the first phase for each
stratum. When we estimate the stratum total biomass using a conventional estimator,
the Francis’s design is essentially equivalent to the following.

In allocating the second-phase sample we carry out the following steps for each
unit. If an additional unit is added to stratum h, then, using the same estimate s2

h1
from the first phase (defined in (6.1)), the reduction in the estimated variance of the
conventional estimator is

Gh = N 2
h (

1

nh1
− 1

nh1 + 1
)s2

h1 = N 2
h s2

h1

nh1(nh1 + 1)
.

This formula is now used to determine phase-2 allocations sequentially as follows.
The first unit of the remaining unallocated units is allocated to the stratum for
which Gh is the greatest. Suppose this is stratum j . Then G j is recalculated as
N 2

j s2
j1/(n j1 + 1)(n j1 + 2). The next unit is added to the stratum for which Gh is

a maximum, and so on. Francis used the conventional stratified estimator which
is biased. To control the bias, he suggested using n·1 = (3/4)n for the phase-one
sample.

6.3.2 Jolly-Hampton’s Design

Jolly and Hampton (1990) proposed another adaptive allocation that can be formu-
lated as a fixed sample-size design with n fixed again and n·1 units in phase one. A
first-phase sample of size nh1 is selected without replacement from each stratum h
where nh1 is chosen such that nh1 < n/H . Variances of the strata are then estimated
from this first-phase sample. The remaining n − n·1 units are allocated as follows.
The total sample size for the hth stratum is computed from

nh = nh1 + (n − n·1)
Nhsh1

∑H
h=1 Nhsh1

,
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where sh1 is the standard deviation of the first-phase sample in the stratum h (see
(6.1)). If the computed sample size in the hth stratum is larger than Nh , we select
all the units in stratum h. They applied their method to an acoustic survey of South
African anchovy.

6.3.3 Salehi-Smith’s Design

Salehi and Smith (2005) introduced two-stage sequential sampling. In the special
case that all the primary units are selected, the sampling design may be considered
as an adaptive allocation design. In the first phase, a simple random sample is selected
from each primary sample unit (stratum). To conduct the second phase, a condition
C is defined for which the remaining sample size is allocated based on the value
of the variable of interest. They used Murthy’s estimator (Sect. 1.2.3), which is an
unbiased estimator, for the population mean.

In the first phase a simple random sample of nh1 units is drawn without replace-
ment from stratum h (h = 1, . . . , H ). If condition C is satisfied for at least one unit
in the hth stratum in the first-phase sample, a predetermined number of additional
units, say nh2, are selected at random from the remaining units in stratum h. As a
result n = ∑

h nh1 + ∑
h nh2 is the total sample size, and is random. This method

can be formulated as a variable sample-size design.

6.3.4 Brown et al.’s Method

Brown et al. (2008) introduced an adaptive allocation with a variable sample-size
design that is more flexible than the Salehi-Smith design. The first phase is conducted
as with the Salehi-Smith design, and a multiplier d is determined before sampling.
In the second phase, if lh1 units from the first phase sample in stratum h satisfies the
condition C , then additional d × lh1 units are sampled from the remaining units in
stratum h. They used Murthy’s estimator to estimate the population mean.

Moradi and Salehi (2010) modified Brown et al.’s method in which one selects one
sample unit at least in the second phase regardless of the first-phase results. Murthy’s
estimator in Brown et al.’s sampling design is a weighted average with the weights
calculated from the first-phase information only. They introduced a class of unbiased
estimators for which the weights are calculated from both phases. They proved that
the conventional estimator for stratified sampling is approximately unbiased. To
estimate the variance of this estimator, they suggested two estimators. The first is the
conventional stratified variance estimator, which is an under-estimate. The second
is a bootstrap method similar to what Manly et al. (2002) introduced. A small study
indicated that the bootstrap variance estimator is a slightly over-estimate.

http://dx.doi.org/10.1007/978-3-642-33657-7_1
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6.3.5 Salehi et al.’s Method

Salehi et al. (2010) proposed a fixed sample-size version of Brown et al.’s method.
The final sample size n is fixed, and a random sample of size nh1 (h = 1, 2, . . . , H )
is selected without replacement from each of the strata. Once again lh1 is the number
of units in the first sample from stratum h that satisfy the condition C . Then d will
be bounded and is given by

d = n − n·1
∑

h lh1
,

where n·1 = ∑
h nh1. We can select d × lh1 units from stratum h when

∑
h lh1 > 0,

and then the final sample size would be equal to the predetermined sample size
n. If

∑
h lh1 = 0, the multiplier d is undefined. To achieve a fixed sample size n,

we allocate the remaining n − ∑
h nh1 units equally to strata when

∑
h lh1 = 0.

However, they noted that attaining the predetermined sample size n is not strictly
true because of a rounding problem. The final sample size will be approximately
equal to the predetermined sample size and may vary by a small amount depending
on the effect of converting the real numbers to integers. They introduced a biased
Horvitz-Thompson estimator and a biased sample-mean type of estimator for their
method. They also recommended the latter for the Brown et al. method.

6.3.6 Complete Allocation Stratified Sampling

Salehi and Brown (2010) introduced a simplified adaptive allocation sampling design
that targets the field effort and is logistically feasible. They called it complete alloca-
tion stratified sampling. It is an efficient and easily implemented adaptive sampling
design.

Using stratification, let yhi be the count of the species of interest in unit i from
stratum h, let yh be the stratum total count, and let τ be the total number of individuals
in the population. Here the sample unit can be a plot, quadrat, or fisheries tow. In
phase 1, a simple random sample of size nh is taken without replacement from
stratum h. The selected units are observed. If we observe any unit in stratum h that
has a count of at least one, that is yh > 1, all units in this stratum are selected. This
selection of all units in the stratum is the second phase of sampling. For any strata
in which all first-phase units have no individuals present, there is no second phase.
As all observed units in these strata are zero, we can ignore them without losing any
information. Let πh be the probability that the entire stratum h is selected, that is,
one of the nonempty units is selected. Suppose that mh is the number of nonempty
units in stratum h, then

πh = 1 −
[(

Nh − mh

nh

)/(
Nh

nh

)]

.
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Therefore the Horvitz-Thompson estimator of τ is

τ̂ =
γ∑

h=1

y∗
h

πh
,

where y∗
h is the sum of the yhi for the hth stratum, and γ is the number of strata for

which at least one individual is observed in the first phase of sampling. Its variance
is given by

var[̂τ ] =
H∑

h=1

(1 − πh)y∗
h

2

πh
,

and an unbiased variance estimator is given by

v̂ar[̂τ ] =
γ∑

h=1

(1 − πh)y∗
h

2

π2
h

.

To evaluate the precision of complete allocation stratified sampling, Salehi and
Brown (2010) used a modeled population of rockfish (Sebates species) in the Gulf
of Alaska adopted from Su and Quinn II (2003). Results of the study with complete
allocation stratified sampling showed high relative efficiency, especially if the survey
is designed so that strata match the scale, and preferably shape, of aggregates in the
population.
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