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Preface 

This textbook on epidemiology is a companion to the ActivEpi CD-ROM. The ActivEpi CD-
ROM provides a multimedia presentation of epidemiologic concepts commonly taught in an 
introductory course in epidemiology. ActivEpi CD-ROM uses a range of multimedia effects to 
motivate, explain, visualize, and apply introductory epidemiologic concepts, integrating video, 
animation, narration, text, and interactive question and answer sessions. Since individuals differ 
in their learning skills, the ActivEpi CD-ROM and ActivEpi Companion Textbook offer readers 
different but nevertheless intertwined options on how to learn epidemiology. The ActivEpi CD-
ROM provides an exciting way of presenting epidemiologic concepts through use of animation. 
The ActivEpi Companion Textbook can be utilized as a hardcopy reference of the textual 
materials contained in the CD-ROM, as a resource for the practice exercises, as a general 
reference, or even a self-contained textbook. The ActivEpi CD-ROM and ActivEpi Companion 
Textbook can be used for self-study or for a course in epidemiology, either in a traditional 
classroom setting or in a distance learning setting. 

In general, virtually all of the material on the ActivEpi CD-ROM is included in the 
ActivEpi Companion Textbook. Some of the narration on the ActivEpi CD-ROM was altered for 
the Companion Textbook. This difference occurs primarily when the CD-ROM narration refers 
to an animation on the screen. Another difference between the ActivEpi CD-ROM and the 
Companion Textbook is in the Study Questions and the Quizzes. On the CD-ROM, the answers 
are provided interactively. In the text, the Study Questions and Quizzes are sequentially 
numbered throughout each lesson with the answers provided at the end of the lesson. Finally, 
there are some interactive activities on the ActivEpi CD-ROM that cannot be duplicated in the 
text, such as the exercises using the Data Desk program. 

The 2nd Edition of the ActivEpi Companion Textbook is in step with the ActivEpi CD-
ROM version 2.  These updated versions of the ActivEpi Companion Textbook and CD-ROM 
have numerous improvements and have added sections on a number of topics, including indirect 
standardization, the standardized mortality ratio (SMR), and more details on how the exposure 
odds ratio estimates the risk ratio in a case-cohort study without the rare disease assumption and 
how the Mantel-Haenzsel odds ratio estimates the incidence density ratio in a nested case-
control study without the rare disease assumption.  The 2nd Edition of the ActivEpi Companion 
Textbook now has a glossary. 
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1-1 Getting Started: The Lesson Book 
 

Introduction 
 
Epidemiology is the study of health and illness in human or other (veterinary) populations. In this course, we consider real-
world health and illness problems, and we show how epidemiologic concepts and methods allow us to study, understand and 
solve such problems. And, most important, we apply each new concept or method as we develop it to help you attain a 
growing understanding of the subject. 
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Note that the information below concerning how to use the ActivEpi CD is for Version 2.0 of the software 
 

The Lesson Book 
 
Each page of this Lesson Book presents only a few concepts, introduced by brief paragraphs. The actual learning is done by 
viewing, and interacting with, a launchable Activity. ActivEpi employs three types of activities: 

 Narrated Expositions that use animation, text, pictures, and video, synchronized with an audio track, to teach 
concepts; 

 Drag-and-Drop Quizzes that provide feedback so you can determine whether to go back and review or move 
forward to the next set of activities; 

 Data Desk data analysis activities that let you practice applying what you have learned. 
 
 
The Lesson Book is the home base for the course. Each page of the Lesson Book focuses on a few concepts, introduced by 
brief paragraphs. The Lesson Book has three general areas. The elements of each area respond to a single mouse click, 
opening new windows for each function. 
 

 
The tabs hold global matters such as the Table of Contents, the 
Index, and the Glossary. 

 
 
 
 
 
 
 
 

 
The control bar holds page-level matters. Icons in the 

control bar provide access to the statistics environment that 
accompanies the course, offer a way to move forward and backward 
in the Lesson Book, and provide projects and exercises appropriate 
for the page. 

 
 
 

“
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The body of a page holds discussions and examples of 

the concepts and methods that make up the content of the course.  
You initiate Activities by clicking once on their icons on the 
page, as you did to view this discussion. Pages may be too long 
to fit on the screen. The scroll bar on the right scrolls the page 
contents up and down. The details of using each of these features 
are discussed in separate Activities below. 

 
 
 
 
 

 
 

Getting Started 
 
This course uses multimedia to 

 Show real-world examples 
 Let you apply methods as you learn them 
 Provide computer-based experiments 
 Allow you to check your understanding privately, and 
 Supply a range of exercises, projects, and examples so you can take your learning beyond the computer. 

 
Epidemiology is the study of health and illness in human populations.  For example, a randomized clinical trial 

conducted by Epidemiologists at the Harvard School of Public Health showed that taking aspirin reduces heart attack risk by 
20 to 30 percent.  Public health studies in the 1950’s demonstrated that smoking cigarettes causes lung cancer.  
Environmental epidemiologists have been evaluating the evidence that living near power lines may have a high risk for 
childhood leukemia.  Cancer researchers wonder why older women are less likely to be screened for breast cancer than 
younger women.  All of these are examples of epidemiologic research, because they all attempt to describe the relationship 
between a health outcome and one or more explanations or causes of that outcome.  All of these examples share several 
challenges: they must choose an appropriate study design, they must be careful to avoid bias, and they must use appropriate 
statistical methods to analyze the data.  Epidemiology deals with each of these three challenges. 
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1-2 Preferences and Activities 
 

Preferences 
 
You can customize the look of the Lesson Book page, choose to hide or show various kinds of Activities, and control how 
many of the features of the course work. The Preferences... command in the Edit menu offers many choices.  
 

 
Preferences 

 

 
 

 
These are notes on the available preference choices. For all checkboxes, the default state is unchecked. 
 
Disable sounds 
 
A variety of sound effects accompany ActivEpi actions. You may prefer silence. Check this box to silence those sounds. 
None of the sounds is essential to using ActivEpi or understanding epidemiology. 
 
Do not adjust Contents 
 
The Table of Contents provides convenient navigation through the course. Use the Table of Contents to show the top level 
of an outline of the course, and to expand that outline for the current Lesson and current page. The Table of Contents adjusts 
automatically whenever you turn a page or goes directly to another page in the Lesson book, again expanding to display 
information for the open page. Check this box to have the Table of Contents stay the same even though the Lesson Book 
page has changed. 
 
Hide control bar (Macintosh only) 
 
The Control Bar runs across the top of each Lesson Book page and provides access to key components of the course. Check 
this box to hide the control bar when you launch the program. You can click on the triangle on the upper-left comer of the 
Lesson Book bring back the control bar. On Windows computers, the control bar is displayed from the Tools Menu. 
 
 
 
 

Continued on next page
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Hide estimated time 
 
Each Activity shows a stopwatch with an estimated completion time for that Activity. For example, a stopwatch with a 
quarter of its area red estimates that the Activity will take you about 15 minutes. Check this box to hide the stopwatches. 

Continued on next page
Show exposition text 
 
All narrated Activities can display the text of the narration in a separate window. This may be especially helpful if English 
is not your first language. Check this box to open the narrated script text window automatically whenever a narrated 
Activity is launched. 
 
Show tips at startup 
 
When this box is checked, the Hints & Tips window is automatically opened when the program is launched. This preference 
can also be set from within the Hints & Tips window. 
 
Lesson Book format 
 
This one is just for fun. You can personalize your Lesson Book by choosing how it should look. Click on the black triangle 
and choose one of the formats in the menu. The selected format shows a check mark next to it.  
 
Font size 
 
You can specify the size of the type in the Lesson Book, in asterisks, and other places. Teachers may prefer a larger type 
font size when displaying the computer screen on a projector. Click on the black triangle and choose the correct size for 
you. The selected font size shows a check mark next to it. The default value is 12. 
 
Teacher folder 
 
The Teacher Folder holds supplementary material that appears as additional Activities on pages of the Lesson book. For this 
feature to work, you must tell ActivEpi where to find the folder. It can be on any disk that your computer can access, 
including a network server or a floppy disk. If your teacher has created supplementary files, he or she will tell you how to 
locate the Teacher Folder. 
 

 
 

Activities 
 
Lesson Book pages hold a number of Activities. Click on the Activity icon to launch it. Close the Activity window to return to 
the Lesson Book.  Narrated Exposition activity windows offer controls so that you can pause the discussion, repeat any 
portion, skip over parts, and close the window. These controls are the same in every window, so you need to learn them only 
once. 
 

Using Controls in Activities 
 
Each Activity opens its own window. You can take control over the Activity with the controls along the bottom of the 
window.   
 

Lesson 1.  Getting Started
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The progress bar shows the progress of the lesson. Drag the progress indicator to the right or left to find a particular 
part of the lesson. To pause, the Activity, click on the Stop/Play button, or press the space bar on your keyboard.  To continue 
the Activity, click again or just press the space bar again. 

To control the volume of the sound in the current Activity, click the small speaker icon in the lower left corner and 
slide the control to the desired level, or press the up or down arrow keys on your keyboard.  To change the volume for all 
Activities, hold the shift key while sliding the control or pressing the arrow keys. 
 
 
Study Questions (Q1.1) 
 
1. Some Activities pause to suggest study questions. 
2. Do what the study question suggests, or think about the question it raises before pressing the Continue 

button. 
 
3. Once you have answered a question for yourself, you can usually click on the question to see the solution. 
4. Do you recall the keyboard shortcuts to change the sound volume? 
 
(Note: in the ActivEpi Companion Textbook, the answers to Study Questions and Quizzes are located at the end of each 
Lesson.  In addition, the Companion Textbook sequentially numbers the Study Questions and Quizzes within each Lesson 
whereas these number do not appear on the CD-ROM.) 
 

When an Activity is over, it offers a close button like this that returns you to the Lesson Book. 
 
 

Volume Control 
 

To set the volume, click on volume control button at the bottom of the Activity or movie and set the level 
you want. The volume in the Activities and movies can also be set by using the up and down arrow keys 
while playing or while paused. On Macintosh computers, using shift-up and shift-down will change the 
global volumes. 
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Introduction to the Exercises (Quizzes) 
 
The Lesson Book offers exercises to review terms that you have just learned. Drag-and-Drop Quizzes of this kind are always 
for your own information. Your performance is not recorded. Feel free to use these exercises to help judge whether you 
learned the new concepts just presented (or whether it would be worthwhile to review them one more time). 
 
An example of a Quiz is provided (see next page) and you may want to run this quiz on the CD-ROM to become familiar 
with its operation. 
 

 
 
 

Data Desk Program 
 
This course includes a data analysis environment called Data Desk. It provides data analysis and graphics capabilities for the 
course. You will learn how to use Data Desk’s capabilities piece-by-piece as you need each one during the course.  Three 
activities are provided on the CD-ROM to introduce users to the basics of Data Desk, getting data into Data Desk, and about 
Templates in Data Desk.  ActivEpi includes more extensive documentation for Data Desk excerpted from the book Learning 
Analysis with Data Desk.  On the CD-ROM, select Data Desk Help … from the Help menu. 
 

 
1-3 The Lesson Book Page 
 

The Lesson Book Page 
 

 Lesson Book paragraphs often change on return from an Activity 
 Bullet lists summarize the important points of the Activity. 
 Special terms introduced in the Activity are highlighted in blue (on the CD-ROM). 
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The stopwatch icon to the left of each Activity button shows the approximate time required to complete the Activity.  On the 
CD-ROM, click on it to drop down a menu with other commands relating to the Activity. 
 

Using the Stopwatch Commands 
 

 
 
Copy to Bookmarks places a Bookmark to the Activity. Open the Marks tab from the lesson page to see a list of Activities 
that were copied. Clicking on the Activity inside the Bookmark takes you to that Activity. 
 
Execute activity opens the Activity. This is equivalent to clicking on the Activity icon from the lesson page. 
 
Set activity as completed puts a check mark next to the Activity icon on the lesson page to indicate completion of that 
Activity.  This command will change to say Set activity as uncompleted if there is a check mark next to the Activity icon. 
 
Shrink explanation hides the Activity icon and the explanation leaving only the goal statement on the lesson page. Click 
on the goal statement to bring back the Activity explanation and the icon. 
 
 

 
 
The page number at the right of the Control Bar at the top of the page identifies the current page, offers arrows that turn pages 
forward or backward and speed arrows that turn to the next or previous lessons. Click the page number itself to turn directly 
to any other page. 
 

Glossary 
 
Terms that appear in color and underlined on the CD-ROM are in the Glossary. Click on any glossary term to open the 
glossary to the appropriate definition. Whenever you see a glossary term, ask yourself whether you know what it means. If 
you are not certain, just click on the term. 
 

 Asterisks 
 
Asterisks cover concepts in greater depth and offer additional material such as examples. Asterisks are not optional material, 
but rather can contain important information or comments. You should generally click on asterisks as you find them.  In the 
Companion Textbook, items that have an asterisk on the CD-ROM will be presented in a box at the end of the Activity. 
 

Using the Asterisks 
 

Clicking on an asterisk on the CD-ROM opens a window.  Asterisk windows present new or additional information and 
often offer links to the Glossary, and are referred to in the Index. 

Each Lesson has an initial asterisk (using the symbol on the right below) that provides references for the material 
covered in that lesson.  In the Companion Textbook, references are placed at the end of each lesson and the new or 
additional information placed in a box at the end of the activity. 
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1-4 Global Features 
 

Global Features of the Course 
 

Table of Contents 
 

 
The Table of Contents serves 3 important functions:  First, it 
gives an overview of the course, listing each lesson in order.  
Second, it provides a quick way to go to any lesson in the 
course. Just click on any lesson title to turn to the first page of 
that lesson.  Finally, the Table of Contents shows you where 
you are in the course. 

The Table of Contents opens to show each of the 
pages of the current lesson, and opens the current page to 
show each of the Activities on that page. 
 

Activities that are checked off as viewed on the page 
show check marks next to them in the table of contents as 
well.  Click on any line of the table to go to that page or even 
to that specific Activity. 

 
 
 
 
 
 
 

 
Close the Table of Contents by clicking its 

close box. Open the Table of Contents by clicking on 
the Contents Tab of the Lesson Book. 
 
 
 

 
 

Glossary 
 

 
Throughout the Lesson Book, and in supplementary files, you will find words 
highlighted in color and underlined. These are Glossary terms.  Click on any 
Glossary term to open the glossary to its definition. Alternatively, you can click on 
the Glossary tab and drag it out: 
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The Glossary window defines terms discussed in this course. Select the term to define by clicking on the term in the 
right panel. The definition is displayed in the adjacent panel on the left. You can scroll through the alphabetized list to find a 
specific term or press any key to find terms beginning with that letter. 
 

 
If a definition is too long to fit in the window, scroll or 

resize the window.  Most definitions refer to other definitions. 
Click on any colored term to see its definition.  To return to 
previous definitions (all the way back to the first you selected), 
click on the return arrow .  To locate where the term is 
discussed in the course, click the small i button  to open the 
index.  To close the glossary, click its close box . 
 
 
 
 
 
 
 

 
Index 

 
Open the Index by clicking on the Index tab: 154 
 
 
 

 
 
 
 

 
The Index window shows a scrolling alphabetical 

list of terms. Click on the term to locate. The adjacent panel 
gives links to references in the course.  The icon next to the 
reference indicates the type of Activity, in the same way as in 
the Table of Contents and Bookmarks. The reference gives 
the Lesson name, the page name, and the Activity name. 
Click on the icon to turn the Lesson Book to the 
corresponding page.  Many indexed terms have Glossary 
definitions. When there is a glossary definition, it is offered 
both in the references and at the bottom of the reference 
scroll bar.  You can scroll through the alphabetized list to 
find a specific term.  To close the index, click its close box. 
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Bookmarks 

 
The Bookmark window holds icons that point back to Activities in the Lesson Book.  To mark 
any Activity with a Bookmark, drag the Activity’s icon to the Bookmark window.  You can 
edit the text next to a Bookmark to say anything you want.  To return to a marked Activity, 
just click on the Bookmark. The Lesson book will open to the correct page and highlight the 
Activity.  You can even make a Bookmark for an asterisk, homework, or project. Because 
these windows have no icons, you add their Bookmarks to the Bookmark window with a 
menu command.  On a Macintosh, click on the local menu square in the lower right of any of 
these windows.  On Windows, just click the right mouse button anywhere in one of these 
windows. A menu will pop down offering a command to add the bookmark to the Bookmark 
window.  You can save separate Bookmark files each under its own name and open them 
whenever you’d like. This makes it easy to create bookmark files for different needs. 
 
 

Shortcuts 
 

 To make the sound in any Activity louder, press the up-arrow key. To make the sound softer, press the down-
arrow key.   

 Turn pages from the keyboard on a Macintosh by pressing Command-2 to view a previous page and Command-3 to 
advance to the next page. On Windows computers, use the Control key in place of the Command key.  Command-l 
and Command-4 take you to the first page of the previous chapter and the first page of the next chapter, respectively. 

 Press the space bar or click the mouse to pause an Activity. 
 To continue a paused Activity, double-click in the body of its exposition area or press Return or Enter on your 

keyboard. 

 
 
1-5 Page Controls 
 

Page Controls 
 
The Control Bar at the top of the page in the ActivEpi CD-ROM offers direct access to the Data Desk statistics applications, 
the Homework and Projects for each lesson, the World Wide Web (if your computer is connected), and to the visualization 
tools used in each lesson. 
 

 
 

Use this icon to learn about computing using Data Desk with your own data. 
 
 

Exercises, Homework, Study Questions, and Projects 
 
Homework exercises appropriate to each lesson are kept in the Homework icon of the control bar.  Do the 
Homework.  Click the WORK icon on the control bar to open the Homework 
 

ACE-I. Homework Introduction 200 
 

Homework exercises typically provide data and ask that you apply the methods or concepts you have been learning to 

Lesson 1.  Getting Started



13   

  

understand something about the data. The most common request is that you write a paragraph or two about your conclusions, 
possibly illustrated with graphs or tables. If you use Data Desk, graphs and tables can be copied and pasted into any standard 
word processor. You will probably find that you learn more by doing homework exercises than by working with the tools or 
following the expositions. You will recognize your progress when you are able to phrase your question in proper terms to 
your teacher or your teaching assistant. 

Note: Some homework exercises that require computations can be completed using Data Desk and Data Desk 
templates. Data Desk templates are special Data Desk files that extend the capabilities of the program. To use a template with 
data in a Data Desk datafile, you would typically merge the template into the file holding the data using the Import command. 
For all of the Data Desk activities launched from the Lesson Book in this course we have already imported any required 
templates into the Data Desk datafile. 

To bring a template into your current Data Desk file, choose the Import command from the File menu. Use the 
dialog that appears to find the template you wish to import and click the Import button. 

Projects usually include the collection or generation of new ideas.  Identify projects that apply concepts and 
methods from the current lesson.  Click the PROJ icon to open the Project Browse.  Projects provide an 
opportunity to apply the skills and concepts learned in the Activities to new real-world problems. 
 
 
The Web icon is for linking to the World Wide Web for a wealth of related data, activities, and information.  
This is where links to Internet resources are made, especially for gathering data for statistical analysis. 
 
 
The Guide icon opens the Help Guide, which indicates the different types of help available.   
 
 
 
 

 

1-6 Learning Effectively 
 

Learning Effectively with this Course 
 

To work effectively in this course, you must take control of the key parts of your learning. In particular, you should: 
 
Take Notes: There is real mnemonic value in the physical experience of writing notes. We encourage you to take notes on 
paper in the traditional way. (See how to to copy the text to the clipboard at the end of this lesson).  Remember that you can 
pause an exposition or video at any time by clicking the stop/play button or pressing the space bar. If you miss something or 
want to see it again, slide the progress bar back to that point. 
Control the Expositions: Everyone’s mind wanders sometimes. And even if you are paying close attention, some of the 
material just doesn’t make sense the first time you see it.  (Frankly, nobody understands this stuff the first time they see it. A 
drawback of a standard classroom lecture is that you can’t pause or rewind most lecturers.)  You have full control over the 
explanation of new material. You can stop at any point just to sit and think for a minute to absorb a new idea, to write some 
additional notes, to refer to the corresponding section of a text, or to confer with another student. You can review any part as 
often as you like and work with any tool as often as you like. 
Do the Exercises: Nobody is watching, so it is easy to skip the review material.  Don’t skip it!  Some important parts of the 
course are taught in the exercises. If you skip them, you’ll miss some important stuff. 
Work Sequentially: Yes, it’s multimedia, with hypertext and many options. But epidemiologic methods, as well as statistics, 
is a sequential subject. You are free to jump around in the course, but you’ll find that the material makes much more sense 
when you learn basic ideas first and then build on them.  And that old trick of first trying to do the homework and then 
looking back to try to find a similar part of the text to copy for the answer just won’t work with multimedia. The content is 
often found inside an Activity or Exercise, so you’ll waste much more time looking for it than you ever could have saved. 
Accessibility: ActivEpi has several features that make it more accessible to those with hearing or visual impairments, or 
those who have learned English as a second language. See the box at the end of this lesson to see how to use ActivEpi most 
effectively. 
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Copying text 

 
For asterisk, projects, and homework, you can choose Copy from the Edit menu to copy the entire text.  Copy works in the 
Lesson Book either for all the text or just with selected paragraphs.  To select a paragraph on Macintosh platforms, hold 
down the option key and click on the paragraph. To select a continuous paragraph list, hold down the shift-option keys and 
click. For a non-contiguous grouping, use option-command. To select a paragraph on Windows platforms, hold down the 
control key and click on the paragraph. To select more than a single paragraph, hold down the shift-control keys and click. 
 
 
 

Accessibility 
 

Accessibility means creating products usable and friendly to a wide range of users, including those with disabilities. There 
are over forty million people in the United States who have some type of disability. ActivEpi has been designed to address 
accessibility issues. 

There are several accessibility tools already available for personal computers. Macintosh users should be familiar with 
Close View and Easy Access, and Windows users should have Accessibility Options installed. 

 
People With a Physical Disability 
 
People who have a physical disability mainly have difficulty with computer input devices, such as the mouse or keyboard, 
and with handling storage media.  Where possible, both mouse behavior and command-key equivalents are used to perform 
the same action. For example, a movie or an exposition can be started or stopped by clicking the mouse button on the 
play/pause button or by using the space bar. For the hands-on activities that require a generated data file from either clicking 
on a target or guessing fractional parts, sample data files have been provided on the ActivEpi CD-ROM. 
 
People With a Visual Disability 
 
People with a visual disability have the most trouble with the output display, the screen. For these users, it is possible to set 
the size of text in the Lesson Book, Asterisk, and Homework windows. Choose from the menu Edit Preferences and 
change the font size setting. For the expositions and tear-off tools, consider either changing the desktop window size (using 
the Monitor control panel on Mac or the Start Settings Control Panel Display on Windows) or using a zoom utility 
(Close View on Mac, ZoomIn on Windows, Magnifier on Windows98).  For people with color-vision difficulties, several 
hands-on activities allow the colors of data items to be changed. For example, click on a holding bin in either the 
Randomness or Probability activities and select a new color. On Macintosh, switching the monitor setting to black-and-
white will display the different data types using patterns instead of colors. 
 
People With a Hearing Disability 
 
Hearing-disabled people cannot hear normal volume levels or at all. With the exception of the spoken text in movies, 
expositions, and hands-on activities, all sounds are used as assisting mechanisms, for example hearing a page turn when a 
new Lesson Book page is displayed.  For the spoken text in activities, written text is available. After activating an activity, 
choose Exposition View Exposition Text from the menu to see the narration. If you would like to see this text before 
every activity, choose View exposition text from the Preferences dialog. People who are not fluent in English may also 
wish to take advantage of this feature. The volume of movies and expositions can be set by clicking on the speaker icon at 
the lower-left comer of these activity windows. Hold down the shift key to set the volume for all activities instead of just 
the current one.  The exposition text is also in the ActivEpi Companion Textbook. 

 
People With a Speech or Language Disability 
 
People who have a speech or language disability may have normal to above-average cognitive ability but no capacity for 
oral communication. The speech or language disability may be caused by an injury or a stroke, for example. In these cases, 
we recommend using the Exposition View Exposition Text option whenever possible (see previous section) and the 
ActivEpi Companion Textbook. 

Continued on next page

Lesson 1.  Getting Started
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People With a Seizure Disorder 
 
Some people with a seizure disorder are sensitive to certain flicker frequencies, which may cause them to go into seizure. 
The most problematic part of this frequency range is from 15 to 30 Hz. ActivEpi simulations are designed to use a graphical 
technique known as double buffering to reduce the amount of flickering. 
 
Collaborative Computing 
 
Collaborative computing is a shared computing environment or application that facilitates communication and teamwork 
among groups of people. If you are using ActivEpi in this type of environment, we recommend using shared headphones in 
a computer laboratory environment (i.e. a classroom with multiple computers).  
 
Further Information 
 
Apple Computer Disability Connection, www.apple.com/disability/ 
Microsoft on Disabilities and Accessibility, www.microsoftcom/enable/microsoft/ 
 
 
 
Answers to Study Questions 
 
Q1.1 
 

1. (no question asked) 
2. (no question asked) 
3. Although it is tempting to just click to see the answer, you will learn much more if you try to answer the question 

first and just click for the solution as a check afterwards. 
4. To change the sound volume from the keyboard, press the up or down arrow keys 

 



  

 
 
 
 

  

 

 

PART  I

Objectives and Methods of Epidemiologic Research
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Epidemiologic Research: An Overview 
 

2-1 Important Methodologic Issues 
 
The field of epidemiology was initially concerned with providing a methodological basis for the study and control of 
population epidemics.  Now, however, epidemiology has a much broader scope, including the study of both acute and chronic 
diseases, the quality of health care, and mental health problems.  As the focus of epidemiologic inquiry has broadened, so 
has the methodology.  In this overview lesson, we describe examples of epidemiologic research and introduce several 
important methodologic issues typically considered in such research. 
 

The Sydney Beach Users Study 
 
Epidemiology is primarily concerned with identifying the important factors or variables that influence a health outcome of 
interest.  In the Sydney Beach Users Study, the key question was “Is swimming at the beaches in Sydney associated with an 
increased risk of acute infectious illness?” 
 

In Sydney, Australia, throughout the 1980s, complaints were expressed in the local news media that the popular 
public beaches surrounding the city were becoming more and more unsafe for swimming. Much of the concern focused on 
the suspicion that the beaches were being increasingly polluted by waste disposal. 

In 1989, the New South Wales Department of Health decided to undertake a study to investigate the extent to which 
swimming and possible pollution at 12 popular Sydney beaches affected the public’s health, particularly during the summer 
months when the beaches were most crowded. The primary research question of interest was: are persons who swim at 
Sydney beaches at increased risk for developing an acute infectious illness? 

 

 
 

The study was carried out by selecting subjects on the beaches throughout the summer months of 1989-90. Those 
subjects eligible to participate at this initial interview were then followed-up by phone a week later to determine swimming 
exposure on the day of the beach interview and subsequent illness status during the week following the interview.  

  
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_2, © Springer Science+Business Media New York 2013 
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Water quality measurements at the beaches were also taken on each day that subjects were sampled in order to 

match swimming exposure to pollution levels at the beaches. 
Analysis of the study data lead to the overall conclusion that swimming in polluted water carried a statistically 

significant 33% increased risk for an infectious illness when compared to swimming in non-polluted water. These results 
were considered by health department officials and the public alike to confirm that swimming in Sydney beaches posed an 
important health problem. Consequently, the state and local health departments together with other environmental agencies in 
the Sydney area undertook a program to reduce sources of pollution of beach water that lead to improved water quality at the 
beaches during the 1990’s. 
 
Summary 
 

 The Sydney Beach Users Study is an example of the application of epidemiologic principles and methods to 
investigate a localized public health issue. 

 The key question in the Sydney Beach Users Study was: 
o Does swimming at the beaches in Sydney, Australia (in 1989-90) pose an increased health risk for acute 

infectious illnesses? 
o The conclusion was yes, a 33% increased risk. 
 

 
Important Methodologic Issues 

 
We provide a general perspective of epidemiologic research by highlighting several broad issues that arise during the course 
of most epidemiologic investigations. 
 

There are many issues to worry about when planning an epidemiologic research study (see Box below). In this 
activity, we will begin to describe a list of broad methodologic issues that need to be addressed. We will illustrate each issue 
using the previously described Sydney Beach Users Study of 1989. 
 
Issues to consider when planning an epidemiologic research study 

Question Define a question of interest and key variables
Variables What to measure and how; exposure (E), disease (D), and control (C) 

variables 
Design  What study design and sampling frame?
Frequency Measures of disease frequency
Effect Measures of effect 
Bias  Flaws in study design, collection, or analysis
Analysis Perform appropriate analyses 

 

 
The first is to clearly define the study question of interest, including specifying the key variables to be measured. 

Typically, we ask: What is the relationship of one or more hypothesized determinants to a disease or health outcome of 
interest?  
 

 
 

A determinant is often called an exposure variable and is denoted by the letter E. The disease or health outcome is 
denoted as D.  Generally, variables other than exposure and disease that are known to predict the health outcome must be 
taken into account. We often call these variables control variables and denote them using the letter C. 

Next, we must determine how to actually measure these variables. This step requires determining the information-
gathering instruments and survey questionnaires to be obtained or developed. 
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The next issue is to select an appropriate study design and devise a sampling plan for enrolling subjects into the 
study. The choice of study design and sampling plan depends on feasibility and cost as well as a variety of characteristics of 
the population being studied and the study purpose. 
 

 
 

Measures of disease frequency and effect then need to be chosen based on the study design. A measure of disease 
frequency provides quantitative information about how often a health outcome occurs in subgroups of interest. A measure 
of effect allows for a comparison among subgroups. 
 

 
 

We must also consider the potential biases of a study. Are there any flaws in the study design, the methods of data 
collection, or the methods of data analysis that could lead to spurious conclusions about the exposure-disease relationship? 
 

 
 

Finally, we must perform the appropriate data analysis, including stratification and mathematical modeling as 
appropriate. Analysis of epidemiologic data often includes taking into account other previously known risk factors for the 
health outcome. Failing to do this can often distort the results and lead to incorrect conclusions. 
 

 
 
Summary: Important Methodological Issues 
 

 What is the study question? 
 How should the study variables be measured? 
 How should the study be designed? 
 What measures of disease frequency should be used? 
 What kinds of bias are likely? 
 How do we analyze the study data? 
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The Study Question 
 
Epidemiology is primarily concerned with identifying the important factors or variables that influence a health outcome of 
interest.  Therefore, an important first step in an epidemiologic research study is to carefully state the key study question of 
interest. 
 

The study question needs to be stated as clearly and as early as possible, particularly to indicate the variables to be 
observed or measured.  A typical epidemiologic research question describes the relationship between a health outcome 
variable, D, and an exposure variable, E, taking into account the effects of other variables already known to predict the 
outcome (C, control variables). 
 

 
 

A simple situation, which is our primary focus throughout the course, occurs when there is only one D and one E, 
and there are several control variables. Then, the typical research question can be expressed as shown below, where the arrow 
indicates that the variables E and the controls (Cs) on the left are the variables to be evaluated as predictors of the outcome 
D, shown on the right. 
 

 
 

In the Sydney Beach Users Study, the health outcome variable, D, of interest is whether or not a person swimming at 
a beach in Sydney develops an acute infectious illness such as a cough, cold, flu, ear infection, or eye infection, within one 
week of swimming at the beach. 

The study subjects could be classified as either: 
 

D=0 for those did not get ill, or  
D=l for those became ill. 
 
A logical choice for the exposure variable is the exposure variable swimming status, which is set to: 
 
E=0 for non-swimmers and 
E=1 for swimmers during the time period of the study. 

 
(Note that other coding schemes could be used other than 0/1, such as 1/2, Y/N, or +/-, but we will use 0/1). 
Control variables might include pollution level at the beach, age of the subject, and duration of swimming. 
Generally speaking, a study will not be very useful unless a question or hypothesis of some kind can be formulated 

to justify the time and expense needed to carry out the study.  
Thus, the research question of this study example is to describe the relationship of swimming to the development of 

an infectious illness, while taking into account the effects of relevant control variables such as pollution level, age of subject 
and duration of swimming. 

Because several variables are involved, we can expect that a complicated set of analyses will be required to deal 
with all the possible relationships among the variables involved. 
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Summary: The Study Question 
 

 An important first step in an epidemiologic research study is to carefully state the key study question of interest. 
 The general question: To what extent is there an association between one or more exposure variables (Es) and a 

health outcome (D), taking into account (i.e., controlling for) the possible influence of other important covariates 
(Cs)? 

 We can expect a complicated set of analyses to be required to deal with all possible relationships among the 
variables involved. 

 
 
Quiz (Q2.1) 
 
In the Sydney Beach Users study, exposure was alternatively defined by distinguishing those who swam in 
polluted water from those who swam in non-polluted water and from those who did not swim at all. Based on this 
scenario, fill in the missing information in the following statement: 
 
1. The exposure variable has ??? categories, one of which is ??? 
 
Choices:  
2    3    4    5    did not swim   polluted water   swam   water not polluted 
 
 
2. When considering both swimming and pollution together, which of the following choices is appropriate for 

defining the exposure variable in the Sydney Beach Users study: ??? 
 
Choices: 

a) E=O if did not swim, E=1 if swam in polluted water 
b) E=O if did not swim, E=1 if swam in non-polluted water 
c) E=O if did not swim, E=1 if swam in polluted water, E=2 if swam in non-polluted water 
d) E=O if did not swim, E=1 if swam 

 
In the Sydney Beach Users study, the illness outcome was whether or not an acute infectious illness developed 1 
week after swimming at the beach. Also, in addition to age, another control variable was whether or not a study 
subject swam on days other than the day he or she was interviewed.  
Fill in the missing information: 
 
3. The health outcome has ??? categories. 
4. There are at least ??? control variables. 
5. Which of the following choices is not a control variable: ??? 

a) Age 
b) Swimming status on other days 
c) Swimming status on day of interview 

 
Choices: 
2    3    4   5    a    b    c 
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2-2 Methodologic Issues (continued) 
 

Measuring the Variables 
 
Another important issue is: How do we measure the variables to be studied?  Several measurement issues are now 
introduced. 
 

Once the study question is determined, the investigators must determine how to measure the variables identified for 
the study and any other information that is needed. For example, how will the exposure variable be measured? If a subject 
went into the water but never put his head under the water, does that count as swimming? How much time is required to 
spend in the water to be counted as swimming? Is it feasible to observe each subject’s swimming status on the day of initial 
interview, and if not, how should swimming status be determined? 

After considering these questions, the study team defined swimming as any immersion of the face and head in the 
water. It was decided that subject self-reporting of swimming was the only feasible way to obtain swimming information. 
 

 
 

How will the health outcome be measured? Should illness be determined by a subject’s self-report, which might be 
inaccurate, or by a physician’s confirmation, which might not be available? The study team decided to use self-reported 
symptoms of illness obtained by telephone interview of study subjects 7 to 10 days after the initial interview. 

Another measurement issue concerned how to determine water quality at the beach. Do water samples need to be 
collected? What time of day should they be collected? How will such information be linked to study subjects? The study 
team decided that health department surveyors would collect morning and evening samples at the midpoint of each of three 
sectors of the beach. 

As nearly as could practicably be achieved, study subjects were to be interviewed during the period in which water 
samples were taken. A standard protocol was determined for how much water was to be sampled and how samples were to be 
assessed for water quality. 

A final measurement issue concerned what information should be obtained from persons interviewed at the beach 
for possible inclusion into the study? The study team decided to collect basic demographic data including age, sex, and 
postcode, to ask whether or not each respondent had been swimming anywhere in the previous 5 days, and had any condition 
that precluded swimming on the day of the interview.  
 

 
 

Subjects were excluded from the study if they reported swimming in the previous 5 days or having an illness that 
prevented them from swimming. Subjects were included if they were at least 15 years old and agreed to both an initial beach 
interview and a follow-up telephone interview. 

All the measurement issues described above must be addressed prior to data collection to ensure standardized 
information is collected and to provide a study that is both cost and time efficient. 
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Study Questions (Q2.2) 
 

1. What other variables might you also consider as control variables in the Beach Users Study? 
2. How do we decide which variables to measure as control variables? 
3. Why should age be considered? 
4. How would you deal with subjects who went to the beach on more than one day? 

 
 
Summary: Measuring the Variables 
 
General measurement issues: 
 

 How to operationalize the way a measurement is carried out? 
 Should self-reporting of exposure and/or health outcome be used? 
 When should measurements be taken? 
 How many measurements should be taken on each variable and how should several measurements be combined? 
 How to link environmental measures with individual subjects? 

 
 

The Study Design, Including the Sampling Plan 
 
Another important issue is: What study design should be used and how should we select study subjects?  Several study design 
issues are now introduced. 
 

There are a variety of study designs used in epidemiology. The Sydney Beach Users study employed a cohort 
design. A key feature of such a design is that subjects without the health outcome are followed-up over time to determine if 
they develop the outcome. Subjects were selected from 12 popular Sydney beaches over 41 sampling days. An initial 
interview with the study subjects took place on the beach to obtain consent to participate in the study and to obtain 
demographic information. 

Persons were excluded from the study if they had an illness that prevented them from swimming on that day or if 
they had been swimming within the previous 5 days. It was not considered feasible to determine swimming exposure status 
of each subject on the day of initial interview. Consequently, a follow-up telephone interview was conducted 7 to 10 days 
later to obtain self-reported swimming exposure as well as illness status of each subject. 
 
Study Questions (Q2.3) 
 

1. How might you criticize the choice of using self-reported exposure and illnesses? 
2. How might you criticize the decision to determine swimming status from a telephone interview conducted 7 to 10 

days after being interviewed on the beach? 
 

A complex sample survey design was used to obtain the nearly 3000 study participants. Six beaches were selected 
on any given day and included 2 each from the northern, eastern and southern areas of Sydney. Each beach was divided into 
three sectors, defined by the position of the swimming area flags erected by the lifeguards. Trained interviewers recruited 
subjects, starting at the center of each sector and moving in a clockwise fashion until a quota for that sector had been reached. 
Potential subjects had to be at least 3 meters apart. 
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Study Questions (Q2.4) 
 

1. Why do you think potential subjects in a given sector of the beach were specified to be at least 3 meters apart? 
2. Why is the Sydney Beach Users Study a cohort study? 
3. A fixed cohort is a group of people identified at the onset of a study and then followed over time to determine if they 

developed the outcome.  Was a fixed cohort used in the Sydney Beach Users Study? Explain. 
4. A case-control design starts with subjects with and without an illness and looks back in time to determine prior 

exposure history for both groups.  Why is the Sydney Beach Users study not a case-control study? 
5. In a cross-sectional study, both exposure and disease status are observed at the same time that subjects are selected 

into the study.  Why is the Sydney Beach Users study not a cross-sectional study? 
 
 
Summary: Study Design 
 

 Two general design issues: 
o Which of several alternative forms of epidemiologic study designs should be used (e.g., cohort, case-

control, cross-sectional)? 
o What is the sampling plan for selecting subjects? 

 
 

Measures of Disease Frequency and Effect 
 
Another important issue is: What measure of disease frequency and measure of effect should be used?  These terms are now 
briefly introduced. 
 

Once the study design has been determined, appropriate measures of disease frequency and effect can be specified. 
A measure of disease frequency provides quantitative information about how often the health outcome has occurred in a 
subgroup of interest. 

For example, in the Sydney Beach Users Study, if we want to measure the frequency with which those who swam 
developed the illness of interest, we could determine the number of subjects who got ill and swam and divide by the total 
number who swam. The denominator represents the total number of study subjects among swimmers that had the opportunity 
to become ill. The numerator gives the number of study subjects among swimmers who actually became ill. Similarly, if we 
want to measure the frequency of illness among those who did not swim, we could divide the number of subjects who got ill 
and did not swim by the total number of non-swimming subjects. 
 

 
 

The information required to carry out the above calculations can be described in the form of a two-way table shown 
below. A simple summary of the required information can be given in a two-way table. This table shows the number who 
became ill among swimmers and non-swimmers. We can calculate the proportion ill among the swimmers to be 0.277 or 27.7 
percent.  We can also calculate the proportion ill among the non-swimmers as 0.165 or 16.5 percent. 
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 Each proportion is a measure of disease frequency called a risk. R(E) denotes the risk among the exposed for 
developing the health outcome. R(not E) [or R( E )] denotes the risk among the unexposed. There are measures of disease 
frequency other than risk that will be described in this course. The choice of measure (e.g., risk, odds, prevalence, or rate) 
primarily depends on the type of study design being used and the goal of the research study. 

If we want to compare two measures of disease frequency, such as two risks, we can divide one risk by the other, 
say, the risk for swimmers divided by the risk for non-swimmers. We find that the ratio of these risks in our study is 1.68; 
this means that swimmers have a risk for the illness that is 1.68 times the risk for non-swimmers.  
 

 
 

Such a measure is called a measure of effect.  In this example, the effect of interest refers to the effect of one’s 
swimming status on becoming or not becoming ill. If we divide one risk by the other, the measure of effect or association is 
called a risk ratio. There are other measures of effect that will be described in this course (e.g., such as the risk ratio, odds 
ratio, prevalence ratio, rate ratio, risk difference, and rate difference). As with measures of disease frequency, the choice of 
effect measure depends on the type of study design and the goal of the research study. 
 
 
Summary: Measures of Disease Frequency and Effect 
 

 A measure of disease frequency quantifies how often the health outcome has occurred in a subgroup of interest. 
 A measure of effect quantifies a comparison of measures of disease frequency for two or more subgroups. 
 The choice of measure of disease frequency and measure of effect depends on the type of study design used and the 

goal of the research study. 
 
 

Bias 
 
Another important issue is: What are the potential biases of the study?  The concept of bias is now briefly introduced. 
 

The next methodologic issue concerns the potential biases of a study. Bias is a flaw in the study design, the methods 
of data collection, or the methods of data analysis that may lead to spurious conclusions about the exposure-disease 
relationship. Bias may occur because of: the selection of study subjects; incorrect information gathered on study subjects; or 
failure to adjust for variables other than the exposure variable, commonly called confounding. 
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In the Sydney Beach Users Study, all 3 sources of bias were considered. For example, to avoid selection bias, 
subjects were excluded from the analysis if they were already ill on the day of the interview. This ensured that the sample 
represented only those healthy enough to go swimming on the day of interview. Sometimes selection bias cannot be avoided. 
For example, subjects had to be excluded from the study if they did not complete the follow-up interview. This non-response 
bias may affect how representative the sample is. 

There was also potential for information bias since both swimming status and illness status were based on self-
reporting by study subjects. Swimming status was determined by self-report at least seven days after the swimming occurred. 
Also, the report of illness outcome did not involve any clinical confirmation of reported symptoms. 

Confounding in the Beach Users Study concerned whether all relevant variables other than swimming status and 
pollution level exposures were taken into account.  Included among such variables were age, sex, duration of swimming for 
those who swam, and whether or not a person swam on additional days after being interviewed at the beach. The primary 
reason for taking into account such variables was to ensure that any observed effect of swimming on illness outcome could 
not be explained away by these other variables. 
 
Summary 
 

 Bias is a flaw in the study design, the methods of data collection, or the methods of data analysis that may lead to 
spurious conclusions about the exposure-disease relationship. 

 Three general sources of bias occur in:  
o Selection of study subjects 
o Incorrect information gathered on study subjects 
o Failure to adjust for variables other than the exposure variable (confounding) 

 
 

Analyzing the Data 
 
Another important issue is: How do we carry out the data analysis?  We now briefly introduce some basic ideas about data 
analysis. 
 

The final methodologic issue concerns the data analysis. We must carry out an appropriate analysis once collection 
and processing of the study data are complete. Since the data usually come from a sample of subjects, the data analysis 
typically requires the use of statistical procedures to account for the inherent variability in the data. In epidemiology, data 
analysis typically begins with the calculation and statistical assessment of simple measures of disease frequency and effect.  
The analysis often progresses to more advanced techniques such as stratification and mathematical modeling. These latter 
methods are typically used to control for one or more potential confounders. 
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Let’s consider the data analysis in the Sydney Beach Users Study. We had previously compared swimmers with non-
swimmers. Now, we may wish to address the more specific question of whether those who swam in polluted water had a 
higher risk for illness than those who swam in non-polluted water. We can do this by separating the swimmers into two 
groups. The non-swimmers represent a baseline comparison group with which the two groups of swimmers can be compared. 

Based on the two-way table, we can estimate the risk for illness for each of the three groups by computing the 
proportion that got ill out of the total for each group. The three risk estimates are 0.357, 0.269 and 0.165, which translates to 
35.7 percent, 26.9 percent and 16.5 percent, respectively.  
 

 
 
The risk ratio that compares the Swam-Polluted (Yes-P) group with the Swam-Nonpolluted (Yes-NP) group is 1.33 

indicating that persons who swam in polluted water had a 33 percent increased risk than persons who swam in nonpolluted 
water. 
 

 
 

Also, the risk ratio estimates obtained by dividing the risks for each group by risk for non-swimmers are 2.16, 1.63, 
and 1. This suggests what we call a dose-response effect, which means that as the exposure is increases, the risk increases. 
 

 
 

The analysis just described is called a “crude” analysis because it does not take into account the effects of other 
known factors that may also affect the health outcome being studied. A list of such variables might include age, swimming 
duration, and whether or not a person swam on additional days. The conclusions found from a crude analysis might be altered 
drastically after adjusting for these potentially confounding variables. 

Several questions arise when considering the control of many variables: 
 

 Which of the variables being considered should actually be controlled? 
 What is gained or lost by controlling for too many or too few variables?  
 What should we do if we have so many variables to control that we run out of numbers?  
 What actually is involved in carrying out a stratified analysis or mathematical modeling to control for 

several variables?  
 How do the different methods for control, such as stratification and mathematical modeling, compare to 

one another?  
 

These questions will be addressed in later activities. 
 
Study Questions (Q2.5) 
 

1. How do you interpret the risk ratio estimate of 1.33? 
2. Does the estimated risk ratio of 1.33 indicate that swimming in polluted water poses a health risk? 
3. Given the relatively small number of 154 persons who swam in polluted water, what statistical question would you 

need to answer about the importance of the estimated risk ratio of 1.33? 
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Summary: Analyzing the Data 
 

 The data analysis typically requires the use of statistical procedures to account for the inherent variability in the data. 
 In epidemiology, data analysis often begins with assessment and comparison of simple measures of disease 

frequency and effect. 
 The analysis often progresses to more advanced techniques such as stratification and mathematical modeling. 

 
 

Alcohol Consumption and Breast Cancer in the  
Nurses Health Study 

 
The Harvard School of Public Health followed a cohort of about 100,000 nurses from all over the US throughout the 1980s 
and into the 1990s. The investigators in this Nurses Health Study, were interested in assessing the possible relationship 
between diet and cancer. One particular question concerned the extent to which alcohol consumption was associated with the 
development of breast cancer. 

Nurses identified as being ‘disease free’ at enrollment into the study were asked about the amount of alcohol they 
currently drank. Other relevant factors, such as age and smoking history, were also determined. Subjects were followed for 
four years, at which time it was determined who developed breast cancer and who did not. A report of these findings was 
published in the New England Journal of Medicine in 1987. 

Recall that the first methodologic issue is to define the study question. Which of the study questions stated here 
best addresses the question of interest in this study?  
 

A. Is there a relationship between drinking alcohol and developing breast cancer? 
B. Are alcohol consumption, age, and smoking associated with developing breast cancer? 
C. Are age and smoking associated with developing breast cancer, after controlling for alcohol consumption? 
D. Is alcohol consumption associated with developing breast cancer, after accounting for other variables related to the 

development of breast cancer? 
 

The best answer is D”:  Is alcohol consumption associated with developing breast cancer, after accounting for other 
variables related to the development of breast cancer?”  Although “A. Is there a relationship between drinking alcohol and 
developing breast cancer?” is also correct. 

In stating the study question of interest, we must identify the primary variables to be measured.  
 
Study Questions (Q2.6) 
 
Determine whether each of the following is a: 
 Health outcome variable (D) 
 Exposure variable (E) 
 Control variable (C) 
 

1. Smoking history 
2. Whether or not a subject develops breast cancer during follow-up 
3. Some measure of alcohol consumption 
4. Age 

 
Once we have specified the appropriate variables for the study, we must determine how to measure them. The health 

outcome variable in this example, D, is simply yes or no depending on whether or not a person was clinically diagnosed with 
breast cancer. The investigators at Harvard interviewed study subjects about their drinking habits, E, and came up with a 
quantitative measurement of the amount of alcohol in units of grams per day that were consumed in an average week around 
the time of enrollment into the study. How to treat this variable for purposes of the analysis of the study data was an 
important question considered. One approach was to categorize the alcohol measurement into ‘high’ versus ‘low’. Another 
approach was to categorize alcohol into 4 groups: non-drinkers; less than 5 grams per day; between 5 and 15 grams per day; 
and 15 or more grams per day. 

Age, denoted C1, is inherently a quantitative variable, although many of the analyses treated age as a categorical 
variable in three age groups, shown here: 

“
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34 to 44 years 
45 to 54 years 
55 to 59 years 

Smoking history, C2, was categorized in several ways; one was never smoked versus ever smoked. 
The research question in the nurse’s health study can thus be described as determining if there is a relationship 

between alcohol consumption, E, and breast cancer, D, controlling for the effects of age, Cl, and smoking history, C2, and 
possibly other variables (C3, C4, etc.). 
 

 
 

Although a detailed analysis is not described here, the data did provide evidence of a significant association between 
alcohol use and development of breast cancer. For heavy drinkers, when compared to non-drinkers, there was about an 80% 
increase in the risk of developing breast cancer.  Moderate drinkers were found to have about a 50% increase in risk, and 
light drinkers had an increased risk of about 20%. 
 

 
 
Note:  The Nurses Health Study provides an example in which the exposure variable, alcohol consumption, has several 
categories rather than simply binary.  Also, the control variable age and smoking history can be a mixture of different types 
of variables.  In the Nurses Health Study, age is treated in three categories, and smoking history is treated as a binary 
variable. 
 
 

The Bogalusa Outbreak 
 
On October 31, 1989, the Louisiana State Health Department was notified by two physicians in Bogalusa, Louisiana, that 
over 50 cases of acute pneumonia had occurred within a three-week interval in mid to late October, and that six persons had 
died. Information that the physicians had obtained from several patients suggested that the illness might have been 
Legionnaires Disease. 
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In 1989, Bogalusa was a town of about 16,000 persons. The largest employer was a paper mill located in the center 
of town adjacent to the main street. The paper mill included five prominent cooling towers. The mill also had three paper 
machines that emitted large volumes of aerosol along the main street of town. Many people suspected that the cooling towers 
and or the paper mill were the cause of the outbreak, since they were prominent sources of outdoor aerosols where the 
legionnaire’s bacteria could have been located. 

Recall that the first methodologic issue is to define the study question of interest. Which of the study questions 
stated here best addresses the question of interest in this study? 
 

A. Was the paper mill the source of the outbreak of Legionnaires Disease in Bogalusa? 
B. What was the source of the outbreak of Legionnaires Disease in Bogalusa? 
C. Why did the paper mill cause the outbreak of Legionnaires Disease in Bogalusa? 
D. Was there an outbreak of Legionnaires Disease in Bogalusa? 

 
The most appropriate study question is B. What was the source of the outbreak of Legionnaires Disease in 

Bogalusa?” Even though the paper mill was the suspected source, the study was not limited to that variable only, otherwise, it 
might have failed to collect information on the true source of the outbreak. 

In stating the study question, we identify the primary variables to be considered in the study. 
 
 
Study Questions (Q2.7) 
 
Determine whether each of these variables is the health outcome variable, D, an exposure variable, E, or a control variable, 
C: 
 

1. Exposure to the cooling towers of the paper mill? 
2. Exposure to emissions of the paper machines? 
3. Age of subject? 
4. Visited grocery store A? 
5. Visited grocery store B? 
6. Diagnosed with Legionnaires Disease? 
7. Visited drug store A? 
8. Visited drug store B? 
9. Ate at restaurant A? 

 
 

The health outcome variable, D, indicates whether or not a study subject was clinically diagnosed with Legionnaires 
Disease during the three week period from mid to late October.  The exposure variable is conceptually whatever variable 
indicates the main source of the outbreak. Since this variable is essentially unknown at the start of the study, there is a large 
collection of exposure variables, all of which need to be identified as part of the study design and investigated as candidates 
for being the primary source of the outbreak. We denote these exposure variables of interest E1 through E7. One potential 
control variable of interest was age, which we denoted as C1. 

The general research question of interest in the Bogalusa outbreak can thus be described as evaluating the 
relationship of one or more of the exposure variables to whether or not a study subject developed Legionnaires Disease, 
controlling for age. 

A case-control study, was carried out in which 28 cases diagnosed with confirmed Legionnaires Disease were 
compared with 56 non-cases or controls. This investigation led to the hypothesis that a misting machine for vegetables in a 
grocery store was the source of the outbreak. This misting machine was removed from the grocery store and sent to CDC 
where laboratory staff was able to isolate Legionella organisms from aerosols produced by the machine. This source was a 
previously unrecognized vehicle for the transmission of Legionella bacteria. 
 
Note: The Bogalusa study provides an example in which there are several exposure variables that are candidates as the 
primary source of the health outcome being studied.  Hopefully, the investigators will be able to identify at least one exposure 
variable as being implicated in the occurrence of the outbreak. It is even possible that more than one candidate exposure 
variable may be identified as a possible source. 
 
The case-control study of this and many other outbreaks can often be viewed as hypothesis generating. Further study, often 
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using laboratory methods, clinical diagnosis, and environmental survey techniques, must often be carried out in order to 
confirm a suspected exposure as the primary source of the outbreak. The Centers for Disease Control and Prevention has a 
variety of scientists to provide the different expertise and teamwork that is required, as carried out in the Bogalusa study. 
 
 

The Rotterdam Study 
 
The Rotterdam study has been investigating the determinants of chronic disabling diseases, including Alzheimer’s disease, 
during the 1990s and beyond.  
 

In the early 1990s, the Department of Epidemiology of the Erasmus University in Rotterdam, the Netherlands, 
initiated the Rotterdam Study.  A cohort of nearly 8000 elderly people was selected. They continue to be followed to this day. 
The goal of the study is to investigate determinants of chronic disabling diseases, such as Alzheimer’s and cardiovascular 
disease. One particular study question of interest was whether smoking increases the risk of Alzheimer’s disease. 

Subjects who were free of dementia at a first examination were included in the study. This excluded anyone 
diagnosed at this exam with Alzheimer’s or any other form of dementia due to organic or psychological factors.  
Approximately two years later, the participants were asked to take a brief cognition test. If they scored positive, they were 
further examined by a neurologist. The investigators could then determine whether or not a participant had developed 
Alzheimer’s disease, the health outcome variable D of interest, since the start of follow-up. 

The primary exposure variable, E, was smoking history. Three categories of smoking were considered: current 
smokers at the time of the interview; previous but not current smokers; and, never smokers. Control variables considered in 
this study included age, gender, education, and alcohol consumption. 
 

 
 

We define the study question of interest as: Is there a relationship between smoking history and Alzheimer’s disease, 
controlling for the effects of age, gender, education and alcohol consumption? 
 

 
 

Recall that one of the important methodologic issues is to determine the study design.  
 
How would you define the design of this study? 

1. Cohort design 
2. Case-control design 
3. Cross-sectional design 
4. Clinical trial 

 
This is a cohort design because participants without the health outcome of interest, in this case Alzheimer’s disease, are 

followed up over time to determine if they develop the outcome later in life. 
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Which of the following is influenced by the design of the study? 

A. The assessment of confounding 
B. The choice of the measures of disease frequency and effect 
C. A decision regarding the use of stratified analysis 
D. The analysis is not influenced in any way by the study design used 

 
The answer is B. We determine the appropriate measures of disease frequency and effect based on the study design 

characteristics. Choices A and C are incorrect because they are typically considered regardless of the study design used. 
The investigators found that 105 subjects developed Alzheimer’s disease. After taking the control variables into 

account, the risk of Alzheimer’s disease for current smokers was 2.3 times the risk for subjects who had never smoked. For 
subjects who had smoked in the past but who had given up smoking before the study started, the risk of Alzheimer’s disease 
was 1.3 times the risk for subjects who had never smoked. 
 

 
 
Study Questions (Q2.8) 
 
Based on the above results: 
 

1. What is the percent increase in the risk for current smokers when compared to the risk for never smokers? 
2. What is the percent increase in the risk for previous smokers when compared to the risk for never smokers? 

 
 

Because these results were statistically significant and controlled for previously established predictors of 
Alzheimer’s, the study gave support to the hypothesis that smoking history was a significant risk factor in the development of 
Alzheimer’s disease. 
 
 

Analyzing Data in Data Desk 
 
Note that there are two activities in the Lesson that provide information on how to analyze data using the Data Desk 
statistical program.  These activities are not summarized in this ActivEpi Companion Textbook. 
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Nomenclature 
 
  
C Control variable or covariate
D Disease or outcome variable 
E Exposure variable 
R(E) Risk among the exposed for developing the health outcome
R(not E) or 
R( E )  

Risk among the nonexposed for developing the health outcome

RR Risk ratio 
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Homework Exercises 
 
ACE-1.  What is Epidemiology?  What is the origin of the word “epidemiology” (and why does it have nothing to do with 
the study of skin)? 
 
ACE-2.  Causation.  For each of the following excerpts, indicate which of the criteria for causation (proposed by A. B. Hill, 
circa 1964 or earlier) is/are being addressed (you may choose more than one).  Note that these criteria are presented on page 
38, Lesson 3: 
 

A. Strength of Association 
B. Consistency 
C. Temporality 
D.  Dose response, or biologic gradient 
E. Biologic plausibility 
F. Specificity 
G. Coherence 
H. Experiment 
I. Analogy 

 
1. [From a study of whether Hispanics are more likely than whites to experience disability]. “Mexican-American 

participants in the 1978-1980 Health Interview Survey were more likely than non-Hispanic whites to report 
limitations in their activity.  Data from the 1987 National Medical Expenditure Survey suggested the opposite 
pattern, with Hispanics reporting less functional limitation than non-Hispanic whites.  Haan and Weldon presented 
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data suggesting that Hispanic disability may be more evident among persons with at least two of the chronic 
illnesses of diabetes, stroke and hypertension.” 

 
2. [From the study above] “Among community-dwelling residents, Hispanics were 2-5 times as likely as non-Hispanic 

whites to need assistance with IADL (Instrumental Activities of Daily Living) tasks.  However, a larger proportion 
of disabled non-Hispanic whites were in nursing homes, and estimates that included nursing home residents 
suggested a more modest Hispanic excess that was generally less than twofold.” 

 
3. [From a study of preconception paternal x-ray exposure and birth outcome] “The exposure variable was generated 

from an item on the partner’s questionnaire asking about specific medical x-ray studies performed any time within 
12 months preceding conception.” 

 
 4. “The pronounced increase in risk of preeclampsia among type I diabetics is consistent with that from previous 

reports and may be due to microvascular changes impairing the placental perfusion.  Our finding that type I diabetes 
is significantly, albeit less strongly, associated with gestational hypertension may reflect a common metabolic 
pathway in the pathogenesis of preeclampsia and gestational hypertension.”  

 
5. [From a study of predictors of gallbladder disease in men] “Higher levels of BMI (body mass index) were 

progressively associated with increased risk of disease, and men with BMI > = 24.0 units had a significant, 46 
percent increased risk when compared with their counterparts with BMI < 20.0.” 

 
6. “An association between cancers of the human nasal cavity and paranasal sinuses and cigarette smoking has been 

described in recent studies in the United States and China.  To date, limited evidence from two studies conducted in 
Japan suggests that exposure to environmental tobacco smoke is also a risk factor for nasal sinus cancer. The study 
reported here was designed to test the hypothesis that exposure to environmental tobacco smoke in the home 
increases the risk for cancer of the nasal cavity and paranasal sinuses in pet dogs ... The risk for nasal cancer was 
also examined according to histologic type.  Dogs with sarcomas had a higher adjusted risk than dogs with 
carcinomas for the highest tertile of the exposure index.” 

 
7. “Studies have often found a lower risk of large bowel cancer associated with higher coffee consumption, although 

this finding has not been universal.  Coffee’s composition is quite complex, and varied constituents have potential 
genotoxic, mutagenic, and anitmutagenic properties.  In addition, coffee modulates various physiologic processes, 
such as large bowel motility, that could alter colonic exposure to potential fecal carcinogens.” 

 
8. [From study of coffee and colorectal cancer] “Another possible explanation for the results is that individuals at high 

risk for developing colorectal cancer, or who have symptoms from undiagnosed cancer of the large bowel, avoid 
coffee consumption.  Rosenberg et al. found similar results whether coffee consumption of the prior year or of 3 
years previously was analyzed.” 

 
9. “Observational epidemiologic studies of dietary calcium and fractures are inconsistent.  There have been at least 14 

studies of hip fracture and dietary calcium, and only three of these found a clearly protective effect. On the other 
hand, two small randomized trials have found a reduced rate of radiographic vertebral fractures among subjects 
given calcium supplements, and another small study found a nonsignificant reduction in risk of symptomatic 
vertebral and nonvertebral fractures.  A large French trial found that a combination of calcium and vitamin D 
supplements halved the hip fracture rate among women living in nursing homes.” 

ACE-3.  Causal Exposure/Disease Association.  Under what circumstances could an exposure/disease association be causal 
without being biologically plausible? 

 
ACE-4.  A CDC Website. The Centers for Disease control has a website called EXCITE, which stands for Excellence in 
Curriculum Integration through Teaching Epidemiology.  The website address is  

 
                                    http://www.cdc.gov/excite/ 
 

        Open up this website on your computer and look over the various features and purposes of the website described on the 
first page you see.  Then click on the item (on menu on left of page) Disease Detectives at Work and read the first two 
articles entitled Public Health on Front Burner After Sept 11 and USA’s ‘Disease Detectives’ Track Epidemics Worldwide.  
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Then click on the item  (on menu on left of page) Classroom Exercises and go through the exercise on Legionnaires Disease 
in Bogalusa, Louisiana. The specific website address for this exercise is: 
 
                    http://www.cdc.gov/excite/legionnaires.htm 
 
 

Answers to Study Questions and Quizzes 
 
Q2.1 
 

1. 3, did not swim 
2. C 
3. 2 
4. 2 
5. C 

 
Q2.2 
 

1. General health status, smoking status, diet, 
including what a subject might have eaten at the 
beach. 

2. Choose variables that are already known 
determinants of the health outcome.  This will be 
discussed later under the topic of confounding. 

3. Younger subjects might be less likely to get ill than 
older subjects. 

4. In the actual study, the investigators chose to 
exclude subjects from the analysis if they visited 
the beach on days other than the day they were 
interviewed on the beach. 

 
Q2.3 
 

1. Self-reported information may be inaccurate and 
can therefore lead to spurious study results. 

2. As with the previous question, the information 
obtained about exposure much later than when the 
actual exposure occurred may be inaccurate and can 
lead to spurious study results. 

 
Q2.4 
 

1. To minimize the inclusion in the study of a family 
or social groups. 

2. Subjects without the health outcome, that is, 
healthy subjects selected at the beach, were 
followed-up over time to determine if they 
developed the outcome. 

3. No, the Sydney Beach User’s Study did not use a 
fixed cohort.  Study subjects were progressively 
added over the summer of 1989-90 to form the 
cohort. 

4. Because the study started with exposed and 
unexposed subjects, rather than ill and not-ill 
subjects, and went forward rather than backwards 
in time to determine disease status. 

5. Exposure and disease status were observed at 
different times for different subjects.  Also, each 
subject was selected one week earlier than the time 
his or her exposure and disease status were 
determined. 

 
Q2.5 
 

1. The risk of illness for persons who swam in 
polluted water is estimated to be 1.33 times the risk 
of illness for persons who swam in non-polluted 
water. 

2. Not necessarily.  The importance of any risk ratio 
estimate depends on the clinical judgment of the 
investigators and the size of similar risk ratio 
estimates that have been found in previous studies. 

3. Is the risk ratio of 1.33 significantly different from 
a risk ratio of 1?  That is, could the risk ratio 
estimate of 1.33 have occurred by chance? 

 
Q2.6 
 

1. C 
2. D 
3. E 
4. C 

 
Q2.7 
 

1. E 
2. E 
3. C 
4. E 
5. E 
6. D 
7. E 
8. E 
9. E 

 
Q2.8 
 

1. The increased risk of 2.3 translates to a 130% 
increase in the risk of current smokers compared to 
never smokers. 

2. The increased risk of 1.3 translates to a 30% 
increase in the risk for previous smokers compared 
to never smokers. 
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Epidemiologic Study Designs 
 
A key stage of epidemiologic research is the study design.  This is defined to be the process of planning an empirical 
investigation to assess a conceptual hypothesis about the relationship between one or more exposures and a health 
outcome.  The purpose of the study design is to transform the conceptual hypothesis into an operational hypothesis that can 
be empirically tested.  Since all study designs are potentially flawed, it is therefore important to understand the specific 
strengths and limitations of each design.  Most serious problems or mistakes at this stage cannot be rectified in subsequent 
stages of the study. 
 
 

3-1 Study Types/Options 
 

Types of Epidemiologic Research 
 
Epidemiologic research can be put into two broad categories depending on whether or not randomization is used: 
experimental studies use randomization; observational studies do not involve randomization. 
 

There are two broad types of epidemiologic studies, experimental and observational. An experimental study uses 
randomization to allocate subjects to different categories of the exposure. An observational study does not use 
randomization.  (For additional information on randomization, please refer to the end of this activity.)  In experimental 
studies, the investigator, through randomization, determines the exposure status for each subject, then follows them and 
documents subsequent disease outcome. In an observational study, the subjects themselves, or perhaps their genetics, 
determine their exposure, for example, whether to smoke or not. The investigator is relegated to the role of simply observing 
exposure status and subsequent disease outcome.  

Experimental studies in epidemiology usually take the form of clinical trials and community intervention trials. 
The objective of most clinical trials is to test the possible effect, that is, the efficacy, of a therapeutic or preventive treatment 
such as a new drug, physical therapy or dietary regimen for either treating or preventing the occurrence of a disease. The 
objective of most community intervention trials is to assess the effectiveness of a prevention program.  For example, one 
might study the effectiveness of fluoridation, of sex education, or of needle exchange. 

Most epidemiologic studies are observational. Observational studies are broadly identified as two types: descriptive 
and analytic. Descriptive studies are performed to describe the natural history of a disease, to determine the allocation of 
health care resources, and to suggest hypotheses about disease causation. Analytic studies are performed to test hypotheses 
about the determinants of a disease or other health condition, with the ideal goal of assessing causation.  (See the end of this 
activity for additional information on disease causation.) 
 
Summary 

 There are two broad types of epidemiologic studies: experimental and observational 
 Experimental studies use randomization of exposures 
 Observational studies do not use randomization of exposures 
 In experimental studies, the investigator pro-actively determines the exposure status for each subject. 
 In observational studies, the subject determines his/her exposure status. 
 Experimental studies are usually clinical trials or community intervention trials. 
 Observational studies are either descriptive or analytic. 

  
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_3, © Springer Science+Business Media New York 2013 
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Randomization 
Randomization is an allocation procedure that assigns subjects into (one of the) the exposure groups being compared so that 
each subject has the same probability of being in one group as in any other.  Randomization tends to make demographic, 
behavioral, genetic, and other characteristics of the comparison groups similar except for their exposure status. As a result, 
if the study finds any difference in health outcome between the comparison groups, that difference can only be attributable 
to their difference in exposure status. 

For example, if subjects are randomly allocated to either a new drug or a standard drug for the treatment of 
hypertension, then it is hoped that other factors such as age and sex might have approximately the same distribution for 
subjects receiving the new drug as for subjects receiving the standard drug.  Actually, there is no guarantee even with 
randomization that the distribution of, for example age, will be the same for the two treatment groups. The investigator can 
always check the data to see what has happened regarding any such characteristic, providing the characteristic is measured 
or observed in the study. If the age distribution is found to be different between the two treatment groups, the investigator 
can take this into account in the analysis, for example, by stratifying on age. 

The advantage of randomization is what it offers with regard to those characteristics not measured in one’s study. 
Variables that are not measured obviously cannot be taken into account in the analysis. Randomization offers insurance, 
though no guarantee, that such unmeasured variables are evenly distributed among the different exposure groups. In 
observational studies, on the other hand, the investigator can account for only those variables that are measured, allowing 
more possibility for spurious conclusions because of unknown effects of important unmeasured variables. 
 

Causation 
 

In any research field involving the conduct of scientific investigations and the analysis of data derived from such 
investigations to test etiologic hypotheses, the assessment of causality is a complicated issue. In particular, the ability to 
make causal inferences in the health sciences typically depends on synthesizing results from several studies, both 
epidemiologic and non-epidemiologic (e.g., laboratory or clinical findings). 

Instigated by a governmental sponsored effort in the United States to assess the health consequences of smoking, health 
scientists in the late 1950’s and 1960’s began to consider defining objective criteria for evaluating causality. The particular 
focus of this effort was how to address causality based on the results of studies that consider exposures that cannot be 
randomly assigned, i.e., observational studies. 

In 1964, a report was published by the US Department of Health, Education and Welfare that reviewed the research 
findings dealing with the health effects of smoking, with the objective of assessing whether or not smoking could be 
identified as a cause  of lung cancer and perhaps other diseases. The type of synthesis carried out in this report has been 
referred to in the 1990’s as a meta analysis, so that this report was in essence, one of the earliest examples of a meta 
analysis conducted in the health sciences. 

The 1964 document based much of its conclusions about smoking causation on a list of general criteria that was 
formalized by Bradford Hill and later incorporated into a famous 1971 textbook by Hill. The criteria are listed as follows: 

 
1. Strength of the Association: The stronger the observed association, the less likely the association is due to bias; 

weaker associations do not provide much support to a causal interpretation. 
2. Dose-response Effect: If the disease frequency increases with the dose or level of exposure, this supports a causal 

interpretation. (Note, however, that the absence of a dose-response effect may not rule out causation from 
alternative explanations, such as a threshold effect.) 

3. Lack of Temporal Ambiguity: The hypothesized cause must precede the occurrence of the disease. 
4. Consistency of Findings: If all studies dealing with a given relationship produce similar results, a causal 

interpretation is advanced. (Note: Inconsistencies may be due to different study design features, so that perhaps 
some kind of weighting needs to be given to each study.) 

5. Biological Plausibility of the Hypothesis: If the hypothesized effect makes sense in the context of current 
biological knowledge, this supports a causal interpretation. (Note, however, the current state of biological 
knowledge may be inadequate to determine biological plausibility.) 

6. Coherence of the Evidence: If the findings do not seriously conflict with our understanding of the natural history 
of the disease or other accepted facts about disease occurrence, this supports a causal interpretation. 

7. Specificity of the Association: If the study factor is found to be associated with only one disease, or if the disease 
is found to be associated with only one factor, a causal interpretation is supported. (However, this criterion cannot 
rule out a causal hypothesis, since many factors have multiple effects and most diseases have multiple causes.)  
Examples include vinyl chloride and angiosarcoma of the lever; DES by women and vaginal cancer in offspring. 

Continued on next page 
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8. Experimentation: use of experimental evidence, such as clinical trials in humans, animal models, and in vitro 
laboratory experiments.  May support causal theories when available, but its absent does not preclude causality. 

9. Analogy: when similar relationships have been shown with other exposure-disease relationships.  For example, the 
offspring of women given DES during pregnancy were more likely to develop vaginal cancer.  By analogy, it 
would seem possible that other drugs given to pregnant women could cause cancer in their offspring. 

 
 
Quiz (Q3.1) 
 
Fill in the blanks with either Experimental or Observational 
 

1. A strength of the ??? study is the investigator’s control in the assignment of individuals to treatment 
groups. 

2. A potential advantage of an ??? study is that they are often carried out in more natural settings, so that 
the study population is more representative of the target population. 

3. The major limitation of ??? studies is that they afford the investigator the least control over the study 
situation; therefore, results are generally more susceptible to distorting influences. 

4. A weakness of an ??? study is that randomization to treatment groups may not be ethical if an arbitrary 
group of subjects must be denied a treatment that is regarded as beneficial. 

5. One community in a state was selected by injury epidemiologists for a media campaign and bicycle 
helmet discount with any bicycle purchase. A similar community about 50 miles away was identified as a 
comparison community. The epidemiologists compared the incidence of bicycle-related injuries through 
emergency room surveillance and telephone survey. This is an example of an ??? study. 

6. Researchers administered a questionnaire to all new students at a large state university. The 
questionnaire included questions about behaviors such as seat belt use, exercise, smoking, and alcohol 
consumption. The researchers plan to distribute follow-up questionnaires at graduation and every five 
years thereafter, asking about health events and conditions such as diabetes and heart disease. This is 
an example of an ??? study. 

 
 

Directionality 
 
The directionality of a study refers to when the exposure variable is observed relative in time to when the health outcome is 
observed.  In a study with forward directionality, the investigator starts by determining the exposure status for subjects 
selected from some population of interest and then follows these subjects over time to determine whether or not they develop 
the health outcome. Cohort studies and clinical trials always have forward directionality. 
 

 
 

In a backwards design, the investigator selects subjects on the basis of whether or not they have the health outcome 
of interest, and then obtains information about their previous exposures. Case-control studies always have backwards 
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directionality. 
 

 
 

In a non-directional design, the investigator observes both the study factor and the health outcome simultaneously, 
so that neither variable may be uniquely identified as occurring first. A cross-sectional study is always non-directional. 
 

 
 

The directionality of a study affects the researcher’s ability to distinguish antecedent from consequent. This is 
important for evaluating causality. Also, the directionality chosen affects the way subjects can be selected into the study. 
Designs that are backwards or non-directional have more potential for selection bias than forward designs. Selection bias 
will be addressed in more detail in a later lesson of this program. 
 
 
Summary 
 

 Directionality answers the question: when did you observe the exposure variable relative in time to when you 
observed health outcome? 

 Directionality can be forward, backward, or non-directional. 
 Directionality affects the researcher’s ability to distinguish antecedent from consequent. 
 Directionality also affects whether or not a study will have selection bias. 

 
 

Timing 
 
Timing concerns the question of whether the health outcome of interest has already occurred before the study actually began.  
If the health outcome has occurred before the study is initiated, the timing is retrospective. For example, let’s say a case-
control study is initiated to investigate cases of a disease that occurred in the previous year; this would be an example of a 
retrospective case control study. 
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If, on the other hand, the health outcome occurs after the onset of the study, then the timing is prospective.  Clinical 
trials are always prospective. 
 

 
 

Cohort studies and case-control studies may be either be retrospective or prospective since the study may begin 
either before or after the health outcome has occurred. The timing of a study can have important implications for the quality 
of the data. Retrospective data are often based on personal recall, or on hospital or employment records, and are therefore 
more likely than prospective studies to involve measurement errors. Measurement errors frequently lead to information bias, 
which we discuss in a later lesson. 

Some studies may have elements of both prospective and retrospective timing, sometimes referred to as mixed 
timing. 
 
 
Summary 
 

 Timing answers the question: has the health outcome of interest already occurred before the study actually began? 
 If the health outcome occurs before the study is initiated, the timing is retrospective. 
 If the health outcome occurs after the onset of the study, the timing is prospective. 
 Timing affects measurement error and information bias. 

 
 

Clinical Trials 
 
 The clinical trial is the epidemiologic design that most closely resembles a laboratory experiment. The major objective is to 
test the possible effect of a therapeutic or preventive intervention. 
 

A clinical trial is an experimental study designed to compare the therapeutic or health benefits of two or more 
treatments.  The major objective of a clinical trial is to test the efficacy of a preventive or therapeutic intervention. The 
long-range goal of a preventive trial is to prevent disease; the long-range goal of a therapeutic trial is to cure or control a 
disease. Examples of preventive trials include studies of vaccine efficacy, use of aspirin to prevent coronary heart disease, 
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smoking cessation, diet modification, and exercise. Therapeutic trials are typically performed by pharmaceutical companies 
to test new drugs for treating disease. 

Key features of any clinical trial are randomization, blinding, ethical concerns, and the use of intention to treat 
analysis. Randomization is used to allocate subjects to treatment groups so that these groups are comparable on all factors 
except for exposure status.  Blinding means that either the patient or the investigator is unaware of the treatment assigned. 
Single-blinding means either the patient or investigator are unaware of the treatment assignment and double blinding means 
that both the patient and the investigator are unaware of the treatment assignment. Blinding helps to eliminate bias.  The 
study must be ethical, treatments that may be harmful are not used. Stopping rules are planned that would end a trial early if 
it becomes clear that one of the treatments is superior.  An intention-to-treat analysis requires that the investigators analyze 
what they randomize”, that is, analysis should be compared to the originally randomized treatment groups, even if study 
subjects switch treatments during the study period. 
 
Summary 
 

 The major objective of a clinical trial is to test the efficacy of a preventive or therapeutic intervention. 
 Key features of any clinical trial are: 

o Randomization 
o Blinding 
o Ethical concerns 
o Intention to treat analysis 

 
Efficacy versus Effectiveness versus Efficiency 

 
The appraisal of a new or existing healthcare intervention or treatment modality involves three steps (Detsky, 1995; Detsky 
& Naglie, 1990; Grimes & Schulz, 2002). Initially, efficacy (achieving its stated clinical goal) is demonstrated under optimal 
circumstances in a prospective randomized controlled trial. Subsequently, effectiveness (producing greater benefit than harm) 
is assessed under ordinary circumstances in the general population by way of a prospective observational cohort study or an 
experimental community intervention trial. The efficiency of the healthcare intervention (the health status improvement 
realized for a given amount of resources expended) is then determined via a cost-effectiveness analysis or cost-utility 
analysis. Alternatively, such an economic evaluation can provide essential insight into the resources required to deliver the 
healthcare intervention to a specific population (Kocher & Henley, 2003) 
 

Clinical Trial Example 
 
A clinical trial involving 726 subjects conducted in 1993 compared standard insulin therapy with intensive insulin therapy 
involving more frequent insulin injections and blood glucose monitoring for the treatment of diabetes mellitus. The outcome 
studied was retinopathy resulting in blindness, defined as either present or absent for each patient. 

Subjects were randomized to treatment groups using a computerized random number generator. Double blinding 
could not be used in this clinical trial since both the patient and their physician would know which treatment group the 
patient was randomized.  However, the individuals who graded the fundus photographs to determine the presence or absence 
of retinopathy were unaware of treatment-group assignments. The randomization resulted in the standard and intensive 
therapy groups having very similar distributions of baseline characteristics, such as age and sex. 

An intention-to-treat analysis compared the originally randomized treatment groups with regard to the occurrence of 
retinopathy. It was found that 24% of the 378 subjects on standard therapy developed retinopathy, whereas 6.7% of the 348 
subjects on intensive therapy developed retinopathy.  

 

 
 
These data and more complicated analyses that controlled for several other important predictors indicated that 

intensive therapy had a much lower risk than standard therapy for retinopathy. 
 

“
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Summary 
 

 A clinical trial involving 726 subjects conducted in 1993 compared standard insulin therapy with intensive insulin 
therapy. 

 The outcome studied was retinopathy resulting in blindness, defined as either present or absent for each patient. 
 24% of subjects on standard therapy developed retinopathy whereas 6.7% of subjects on intensive therapy 

developed retinopathy. 
 
Quiz (Q3.2) 
 
Fill in the Blanks 
 

1. ??? trials are conducted on individuals with a particular disease to assess a possible cure or control for 
the disease. For example, we may wish to assess to what extent, if at all, a new type of chemotherapy 
prolongs the life of children with acute lymphatic leukemia. 

 
2. ??? trials can be conducted on either individuals or entire populations. An example is a study in which 

one community was assigned (at random) to receive sodium fluoride added to the water supply, while the 
other continued to receive water without supplementation. This study showed significant reductions in the 
development of tooth decay in the community receiving fluoride. 

 
Choices 
 
Preventive  Therapeutic 
 
For each of the following features, choose the option that applies to clinical trials: 
 

1. The investigator’s role regarding exposure:  . .  ??? 
 a. assign  b. observe 
 
2. Subject selection into groups:  . . . .  ??? 
  a. self-selection  b. randomization 
 
3. Directionality:  . . . . . .  ??? 

   a. backwards   b. forwards   c. non-directional 
 

4. Timing:  . . . . . . .  ??? 
a. prospective  b. retrospective  c. either 
 

5. Blinding:  . . . . . . . ??? 
a. single  b. double  c. either 
 

6. Topic:  . . . . . . .  ??? 
a. medication  b. vaccine  c. either 
 

7. Analysis by:   . . . . . . ??? 
a. original assignment b. actual experience 

 
 

3-2 Observational Study Designs 
 
There are three general categories of observational designs: 

 Basic Designs: Cohort, Case-Controls, Cross-Sectional 
 Hybrid Designs: Nested Case-Control, Case-Cohort 
 Incomplete Designs: Ecologic, Proportional 
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Cohort Studies 
 
In 1948, a long-term observational study began in Framingham Massachusetts. Fifty-one hundred subjects without 
cardiovascular disease (CVD) were selected and examined, and information about potential risk factors for this disease was 
recorded. Subjects were then re-examined if possible every 2 years over the next 50 years. This classic study became known 
as the Framingham Heart Study and has been the source of much of our knowledge about risk factors for cardiovascular 
disease. The Framingham Heart study is an example of a prospective cohort study. 

A cohort design starts with subjects who do not have a health outcome of interest and are followed forward to 
determine health outcome status. A key feature of a cohort study is that subjects are grouped on the basis of their exposure 
characteristics prior to observing the health outcome, that is, the directionality of the study is always forward. 
 

 
 

A cohort study may be retrospective or prospective. The Framingham Heart study is an example of a prospective 
study since the study began before the health outcome occurred. 
 
Summary 
 

 The Framingham Heart Study is a classic example of a cohort study. 
 The cohort design is always a follow-up study with forward directionality. 
 A cohort study can be prospective or retrospective. 
 The Framingham study is a prospective cohort study because the study began before the health outcome occurred. 

 
The Exposure Variable in Cohort Studies 

If all exposure variables of interest are fairly common, as were those measured in the original Framingham study, the 
cohort is typically determined by sampling persons from a large population and, after excluding those already with the 
health outcome, dividing the remaining sample into exposed and unexposed study subjects. 

If the exposure is rare, as when studying a specific occupational exposure, the exposed are usually sampled from a 
special population, such as a worksite. The unexposed are then determined from an external comparison group, which is as 
similar as possible to the exposed subjects with respect to factors other than exposure that may be related to the disease. 

Also, employed persons are, on average, healthier than unemployed. Consequently if exposed workers are compared 
with the general population, the effect of an exposure will tend to be under-estimated. 
 

Advantages of a Cohort Study 
 
The primary advantage of a cohort study is its forward directionality. The investigator can be reasonably sure that the 
hypothesized cause preceded the occurrence of disease.  In a cohort study, disease status cannot influence the way subjects 
are selected, so a cohort study is free of certain selection biases that seriously limit other types of studies. 

A prospective cohort design is less prone than other observational study designs to obtaining incorrect information 
on important variables.  Cohort studies can be used to study several diseases, since several health outcomes can be 
determined from follow-up. 

Cohort studies are also useful for examining rare exposures. Since the investigator selects subjects on the basis of 
exposure, he can ensure a sufficient number of exposed subjects. A retrospective cohort study can be relatively low-cost and 
quick. Occupational studies that are based on employment records and death certificates or insurance and worker’s comp 
records are an example. 
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Disadvantages of a Cohort Study 

 
A prospective cohort study is often quite costly and time-consuming. A potential problem in any cohort study is the loss of 
subjects because of migration, lack of participation, withdrawal, and death. Such attrition of the cohort over the follow-up 
period can lead to biased results. 

A cohort design is statistically and practically inefficient for studying a rare disease with long latency because of the 
long follow-up time and the number of subjects required to identify a sufficient number of cases. However, a retrospective 
cohort study may find enough cases since the study events of interest have already occurred. 

Another problem in cohort studies is that the exposed may be followed more closely than the unexposed; if this 
happens, the outcome is more likely to be diagnosed in the exposed. This might create an appearance of exposure-disease 
relationship where none exists. 
 
 
Summary: Cohort Study +’s (Advantages) and –’s (Disadvantages) 
 

 (+) Prospective cohort study: least prone to bias when compared with other observational study designs. 
 (+) Can address several diseases in the same study. 
 (+) Retrospective cohort study: can be relatively low-cost and quick; frequently used in occupational studies. 
 (-) Loss to follow-up is a potential source of bias 
 (-) Prospective cohort study: quite costly and time-consuming; may not find enough cases if disease is rare. 
 (-) If exposed are followed more closely than unexposed, the outcome is more likely to be diagnosed in exposed. 

 
 

Example of a Retrospective Cohort Study, VDT’s and Spontaneous Abortions 
 
The relationship between adverse pregnancy outcomes and the use of video display terminals (VDT’s) became a public health 
concern in the 1980’s when adverse pregnancy outcomes were reported among several clusters of women who used VDT’s. A 
more comprehensive study of the effect of VDT’s was reported in the New England Journal of Medicine in 1991. This study, 
conducted by the National Institute for Occupational Safety and Health (NIOSH) used a retrospective cohort design to 
examine the hypothesis that electromagnetic energy produced by VDT’s might cause spontaneous abortions. 
 

 
 

In the NIOSH study, a cohort of female telephone operators who were employed between 1983 and 1986 was 
selected from employers’ personnel records at two telephone companies in eight southeastern states in the US.  In this cohort, 
there were 882 women who had pregnancies that met the inclusion criteria for the study. Of these women, the pregnancy 
outcomes of 366 directory assistance operators who used VDT’s at work were compared with 516 general telephone 
operators who did not use VDT’s.  
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Study Questions (Q3.3) 
 
 

1. What percentages of women developed spontaneous abortions for VDT users and VDT non-users separately? 
 

The results of the study showed no excess risk of spontaneous abortion among women who used VDT’s during their 
first trimester of pregnancy. No dose-response relation was found from the analysis of the women’s hours of VDT use per 
week either. Also, no excess risk was associated with VDT use when other relevant characteristics of the study subjects were 
taken into account. The investigators therefore concluded that the use of VDT’s and exposure to electromagnetic fields they 
produce were not associated with an increased risk of spontaneous abortion. 
 
Summary 
 

 A 1991 study used a retrospective cohort design to examine the hypothesis that electromagnetic energy produced by 
video display terminals (VDT’s) might cause spontaneous abortions. 

 The pregnancy outcomes of 366 directory assistance operators who used VDT’s at work were compared with 516 
general telephone operators who did not use VDT’s 

 The results of the study showed no excess risk of spontaneous abortion among women who used VDT’s. 
 
 

Example of a Prospective Cohort Study, 
Rotterdam Study on Alzheimer’s Disease 

 
Inflammatory activity in the brain is thought to contribute to the development of Alzheimer’s disease.  This hypothesis 
suggests that long-term use of nonsteroidal anti-inflammatory drugs, or NSAIDs, may reduce the risk of this disease. 

This hypothesis was investigated within the Rotterdam Study, a cohort study of the elderly that started in the 
Netherlands in 1990. At that time, 7,000 participants did not have Alzheimer’s disease. During eight years of follow-up, 293 
of the participants developed the disease. 
 
 
Study Questions (Q3.4) 
 

1. What is the directionality of this study? 
2. Is the timing prospective or retrospective? 

 
 

To avoid information bias from measuring NSAIDs, the investigators used computerized pharmacy records instead 
of interview data to determine the total number of months during which participants had used NSAIDs after the study onset.  
Controlling for age, gender, and smoking status, the investigators found that the risk of Alzheimer’s for participants who had 
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used NSAIDs for more than 24 months was significantly less than the risk of Alzheimer’s disease for participants who used 
NSAIDs for less than or equal to 24 months.  The investigators concluded that long-term use of NSAIDs has a beneficial 
effect on the risk of Alzheimer’s disease. 
 
 
Summary 
 

 The Rotterdam study examined the hypothesis that long-term use of nonsteriodal anti-inflammatory drugs (NSAIDs) 
may reduce the risk of Alzheimer’s disease. 

 The study used a prospective cohort design that followed 7,000 participants without Alzheimer’s disease in 1990 
over eight years. 

 The risk of Alzheimer’s disease for subjects using NSAIDs for more than 24 months was significantly smaller than 
for subjects using NSAIDs less than or equal to 24 months. 

 
 
Quiz (Q3.5) 
 
Fill in the Blanks  
For each of the following features, choose the option that applies to cohort studies:  
 

1. The investigator's role regarding exposure:  . .  ???  
a. assign   b. observe 

 
2. Subject selection into groups:  . . . .  ??? 

a. self-selection   b. randomization 
 

3. Directionality:  . . . . . .  ??? 
a. backwards   b. forwards   c. non-directional 
 

4. Timing:  . . . . . . .  ??? 
a. prospective  b. retrospective  c. either 

 
5. Analysis by:  . . . . . . . ??? 

a. original assignment  b. actual experience.  
 
For each of the following characteristics (strengths or weaknesses) of a study, choose the type of cohort study 
with that characteristic: 
 

6. Less expensive:  . . . . . . ??? 

7. Quicker:  . . . . . . . ??? 

8. More accurate exposure information:  . . . . ??? 

9. Appropriate for studying rare exposures:  . . . ??? 

10. Appropriate for studying rare diseases:   . . . ??? 

11. Problems with loss to follow-up:  . . . . . ??? 

12. Better for diseases with long latency:  . . . . ??? 

 
Choices 
Both    Neither Prospective Cohort   Retrospective Cohort 
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3-3 Case-Control and Cross-Sectional  
 

Case-Control Studies 
 
The case-control study is a basic observational study design that can be either a retrospective or propsective study.  It is 
often quite inexpensive and quick to carry out but is very prone to bias when compared to a cohort design. 

 
In case control studies, subjects are selected based on their disease status. The investigator first selects cases of a 

particular disease and then chooses controls from persons without the disease. Ideally, cases are selected from a clearly 
defined population, often called the source population, and controls are selected from the same population that yielded the 
cases. The prior exposure histories of cases and controls are then determined. Thus, in contrast to a cohort study, a case-
control study works backwards from disease status to prior exposure status. While case-control studies are always backward 
in directionality, they can be either prospective or retrospective in timing. 
 

 
 

In addition to being both cheaper and quicker than cohort studies, case-control studies have other advantages: 
 

 They are feasible for obtaining sufficient numbers of cases when studying chronic or other rare diseases or diseases 
with long latency periods. 

 They tend to require a smaller sample size than other designs. 
 They can evaluate the effect of a variety of different exposures.   

 
There are, nevertheless, several disadvantages of case-control studies: 
 

 They do not allow several diseases to be evaluated, in contrast to cohort studies. 
 They do not allow the risk of disease to be estimated directly because they work backwards from disease to exposure 

status. 
 They are more susceptible to selection bias than other designs since the exposure has already occurred before cases 

and controls are selected.   
 They are more susceptible to information bias than cohort studies because of their backward directionality and 

because they be retrospective in timing.   
 They are not efficient for studying rare exposures 

 
 
Summary 
 

 Start with cases and non-cases of a disease or other health outcome and proceed backwards to determine prior 
exposure history. 

 Popular primarily because cheaper and less time-consuming than cohort studies. 
 

Summary continued on next page 
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 Other advantages include providing sufficient numbers of cases for rare diseases with long latencies and allowing 
several exposures to be evaluated. 

 Disadvantages include being susceptible to both selection and information bias, not allowing estimation of risk, not 
considering more than one disease, and not feasible for rare exposures. 

 
Incident versus Prevalent Cases in a Case-Control Study? 

 
Cases can be chosen to be either incident or prevalent.  Incident cases are new cases of a disease that develop over the 

time-period covered by the case-control study. When used in case-control studies, incident cases are typically obtained from 
an institutional or population-based disease registry, such as a cancer registry, or a health maintenance organization that 
continuously records new illnesses in a specified population. 

Prevalent cases are existing cases of a disease at a point in time. When used in case-control studies, prevalent cases are 
usually obtained from hospital or clinic records. 

An advantage of using of incident cases in case-control studies is that an exposure-disease relationship can be tied only 
to the development rather than the prognosis or duration of the disease. 

In contrast, for prevalent cases, the exposure may affect the prognosis or the duration of the illness. If prevalent cases 
were used, therefore, an estimate of the effect of exposure on disease development could be biased because of failure to 
include cases that died before case-selection. 
 
 

Choosing Controls in a Case-Control Study 
 
One must select a comparison or control group carefully when conducting a case-control study. The ideal control group 
should be representative of the population from which the cases are derived, typically called the source population. This 
ideal is often hard to achieve when choosing controls. 

Two common types of controls are population-based controls and hospital-based controls. In population-based 
case-control studies, controls are selected from the community. Methods used to select such controls include random 
telephone dialing, friend or neighborhood, and department of motor vehicle listings. An advantage of a population-based 
case-control study is that cases and controls come from the same source population, so they are similar in some way.  A 
disadvantage is that it is difficult to obtain population lists and to identify and enroll subjects. Increasing use of unlisted 
numbers and answering machines increases non-response by potential controls. 

In a hospital-based case-control study, controls are selected from hospital patients with illnesses other than the 
disease of interest. Hospital controls are easily accessible and tend to be more cooperative than population-based controls. 
Hospital-based studies are much less expensive and time-consuming than population-based studies.  But, hospital-based 
controls are not likely to be representative of the source population that produced the cases. Also, hospital-based controls are 
ill and the exposure of interest may be a determinant of the control illness as well as the disease of interest. If so, a real 
association of the exposure with the disease of interest would likely be missed. 
 
 
Summary 
 

1. The ideal control group should be representative of the source population from which the cases are derived. 
2. Two common types of controls are population-based controls and hospital-based controls. 
3. In population-based case-control studies, cases and controls come from the same source population. 
4. Hospital controls are easily accessible, tend to be cooperative, and are inexpensive. 
5. Hospital controls are not usually representative of the source population and may represent an illness caused by the 

exposure. 
 
 

Case-Control Studies – An Example of Reye’s Syndrome 
 
Several studies in the 1970’s and 1980’s used a case-control design to assess whether the use of aspirin was associated with 
the occurrence of Reye’s syndrome in children with viral illnesses. 
 

Reye’s syndrome is a rare disease affecting the brain and liver that can result in delirium, coma, and death. It usually 
affects children, and typically occurs following a viral illness.  To investigate whether aspirin is a determinant of Reye’s 
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Syndrome, investigators in the nineteen seventies and nineteen eighties decided that using a clinical trial would not be ethical. 
 
Why might a clinical trial on aspirin use and Reye’s syndrome be unethical? 
 

A. Children are involved. 
B. Harmful consequences of the use of aspirin. 
C. Double blinding may be used. 
D. Clinical trials are never ethical. 

 
The answer is B, because of the potential harmful consequences of the use of aspirin. A cohort study was also considered 
inefficient: 
 
Why would a cohort study of aspirin and Reye’s syndrome be inefficient? 
 

A. The outcome is rare (would require a lot of subjects). 
B. Requires at least 5 years of follow-up. 
C. The exposure is rare. 
D. Cohort studies are always inefficient 

 
The answer is A, because the outcome is so rare. Consequently, a case-control study was preferred, since such a study could 
be accomplished over a shorter period, provide a sufficient number of cases, yet require fewer subjects overall than a cohort 
study. 

The original investigation of Reye’s Syndrome that identified aspirin as a risk factor was a case-control study 
conducted in Michigan in 1979 and 1980. This study involved 25 cases and 46 controls. Controls were children who were 
absent from the same school, in a similar grade, had a similar time of preceding illness, had the same race, the same year of 
birth, and the same type of preceding illness. A larger 1982 study attempted to confirm or refute the earlier finding. 
Investigators used a statewide surveillance system to identify all cases with Reye’s syndrome in Ohio. This study thus used 
newly developed, or incident, cases. Population-based controls were selected by identifying and then sampling subjects in the 
statewide community who had experienced viral illnesses similar to those reported by the cases but had not developed Reye’s 
syndrome. Parents of both cases and controls were asked about their child’s use of medication during the illness. 

Another study published in 1987 selected cases from children admitted with Reye’s syndrome to any of a pre-
selected group of tertiary care hospitals. Hospital-based controls were selected from children from these same hospitals who 
were admitted for a viral illness but did not develop Reye’s syndrome. Parents were interviewed to assess previous use of 
aspirin. 

As a result of this case-control research on the relationship between use of aspirin and Reye’s syndrome, health 
professionals recommended that aspirin not be used to treat symptoms of a viral illness in children. Subsequently, as the use 
of aspirin among children declined, so did the occurrence of Reye’s syndrome. 
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Summary 
 

 In the 1970s and 1980s, case-control studies were used to assess whether the use of aspirin for the treatment of viral 
illnesses in children was a determinant of Reye’s syndrome. 

 These studies started with subjects with the disease (i.e., Reye’s syndrome) and similar subjects without the disease. 
 Parents of both cases and controls were asked about their child’s use of medication over a comparable time period 

preceding the child’s first symptoms of Reye’s syndrome. 
 Health professionals recommended that aspirin not be used to treat symptoms of viral illnesses in children. 
 As the use of aspirin among children declined, so did the occurrence of Reye’s syndrome. 

 
 

Case-Control Studies – An Example of  
Creutzfeldt-Jakob Disease (CJD) 

 
Creutzfeldt-Jakob disease (CJD) is a rare disease characterized by rapidly progressive dementia.  In the 1990’s, a 

new variant of CJD in humans was discovered in Europe following an epidemic in cattle of mad cow disease, the animal 
form of CJD. Subsequently, the European Union organized a study to investigate whether a diet containing animal products is 
a risk factor for CJD. 

Because CJD is a very rare disease with a long latency period, the investigators chose a case-control study design. 
They collected data on 405 cases of CJD that had occurred in the European Union. An equal number of control participants 
were recruited from the hospitals where the patients with CJD had been diagnosed. Due to the mental deterioration of patients 
from the disease, diet information on cases had to be collected by interviewing one of the cases’ next of kin. 

How do you think the investigators collected diet information on control subjects?  Even though the control 
participants were perfectly capable of giving information about their diets themselves, the investigators interviewed one of 
the control participants’ next of kin instead. This way, they tried to avoid information bias by keeping the quality of the data 
on diet similar for both cases and controls. 

Remember that one of the advantages of a case-control study is the opportunity to evaluate the effect of a variety of 
different exposures.  In this study, the investigators examined separately whether consumption of sausage, raw meat, raw 
fish, animal blood products, milk, cheese, as well as other specified animal products, increased the risk of CJD.  None of 
these food products significantly increased the risk of CJD, so, the investigators concluded that it is unlikely that CJD is 
transmitted from animals to man via animal products. 

 
 
Quiz (Q3.6) 
 
For each of the following features, choose the option that applies to case-control studies: 
 

1. The investigator’s role regarding exposure:  . . ???. 
 a. assign  b. observe 
 
2. Subject selection into groups:  . . . . ???. 

a. self-selection  b. randomization 
 

3. Directionality:  . . . . . . ??? 
 a.  backwards   b. forwards   c. non-directional 
 

4. Timing:  . . . . . . . ??? 
 a. prospective  b. retrospective  c. either 
 

5. Analysis by:   . . . . . ??? 
 a. original assignment  b. actual experience. 
 
 
 

Quiz continued on next page 
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For each of the following characteristics (strengths or weaknesses) of a study, choose the type of study with that 
characteristic: 
 

6. Less expensive:  . . . . . ??? 

7. Quicker:  . . . . . . ??? 

8. More accurate exposure information:  . . . ??? 

9. Appropriate for studying rare exposures:  . . ??? 

10. Appropriate for studying rare diseases:   . . ??? 

11. Can study multiple outcomes:   . . . ??? 

12. Requires a smaller sample size:  . . . ??? 

13. Can estimate risk:   . . . . ??? 

 
Choices 
Case-control Prospective cohort 
 
 
Determine whether each of the following statements is true or false: 
 

14. Ideally, controls should be chosen from the same population that gave rise to the cases.  . ??? 

15. Ideally, controls should be selected from hospitalized patients  . . . . ??? 

16. Population-based controls include only neighbors and persons identified by calling random telephone 

numbers.  . . . . . . . . . . ??? 

 
 

Cross-Sectional Studies 
 
The cross-sectional study is a basic observational design in which all variables are observed or measured at a single point in 
time.  It is usually the least expensive and quickest to carry out among observational study designs, but is also very prone to 
bias when compared with a cohort design. 
 

In a cross-sectional study, subjects are sampled at a fixed point or within a short period of time. All participating 
subjects are examined, observed, and questioned about their disease status, their current or past exposures, and other relevant 
variables.  A cross-sectional study provides a snapshot of the health experience of a population at a specified time and is 
therefore often used to describe patterns of disease occurrence. A cross-sectional sample is usually more representative of the 
general population being studied than are other study designs.  A cross-sectional study is a convenient and inexpensive way 
to look at the relationships among several exposures and several diseases. If the disease of interest is relatively common and 
has long duration, a cross-sectional study can provide sufficient numbers of cases to be useful for generating hypotheses 
about exposure-disease relationships. Other more expensive kinds of studies, particularly cohort and clinical trials, are used 
to test such hypotheses. 
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There are some disadvantages to cross-sectional studies. For example, such a study can identify only existing or 
prevalent cases at a given time, rather than new or incident cases over a follow-up time period. Therefore, a cross-sectional 
study cannot establish whether the exposure preceded the disease or whether the disease influenced the exposure.  

Because only existing cases are allowed, a cross-sectional study includes only cases that survive long enough to be 
available for study. This could lead to a misleading conclusion about an exposure-disease relationship since non-survivors are 
excluded (see note at the end of this activity on this issue). 

Short-duration diseases, such as the common cold or influenza, especially those that occur during a particular 
season, may be under-represented by a cross-sectional study that looks at the presence of such a disease at a point in time. 
 
 
Summary: Cross-Sectional Studies 
 

 Subjects are sampled at a fixed point or short period of time: a snapshot. 
Advantages 

 Convenient and inexpensive. 
 Can consider several exposures and several diseases. 
 Can generate hypotheses. 
 Usually represents the general population. 

Disadvantages 
 Cannot establish whether the exposure preceded disease or disease influence exposure. 
 Possible bias since only survivors are available for study. 
 May under-represent diseases with short duration. 

 
How Can Bias Occur from Survivors in a Cross-sectional Study? 

 
In a cross-sectional study, bias can result because only cases that survive long enough are available for such a study.  To 

illustrate this point, suppose that everyone with a certain disease who does not do strenuous physical exercise regularly dies 
very quickly. Suppose, also, that those who have the disease but do strenuous physical exercise regularly survive for several 
years. 

Now consider a cross-sectional study to assess whether regular strenuous physical activity is associated with the disease. 
Since this type of study would contain only survivors, we would likely find a low proportion of cases among persons not 
doing strenuous physical exercise. In contrast, we would likely find a relatively higher proportion of cases among persons 
who do strenuous physical exercise.  This would suggest that doing strenuous physical exercise is harmful for the disease, 
even if, in fact, it were protective. 
 
 

Example of a Cross-Sectional Study – Peripheral Vascular Disease, Scotland 
 
A 1991 study examined a sample of 5000 Scottish men for the presence of peripheral vascular disease (PVD). Other 
characteristics, including whether or not a subject ever smoked, were also determined for each subject during the exam. 

This was a cross-sectional study since all study subjects were selected and observed at one point in time. Even 
though physical exams were performed, the study cost and time was much less than that required if disease-free subjects were 
followed over time to determine future PVD status. The sample was representative of the Scottish male population. 
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The study found that 1.3 percent of 1727 ever-smokers had PVD whereas only 0.6 percent of 1299 never-smokers 
had PVD. Dividing .013 by .006, we see that ever-smokers were 2.2 times more likely to have PVD than never-smokers. 
 

 
 

These results suggested that smoking may contribute to developing PVD. Yet, the results are just a snapshot of 
subjects at a point in time, 1991. Subjects without PVD have not been followed over time. So, how do we know from this 
snapshot whether PVD leads to smoking or smoking leads to PVD? This illustrates one of the problems with cross-sectional 
studies - they are always non-directional.  Also, persons who died from PVD prior to the time that subjects were selected are 
not allowed in the study. Therefore, the study results may be biased because only PVD survivors are being counted. 
 
 
Summary 
 

 An example of a cross-sectional study is a 1991 study of peripheral vascular disease (PVD) in Scotland. 
 Results show that ever-smokers are 2.2 times more likely to have PVD than never-smokers. 
 This study was much cheaper and quicker then a cohort study. 
 Cannot determine whether PVD leads to smoking or smoking leads to PVD. 
 The study results may be biased because only PVD survivors are considered. 

 
 
Quiz (Q3.7) 
 
For each of the following features, choose the option that applies to cross-sectional studies: 
 

1. The investigator’s role regarding exposure:  . . ??? 
  a. assign b. observe 
 
2. Subject selection into groups:  . . . . ??? 

a. self-selection b. randomization 
 
3. Directionality:  . . . . . . ??? 

a. backwards  b. forwards   c. non-directional 
 
4. Timing:  . . . . . . . ??? 

a. prospective b. retrospective  c. either 
 

Quiz continued on next page 
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Determine whether each of the following statements is true or false: 
 

5. Cross-sectional studies are better suited to generating hypotheses about exposure-disease relationships 
than to testing such relationships.  . . . . . . ??? 

 
6. Because exposure and disease are assessed at the same time, cross-sectional studies are not subject to 

survival bias.   . . . . . . . . ??? 
 
7. Because exposure and disease are assessed at the same time, cross-sectional studies may not be able 

to establish that exposure preceded onset of the disease process.   . ??? 
 
8. Cross-sectional studies can examine multiple exposures and multiple diseases.  . ??? 

 
 

3-4 Hybrid Designs 
 

Hybrid Designs 
 
Hybrid designs combine the elements of at least two basic designs, or extend the strategy of one basic design through 
repetition.  Two popular hybrid designs are the case-cohort study and the nested case-control study.  Both these designs 
combine elements of a cohort and case-control study.  A more recently developed hybrid design, called the case-crossover 
design, is described. 
  

Case-Cohort Study 
The case-cohort study is a hybrid design that is less prone to bias than the standard case-control design because of the way 
controls are chosen. 
 

A case-cohort study uses a hybrid design that combines elements of a cohort and a case-control study. A case-cohort 
population is followed over time to identify new or incident cases of a disease. The control group consists of a random 
sample of subjects sampled from the original cohort of disease-free persons.  Note that this allows subjects who eventually 
become cases to be sampled as a control subject. Prior exposure status is then determined for both cases and controls. 
 

 
 
 
Study Questions (Q3.8) 
 

1. What is the directionality of this study?  Forward or Backward? 
2. What is the timing of this study?  Prospective or Retrospective? 

 
As an example, a 1995 study of risk factors for gastric cancer involved a cohort of 9,775 men in Taiwan on whom 

blood samples were taken and frozen at recruitment into the study. Subsequent follow-up based on cancer registry data 
identified 29 cases of gastric cancer. A control group of 220 subjects was sampled from the entire original cohort. Some of 
these controls may have even developed gastric cancer over the follow-up.  One exposure variable of interest was the 
presence or absence of Helicobacter pylori infection, which could be assessed by unfreezing and analyzing the blood samples 



56  Lesson 3.  Epidemiologic Study Designs 

 

from cases and controls. Thus, the cost and time of the laboratory work in determining exposure status was greatly reduced 
from having to consider the entire cohort. 
 

 
 

In general, a case-cohort design provides insurance that the controls derive from the source population from which 
the cases developed. Also, since cases are determined from follow-up, several diseases can be studied, which is not always 
possible in the typical case-control study. Furthermore, a case-cohort study is more cost and time-efficient than a cohort 
study, since a much smaller number of non-cases are observed.  And a final advantage of a case-cohort study, which will be 
described later when we discuss measures of effect for a case-control study in Lesson 5, is that a risk ratio can be estimated 
from case-cohort studies but not from more traditional case-control studies. 

Nevertheless, a case-cohort design is more prone to measurement error than a cohort study if exposure status is 
determined retrospectively after cases and controls are selected. This kind of study can be much more expensive and time-
consuming than a case-control study since the latter does not require identifying an original cohort for selecting controls. 
 
 
Summary 
 

 The case-cohort is a hybrid design that combines features of both case-control and cohort designs. 
 In a case-cohort design, controls are sampled from the original cohort. 
 Cases are new or incident cases of a disease. 
 Controls are chosen from the source population from which the cases derive. 
 Several diseases can be studied, in contrast to a case-control study. 
 Smaller number of non-cases than in cohort study. 
 More prone to measurement error than cohort. 
 More expensive than case-control study. 

 
 

Nested Case-Control Study 
 
The nested case-control study, also called a density-type case-control study, is a variation of the case-cohort study. This 
type of study can be used if the time at which subjects become cases is known. In this design, controls are matched to the 
cases at the time of case diagnosis. We select one or more controls for each case from subjects in the original cohort who are 
still at risk at the time a case is identified. This selection is often referred to as density sampling of controls. Of course, 
controls for a given case may later become cases after the time they are selected as controls. An advantage of using density-
type controls over the case-cohort design is that density-sampled controls were at risk for becoming a case for the same 
amount of time as the case to which they are matched was at risk. 
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In a 1993 density-type case-control study of cancer risk from serum copper levels, baseline blood specimens and 
risk factor information were obtained on 5000 telephone employees. A cancer surveillance system identified 133 cancer cases 
that developed from this cohort. The time of case-diagnosis was determined and used to choose a sample of 241 density-type 
controls to be compared to the cases with regard to serum copper level and other covariates of interest. 
 

 
 
Question: The number of controls is much greater than the number of cases in this example.  How is this possible using 
density sampling?  Two or more controls were selected for some cases. 
 

As with a case-cohort study, a nested-case control design provides insurance that the controls derive from the source 
population from which the cases developed. Also, the nested case-control study is more cost and time-efficient than a cohort 
study, since a much smaller number of non-cases are observed.  Another advantage of a nested-case control study, which will 
be described later when we discuss measures of effect for a case-control study in Lesson 5, is that a rate ratio can be 
estimated from nested-case control studies but not from more traditional case-control studies or from case-cohort studies. 

The nested case-control study, like the case-cohort study, is more prone to measurement error than a cohort study if 
exposure status is determined retrospectively after cases and controls are selected. However, this will not be a problem if, as 
in the nested case-control study just described, exposure information is obtained upon enrollment in the initial cohort. 
 
 
Summary 
 

 The nested case-control design is a variation of the case-cohort design in which controls are chosen using density 
sampling. 

 Density sampling requires that controls be matched to cases at the time of case diagnosis. 
 Advantage: density-type controls are at risk for same amount of time as its matched case. 
 Disadvantage: more prone to measurement error than cohort study. 
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Quiz (Q3.9) 
 
Choose whether each of the following is characteristic of a case-cohort study, a nested case-control study, 
both, or neither. 
 

1. Usually less expensive than a prospective cohort study:  . ??? 
 
2. Comparison group from same population as cases:  . ??? 
 
3. Usually less expensive than a case-control study:  . ??? 
 
4. Respective timing:   . . . . ??? 
 
5. Backward directionality:  . . . . . ??? 
 
6. Controls matched to cases at time of diagnosis:  . . ??? 
 
7. Compares exposure experience of cases versus controls:  ??? 
 
8. Density sampling:  . . . . . ??? 
 
9. Must have same number of controls as cases:   . ??? 
__________ 
10. Suppose that, at the time of enlistment in a military service, a sample of blood was drawn from each 

enlistee and stored. After the Persian Gulf War, some soldiers developed a constellation of symptoms 
that came to be known as Persian Gulf War Syndrome. If investigators then examined the blood of all 
soldiers with the syndrome, and blood from twice as many soldiers without the syndrome, this would be 
an example of:   . . . . . ??? 

 
Choices 
case-cohort study  nested case-control study   prospective cohort study  retrospective cohort study 
 
 

The Case-Crossover Design 
 

The case-crossover design is a variant of the matched case-control study (described in Lesson 15 on Matching) that is 
intended to be less prone to bias than the standard case-control design because of the way controls are selected.  The design 
incorporates elements of both a matched case-control study and a nonexperimental retrospective crossover experiment. 
(Note: In, a crossover design, each subject receives at least two different exposures/treatments at different occasions.) The 
fundamental aspect of the case-crossover design is that each case serves as its own control. Time-varying exposures are 
compared between intervals when the outcome occurred (case intervals) and intervals when the outcome did not occur 
within the same individual. 

The case-crossover design was designed to evaluate the effect of brief exposures with transient effects on acute health 
outcomes when a traditional control group is not readily available. The primary advantage of the case-crossover design lies 
in its ability to help control confounding. Self-matching subjects against themselves automatically eliminates confounding 
between subjects and from both measured and unmeasured fixed covariates. 

As an example of a case-crossover design, Redlemeier and Tibshirani studied whether the use of a cellular telephone 
while driving increases the risk of a motor vehicle collision. In their abstract, they say, We studied 699 drivers who had 
cellular telephones and who were involved in motor vehicle collisions resulting in substantial property damage but no 
personal injury.  Each person’s cellular telephone calls on the day of the collision and during the previous week were 
analyzed through the use of detailed billing records.  The risk of a collision when using a cellular telephone was four times 
higher than the risk when a cellular telephone was not being used (relative risk, 4.3; 95 percent confidence interval, 3.0 to 
6.5... Calls close to the time of the collision were particularly hazardous (relative risk, 4.8 for calls placed within 5 minutes 
of the collision …” 

 
 

“
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Incomplete Designs 
 
Incomplete designs are studies in which information is missing on one or more relevant factors.   
 

Ecologic Studies 
 

An ecologic study is an incomplete design for which the unit of analysis is a group, often defined geographically, such as a 
census tract, a state, or a country. 
 

In an ecologic study, the unit of analysis is a group, often defined geographically, rather than an individual. That is, 
the basic data are typically percentages or other summary statistics for each group, rather than measurements of 
characteristics on individuals. The groups might be census tracts, states, or countries. 

The advantage of an ecologic study is that it can often be done quickly and inexpensively using existing data, 
usually mortality data. Ecologic studies are often used to generate hypotheses about exposure-disease relationships. They are 
also used to evaluate the impact of intervention programs on the health status of target populations. 

The primary criticism of an ecologic study is that data are not available on individuals. In particular, an ecologic 
study has data on the number of exposed persons and the number of cases within each group but does not have the number of 
exposed cases.  
 

 
 

Consequently, conclusions obtained from ecologic studies about determinants of a health outcome may not carry 
over to individuals. This problem is called the ecologic fallacy. 

The graph shown below shows a scatter plot of incidence rates of AIDS in 13 US states during 1989 compared to 
corresponding incidence rates of tuberculosis for the same year. The graph indicates that the states that had a high incidence 
of AIDS also have a high incidence of TB. And that states with a low incidence of AIDS tended to have a low incidence of 
TB. The relationship depicted here therefore suggests that the occurrence of AIDS may influence the development of TB or 
vice-versa. 
 

 
 

But, these data show a relationship that uses states as the unit of analysis. It is possible that few individuals have 
both AIDS and TB, even when the incidences of AIDS and TB, separately, are high. That information can only be obtained 
from data on individuals. 
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Summary 
 

 In an ecologic study, the unit of analysis is a group, often defined geographically. 
 Conclusions obtained from ecologic studies may not carry over to individuals (the ecologic fallacy). 
 In an ecologic study, data are available on the number of exposed persons and the number of cases within each 

group, but not on the number of exposed cases. 
 
 

Proportional Studies 
 

A proportional morbidity or proportional mortality study only includes observations on cases but lacks information about 
the candidate population at risk for developing the health outcome. If the design involves incident cases, the study is a 
proportional morbidity study. If deaths are used, the study is a proportional mortality study. 

Proportional mortality studies are used to generate new hypotheses or to conduct preliminary tests of etiologic 
hypotheses without collecting much additional data.  Because proportional morbidity or mortality studies do not provide non-
cases and the candidate population at risk is not available, it is not possible to compute traditional measures of effect, such as 
risk ratios or odds ratios used to evaluate exposure-disease relationships. 

A 1997 study of nuclear power workers tested the possible relationship between low levels of ionizing radiation and 
cancer among 3,500 certified deaths that occurred among plant workers between 1944 and 1972. 
 

 
 

The data in this study were mortality data exclusively, and did not contain information on the size of the candidate 
population at risk for dying. Without such information, it was not possible to demonstrate that exposure was positively 
associated with RES cancer risk. However, these data did show that a significantly greater proportion of workers exposed to 
radiation at the plant had died of RES compared to unexposed workers. This was certainly a step in the direction of 
implicating the potential harm of radiation exposure on RES cancer risk. 
 
 
Summary 
 

 A proportional morbidity or mortality study only includes observations on cases without information about the 
candidate population-at-risk. 

 Proportional studies are useful to generate hypotheses. 
 Proportional studies are useful for conducting preliminary tests of etiologic hypotheses. 
 In proportional studies, traditional measures of effect such as risk ratios cannot be computed. 
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Quiz (Q3.10) 
 
Determine whether each of the following statements is true or false 
 

1. An ecologic study is one in which populations are compared with individuals:  . ??? 
 
2. An examination of the distribution of causes of deaths as listed on the death certificate of all persons who 

died in Georgia in 1999 is an example of a proportional mortality study:  . . ??? 
 

3. Ecologic studies and proportional mortality studies are both better suited to generating causal hypotheses 
than to testing hypotheses    . . . . . ??? 

 
4. Ecologic studies and proportional mortality studies both have information on populations, but not on 

individuals:  . . . . . . . . . ??? 
 

5. Ecologic studies and proportional mortality studies can often be done quickly, because both mostly use 
existing, readily available data:   . . . . . . ??? 

 
6. Neither ecologic studies nor proportional morbidity / mortality studies can yield estimates of an individual’s 

risk of disease or death:  . . . . . . . ??? 
 
 
References 
 
References for Efficacy, Effectiveness, and Efficiency 
Detsky, A S.  Evidence of effectiveness: evaluating its quality. In F. A. Sloan (Ed.), Valuing health care: costs, benefits, and 

effectiveness of pharmaceuticals and other medical technologies (pp. 15-29). Cambridge, UK: Cambridge 
University Press, 1995. 

Detsky AS, Naglie IG. A Clinician Guide to Cost-Effectiveness Analysis. Ann Intern Medicine 1990; 113(2), 147-54. 
Grimes DA, Schulz KF. An overview of clinical research: the lay of the land. Lancet 2002; 359(9300), 57-61. 
Kocher MS, Henley MB. It is money that matters: Decision analysis and cost-effectiveness analysis. Clinical Orthopaedics 

and Related Research 2003;(413), 106-16. 
Reference for Diabetes Research Group Study (Clinical Trial) 
The Diabetes Control and Complications Trial Research Group.  The effect of intensive treatment of diabetes on the 
development and progression of long-term complications in insulin-dependent diabetes mellitus.  N Engl J Med 1993; 
329(14):977-86. 
Reference for Framingham Heart Study (Prospective Cohort Study) 
Feinleib M, The Framingham study: sample selection, follow-up, and methods of analysis, in National Cancer Institute 

Monograph, No. 67, Greenwald P (editor), US Department of Health and Human Services, 1985. 
Dorgan JF, Brown C, Barrett M, et al. Physical activity and risk of breast cancer in the Framingham Heart Study, Am J 

Epidemiol 1994;139(7): 662-9. 
Margolis JR, Gillum RF, Feinleib M, Brasch RC, Fabsitz RR. Community surveillance for coronary heart disease: the 

Framingham Cardiovascular Disease Survey. Methods and preliminary results. Am J Epidemiol 1974;100(6):425-
36.  

Reference for VDT use and Spontaneous Abortion (Retrospective Cohort Study) 
Schnorr TM, Grajewski BA, Hornung RW, Thun MJ, Egeland GM, Murray WE, Conover DL, Halperin WE. Video display 

terminals and the risk of spontaneous abortion. N Engl J Med 1991;324(11):727-33.  
Reference for Nonsteroidal Anti-inflammatory Drugs and Alzheimer’s Disease (Prospective Cohort Study) 
in t’ Veld BA, Ruitenberg A, Hofman A, Launer LJ, van Duijn CM, Stijnen T, Breteler MM, Stricker BH. Nonsteroidal 

antiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001;345(21):1515-21. 
References for Reye’s Syndrome (Case-Control Studies) 
Waldman RJ, Hall WN, McGee H, Van Amburg G. Aspirin as a risk factor in Reye’s syndrome. JAMA 1982;247(22):3089-

94. 
Halpin TJ, Holtzhauer FJ, Campbell RJ, Hall LJ, Correa-Villasenor A, Lanese R, Rice J, Hurwitz ES. Reye’s syndrome and 

medication use. JAMA 1982;248(6):687-91. 
Daniels SR, Greenberg RS, Ibrahim MA.  Scientific uncertainties in the studies of salicylate use and Reye’s syndrome. JAMA 

1983;249(10):1311-6. 



62  Lesson 3.  Epidemiologic Study Designs 

 

Hurwitz ES, Barrett MJ, Bregman D, Gunn WJ, Pinsky P, Schonberger LB, Drage JS, Kaslow RA, Burlington DB, Quinnan 
GV, et al. Public Health Service study of Reye’s syndrome and medications. Report of the main study. JAMA 
1987;257(14):1905-11. 

Forsyth BW, Horwitz RI, Acampora D, Shapiro ED, Viscoli CM, Feinstein AR, Henner R, Holabird NB, Jones BA, 
Karabelas AD, et al. New epidemiologic evidence confirming that bias does not explain the aspirin/Reye’s syndrome 
association. JAMA 1989;261(17):2517-24  

References for Creutzfeldt-Jakob Disease (Case-Control Studies) 
van Duijn CM, Delasnerie-Laupretre N, Masullo C, Zerr I, de Silva R, Wientjens DP, Brandel JP, Weber T, Bonavita V, 

Zeidler M, Alperovitch A, Poser S, Granieri E, Hofman A, Will RG. Case-control study of risk factors of 
Creutzfeldt-Jakob disease in Europe during 1993-95. European Union (EU) Collaborative Study Group of 
Creutzfeldt-Jakob disease (CJD). Lancet 1998;351(9109):1081-5. 

Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG. A 
new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996;347(9006):921-5. 

General Epidemiologic Design 
Checkoway H, Pearce N, Dement JM. Design and conduct of occupational epidemiology studies: II. Analysis of cohort data. 

Am J Ind Med 1989;(15(4):375-94. 
Greenberg RS, Daniels SR, Flanders WD, Eley JW, Boring JR. Medical Epidemiology (3rd Ed).  Lange Medical Books, New 

York, 2001. 
Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. John Wiley and 

Sons Publishers, New York, 1982. 
Steenland K (ed.). Case studies in occupational epidemiology. Oxford University Press, New York, 1993. 
Example of Cross-Sectional Studies 
Smith WCS, Woodward M, Tunstall-Pedoe H. Intermittent claudication in Scotland, in Epidemiology of Peripheral Vascular 

Disease. (ed FGR Fowkes.), Springer-Verlag, Berlin, 1991 
Hybrid Designs 
Coates RJ, Weiss NS, Daling JR, Rettmer RL, Warnick GR. Cancer risk in relation to serum copper levels. Cancer Res 

1989;49(15): 4353-6. 
Linn JT, Wang LY, Wang JT, Wang TH, Yang CS, Chen CJ. A nested case-control study on the association between 

Helicobacter pylori infection and gastric cancer risk in a cohort of 9775 men in Taiwan.  Anticancer Res 
1995;15:603-6. 

Maclure M, Mittleman MA. Should we use a case-crossover design? Annu Rev Public Health 2000;21:193-221. 
Maclure M. The case-crossover design: a method for studying transient effects on the risk of acute events. Am J Epidemiol 

1991;133(2):144-53. 
Redelmeier DA, Tibshirani RJ. Association between cellular-telephone calls and motor vehicle collisions. N Eng J Med 

1997;336(7):453-8. 
Ecologic 
CDC. Summary of notifiable diseases in the United States. MMWR Morb Mortal Wkly Rep 1990;38(54):1-59. 
Morgenstern H. Ecologic studies in epidemiology: concepts, principles, and methods. Annu Rev Public Health 1995;16:61-

81. 
Proportional Mortality 
Mancuso TF, Stewart A, Kneale G. Radiation exposures of Hanford workers dying from cancer and other causes. Health 

Phys 1977;33:369-85. 
Causation and Meta Analysis 
Blalock HM, Causal Inferences in Nonexperimental Research, Chapter 1, Norton Publishing, 1964. 
Chalmers I, Altman DG (eds.), Systematic Reviews, BMJ Publishing Group, London, 1995. 
Chalmers TC. Problems induced by meta-analyses. Stat Med 1991;10(6):971-80. 
Hill AB, Principles of Medical Statistics, 9th Edition, Chapter 24, Oxford University Press, 1971. 
Lipsey MW, Wilson DB. Practical meta-analysis. Applied Social Research Methods Series; Vol. 49. Sage Publications, Inc., 

Thousand Oaks, CA: 2001. 
Mosteller F, Colditz GA. Understanding research synthesis (meta-analysis). Annu Rev Public Health 1996;17:1-23. 
Petitti DB, Meta-analysis Decision Analysis and Cost-Effectiveness Analysis; Methods for Quantitative Synthesis in 

Medicine, Oxford University Press, 1994. 
Popper KR, The Logic of Scientific Discovery, Harper and Row Publishers, 1968. 
Rothman KJ. Causes. Am J Epidemiol 1976;104(6): 587-92. 
Susser M, Causal Thinking in the Health Sciences, Oxford University Press, 1973. 
 



63  

 

U.S. Department of Health, Education, and Welfare, Smoking and Health, PHS Publ. No. 1103, Government Printing, 
Washington DC, 1964.  

Weiss NS. Inferring causal relationships: elaboration of the criterion of ‘dose-response’”. Am J Epidemiol 1981;113(5):487-
90. 

 

Homework Exercises 
 
ACE-1. Study Type. State the type of study described by each of the following paragraphs: 
 
a. To investigate the relationship between egg consumption and heart disease, a group of patients admitted to a hospital 

with myocardial infarction were questioned about their egg consumption. Another group of patients admitted to a 
fracture clinic and matched on age and sex with the first group were also questioned about their egg consumption 
using an identical protocol. 

b. To investigate the relationship between certain solvents and cancer, all employees at a factory were questioned about 
their exposure to an industrial solvent, and the amount and length of exposure measured. These subjects were 
regularly monitored, and after 10 years a copy of the death certificate for all those who died was obtained. 

c. A survey was conducted of all nurses employed at a particular hospital. Among other questions, the questionnaire 
asked about the grade of the nurse and whether or not she was satisfied with her career prospects. 

d. To evaluate a new school (i.e., approach) for treating back pain, patients with lower back pain were randomly 
allocated to either the new school or to conventional occupational therapy. After 3 months, they were questions about 
their back pain, and observed lifting a weight by independent monitors. 

e. A new triage system has been set up at the local Accident and Emergency Unit. To evaluate this new system, the 
waiting times of patients were measured for 6 months and compared with the waiting times at a comparable nearby 
period. 

f. The Tumor Registry in a certain US state was used to identify all primary cases of bladder cancer in the state during a 
given period. These cases were compared to a sample of non-cases from the same state that have been matched on 
age and time of diagnosis. All subjects or their surviving relatives in both groups were interviewed to collect 
information on saccharin consumption and other known risk factors for bladder cancer. 

g. In the Hanford study of nuclear power workers (1977), 3500 certified deaths occurred among plant workers between 
1944 and 1972. Among these deaths, a significantly greater proportion of workers exposed to low levels of ionizing 
radiation than unexposed workers had died of RES (reticuloendothelial system) cancers. 

 
ACE-2.  Case-Control vs. Prospective Cohort. Which of the following choices is not an advantage of using a case-control 
study as opposed to a prospective cohort study? (There may be more than one correct answer here.) 
 
a. Less expensive 
b. Can be completed more rapidly 
c. More appropriate for the study of rare diseases, 
d. More appropriate for the study of diseases that develop slowly 
e. More appropriate for the study of several exposures. 
f. More appropriate for the study of several diseases. 
g. Allows more accurate assessment of exposure. 
 
ACE-3.  Randomization.  A randomized clinical trial was designed to compare two different treatment approaches for 
irritable–bowel syndrome. The purpose of randomization in this study was to: 
 
a. increase patient compliance with treatment 
b. obtain comparison groups that are similar on other variables that may influence the disease. 
c. obtain comparison groups that are similar on any other variables measured in the study. 
d. Increase the likelihood of finding a significant effect of treatment 
e. obtain a representative sample in the study. 
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ACE-4.  Clinical Trial.  In a randomized clinical trial designed to compare two treatments for asthma, the clinicians knew 
which treatment the patients received, but the patients themselves did not know which treatment they received. This is an 
example of: 
 
a. compliance 
b. intention-to-treat 
c. double-blinding 
d. placebo effect 
e. none of the above 
 
ACE-5.  Case-Control Study: TB.  (Primarily for medical students/clinicians) The following questions apply to the article ” 
Variations in the NRAMPI gene and susceptibility to tuberculosis in West Africans.” (Bellamy R, Rowende t al., New Eng J 
of Med, 38 (10), pp. 640-643, March 1998). 
 
a. Who were the patients in this study? 
b. Who were the controls? 
c. Did the controls and cases differ in any major aspect other than disease status? 
d. What was the design of this study? 
e. State the “null” hypothesis, either symbolically or in words. 
f. What do the investigators conclude about the null hypothesis? 
 
ACE-6.  Prospective Cohort Study.  In a famous prospective cohort investigation, the population to be studied 
encompassed all physicians listed in the British Medical Register and resident in England and Wales as of October 1951.  
Information about present and past smoking habits was obtained by questionnaire.  Information about lung cancer came from 
death certificates and other mortality data recorded during ensuing years. 
 
a. What makes this study prospective?  List two advantages and two disadvantages of this approach. 
b. What advantages and disadvantages come with selecting physicians as a cohort for follow-up? 
 
ACE-7.  Intention to Treat.  A clinical trial was conducted to compare a new hypertension therapy to the standard therapy. 
At the end of the follow-up period, the investigators performed two separate analyses. For the first analysis, they followed the 
“intention to treat” rule. For the second analysis, they included only those patients known to have taken the prescribed 
therapy throughout the study period. The results of the two analyses differed substantially. The most likely explanation for 
the discrepancy is: [Choose one best answer] 
 
a. The randomization was unsuccessful 
b. The new therapy was not effective 
c. There was a significant degree of recall bias 
d. There was a problem with patient compliance 
 
ACE-8.  Blinding.  A clinical trial was conducted to compare the performance of two treatments. Describe a situation in 
which it would NOT be feasible for the trial to be blinded. [Be sure that your answer indicates an understanding of what it 
means for a trial to be blinded.] 
 
ACE-9.  Randomization: Clinical Trials.  What is the purpose of randomization in a clinical trial? [Choose one best 
answer.] 
 
a. To make the diseased and non-diseased as similar as possible with respect to all variables except the exposure of 

interest 
b. To reduce the number of subjects who are lost to follow-up 
c. To isolate the effect of the exposure of interest 
d. To encourage compliance with the assigned treatment regimen 
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ACE-10.  Study Design: Adiposity and CHD.  (Primarily for medical students/clinicians) .The following questions apply to 
the article: “Abdominal adiposity and coronary heart disease in women.” (Rexrode KM, Carey VJ et al., JAMA, 280 (21), pp 
1643-1646, December 1998). 
 
a. What is the design of this study? 
b. What are the two principal null hypotheses for this study? 
c. How many women were included in the final analysis? What percentage of the entire cohort does this represent? 
d. The study used self-reported weight. How assured are you that this information is accurate? 
e. Given the results in Table 2, which of the two variables, waist-hip ratio or waist circumference, seems to be the better 

predictor of CHD risk?  Why? 
 
ACE-11.  Density Sampling.  Which of the following is NOT true of “density sampling” of controls in a case-control study? 
[Choose one best answer.] 
 
a. A subject identified as a control may later be identified as a case. 
b. A subject identified as a case may later be identified as a control. 
c. The odds ratio calculated from such a study is likely to be a good estimate of an incidence measure of association. 
d. An individual subject may serve as a control for more than one case. 
 
ACE-12.  Control Group.  What is the purpose of the control group in a case-control study? [Choose one best answer.] 
 
a. To provide an estimate of the background risk or rate of disease. 
b. To provide an estimate of the exposure frequency among the population that produced the cases. 
c. To provide an estimate of the magnitude of the placebo effect. 
d. To provide an estimate of the expected number of cases among the unexposed. 
         
ACE-13.  Study Design: Breast Cancer.  A paper entitled “Electric Blanket Use and Breast Cancer Risk among Younger 
Women” appeared in a recent issue of the American Journal of Epidemiology.  The methods section included the following 
information: 
 
Cases were women newly diagnosed with in situ or invasive breast cancer between May 1, 1990, and December 31, 1992, 
who were residents of three U.S. geographic areas.  Controls were women identified by random digit dialing and frequency-
matched to cases by 5-year age group and geographic area.  All women were asked about whether they had ever regularly 
used electric blankets, electric mattress pads, or heated waterbeds.  A positive response referred to the aggregate use of any or 
all of the devices at any time in the respondent’s life prior to enrollment in the study. 
 
Which one of the following best describes the design of this study? 
 
a. Cross-sectional 
b. Cohort 
c. Nested Case-Control 
d. Population-based Case-Control 
e. Descriptive  
 
 
Answers to Study Questions and Quizzes 
 
Q3.1 
 

1. Experimental 
2. Observational 
3. Observational 
4. Experimental 
5. Experimental 
6. Observational 

 

Q3.2 
 

1. Therapeutic 
2. Preventive 
 
1. a 
2. b 
3. b 
4. a 
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5. c 
6. c 
7. a 

 
Q3.3 
 

1. For VDT users the percentage is (54/366) x 100 = 
14.8% whereas for VDT non-users the percentage 
is (82/516) x 100 = 15.9%.  The two percentages 
differ by only 1%. 

 
Q3.4 
 

1. In a cohort study, the directionality is always 
forward. 

2. The timing is prospective, since the health outcome, 
in this case Alzheimer’s disease, occurs after the 
onset of the study. 

 
Q3.5 
 

1. b 
2. a 
3. b 
4. c 
5. b 
6. Retrospective 
7. Retrospective 
8. Prospective 
9. Both 
10. Neither 
11. Both 
12. Retrospective 

 
Q3.6 
 

1. b 
2. a 
3. a 
4. c 
5. b 
6. case-control 
7. case-control 
8. prospective cohort 
9. prospective cohort 
10. case-control 
11. prospective cohort 
12. case-control 
13. prospective cohort 
14. T – If controls are chosen from a different 

population from which the cases came, there may 
be selection bias. 

15. F – Hospital controls have an illness; such controls 
are typically not representative of the community 
from which the cases came. 

16. F – Population-based controls can be obtained from 
random dialing of telephone numbers in the 
community from which the cases are derived.  
There is no guarantee that neighbors of cases will 
be chosen. 

 
Q3.7 
 

1. b 
2. a 
3. c 
4. b 
5. T 
6. F 
7. T – A cross-sectional study includes only cases that 

survive long enough to be available for study.  This 
could lead to a misleading conclusion about an 
exposure-disease relationship since non-survivors 
are excluded. 

8. T 
 
Q3.8 
 

1. Backward 
2. Prospective 

 
Q3.9 
 

1. Both 
2. Both 
3. Neither 
4. Neither 
5. Both 
6. Nested case-control study 
7. Both 
8. Nested case-control study 
9. Neither 
10. Case-cohort study 

 
Q3.10 
 

1. F – The unit of analysis in an ecologic study is a 
group (e.g., census tract, state, country) and data on 
both exposure and disease is not simultaneously 
obtained on individuals 

2. T – A proportional mortality study includes 
observations on deaths without information about 
the candidate population (i.e., denominators). 

3. T – Both ecologic and proportional mortality 
studies use “incomplete” designs. 

4. F – Proportional mortality studies use information 
on deaths about individuals. 

5. T 
6. T 

 
 



 

 
 
 
 

LESSON   44  

 
Measures of Disease Frequency 
In epidemiologic studies, we use a measure of disease frequency to determine how often the disease or other health outcome 
of interest occurs in various subgroups of interest.  We describe two basic types of measures of disease frequency in this 
chapter, namely, measures of incidence and measures of prevalence.  The choice typically depends on the study design being 
used and the goal of the study. 
 

  There are two general types of measures of disease frequency, incidence (I) and prevalence (P). Incidence measures new 
cases of a disease that develop over a period of time. Prevalence measures existing cases of a disease at a particular point in 
time or over a period of time. 

To illustrate how incidence and prevalence differ, we consider our experience with AIDS. The number of annual 
incident cases of AIDS in gay men decreased in the US from the mid-1980s to the late 1990s. This has resulted primarily 
both from recent anti-retroviral treatment approaches and from prevention strategies for reducing high-risk sexual behavior.  
In contrast, the annual prevalent cases of AIDS in gay men has greatly increased in the US during the same period because 
recent treatment approaches for AIDS have been successful in prolonging life of persons with the HIV virus and/or AIDS. 
 

 
 

Prevalence can also be viewed as describing a pool of disease in a population, whereas incidence describes the input 
flow of new cases into the pool, and fatality and recovery reflects the output flow from the pool. 
 

   
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_4, © Springer Science+Business Media New York 2013 
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Incidence measures are useful for identifying risk factors and assessing disease etiology. Typically, incidence 

measures are estimated from clinical trials and from cohort studies, which involve the follow-up of subjects over time. 
Prevalence measures are not as useful as incidence measures for assessing etiology because prevalence does not 

consider persons who die from the disease before the prevalence study begins. Typically, prevalence measures are estimated 
from cross-sectional studies and from case-control studies that use prevalent, rather than incident, cases. Since the number of 
prevalent cases indicates demand for health care, prevalence measures are most useful in the planning of health services. 
 
 
Summary 
 

 Incidence concerns new cases of a disease or other health outcome over a period of follow-up. 
 Prevalence concerns existing cases of a disease at a point in time. 
 Incidence measures are useful for identifying risk factors and assessing disease etiology 
 Prevalence measures are most useful in the planning of health services 

 
Mortality Might Be Used Instead of Disease Incidence 

 
We discuss incidence and prevalence in terms of new or existing cases of a disease, whether or not these cases 

eventually die or not during or after the period of study. There are many situations, however, when the use of strictly 
mortality information is also worthwhile. 

Mortality measures are an important tool for epidemiologic surveillance. Today such surveillance programs have been 
applied to monitor the occurrence of a wide variety of health events, including deaths, in large populations. Mortality 
statistics are also convenient for evaluating etiologic hypotheses, especially when incidence data are not available. In 
particular, for diseases with a low rate of cure or recovery, such as lung cancer, mortality measures give a reasonable 
approximation to incidence measures. 

Use of mortality information for any of the above purposes has several pragmatic advantages: 
 Mortality data are widely collected and virtually complete since registration of deaths is compulsory in most 

industrialized countries and few deaths are not reported. 
 Mortality data are defined using standardized nomenclature. In particular, the International Classification of 

Diseases (ICD) is used to promote uniformity in reporting causes of death. 
 Recording of mortality data is relatively inexpensive. 

 
 

House Guests Example 
 
Suppose guests arrive at your house at the rate of two per day and stay exactly five days. How many people will be in your 
house after a week? 

Let’s see what happens day by day. On the first day, two guests arrive and none depart, so there are 2 guests in your 
house at the end of the first day. On the second day two more guests arrive, and none depart, so there are now 4 guests in 
your house after 2 days. Similarly, there are 6 guests after 3 days, 8 after 4 days and 10 guests in your house after five days, 
with no guests departing up to this point. But, on the sixth day, two new guests arrive, but the two guests that came on day 1, 
having been there for five days, now depart, leaving you again with 10 guests in the house. At the end of the seventh day, 
there will still be 10 guests in the house, which answers the question raised at the start of all this. 
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This scenario illustrates the fundamental difference between incidence and prevalence. In the example, after 5 days, 

a steady state” is reached at which point there are 10 houseguests as long as the arrival rate is 2 per day. This steady state of 
10 houseguests is a prevalence, which describes the existing count of guests, at any point in time after a steady state has been 
reached. The arrival rate of 2 guests per day is an incidence, which describes how quickly new guests are arriving. The 
duration of five days that guests stay in your house is the information needed to link the incidence to the prevalence. 

Prevalence can be linked to incidence with the following formula:  
 
P = I x D 
 
 In our example, P is the number of guests in the house on any day after day five, I is the arrival rate of 2 guests per 

day, and D is the duration of 5 days for each guest. The formula works in this example since 2 times 5 equals 10. 
We can see from this formula that for a given incidence, the prevalence will increase or decrease as the duration 

increases or decreases. For example, if guests stayed for 8 days rather than 5 days, with the same arrival rate, the number of 
guests at the house at steady state would be 2 times 8, which equals 16, rather than 10. 

For a given duration, the prevalence will increase or decrease as the incidence increases or decreases. Thus, if the 
guests arrive at the rate of only 1 guest per day rather than 2, and stay 8 days, the prevalence will be 1 times 8, which equals 
8, instead of 16. 

 
 

Summary 
 A scenario involving houseguests who arrive at 2 per day and stay five days illustrates the fundamental difference 

between incidence and prevalence. 
 A steady state of 10 houseguests illustrates prevalence, which describes the existing count of guests at any point in 

time after steady state is reached. 
 The arrival of 2 guests per day illustrates incidence, which describes how quickly new guests are arriving. 
 The duration of 5 days is the information needed to link how incidence leads to prevalence 
 Prevalence is obtained as the product of incidence and duration (P = I x D) 

 
 

The Relationship between Prevalence and Incidence 
 

In the example involving house guests”, the formula 
 

 P I D( )  
 

was used to demonstrate that the steady state number of guests in the house after 7 days was equal to the product of the 
number of guests arriving each day times the duration that each guest stayed in the house. 

The terms P, I, and D in this formula represent the concepts of prevalence, incidence and duration, respectively, but, as 
used in the example, they each do not strictly conform to the epidemiologic definitions of these terms. As described in later 
activities in this lesson (i.e., chapter) on measures of disease frequency, the strict definitions of prevalence and incidence 
require denominators, whereas the house guest” scenario described here makes use only of numerator information. 

Specifically, prevalence is estimated using the formula: 
 

P
C
N

 

 
Continued on next page 

“

“

“
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The Relationship between Prevalence and Incidence (continued) 
 
and incidence uses one of the following two possible formulas depending on whether risk or rate is the incidence measure 
chosen: 

 

CI
I
N

 or IR
I

PT
 

 
In the above formulae, P, C, and N denote the prevalence, number of existing cases, and steady state population-size, 

respectively. Also, CI denotes cumulative incidence, which estimates risk, I denotes the number of new (incident cases), 
and N denotes the size of a disease-free cohort followed over the entire study period. Further, IR stands for incidence rate, 
and PT for accumulated person-time information. All these formulae are described and illustrated in later activities. 

The important point being made here is that all three of the above formulae have denominators, which were not used in 
the houseguest example, but are required for computing prevalence and incidence in epidemiology. 

The term D in the formula at the top of this page was used in the houseguest example to define the duration of stay that 
was assumed for each houseguest. In the epidemiologic use of this formula, D actually denotes the average duration of 
illness for all subjects in the population under study, rather than being assumed to be the same for each person in the 
population. 

Nevertheless, using the stricter epidemiologic definitions of prevalence and incidence measures and using average 
duration, the above formula that relates prevalence to incidence and duration still holds, provided the population is in steady 
state and the disease is rare. By steady state, we mean that even though the population may be dynamic, the number of 
persons who enter and leave the population for whatever reasons are essentially equal over the study period, so that the 
population does not change. If the disease is not rare, a modified formula relating prevalence to incidence is required 
instead, namely: 

 

P
I D

I D( ) 1
 

 
 
Quiz (Q4.1) 
 
For each of the following scenarios, determine whether it is more closely related to 
incidence or to prevalence. 

1. Number of campers who developed gastroenteritis within a few days after eating potato salad at the 
dining hall? . . . . . . . . . . ??? 

2. Number of persons who reported having with diabetes as part of the National Health Interview Survey?
 . . . . . . . . . . . ??? 

3. Occurrence of acute myocardial infarction (heart attack) among participants during the first 10 years of 
follow-up of the Framingham Study? . . . . . . . ??? 

4. Number of persons who died and whose deaths were attributed to Hurricane Floyd in North Carolina in 
1999? . . . . . . . . . . . ??? 

5. Number of children who have immunity to measles, either because they had the disease or because they 
received the vaccine?  . . . . . . . . ??? 

 
 
 
 
 

Quiz continued on next page 
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Suppose a surveillance system was able to accurately and completely capture all new occurrences of disease in 
a community.  Suppose also that a survey was conducted on July 1 that asked every member of that community 
whether they currently had that disease. For each of the following conditions, determine whether incidence (per 
1,000 persons per year) or prevalence (per 1,000 persons on July 1) is likely to be higher. 

6. Rabies (occurs rarely and has a short duration, e.g., death within one week)?  . ??? 

7. Multiple sclerosis (rare occurrence, long duration [many years])?  . . . ??? 

8. Influenza (common but winter-seasonal occurrence, short duration)? . . . ??? 

9. Poison ivy dermatitis (common spring/summer/fall occurrence, 2-week duration)? . . ??? 

10. High blood pressure (not uncommon occurrence, lifelong duration)?  . . ??? 
 
 

 
The term risk is commonly used in everyday life to describe the likelihood, or probability, that some event of interest will 
occur. We may wonder, for example, what is the risk that the stock market will crash or that we will be involved in a serious 
auto collision? We may worry about our risk for developing an undesirable health condition, such as a life-threatening illness, 
even our risk for dying. 

In epidemiology, risk is the probability that an individual with certain characteristics, say, age, race, sex, and 
smoking status, will develop or die from a disease, or even more generally, will experience a health status change of interest 
over a specified follow-up period. When the health outcome is a disease, this definition assumes that the individual does not 
have the disease at the start of follow-up and does not die from any other cause during follow-up.  Because risk is a 
probability, it is a number between 0 and l, or, correspondingly, a percentage. 
 

 
 

When describing risk, it is necessary to specify a period of follow-up, called the risk period. For example, to 
describe the risk that a 45 year-old male will develop prostate cancer, we must state the risk period, say, 10 years of follow-
up, over which we want to predict this risk. If the risk period were, for example, 20 years instead of 10 years, we would 
expect our estimate of risk to be larger than the 10-year risk since more time is being allowed for the disease to develop. 
 
 
Study Questions (Q4.2) 
 

1. What is the meaning of the following statement?  The 10-year risk that a 45-year-old male will develop prostate 
cancer is 5%?  (State your answer in probability terms and be as specific as you can in terms of the assumptions 
required.) 

 
2. Will the 5-year risk for the same person described in the previous question be larger or smaller than the 10-year 

risk?  Explain briefly. 
 
 
 
 
 

 

4-2 Risk
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Summary 
 

 Risk is the probability than an individual will develop or die from a given disease or, more generally, will 
experience a health status change over a specified follow-up period. 

 Risk assumes that the individual does not have the disease at the start of the follow-up and does not die from any 
other cause during the follow-up. 

 Risk must be some value between 0 and 1, or correspondingly, a percentage 
 When describing risk, it is necessary to give the follow-up period over which the risk is to be predicted. 

 
Confusing Risk with Rate 

 
The term rate has often been used incorrectly to describe a measure of risk.  For example, the term attack rate is 

frequently used in studies of outbreaks to describe an estimate of the probability of developing an infectious illness, when in 
fact, an estimate of risk is computed.  Also, the term death rate has been confused with death risk in mortality studies. In 
particular, the term case-fatality rate has often been misused to describe the proportion of cases that die, i.e., such a 
proportion is actually estimating a risk. 

The terms risk and rate have very different meanings, as described in other activities in this lesson. Ideally, the correct 
term should be applied to the actual measure being used. This does not always happen in the publication of epidemiologic 
findings. Consequently, when reading the epidemiologic literature, one should be careful to determine the actual measure 
being reported.  
 
 

Cumulative Incidence 
 
The most common way to estimate risk is to divide the number of newly detected cases that develop during follow-up by the 
number of disease-free subjects available at the start of follow-up. Such an estimate is often called cumulative incidence or 
CI. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. 
 

up-follow ofstart at  subjects free-disease of #
 up-follow during cases new of #

N
ICI  

 
Technically speaking, cumulative incidence is not equivalent to individual risk, but rather is an estimate of 

individual risk computed from either an entire population or a sample of a population. However, we often use the terms risk 
and cumulative incidence interchangeably, as we do throughout this course. 

We usually put a hat (“^”) over the CI when the estimate of cumulative incidence is based on a sample; we leave off 
the hat if we have data for the entire population. 
 

IĈ CI “hat” 
 
The cumulative incidence formula, with or without a hat”, is always a proportion, so its values can vary from 0 to 1. 

If the cumulative incidence is high, as in an outbreak, the CI is sometimes expressed as a percent. 
As a simple example, suppose we followed 1000 men age 45 and found that 50 developed prostate cancer within 10 

years of follow-up and that no subject was lost to follow-up or withdrew from the study. Then our estimate of simple 
cumulative incidence is 50 over 1000, or 0.05, or, 5 %.  

 

%505.
1000

50
N
IIĈ  

 
In other words, the 10-year risk, technically the cumulative incidence for a 45 year-old male is estimated to be 5%. 

The formula we have given for computing risk is often referred to as Simple Cumulative Incidence because it is a simple 
proportion that assumes a fixed cohort. Nevertheless, the use of simple cumulative incidence is not always appropriate in all 
kinds of follow-up studies. Problems with simple cumulative incidence and methods for dealing with such problems are 
discussed in activities to follow. 

“
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Summary 
 

 Cumulative incidence (CI) is a population-based estimate of individual risk 
 Cumulative incidence is always a proportion 
 When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. 
 The formula for simple cumulative incidence is CI=I/N, where I denotes the number of new cases of disease that 

develop over the follow-up period and N denotes the size of the disease-free population at the start of follow-up. 
 The terms cumulative incidence and risk are used interchangeably in this course, even though technically, they are 

different. 
 

Using Population Data to Calculate Risk 
 

Suppose we follow 1000 men age 45 to estimate the 10-year risk of developing prostate cancer to be .05 or 5 %. To 
obtain this estimate, we must use information from a group of subjects, all of who happen to be exactly the same age, to 
predict the risk for a single individual.  We might get a much better estimate if we knew specific characteristics of the 
individual, for example, his diet, whether or not he smokes or drinks alcohol.  Nevertheless, even if we knew more 
characteristics, we would still have to rely on an estimate of risk based on data obtained on a group of subjects on which we 
measured or observed these additional characteristics.  This is how epidemiologists work to estimate individual risk, that is, 
they must rely on accumulating evidence based on population data. 
 
 

Shifting the Cohort 
 
The formula for simple cumulative incidence implicitly assumes that the cohort is fixed
cohort are allowed during the follow-up period. What we should do if we do allow new entries into the cohort? 

For example, in the Sydney Beach Users study described in Lesson 2, subjects were selected from 12 popular 
Sydney beaches over 41 sampling days throughout the summer months of 1989-90. Subjects could progressively enter the 
cohort on different days during the summer, after which self-reported exposure and disease information were obtained one 
week later. 

To illustrate, consider these six subjects. Each subject is followed for the required 7 days. Subjects 1 and 5 (going 
from the bottom individual to the top individual) are the only subjects who reported becoming ill. 
 

 
 
We can restructure these data by shifting the line of follow-up for each person to the left margin so that the 

horizontal time axis now reflects days of observation from the start of observation for each subject, rather than the actual 
calendar days at which the observations occurred. This conforms to the follow-up of a fixed cohort, for which the cumulative 
incidence is estimated to be 2/6 or one-third. 

 

” in the sense that no entries into the “
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We often have a cohort that allows subjects to progressively enter the study at different calendar times. We can 

restructure the cohort to be fixed by shifting the data for each subject to reflect the time of observation since initial entry into 
the study rather than calendar time. We can then use the simple cumulative incidence formula to estimate risk. 
 
Study Questions (Q4.3) 
 

1. After we have shifted the cohort, do we have to assume that subjects who became cases were followed for the same 
amount of time as subjects who remained disease-free? 

 
Suppose after shifting the cohort, one subject remained disease-free during 4 years of follow-up whereas another subject in 
the cohort remained disease-free but was only followed for 2 years. 
 

2. Is there a problem with computing the cumulative incidence that includes both these subjects in the denominator of 
the CI formula? 

3. After we have shifted the cohort, do we have to assume that ALL subjects, including those who became cases, were 
followed for the same amount of time in order to compute cumulative incidence (CI)? 

 
Summary 
 

 If subjects progressively enter the study at different calendar times, the data can be shifted to reflect the time of 
observation since initial entry. 

 Simple cumulative incidence can be used to estimate risk for a shifted cohort. 
 After shifting the cohort, we can compute cumulative incidence provided all subjects who remained disease-free 

throughout follow-up are followed for the entire length of follow-up. 
 
 

Problems with Simple Cumulative Incidence 
 

There are several potential problems with assuming a fixed cohort when using the formula for 
simple cumulative incidence to estimate risk.  One problem occurs because the size of a fixed cohort is 
likely to be reduced during the follow-up period as a result of deaths or other sources of attrition such as 
loss to follow-up or withdrawal from the study. We don’t know whether a subject lost during follow-up 
developed the disease of interest. 

Another problem arises if the population studied is a dynamic population rather than a fixed 
cohort. A fixed cohort is a group of subjects identified at some point in time and followed for a given period for detection of 
new cases. The cohort is fixed” in the sense that no entries are permitted into the study after the onset of follow-up, although 
subsequent losses of subjects may occur for various reasons such as withdrawal, migration, and death. But, a dynamic 
population is continually changing, allowing for both the addition of new members and the loss of previously entered 
members during the follow-up period. 

The denominator in the simple cumulative incidence formula does not reflect the continually changing population 
size of a dynamic population. And the numerator in the simple cumulative incidence formula does not count new cases that 
may arise from those persons who entered a dynamic population after the beginning of follow-up. 

“
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Another difficulty for either a fixed or dynamic cohort is that subjects may be followed for different periods of time 
so that a cumulative incidence estimate will not make use of differing follow-up periods. This problem can occur when 
subjects are lost to follow-up or withdraw from the study. It could also occur if subjects enter the study after the study start 
and are disease-free until the study ends, or if the follow-up time at which a subject develops the disease varies for different 
subjects. 

To illustrate these problems, let’s consider a hypothetical example involving 12 initially disease-free subjects who 
are followed over a 5- year period from 1990 to 1995. 

 

 
 

An X denotes the time at which a subject was diagnosed with the disease and a circle (O) denotes the time of death 
that could be due to the disease (circle with an X inside) or due to another cause (circle without an X). Those subjects that 
have no X or circle on their time line either withdrew from the study, or were lost to follow-up, or were followed until the 
end of the study without the developing the disease. The value to the right of each subject’s time line denotes that subject’s 
follow-up time period until either the disease was diagnosed, the subject withdrew or was lost to follow-up, or until the study 
ended. Based on this information, answer the following questions: 
 
 
Study Questions (Q4.4) 
 
 The questions below refer to the figure above: 
 

1. What type of cohort is being studied, fixed or dynamic? 
 

2a. Which of these subjects was diagnosed with the disease? 
 Subject 2 Subject 3 Subject 5 Subject 7 
 

2b. Which of these subjects was lost or withdrawn? 
 Subject 2 Subject 3 Subject 5 Subject 7 
 

2c. Which of these subjects died with disease? 
 Subject 3 Subject 5 Subject 7 Subject 9 
 

2d. Which of these subjects died without the disease? 
 Subject 3 Subject 5 Subject 7 Subject 9 
 

2e. Which one was without the disease and alive at the end? 
 Subject 3 Subject 5 Subject 7 Subject 9 
 
 

Study questions continued on next page 
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3. If we could shift the cohort, what is your estimate of simple cumulative incidence of disease diagnosis in percent? 
 

4. What is your estimate of simple cumulative incidence of death in percent with no decimal places? 
 

5. Using the “unshifted” graph from the previous page, Subjects 5, 8, 10 and 12 have which of the following in 
common: 

 
A. Same amount of observed follow-up time 
B. Entered study at same calendar time 
C. Withdrew from the study 
D. Did not develop disease during follow-up 

 
Computing simple cumulative incidence for the previously shown data is a problem because … 
 

6a. Not all subjects developed the disease    Yes No 
 

6b. Not all subjects died      Yes No 
 

6c. The cohort is dynamic      Yes No 
 

6d. Some subjects died from another cause    Yes No 
 

6e. Some subjects were lost or withdrew     Yes No 
 

6f. Some subjects developed disease at  different follow-up times  Yes No 
 

6g. Subjects not developing the disease had different follow-up times Yes No 
 

 
 
Summary 
 

 There are problems with assuming a fixed cohort when using the formula for simple cumulative incidence to 
estimate risk. 

 If there is attrition of a fixed cohort, we will not know whether a subject lost during follow-up developed the 
disease. 

 For a dynamic cohort, the denominator in the simple cumulative incidence formula does not reflect the continually 
changing population size 

 Simple cumulative incidence does not allow subjects to be followed for different periods of time. 
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Quiz (Q4.5) 
 
After the second game of the college football season, 60 members of the 97-person 
football team developed fever, malaise, loss of appetite, and abdominal discomfort. 
Within a few days, 30 players became jaundiced. Blood samples were drawn from all 
members of the team to test for antibodies to hepatitis A (the presumptive diagnosis) and to test for elevation of 
liver enzymes 
 

1. What is the cumulative incidence of jaundice?  . . . . . . ??? 
 

2. If you assume that all persons with symptoms had hepatitis A, even those that did not develop jaundice, 
what is the presumed cumulative incidence of hepatitis A?  . . . . ??? 

 
3. Laboratory testing revealed that 91 had elevated liver enzymes of which 90 had IgM antibody indicative of 

acute hepatitis A infection. Two players with normal liver enzymes had IgG antibody, indicating that they 
had previously been exposed to hepatitis A and are now immune. What is the cumulative incidence of 
hepatitis A?  ??? 

 
Choices 
30/60  30/97  60/97  90/91  90/95  90/97    91/95  91/97 
 
 
Label each of the following statements as True or False: 
 

4. Cumulative incidence is always a proportion, even for a cohort with staggered entry ("shifted cohort"). 
 . . . . . . . . . . . ??? 

 
5. Cumulative incidence is a useful measure for diseases with short incubation periods in well-defined 

populations.   . . . . . . . . . ??? 
 

6. Cumulative incidence is a less-than-ideal measure for diseases with long incubations periods in dynamic 
populations.   . . . . . . . . . ??? 

 
7. If a fixed population has substantial loss-to-follow-up, cumulative incidence will overestimate the true risk 

of disease.   . . . . . . . . . ??? 
 

 
 

 
Rate is a measure of disease frequency that describes how rapidly health events such as new diagnoses of cases or deaths are 
occurring in a population of interest.  Synonyms: hazard, incidence density. 
 

Concept of a Rate 
 
The concept of a rate is not as easily understood as risk, and is often confused with risk. Loosely speaking, a rate is a measure 
of how quickly something of interest happens. When we want to know how fast we are traveling in our car, how quickly the 
stock market prices are increasing, or how steadily the crime rate is decreasing, we are seeking a rate. 

Suppose we are taking a trip in a car. We are driving along an expressway and we look at our speedometer and see 
we are going 65 miles per hour. Does this mean that we will cover exactly 65 miles in the next hour? Of course not. The 
speedometer reading tells us how fast we are traveling at the moment of time we looked at the reading. If we were able to 
drive exactly this way for the next hour without stopping for gas or a rest or slowing down for heavy traffic, we would cover 
65 miles in the next hour. The reading of 65 miles per hour on our speedometer is the velocity at which we are traveling, and 
velocity is an example of a rate. 

 4-3 Rate
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Actually, velocity is an example of an instantaneous rate, since it describes how fast we are traveling at a particular 
instant of time. There is another kind of rate, called an average rate, which we can also illustrate by continuing our car trip. 
If we actually traveled along the highway for the next hour and covered 55 miles during that time, the average rate, often 
called the speed that we traveled over the one-hour period, would be 55. 

In epidemiology, we use a rate to measure how rapidly new cases of a disease are developing, or alternatively, how 
rapidly persons with a disease of interest are dying. As with velocity or speed, we might want to know either the 
instantaneous rate or the average rate. With epidemiologic data, it is typically easier to determine an average rate than an 
instantaneous rate. We could hardly expect to have a speedometer-like device that measures how fast a disease is occurring at 
a particular moment of time in a cohort of subjects. Consequently, in epidemiologic studies, we typically measure the average 
rate at which a disease is occurring over a period of time. 

Because a rate is a measure of how quickly something is occurring, it is always measured in units of time, say, days, 
weeks, months, or years. This clarifies its interpretation. If we describe a rate of 50 new cases per 10,000 person-years, we 
mean that an average of 50 cases occurs for every 10,000 years of disease free follow-up time observed on a cohort of 
subjects. The 10,000 figure is obtained by adding together the follow-up times for all subjects in the cohort. 

If the unit of time was months instead of years, the interpretation of the rate can be quite different. A rate of 50 new 
cases per 10,000 person months indicates a much quicker rate than 50 new cases per 10,000 person years. 
 
Study Questions (Q4.6) 
 

1. Which of the following rates is not equivalent to a rate of 50 new cases per 10,000 person years? 
 

A. 100 new cases per 20,000 person years 
B. 50 new cases per 120,000 person months 
C. 50 new cases per 52,000 person weeks 

 
2. Determine whether or not each of the following statements describes a rate: 

 
A. 5 new cases per 100 person days   Yes No 
B. 40 miles per hour     Yes No 
C. 10 new cases out of 100 disease-free persons  Yes No 
D. 60 new murders per year    Yes No 
E. 60 deaths out of 200 clung cancer patients  Yes No 

 
 
Summary 
 

 Generally, a rate is a measure of how quickly something of interest is happening 
 In epidemiology, a rate is a measure of how rapidly are new cases of a disease developing, or alternatively, how 

rapidly persons with a disease of interest are dying. 
 An instantaneous rate, like velocity, describes how rapidly disease or death is occurring at a moment in time 
 An average rate, like speed, describes how rapidly disease or death has been occurring as an average over a period 

of time. 
 In epidemiology, we typically use average rates rather than instantaneous rates. 
 Rates must be measured in units of time. 
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Incidence Density- The Concept 
 

The term incidence density (ID) has been proposed (Miettinen OS, Am J Epidemiol 1976;103(2):226-35) to provide an 
intuitive interpretation of the concept of an average incidence rate. 

The diagram below illustrates incidence density as the concentration (i.e. density) of new case occurrences in an 
accumulation (or sea) of person-time. Person-time (PT) is represented by the area under the curve N(t) that describes 
number of disease-free persons at time t during a period of follow-up from time T0 to T1. 

Each new case is denoted by a small circle located within the sea of person-time at the time of disease occurrence. The 
concentration of circles within the sea represents the density of cases. The higher the concentration, the higher is the 
average rate during the period of follow-up. 
 

 
 

 

 
 
 
 
 

The Instantaneous Rate in Epidemiology 
 

A variety of mathematical definitions have been used to define a rate. In epidemiology, where the incidence of a heath 
condition is of interest, the following definition is commonly used: 
 

 Rate
(t, t + t t

N tt
lim

) /
( )0

#  of new cases in
 

 
where t denotes time, t denotes a small time change, and N(t) denotes the size of the population-at-risk (e.g., the disease-
free cohort) at any given time at time t. This is a general definition of an instantaneous rate, and it applies to both fixed 
cohort and dynamic populations. 

This definition can be interpreted as the instantaneous potential at time t (as defined by the limit statement) for the 
number of new cases that would develop between times t and t + t per unit time relative to the population-at-risk at time 
t. 
A special feature of this definition is the involvement of N(t), which is not required in other more popular uses of the term 
rate outside of epidemiology, as for example, when describing the velocity observed on a car’s speedometer. Velocity 
denotes how much distance one would potentially cover per time period of travel at a particular instant of time. The distance 
covered corresponds to the number of new cases developed over a time period of length t. But there is no term similar to 
N(t) involved in the interpretation of velocity. 

 



80  Lesson 4.  Measures of Disease Frequency 

 

The Average Rate in Epidemiology 
 

In epidemiology, where the incidence of a heath condition is of interest, the following general definition of average rate 
is commonly used: 

 

 Average Rate 
#  of new cases in(T T

PT
0 1, )

 

 
where T0 and T1 denote the starting and ending time points of follow-up, and PT denotes the amount of disease-free person-
time accumulated during the time interval from T0 to T1.  Mathematically, PT gives the area under the curve that describes 
how N(t) changes over time between times T0 and T1, where N(t) denotes the size of the population-at-risk at time t.  
Technically, the formula for PT is given by: 

 

 PT N t dt
T

T
( )

0

1
 

 
As a simple example of the calculation of PT, if we are studying a stable dynamic population of size N from time T0 to 

T1, then 
 

 PT=N(T1 – T0) 
 
Alternatively, if we are studying a fixed disease-free cohort of size N and know the individual observed follow-up times 

of each subject in the cohort, then 
 

 PT T
i

N

1
1

 

 
as i goes from 1 to N. 
 
 

Calculation of a Rate 
 
To calculate a rate, we must follow a cohort of subjects, count the number of new (or incident) cases, I, of a disease in that 
cohort, and compute the total time, called person-time or PT, that disease-free individuals in the cohort are observed over the 
study period. The estimated incidence rate ( RÎ ) is obtained by dividing I by PT: 
 

PT
IRÎ  

 
This formula gives an average rate, rather than the more difficult to estimate instantaneous rate. The formula is 

general enough to be used for any outcome of interest, including death. If the outcome is death instead of disease incidence, 
the formula gives the mortality incidence rate rather than the disease incidence rate. 

For example, consider again the following hypothetical cohort of 12 initially disease-free subjects followed over a 5-
year period from 1990 to 1995. 
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To be complete, the estimated incidence rate is 0.2 per person-year. 
 

From these data, the number of new cases is 5. The total person-time, in this case person-years, is obtained by 
adding the individual observed disease-free follow-up times this gives a total of 25 person years. The rate is therefore 5 
divided by 25 or 0.20, which can be translated as 20 new cases per 100 person years of follow-up. 
 
 
Study Questions (Q4.7) 
 

1. In this example, is the value of 0.20 a proportion? 
2. In this example, does the value of 0.20 represent the risk of developing disease? 
3. Which of the following rates is not equivalent to a rate of 20 new cases per 100 person years? 

A. 5 new cases per 25 years 
B. 40 new cases per 200 person years 
C. 480 new cases per 2400 person months 
D. 20 new cases per 1200 person months 

 
 
Summary 
 

 A rate is calculated using the formula I/PT, where I denotes the number of incident cases and PT denotes the 
accumulated person-time of observed follow-up over the study period. 

 This formula gives an average rate, rather than the more difficult to estimate instantaneous rate. 
 A rate is always greater than zero and has no upper bound. 
 The rate is always stated in units of person-time. 
 A rate of .20 cases per person year is equivalent to 20 cases per 100 person-years as well as 20 cases per 1,200 

person-months 
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The Big-Mac Assumption about Person-Time 
 

We have seen that the general formula for calculating an average rate (R) is: 
 

 R
I

PT
 

 
where I is the number of new cases and PT is the accumulated person-time over a specified period of follow-up.  When 
individually observed follow-up times are available, PT is determined by summing these individual times together for all N 
subjects in the disease-free cohort. 

For example, if 100 persons are each followed for 10 years, then PT=1000 person-years. Also, if 1000 persons are each 
followed for 1 year, we get PT=1000. 

A key assumption about PT is that both of these situations provide equivalent person-time information. In other words, 
the rate corresponding to a specified value of PT should not be affected by how the total person-time is obtained.  We call 
this assumption the Big-Mac assumption because it is similar to assuming that eating 50 fast-food hamburgers costing 
$2.00 each is equivalent to eating: $100 gourmet meal at the best-rated restaurant in town. 

The Big-Mac assumption for PT will not hold, however, if the average time between first exposure and detection of the 
disease (i.e., the latency) is longer than the average individually observed follow-up time. In such a case, we would expect 
the rate to be lower in a large cohort that accumulates the same amount of PT as a smaller cohort with larger individual 
follow-up times. 

For example, if the latency were 2 years, we would expect an extremely low rate for 1000 persons followed for one-year 
each but a much larger rate for 100 persons followed for two-years each. Individuals in the larger cohort would not be 
followed long enough to result in many new cases. 
 
 

 
Determining Person Time Information 

 
There are a number of ways to determine the person-time denominator in the formula for a rate. As illustrated in the previous 
activity, when individual follow-up times are available on each person in the cohort, the person-time is calculated by 
summing ( ) individual follow-up times over the entire disease-free cohort. 
 

 
PT
IRÎ  

 
When individual follow-up times are not available, one method for computing person-time information uses the 

formula: 
 

PT = N* x t 
 
where N* is the average size of the disease-free cohort over the time period of study and t is the time length of the study 
period.  This formula is particularly useful if the study cohort is a large population, such as a city, where individual person 
time information would be very difficult to obtain. For such a large cohort, it would also be difficult to exclude existing cases 
of the disease at the start of the study period as well as to determine the number of disease-free persons that are not followed 
for the entire period of study. 

Nevertheless, it may be that relatively few persons in the population develop the disease. And, we may be able to 
assume that the population is a stable dynamic cohort, that is, the population undergoes no major demographic shifts during 
the time period of interest. If so, the average size of the disease free cohort can be estimated by the size of the entire 
population based on census data available close to the time period of the study, which is what we have denoted N* in our 
person-time formula. 

As an example, suppose a stable population of 100,000 men is followed for a period of 5 years, during which time 
500 new cases of bladder cancer are detected. The accumulated person-years for this cohort can then be estimated as 100,000 
times 5, or 500,000 person-years. Consequently, the average incidence rate for the 5-year period is given by 500 divided by 
500,000, or 0.001 per year, or equivalently 1 new case per 1000 person years. 
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Summary 
 

 There are alternative ways to determine person-time information required in the denominator of a rate when 
individual follow-up times are not available. 

 One method uses the formula PT = N* x t, where N* denotes the average size of a stable dynamic cohort based on 
census data available close to the chronological time of the study, and t is the time period of the study. 

 This formula is useful if the study cohort is a large population for which individual person time information would 
be difficult to obtain. 

 

A Third Method for Determining PT 
 

Here we describe another method for determining the accumulated person-time information (PT) when individual follow-up 
time information is not available. This approach allows for shifting the time of entry of persons who progressively enter the 
cohort after the start of the study.  Assume that you know: 
 
 N, the number at risk at the start of follow-up, 
 W, the number of withdrawals during the study period, 
 D, the number of deaths from other diseases during the study period, and 
 I, the number of new cases of the disease during the study period. 

 
The person-time information is then calculated using the formula: 

 

 PT N
W D I

t
2 2 2

 

 
where t denotes the time length of the study. This formula gives the size of the initial cohort less half the number of 
subjects that were not followed for the entire risk period. 

This formula essentially gives the effective number of subjects at risk that would produce I new cases of the disease if 
all subjects could be followed for the entire period. The values W/2, D/2, and I/2 are used to assume that the average 
follow-up time for those not followed for the entire study occurs at the midpoint of the follow-up period. 

To illustrate this approach, consider once again the hypothetical example described in the previous activity involving 12 
initially disease-free subjects that are followed over a 5 year period from 1990 to 1995: Suppose that you don’t know 
individual follow-up times, but rather that out of the 12 disease-free subjects, 5 withdrew from the study, 2 died, and 5 were 
diagnosed with the disease. Here: 
 
 N=12     W=5     D=2     I=5     and   t=5 
 

Substituting these values into the formula, we compute PT to be 30. Since there were 5 new cases, the estimated rate 
then becomes 5 over 30 or .17 per person-year. This is not that far off from the estimated rate of .20 per person-year rate 
obtained if we use individual follow-up times to compute PT equal to the correct value of 25.  
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Incidence Rate of Parkinson’s Disease 

 
Parkinson’s disease is a seriously disabling disease characterized by a resting tremor, rigidity, slow movements, and disturbed 
reflexes.  A cohort of more than 6,500 Dutch elderly people who did not have Parkinson’s disease at the start of the study was 
followed for six years to determine the incidence rate at which new cases of Parkinson’s disease develop.  During the follow-
up period, 66 participants were diagnosed with Parkinson’s disease. 

Because Parkinson’s disease has a subtle onset, it was difficult to determine exactly when the disease process had 
begun. Therefore, the investigators calculated the time of onset as the midpoint between the time of diagnosis and the time at 
which a participant was last known to be free of Parkinson’s.  They could then calculate the total number of disease-free 
person-years in this study by adding up the number of person-years that each of the 6,500 participants had contributed to the 
study until he or she either: 
 

1. Developed Parkinson’s disease 
2. Died 
3. Reached the end of the study period alive without having developed Parkinson’s disease. 

 
This resulted in a total of 38,458 disease-free person-years.  In this study, the average incidence rate of Parkinson’s 

disease for the 6-year study period is: 
 

66 / 38,458 = 0.0017 cases per person-year 
 
This means that, 1.7 new cases of Parkinson’s disease develop per 1,000 person-years. 

 
 
Study Questions (Q4.8) 
 

1. Using the formula PT = N* x ( t), how many person-years would have been computed for this study population had 
no detailed information on each individual’s contribution to the total amount of person-years been available? 

2. Using the number of person-years from the previous question, what is the incidence rate? 
 
 
Summary 
 

 A cohort of more than 6,500 Dutch elderly people who did not have Parkinson’s disease at the start of the study was 
followed for six years to determine the rate at which new cases develop. 

 The results indicate that 1.7 new cases of Parkinson’s disease develop for every 1,000 person-years of follow-up. 
 The person-years calculation used the formula PT = N* x t since there was no detailed information on each 

individual’s person-years. 
 
 
Quiz (Q4.9) 
 
Label each of the following statements as True or False. 
 

1. Rate is not a proportion.  . . . . . . . ??? 

2. Rate has units of 1/person-time, and varies from zero to one.  . . . ??? 

3. A rate can only be calculated if every person in a cohort is followed individually to count and add up the 
person-time.  . . . . . . . . . ??? 

4. Rate can be calculated for a dynamic cohort, but not for a fixed, stable cohort. . ??? 
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Risk Versus Rate 
 
Incidence can be measured as either risk or rate.  Which of these types to use is an important choice when planning an 
epidemiologic study. 
 

We have seen two distinct measures for quantifying disease frequency -risk and rate.  Risk is a probability, lying 
between 0 and 1 that gives the likelihood of a change in health status for an individual over a specified period of follow-up. 

 
 0 < Risk < 1 

 
Rate describes how rapidly new events are occurring in a population. An instantaneous rate, which is rarely 

calculated, applies to a fixed point in time whereas an average rate applies to a period of time. A rate is not a probability, is 
always non-negative but has no upper bound, and is defined in units of time, such as years, months, or days. 

 
0 < Rate <  
 
When planning an epidemiologic study, which measure do we want to use, risk or rate? The choice depends on the 

objective of the study, the type of disease condition being considered, the nature of the population of interest, and the 
information available. 

If the study objective is to predict a change in health status for an individual, then risk is required. In particular, risk 
is relevant for assessing the prognosis of a patient, for selecting an appropriate treatment strategy, and for making personal 
decisions about health-related behaviors such as smoking, exercise, and diet. By contrast, a rate has no useful interpretation at 
the individual level. 

If the study objective is to test a specific hypothesis about disease etiology, the choice can be either risk or rate 
depending on the nature of the disease and the way we observe new cases. If the disease is a chronic disease that requires a 
long period of follow-up to obtain sufficient case numbers, there will typically be considerable loss to follow-up or 
withdrawals from the study. Consequently, individual observed follow-up times tend to vary considerably. A rate, rather than 
a risk, can address this problem. 

However, if an acute disease is considered, such as an outbreak due to an infectious agent, there is likely to be 
minimal loss to follow-up, so that risk can be estimated directly. With an acute illness, we are not so much interested in how 
rapidly the disease is occurring, since the study period is relatively short. Rather, we are interested in identifying the source 
factor chiefly responsible for increasing individual risk. 

If the population being studied is a large dynamic population, individual follow-up times, whether obtainable or not, 
will vary considerably for different subjects, so rate must be preferred to risk. However, if individual follow-up times are not 
available, even a rate cannot be estimated unless it is assumed that the population size is stable, the disease is rare, and a 
recent census estimate of the population is available. 

Risk is often preferred to rate because it is easier to interpret. Nevertheless, rate must often be the measure of choice 
because of the problems associated with estimating risk. 
 
 
Summary 
 

 Risk is the probability that an individual will develop a given disease over a specified follow-up period. 
 Rate describes how rapidly new events are occurring in a population. 
 Risk must be between 0 and 1 whereas rate is always non-negative with no upper bound, and is defined in units of 

time. 
 Risk is often preferred to rate because it is easier to interpret. 
 Rate must often be the measure of choice because of problems with estimating risk. 
 The choice of risk versus rate depends on the study objective, the type of disease, the type of population, and the 

information available. 
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Mortality might be used instead of Disease Incidence 
 
As with incidence measures of disease frequency, incidence measures of mortality frequency can take the form of risk or 
rate depending on the study design and the study goals.  Mortality measures are described in a later activity (on page 4-4). 
 
 
 
Quiz (Q4.10) 
 
Determine whether the following statements best define a rate, risk, or both: 
 

1. More useful for individual decision-making.  . . . ??? 

2. Numerator is number of new cases during a period of follow-up. . ??? 

3. Lowest possible value is zero.  . . . . . ??? 

4. No upper bound.  . . . . . . ??? 

5. Can be expressed as a percentage.  . . . . ??? 

6. Better for studies with variable periods of follow-up.  . . ??? 

7. Traditionally calculated in the acute outbreak (short follow-up) setting.  ??? 

8. Measures how quickly illness or death occurs in a population.  . ??? 

9. Cumulative incidence.  . . . . . . ??? 

10. Measure of disease occurrence in a population.  . . . ??? 
 
 

4-4 Prevalence and Mortality 
 

Prevalence 
 
Prevalence measures existing cases of a health condition and is the primary design feature of a cross-sectional study.  There 
are two types of prevalence, point prevalence, which is most commonly used, and period prevalence. 

In epidemiology, prevalence typically concerns the identification of existing cases of a disease in a population and is 
the primary design feature of cross-sectional studies. Prevalence can also more broadly concern identifying persons with any 
characteristic of interest, not necessarily a disease. For example, we may wish to consider the prevalence of smoking, 
immunity status, or high cholesterol in a population. 

The most common measure of prevalence is point prevalence, which is defined as the probability that an individual 
in a population is a case at time t.  

 

 
 t)at time sizen (Populatio

 t)at time cases observed of (#
 N
 CP̂  

 
Point prevalence is estimated as the proportion of persons in a study population that have a disease at a particular 

point in time (C). For example, if there are 150 individuals in a population and, on a certain day, 15 are ill with the flu, the 
estimated prevalence for this population is 10%. 
 

 %10 150
 15P̂  
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Study Questions (Q4.11) 
 

1. Is point prevalence a proportion? 
 
2. A study with a large denominator, or one involving rare events, may result in very low prevalence.  For example, 

suppose that 13 people from a population of size 406,245 had a particular disease at time t.  What is the point 
prevalence of this disease at time t? 

 
A. 0.0032 
B. 32% 
C. 0.000032 
D. 0.0000032 

 
3. Which of the following expressions is equivalent to the point prevalence estimate of 0.000032? 

 
A. 3.2 per 1,000 
B. 3.2 per 100,000 
C. 32 per 100,000 

 
 

When measuring point prevalence, it is essential to indicate when the cases were enumerated by specifying a point 
calendar time or a fixed point in a time sequence, such as the third post-operative day. Prevalence measures are very useful 
for assessing the health status of a population and for planning health services. This is because the number of existing cases at 
any time is a determinant of the demand for healthcare. 

However, prevalence measures are not as well suited as incidence measures, such as risk or rate, for identifying risk 
factors. This is because prevalence concerns only survivors, so that cases that died prior to the time that prevalence is 
measured are ignored. 
 

 
 
 
Summary 
 

 Prevalence concerns existing cases of a disease at a point or period of time. 
 Prevalence measures are primarily estimated from cross-sectional surveys. 
 Point prevalence is the probability that an individual in a population is a case at time t. 
 Point prevalence is estimated using the formula P = C/N, where C is the number of existing cases at time t, and N is 

the size of the population at time t. 
 Prevalence measures are useful for assessing the health status of a population and for planning health services. 
 Prevalence measures concern survivors, so they are not well suited for identifying risk factors. 

 
 

Period Prevalence 
 

An alternative measure to point prevalence is period prevalence (PP), which requires the assumption of a stable 
dynamic population for estimation.  PP is estimated as the ratio of the number of persons C* who were observed to have the 
health condition (e.g., disease) anytime during a specified follow-up period, say from times T0 to T1, to the size N of the 
population for this same period, i.e., the formula for period prevalence is: 

 
 

Continued on next page
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Period Prevalence (continued) 
 

 
N

IC
N

CPP *
 

 
where C denotes the number of prevalent cases at time T0 and I denotes the number of incident cases that develop during 
the period.  For example, if we followed a population of 150 persons for one year, and 25 had a disease of interest at the 
start of follow-up and another 15 new cases developed during the year, the period prevalence for the year would be: 
 
 PP = (25 + 15)/ 150 = .27, or 27%, 
 
whereas the estimated point prevalence at the start of the period is: 
 
  P = 25/150 = .17, or 17%  
 
and the estimated cumulative incidence for the one year period is: 
 
 CI = 15/125 = .12, or 12% 
 
 
 
Quiz (Q4.12) 
 
 
Label each of the following statements as True or False 

1. Prevalence is a more useful measure for health planning than for etiologic research.   . ??? 

2. Like cumulative incidence, prevalence is a proportion that may range from zero to one.   . ??? 

3. Prevalence measures are most commonly derived from follow-up studies.   . . ??? 

4. Whereas incidence usually refers to occurrence of illness, injury, or death, prevalence may refer to illness, 
disability, behaviors, exposures, and genetic risk factors.  . . . . ??? 

 
Select the Correct Answer: 
 
5. The formula for point prevalence is:  
 

a. # new cases / # persons in population 
b. # new cases / # persons who did not have the disease at the starting point of observation 
c. # new cases / # person-time of follow-up  
d. # current cases / # persons in population 
e. # current cases / # persons who did not have the disease at the starting point of observation 
f. # current cases / # person-time of follow-up 
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Mortality 
 

As with incidence measures of disease frequency, incidence measures of mortality frequency can take the form of risk or 
rate depending on the study design and the study goals.  Mortality risk can be measured in a number of ways, including 
disease-specific mortality risk, all-causes mortality risk, and case-fatality risk.  For each measure, the formula for simple 
cumulative incidence can be used.  Here, I denotes the number of deaths observed over a specific study period in an initial 
cohort of size N. 
 

 
 
 
Study Questions (Q4.13) 
 

1. For a disease-specific mortality risk, what does the I in the formula CI=I/N represent.  ??? 
 

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest 
C. The number of persons with a specific disease 
D. The size of the initial cohort regardless of disease status 

 
 

For estimating disease-specific mortality risk, I is the number of deaths due to the specific disease of interest, and N is 
the size of the initial cohort regardless of disease status. 
 
 
Study Questions (Q4.13) continued 
 

2. For all-causes mortality risk, what does the I in the formula CI=I/N represent.  ??? 
 

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest 
C. The number of persons with a specific disease 
D. The size of the initial cohort regardless of disease status 

 
 

I is the number of deaths from all causes, and N is the size of the initial cohort, regardless of disease status. 
Case-fatality risk is the proportion of people with a particular disease who die from that disease during the study 

period.  
 
 
Study Questions (Q4.13) continued 
 

3. For case-fatality risk, what does the I in the formula CI=I/N represent.  ???  
 

A. The number of deaths from all causes 
B. The number of deaths due to the specific disease of interest 
C. The number of persons with a specific disease 
D. The size of the initial cohort regardless of disease status 
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I is the number of persons who die from the given disease, and N is the number of persons with this disease in the 

initial cohort. 
Similarly, mortality rate can be measured using the general formula for average rate. 
 

PT
IIR  

 
Here, I denotes the number of deaths observed over a specified study period in an initial cohort that accumulates 

person-time PT. For estimating disease-specific mortality rate, PT is the person-time for the initial cohort, regardless of 
disease condition.  For estimating all-cause mortality rate, PT again is the person-time for initial cohort, regardless of 
disease condition. 

For estimating case-fatality rate, PT is the person time for an initial cohort of persons with the specific disease of 
interest that is followed to observe mortality status. 

As an example of the calculation of mortality risk estimates, suppose you observe an initial cohort of 1000 persons 
aged 65 or older for three years. One hundred out of the 1000 had lung cancer at the start of follow-up, and 40 out of these 
l00 died from their lung cancer. In addition, 15 persons developed lung cancer during the follow-up period and 10 died. Of 
the remaining 885 persons without lung cancer, 150 also died. 
 

 
 

 The lung-cancer specific mortality risk for this cohort is 50/1000 or 5%. 
 The all-cause mortality risk is 200/1000 or 20%, and 
 The case-fatality risk for the 100 lung cancer patients in the initial cohort is 40/100 or 40%. 

 
 
Study Questions (Q4.14) 
 
For the lung cancer example just presented, answer the following questions: 
 

1. From the data, what is the estimated risk for the incidence of lung cancer over the three-year period?  
2. Why is the estimated incidence of lung cancer (LC) different from the estimated LC mortality of 5%? 
3. Under what circumstances would you expect the LC incidence and LC mortality risk to be approximately equal?  

 
 
Summary 
 

 Incidence measures of mortality frequency can take the form of risk or rate depending on the study design and the 
study goals. 

 Mortality risk or rate can be measured in a number of ways, including disease-specific mortality risk or rate, all-
causes mortality risk or rate, and case-fatality risk or rate. 

 For measuring mortality risk, the formula used for simple cumulative incidence, namely, CI = I / N, can be used. 
 Similarly, mortality rate can be measured using the general formula for average rate, namely IR = I / PT. 
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Quiz (Q4.15) 
 
During the past two years, a total of exactly 2,000 residents died in a retirement community with a stable, dynamic 
population of 10,000 persons. 
 

1. Given these data, the best choice for measure of mortality is the mortality rate.  . . ??? 
 
2. Since mortality is often expressed per 1,000, one could express this mortality measure as 200 per 1,000 

per year.  . . . . . . . . . . ??? 
 
3. The disease-specific mortality risk is the number of deaths attributable to a particular disease, divided by 

the number of persons with that disease.   . . . . . ??? 
 
4. The denominator for the all-cause mortality risk and the cause-specific mortality risk is the same.  ??? 

 
5. The denominator for case-fatality risk is the numerator of the prevalence of the disease.   . ??? 

 
 

Age-Adjusted Rate 
 
Most epidemiologic studies involve a comparison of measures of disease frequency among two or more groups. For example, 
to study the effect of climate conditions on mortality, we might compare mortality risks or rates in two or more locations with 
different climates. Let’s focus on two U.S. states, Arizona and Alaska. This would allow a comparison of mortality in a cold, 
damp climate with mortality in a hot dry climate. 

The crude mortality rates for these two states for the year 1996 were: 
 

Alaska  426.57 deaths per 100,000 population 
 
Arizona  824.21 deaths per 100,000 population 
 

You might be surprised, particularly considering the climates of the two states, that Arizona’s death rate is almost 
twice as high as Alaska’s. Does that mean that it’s far more hazardous to live in Arizona than Alaska? 
 
 
Study Questions (Q4.16) 
 

1. What do you think?  Is if far more hazardous to live in Arizona than Alaska? 
 
 

A little knowledge of the demographic make-up of these two states might cause you to question such an 
interpretation. Look at the age distribution of the two states: 

 
 
(Note: Alaska is the left bar for each of the clustered bars, Arizona the right bar.) 613 
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Study Questions (Q4.16) continued 
 

2. Which population is older? 
3. Why should we expect relatively more deaths in Arizona than in Alaska? 

 
 

The variable age in this situation is called a confounder because it distorts the comparison of interest. We should 
correct for such a potentially misleading effect. One popular method for making such a correction is rate adjustment. If the 
confounding factor is age, this method is generally called age-adjustment, and the corrected rates are called age-adjusted 
rates.   

The goal of age adjustment is to modify the crude rates so that any difference in mortality rates of Alaska and 
Arizona cannot be explained by the age differences in the two states. The most popular method of rate adjustment is the 
direct method. This method forces the comparison of the two populations to be made on a common age distribution. The 
confounding factor age is removed by re-computing the rates substituting a common age distribution for the separate age 
distributions. The two populations are then compared as if they had the same age structure. 

The common age distribution is determined by identifying a standard population. A logical choice here would be 
the 1996 total United States population. Other choices for the standard are also possible and usually won’t make a meaningful 
difference in the comparison of adjusted rates. 
 

 
 

(Note: The actual calculation of the age-adjusted rates is not shown here.  For details on the calculation of the age-
adjusted rates for this example, on the CD click on the asterisk on the lesson page or see the example at the end of this 
activity.) 

The age-adjusted death rates obtained from using the direct adjustment method with the 1996 US population as the 
standard are shown here together with the crude rates: 
 

 
 

  When we remove age as a factor, the age-adjusted death rate in Arizona is actually lower than in Alaska. 
 
 
Study Questions (Q4.17) 
 

1. How do we interpret these new age-adjusted results? 
2. Based on these results, how do you think the age distribution of Alaska compares to that of the 1996 US population? 
3. How do you think the age distribution of Arizona compares to that of the 1996 US population? 

 
 
Summary 
 

 Comparing crude rates for two or more groups may be misleading because such rates do not account for the effects 
of confounding factors. 

Continued on next page 
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 If the confounding factor is age, this method is called age-adjustment, and the corrected rates are called age-adjusted 
rates. 

 The goal of age adjustment is to modify the crude rates so that any difference in rates cannot be explained by age 
distribution of the comparison groups. 

 The direct method of age-adjustment re-computes the rates by substituting a common age distribution for the 
separate age distributions of the groups being compared. 

 The common age distribution is determined by identifying a standard population. 
 

Terminology about Adjustment 
 
 The rates described for Alaska and Arizona are actually risks. We have purposely used the term rates in this 
example to conform to the terminology typically used in published reports/papers that carry out age adjustment. In any 
case, the procedure used for (age) adjustment can be applied to any measure of disease frequency: risk, rate and/or 
prevalence. 
 Moreover, potential confounding factors of interest other than age, e.g., race and sex, can also be adjusted, both 
individually and simultaneously. We generally use the term rate adjustment to describe adjustment involving any type or 
number of confounding factors and any type of measure of disease frequency, whether a risk, rate, or prevalence. 
 
 

Age-Adjustment – A Worked Example 
 
The method of direct age-adjustment involves the following steps: 
 

1. Select a standard population whose age structure is known. By convention, the standard distribution used for age-
adjustment of mortality rates in the United States is the US age distribution in the year closest to the year of the 
rates being compared. 

2. Multiply the age-specific mortality rates for each group being compared by the corresponding age-specific 
numbers of persons in the standard population. The result is the expected number of deaths in each group. 

3. Sum the expected numbers of deaths within each age group to yield a total number of expected deaths for each 
group being compared. 

4. Divide the total number of expected deaths in each group by the total size of the standard population to yield 
summary age-adjusted mortality rates. 

 
We illustrate direct adjustment by comparing mortality rates for Alaska and Arizona in 1996. The age-specific rates and 

overall crude rates for these two states are given as follows: 
 
Population size, all-cause mortality, and mortality rates by age, Alaska and Arizona, 1996. 

 Alaska 1996 Arizona 1996 
Age n d r n d r 
<1 10037 72 717.34 75322 575 763.38 
1-4 40445 18 44.50 290256 127 43.75 
5-9 54359 12 22.07 344886 67 19.42 
10-14 52437 14 26.69 328220 95 28.94 
15-19 49475 53 107.12 313422 322 102.73 
20-24 44690 60 134.25 294762 372 126.20 
25-34 84864 137 161.43 657439 1022 155.45 
35-44 116015 238 205.14 684967 1700 248.18 
45-54 81857 306 373.82 509569 2271 445.67 
55-64 40162 359 893.87 347841 3632 1044.15 
65-74 20668 518 2506.28 333235 7639 2292.67 
75-84 8337 509 6105.31 199416 10494 5262.36 
85+ 1947 286 14689.26 55929 8240 14731.96 
Total/Crude 605285 2582 426.57 4435264 36556 824.21 

n = # of persons, d = # of deaths, and r = (d/n) x 100,000, i.e., deaths per 100,000 persons) 
Continued on next page
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Age-Adjustment – A Worked Example (continued) 
 
Step 1. The age distribution of the standard population (1996 US) is given next together with age distribution percentages 
for Alaska and Arizona. Notice that the age distribution for Arizona is quite similar to the age distribution of the US, 
whereas Alaska’s age distribution is somewhat different, with a small percentage at older ages. 
 
US, Alaska, and Arizona age distributions, 1996. 
 US 1996 Alaska 1996 Arizona 1996 
Age n % % % 
<1 3891494 1.5 1.6 1.6 
1-4 15516482 5.8 6.7 6.5 
5-9 19441182 7.3 9.9 7.8 
10-14 18981045 7.2 8.7 7.4 
15-19 18662151 7.0 8.1 7.1 
20-24 17559730 6.6 7.4 6.6 
25-34 40368234 15.2 14.0 14.8 
35-44 43393341 16.4 19.2 15.4 
45-54 32369791 12.2 13.5 11.4 
55-64 21361460 8.5 6.6 7.8 
65-74 18669337 7.0 3.4 7.5 
75-84 11429984 4.3 1.4 4.5 
85+ 3761561 1.4 0.3 1.3 
Crude/Total 265405792 100.0 100.0 100.0 

 
The basic idea in computing a directly adjusted rate for a given state, say Alaska, is to compute what the 

hypothetical crude rate would be for Alaska if it had the same age structure as the standard population (US in 1996). Since 
neither Alaska nor Arizona actually have the same age structure as the US, their adjusted rates (using the US as the 
standard) are actually hypothetical, but they are now at least comparable, because the same standard is used for both states. 

 
Step 2. The expected number of deaths for a given age group in Alaska is obtained by multiplying the size of standard 
population for that age group by the age-specific death rate for Alaska. For example, for the age group 25-34, we must 
multiply 40368234 (i.e., US population for ages 25-34) by 161.43/100,000 (i.e., the death rate in Alaska for ages 25-34), 
which gives 65,166.4 expected deaths in Alaska for this age group. The corresponding expected number of deaths for 
Arizona is computed by multiplying 40368234 by 155.45/100,000 (i.e., the death rate in Arizona for ages 25-34), yielding 
62,752.4 expected deaths in Arizona for this age group. 
 
Step 3. We must then sum the expected numbers of deaths over all age groups separately for Alaska and Arizona to yield a 
total number of expected deaths for each state. Without showing the calculations, these summed expected values are 
2271873.6 for Alaska and 2208441.6 for Arizona. 
 
Step 4. Finally, for each state separately, we divide the total expected numbers of deaths by the total size of the standard 
population (i.e., 265405792) to get the adjusted rates for each state. We thus obtain (2271873.6/265405792) = 
856.0/100,000 for Alaska and (2208441/265405792) = 832.1/100,000 for Arizona. 
 
 Summarizing the crude and adjusted rates (per 100,000 persons) for each state, we see the following: 
 
   Crude   Adjusted 
Alaska    426.6  856.0 
Arizona  824.2  832.1 
 

The adjusted rate for Alaska is higher than the adjusted rate for Arizona, whereas the crude rate for Alaska was less 
than have the crude rate for Arizona! 
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The Indirect Method of Adjustment and the SMR 

 
An indirect (age-) adjusted rate is: 
 
 A weighted average of (age-) specific rates for a select standard population using the distribution of the study population 

as weights.  
 Typically used when any of the (age-) specific rates in the study population are unavailable or unreliable. 

 
Needed for indirect adjustment: 
1. Specific rates for the selected standard population. 
2. Distribution for the study population across the same strata as those used in calculating the specific rates in the standard 

population. 
3. Crude rate for the study population. 
4. Crude rate for the standard population. 
 
The SMR (Standardized Morbidity/Mortality Ratio) is a ratio measure defined by: 
 
 O/E = the observed number (O) of cases of disease in the study population divided by the expected number (E); this ratio 

is usually multiplied by 100. 
 The expected number is calculated by applying age-specific standard disease rates from a standard population (e.g., 

national rates) to the age distribution of the cohort. 
 
Calculating a SMR: hypothetical example 
 

 Study population Standard 
population 

  

Age Observed (O) 
cases in cohort 

Person-
years 

Rate per 1,000 
person-years 

Expected (E) 
number of cases 

(O/E) x 100 

30-39 2 350 1.4 0.5 400 
40-49 8 2375 2.5 5.9 153 
50-59 88 4535 11.4 51.7 170 
60-69 111 1349 23.5 31.7 350 
Total 210 8609  89.8 234 

 
Advantages of an SMR 
 
 Used extensively in occupational studies 
 It is not necessary to identify, recruit, and follow-up an unexposed (reference) group. (One can simply use available age-

specific national or state disease rates.) 
 National or state age-specific disease rates are stable because they are based on large populations 

 
Disadvantages of an SMR 
 
 May not be able to compare SMRs from different cohorts (residual confounding by age because the standard disease rates 

are applied to cohorts with different age distributions.) 
 The SMR (like any summary measure) may obscure age-specific effects.  In the hypothetical example, the effect in the 

60-69 age-group was about twice as high as the effect in the 40-49 and the 50-59 age group. 
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Quiz (Q4.18)  
 

Label each of the following statements as True or False. 
 
1. Age-adjustment is a method to eliminate disparities in age between two populations.  . ??? 

2. Age-adjustment always brings two disparate rates closer together. . . . ??? 

3. When age-adjusting, one should use the U.S. population as the standard population.  . ??? 

4. Age-adjustment can be used for one rate, two rates, or many rates.  . . . ??? 

5. If the age distributions of two populations are very similar, their age-adjusted rates will also be similar. 
 . . . . . . . . . . . ??? 

6. If the age distributions of two populations are very similar, the comparison of the age-adjusted rates will 
not be very different from the comparison of the crude rates.  . . . . ??? 

 
In the early 1990s, 7,983 elderly Dutch men and women were included in a prospective cohort study.  The 
investigators computed how many person-years each participant had contributed to the study until January 2000.  
The total was 52,137 person-years.  During follow-up, 2,294 of the participants died, and of these, 477 were due 
to coronary heart disease. 
 

7. What is the all-cause mortality rate in this population? ??? per 1000 person-years. 

8. What is the coronary heart disease-specific mortality rate? ??? per 1000 person-years 
 
Choices 
2294  44  477  9.1 
 
The crude all-cause mortality rate for men was 47.4 per 1000 person-years (PY) and for women was 41.9 per 
1000 person-years.  After making the age distribution in the women comparable to the age distribution in men (by 
standardizing the rates using the age distribution of the men), the mortality rate for women was only 27.8 per 
1000 PY. 
 

9. Based on these figures, the women must be considerably ??? than the men in this population. 
 
Choices 
older  younger 
 
 

Analyzing Person-Time Data in Data Desk 
 

On the ActivEpi CD ROM, there is an activity that describes how to perform analyses with person-time data using 
the Data Desk program. 
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Nomenclature 
 
  
C Number of prevalent cases at time T
C* C + I (number of prevalence cases at time T plus incident cases during study 

period) 
CI Cumulative incidence (“risk”): CI=I/N
D Duration of disease 
I Incidence 
IR Incidence rate (“rate”): IR=I/PT
N Size of population under study
P Prevalence: P=C/N 
PP Period prevalence: PP=C*/N
PT Person-time 
R Average rate 
T or t Time 
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Homework Questions 
 
ACE-1.  Measures of Disease Frequency 

 
1. What is the purpose of a measure of disease frequency? 
2. What is the difference between incidence and prevalence? 
3. How are incidence and prevalence interrelated? 
4. What is the difference between cumulative incidence and incidence density? 
5. What does it mean to say that a person’s 2-year risk is .03? 
6. What does it mean to say that the rate in a certain population is .03/year? 
7. Under what (design) circumstances would you want to measure risk? 
8. Under what (design) circumstances would you want to measure rate? 
9. Why do we carry out age-adjustment of risks or rates? 
10. How does the direct method of age-adjustment work? 
 
ACE-2.  Person-time 
 
What are two ways to calculate person-time in the estimation of a rate (i.e., incidence density)? Under what circumstances 
would you use each formula? Describe an example of the use of each formula. 
 
ACE-3  Incidence vs. Prevalence 
 
Determine whether each if the following statements requires measurement of INCIDENCE or PREVALENCE. 
          
a. A new oral vaccine, which is purported to prevent cholera, has been introduced into a certain health district. The district 

health officer wants to monitor an appropriate measure to determine whether the vaccine is working. 
b. A school psychologist wants to determine if there is an association between the reading of pornographic materials and 

teenage sexual violence. She is able to collect interview data on the amount of pornography regularly read and the 
number of violent sexual encounters experienced by the students. 

c. An HMO (Health Maintenance Organization) is considering offering a community-oriented diabetic clinic. It will be 
necessary to determine how many patients would be interested in utilizing the service. 

d. A pharmaceutical company has developed a new drug that is purported to cure asthma. The company wants to monitor 
the product’s effectiveness. 

e. A nurse-midwife decides to examine the relationship between home deliveries and post–partum infection. She is able to 
follow a group of women through the pregnancy and the first week after the birth of their children. 

f. Quaker Oats has an ad campaign claiming that a diet high in grains helps prevent colon cancer. An epidemiologist wants 
to evaluate the validity of this claim. 

g. A company is considering a new worksite smoking cessation program. A questionnaire is distributed among employees 
to determine how many people would be interested in taking part in such a program. 

h. School administrators are informed that the school system in a given state is obligated by law to provide Special 
Education classes for all public school children with learning disabilities. The board wants to estimate how many Special 
Education teachers will need to be hired in order to meet this obligation. 

i. An investigator is interested in assessing whether pregnant women exposed to environmental tobacco smoke are more 
likely to deliver low birth-weight babies. 

 
ACE-4.  Incidence and Prevalence: HIV 
 
A study published in 1990 (Amer. J. Pub. Health 80:pp209-10) investigated the occurrence of HIV infection among 
prisoners in Nevada. Of 1105 prison inmates who were tested for HIV upon admission to the prison system, 36 were found to 
be infected. All uninfected prisoners were followed for a total of 1207 person-years and retested for HIV upon release from 
prison. Two of the uninfected inmates demonstrated evidence of new HIV infection. Assuming that the 2 prisoners were 
infected during their time in prison: 

 
a. Based on the above information, calculate the incidence rate of HIV infection among prisoners in the Nevada prisons. 
b. Express the incidence rate calculated in part a in terms of cases per 1000 person-years. 
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c. Why can’t you obtain an estimate of risk based on the information provided? 
d. Why would estimating risk likely be inappropriate for these data? 
e. Calculate the prevalence of HIV infection among incoming prisoners in the Nevada prisoners under study. 
f. Why is the estimate of prevalence calculated in part e not necessarily equal to an appropriate measure of risk that might 

be calculated for these data? 
 
ACE-5.  Interpreting Incidence and Prevalence 
 
The following graph indicates the changing incidence rate and prevalence for disease “X” over time: 

     
For each statement below, indicate whether the statement is consistent (yes or no) with the information portrayed in the 
graph. 
 
a. Persons acquiring this disease are being cured quicker. 
b. Efforts to prevent this disease appear to be succeeding. 
c. The disease is becoming more chronic over time. 
 
ACE-6.  Calculate Measures of Disease Frequency 
 
The following data were obtained in a study in which 1000 nurses were followed for 20 years to examine the hypothesis that 
use of a certain diet pill is a risk factor for heart attack. 
  
 Diet Pill Use  
Heart Attack Yes No Total 
 Yes 30 11 41 
 No 470 489 959 
Total 500 500 1000 
 
a. Estimate the number of woman-years contributed by the unexposed group. 
b. What information would you need in order to obtain a better estimate of the number of women-years? 
c. What is the 20-year risk of heart attack among those who used diet pills? 
d. What is the prevalence of diet pill use among those who did not have a heart attack? 
e. Do the data suggest that Diet Pill Use is a risk factor for heart attack? Explain. 
 
ACE-7.  Exercise vs. CHD 
 
A group of epidemiologists was interested in investigating the relationship between exercise and development of coronary 
heart disease (CHD) among women. A healthy population of women aged 35 to 75 years was polled to assess their exercise 
habits. They were then followed for a period of 15 years to determine incidence of CHD. Here are the results: 
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 Frequency of Exercise – Times per week 
 Twice Once No exercise 
CHD 4 40 23 
Person-Years 25,111 117,205 32,843 
Rate per 10,000 Person-
Years 

 
__________ 

 
__________ 

 
__________ 

 
a. What proportion of women who developed CHD had exercised once per week? 
b. Complete the table by calculating the rates per 10,000 and filling in the three empty cells. Express answers to two 

decimal places. 
c. What can you conclude from these data about the relationship between exercise and CHD? 
 
ACE-8.  Standardized Rates: Hypertension 
 
An investigator is interested in comparing rates of hypertension in two populations. Which of the following should be taken 
into account when deciding whether it is necessary to standardize the rates by race? (There may be more than one correct 
answer here.) 

 
a. Whether the rate of hypertension differs by race. 
b. Whether the racial distribution differs in the two populations. 
c. Whether the rate of hypertension differs in the two populations. 
d. The rate of hypertension in the standard population. 
 
ACE-9.  Rates and Rate Adjustment 
 
For each statement below, indicate whether it is true or false. 

 
a. Two populations with the same age-specific rates of death could have different crude (i.e., overall) rates of death. 
b. Two populations with the same crude (i.e., overall) rates of death could have different age-specific rates of death. 
c. The process of direct adjustment of rates utilizes stratum-specific rates from the standard population. 
d. A crude rate is a weighted average of stratum-specific rates. 
 
ACE-10.  Rate Adjustment: Standard Populations 

 
Use the data provided below and, carrying all calculations to one decimal, complete the following: 

 
a. Obtain age-adjusted total leukemia incidence rates in Mesa and Weld Counties using their pooled population as the 

standard. 
b. Obtain age-adjusted total leukemia incidence rates in Mesa and Weld counties using the 1970 Colorado population 

(expressed in percentages) as the standard. 
c. Are the age-adjusted rates for each county the same in parts a and b above?  
d. Could a standard population be chosen such that the age-adjusted incidence rate for Weld county is higher than the age-

adjusted incidence rate for Mesa county? 
e. Regardless of the standard population used above, the age-adjusted rate for Weld county is similar to the unadjusted (i.e., 

crude) rate. What can you conclude from this?  
o Age adjustment was necessary only for Mesa County, not for Weld county. 
o Leukemia incidence rates are similar in Weld county and the standard population. 
o The age structure is similar in Weld county and the standard population. 
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                                                      Weld County                       Mesa County   
Age Group   Colorado 1970                                    Leukemia                           Leukemia       

       Population (%)      1970 Pop.              AAIR*         1970 Pop.        AAIR* 
_____________________________________________________________________ 
  < 5   8.4    7,491  9.5        3,754 7.6 
 
5-19  30.6  28,452  3.0        16,852 4.2 
 
20-34  22.5  20,382  1.4         9,253 4.6 
 
35-49  17.2  13,859  1.0         9,329 3.1 
 
50-64  12.8  11,219  6.4         8,685 11.5 
 
 65+    8.5    7,894  12.7         6,501 43.9 
______________________________________________________________________ 
Total  100.0  89,297    4.2       54,374 10.2 
 
* Average annual leukemia incidence rates per 100,000 population for the interval 1970-76 based upon 1970 population 
enumeration. 

            
 
Answers to Study Questions and Quizzes 
 
Q4.1 

1. Incidence – Here we are interested in the number of 
new cases after eating the potato salad. 

2. Prevalence – Here we are interested in the number 
of existing cases. 

3. Incidence – Here we are interested in the number of 
new cases that occur during the follow-up. 

4. Incidence – Here we are interested in the number of 
new deaths attributed to the hurricane. 

5. Prevalence – Here we are interested in the existing 
number of children who have immunity to measles. 

6. Incidence – Since rabies has a short duration, we 
would expect the prevalence on a particular day to 
be low relative to the incidence. 

7. Prevalence – The incidence of multiple sclerosis 
would be low, but since it has a long duration, we 
would expect the prevalence to be higher. 

8. Incidence – The incidence of influenza would be 
high, but since it is of short duration the prevalence 
would be low. 

9. Incidence – Since the duration of poison ivy is 
relatively short the prevalence would be low, and 
since it is a common occurrence, the incidence 
would be high. 

10. Prevalence – Since high blood pressure is common 
and of long duration, both incidence and prevalence 
would be high, however the prevalence would be 
higher. 

 

Q4.2 
 

1. The statement means that a 45-year-old male free of 
prostate cancer has a probability of .05 of 
developing prostate cancer over the next 10 years if 
he does not die from any other cause during the 
follow-up period. 

2. Smaller, because the 5-year risk involves a shorter 
time period for the same person to develop prostate 
cancer. 

 
Q4.3 
 

1. No, subjects should be counted as new cases if they 
were disease-free at the start of follow-up and 
became a case at any time during the follow-up 
period specified. 

2. Yes, there is a problem, since a subject followed for 
2 years does not have the same opportunity for 
developing the disease as a subject followed for 4 
years. 

3. No, but we have to assume that those subjects that 
do not develop the disease have the same amount of 
follow-up time.  Otherwise, we can get a 
misleading estimate of CI because not all subjects 
will have the same opportunity to develop the 
disease over the follow-up period. 
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Q4.4 
 

1. Dynamic 
2. Subject 2 
3. Subject 7 
4. Subject 9 
5. Subject 3 
6. Subject 5 
7. 5/12=42% 
8. 4/12=33% 
9. D 
10. No 
11. No 
12. Yes 
13. Yes 
14. Yes 
15. No 
16. Yes 

 
Q4.5 
 

1. 30/97 
2. 60/97 
3. 90/95 
4. True – The numerator of the CI formula is a subset 

of the denominator. 
5. True – Because the incubation period is short, 

subjects are not likely to be lost to follow-up. 
6. True – The long incubation period means subjects 

are likely to be lost to follow-up, and hence cases 
may not be detected.  For a dynamic cohort, the 
denominator in the CI formula does not reflect the 
continually changing population size. 

7. False – the estimated CI will underestimate the true 
risk of disease. 

 
Q4.6 
 

1. C 
2. 

a. Yes 
b. Yes 
c. No 
d. Yes 
e. No 

 
Q4.7 
 

1. No, the denominator of 25 does not describe 25 
persons, but rather the accumulated follow-up time 
for 12 persons. 

2. No, the risk in this example would be calculated as 
5/12 or 0.42.  However, using risk would be 
questionable here because different subjects have 
different follow-up times. 

3. C 

Q4.8 
 

1. N* is the average size of the disease-free cohort and 
t is the time length of the study period.  Therefore, 

a rough estimate of the total amount of person-
years contributed by the study is 6,500 *6 = 39,000 
person-years. 

2. The incidence rate is 66/39,000 = 0.0017, or 1.7 per 
1,000 person-years. 

 
Q4.9 
 

1. True – For questions 1 & 2: a rate can range from 0 
to infinity, whereas a risk (which is a proportion) 
ranges from 0 to 1 (or 0% to 100%). 

2. False 
3. False – There are alternative ways to calculate 

person-time information when individual follow-up 
time is unavailable. 

4. False – A rate can be calculated for either a 
dynamic cohort or fixed cohort, depending on the 
person-time information available. 

 
Q4.10 
 

1. Risk 
2. Both 
3. Both 
4. Rate 
5. Risk 
6. Rate 
7. Risk 
8. Rate 
9. Risk 
10. Both 

 
Q4.11 
 

1. Yes, its value can range from 0 to 1 and it is often 
expressed as a percentage 

2. C. The prevalence of disease is 13/406,245 = 
0.000032 

3. B. 3.2 per 100,000 is an equivalent expression and 
is easier to interpret 

 
Q4.12 
 

1. True – Prevalence considers existing cases rather 
than incident cases. 

2. True – Since the numerator is contained in the 
denominator, prevalence is a proportion and must 
range from 0 to 1 (or 0% to 100%). 

3. False – Cross-sectional studies are carried out at 
essentially a single (or short) point in time. 

4. True – Prevalence may concern a health outcome or 
any other characteristic of a subject. 

5. d 
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Q4.13 
 

1. B 
2. A 
3. B 

 
Q4.14 
 

1. The estimate of LC incidence is calculated as CI = 
15/900 = .017 or 1.7% 

2. The 5% mortality estimate counts the 40 prevalent 
LC cases and does not count the 5 new LC cases 
that did not die.  Furthermore, the denominators are 
different. 

3. The LC incidence and mortality risks would be 
about equal if the disease was quickly fatal, so that 
there would be few if any prevalent cases in the 
initial cohort and all new cases would have died 
before the end of follow-up. 

 
Q4.15 
 

1. True 
2. True 
3. False – The denominator of a disease-specific 

mortality risk is the size of the initial cohort 
regardless of disease status. 

4. True 
5. True 

 
Q4.16 
 

1. The two rates are crude rates because they represent 
the overall mortality experience in 1996 for the 
entire population of each state.  Crude rates do not 
account for any differences in these populations on 
factors such as age, race, or sex that might have 
some influence on mortality. Without consideration 
of such factors, it would be premature to make such 
a conclusion. 

2. Arizona.  The dry, warm climate of Arizona attracts 
many older persons than does Alaska. 

3. There are relatively older persons living in Arizona, 
and older persons are at high risk of dying. 

 

Q4.17 
 

1. Controlling for any age differences in the two 
populations, the overall mortality rate is higher in 
Alaska with a cold, damp climate, then in Arizona 
where the climate is warm and dry. 

2. The population of Alaska must be much younger 
than the US population since the age-adjusted rate 
was so much higher than the crude rate. 

3. The rate for Arizona did not change much from 
crude to adjusted because Arizona’s age 
distribution was only slightly younger than that of 
the entire US in 1996. 

 
Q4.18 
 

1. True – If age-adjustment is not used, then a 
difference in risk or rates between two populations 
may be primarily due to age differences in the two 
populations. 

2. False – There is no guarantee that two adjusted 
measures will be either closer or further from each 
other than were corresponding crude measures. 

3. False – The choice of standard population depends 
on the characteristics of the populations being 
considered. 

4. True – There is no limitation on the number 
populations that could be age-adjusted. 

5. False – For questions 5 & 6: If the crude rates are 
quite different whereas the age distributions are 
similar, then the adjusted rates are likely to be quite 
different. 

6. True 
7. 44 
8. 9.1 
9. older – Women must be older than men in this case.  

The mortality rate drops substantially in women 
when we standardize the rate using the age 
distribution of men.  In other words, if we take age 
out of the picture, the rates for women drop.  If the 
women were younger we would expect to see the 
adjusted rate increase once we remove age as a 
factor. 

 

 
 
 
 
 
 
 
 
 
 



   

 

 
 
 
 

LESSON   55  

 
Measures of Effect 

 

5-1 Risk Ratio Versus Odds Ratio 
 
In epidemiologic studies, we compare disease frequencies of two or more groups using a measure of effect.  We will describe 
several types of measures of effect in this chapter.  The choice of measure typically depends on the study design being used. 
 
 

Ratio Versus Difference Measures of Effect 
 

Our focus in Lesson 5 is on ratio measures of effect, which are of the form Ml/M0, where Ml and M0 are two measures of 
disease frequency, e.g., risks, rates, or prevalences that are being compared. 
 We consider difference measures of effect, which are of the form Ml-M0, in Lesson 6 on Measures of Potential Impact”. 
Difference measures are also called measures of attributable risk. 
 Ratio measures are typically used in epidemiologic studies that address the etiology of a disease/health outcome, 
whereas difference measures are used to quantify the public health importance of factors that are determinants of a 
disease/health outcome. 
 
 
 

Smoking and Lung Cancer 
 
Cigarette smoking became increasingly popular in America after World War I when cigarettes were handed out to soldiers as 
a way to boost morale. But along with the rise in smoking, came a disturbing rise in the lung cancer rate and some early 
warnings from a handful of doctors about possible dangers of smoking. Early studies in the 1930s and 1940s of the possible 
relationship between smoking and lung cancer were case-control studies. It became quite apparent that lung cancer patients 
smoked much more than controls. In one study in particular, lung cancer patients were 17 times more likely than controls to 
be two-pack-a-day smokers. 

In the early 1950s, doctors Horn and Hammond of the American Cancer Society conducted one of the first cohort 
studies on the harmful effects of smoking.  About 200,000 people were given a smoking questionnaire and then followed for 
four years. Death rates and cause of death for smokers and for non-smokers were compared. The preliminary study published 
in 1958 caused quite a sensation. It was the largest study on smoking that had been done, and it showed that smokers were 
ten times more likely than nonsmokers to get lung cancer. 

Both the cohort and case-control studies attempted to assess the proposed relationship between smoking and lung 
cancer by deriving a measure of effect that quantified the extent of this relationship.   The measure described in the case- 
control study is called an odds ratio.  The measure described in the cohort study is called a risk ratio. The activities that 
follow discuss these two fundamental measures of effect.  
 
 
 

   
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_5, © Springer Science+Business Media New York 2013 
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Summary 
 

 The odds ratio and the risk ratio are two fundamental measures of effect. 
 These measures were used in epidemiologic studies of the relationship between smoking and lung cancer. 
 The odds ratio is typically the measure of effect used in case-control studies. 
 The risk ratio is typically the measure of effect used in cohort studies. 

 
 

The Risk Ratio 
 
The table below summarizes the results of a five-year follow-up study to determine whether or not smokers who have had a 
heart attack will reduce their risk for dying by quitting smoking. A cohort of 156 heart attack patients was studied, all of 
whom were regular smokers up to the time of their heart attack. Seventy-five of these patients continued to smoke after their 
attack. The other 81 patients quit smoking during their recovery period. Of the 75 patients that continued smoking, 27 died, 
so the proportion of these patients that died is 0.36. Of the 81 patients who quit smoking, 14 died, so the corresponding 
proportion is 0.17. These proportions estimate the five-year risks of dying for these two groups of patients. We may wonder 
whether those heart attack patients who continue smoking are more likely to die within 5 years after their first heart attack 
than those who quit.  
 

 
 

A measure of effect gives a numerical answer to this question. Such a measure allows us to make a comparison of 
two or more groups, in this case, continuing smokers and smokers who quit. For follow-up studies such as described here, the 
typical measure of effect is a risk ratio. To calculate a risk ratio, we take the ratio of the two risks being compared, that is, 
we simply divide one risk by the other. Actually, we are getting an estimate” of the risk ratio, which we indicate by putting a 
hat” symbol over the RR notation. RRˆ  is an estimate because we are using two estimates of risk based on samples from the 

two groups being compared. In our example, therefore, we divide 0.36 by 0.17 to get 2.1.  
 

1.2
17.0
36.0

quit  whosmokersfor Risk  Estimated
smokers continuingfor Risk  EstimatedRR̂ Estimated  

 
The estimated risk ratio of 2.1 tells us that continuing smokers are about twice as likely to die as smokers who quit. 

In other words, for heart attack patients the five-year risk for continuing smokers is about twice the corresponding risk for 
smokers who quit.  
 
 
Study Questions (Q5.1): 
Using the five-year follow-up study comparing mortality between smokers and quitters example: 
 

1. How would you interpret a Risk Ratio of 4.5? 
2. What if the Risk Ratio was 1.1? 
3. How about if the Risk Ratio was less than 1, say 0.5? 
4. How would you interpret a value of 0.25? 
 
 

“
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If our estimated risk ratio had been 1.1, we would have evidence that the risk for continuing smokers was essentially 
equal to the risk for smokers who quit. We call a risk ratio of 1 the null value of the risk ratio. This is the value that we get 
for the risk ratio when there is no effect, that is, the effect is null.  
 
 
Summary 
 

 The risk ratio (RR) is the ratio of the risk for one group, say group 1, to the risk for another group, say group 0. 
 The value of RR can be greater than one, equal to one, or less than one. 
 If the RR is greater than one, the risk for group 1 is larger than the risk for group 0. 
 If the RR is below one, the risk for group 1 is less than the risk for group 0. 
 And, if the RR is equal to 1, the risks for group 1 and 0 are equal, so that there is no effect of being in one group 

when compared to the other. 
 
 

Risk Ratio Numerator and Denominator 
 
In general, the risk ratio that compares two groups is defined to be the risk for one group divided by the risk for the other 
group. It is important to clearly specify which group is in the numerator and which group is in the denominator. 
 If, for example, the two groups are labeled group 1 and group 0, and the risk for group 1 is in the numerator, then we say 
that the risk ratio compares group 1 to group 0. On the other hand, if the risk for group 0 is in the numerator, then we say 
that the risk ratio compares group 0 to group 1. 
 
 
 
Quiz (Q5.2) 
 
For heart attack patients, the risk ratio is defined to be the risk for continuing 
smokers divided by the risk for smokers who quit. For the following scenarios 
what would be the risk ratio?  
 

1. Continuing smokers are twice as likely to die than smokers who quit.   .   .   .  ??? 

2. Continuing smokers are just as likely to die as smokers who quit.   .   .   .  ??? 

3. Smokers who quit are twice as likely to die than continuing smokers.  .   .   .  ??? 
 
Choices 
0  0.1  0.2  0.5  1  2 
 
 
Let’s consider the data from a randomized clinical trial to assess whether or not taking aspirin reduces the risk for 
heart disease. The exposed group received aspirin every other day whereas the comparison group received a 
placebo. A table of the results is shown below. 
 
       
  Aspirin Placebo Total 

  n Column % n Column %  
Developed Yes 104 (1.04) 189 (2.36) 293 

Heart Disease No 9,896 (98.96) 7,811 (97.64) 17,707 
       
 Total 10,000 (100.00) 8,000 (100.00) 18,000 
 

Quiz continued on next page 
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4. The estimated risk for the aspirin group is    .   .   .   .   .  ???  

5. The estimated risk for the placebo group is    .   .   .   .   .  ???  

6. The estimated risk ratio that compares the aspirin group to the placebo group is given by    ??? 
 
Choices 
0.0104  0.0236  0.44  104/189 2.269 98.96/97.64 
 
 

The Odds Ratio 
 
Epidemiologists in the Division of Bacterial Diseases at CDC, the Centers for Disease Control and Prevention in Atlanta, 
investigate the sources of outbreaks caused by eating contaminated foods. For example, a case-control study was carried out 
to determine the source of an outbreak of diarrheal disease at a Haitian Resort Club from November 30 to December 8, 1984.  

The investigators wondered whether eating raw hamburger was a primary source of the outbreak. Because this is a 
case-control study rather than a follow-up study, the study design starts with cases, here, persons at the resort who had 
diarrhea during the time period of interest. The controls were a random sample of 33 persons who stayed at the resort but did 
not get diarrhea during the same time period. There were a total of 37 cases during the study period. All 37 cases and the 33 
controls were interviewed by a team of investigators as to what foods they ate during their stay at the resort.  

Of the 37 cases, 17 persons ate raw hamburger, so that the proportion of the cases that ate raw hamburger is 0.46. Of 
the 33 controls, 7 ate raw hamburger, so the corresponding proportion is 0.21. We may wonder, then, whether these data 
suggest that eating raw hamburger was the source of the outbreak.  
 

 
 

Because this is a case-control study rather than a follow-up study, these proportions do not estimate risks for cases 
and controls. Therefore, we cannot compute a risk ratio. So, then, what measure of effect should be used in case-control 
studies? The answer is the odds ratio (OR), which is described in the next activity.  
 
 
Summary 
 

 A case-control study was used to investigate a foodborne outbreak at a Caribbean resort. 
 In a case-control study, we cannot estimate risks for cases and controls. 
 Consequently, we cannot use the risk ratio (RR) as a measure of effect, but must use the odds ratio (OR) instead. 

 
 

Why can’t we use a risk ratio in case-control studies? 
 
In a case-control study, we cannot estimate risk, but rather, we estimate exposure probabilities for cases and controls.  The 
exposure probability for a case is the probability that a subject is exposed given that he/she is a case; this is not equivalent to 
the probability that a subject is a case given that he/she is exposed, which is the risk for exposed. 
 In other words, using conditional probability notation: 
 

Continued on next page
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Why can’t we use a risk ratio in case-control studies? (Continued) 
  
 Pr(exposed | case)   Pr(case | exposed), where |” denotes given”. 
 
 Similarly the exposure probability for a control is not equivalent to 1 minus the risk for exposed. That is, 
 
 Pr(exposed | control)  1 - Pr(case | exposed). 
 
 The ratio of two exposure probabilities is, unfortunately, not a risk ratio. Therefore, in case-control studies we must use 
a different measure of effect, namely the odds ratio. 
 
 
 

The Odds Ratio (continued) 
 

To understand odds ratios, we must start with the concept of an odds. The term odds is commonly used in sporting 
events. We may read that the odds are 3 to 1 against a particular horse winning a race, or that the odds are 20 to 1 against 
Spain winning the next World Cup, or that the odds are 1 to 2 that the New York Yankees will reach the World Series this 
year. When we say that the odds against a given horse are 3 to 1, what we mean is that the horse is 3 times more likely to lose 
than to win. 

The odds of an event are easily calculated from its probability of occurrence. The odds can be expressed as P, the 
probability that the event will occur, divided by 1 - P, the probability that the event will not occur.  

 
In our horse race example, if P denotes the probability that the horse will lose, then 1 - P denotes the opposite 

probability that the horse will win. So, if the probability that the horse will lose is 0.75, then the probability that the horse will 
win is 0.25, and the odds are 3, or 3 to 1.  
 

1
3or  3

0.25
0.75

 win) willP(horse
lose)  willP(horse

P-1
POdds  

 
In the Haitian resort case-control study, recall that the event of interest occurs if a study subject ate raw hamburger, 

and, if so, we say this subject is exposed. The estimated probability of exposure for the cases was 0.46, so the estimated odds 
of being exposed for cases is 0.46 divided by 1 - 0.46:  
 

85.
0.46-1

0.46dsd̂O Cases  

 
Similarly, the estimated probability of exposure for controls was 0.21, so the estimated odds for controls is 0.21 

divided by 1 - 0.21:  
 

27.
0.21-1

0.21dsd̂O Controls  

 
The estimated odds ratio for these data is the ratio of the odds for cases divided by the odds for controls, which 

equals 3.2. 
 

3.2
.27
.85

dsd̂O
dsd̂O(OR) Ratio Odds

Controls

Cases  
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How do we interpret this odds ratio estimate? One interpretation is that the exposure odds for cases is about 3.2 
times the exposure odds for controls. Since those who ate raw hamburger are the exposed subjects, the odds that a case ate 
raw hamburger appear to be about 3.2 times the odds that a control subject ate raw hamburger.  
 
 
Study Questions (Q5.3) 
Using the Haiti case-control study example: 
 

1. How would you interpret an odds ratio of 2.5? 
2. What if the odds ratio was 1.1? 
3. How about if the odds ratio less than 1, say 0.5? 
4. How would you interpret a value of 0.25? 

 
 

Odds ratios, like risk ratios, can be greater than one, equal to one, or less than one. An odds ratio greater than one 
says that the exposure odds for cases is larger than the exposure odds for controls. An odds ratio below one says that the 
exposure odds for cases is less than the exposure odds for controls. An odds ratio equal to 1 says that the exposure odds for 
cases and controls are equal.  

 
Summary 
 

 The odds of an event can be calculated as P/(1-P) where P is the probability of the event. 
 The odds ratio (OR) is the ratio of two odds.   
 In case-control studies, the OR is given by the exposure odds for the cases divided by the exposure odds for 

controls. 
 Odds ratios, like risk ratios, can be greater than 1, equal to 1, or less than 1, where 1 is the null value. 

 
 
 
Quiz (Q5.4) 
 
A causal relationship between cigarette smoking and lung cancer was first suspected in 
the 1920s on the basis of clinical observations. To test this apparent association, numerous studies were 
conducted between 1930 and 1960. A classic case-control study was done in 1947 to compare the smoking 
habits of lung cancer patients with the smoking habits of other patients. 
 

1. In this case-control study, it is ??? to calculate the risk of lung cancer among smokers, and thus, the 
appropriate measure of association is the ???. 

 
Choices 
Not possible odds ratio possible  risk ratio 
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Let’s consider the data below from this classic case-control study to assess the relationship between smoking and 
lung cancer. Cases were hospitalized patients newly diagnosed with lung cancer. Controls were patients with 
other disorders. This 2 x 2 table compares smoking habits for the male cases and controls.  
 

2. The probability of being a smoker among cases is   .   .  ??? 

3. The probability of being a smoker among controls is     .  ??? 

4. The odds of smoking among cases is   .   .   .  ??? 

5. The odds of smoking among controls is   .   .   .  ??? 

6. The odds ratio is    .   .   .   .   .  ??? 
 
Choices 
0.11  1.04   10.50   1296/1357    1350/1357   1350/2646 192.86  21.25  7/68   9.08 
 
 Cigarette 

Smoker 
 

Non-Smoker
 

Total
Cases 1350 7 1357
    
Controls 1296 61 1357
Total 2646 68 2714 
 
 
In a case-control study to find the source of an outbreak, the odds ratio for eating coleslaw is defined to be the 
odds for cases divided by the odds for controls. For the following scenarios what would be the odds ratio? 
 

7. Cases have an odds for eating coleslaw three times higher than controls  .   .   . ??? 

8. Cases have the same odds for eating coleslaw as controls   .   .   .   . ???  

9. Controls have three times the odds for eating coleslaw as cases   .   .   . ??? 
 
Choices 
0  0.25  0.333  1  3  4 
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5-2 Odds Ratio Calculation/Different Study Designs 
 

Calculating the Odds Ratio 
 
This layout for a two by two table provides a more convenient way to calculate the odds ratio. The formula is a times d over 
b times c. It is called the cross product ratio formula because it is the ratio of one product that crosses the table divided by 
the other product that crosses the table. 
 

 
 

To illustrate this formula consider the data from the Haitian resort outbreak. The cross product formula gives us the 
same result, 3.2, as we obtained originally from the ratio of exposure odds for cases and controls. 
 

 
 
 
Study Question (Q5.5) 
 

1. Should we calculate the OR for other foods eaten during the outbreak before we blame raw hamburger as the 
source? 

 
 

Although the odds ratio must be computed in case-control studies for which the risk ratio cannot be estimated, the 
odds ratio can also be computed in follow-up studies.  
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(Note that the OR and RR can also be calculated in randomized clinical trials that have cumulative incidence measures.) 
 

For example, let us consider the quit smoking” study for heart attack patients. The study design here is a follow-up 
study. We previously estimated that the risk for patients who continued to smoke was 2.1 times greater than the risk for those 
who quit. 
 

 
 

Using the cross product formula on these follow-up data yields 2.7. The fact that these two numbers (the risk ratio 
and odds ratio) are not equal should not be surprising, since the risk ratio and odds ratio are two different measures. But the 
values in this example are not very different. In fact, these two estimates have similar interpretations since they both suggest 
that there is a moderate relationship between quit smoking status and survival status. 
 
 
Summary 
 

 A convenient formula for the OR is the cross product ratio: (ad)/(bc) 
 The OR can be estimated in both case-control and follow-up studies using the cross-product formula. 

 
(See the activities on page 5-4 of this Lesson for discussion of how the risk ratio can be approximated by the odds ratio.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“
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Quiz (Q5.6) 
 
To study the relationship between oral contraceptive use and ovarian cancer, CDC initiated the Cancer and 
Steroid Hormone Study in 1980. It was a case-control study. 
 

1. Using the cross product ratio formula, the OR comparing the exposure status of cases versus controls is 
(93) * (???) / (???) * (959) which equals ???. 

 
2. This means that the ??? of ??? among the cases was ??? the ??? of exposure among the ???. 

 
Choices 
0.23  0.77  1.3 683  86  cases     controls  disease exposed    exposure  greater than 
less than    non-exposed    odds  risk 
 
 Ever Used 

OCs 
Never Used 

OCs
 

Total
Cases 93 86 179
    
Controls 959 683 1642
Total 1052 769 1821 
 
 

The Odds Ratio in Different Study Designs 
 
The odds ratio can be computed for both case-control and follow-up (cohort) studies. Because a case-control study requires 
us to estimate exposure probabilities rather than risks, we often call the odds ratio computed in case-control studies the 
exposure odds ratio (EOR). In contrast, because a follow-up study allows us to estimate risks, we often call the odds ratio 
computed from follow-up studies the risk odds ratio (ROR). 

The odds ratio can also be computed for cross-sectional studies. Since a cross-sectional study measures prevalence 
or existing conditions at a point in time, we usually call an odds ratio computed from a cross-sectional study a prevalence 
odds ratio (POR). 
 

 
 

As an example of the computation of a prevalence odds ratio for cross-sectional data, consider these data that were 
collected from a cross-sectional survey designed to assess the relationship between coronary heart disease and various risk 
factors, one of which was personality type. For these cross-sectional data, we can use the general cross product ratio formula 
to compute a prevalence odds ratio. The odds of having a type A personality among those with coronary heart disease is 5 
times the odds of those without the disease. 
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 In general we can use the cross product ratio formula to compute an exposure odds ratio, a risk odds ratio, or a 
prevalence odds ratio depending on the study design used. 
 
 
Summary 
 

 The OR computed from a case-control study is called the exposure odds ratio (EOR). 
 The OR computed from a follow-up study is called the risk odds ratio (ROR) 
 The OR computed from a cross-sectional study is called the prevalence odds ratio (POR) 
 We can use the general cross-product ratio formula to calculate the EOR, ROR, or POR depending on the study 

design used. 
 

Does ROR = EOR = POR? 
 
Not necessarily. Although the calculation formula (i.e., ad/bc) is the same regardless of the study design, different values of 
the estimated odds ratio from a 2 x 2 table might be obtained for different study designs. This is because of the possibility of 
selection bias (described in Lesson 8). For example, a case-control study that uses prevalent cases could yield a different 
odds ratio estimate than a follow-up study involving only incident cases. 
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Quiz (Q5.7) 
 
Data is shown below for a cross-sectional study to assess whether maternal cigarette smoking is a risk factor for 
low birth weight.   
 

1. Calculate the odds ratio that measures whether smokers are more likely than non-smokers to deliver low 
birth weight babies. OR=??? 

 
2. This odds ratio estimate suggests that smokers are ??? than non-smokers to have low birth weight 

babies. 
 

3. This odds ratio is an example of a(n) ??? odds ratio. 
 
Choices 
0.48   2.04 2.18   exposure   less likely  more likely   prevalence risk 
 
 Smokers Non-Smokers Total
Low Birth weight 1,556 14,974 16,530
    
High Birth weight 694 14,532 15,226
Total 2,250 29,506 31,756 
 

 
Compute Measures of Association with Data Desk 

 
This activity teaches users how to compute measures of association using the Data Desk program. 
 
 

5-3 Comparing Odds Ratio with Risk Ratio Approximations 
 

Comparing the Risk Ratio and the Odds Ratio 
 

We have described two widely used measures of effect, the risk ratio and the odds ratio. Risk ratios are often preferred 
because they are easier to interpret. But, as we have seen, in case-control studies, we cannot estimate risks and must work 
instead with an exposure odds ratio (EOR). In follow-up studies, however, we have the option of computing both a risk ratio 
and a risk odds ratio (ROR). Which should we prefer? 

It can be shown mathematically that if a risk ratio estimate is equal to or greater than one, then the corresponding 
risk odds ratio is at least as large as the risk ratio. For example, using the follow-up data for the quit smoking study of heart 
attack patients, we saw that the estimated risk ratio was 2.1, which is greater than one; the corresponding odds ratio was 2.7, 
which is larger than 2.1. 
 

 
 

Similarly if the risk ratio is less than one, the corresponding odds ratio is as small or smaller than the risk ratio. For 
example, if we switch the columns of the quit smoking table, then the risk ratio is 0.48, which is less than one, and the 
corresponding odds ratio is 0.37, which is less than 0.48. 
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RR̂  RÔR then 1,  RR̂ If  

RR̂  RÔR then 1,  RR̂ If  
 

It can also be shown that if a disease is rare”, then the risk odds ratio will closely approximate the risk ratio. For 
follow-up studies, this rare disease assumption means that the risk that any study subject will develop the disease is small 
enough so that the corresponding odds ratio and risk ratio estimates give essentially the same interpretation of the effect of 
exposure on the disease. 

Typically a rare disease”, is considered to be a disease that occurs so infrequently in the population of interest that 
the risk for any study subject is approximately zero. For example, if one out of every 100,000 persons develops the disease, 
the risk for this population is zero to 4 decimal places. Now that’s really rare! 
 
 
Study Questions (Q5.8) 
 

1. Is a risk of .01 rare? 
2. Suppose that for a given follow-up study, the true risk is not considered to be rare.  Is it possible for the ROR and 

RR to be approximately the same? 
 
 

We can write a formula that expresses the risk odds ratio in terms of the risk ratio:  
 

f x RR  ROR  

where 

)R(1
)R-(1f

1

0  

R0 is the risk for the unexposed 
R1 is the risk for the exposed 
RR=R1/R0 

 
This formula says that the risk odds ratio is equal to the risk ratio multiplied by the factor f, where f is defined as 1 

minus the risk for the unexposed group (R0) divided by 1 minus the risk for the exposed group (R1). You can see from this 
equation that if both R1 and R0 are approximately 0, then f is approximately equal to one, and the risk odds ratio is 
approximately equal to the risk ratio. 
 
 
Study Questions (Q5.9) 
 

1. In the quit smoking example, where R0 is 0.17 and R1 equals 0.36, what is f? 
2. For this value of f, is the ROR close to the RR? 
3. What happens to f if the risks are halved, i.e., R0 = 0.17/2 = 0.085 and R1 = 0.36/2 = 0.180? 
 

Study questions continued on next page 

“

“
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4. Are the ROR and RR estimates close for this f? 
5. What happens to f if we again halve the risks, so that R0=0.0425 and R1=0.09? 
6. Is the approximation better? 
7. Based on your answers to the above questions, how “rare” do the risks have to be for the odds and risk ratios to be 

approximately equal? 
 
 
Summary 
 

 If an estimate of RR > 1, then the corresponding estimate of ROR is at least as large as the estimate of the RR. 
 If an estimate of RR < 1, then the corresponding estimate of ROR is as small or smaller than the estimate of RR. 
 In follow-up (cohort) studies, the “rare disease assumption” says that the risk for any study subject is approximately 

zero. 
 Under the rare disease assumption, the risk odds ratio (ROR) computed in a follow-up study approximates the risk 

ratio (RR) computed from the same study. 
 
 

Comparing the RR and the OR in the Rotterdam Study 
 
Osteoporosis is a common disease in the elderly, and leads to an increased risk of bone fractures. To study this disease, a 
cohort consisting of nearly 1800 postmenopausal women living in Rotterdam, the Netherlands, was followed for four years.  
The Rotterdam Study investigators wanted to know which genetic factors determine the risk of fractures from osteoporosis.  
They focused on a gene coding for one of the collagens that are involved in bone formation.  Each person’s genetic make-up 
consists of two alleles of this gene, and each allele can have one of two alternative forms, called allele A or allele B.  The 
investigators showed that women with two A alleles had a higher bone mass than women with at least one B allele. They 
therefore hypothesized that the risk of fractures would be higher in women with allele B. 

Of the 1194 women with two A alleles, 64, or 5.36%, had a fracture during follow-up. Of the 584 women with at 
least one B allele, 47, or 8.05%, had a fracture. 
 
 
Study Questions (Q5.10) 
 

1. Calculate the risk ratio for the occurrence of fractures in women with at least one B allele compared to women with 
two A alleles. 

 
 

Because the risk ratio estimate is greater than one, we expect the risk odds ratio to be at least as large as the risk 
ratio. 
 
 
Study Questions (Q5.10) continued 
 

2. Calculate the risk odds ratio for the occurrence of fractures in women with at least one B allele compared to women 
with two A alleles. 

 
 

Note that the risk of fractures is relatively rare in this population, therefore the risk odds ratio is approximately equal 
to the risk ratio. Recall the formula ROR = RR * f. Here, f is defined as 1 minus the risk in women with two A alleles divided 
by 1 minus the risk in women with at least one B allele. 
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Study Questions (Q5.10) continued 
 

3. Using the formula ROR = RR x f, can you show that we computed the correct risk odds ratio? 
 
 

In this study, both the risk ratio and the risk odds ratio lead to the same conclusion: women with at least one B allele 
have a 50% higher chance of fractures than women with two A alleles.  The Rotterdam Study investigators concluded that 
genetic make-up can predispose women to osteoporotic fractures. 
 
 
Quiz (Q5.11): RR versus OR in follow-up studies 
 
A questionnaire was administered to those persons who attended a social event in which 39 of the 87 participants 
became ill with a condition diagnosed as salmonellosis. The 2 x 2 table below summarizes the relationship 
between consumption of potato salad and illness. 
 

1. The risk ratio comparing the exposed to the non-exposed is   .  ??? 

2. The odds ratio is    .   .   .   .   .  ??? 

3. Does the odds ratio closely approximate the risk ratio?    .  ??? 

4. Do you consider this illness to be “rare”?     .   .  ??? 
 
Choices 
0.25  1.7      3.7     36.0  9.8      no  yes 
 
 Exposed Non-Exposed Total
Ill 36 3 39
    
Well 12 36 48
Total 48 39 87 
 
 
Let’s consider data from a classic study of pellagra. Pellagra is a disease caused by dietary deficiency of niacin 
and characterized by dermatitis, diarrhea, and dementia. Data comparing cases by gender are shown below. 
 

5. The risk ratio of pellagra for females versus males is (to one decimal place)  .   ??? 

6. The odds ratio is (to one decimal place)    .   .   .   .   ??? 

7. Does the odds ratio closely approximate the risk ratio?  .   .   .   ??? 

8. Do you consider this illness to be rare”?    .   .  .   .   ??? 
 
Choices 
1.4  2.4  2.5  24.2    no    yes 
 
 Females Males Total
Ill 46 18 64
    
Well 1438 1401 2839
Total 1484 1419 2903 

 
 

”
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Odds Ratio Approximation in Case-Control Studies 
 

Comparing the RR and OR in Case-Control Studies 
 
We have already seen that, for follow-up studies, if the disease is rare”, then the risk odds ratio will be a close approximation 
to the risk ratio computed from the same follow-up data. However, in case-control studies, a risk ratio estimate cannot be 
computed, and an exposure odds ratio must be used instead. So, for case-control data, if the disease is rare”, does the 
exposure odds ratio approximate the risk ratio that would have resulted from a comparable follow-up study? The answer is 
yes, depending on certain conditions that must be satisfied, as we will now describe. 

This two-way table categorizes lung cancer and smoking status for a cohort of physicians in a large metropolitan 
city that are followed for 7 years. Forty smokers and twenty non-smokers developed lung cancer. The risk ratio is 2. Also, for 
this population, the risk odds ratio is equal to 2.02, essentially the same as the risk ratio. Since these are measures of effect 
for a population, we have not put the hat symbol over the risk ratio and risk odds ratio terms. 
 

 
 

We now consider the results that we would expect to obtain if we carried out a case-control study using this cohort 
as our source population. We will assume that the 7-year follow-up has occurred. We also assume that there exists a 
comprehensive cancer registry, so that we were able to find al1 60 incident cases that developed over the 7year period. These 
would be our cases in our case-control study. Now suppose we randomly select 60 controls from the source population as our 
comparison group. Since half of the entire cohort of 4000 physicians was exposed and half was unexposed, we would expect 
30 exposed and 30 unexposed out of the 60 controls. 
 

 
 

We can use the cross product ratio formula to compute the expected exposure odds ratio, which turns out to be 2. 
This value for the exposure odds ratio obtained from case-control data is the same that we would have obtained from the risk 
ratio and the risk odds ratio if we had carried out the follow-up study on this population cohort. In other words, the expected 
EOR from this case-control study would closely approximate the RR from a corresponding follow-up study, even if the 
follow-up study was never done!  
 

 
 

We may wonder whether the EOR would approximate the RR even if the 60 controls did not split equally into exposed 
and unexposed groups as expected. This can occur by chance from random selection or if we do a poor job of picking 
controls.  For example, suppose there were 40 exposed and 20 unexposed among the controls. Then the estimated exposure 
odds ratio would equal 1 instead of 2, so in this situation, the EOR would be quite different from the RR obtained from a 
comparable follow-up study.  
 

“

“
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What we have shown by example actually reflects an important caveat when applying the rare disease assumption to 
case-control data. The choice of controls in a case-control study must be representative of the source population from which 
the cases developed. If not, either by chance or a poor choice of controls, then the exposure odds ratio will not necessarily 
approximate the risk ratio even if the disease is rare. There is another important caveat for applying the rare disease 
assumption in a case-control study. The cases must be incident cases, that is, the cases need to include all new cases that 
developed over the time-period considered for determining exposure status. If the cases consisted only of prevalent cases at 
the time of case-ascertainment, then a biased estimate may result because the measure of effect would be estimating 
prevalence rather than incidence. 
 

The EOR Estimates the RR in a Case-Cohort Study Without A Rare Disease Assumption 
 
The typical formula for the EOR in case-control study: 
 
 
 
 
 
In a case-cohort study, the controls are sampled from the original (entire) cohort, so the formula for the EOR in a case-cohort 
study can be modified in the denominator as follows: 
 
 
 
 
From algebra, it then follows that the formula for the RR in a case-cohort study is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Summary 
 

 In case-control studies, the EOR approximates an RR when the following 3 conditions are satisfied: 
 

1) The rare disease assumption holds 
2) The choice of controls in the case-control study must be representative of the source population from which the 

cases developed. 
3) The cases must be incident cases. 
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Quiz (Q5.12): Understanding Risk Ratio 
 
In a case-control study, if the rare disease assumption is satisfied, then: 
 

1. The ??? approximates the ??? provided that there is no ??? in  the selection of ???, and the cases are 

??? rather than ??? cases. 

Choices 
EOR  ROR  RR bias   cases    controls     incidence   prevalent randomness 
 
 
In a community of 1 million persons, 100 cases of a disease were reported, distributed by exposure according to 
the table below. 
 

2. Calculate the RR.   .   .   .   .   .  ??? 

3. Calculate the ROR.   .   .   .   .   .  ??? 

4. Is this a rare disease?     .   .   .   .  ??? 
 
 Exposed Non-Exposed Total
Ill 90 10 100
    
Well 499,910 499,990 999,900
Total 500,000 500,000 1,000,000 
 
If the exposure status of all one million persons in the study population had not been available, the investigator 
may have conducted a case-control study. Suppose a random sample of 100 controls were selected. 
 

5. Approximately what percentage of these controls would you expect to be exposed?   ??? 

6. What is the expected EOR in the case-control study?   .  .   .   .  ??? 
 
Choices 
0.11   10  50  9.00    90  no     yes 
 
 

The Math Behind the Rare Disease Approximation 
 
The mathematical argument that explains why the exposure odds ratio (EOR) approximates a risk ratio (RR) when the 
disease of interest is rare can be outlined as follows. 

We first demonstrate that the risk odds ratio (ROR) computed from follow-up data approximates the risk ratio (RR) 
for these same data if the disease is rare. We then show using conditional probabilities that the risk odds ratio and the 
exposure odds ratio are equal. From this it follows that the exposure odds ratio must also approximate the risk ratio for rare 
diseases. 
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Let’s first describe the risk ratio and risk odds ratio in terms of conditional probabilities. The risk ratio can be 
expressed as the ratio of the conditional probability of developing the disease, given exposed, divided by the conditional 
probability of developing disease, given unexposed. To describe the risk odds ratio, we start with the odds of developing the 
disease for exposed persons and the odds of developing the disease for unexposed persons. 

The risk odds ratio is then given by the ratio of these two odds, as shown here. With a little algebra, we can rewrite 
the risk odds ratio as follows. 

 

 
 

We can thus express the risk odds ratio in terms of the risk ratio by replacing the first part of the product term in the 
expression on the right, by the risk ratio, so that we obtain the following formula. 
 

 
 

Now if the disease is rare, the probability of disease is small, regardless of exposure. So, both P(D not E) and 
P(D E) are approximately 0. If we substitute 0 for these terms in the formula for the risk odds ratio, we obtain an expression 
that says that the risk odds ratio approximates the risk ratio when the disease is rare. 
 

 
 

We now use a famous theorem about conditional probabilities, called Bayes Theorem, to show that the exposure 
odds ratio equals the risk odds ratio, from which it logically follows that the exposure odds ratio approximates the risk ratio 
for rare diseases. Bayes theorem expresses conditional probabilities of the form P(D E) and P(D not E) in terms of 
conditional probabilities of the form P(E D) and P(E not D). We need to consider P(E D) and P(E not D) because in 
case-control studies the disease status is given first and the conditional probability of prior exposure status is then 
determined. Using Bayes Theorem, we can express P(D E) and P(D not E) as follows: 
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If we then substitute these expressions for P(D E) and P(D not E) into the formula for the risk odds ratio and then 
do a considerable amount of algebra using the substituted terms, we obtain the expression below.  The expression on the right 
is the exposure odds ratio. 
 

 
 

We have thus shown that the risk odds ratio equals the exposure odds ratio.  Combining the result that risk odds ratio 
approximates risk ratio when the disease is rare with the result that the risk odds ratio equals exposure odds ratio, it follows 
that exposure odds ratio approximates the risk ratio when the disease is rare. 
 

 
 

The mathematical argument we have just completed for the equivalence of the exposure odds ratio and risk odds 
ratio requires two additional assumptions. These assumptions are needed to carryover from theoretical probabilities to their 
estimates derived from case-control data. First, the choice of controls in a case-control study must be representative of the 
source population from which the cases developed. Second, the cases must be incident, rather than prevalent cases. 
 
Summary: The Math Behind the Rare Disease Approximation 
 

 Use algebra involving conditional probabilities and Bayes Theorem. 
 Bayes Theorem: conditional probabilities of the form P(D E) and P(D notE) in terms of P(E D) and P(E not D). 
 Two assumptions also required: representative controls and incident cases 
 Step 1: ROR computed from follow-up data approximates the RR for these same data if the disease is rare 
 Step 2: using Bayes Theorem, the ROR and EOR are equal 
 Step 3: Combining Step 1 with Step 2, the EOR approximates the RR for rare diseases 

 
 

5-4 The Rate Ratio and Its Characteristics 
 

The Rate Ratio 
 
A rate ratio is a ratio of two average rates. It is sometimes called an incidence density ratio or a hazard ratio.  Recall the 
general formula for an average rate: I denotes the number of new cases of the health outcome, and PT denotes the 
accumulation of person-time over the follow-up. 

The general data layout for computing a rate ratio is shown below.  I1 and I0 denote the number of new cases in the 
exposed and unexposed groups, and PTl and PT0 denote the corresponding person time accumulation for these two groups.  
The formula for the rate ratio or the incidence density ratio (IDR) is also provided.  We have used the notation IDR instead 
of RR to denote the rate ratio in order to avoid confusion with our previous use of RR to denote the risk ratio. 
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As with both the risk ratio and odds ratio measures, the rate ratio can be >1, <1, or =1. If the rate ratio is equal to 1, 
it means that there is no relationship between the exposure and disease using this measure of effect. 

To illustrate the calculation of a rate ratio, we consider data on the relationship between serum cholesterol level and 
mortality from a 1992 study of almost 40,000 persons from the Chicago area. The data shown compares white males with 
borderline-high cholesterol levels and white males with normal cholesterol levels. Subjects, including persons from other 
race and sex categories, were enrolled into the study between 1967 and 1973, screened for cardiovascular disease (CVD) risk 
factors, and then followed for an average of 14 to 15 years.  There were a total of 26 CHD-related deaths based on 36,581 
person-years of follow-up among white males aged 25 to 39 with borderline-high cholesterol at entry into the study.  This 
yields a rate of 71.1 deaths per 100,000 person-years. Among the comparison group there were 14 CHD-related deaths based 
on 68,239 person-years of follow-up, this yields a rate of 20.5 deaths per 100,000 person-years.  Thus, white males aged 25-
39 with borderline high cholesterol have 3.5 times the mortality rate as those with normal cholesterol, indicating that persons 
with even moderately high cholesterol carry an increased risk for CHD mortality. 
 

 
 
Summary: Rate Ratio 
 

 A ratio of two average rates is called a rate ratio (i.e., an incidence density ratio, hazard ratio) 
 The formula for the rate ratio (IDR) is given by: 

  
 

where I1 and I0 are the number of new cases and PT1 and PT0 are the accumulated person-
time for groups 1 and 0, respectively. 

 
 
 

 As with the RR and the OR, the IDR can be >1, <1, or =1. 

0

0

1

1

PT
I

PT
I

IDR
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Odds Ratio Approximation to Rate Ratio 
 
We have already seen that, in case-control studies, the exposure odds ratio estimates the risk ratio for a corresponding follow-
up study provided the health outcome is rare.  In this activity, we demonstrate that under certain conditions, the odds ratio 
from a case-control study estimates the rate ratio from a comparable cohort study that uses person-time information. It is not 
necessary to assume a rare disease for this approximation to hold. The key condition required is that the source population 
from which the cases and controls are derived be in steady state, a term we will define shortly. 
 

 
 

Suppose the source population at time t0 contains N1 disease-free exposed persons and N0 disease-free unexposed 
persons. Suppose, further, that after t years of follow-up, I1 new cases of disease develop from those exposed at time T0 and 
I0 new cases develop from those unexposed at time T0.  Suppose further that the population undergoes no major demographic 
shifts, so that the size of the source population is essentially constant over the t years of follow-up. The source population 
here is then considered to be stable or in steady state. 
 

 
 

Under such steady state conditions, the person-years of observation for each exposure group can be approximated 
using the formula PT = N* x t where N* denotes the size of this stable source population for each exposure group. Thus, the 
person-years for exposed persons is N1 x t and the person-years for unexposed persons is N0 x t. 
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The rate ratio for this cohort, which we have denoted IDR, is then given by substituting the expressions for PT1 and 
PT0 into the IDR formula to obtain the expression shown here. 

We can cancel out t from this expression to simplify it as follows: 

 

0

1

0

1

N
N
I
I

RD̂I  

Now, suppose we conduct a case-control study using this source population. We select a random sample of incident 
cases that developed between time t0 and t0 + t and a random sample of controls from the source population. We then 
determine prior exposure status for cases and controls. This gives us the following two-way table for the case-control data. 
 

 
 

From this table, exposure odds for the cases is given by a/b and the exposure odds for the controls is given by c/d.  
Assuming that the sampling is blind” to exposure status, we would expect the proportion of cases in the study who were 
exposed to be equal, on average, to the proportion of cases in the full cohort who were exposed.  With a little algebra it 
follows that a/b, the exposure odds among cases, equals I1/I0, the corresponding exposure odds in the source population.  
Similarly, it can be shown that the exposure odds for the controls, c/d should, on average, equal the exposure odds among the 
disease-free persons in the source population.  If we now substitute a/b for I1/I0 and c/d for N1/N0 in the formula for the rate 
ratio we obtain ad/bc, the odds ratio from the case control study 

We have thus shown that under the steady state conditions and using incident cases, the exposure odds ratio will 
approximate the rate ratio, without requiring the disease to be rare. 
 
 
Summary: When EOR Approximates the IDR 
 

 Under steady state conditions, the odds ratio from a case-control study will approximate the rate ratio from a 
comparable cohort study that uses person-time information. 

 This approximation does not require the rare disease assumption. 
 Steady-state means that there is not a major shift in the demographic make-up of the source population.  
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Quiz (Q5.13) 
 
Data is shown below for a follow-up study to compare mortality rates among diabetics and non-diabetics. 
 

1. The mortality rate for diabetics is    .   .   .  ???  

2. The mortality rate for non-diabetics is  .   .   .  ??? 

3. The rate ratio is   .   .   .   .   .  ??? 
 
Choices 
13.9  13.9 per 1000 person-years  2.8  2.8 per 1000 person-years 
38.7  38.7 per 1000 person-years 
 
 Diabetic Non-diabetic Total
Dead 72 511 583

    
Alive 146 3,312 3,458
    
Person-Years 1,862.4 36,532.2 38,394.6 
 

4. The rate ratio comparing the mortality rates of diabetics with non-diabetics is 2.8.  Which of the following 
is the correct interpretation of this measure? 

 
A. Those with diabetes are 2.8 times more likely to die than those without. 
B. People are 2.8 times more likely to die of diabetes than any other illness 
C. Death among diabetics is occurring at a rate of 2.8 times that of non-diabetics 
 

 
Compute Measures of Association for Person-Time Data in  

Data Desk 
 
In this activity an introduction to computing measures of association for person-time data using the Data Desk program is 
provided. 
 

The Mantel-Haenszel Odds Ratio (i.e., mOR) Estimates the Rate Ratio (i.e., IDR) in a Nested Case-Control Study 
Without A Rare Disease Assumption 

 
 In a nested case-cohort study, the controls are determined using density sampling so that each control is matched to a 
corresponding case at the time of case diagnosis. In other words, one or more controls are selected for each case from 
subjects in the original cohort who are still at risk at the time a case is identified.  
 Because a nested case-control study involves matching, the typical odds ratio measure of effect that is used is determined 
by a stratified analysis, in which the strata are the matched case-control sets of subjects corresponding to distinct times at 
which cases occur.  We assume, without loss of generality, in the discussion that follows that in any short time interval ti 
during which Mi ( 1) cases occur, R Mi controls, where R 1, are matched to the number of cases occurring during that same 
interval. (Note: if the time intervals were short enough so that no more than one case could occur during an interval, and R 
=1, then the matching process is called pair matching, and each stratum consists of two subjects, the case-control pair that is 
identified at the time of case diagnosis. If, in this situation, R>1, the process is called R-to-1 matching. (See Lesson Page 15-3 
for details on how to carry out the analysis of pair-matched and R-to-1 matched case-control data.)   
 
Given m cases, the i-th stratum (i =1, 2,…, N) can then be described by the following 2 2 table, where N denotes the number 
of equal size non-overlapping time intervals, ti   over the entire time of a given nested case-control study: 
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                         Stratum i (i.e., i-th matched pair)                                                                                                
         E    Not E  Total 
     Case       ai       bi  Mi = ai + bi 
  Control       ci       di R Mi = ci + di 

                                                                         Ti = Mi (R + 1)         
In this table:  ai =   # of exposed cases in the i-th stratum 
                      bi =   # of unexposed cases in the i-th stratum   
                      ci =   # of exposed controls in the i-th stratum 
                      di =   # of unexposed controls in the i-th stratum  
                     Ti =  total # of cases and controls enrolled during the i-th time interval ti. 
 
 Note that if only 1 case occurs in a given time interval and R=1, then the row total is 1 for both cases and controls, and 
each row in the above 2 2 table will have at least one zero cell frequency, so the odds ratio   

                                       
  
ORi =  

aidi
bici

  

is undefined for each i. Consequently, the “adjusted” measure of effect used to combine the information over all strata cannot 
be a typical weighted average of the ORi, but, rather, is defined by the Mantel-Haenszel Odds Ratio (mOR) as follows: 

                 mOR =  
ai j

di j
/ Ti jj=1

N0

bi j
ci j

/ Ti jj=1

N0
  

where N0 denotes the total number of case-control pairs, and the sums in the numerator  and denominator, respectively, 
consider only those time intervals ti j

, j=1, 2,…, N0 in which at least one case occurs. Here, Ti j
Mi j

(R 1), where 

  
Mi j

and 
  
R Mi j

are the number of cases and controls, respectively, that are enrolled during the time interval 
 

ti j
.  

 We now provide a proof to show that the mOR defined above, and conditional on the number of subjects Ti enrolled each 
day, approximates the rate ratio (i.e., IDR) that would have been obtained if a cohort study that considered person-time of 
follow-up for persons in the cohort had been carried out instead of a nested case-control study. The proof requires the 
following additional assumption: The IDR is constant throughout the entire period of follow-up of the cohort under 
study, i.e.,  IDR(ti) = IR1(ti)/ IR0(ti)  IDR 
where ti denotes any time during follow-up of the cohort 
IR1(ti) denotes the incidence rate among exposed subjects (E,) at time ti and  
IR0(ti) denotes the incidence rate among the unexposed subjects (not E) at time ti. 
(Note: The above assumption is essentially equivalent to assuming a proportional hazard assumption in a survival analysis.) 
 
Also, the proof depends on the following theoretical relationship (proof omitted here but described at the end of the 
discussion): 
If   

                      

    

  
E[ ai j

di j
/ Ti jj=1

N0 ]

E[ bi j
ci j

/ Ti jj=1

N0 ]
=  IDR  , where E(X) denotes the Expected Value of X, 

then 

                 

  

mOR =  
ai j

di j
/ Ti jj=1

N0

bi j
ci j

/ Ti jj=1

N0
    is a consistent estimator of IDR.            (1) 
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The proof now proceeds as follows: 

 

  

  
E[ ai j

di j
/ Ti jj=1

N0 ]

E[ bi j
ci j

/ Ti jj=1

N0 ]
=  

E(ai j
di j

) / Ti jj=1

N0

E(bi j
ci jj=1

N0
) / Ti j

   since  E[ xi] =  E(xi ) and we treat Ti as constant 

                             =  
E(ai j

)E(di j
)

j=1

N0
/ Ti j

E(bi j
)E(ci jj=1

N0
) / Ti j

                                                        (2) 

since the controls 
  
(ci j

and di j
)  are selected independently of the cases 

 
(ai j

and bi j
)  at time 

  
ti j

. 

 For the cases, incidence rates IR1(  
ti j

) and IR0(  
ti j

) can be expressed as follows: 

 IR1(ti j
)  

E(ai j
)

N1(ti j
) ti j

   and  IR0(ti j
)  

E(bi j
)

N0(ti j
) ti j

 

where N1(  
ti j

) and N0(  
ti j

) are the number of exposed and unexposed, respectively, still at risk at time 
  
ti j

 just prior to the 

start of time interval 
  
ti j

 . 

 Thus, using algebra, it follows that 

  
 E(ai j

) IR1(ti j
)N1(ti j

) ti j
   and   E(bi j

) IR0(ti j
)N0(ti j

) ti j
 

 For the controls, the expected values E( ci j
) and E( di j

) are the expected frequencies of exposed and unexposed controls, 

respectively, out of the total controls at risk at time 
 
ti j

, which can be expressed as follows: 

       

  
 E(ci j

)  RMi j

N1(ti j
)

N1(ti j
) N0(ti j

)
   and    E(di j

)  RMi j

N0(ti j
)

N1(ti j
) N0(ti j

)
 . 

 Substituting the above expressions for E( ai j
), E( bi j

), E( ci j
) and E( di j

) into expression (2), we obtain the following: 

  

   
E(ai j

)E(di j
)

j=1

N0
/ Ti j

E(bi j
)E(ci jj=1

N0
) / Ti j

 =  

[IR1(ti j
)N1(ti j

) ti j
][(RMi j

)
N0(ti j

)

N1(ti j
) N0(ti j

)
]

j=1

N0

[IR0(ti j
)N0(ti j

) ti j
][(RMi j

)
N1(ti j

)

N1(ti j
) N0(ti j

)
]

j=1

N0
 

                               

  

 =  

[IR1(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

[IR0(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

 

 



131   
   

 

                             

    

  =   

[(IDR )IR0(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

[IR0(ti j
)][(RMi j

)
N0(ti j

)N1(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

 

since we have assumed a constant IDR at any time t, i.e., 

                 
    
  IDR  

IR1(ti )
IR0(ti )

  for any time ti. 

 It then follows from algebra that 

    

 
E(ai j

)E(di j
)

j=1

N0
/ Ti j

E(bi j
)E(ci jj=1

N0
) / Ti j

  =  

[(IDR )IR0(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

[IR0(ti j
)][(RMi j

)
N0(ti j

)N1(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

             (3) 

     

    

  =   IDR

[IR0(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

[IR0(ti j
)][(RMi j

)
N0(ti j

)N1(ti j
) ti j

N1(ti j
) N0(ti j

)
]

j=1

N0

      =    IDR 

 Thus, we have shown that 

                       

    

  
E[ ai j

di j
/ Ti jj=1

N0 ]

E[ bi j
ci j

/ Ti jj=1

N0 ]
=  IDR  

from which we can conclude using (1) above that 

                

  

mOR =  
ai j

di j
/ Ti jj=1

N0

bi j
ci j

/ Ti jj=1

N0
  is a consistent estimator of IDR, 

and this result was obtained without requiring a rare disease assumption. 
 
[Note: The above consistency argument follows because from (3) 
 

    

E[ ai j
di j

/Ti jj=1

N0 ]

E[ bi j
ci j

/Ti jj=1

N0 ]
     

(IDR )E[ 1
N0

Xi jj=1

N0 ]

E[ 1
N0

Xi jj=1

N0 ]
 =  IDR,    
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where  Xi j
=  bi j

ci j
/Ti j

=  IR0(ti j
)][(RMi j

)
N1(ti j

)N0(ti j
) ti j

N1(ti j
) N0(ti j

)
]/Ti j

 ,  

so      

    
E[ 1

N0
ai j

di j
/Ti jj=1

N0 ]  
p

 (IDR )E[ 1
N0

Xi jj=1

N0 ] 

and    

  
E[ 1

N0
bi j

ci j
/Ti jj=1

N0 ] 
p

  E[ 1
N0

Xi jj=1

N0 ], 

from which it follows that 

    

  
E[ ai j

di jj=1

N0
/ Ti j

]

E[ bi j
ci jj=1

N0
/ Ti j

]
    

p
  

(IDR )E[ 1
N0

Xi jj=1

N0 ]

E[ 1
N0

Xi jj=1

N0 ]
 =  IDR  . 
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Nomenclature 
 
Table setup for cohort, case-control, and prevalence studies: 
 Exposed Not Exposed Total
Disease/cases a b m1
No Disease/controls c d m0
Total n1 n0 n 
 
Table setup for cohort data with person-time: 
 Exposed Not Exposed Total
Disease (New cases) I1 I0 I
No Disease - - -
Total disease-free person-time PT1 PT0 PT 
 

t Change in time 
EOR Exposure odds ratio; odds of exposure in diseased divided by the odds of 

exposure in nondiseased 
I Average incidence or total number of new cases
I0 Number of new cases in nonexposed
I1 Number of new cases in exposed
IDR Incidence density ratio (“rate ratio”): IDR=rate in exposed/rate in nonexposed 
N Size of population under study
N0 Size of population under study in nonexposed at time zero
N1 Size of population under study in exposed at time zero
OR Odds ratio: ad/bc 
P Probability of an event 
P(D E) Probability of disease given exposed
P(D not E) Probability of disease given not exposed
P(E D) Probability of exposure given diseased
P(E not D) Probability of exposure given not diseased
POR Prevalence odds ratio; an odds ratio calculated with prevalence data
PT Disease-free person-time 
PT0 Disease-free person-time in nonexposed
PT1 Disease-free person-time in exposed
R0 Risk in unexposed 
R1 Risk in exposed 
ROR Risk odds ratio; an odds ratio calculated from cohort risk data
RR Risk ratio: risk in exposed divided risk in unexposed
T or t Time 
  
 
Formulae 
 
IDR = (I1/PT1) / (I0/PT0) 
 
Odds = P / (1-P) 
 
Odds ratio = ad/bc 
 
ROR = RR * f   where f=(1-R0)/(1-R1) 
 
RR = R1 / R0 
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Homework 
 
ACE-1.  Measures of Effect: Chewing Tobacco vs. Oral Leukoplakia 
 
A study is conducted to investigate the association between chewing tobacco and oral leukoplakia (a precancerous lesion) 
among currently active professional baseball players in the southeastern United States. A roster of all active players is 
obtained (n=500). All potential study subjects agree to participate. Each subject has an interview regarding current use of 
chewing tobacco and has his mouth examined by a dentist. Of the 500 subjects, 125 subjects chew tobacco and 375 do not 
chew tobacco. Of the chewers, 25 have evidence of oral leukoplakia. Of the non-chewers, 15 have evidence of oral 
leukoplakia. All 500 players were followed for a period of 5 years. Of those who had evidence of oral leukoplakia, 18 died of 
some type of oral cancer. 
 
a. Draw a 2 x 2 table demonstrating the relationship between chewing tobacco and oral leukoplakia. In drawing this table, 

put the exposure variable on the columns and the health outcome variable on the rows. 
b. Draw a second 2 x 2 table demonstrating the relationship between chewing tobacco and oral leukoplakia, but this time, 

put the exposure variable on the rows and the health outcome variable on the columns. 
c. Using the table drawn in part a, compute the prevalence ratio and the prevalence odds ratio of oral leukoplakia for 

chewers compared to non-chewers. Are these two estimates close to one-another? Why are these prevalence measures 
and not incidence measures? 

d. Using the table drawn in part b, compute the prevalence ratio and the prevalence odds ratio of oral leukoplakia for 
chewers compared to non-chewers. Are these estimates equal to their corresponding estimates computed using the table 
drawn in part a? Explain. 

e. Ignoring the issue of statistical inference and the control of other variables, what do these results say about the 
relationship between chewing tobacco and the presence of oral leukoplakia? 

f. Calculate the case-fatality rate (actually, a risk) in this study. Why is this a measure of risk? 
g.  Based on the information provided, why can’t you evaluate whether tobacco chewers have a higher case-fatality risk 

than non-chewers? 
 
ACE-2.  Rate Ratios:  Colon Cancer Deaths 
 
The following table shows the number of colon cancer deaths and person-years of risk by the frequency of aspirin for males 
and females.   
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Table 1. Rates of death from colon cancer, according to frequency of aspirin use in the cohort before patients with illness at 
enrollment were excluded. 
  Aspirin Use (times per month) 
  0 <1 1-15 >16 
Men Number of Deaths 378 184 127 85 
 Person-years at risk 646,346 486,620 389,083 201,636 
  

  Death rate per 100,000 
 

_______ 
 

_______ 
 

_______ 
 

_______ 
  

  Rate ratio 
 

1.00 
 

_______ 
 

_______ 
 

_______ 
Women Number of Deaths 284 157 100 73 
 Person-years at risk 705,064 671,927 505,854 265,424 
    

  Death rate per 100,000 
 

_______ 
 

_______ 
 

_______ 
 

_______ 
    

  Rate ratio 
 

1.00 
 

_______ 
 

_______ 
 

_______ 
 
a. Calculate the death rates and the rate ratios for each of the aspirin-use categories in the above table. 
b. Given the results in this table, what is your conclusion about the association between the use of aspirin and fatal colon 

cancer? 
 
ACE-3.  Rate Ratios: NSAIDS’s 
 
NSAID’s (i.e., non-steroidal anti-inflammatory drugs) are prescribed or taken over-the-counter for acute and chronic, 
perceived and diagnosed illnesses. For this reason, the investigators in the study described in question 2 also analyzed the 
data excluding those individuals with selected illnesses at the start of follow-up. Table 2 shows the number of colon cancer 
deaths by the frequency of aspirin-use after exclusion of those subjects with selected illnesses. 

              
Table 2. Rates of death from colon cancer, according to frequency of aspirin use in the cohort after excluding patients with 
illness at time of enrollment. 
  Aspirin Use (times per month) 
  0 <1 1-15 >16 
Men Number of Deaths 171 101 63 28 
 Person-years at risk 487,932 385,321 302,106 116,947 
  

  Death rate per 100,000 
 

_______ 
 

_______ 
 

_______ 
 

_______ 
  

  Rate ratio 
 

1.00 
 

_______ 
 

_______ 
 

_______ 
Women Number of Deaths 126 98 54 32 
 Person-years at risk 521,467 531,469 396,956 175,409 
    

  Death rate per 100,000 
 

_______ 
 

_______ 
 

_______ 
 

_______ 
    

  Rate ratio 
 

1.00 
 

_______ 
 

_______ 
 

_______ 
 

 
a. Calculate the rates and rate ratios for each of the aspirin-use categories in the above table. 
b. Given the results in both Table 1 (from question 2) and Table 2, what do you conclude about the association between the 

use of aspirin and fatal colon cancer? 
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ACE-4.  Incidence Measures of Effect: Quitting Smoking 
 
The following data come from a study of self-help approaches to quitting smoking. Smokers wanting to quit were 
randomized into one of four groups (C = control, M = quitting manual, MS = manual + social support brochure, MST = 
manual + social support brochure + telephone counseling).  Smoking status was measured by mailed survey at 8, 16, and 24 
months following randomization.  These are the 16-month results: 
   

 
  

Randomization Group    
Status 

  
C 

  
M MS MST Total   

Quit 
  

84 
  

71 67 109 331   
Smoking 

  
381 

  
396 404 365 1546   

 
Total 

  
 

465 

  
 

467 
 

471
 

474
 

1877 
 
a. The “quit rate” is calculated as the proportion abstinent (quit) at the time of follow-up.  What was the overall 16-month 

quit rate for all subjects?  Based upon quit rates, which of the intervention groups was the least successful as of the 16-
month follow-up?  Justify your answer. 

b. Is this “quit rate” a cumulative incidence-type measure or an incidence density-type measure?  Justify your answer. 
c. Compare the quit rate for the MST group with that of the control group by calculating both a CIR and an OR.  Show 

your work.  Provide an interpretation of the CIR. 
 
ACE-5.  Incidence Density Ratio: Radiotherapy Among Children 
 
In a study of adverse effects of radiotherapy among children in Israel, 10,834 irradiated children were identified from original 
treatment records and matched to 10,834 non-irradiated comparison subjects selected from the general population.  Subjects 
were followed for a mean of 26 years.  Person-years of observation were: irradiated subjects, 279,901 person-years; 
comparison subjects, 280,561 person-years.  During the follow-up period there were 49 deaths from cancer in irradiated 
subjects, and 44 in the non-irradiated population comparison subjects. 
 
a. What are the rates of cancer death (per 105 person-years) in each of the two groups? 
b. Calculate and interpret the IDR for cancer death comparing irradiated and non-irradiated subjects. 
 
ACE-6.  Odds Ratio: Alcohol Consumption vs. Myocardial Infarction 
 
A case-control study was conducted to assess the relationship of alcohol consumption and myocardial infarction (MI).  Cases 
were men aged 40 to 65 years who had suffered their first MI during the six months prior to recruitment into the study.  A 
group of age-matched men who had never experienced an MI were selected as controls. Data from this study are summarized 
below: 
   

 
  

Exposed Unexposed Totals   
Diseased 

  
158 201 359  

Nondiseased 
  

252 170 422  
Totals 

  
410 371 781 

 
a. What is the odds of exposure among the controls? 
b. Calculate and interpret the exposure odds ratio for these data. 
c. Do you think that the OR calculated in part b above is a good estimate of the corresponding risk ratio for the relationship 

between alcohol and MI?  Why or why not? 
 



137   
   

 

Answers to Study Questions and Quizzes 
 
Q5.1 
 

1. The five-year risk for continuing smokers is 4½ 
times greater than the risk for smokers who quit. 

2. The risk ratio is very close to 1.0, which 
indicates no meaningful difference between the 
risks for the two groups. 

3. Think of an inverse situation. 
4. You should have the hang of this by now. 

 
Q5.2 
 

1. 2 
2. 1 
3. 0.5 
4. 0.0104 
5. 0.0236 
6. 0.44 – In general, the risk ratio that compares 

two groups is defined to be the risk for one group 
divided by the risk for the other group.  It is 
important to clearly specify which group is in the 
numerator and which group is in the 
denominator.  If, for example, the two groups are 
labeled group 1 and group 0, and the risk for 
group 1 is in the numerator, then we say the risk 
ratio compares group 1 to group 0. 

 
Q5.3 
 

1. The odds that a case ate raw hamburger is about 
two ½ times the odds that a control subject ate 
raw hamburger. 

2. Because the odds ratio is so close to being equal 
to one, this would be considered a null case, 
meaning that the odds that a case ate raw 
hamburger is about the same as the odds that a 
control subject age raw hamburger. 

3. An odds ratio less than one means that the odds 
that a case subject ate raw hamburger is less than 
the odds that a control subject ate raw 
hamburger. 

4. You should have the hang of this by now. 
 
Q5.4 
 

1. Not possible, odds ratio – The risk of disease is 
defined as the proportion of initially disease-free 
population who develop the disease during a 
specified period of time.  In a case-control study, 
the risk cannot be determined. 

2. 1350/1357 
3. 1296/1357 
4. 192.86 

5. 21.25 
6. 9.08 – In general, the odds ratio that compares 

two groups is defined to be the odds for the cases 
divided by the odds for the controls.  The odds 
for each group can be calculated by the formula 
P/(1-P), where P is the probability of exposure. 

7. 3 
8. 1 
9. 0.333 

 
Q5.5 
 

1. Of course!  It is possible, for example, that 
mayonnaise actually contained the outbreak-
causing bacteria and maybe most of the cases 
that ate raw hamburger used mayonnaise. 

 
Q5.6 
 

1. 683, 86, 0.77 
2. odds, exposure, less than, odds, controls – If the 

estimated odds ratio is less than 1, then the odds 
of exposure for cases is less than the odds of 
exposure for controls.  If the estimated odds ratio 
is greater than 1, then the odds of exposure for 
cases is greater than the odds of exposure for 
controls. 

 
Q5.7 
 

1. 2.18 
2. more likely 
3. prevalence 

 
Q5.8 
 

1. That depends on the disease being considered 
and on the time-period of follow-up over which 
the risk is computed.  However, for most chronic 
diseases and short time periods, a risk of .01 is 
not rare. 

2. Yes, because even though the risk may not be 
rare, it may be small enough so that the ROR and 
the RR are approximately the same. 

 
Q5.9 
 

1. f = (1 – 0.17) / (1 – 0.36) = 1.30 
2. No, since for these data, the estimated RR equals 

2.1 whereas the estimate ROR equals 2.7. 
3. f = (1 – 0.085) / (1 – 0.180) = 1.12 
4. Yes, since the estimated RR is again 2.1, 

(0.180/0.085), but the estimated ROR is 2.4. 
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5. f=1.05 
6. Yes, since the estimated ROR is now 2.2. 
7. In the context of the quit smoking example, risks 

below 0.10 for both groups indicate a “rare” 
disease. 

 
Q5.10 
 

1. The risk ratio in this study is 0.0805 divided by 
0.0536, which equals 1.50. 

2. The risk odds ratio is 47/537 divided by 64/1130 
equals 1.54. 

3. f=(1-0.0536) / (1-0.0805) = 1.03.  The ROR = 
1.03*RR = 1.03*1.50=1.54. 

 
Q5.11 
 

1. 9.8 
2. 36.0 
3. No 
4. No – The risk ratio that compares two groups is 

defined to be the risk for one group divided by 
the risk for the other group.  The odds ratio can 
be calculated by the cross product formula ad/bc.  
In general, a disease is considered “rare” when 
the OR closely approximates the RR. 

5. 2.44 
6. 2.49 
7. Yes 
8. Yes 

 
Q5.12 
 

1. EOR, RR, bias, controls, incident, prevalent 
2. 9 
3. 9 
4. Yes – A disease is considered rare when the 

ROR closely approximates the RR. 
5. 50 
6. 9.00 

 
Q5.13 
 

1. 38.7 per 1000 person-years – The mortality rate 
for diabetics equals 72/1,862.4 person-years = 
38.7 per 1000 person-years. 

2. 13.9 per 1000 person-years – The mortality rate 
for non-diabetics equals 511/36,653.2 person-
years = 13.9 per 1000 person-years. 

3. 2.8 – The rate ratio is 38.7 per 1000 person-
years/13.9 per 1000 person-years = 2.8. 

4. C 
 
 



 
 

 
 
 
 

LESSON   66  

 

 

 
 

In the previous lesson on Measures of Effect, we focused exclusively on ratio measures of effect.  In this lesson, we consider 
difference measures of effect and other related measures that allow the investigator to consider the potential public health 
impact of the results obtained from an epidemiologic study. 
 

The Risk Difference – An Example 
 
The risk difference is the difference between two estimates of risk, whereas the risk ratio is the ratio of two risk estimates.  
We illustrate a risk difference using a cohort study of heart attack patients who either continue or quit smoking after their 
heart attack. 
 

Consider again the results of a five-year follow-up study to determine whether or not smokers who have had a heart 
attack will reduce their risk for dying by quitting smoking.  The estimated risk ratio is 2.1, which means that the risk for 
continuing smokers was 2.1 times the risk for smokers who quit. 
 

 
 

We now focus on the difference between the two estimates of risk, rather than their ratio. What kind of interpretation 
can we give to this difference estimate?  The risk difference (RD) of 0.19 gives the excess risk associated with continuing to 
smoke after a heart attack. The estimated risk, 0.17, of dying in the quit smoking group is the background or expected” level 
to which the risk of 0.36 in the continuing smokers group, is compared.   
 
 
Study Questions (Q6.1) 
 

1. How many deaths would have occurred among the 75 patients who continued to smoke after their heart attack if 
these 75 patients had quit smoking instead? 

2. How many excess deaths were there among the 75 patients who continued to smoke after their heart attack? 
3. What is the proportion of excess deaths among continuing smokers? 

 

   
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_6, © Springer Science+Business Media New York 2013 
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The null value that describes no excess risk” is 0. There would be no excess risk if the two estimated risks were 

equal.  Because the risk difference describes excess risk, it is also called the attributable risk. It estimates the additional risk 
“attributable” to the exposure.  
 

 
 

The risk difference, therefore, can be interpreted as the probability that an exposed person will develop the disease 
because of the additional influence of exposure over the baseline risk. In this example, the five-year attributable risk of 0.19 
estimates the probability that continuing smokers will die because they have continued to smoke. 
 
 
Study Questions (Q6.1) continued 
 

4. If the study involved 1,000 heart attack patients who continued to smoke after their heart attack, how many deaths 
could be avoided (i.e., attributable to exposure) for a risk difference of 0.19 if all patients quit smoking? 

5. How might you evaluate whether the excess risk of 0.19 is clinically (not statistically) excessive 
6. Can you think of a reference value to compare with the excess risk?  If so, how would you interpret this relative 

comparison? 
 
 
Summary 
 

 The risk difference is the difference between two estimates of risk. 
 The null value of the risk difference is 0, whereas the null value of the risk ratio is 1. 
 The risk difference reflects an excess risk attributable to exposure. 
 Excess risk describes the proportion of cases that could be avoided among exposed subjects if exposed subjects had 

the same risk as unexposed subjects. 
 The risk difference is also called the attributable risk. 

 
The Mathematics Behind Excess Risk 

 
The concept of excess risk can be explained mathematically as follows: Consider the following 2 x 2 table that describes 
data from a cohort study that allows you to estimate individual risk using cumulative incidence: 

 
 Exposed Not Exposed Total
Cases a b m1
Non-cases c d m0
Total n1 n0 n 

 
From this table, the estimated risks for exposed, unexposed and total groups are given by the following estimated 

cumulative incidence formulae: 
Continued on next page

 

“
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The Mathematics Behind Excess Risk (continued) 
 

n
b)(a

n
m

IĈ ,
n
bIĈ ,

n
aIĈ 1

Total
0

Enot 
1

E  

 
From the above definitions, we can compute the excess number of cases attributable to exposure, which we denote 

N(AE), as follows: 
 

N(AE) =  # of new cases among exposed - # of new cases expected if exposure absent 
  = n1 x CIE – n1 x CInot E 
  = n1 x [CIE – CInot E] 
  = n1 x Risk Difference 
 
Dividing both sides of the final equation by n1, it follows that: 
 

Risk Difference = 
1n

N(AE)
= excess risk among the exposed subjects 

 
An alternative way to determine N(AE) that considers all cases instead of exposed cases is as follows: 
 

  N(AE) = # of total cases - # of total cases expected if exposure is absent 
      = n x CITotal – n x CInot E  

  = Enot 
Enot E1 CIn

n
]CICI[nn  

  = [n1 x CIE + n0 x CInot E] - (n1 + n0) x CInot E 
  = [n1 x CIE + n0 x CInot E] – [n1 x CInot E + n0 x CInot E] 
  = n1 x [CIE – CInot E] 
  = n1 x Risk Difference 

 
 
 

Difference Measures of Effect 
 
Difference measures of effect can be computed in randomized clinical trial, cohort, and cross-sectional studies, but not in 
case-control studies.  In cohort studies that estimate individual risk using cumulative incidence measures, the difference 
measure of interest is called the risk difference. It is estimated as the difference between 1IĈ , the estimated cumulative 

incidence for the exposed group, and 0IĈ , the estimated cumulative incidence for the unexposed group 
In cohort studies that estimate average rate using person-time information, the difference measure is the rate 

difference. It can be estimated as the difference between two estimated rates, or incidence densities, 1DÎ and 0DÎ . 
In cross-sectional studies, the difference measure is called the prevalence difference, and is estimated as the 

difference between two prevalence estimates. 
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Difference measures of effect cannot be estimated in case-control studies because in such studies neither risk, rate, 
nor prevalence can be appropriately estimated.   

We’ll illustrate the calculation of the rate difference. We again consider data on the relationship between serum 
cholesterol level and mortality from a 1992 study of almost 40,000 persons in Chicago, Illinois.  Among white males ages 
25-39 with borderline-high cholesterol, there were 71.1 deaths per 100,000 person-years.  Among the comparison group, 
there were 20.5 deaths per 100,000 person-years.   

 

 
 

The estimated rate ratio that compares these two groups is 3.5. The estimated rate difference, or IDD, is 50.6 deaths 
per 100,000 person years. What kind of interpretation can we give to this rate difference? 
 

 
 

The rate difference indicates an excess rate of 50.6 deaths per 100,000 person years associated with having a 
borderline-high cholesterol when compared to normal cholesterol. Here, we are using the estimated rate of CHD-related 
deaths in the unexposed group as the background or expected level to which the rate in the exposed group is compared.  The 
rate difference is also called the attributable rate since it gives the additional rate attributable to the exposure. 
 
 
Study Questions (Q6.2) 
 

1. How many CHD-related deaths per 100,000 person years (i.e., py) could be avoided (i.e., attributable to exposure) 
among persons with borderline-high cholesterol if these persons could lower their cholesterol level to normal 
values? 

2. What is the excess rate of CHD-related deaths per 100,000 py among persons with borderline-high cholesterol? 
3. How might you evaluate whether the excess rate of 50.6 is clinically (not statistically) excessive? 
4. Can you think of a reference value to compare with the excess rate?  If so, how would you interpret this relative 

comparison? 
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Summary 
 

 Difference measures can be computed in cohort and cross-sectional studies, but not in case-control studies. 
 If risk is estimated, the difference measure is the risk difference. 
 If rate is estimated, the difference measure is the rate difference. 
 If prevalence is estimated, the difference measure is the prevalence difference. 
 Difference measures of effect allow you to estimate the (excess) risk attributable to exposure over the background 

risk provided by the unexposed. 
 

 
The Number Needed to Treat 

 
The risk difference describes the excess risk of disease that is attributable to exposure. The risk difference can also be used to 
compute the “number needed to treat” or NNT. The NNT represents the number of patients that must be treated to prevent 
one outcome from occurring. 

As an example, we use data from the British Medical Research Council in a study of patients with mild 
hypertension. Treatment of hypertension with either a b-antagonist or diuretic was compared to use of a placebo. The l0-year 
cumulative incidence of stroke in patients getting the placebo was 2.6%; in patients who were treated, the l0-year cumulative 
incidence was 1.4%. 
 

Treatment 
 Placebo VS. b-antagonist 
    diuretic 
 10-year incidence of stroke: 
 %.ˆ 62IC 1   %.ˆ 41IC 0  
 
 
Study Questions (Q6.3) 
 

1. What is the risk difference? 
 
 

We now want to know how many patients with hypertension we need to treat in order to prevent one stroke. The 
formula used to compute the NNT is 1 divided by the risk difference.   
 

 
 
 
Study Questions (Q6.3) continued 
 

2. How many patients with hypertension do we need to treat to prevent one stroke? 
3. For how long do we need to treat these patients? 

 
 

The results from this study showed that if 83 subjects with hypertension were treated with either b-antagonists or 
diuretics during 10 years, the incidence of one stroke could be prevented. 
 
 
Summary 
 

 The risk difference can be used to compute the “number needed to treat” (NNT). 
 The NNT represents the number of patients that must be treated to prevent one outcome from occurring. 
 The formula used to compute the NNT is 1 divided by the risk difference. 
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The Number Needed to Treat – Definition and Rationale 
 

In the example used in this activity, the 10-year cumulative incidence of stroke was determined for patients with mild 
hypertension. For those treated with either a b-antagonist or a diuretic, the estimated CI was 1.4%. For those given a 
placebo (i.e., not treated), the estimated CI was 2.6%.  The risk difference is then calculated as 2.6% - 1.4% = 1.2%. In other 
words, the risk of stroke attributable to use of a placebo (or non-treatment) was 1.2% 

The number needed to treat (NNT) is defined as the expected number of patients who must be treated with an 
experimental therapy in order to prevent one additional adverse outcome event (or, depending on the context, to expect one 
additional beneficial outcome).  We can calculate the NNT by inverting the value of the risk difference, i.e., 

 
NNT = l/(Risk Difference). 
 
For this example, therefore, NNT = 1/.012, which gives 83.3. In other words, 83 patients must be treated with b-

antagonist or diuretic to prevent one stroke. 
Using the above example, the rationale for the NNT formula is given as follows: If 1000 patients were treated with 

either a b-antagonist or a diuretic, we would expect 14 strokes (1.4%) over 10 years of follow-up.  However, if these 1000 
patients were given a placebo instead of treatment, we would expect 26 strokes (2.6%) over 10 years. 

Thus, for 1000 patients followed for 10 years, we would expect to prevent 26 - 14 = 12 strokes (2.6% - 1.4% = 1.2%) if 
all 1000 patients received the treatment instead of all patients not receiving the treatment (i.e., getting a placebo). Since 
1000/12 = 83.3/1, this means that we could expect to prevent one stroke over 10 years for every 83 patients who are treated, 
i.e., 12 is to 1000 as 1 is to 83.3. 
 
 
 
Quiz (Q6.4) 
 
Which of the following terms are synonymous with risk difference? 
 

1. Absolute risk   ??? 

2. Attributable risk   ??? 

3. Excess risk   ??? 

4. Risk ratio  ??? 
 
Choices 
No Yes 
 
 
During the 1999 outbreak of West Nile encephalitis in New York, incidence varied by location. The reported rates 
were: 
 
Queens  16.4 per million   Bronx  7.5 per million 
Brooklyn 1.3 per million   Manhattan 0.7 per million 
Staten Island 0.0 per million   Total NYC 6.1 per million 
 
 

Quiz continued on next page 
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To calculate the rate difference for residents of Queens, which location(s) could be used for the baseline or 
expected rate? 
 

5. Queens  ??? 

6. Bronx   ??? 

7. Brooklyn  ??? 

8. Manhattan  ??? 

9. Staten Island  ??? 

10. Total NYC  ??? 

11. Bronx+Brooklyn+Manhattan+Staten Island ??? 
 
Choices 
No Yes 
 
 

12. Calculate the rate difference between Queens and Manhattan. ??? 
 
Choices 
15.7 15.7 per million 23.4 23.4 per million 
 
 
Investigators interviewed all persons who had attended the Smith-Jones wedding two days earlier, comparing the 
proportion who developed gastroenteritis among those who did and those who did not eat certain foods. They 
now want to determine the impact of eating potato salad on gastroenteritis. 
 

13. The appropriate measure of potential impact is ???. 
 
Investigators conducted a cross-sectional survey, identified respondents who had been diagnosed with diabetes, 
and calculated an index of obesity using reported heights and weights. They now want to determine the impact of 
obesity on diabetes. 
 

14. The appropriate measure of potential impact is ???. 
 
Investigators enrolled matriculating college freshmen into a follow-up study.  The investigators administered 
questionnaires and drew blood each year to identify risk factors for and seroconversion to Epstein-Barr virus (the 
etiologic agent of mononucleosis).  Using person-years of observation, the investigators now want to determine 
the impact of residing in a co-ed dormitory on EBV seroconversion. 
 

15. The appropriate measure of potential impact is ???. 
 
Choices 
 
not calculable   odds difference prevalence difference  rate difference  risk difference 
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Difference Versus Ratio Measures of Effect 
 
Consider this table of hypothetical information describing the separate relationships of four different exposures to the same 
disease. 
 

 
 

First focus on location, rural versus urban, for which the risk ratio is one and the risk difference is 0. There is no 
evidence of an effect of location on the disease, whether we consider the risk ratio or the risk difference. In fact, if the risk 
ratio is exactly 1, then the risk difference must be exactly 0, and vice versa. 
 

Location: Rural vs. Urban 
RR=1.000 RD = 0.000 

No Effect 
 

Now, let’s look at the effect of chewing tobacco on disease. The risk ratio for chewing tobacco is 5; this indicates a 
very strong relationship between chewing tobacco and the disease. But, the risk difference of .004 seems quite close to zero, 
which suggests no effect of chewing tobacco.  
 

Chewing Tobacco 
RR = 5.000 RD = 0.004 
Strong Effect Small Effect 

 
Thus, it is possible to arrive at a different conclusion depending on whether we use the risk ratio or the risk 

difference. Does only one of these two measures of effect give the correct conclusion, or are they both correct in some way?  
Actually, both measures give meaningful information about two different aspects of the relationship between exposure and 
disease.  

Let’s now compare the effect of chewing tobacco with the effect of coffee drinking.  
 

Coffee Drinking 
RR = 1.087 RD = 0.004 

 
The risk ratios for these two exposures are very different, yet the risk differences are exactly the same and close to 

zero. There appears to be little, if any, effect of coffee drinking.  So, is there or is there not an effect of tobacco chewing? 
If we ask whether or not we would consider chewing tobacco to be a strong risk factor for the disease, our answer 

would be yes, since a chewer has 5 times the risk of a non-chewer for getting the disease. That is, chewing tobacco appears to 
be associated with the etiology of the disease, since it is such a strong risk factor. 

However, if we ask whether chewing tobacco poses a public health burden in providing a large case-load of patients 
to be treated, our answer would be no. To see the public health implications, recall that the risk difference of .004 for 
chewing tobacco gives the excess risk that would result if chewing tobacco were completely eliminated in the study 
population. Thus, out of, say, 1000 chewers, an excess of 1000 times 0.004, or only 4 chewers would develop the disease 
from their tobacco chewing habit. This is not a lot of patients to have to treat relative to the 1000 chewers at risk for the 
disease. 
 
Study Questions (Q6.5) 
 

1. Compare the effect of chewing tobacco with the effect of alcohol consumption on the disease.  Do they both have 
the same effect in terms of the etiology of the disease? 

2. Do chewing tobacco and alcohol use have the same public health implications on the treatment of disease? 
3. Explain your answer to the previous question in terms of the idea of excess risk. 
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Summary 
 

 If the risk ratio is exactly 1, then the risk difference is exactly 0, and vice versa, and there is no effect of exposure on 
the health outcome. 

 If the risk ratio is very different from 1, it is still possible that the risk difference will be close to zero. 
 If the risk difference is close but not exactly equal to 0, it is possible that the risk difference will be large enough to 

indicate a public health problem for treating the disease. 
 Ratio measures are primarily used to learn about the etiology of a disease or other health outcome. 
 Difference measures are used to determine the public health importance of a disease or other health outcome. 

 
 
Quiz (Q6.6) 
 
During the 1999 outbreak of West Nile virus (WSV) encephalitis in New York City, the 
reported rates were: 
 
Queens 16.4 per million population 
Rest of NYC 2.4 per million 
Total NYC 6.1 per million 
 
Label each of the following statements as True or False. 
 

1. If Queens had experienced the same WNV rate as the rest of NYC, 10.3 fewer cases per million would 
have occurred there, i.e., the rate difference is 10.3 per million.  . . . ??? 

2. The excess rate in Queens was 14.0 cases per million (compared to the rest of NYC) ??? 

3. The attributable rate (i.e., rate difference) in Queens was 16.4 cases per million.  . ???  

4. The most common measure of effect for comparing Queens to the rest of NYC is 6.8.  ??? 
 
Determine whether each of the following statements is more consistent with risk difference, risk ratio, both, or 
neither. 
 

5. More of a measure of public health burden  . . . . . ??? 

6. More of a measure of etiology  . . . . . . . ??? 

7. Null value is 0.0  . . . . . . . . ??? 

8. Can be a negative number  . . . . . . . ??? 

9. Can be a number between 0.0 and 1.0  . . . . . . ??? 

10. Can be calculated from most follow-up studies  . . . . . ??? 

11. Can be calculated from most case-control studies  . . . . ??? 

12. Has no units  . . . . . . . . . ??? 

13. A value very close to 0.0 indicates a strong effect  . . . . ??? 

14. Synonymous with attributable risk  . . . . . . ??? 
Quiz continued on next page 
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Consider the data in the table below and the following estimates of risk on smoking and incidence of lung cancer 
and coronary heart disease (CHD).  
 
 Lung Cancer CHD 
Rate Ratio 12.9 2.1 
Rate Difference 79.0/100k/yr 190.4/100k/yr 
 

15. Which disease is most strongly associated with smoking?  . ??? 

16. Elimination of smoking would reduce the most cases of which disease?  ??? 
Incidence of lung cancer 
 Smokers Nonsmokers Total 
New Lung Cancer cases 60,000 10,000 70,000 
Estimated person-years 70,000,000 150,000,000 220,000,000 
Estimated incidence 
density 1DÎ =85.7 per 

100,000 person-years 
0DÎ =6.7 per 

100,000 person-years 
DÎ =31.8 per 

100,000 person-years 
 
Incidence of coronary heart disease (CHD) 
 Smokers Nonsmokers Total 
New CHD cases 250,000 250,000 500,000 
Estimated person-years 70,000,000 150,000,000 220,000,000 
Estimated incidence 
density 1DÎ =357.1 per 

100,000 person-years 
0DÎ =166.7 per 

100,000 person-years 
DÎ =227.3 per 

100,000 person-years 
 

Analyzing Data in Data Desk 
 
This activity shows how to calculate a risk difference using the Data Desk software program. 
 

6-2  Measures of Potential Impact (continued) 
 

Potential Impact – The Concept 
 
A measure of potential impact provides a public health perspective on an exposure-disease relationship being studied. More 
specifically, a measure of potential impact attempts to answer the question, by how much would the disease load of a 
particular population be reduced if the distribution of an exposure variable were changed? By disease load, we mean the 
number of persons with a disease of interest that would require health care at a particular point in time. 

The typical measure of potential impact is a proportion, often expressed as a percentage, of the number of cases that 
would not have become cases if all persons being studied had the same exposure status.  For example, when determining the 
potential impact of smoking on the development of lung cancer, the potential impact of smoking gives the proportion of new 
lung cancer cases that would not have developed lung cancer if no one in the population smoked.   

Or, one might determine the potential impact of a vaccine on the prevention of a disease, say, HIV, in high-risk 
persons. The potential impact of the vaccine gives the proportion of all the potential cases of HIV prevented by the vaccine if 
there had been no vaccine, all of these cases would have occurred. 

These examples illustrate two kinds of potential impact measures. A measure of the impact of smoking on lung 
cancer considers an exposure that is associated with an increased risk of the disease and is called an etiologic fraction. A 
measure of the impact of a vaccine to prevent HIV considers an exposure that is associated with a decreased risk of disease 
and is called a prevented fraction. 
 
Summary 
 

 A measure of potential impact gives a public health perspective about the effect of an exposure-disease relationship. 
 In general, measures of potential impact ascertain what proportion of cases developed the disease as a result of the 

purported influence of the exposure. 
 The etiologic fraction is a measure of potential impact that considers an exposure that is a potential cause of disease. 
 The prevented fraction is a measure of potential impact that considers an exposure that is preventive of the disease. 
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Generalized Measures of Potential Impact 

 
This Lesson on measures of potential impact focuses on quantifying the proportional reduction in disease incidence from a 
particular change in the prevalence of a single binary exposure variable. The etiologic fraction (EF) considers the potential 
for future benefits (i.e., the potential impact) resulting from completely eliminating the presence of a harmful exposure, e.g., 
smoking. The prevented fraction (PF) considers past benefits from introducing (by completely eliminating the absence of) 
a protective exposure, e.g., a vaccine or exercise program.  These two measures, nevertheless, are limited in a number of 
ways that have led to more generalized measures of potential impact.  Detailed discussion of such generalized measures is 
beyond the scope of this presentation. However, we briefly describe below several important generalizations. 
 
1. Multilevel exposures.  The formula for EF can be extended as follows if estimates of risk are available for k+ 1 

categories of exposure: 
 

k

i
ii RRp

EF

0
)(

11  

 
where pi denotes the proportion of the population in exposure group i, where i goes from 0 to k, and RRi is the risk ratio that 
compared i-th exposure category to the referent group 0. If the data involves rates instead of risks, substitute IDRi for RRi in 
the above formula. 
 
2. Adjustment for other factors. Three approaches:  

a) separate measures for subgroups; 
b) stratified analysis: 

i) use weighted average of EF’s for each subgroup, or  
  ii) use adjusted RR estimate; 

c) logistic regression.  
 
3. Impact of partial modification (rather than complete elimination) of exposure. Examples:  

a) To measure the reduction in lung cancer mortality if smoking is reduced but not eliminated; 
b) To measure the reduction in coronary heart disease from increased levels of physical activity.  

 
 A formula for a generalized impact fraction (IF) is given as follows: 
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 where 

IF is the reduction in disease risk as a result of a change in the distribution of a multilevel exposure variable, 
pi* is the proportion of the candidate population in the ith exposure category before the planned intervention or change, and  
pi** is the proportion of the candidate population in the ith exposure category after the change. 
 
 
 

Etiologic Fraction 
 
The etiologic fraction answers the question: what proportion of new cases that occur during a certain time period of follow-
up are attributable to the exposure of interest? Other names for this measure are the etiologic fraction in the population, 
attributable fraction in the population, the population attributable risk, and the population attributable risk percent. 

In mathematical terms, the etiologic fraction is given by the formula I* divided by I, where I* denotes the number 
of new cases attributable to the exposure and I denotes the number of new cases that actually occur. The numerator, I* can be 
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found as the difference between the actual number of new cases and the number of new cases that would have occurred in the 
absence of exposure. 
 

I
IEF
*

 

 
To illustrate the calculation of the etiologic fraction, consider once again the results of a five-year follow-up study to 

determine whether or not smokers who have had a heart attack will reduce their risk for dying by quilting smoking The 
estimated risk ratio here is 2.1 and the estimated risk difference is 0.19. 
 

 
 

A computational formula for the etiologic fraction is given here, where IĈ  denotes the estimated cumulative 

incidence or risk for all subjects, exposed and unexposed combined, in the study. And 0IĈ  denotes the estimated cumulative 
incidence for unexposed subjects. Notice that the numerator in this formula is not the risk difference, which would involve 

1IĈ , the estimated risk for exposed persons, rather than IĈ , the overall estimated risk. 

To calculate the etiologic fraction using our data then, we first must compute IĈ , which equals .263, or roughly 

26%. We already know that 0IĈ  is .173 or roughly 17%. Substituting these values into the formula, we find that the 
etiologic fraction is .35, or 35%. 

How do we interpret this result? The etiologic fraction of .35 tells us that 35% of all cases that actually occurred are 
due to continuing smoking. In other words, if we could have gotten all patients to quit smoking after their heart attack, there 
would have been a 35% reduction in the total number of deaths. This is why the etiologic fraction is often referred to as the 
population attributable risk percent. It gives the percent of all cases in the population that are attributable, in the sense of 
contributing excess risk, to the exposure. 
 
 
Study Questions (Q6.7) 
 
Based on the smoking example from the previous page: 
 

1. How many cases would have been expected if all subjects had been unexposed? 
2. What is the excess number of total cases expected in the absence of exposure? 
3. What is I*/I for these data? 

 
 
Summary 
 

 The etiologic fraction is given by the formula I*/I, where I denotes the number of new cases that actually occur and 
I* denotes the number of new cases attributable to the exposure. 

 The numerator, I*, can be quantified as the difference between the actual number of new cases and the number of 
new cases that would have occurred in the absence of exposure. 

 A computational formula for the etiologic fraction is EF = (CI – CI0) / CI, where CI denotes cumulative incidence. 
 The EF is often referred to as the population attributable risk percent, because it gives the percent of all cases in the 

population that are attributable to exposure. 
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Alternative Formula for Etiologic Fraction 
 
In a cohort study that estimates risk, the etiologic fraction can be calculated from estimates of cumulative incidence for the 
overall cohort and for unexposed persons.  An equivalent formula can be written in terms of the risk ratio and the proportion 
(p) of exposed persons in the cohort.   
 

 
 

To illustrate this alternative formula, consider once again the results of a five-year follow-up study to determine 
whether or not smokers who have had a heart attack will reduce their risk for dying by quitting smoking. Using the first 
formula, we previously computed the etiologic fraction to be .35, or 35%. Thus, 35% of all cases that actually occurred are 
due to those who continued to smoke. 
 

 
 

To use the second formula, we first calculate the proportion of the cohort exposed which is .481. 
 

 
 

We now substitute this value and the estimated risk ratio of 2.1 into the second formula. The result is .35, which is 
exactly the same as previously obtained because both formulas are equivalent. 
 

 
 

The second formula gives us some additional insight into the meaning of the etiologic fraction. This formula tells us 
that the size of the etiologic fraction depends on the size of the risk ratio and the proportion exposed.  In particular, the 
potential impact for a strong determinant of the disease, that is, when the risk ratio is high, may be small if relatively few 
persons in the population are exposed. 

Suppose in our example, that only 10% instead of 48% of the cohort were exposed so that p equals .10. Then the 
etiologic fraction would be reduced to 0.10 or 10%, which indicates a much smaller impact of exposure than 35%. 
Furthermore, if the entire cohort were unexposed, then the etiologic fraction would be zero. 
 

 
 

Now suppose that 90%, instead of 48%, of the cohort were exposed, so that p equals .90. Then the etiologic fraction 
increases to 0.50 or 50%.  If the entire cohort were exposed the etiologic fraction would increase to its maximum possible 
value of  .52 or 52% for a risk ratio estimate of 2.1. 
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In general, for a fixed value of the risk ratio, the etiologic fraction can range between zero, if the entire cohort were 
unexposed, to a maximum value of RR minus one over RR if the entire cohort were exposed. 
 

 
 
 
Study Questions (Q6.8) 
 

1. Use the formula (RR – 1)/RR to compute the maximum value possible EF when the RR is 2.1 
2. What is the maximum value possible for EF when RR is 10? 
3. As RR increases towards infinity, what does the maximum possible value of the EF approach? 
4. If the RR is very large, say 100, can the EF still be relatively small? Explain. 

 
Summary 
 

 An alternative formula for the etiologic fraction is EF = p(RR-1) / [p(RR-1)+1], where RR is the risk ratio and p is 
the proportion in the entire cohort that is exposed. 

 The size of the etiologic fraction depends on the size of the risk ratio and the proportion exposed. 
 For a fixed value of the risk ratio, the etiologic fraction can range between zero to a maximum value of (RR – 

1)/RR. 
 The potential impact for a strong determinant of the disease (i.e., high risk ratio) may be small if relatively few 

persons in the population are exposed. 
 
 

Etiologic Fraction for Person-Time Cohort Studies 
 
In cohort studies that estimate a rate using person-time information, the etiologic fraction can be calculated using estimates 
of incidence density rather than cumulative incidence. 
 

DÎ
DÎ-DÎ

FÊ 0  

 

In the above formula, DÎ denotes the estimated incidence density or rate for all subjects, exposed and unexposed 
combined. 0DÎ  denotes the estimated incidence density for unexposed subjects. 

An equivalent version of this formula can be written in terms of the estimated incidence density ratio, RD̂I , and the 
proportion p*, of total person-time for exposed persons.  
 

11)-RD̂(p*)(I
1)-RD̂(p*)(IFÊ  

 

In this formula, RD̂I is the ratio of the rates for exposed and unexposed groups; and p* is calculated as L1 divided 
by (L1 + L0), where L1 and L0 are the person-time information for exposed and unexposed groups, respectively. 
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To illustrate the calculation of each formula, we consider again the data on serum cholesterol level and mortality.  

To compute the etiologic fraction using the formula involving incidence densities, we must first calculate the estimated 
overall incidence density, which is 38.2 per 100,000 person years ([26+14]/[36,581+68,239]). Substituting 38.2 and 20.5 into 
the formula for DÎ  and 0DÎ  respectively, we obtain an etiologic fraction of .463, or 46.3%. 
 

 
 

%3.46
2.38

5.202.38
DÎ

DÎ-DÎ
FÊ 0  

 
Using the second formula, we find that p* is .349 and, since the estimated rate ratio is 3.47 

(36,581/[36,581+68,239]), the etiologic fraction from this formula is also computed to be 46.3%: 
 

%3.46
1)147.3(349.0

)147.3(349.0
11)-RD̂(p*)(I

1)-RD̂(p*)(IFÊ  

 
  How do we interpret this result? 

 
 
Study Questions (Q6.9) 
 

1. Which of the following statements is not correct about the EF (46.3%) computed in the previous example? 
A. Almost half of all deaths are due to persons with borderline-high cholesterol. 
B. The proportion of excess deaths due to exposure (having borderline-high cholesterol) out of total deaths is .463. 
C. The percentage reduction in total deaths if persons with borderline-high cholesterol could lower their 

cholesterol to normal levels is 46.3. 
D. 46% of all deaths among persons with borderline-high cholesterol are due to their borderline-high cholesterol. 

 
2. In the table below, what is the number of excess deaths out of total deaths if all persons in the cohort had normal 

cholesterol levels? 
A. 18.5 
B. 40.0 
C. 21.5 
D. 14.0 
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Summary 
 

 In cohort studies that use person-time information, the etiologic fraction can be defined in terms of incidence 
densities or as a combination of the incidence density ratio and the proportion of total person-time for exposed 
persons. 

 The formula involving incidence densities is given by: 

DÎ
DÎ-DÎ

FÊ 0  where DÎ =overall incidence density and 0DÎ =incidence density among unexposed 

 
 An equivalent formula is given by: 

11)-RD̂(p*)(I
1)-RD̂(p*)(IFÊ  where RD̂I  is the incidence density ratio.  

01

1
LL

L
p* , where L1 and L0 are the person-time information for exposed and unexposed groups, 

respectively. 
 
 

Etiologic Fraction Among the Exposed 
 
There are two conceptual formulations of the etiologic fraction. One, which we have previously described, focuses on the 
potential impact of exposure on the total number of cases, shown below as I.  A second focuses on the potential impact of the 
exposure on the number of exposed cases, which we denote as I1. This measure is called the etiologic fraction among the 
exposed, attributable fraction among the exposed, or the attributable risk percent among the exposed.  In mathematical 
terms, the etiologic fraction among the exposed, is given by the formula I* divided by I1, where I* denotes the number of 
exposed cases attributable to the exposure and I1 denotes the number of exposed cases that actually occur. 
 

 
 

The denominator (in the EFe formula) is the number of exposed cases. This is different from the denominator in EF. 
That s because the referent group for EFe is the number of exposed cases that occur in the cohort rather than the total number 
of cases in EF. The numerator in both formulas is the same, namely I*.  In particular, the I* in both EF and EFe can be 

’
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quantified as the difference between the actual number of cases and the number of cases that would have occurred in the 
absence of exposure 

To illustrate the calculation of the etiologic fraction among the exposed, consider once again the results of a five-
year follow-up study to determine whether or not smokers who have had a heart attack will reduce their risk of dying by 
quitting smoking. The previously computed etiologic fraction, or equivalently, the population attributable risk percent 
computed for these data was 35%. 
 

 
 

The etiologic fraction among the exposed (EFe) can be calculated for these same data using the formula shown 
above. The term 1IĈ denotes the estimated cumulative incidence or risk for exposed subjects in the study and 0IĈ  denotes 
the estimated cumulative incidence for unexposed subjects.  The numerator in this formula is the estimated risk difference 
( DR̂ ).  Since the estimated risk difference is .19 and the risk for exposed persons is .36, we can substitute these values into 
the formula for EFe to obtain .53, or 53%.  How do we interpret this result? 

The etiologic fraction of .53 tells us that 53% of all deaths among continuing smokers are due to continuing 
smoking. In other words, if we could have gotten the continuing smokers who died to quit smoking after their heart attack, 
there would have been a 53% reduction in deaths among these persons. 
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Study Questions (Q6.10) 
 

 
 

1. What is the excess number of exposed cases (i.e., deaths among continuing smokers) expected in the absence of 
exposure? 

2. Fill in the blanks: In this example, _________ of the ________ deaths among continuing smokers could have been 
avoided. 

3. Use the formula I*/I1 to compute EFe for these data. 
4. An alternative formula for the etiologic fraction among exposed is EFe=(RR-1)/RR, where RR is the risk ratio.  Use 

this formula to compute EFe for the heart attack study data. 
5. The population attributable risk percent (EF) computed for these data is 35% whereas the attributable risk percent 

among the exposed (EFe) is 53%.  How do you explain these differences? 
6. For cohort studies that use person-time information, state a formula for the etiologic fraction among the exposed that 

involves incidence densities in exposed and unexposed groups. 
7. As in the previous question, state an alternative formula for EFe that involves the incidence density ratio. 
8. For case-control studies, which cannot estimate risk or rate, can you suggest formulae for EF and EFe? 

 
Summary 
 

 The etiologic fraction among the exposed, EFe, focuses on the potential impact of the exposure on the number of 
exposed cases, rather than the total number of cases. 

 EFe is defined as I*/I1, where I* is the excess number of exposed cases due to exposure and I1 is the actual number 
of exposed cases.   

 For cohort studies that estimate risk: 

RR̂
1RR̂

IĈ
)IĈIĈ(

FeÊ
1

01  

 For cohort studies that estimate rate: 

RD̂I
1RD̂I

DÎ
)DÎDÎ(

FeÊ
1

01  

 
 

Etiologic Fraction – An Example 
 
Hypothyroidism, a disease state in which the production of thyroid hormone is decreased, is known to increase the risk of 
cardiovascular disease. In elderly women, the subclinical form of hypothyroidism is highly prevalent. The Rotterdam Study 
investigators therefore examined the potential impact of subclinical hypothyroidism on the incidence of myocardial 
infarction. 

In this study of nearly 1,000 women aged 55 and over, the prevalence of subclinical hypothyroidism was 10.8%. 
Consider the two-by-two table depicted here. The cumulative incidence of myocardial infarction is 2.9% (3/103) in women 
with subclinical hypothyroidism, 1.2% (10/854) in women without hypothyroidism, and 1.4% (13/957) overall. 
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 Subclinical 
Hypothyroidism 

No Subclinical 
Hypothyroidism

Total

MI 3 10 13
No MI 100 844 944
Total 103 854 957
 

1IĈ =2.9% 0IĈ =1.2% IĈ =1.4% 
 
Study Questions (Q6.11) 
 
1. Using these data, can you calculate the etiologic fraction? 
 

The etiologic fraction is: EF = (1.4 - 1.2) / 1.4 = 14%. This indicates that of all myocardial infarctions that occur in 
elderly women, 14% are due to the presence of subclinical hypothyroidism. In other words, if subclinical hypothyroidism 
could be prevented, there would be 14% less myocardial infarctions in this population. 
 
Study Questions (Q6.11) continued 
 
2. Can you calculate the etiologic fraction using the alternative formula: 

 EF = [p(RR-1)]/[p(RR-1) + 1]? 
3. Can you calculate the etiologic fraction in the exposed? 
 

The etiologic fraction in the exposed (EFe) is (2.9-1.2), which is equal to the risk difference, divided by 2.9, which 
is 60%.  Thus, among the women that are affected, 60% of the myocardial infarctions can be attributed to the presence of 
subclinical hypothyroidism. 
 
Summary 
 

 The Rotterdam Study investigators examined the potential impact of subclinical hypothyroidism on the incidence of 
myocardial infarction. 

 Of all myocardial infarctions that occur in elderly women, 14% is due to the presence of subclinical hypothyroidism. 
 Among women that are affected, 60% of the myocardial infarctions can be attributed to the presence of subclinical 

hypothyroidism. 
 
 
Quiz (Q6.12) 
 
Consider data in the table below on smoking and incidence of lung cancer and cardiovascular disease (CHD). 
Incidence of lung cancer 
 Smokers Nonsmokers Total 
New Lung Cancer cases 60,000 10,000 70,000 
Estimated person-years 70,000,000 150,000,000 220,000,000 
Estimated incidence 
density 1DÎ =85.7 per 

100,000 person-years 
0DÎ =6.7 per 

100,000 person-years 
DÎ =31.8 per 

100,000 person-years 
 
Incidence of coronary heart disease (CHD) 
 Smokers Nonsmokers Total 
New CHD cases 250,000 250,000 500,000 
Estimated person-years 70,000,000 150,000,000 220,000,000 
Estimated incidence 
density 1DÎ =357.1 per 

100,000 person-years 
0DÎ =166.7 per 

100,000 person-years 
DÎ =227.3 per 

100,000 person-years 
 

Quiz continued on next page 
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1. The prevalence of smoking in this population is  . . . . ???. 

2. The etiologic fraction for lung cancer is   . . . . ???. 

3. The etiologic fraction for coronary heart disease is  . . . ???. 

4. The etiologic fraction among the exposed for lung cancer is  . . ???.  

5. The etiologic fraction among the exposed for CHD is  . . . ???. 

6. The proportion of lung cancer among smokers attributable to their smoking is  ???. 
 
Choices 
0.0%  26.7%  31.8%  53.3%  79.0%  92.2% 
 
 
Label each of the following as either a Risk/Rate Difference, an Etiologic Fraction or an Etiologic Fraction 
Among the Exposed. 
 

7. Attributable risk percent among the exposed  . . ??? 

8. Population attributable risk  . . . . ??? 

9. Excess risk  . . . . . . ??? 

10. Influenced by prevalence of the exposure in the population  ??? 

11. Has same units as measure of occurrence  . . ??? 

12. Can be a negative number  . . . . ??? 
________ 
 

13. ??? can never be larger than ??? 
 
Choices (for Question 13) 
Etiologic Fraction  Etiologic Fraction Among the Exposed 
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6-3  Measures of Potential Impact (continued) 
 
 

Prevented Fraction 
 
The prevented fraction gives the proportion of potential new cases that were prevented by the presence of a protective 
exposure. Other names for the prevented fraction are the prevented fraction in the population, the population prevented 
risk, and population prevented risk percent.   
 

 
 

The prevented fraction may be expressed mathematically like this: 
 

I**I
**IFP̂  

 
The numerator I** denotes the number of new cases that would be expected in the absence of exposure minus the 

number of new cases that actually did occur. In other words, the numerator gives the number of cases prevented by the 
presence of a protective exposure. 

The I in the denominator denotes the total number of new cases actually occurring during follow-up of the cohort. 
The sum of I** and I gives the number of new cases that would be expected in the absence of exposure. That is, the 
denominator gives the potential number of new cases. 

To illustrate the calculation of a prevented fraction, we consider a study of an epidemic of measles in Texarkana, a 
city bisected by the state line between Texas and Arkansas. This city never had a measles vaccination campaign although a 
large proportion of children had been previously vaccinated.  Results from the study are shown below:  
 

 
 
A computational formula for the prevented fraction is: 
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0

0
IĈ

IĈIĈ
FP̂  

 

As in the etiologic fraction formula, 0IĈ  denotes the cumulative incidence in the unexposed and IĈ denotes the 

overall cumulative incidence.  This formula differs from the formula for etiologic fraction in both the numerator and 
denominator; it is necessary to quantify the exposure as protective rather than harmful. 

In our example, 0IĈ  is 105.9 per 1,000 persons and IĈ is 48.2 per 1000 persons.  Substituting these values into 

the formula, we find that the prevented fraction here is .55, or 55 percent. 
 

%5555.0
9.105

2.489.105
IĈ

IĈIĈ
FP̂

0

0  

 
 
Study Questions (Q6.13) 
 
Based on the Texarkana example: 
 

1. How many total ill children would be expected none of the subjects had been immunized? 
2. How many children actually became ill in the entire cohort? 
3. How many cases were prevented by the immunization program? 
4. Using the values I**=645.5 and I=539, calculate the prevented fraction? 

 
 

How do we interpret this result?  The prevented fraction  .55 tells us that out of a total of 1,184.5 illnesses that 
would be expected if all subjects were not immunized, 645.4 illnesses were prevented by immunization. That is, we ve 
observed 645.4 fewer illnesses than expected because of immunization. Thus, 55% of the total expected cases were prevented 
by immunization. 
 
Summary 
 

 The prevented fraction (PF) gives the proportion of potential new cases that were prevented by exposure. 
 Other names for the PF are population prevented risk and population prevented risk percent. 
 PF=I** / (I** + I) where I** denotes the total cases prevented and I denotes the total cases that occurred. 
 Using cumulative incidence data, 

R)R̂p(1
IĈ

IĈIĈ
FP̂

0

0  where IĈ , RR̂ , and p are as in the EF formula. 

 Using person-time data, 

R)D̂Ip*)(1(
DÎ

)DÎDÎ(
FP̂

0

0 where 0DÎ , DÎ , RD̂I ,  

01

1
LL

Lp* , and L1 and L0 are as in the corresponding EF formula. 
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The Relationship between PF and EF 

 
We have seen the formulae for the etiologic fraction (EF): 
 

 
11)RR̂(p̂

1)RR̂(p̂
IĈ

IĈIĈ
EF 0  

 
The corresponding formulae for the prevented fraction (PF) are shown here: 
 

 R)R̂(1p̂
IĈ

IĈIĈ
PF

0

0  

 
With a little algebra, we can write PF in terms of EF as follows: 
 

 
1-EF

EFPF  

 
We can also write PFe in terms of EFe as follows: 
 

 
1EFe

EFePFe  

 
 We illustrate the relationship between PF and EF using the results from the 5-year follow-up study of heart attack 
patients described in several activities in this Lesson.  The EF = .35 and EFe = .53 when measuring the potential impact of 
continuing to smoke.  We computed EF rather than PF because the continuing smokers had a higher estimated risk (.36) 
than did smokers who quit (.17).  Now suppose we turn our potential impact question around by asking what is the 
prevented fraction (PF) for quitting smoking?  To answer this, we must switch cumulative incidences so that CI0 denotes 
the estimated cumulative incidence in the continuing smokers group (.36) and CI1 denotes the estimated cumulative 
incidence in the group that quit smoking (.173).  The overall cumulative incidence CI remains at .263. 
 The PF in this case is given by (.36-.263)/.36 = .269 = 26.9%.  Thus 26.9% of expected deaths can be prevented by 
quitting smoking.  This is, in contrast to the etiologic fraction of .35, which says that 35% of all deaths are attributable to 
continuing smoking.  Note that the EF for quitting smoking is the negative value given by (.263-.36)/.263=-.368.  
Substituting -.368 for EF in the formula PF=EF/(EF-1), we obtain PF=-.368/(-.368-1) = .269, which is the prevented 
fraction for quitting smoking.  Thus, the etiologic fraction of 35% for continuing to smoke is not equal to the prevented 
fraction of 26.9% from quitting smoking.  We also will not obtain the value of .269 if we substitute the EF value of .35 into 
the formula relating PF to EF.  This formula only works if we switch the cumulative incidences from CI1 to CI0 and vice 
versa. 
 
 
 

Prevented Fraction Among the Exposed 
 
As with the etiologic fraction, there are two conceptual formations of the prevented fraction. One, which we have previously 
described, focuses on the potential impact of a protective exposure on the total number of cases that would be expected if 
exposure was absent. 
 

 
 

A second formulation of the prevented fraction focuses on the potential impact of a protective exposure on the 
expected number of exposed cases. This measure is called the prevented fraction among the exposed, or alternatively, the 
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prevented risk percent among the exposed. 
 

 
 

Although the denominator in the prevented fraction among the exposed (PFe) is different from the denominator in 

 

 
 

To illustrate the calculation of the prevented fraction among the exposed, consider once again the results of an 
epidemic of measles in Texarkana in 1970 and 1971. The previously computed prevented fraction, or equivalently, the 
population prevented risk percent these data is 55%. 
 

 
 

The prevented fraction among the exposed can be calculated for these same data using the formula shown above. 

0IĈ  and 1IĈ denote the estimated cumulative incidences for unexposed and exposed subjects, respectively. The numerator 
in this formula is the negative of the estimated risk difference.  The estimated risk difference is minus 101.7 per 1000 and the 
cumulative incidence for unexposed ( 0IĈ ) persons is 105.9 per 1000. Thus the prevented fraction among the exposed is 
101.7 divided by 105.9, which is .96, or 96%. 
 
 
Study Questions (Q6.14) 
 
Using the Texarkana data: 
 

1. How many ill children would be among those immunized if immunization was not effective? 
2. How many children actually became ill among those who were immunized? 
3. How many exposed cases were prevented by the immunization program? 
4. Using the values I** = 645.5 and I1 = 27, calculate the prevented fraction among the exposed. 

 
 

How do we interpret this result?  The prevented fraction of .96 among the exposed tells us that 96% of total expected 

the prevented fraction (PF), the numerators are the same in the formulae presented below.  
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cases among those immunized were prevented by immunization. Out of a total or 672.5 illnesses expected among those 
immunized, 96%, or 645.4 illnesses were prevented by immunization.  That is, there were 645.4 fewer illnesses children than 
expected because or the immunization. 
 

 
 
 
Study Questions (Q6.15) 
 

1. An alternative formula for the prevented fraction among exposed is PFe = (1 – RR), where RR is the risk ratio.  Use 
this formula to compute PFe for the immunization data. 

2. The population prevented risk percent (PF) computed for these data is 55% whereas the prevented risk percent 
among the exposed (PFe) is 96%.  How do you explain the difference in these two values? 

3. For cohort studies that use person-time information, state a formula for the prevented fraction among the exposed 
that involves incidence densities in the exposed and unexposed groups. 

4. As in the previous question, state an alternative formula for PFe that involves the incidence density ratio. 
5. For case-control studies, which cannot estimate risk or rate, can you suggest a formulae for PF and PFe? 

 
 
Summary 
 

 The prevented fraction among the exposed (PFe) focuses on the potential impact of the exposure on the exposed 
cases, rather than the total number of cases. 

 PFe is defined as I** / (I** + I1), where I** is the number of exposed cases prevented by exposure and I1 is the 
actual number of exposed cases. 

 For cohort studies that estimate risk: 

R)R̂(1
IĈ

IĈIĈ
FeP̂

0

10   

 For cohort studies that estimate rate: 

R)D̂I(1
DÎ

)DÎDÎ(
FeP̂

0

10   

 
 

Analyzing Data in Data Desk 
 
This activity shows how to compute measures of potential impact using the Data Desk program. 
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Quiz (Q6.16) 
 
Label each of the following statements as True or False. 
 

1. Use prevented fraction rather than etiologic fraction when risk difference < 0.   . . ??? 

2. Prevented fraction may be calculated simply as 1 -EF when risk difference is < 0.  . ??? 

3. Prevented fraction among the exposed may be calculated simply as 1 -RR.  . . ??? 

4. Prevented fraction is based on theoretical or nonexistent cases, i.e., cases that did not occur but would 
have occurred in the absence of the intervention or exposure.  . . . . ??? 

5. The denominator for both PF and PFe is risk (or rate) in the unexposed group.  . . ??? 

6. Between PF and PFe, only PF is influenced by prevalence of exposure.  . . . ??? 
 
Using the data in the table below, label each of the following as: 

Prevented Fraction, Prevented Fraction Among the Exposed, or Neither. 
 

7. Could be calculated as ([44/160] -[48/888]) / [44/160] = 80.3%.  . . . . ??? 

8. Could be calculated as ([44/160] -[92/1048]) / [44/160] = 68.1 %.. . . . . ??? 

9. If fewer children had been vaccinated, this measure would increase.  . . . ??? 

10. If fewer children had been vaccinated, this measure would decrease. . . . ??? 

11. The proportion of potential cases in the community prevented by vaccination.  . . ??? 
 
 Vaccinated Unvaccinated Total
Measles 48 44 92
No Measles 840 116 956
Total 888 160 1048 
CI in unvaccinated = 27.5%; CI in vaccinated = 5.4%; Overall CI = 8.8% 
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Nomenclature: 
 

Table setup for cohort and randomized controlled trials with risk data, case-control, and prevalence studies: 
 Exposed Not Exposed Total
Disease/cases a b m1
No Disease/controls c d m0
Total n1 n0 n 
 

Table setup for cohort and randomized controlled trial studies with person-time: 
 Exposed Not Exposed Total
Disease (New cases) I1 I0 I
No Disease - - -
Total disease-free person-time PT1 or L1 PT0 or L0 PT 
 

IĈ  Cumulative incidence (or “risk”) in the population (m1/n)

0IĈ  Cumulative incidence (or “risk”) in the nonexposed (b/n0)

1IĈ  Cumulative incidence (or “risk” in the exposed (a/n1)
CID Cumulative incidence difference or risk difference, (CI1 – CI0  = R1 – R0)
CIR Cumulative incidence ratio or risk ratio: (CI1 / CI0 = R1 / R0) 
EF Etiologic fraction (in the population) – see next page for formulae
EFe Etiologic fraction in the exposed – see next page for formulae
I Number of new cases that occur (I1 + I0)
I* Number of new cases attributable to the exposure
I** Number of cases that would be expected in the absence of exposure
I0 Number of new cases in nonexposed (see person-time table)
I1 Number of new cases in exposed (see person-time table)
DÎ  Incidence density (or “rate”) in the population (I/PT)

0DÎ  Incidence density (or “rate”) in the nonexposed (I0/PT0)

1DÎ  Incidence density (or “rate”) in the exposed (I1/PT1)
IDD Incidence density difference or rate difference, (ID1 – ID0)
IDR Incidence density ratio or rate ratio: (ID1 / ID0 )
L0 Disease-free person-time in nonexposed (same as PT0)
L1 Disease-free person-time in exposed (same as PT1)
m0 Number without disease or number of controls (c + d) 
m1 Number with disease or number of cases (a + b) 
n Size of population under study (n1 + n0 or m1 + m0)
n0 Number of nonexposed (b + d)
n1 Number of exposed (a + c) 
NNT Number Needed to Treat, (1/(CI1-CI0)) 
OR Odds ratio: simplified cross-product formula: (ad)/(bc)
P Overall population prevalence (m1/n) 
P0 Prevalence in unexposed (b/n0) 
P1 Prevalence in exposed (a/n1) 
PD Prevalence difference: (P1 – P0)
PF Prevented fraction (in the population) – see next page for formulae
PFe Prevented fraction in the exposed – see next page for formulae
PR Prevalence ratio: (P1 / P0) 
PT Disease-free person-time in the population (PT1 + PT0)
PT0 Disease-free person-time in nonexposed (same as L0)
PT1 Disease-free person-time in exposed (same as L1)
R Overall risk (or “cumulative incidence”) in the population (m1 / n) 
R0 Risk (or “cumulative incidence”) in unexposed (b/n0)
R1 Risk (or “cumulative incidence”) in exposed (a/n1)
RD Risk difference (or “cumulative incidence difference”), (R1 – R0)
RR Risk ratio (or “cumulative incidence ratio”), (R1 / R0)
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Formulae for difference measures of effect by risk data, rate data, and prevalence data. 
Risk Data Rate Data Prevalence Data

01 IĈIĈDÎC  01 DÎDÎDD̂I  01 P̂P̂DP̂  
 
Formulae for comparing PF with EF and PFe with EFe and formula for NNT: 

1-EF
EFPF              

1EFe
EFePFe  

01 IĈIĈ
1NNT  

 
Formulae for etiologic fraction (in the population), etiologic fraction in the exposed, prevented fraction (in the 
population), and prevented fraction in the exposed for risk data, rate data, and case-control studies. 
 Risk Data Rate Data Case-Control*
EF 

I
IFÊ
*

 

IĈ
IĈ-IĈ

FÊ 0  

11)-RR̂(p)(
1)-RR̂(p)(FÊ  

I
IFÊ
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DÎ
DÎ-DÎ

FÊ 0  

11)-RD̂(p*)(I
1)-RD̂(p*)(IFÊ  

 
 
 
 
 
 

11)-RÔ)((p'
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EFe 

1

*
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IFÊ  

1
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e IĈ

IĈ-IĈ
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e IĈ
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1

*
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IFÊ  

1
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DÎ
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DD̂IFeÊ  
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RÔ
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PF 
I**I

**IFP̂  

0

0
IĈ

IĈIĈ
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I**I
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0
DÎ

DÎDÎ
FP̂  
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R)Ô(1p'FP̂  
PFe 

1
e I**I

**IFP̂  

0

10
IĈ

IĈIĈ
FeP̂  

RR̂1FeP̂  

1
e I**I

**IFP̂  

0

10
DÎ

DÎDÎ
FeP̂  

RD̂I1FeP̂  

 
 
 
 
 
 

RÔ1FeP̂  
where 

n
np 1  

PT
PTp* 1  

0m
cp'  

*In case-control studies, the EF, EFe, PF, PFe based on the odds ratio will be a good estimates when the OR is a good 
estimate of the RR (e.g., rare disease assumption) 
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Homework 
 
ACE-1.  Measure of Potential Impact: Quitting Smoking II 
 
The following data come from a study of self-help approaches to quitting smoking. (These data are the same as described in 
question 4 in the homework exercises for Lesson 5.) Smokers wanting to quit were randomized into one of four groups (C = 
control, M = quitting manual, MS = manual + social support brochure, MST = manual + social support brochure + telephone 
counseling).  Smoking status was measured by mailed survey at 8, 16, and 24 months following randomization.  These are 
the 16-month results: 
   
 

  
Randomization Group    

Status 
  

C 
  

M MS MST Total  
Quit 

  
84 

  
71 67 109 331  

Smoking 
  

381 
  

396 404 365 1546  
Total 

  
465 

  
467 471 474 1877 

 
Compute an appropriate measure of impact, comparing the MST and MS groups.  Interpret the result. 
 
ACE-2.  Potential Impact: Radiotherapy Among Children II 
 
This is a continuation of question 5 in the homework exercises for Lesson 5.) In a study of adverse effects of radiotherapy 
among children in Israel, 10,834 irradiated children were identified from original treatment records and matched to 10,834 
non-irradiated comparison subjects selected from the general population.  Subjects were followed for a mean of 26 years.  
Person-years of observation were: irradiated subjects, 279,901 person-years; comparison subjects, 280,561 person-years.  
During the follow-up period there were 49 deaths from cancer in irradiated subjects, and 44 in the non-irradiated population 
comparison subjects. 
 
a. Assuming causality, how many cancer deaths per 100,000 irradiated subjects per year were due to the effect of 

radiotherapy? 
b. Again assuming causality, what proportion of cancer deaths in irradiated subjects can be attributed to the effect of 

radiotherapy? 
 
ACE-3.  Etiologic Fraction and Etiologic Fraction in the Exposed: CVD and Lung Cancer 
 
The following table shows cardiovascular (CVD) mortality and lung cancer (LC) mortality among smoking and non-smoking 
physicians obtained from a prospective study involving physicians listed in the British Medical Register and living in 
England and Wales as of October 1951. Information about cause of death was obtained from the death certificate and 
mortality records over the subsequent 10 years. 
  
a. Complete the following table by calculating the rate ratio, the etiologic fraction (EF), and the etiologic fraction in the 

exposed (EFe) for each smoking category. Round all calculations to two decimal places.  
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CVD 

Non-
smokers 

All Heavy Smokers 
( 25 cig/day) 

General 
Population 

Mortality rater per 1000 py 7.32 9.51 9.53 9.40 

Rate ratio  ___________ ___________  

Etiologic fraction (EF)  ___________ ___________  

Etiologic fraction in the exposed (EFe)  ___________ ___________  

     
Lung Cancer     
Mortality rater per 1000 py 0.07 1.30 2.27 0.93 

Rate ratio  ___________ ___________  

Etiologic fraction (EF)  ___________ ___________  

Etiologic fraction in the exposed (EFe)  ___________ ___________  

 
b. If you only consider “all smokers” (versus non-smokers), for which of the two diseases is smoking of greater etiologic 

importance?  Why? 
c. If you only consider “all smokers” (versus non-smokers), for which of the two diseases is smoking of greater public 

health importance? Why? 
d. How would you answer the previous two parts (i.e., b and c) if you consider “heavy smokers” versus “non-smokers”? 
 
ACE-4.  Etiologic Fraction: Asbestos Exposure vs. Mesothelioma 
 
The table below represents the results from a study investigating whether there is an association between exposure to asbestos 
and the rare cancer mesothelioma: 
 
  Exposure to Asbestos 
  Yes No 
Mesothelioma Yes 20 80 
 No 3 93 
 
a. Why does it make sense to think that the study design used was a case-control study instead of a cohort study? 
b. Assuming that the measure of effect of interest is the odds ratio, calculate measures of the population etiologic fraction 

and the etiologic fraction among the exposed using the following formulae: 
 
                         EF = p'(OR - 1) / [p'(OR - 1) +1]   and  EFe = (OR - 1) / OR, where OR is the odds ratio and p' is the 
proportion of all controls that are exposed. 
 
c. How do you interpret these measures? 

 
ACE-5.  Potential Impact: Cholera 

 
In 1963, the Cholera Research Laboratory in Bangladesh assessed the nutritional status of a probability sample of children 
ages 12-23 months. These children were followed for two years, and all deaths were identified. Results are presented in the 
table below: 
 
Number of Deaths During Two Years of Follow-up of Children Ages 12-23 Months at Entry to the Study: Bangladesh, 1963-
5. 
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 Nutritional Status 
 Normal Moderate 

Malnutrition 
Severe 

Malnutrition 
Deaths 20 44 47 
Survivors 526 1002 380 
  Total 546 1046 427 
 
a. Calculate the risk for the group with moderate malnutrition that was due to being moderately malnourished (i.e., the risk 

difference for moderate malnutrition compared to normal nutrition). 
b. What is the etiologic fraction for moderately malnourished children (compared to normal children)? 
c. Calculate the risk for the group with severe malnutrition that was due to being severely malnourished (i.e., the risk 

difference for severe malnutrition compared to normal nutrition). 
d. What is the etiologic fraction for severely malnourished children (compared to normal children)? 
e. In a single sentence and using the figures you have calculated for severely malnourished children as an example, explain 

what is meant by risk difference. 
f. In a single sentence and using the figures you have calculated for severely malnourished children as an example, explain 

what is meant by etiologic fraction. 
 
ACE-6.  Potential Impact: Neural Tube Defects 
 
In 1988, Mulinare et al reported their findings concerning the association of neural tube defects (NTD’s) and 
periconceptional use of multivitamins (JAMA 260:3141-3145). They selected several groups of infants. One group consisted 
of “all live-born or stillborn infants with the diagnosis of anencephaly or spina bifida during the years 1968 through 1980 
who were registered in the Metropolitan Atlanta Congenital Defects Program (MACDP). The  second group consisted of 
“live-born” babies without birth defects who were randomly chosen from all live births that occurred in the MACDP 
surveillance area. “We obtained data on multivitamin use and defined multivitamin use as ‘multivitamin or prenatal 
multivitamin consumption during every month of the entire six month period… from three months before conception through 
the third month of pregnancy.”  The following table presents partial results from that report (with a few simplifications for 
the purpose of this exercise. 
 
Distribution of Periconceptional Vitamin Use Among Mothers Giving Birth to Infants With and Without Neural Tube 
Defects. 
 
 Multivitamin Use  
 Periconceptional use No vitamin use Total 
Cases 24 159 183 
Controls 411 1052 1463 
 
a. Using the above data, can you calculate the prevalence of neural tube defects in the MACDP area? If so, do so, if not 

state why not. 
b. Using the above data, can you calculate the risk of neural tube defects in the MACDP area? If so, do so, if not state why 

not. 
c. Using the above data, can you calculate the etiologic fraction for NTDs due to failure of the mother to make 

periconceptual use of multivitamins? If so, do so, if not state why not. 
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Answers to Study Questions and Quizzes 
 
Q6.1 
 

1. 75 * .17 = 12.75 deaths would have occurred if the 
75 patients had quit smoking. 

2. 27 – 12.75 = 14.25 excess deaths among those who 
continued to smoke 

3. p(excess deaths among continuing smokers) = 
14.25 / 75 = .19 = risk difference 

4. 1,000 x 0.19 = 190 excess deaths could be avoided. 
5. The largest possible risk difference is either plus or 

minus one.  Nevertheless, this doesn’t mean that 
0.19 is small relative to a clinically meaningful 
reference value, which would be desirable. 

6. One choice for a reference value is the risk for the 
exposed, i.e., 0.36.  The ratio 0.19/0.36 = 0.53 
indicates that 53% of the risk for the group of 
continuing smokers would be reduced if this group 
had quit smoking. 

 
Q6.2 
 

1. 100000 x 14 / 68239 = 20.5 is the expected number 
of CHD-related deaths per 100,000 person years if 
persons with borderline-high cholesterol lowered to 
normal values. Thus 71.1 – 20.5 = 50.6 CHD-
related deaths per 100,000 person years could be 
avoided. 

2. 18.5 / 36,581 = 50.6 (71.1-20.5) excess CHD-
related deaths per 100,000 person years.  This value 
of 50.6 per 100,000 is the rate difference or 
attributable rate. 

3. The largest possible rate difference is infinite.  
Nevertheless, this does not mean that 50.6 is small 
relative to a clinically meaningful reference value. 

4. One choice for a reference is 71.1, the rate for the 
exposed.  The ratio 50.6 / 71.1 = .72 indicates that 
the rate in borderline-high cholesterol group would 
be reduces by 72% if this group could lower their 
cholesterol to normal levels. 

 
Q6.3 
 

1. The risk difference is 2.6% – 1.4% = 1.2% 
2. 1/0.012 = 83 
3. Since we computed the number need to treat using 

10-year cumulative incidences, the answer to the 
previous question indicates that 83 patients must be 
treated for 10 years to prevent one stroke. 

 
Q6.4 
 

1. No – Absolute risk describes the risk in a particular 
group rather than the difference in risk from two 
groups. 

2. Yes 

3. Yes 
4. No – Risk ratio is the ratio of (rather than the 

difference between) risk among two groups. 
5. No – for questions 5-11: Any location that does not 

include Queens itself could be used for a baseline 
or expected rate.  So, Queens and New York City 
would not be good choices since they both include 
Queens. 

6. Yes 
7. Yes 
8. Yes 
9. Yes 
10. No 
11. Yes 
12. 15.7 per million – Since the individual rates are in 

units of per million, the difference in the rates will 
have the same unit of measurement. 

13. Risk difference – In an outbreak such as this, the 
investigators are comparing two risks.  The 
appropriate measure of impact here is the risk 
difference. 

14. Prevalence difference – In a prevalence study, the 
appropriate measure of disease frequency is 
prevalence.  A corresponding measure of impact is 
the prevalence difference. 

15. Rate difference – In a follow-up study we can use 
person-years of observation to calculate a rate.  The 
appropriate measure of potential impact here is the 
rate difference. 

 
Q6.5 
 

1. Yes, because both chewing tobacco and alcohol use 
have the same value (5) for the risk ratio. 

2. No.  Chewing tobacco has little public health effect, 
whereas alcohol consumption has a much stronger 
public health effect. 

3. Out of 1000 heavy drinkers (i.e., high alcohol 
consumption), 40 persons would develop the 
disease because of their drinking.  In contract, only 
4 tobacco chewers out of 1000 tobacco chewers 
would develop the disease from chewing tobacco. 

 
Q6.6 
 

1. False – The rate difference between Queens and the 
rest of NYC is 16.4 per million – 2.4 per million = 
14.0 per million.  The excess rate (i.e., rate 
difference) in Queens is therefore 14.0 cases per 
million population. 

2. True – see above for answer 
3. False – 16.4 cases per million in not the attributable 

rate (i.e., rate difference), but the absolute rake of 
West Nile encephalitis in Queens.  The rate 
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difference is 16.4 – 2.4 = 14.0 per million 
population. 

4. True – The most common measure of effect for 
comparing Queens to the rest of NYC is 6.8 and 
this is the rate ratio calculated as 16.4/2.4. 

5. Risk difference – a measure of public health 
burden. 

6. Risk ratio – a measure of disease etiology.  
7. Risk difference – the null value for the risk 

difference is 0.0; the null value for the risk ratio is 
1.0. 

8. Risk difference – The risk difference can be 
negative if the baseline risk is higher than the risk 
in the group of interest.  The risk ratio can never be 
negative because it is a ratio of two positive 
numbers. 

9. Both – it is possible to have a risk difference and a 
risk ratio in the range of 0.0 to 1.0.  Note that the 
CD states the correct answer is Neither with the 
rationale that neither the risk ratio or risk difference 
is restricted to values between 0.0 to 1.0. 

10. Both – Since risk can be calculated from most 
follow-up studies, then both a risk ratio and risk 
difference can be calculated. 

11. Neither – Since risk cannot be calculated from case-
control studies, neither a risk difference nor a risk 
ratio can be calculated. 

12. Risk ratio – The risk ratio has no units since it is a 
ratio of risks that has the same units. 

13. Risk ratio – A risk ratio close to zero would 
indicate a strong protective effect.  A risk 
difference close to zero would indicate no effect 

14. Risk difference 
15. Lung cancer – The rate ratio is much higher for 

lung cancer than for CHD 
16. CHD – elimination of smoking would reduce the 

number of CHD by 190.4 cases per 100,000 per 
year. 

 
Q6.7 
 

1. 156 x .173 = 27, where .173 is the risk for the 
unexposed subjects. 

2. 41 – 27 = 14 = I* 
3. I*/I = 14/41 = .35 = EF 

 
Q6.8 
 

1. (2.1 – 1) / 2.1 = .52 
2. (RR – 1) / RR = (10 – 1) / 10 = .90 
3. The maximum possible value for the EF approaches 

1 as RR approaches infinity. 
4. Yes, even if RR is very large, the EF can be small, 

even close to zero, if the proportion exposed in the 
population is very small. 

 

Q6.9 
 

1. The incorrect statement is choice D. This is 
incorrect because it considers only deaths among 
exposed persons, that is, those with borderline-high 
cholesterol. A corrected version of this statement, 
which would be essentially equivalent to choice A, 
is 46% of all deaths are due to persons having 
borderline-high cholesterol. 

2. The correct answer is choice A. The calculation of 
this value is shown here. 

 
Q6.10 
 

1. 75 x .19 = 14.25 = I*, where 75 is the number of 
exposed subjects and .19 is the risk difference. 

2. In this example, 14 of the 27 deaths among 
continuing smokers could have been avoided. 

3. I*/I1 = 14.25 / 27 = .53 = EFe. 
4. EFe = (2.1 –1) / 2.1 = .52.  This is the same as the 

.53 previously obtained, other than round-off error. 
5. The EF considers the potential impact of exposure 

on ‘all cases’ in the cohort whereas the EFe focuses 
on the potential impact of exposure on only 
‘exposed cases’ in the cohort.  Both measures are 
meaningful, but have a different focus. 

6. EFe = (ID1 – ID0) / ID1, where ID1 and ID0 are the 
incidence densities (i.e., rates) for exposed and 
unexposed persons in the cohort. 

7. EFe = (IDR – 1) / IDR 
8. EF = p’(OR - 1)/[p’(OR – 1) + 1] and EFe = (OR – 

1) / OR, where OR is the odds ratio and p’ is the 
proportional of all controls that are exposed. 

 
Q6.11 
 

1. The etiologic fraction is (1.4-1.2) / 1.4 = 14% 
2. p=0.108 

RR=(3/103)/(10/854)=2.5 

%14
1)25.2(108.0

)15.2(108.0EF  

3. EFe=(2.9-1.2)/2.9=60% 
 
Q6.12 
 

1. 31.8% - prevalence of smoking = 70 million/220 
million = 31.8% 

2. 79.0% - The EF for lung cancer is (31.8-
6.7)/21.8=79.0%. 

3. 26.7% -  
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4. 92.2% 
5. 53.3% 
6. 92.2% 
7. Etiologic fraction among the exposed 
8. Etiologic fraction 
9. Risk/rate difference 
10. Etiologic fraction 
11. Risk/rate difference 
12. Risk/rate difference  
13. Etiologic Fraction, Etiologic Fraction Among the 

Exposed 
 
Q6.13 
 

1. Multiply the total number of study subjects, 11,185, 
by the cumulative incidence for the unexposed 
(105.9 per 1,000 persons) to get 1184.5 potential 
cases. 

2. 539, which can be seen in the table or computed by 
multiplying 11,185 by the overall cumulative 
incidence of 48.2 per 1,000 persons.  This number 
is I in the initial formula for PF. 

3. 1184.5 – 539 = 645.5 = I** total cases were 
prevented. 

4. PF = I** / (I** + I) = 645.5 / 1,184.5 = .55 or 55%. 
 
Q6.14 
 

1. Multiply the total number of immunized children, 
6,350, by the cumulative incidence for the 
unexposed (105.9 per 1,000 persons) to get 672.5 
expected number of ill children. 

2. 27, which can be seen in the table or computed by 
multiplying 6,350 by the cumulative incidence for 
immunized children of 4.2 per 1,000 persons.  This 
number is I1 in the initial formula for PFe. 

3. 672.5 – 27 = 645.5 = I** total cases were 
prevented. 

4. PFe = I** / (I** + I1) = 645.5 / 672.5 = .96, or in 
percents, 96%. 

 
Q6.15 
 

1. EFe = (1 – 0.4) = .96.  This is the same as we 
obtained using the formula involving CI0 and CI. 

2. The PF considers the potential impact of exposure 
on ‘all cases’ in the cohort whereas the PFe focuses 
on the potential impact of exposure on only 

‘exposed cases’ in the cohort.  Both measures are 
meaningful, but have a different focus. 

3. PFe = (ID0 – ID1) / ID1, where ID0 and ID1 are the 
incidence densities (i.e., rates) for unexposed and 
exposed persons, respectively, in the cohort. 

4. PFe = (1 – IDR) 
5. PF = p’(1 – OR) and PFe = (1 – OR), where OR is 

the odds ratio an d p’ is the proportion of all 
controls that are exposed. 

 
Q6.16 
 

1. True – when the risk difference is <0, the exposure 
appears to be protective, and the prevented fraction 
is preferred. 

2. False – 1-EF is not the same as the prevented 
fraction.  The difference in the two measures occurs 
both in the numerator and denominator. 

3. True – An alternative formula for the PF among the 
exposed in a cohort or clinical trial is (1-RR). 

4. True – Prevented fraction is the proportion of cases 
that did not occur that would have if the exposure 
had not been present. 

5. True – The denominator for both PF and PFe is CI0 
for risk data or ID0 for rate data. 

6. True – An alternative formula for PF is PF=p(1-
RR) where p is the prevalence of exposure. 

7. Prevented fraction among the exposed –  

0

10
IĈ

IĈIĈ
FeP̂  

8. Prevented fraction - 
0

0
IĈ

IĈIĈ
FP̂  

9. Neither - An alternative formula for PF is PF=p(1-
RR) where p is the prevalence of exposure.  If 
fewer children had been vaccinated, the PF would 
decrease. 

10. Prevented fraction  - An alternative formula for PF 
is PF=p(1-RR) where p is the prevalence of 
exposure.  If fewer children had been vaccinated, 
the PF would decrease. 

11. Prevented fraction – The PF is the proportion of 
potential cases in the community prevented by 
vaccination. 
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VALIDITY 

 

7-1 Validity 
 
The primary objective of most epidemiologic research is to obtain a valid estimate of an effect measure of interest.  In this 
activity, we illustrate three general types of validity problems, distinguish validity from precision, introduce the term bias, 
and discuss how to adjust for bias. 
 
 

Examples of Validity Problems 
 

Validity in epidemiologic studies concerns methodologic flaws that might distort the conclusions made about an exposure-
disease relationship.  Several examples of validity issues are briefly described. 
 

The validity of an epidemiologic study concerns whether or not there are imperfections in the study design, the 
methods of data collection, or the methods of data analysis that might distort the conclusions made about an exposure-disease 
relationship. If there are no such imperfections, we say that the study is valid. If there are imperfections, then the extent of 
the distortion of the results from the correct conclusions is called bias. Validity of a study is what we strive for; bias is what 
prevents us from obtaining valid results 

In 1946, Berkson demonstrated that case-control studies carried out exclusively in hospital settings are subject to a 
type of selection  bias, aptly called Berkson s bias. Berkson’s bias arises because patients with two disease conditions or 
high-risk behaviors are more likely to be hospitalized than those with a single condition. Such patients will tend to be over-
represented in the study population when compared to the community population. In particular, respiratory and bone diseases 
have been shown to be associated in hospitalized patients but not in the general population. Moreover, since cigarette 
smoking is strongly associated with respiratory disease, we would expect a hospital study of the relationship between 
cigarette smoking and bone disease to demonstrate such a relationship even if none existed in the general population. 

In the 1980’s and 1990’s, US Air Force researchers assessed the health effects among Vietnam War veterans 
associated with exposure to the herbicide Agent Orange. Agent Orange contained a highly toxic trace contaminant known as 
TCDD. Initially, exposure to TCDD was classified according to job descriptions of the veterans selected for study. It was 
later determined that this produced substantial misclassification of TCDD. The validity problem here is called information 
bias. Bias could be avoided using laboratory techniques that were developed to measure TCDD from blood serum. The use 
of such biologic markers in epidemiologic research is rapidly increasing as a way to reduce misclassification and, more 
generally, to improve accuracy of study measurements. 

As a final example, we return to the Sydney Beach Users Study described previously. A validity issue in this study 
concerned whether all relevant variables, other than swimming status and pollution level, were taken into account. Such 
variables included age, sex, duration of swimming, and additional days of swimming. The primary reason for considering 
these additional variables is to ensure that any observed effect of swimming on illness outcome could not be explained away 
by these other variables. A distortion in the results caused by failure to take into account such additional variables is called 
confounding bias. 
 
 
 
 
 

’”
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Summary 
 

 Validity: The general issue of whether or not there are imperfections in the study design, the methods of data 
collection, or methods of data analysis that might distort the conclusions made about an exposure-disease 
relationship. 

 Bias: A measure of the extent of distortion of conclusions about an exposure-disease relationship. 
 Validity issues are illustrated by: 

 Hospital-based case-control studies (Berkson’s selection bias). 
 Job misclassification to assess TCDD exposure (information bias). 
 Control of relevant variables in the Sydney Beach Users Study (confounding). 

 
 

Validity Versus Precision 
 
Validity and precision concern two different sources of inaccuracy that can occur when estimating an exposure-disease 
relationship: systematic error (a validity problem) and random error (a precision problem).  Systematic and random error 
can be distinguished in terms of shots at a target.  

Validity and precision are influenced by two different types of error that can occur when estimating an exposure-
disease relationship.  Systematic error affects the validity, and random error, the precision.   

 

 
 

These two types of error can be distinguished by viewing an epidemiologic study as a shot at a target. The blue dot 
in the middle of the target symbolizes the true measure of effect being estimated in a population of interest. (Note: to be 
consistent with the CD, the use of the term “blue dot” in this text refers to the center of the target or the bull’s eye”.)  Each 
shot represents an estimate of the true effect obtained from one of possibly many studies in each of three populations. 
 

 
 

For Target A, the shots are centered around the blue dot, although none of the shots actually hit it and all shots hit a 
different part of the target. For Target B, the shots are all far off center, but have about the same amount of scatter as the 
shots at target A. For target C, the shots are centered around the blue dot, but unlike Target A, are more spread out from one 
another. 

Systematic error is illustrated by comparing Target A with Target B. The shots at Target A are aimed at the blue dot, 
whereas the shots at Target B are not aimed at the blue dot, but rather centered around the red dot. (Note: to be consistent 
with the CD, the term “red dot” will refer to the dot above and to the left of the bull’s eye in Population B). The distance 
between the blue dot and the red dot measures the systematic error associated with Target B. In contrast, there is no 

“
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systematic error associated with Target A. 
 

 
 

Systematic error occurs when there is a difference between the true effect measure and what is actually being 
estimated. We say that the study is valid if there is no systematic error. Thus, validity is concerned with whether or not a 
study is aiming at the correct effect measure, as represented by the bull’s eye. Unfortunately in epidemiologic and other 
research, the bull’s eye is usually not known. Consequently, the amount of bias is difficult to determine and the evaluation of 
bias is to some extent always subjective. 

All the targets illustrate random error, which occurs when there is a difference between any estimate computed from 
the study data and the effect measure actually being estimated. Targets A and B exhibit the same amount of random error 
because there is essentially the same amount of scatter of shots around the blue dot of Target A as there is around the red dot 
of Target B. In contrast Target C, in which shots are much more spread out, exhibits more random error than targets A or B. 

Thus, the more spread out the shots, the more random error, and the less precision from any one shot. Precision 
therefore concerns how much individual variation there is from shot to shot, given the actual spot being aimed at. In other 
words, precision reflects sampling variability. 

Problems of precision generally concern statistical inference about the parameters of the population actually being 
aimed at. In contrast, problems of validity concern methodologic imperfections of the study design or the analysis that may 
influence whether or not the correct population parameter, as represented by the blue dot in each target, is being aimed at by 
the study 
 
 
Study Questions (Q7.1) 
 
Consider a cross-sectional study to assess the relationship between calcium intake (high versus low) in one’s diet and the 
prevalence of arthritis of the hip in women residents of the city of Atlanta between the ages of 45 and 69.  A sample of 
female hospital patients is selected from hospital records in 1989, and the presence or absence of arthritis as well as a 
measure of average calcium intake in the diet prior to enter the hospital are determined on each patient. 
 

1. What is the target population in this study? 
2. What does the center of the target (i.e., the bulls-eye) represent in epidemiologic terms? 
3. What do we mean by random error associated with this study? 
4. What do we mean by systematic error associated with this study? 

 
 
Summary 
 

 Validity concerns systematic error whereas precision concerns random error. 
 Systematic and random error can be distinguished in terms of shots at a target. 
 Systematic error: a difference between what an estimator is actually estimating and the effect measure of interest. 
 Random error: a difference between any estimate computed from the study data and the effect measure actually 

being estimated. 
 Validity does not consider statistic inference, but rather methodologic imperfections of the study design or analysis. 
 Precision concerns statistical inferences about the parameter of the population actually being aimed at. 
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Use Data Desk to Explore Error 

 
This activity explores the concepts of systematic and random error using Data Desk’s dynamic graphics. 
 
 

A Hierarchy of Populations 
 
To further clarify the difference between validity and precision, we now describe a hierarchy of populations that are 
considered in any epidemiologic study. 

We typically identify different populations when we think about the validity of an epidemiologic study. These 
populations may be contained within each other or they may simply overlap.   
 

 
 

We refer to the collection of individuals from which the study data have been obtained as the sample. We use results 
from the sample to make inferences about larger populations. But what populations can we make these inferences about? 
What population does the sample represent? 

The study population is the collection of individuals that our sample actually represents and is typically those 
individuals we can feasibly study. We may be limited to sampling from hospitals or to sampling at particular places and 
times. The study population is defined by what is practical, which may not be what we ideally would like. 

The source population is the collection of individuals of restricted interest; say in a specific city, community, or 
occupation, who are at risk for being a case. Clearly all cases must come from the source population (if they were not at risk, 
they would not have become cases). The source population also is likely to include individuals who, although at risk, may not 
become cases. The source population has been called the study base or the target population. 

We can make statistical inferences from the sample to the study population, but we would like to be able to make 
inferences from the sample to the source population. Unfortunately, the study population, the population actually 
represented by our sample, may not be representative of the source population. 
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Study Questions (Q7.2) 
 
Consider an epi study carried out in New York City (NYC) to assess whether obesity is associated with hypertension in 
young adults.  The investigators decided that it was not feasible to consider taking a sample from among all young adults in 
the city.  It was decided that fitness centers would provide a large source of young NYC adults.  A sample of subjects is taken 
from several randomly selected fitness centers throughout the city and their blood pressure is measured to determine 
hypertension status. 
 

1. What is the source population for this study? 
2. What is the study population in this study? 
3. Does the sample represent the study population? 
4. Does the study population represent the source population? 

 
 

In a simple case every member of the study population is also in the source population -that is, we are only studying 
individuals who are in fact at risk. If the study population is representative of the source population and the sample is 
representative of the study population then there is no bias in inferring from the sample to the source population. 
 

 
 
 
Study Questions (Q7.2) continued 
 
Recall the epi study carried out in New York City to assess whether obesity is associated with hypertension in young adults.  
Suppose the investigators decided that it was important to obtain a sample from all young adults within NYC.  They used the 
2000 census information to get a listing of all young NYC adults.  A sample of subjects is taken from several randomly 
selected city blocks throughout the city and their blood pressure is measures to determine hypertension status. 
 

5. What is the source population for this study? 
6. What is the study population in this study? 
7. Does the sample represent the study population? 
8. Does the study population represent the source population? 

 
 

Sometimes, however, even a sample from a study population that represents the source population can become 
biased. For example, in a typical cohort study, even though every member of the initial study population is also in the source 
population the initial sample may change in the course of the study. The initial sample may suffer from exclusions, 
withdrawals, non-response, or loss-to-follow-up. The final study population is then only those individuals who are willing 
and able to stay in such a study, a population that may not represent the initial study population or the source population as 
well as we might wish. 
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Study Questions (Q7.2) continued 
 

9. True or False.  In a cohort study, the study population includes persons eligible to be selected but who would have 
been lost to follow-up if actually followed. 

10. True or False.  In a cohort study, the source population includes persons eligible to be selected but who would have 
been lost to follow-up if actually followed. 

11. True or False.  In a case-control study, the study population may contain persons eligible to be controls who were 
not at risk for being a case. 

12. True or False.  In a cross-sectional study, the study population may contain persons who developed the health 
outcome but had died prior to the time at which the sample was selected. 

 
 

In general, it is possible for members of the study population not even to be at risk and we may not be able to tell. 
We may, for example, draw our sample from a study population of persons who attend a clinic for sexually transmitted 
diseases. These people may or may not have an STD and may or may not be exposing themselves to STD’s. For example, 
some of these subjects may have partners who are not infected, and thus may not be at risk themselves. If they are not at risk, 
they are not part of the source population, but we may not know that. 

It can also happen that the study population fails to include individuals who are at risk (and thus part of the source 
population) either because we do not know they are at risk or because it is not practical to reach them. For example when 
AIDS was poorly understood, a study of gay men at risk for AIDS may have failed to include IV drug users who were also at 
risk. 

Finally, we would often like to generalize our conclusions to a different external population. An external 
population is a population that differs from the study population but to which we nevertheless would like to generalize the 
results, for example, a different city, community, or occupation. In a public health setting, we are always concerned with the 
health of the general public even though we must study smaller subpopulations for practical reasons. For statistical 
conclusions that are based on a sample to generalize to an external population, the study population must itself be 
representative of the external population, but that is often difficult to achieve. 
 
 
Study Questions (Q7.2) continued 
 
Consider an epi study carried out in New York City to assess whether obesity is associated with hypertension in young 
adults.  Suppose it was of interest to determine whether the study results carry over to the population of the entire state of 
New York. 
 

13. Considering the variety of populations described, what type of population is being considered?  Explain briefly. 
 
 
Summary 
 

 There are a variety of populations to consider in any epi study. 
 The sample is the collection of individuals from which the study data have been obtained. 
 The study population is the collection of individuals that our sample actually represents and is typically those 

individuals we can feasibly study. 
 The source population is the group of restricted interest about which the investigator wishes to assess an exposure-

disease relationship. 
 The external population is a group to which the study has not been restricted but to which the investigator still 

wishes to generalize the study results. 
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Internal Versus External Validity 
 
Target shooting provides an example that illustrates the difference between internal and external validity.  Internal validity 
considers whether or not we are aiming at the center of the target. If, we are aiming at this red dot (to the left and above the 
bulls-eye) rather than at the bulls-eye, then our study is not internally valid.   
 

  
 

Internal validity is about drawing conclusions about the source population based on information from the study 
population. Such inferences do not extend beyond the source population of restricted interest. 

External validity concerns a different target;  in particular, one at which we are not intending to shoot; whose bulls-
eye we can’t really see. We might imagine this external target being screened from our vision. 
 

 
 

Suppose that this screened target is in line with the target at which we are shooting. Then, by aiming at the bulls-eye 
of the target we can see, we are also aiming at the bulls-eye of the external target. In this case, the results from our study 
population can be generalized to this external population, and thus, we have external validity.  If the external target is not 
lined up with our target, our study does not have external validity, and the study results should not extend to this external 
population. 

External validity is about applying our conclusions to an external population beyond the study’s restricted interest. 
Such inferences require judgments about other findings and their connection to the study’s findings, conceptualization of the 
disease process and related biological processes, and comparative features of the source population and the external 
population. External validity is therefore more subjective and less quantifiable than internal validity. 
 
 
Study Questions (Q7.3) 
 
Consider an epi study carried out in New York City to assess whether obesity is associated with hypertension in young 
adults.  Subjects are sampled from several fitness centers throughout the city and their blood pressure is measured to 
determine hypertension status. 
 

1. What is required for this study to be internally valid? 
 
Suppose it was of interest to determine whether the study results carry over to the entire State of New York. 



182  Lesson 7.  Validity 

 
 

 
2. Does this concern internal validity or external validity?  Explain briefly. 

 
Results from the Lipid Research Clinics Primary Prevention Trial published in 1984 (JAMA, vol. 251) demonstrated a 
significant reduction in cardiovascular mortality for white men ages 35 to 59 who were placed on a cholesterol-reducing diet 
and medication. 
 

3. What question might be asked about the results of this study that concerns external validity? 
4. What question(s) might be asked about the study results that concern(s) internal validity? 

 
 
Summary 
 

 Internal validity concerns whether or not we are aiming at the center of the target we know we are shooting at. 
 External validity concerns a target that we are not intending to shoot at, whose bulls-eye we can’t really see. 
 Internal validity concerns the drawing of conclusions about the target population based on information from the 

study population. 
 External validity concerns drawing conclusions to an external population beyond the study’s restricted interest. 

 
 
Quiz (Q7.4) 
 
Label each of the following statements as True or False; for questions 8-11, an 
additional response option is It depends. 
 

1. Random error occurs whenever there is any (non-zero) difference between the value of the odds ratio in 
the study population and the estimated odds ratio obtained from the sample that is analyzed. ??? 

2. Systematic error occurs whenever there is any (non-zero) difference between the value of the effect 
measure in the source population and the estimate from the sample. . . . ??? 

3. In a valid study, there is neither systematic error nor random error.  . . . ??? 

4. The study population is always a subset of the source population. . . . . ??? 

5. The sample is always a subset of the study population.   .. . . . ??? 

6. The sample is always a subset of the source population.  . . . . . ??? 

7. The estimated effect measure in the sample is always equal to the corresponding effect measure in the 
study population.   . . . . . . . . ???. 

8. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio estimate in the (study) 
sample is 1.2. Then the study is not internally valid.  .  . . . ??? 

9. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio in the study population is 1.2. 
Then the study is not internally valid.  . . . . . . . ??? 

10. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio estimate in the study 
population is 3.1.  Then the study is not internally valid.  . . . . . ??? 

11. Suppose the risk ratio in the source population is 3.0, whereas the risk ratio estimate in the study 
population is 3.1.  Then the study is not externally valid.  . . . . . ??? 
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7-2 Validity (continued) 
 

Quantitative Definition of Bias 
 
A bias in an epidemiologic study can be defined quantitatively in terms of the target parameter of interest and measure of 
effect actually being estimated in the study population. 

A study that is not internally valid is said to have bias. Let’s quantify what we mean by bias. The measure of effect 
in the source population is our target parameter.  
 

 
 

The choice of this parameter depends on the study design features, objectives of the study, and the type of bias being 
considered.  We denote the target parameter with the Greek letter  (“theta”). We want to estimate the value of  in the 
source population. 

Recalling the hierarchy of populations associated with a given study, we denote as 0 the measure of effect in the 
study population.  ˆ  (“theta-hat”) denotes the estimate of our measure of effect obtained from the sample actually analyzed. 

Of course, ˆ , 0 and  may all have different values. 
 

 
 

Any difference between ˆ  and 0 is the result of random error. Any difference between 0 and  is due to systematic 
error. 
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We use ˆ to estimate . We say that ˆ  is a biased estimate of  if 0 is not equal to , and we define the bias to be 

the difference between these two parameters:  Bias ( ˆ, )= 0 -  
Thus, a bias occurs if an estimated measure of effect for the study population differs systematically from the value 

of the target parameter. The not equal sign shown below should not be strictly interpreted as any difference from zero, but 
rather as a meaningful difference from zero. Such a flexible interpretation of the definition is necessary because bias can 
rarely be quantified precisely because the target parameter is always unknown. 
 

 
 
 
Study Questions (Q7.5) 
 
Consider a cohort study to evaluate whether heavy drinking during pregnancy leads to low birth weight babies.  Although it 
is usually unknown, suppose the risk ratio in the source population (i.e., entire cohort) is 3.5.  Suppose further that the study 
sample is representative of the source population at the start of follow-up, but that there is considerable migration out of the 
target population location.  As a result, the risk ratio found in the final sample is 1.5. 
 

1. For this scenario, what are the values of the target (i.e., source) population parameter and the study population 
parameter? 

2. Is there bias in this study?  Explain briefly. 
3. What is the value of the bias in this study? 
4. If the true effect being estimated is high (e.g., RR>3.5), but the study data show essentially no effect, does this 

indicate a bias?  Explain briefly. 
5. If the true effect estimated indicates no association, but the study data show a high association, does this indicate a 

bias?  Explain briefly. 
 
Summary 
 

 Bias measures the extent that study results are distorted from the correct results that would have been found from a 
valid study. 

 Bias occurs if an estimated measure of effect for the study population differs systematically from the value of the 
target parameter. 

 Bias can rarely be quantified precisely primarily because the target parameter is always unknown. 
  (“theta”) is the target parameter, 0 is the study population parameter, and ˆ  is the sample estimate. 

 ˆ  is a biased estimate of  provided 0  is not equal to . 

 Bias ( ˆ , ) = 0 -  
 

Relating the Target Parameter to Type of Bias 
 

The target parameter in most epidemiologic studies is typically a measure of effect, e.g., some kind of risk ratio, odds ratio, 
or rate ratio, appropriate for the study design being considered. The choice of parameter depends on whether the type of bias 
of interest is selection bias, information bias, or confounding bias, or whether more than one of these three types of bias is 
of concern. 

When selection bias is the only type of bias being considered, the target parameter is typically the value of the measure 
of effect of interest in the source population from which the cases are derived. 

If, however, information bias is the only type of bias considered, then the target parameter is the measure of effect that 
corrects for possible misclassification or that would result from the absence of misclassification. 

If there is only bias due to confounding, then the target parameter is the measure of effect estimated when confounding 
is controlled. 

If more than one bias is possible, then the target parameter is the value of the measure of effect after all contributing 
sources of bias are corrected. 
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Epidemiologic Bias versus Statistical Bias 

 

The definition of bias we have given using the expression bias = 0 –  implicitly identifies ˆ  to be a statistically 

consistent estimator, i.e., ˆ  converges to  in probability as the size of the study is hypothetically increased without 
changing any of the essential features of the study design itself. 

This definition is recommended for describing epidemiologic bias because statistical consistency essentially reflects 
only methodological aspects of the study design that might be associated with systematic error rather than random error. 

In contrast, a definition of statistical bias would be based on the concept of the statistical expected value, i.e., bias = 
Expected value of ˆ  -  where the expected value” is the long run average of ˆ  as the sample size increases without limit. 

Using statistical bias, we would allow bias to be present solely because of the mathematical properties of the estimator. 
For instance, the expected value of an estimate of the risk ratio is not equal to the population risk ratio it is actually 
estimating even if methodological flaws are absent. This is not what epidemiologic bias is meant to describe, and so the use 
of expected value theory to describe epidemiologic bias is not desirable. 
 
 
 

Direction of the Bias 
 
Although the precise magnitude of bias can never really be quantified, the direction of bias can often be determined.  The 
direction of the bias concerns whether or not the target parameters is either overestimated or underestimated without 
specifying the magnitude of the bias. 

We have defined bias as the difference between the value of the effect measure in our target (i.e., source) population 
and the value of the effect measure actually being estimated in the study population. Since the target parameter is always 
unknown and the effect being estimated in the study population has random error, it is virtually impossible to quantify the 
magnitude of a bias precisely in a given epidemiologic study.  Nevertheless, the investigator can often determine the direction 
of the bias. Such assessment usually requires subjective judgment based on the investigator’s knowledge of the variables 
being studied and the features of the study design that are the sources of possible bias.  By direction, we mean a 
determination of whether the target parameter is overestimated or underestimated without specifying the magnitude of the 
bias. If the target parameter is overestimated, we say that the direction of the bias is away from the null. If the target 
parameter is underestimated, we say that the direction of the bias is towards the null. 
 

 
 

For example, suppose the target parameter is a risk ratio whose value is 1.5, but the risk ratio actually being 
estimated from our study is 4. Then the true effect has been overestimated, since the effect from the study appears to be 
stronger than it really is. Both the target parameter and the study population parameter in this example are greater than the 
null value of 1 for a risk ratio. Thus, the bias is away from the null, since the incorrect value of 4 is further away from 1 than 
the correct value of 1.5. 
 

 
 

Similarly, if the target risk ratio is less than the null value of 1, say .70 and the risk ratio being estimated is .25, the 
true effect is also overestimated. In this case, the true effect is protective, since it is less than 1, and the estimated effect of .25 

“
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is even more protective than the true effect. Again, the incorrect value of .25 is further away from 1 than the correct value of 
.70, so the bias is away from the null. 
 

 
 

To describe underestimation, or bias towards the null, suppose the target risk ratio is 4, but the estimated risk 
ratio is 1.5. Then the true effect is underestimated, since the effect from the study appears to be weaker than it really is. 
Moreover, the incorrect value of 1.5 in this case is closer to the null value of 1 than is the correct value of 4, so the bias is 
towards the null. 
 

 
 

If the target risk ratio is 0.25 but the risk ratio being estimated is 0.70, then once again the correct value is 
underestimated and the bias is towards the null. In this case, the incorrect value of 0.70 is closer to the null value of 1 than is 
the correct value of .25. 
 

 
 

Suppose, however, that the target risk ratio is .50 but the risk ratio actually being estimated is 2. These two values 
are on opposite sides of the null value, so we cannot argue that the bias is either towards or away from the null. In this case, 
we call this kind of bias a switchover bias. In other words, a switchover bias may occur if the exposure appears in the data to 
have a harmful effect on the disease when it is truly protective. Alternatively, a switchover bias can occur if the exposure 
appears to be protective when it is truly harmful. 
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Study Questions (Q7.6) 
 
Knowing the direction of the bias can be of practical importance to the investigator. 
 

1. Suppose an investigator finds a very strong effect, say the estimated RR (in the study population) is 6, and she can 
also persuasively argue that any possible bias must be towards the null.  Then what can be concluded about the 
correct (i.e., target) value of RR? 

2. Suppose an investigator finds a very weak estimated RR (in the study population) of, say, 1.3, and can argue that 
any bias must be away from the null.  Then what can be concluded about the correct value of the RR? 

 
 
Summary 
 

 The direction of the bias concerns whether or not the target parameter is either overestimated or underestimated 
without specifying the magnitude of the bias. 

 If the target parameter is overestimated, the direction of the bias is away from the null. 
 If the target parameter is underestimated, the direction of the bias is towards the null. 
 A switchover bias occurs if the target parameter is on the opposite side of the null value from the parameter actually 

being estimated in one’s study. 
 
 

Positive versus Negative Bias 
 

We can characterize the direction of the bias as positive or negative based on our quantitative definition of bias.  The 
definition of bias we have given using the expression bias = 0 –  where 0 is the effect measure actually being estimated 
by the study sample and  is the effect measure value in the target population of interest. 

To illustrate, suppose the target parameter is the risk ratio, whose value is, say 1.5, and the actual value of the parameter 
being estimated is 4, i.e.: 

RR=1.5 and RRo=4.   
Then, using the above formula the bias would be positive. Similarly, if: 
RR=0.70 and RRo=0.25  

the bias would also be positive.  Thus, using our definition, if the target parameter is overestimated, as it is in both these 
examples, then the bias would be positive. 

In contrast, suppose the target parameter is again the risk ratio, whose value is, say 4, and the actual value of the 
parameter being estimated is 1.5, i.e.: 

RR=4 and RRo=1.5 
Then, using our formula for bias, the bias would be negative.  Similarly, if: 
RR=0.25 and RRo=0.70  

the bias would also be negative.  Thus, using our definition, if the target parameter is underestimated, as it is in these last 
two examples, then the bias would be negative. 

Unfortunately, if we wish to characterize the bias as positive or negative, we must remember that the formula that we are 
using subtracts the correct value of the parameter from the incorrect value. If we switch these two parameters around, 
however, the conclusion as to positive versus negative will be switched also. 

Consequently, to avoid such possible confusion, the direction of the bias is more commonly described as away from the 
null (i.e., overestimation) versus towards the null (i.e., underestimation), as discussed in the exposition corresponding to this 
asterisk. 
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Quiz (Q7.7) 
 
Label each of the following statements as True or False. 
 

1. If the estimated RR equals 2.7 in the sample and it is determined that there is a bias away from the null, 
then the RR in the target (i.e., source) population is greater than 2.7. . .  . ??? 

2. If the estimated RR in the sample is 1.1 and it is determined that there is bias towards the null, then there 
is essentially no association in the target population (as measured by RR).  . . ??? 

3. If the estimated RR in the sample is 1.1 and it is determined that there is bias away from the null, then 
there is essentially no association in the target population.  . . . . ??? 

4. If the estimated RR equals 0.4 in the sample and it is determined that there is a bias away from the null, 
then the RR in the target (i.e., source) population is less than 0.4.  . . . ??? 

5. If the estimated RR in the sample is 0.4 and it is determined that there is bias towards the null, then there 
is essentially no association in the target population (as measured by RR).  . . ???  

6. If the estimated RR in the sample is 0.98 and it is determined that there is bias away from the null, then 
there is essentially no association in the target population.  . . . . ??? 

 
Fill in the Blanks 
 

7. If OR equals 3.6 in the target population and 1.3 in the study population, then the bias is  . ??? 

8. If IDR is 0.25 in the target population and 0.95 in the study population, then the bias is  . ??? 

9. If the RR is 1 in the target population and 4.1 in the study population, then the bias is  . ??? 

10. If the RR is 0.6 in the target population and 2.1 in the study population, then the bias is   . ??? 

11. If the RR is 1 in the target population and 0.77 in the study population, then the bias is  . ??? 

12. If the RR is 4.0 in the target population and 0.9 in the study population, then the bias is  . ??? 
 
Choices 
Away from the null  Switchover  Towards the null 
 
 

What Can Be Done About Bias? 
 
The evaluation of bias is typically subjective and involves a judgment about either the presence of the bias, the direction of 
the bias, or, much more rarely, the magnitude of the bias.  Nevertheless, there are ways to address the problem of bias, 
including adjusting the sample estimate to “correct” for bias.  Three general approaches are now described. 

Here are three general approaches for addressing bias: 1) a priori study design decisions; 2) decisions during the 
analysis stage; and 3) discussion during the publication stage. 
 

 
 

When you design a study, you can make decisions to minimize or even avoid bias in the study’s results. You can 
avoid selection bias by including or excluding eligible subjects, by choice of the source population, or by the choice of the 
comparison group, say the control group in a case-control study. 
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Study Questions (Q7.8) 
 

1. What type of bias may be avoided by taking special care to accurately measure the exposure, disease, and control 
variables being studied, including using pilot studies to identify measurement problems that can be corrected in the 
main study? 

A. Selection bias 
B. Information bias 
C. Confounding bias 

2. What type of bias may be avoided by making sure to measure or observe variables at the design stage that may be 
accounted for at the analysis stage?  

A. Selection bias 
B. Information bias 
C. Confounding bias 

 
 

At the analysis stage, the investigator may be able to determine either the presence or direction of possible bias by 
logical reasoning about methodologic features of the study design actually used. 
 
 
Study Questions (Q7.8) continued 
 

3. In the Sydney Beach User’s study, both swimming status and illness outcome were determined by subject self-report 
and recall.  This indicates the need to assess the presence or direction of which type of bias at the analysis stage?  

A. Selection bias 
B. Information bias 
C. Confounding bias 

 
4. Also, in the Sydney Beach Users study, subjects had to be excluded from the analysis if they did not complete the 

follow-up interview.  This non-response may affect how representative the sample is.  This is an example of which 
type of bias?  

A. Selection bias 
B. Information bias 
C. Confounding bias 

 
 

At the analysis stage, bias can also be reduced or eliminated by adjusting a sample estimate by a guestimate of the 
amount of bias. Such adjustment is typically done for confounding by quantitatively accounting for the effects of 
confounding variables using stratified analysis or mathematical modeling methods.   

Adjustment for selection bias and information bias is limited by the availability of information necessary to measure 
the extent of the bias. A simple formula for a corrected” estimate involves manipulating the equation for bias by moving the 
target parameter to the left side of the equation.  This formula is not as easy to apply as it appears. Most investigators will 
have to be satisfied with making a case for the direction of the bias instead. The estimated bias depends on the availability of 
more fundamental parameters, which are often difficult to determine. We discuss these parameters further in the lessons that 
follow. 
 

“
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The final approach to addressing bias is how you report your study. A description of the potential biases of the study 
is typically provided in the Discussion” section of a publication. This discussion, particularly when it concerns possible 
selection or information bias, is quite subjective, but judgment is expected because of the inherent difficulty in quantifying 
biases. Rarely if ever does the investigator admit in the write-up that bias casts severe doubt on the study’s conclusions. So, 
the reader must review this section with great care! 
 
Summary – What Can be Done about Bias? 
 

 The answer depends on the type of bias being considered: selection, information, or confounding. 
 Approached for addressing bias are: decisions in the study design stage, the analysis stage, and the publication stage. 
 At the study design stage, decisions may be made to avoid bias in the study’s results. 
 At the analysis stage, one may use logical reasoning about methodologic features of the study design actually used. 
 Also at the analysis stage, confounding bias can be reduced or eliminated by quantitatively adjusting the sample 

estimate. 

 A simple formula for a corrected estimate: sâBiˆc .  This formula is not as easy to apply as it looks. 
 Potential biases are described in the Discussion section of a publication.  Beware! 

 
 
Nomenclature 
 
 “theta”, the parameter from the target population

ˆ  “theta-hat”, the parameter estimate from the sample actually analyzed
0 The parameter from the study population

RR Risk ratio of the target population
RR0 Risk ratio of the study population 
 
 
References 
 
Berkson J. Limitations of the application of fourfold table analysis to hospital data.  Biometrics Bulletin 1946;2: 47-53. 
Corbett SJ, Rubin GL, Curry GK, Kleinbaum DG.  The health effects of swimming at Sydney Beaches.  The Sydney Beach 

Users Study Advisory Group.  Am J Public Health. 1993;83(12): 1701-6. 
Greenberg RS, Daniels SR, Flanders WD, Eley JW, Boring JR. Medical Epidemiology (3rd Ed).  Lange Medical Books, New 

York, 2001. 
Hill H, Kleinbaum DG. Bias in Observational Studies. In Encyclopedia of Biostatistics, pp 323-329, Oxford University Press, 

1999. 
Horwitz RI, Feinstein AR. Alternative analytic methods for case-control studies of estrogens and endometrial cancer. N Engl 

J Med 1978;299(20):1089-94. 
Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. John Wiley and 

Sons Publishers, New York, 1982. 

“



191   
   

 
 

Perera FP, et al. Biologic markers in risk assessment for environmental carcinogens. Environ Health Persp 1991;90:247. 
The Lipid Research Clinics Coronary Primary Prevention Trial results: II. The relationship of coronary heart disease to 

cholesterol lowering. JAMA 1984;251(2):365-74. 
Warner L, Clay-Warner J, Boles J, Williamson J. Assessing condom use practices. Implications for evaluating method and 

user effectiveness. Sex Transm Dis 1998; 25(6):273-7. 
 
Homework 
 
ACE-1.  General Validity Issues 
 
a. Describe the difference between systematic error and random error in terms of shooting at a target. 
b. Why should consideration of validity take precedence over consideration of precision? 
c. Describe an example in which the study population is not a subset of the source population. (Hint: STD clinic sample.) 
d. Describe an example in which the study population is a subset of the source population. (Hint: Loss-to follow-up in a 

cohort study.) 
e. If the source population differs from the study population, is it still possible that the study sample can provide an 

estimate of effect close to the target parameter in the source population? Explain. 
f. Why can’t you assess external validity based on the design/results of a single study? 
g. In statistics terminology, the expected value of a sample statistic is the long-run average of values of the statistic 

obtained from repeated sampling. Explain why the definition of “epidemiologic bias” in terms of the difference between 
the study and source population parameter values is not equivalent to saying that the “expected value of the study 
population parameter equals the source population parameter”? 

h. Suppose you are an investigator interested in demonstrating that a certain exposure variable is associated with a health 
outcome of interest. You conduct case-control study and find that your estimated odds ratio is 3.5. If you can justifiably 
reason that whatever possible bias that exists is towards the null, why should you feel good about the results of your 
study? Explain 

i. Suppose you are a government scientist reviewing a study your agency has funded to evaluate whether a certain 
pharmaceutical drug already on the public market causes harmful health consequences. The study finds a statistically 
significant estimated effect of 3.5 that indicates that the drug is harmful. However, based on your review, you can 
convincingly argue that any bias that may exist is away from the null. Should you recommend that the drug be taken off 
the market? Explain. 

 
ACE-2.  Bias: Genes and Bladder Cancer 
 
A group of investigators was interested in studying the potential relationship between a newly discovered gene and 
development of bladder cancer. Suppose it was discovered that people who were positive for the gene and developed bladder 
cancer tended to die quickly and thus were less likely to be available for inclusion in a case-control study of this relationship. 
What effect would this tend to have on the observed estimate of the odds ratio? (One of the following choices is correct.) 
 
a. Bias towards the null. 
b. Bias away from the null. 
c. Bias, but direction cannot be determined. 
d. No bias, but a potential problem with external validity. 
 
ACE-3.  Type of Bias: Genes and Bladder Cancer II 
 
What kind of bias is being considered in question 2 above? 

 
ACE-4.  Direction of Bias: Multivitamins vs. Birth Defects 
 
A case-control study was conducted to evaluate the relationship between a woman’s self-reported use of multivitamin 
supplements (exposure) and subsequent delivery of a child with birth defects (outcome). The following table summarizes the 
findings from this study: 
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 Multivitamin Use  
 Periconceptional use No vitamin use Total 
Birth Defect 164 166 330 
No Birth Defect 228 122 350 
 
When the study was published, its authors were criticized for having chosen a control group with an inappropriately high 
prevalence of multivitamin use. What impact would the use of such a control group have on the observed odds ratio? 
(Assume that the exposure is truly protective.) Choose the one best answer. 
 
a. It would create bias towards the null. 
b. It would create bias away from the null. 
c. It would create bias, but the direction cannot be predicted. 
d. It would increase the probability of a type II error. 
 
Answers to Study Questions and Quizzes 
 
Q7.1 
 

1. Women residents from the city of Atlanta between 
45 and 69 years of age. 

2. A measure of effect, either a prevalence ratio or a 
prevalence odds ratio (i.e., the blue dot or bulls 
eye), for the association between calcium intake 
and prevalence of arthritis of the hip in the target 
population. 

3. Random error concerns whether or not the 
estimated odds ratio in the hospital sample (i.e., the 
shot at the target) differs from the odds ratio in the 
population of hospital patients (i.e., the red dot or 
the center of the actual shots) from which the 
sample is selected. 

4. Systematic error concerns whether or not the odds 
ratio in the population of hospital patients is being 
sample (i.e., the red dot) is different from the odds 
ratio in the target population (i.e., the blue dot). 

 
Q7.2 
 

1. All young adults in New York City. 
2. All young adults who attend fitness centers in New 

York City (NYC) and would eventually remain in 
the study for analysis. 

3. Yes, the sample is randomly selected from the 
study population and is therefore representative. 

4. Probably not.  The group of young adults in NYC is 
different from the group of all young adults in 
NYC.  Since fitness is so strongly related to health, 
the use of those attending fitness centers for all 
young adults is probably not the best choice for this 
study. 

5. All young adults in New York City. 
6. All young adults in NYC that would eventually 

remain in the study for analysis. 
7. Yes, the sample is randomly selected from the 

study population (by definition of the study 

population) and is therefore representative of it.  
Nevertheless, neither the study population nor the 
sample may be representative of all young adults in 
NYC if not everyone selected into the sample 
participates in the study. 

8. Yes, assuming that everyone selected participates 
(i.e., provides the required data) in the study, the 
study population is the same as the source 
population.  However, if many of those sampled 
(e.g., a particular subgroup) do not provide the 
necessary study data, the final sample and its 
corresponding study population might be 
unrepresentative of all young adults in NYC. 

9. False.  Persons lost-to-follow-up are not found in 
the study sample, so they can’t be included in the 
study population that is represented by the sample. 

10. True.  Persons lost-to-follow-up are not found in 
the sample, but they are still included in the source 
population of interest. 

11. True.  In the study population, controls may be 
specified as persons without the disease, regardless 
of whether they are at risk for being a case.  
However, the source population may only contain 
persons at risk for being a case. 

12. False.  The study population in a cross-sectional 
study is restricted to survivors only. 

13. The population of young adults in New York State 
is an external population, because the study was 
restricted to young adults in New York City.  
Extrapolating the study results to New York State 
goes beyond considering the methodological 
aspects of the actual study. 

 
Q7.3 
 

1. The study will be internally valid provided the 
study population corresponding to the sample 
actually analyzed is not substantially distorted from 
the source population of young adults from fitness 
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centers in the city.  For example, if the sample 
eventually analyzed is a much healthier population 
than the source population, internal validity may be 
questioned. 

2. External validity.  The study was restricted to 
persons in New York City.  Extrapolating the study 
results to New York State goes beyond considering 
the methodological aspects of the New York City 
study 

3. Do the results of the study also apply to women or 
to men of different ages? 

4. Was the study sample representative of the source 
population?  Were the comparison groups selected 
properly?  Did subjects consistently stick to their 
diet and medication regimen?  Were relevant 
variables taken into account? 

 
Q7.4 
 

1. T 
2. F – Systematic error occurs when there is a 

difference between the true effect measure and that 
which is actually estimated, i.e., a difference 
between the source and study populations. 

3. F – A valid study means there is no systematic 
error, but there may still be random error 

4. F – Not always.  Ideally the study population would 
be equivalent to the source population.  However, it 
may be that the study population and source 
population simply overlap. 

5. T – The sample is always selected from the study 
population. 

6. F – If the study population is not a subset of or 
equivalent to the source population, then the sample 
may not be a subset of (or completely contained in) 
the source population. 

7. F – They may be different due to random error. 
8. It depends – The difference may be a result of 

random error.  If the risk ratio in the study 
population is meaningfully different from 3.0, then 
the study is not internally valid. 

9. T – Any meaningful difference between the study 
and source population means that the study is not 
internally valid. 

10. F – The difference between 3.0 and 3.1 would not 
be considered a meaningful difference. 

11. It depends – We do not know about the risk ratio in 
the external population. 

 
Q7.5 
 

1. The target population parameter is 3.5.  We don’t 
know the value of the study population parameter, 
but it is likely to be closer to 1.5 than to 3.5 because 
the sample is assumed to be representative of the 
study population. 

2. There appears to be bias in the study because the 
sample estimate of 1.5 is meaningfully different 
from the population estimate and it is reasonable to 
think that the final sample no longer represents the 
source population. 

3. The bias can’t be determined exactly because 1.5 is 
a sample estimate; however, the bias in the risk 
ratio is approximately 1.5 – 3.2 = -2. 

4. Yes, provided the reason for the difference is due to 
systematic error. 

5. Yes, provided the reason for the difference is due to 
systematic error. 

 
Q7.6 
 

1. The correct RR must be even larger than 6. 
2. The correct RR must indicate an even weaker, or no 

effect. 
 
Q7.7 
 

1. F – If the bias is away from the null, the RR in the 
source population must lie between 1 and 2.7. 

2. F – If the bias is towards the null, then the RR in 
the source population is greater than 1.1.  Since we 
cannot determine how much greater, we cannot 
conclude that these is essentially no association. 

3. T – If the bias is away from the null, then the RR in 
the source population is between 1 and 1.1.  We can 
thus conclude that there is essentially no 
association. 

4. F – If the bias is away from the null, then the RR in 
the source population must lies between 0.4 and 
1.0. 

5. F – If the bias is towards the null, then the RR in 
the source population must be less than 0.4 and 
hence there is an association. 

6. T – If the bias is away from the null, then the RR in 
the source population is between 0.98 and 1.0, 
which means there is essentially no association. 

7. Towards the null 
8. Towards the null 
9. Away from the null 
10. Switchover 
11. Away from the null 
12. Switchover 

 
Q7.8 
 

1. B 
2. C 
3. B 
4. A 

 
 



 

 
 
 
 

LESSON   88  

 
Selection Bias 

 

8-1 Selection Bias 
 
Selection bias concerns systematic error that may arise from the manner in which subjects are selected into one’s study.  In 
his lesson, we describe examples of selection bias, provide a quantitative framework for assessing selection bias, show how 
selection bias can occur in different types of epidemiologic study designs, and discuss how to adjust for or otherwise deal 
with selection bias. 
 
 

Selection Bias in Different Study Designs 
 

Selection bias is systematic error that results from the way subjects are selected into the study or because there are selective 
losses of subjects prior to data analysis.  Selection bias can occur in any kind of epidemiologic study.  In case-control studies, 
the primary source of selection bias is the manner in which cases, controls, or both are selected and the extent to which 
exposure history influences such selection.  For example, selection bias was of concern in case-control studies that found an 
association between use of the supplement L-tryptophan and EMS (eosinophilia myalgia syndrome), an illness characterized 
primarily by incapacitating muscle pains, malaise, and elevated eosinophil counts. The odds ratios obtained from these 
studies might have overestimated the true effect.  
 
 
Study Questions (Q8.1) 
 

1. Assuming that the odds ratio relating L-tryptophan to EMS is overestimated, which of the following choices is 
correct? 

1. The bias is towards the null. 
2. L-tryptophan has a weaker association with EMS than actually observed. 
3. The correct odds ratio is larger than the observed odds ratio. 

 
 

Consequently, the bias would be away from the null. 
A primary criticism of these studies was that initial publicity about a suspected association may have resulted in 

preferential diagnosis of EMS among known users of L-tryptophan when compared with nonusers. 
 
 
Study Questions (Q8.1) continued 
 

2. Assuming preferential diagnosis of EMS from publicity about L-tryptophan, which of the following is correct?  The 
proportion exposed among diagnosed cases selected for study is likely to be ??? the proportion exposed among all 
cases in the source population. 

1. larger than 
2. smaller than 
3. equal to 
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In cohort studies and clinical trials, the primary sources of selection bias are loss-to-follow-up, withdrawal from 

the study, or non-response.  For example, consider a clinical trial that compares the effects of a new treatment regimen with 
a standard regimen for a certain cancer. Suppose patients assigned to the new treatment are more likely than those on the 
standard to develop side effects and consequently withdraw from the study. 
 

 
 
 
Study Questions (Q8.2) 
 
Clinical trial: new cancer regimen versus standard regimen.  Suppose patients on new regimen are more likely to withdraw 
from study than those on standard. 
 

1. Why might the withdrawal information above suggest the possibility of selection bias in this study?  
2. Why won’t and intention-to-treat analysis solve this problem? 
3. What is the source population in this study? 
4. What is the study population in this study? 

 
 

In cross-sectional studies, the primary source of selection bias is what is called selective survival. Only survivors 
can be included in cross-sectional studies. If exposed cases are more likely to survive longer than unexposed cases, or vice 
versa, the conclusions obtained from a cross-sectional study might be different than from an appropriate cohort study. 
 
Study Questions (Q8.2) continued 
 
Suppose we wish to assess whether there is selective survival in a cross-sectional study. 
 

5. What is the source population?  
6. What is the study population?  

 
 
Summary 
 

 Selection bias can occur from systematic error that results from the way subjects are selected into the study and 
remain for analysis. 

 The primary reason for such bias usually differs with the type of study used. 
 In case-control studies, the primary source of selection bias is the manner in which cases, controls, or both are 

selected. 
 In cohort studies and clinical trials, the primary source of selection bias is loss to follow-up, withdrawal from the 

study, or non-response. 
 In cross-sectional studies, the primary source of selection bias is what is called selective survival. 
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Example of Selection Bias in Case-Control Studies 

 
In case-control studies, because the health outcome has already occurred, the selection of cases, controls, or both might be 
influenced by prior exposure status.  In the 1970’s, there was a lively published debate about selection bias in studies of 
whether use of estrogen as a hormone replacement leads to endometrial cancer. Early studies were case-control studies and 
they indicated a strong harmful effect of estrogen. The controls typically used were women with gynecological cancers other 
than endometrial cancer. Critics claimed that because estrogen often causes vaginal bleeding irrespective of cancer, estrogen 
users with endometrial cancer would be selectively screened for such cancer when compared to nonusers with endometrial 
cancer. 
 
 
Study Questions (Q8.3) 
 

1. If the critics reasoning were correct, why would there be a selection bias problem with choosing controls to be 
women with gynecological cancers other than endometrial cancer? 

2. If the critics reasoning were correct, would you expect the estimated odds ratio obtained from the study to be biased 
towards or away from the null?  Explain briefly. 

 
 

  An alternative choice of controls was proposed; women with benign endometrial tumors, since it was postulated 
that such a control group would be just as likely to be selectively screened as would the cases. 
 
 
Study Questions (Q8.3) continued 
 

3. Why would estrogen users with benign endometrial tumors be more likely to be selectively screened for their tumors 
when compared to nonusers? 

4. Assuming that estrogen users with both cancerous and benign endometrial tumors are likely to be selectively 
screened for their tumors when compared to non-users, what problem may still exist if the latter group is chosen as 
controls? 

 
 

Continued research and debate, however, have indicated that selective screening of cases is not likely to contribute 
much bias. In fact, the proposed alternative choice of controls might actually lead to bias. 
 
 
Study Questions (Q8.3) continued 
 
Researchers concluded that because nearly all women with invasive endometrial cancer will ultimately have the disease 
diagnosed, estrogen users will be slightly over-represented, if at all, among a series of women with endometrial cancer.  
Assume for the questions below that selective screening of cases does not influence the detection of endometrial cancer cases. 
 

5. If the control group consisted of women with benign tumors in the endometrium, why would you expect to have 
selection bias? 

6. Would the direction of the bias be towards or away from the null?  Briefly explain. 
7. If the control group consisted of women with gynecologic cancers other than in the endometrium, why would you 

not expect selection bias in the estimation of the odds ratio? 
 
 

In current medical practice, the prevailing viewpoint is that taking estrogen alone is potentially harmful for 
endometrial cancer. Consequently, women who are recommended for hormone replacement therapy are typically given a 
combination of progesterone and estrogen rather than estrogen alone. 
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Summary 
 

 Selection bias concerns a distortion of study results that occurs because of the way subjects are selected into the 
study. 

 In case-control studies, the primary concern is that selection of cases, controls, or both might be influenced by prior 
exposure status. 

 In the 1970’s, there was a lively published debate about possible selection bias among researchers studying whether 
use of estrogen, the exposure, as a hormone replacement leads to endometrial cancer. 

 The argument supporting selection bias has not held up over time; current medical practice for hormone replacement 
therapy typically involves a combination of progesterone and estrogen rather than estrogen alone. 

 
 

Example of Selection Bias in Cohort Studies 
 
Selection bias can occur in cohort studies as well as in case-control studies.  In prospective cohort studies, the health 
outcome, which has not yet occurred when exposure status is determined, cannot influence how subjects are selected into the 
study. However, if the health outcome is not determined for everyone initially selected for study, the study results may be 
biased.  The primary sources of such selection bias are loss-to-follow-up, withdrawal or non-response. The collection of 
subjects that remain to be analyzed may no longer represent the source population from which the original sample was 
selected. 

Consider this two-way table that describes the five-year follow-up for disease “D” in a certain source population. 
 

 
 

Suppose that a cohort study is carried out using a 10% random sample from this population.  What would be the 
expected cell frequencies for this cohort assuming no selection bias? 
 

 
 
 
Study Questions (Q8.4) 
 

1. Assuming this is the sample that is analyzed, is there selection bias? 
 
 

Assume that the initial cohort was obtained from the 10% sampling. However, now suppose that 20% of exposed 
persons are lost to follow-up but 10% of unexposed persons are lost. Also, assume that exposed persons have the same risk 
for disease in the final cohort as in the initial cohort and that the same is true for unexposed persons. 
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Study Questions (Q8.4) continued 
 

2. Does the sample just described represent the source population or the study population? 
3. What is the source population for which this sample is derived? 
4. For the above assumptions, is there selection bias? 

 
 

Suppose that a different pattern of loss-to follow-up results in the two-way table shown here. 
 

 
 
 
Study Questions (Q8.4) continued 
 

5. Do these results indicate selection bias? 
6. Do the exposed persons in the study population have the same risk for disease as in the source population? 
7. Do the unexposed persons in the study population have the same risk for disease as in the source population? 
8. Do the previous examples demonstrate that there will be selection bias in cohort studies whenever the percent lost to 

follow-up in the exposed group differs from the percent lost-to-follow-up in the unexposed group? 
 
 
Summary 
 

 The primary sources of selection bias in cohort studies are loss-to-follow-up, withdrawal, and non-response. 
 In cohort studies, the collection of subjects that remain in the final sample that is analyzed may no longer represent 

the source population from which the original cohort was selected. 
 Selection bias will occur if loss to follow-up results in risk for disease in the exposed and/or unexposed groups that 

are different in the final sample than in the original cohort. 
 

Some Fine Points about Selection Bias in Cohort Studies 
 

Reference: Hill, HA and Kleinbaum, DG, Bias in Observational Studies”, in the Encyclopedia of Biostatistics, P.A. 
Armitage and T Colton, eds., June 1998. 
 
Selection bias in cohort studies may occur even with a fairly high overall response rate or with very little loss to follow-up.  
Consider a cohort study in which 95% of all subjects originally assembled into the cohort remain for analysis at the end of 
the study. That is, only 5% of subjects are lost to follow-up.  If losses to follow-up are primarily found in exposed subjects 
who develop the disease, then despite the small amount of follow-up loss, the correct (i.e., target) risk ratio could be 
underestimated substantially.  This is because, in the sample that is analyzed, the estimated risk for developing the disease 
in exposed subjects will be less than what it is in the source population, whereas the corresponding risk for unexposed 
subjects will accurately reflect the source population.   

Continued on next page

“
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Some Fine Points about Selection Bias in Cohort Studies (continued) 
 
There may be no selection bias despite small response rates or high loss to follow-up.  Suppose only 10% of all 

initially selected subjects agree to participate in a study, but this 10% represents a true random sample of the source 
population. Then the resulting risk ratio estimate will be unbiased.  The key issue here is whether risks for exposed and 
unexposed in the sample that is analyzed are disproportionately modified because of non-response or follow-up loss from 
the corresponding risks in the source population from which the initial sample was selected.  

We are essentially comparing two 2x2 tables here, one representing the source population and the other representing 
the sample: 
 
 Source Population   Sample for Analysis 
 E Not E   E Not E 
D A B  D a b
Not D C D  Not D c d
Total N1 N0  Total n1 n0

       
 

Selection bias will occur only if, when considering these tables, the risk ratio in the source population, i.e., 

0

1

B/N
A/N

 

is meaningfully different from the risk ratio in the sample, i.e., 

0

1

b/n
a/n

 

 
In the first example above (95% loss to follow-up), the argument for selection bias is essentially that the numerator 

a/n1 of the risk ratio in the analyzed sample would be less than the corresponding numerator A/N1 in the source 
population, whereas the corresponding denominators in these two risk ratios would be equal. 

In the second example (10% non-response), the argument for no selection bias is essentially that despite the high non-
response, corresponding numerators and denominators in the source population and sample are equal. 
 
 
 

Other Examples 
 
Here are a few more examples of studies that are likely to raise questions about selection bias. 
 
 
Study Questions (Q8.5) 
 
Consider a retrospective cohort study that compares workers in a certain chemical industry to a population-based comparison 
group for the development of coronary heart disease (CHD). 
 

1. In such a study, selection bias may occur because of the so-called “health worker effect”.  How might such a bias 
come about? 

 
Selection bias may result from using volunteers for a study. 
 

2. Explain the above statement in terms of study and source populations. 
3. What is an alternative way to view the validity problem that arises when a study is restricted to volunteers? 

 
In assessing long term neurologic disorders among children with febrile seizures, clinic-based studies tend to report a much 
higher frequency of such disorders than found in population-based studies. 
 

4. Does the above statement indicate that clinic-based studies can result in selection bias?  Explain briefly.   
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Summary 
 

 Selection bias may occur because of the so-called “healthy worker effect”.  Workers tend to be healthier than those 
in the general population and may therefore have a more favorable outcome regardless of exposure status. 

 Selection bias may result from using volunteers, who may have different characteristics from persons who do not 
volunteer. 

 Clinic-based studies may lead to selection bias because patients from clinics tend to have more severe illness than 
persons in a population-based sample. 

 
 

8-2 Selection Bias (continued) 
 

Selection Ratios and Selection Probabilities 
 
A selection probability gives the likelihood that a person from one of the four cells in the source population will be a member 
of the study population. 
 
To quantify how selection bias can occur, we need to consider underlying parameters called selection ratios. There are four 
such selection ratios, alpha ( ), beta ( ), gamma ( ), and delta ( ), which correspond to the four cells of the two-way table 
that relates exposure to disease. 
 

 
 

A selection ratio is defined by dividing the cell frequency from one of the four cells in the study population by the 
corresponding cell frequency in the source population.  Using this framework,  = Ao/ A,  = Bo/ B, and so on.  In many 
studies, the study population will be a subset of the source population. If so, , , , and  are typically referred to as 
selection probabilities. 
 

 
 

Each selection probability gives the probability that an individual from one of the four cells in the source population 
will be eligible to be selected into the study population. Thus,  denotes the probability that an exposed case in the source 
population will be selected into the study and similar probability estimates apply to ,  and . 
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Study Questions (Q8.6) 
 
The tables shown below give the source and study populations for a cohort study in which 20% of the exposed group and 
10% of the unexposed group are lost to follow-up.  These tables assume that exposed persons have the same risk for disease 
in the final cohort as in the original cohort and that the same is true for unexposed persons. 
 

1. What are , , , and  for these data? 
2. Is there selection bias in either the odds ratio or the risk ratio? 
3. What is the value of the cross-product of selection probabilities, i.e., ( )/( )? 

 

 
 
The tables shown below give source and study populations for another cohort study in which 20% of the exposed group and 
10% of the unexposed group are lost to follow-up.  In these tables, exposed persons have a higher risk for disease in the study 
population than in the source population and the opposite is true for unexposed persons. 
 

4. What are , , , and  for these data? 
5. Is there selection bias in either the odds ratio or the risk ratio? 
6. What is the value of the cross-product of selection probabilities, i.e., ( )/( )? 

 

 
 
 
Summary 
 

 To quantify how selection bias can occur, we need to consider underlying parameters called selection ratios. 
 There are four selection ratios to consider, one for each cell of the 2x2 table relating exposure status to disease 

status. 
 A selection ratio gives the number of subjects from one of the four cells in the study population divided by the 

corresponding number of subjects in the source population. 
 If the study population is a subset of the source population, a selection ratio is typically called a selection 

probability. 
 A selection probability gives the likelihood that a person from one of the four cells in the source population will be a 

member of the study population. 
 
 

Quantitative Assessment of Selection Bias 
 
Selection bias can be assessed using a mathematical expression involving the four selection ratios or selection probabilities 
that relate the source population to the study population. This expression considers bias in estimating an odds ratio. 
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Recall that an estimate of an odds ratio ( RÔ ) is biased if the odds ratio in the study population (ORo) is 
meaningfully different from the odds ratio in the source population (OR). The bias is the difference between these two 
parameters, as shown here: 
 

 
 

Now using the framework previously described for the fourfold tables in the source and study populations, we can 
express the bias by substituting into the bias formula the cell frequencies in each table, as shown here: 
 

 
 

Since the selection ratios , , , and  are defined as the relative frequencies for the study population divided by the 
source population, we can equivalently rewrite Ao =  x A, Bo =  x B, Co=  x C, Do=  x D.   

 

 
 
We then substitute these expressions for the cell frequencies in the expression for bias to obtain the result shown 

here. 
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If we set this expression equal to 0, it follows that the bias = 0 if and only if the cross product ratio ( )/( ) = 1.  
Thus, we obtain the following rule for assessing selection bias in the odds ratio. 

 

 
 

The bias is either > 0, = 0, or < 0 depending on whether the cross product ratio of selection probabilities is > 1, = 1, 
or < 1. 
 

 
 

The “= 0” part of this rule states conditions for the absence of bias, whereas the > 0 and < 0 parts state conditions 
for the direction of the bias. Nevertheless, in interpreting this rule, we must remember that the equal sign means 
“meaningfully equal” rather than “exactly equal”, and similar interpretations should be applied to the greater than and less 
than signs. 
 
 
Study Questions (Q8.7) 
 
The tables shown below give source and study populations for a cohort study in which 20% of the exposed group and 10% of 
the unexposed group are lost to follow-up.  The selection ratios for study population 1 are:  = 12/150 = .08;  = 4.5/50 = .09; 
 = 788/9850 = .08; and  = 895.5/9950 = .09. 

 
1. Is there selection bias in the odds ratio for study population 1?  Explain briefly in terms of the cross product ratio of 

selection ratios. 
 

 
 
The tables below consider the same source population as in the previous question but a different study population (#2).  The 
selection ratios for study population 2 are:  = 14/150 = .093;  = 4/50 = .08;  = 786/9850 = .08; and  = 896/9950 = .09. 
 

2. Is there selection bias in the odds ratio for population 2?  Explain briefly in terms of the cross product ratio of 
selection ratios. 

3. If your answer to the previous question was yes, what is the direction of the bias? 
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Summary 
 

 Selection bias can be assessed using a mathematical expression involving the four selection probabilities that relate 
the target to the study populations. 

 Bias in estimating the odds ratio = 0 if and only if the cross product ratio ( )/( ) = 1. 
 The bias is either > 0, = 0, or < 0 depending on whether the cross product ratio of selection probabilities is > 1, = 1, 

or < 1. 
 
 

Selection Bias for Risk Ratio 
 
We now discuss how to assess selection bias for the risk ratio.  We have shown that the risk ratio from a follow-up study can 
be approximated by the odds ratio if the disease is rare. Moreover, the odds ratio is often not that much different from the risk 
ratio even if the disease is not rare.  Consequently, this rare disease approximation suggests that assessing selection bias in 
the risk ratio can more often than not involve the same rule about the cross-product of selection ratios [( )/( )] that applies 
to assessing selection bias in the odds ratio. 

 
 

Study Questions (Q8.8) 
 
The tables shown below give source and study populations for a cohort study.  Here no subjects who developed the disease 
are lost to follow-up.  However, 20% of disease-free subjects are lost to follow-up, irrespective of exposure status. 

1. Calculate the 4 selection ratios for this study. 
2. Are the selection ratios also selection probabilities? 
3. Is the disease in this study a rare disease in both the source population and the study population? 
4. Based on selection ratios, is there selection bias in the odds ratio? 
5. Is there selection bias in the risk ratio?  Explain briefly. 

 

 
 
 

In the example, the rare disease approximation applied to both the source population and the study population. If, 
however, the rare-disease approximation does not hold in both these populations, then the presence or absence of bias in the 
odds ratio might not correspond to bias in the risk ratio calculated for the same data. 
 
 
Study Questions (Q8.8) continued 
 
The tables below give the same source population but a different study population from the previous example.  Once again, 
no subjects who developed the disease are lost to follow-up.  However, there is extremely high loss to follow-up (99%) for 
subjects who do not develop the disease, irrespective of exposure status. 
 

6. Calculate the four selection ratios for this study. 
7. Based on the selection ratios, is there selection bias in the odds ratio? 
8. Is there selection bias in the risk ratio?  Explain briefly. 
9. Is the disease in this study a rare disease in both the source population and the study population? 
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The previous example illustrates that there is no guarantee that the presence or absence of bias in the odds ratio will 
always correspond to the same degree of bias in the risk ratio. Consequently, one must be careful when attempting to use the 
cross-product rule for selection ratios to assess whether there is bias in the risk ratio. 
 
 
Study Questions (Q8.8) continued 
 
The tables below give different source and study populations than previously considered.  The study is a cohort study in 
which no subjects who developed the disease are lost to follow-up.  However, 50% of exposed non-cases are lost to follow-
up whereas none of the unexposed non-cases are lost to follow-up. 
 

10. Calculate the four selection ratios for this study. 
11. Based on the selection ratios, is there selection bias in the odds ratio? 
12. Is there selection bias in the risk ratio?  Explain briefly. 
13. Is the disease in this study a rare disease in both the source population or the study population? 
14. Is the extent of bias the same for both risk and odds ratios? 

 

 
 
 
Summary 
 

 The rare disease approximation suggests that assessing selection bias in the risk ratio can involve the same rule 
about the cross-product of selection ratios that applies to assessing selection bias in the odds ratio. 

 If, however, the rare disease approximation does not hold in both source and study populations, then the presence or 
absence of bias in the odds ratio might not correspond to bias in the risk ratio calculated for the same data. 

 There is no guarantee that the presence or absence of bias in the odds ratio will always correspond to the same 
degree of bias in the risk ratio. 
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Quiz (Q8.9) 
     Table of selection  
Fill in the Blanks   probabilities 
 
Critics of case-control studies that found an association between estrogen use (E) and endometrial cancer (D) 
claimed that estrogen users with the disease are more likely to be selected as cases than nonusers of estrogen 
with the disease.  
 

1. In the table of selection probabilities shown above, how do the critics claim translate into a statement 
about selection probabilities? ??? 

 
These critics also claimed that if gynecological patients with benign tumors were chosen for controls, then 
estrogen users without the disease would be more likely to be selected as controls than nonusers of estrogen 
without the disease.  
 

2. In the table above, how does this latter claim translate into a statement about selection probabilities? ??? 
 
The critics in the previous question were countered with the argument that nearly all women with invasive 
endometrial cancer will ultimately have the disease diagnosed, so that estrogen users were not likely to be over-
selected in previous studies. 
 

3. In the table of selection probabilities shown above, how does this counterclaim translate into a statement 
about selection probabilities? ??? 

 
It was also argued here that if women with other gynecological cancers are chosen for controls, this latter group 
would not be subject to selective screening and would nearly always be detected without screening. 
 

4. In the table above, how does this latter claim translate into a statement about selection probabilities? ??? 
 
Choices 
alpha = beta alpha > beta alpha > delta alpha > gamma gamma = delta  gamma > delta 
 
 

8-3 Selection Bias (continued) 
 

Selection Bias Due to Inappropriate Choice of Controls 
 
The use of condoms is widely recommended for prevention of sexually transmitted diseases.  Nevertheless, a number of 
studies have found surprisingly little evidence of condom effectiveness, even for STDs where high condom efficacy would be 
expected.  This apparent lack of effect of condom use found in STD studies is typically attributed to misclassification of 
exposure from inaccurate reporting of condom usage. However, another explanation might be selection bias arising from the 
choice of the comparison group used. 

The study population in condom effectiveness studies is typically all individuals examined at STD clinics. 
Correspondingly, in case-control studies of condom effectiveness, the control group is chosen to be a random sample of 
persons without STDs from this clinic population.  A criticism of such studies is that the correct source population consists of 
individuals who have infected sex partners, since one cannot acquire an STD without having an infected partner. This source 
population is more restrictive than a population of all individuals attending STD clinics, but ensures that an individual 
eligible for study is actually at risk for an STD. 

If controls are selected from all persons without STDs, and not from only those with infected partners, then 
unexposed controls could include persons who do not have infected partners and perhaps exhibit no high-risk behavior 
leading to STDs. In contrast, exposed controls may include a much higher proportion of persons who have infected partners. 
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Study Questions (Q8.10) 
 
Suppose controls are selected from all persons examined at STD clinics who do not have an STD.  Are the following 
questions True or False? 
 

1. Unexposed controls are likely to be over-represented in the study when compared to unexposed non-cases in the 
source (i.e., only those at risk) population. 

2. Exposed controls are likely to be over-represented in the study when compared to exposed non-cases in the source 
population. 

 
The tables below consider a hypothetical case-control study in which controls are sampled from all clinic patients without 
STDs, even though the source population is restricted to patients at risk for being a case. 

 
3. Is there selection bias in the odds ratio? 
4. Are the unexposed non-cases over-represented in the study population when compared to unexposed non-cases in 

the source population? 
5. What are , , , and  for the hypothetical study? 
6. Using the selection ratios just calculated, how does this example illustrate selection bias when controls are allowed 

to include persons who have sexual partners without STDs? 
7. Would selection bias described in the previous question be towards or away from the null? 

 
 

One way to minimize selection bias in these studies would be to re-define the control group to uninfected 
individuals known to have sex partners infected with STD’s.  For example, one could restrict controls to be individuals who 
have been notified by their local health department as being a recent sexual contact of persons diagnosed with STD. Such 
restriction of the control group would help to ensure that all controls, regardless of condom use, were recently exposed to 
infected partners and thus equally at risk for acquiring STD. 
 
 
Study Questions (Q8.10) continued 
 

8. True or False.  If controls were restricted to persons without STD’s who had sexual partners with STD’s, unexposed 
controls are likely to be over-represented in the study when compared to unexposed non-cases in the source 
population. 

9. True or False.  Exposed controls are likely to be over-represented in the study when compared to exposed non-cases 
in the source population. 

10. What do the answers to the above questions imply about relationships between the selection ratios  and ? 
11. If it is assumed that the selection ratios for exposed and unexposed cases are equal, why would there likely not be 

selection bias in studies that restrict controls to only persons who have sexual partners with STD’s? 
 
 
Summary 
 

 In case-control studies of STDs, the typical control group has been a random sample of persons without STDs from 
a clinic population. 

 A criticism of such studies is that the correct source population consists of individuals from these clinics who have 
sexual partners with STDs. 

Summary continued on next page 
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 In such studies, unexposed controls are likely to be over-represented when compared to unexposed non-cases in the 
source (i.e., clinic) population. 

 Selection bias is likely when controls are allowed to include persons who have sexual partners without STDs. 
 One way to minimize selection bias would be to re-define the control group to be uninfected individuals known to 

have sexual partners with STD’s. 
 
 

Selection Bias in Hospital Case-Control Studies 
 
In 1946, Berkson demonstrated that case-control studies carried out using hospital patients are subject to a type of selection
bias called Berkson’s bias. Berkson’s bias arises because patients with two disease conditions or high-risk behaviors are 
more likely to be hospitalized than those with a single condition. Such patients will tend to be over-represented in the study 
population when compared to the community population. 

For example, because cigarette smoking is strongly associated with several cancers, we would expect a hospital 
study of the relationship between cigarette smoking and almost any cancer to demonstrate a stronger relationship than would 
exist in a community population.  To illustrate Berkson’s bias, consider the two by two table describing exposure and disease 
for a certain community population shown here.  
 

 Community Population  
 Smoke?  
Disease Yes No Total
  Yes 400 200 600
  No 100,000 200,000 300,000
    Total 100,400 200,200 300,600 

 

RÔ =(400 x 200,000) / (200 x 100,000) = 4.0 
 

 Hospital Case-Control Sample  
 Smoke?  
 Yes No Total
  Case 225 75 300
  Control 100 200 300
    Total 325 275 600 

 

 
Suppose of the 600 cases, 300, or 50%, are selected for a case-control study from several hospitals.  Suppose further 

that 225, or 75%, of these 300 cases are smokers. Assume that there are 300 controls selected as a 0.1% sample of all non-
cases from the community. Assuming no bias or random error in choosing these controls, we would therefore expect 100 
exposed and 200 unexposed controls, as shown above. 
 
 
Study Questions (Q8.11) 
 

1. What are the source and study populations for this study? 
2. What are , , , and  for this study? 
3. Are , , , and  selection probabilities? 
4. Why is there selection bias in the odds ratio estimate?  Explain in terms of selection ratios. 
5. What is the direction of the bias? 
6. Why is this an illustration of Berkson’s bias? 

 
In the previous example, cases came from the hospital but controls came from the community.  To compensate for choosing 
hospitalized cases, the tables below describe a study in which 300 hospitalized non-cases are chosen as controls. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

” “
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 Community Population  
 Smoke?  
Disease Yes No Total
  Yes 400 200 600
  No 100,000 200,000 300,000
    Total 100,400 200,200 300,600 

 
 Hospital Case-Control Sample  
 Smoke?  
 Yes No Total
  Case 225 75 300
  Control 150 150 300
    Total 375 225 600 

 

 
7. Are the controls in the above study over-representative of the non-cases in the community? 
8. What are , , , and  for this study? 
9. In terms of selection probabilities, why is there selection bias in the odds ratio estimate? 
10. What is the direction of the bias? 
11. Why is this an illustration of Berkson’s bias? 

 
Summary 
 

 Berkson demonstrated that case-controls studies carried out using hospitalized patients are subject to a type of 
selection bias called Berkson’s bias. 

 Patients with two disease conditions or high-risk behaviors are more likely to be hospitalized than those with a 
single condition. 

 Hospital patients in a study population tend to be over-represented when compared to a community population. 
 Berkson’s bias can either be towards or away from the null depending on how hospital cases are more or less over-

represented than hospital controls when compared to the community.  
 

Selection Bias in Cross-Sectional Studies 
 
In cross-sectional studies, there are two distinct ways to consider selection bias.  If the study objective is primarily to survey 
an assumed stable population at a point or short interval of time, then the source population is that subset of an assumed 
stable cross-sectional population who were at risk for the disease prior to the study onset. Selection bias may then occur when 
some aspect of the selection process, such as non-response, distorts the study population enough to bias the estimate. 

Here, the study sample is a subset of the source population, so the key parameters of interest are selection 
probabilities. Alpha ( ) denotes the probability that an exposed case in the cross-sectional source population is eligible to be 
sampled in the study population. It is given by Ao divided by A, the respective cell frequencies in the source and study 
population. , , and  are defined similarly.  
 

 
 

Selection bias in the odds ratio, (the effect measure of interest in a cross-sectional study), can occur when the cross 
product of the selection probabilities [( )/( )] meaningfully differs from unity. 
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If the study objective, however, is to determine whether there is an etiologic relationship between exposure and 
disease, then the source population of interest is no longer the cross-sectional population being surveyed. The appropriate 
source population is instead given by a cohort identified at an earlier time point that contains the persons at risk for 
developing the disease by the time of the cross-sectional study. In other words, a cross-sectional study provides prevalence 
data from which we wish to make inferences about incidence data.  In this situation, the primary source of selection bias is 
what is called selective survival. (Note that selective survival is an important issue with diseases with high mortality risk, 
such as coronary heart disease, but less of an issue with diseases with low mortality risk, such as arthritis.)  Subjects in cross-
sectional studies are survivors, particularly those with the disease, whether exposed or unexposed. 

The selection probabilities , , , and  give probabilities of surviving from time T0 to time T1. Selection bias can 
occur here if the probability of surviving long enough to be included in the cross-sectional study is different for the four cells 
of the source population cohort. 

To illustrate selective survival, the table shown below (upper left table) describes the incidence of disease from time 
T0 to time T1 for the follow-up of a fixed cohort of 1000 persons who were disease-free at time T0.  We compare the results 
from the above incidence data to expected results from a cross-sectional study carried out on survivors. The study population 
of survivors at time T1 is shown in the lower right table below. 

 
Study Question (Q8.12) 
 

1. For exposed and unexposed separately, what proportion of persons who develop the disease are expected to survive 
by time T1? 

2. What proportion of exposed persons who do not develop the disease are expected to survive to time T1? 
3. What proportion of unexposed persons who do not develop the disease are expected to survive by time T1? 
4. What are the 4 selection probabilities for selective survival? 
5. What is the cross-product of selection probabilities? 
6. Is there selection bias in both the odds ratio and the risk ratio? 

 
 
Summary 
 

 In cross-sectional studies, there are two distinct ways to consider selection bias, depending on the objective of the 
study. 

 If the study objective is to survey an assumed stable population at a point or short interval of time, then selection 
bias may occur because of non-response and/or some other selective distortion of the study population. 

 If the study objective is to determine whether there is an etiologic relationship between exposure and disease, then 
the primary source of selection bias is selective survival. 

 Selective survival can occur if the probability of surviving long enough to be included in the cross-sectional study is 
different for the four cells of the source population cohort. 
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Quiz (Q8.13) 
 

1. If the study objective is primarily to survey an assumed stable population at a point or short interval of 
time, then the source population is that subset of an assumed stable cross-sectional population who were 
at risk for the disease ??? to the study onset.  

2. Selection bias may then occur when some aspect of the selection process such as ??? distorts the ??? 
enough to bias the estimate. 

3. Selection bias in the odds ratio, an effect measure of interest in a cross-sectional study, can occur when 
the cross-product of the selection probabilities meaningfully differs from ???. 

 
Choices 
100 after   non-response one   prior to selective survival source population 
study population   zero 
 
 
If the study objective, however, is to determine whether there is an etiologic relationship between exposure and 
disease, then the source population of interest is no longer the cross-sectional population being surveyed.  

4. The appropriate source population is instead given by a cohort identified at a(n) ??? time point that 
contains the persons at risk for developing the disease ??? the time of the cross-sectional study.  

5.  In other words, a cross-sectional study provides ??? from which we wish to make inferences about ???.  
 
Choices 
after  by   earlier  incidence data  later prevalence data 
 
 
Consider again a cross-sectional study to determine whether there is an etiologic relationship between exposure 
and disease. 
 

6. In this situation, the primary source of selection bias is what is called ???.  

7. Subjects in cross-sectional studies are ???, particularly those with the disease, whether exposed or 
unexposed.  

8. Those that do not ??? are not included in the study. 
 
Choices 
cases  die non-response    selective survival  survive survivors 
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8-4 Selection Bias (continued) 
 

What Can Be Done About Selection Bias Quantitatively? 
 
Suppose you are convinced that a study already designed and carried out is flawed by selection bias. Is it possible to 
quantitatively correct for such bias?  For example, can the value of an estimated odds ratio that is biased be adjusted to 
provide a modified value that is free from selection bias? 

The answer here depends on whether reliable estimates of the underlying selection ratio parameters can be 
determined. Actually, even if these parameters cannot be individually estimated, correcting for selection bias is possible if we 
can estimate ratios of these selection parameters, such as  over ,  over , or just the cross-product ratio of the selection 
parameters. 

 
Here are three 2x2 tables that describe the study data, estimated selection parameters, and adjusted study data that 

we need to consider if we want to adjust for selection bias.  
 

 
 

The table of adjusted study data is derived using our previous definitions of the selection parameters as ratios of 
corresponding cell frequencies from the study and source populations. 
 

 
 

This table is obtained by substituting a for Ao, b for Bo, and so on and then solving for capital A, B, C and D in 
terms of lower-case a, b, c, and d divided by their corresponding selection parameter estimates. 
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An adjusted estimate of the odds ratio that corrects for selection bias is then given by the cross product of the 
adjusted cell frequencies, which can be written in terms of the study data and selection parameter estimates as shown here.   
 

 
 
Thus, the odds ratio that adjusts for selection bias is given by the estimated odds ratio from the study data divided by 

the estimated cross product of selection parameters. 
 

 
 

This adjustment formula can alternatively be written using ratios of the selection parameters as shown here.  

 
The alternative formulas allow the correction for bias even if only the ratios of selection parameters can be 

determined rather than the individual selection parameters themselves. 
 
 
Study Questions (Q8.14) 
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Consider the above three tables of study data, estimated selection parameters, and adjusted study data. 
 

1. Compute the adjusted cell frequencies D̂ and ,Ĉ ,B̂ ,Â . 
2. What is the adjusted odds ratio that corrects for selection bias? 
3. Compute the ratios of selection parameters ˆ/ˆr̂ and ˆ/ˆr̂ DD  

4. Based on DD r̂ and r̂ , use the alternative correction formula to compute the odds ratio that corrects for selection 
bias. 

 
 

An adjusted estimate of the risk ratio is also possible if estimates of the selection parameters can be identified. From 
the 2x2 table of adjusted cell frequencies we can obtain an adjusted risk ratio as shown here. 

 

If we then substitute for D̂ and ,Ĉ ,B̂ ,Â their corresponding expressions involving the study data divided by the 
estimated selection parameter, and carry out a few algebraic manipulations, we obtain the adjusted risk ratio formula shown 
here. 
 

 
 

An alternative formula can be stated involving the ratio of selection parameters EE r̂ and r̂  as shown here. 
 

 
 
 
Study Questions (Q8.14) continued 
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Consider again the above three tables of study data, estimated selection parameters, and adjusted study data. 
 

5. Using the above information, what is the adjusted risk ratio that corrects for selection bias? 
6. What are the values of ratios ˆ/ˆ and  ˆ/ˆ ? 
7. Use the formula for correcting selection bias in the risk ratio to obtain the adjusted risk ratio. 

 
 
Summary 
 

 Selection bias can be corrected quantitatively depending on whether the four selection parameters or ratios of these 
parameters can be estimated. 

 An adjusted odds ratio formula is: 
 

 
 

 Alternative formulae are: 
 

 
 

 Selection bias can be corrected quantitatively depending on whether the four selection parameters can be estimated. 
 An adjusted risk ratio formula is at left and an alternative formula for RRadj is at right:  

 

 
 
 

What Can Be Done About Selection Bias Qualitatively? 
 
The previous activity provided quantitative formulas for correcting for selection bias. Unfortunately the information required 
to apply these formulas, namely the selection ratio parameters or their ratios, is conceptually complicated, rarely available, 
and not easily quantified.  The ideal way to address selection bias is to prevent or at least minimize such bias when designing 
a study rather than to attempt to correct for the bias once the data have been collected. 

In case-control studies, the controls should be carefully chosen to represent the source population that produced the 
cases. The use of two or more control groups should also be considered. 
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Study Questions (Q8.15) 
 

1. Suppose two control groups are used in a case-control study and the resulting estimated effects differ considerably 
depending on which control group is used.  How can it be determined which of the two estimates is correct? 

2. Suppose two control groups are used and the resulting estimated effects are essentially the same regardless of which 
control group is used.  Does this mean that there is no selection bias? 

 
 

Case-control studies using incident cases and nested case-control studies are preferable to studies that use prevalent 
cases or to hospital-based studies. Selection bias may also be avoided by assuring equal opportunity for disease detection 
among exposed and unexposed subjects. 

In cohort studies, efforts should be made to achieve high response and low loss-to-follow-up. 
 
Study Questions (Q8.15) continued 
 

3. Suppose only 1% of a study cohort is lost to follow-up.  Is selection bias still possible because of loss to follow-up? 
4. Suppose 20% of exposed subjects and 30% of unexposed subjects are lost to follow-up in a cohort study.  Will there 

be selection bias? 
 
 

Observational studies involving volunteers should be avoided, although clinical trials involving volunteers are 
possible because of randomization. Occupational cohort studies should avoid a healthy worker bias by ensuring that 
unexposed subjects are as healthy as exposed subjects. 

At the analysis stage, it may be possible to determine the direction of the bias, even if the magnitude of the bias 
cannot be estimated or a numerical correction for bias is not feasible. 
 
 
Study Questions (Q8.15) continued 
 
Suppose a reasonable argument could be made that alpha is less than beta, whereas gamma equals delta, even though specific 
questimates of each selection parameter or ratios of selection parameters were not possible.  Answer the following questions 
based on this information: 
 

5. Is it possible to assess the magnitude of selection bias in the odds ratio? 
6. Is it possible to quantitatively correct for selection bias in the odds ratio? 
7. Is it possible to determine the direction of the bias? 

 
Suppose it can be argued that  is greater than , but that  is also greater than , even though specific guestimates of each 
selection parameter or ratios of selection parameters were not possible. 
 

8. Is it possible to assess whether or not there is selection bias? 
9. Suppose it could be argued that  /  is equal to  / .  Is it possible to assess whether or not there is selection bias in 

the odds ratio? 
10. Suppose the correct OR is greater than 1 and it could be argued that  /  is greater than  / .  Is it possible to 

determine the direction of the bias? 
 
 

A final approach to addressing selection bias as well as information and confounding biases is in the write-up of the 
study. A description of the potential biases of the study is typically provided in the Discussion” section of a publication. This 
discussion, particularly when it concerns possible selection bias, is quite subjective, but such judgment is required because of 
the inherent difficulty in quantifying such biases. 

 
 
 
 
 

“
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Summary 
 

 The information required to assess selection bias is conceptually complicated, rarely available, nor is easily 
quantifiable. 

 At the study design stage, decisions may be made to avoid selection bias in the study’s results. 
 At the analysis stage, it may be possible to determine the direction of selection bias without being able to 

quantitatively correct for the bias. 
 At the publication stage, potential biases are typically addressed qualitatively in the Discussion section of a paper. 

 
 

The Worst-Case Scenario” Approach. 
 

This is a practical approach for assessing the direction of selection bias that considers the most extreme changes in the 
estimate of effect that are realistically possible as a result of the way subjects are selected.  Through such an approach it 
may be possible to show that the worst amount of bias possible will have a negligible effect on the conclusions of one’s 
study. 

For example, consider a cohort study involving lung-cancer-free 1000 smokers and 1000 non-smokers all over 40 years 
of age that are followed for 10 years. Suppose further that over the follow-up period, 200 smokers and 100 non-smokers are 
lost-to-follow-up.  Also, suppose, that among those 800 smokers and 900 non-smokers remaining in the study, the 2x2 table 
relating smoking status at the start of the study to the development of lung cancer (LC) over the 10 year follow-up is shown 
as follows: 
 
 Smokers Non-smokers
LC 80 10 
No LC 720 890 
Total 800 900 

 
The estimated risk ratio from these data is (80/800)/(10/900) = 9, which suggests a very strong relationship between 

smoking status and the development of lung cancer.  A worst-case scenario might determine what the risk ratio estimates 
would be if either all 200 smokers lost-to-follow-up did not develop lung cancer and/or all 100 non-smokers lost to follow-
up did develop lung.  Here are comparison of estimates for “worst-case” scenarios: 

 
Scenario Risk Ratio
1.  Actual observed data 9
2. 1/10th of 200 lost-to-follow-up smokers get LC and 1/90th of the 100 lost-to-follow-up non-smokers get 
LC 

9

3.  1/10th of the 200 lost-to-follow-up smokers get LC and 2/90th of the 100 lost-to-follow-up non-smokers 
get LC 

8.2

4.  None of the 200 lost-to-follow-up smokers get LC and 1/90th of the 100 lost-to-follow-up non-smokers 
get LC 

7.3

5.  None of the 200 lost-to-follow-up smokers get LC and 2/90th of the 100 lost-to-follow-up non-smokers 
get LC 

6.6

6.  None of the 200 lost-to-follow-up smokers get LC and all 100 lost-to-follow-up non-smokers get LC 0.7 
 
Notice that scenario #6 above changes smoking from being harmful to being protective. Yet this is not a very realistic 

scenario. Scenario #2 is not really a worst case” type of scenario because it assumes that those lost to follow-up have the 
same risk as those actually followed over the entire 10 years. The other three scenarios, i.e., #’s 3, 4, and 5, are realistic
and of a worst-case” type; all of these show that the risk ratio is reduced, but is still high.  The difficulty with this approach, 
as illustrated above, concerns the extent to which the investigator can identify a worst-case” scenario that is the most 
realistic among all possible scenarios. 
 
 
 
 
 
 

” 

“

“
“

“
“
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Quiz (Q8.16) 
 
 

1. An adjusted estimate of the odds ratio that corrects for selection bias is given by the cross product of the 
???, which can be written in terms of the study data and ??? estimates. 

2. Thus, the odds ratio that adjusts for selection bias is given by the ??? from the study data divided by the 
???. 

 
Choices 
adjusted cell frequencies estimated cross-product of selection parameters 
estimated odds ratio population data  selection bias  selection parameter 
 
 

3. Case-control studies using ??? are preferable to studies that use ???.  

4. And ??? studies are preferable to ??? studies. 

5. In cohort studies, efforts should be made to achieve ??? and to avoid ???. 
 
Choices 
cases controls high response hospital-based  incident cases            loss-to-follow-
up nested case-control prevalent cases         selection bias 
 
 
At the analysis stage, the extent of possible selection bias may be assessed using what are often referred to as 
"worst-case" analyses.  Such analyses consider the most extreme changes in the estimated effect that are 
possible as a result of selection bias. Determine whether each of the following is True or False. 
 

6. This approach is useful since it could demonstrate that the worst amount of bias possible will have a 
negligible effect on the conclusions of the study. ??? 

7. This approach can rule out selection bias, but it cannot confirm selection bias. ??? 
 
 
The tables below show the observed results and a worst-case’ scenario for a clinical trial. Ten subjects receiving 
standard treatment and 15 subjects receiving a new treatment were lost-to-follow-up. The outcome was whether 
or not a subject went out of remission (D = out, not D = in) by the end of the trial. In the worst-case  scenario, all 
10 subjects on standard treatment who were lost-to-follow-up remained in remission but all 15 subjects on the 
new treatment who were lost-to-follow-up went out of remission. 
 

 
 

8. What are the values of a*? ???, b*? ???, c*? ???, d*? ??? 
 
Choices 
106 110 121 22 32 42 90 91 
 
 
 

Quiz continued on next page 
 

’

’

’
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9. Refer to the data in the tables above. What is the risk ratio estimate based on the observed data? ??? 

10. What is the risk ratio estimate based on the worst-case’ scenario? ??? 

11. In the worst-case scenario, is there selection bias? ??? 

12. Does a “worst-case” assessment such as illustrated here “prove” that there is selection bias? ??? 
 
Choices 
1.3 1.4 3.9 4.8 No Yes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

’
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Nomenclature 
 
Source vs. study population 
 Source

 E  E
     Study

 E  E  

D   D       
D  D       

          
 
Selection Probabilities 
  E  E  
 D      

 D           

     
 
 Study Data   Estimated 

Selection parameters
  Adjusted Study Data 

 E  E    E  E   E  E  
D  a b  D  ̂  ̂   D

α̂
aÂ   

β̂
bB̂   

D  c d  D  ̂  ̂   D
λ̂
cĈ   

γ̂
dD̂   

           
 
 
 

Bias( RÔ ,OR)= ORo-OR=
BC
AD

βBγC
αAδd

BC
AD

CB
DA

oo

oo

  

 

γ̂β̂
δ̂α̂
RÔ

γ̂
c

β̂
b
δ̂
d

α̂
a

ĈB̂
D̂ÂRÔ adj   

 

A B
A° B°

C° D°

C D

α= A°/ A β= B°/ B

γ= C°/ C δ= D°/ D
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ˆ
ˆ

db

b
ˆ
ˆ

ca

a

D̂B̂
B̂

ĈÂ
Â

RR̂ adj  

 
D  Truly has disease 
E  Truly exposed 
Not D or D  Truly does not have disease 
Not E or E  Truly not exposed 

RÔ  Odds ratio from observed data

ORo Odds Ratio from Study Population

adjRÔ  Odds ratio from corrected or adjusted data 

RR̂  Risk ratio from observed  
ORo Risk Ratio from Study Population

adjRR̂  Risk ratio from corrected or adjusted  
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Homework 
 
ACE-1.  Selection Bias: Dietary Fat vs. Colon Cancer 
 
Suppose an investigator is interested in whether dietary fat is associated with the development of colon cancer. S/he identifies 
several hundred incident cases of colon cancer and a comparable number of community controls. Each subject fills out a food 
frequency questionnaire describing his/her dietary habits in the previous year; information from the questionnaire is used to 
divide subjects into those who consumed a high fat diet (exposed) and those who consumed a low fat diet (unexposed). 
 
Assume the following: 
 

 Among cases, the likelihood of agreeing  to participate in the study is NOT related to exposure. 
 Among controls, those who consume a high fat diet are half as likely to participate, compared to those who consume 

a low fat diet. 
 
a. Express each of the assumptions above in terms of selection probabilities. 
b. Calculation the selection odds for the diseased (rD) and the selection odds for the non-diseased (rnot D). 
c. Based on your answers to a and b above, do you expect bias in the estimated odds ratio (OR) from this study. Justify 

your answer. 
 
Suppose the following table reflects the data that one would have observed if there had been 100% participation among both 
cases and controls (i.e., these are unbiased data): 
 
 High Fat Low Fat Total 
Case 200 175 375 
Control 150 225 375 
Total 350 400 750 
 
d. Based on the information about selection probabilities described earlier, describe the 2x2 table that gives the study 

population for this study. 
e. Compute and compare the odds ratio in the source population (i.e., 100% participation) with the odds ratio in the study 

population. Is there bias, and if so, what is the direction of the bias? 
 
ACE-2.  Selection Bias: Food Allergies vs. CHD Development 
 
Consider a ten-year follow-up of a fixed cohort free of CHD at the start of follow-up. The study objective is to determine 
whether persons experiencing food allergies (FA) prior to the start of follow-up are at increased risk for CHD development. 
Suppose that a simple analysis of the study results yields the following study information. 
 
 FA  
CHD Yes No Total 
  Yes 49 286 335 
  No 1378 5816 7194 
Total 1427 6102 7529 
  RR = 0.72,   OR = 0.72 
 
Which of the following statements about possible selection bias is appropriate for this study design (Choose only one 
answer): 
 
a. If persons who had high blood pressure (a known risk factor for CHD) prior to the start of follow-up were excluded from 

the comparison (no allergy) group, but NOT from the FA (allergy) group, then there should be concern about selection 
bias that would be AWAY FROM THE NULL. 

b. If the likelihood of being not lost to follow-up for persons with food allergies is exactly the same as the likelihood of not 
being lost to follow-up for persons without food allergies, then there can be no selection bias due to follow-up loss. 

 
 

• 
• 



224  Lesson 8.  Selection Bias 

  

c. Bias from selective survival should be a concern in this study. 
d. Berkson’s bias should be a concern in this study. 
e. If persons who were free of any kind of illness (except FA) prior to start of follow-up were excluded from both the 

exposed group and the comparison (no allergy) group, then there should be concern about selection bias that would be 
TOWARDS THE NULL. 

 
ACE-3.  Selective Survival 
 
a. What is meant by “bias due to selective survival” in cross-sectional studies? (In your answer, make sure to define 

appropriate selection probability parameters.) 
b. Under what circumstances might there be no selective survival bias even if the selection probabilities are not all equal? 
c. Suppose that you could assess that the direction of possible selective survival bias in your study was towards the null. If 

your study data yielded a non-statistically significant odds ratio of 1.04, would it be correct to conclude that there was no 
exposure-disease association in your source population? Explain. 

 
ACE-4.  Choice of Cases and Controls 
 
You are asked to advise a clinician interested in conducting two case-control studies examining the relationship between 
coffee consumption and: 

i. Primary ovarian cancer. 
ii. Coronary artery disease 

The clinician wishes to use hospital admissions as the source of cases. Advise how valid the proposal is, particularly in light 
of possible selection biases. How would you advise him about choice of cases and controls? 
 
ACE-5.  Mortality and Clofibrate: Selection Bias? 
 
A randomized placebo-controlled trial was carried out to estimate the effect of Clofibrate (a cholesterol-lowering drug) on 5-
year mortality in men aged 30 to 64 years who had a recent myocardial infarct. The mortality in the Clofibrate group was 
18.2% and that in the control group was 19.4%. This difference was not statistically significant. Subsequent analysis showed 
that about one-third of men given Clofibrate did not take their medication as directed. If these men are omitted from the 
analysis, there is a statistically significant effect of Clofibrate, with mortality in the Clofibrate group being 15.0%. 

 
a. Which of the above two alternative analyses is more appropriate? Why? 
b. Is this a selection bias issue? Explain. 
 
ACE-6.  Identifying Study Subjects 
 
A study entitled “Antidepressant Medication and Breast Cancer Risk” (Amer. J. of Epi, late 1990’s) stated in the methods 
section of the paper that “Cases were an age-stratified (< 50 and  50 years of age) random sample of women aged 25-74 
years diagnosed with primary breast cancer during 1995 and 1996 (pathology report confirmed) and recorded in the 
population-based Ontario Cancer Registry. As the 1-year survival for breast cancer is 90%, surrogate respondents were not 
used. Population controls, aged 25-74 years, were randomly sampled from the property assessment rolls of the Ontario 
Ministry of Finance; this database includes all home owners and tenants and lists age, sex, and address.” 

 
a. Discuss the authors’ approach to the identification of cases with respect to the potential for selection bias. 
b.  Discuss the authors’ approach to the identification of controls with respect to the potential for selection bias. 
c. Does the decision not to allow surrogate respondents potentially affect selection bias? 
 
ACE-7.  Selection Bias in Observational Studies 
 
The following questions concern the assessment of selection bias in observational studies where the putative association 
between salt intake and hypertension is being investigated. It is hypothesized that persons who have a greater intake of salt 
are at greater risk of developing chronic hypertension. It is assumed that both variables are dichotomized: high and low salt 
intake; hypertensive (DBP 95 and SPB 160) and normotensive. In considering the following questions, ignore the 
possibility of either information bias or confounding. Also, assume that the measure of effect in the source population is 
greater than one. 
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a. Consider a case-control study in which equal numbers of hypertensives (cases) and normotensives (controls) are 

enrolled. Suppose that hypertensives from the study are gathered from an outpatient clinic designed to screen for 
hypertensives in the population, using the clinic on a volunteer basis. Normotensives are selected randomly from the 
surrounding population served by the clinic. Suppose that high-salt-intake hypertensives are four times as likely to be 
screened as low-salt-intake hypertensives in the clinic and that the sample of normotensives from the surrounding 
community is indeed a representative sample. What can be said about selection bias in estimating the exposure odds ratio 
(EOR)? (Formulate your answer in terms of the selection probabilities , , , and , or the selection odds  rD and rnot D.) 

b. In a type of case-control study similar to that described in part a, suppose that high- and low-salt-intake hypertensives are 
equally likely to be screened but that high-salt-intake normotensives in the community are more likely to cooperate in the 
study than are low-salt-intake normotensives in the community. What can be said about selection bias in estimating the 
EOR? (Formulate your answer in terms of the selection probabilities , , , and , or the selection odds  rD and rnot D.) 
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Answers to Study Questions and Quizzes 
 
Q8.1 
 

1. 2 
2. 1; exposed cases are likely to be over-represented 

in the study when compared to unexposed cases. 
 
Q8.2 
 

1. Withdrawals from the study can distort the final 
sample to be analyzed as compared to the random 
sample obtained at the start of the trial. 

2. Those who withdraw from the study have an 
unknown outcome and therefore cannot be 
analyzed. 

3. A general population of patients with the specified 
cancer and eligible to receive either the standard or 
the new treatments. 

4. The (expected) sample ignoring random error that 
would be obtained after the withdrawals from the 
random sample initially selected for the trial. 

5. The source population is the population cohort from 
which the cases would be derived if an appropriate 
cohort study had been carried out. 

6. The study population is the expected sample 
obtained from the cross-sectional sample that is 
retained for analysis.  Alternatively, the study 
population is the stable population from which the 
cross-sectional sample is obtained for study. 

 
 
Q8.3 
 

1. It is unlikely that women in this control group (e.g., 
with cervical or ovarian cancers) would be 
selectively screened for their cancer from vaginal 
bleeding caused by estrogen use. 

2. Away from the null because of selective screening 
of cases but not controls.  This would yield too high 
a proportion of estrogen users among cases but a 
correct estimate of the proportion of estrogen users 
among controls. 

3. Because those who have vaginal bleeding from 
using estrogen will be more likely to have their 
benign endometrial tumor detected than those non-
users with benign endometrial tumors. 

4. Using benign endometrial tumors as the control 
group would hopefully compensate for the selective 
screening of cases.  However, it is not clear that the 
extent of selective screening would be the “same” 
for both cases and controls. 

5. Having a benign tumor in the endometrium is not 
readily detected without vaginal bleeding.  
Therefore, controls with benign endometrial tumors 

who use estrogen are more likely to have their 
tumor detected than would nonuser controls. 

6. Towards the null because there would be selective 
screening of controls but not cases. This would 
yield too high a proportion of estrogen users among 
controls but a correct estimate of the proportion of 
estrogen users among cases. 

7. Because there is unlikely to be selective screening 
in the detection of control cases (with other 
gynecological cancers) when comparing estrogen 
users to nonusers. 

 
Q8.4 
 

1. No, since the risk ratio for the expected sample is 3, 
which equals the risk ratio in the source population. 

2. Study population, because the sample just described 
gives the expected number of subjects obtained in 
the final sample. 

3. The source is the population from which the initial 
10% sample obtained prior to follow-up was 
selected.  This is the population of subjects from 
which cases were derived. 

4. There is no selection bias because the RR=3 in the 
study population, the same as in the source 
population. 

5. Yes, because the estimated risk ratio in the study 
population of 3.9 is somewhat higher than (3) in the 
source population as a result of subjects being lost 
to follow-up. 

6. No, the risk for exposed persons is 150/10,000 or 
.0150 in the source population and is 14/800 = 
.0175 in the sample. 

7. No, the risk for unexposed persons is 50/10,000 or 
.0050 in the source population and 4/900 or .0044 
in the sample. 

8. No.  There will only be selection bias if loss to 
follow-up results in risks for disease in the exposed 
and/or unexposed groups that are different in the 
final sample than in the original cohort. 

 
Q8.5 
 

1. Workers tend to be healthier than those in the 
general population and may therefore have a more 
favorable outcome regardless of exposure status. 

2. Volunteers may have different characteristics from 
person who do not volunteer.  The study population 
here is restricted to volunteers, whereas the source 
population is population-based, e.g., a community. 

3. There is lack of external validity in drawing 
conclusions from a source population of volunteers 
to an external population that is population-based. 
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4. Yes.  Clinic-based studies may lead to spurious 
conclusions because patients from clinics tend to 
have more severe illness than persons in a 
population-based sample. 

 
Q8.6 
 

1.  = 12/150 = .08;  = 4.5/50 = .09;  = 788/9850 = 
.08; and  = 895.5/9950 = .09.  

2. No.  The odds ratio in both source and study 
populations is 4.03.  The risk ratio in both target 
and study populations is 3.0. 

3. (  x ) / (  x ) = (.08 x .09) / (.09 x .08) = 1.  This 
result illustrates a rule (described in the next 
activity) that says that the cross-product ratio of 
selection probabilities equal 1 if there is no bias in 
the odds ratio. 

4.  = 14/150 = .093;  = 4/50 = .08;  = 786/9850 = 
.08; and  = 896/9950 = .09. 

5. Yes.  The odds ratio in the source population is 
3.03 and in the study population is 4.00.  The risk 
ratio in the source population is 3.0 and in the study 
population 3.9. 

6. (  x ) / (  x ) = (.093 x .09) / (.08 x .08) = 1.3.  
This result illustrates a rule (described in the next 
activity) that says that the cross-product ratio of 
selection probabilities will differ from 1 if there is 
bias in the odds ratio. 

 
Q8.7 
 

1. No.  The cross product ratio of selection ratios 
equals 1. 

2. Yes.  The cross product ratio of selection ratios 
equals (.093 x .09)/(.08 x .08) = 1.3, which is larger 
than 1. 

3. Since the bias is defined as ORo – OR, this means 
that the bias is away from the null (i.e., ORo is 
further away from the null than is OR). 

 
Q8.8 
 

1.  = 100/100 = 1.0;  = 50/50 = 1.0;  = 7920/9900 
= .8; and  = 7960/9950 = .8 

2. Yes, the study population is a subset of the source 
population. 

3. Yes, more or less; the incidence of disease in the 
overall source population is 150/20,000=.0075 and 
150/16,030=.0093 in the overall study population.  
Within each exposure group, the risks are 
100/10,000=.01 and 50/110,000 =.005, 
respectively, in the source population; and 
100/8,020 =.0124 and 50/8,010=.0062, 
respectively, in the study population. 

4. No.  The cross product ratio of selection ratios 
equal 1. 

5. No.  The risk ratio in the study population is 1.998, 
which is not identical but essentially equal to the 
risk ratio in the source population. 

6.  = 100/100 = 1.0;  = 50/50 = 1.0;  = 99/9,900 = 
.01; and  = 99.5/9950 = .01. 

7. No.  The cross-product ratio of selection ratios 
equals 1. 

8. Yes.  The risk ratio in the study population is 1.503, 
which is smaller than the risk ratio of 2.0 in the 
source population.  The bias is towards the null. 

9. No.  The disease incidence is not at all rare in the 
study population.  Overall the disease incidence is 
150/348.5 = .4304 in the study population, and is 
100/199 = .5025 and 50/149.5 = .3344 within 
exposed and unexposed groups, respectively. 

10.  = 40/40 = 1.0;  = 10/10 = 1.0;  = 30/60 = .5; 
and  = 90/90 = 1.0. 

11. Yes.  The cross product ratio of selection ratios 
equals (1 x 1)/(1 x .5) = 2, which is clearly different 
from 1.  The incorrect OR = 12, which is greater 
than the correct OR = 6, indicating that the bias is 
away from the null. 

12. Yes.  The risk ratio in the study population is 5.71, 
which is larger than the risk ratio of 4.0 in the 
source population.  The bias is away from the null. 

13. The disease is not rare in either source or study 
populations.  It is particularly not rare for exposed 
subjects in the study population. 

14. No.  The bias in the odds ratio (ORo =12 whereas 
OR = 6) is much larger than the bias in the risk 
ratio (RRo =5.71 whereas RR =4.0). 

 
Q8.9 
 

1.  >  
2.  >  
3.  =  
4.  =  

 
Q8.10 
 

1. True.  Unexposed controls in the study will include 
persons with sexual partners with and without 
STD’s.  Unexposed non-cases in the source 
population will not include sexual partners without 
STDs. 

2. False.  Exposed controls will go to STD clinics 
primarily for reasons of disease prevention rather 
than contraception.  They are more likely to have 
sex partners with STDs than unexposed controls, 
and therefore, are more likely to represent the 
source population. 

3. Yes.  In the source population the odds for condom 
users in one-half the odds for non-users, whereas 
the odds ratio is one in the study population. 
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4. Yes.  The ratio (i.e., odds) of unexposed to exposed 
non-cases in the study population is 6 to 1 whereas 
the odds of unexposed to exposed non-cases in the 
source population is 3 to 1. 

5.  = 100/100 = 1;  = 600/600 = 1;  = 200/200 = 1; 
and  = 1200/600 = 2. 

6. In this example,  (1) equals  (1), but  (1) is less 
than  (2).  Consequently, the cross product ratio of 
selection ratios should be greater than 1.  Thus, 
there is selection bias in the odds ratio. 

7. The bias would be towards the null, since the 
(incorrect) OR in the study population is equal to 1 
whereas the correct OR is different (in this case, 
smaller) than 1 in the source population. 

8. False.  Both unexposed controls in the study and 
unexposed non-cases will be restricted to have 
sexual partners with STD’s. 

9. False.  Exposed controls and exposed non-cases 
will also be restricted to have sexual partners with 
STD’s.  Consequently, exposed controls in the 
study will reflect the source population of exposed 
non-cases, all those partners have STD’s. 

10. , the selection ratio for exposed controls, is equal 
to , the selection ratio of unexposed controls. 

11. The cross product of selection ratios should be 
equal to 1. 

 
Q8.11 
 

1. The source population is the community population 
and the study population is the expected case-
control sample under the selection conditions 
described for the study. 

2.  = 225/400 = .5625;  = 75/200 = .375;  = 
100/100,000 = .001; and  = 200/200,000 = .001. 

3. Yes, because each is derived as a ratio in which the 
numerator is a subset of the denominator. 

4.  = .5625 is greater than  = .375, whereas  = .  
Consequently, the cross-product ratio of selection 
probabilities = (.5625 x .001)/(.375 x .001) = 1.5, 
which is different from 1. 

5. The OR in the study population is 6 whereas the 
OR in the source population is 4.  The incorrect 
(i.e., biased) odds ratio of 6 is an overestimate of 
the correct odds ratio, and is therefore away from 
the null. 

6. Patients who are both cases and smokers are over-
represented in the study when compared to the 
community population. 

7. Yes.  Controls are split 50:50 among exposed and 
unexposed, whereas non-cases in the community 
are split 1:2. 

8.  = 225/400 = .5625;  = 75/200 = .375;  = 
150/100,000 = .0015; and  = 150/200,000 = 
.00075. 

9.  = .5625 is greater than  = .375, and  = .0015 is 
less than  = .00075.  The cross-product ratio of 
selection probabilities = (.5625 x .00075)/(.375 x 
.0015) = 0.75, which is different from 1. 

10. The OR in the study population is 3 whereas the 
OR in the source population is 4.   The incorrect 
(i.e., biased) odds ratio of 3 is an underestimate of 
the correct odds ratio, and is therefore towards the 
null. 

11. Hospital patients who are both cases and smokers 
are more over-represented than are hospital patients 
who are both controls and smokers when compared 
to the community population. 

 
Q8.12 
 

1. 25/50 = .5 for exposed and 40/80 = .5 for 
unexposed. 

2. 142.5/150 = .95 
3. 540/720 = .75 
4.  =  = .5;  = .95, and  = .75. 
5. (.5 x .75)/(.95 x 5) = .79 
6. Yes, a slight bias.  For the odds ratio, ROR = 3 

whereas POR (= OR in the study population) = 2.4.  
For the risk ratio, RR 2.5 whereas PR (= effect in 
the study population) = 2.2.  The bias is towards the 
null. 

 
Q8.13 
 

1. prior to 
2. non-response, study population 
3. one 
4. earlier, by 
5. prevalence data, incidence data 
6. selective survival 
7. survivors 
8. survive 

 
Q8.14 
 

1. 90  D̂ 60,  Ĉ 10,  B̂ 40,Â  
2. ORadj = 6 
3. 5.r̂  1, r̂ DD  

4. 
6   (.5/1)

 12  )r̂/r̂(  R̂OOR DDadj  

RRadj = (40/100)/(10/100) = 4 
5. 1  ˆ/ˆr̂ 2,  ˆ/ˆ  r̂ EE  
6. RRadj = [40/(40 + [30 x 2])]/{10/(10 + [90 x 1])} = 

4 
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Q8.15 
 

1. A decision will have to be made as to which of the 
two control groups is the most suitable, e.g., which 
control group is more representative of the source 
population. 

2. Either of the following is possible: 1.) There is no 
selection bias because both estimated effects are 
correct; or 2.)  There is selection bias because both 
estimated effects are biased. 

3. Yes.  Since the presence of selection bias depends 
on the selection parameters within the 2x2 table, 
selection bias may still occur even with excellent 
response rates and minimal loss-to-follow-up. 

4. Not necessarily.  As with the previous question, the 
presence of selection bias depends on the selection 
parameters within the 2x2 table, whereas the 
information provided only considers follow-up loss 
on the marginals (i.e., total exposed and total 
unexposed) of the 2x2 table. 

5. No.  The magnitude of selection bias cannot be 
determined without guestimates of the selection 
parameters or their ratios. 

6. No.  A corrected odds ratio would require 
guestimates of the selection parameters or their 
ratios. 

7. Since  is less than  and gamma equals delta, the 
cross-product (  x ) / (  x ) must be less than one.  
Thus, ORo must be less than OR, so that the bias 
would be towards the null if the OR is greater than 
1 and away from the null if the OR is less than 1. 

8. No.  Without knowing whether  over  is either 
equal to, less than, or greater than  over , it is not 
possible to determine whether the cross-product (  

x )/(  x ) = (  / )/(  / ) is equal to, less than, or 
greater than 1. 

9. Yes.  There is no selection bias in the odds ratio 
because the cross-product (  x )/(  x ) equals 1. 

10. Yes.  The bias must be away from the null because 
the cross-product (  x )/(  x ) is greater than 1 so 
that the biased ORo is greater than the correct OR, 
which is greater than 1. 

 
Q8.16  

 
1. adjusted cell frequencies, selection parameter 
2. estimated odds ratio, estimated cross-product of 

selection parameters 
3. incident cases, prevalent cases 
4. nested case-control, hospital-based 
5. high response, loss-to-follow-up 
6. True 
7. True – Since the “worst-case” analysis can 

demonstrate that the worst amount of bias will have 
a negligible effect on the conclusions, one could 
rule out selection bias.  However, since the “worst-
case” analysis gives us the “worst possible” results, 
we cannot confirm selection bias.  We cannot be 
sure that our results will be as extreme as “worst-
case” results. 

8. 32, 22, 110, 106 
9. 3.9 
10. 1.3 
11. Yes 
12. No - A worst-case analysis gives the “worst 

possible” results.  Therefore, we cannot be sure that 
the lost-to-follow-up results that “actually” occur 
are as extreme as the worst-case “possible”. 
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Information Bias 

 

9-1 Information Bias 
 
Information bias is a systematic error in a study that arises because of incorrect information obtained on one or more 
variables measured in the study. The focus here is on the consequences of having inaccurate information about exposure and 
disease variables that are dichotomous, that is, when there is misclassification of exposure and disease that leads to a bias in 
the resulting measure of effect. We consider exposure and disease variables that are dichotomous.  More general situations, 
such as several categories of exposure or disease, continuous exposure or disease, adjusting for covariates, matched data, 
and mathematical modeling approaches, are beyond the scope of the activities provided below. 
 
 

What is Misclassification Bias? 
 

The two-way table below shows the correct classification of 16 subjects according to their true exposure and disease status. 
Let’s see what might happen to this table and its corresponding odds ratio if some of these subjects were misclassified. 
 

 
 

Suppose that 3 of the 6 exposed cases, shown here in the lighter shade, were actually misdiagnosed as exposed non-
cases. Suppose further that one of the two unexposed cases was also misclassified as an unexposed non-case.  To complete 
the misclassification picture, we assume that two of the four truly exposed non-cases and two of the four truly unexposed 
non-cases were misclassified as cases. 

The misclassified data are the data that would actually be analyzed because these data are what is observed in the 
study. So, what is the odds ratio for these data and how does it compare to the correct odds ratio?  The odds ratio for the 
misclassified data is 1; the correct odds ratio is 3. Clearly, there is a bias due to misclassification. The misclassified data 
suggests no effect of exposure on disease, but the true effect of exposure is quite strong. 
 
 
 
 

 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_9, © Springer Science+Business Media New York 2013 
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Summary 
 

 If subjects are misclassified by exposure or disease status, the effect measure, e.g., the OR, may become biased 
 Bias from misclassification can occur if the effect measure for the correctly classified data is meaningfully different 

from the estimated effect actually observed in the misclassified data. 
 Subjects are misclassified if their location in one of the four cells of the correctly classified data changes to a 

different cell location in the (misclassified) data that is actually observed. 
 

General Formulation of Misclassification Bias 
 

The general framework used in Lesson 7 (Validity) to describe what is meant by bias incorporates misclassification bias as 
well as selection bias. For misclassification bias, the target population is represented by a 2x2 table (Table 1 below) that 
assumes no misclassification of any kind; whereas the study population is represented by a 2x2 table (Table 2 below) that 
presents a rearrangement (rather than a subset, as in selection bias) of the target population that results from misclassification. 
 

Table 1.  Target Population (No Misclassification) 
 E Not E

D A 
(= o

11
o
11

o
11

o
11 DCBA ) 

B 
(= o

12
o
12

o
12

o
12 DCBA ) 

Not D C 
(= o

21
o
21

o
21

o
21 DCBA ) 

D 
(= o

22
o
22

o
22

o
22 DCBA )

 
Table 2.  Study Population (Misclassified) 

 E  Not E
D  Ao 

(= o
22

o
21

o
12

o
11 AAAA ) 

Bo 
(= o

22
o
21

o
12

o
11 BBBB ) 

Not D  Co 

(= o
22

o
21

o
12

o
11 CCCC ) 

Do

(= o
22

o
21

o
12

o
11 DDDD ) 

 
In Table 1, the A persons who are truly diseased and exposed (DE) are classified into each of the four cells of Table 2 as 

follows: 
 

o
11A  are classified as diseased and exposed (D’E’); 

 
o
11B  are classified as diseased and unexposed (D’, not E’); 

 
o
11C  are classified as nondiseased and exposed (not D’, E’); and 

 
o
11D  are classified as nondiseased and unexposed (not D’, not E’). 

 

In other words, o
11

o
11

o
11

o
11 DCBAA  

 
A similar rearrangement is shown for the B persons who are truly diseased and unexposed (D, not E), the C persons who 

are truly nondiseased and exposed (not D, E), and the D persons who are truly nondiseased and unexposed (not D, not E). 
Consequently, the Ao persons in Table 2 who are classified as diseased and exposed (D’E’) are derived from the four cells of  
the target population (Table 1), as expressed by:        

 
o
22

o
21

o
12

o
11

o AAAAA  
 
Similar statements apply to Bo, Co, and Do, as shown in Table 2 above. 
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Misclassifying Disease Status 
 
What are the reasons why a subject, like an exposed case, might be misclassified on exposure or disease status?  In particular, 
why might subjects be misclassified from diseased to non-diseased or from non-diseased to diseased status?  First, a subject 
may be incorrectly diagnosed. This can occur because of limited knowledge about the disease, because the diagnostic process 
is complex, because of inadequate access to state-of-the-art diagnostic technology, or because of a laboratory error in the 
measurement of biologic markers for the disease. In addition, the presence of disease may be not be detected if the disease is 
sub-clinical at the time of physical exam. Misdiagnosis can occur because of a detection bias if a physician gives a more 
thorough exam to patients who are exposed or have symptoms related to exposure. 
 

 
 

Another source of error occurs when disease status is obtained solely by self-report of subjects rather than by 
physician examination. In particular, a subject may incorrectly recall illness status, such as respiratory or other infectious 
illness, that may have occurred at an earlier time period. A subject may be reluctant to be truthful about an illness he or she 
considers socially or personally unacceptable.  Finally, patient records may be inaccurate or coded incorrectly in a database. 

The table below summarizes misclassification of disease status. The columns of the table show true disease status. 
The rows of the table show classified disease status. We call this table a misclassification table. 
 

 
 

Suppose the following numbers appear in the table: 
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Study Questions (Q9.1) 
 
The following questions refer to the table above. 
 

1. How many truly diseased persons are misclassified? 
2. How many truly non-diseased persons are correctly classified? 
3. The percentage of truly diseased persons correctly classified? 
4. The percentage of truly non-diseased persons correctly classified? 

 
 
Summary 

 Misclassification of disease status may occur from any of the following sources: 
o Incorrect diagnosis 
o Subject self-report 
o Coding errors 

 A misclassification table provides a convenient summary of how disease status can be misclassified from true 
disease status to observed disease status. 

 
 

Misclassifying Exposure Status 
 
How can subjects be misclassified from exposed to unexposed or from unexposed to exposed?  Misclassification of exposure 
status can occur because of imprecise measurement of exposure. This can result from a poorly constructed questionnaire or 
survey process that doesn’t ask the right questions, or from a faulty measuring device or observation technique. 
 

 
 
 
Study Questions (Q9.2) 
 
A primary criticism of studies evaluating whether living near power lines increases one’s risk for cancer is the quality of 
measurements of personal exposure to electromagnetic fields (EMFs).  Which of the following “reasons” for imprecise 
measurement of personal EMF exposure do you think are True or False? 
 

1. Measurements are usually made at only one time point and/or in one location of a residence. 
2. Instruments for measuring EMF exposure are not available. 
3. Methods for measuring distances and configuration of transmission lines near residences are poorly developed. 
4. Better methods for monitoring measurements over time are needed. 
5. Measuring EMF exposure from intermittent use of appliances or tools is difficult to measure. 
6. Mobility patterns of individual related to EMF exposure are difficult to measure. 

 
 

Exposure error may occur when exposure is determined solely from self-report by subjects, particularly when 
recalling prior exposure status. This is typically a problem in case-control studies, since cases may be more motivated to 
recall past exposures than controls.  Recall error can also occur in cohort studies. For example, in the Sydney Beach Users 
study described in Lesson 2, subjects were asked to report their swimming status seven days after swimming may have 
occurred. 

Subject self-report may also be incorrect because of reluctance of subjects to be truthful in reporting exposures 
relating to behaviors considered socially unacceptable.  This problem often occurs in studies that measure food intake, sexual 
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behavior, and illegal drug-use.  
A third source of error in classifying exposure is interviewer bias. In particular, an interviewer may probe more 

thoroughly about exposure for cases than for controls. 
 
 
Study Questions (Q9.2) continued 
 
Consider a case-control study of the effect of oral contraceptive use on the development of venous (i.e., in the vein) 
thrombosis (i.e., clotting).  (Note: there are no questions numbered 7 to 9.) 
 

10. Why might there be misclassification of exposure, i.e., oral contraceptive use, in such a study? 
11. What you expect to be the direction of such misclassification bias? 
12. How might you avoid such bias? 

 
Finally, exposure data can be coded incorrectly in a database.  The table below summarizes exposure status 

misclassifications. The columns of the table show true exposure status. The rows of the table show classified exposure status. 
 

 
 
 Suppose the following numbers appear in this table: 
 

 
 
 
Study Questions (Q9.2) continued 
 
The questions are based on the table above. 
 

13. How many truly exposed persons are misclassified? 
14. How many truly unexposed persons are correctly classified? 
15. The percentage of truly exposed persons correctly classified? 
16. The percentage of truly unexposed persons correctly classified? 

 
 
Summary 
 

 Misclassification of exposure status may occur from any of the following sources: 
o Imprecise measurement 
o Subject self-report 
o Interviewer bias 
o Incorrect coding of exposure data 

 A misclassification table provides a convenient summary of how exposure can be misclassified from true exposure 
to observed exposure. 
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Misclassifying Both Exposure and Disease Status – An Example 

 
Misclassification can sometimes occur for both exposure and disease in the same study.  For example, the table below 
considers hypothetical cohort data from subjects surveyed on the beaches of Sydney, Australia during the summer months of 
a recent year. The study objective was to determine if those who swam at the beach were more likely to become ill than those 
who did not swim. 
 

 
 

Subjects were asked to recall one week later whether they had swum for at least a half an hour on the day they were 
interviewed on the beach and whether they had developed a cold, cough or flu during the subsequent week.  Since both 
exposure and illness information were obtained by subjects’ recall, it is reasonable to expect some subjects may incorrectly 
report either swimming or illness status or both. 

Suppose of the 367 subjects who got ill and swam, only 264 reported that they got ill and swam, and 30 subjects 
reported that they got ill but didn’t swim, 66 subjects reported that they did not get ill but swam, and 7 subjects reported that 
they did not get ill and did not swim. 

Suppose, further, that of the 233 subjects who truly got ill but did not swim, 130 reported this correctly, but 56 
reported that they got ill and swam, 14 reported that they did not get ill but swam, and 33 reported that they did not swim and 
did not get ill. 

Continuing in this way, the table can be further revised to describe how the 300 subjects who truly did not get ill and 
swam were misclassified. The table can also be revised to describe the misclassification of the 1100 subjects who truly did 
not get ill and did not swim. 
 

 
 

We can now separately sum up the 4 frequencies within each of the 4 cells in the table of observed data to obtain a 
summarized table of the observed data as shown here: 
 

 
 
 
Study Questions (Q9.3) 
 

1. What is the estimated risk ratio for the observed data? 
2. Why is there misclassification bias? (Hint: RR=3.14 for true data) 
3. What is the direction of the bias? 
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4. If there is misclassification of both exposure and disease, will the bias always be towards the null? 
 
Summary 
 

 Misclassification can sometimes occur for both exposure and disease in the same study. 
 An example of such misclassification is likely if both the exposure variable and the disease variable are determined 

by subject recall. 
 When there is misclassification of both exposure and disease, the observed data results from how the cell 

frequencies in each of the four cells of the 2x2 table for the true data get split up into the four cells of the 2x2 table 
for the observed data.   

 
 

9-2 Information Bias (continued) 
 

Misclassification Probabilities – Sensitivity and Specificity 
 
The misclassification table that follows describes how a disease D may be misdiagnosed.  Twelve subjects who were truly 
diseased were misclassified as non-diseased and 14 subjects who were truly not diseased were misclassified as diseased. 48 
subjects who were truly diseased and 126 subjects who were truly non-diseased were correctly classified. 
 

 
 

In a perfect world, we would hope that no one was misclassified, that is, we would want our table to look like the 
table below.  Then the proportion correctly classified as diseased would be 1 and the proportion correctly classified as non-
diseased is also 1. 
 

 
 

In the real world, however, these proportions are not equal to one. In our example, the proportion of truly diseased 
correctly classified as diseased is .80 (48/60). The proportion of truly non-diseased correctly classified as non-diseased is .90 
(126/140). 
 

 
 

The first of these proportions is called the sensitivity. Generally, the sensitivity for misclassification of disease 
status is the probability that a subject is classified as diseased given that he or she is truly diseased. 

The second of these proportions is called the specificity. Generally the specificity for misclassification of disease is 
the probability that a subject is classified as not diseased given that he or she is truly not diseased. 

The ideal value for both sensitivity and specificity is l.0 or 100%. We can also make use the misclassification table 
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for exposure status to define sensitivity and specificity parameters. 
 

 
 
 
Study Questions (Q9.4) 
 
Consider the numbers in the following misclassification table for exposure. 
 

 
 

1. What is the sensitivity for misclassifying exposure? 
2. What is the specificity for misclassifying exposure? 
3. Do your answers to the previous questions suggest that there should be some concern about misclassification bias? 

 
 
Summary 
 

 The underlying parameters that must be considered when assessing information bias are called sensitivity and 
specificity. 

 Sensitivity gives the probability that a subject who is truly diseased (or exposed) will be classified as diseased (or 
exposed) in one’s study. 

 Specificity gives the probability that a subject who is truly non-diseased (or unexposed) is classified as non-diseased 
(or unexposed) in one’s study. 

 The ideal value for both sensitivity and specificity is 1, or 100%, which means there is no misclassification. 
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Sensitivity and Specificity Parameters Are Conditional Probabilities 

 
If we allow for possible misclassification of both disease and exposure in a 2x2 table, then there are several sensitivity and 
specificity parameters that can be defined in terms of conditional probabilities. These include:  
 
Sensitivity (Se) 
 

Disease misclassification: SeD=Pr(D |D) 
Exposure misclassification: SeE=Pr(E |E) 
 

Specificity (Sp) 
 
Disease misclassification: SpD=Pr(not D’|not D) 
Exposure misclassification: SpE=Pr(not E |not E) 
 

where D and E denote truly diseased and exposed, respectively, and D’ and E’ denote (possibly mis-) classified as diseased 
and exposed, respectively. 

Moreover, if we allow for the possibility that misclassification of disease might differ depending on exposure status and 
that misclassification of exposure status might differ depending on disease status, we can further categorize the sensitivity 
and specificity parameters as follows: 

 
Sensitivity 

 
1. Disease misclassification given exposed:  SeD|E=Pr(D |DE) 

2. Disease misclassification given unexposed:  SeD|not E=Pr(D |D, not E) 

3. Exposure misclassification given diseased:  SeE|D=Pr(E |DE) 

4. Exposure misclassification given nondiseased: SeE|not D=Pr(E not D, E) 
 

Specificity 
 
5. Disease misclassification given exposed:  SpD|E=Pr(not D |not D, E) 

6. Disease misclassification given unexposed:  SpD|not E=Pr(not D |not D, not E) 

7. Exposure misclassification given diseased:  SpE|D=Pr(not D |D, not E) 

8. Exposure misclassification given nondiseased: SpE|not D=Pr(not E |not D, not E) 
 
All eight parameters above are conditional probabilities and they all are potentially different if both exposure and 

disease misclassifications are present. The tables shown below illustrate where these sensitivity and specificity probabilities 
belong within misclassification tables that allow for misclassification of disease status (given exposure status) and exposure 
status (given disease status): 

 
Probabilities for Misclassification of Disease (Given Exposure Status) 
 
  True 

E 
  True 

Not E
Classified D Not D Classified D Not D 
 D  SeD|E 1-SpD|E  D SeD|not E 1-SpD|not E 

 Not D  1-SeD|E SpD|E  Not D 1-SeD|not E SpD|not E 

 
 
 

Continued on next page 
 
 



240  Lesson 9.  Information Bias 

 
Sensitivity and Specificity Parameters Are Conditional Probabilities (continued) 

 
Probabilities for Misclassification of Exposure (Given Disease Status) 
 
  True 

D 
  True 

Not D
Classified E Not E Classified E Not E 
 E  SeE|D 1-SpE|D  E SeE|not D 1-SpE|not D 

 Not E  1-SeE|D SpE|D  Not E 1-SeE|not D SpD|not D 
 

 
 

Nondifferential Misclassification 
 
The table that follows describes the true exposure and disease status for 2000 subjects in a hypothetical case-control study of 
the relationship between diet and coronary heart disease (CHD):  
 

 
 

The exposure variable is the amount of fruits and vegetables eaten in an average week, categorized as low or high, 
as recalled by the study subjects. The disease variable is the presence or absence of CHD.  Suppose there is no 
misclassification of disease status, but that most subjects over-report their intake of fruits and vegetables because they think 
that diets with high amounts of fruits and vegetables are more acceptable to the investigator. In other words, there is 
misclassification of exposure status. 

The two tables that follow describe how exposure is misclassified separately for both the CHD cases and the non-
cases. 

 

 
 
 
Study Questions (Q9.5) 
 

1. What are the sensitivity and specificity for the CHD cases? 
2. What are the sensitivity and specificity for the non-cases? 
3. What do these two misclassification tables have in common? 

 
 

This example illustrates non-differential misclassification of exposure. This occurs whenever the sensitivities and 
specificities do not vary with disease status.  We have assumed that CHD status is not misclassified in this example. The 
sensitivities and specificities for misclassifying disease are all equal to 1 regardless of exposure group. Thus, in this example 
there is no misclassification of disease. 



241  

 
 

 
Study Questions (Q9.5) continued 
 

4. Use the column total in both misclassification tables (i.e., 600, 400, 300, and 700) to determine the odds ratio for the 
correctly (i.e., true) classified data. 

 
 

The row totals from each of the misclassification tables for exposure allow us to determine the study data that would 
actually be observed as a result of misclassification. 
 

 
 
 
Study Questions (Q9.5) continued 
 

5. Why is there bias due to misclassifying exposure (Note: the correct odds ratio is 3.5)? 
6. What is the direction of the bias? 

 
 

This example illustrates a general rule about non-differential misclassification. Whenever there is non-differential 
misclassification of both exposure and disease, the bias is always towards the null, provided that there are no other variables 
being controlled that might also be misclassified. 
 

 
 
 
Summary 
 

 Nondifferential misclassification of disease: the sensitivities and specificities for misclassifying disease do not 
differ by exposure. 

 Nondifferential misclassification of exposure: the sensitivities and specificities for misclassifying exposure do not 
differ by disease. 

 Nondifferential misclassification of both disease and exposure leads to a bias towards the null. 
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Mathematical Definition of Nondifferential Misclassification 

 
In order to give a general definition of nondifferential misclassification, we need to consider the sensitivity and specificity 
parameters in the misclassification tables that follow: 

 
Probabilities for Misclassification of Disease (Given Exposure Status) 
 
  True 

E 
  True 

Not E
Classified D Not D Classified D Not D 
 D  SeD|E 1-SpD|E  D SeD|not E 1-SpD|not E 

 Not D  1-SeD|E SpD|E  Not D 1-SeD|not E SpD|not E 

 
Probabilities for Misclassification of Exposure (Given Disease Status) 
 
  True 

D 
  True 

Not D
Classified E Not E Classified E Not E 
 E  SeE|D 1-SpE|D  E SeE|not D 1-SpE|not D 

 Not E  1-SeE|D SpE|D  Not E 1-SeE|not D SpD|not D 

 
In general, there is non-differential misclassification of both exposure and disease if the following four equations are 

satisfied: 
 

Disease Misclassification: 
 
SeD|E=SeD|not E (=SeD) and SpD|E=SpD|not E (=SpD) 
 

Exposure Misclassification: 
 
SeE|D=SeE|not D (=SeE) and  SpE|D=SpE|not D (=SpE) 
 
In words, this definition means that when classifying disease status, the sensitivities are the same among both exposed 

(E) and unexposed (not E) groups, as are the specificities.  Similarly, when classifying exposure status, the sensitivities are 
the same among both diseased (D) and nondiseased (not D) groups, as are the specificities. 

Thus, when there is non-differential misclassification of both exposure and disease, the misclassification tables 
presented above will be simplified as follows: 

 
Probabilities for Non-differential Misclassification of Disease 
 
  True 

E 
  True 

Not E
Classified D Not D Classified D Not D 
 D  SeD 1-SpD  D SeD 1-SpD 

 Not D  1-SeD SpD  Not D 1-SeD SpD 

 
 
 

Continued on next page 
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Mathematical Definition of Nondifferential Misclassification (continued) 

 
Probabilities for Non-differential Misclassification of Exposure 
 
  True 

D 
  True 

Not D
Classified E Not E Classified E Not E 
 E  SeE 1-SpE  E SeE 1-SpE 

 Not E  1-SeE SpE  Not E 1-SeE SpD 

 
 Note that if there is no misclassification of disease status, then: 
 

SeD|E=SeD|not E (=SeD) = 1 and SpD|E=SpD|not E (=SpD) = 1 
 
which means that there is nondifferential misclassification of disease, though not necessarily nondifferential 
misclassification of exposure. 
 
 Also, if there is no misclassification of exposure status, then 
 

SeE|D=SeE|not D (=SeE) = 1 and  SpE|D=SpE|not D (=SpE) = 1 
 
which means that there is non-differential misclassification of exposure, though not necessarily non-differential 
misclassification of disease. 
 
 

What Happens if a Variable other than Exposure or Disease Gets Misclassified? 
 

Greenland (1980) showed that if there is non-differential misclassification of exposure and disease, but also 
misclassification of a covariate, then there is no guarantee that there will be a bias towards the null.  However, if 
misclassification of exposure and disease is non-differential and a covariate that is not misclassified is controlled in the 
analysis (say, by stratification), then both stratum-specific and summary measures that adjust for the covariate will be biased 
towards the null. 

Other issues about misclassification of covariates were also addressed as follows: 
 Misclassification of exposure can spuriously introduce effect modification (described in Lesson 10) by a covariate. 
 Misclassification of a confounder (also described in Lesson 10) can reintroduce confounding in a summary 

estimate that controls for confounding using misclassified data. 
 

 
 

Differential Misclassification 
 
The table that follows describes the true exposure and disease status for the same 2000 subjects described in the previous 
activity for a hypothetical case-control study of the relationship between diet and coronary heart disease: 
 

 
 

•
•
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Suppose, as before, there is no misclassification of disease status, but that subjects over-report their intake of fruits 
and vegetables because they think that diets with high amounts of fruits and vegetables are more acceptable to the 
investigator.  Suppose also that a CHD case, who is concerned about the reasons for his or her illness, is not as likely to over-
estimate his or her intake of fruits and vegetables as is a control. Here are the two tables that describe how exposure is 
misclassified for both the CHD cases and controls: 
 

 
 
 
Study Questions (Q9.6) 
 
The following questions are based on the previous two tables. 
 

1. What are the sensitivity and specificity for the CHD cases? 
2. What are the sensitivity and specificity for the non-cases? 
3. Is there non-differential misclassification of exposure? 

 
 

This example illustrates what is called differential misclassification of exposure. This occurs because the 
sensitivities and specificities for misclassifying exposure vary with disease status. 
 

 
 

The row totals from each of the misclassification tables for exposure allow us to determine the study data that would 
actually be observed as a result of misclassification: 
 

 
 
 
Study Questions (Q9.6) continued 
 
The following questions refer to the previous table and the table with the true exposure information shown previously. 
 

4. Is there a bias due to misclassifying exposure? (Note, the correct OR is 3.5.) 
5. What is the direction of the bias, if any? 
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In general, when there is differential misclassification of either exposure or disease, the bias can be either towards 
the null or away from the null (see below for an example of bias away from the null). 
 

 
 
 
Summary 
 

 With differential misclassification, either the sensitivities and specificities for misclassifying D differ by E or the 
sensitivities and specificities for misclassifying E differ by D. 

 Differential misclassification of either D or E can lead to bias either towards the null or away from the null. 
 

Mathematical Definition of Differential Misclassification 
 

In general, differential misclassification is defined to be misclassification of disease and/or exposure in which there are 
differences in sensitivities or specificities of one variable (say, disease status) over the categories of the other variable (say, 
exposure status). To clarify this definition, we once again present below the misclassification tables containing the 
sensitivity and specificity parameters we are considering: 
 
Probabilities for Misclassification of Disease (Given Exposure Status) 
  True 

E 
  True 

Not E
Classified D Not D Classified D Not D 
 D  SeD|E 1-SpD|E  D SeD|not E 1-SpD|not E 

 Not D  1-SeD|E SpD|E  Not D 1-SeD|not E SpD|not E 

 
Probabilities for Misclassification of Exposure (Given Disease Status) 
  True 

D 
  True 

Not D
Classified E Not E Classified E Not E 
 E  SeE|D 1-SpE|D  E SeE|not D 1-SpE|not D 

 Not E  1-SeE|D SpE|D  Not E 1-SeE|not D SpD|not D 

 
Using the notation given in these tables, differential misclassification occurs if any of the following four inequalities 

hold: 
 
Disease Misclassification: 

 
SeD|E  SeD|not E SpD|E  SpD|not E 
 

Exposure Misclassification: 
 

SeE|D  SeE|not D SpE|D  SpE|not D 
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Independent Misclassification of Both Exposure and Disease 
 
Two events A and B are independent if the probability that both events occur is equal to the product of their individual 
probabilities: 

 
When considering misclassification of exposure and disease, the two events we are concerned about are A, the way 

we classify disease status, and B, the way we classify exposure status.  These two events are independent if the probability of 
classifying exposure AND disease status equals the product of the probabilities of classifying disease status and exposure 
status separately. 
 

 
 

In many epidemiologic studies, it makes sense to assume that exposure and disease status determinations are more 
or less independent. Typically, disease status is determined by physical exam or medical records; exposure status is 
determined by a separate process, often at a different time, such as an interview, occupational history, or measurement 
technique.  For example, the way a certain cancer is diagnosed does not typically influence or depend on how occupational 
history, smoking history, or diet history is determined. 

On the other hand, if both disease and exposure status are determined at the same time and by subject self-report or 
recall, then they might not be independent. Such a situation occurred in the Sydney Beach Users Study of 1989, where 
subjects were asked to recall previous swimming exposure and illness status one week after they were interviewed on the 
beach. 

So, why is the assumption of independent misclassification important? We need this assumption to conveniently 
assess or correct for misclassification bias whenever both disease and exposure are misclassified in the same study. If only 
one of exposure or disease is misclassified, but not the other, the independence assumption is not needed. 
 
 
Study Questions (Q9.7) 
 

1. Is the assumption of independent misclassification of disease and exposure equivalent to assuming nondifferential 
misclassification of disease or exposure status? 

 
For the following questions, assume disease and exposure are independently misclassified.  Suppose also: 

(Sensitivity D|E) = .8, (Sensitivity D|not E) = .75 
(Sensitivity E|D) = .9, (Specificity E|D) = .95 
 

2. Is misclassification nondifferential or differential? 
3. Are there any sensitivities and specificities missing from the above information? 
4. How can you express Pr(D E |DE) as the product of sensitivity and/or specificity parameters? 
5. Calculate Pr(D E |DE) using the above information. 
6. How can you express Pr(D E |not D not E) as the product of sensitivity and/or specificity parameters? 
7. Calculate Pr(D E |D not E). 

 
 
 
 
 

 

 



247  

 
 

Summary 
 

 Another important way to characterize misclassification concerns whether or not there is independent 
misclassification of both exposure and disease. 

 Misclassification of exposure and disease is defined to be independent if: 
  Pr(classifying D and E| true D and E) = 
  Pr(classifying D| true D and E) x Pr(classifying E | true D and E) 

 The assumption of independent misclassification allows for the assessment of information bias from 
misclassification of both exposure and disease simultaneously. 

 
More on Independent Misclassification 

 
This box provides a mathematical description of how the cell frequencies in the misclassified 2x2 table can be expressed in 
terms of the true cell frequencies under the assumption that there is independent misclassification of disease and exposure.  
You may not wish to read what follows if you are not interested in the mathematical underpinnings of misclassification bias. 

We have defined independent misclassification of disease and exposure as follows: 
 
 Pr(classifying D and E|true D and E)= 
 Pr(classifying D|true D and E) x Pr(classifying E|true D and E) 

 
If we assume independent misclassification as defined above, we can then express the cell frequencies Ao, Bo, Co and Do 

in the 2x2 table for the misclassified population in terms of the true cell frequencies A, B, C, and D in the corresponding 
2x2 table for the correctly classified (i.e., true) population. 

Here are the equations: 
 

Ao=SeD|ESeE|DA + SeD|not E(1-SpE|D)B + (1-SpD|E)SeE|not DC + (1-SpD|not E)(1-SpE|not D)D 

Bo=SeD|E(1-SeE|D)A + SeD|not ESpE|DB + (1-SpD|E)(1-SeE|not DC + (1-SpD|not E)SpE|not DD 

Co=(1-SeD|E)SeE|DA + (1-SeD|not E) (1-SpE|D)B + SpD|ESeE|not DC +SpD|not E(1-SpE|not D)D 

Do=(1-SeD|E) (1-SeE|D)A + (1-SeD|not E)1-SpE|DB + SpD|E (1-SeE|not D)C + SpD|not ESpE|not DD 
 
The first of these equations is derived by applying the independence definition given above to the probability terms in 

the following expression for A°: 
 

o
22

o
21

o
12

o
11

o AAAAA  
=A Pr(D E |DE) + B Pr(D E |D, not E) + C Pr(D E |not D, E) + D Pr(D E |not D, not E) 

 
The other three equations (i.e., for Bo, Co and Do) are derived similarly.  These equations represent a system of four 

equations for the misclassified cell frequencies Ao, Bo, Co and Do in terms of four unknown true cell frequencies A, B, C, 
and D.  By solving this system of equations to obtain expressions for A, B, C, and D in terms of Ao, Bo, Co and Do, we can 
derive formulae for adjusting the observed estimate an effect measure (e.g., an odds ratio) to correct for misclassification. 
Such correction formulae are described in later expositions on misclassification. 
 
 
 
Quiz (Q9.8) 
 
Label the following statement as True or False. 
 

1. If there is misclassification of disease status but not of exposure status in a follow-up study, and if the 
sensitivity probability is the same for exposed and unexposed groups, then whatever bias exists (due to 
misclassification) must be towards the null. ??? 

2. If there is differential misclassification of disease status but not of exposure status in a case-control study, 
then there may be bias in estimating the odds ratio, which is either away from or toward the null. ??? 

3. Suppose there is independent misclassification of both exposure status and disease status. Then: 
  P(D', not E'ID, not E) = (SeDlnot E)*(SpEID). ??? 
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9-3 Information Bias (continued) 
 

Quantitative Assessment of Misclassification Bias 
 
Let’s assume that we know there is a likely misclassification of exposure or disease that could bias our study results. How can 
we quantitatively correct for such bias to obtain an adjusted effect measure that is no longer biased? 

To quantify bias, we need to adjust the cell frequencies for the observed data to obtain a two-way table of corrected 
cell frequencies from which we can compute a corrected effect measure. We can then compare the observed and possibly 
biased estimate with our corrected estimate to determine the extent of the possible bias and its direction. 
 

 
 
 
Study Questions (Q9.9) 
 
Use the information in the table below about the observed and corrected effect measures to determine whether the observed 
bias is towards or away from the null. 
 

Question 
Number 

Observed Effect Corrected 
Effect

Towards the 
null?

Away from the 
null?

a. 2.2 1.7   
b. 2.5 3.8   
c. 4.0 6.1   
d. 4.1 1.2   
e. 0.5 0.9   
f. 0.8 0.9   
g. 0.3 0.2   
h. 0.7 0.1   

 
Suppose we have determined that whatever bias that exists results from nondifferential misclassification of exposure or 
disease. 
 

1. Do we need to obtain an adjusted effect measure that corrects for such bias? 
2. How can we determine whether or not misclassification is nondifferential? 

 
Suppose we have determined that there is differential misclassification of exposure or disease. 
 

3. Do we need to obtain an adjusted effect measure that corrects for possible misclassification bias? 
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In the presentations that follow, we give formulas for obtaining corrected estimates. These formulas require reliable 
estimates of sensitivity and specificity.  How can we determine the sensitivity and specificity if all we have are the observed 
data?  One option is to take a small sample of the observed data for which true disease and exposure status is determined, so 
that sensitivities and specificities can be estimated (a drawback to this approach is the sample might be too small to give 
reliable values for sensitivity and specificity).  Another option is to determine sensitivity and specificity parameters from 
separate data obtained in a previous study involving the same variables.  A third option is simply to make an educated guess 
of the sensitivity and specificity parameters from your clinical or other knowledge about the study variables.  A fourth option 
is to carry out what is often referred to as a sensitivity analysis with several educated guesses to determine a range of possible 
biases. 
 

 
 
 
Study Questions (Q9.9) continued 
 
Consider the following results of a sensitivity analysis for correcting for misclassification that is assumed to be 
nondifferential: 
 

Observed OR Sensitivity? Specificity? Corrected OR 
1.5 80% 80% 3.5
1.5 80% 90% 2.5
1.5 90% 80% 2.5
1.5 90% 90% 1.8 

 
4. Why do the observed results compared to the corresponding corrected results illustrate a bias that is towards the 

null? 
5. Which values of sensitivity and specificity are associated with the most bias? 
6. Which values of sensitivity and specificity are associated with the least bias? 
7. Based on the sensitivity analysis described above, how might you decide which corrected OR is “best”? 

 
 
Summary 
 

 We can correct for misclassification bias by computing an adjusted effect measure from a two-way table whose cell 
frequencies are corrected from the misclassification found in observed cell frequencies. 

 The correction requires accurate estimation of sensitivity and specificity parameters. 
 Options for estimating sensitivity and specificity: 

o A sub-sample of the study data 
o A separate sample from another study 
o A questimate based on clinical or other theory/experience 
o A sensitivity analysis that considers several guestimates 
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Correcting for Nondifferential Misclassification of Disease 
 
This table gives the observed data from a hypothetical cohort study of the relationship between gender and peptic ulcer 
disease: 
 

 
 

Assume that gender, the exposure variable, has not been misclassified, but that diagnosing peptic ulcer involves 
some amount of misclassification.  How can we correct for possible misclassification of disease to obtain an adjusted risk 
ratio estimate that gives an accurate estimate of the exposure-disease relationship? 

We must first obtain reliable estimates of the sensitivities and specificities for misclassifying the disease.  Suppose 
we carried out a more extensive physical examination of a sub-sample of 200 subjects to obtain a “gold standard” 
determination of peptic ulcer status. Suppose, that separate misclassification tables for males and females of these 200 
subjects are obtained as shown here. 
 

 
 
 
Study Questions (Q9.10) 
 
The following questions refer to the “Misclassifying Disease (sub sample)” table. 
 

1. What are the sensitivity and specificity estimates for males? 
2. What are the sensitivity and specificity estimates for females? 
3. Is misclassification nondifferential or differential? 

 
 
When, as in our example, misclassification is nondifferential and we have reliable estimates of the sensitivity and 

specificity parameters, we can transform misclassified cell frequencies of our observed data into ‘corrected’ cell frequencies 
from which an adjusted, corrected, effect measure can be calculated. 

We can write a relatively simple formula for the corrected cell frequencies if, as in our example, only the disease 
variable is misclassified. 
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To compute the corrected cell frequencies, we substitute the observed cell frequencies into the formula as shown 
below.  We also substitute our estimated sensitivity and specificity values into this formula as follows:   

 

 
 

The resulting corrected cell frequencies are shown here. 

 
 
Study Questions (Q9.10) continued 
 

4. Using the corrected cell frequencies, compute the adjusted risk ratio that corrects for misclassification of disease. 
5. What is the direction of the bias? 
6. Although there was no problem in transforming the cell frequencies in this example, what should bother you about 

the denominator q = Sensitivity(D) + Specificity(D) – 1, in the formulae for A, B, C, and D? 
 
 
Summary 
 

 Nondifferential misclassification of disease without misclassification of exposure can be corrected when estimates 
of sensitivity and specificity are available. 

 This procedure involves transforming the misclassified cell frequencies into “corrected” cell frequencies from which 
a corrected effect measure can be calculated that is no longer biased. 

 The procedure requires as input estimates of sensitivities and specificities for misclassification of disease as well as 
the cell frequencies in the observed 2x2 table that relates exposure and disease. 

 An explicit algebraic formula for the correction procedure is available although these calculations are most 
efficiently done using a computer program. 
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Correcting for Nondifferential Misclassification of Disease by Computer 
 

A computer program is available in DataDesk, the software package that is accessible using ActivEpi.  This is a general 
program that allows for differential misclassification of both exposure and disease, so that nondifferential misclassification 
of disease is a special case of the program in which the sensitivities and specificities for exposure given disease status are all 
specified to equal unity, corresponding sensitivities for disease given exposure status are specified as equal, and 
corresponding specificities for disease given exposure status are also specified as equal. That is, the input into the program 
are: 
 
1. Observed cell frequencies a, b, c, and d 
2. Sensitivities and specificities for exposure given disease: 
 
 SeE|D = SeE|not D (= SeE) = 1 
 SpE|D = SpE|not D (= SpE) = 1 
 
3. Equal sensitivities for disease given exposure: 
 
 SeD|E = SeD|not E (= SeD)  
 
4. Equal specificities for disease given exposure: 
 
 SpD|E = SpD|not E (= SpD)  
 
 

Problems with Correcting for Nondifferential Misclassification of Disease 
 
The formulae for correcting for nondifferential misclassification of disease when there is no misclassification of exposure, 
may yield inappropriate results for the corrected cell frequencies A, B, C, and D under the following circumstances: 
 
1. Se + Sp = 1 (i.e., q = Se + Sp - 1 = 0, where q is the denominator of the correction formula for each of the four cells 

and Se and Sp are the sensitivity and specificity for misclassification of disease) 
2. Sp < c / (a + c), in which case the corrected value for A is negative 
3. Sp < d / (b + d), in which case the corrected value for B is negative 
4. Se < a / (a + c), in which case the corrected value for C is negative. 
5. Se < b / (b + d), in which case the corrected value for D is negative. 
 
 
 

Correcting for Nondifferential Misclassification of Disease in DataDesk 
 
An exercise in DataDesk is provided to correct for nondifferential misclassification of disease. 
 
 

Correcting for Nondifferential Misclassification of Exposure 
 
The following table describes the observed data from a hypothetical case-control study of the relationship between reported 
history of peptic ulcer, the exposure variable, and stomach cancer. The controls were persons with colon cancer, obtained 
from the same hospital population as were the cases of stomach cancer.  Assume that case-control status has been correctly 
diagnosed, but that subjects’ reported history of peptic ulcer does involves some misclassification. 
 

 
PEU=peptic ulcer disease 
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As in the previous activity, only one of the disease and exposure variables is misclassified. This time, it’s the 
exposure variable. Once again, we ask, how can we correct for possible misclassification in this situation?”  We can obtain a 
corrected answer provided we have reliable estimates of the sensitivity and specificity for misclassifying the exposure. 

Suppose a separate study previously conducted on risk factors for peptic ulcer disease had evaluated the extent of 
misclassification of reported disease by obtaining a gold standard determination of peptic ulcer status on a sample of 200 
subjects. Suppose, further, that the misclassification table is as shown here: 
 
Exposure Misclassification Table: (Separate Study) 
 

  Gold Standard  
  PEU Not PEU Total 
 PEU’ 48   7  55 
 Not PEU’ 12   133  145 
 Total 60   140  200 

 

 
 
Study Questions (Q9.11) 
 

1. What are the sensitivity and specificity estimates for misclassifying PEU status? 
2. How can you determine whether misclassification is nondifferential or differential? 

 
 

It is reasonable to assume that misclassification of exposure is nondifferential in this example. We can now 
transform the misclassified cell frequencies of our observed data into corrected cell frequencies from which a corrected odds 
ratio estimate can be estimated.  Here are the expressions for the corrected cell frequencies if only the exposure variable is 
misclassified. 
 

 
 

To compute the corrected cell frequencies, we substitute the observed cell frequencies into the formula as shown 
below.  We also substitute our estimated sensitivity and specificity values into this formula as follows: 
 

 
 

The resulting corrected cell frequencies are shown here: 
 

 
 

 

“
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Study Questions (Q9.11) continued 
 
(Note: there is no question 3 in Study Questions Q9.11) 
 

4. Using the corrected cell frequencies, compute the adjusted odds ratio that corrects for misclassification of disease. 
5. What is the direction of the bias? 

 
 
Summary 
 

 Nondifferential misclassification of exposure without misclassification of disease can be corrected when estimates 
of sensitivity and specificity are available. 

 This procedure involves transforming the misclassified cell frequencies into “corrected” cell frequencies from which 
a corrected effect measure can be calculated. 

 The procedure requires as input estimates of sensitivities and specificities for misclassification of exposure as well 
as the cell frequencies in the observed 2x2 table that relates exposure to disease. 

 An explicit algebraic formula for the correction procedure is available although these calculations are most 
efficiently done using a computer program. 

 
Correcting for Nondifferential Misc1assification of Exposure by Computer 

 
A computer program is available in DataDesk, the software package that is accessible using ActivEpi.  This is a general 
program that allows for differential misclassification of both exposure and disease, so that nondifferential misclassification 
of exposure is a special case of the program in which the sensitivities and specificities for disease given exposure status are 
all specified to equal unity, corresponding sensitivities for exposure given disease status are specified as equal, and 
corresponding specificities for exposure given disease status are also specified as equal. That is, the inputs into the program 
are: 
 
1. Observed cell frequencies a, b, c, and d 
2. Sensitivities and specificities for disease given exposure: 
 
 SeD|E = SeD|not E (= SeD) = 1 
 SpD|E = SpD|not E (= SpD) = 1 
 
3. Equal sensitivities for exposure given disease: 
 
 SeE|D = SeE|not D (= SeE)  
 
4. Equal specificities for exposure given disease: 
 
 SpE|D = SpE|not D (= SpE) 
 
 

Problems with Correcting for Nondifferential Misclassification of Exposure 
 
The formulae for correcting for nondifferential misclassification of exposure when there is no misclassification of disease, 
may yield inappropriate results for the corrected cell frequencies A, B, C, and D under the following circumstances: 
 
1. Se + Sp = 1 (i.e., q = Se + Sp - 1 = 0, where q is the denominator of the correction formula for each of the four cells 

and Se and Sp are the sensitivity and specificity for misclassification of exposure) 
2. Sp < c / (a + c), in which case the corrected value for A is negative 
3. Sp < d / (b + d), in which case the corrected value for B is negative 
4. Se < a / (a + c), in which case the corrected value for C is negative. 
5. Se < b / (b + d), in which case the corrected value for D is negative. 
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Correct for Nondifferential Misclassification of Exposure in DataDesk 
 
An exercise in DataDesk is provided to correct for nondifferential misclassification of exposure. 
 
 

Correcting for Nondifferential Misclassification of  
Exposure and Disease 

 
This table (below) considers hypothetical cohort data from subjects surveyed on the beaches of a certain Caribbean island.  
This study closely resembles the Beach User’s Study described in Lesson 2. 
 

 
 

The table describes 2500 subjects who were observed swimming on the beaches on the day of interview. Pollution 
level for each subject was based on average water quality counts taken from three pre-specified samples on the day the 
subject was interviewed on the beach. Subjects were asked by telephone one week later to recall whether they had developed 
a cough, flu or gastro-intestinal illness since their beach interview. 

Because illness information was obtained by subjects’ recall, it is reasonable to expect some subjects may incorrectly 
report illness status. Also, since pollution level per subject might not correspond to the time of day that a subject actually 
swam, and since the measurement technique was subject to error, it is also likely there was misclassification of pollution 
level. 

Suppose that a sub-sample of study subjects were thoroughly probed to determine their true illness status, and it was 
found that the sensitivity was 80% and, the specificity was 90% for misclassifying illness.  Suppose, further, that a previous 
study of beach water quality measurements indicated the sensitivity and specificity for misclassifying pollution level at 90% 
and 75%, respectively. 
 

 
 
 
Study Questions (Q9.12) 
 

1. If appropriate information were available for this study, how would you determine whether misclassifying either 
disease or exposure was nondifferential or differential? 

2. Based on the information provided for this example, is it possible to explicitly determine whether misclassification 
of either E or D is nondifferential or differential? 

3. Based on the information provided, is it necessary to assume nondifferential or differential misclassification in order 
to correct for misclassification bias? 

4. Do you think that there was independent classification of pollution level and illness status? 
 
 

The answers to the study questions indicate that it is reasonable to assume that the misclassification of both exposure 
and disease is nondifferential and the classification probabilities are independent. Under these assumptions, the observed cell 
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frequencies can be transformed to corrected cell frequencies using the expressions shown here: 
 

 
 

These formulas are more complicated than those when only one of exposure or disease was misclassified.  To 
compute the corrected cell frequencies, we substitute the observed cell frequencies into the formulae as shown below. We 
also substitute our estimated sensitivity and specificity values into these formulae as follows: 
 

 
 

The resulting corrected cell frequencies are shown here: 
 

 
 
 
Study Questions (Q9.12) continued 
 

5. Using the corrected cell frequencies, compute the adjusted risk ratio that corrects for misclassification of disease and 
exposure. 

6. What is the direction of the bias? 
7. What do you notice about the extent of the bias when both exposure and disease are misclassified? 
8. Even though there is no problem with q* in this example, what should bother you about the use of q* in the 

calculation formula? 
 
 
Summary 
 

 Nondifferential misclassification of both exposure and disease can be corrected when estimates of sensitivity and 
specificity are available. 

 The formulae used to calculate corrected estimates assume that misclassification of exposure and diseases are 
independent. 

 The procedure requires as input estimates of sensitivities and specificities for misclassification of exposure and 
disease as well as the cell frequencies in the observed 2x2 table that relates exposure to disease. 

 An explicit algebraic formula for the correction procedure is available although these calculations are most 
efficiently done using a computer program. 
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Problems with Correcting for Nondifferential Misclassification of Both Disease and Exposure 

The formulae for correcting for nondifferential misclassification of both disease and exposure are given as follows: 
 
 A = {SpD[(a + b) SpE – b] – (1 – SpD)[(c + d) SpE – d]} / q* 
 B = {SpD[(a + b) SeE – a] – (1 – SpD)[(c + d) SeE – c]} / q* 
 C = {SeD[(c + d) SpE – d] – (1 – SeD)[(a + b) SpE – b]} / q* 
 D = {SeD[(c + d) SeE – c] – (1 – SeD)[(a + b) SeE – a]} / q* 
 
where q* = (SeD + SpD – 1) ( SeE + SpE – 1) 
 

These formulae may yield inappropriate results for the corrected cell frequencies A, B, C, and D under the following 
circumstances: 
 
1. SeD + SpD = 1 or SeE + SpE = 1 (i.e., q* = 0) 
2. (a+b+c+d)SpDSpE - (b+d)SpD - (c+d)SpE + d < 0, in which case the corrected value for A is negative. 
3. (a+b+c+d)SpDSeE - (a+c)SpD - (c+d)SeE + c < 0, in which case the corrected value for B is negative. 
4. (a+b+c+d)SeDSpE - (b+d)SeD - (a+b)SpE + b < 0, in which case the corrected value for C is negative. 
5. (a+b+c+d)SeDSeE - (a+c)SeD - (a+b)SeE + a < 0, in which case the corrected value for D is negative.  
 

An example in which negative values for the corrected cell frequencies is now given. Suppose the observed 2x2 table of 
cell frequencies is given as follows: 
 
Observed (i.e., Classified) Data 
 Swam Not Swam 
Ill  a= 500 b= 150 
Not ill  c= 1500 d= 750 
Total 2000 900 

 
Suppose, further, that nondifferential misclassification of both exposure and disease is assumed, and that estimated 

values for the sensitivities and specificities are given as follows: 
 
SeD = .90, SpD = .80, SeE =.85, SpE = .95. 
 
We now use the correction formulae given earlier to obtain corrected cell frequencies for the following 2x2 table: 
 

Corrected Table 
 Swam Not Swam 
Ill A B 
Not ill C D 

We now check the five conditions (1-5) described above that determine whether any of the corrected cell frequencies 
will be either undefined or negative: 
 
1. SeD + SpD = .90 + .80 = 1.70 > 1, and SeE + SpE = .85 + .95 > 1, so that q* = (SeD + SpD - 1) x (SeE + SpE - 1) = 

.70 x .80 = .56 > 0, therefore, there is no problem associated with the denominator, q*. 
2. (a+b+c+d)SpDSpE - (b+d)SpD - (c+d)SpE + d = 2900 x .80 x .95 – 900 x .80 – 2250 x .95 + 750 = 2204 - 2857 + 750 

= 96.5 > 0, in which case the corrected value for A should be positive. 
3. (a+b+c+d)SpDSeE - (a+c)SpD - (c+d)SeE + c = 2900 x .80 x .85 – 2000 x .80 – 2250 x .85 + 1500 = 1972 - 3512.5 + 

1500 = -40.5 < 0, in which case the corrected value for B should be negative. 
4. (a+b+c+d)SeDSpE - (b+d)SeD - (a+b)SpE + b = 2900 x .90 x .95 – 900 x .90 – 650 x .95 + 150 = 2479.5 - 1427.5 + 

150 = 1202 > 0, in which case the corrected value for C should be positive. 
5. (a+b+c+d)SeDSeE - (a+c)SeD - (a+b)SeE + a = 2900 x .90 x .85 – 2000 x .90 – 650 x .85 + 500 = 2218.5 - 2352.5 + 

500 = -366 > 0, in which case the corrected value for D should be positive.  
 

Continued on next page 
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Problems with Correcting for Nondifferential Misclassification of Both Disease and Exposure (continued) 

 
We now use the actual correction formula to demonstrate that the above checks actually lead to the positive values for 

A, C, and D, and a negative value for B: 
 
 A = { SpD [(a+b)SpE - b] - (I-SpD) [(c+d)SpE - d] }/q* 

    = {.80 [(650).95 - 150] - (1-.80) [(2250).95 - 750] }/.56 
    = 96.5/.56= 172.3 
 B = { SpD [(a+b)SeE - a] - {1-SpD) [(c+d)SeE - c] }/q* 
    = { .80 [(650).85 - 500] - {1-.80) [(2250).85 - 1500 }/.56 
    = -40.5/.56 = -72.3 
 C = { SeD [(c+d)SpE - d] - (I-SeD) [(a+b)SpE - b] }/q* 
    = { .90 [(2250).95 - 750] - (1-.90) [(650).95 - 150] }/.56 
    = 1202.0/.56 = 2146.4 
 D = { SeD [(c+d)SeE - c] - (I-SeD) [(a+b)SeE - a] }/q* 
    = { .90 [(2250).85 - 1500] - (1-.90) [(650).85 - 500] }/.56 
    = 366/.56 = 653.6 
 
The corrected table is therefore inappropriate because the B cell is negative: 
 

(Inappropriately) Corrected Table 
 Swam Not Swam 
Ill 172.3 -72.3 
Not ill 2146.4 653.6 
Total 2318.7 581.3 
   

 

 
 
Correct for Nondifferential Misclassification of Exposure and Disease in DataDesk 

 
An exercise in DataDesk is provided to correct for nondifferential misclassification of exposure and disease. 
 
 
Quiz (Q9.13) 
 
Use the “observed” data in the table below to answer the following questions. Assume there is nondifferential 
misclassification of disease, SeD=0.8, SpD=0.7 and that there is no misclassification of exposure. 
 

1. Calculate an Odds ratio that is corrected for misclassification ???. 

2. The bias due to misclassification is ??? the null. 
 
Choices 
1.4 2.3 5.1 7.4 away from towards 
 
 E Not E  
D’ 70 30 100 
Not D’ 50 50 100 
Total 120 80 200 
 
 
 
 
 

Quiz continued on next page 



259  

 
 

Label the following statements as True or False. 
 

3. It is possible to obtain indeterminate results when trying to correct for nondifferential misclassification, 
even if good estimates of the sensitivity and specificity probabilities are available.  . ??? 

4. If misclassification is nondifferential and independent, with SpD=SeD=SeE=SpE=0.5, then each person in 
the target population has an equal chance of being misclassified into anyone of the four cells of the 2x2 
table.  . . . . . . . . . . . ??? 

5. For the situation described above, it is possible to obtain an adjusted estimate of the odds ratio that will 
correct for misclassification.  . . . . . . . . ??? 

 

 
9-4 Information Bias (continued) 
 

Correcting for Differential Misclassification of  
Exposure and/or Disease 

 
We previously illustrated differential misclassification of exposure using hypothetical case-control data on the relationship 
between diet and coronary heart disease.  We assumed that we knew the 2 x 2 table describing true exposure and disease 
status and then determined the 2 x 2 table for the observed data based on differential misclassification of exposure but no 
misclassification of disease.  
 

 
 

Here, we more realistically start the other way around by assuming that we have the observed data, as shown below. 
We wish to correct for differential misclassification by transforming the observed cell frequencies to corrected cell 
frequencies from which we can obtain a corrected odds ratio.  Suppose, as before, that a CHD case, who is concerned about 
the reasons for his or her illness, is not as likely to over-estimate his or her intake of fruits and vegetables as is a control. 
Assume that from either a sub-sample or a separate study, the sensitivities and specificities for misclassifying exposure are 
known. 
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Study Questions (Q9.14) 
 
The following questions are based on the sensitivities and specificities described above. 
 

1. Is there nondifferential or differential misclassification of exposure? 
2. What does the sensitivity information say about the likelihood that a case will over-estimate his or her intake of 

fruits and vegetables when compared to a control? 
 
 

When misclassification is differential, general formulas can be derived for calculating corrected cell frequencies, 
capital A, B, C, and D, in terms of the observed cell frequencies, little a, b, c, and d.  (Note: in the box at the end of this 
activity are the general formula correcting for differential misclassification of both exposure and disease.)  The resulting 
corrected cell frequencies are shown here. 
 

 
 
 
Study Questions (Q9.14) continued 
 
The following questions are based on the tables above. 
 

3. Using the corrected cell frequencies, compute the odds ratio that corrects for misclassification of disease. 
4. What is the direction of the bias? 

 
 
Summary 
 

 As in the nondifferential case, differential misclassification can be corrected when estimates of sensitivity and 
specificity are available. 

 The procedure involves transforming the misclassified cell frequencies into “corrected” cell frequencies and requires 
the assumption that misclassification of exposure and disease are independent. 

 The procedure requires as input estimates of sensitivities and specificities for misclassification of exposure and 
disease as well as the cell frequencies in the observed 2x2 table that relates exposure to disease. 

 An explicit algebraic formula for the correction procedure is not available although calculations can be carried out 
using a computer program. 

 
Correcting for Differential Misclassification and Associated Problems 

 
The general formulae for correcting for differential misclassification are given as follows: 
 
A={Sp(D|E)[(a + b)Sp(E|D) - b] – [1 – Sp(D|E)][(c + d)Sp(E|D) – d]} / qA 

B={Sp(D|not E)[(a + b)Se(E|D) – a] – [1 – Sp(D|not E)][(c + d)Se(E|D) – c]} / qB 

C={Se(D|E)[(c + d)Sp(E|not D) – d] – [1 – Se(D|E)][(a + b)Sp(E|not D) – b]} / qC 

D={Se(D|not E)[(c + d)Se(E|not D) – c] – [1 – Se(D|not E)][(a + b)Se(E|not D) – a]}/qD 
 
 

 
Continued on next page
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Correcting for Differential Misclassification and Associated Problems (continued) 
 
where 
 
qA= [Se(D|E) + Sp(D|E) - 1] x [Se(E|D) + Sp(E|D) - 1] 

qB= [Se(D|not E) + Sp(D|not E) - 1] x [Se(E|D) + Sp(E|D) - 1] 

qC= [Se(D|E) + Sp(D|E) - 1] x [Se(E|not D) + Sp(E|not D) - 1] 

qD= [Se(D|not E) + Sp(D|not E) - 1] x [Se(E|not D) + Sp(E|not D) - 1] 
 
Se(D|E)   = Sensitivity D given E 

Se(D|not E)  = Sensitivity D given not E 

Sp(D|E)   = Specificity D given E 

Sp(D|not E)  = Specificity D given not E 

Se(E|D)   = Sensitivity E given D 

Se(E|not D)  = Sensitivity E given not D 

Sp(E|D)   = Specificity E given D 

Sp(E|not D)  = Specificity E given not D 
 
These formulae may yield inappropriate results for the corrected cell frequencies A, B, C, and D under the following 

circumstances: 
 

1. Either qA = 0, qB = 0, qC = 0, or qD = 0 
2. The corrected value for A is negative 
3. The corrected value for B is negative 
4. The corrected value for C is negative 
5. The corrected value for D is negative. 
 
 
 

Correct for Differential Misclassification in DataDesk 
 
An exercise in DataDesk is provided to correct for differential misclassification. 
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Quiz (Q9.15) 
 
Use the data in the table below to answer the following questions.  Assume there is differential misclassification of 
Exposure, Se(E|D)=0.9, Se(E|not D) = 0.6, Sp(E|D) = 0.7, Sp(E|not D) = 0.9, and there is no misclassification of 
disease. 
 

1. Calculate an Odds ratio that is corrected for misclassification. ??? 

2. The bias due to misclassification is ??? the null. 
 
Choices 
3.5 4.0 5.1 5.8 away from towards 
 

 
 
 

Diagnostic Testing and Its Relationship to Misclassification 
 

An Example of Clinical Diagnosis 
 
A 43 year-old man with an acutely swollen leg is examined at a medical clinic. The examining physician is concerned that 
the patient might have deep vein thrombosis, or DVT, a blood clot in the deep vein system of the leg.  How does the 
physician make the diagnosis for this patient?  The gold standard diagnostic test for DVT is a contrast venogram, a test that 
requires that a radiographic contrast dye be injected into a vein on the top of the foot. A filling defect seen in the dye column 
on the x-ray would correctly diagnose a deep vein clot.  However, the radiographic contrast itself can inflame the veins and 
cause DVT. Moreover, allergies to the dye are not uncommon and may prevent the patient from undergoing such a 
procedure. Also, a venogram always involves a needle stick; a less painful test would be preferred if it were available and 
sufficiently accurate. The patient’s true DVT status might still be assessed by prolonged follow-up since DVT should declare 
itself eventually by causing persistent symptoms. Nevertheless, the clinician prefers to make a diagnosis quickly without 
prolonged follow-up, not only to avoid the negative aspects of using a venogram but primarily because of the immediate risk 
of pulmonary embolism, when a deep leg vein clot migrates upstream to the lungs. 

An alternative diagnostic test for DVT is ultrasound, which can be quickly scheduled and is not invasive to the 
patient. An ultrasound, however, may be less accurate in diagnosing DVT than a venogram. So, how do we choose between 
the gold standard procedure with its complications and the more simple procedure with its potential for misclassification? 
Diagnostic test studies may provide some answers. Such studies are described in the next activity. 
 
 
Summary 
 

 The gold standard test procedure for diagnosing a specific disease condition may have problems (e.g., invasive, 
risky, costly) associated with its use. 

 An example of such a procedure is the use of a contract venogram to diagnose deep vein thrombosis (DVT). 
 An alternative diagnostic test for DVT is ultrasound, which may not be as accurate as a venogram. 
 A diagnostic test study can help a clinician assess the performance of an alternative diagnostic procedure in 

comparison with using the gold standard procedure. 
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Diagnostic Test Studies 
 
In clinical medicine, studies concerned with misclassification of disease are usually called diagnostic test studies. The 
primary goal of such a study is to evaluate the performance of a test for diagnosing a disease condition of interest.  Suppose, 
for example, that the disease condition is deep vein thrombosis, or DVT. In a diagnostic study for DVT, the clinician targets 
only patients with a specific symptom, for example acute leg swelling” and then performs both the diagnostic test, typically 
an ultrasound, and the gold standard procedure, typically an x-ray venogram, on these patients. Here are the results of such a 
diagnostic test study in the form of a misclassification table: 
 

 
 

Using the diagnostic test, the disease classification status that is determined for a given patient is called the test 
result, and is labeled as positive (+) or negative (-) on the rows of the table.  The procedure used to define true disease is 
called the gold standard, however imperfect it may be. In the misclassification table, the results from using the gold standard 
are labeled on the columns of the table.  Typically, the gold standard is a test that is more detailed, expensive, or risky than 
the diagnostic test used by the physician. The gold standard might even require prolonged follow-up of the patient if the 
disease is expected to eventually declare itself, post-mortem examination, or a measure combining more than one strategy, 
sometimes in complex ways tailored to the specific disease. 

Using the information in the misclassification table, the performance of a diagnostic test can be evaluated using 
several important measures, including the sensitivity, the specificity, and the prevalence.  Recall that sensitivity describes 
the test’s performance in patients who truly have the disease, and is defined as the conditional probability of a positive test 
result given true disease, P(Test + | True +). 

 
 
 
Study Questions (Q9.16) 
 
1. What is the sensitivity of the test in the above table? 
2. If the sensitivity had been 0.99, what could you conclude about a truly diseased patient who had a negative test result? 
 
 

Specificity describes the tests performance among patients who are truly without the disease. It is defined as the 
conditional probability of a negative test result given the absence of disease, P(Test - | True -). 
 
 
Study Questions (Q9.16) continued 
 
3. What is the specificity of the test? 
4. If the specificity had been .99, what would you conclude about a truly nondiseased patient who had a positive test 

result? 
 
 

Prevalence is calculated as the proportion of patients in the study sample who truly have the disease, P(True +). If 
little is known about a patient, disease prevalence in a diagnostic test study is the best estimate of pre-test probability that the 
patient has the disease. 
 
Study Questions (Q9.16) continued 
 
5. What is the prevalence of true disease from these data? 
6. Based on the sensitivity, specificity, and prevalence calculations above, do you think that the test is a good diagnostic 

tool for DVT?  Explain briefly. 

“
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Although the three measures, sensitivity, specificity, and prevalence provide important summary information about 

the performance of the diagnostic test, a more useful measure of overall performance is called the predictive value. It is 
described in the next activity. 
 
 
Summary 
 

 In clinical medicine, studies concerned with misclassification of disease are usually called diagnostic test studies. 
 The purpose of a diagnostic test study is to evaluate test performance rather than to adjust for information bias. 
 The procedure used to define true disease is called the gold standard. 
 In a diagnostic study, the clinician targets patients with a specific symptom and then performs both the diagnostic 

test and the gold standard procedure on these patients. 
 The performance of a diagnostic test can be evaluated using several important measures, including sensitivity, 

specificity, and prevalence. 
 A more useful measure of the performance of a diagnostic test is provided by the predictive value. 

 
 

Screening Tests 
 

A second type of clinical study concerned with misclassification is called a screening test. In contrast to a diagnostic test, a 
screening test targets a broad population of asymptomatic subjects to identify those subjects that may require more detailed 
diagnostic evaluation. The subjects in a screening test have not gone to a physician for a specific complaint. 

Members of the general public are typically invited to undergo screening tests of various sorts to separate them into 
those with higher and lower probabilities of disease.  Those with higher probabilities are then urged to seek medical 
attention for definitive diagnosis.  Those with lower probabilities receive no direct health benefit because they do not have 
the disease condition being screened.  Also, depending on invasiveness of the screening test and/or the disease condition 
being targeted, persons under going screening may suffer risks as well as face some inconvenience, anxiety, personal cost, 
and sometimes discomfort, e.g., as with the use of a colonoscopy to screen for bowel cancer. 
 
 
 

The Predictive Value of a Diagnostic Test 
 
The probability of true disease status for an individual patient given the result of a diagnostic test is called the test’s 
predictive value. The predictive value is particularly useful to the clinician for individual patient diagnosis because it 
directly estimates the probability that the patient truly does or does not have the disease depending on the results of the 
diagnostic test. That’s what the clinician wants to know. 
 
Study Questions (Q9.17) 
 
Suppose T+ denotes the event that a patient truly has a disease condition of interest, whereas D+ denotes the event of a 
positive diagnostic test result on the same patient. 
 
1. Which of the following two probability statements describes sensitivity and which describes predictive value?    

A. P(T+|D+)       B. P(D+|T+) 
 
  

The predictive value can be obtained directly from the misclassification table generated by a diagnostic test study.  
Because there are two possible results for a test, there are two different predictive values. The probability of actually having 
the disease when the test is positive is called the positive predictive value, and is denoted as PV+. The probability of 
actually not having the disease if the test is negative is the negative predictive value, and is denoted as PV-. Both PV+ and 
PV- are proportions. The closer these proportions are to 1, the better the test’s predictive performance. 
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The positive predictive value is calculated as the number of true positive results divided by all positive results.  
 

 
 
 
Study Questions (Q9.17) continued 
 
2. What is PV+ for the above table? 
 
 

The positive predictive value is often referred to as the post-test probability of having disease. It contrasts with 
prevalence, which gives the average patient’s pre-test probability of having disease. 
 
 
Study Questions (Q9.17) continued 
 
3. Based on the data in the misclassification table, what is the estimate of the average patient’s probability of having DVT 

prior to performing an ultrasound? 
4. Has the use of an ultrasound improved disease diagnosis for persons with positive ultrasound results?  Explain briefly. 
 
 

The negative predictive value is the number of true negative results divided by the total number of subjects with 
negative test results. 
 

 
 
 
Study Questions (Q9.17) continued 
 
5. What is PV- for these data? 
6. Based on the data in the misclassification table, what is the estimate of the average patient’s probability of not having 

DVT prior to performing an ultrasound? 
7. Has the use of an ultrasound improved disease diagnosis for persons with negative ultrasound results?  Explain briefly. 
 
 

The prevalence of true disease in a diagnostic test study can greatly influence the size of the predictive values 
obtained. To illustrate this, we now consider a second misclassification table for a different group of patients who have 
presented to their clinician with pain but without swelling in their leg. 
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Study Questions (Q9.17) continued 
 
8. What are the sensitivity, specificity, and prevalence in the table? 
9. In the previously considered misclassification table, the sensitivity, specificity, and prevalence were 0.80, 0.90, and 

0.30, respectively.  How do these values compare with the corresponding values computed in the previous question? 
10. What are the values of PV+ and PV- in the above table? 
11. In the previously considered misclassification table, PV+ and PV- were .77 and .91, respectively, and the prevalence 

was .30.  How do these values compare with the corresponding predicted values computed in the previous question? 
12. What is the moral of this story relating predictive value to disease prevalence? 
 
 
Summary 
 

 The predictive value (or post-test probability) is the probability of true disease status given the result of a diagnostic 
test. 

 The predictive value can be obtained directly from the misclassification table generated by a diagnostic test study. 
 The probability of disease when the test is positive is called the positive predictive value, and is denoted as PV+ 
 The probability of disease when the test is negative is called the negative predictive value, and is denoted as PV-. 
 PV+ = # true positives / all positive 
 PV- = # true negatives / all negatives 
 The closer PV+ and PV- are to 1, the better the test. 
 The prevalence of true disease in a diagnostic test study can greatly influence the size of the predictive value. 

 
 

Expressing Predicted Value in Terms of Sensitivity, Specificity, and Prevalence 
 

The prevalence of true disease in a diagnostic test study can greatly influence the size of the predictive value. We first 
illustrate this statement using an example. We then describe mathematically how we computed the numerical values in our 
example using formulae that express the positive and negative predictive values in terms of the sensitivity, specificity and 
prevalence parameters. 

Suppose we fix the sensitivity and specificity values at .80 and .90, respectively, and we consider what the predictive 
values would be for different prevalences, say .10, .30, .50, .70, and .90. The following results will be obtained: 
 

Prevalence of 
True Disease 

Sensitivity D Specificity D PV+ PV-

.01 .80 .90 .08 .998

.10 .80 .90 .47 .98

.30 .80 .90 .77 .91

.50 .80 .90 .89 .82

.70 .80 .90 .95 .66

.90 .80 .90 .99 .33 
 

Continued on next page 
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Expressing Predicted Value in Terms of Sensitivity, Specificity, and Prevalence (continued) 

 
From the above table, we can see that for fixed values of sensitivity and specificity the predicted value positive (PV +) 

increases from .08 to .99 as the prevalence increases from .01 to .90; moreover, even though both sensitivities and 
specificities are relatively high, the predictive value positive can be very low (e.g., 8%) if the prevalence of the disease is 
small (e.g., 1 %). A reverse trend is seen for predicted value negative (PV-), which decreases as the prevalence of disease 
increases. 

We now describe how the formulae for PV+ and PV- can be expressed in terms of sensitivity, specificity, and 
prevalence parameters. To do this, we need to use a famous theorem about conditional probabilities, called Bayes Theorem, 
which allows us to express conditional probabilities of the form: 

 
P(A|B) and P(A|not B) 
 

in terms of conditional probabilities of the form: 
 
P(B|A) and P(B|not A)  
 

in which A and B have been switched into opposite sides of the given sign. In diagnostic test studies, the event A refers to a 
subject’s true disease status being positive, which we denote as: 

 
A = T+ 
 
The event B refers to a subject’s diagnostic test result being positive, which we denote as: 
 
B = D+ 
 
It follows then that 
 
not A = T- and 
not B = D- 
 

denote being a true negative and having a negative diagnostic test result, respectively. Thus: 
 

P(A|B) = P(T+|D+ ) 
 
defines the positive predictive value (PV+) of a diagnostic test, 
 

P(not A|not B) = P(T -|D-) 
defines the negative predictive value (PV -) of a diagnostic test, 
 

P(B|A) = P(D+|T+)  
 

denotes the sensitivity of the diagnostic test,  
 

(not B|not A) = P(D-|T-)  
 
denotes the specificity of the diagnostic test, and 
 

P(A)=P(T+) 
 

denotes the prevalence of true disease in the population under study. 
Using Bayes Theorem, we can express P(A|B) and as follows: 

 
Continued on next page 
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Expressing Predicted Value in Terms of Sensitivity, Specificity, and Prevalence (continued) 

 

A)not |P(A)]P(B[1A)|P(A)P(B
A)|P(A)P(BB)|P(A  

 
Substituting T+, T-, D+ into this formula for A, not A, B, respectively, we get the following result 

 

T-)|)]P(DP(T[1)T|)P(DP(T
)T|)P(DP(T)D|P(T  

 
which can be re-written as 
 

SpecD)] - (1  PrevD) - [(1  SensD]  [PrevD
SensD  PrevDPV  

 
Similarly, we can use Bayes Theorem to describe PV- in terms of sensitivity, specificity and prevalence of disease: 

 

SpecD]   PrevD) - [(1  SensD)] - (1  [PrevD
SpecD  PrevD) - (1PV-  

 
 
 
Quiz (Q9.18) 
 
For the classification table shown on the right, determine each of the following: 
 
1. What is the sensitivity?  . . ??? 

2. What is the specificity?  . . ??? 

3. What is the prevalence of the disease?  ???  

4. What is the positive predictive value?  ??? 
 
Choices 
10%  33.3%  36.7%     81.8%      90% 
 
 
The sensitivity and specificity for the classification table shown on the right are still 90% as in the previous 
questions. For this table, answer each of the following: 
 
5. What is the prevalence of the disease?  ??? 

6. What is the positive predictive value?  ??? 

7. The prevalence in this table is smaller than in the previous table; 
therefore, the positive predictive value is ??? than in the previous 
table. 

 
Choices 
16.7%  64.3%  90%      larger      smaller 
 
 
 

Quiz continued on next page 
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Once again, the sensitivity and specificity for the classification table shown on the right are 90%. For this table, 
answer each of the following: 
 
8. What is the prevalence of the disease?  ??? 

9. What is the positive predictive value?  ??? 

10. The prevalence in this table is smaller than in the previous two tables, 
therefore, the positive predictive value is ??? than in the previous two 
tables. 

11. These results illustrate the fact that if the prevalence is small, the predictive value can be quite ??? even if 
the sensitivity and specificity parameters are quite ??? 

 
Choices 
10%     36.7% 50%   high      larger small      smaller 
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Nomenclature 
 
Misclassification Tables for Disease and Exposure 
 
Misclassification table for disease: 
  Truth  
  D Not D  
Classified D     
 Not D     
     
 
Misclassification table for exposure: 
  Truth  
  E Not E  
Classified E     
 Not E    
     
 
Observed (Misclassified) and Corrected Tables 
 
Observed (i.e., misclassified) Data 
  E Not E  
 D  a b  
 Not D  c d  
     
 
Corrected (i.e., adjusted) Data 
  E Not E  
 D A B  
 Not D C D  
     
 
Formulae for Correcting for Nondifferential Misclassification of Disease (No Misclassification of Exposure) 
 
A = [a SpD – c(1 – SpD)] / q 
B = [b SpD – d(1 – SpD)] / q 
C = [c SeD – a(1 – SeD)] / q 
D = [d SeD – b(1 – SeD)] / q 
 
 Where q = SeD + SpD - 1 
 
Formulae for Correcting for Nondifferential Misclassification of Exposure (No Misclassification of Disease) 
 
A = [a SpE – b(1 – SpE)] / q 
B = [b SeE – a(1 – SeE)] / q 
C = [c SpE – d(1 – SpE)] / q 
D = [d SeE – c(1 – SeE)] / q 
 
 Where q = SeE + SpE - 1 
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Formulae for Correcting for Nondifferential Misclassification of Exposure and Disease 
 
A = {SpD[(a + b) SpE – b] – (1 – SpD)[(c + d) SpE – d]} / q* 
B = {SpD[(a + b) SeE – a] – (1 – SpD)[(c + d) SeE – c]} / q* 
C = {SeD[(c + d) SpE – d] – (1 – SeD)[(a + b) SpE – b]} / q* 
D = {SeD[(c + d) SeE – c] – (1 – SeD)[(a + b) SeE – a]} / q* 
 
 Where q* = (SeD + SpD – 1) ( SeE + SpE – 1) 
 
 
D Truly has disease 
D  Classified as having disease 
E Truly exposed 
E  Classified as exposed 
Not D Truly does not have disease 
Not D  Classified as not having disease
Not E Truly not exposed 
Not E  Classified as not exposed 

R̂O  Odds ratio from observed data = ad/bc

adjR̂O  Odds ratio from corrected or adjusted data = AD/BC

R̂R  Risk ratio from observed data = [a/(a+c)]/[b/(b+d)]

adjR̂R  Risk ratio from corrected or adjusted data = [A/(A+C)]/[B/(B+D)]

Sensitivity Of those truly with the characteristic, the proportion that will be correctly 
classified as having the characteristic; for disease, Pr(D |D); for exposure, 
Pr(E |E) 

SeD Sensitivity of disease misclassification
SeE Sensitivity of exposure misclassification
SpD Specificity of disease misclassification
SpE Specificity of exposure misclassification
Specificity Of those truly without the characteristic, the proportion that will be correctly 

classified as not having the characteristic; for disease, P(not D |not D); for 
exposure, P(not E |not E). 
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Homework 
 
ACE-1.  Radiation Exposure vs. GI Tumors 
 
An investigator is interested in studying the relationship between radiation exposure and development of gastrointestinal (GI) 
tumors.  He assembles a cohort of cancer-free subjects, divides them into high” and low” radiation exposure groups, and 
follows them over 10 years for evidence of GI tumors. 
 
a. Suppose that the investigator uses a diagnostic test that fails to identify 20% of all GI tumors but never registers a false 

positive result (i.e. no one without the cancer is ever misdiagnosed as having cancer).  Describe this situation in terms of 
sensitivities and specificities for the exposed and unexposed subjects: 

 
         Sensitivity (D | E)  =                     Sensitivity (D | not E)  = 
 
         Specificity (D | E)  =                     Specificity (D | not E)  = 

 
   
 The following summarizes the data from the SOURCE population (no misclassification): 
 

 
 

 
High 

Radiation 
Low 

Radiation 
 

Total 
 
GI Tumor 

 
600 200 800 

 
No Tumor 

 
1400 1300 2700 

 
Total 

 
2000 1500 3500 

 
b. What is the unbiased estimate of the risk ratio (RR)? 
c. Use the sensitivities and specificities from part a to show the data that would have been observed by the investigator: 
 

 
 

 
High 

Radiation 
Low 

Radiation 
 

Total 
 
GI Tumor 

 
   

 
No Tumor 

 
   

 
Total 

 
   

““
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d. Calculate the observed RR.  Is there no bias, bias toward the null, bias away from the null, or switchover bias? 
e. The following table summarizes the OBSERVED data from a different study of radiation and GI tumors: 
 

 
 

 
High 

Radiation 
Low 

Radiation 
 

Total 
 
GI Tumor 

 
476 376 852 

 
No Tumor 

 
524 624 1148 

 
Total 

 
1000 1000 2000 

 
 
Assuming the scenario described in part “a” above, what is the corrected (unbiased) estimate of the RR for the relationship 
between radiation exposure and GI tumors for this study?  Show your calculations.  What is the nature of the bias, if any? 
 
f. Calculate an odds ratio (rather than a RR) for both the observed and corrected data in part e.  Is your conclusion 

regarding bias the same? 
 
ACE-2.  CHD and Behavior 
 
The following data represent the SOURCE population in a case-control study of coronary heart disease (CHD) and type A 
behavior: 
 

 
 

 
Type A Non-Type A Total 

 
CHD 

 
80 25 105 

 
No CHD 

 
50 55 105 

 
Total 

 
130 80 210 

 
a. Calculate the unbiased estimate of the exposure odds ratio (EOR). 
b. Suppose that exposure was misclassified with the following sensitivities and specificities: 
 

Cases:  Sensitivity = .8 Specificity =  1 
Controls: Sensitivity = .9 Specificity = .6 

 
Show the data that would have been observed, given the misclassification: 
 

 
 

 
Type A Non-Type A Total 

 
CHD 

 
   

 
No CHD 

 
   

 
Total 

 
   

 
c. Calculate the EOR from the observed data.  Is there no bias, bias toward the null, bias away from the null, or switchover 

bias? 
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ACE-3.  Sleep Disturbance vs. Clinical Depression 
 
The Johns Hopkins Precursors Study, a long-term prospective cohort study, was used to evaluate the relation between self-
reported sleep disturbances and subsequent clinical depression.  A total of 1,053 men at several U.S. universities provided 
information on sleep habits during medical school and then were followed for 20 years for development of depression.  
Subjects underwent extensive psychological testing and lengthy structured interviews conducted by psychiatrists trained in 
the diagnosis of depression.  Results of the study are summarized below (you may assume that these data are correctly 
classified): 
 

 Sleep Disturbance 
 Yes No 
Depression 168 93 
No Depression 258 534 
 426 627 

 
Now suppose that the investigators had limited funds and were not able to use the sophisticated diagnostic tools described 
above.  They had two options available to them for diagnosing depression among the study subjects: (1) an interview or (2) a 
self-administered questionnaire. 
 
The interview was able to classify depression status with the following sensitivities and specificities: 
 

Exposed:   Sensitivity = 0.84 and Specificity = 0.90 
Unexposed: Sensitivity = 0.84 and Specificity = 0.90 

 
The questionnaire was able to classify depression status with the following sensitivities and specificities: 
 

Exposed:   Sensitivity = 0.80 and Specificity = 0.88 
Unexposed: Sensitivity = 0.90 and Specificity = 0.95 
 

a. What is the true relative risk (RR) that describes the association between sleep disturbance and depression? 
b. What is the observed RR when the interview is used to classify depression? 
c. What is the observed RR when the questionnaire is used to classify depression? 
d. Taking only issues of validity into account, which tool for diagnosing depression is preferable - the interview or the 

questionnaire?  Justify your answer. 
 
ACE-4.  Aspirin Use and Gastrointestinal Beeding 
 
An epidemiologist was interested in determining whether use of a new aspirin-containing pain reliever was associated with 
an increased risk of gastrointestinal bleeding.  S/he identified 600 patients who were taking the drug on a regular basis and 
600 unexposed subjects.  Subjects were followed for one year to detect the occurrence of gastrointestinal bleeding.  Due to 
publicity about the potential hazards of the new drug, physicians participating in the study followed their exposed subjects 
more closely than unexposed subjects, and were thus more likely to diagnose gastrointestinal bleeds when they occurred in 
this group of study subjects. 
 
a. Which of the following describe(s) the situation? [You may choose more than one]: 
 

i. Nondifferential misclassification of exposure 
ii. Differential misclassification of exposure 
iii. Nondifferential misclassification of disease 
iv. Differential misclassification of disease 
v. Recall bias 
vi. Detection bias 
vii. Berkson’s bias 
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Suppose that the following table represents the SOURCE population (i.e. correctly classified) for the study of the new drug 
and gastrointestinal bleeding: 
  

 Use of New Drug 
 Yes No
 
GI bleed 400 300 
no GI bleed 200 300 

 
b. Assume that when the study was carried out, GI bleeds were classified with sensitivity = 0.9 and specificity = 0.75 for 

subjects who were using the drug.  For subjects not using the drug, GI bleeds were classified with sensitivity = 0.6 and 
specificity = 0.75.  Use this information to fill in the table below: 

  
 Use of New Drug 
 Yes No
 
GI bleed     
no GI bleed   

 
c. Calculate the appropriate ratio measure of association for the OBSERVED (misclassified) data.  Indicate whether there is 

bias, and if so, in what direction. 
d. Suppose the study were repeated, with GI bleeds detected by physicians who were blinded as to the exposure status of 

the subjects.  If the sensitivity for unexposed subjects were increased to 0.9, while all other sensitivities and specificities 
remained the same, what impact would this     have on the bias? 

 
i. The bias would be eliminated. 
ii. The magnitude of the bias would decrease, but the direction would remain the same. 
iii. The magnitude of the bias would increase, but the direction would remain the same. 
iv. The direction of the bias would change. 
v. None of the above. 

 
ACE-5.  Antidepressant Medication and Breast Cancer Risk 
 
A study entitled “Antidepressant Medication and Breast Cancer Risk” was published in a recent issue of the American 
Journal of Epidemiology.  According to the methods section of the paper, “Cases were an age-stratified (<50 and >=50 years 
of age) random sample of women aged 25-74 years, diagnosed with primary breast cancer during 1995 and 1996 (pathology 
report confirmed) and recorded in the population-based Ontario Cancer Registry. As the 1-year survival for breast cancer is 
90 percent, surrogate respondents were not used. Population controls, aged 25-74 years, were randomly sampled from the 
property assessment rolls of the Ontario Ministry of Finance; this database includes all home owners and tenants and lists 
age, sex, and address.” 
 
a. Discuss the authors’ approach to the identification of cases with respect to the potential   misclassification bias. 
b. Discuss the authors’ approach to the identification of controls with respect to the potential for (a) selection and (b) 

misclassification bias. 
c. Discuss the pros and cons of the decision not to allow surrogate respondents. 
 
The methods section of the paper goes on to say: “Data were collected through mailed, self-administered, structured 
questionnaires that included information on (1) sociodemographic data; (2) duration, dosage, timing, and type of 
antidepressant medications used; and (3) potential confounders. Subjects were asked “have you ever taken antidepressants for 
at least 2 weeks at any time in your life?” (a list of 11 antidepressants was given to provide examples).” 
 
d. Discuss the pros and cons of the authors’ approach to exposure assessment.  List and describe how information bias 

could result from this approach. 
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ACE-6.  Validation Study 
 
You have conducted:   
       i) a cohort study of a disease and dichotomous exposure;  and 
      ii) a separate validation study to assess sensitivity and specificity of the measure used in the cohort study, since disease 
status was misclassified differentially with respect to exposure.  
 
Results of the validation study: 
 
  Exposed: 
  

 True Disease 
Measured Disease + - 
  + 95 10
 
  - 5 90 

 
Unexposed:  
   

 True Disease 
Measured Disease + - 
  + 97 5
 
  - 3 95 

 
Results of the cohort study (observed data): 
  

 Exposure Status 
Disease Status + - 
  + 540 284
 
  - 1460 1716 

 
Using the above information, estimate the true risk ratio adjusted for misclassification. 
(To answer this question, you may wish to use the Data Desk template for correcting for misclassification.,  Specificity.ise) 
 
ACE-7.  Diagnostic Testing: Baseball Fever 
 
A researcher at Javier Lopez University developed a new test for detecting baseball fever. The new test was evaluated in a 
population of 10,000 people, 21% of whom were definitely known to have baseball fever. The number of negative tests was 
8,162. The positive predictive value was discovered to be 91.4%. 
 
a. Use the information provided above to fill in the following 2 x 2 table: 
 
            Baseball Fever 
   Present  Absent 
Test Result 
 
    Positive  ______              ______ 
 
    Negative  ______   ______ 
 
b.  What are the test’s sensitivity and specificity? Provide an interpretation of the sensitivity, using value you just 

calculated. 
c. If you were to apply this test to a patient and the result came back negative, what would you advise that patient regarding 

his/her chances of having baseball fever? 



277  

  

ACE-8.  Predictive Value: Diabetes 
 
In a certain community, eight percent of all adults over age 50 have diabetes. If a health service in this community correctly 
diagnosis 95% of all persons with diabetes as having the disease and incorrectly diagnoses ten percent of all persons without 
diabetes as having the disease, find the probabilities that: 
 
a. The health service will diagnose an adult over age 50 as having diabetes. 
b. A person over 50 diagnosed by the health service as having diabetes actually has the disease. 
 
ACE-9.  Diagnostic Testing: Prostate Cancer 
 
A group of 50,000 men over 60 years of age were tested for prostate cancer using the PSA test with the following results: 
         

 Prostate Cancer 
PSA Test Result Yes No 
  Positive 2,900 20,000 
  Negative 100 27,000 
     Total 3,000 47,000 

 
a. What are the sensitivity and the specificity of this test? 
b. What is the positive predictive value of this test? 
c. If a person gets a PSA test result that is negative, should he worry about having prostate cancer? Explain. 
d. If a person gets a PSA test result that is positive, should he worry about having prostate cancer? Explain. 
e. Suppose a new test was developed that had the same sensitivity as the PSA test, but had a specificity that was 95%. 

Assuming the same numbers subjects with and without (true) prostate cancer, describe the misclassification table that 
would result using the new test. 

  
 Prostate Cancer 
New Test Result Yes No 
  Positive   
  Negative   
     Total 3,000 47,000 

      
f. What is the positive predictive value of the new test? 
g. If a person gets a new test result that is negative, should he worry about having prostate cancer? Explain. 
h. If a person gets a new test result that is positive, should he worry about having prostate cancer? Explain. 
 
ACE-10.  Prostate Cancer Screening 
 
Suppose that a new screening test for prostate cancer has been under development and is almost ready to be put on the 
market. Subjects undergoing screening are required to provide a small blood sample that is then tested to determine the level 
of a certain factor (Factor P). The higher the level of Factor P, the more likely the presence of prostate cancer. However, 
Factor P may be elevated as a result of other non-cancerous conditions involving the prostate. 
 
a. Scientists in Europe and those in the United States have disagreed on the appropriate cut-point for determining whether 

the screening test is to be considered positive. Discuss the implications of the choice of cut-point for this test. Think in 
terms of evaluation of the test’s performance as well as ramifications for patient care. 

b. Design an epidemiologic study that would be appropriate for evaluating the effectiveness of the new screening test. Be 
sure to comment on the study design, study subjects, exposure(s) of interest, outcome(s) of interest, analytic plan, 
potential biases, and any other important aspects of your study. 

c. As soon as the new screening test becomes available for use, it receives a great deal of media attention. It is quickly 
endorsed by the American Medical Association, the American Urological Association, and the American College of 
Surgeons. A community-based health advocacy group founded by prostate cancer patients and their families begins to 
call for widespread screening using the new test. Their goal is see that every adult male in the United States is screened 
each year for prostate. Discuss the pros and cons of such a plan for widespread screening of the general public for 
prostate cancer. 
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Answers to Study Questions and Quizzes 
 
Q9.1 
 

1. 2 
2. 7 
3. 100 x (6/8) = 75% 
4. 100 x (7/10) = 79% 

 
Q9.2 
 

1. False.  Typically, several times and locations are 
used in the same residence, and a time-weighted 
average (TWA) is often calculated. 

2. False.  Good instrumentation for measuring time-
weighted average has been available for some time. 

3. False.  A system of wire codes to measure distance 
and configuration has been used consistently since 
1979 to rank homes crudely according to EMF 
intensity.  However, the usefulness of this system 
for predicting past exposure remains an open 
question. 

4. True 
5. True 
6. True 
(Note: there are no questions numbered 7 to 9) 
10. Interviewer bias.  Subjects known to have 

experienced a venous thrombosis might be probed 
more extensively than controls for a history of oral 
contraceptive use. 

11. Away from the null.  The proportion of exposed 
among controls would be less than it should have 
been if both cases and controls were probed to the 
same extent.  Consequently, the odds ratio in the 
misclassified data would be higher than it should 
be. 

12. Keep the interviewers blind to case-control status of 
the study subject. 

13. 5 
14. 70 
15. 100 x (95/100) = 95% 
16. 100 x (70/80) = 87.5% 

 
Q9.3 
 

1. The estimated risk ratio for the observed data is 
(380/1000)/(240/1000) = 1.58. 

2. Because the observed risk ratio of 1.58 is 
meaningfully different than the true (i.e., correct) 
risk ratio of 3.14. 

3. Towards the null, since the biased estimate of 1.58 
is closer to the null value than is the correct 
estimate. 

4. No way to tell from one example, but the answer is 
no, the bias might be either towards the null or 
away from the null. 

5. The observed OR of 2.6 that results from 
misclassifying exposure is meaningfully different 
than the true odds ratio of 3.5. 

6. The bias is towards the null.  The biased OR 
estimated of 2.6 is closer to the null value of 1 than 
is the correct OR. 

 
Q9.4 
 

1. Sensitivity = 720 / 900 = .8 or 80% 
2. Specificity = 910 / 1100 = .83 or 83% 
3. Yes.  Both sensitivity and specificity are smaller 

than one.  However, without correcting for the bias, 
it is not clear that the amount of bias will be large. 

 
Q9.5 
 

1. Sensitivity = 480/600 = .80 or 80% and Specificity 
= 380/400 = .95 or 95%. 

2. Sensitivity = 240/300 = .80 or 80% and Specificity 
= 665/700 = .95 or 95%. 

3. The sensitivities for CHD cases and non-cases are 
equal.  Also, the specificities for CHD cases and 
non-cases are equal.  The sensitivity information 
indicates that 20% of both cases and non-cases with 
low intake of fruits and vegetables tend to over-
estimate their intake.  The specificity information 
indicates that only 5% of both cases and non-cases 
with high intake tend to under-estimate their intake. 

4. In the correctly classified 2x2 table, a=600, b=400, 
c=300, and d=700, so the estimated odds ratio is 
ad/bc = (600 x 700) / (400 x 300) = 3.5. 

5. The observed OR of 2.6 that results from 
misclassifying exposure is meaningfully different 
than the true odds ratio of 3.5. 

6. The bias is towards the null.  The biased OR of 2.6 
is closer to the null value of 1 than the correct OR. 

 
Q9.6 
 

1. Sensitivity = 580/600 = .97 or 97% and Specificity 
= 380/400 = .95 or 95%. 

2. Sensitivity = 240/300 = .80 or 80% and Specificity 
= 665/700 = .95 or 95%. 

3. No.  Although the specificities for cases and non-
cases are equal (i.e., 95%), the sensitivity for the 
cases (97%) is quite different from the sensitivity 
for the non-cases (80%).  This difference in 
sensitivities indicates that cases with low intake of 
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fruits and vegetables are less likely to over-estimate 
their intake than non-cases. 

4. Not much.  The observed OR of 3.95 that results 
from misclassifying exposure is slightly higher than 
the true odds ratio of 3.50. 

5. The bias is slightly away from the null.  The biased 
OR of 3.95 is further away from the null value of 1 
than is the correct OR of 3.5. 

 
Q9.7 
 

1. No.  Assuming independent misclassification is 
not equivalent to assuming nondifferential 
misclassification.  The latter assumes that how a 
subject classifies exposure will not vary with their 
true disease status, i.e., Pr(classifying disease 
status|truly E) = Pr(classifying disease status|truly 
not E) or Pr(classifying exposure status|truly D) = 
Pr(classifying exposure status|truly not D). 

2. Differential because (Sensitivity D | E) is not equal 
to (Sensitivity D | not E)=.75. 

3. Yes, the following are missing: 
(Specificity D | E) 
(Specificity D | not E) 
(Specificity E | not D) 

4. Pr(D E  | D E) = Pr(D  | D E) x Pr(E  | D E) = 
(Sensitivity D | E) x (Sensitivity E | D) 

5. Pr(D  E  | D E) = .8 x .9 = .72. 
6. Pr(D  E  | D not E) = Pr(D  | D not E) x Pr(E  | D 

not E) = (Sensitivity D | not E) x (1 – (Specificity E 
| D)). 

7. Pr(D  E  | D not E) = .75 x (1 - .95) = .0375. 
 
Q9.8 
 

1. False – in addition to the sensitivities, if the 
specificities for both exposed and unexposed are 
the same, then the bias must be towards the null. 

2. True 
3. True 

 
Q9.9 
 

a) Away 
b) Towards 
c) Towards 
d) Away 
e) Away 
f) Away 
g) Towards 
h) Towards 
1. It depends.  We know that the bias must be 

towards the null.  If the direction of the bias is all 
that we are interested in, then we do not need to 
correct for the bias.  However, if we want to 
determine the extent of the bias and to obtain a 

quantitative measure of the true effect, then we 
need to correct for the bias. 

2. We can either reason that misclassification is 
nondifferential from our knowledge or experience 
with the exposure and disease variables of our 
study, or we can base our decision on reliable 
estimates of the sensitivity and specificity 
parameters. 

3. It depends.  The bias may be either towards the 
null or away from the null.  We might be able to 
determine the direction of the bias by logical 
reasoning about study characteristics.  Otherwise, 
the only way we can determine either the extent or 
direction of the bias is to compare a corrected 
estimate with an observed estimate. 

4. The biased (i.e., misclassified) observed odds ratio 
is closer to the null than the corrected odds ratio. 

5. The greatest amount of bias is seen with the 
observed OR is 1.5 compared to the corrected OR 
of 3.5, which occurs when both the sensitivity and 
specificity are 80%. 

6. The bias is smallest when the correct OR is 1.8, 
which results when both sensitivity and specificity 
are 90%. 

7. One way to decide is to choose the corrected OR 
corresponding to the most realistic set of values for 
sensitivity and specificity.  Another way is to 
choose the corrected OR (here, 3.5) that is most 
distant from the observed OR.  A third alternative 
is to choose the corrected OR that changes least 
(here, 1.8) from the observed OR. 

 
Q9.10 
 

1. For males, SeD = 32/40 = 80% and SpD  = 54/60 = 
90%. 

2. For females, SeD  = 16/20 = 80% and SpD  = 72/80 
= 90%. 

3. Nondifferential: The SeD for males and females are 
equal at 80% and the SpD for males and females 
are equal at 90%. 

4. RR(adjusted) = (A/1000)/(B/1000) = 
(400/1000)/(200/1000) = 2.0. 

5. The bias is towards the null because the biased risk 
ratio estimate of 1.58 is closer to the null value than 
is the corrected risk ratio. 

6. q will be zero if both the SeD and SpD add up to 1.  
For example, if both the SeD and SpD equal .5, 
then q = 0.  In this case there would be an equal 
chance of being misclassified into any one of the 
four cells of the 2x2 tables.  There would be no 
point in computing corrected effect estimates for 
such a situation, since misclassification would have 
completely invalidated one’s study results.   
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Q9.11 
 

1. SeE = 48/60 = 80% and SpE = 133/140 = 95%. 
2. You would need to stratify the misclassification 

table into two tables, one for cases and the other for 
controls, and then determine whether corresponding 
sensitivities and specificities for cases and controls 
were equal.  Without such information, you might 
be able to reason that since both cases and controls 
have cancer that is gastrointestinal, they may tend 
to have similar reporting tendencies about PEU 
history.  Such an argument suggests that 
misclassification is likely to be nondifferential. 

3. Note: there is no question 3 in this section. 
4. OR(adjusted) = (A x D)/(B x C) = (80 x 280)/(220 

x 20) = 5.1. 
5. The bias is towards the null, because the biased risk 

ratio estimated of 3.0 is closer to the null than the 
corrected risk ratio of 5.1. 

 
Q9.12 
 

1. Stratify the classification information on pollution 
level by true illness status, and stratify the 
classification information on illness by true 
pollution level. 

2. Not really because the true stratified 
misclassification information involving the true 
illness status and pollution level is not provided. 

3. Non-differential misclassification is assumed since 
no stratum-specific sensitivity or specificity values 
are provided in the sub-sample or the previous 
pollution study to be applied here.  The non-
differential misclassification assumption does 
appear reasonable.  It is unlikely that illness would 
be misreported one week later according to 
pollution level, or that water quality was measured 
incorrectly or misreported according to illness 
level. 

4. It is reasonable to assume independent 
classification since the exposure and disease 
variables were measured at different times and 
likely by different investigators. 

5. RR(corrected) = (339.3/416.7)/(410.8/2083.4) = 4.1 
6. The bias is towards the null because the biased risk 

ratio estimate of 1.6 is closer to the null value than 
is the corrected risk ratio of 4.1. 

7. The biased estimate of 1.6 jumps quite a lot to 4.1 
when corrected.  Such a large jump from biased to 
correct estimate often occurs when both disease and 
exposure are misclassified, even when the 
sensitivity and specificity parameters are close to 
100%. 

8. If either the sensitivity and specificity for disease 
sums to 1 or the sensitivity and specificity for 

exposure sums to 1, then the corrected cell 
frequencies are undefined because q* = 0. 

 
Q9.13 
 

1. 7.4 – To answer this question, you will need to use 
the appropriate formula to correct for 
nondifferential misclassification of disease; the 
corrected table is: 

 
 E Not E  
D 68 12 80 
Not D 52 68 120 
Total 120 80 200 

 
2. towards 
3. true – If the sum of the specificity and sensitivity 

equals 1, you will obtain indeterminate results. 
4. true 
5. false – Since the sum of either the specificities and 

sensitivities is 1, the results will be indeterminate. 
 
 
Q9.14 
 

1. Differential because the sensitivities of 96.7% and 
80% are different, even though the specificities are 
the same. 

2. A CHD case, who might be concerned about the 
reasons for his or her illness, is not as likely to 
over-estimate his or her intake of fruits and 
vegetables as is a control. 

3. OR(corrected) = (599.7 x 700)/(400.2 x 300) = 3.5.  
This is the same value that we previously obtained 
for the true odds ratio in our previous presentation 
about differential misclassification that showed 
how to obtain observed cell frequencies when 
starting out with the true cell frequencies. 

4. The bias is away from the null because the biased 
odds ratio estimate of 3.95 is further away from the 
null value than the corrected odds ratio of 3.5. 

 
Q9.15 
 

1. 3.5 – See the appropriate formulas required to 
calculate this estimate.  A=600, B=400, C=300, 
D=700. 

2. Away from – Since the observed OR is further from 
the null than the adjusted estimate, the observed 
estimate must be away from the null. 

 
Q9.16 
 

1. Sensitivity = 48 / 60 = 0.80. 
2. The patient is very unlikely to have the disease, 

since the probability of getting a negative test result 
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for a patient with the disease is.01, which is very 
small. 

3. Specificity = 126 / 140 = 0.90 
4. The patient is very likely to have the disease, 

because the probability of getting a positive result 
for a patient without the disease is .01, which is 
very small. 

5. Prevalence of true disease = 60 / 200 = 0.30. 
6. Cannot fully answer this question.  Both the 

sensitivity and specificity are relatively high at .80 
and .90, but the prevalence is only 30%.  What is 
required is the proportion of total ultrasound 
positives that truly have DVT, which in this study 
is 48 / 62 = 0.77, which is high but not over .90 or 
.95. 

 
Q9.17 
 

1. Choice A is the predictive value and Choice B is 
sensitivity. 

2. PV+ = 48 / 62 = 0.77 
3. Based on the table, the prior probability of 

developing DVT is 60 / 200 = 0.30, which is the 
estimated prevalence of disease among patients 
studied. 

4. Yes, the prior probability was 0.30, whereas the 
(post-test) probability using an ultrasound increased 
to 0.77 given a positive result on the test. 

5. PV- = 126 / 138 = 0.91 
6. Based on the table, the prior probability of not 

developing DVT is 140 / 200 = 0.70, which is 1 
minus the estimated prevalence of disease among 
patients studied. 

7. Yes, the prior probability of not developing DVT 
was 0.70 whereas the (post-test) probability of not 

developing DVT using an ultrasound increased to 
0.91 given a negative test result. 

8. Sensitivity = 16 / 20 = 0.80, specificity = 162 / 180 
= 0.90, prevalence = 20 / 200 = .10. 

9. Corresponding sensitivity and specificity values are 
identical in both tables, but prevalence computed 
for this data is much lower at 0.10 than computed 
for the previous table (.30). 

10. PV+ = 16 / 34 = 0.47 and PV- = 162 / 166 = 0.98. 
11. PV+ has decreased from 0.77 to 0.47 and PV- has 

increased from 0.91 to 0.98 whereas the prevalence 
has dropped from 0.30 to 0.10 while sensitivity and 
specificity has remained the same and high. 

12. If the prevalence decreases, the predictive value 
positive will decrease and may be quite low even if 
sensitivity and specificity are high.  Similarly, the 
predictive value negative will increase and may be 
very high, even if the sensitivity and specificity are 
not very high. 

 
Q9.18 
 

1. 90% 
2. 90% 
3. 33.3% 
4. 81.8% 
5. 16.7% 
6. 64.3% 
7. smaller 
8. 10% 
9. 50% 
10. smaller 
11. small, high 

 

 
 



 
   

 

 
 
 

 

LESSON   1100  

 
Confounding 

 
Confounding is a form of bias that concerns how a measure of association may change in value depending on whether 
variables other than the exposure variable are controlled in the analysis. 
 

10-1 Concept and Definition 
 

Simpson’s Paradox 
 
Simpson’s Paradox is illustrated by a hat shopping story in which a different conclusion is made about which color hat fits 
better when the same collection of hats are moved from separate tables to a single table. 
 
A man enters a store to buy a hat. He sees two tables on which there are hats of only two colors, green and blue. The first 
table holds 6 green and 10 blue hats. He finds that 5 of the 6 green hats fit and 8 of the 10 blue hats fit, so 83% of the green 
hats fit and 80% of the blue hats fit. 

The other table holds 10 green and 6 blue hats. Only 2 of the 10, or 20%, of the green hats fit, and 1 of the 6, or 
17%, of the blue hats fit. But he goes home without picking a hat. 
 

 
(Note: green hats are on the left side of the tables, blue on the right) 
 

The next day he returns to the store just as it opens. He remembers that yesterday the percentage of green hats that 
fit was greater than the corresponding percentage of blue hats that fit at each table. But now the same 32 hats have been 
mixed together on one big table. Being a very thorough shopper, he tries on all the hats again. He finds that 7 of the 16 green 
hats, or 44%, fit, and 9 of the 16 blue hats, or 56%, fit. How can he explain such a reversal? Now blue hats seem more likely 
to fit than green hats! This situation illustrates a surprising result known as Simpson’s Paradox. 
 

 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_10, © Springer Science+Business Media New York 2013 
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(Note: green hats are on the left side of the table, blue on the right) 
 
 

Simpson’s Paradox Explanation 
 
In our hat shopping story, we found that even though green hats fit better than blue hats on each table separately, the 
combined table shows a reversal, blue hats fit better than green hats overall. The apparent paradox arises here because there 
exist two important underlying relationships involving the three variables considered in this story. These variables are table 
number, hat fitting outcome, and hat color. Table number is related to both the fit of the hat and to the color of the hat. The 
first relationship relating table number to hat fitting means that: for each color separately, the hats on table 1 fit better than the 
hats on table 2. Yet the second relationship relating table number to hat color says that there are more blue hats than green 
hats on table 1, where hats fit better, and there are more green hats than blue hats on table 2, where hats fit worse. The 
observed reversal is not really a paradox at all because such a reversal can actually happen if, as in our story, table number is 
related to both hat fitting and hat color. We call this principle data-based confounding. We will describe it in more detail in 
the lessons to follow. 
 

 
(Note: “Table Number” is the confounder (C); “Hat Fitting” the outcome (D), and “Hat Color” the exposure (E).) 
 
Summary 
 

 Simpson’s Paradox illustrates a general principle about the relationship between two variables E and D when a third 
variable C is also considered. 

 The principle: If the variable C is both strongly related to E and to D, then the relationship between E and D for the 
combined data, which ignores C, can be different from the relationship between E and D when we stratify on 
categories of C. 

 The principle is the basis of the data-based criterion for confounding, which is described in the activities that 
follow. 
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The Concept of Confounding 

 
Simpson’s Paradox is an example of the confusion that can result from confounding. Confounding is an important problem 
for health and medical researchers whenever they conduct studies to assess a relationship between an exposure, E, and some 
health outcome or disease of interest, D.  Confounding is a type of bias that may occur when we fail to take into account 
other variables, like age, gender, or smoking status, in attempting to assess an E D relationship. 

To illustrate confounding consider the results from a hypothetical retrospective cohort study to determine the effect 
of exposure to a suspected toxic chemical on the development of lung cancer for workers in a chemical industry. We will call 
the chemical TCX. The ten-year risks for lung cancer are estimated to be 0.36 for those who were exposed to TCX and 0.17 
for those who were not exposed to TCX. The estimated risk ratio is 2.1, which indicates that those exposed to TCX have 
twice the risk for lung cancer as those unexposed. So far, we have considered two variables, exposure to TCX, and lung 
cancer status, the health outcome. 
 

 
 

We haven’t yet considered any other variables that might also have been measured or observed on the patients in this 
study.  For example, we might wonder whether there were relatively more smokers among those who were exposed to TCX 
than those unexposed to TCX. If so, that may explain why workers exposed to TCX were found to have an increased risk of 
2.1 compared to unexposed workers. Those exposed to TCX may simply have been heavier smokers and, therefore, more 
likely to develop lung cancer than among those not exposed to TCX, regardless of exposure to TCX. Perhaps TCX exposure 
is a determinant of some other form of cancer or another disease, but not necessarily lung cancer. 

Suppose, that we categorize our study data into two smoking history categories, non-smokers and smokers. For these 
tables, the estimated risk ratio is computed to be 1.0 for non-smokers and 1.3 for smokers. Notice that these two stratum-
specific risk ratios suggest no association between exposure to TCX and the development of lung cancer. 
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Study Question (Q10.1) 
 
1. Actually, concluding from these data that there is no association after controlling for smoking is debatable.  Can you 

explain why? 
 

When we form strata by categorizing the entire dataset according to one or more variables, like smoking history in 
our example here, we say that we are controlling for these variables, which we often refer to as control variables. Thus, 
what looks like a twofold increase in risk when we ignore smoking history, changes to no association when controlling for 
smoking history.  This suggests that the reason why workers exposed to TCX had a twofold increase in risk compared to 
unexposed workers might be explained simply by noting that there were relatively more smokers among those exposed to 
TCX.  This is an example of what we call confounding, and we say that smoking history is a confounder of the relationship 
between TCX exposure status and ten-year risk for lung-cancer. In general, confounding may be described as a distortion in a 
measure of association, like a risk ratio, that may arise because we fail to control for other variables, for example, smoking 
history, that might be risk factors for the health outcome being studied. If we fail to control the confounder we will obtain an 
incorrect, or biased, estimate of the measure of effect. 
 
 
Summary 
 

 Confounding is a distortion in a measure of effect, e.g., RR, that may arise because we fail to control for other 
variables, for example, smoking history, that are previously known risk factors for the health outcome being studied. 

 If we ignore the effect of a confounder, we will obtain an incorrect, or biased, estimate of the measure of effect. 
 
 
Quiz (Q10.2) 
 

1. Confounding is a ??? in a ??? that may arise because we fail to ??? other variables that 
are previously known ??? for the health outcome being studied. 

 
Choices 
case-control study    control for    distortion    effect modifiers eliminate 
measure of effect   risk factors 
 
 
A study finds that alcohol consumption is associated with lung cancer, crude OR = 3.5. Using the data below, 
determine whether smoking could be confounding this relationship. 
 

2. What is the OR among smokers?  . . . ??? 

3. What is the OR among non-smokers?  . . . ??? 

4. Does the OR change when we control for smoking status?  ??? 

5. Is there evidence from this data that smoking is a confounder of the relationship between alcohol 
consumption and lung cancer?   . . . ??? 

 
Choices 
0.01 1.0 3.5 5.4 no yes 
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Crude Versus Adjusted Estimates 

 
Confounding is assessed in epidemiologic studies by comparing the crude estimate of effect (e.g., RR̂c ) in which no 

variables are controlled, with an adjusted estimate of effect (e.g., RR̂a ), in which one or more variables is controlled. The 
adjusted estimate is typically computed by combining stratum-specific estimates into a single number. 

For example, to assess confounding by smoking history in the previously described retrospective cohort study of the 
effects of exposure to the chemical TCX on the development of lung cancer, we can compare the crude risk ratio of 2.1 to an 
adjusted risk ratio that combines the risk ratios of 1.0 and 1.3 for the two smoking history categories. The method for 
combining these estimates into a single summary measure is the topic of the next activity. Once we have combined these 
stratum specific estimates, how do we decide if there is confounding? The data-based criterion for confounding requires the 
crude estimate of effect to be different from the adjusted estimate of effect. How different must these two estimates be to 
conclude that there is confounding? To answer this question, the investigator must decide whether or not there is a clinically 
important difference. 

In our retrospective cohort study the adjusted estimate would be some number between 1.0 and 1.3, which suggests 
a much weaker relationship than indicated by the crude estimate of 2.1. Most investigators would consider this a clinically 
important difference. Suppose the crude estimate had been 4.2 instead of 2.1, the difference between crude and adjusted 
estimates would indicate even much stronger confounding. 

We can compare other crude and adjusted estimates. Suppose, for example that an estimated crude risk ratio was 4.2 
and the estimated adjusted risk ratio was 3.8. Both these values indicate an association that is about equally strong, so there is 
no clinically important difference between crude and adjusted estimates.  Similarly, if the estimated crude risk ratio is 1.2 and 
the estimated adjusted risk ratio is 1.3, both these values indicate about the same very weak or no association. So, here again, 
there is no clinically important difference between these crude and adjusted estimates. 
 

 
 
 

Clearly, deciding on what is clinically important requires a subjective decision by the investigators. One investigator 
might conclude, for example, that the difference between a 1.2 and a 1.3 is clinically important whereas another investigator 
might conclude otherwise. This problem may lead one to want to use a test of statistical significance to decide on whether 
there is a difference between the crude and adjusted estimate. However, because confounding is a validity issue, it should not 
be evaluated using a statistical test, but rather by looking for a meaningful difference, however imprecise. 

A commonly used approach for assessing confounding is to specify, prior to looking at one’s data, how much of a 
change in going from the crude to the adjusted estimate is required. Typically, a 10 per cent change is specified, so that if the 
crude risk ratio estimate is say, 4, then a 10% change in this estimate either up or down would be obtained for an adjusted 
risk ratio of either 3.6 or 4.4. Thus, if the adjusted risk ratio were found to be below 3.6 or above 4.4, we would say that 
confounding has occurred with at least a 10% change in the estimated association.   
 

 
 

 

Risk Ratio (RR) 

Risk Ratio 
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As another example, if a 20% change is specified and the crude risk ratio is, say, 2.5, the adjusted risk ratio would 
have to be either below 2 or above 3 to conclude that there is confounding. 
 

 
 
Summary 
 

 Confounding is assessed by comparing the crude estimate of effect, in which no variables are controlled, with an 
adjusted estimate of effect, in which one or more variables are controlled. 

 Confounding is present if we conclude that there is a clinically important or meaningful difference between crude 
and adjusted estimates. 

 We do not use statistical testing to evaluate confounding. 
 A commonly used approach for assessing confounding is to specify, prior to looking at one’s data, how much of a 

change in going from the crude to the adjusted estimate is required. 
 
Quiz (Q10.3) 
 
A case-control study was conducted to study the relationship between oral contraceptive use and ovarian cancer. 
The crude OR was calculated as 0.77. Since age was considered a potential confounder in this study, the data 
were stratified into 3 age groups as shown below. 
 

1. The OR for the 20-39 year age group is ??? 

2. The OR for the 40-49 year age group is ??? 

3. The OR for the 50-54 year age group is ??? 

4. Do you think that this data provides some evidence that age is a confounder of the relationship between 
oral contraceptive use and ovarian cancer? ??? 

 
Choices 
0.58 0.61 0.65 0.69 0.77 1.45 no yes 
 

 
 
 
In this study described in the previous question, the crude OR was 0.77, and the adjusted OR controlling for age 
was 0.64. 
 

5. If a 15% change in the crude versus adjusted OR is specified by the investigator as a meaningful 
difference, an adjusted OR less than ??? or greater than ??? provides evidence of confounding.  

6. Is there evidence of confounding? ??? 

7. Suppose the investigators determined that a 20% change was a meaningful difference. Is there evidence 
of confounding? ??? 

 
Choices 
0.15 0.63 0.65 0.85 0.89 0.92 no yes 

Risk Ratio (RR) 
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10-2 Adjusted Estimates 
 

Characteristics of Adjusted Estimates 
 
Consider again the results of a ten-year retrospective cohort study to determine whether exposure to the chemical TCX is a 
determinant of lung cancer for workers in a chemical industry. The estimated ten-year risk ratio is 2.1. This value is our crude 
estimate of effect because its computation ignores the control of other variables like smoking history.   
 

 
 

We compute an adjusted estimate by combining the stratum specific estimates to obtain a single summary measure. 
The typical summary measure used as an adjusted estimate is a suitably chosen weighted average of the stratum specific 
estimates. 

In our retrospective cohort example, where the estimated risk ratios for two smoking categories were 1.0 and 1.3, a 
simple way to obtain this adjusted risk ratio as a weighted average is to use this formula: 
 

 
 

The terms w1 and w2 represent weights that are respectively multiplied by the corresponding stratum-specific risk 
ratio estimates and then combined to form a weighted average.  (Note: a more complicated version of a weighted average that 
is typically used for adjusted risk ratio estimates is described on page 14-3 in Lesson 14 when we return to discuss weighted 
average formulae used in a stratified analysis.)  What weights should we use? In a simple arithmetic average, w1 equals w2, 
and that the adjusted estimate simplifies to the sum of the two risk ratio estimates divided by 2. The value 1.15 is a 
reasonable number to use as our adjusted estimate, because it lies halfway between the two estimated risk ratios.  However, 
most epidemiologists prefer to give unequal weights to each stratum-specific estimate, especially if the sample sizes are very 
different between different strata. If we again look at the tables for the two smoking history categories in our example, the 
sample sizes for each group are 75 and 81, which though not exactly equal, are not very different. So maybe an arithmetic 
average isn’t so bad for this example. 
 

 
 

On the other hand, if there were 10 times as many non-smokers as there were smokers, we might want to give more 
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weight to the non-smokers, for which we had more information. In fact, we might consider giving the first stratum ten times 
the weight of the second stratum, thus yielding the following weighted average, which comes out to be 1.03. Notice that this 
value is much closer to the estimated risk ratio of 1.0 for stratum 1 because we are giving more weight to that stratum. 
 

 
 
 
Summary 
 

 The typical adjusted estimate is a suitably chosen weighted average of stratum-specific estimates of the measure of 
effect. 

 Epidemiologists prefer to use unequal weights, particularly if the sample sizes are different in different strata. 
 When weights are chosen according to sample size, larger strata receive larger weights. 
 A more complicated version of a weighted average typically used for adjusted RR estimates is described on page 14-

3 in Lesson 14 on stratified analysis.  This more complicated version is called a precision-based adjusted RR. 
 
 
Quiz (Q10.4) 
 
Determine whether each of the following is True or False. 
 

1. An adjusted estimate is a suitably chosen weighted average of the stratum specific estimates.  ???. 

2. An adjusted estimate is always less than the corresponding crude estimate.  . . ??? 

3. Most epidemiologists prefer to give equal weight to each stratum specific estimate in case-control studies. 
 . . . . . . . . . . . ???. 

4. Confounding is a validity issue and therefore, requires the use of a statistical test to determine its 
significance.  . . . . . . . . . . ???. 

 
Use the formula below to calculate the adjusted RR for the following examples whose stratum specific estimates 
are given.  (Note: Although the formula below gives a weighted average, the usual formula for aRR is a more 
complicated “precision-based” weighted average described in Lesson 14.) 
 

 
 
 

5. Stratum 1: RR=1.13, w=13.1; Stratum 2: RR=1.00, w=7.7. The adjusted RR is  . . ???. 

6. Stratum 1: RR=2.25, w=31.3; Stratum 2: RR=1.75, w=5.6. The adjusted RR is  . . ??? 
 
Choices 
1.06 1.07 1.08 1.09 1.98 2.08 2.17 
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Criteria for Confounding 
 
In addition to the data-based criterion for confounding, we must assess several a priori criteria. These are conditions to 
consider at the study design stage, prior to data collection, to identify variables to be measured for possible control in the data 
analysis. 

The first a priori criterion is that a confounder must be a risk factor for the health outcome. This criterion 
ensures that a crude association between exposure and disease cannot be explained away by other variables already known to 
predict the disease. Such variables are called risk factors. For example, suppose we are studying the link between exposure 
to a toxic chemical and the development of lung cancer in a chemical industry.  Based on the epidemiologic literature on the 
determinants of lung cancer, we would want to control for age and smoking status, two known risk factors. Our goal is to 
determine whether exposure to the chemical contributes anything over and above the effects of age and smoking on the 
development of lung cancer. 

The second criterion is that a confounder cannot be an intervening variable between the exposure and the disease. 
A pure intervening variable (V) is any variable whose relationship to exposure and disease lies entirely within the causal 
pathway between exposure and disease.  
 
 
Study Question (Q10.5) 
 
1. Given a hypothetical scenario where saturated fat levels are measured to determine their effects on CHD, would we 

want to control for LDL levels? 
 
 

If we control for LDL level, we essentially control for the saturated fat level, and we would likely find an adjusted 
risk ratio or odds ratio relating saturated fat to coronary heart disease status to be close to the null value. The intervening 
variable here is LDL level, and we should not control for it. 
 

 
 

The third criterion is that a confounder must be associated with the exposure in the source population being 
studied. By source population we mean the underlying population cohort that gives rise to the cases used in the study. 
Consider a study to assess whether a particular genetic factor, BRCAl, is a determinant of breast cancer. Age is a well-known 
risk factor for breast cancer, but is clearly not associated with the presence or absence of the gene in whatever source 
population is being studied.  
 

 
 

The third a priori criterion is therefore not satisfied. Consequently, even if by some chance, age turned out to be 
associated with the gene in the study data, we would not control for age, even though there is data-based confounding, 
because age does not satisfy all a priori criteria. 

All three a priori criteria plus the data-based criterion are required for a variable to be considered a true confounder. 
 

LDL 
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Summary 
 
A confounder must satisfy 3 a priori criteria in addition to the data-based criterion for confounding.  These are: 
 

 A confounder must be a risk factor for the health outcome. 
 A confounder cannot be an intervening variable in the causal pathway between exposure and disease. 
 A confounder must be related to exposure in the source population from which the cases are derived. 

 
 

Some fine points” about risk factors 
 

The decision regarding which variables to include in the list of risk factors is, in practice, rarely a clear-cut matter. Such is the 
case when only a small amount of literature is available on a given study subject. On the other hand, a large literature may be 
controversial in terms of which previously studied variables are truly predictive of the disease. 

Also, after data collection, but prior to the primary data analysis, the list of risk factors may need to be re-evaluated to 
allow for the addition or deletion of variables already measured but not explicitly considered for control. Variables measured 
for other purposes, say in a broad study to evaluate several etiologic questions, may be added to the list of risk factors if they 
were previously overlooked. 

Furthermore, a surrogate of a risk factor may have to be used when the latter is difficult to measure. For example, the 
number of years spent in a given job in a particular industry is often used as a surrogate measure for the actual amount of 
exposure to a toxic substance suspected of being an occupationally related carcinogen. 
 
 

Some fine points” about a priori criterion 3 
 
The third a priori criterion for confounding is of particular concern in case-control studies, where the controls are usually 
selected into the study after the cases have already occurred. In such studies, it is possible that the study data are not 
representative of the source population with regard to the exposure as well as other variables. 

Therefore, a variable, say C, that may be not associated with exposure in the source population may still be associated 
with the exposure in the actual study data. In such a case, criterion 3 says that the variable C cannot be considered a 
confounder, and should not be controlled, even if there is data-based confounding. 

In cohort studies, the exposure status is determined before disease status has occurred, so that the source population is the 
study cohort. In such studies, a variable, C, that is not associated with the exposure in the study data, does not satisfy 
condition 3 and therefore should not be considered a confounder. 

The main difficulty in assessing the third a priori criterion concerns how to determine the association of the suspected 
confounder, C, with the exposure, E, in the in the source population. This requires some knowledge of the epidemiologic 
literature about the relationship between C and E and about the source population being studied 
 
 
 
 
 
 

“
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Quiz (Q10.6) 
 
A study was conducted to assess the relationship between blood type (O-positive and O-
negative) and a particular disease. Since age is often related to disease outcome, it was 
considered a potential confounder. Determine whether each of the apriori criteria below is satisfied. 
 

1. A confounder must be a risk factor for the health outcome.  . . . . ???  

2. A confounder cannot be an intervening variable between the exposure and the disease.  . ??? 

3. A confounder must be associated with the exposure in the source population being studied.  ??? 

4. Can age be a confounder in this study?  . . . . . . . ??? 
 
Choices 
no not satisfied  satisfied yes 
 

 
10-3 A priori Criteria/Study Designs 
 

Confounding in Different Study Designs 
 
We have seen that the assessment of confounding requires both data-based and apriori criteria. The data-based criterion 
requires that the crude estimate of effect be meaningfully different from the adjusted estimate of effect.  The adjusted 
estimate of effect is computed as a weighted average of stratum-specific estimates obtained over different categories of the 
potential confounder. The measure of effect used for this comparison changes with the study design but it always compares a 
crude estimate with an adjusted one. 

We have thus far only considered follow-up studies where the measure of effect of interest is the risk ratio. For case-
control studies, we compare crude and adjusted estimates of the exposure odds ratio.  In cross-sectional studies, we compare 
crude and adjusted estimates of the prevalence odds ratio or the prevalence ratio. 
 

 
 
 
Summary 
 

 The measure of association used to assess confounding will depend on the study design. 
 In a follow-up study, we typically compare a crude risk ratio with an adjusted risk ratio. 
 In a case-control study, we typically compare a crude exposure odds ratio with an adjusted exposure odds ratio. 
 In a cross-sectional study, we typically compare a crude prevalence odds ratio with an adjusted prevalence odds 

ratio, or we might use a prevalence ratio instead of a prevalence odds ratio. 
 Regardless of the study design, data based confounding is assessed by comparing a crude estimated of effect with an 

appropriate adjusted estimate of effect. 
 
 



294 Lesson 10.  Confounding 

 

Assessing Confounding in Case-Control Studies 
 
These tables show results from a case-control study to assess the relationship of alcohol consumption to oral cancer. The 
tables describe the crude data when age is ignored and the stratified data when age has been categorized into three groups. 
The investigators wanted to evaluate whether there was possible confounding due to age.  
 

 
 
 
Study Questions (Q10.7) 
 

1. Which expression should be used to calculate the crude odds ratio relating alcohol consumption to oral cancers? 
A. (27*90)/(47*443) 
B. 27*443/47*90 
C. (27*443)/(47*90) 

3. What are the stratum-specific odds ratios? 
D. 2.2, 2.2, 2.0 
E. 0.45, 0.45, 0.5 
F. 0.6, 0.2, 0.2 

3. Is there data-based confounding due to age? (Yes or No) 
4. Assuming age satisfied all three a priori conditions for confounding, why is age a confounding of the relationships 

between alcohol consumption and oral cancer? 
 
 
Summary 
 

 As an example to assess confounding involving the exposure odds ratio, we consider a case-control study of the 
relationship between alcohol consumption and oral cancer. 

 Age, a possible confounder, has been categorized into three groups. 
 The crude estimate of 2.8 indicates a threefold excess risk whereas the adjusted estimate of 2.1 indicates a twofold 

excess risk for drinkers over non-drinkers. 
 The results indicate that there is confounding due to age. 
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Quiz (Q10.8) 
 
The data below are from a cross-sectional seroprevalence survey of HIV among prostitutes in relation to IV drug 
use.  The crude prevalence odds ratio is 3.59. 
 

 
 

1. What is the estimated POR among the black or Hispanic group?  . . . . ??? 

2. What is the estimated POR among the whites?  . . . . . . ??? 

3. Which table do you think should receive more weight when computing an adjusted odds ratio?  ??? 
 
Choices 
3.25 3.59 4.00 4.31 4.69 Black or Hispanic White 
 
 
In the study described in the previous questions, the estimated POR for the Black or Hispanic group was 4.00 and 
the estimated POR for the Whites was 4.69. The “precision-based” adjusted POR for this study is 4.16.  Recall 
that the crude POR was 3.59. 
 

4. Is there confounding?  . . . . . . . . . ??? 
 
Choices 
1.00 4.35 4.97    maybe no yes 
 
 

10-4 Confounding, Interaction, and Effect Modification 
 

Confounding Versus Interaction 
 
Another reason to control variables in an epidemiologic study is to assess for interaction. To assess interaction, we need to 
determine whether the estimate of the effect measure differs at different levels of the control variable.  Consider the results 
from a case-control study to assess the potential relationship between alcohol consumption and bladder cancer. These data are 
stratified on race in three categories. 
 

 
 

The estimated odds ratios for the three race strata and the combined strata are computed to be 1.74, 1.72, 3.75, and 
1.73. There is clear evidence of interaction here because the effect is strong in Asians, but less so in Whites and Blacks. It is 
not clear whether there is confounding, since the value of the adjusted estimate could vary between 1.72 and 3.75, depending 
on the weights assigned to the strata. The precision-based adjusted odds ratio is computed to be 2.16, which is not very 

LDL 

2.21 
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different from the crude odds ratio of 1.73, suggesting that there is little evidence of confounding. 
Confounding and interaction are different concepts. Confounding compares the estimated effects before and after 

control whereas interaction compares estimated effects after control. When assessing confounding and interaction in the same 
study, it is possible to find one with or without the other. 

Consider the table shown here giving stratum specific and crude risk ratio estimates from several hypothetical data 
sets in which one dichotomous variable is being considered for control. For each data set in this table, do you think there is 
interaction or confounding? Think about your answer for a few minutes, and then continue to see the answers below. 

 
Let us look at the data sets, one at a time. For dataset 1, there is clearly interaction, because the estimate for stratum 

1 indicates no association but the estimate for stratum 2 indicates a reasonably strong association. There is clearly 
confounding, because any weighted average of the values 1.02 and 3.50 will be meaningfully different from the crude 
estimate of 6.0. 

For data set 2, again there is clearly interaction, as in data set 1. However, it is not clear whether or not there is 
confounding. The value of an adjusted estimate will depend on the weights assigned to each stratum. If all the weight is given 
to either stratum 1 or stratum 2, then the crude estimate of 2.0 will differ considerably from the adjusted estimate, but if equal 
weight is given to each stratum, the adjusted estimate will be much closer to the crude estimate. Nevertheless, the use of an 
adjusted estimate here is not as important as the conclusion that the E D association is different for different strata.  

Dataset 3 also shows interaction, although this time the nature of the interaction is different from what we observed 
in datasets 1 and 2. Here, the two stratum specific estimates are on opposite sides of the null risk ratio value of 1. It appears 
there is a protective effect of exposure on disease in stratum 1, but a harmful effect of exposure on disease in stratum 2. In 
this situation, the assessment of confounding is questionable and potentially very misleading, since the important finding here 
is the interaction effect, especially if this strong interaction holds up after performing a statistical test for interaction. 

In dataset 4, the two stratum specific estimates are identically equal to one, so there is no interaction. However, there 
is clear evidence of confounding, since the crude estimate of 4.0 is meaningfully different from both stratum-specific 
estimates. 

In dataset 5, there is no interaction, because the stratum-specific estimates are both equal to 4. There is also no 
confounding because the crude estimate is essentially equal to both stratum specific estimates. 
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Summary 
 

 Confounding and interaction are different concepts. 
 Interaction considers what happens after we control for another variable. 
 Interaction is present if the estimate of the measure of association differs at different levels of a variable being 

controlled. 
 When assessing confounding and interaction in the same study, it is possible to find one with or without the other. 
 In the presence of strong interaction, the assessment of confounding may be irrelevant or misleading. 

 
Two Types of Interaction - Additive and Multiplicative 

 
Consider the following table that gives the cell frequencies for the categorization of three dichotomous variables e, d and f. 
Assume that these data derive from a cohort study that estimates risk. 

 
 e=1, f=1 e=1, f=0 e=0, f=1 e=0, f=0
d=1 a1 a2 b1 b2
d=0 c1 c2 d1 d2 

 
Note that this table equivalently represents two 2 x 2 tables that describes the relationship between e and d after 

stratifying on f. 
We now define three risk measures from this table that we will use to provide formulae that distinguish additive from 

multiplicative interaction. 
 

 Rll = Risk for (e =l, f = 1) = al / (al + c1) 

 Rl0 = Risk for (e=l, f = 0) = a2 / (a2 + c2)  

 R01= Risk for (e=0, f= 1) = bl / (bl + dl)  

 R00 = Risk for (e=0, f = 0) = b2 / (b2 + d2)    (background risk) 
 

We then define no interaction on an additive scale if:  Rll - R10 – R0l + R00 = 0 
We also define no interaction on an multiplicative scale if: RRll = RRl0 X RR0l 
 

where RRll= Rll / R00,  RRl0 = Rl0 / R00,  and RR0l = R0l / R00 
 
To illustrate these two definitions consider the following risk data that consider the possible effect modification of 

genetic make-up (f) on the relationship between the presence of athlerosc1erosis (e) and Alzheimer’s disease (d) in an 
elderly population in Rotterdam, The Netherlands. 

 
Rll = Risk for (e = 1, f =  1) = 13.3% 

R10 = Risk for (e = 1, f = 0) = 4.4%  

R01 = Risk for (e = 0, f = 1) = 4.8%  

R00 = Risk for (e = 0, f = 0) = 3.4% 

 
To evaluate interaction on an additive scale, we calculate:   Rll – Rl0 – R0l + R00 = 13.3 - 4.4 - 4.8 + 3.4 = 7.5 
 

which is meaningfully different from zero, thus indicating a departure from no interaction on an additive scale.” 
 
To evaluate interaction on an multiplicative scale, we evaluate whether: 
 

RRll - (RR10 X RR01) = (13.3/3.4) - (4.4/3.4) x (4.8/3.4) = 3.912 - 1.827 = 2.1 
 

Continued on next page 
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Two Types of Interaction - Additive and Multiplicative (continued) 

 
which is also meaningfully different from zero, thus indicating a departure from no interaction on a multiplicative scale.” 

It turns out from algebra that no interaction on an additive scale” is equivalent to obtaining equal risk difference effect 
measures” when comparing the e-d effect stratified by f. 

It also turns out from algebra that no interaction on a multiplicative scale” is equivalent to obtaining equal risk ratio 
effect measures” when comparing the e-d effect stratified by f. 

 
Reference: Kleinbaum et al., Epidemiologic Research: Principles and Quantitative Methods, Chapter 19, John Wiley and 
Sons, 1982. 
 
 
 
 
Quiz (Q10.9) 
 

1. In contrast to ??? when interaction is present, the estimates of the ??? differ at various levels of the 
control variable. 

2. When assessing confounding and interaction in the same study, it is ??? to find one without the other. 
 
Choices 
confounding effect measure    effect modification not possible possible    precision     variance 
 
 
For datasets 1-3 in the table below, select the best answer from the following: 
 

A. Confounding 
B. Interaction 
C. No confounding or interaction  
D. Calculation error (not possible) 

 
3. Data set 1 ? ???  

4. Data set 2? ???  

5. Data set 3? ??? 
 

 
 
 

Interaction Versus Effect Modification 
 

The term effect modification is often used interchangeably with the term interaction. We use effect modification 
from an epidemiologic point of view to emphasize that the effect of exposure on the health outcome is modified depending 
on the value of one or more control variables. Such control variables are called effect modifiers of the relationship between 
exposure and outcome. We use interaction from a statistical point of view to emphasize that the exposure variable and the 
control variable are interacting in some way within a mathematical model for determining the health outcome. 

To illustrate effect modification, consider the case-control data to assess the relationship between alcohol 
consumption and bladder cancer. The data showed clear evidence of interaction, since the estimated effect was much stronger 
in Asians than in either Blacks or Whites. This evidence suggests that race is an effect modifier of the relationship between 

“

“ “
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alcohol consumption and bladder cancer. Such a conclusion is supported by the epidemiologic literature, which indicates that 
alcohol is metabolized in Asians differently than in other racial groupings. 

 
 

The assessment of interaction or effect modification is typically supported using the results of statistical testing. 
Recall that confounding does not involve significance testing because it is a validity issue. Nevertheless, statistical testing of 
interaction is considered appropriate in epidemiologic studies because effect modification concerns understanding the 
underlying causal mechanisms involved in the E D relationship, which is not considered a validity issue. One such test for 
stratified data that has been incorporated into available computer software, is called the Breslow-Day test. 
 
 
Summary 
 

 Effect modification and interaction are often used interchangeably. 
 If there is effect modification, then the control variable or variables involved are called effect modifiers. 
 The assessment of effect modification is typically supported by statistical testing for significant interaction. 
 One popular statistical test for interaction is called the Breslow-Day test. 

 
 

Is There Really a Difference between Effect Modification and Interaction? 
 
Although the terms effect modification and interaction are often used interchangeably, there is some controversy in the 
epidemiologic literature about the precise definitions of effect modification and interaction (see Kleinbaum et al., 
Epidemiologic Research: Principles and Quantitative Methods, Chapter 19, John Wiley and Sons, 1982). 

One distinction frequently made is that effect modification describes a non-quantitative clinical or biological attribute of 
a population, whereas interaction is typically quantitative and data-specific, and in particular, depends on the scale on which 
the interacting  variables are measured. Nevertheless, this conceptual distinction is often overlooked in the applied 
research studies. 
 

”
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Why Do Epidemiologists Statistically Test for Interaction but not for Confounding? 

 
We have previously pointed out in the section “Crude versus Adjusted Estimates” that the assessment of confounding 
should not involve statistical testing, essentially because confounding is a validity issue involving systematic rather than 
random error. Moreover, if there is a meaningful difference between estimated crude and adjusted effects, then a decision 
has to be made as to which of these estimates to report; consequently, the adjusted effect must be used, without 
consideration of a statistical test, because it controls for the variables (i.e., risk factors) designated for adjustment. 

Furthermore, it is not obvious, even if we wanted to statistically test for confounding, exactly how to properly perform a 
test for confounding. What is typically done, though incorrect, is to test whether the potential confounder, e.g., age, is 
significantly associated with the health outcome, possibly also controlling for exposure status. Such a test does not really 
assess confounding, since it concerns random error (i.e., variability) rather than whether or not the crude and adjusted 
estimates are different in the data! 

As to whether or not one should do a statistical test for assessing interaction/effect modification, the answer is not as 
clear-cut. If we consider interaction as a data-based manifestation of a population-based phenomenon (i.e., effect 
modification), then a statistical test can be justified to account for the random error associated with a data-based result. 
Moreover, in contrast, to the assessment of confounding, there are several legitimate’   approaches to testing for interaction, 
one of which is the Breslow-Day test for stratified data (described in Lesson 14) and another is a test for the significance of 
product terms in a logistic model. 

Continued on next page
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Effect Modification – An Example 

 
In the early 1990’s, investigators of the Rotterdam Study screened 8,000 elderly men and women for the presence of 
Alzheimer’s disease. One of the research questions was whether the presence of atherosclerosis increased the risk of this 
disease.  In a cross-sectional study, the investigators found that patients with high levels of atherosclerosis had a three times 
increased risk of having Alzheimer’s disease compared to participants with only very little atherosclerosis. These results were 
suggestive of a link between cardiovascular disease and neurodegenerative disease. 

The investigators knew from previous research that one of the genes involved in lipid metabolism influences the risk 
of Alzheimer’s disease. For this gene, there are two alternative forms, allele A and allele B. Each person’s genetic make-up 
consists of two of these alleles. Persons with at least one B-allele have a higher risk of Alzheimer’s disease than persons with 
two A-alleles. 

The investigators hypothesized that a person’s genetic make-up might modify the association they found between 
atherosclerosis and Alzheimer’s disease. Therefore, they divided the study population into a group of participants who had at 
least one B-allele, and a group of participants with two A-alleles.  They found the following results: Among those with at 
least one B allele, the prevalence of Alzheimer’s disease for those with high levels of atherosclerosis was three times the 
prevalence of those with low levels. This result is the same as the crude.  However, among those with two A-alleles, the 
prevalence for those with high levels of atherosclerosis was only 1.4 times the prevalence of those with low levels. 
 

 
 

These results provide an example of effect modification. Genetic make-up is the effect modifier. The investigators 
showed that the extent of atherosclerosis is associated with Alzheimer’s disease, but only in those whose genetic make-up 
predisposes them to the development of this disease. 
 
 
 
  
 
 
 

Why Do Epidemiologists Statistically Test for Interaction but not for Confounding? (continued) 
 

Furthermore, it may be argued that the assessment of interaction/effect modification isn t a validity issue, but rather 
concerns the conceptual understanding/explanation of the relationships among variables designated for control. The latter 
argument, in this author s opinion, is a little too esoteric to accept at face value. In fact, a counter argument can be made that 
the presence of interaction/effect modification implies that the most valid  estimates are obtained by stratifying on effect 
modifiers, provided that one can determine which variables are the true  effect modifiers. 

As in many issues like this one that arise in the undertaking of epidemiologic research, the best answer is probably, it  
depends! That is, it depends on the researcher s point of view whether or not a statistical test for interaction/effect 
modification is appropriate. Nevertheless, this author tends to weigh in with the opinion that effect modification is a 
population phenomenon that can be assessed using legitimate’   statistical testing of a data-based measure of interaction. 
 

 

’
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Study Questions (Q10.10) 
 

 
 
The prevalence of Alzheimer’s and the prevalence ratios for each gene group are listed above.  Answer the following 
assuming the group with low ATH and two A-alleles is the reference. 

 
1. What is the prevalence ratio comparing those with high ATH and two A-alleles to the reference group? 
2. What is the prevalence ratio comparing those with low ATH and at least one B-allele to the reference group? 
3. What is the prevalence ratio comparing those with both high ATH and at least one B-allele to the reference group? 
4. What is the difference between the three prevalence ratios you just calculated and the two listed above? 
 
 
Quiz (Q10.11) 
 
True or False 
 

1. The term effect modification emphasizes that the effect of exposure on the health outcome is modified 
depending on the value of one or more control variables. . . . . . ??? 

2. Evidence for effect modification is present when the stratum-specific measures of association are 
approximately the same.  . . . . . . . . ??? 

3. This assessment can be supported by a statistical test known as the Breslow-Day test. . ??? 
 
 
A measles vaccine may be highly effective in preventing disease if given after a child is 15 months of age, but 
less effective if given before 15 months. 
 

4. This example illustrates ???, where the exposure is ???, the outcome is ???, and the effect modifier is 
???. 

 
Choices 
age at vaccination   confounding    effect modification   measles measles vaccine 
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Nomenclature 
 

RÔaE  Estimate of the adjusted exposure odds ratio

RÔaP  Estimate of the adjusted prevalence odds ratio

RP̂a  Estimate of the prevalence ratio

RR̂a  Estimate of an adjusted risk ratio

C Confounding variable 
RÔcE  Estimate of the crude exposure odds ratio

RÔcP  Estimate of the prevalence odds ratio

RP̂c  Estimate of the prevalence ratio

RR̂c  Estimate of the crude risk ratio

D Disease 
E Exposure 
V Intervening variable 
w or wi  Weight; with a subscript i, denotes the weight for a stratum 
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Homework 
 
ACE-1.  Confounding: Smoking 
 
A case-control study was conducted to assess whether coffee consumption (high vs. low) is associated with peptic ulcer 
disease.  The results, stratified on smoking status, are summarized below: 
 

 
 

 
Non-Smokers   Smokers 

 
 High 

Coffee 
Low 

Coffee   High 
Coffee 

Low 
Coffee 

 
Ulcer 

 
40 

 
65  Ulcer 150 45 

 
No Ulcer 

 
45 

 
150  No Ulcer 65 40 

 
a. Calculate the stratum-specific odds ratios and the crude odds ratio.  Show your calculations.   
b. Based upon these calculations, is smoking status a confounder in these data? Justify your answer. 
c. Is there evidence of interaction? 
d. Assess whether   
 

i. smoking is related to coffee consumption among those without peptic ulcer disease 
ii. smoking is related to peptic ulcer disease among subjects with low coffee consumption. 

 
e. What do your answers in part d tell you about whether smoking is a confounder in this study? 
f. Is your conclusion in part e about whether smoking status is a confounder the same as in part a? 

 
ACE-2.  Confounding and Interaction 
 
Because of an unusually high occurrence of endogenous anxiety syndrome among undergraduate students at University X, a 
case-control study was carried out to determine whether taking an introductory statistics course (a 0,1 exposure variable, 
where 1 = exposed and 0 = unexposed) might be a cause. The study involved 57 students diagnosed with the anxiety 
syndrome, and these ‘cases’ were compared with a sample of 750 ‘normal’ controls. Consider the following 2 x 2 tables that 
stratify for previous history of mental disorder (MD): 
 

 
 

 
MD = 1   MD = 0

 
 E = 1 E = 0   E = 1 E = 0

D = 1  
25 

 
15   2 15 

D = 0  
50 

 
50   50 600 

 
a. What is the estimated measure of effect that describes the E-D relationship that ignores the control of the variable MD 

(i.e., what is the estimated crude effect for these data?)? In answering this question, show your calculations. 
b. What are the estimated effect measures for each MD group? Again, show your calculations. 
c. Based on your calculations for either or both of the above questions, should MD be controlled because there is meaning 

interaction? Explain. 
d. Based on your calculations for parts a and b, should the variable MD be controlled because it is a confounder? 

(Assume that the a priori conditions for confounding are already satisfied for the variable MD.) Explain your answer 
with appropriate information and logic. 

e. What is the estimated odds ratio that describes the association of MD with exposure? What does this odds ratio say 
about the distribution of previous history of mental disorder (i.e., MD) when comparing students taking introductory 
statistics with those not taking introductory statistics. Does this result support the conclusion that MD is a confounder 
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in these data?  [Hint: To answer this question, you need to consider the following alternative way to define 
confounding:  If the measure of effect is an odds ratio, a covariate (e.g., MD) is a confounder provided it is associated 
with both the exposure (i.e., E) and the disease (i.e., D) separately, i.e., ORMD,E|D=0 is meaningfully different from 1 and 
ORMD, D|E=0 is meaningfully different from 1.] 

 
 

ACE-3.  Exposure and Potential Confounders 
 
A cohort study was conducted to examine the relation between use of estrogen replacement therapy and ovarian cancer 
mortality among peri- and postmenopausal women. The following information relating the exposure variable to each of 
several possible confounders was provided: 
 
Distribution of potential ovarian cancer risk factors and their association with use of estrogen replacement therapy 
(ERT). 
 

Potential risk factor Odds Ratio 95% Confidence Interval 

Age at menarche   
< 12 yrs 1.00 Referent

12 yrs 0.98 0.95-1.00

13 yrs 0.94 0.83-1.05

   
Number of live births   
0 1.00 Referent

1 1.06 1.01-1.10

2-3 1.08 1.05-1.11

4 0.86 0.82-0.89

   
Education   
< High school 1.00 Referent

High school 1.92 1.89-1.95

College 3.48 2.26-5.59 

 
Indicate which of the following statements is TRUE [Choose one best answer]: 
                    
i. Age at menarche is unlikely to be a strong confounder of the relationship between ERT and ovarian cancer. 
ii. Number of live births is unlikely to be a strong confounder of the relationship between ERT and ovarian cancer. 
iii. Education is definitely a confounder of the relationship between ERT and ovarian cancer. 
 
[Hint: To answer this question, you need to consider the following alternative way to define confounding:  If the measure of 

 is associated with both the exposure (i.e., E) and the 
disease (i.e., D) separately, i.e., ORED,E is meaningfully different from 1 and ORED, D|E=0 is meaningfully different from 1.] 
 

effect is a risk ratio, a covariate (e.g., ED) is a a confounder provided it
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ACE-4.  Error type 
 
For each of the situations described below, indicate the type of error that would most likely occur. Each of the numbered 
options can be used once, more than once, or not at all. 
  

i. Selection bias 
ii. Nondifferential misclassification 
iii. Differential misclassification 
iv. Confounding 
v. Ecologic fallacy 
vi. Random error 

 
a. In a cohort study of hormone replacement therapy (HRT) and risk of atherosclerotic coronary artery disease (CAD), 

high income level is associated with both HRT use and risk of CAD. 
b. In a case-control study of the relation between stressful daily events and asthma attacks, cases are more likely than 

controls to over-report the amount of stress. 
c. In a cohort study of use of video display terminals (VDTs) and risk of carpal tunnel syndrome, the users of VDTs are 

more difficult to trace than nonusers, resulting in a greater loss to follow-up of VDT users. 
d. In a case-control study of beta carotene and risk of esophageal cancer, serum specimens frozen and stored 20 years 

earlier are compared between cases and controls. Later it is found that the specimens deteriorated while in storage. 
 
ACE-5.  External Validity 
 
Which one of the following approaches to control of confounding is most likely to affect the external validity of a study? 
 
a. Randomization 
b. Restriction 
c. Stratified Analysis 
d. Regression Analysis 
 
ACE-6.  Categorizing Exposure 
 
A hospital-based case-control study was conducted to determine whether residential exposure to magnetic fields was 
associated with occurrence of lymphoma. The exposure variable (strength of magnetic field in the home) was 
originally measured as a continuous variable but was categorized for purposes of data analysis. As illustrated in the 
table below, the investigators presented results for three different categorization schemes: 
 
Field Strength Crude OR 95% CI Adjusted OR* 95% CI 
Scheme 1     
Low 1.0 (referent)  1.0 (referent)  
High 1.59 0.87-2.93 1.77 0.91-3.41 
Scheme 2     
Low 1.0 (referent)  1.0 (referent)  
Medium 1.07 0.68-1.99 1.20 0.62-2.32 
High 1.64 0.84-3.20 2.06 0.96-4.42 
Scheme 3     
Very Low 1.0 (referent)  1.0 (referent)  
Low 1.22 0.49-3.02 1.46 0.53-4.04 
Medium 1.01 0.50-2.04 1.19 0.56-2.64 
High 1.24 0.61-2.56 1.48 0.66-3.32 
Very High 6.81 1.63-28.5 13.43 1.76-102.7 

 
 
 

•  Adjusted for age, sex, socioeconomic status, geographic area, and years lived in home 
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a. Which categorization scheme produces results that are most consistent with a dose-response effect? 
 
  _____ Scheme 1        _____  Scheme 2      _____  Scheme 3 
 
b. For each of the following statements, indicate whether the statement is true or false. 
 
_____  Bias due to confounding (by the factors listed below the table) was consistently away from the null. 
 
_____ Exposure categorization scheme #3 is least susceptible to residual confounding, since it divides the study 

subjects into the largest number of categories. 
 
_____ Among subjects exposed to very high magnetic fields in the home, adjustment for confounding factors led to an 

increase in validity but a decrease in precision. 
 
ACE-7.  Confounding 
 
Confounding has been defined in the literature as being comprised of both data-based criteria and apriori (to the data) criteria. 
 
a. State the data-based criteria for confounding. 
b. Give a numerical example of data-based confounding such that the bias is away from the null. (Note: you can answer this 

question without completely specifying all the cell frequencies in the 2x2 tables used for your example) 
c. Give a numerical example of data-based confounding such that the bias is towards the null. (Note: you can answer this 

question without completely specifying all the cell frequencies in the 2x2 tables used for your example) 
d. When assessing interaction, should you test for significant interaction? Why or why not? 
e. When assessing confounding, should you test for confounding? Why or why not? 
 
 Three apriori conditions that have been defined for confounding are: 
 
           I. The potential confounder must be a risk factor for the disease. 
 
          II. The potential confounder cannot be an intervening variable between the  
               exposure and the disease. 
 
         III. The potential confounder must be associated with the exposure in the  

source population being studied (note: this condition is the most controversial) 
 
f. Give an example of a potential confounder that is a risk factor for some disease. 
g. Give an example of an intervening variable between an exposure and a disease. 
h. Give an example of a risk factor for a disease that is not associated with the exposure in the source population under 

study. 
i. Would you control for a risk factor that is not an intervening variable and does not satisfy apriori condition III, but is, 

nevertheless, associated with both the exposure and the disease in the data? Explain. 
j. For each of the conditions I-III above, provide a justification (either conceptual or numerical) for the condition if you 

agree that the condition is appropriate.  
 
If, on the other hand, you believe that a condition is not appropriate (or needs further qualification), explain (either 
conceptually or numerically) why you think it is not appropriate. 
 
ACE-8.  Effect Modification and Confounding 
 
A cohort study of physical activity (PA) and incidence of diabetes was conducted over a six-year period among Japanese-
American men in Honolulu. Data from that study are summarized below, stratified on body mass index (BMI): 
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 High BMI  Low BMI 
 High PA Low PA  High PA Low PA 
Diabetes 48 62 Diabetes 54 71 
Person-Yrs 1050 1067 Person-Yrs 1132 1134 
 
 
a. Based upon these data, what is the observed rate ratio (IDR) for someone with high BMI and high physical activity (i.e. 

relative to the background rate)? 
b. Is there evidence of effect modification by BMI? (Show any calculations and justify your answer.) 
c. Is there evidence of confounding by BMI in these data? (Show any calculations and justify your answer.) 
 
ACE-9.  Interaction: Epidemiologists and Headaches 
 
The following data are from a cumulative incidence type cohort study of exposure to manuscripts written by a certain 
epidemiologist and intractable headaches (d) among epidemiology graduate students. The data are stratified by degree of 
previous experience with foreign languages (f). 
 

 
 

 
f = 1 (yes) 

 
 

 
 f = 0 (no) 

 
 

 
e = 1 

 
e = 0 

 
 

 
 e = 1 e = 0 

 
d = 1 

 
25 

 
20 

 
 

 
d = 1 10 5 

 
d = 0 

 
975 

 
980 

 
 

 
d = 0 990 995 

 
 

 
1000 

 
1000 

 
 

 
 1000 1000 

 
a. Assess whether there is interaction when comparing risk ratios and when comparing risk differences between the two 

categories of the variable f. 
b. Fill in the following table: 
 

 
 

 
e=1, f = 1 e=1, f=0 e=0, f=1 e=0, f = 0 

 
d = 1 

 
    

 
d = 0 

 
    

 
c. Calculate the following: 
 
    R11 =  Risk for (e=1, f = 1)  =      

R10 =  Risk for (e=1, f = 0)  =       

R01 =  Risk for (e=0, f = 1)  = 

R00 =  Risk for (e=0, f = 0)  =                               (background risk) 
 
d. We say that there is “no interaction on an additive scale if 

 
                             R11   - R10  - R01  + R00   =  0 
 
        Based on the data, is there interaction on an additive scale? 
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e. We say there is “no interaction on an multiplicative scale” if 
 
                                 RR11   = RR10  x  RR01            where 

  
           RR11   = R11 / R00          RR10   = R10 / R00 and RR01   = R01 / R00  
 
Based on the data, is there interaction on a multiplicative scale? 
 

f. Based on these results, which of the following would be appropriate as part of your overall analytic plan? (You may 
choose more than one.) 

 
1. Report stratum-specific RRs (relative risks) 
2. Report stratum-specific RDs (risk differences) 
3. Calculate an overall summary estimate of the RR 
4. Calculate an overall summary estimate of the RD 
5. Calculate the crude RR and assess confounding 
6. Calculate the crude RD and assess confounding 

 
ACE-10.  Misclassification Bias 
 
The following table summarizes data from a case-control study: 
 

 
 

 
C = 1   C = 0

 
 E = 1 E = 0   E = 1 E = 0

Cases 120 100   45 200

Controls 80 200   30 400 

     E = exposure status      C= potential confounder/effect modifier 
 
a. Assume that all subjects in the study have been correctly classified and that there is no bias due to selection. Is there 

evidence of effect modification and/or confounding due to C in these data? Justify your answer. 
b. Now assume that the above observed data had not been correctly classified and that, moreover, the exposure was 

misclassified with a sensitivity of 0.8 and a specificity of 0.75. The misclassification was non-differential with respect to 
both outcome status and category of C.  

c. Is there evidence of bias in the misclassified data? If so can you correct for the bias? Justify your answer. 
d. Is there evidence of effect modification in the misclassified data? Justify your answer. 
e. How does exposure prevalence affect the magnitude of bias due to misclassification in this example? Explain. 
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Answers to Study Questions and Quizzes 
 
Q10.1 
 

1. The 1.3 estimated RR for smokers says that there is 
a 30% increased risk for those exposed to TCX 
compared to unexposed.  This amount of increase 
might be viewed by some researchers as indicating 
a moderate, rather than no association. 

 
Q10.2 
 

1. distortion, measure of association, control for, risk 
factors 

2. 1.0 
3. 1.0 
4. yes 
5. yes – The data-based assessment of confounding is 

made by determining whether the crude estimate of 
the measure of association is meaningfully different 
from an adjusted measure of association.  

 
Q10.3 
 

1. 0.69 
2. 0.65 
3. 0.61 
4. yes – The data-based assessment of confounding is 

made by determining whether the crude estimate of 
the measure of association is meaningfully different 
from an adjusted measure of association. 

5. 0.65, 0.89 – To determine whether there is a 
meaningful difference in the crude and adjusted 
estimates based on a specified percent change 
required between the crude and adjusted estimates, 
multiply the crude estimate by the specified percent 
change, and then add and subtract that value to the 
crude estimated.  If the interval obtained contains 
the adjusted estimate, then there is no meaningful 
difference. 

6. yes 
7. no 

 
Q10.4 
 

1. True 
2. False – The adjusted estimate can be greater or less 

than the corresponding crude estimate. 
3. False – Most epidemiologists prefer to give unequal 

weight to each stratum specific estimate.  Weights 
are usually determined based on sample size or 
precision. 

4. False – Since confounding is a validity issue, it 
should not be evaluated by statistical testing, but by 
looking for a meaningful difference in the crude 
and adjusted estimates. 

5. 1.08 
6. 2.17 

 
Q10.5 
 

1. No 
 
Q10.6 
 

1. satisfied 
2. satisfied 
3. not satisfied – Age cannot possibly be associated 

with blood type. 
4. no – Age cannot possibly be associated with blood 

type. 
 
Q10.7 
 

1. C; the crude odds ratio relating alcohol to oral 
cancer is calculated by using the formula (a x d)/(b 
x c) which in this case equals 2.8  

2. A; the stratum-specific odds ratio relating alcohol 
to oral cancer can be calculated for each strata by 
using the formula (a x d)/(b x c).  The stratum-
specific odds ratios are 2.2 for the 40 to 49 age 
group, 2.2 for the 50 to 59 age group and 2.0 for the 
60 and higher age group. 

3. Yes; there is data-based confounding because the 
crude odds ratio of 2.8 is meaningfully different 
than any weighted average of stratum-specific odds 
ratios, all of which are about 2. 

4. Age is a confounder because all three a priori 
conditions for confounding are assumed to be 
satisfied and the data-based criterion is also 
satisfied. 

 
Q10.8 
 

1. 4.00 
2. 4.69 
3. Black or Hispanic – You might think that the table 

for the white group should receive more weight 
since it has a slightly larger sample size, however, 
the table for the Black or Hispanic group is actually 
more balanced.  See Lesson 14 for a more complete 
explanation on balanced data. 

4. maybe – It depends on whether the investigator 
considers the difference between 3.59 and 4.16 a 
meaningful difference. 

 
Q10.9 
 

1. confounding, effect measure 
2. possible 
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3. B 
4. A 
5. D – Data set 3: Recall that the adjusted estimate is a 

weighted average of the two stratum specific 
estimates and therefore, must lie between them. 

 
Q10.10 
 

1. 4.8% / 3.4% = 1.4 
2. 4.4% / 3.4% = 1.3 
3. 13.3% / 3.4% = 3.9 
4. The two PRs above are the stratum-specific PRs for 

each of the two gene groups.  The three calculated 
here use one group as a reference and compare the 
other three to that group.  In this example, having 
low ATH and 2 A-alleles is the reference group 

compared to those having either one or both of the 
risk factors (high ATH, 1 B-allele).  To see how 
these 3 PRs can be used to define two different 
types of interaction, see the first asterisk on this 
lesson page (10-4) or the box labeled Two Types of 
Interaction - Additive and Multiplicative. 

 
Q10.11 
 

1. True 
2. False – Evidence for effect modification is present 

when the stratum-specific measures of association 
are different. 

3. True 
4. effect modification, measles vaccine, measles, age 

at vaccination 

 
 



 
 
 
 

LESSON   1111  

 
Confounding Involving Several Risk Factors 

 

11-1 Confounding Involving Several Risk Factors 
 
This lesson considers how the assessment of confounding gets somewhat more complicated when controlling for more than 
one risk factor.  In particular, when several risk factors are being controlled, we may find that considering all risk factors 
simultaneously may not lead to the same conclusion as when considering risk factors separately.  We have previously 
(Lesson 10) argued that the assessment of confounding is not appropriate for variables that are effect modifiers of the 
exposure-disease relationship under study.  Consequently, throughout this lesson, our discussion of confounding will assume 
that none of the variables being considered for control are effect modifiers (i.e., there is no interaction between exposure and 
any variable being controlled). 
 

Assessing Confounding in the Presence of Interaction 
 

We have restricted our discussion of confounding involving several variables to the situation where none of the 
variables considered for control are effect modifiers of the exposure-disease relationship under study. This restriction has 
been made primarily for pedagogical reasons, since it is easier to discuss the confounding among several variables when 
there is no effect modification. 

Nevertheless, it is often quite appropriate to consider confounding even when interaction is present. For example, 
if we are only controlling for one variable, say gender, and we find that the odds ratio for males is 1.3 whereas the odds ratio 
for females is 3.6 and the crude odds ratio is 10.1, then both confounding and interaction are present and each may be 
addressed. A similar situation may present itself when two or more variables are being controlled. 

Moreover, when several variables are being controlled and there is interaction of, say, only one of these variables with 
the exposure variable, then the remaining variables considered for control may be assessed as potential confounders. For 
example, if in a cohort study of risk factors for coronary heart disease (CHD), it was determined that cholesterol level 
(CHL) was the only effect modifier of the exposure variable (say, physical activity level) among risk factors that included 
age, smoking status, gender and blood pressure, then these latter variables may still be assessed for possible confounding. 

In the latter situation, one method for carrying out confounding assessment involves stratifying on the effect modifier 
(CHL) and assessing confounding involving the other variables separately within different categories of CHL. 

Another approach is to use a mathematical model (e.g., using logistic regression) that contains all risk factors 
considered as main effects and also contains a product term of exposure with cholesterol. Those risk factors other than CHL 
can then be assessed for confounding provided the main effect of cholesterol, the exposure variable, and the product of 
exposure with CHL remains in the model throughout the assessment. 

 
 

Two Important Principles 
 
We have thus far considered only the control of a single confounder in an epidemiologic study. But usually several risk 
factors are identified and measured for possible control. Recall the a priori criteria for confounding.  When several factors 
meet these criteria, how do we determine which to control for in the analysis? 
 

 
 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_11, © Springer Science+Business Media New York 2013 
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Suppose age and race are two risk factors identified and measured for possible control in a case-control study to 
assess an exposure disease relationship. It is possible that the adjusted odds ratio, which simultaneously controls for both age 
and race to give different results from those obtained by controlling for each variable separately. 

 

 
 

If the odds ratio that controls for all potential risk factors is our standard, then should we always control for all 
risk factors? Not necessarily. It is possible that only a subset of these factors needs to be controlled to obtain valid results. 

Suppose these results were obtained from our case-control study: 
 

 
 

Here, the odds ratio controlling for age alone is equivalent to the odds ratio controlling for both age and race. In 
this case, we would not lose anything with regards to validity by selecting only age for control. 

These examples illustrate two fundamental principles about the control of confounding when several risk factors 
have been identified and measured.  First, the joint (or simultaneous) control of two or more variables may give different 
results from those obtained by controlling for each variable separately. The adjusted estimate (denoted here as a theta hat, ˆ ) 
that simultaneously controls for all risk factors under consideration should be the standard on which all conclusions about 
confounding and the identification of specific confounders must be based. 

Second, not all the variables in a given list of risk factors may need to be controlled; it is possible that different 
subsets of such variables can correct for confounding. We will discuss these two principles in the activities that follow. 
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Study Questions (Q11.1) 
 
Suppose age, race, gender, and smoking status are the only risk factors considered for control in assessing an exposure-
disease relationship. 
 

1. Describe the adjusted estimate that should be the standard on which all conclusions about confounding and the 
identification of specific confounders be based. 

2. If one fails to consider all potential confounders simultaneously, what might be some of the problems to arise? 
3. If the gold standard adjusted estimate controls for all risk factors, is it possible that a subset of such risk factors may 

also control for confounding? 
4. Why might the use of such a subset of variables be advantageous over the use of the adjusted estimate that controls 

for all potential confounders? 
 
 
Summary 
 

 There are two fundamental principles about the control of confounding when two or more risk factors have been 
identified and measured for possible control. 
1. The joint or simultaneous control of two or more variables can give different results from those obtained by 

controlling for each variable separately. 
2. Not all variables in a given list of risk factors may need to be controlled. 
 

 Moreover, depending on the relationships among these risk factors, it is possible that confounding can be corrected 
by using different subsets of risk factors on the list. 

 
 

Joint Versus Marginal Confounding 
 
We defined data-based confounding involving a single potential confounder to mean that there is a meaningful difference 
between the estimated crude effect (which completely ignores a potential confounder) and the estimated adjusted effect 
(which controls for a potential confounder).  We now define data-based joint confounding in the presence of 2 or more 
potential confounders. This occurs when there is a meaningful difference between the estimated crude effect and the 
estimated adjusted effect, which simultaneously controls for all the potential confounding. 
 

 
 
 
Study Questions (Q11.2) 
 
Suppose a follow-up study was conducted to evaluate an E D relationship.  Age and smoking status were determined as 
possible control variables.  Suppose further that: 
 

aRR(age, smoking) =  2.4   
aRR(age) =   1.7 
aRR(smoking) =   1.9 
cRR =    1.5 

 
Study questions continue on next page 
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1. Is this evidence of joint confounding?  Why or why not? 
 
Suppose for a different follow-up study of the same E D relationship that once again age and smoking status were possible 
control variables.  Suppose further that: 
 

aRR(age, smoking) =  1.4   
aRR(age) =   2.4 
aRR(smoking) =   2.4   
cRR =    1.5 

 
2. Is this evidence of joint confounding?  Why or why not? 

 
 

In contrast, we define data-based marginal confounding to mean that there is a meaningful difference between 
the estimated crude effect and the estimated adjusted effect that controls for only one of several potential confounders. 
 

 
 
 
Study Questions (Q11.2) continued 
 
Suppose a follow-up study was conducted to evaluate an E D relationship.  Age and smoking status were determined as 
possible control variables.  Suppose that: 
 

aRR(age, smoking) =  2.4   
cRR =    1.5 

 
3. Is there evidence of marginal confounding?  Why or why not? 
4. If the aRR(age) = 1.4, does this provide evidence of marginal confounding? 
5. Does this mean that we should not control for age as a confounder? 

 
 

Joint confounding is the primary criterion for determining the presence of data-based confounding when all are 
eligible for control.  Nevertheless, data-based marginal confounding can help determine whether some potential confounders 
need not be controlled. 
 
 
Study Questions (Q11.2) continued 
 

6. In the follow-up study described in the previous study question, the: 
 

aRR(age, smoking) =  2.4   
aRR(age) =   1.5 
aRR(smoking) =   2.4 
cRR =    1.5 

 Does this mean that we do not have to control for age? 
7. What problem might there be in practice that could prevent the estimate of the effect that controls for all risk factors 

(e.g., C1, C2,  …, Ck)? 
8. What should we do if there are too many potential confounders in our list and we are unable to determine the 

appropriate adjusted estimate? 
9. What if the choice of such a subset becomes difficult? 
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Summary 
 

 Data-based joint confounding occurs when there is a meaningful difference between the estimated crude effect and 
the estimated adjusted effect that simultaneously controls for all the potential confounders. 

 Data-based marginal confounding occurs when there is a meaningful difference between the estimated crude 
effect and the estimated adjusted effect, which controls for only one of the several potential confounders. 

 Our conclusions regarding confounding should be based on joint confounding whenever possible. 
 
 

Joint Versus Marginal Confounding – An Example 
 
Suppose that a follow-up study is conducted to assess an exposure disease relationship and that the crude risk ratio for these 
data is 2.   
 

 
 

Suppose also that two dichotomous variables F and G have been identified and measured for possible control.  We 
would like to know whether we can control for either F or G separately or whether we must simultaneously control for both 
F and G in order to properly control for confounding. 

Recall the first fundamental principle regarding confounding with several variables. The adjusted estimate that 
simultaneously controls for all risk factors under consideration is the standard on which all conclusions about confounding 
must be based. In our example, the adjusted risk ratio controlling for both F and G is the standard.   Stratifying the data by 
both F and G, we find that each stratum specific estimated risk ratio equals 1.0. It thus follows that the adjusted risk ratio 
controlling for both F and G is 1.0. This differs from the crude risk ratio of 2.0. So, we can conclude there is data-based joint 
confounding due to F and G. 
 

 
 

Suppose that we ignore the joint control of these two variables and evaluate each variable separately. When we 
stratify the data by F, we see the stratum specific risk ratios are 2.0 for when F is both present and absent and hence the 
adjusted risk ratio controlling for F is 2.0. 
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Likewise, if we stratify the data by G, we see the stratum specific risk ratios are 2.0 when G is both present and 
absent, and therefore the adjusted risk ratio is 2.0.  

 

 
 

Because the adjusted estimates that control for both F and G separately are equal to the crude risk ratio of 2.0, we 
can conclude there is no data-based marginal confounding due to either F or G.  This example illustrates that incorrect 
conclusions about confounding may result if one fails to consider the conditions for joint confounding. 
 
 
Study Questions (Q11.3) 
 

1. In general, which is a better indicator of data-based confounding in the presence of two or more risk factors: 
marginal or joint confounding? 

2. In the example described in this presentation, was there any interaction between F and E or between G and E? 
3. When two or more risk factors are being considered for possible control, is it possible that not all of the risk factors 

may need to be controlled? 
4. In this example, is it possible that either F or G alone would be an appropriate subset to control for confounding? 

 
 
Summary 
 

 The adjusted estimate that simultaneously controls for all risk factors under study is the standard on which all 
conclusions about confounding must be based. 

 Incorrect conclusions about joint confounding may result if one considers only the conditions for marginal 
confounding. 
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Quiz (Q11.4) 
 
Suppose F and G are two distinct risk factors for some disease with dichotomous levels F1, F0, and G1, G0, 
respectively. The estimated risk ratios describing the association between the disease and some exposure are 
listed below for various combinations of levels of F and G. Assume that the risk ratio estimates are of high 
precision (i.e., are based on large sample sizes). 
 

1.0)R(GR3.0)GR(FR

1.0)R(GR0.3)GR(FR

1.0)R(FR3.0)GR(FR

1.0RRc1.0)R(FR3.0)GR(FR

000

110

001

111

ˆˆ

ˆˆ

ˆˆ

ˆˆˆ

 
Determine whether the following statements are True or False. 
 

1. There is evidence of interaction in the data.  . . . ??? 

2. There is evidence of confounding in the data.  . . . ??? 

3. At level G0, there is no confounding due to factor F.  . . ??? 

4. At level F1, there is no interaction due to factor G.  . . . ??? 

5. At level F0, there is no interaction and no confounding due to factor G  ??? 

6. At level G0, there is confounding but no interaction due to factor F . ???. 

7. It is not necessary to control for either F or G (or both) in order to understand the relationship between D 
and E.  . . . . . . . ???. 

 
 

11-2 Confounding Involving Several Risk Factors 
 

Confounding Due to One of Two Potential Risk Factors 
 
The second fundamental principle of confounding regarding several risk factors says that it may not be necessary to control 
for all the risk factors in a particular study. A subset of these variables may control for the confounding. How do we 
determine candidate subsets? 
 

 
 

Suppose that a follow-up study is conducted to evaluate an exposure-disease relationship. The crude risk ratio 
equals 2. Two dichotomous variables K and L have been identified and measured for possible control. The adjusted risk ratio 
controlling for both K and L is the standard on which conclusions about confounding should be based. 
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Stratifying the data by both K and L, we find that each stratum specific estimated risk ratio is approximately 1. It 
thus follows that the adjusted risk ratio controlling for both K and L is approximately 1. This differs from the crude risk ratio 
of 2. So, we can conclude there is data-based joint confounding due to K and L. 

 

 
 

Can we control for a subset of these two risk factors, either K or L alone?  If we stratify the data by K, we see the 
stratum specific risk ratios are 1.0 when K is both present and absent, and hence the adjusted risk ratio controlling for K is 
1.0.  
 

 
 

Likewise, if we stratify the data by L, we see the stratum specific ratios are approximately 1 when L is both 
present and absent, and therefore the adjusted risk ratio is 1.0.  
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Because the adjusted estimates that control for both K and L separately are different from the crude risk ratio, 
these results illustrate marginal confounding.  In this example, it would not be necessary to control for both K and L, since 
the control of either of these two variables provides the same results as the standard. It is sufficient to control for either one of 
these two variables separately. 
 
 
Study Questions (Q11.5) 
 

1. How would you determine which variable, K or L or both, to control for in the above mentioned study? 
2. If the results are the same, is there any advantage to controlling for both variables? 

 
 

Suppose now that K and L are the only risk factors eligible for control and that these are the results. Here, the 
adjusted risk ratio controlling for both K and L is not equal to the adjusted risk ratio controlling for L alone. In this case, K is 
the only candidate subset of confounders eligible for control. 
 

 
 
 
Study Questions (Q11.5) continued 
 

3. Is it appropriate to control for only L in the study above? 
4. Why is it appropriate to control for only K in this study? 
5. Is it appropriate to control for both K and L in this study? 
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Summary 
 

 It may not be necessary to control for all the risk factors in a particular study. 
 A candidate subset of these variables may control for the confounding. 

 
 

Variable Selection and Control of Confounding 
 
The adjusted estimate that controls for all potential risk factors is the standard on which conclusions about confounding 
should be based. However, if an adjusted estimate that controls for only a subset of risk factors is equivalent to this standard, 
we may then choose such a subset for control. 
 

 
 

Consider a case-control study in which three risk factors, F, G, and H are being considered for control. The crude 
odds ratio differs from the adjusted odds ratio that controls for all three factors. Because the crude and adjusted estimates 
differ, we have evidence of data-based joint confounding in these data. 
 

 
 

Suppose now that controlling for any two of these factors provides the same results as controlling for all three.  F, 
G, and H do not all need to be controlled simultaneously. Controlling for any two of the three risk factors will provide the 
same results as the standard. 
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We may also wish to consider marginal confounding to see if any single variable is an appropriate subgroup. 
These results indicate that there is no marginal confounding because each of these results differs from the standard estimate, 
not one of these variables alone would be an appropriate subgroup for control. 
 

 
 
 
Study Questions (Q11.6) 
 

 
 

1. What might be the advantage to controlling for only two of these risk factors rather than all three even though it is 
the standard? 

2. How might you determine which two variables to controls? 
3. Why can’t we control for F, G, or H separately? 

 
Assume that F, G, H, I, and J are the only risk factors in a case-control study.  Suppose further that: 
   cOR  aOR(F, G, H, I, J) 
  but 
   aOR(F, G, H, I) = aOR(G, J) = aOR(I) = aOR(F, G, H) = aOR(F, G, H, I, J) 
  and that 
  aOR(any other subset of risk factors)  aOR(F, G, H, I, J) 
 
Determine whether each of the following is a proper subset of confounders that controls for (joint) confounding in this study 
by answering Yes or No: 
 

4. {G, J}? 
5. {I}? 
6. {G, H, I}? 
7. {F, G, H}? 

 
 
Summary 
 

 When two or more risk factors are considered for control, we can select an appropriate subset of confounders for 
control. 

 When the results from controlling for various subsets of risk factors are equivalent to the joint control of all risk 
factors, we can select any one of which provides valid and precise results. 
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Confounding: Validity Versus Precision 

 
The fully adjusted estimate that controls for all factors simultaneously is the standard on which all decisions 

should be based. Why then would we want to go through the process of seeking out candidate subsets of confounders? If we 
cannot improve on the validity of the effect measure, why not just use the fully adjusted estimate? 

 

 
 

The precision of the estimate may justify such an effort. Controlling for a smaller number of variables may yield a 
more precise estimate of effect. The identification of the subset of confounders giving the most precise estimate is important 
enough to make such examination worthwhile.  Consider the following exercise to illustrate this point. 
 
 
Study Questions (Q11.7) 
 
A clinical trial was conducted to determine the effectiveness of a particular treatment on the survival of stage 3 cancer 
patients.  The following variables were considered in the analysis: 
RX = exposure     AGE = age at trial entry 
SERH = serum hemoglobin level   TSZ = size of primary tumor 
INSG = combined index that measures tumor stage and grade. 
 

1. The cRR = 6.28 and the aRR(AGE, SERH, TSZ, INSG) = 8.24. Does this provide evidence of joint confounding in 
the study?  (Assume all quantities above are estimates.) 

 
We calculated the aRR for all possible subsets of the four potential confounders.  Excluding the crude results and the gold 
standard, there are 14 possible subsets of these 4 confounders. 
 

2. What criteria may we use to reduce the number of candidate subsets? 
 
Below are the results from the gold standard and the 4 candidate subsets whose aRR is within 10% of the gold standard: 
 

 
 

3. The most valid estimate results from controlling which covariates? 
4. The most precise estimate results from controlling which covariates? 
5. Which covariates do you think are most appropriate to control? 
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This exercise has illustrated that we need to consider both validity and precision when assessing an exposure-
disease relationship. Getting a valid estimate of effect is most important. Nevertheless, you must also consider the trade-off 
between controlling for enough risk factors to maintain validity and the possible loss in precision from the control of too 
many variables. 
 

 
 
 
Summary 
 

 The reason for seeking candidate subsets of all potential confounders is the possibility of improving the precision of 
the estimated effect. 

 Controlling for fewer variables may (or may not) lead to a more precise estimate of effect. 
 When controlling for several potential confounders, you should consider the possible trade-offs between: 

o Controlling for enough risk factors to maintain validity  
versus 

o Possible loss in precision from the control of too many variables. 
 
 
Quiz (Q11.8) 
 
Suppose that variables F, G, and H have been measured in a certain study and that only F and G are considered 
to be risk factors for some disease (D). Suppose that it is of interest to describe the relationship between this 
disease and some study factor (E), and that there is no interaction of any kind present in the data. Finally, 
suppose that the following relationships hold among various odds ratios computed from the data: 
 

 
 
Determine whether the following statements are True or False. 
 

1. There is confounding in the data.   . . . . . ??? 

2. Variable F needs to be controlled to avoid confounding.  . . . . ??? 

3. Variable G needs to be controlled to avoid confounding.  . . . . ??? 

4. Variable H needs to be controlled to avoid confounding.  . . . . ??? 

5. Both variables F and G do not need to be controlled simultaneously in order to avoid confounding.  ??? 
 

Quiz continued on next page 
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A ten-year follow-up study was conducted to determine if someone experiencing food allergies is at increased risk 
of coronary heart disease. The following covariates were considered in the analysis: AGE = age at enrollment, 
BMI = body mass index, and SMK = smoking status. The results for the standard and all possible subsets are 
listed below. The crude risk ratio = 1.02. 
 

 
 

6. Is there evidence of confounding?  . . . ???. 

7. Besides the standard, which are candidate subgroups for control?  ???, ???,. ???. 

8. Which of the candidate subgroups corresponds to the most valid estimate (including the standard)? 
 . . . . . . . ???. 

9. Is there more than one candidate subgroup that is the most precise?  ???. 

10. Which estimate should be used?   . . ???. 
 
Choices 
#2 #3 #4 #5 #6 #7 no yes 
 
 
 
Nomenclature 
 
ˆ  Estimated measure of effect 
aOR Adjusted odds ratio 
aRR Adjusted risk ratio 
Ci Confounding variable 
CI Confidence interval 
cOR Crude odds ratio 
cRR Crude risk ratio 
D Disease 
E Exposure 
  
 
 
References 
 
Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. John Wiley and 

Sons Publishers, New York, 1982 (Chapter 14). 
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Homework 
 
ACE-Identifying Risk Factors for Control 
 
Suppose you carry out a cohort study to assess the relationship between a dichotomous exposure variable and a dichotomous 
disease variable. You identify and measure three risk factors f1, f2 and f3 that you want to control for in assessing the E-D 
relationship. Suppose further that the analysis of your data gives the following estimates of effect: 
 

aRR( f1, f2, f3 ) = 4.1       cRR = 1.3 
 

aRR( f1, f2 ) = 2.5           aRR( f1 ) = 2.1 
 

aRR( f2, f3 ) = 4.0           aRR( f2 ) = 4.0 
 

aRR( f1, f3 ) = 2.9         aRR( f3 ) = 2.8 
 
Assuming no interaction of any kind and that all of the above estimates are very precise, answer the following questions: 
 
a. Is there confounding? Explain 
b. How should you decide on which of the above variables need to be controlled? (You are being asked for a strategy, not a 

conclusion.) 
c. Which of the variables are not confounders. Explain 
d. What conclusions can you make about which variables should be controlled in this study? 
e. If you strictly use a 10% change rule to determine whether an adjusted estimate differs from the gold standard adjusted 

estimate, what conclusions do you draw about which variables should be controlled in this study? 
f. If you strictly use a 20% change rule to determine whether an adjusted estimate differs from the gold standard adjusted 

estimate, what conclusions do you draw about which variables should be controlled in this study? 
 
ACE-2.  Variable Selection 
 
Suppose you carry out a case-control study to assess the relationship between a dichotomous exposure variable and a 
dichotomous disease variable. You identify and measure four risk factors f1 (previous history of mental disorder), f2 
(personality type), f3 (age), and f4 (gender) that you want to control for in assessing the E-D relationship. Suppose further 
that the analysis of your data gives the following estimates of effect: 
 
a0R( f1, f2, f3, f4 ) = 1.68 
aOR( f2, f3, f4 ) = 1.20 
aOR( f1, f3, f4 ) = 1.20 
aOR( f1, f2, f4 ) 
aOR( f1, f2, f3 ) = 1.18 
aOR( f3, f4 ) = 1.69 
aOR( f1, f4 ) = 2.78 
aOR( f1, f3 ) = 1.68 
aOR( f2, f4 ) = 1.70 
aOR( f2, f3 ) = 5.88 
aOR ( f1, f2 ) = 5.95 
aOR ( f4 ) = 2.75 
aOR ( f3 ) = 5.85 
aOR ( f2 ) = 1.20 
aOR ( f1 ) = 1.69 
 
Given the above information and assuming no interaction of any kind, use a 10% change rule to determine which variables 
should be included to correct for confounding. How might precision play a role in terms of which variables are selected for 
control? 
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ACE-3.  Joint and Marginal Confounding 
  
A case-control study was carried out to evaluate whether alcohol consumption was a risk factor for the development of breast 
cancer in women. The exposure variable was denoted as ALC and categorized into 3 groups (1= no alcohol intake, 2= small 
to moderate alcohol intake, and 3=high alcohol intake. Three risk factors were considered as control variables, AGE (1= 
under 50, 2 = race 50), SMK status(1= ever, 2=never), and OBESITY (0=No, 1=Yes). The following adjusted odds ratio 
were obtained comparing moderate drinkers  (ALC=1) to non-drinkers (ALC=0) and heavy drinkers (ALC=2) to non-
drinkers (ALC=0): 
 
                Variables Controlled   aOR( 1 to 0 )               aOR( 2 to 0 ) 
                   None          4.5   6.0 
       AGE          3.4   5.1 
       SMK                2.0   2.8 
       OBESITY                         2.9   4.1 
                AGE, SMK         1.8   3.3 
                 AGE, OBESITY           4.6   5.6 
                 SMK, OBESITY                3.2   5.4 
 AGE, SMK, OBESITY                     1.9   3.1 
 
Assuming no interaction of any of the control variables with ALC and using a 10% change rule to determine a meaningful 
difference in adjusted odds ratios, answer the following questions: 
 
a. Is there confounding? Justify your answer. 
b. What subsets of variables give the same adjusted odds ratio as the gold standard adjusted odds ratio? Justify your answer. 
c. How would you consider precision to determine which subset of variables to control? 
d. Suppose no meaningful gain in precision is made when controlling for a proper subset of all three control variables. 

Which variables would you control?  Justify your answer. 
 
ACE-4.  Marginal Confounding 
 
The accompanying Table provides the results of a stratified analysis of data collected in a case-control study.  The outcome 
variable is dichotomous and is labeled A.  The predictor variables are labeled 1 through 10 with variable 1 the exposure 
variable of interest.  Variables 2 through 10 are control variables. 
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Results of Stratified Analysis in Examination of the Association Between Variable 1 and the Outcome (Variable A) 
 
Risk 
Variable 
Controlled 

 
Sub-Strata estimated OR Adjusted 

ORM-H 

95% 
Confidence 

Interval 

Breslow-Day Test 
of Homogeneity (p-

value)  
Stratum 1 Stratum 2 

 
Variable 2 

 
1.550 2.360 1.998 (1.070, 3.730) 

 
0.522 

 
Variable 3 

 
5.758 1.840 3.083 (1.517, 6.268) 

 
0.136 

 
Variable 4 

 
3.300 1.875 2.040 (1.088, 3.822) 

 
0.534 

 
Variable 5 

 
1.250 3.829 2.711 (1.357, 5.415) 

 
0.151 

 
Variable 6 

 
0.563 2.972 1.813 (.984, 3.341) 

 
0.022 

 
Variable 7 

 
2.000 1.648 1.711 (0.889, 3.293) 

 
0.819 

 
Variable 8 

 
1.125 2.134 2.032 (1.082, 3.819) 

 
0.603 

 
Variable 9 

 
1.333 2.146 1.964 (1.044, 3.693) 

 
0.570 

 
Variable 10 

 
1.9028 1.950 1.931 (1.026, 3.632) 

 
0.970 

cOR for Variable 1 vs. Variable A (outcome) = 2.022 (1.084 - 3.772) 
 
a. Assuming no interaction of any kind, how would you assess whether or not there is confounding? Has enough 

information been provided in the above table to allow you to answer this question? 
b. Again, assuming no interaction, is there marginal confounding due to any of the control variables? Explain. 
c. Again, assuming no interaction, how would you determine which variables to control? What is the primary reason why 

you can’t answer this question based on the data provided above (assuming no interaction)?  
d. Assuming that there is interaction of variables 9 and 10 with the exposure (variable 1), how would you modify your 

answer to part c to determine which variables to control? 
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Answers to Study Questions and Quizzes 
 
Q11.1 
 

1. The adjusted estimate that simultaneously controls 
for all 4 risk factors under consideration. 

2. Confounding might not be controlled if there is not 
a subset of potential confounders that yields 
(essentially) the same adjusted estimate as obtained 
when all confounders are controlled. 

3. Yes, provided the subset yields essentially the same 
adjusted estimate as the gold standard. 

4. Adjusting for a smaller number of variables may 
increase precision.  Also, such a subset provides a 
more parsimonious description of the exposure-
disease relationship. 

 
Q11.2 
 

1. Yes, the cRR of 1.5 differs from the aRR(age, 
smoking) of 2.4 that  controls for both potential 
confounders. 

2. No, the cRR of 1.5 is essentially equal to the 
aRR(age, smoking) of 1.4 that controls for both 
potential confounders. 

3. No, the cRR of 1.5 differs from the aRR(age, 
smoking) of 2.4, which controls for all potential 
confounders.  This is evidence of joint 
confounding. 

4. No, since the cRR of 1.5 is approximately equal to 
the aRR(age) of 1.4, there is no evidence of 
marginal confounding due to age. 

5. Not necessarily.  Our conclusions regarding 
confounding should be based on the joint control of 
all risk factors. 

6. Yes.  Controlling for smoking alone gives us the 
same result as controlling for both risk factors.  We 
might still wish to evaluate the precision of the 
estimates before making a final conclusion. 

7. There may be so many risk factors in our list 
relative to the amount of data available that the 
adjusted estimate cannot be estimated with any 
precision at all. 

8. Then we may be forced to make decisions by using 
a subset of this large initial set of risk factors. 

9. The use of marginal confounding may be the only 
alternative. 

 
Q11.3 
 

1. Joint confounding should be used, whenever 
possible, as the baseline from which all other 
confounding issues should be examined. 

2. No, the two stratum-specific RRs that compare F 
with not F are equal and the two stratum-specific 
RRs that compare G with not G are equal. 

3. Yes, the second fundamental principal of 
confounding states that “not all variables in a given 
list of risk factors my need to be controlled”; it is 
possible that different subsets of such variables can 
alternatively correct for confounding. 

4. No, controlling for either of these risk factors 
separately yields the same results as the crude data.  
It is only in the joint control of these factors that we 
observe confounding. 

 
Q11.4 
 

1. True – There is interaction because the risk ratio 
estimated in one stratum (F0G1) is 0.3, which is 
quite different from the stratum-specific risk ratios 
of 3.0 in the other strata. 

2. True – The presence of strong interaction may 
preclude the assessment of confounding.  Also, the 
value of an adjusted estimate may vary depending 
on the weights chosen for the different strata. 

3. False – The RR for F1 and F0 at level G0 are both 
3.0.  These differ from the overall RR at level G0 of 
1.0.  Therefore, at level G0, there is confounding 
due to factor F. 

4. True 
5. False – There is interaction and possibly 

confounding.  At level F0, the RR for G1 and G0 are 
very different, and both are very different from the 
overall risk ratio at level F0. 

6. True 
7. False – Both confounding and interaction are 

present and each should be addressed. 
 
Q11.5 
 

1. You may wish to control for the variable(s) that 
yield(s) the most precise estimate. 

2. Yes, you may wish to control for both if you do not 
gain anything regarding precision by dropping one.  
Although these results may be the same, if you drop 
a variable from analysis, it is not clear to a reviewer 
that you controlled for both. 

3. No; the results when controlling for L alone differ 
from the results controlling for both K and L, the 
standard on which all conclusions about 
confounding must be based. 

4. Controlling for K yields the same results as 
controlling for both factors K and L 
simultaneously. 
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5. Yes, if you do not gain anything regarding 
precision from dropping L. 

 
Q11.6 
 

1. Controlling for fewer variables will likely increase 
the precision of the results. 

2. The two that provide the most precise adjusted 
estimate. 

3. Controlling for any of these three factors alone 
yields different results than controlling for all three, 
which is the standard on which our conclusions 
should be based. 

4. Yes 
5. Yes 
6. No 
7. Yes 

 
Q11.7 
 

1. Yes, the cRR differs from the aRR controlling for 
all potential confounders, which is the gold 
standard. 

2. We may choose to only consider those results 
within 10% of the gold standard.  In this case, that 
would be 8.24 ± 0.82 which is a range of values 
between 7.42 and 9.06. 

3. Controlling for all the covariates provides the most 
valid estimate.  It is the gold standard. 

4. Controlling for both INSG and AGE provides the 
narrowest confidence interval and hence is the most 
precise. 

5. Debatable: Controlling for SERH alone yields an 
almost identical aRR as the gold standard, increases 
precision, and is the stingiest subset.  Controlling 
for INSG and AGE provides a slightly larger 
increase in precision (than controlling for SERH 

only) and its aRR is within 10% of the standard.  
Consider the trade-off between parsimony and 
political/scientific implications of not controlling 
for all risk factors, and more precision from 
controlling for fewer risk factors. 

 
Q11.8 

 
1. True 
2. True 
3. False – Variable G does not need to be controlled 

since aOR(F,G)=aOR(F).  In other words, 
controlling for F alone yields the same results as the 
gold standard, controlling for both F and G. 

4. False – Variable H is not a risk factor in this study, 
and therefore should not be considered a 
confounding. 

5.  True 
6. Yes – The cRR of 1.02 differs from the standard 

RR of 4.10 that controls for all potential 
confounders. 

7. #3, #5, #7 
8. #1 – The most valid estimate controls for all risk 

factors measured. 
9. Yes – Candidate subgroups 1 and 7 are equally 

precise. 
10. #1 – The gold standard is the most valid estimate; 

has the same precision as obtained for candidate 7.  
No precision is gained by dropping any risk factors 
so it can be argued the gold standard is the 
‘political’ choice for it controls for all considered 
risk factors.  Controlling only for SMK is the best 
choice for it gives the smallest, most precise subset 
of variables. 
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LESSON   1122  

 
Simple Analyses 

 

12-1 Statistical Inference for Simple Analyses 
 
This lesson discusses methods for carrying out statistical inference procedures for epidemiologic data given in a simple two-
way table.  We call such procedures simple analyses because we are restricting the discussion here to dichotomous disease 
and exposure variables only and we are ignoring the typical analysis situation that considers the control of other variables 
when studying the effect of an exposure on disease. 
 

What is Simple Analysis? 
 
When analyzing the crude data that describes the relationship between a dichotomous exposure and dichotomous disease 
variable, we typically want to make statistical inferences about this relationship.  That is, we would like to determine whether 
the measure of effect being estimated is statistically significant and we would like to obtain an interval estimate that 
considers the sample variability of the measure of effect. 
 
The tables shown here have been described in previous lessons to illustrate data from three different studies, a cohort study to 
assess whether quitting smoking after a heart attack will reduce one’s risk for dying, a case-control study to determine the 
source of an outbreak of diarrhea at a resort in Haiti, and a person-time cohort study to assess the relationship between serum 
cholesterol level and mortality. 
 

 
 

In each study, a measure of effect was computed to estimate the extent of the relationship between the exposure 
variable and the health outcome variable. In the quit smoking cohort study, the effect measure was a risk ratio and its 
estimate was 2.1.  In the outbreak study, the effect measure was an odds ratio and its estimate was 3.2.  And in the cholesterol 
mortality study, the effect measure was a rate ratio, also called an incidence density ratio, and its estimate was 3.5. 

We have discussed how to interpret each of these estimates in terms of the exposure disease-relationship being 
studied. All three estimates, even though dealing with different study types and different study questions, are similar in that 
they are all larger than the null value of one, and they all indicate that there is a moderately large effect from exposure.  

 
 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_12, © Springer Science+Business Media New York 2013 
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Nevertheless, we must be careful to realize that each of these three estimates is based on sample data. If a different sample 
had been drawn, any of these estimates might have resulted in a different value, maybe a lot larger, maybe closer to the null 
value of one. That is, there is always random error associated with any sample estimate. 

We call these estimates point estimates because they each represent a single number or point from the possibly 
wide range of numbers that might have been obtained if different samples had been drawn.  So, we might wonder, given the 
inherent variability in a point estimate, how can we draw conclusions about the population parameters being estimated? 

For example, in the first cohort study, what can we say about the population risk ratio based on the estimated risk 
ratio? Or, in the case-control study, what can we conclude about the population odds ratio based on the estimated odds 
ratio? In the person-time study what can we conclude about the population rate ratio based on the estimated rate ratio?  In 
answering these questions, we typically have one of two objectives. We may want to determine whether we have evidence 
from the sample that the population risk ratio, odds ratio or rate ratio being estimated is different from the null value of one. 
For this objective, we use hypothesis testing.  Or, we may want to determine the precision of our point estimate by 
accounting for its sampling variability.  For this objective, we use interval estimation. 

The methods used to achieve these objectives comprise the general subject matter of statistical inference. When our 
attention is focused on the relatively simple situation involving only one dichotomous exposure variable and one 
dichotomous disease variable, as illustrated by these three studies, we call these methods simple analyses. 
 
 
Summary 
 

 Estimates of measures of effect such as RR, OR, and IDR are point estimates, since each estimate represents a 
single number that may vary from sample to sample. 

 Statistical inference involves drawing conclusions about the value of a measure of effect in a population, based on 
its estimate obtained from a sample. 

 The two types of statistical inference procedures are hypothesis testing and interval estimation. 
 
 

Statistical Inferences – A Review 
 
The activities in this section review fundamental concepts and methods of statistics.  Our primary focus concerns how to 
draw conclusions about populations based on data obtained in a sample. We assume that you already have some previous 
exposure to basic statistical concepts, including the distinction between a sample and a population, a sample statistic and a 
population parameter, some important distributions like the normal, binomial, Student’s t, and chi square distributions. We 
also assume that you have some previous exposure to the concepts underlying statistical tests of hypothesis and confidence 
intervals, which are the two types of statistical inferences possible. Our focus here will be to review statistical inference 
concepts in the context of the statistical questions that apply to the analysis of a 2 x 2 table, which is the kind of data we are 
considering in a simple analysis. You may wish to skip this entire review section and proceed to the next section, Cohort 

 
Statistical Inference Overview 

 
Here are some data from an incident in which a group of persons were at risk of dying. From these data, we can find the 
proportions who died for men and women, separately. We can see that 79.7% of the men died, but only 25.6% of the women 
died. 
 

Studies, on page 12-4.  We begin by using data from a famous incident”  to distinguish between the two types of statistical 
inference procedures: hypothesis (significance) testing and confidence interval estimation. See if you can guess what 
incident”  we illustrate. 

”

”



333    
    

 
 

 
 

Clearly these two percentages are meaningfully different since the men had a much higher risk for dying than the 
women. But can we also claim that there is a difference in the risk for dying among men and women in the population from 
which these samples came? In other words, is the difference in the risks for men and women statistically significant? 

If we wish to draw conclusions about a population from data collected from a sample, we must consider the methods 
of statistical inference. In particular, we must view the two proportions or percentages as estimates obtained from a sample. 
Let’s focus on the two sample proportions, which we denote Mp̂  and Wp̂ . The corresponding population proportions are 

denoted Mp  and Wp , without “hats”. 
Statistical inference draws conclusions about a population parameter based on information obtained from a sample 

statistic. So, what is the population parameter considered for these data and what is its corresponding sample statistic? 
 

 
 

Since our focus here is to compare the proportions for males and females, one logical choice for our parameter of 
interest is the difference between the two population proportions. The corresponding sample statistic is the difference 
between the two estimated proportions. 
 

 
 
 
Study Questions (Q12.1) 
 

1. What other (epidemiologic) parameters could also be considered as alternatives to the difference in the two 
proportions? 

 
 



334  Lesson 12.  Simple Analyses 

 
 

Hypothesis testing can be used here to determine whether the difference in the two proportions is statistically 
significant. This is one of the two types of statistical inference questions we may ask. Our hypothesis in this case, usually 
stated as what we want to disprove, is that the true difference in the two population proportions is zero. This is called the null 
hypothesis. In hypothesis testing, we seek evidence from the sample to disprove the null hypothesis in favor of the 
alternative hypothesis that there is a difference in the population proportions. 
 

 
 
 
Study Questions (Q12.1) continued 
 

2. If the parameter of interest is the risk ratio (RR), how would you state the null hypothesis? 
3. If the parameter of interest is the odds ratio (OR), how would you state the null hypothesis? 

 
 

We can use interval estimation to determine the precision of our point estimate. Here, our goal is to use our sample 
information to compute two numbers, say, L and U, that define a confidence interval for the difference between the two 
population proportions. Using a confidence interval, we can predict with a certain amount of confidence, say 95%, that the 
limits, L and U, bound the true value of the parameter. For our data, it turns out, that the lower and upper limits for the 
difference in the two proportions are .407 and .675, respectively.  
 

 
 

It may appear from these two numbers that an interval estimate is less precise than a point estimate. The opposite is 
actually true. The range of values specified by the interval estimate actually takes into account the unreliability or variance of 
the point estimate. It is therefore more precise, since it uses more information to describe the point estimate. 

In general, interval estimation and hypothesis testing can be contrasted by their different approaches to answering 
questions. A test of hypothesis arrives at an answer by looking for rare or unlikely sample results. In contrast, interval 
estimation arrives at its answer by looking at the most likely results, that is, those values that we are confident lie close to the 
parameter under investigation. 
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Summary 
 

 Statistical inference concerns drawing conclusions about a population parameter based on information obtained 
from a sample statistic. 

 The two types of statistical inference are hypothesis testing and interval estimation. 
 When we test a hypothesis, we typically want to disprove a null hypothesis. 
 When doing interval estimation, we want to obtain a confidence interval that provides upper and lower limits that we 

can be, say 95%, confident covers the population parameter of interest. 
 A test of hypothesis looks for rare or unlikely results from our sample, where a confidence interval looks for likely 

results. 
 
 

The Incident 
 
The story of the Titanic is well known. The largest ship that had ever been built up to that time, she left Southampton, 
England on her maiden voyage to New York on Wednesday, April 10, 1912, carrying many of the rich and famous of 
England and the United States, but also many of more modest means. Because the Titanic was so large and so modern, many 
thought that she could not sink. 

After a stop at Cherbourg France, where she took on many 3rd class passengers seeking new lives in the New 
World, and a brief stop off Queenstown, Ireland, she set out across the Atlantic. At 11:40 on the evening of April 14th, the 
Titanic struck an iceberg and, by 2:15 the next morning, sank. 

Of 2,201 passengers and crew, only 710 survived. Some facts can be gleamed about the passengers, about who 
survived and who did not. One underlining question of interest in any disaster of this sort is did everyone have an equal 
chance of surviving? Or, stated in statistics terms, was the probability of surviving independent of other factors. 
 
 

12-2 Statistical Inference for Simple Analyses (continued) 
 

Hypothesis Testing 
 

Hypothesis Testing, Part 1 
 
We illustrate how to carry out a statistical test of hypothesis to compare survival of men and women passengers on the 
Titanic. We want to assess whether the difference in sample proportions for men and women is statistically significant. 

A test of hypotheses, also called a test of significance, can be described as a seven-step procedure. In step one we 
state the information available, the statistical assumptions, and the population parameter being considered.  In our example, 
the information includes the numbers of men and women passengers and the sample proportions.  We need to assume that the 
data represents a sample from a larger population and that each sample proportion is approximately normally distributed.  
The population parameter of interest is the difference between the two population proportions being estimated (PM - PW). 
The corresponding sample statistic is the difference between the two estimated proportions )P̂ - P̂( WM . 
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In step 2, we specify the null and alternative hypotheses. A hypothesis is a claim about a value of a population 

parameter. The hypothesis that we plan to test is commonly called the null hypothesis. This is often the accepted state of 
knowledge that we want to question.  The null hypothesis in our example is that the difference in the two population 
proportions is zero. H0 is essentially treated like the defendant in a trial. It is assumed true, or innocent, until the evidence 
from the data makes it highly unlikely to have occurred by chance. Our testing goal here is to see if we have evidence to 
disprove this null hypothesis.  The alternative hypothesis, typically called HA, gives the values the parameter may take if the 
null is false. In our example, the alternative hypothesis is that the difference in population proportions is not equal to zero. 
This is called a two-sided alternative because it states that we are interested in values both above and below the null.  The 
alternative hypothesis would be called one-sided if, before looking at our data, we were interested in determining only 
whether men were at greater risk for dying than women.  To avoid biasing one’s analysis, both the null and alternative 
hypothesis should be made without looking at the study data and be based only on the a priori objectives of the study. 
 

 
 

In step 3, we specify the significance level, alpha. We will set the significance level for our example at .05 or 5 
percent.  This means that in carrying out our procedure, we are willing to take a 5 percent risk of rejecting the null hypothesis 
even if it is actually true. Equivalently, the significance level tells us how rare or unlikely our study results have to be under 
the null hypothesis in order for us to reject the null hypothesis in favor of the alternative hypothesis. An alpha of 5 percent 
means that, if the null hypothesis is actually true, we will have a 5% chance of rejecting it. 
 

 
 
 
Summary 
 

 A statistical test of hypothesis can be described as a seven-step procedure.  The first three steps are: 
o Step 1: State the information available, the statistical assumptions, and the population parameter being 

considered. 
o Step 2: Specify the null and alternative hypotheses. 
o Step 3: Specify the significance level alpha ( ). 

 
 

Hypothesis Testing, Part 2 
 
In step 4 of our hypothesis testing procedure, we must select the test statistic to use, and we must state its sampling 
distribution under the assumption that the null hypothesis is true.  Because the parameter of interest is the difference 
between two proportions, the test statistic T is given by the difference in the two sample proportions divided by the estimated 
standard error of this sample difference under the null hypothesis.  The denominator here is computed using an expression 
involving the pooled estimate, p̂ , of the common proportion for both groups that would result under the null hypothesis. 
 

 
WM

WWMM

nn
p̂np̂np̂
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Study Question (Q12.2) 
 
The pooled estimate of the common proportion for two groups is a weighted average of the two sample proportions, where 
the weights are the sample sizes used to compute each proportion.  The sample size proportions and their corresponding 
sample sizes are .7972 and 1667, respectively for men, and .256 and 425 for women. 
 

1. Compute the pooled estimate from the above information.  (You will need a calculator to obtain your answer.) 
 
 

The sampling distribution of this test statistic is approximately the standard normal distribution, with zero mean and 
unit standard deviation, under the null hypothesis. 

In step 5, we formulate the decision rule that partitions the possible outcomes of the test statistic into acceptance and 
rejection regions. Because our test statistic has approximately the standard normal or Z distribution under the null hypothesis, 
the acceptance and rejection regions will be specified as intervals along the Z-axis under the curve of this distribution.  In 
particular, because our alternative hypothesis is two-tailed and since our significance level is .05, these two regions turn out 
to be as shown here by the red and green lines. (Note: the red lines are in the tail areas < -1.96 and > 1.96; the green line 
between –1.96 and 1.96.)  The area under the standard normal curve above the interval described as the acceptance region is 
.95 .The area under the curve in each tail of the distribution identified as rejection regions is .025.  The sum of these two 
areas is .05, which is our chosen significance level. The -1.96 on the left side under the curve is the 2.5 percentage point of 
the standard normal distribution, and the 1.96 on the right side under the curve is the 97.5 percentage point. 
 

 
 

Our decision rule can now be described as follows. If the value of the test statistic T computed from our data falls 
into the rejection region, we reject the null hypothesis in favor of the alternative hypothesis. However, if the observed study 
value falls into the acceptance region, we do not reject the null hypothesis. 

Step 6 of our process simply requires us to compute the value of the test statistic T from the observed data. We will 
call the computed value T* to distinguish it from the test statistic T. Here again are the sample results: 
 

 
 

Substituting the sample information into the formula for T, our computed value T* turns out to be 21.46. 

WM

WWMM

nn
p̂np̂np̂
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Finally, in Step 7, we use our computed test statistic to draw conclusions about our test of significance. In this 
example, the computed test statistic falls into the extreme right tail of the rejection region because it is much larger than 1.96. 
 

 
 

Consequently, we reject the null hypothesis and conclude that we have a statistically significant difference 
between the two proportions at the .05 significance level. We therefore conclude that of all those that could have been aboard 
the Titanic, men were more likely to die than women. 
 
 
Summary 
 

 A statistical test of hypothesis can be described as a seven-step procedure.  The first three steps are: 
o Step 1: State the information available, the statistical assumptions, and the population parameter being 

considered. 
o Step 2: Specify the null and alternative hypotheses. 
o Step 3: Specify the significance level alpha ( ). 
o Step 4: Select the test statistic and state its sampling distribution under the null hypothesis. 
o Step 5: Formulate the decision rule in terms of rejection and acceptance regions under the null hypothesis. 
o Step 6: Compute the test statistic using the observed data. 
o Step 7: Draw conclusions, i.e., reject or do not reject the null hypothesis at the alpha significance level. 

 
 

Hypothesis Testing – The P-value 
 
We have found that the difference in the sample proportions of the men and women who died on the Titanic was statistically 
significant at the 0.05 significance level.  In particular, the computed value of the test statistic fell into the extreme right tail 
of the rejection region. This tells us that if the null hypothesis were true, the observed results had less than a 5% chance of 
occurring. That is, the results were quite unlikely under the null hypothesis. 

We may wonder, then, exactly how unlikely, or how rare, were the observed results under the null hypothesis? Were 
they also less than 1% likely, or less than 0.1% likely, or even rarer? The answer to these questions is given by the P-value.  
The P-value gives the probability of obtaining the value of the test statistic we have computed or a more extreme value if the 
null hypothesis is true. 

Let’s assume, as in our example, that the test statistic has the standard normal distribution under the null hypothesis. 
To obtain the P-value, we must determine an area under this curve. Here, we show four different areas that correspond to 
where the computed value T* falls under the curve and to whether the alternative hypothesis is one-sided or two-sided. 
 

21.46 

21.46 
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If the alternative hypothesis is an upper one-sided hypothesis, then the P-value is the area under the curve to the 
right of T* (upper right distribution in the above figure). If the alternative hypothesis is a lower one-sided hypothesis, then 
the P-value is the area under the curve to the left of T* (upper left distribution in the above figure).  If the alternative 
hypothesis is two-sided and T* falls in the right tail under the curve, then the P-value is the sum of the areas under the curve 
to the right of T* and to the left of -T*.  If the alternative hypothesis is two-sided and T* falls in the left tail under the curve, 
then the P-value is the sum of the areas under the curve to the left of T* and to the right of -T*.  The P-value gives the area 
under the curve that shows the probability of the study results under the null hypothesis. 
 
 
Study Questions (Q12.3) 
 

1. Which of the four scenarios above correspond to the P-value for our Titanic example?  (Hint: T* = 12, HA is two-
sided.) 

2. To obtain the P-value for a 2-sided HA, why is it not necessary to compute 2 areas under the normal curve? 
 

Now, let’s see how rare our computed test statistic is under the null hypothesis. The computed test statistic is 21.46, 
so we need to find the area under the normal curve to the right of the value 21.46, and to the left of -21.46. One way to 
determine this area is to use a table of the percentage points of the standard normal or Z distribution. In one such table, as 
illustrated in the figure that follows this paragraph, the highest percentage point is 3.8, corresponding to the 99.99 percentage 
point. Although we can’t find the area to the right of 21.46 under the normal curve exactly, we can say this area is less than 
.0001, clearly a very small value. 
 

 
 

21.4 21.4
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Study Questions (Q12.3) continued 
 

3. If our alternative hypothesis had been one-tailed, what would be our P-value? 
4. Since our alternative hypothesis was actually two-tailed, what is our P-value? 
5. Based on your answer to question 2, has a rare event occurred under the null hypothesis? 
6. Based on the P-value here, what should you conclude about whether or not the test of hypothesis is significant? 

 
P-values are often used as an alternative way to draw conclusions about a test of hypothesis rather than specifying a 

fixed significance level in advance of computing the test statistic.  If the P-value is small enough, so that a rare event has 
occurred, then we reject the null hypothesis. If the P-value is not small, then we would not reject the null hypothesis. 

So, how small must the P-value be for our results to be considered rare?  The answer here essentially depends on the 
alpha ( ) significance level we wish to use. A conventional choice for alpha is 0.05, although a frequent alternative choice is 
0.01. Thus if the P-value is <0.05 or <0.01, then the test results are typically considered rare enough to reject the null 
hypothesis in favor of the alternative hypothesis. 

 
 

Study Questions (Q12.3) continued 
 
If your significance level was .05, what conclusions would you draw about the null hypothesis for the following P-values? 
 

7. a) P > .01? b) P = .023? 
8. c) P < .001? d) P = .54?  e) P = .0002? 

 
If your significance level was .001, what conclusions would you draw about H0 for the following P-values? 
 

9. a) P > .01? b) P = .023? 
10. c) P < .001? d) .01 < P = .05?  e) P = .0002? 

 
 
Summary 
 

 The P-value describes how unlikely, or how rare, are the observed results of one’s study under the null hypothesis. 
 For one-tailed alternative hypotheses, the P-value is determined by the area in the tail of the distribution, beyond the 

computed test statistics (i.e., to the right or left), under the null hypothesis. 
 For two-tail alternative hypotheses, the P-value is twice the area in the tail of the distribution, beyond the computed 

test statistic, under the null hypothesis. 
 The P-value is often used as an alternative way to draw conclusions about a null hypothesis rather than specifying a 

significance level prior to computing the test statistics. 
 If the P-value is considered small by the investigators, say, less than .05, .01, we reject the null hypothesis in favor 

of the alternative hypothesis. 
 If the P-value is not considered small, usually greater than .10, we do not reject the null hypothesis. 

 
 

Z-scores and Relative Frequencies – The Normal Density Function 
 
Most statistics texts include a table that lets you relate z-scores and relative frequencies in a normal density. The tables 
always give this information for the Standard Normal Density, so that the x-axis of the density is marked out in z-scores.  
The normal density tool we have been working with provides the same information more easily. For example, to find the 
relative frequency of values with z-scores below -1.5, just drag the left flag to the z-score value -1.5 and read the relative 
frequency in the lower left box, 0.067. 
 (Note: please use the ActivEpi CD Rom to use the normal density tool to answer a number of example 
questions.) 
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Summary 
 

 The Standard Normal Density curve, for which tables are usually given in statistics textbooks, relates z-scores and 
relative frequencies. 

 The Normal Density tool provides the same information directly. 
 
 
Quiz (Q12.4) 
 
Fill in the Blanks. 
 

1. We use ??? to assess whether the population parameter is different from the null value. 

2. When determining the precision of a point-estimate, ??? accounts for sampling variability. 

3. ??? looks for rare or unlikely results. 

4. By looking at the most likely results, ??? finds those values that we are confident lie close to the 
population parameter. 

 
Choices 
hypothesis testing interval estimation 
 
 

5. The ??? gives the risk we are willing to take for rejecting the null hypothesis when the null hypothesis is 
false. 

6. The ??? can be either upper-one-sided, lower one-sided or two-sided. 

7. If the computed value of the test statistic falls into the ???, we reject the ??? and conclude that the 
results are ??? significant. 

 
Choices 
acceptance region alternative hypothesis     meaningfully null hypothesis  
rejection region significance levels     statistically 
 

8. The ??? describes how rare or how unlikely are the observed results of one's study under the ???. 

9. If the P-value satisfies the inequality P>.30, we should ??? the null hypothesis. 

10. If the P-value satisfies the inequality P<.005, we should reject the null hypothesis at the ???. significance 
level, but not at the ??? level. 

 
Choices 
.001  .01 P-value  alternative hypothesis not reject 
null hypothesis reject significance level 
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12-3 Simple Analyses (continued) 
 

Confidence Intervals Review 
 
A confidence interval (CI) provides two numbers L and U between which the population parameter lies with a specified level 
of confidence. Here we describe how to compute a large-sample 95% CI for the difference in two proportions. 
 

Confidence Interval for Comparing Two Proportions 
 
We now show how to calculate a confidence interval for the difference in two proportions using the Titanic data.  Our goal is 
to use our sample information to compute two numbers, L and U, about which we can claim with a certain amount of 
confidence, say 95%, that they surround the true value of the parameter.  Here is the formula for this 95 percent confidence 
interval: 
 

 
 

The standard error of the difference is the square root of the sum of the variances of the proportions, where each 
variance is of the form ( p̂ )(1- p̂ ) / (sample size).  The value 1.96 is the 97.5 percent point of the standard normal 
distribution. This percent point is chosen because the area between -1.96 and +1.96 under the normal curve is .95, 
corresponding to the 95% confidence level we specified.  The normal distribution is used here because the difference in the 
two sample proportions has approximately the normal distribution if the sample sizes in both groups are reasonably large, 
which they are for these data. This is why the confidence interval formula described here is often referred to as a large-
sample confidence interval. 
 

 
 
 
Study Question (Q12.5) 
 

1. Why is the standard error formula used here different from the standard error formula used when testing the null 
hypothesis of no difference in the two proportions? 
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We can calculate the confidence interval for our data by substituting into the formula the values for Mp̂ , Wp̂ , 

Mn , and Wn :  
 

 
 

The standard error turns out to be .0234. The lower and upper limits of the 95% interval are then .495 and .587, 
respectively.  Thus, the 95 percent confidence interval for the difference in proportions of men and women who died on the 
Titanic is given by the range of values between .495 and .587. 
 

 
 
 
Summary 
 

 A confidence interval (CI) provides two numbers L and U between which the population parameter lies with a 
specified level of confidence. 

 A large-sample 95% CI for the difference in two proportions is given by the difference  +1.96 times the estimated 
standard error of the estimated difference. 

 The estimated standard error is given by the square root of the sum of the estimated variances of each proportion. 
 
 

Interpretation of a Confidence Interval 
 
How do we interpret this confidence interval? A proper interpretation requires that we consider what might happen if we 
were able to repeat the study, in this example, the sailing and sinking of the Titanic, several times. If we computed 95 percent 
confidence intervals for the data resulting from each repeat, then we would expect that about 95 percent of these confidence 
intervals would cover the true population difference in proportions. 
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This is equivalent to saying that there is a probability of .95 that the interval between .495 and .587 includes the true 
population difference in proportions. 
 

 
 

 The true difference might actually lie outside this interval, but there is only a 5% chance of this happening. 
 

 
 

The probability statement that describes the confidence interval, which has the population parameter, PM – PW, 
without any hats, at its center, suggests that this parameter is a random variable. This is not so. The parameter PM – PW does 
not vary at all; it has a single fixed population value. The random elements of the interval are the limits 0.495 and .587, 
which are computed from the sample data and will vary from sample to sample. 
 

 
 

In general, a confidence interval is a measure of the precision of an estimate of some parameter of interest, which for 
our example, is the difference between two population proportions. The narrower the width of the confidence interval, the 
more precise the estimate.  
 

 
 

In contrast, the wider the width is, the less precise the estimate will be.  
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The extreme case of no precision at all would occur for difference measures (e.g., risk difference and incidence 
rate difference) where the confidence interval goes from minus infinity to infinity; for ratio measures (e.g., odds ratio, risk 
ratio, and incidence density ratio), it would be a confidence interval from zero to infinity; and for proportions, it would be a 
confidence interval from zero to 1. 
 
Study Questions (Q12.6) 
 

1. For a confidence interval that goes from minus infinity to infinity, how much confidence do we have that the true 
parameter is being covered by the interval? 

2. If 90%, 95%, and 99% confidence intervals were obtained for the difference between two proportions based on the 
same data, which confidence interval would be the widest, and which would be the narrowest? 

3. Suppose two different datasets yielded 95% confidence intervals for the difference between two proportions.  Which 
dataset (A or B below) gives the more precise estimate? 

Dataset A: .49 < p1 – p2 < .58 
Dataset B: .40 < p1 – p2 < .52 

 
Summary 
 

 A 95% CI can be interpreted using the probability statement P(L < the parameter < U) = .95 
 If a CI is computed for several repeats of the same study, we would expect about 95% of the CI’s to cover the true 

population parameter. 
 The random elements of a confidence interval are the limits L and U. 
 It is incorrect to assume that the parameter in the middle of a confidence interval statement is a random variable. 
 The larger the confidence level chosen, the wider will be the confidence interval. 

 
 

A Debate: Does the Titanic data represent a population or a sample? 
 

Our example, as previously indicated, describes the survival data for all men and women passengers on the Titanic, the 
unsinkable” ocean liner that struck an iceberg and sank in 1912.  Since these data consider all men and women passengers, 

it can be argued that the proportions being compared are actually population proportions, so that it is not appropriate to 
carry out either a statistical test of significance or to compute a confidence interval with these data.  Nevertheless, a counter-
argument is that the 1667 men and 425 women passengers represent a sample of men and women who were eligible to be 
chosen for the Titanic’s journey, whereas the population difference in proportions refers to the proportions of all those 
eligible for the trip. 

These two arguments are debatable, and from our point of view, there is no clear-cut reason to conclude that either 
argument is correct.  In fact, similar debates often occur when analyzing data from an epidemiologic outbreak investigation. 
For example, when seeking the source of an outbreak of diarrhea from a picnic lunch, statistical tests are often carried out 
on data that represent everyone who attended the picnic. Such tests are justifiable only if the data being analyzed is 
considered a sample rather than a population. 
 
 
Quiz (Q12.7) 
 
Fill in the Blanks. 
 

1. A large-sample 95% confidence interval for the difference in two proportions adds and subtracts from the 
estimated difference in the two proportions 1.96 times the ??? of the estimated difference. 

2. The confidence interval example shown on the next page does not contain the null value for the ??? of 
the two proportions. 

3. The ??? within a confidence interval has a single fixed value and does vary at all. 
 
Choices 
confidence level      difference       estimated mean         estimated standard error 
estimated variance population parameter ratio 

“
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4. The ??? of a confidence interval may vary from sample to sample. 

5. For a ??? confidence interval, the probability is 0.95 that the interval between the upper and lower 
bounds includes the true population parameter. 

6. The true population parameter might actually lie outside this interval, but there is only a ??? chance of 
this happening. 

 
Choices 
5% 95% 97.5%   confidence level     population parameter upper limit 
 
 
12-4 Simple Analyses (continued) 

 
Cohort Studies Involving Risk Ratios 

 
Hypothesis Testing for Simple Analysis in Cohort Studies 

 
We return to the data from a cohort study to assess whether quitting smoking after a heart attack will reduce one’s risk for 
dying.  The effect measure in this study was a risk ratio and its estimate was 2.1.  What can we say about the population risk 
ratio based on the estimated risk ratio obtained from the sample? 
 

 
 

We wish to know if we have evidence from the sample that the risk ratio is statistically different from the null value. 
That is, we wish to perform a test of hypothesis to see if the risk ratio is significantly different from 1.  The null hypothesis 
being tested is that the population risk ratio is 1. The logical alternative hypothesis here is that the risk ratio is >1, since prior 
to looking at the data the investigators were interested in whether continuing smoking was more likely than quitting smoking 
to affect mortality. 
 

 
 

Because the risk ratio is the ratio of cumulative incidences for the exposed group (CI1), divided by cumulative 
incidences for the unexposed group (CI0), we can equivalently state the null hypothesis in terms of the difference in 
population cumulative incidences as shown here: 
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Because the risk ratio equals one if and only if the risk odds ratio equals one, we can also equivalently state the null 
hypothesis in terms of the risk odds ratio. 

Because cumulative incidence is a proportion, the cumulative incidence version of the null hypothesis implies that 
our test about the risk ratio is equivalent to testing a hypothesis about the difference between two proportions: H0: p1 – p0 = 0. 

The test statistic is the difference in the two estimated cumulative incidences divided by the estimated standard error 
of this difference, under the null hypothesis that the risk ratio is one. Because the sample sizes in both groups are reasonably 
large, this test statistic has approximately a standard normal distribution under the null hypothesis. 
 

 
 

The computed value of the test statistic is obtained by substituting the estimated cumulative incidences and 
corresponding sample sizes into the test statistic formula as shown here. The resulting value is 2.65. 
 

 
 

The P-value for this test is then obtained by finding the area in the right tail of the standard normal distribution 
above the computed value of 2.65.  The exact P-value turns out to be .0040.  Because the P-value of .0040 is well below the 
conventional significance level of .05, we reject the null hypothesis and conclude that the risk ratio is significantly greater 
than the null value of one. In other words, we have found that among heart attack patients who smoke, continuing smokers 
have a significantly higher risk for dying than smokers who quit after their heart attack. 
 
 
Summary 
 

 When testing the hypothesis about a risk ratio (RR) in a cumulative-incidence cohort study, the null hypothesis can 
be equivalently stated as either RR = 1, CI1 – CI2 = 0, or ROR = 1, where CI1 and CI2 are the cumulative incidences 
for the exposed and unexposed groups, respectively. 

 The alternative hypothesis can be stated in terms of the RR either as RR  1, RR > 1, or RR < 1 depending on 
whether the alternative is two-sided, upper one-sided, or lower one-sided, respectively. 

 To test the null hypothesis that RR = 1, the test statistic is the same as that used to compare the difference between 
two proportions. 

 Assuming large samples, the test statistic has approximately the N(0,1) distribution under H0. 
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Chi Square Version of the Large-Sample Test 
 
The large-sample test for a risk ratio can be carried out using either the normal distribution or the chi square distribution.  
The reason for this equivalence is that if a standard normal variable Z is squared, then Z square has a chi square distribution 
on 1 degree of freedom. 

More specifically, for our mortality study of heart attack patients, here is the test statistic that we previously 
described, it follows a standard normal distribution under the null hypothesis that the risk ratio equals 1. The square of this 
statistic is shown next to its corresponding chi square distribution: 
 

 
 

With a little algebra, we can rewrite the statistic in terms of the cell frequencies a, b, c and d of the general 2 by 2 
table that summarizes the exposure disease information in a cohort study that estimates cumulative incidence. 

 

 
 
For the mortality study of heart attack patients, the values of the cell frequencies are shown following this 

paragraph. Substituting these values into the chi square statistic formula, we obtain the value 7.04. This value is the square of 
the computed test statistic we found earlier (2.652  7.04) 
 

 
 

Is the chi square version of our test significant? The normal distribution version was significant at the .01 
significance level, so the chi square version had better be significant. 
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But in comparing these two versions of the test, we need to address a small problem. A chi-square statistic, being the 
square of a Z statistic, can never be negative, but a standard normal statistic can either be positive or negative.  Large values 
of a chi square statistic that might indicate a significant result could occur from either large positive values or large negative 
values of the normal statistic.  In other words, if we use a chi square statistic to determine significance, we are automatically 
performing a test of a two-sided alternative hypothesis even though we are only looking for large values in the right tail of 
the distribution. 
 
 
Study Questions (Q12.8) 
 
The .99 and .995 percentage points of the chi square distribution with 1 degree of freedom (df) are given by the values 6.635 
and 7.789, respectively. 
 

1. Does the computed chi square value of 7.04 fall in the upper 1 percent of the chi square distribution? 
2. Does the computed chi square value of 7.04 fall in the upper .5 percent of the chi square distribution? 
3. Would a test of a two-sided alternative for RR be significant at the .01 significance level? (Note: The computed test 

statistic is 7.04.) 
4. Would a test of a two-sided alternative for RR be significant at the .005 significance level? 

 
 

So, if our chi square statistic allows us to assess a two-sided alternative hypothesis about the risk ratio, how can we 
assess a one-sided alternative?  One way is simply to carry out the normal distribution version of the test as previously 
illustrated. The other way is to divide the area in the right tail of the chi square curve in half. 
 
 
Study Questions (Q12.8) continued 
 

 
 

5. Using the above results, would a test of an upper one-sided alternative RR > 1 be significant at the .01 significance 
level? 

6. Would a test of an upper one-sided alternative RR > 1 be significant at the .005 significance level? 
 
 
Summary 
 

 An alternative but equivalent way to test for the significance of a risk ratio is to use a chi square test. 
 The square of a standard normal variable has the chi square distribution with one degree of freedom. 
 We can directly compute the chi square statistic using a formula involving the cell frequencies of a 2 x 2 table for 

cohort data that allows for estimation of risk. 
 When we use a chi square statistic to determine significance, we are actually performing a test of a two-sided 

alternative hypothesis. 
 We can assess a one-sided alternative either using the normal distribution version of the test or by using the chi 

square distribution to compute a P-value. 
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The P-value for a One-Sided Chi Square Test 
 
We now describe how to compute a P-value when using a chi square test involving a one sided alternative hypothesis about a 
risk ratio. We will illustrate this computation once again using data from the mortality study on smoking behavior of heart 
attack patients. To determine the P-value, we must first compute the area shaded as pink (lighter shaded in the right tail of the 
distribution) under the chi-square distribution above the value of the computed chi-square statistic 7.04.  This area actually 
gives the P-value for a 2-sided alternative hypothesis. In fact, it is equivalent to the combined area in the two tails of the 
corresponding normal distribution defined by the computed value of 2.65. 
 

 
 

For the upper one-sided alternative that the population risk ratio is greater than 1, we previously found the P-value to 
be the area only in the right tail of the normal curve above 2.65. This right tail area is but one-half of the corresponding area 
in the right tail of the chi-square curve above 7.04. Consequently, the area in the right tail of the chi square curve gives twice 
the P-value for a one-tailed alternative. Therefore, this area must be divided by 2 in order to get a one-sided P-value. 

 

 
 
 
Study Questions (Q12.9) 
 

1. Suppose the alternative hypothesis in our example above was a lower one-sided alternative and the computed value 
of the chi square statistic is 7.04, corresponding to a computed Z statistic of +2.65.  What is the corresponding P-
value? 

2. Based on your answer to the previous question, what would you conclude about the null hypothesis that the RR 
equals 1? 

3. Suppose the alternative hypothesis was a lower one-sided alternative and the computed value of the chi square 
statistic is 7.04, but this time corresponding to a computer Z statistic of –2.65.  What is the corresponding P-value? 

4. Based on your answer to the previous question, what would you conclude about the null hypothesis that the RR 
equals 1? 

 
 
Summary 
 

 When using a chi square test of a two-sided alternative hypothesis about a risk ratio, the P-value is obtained as the 
area under the chi square curve to the right of the computed test statistic. 

 If the alternative hypothesis is one-sided, e.g., RR > 1, then the P-value is one-half the area in the right tail of the chi 
square curve. 
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Testing When Sample Sizes Are Small 
 
This table displays hypothetical results from a five-month randomized clinical trial comparing a new anti-viral drug for 
shingles with the standard anti-viral drug “Valtrex”. Only 13 patients were involved in the trial, which was a pilot study for a 
larger clinical trial.  The estimated risk ratio from these data is 3.2, which indicates that, in the sample of 13 patients, the new 
drug was 3.2 times more successful than the standard drug. 
 

 
 

Is this risk ratio significantly different from the null value of one? We are considering a small sample size here, so a 
large-sample test of hypothesis is not appropriate. (Note: How large is large is somewhat debatable here, but it is typically 
required that the sample size for a proportion must be large enough (e.g., >25) for the sample to be normally distributed.)  
However, there is a statistical test for sparse data, called Fisher’s Exact Test, that we can use here.  Fisher’s Exact Test is 
appropriate for a 2x2 table relating a dichotomous exposure variable and a dichotomous disease variable. To use Fisher’s 
exact test, we must assume that the values on the margins of the tables are fixed values prior to the start of the study.  If we 
make this ‘fixed marginals assumption’, we can see that once we identify the number in anyone cell in the table, say the 
exposed cases or a cell, the numbers in the other three cells can be determined by using only the frequencies on the 
marginals. 
 
 
Study Questions (Q12.10) 
 

1. Determine the formulas for calculating the values for b, c, and d in terms of a and the fixed marginal values. 
 

 
 
2. Calculate the values in the other cells of the table above knowing only the marginal values and the value in one cell. 

 
 

To test our hypothesis about the risk ratio, we need only consider the outcome for one of the four cells of the table. 
For example, we would like to know what values we might get in the a cell that would be unlikely to occur under the null 
hypothesis that the risk ratio, or for that matter the risk odds ratio, equals 1.  In particular, we would like to determine 
whether the value obtained in the a cell for our study, which turned out to be 4, is a rare enough event under the null 
hypothesis for us to reject the null hypothesis and conclude that the observed risk ratio is statistically significant. We can 
answer this question by computing the P-value for our test. 
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Study Questions (Q12.10) continued 
 

 
 

3. Suppose the a cell value was 5 instead of 4, assuming the marginals are fixed.  What would be the corresponding 
revised values for b, c, and d? 

4. What would be the risk ratio for the revised table? 
5. Is the revised risk ratio further away from the null risk ratio than the risk ratio of 3.2 actually observed? 
6. Are there any other possible values for the a cell that would also be further away from the null risk ratio than 3.2? 
7. Based on the previous questions, why would we want to compute the probability of getting an a cell value of 4 or 5 

under the null hypothesis? 
 
 

To compute the P-value for Fisher’s Exact test, we need to determine the probability distribution of the a cell 
frequency under the null hypothesis. Assuming fixed-marginals, this distribution is called the hypergeometric distribution. 
The formulae for the hypergeometric distribution and the corresponding P-value for Fisher’s Exact Test are described in the 
box that follows this activity. 
 
 
Study Questions (Q12.10) continued 
 
Using the hypergeometric distribution, the (Fisher’s Exact Test) one-sided P-value for the study described in this activity is 
P(a =4 or 5|Rr=1) = P(a=4|RR=1) + P(a=5|RR=1) = .0816 + .0046 = .0863. 
 

8. What are your conclusions about the null hypothesis that RR = 1? 
 
 
Summary 
 

 Fisher’s Exact Test provides a test of significance for a risk ratio or an odds ratio when the data are sparse. 
 To use Fisher’s exact test, we must assume that the values on the margins of a 2x2 table are fixed values prior to the 

start of the study. 
 The marginal frequencies of a 2x2 table provide no information concerning the strength of the association. 
 To compute the P-value for Fisher’s Exact test, we need to determine the probability distribution of the a cell 

frequency under the null hypothesis. 
 Assuming fixed-marginals, the a cell has the hypergeometric distribution. 
 Computer programs, including a DataDesk program for ActivEpi, are available to calculate the P-value for this test. 
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How to carry out Fisher’s Exact Test using the hypergeometric distribution 

 
To compute the P-value for Fisher’s Exact test, we need to use the probability distribution of the “a” cell frequency 
(i.e., the number of exposed cases) under the null hypothesis of no effect of exposure on disease. 
 
Data layout with fixed marginal totals and with cell “a” = “j” 
 

 E Not E  
D j m1 – j m1 

Not D n1 – j n0 – m1 + j m0 
 n1 n0  

 
Assuming fixed-marginals, this distribution is called the hypergeometric distribution, which is given by the 
following probability formula for a random variable A:  
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It then follows that the exact P-value for a test of H0 versus HA using the above hypergeometric formula is given 
by: 

 
 
 
 
 

We illustrate the calculation of this P-value using the data from the pilot clinical trial for a new treatment for patients 
with shingles.  Here again is the data: 
 
Clinical trial data on shingles patients. 
 

 Drug  
 New Standard  

Success 4 2 6 
Failure 1 6 7 

 5 8 13 
 
The P-value is thus calculated as the probability that the a cell is 4 or 5 under the null hypothesis that RR=l: 
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Since p is greater than .05 we would fail to reject the null hypothesis that the RR = 1 and conclude that there is not a 
significant effect of the new drug at the .05 level of significance. 
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Compute a test of Hypothesis using Fisher’s Exact test in DataDesk 

 
An exercise is provided to compute a Fisher’s exact test using the DataDesk program included on the CD ROM. 
 
 

12-5 Simple Analyses (continued) 

 
Cohort Studies Involving Risk Ratios (continued) 

 
Large-Sample Version of Fisher’s Exact Test - The Mantel-Haenszel Test 

 
Let’s consider again the mortality study data on smoking behavior of heart attack patients. For these data, we have previously 
described a large-sample chi square statistic for testing the null hypothesis that the risk ratio is 1. 
 

 
 

Because the mortality data involves a large-sample, we do not need to use Fisher’s Exact Test for these data. 
Nevertheless, we could still compute the Fisher’s Exact test statistic.  To compute Fisher’s Exact test, we assume that the 
frequencies on the margins of the table are fixed and then we compute the probability under the null hypothesis of getting an 
a cell value at least as large as the value of 27 that was actually obtained. We would therefore compute and sum 15 
probability values, from a= 27 to a= 41 to obtain the P-value for Fisher’s Exact Test. 

 
Although such a calculation can be accomplished with an appropriate computer program, a more convenient large-

sample approximation to Fisher’s Exact Test is often used instead when the cell frequencies in the two by two table are 
moderately large.  This large-sample approach is called the Mantel-Haenszel (MH) test for simple analysis.  The Mantel-
Haenszel statistic is shown below. This statistic has an approximate chi square distribution with one degree of freedom under 
the null hypothesis that the risk ratio is 1. Consequently, the P-value for a one-sided alternative using this statistic is obtained 
in the usual way by finding the area under the chi-square distribution above the computed test statistic and then dividing this 
area by 2. 
 

 
 

If we compare the large-sample chi square statistic for Fisher’s exact test with the large-sample chi square statistic 
previously described for comparing two proportions, we see that these two test statistics are remarkably similar. In fact, they 
differ only in that the statistic for approximating Fisher Exact Test contains n-1 in the numerator but the earlier large-sample 
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version contains n in the numerator. When n is large, using either n or n-l in the numerator will have little effect on the 
computed chi square statistic. 
 

 
 

In our mortality data example, for instance, the value of the chi square approximation to Fisher’s exact test is equal 
to 6.99.  The large-sample chi square statistic for comparing two proportions was previously shown to be 7.04. Clearly, the 
two chi square statistics are very close, although not exactly equal. The corresponding one-sided P-values are .0040 and 
.0041, respectively, essentially equal. 
 

 
*Note: in the box above one-sided p-values are provided. 
 

This example illustrates that in large-samples, these two chi square versions are essentially equivalent and will 
lead to the same conclusions about significance. 
 
 
Study Questions (Q12.11) 
 

 
 
For the above data, we previously showed that the one-sided P-value for Fisher’s Exact test is .0863.  The MH statistic 
computed from these data turns out to be 3.46. 
 

1. The P-value for a two-sided MH test is .0630.  What is the P-value for a one-sided Mantel-Haenszel test? 
2. Why is the P-value for the Mantel-Haenszel test different from the P-value for Fisher’s Exact test? 
3. The computed value for the large-sample chi square statistic for comparing two proportions is 3.75.  Why is this 

latter value different from the computed Mantel-Haenszel test statistic of 3.46? 
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Summary 
 

 A large-sample approximation to Fisher’s Exact test is given by the Mantel-Haenszel (MH) chi-square statistic for 
simple analysis. 

 The MH statistic is given by the formula: 

0101

2
2 ))(1(

mmnn
bcadn

 

 
 The MH chi square statistic contains n-1 in the numerator whereas the large-sample chi square version for 

comparing two proportions contains n in the numerator. 
 In large-samples, either of these two chi square versions are essentially equivalent and will lead to the same 

conclusions about significance. 
 
 

Large-Sample Confidence Interval for a Risk Ratio 
 
We once again use the data from the mortality study on smoking behaviors of heart attack patients, this time to describe how 
to obtain a large-sample confidence interval for a risk ratio. 
 

 
 

A risk ratio is a ratio of two proportions, each of which is a measure of cumulative incidence. If we were interested 
in the difference rather than the ratio between two cumulative incidences, the large sample confidence interval would be 
given by the commonly used confidence interval formula for two proportions shown here: 
 

 
 

This formula says that we must add and subtract from the difference in the two estimated proportions 1.96 times 
the estimated standard error of this difference.  The corresponding 95 percent confidence interval formula for a risk ratio is 
slightly more complicated.  In contrast to the risk difference formula, the risk ratio formula looks like this:  
 

 
 

From this formula, the lower and upper limits are then given by the following expressions: 
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An equivalent version of the risk ratio formula, which helps explain where this formula comes from, is shown 

here: 
 

 
 

The confidence interval for a risk ratio is obtained by exponentiating a large sample confidence interval for the 
natural log of the risk ratio. The formula used for the estimated variance of the log of the risk ratio is actually an approximate, 
not an exact formula. 
 

 
 

There are two reasons why the formula for the risk ratio is more complicated than for the risk difference. First, the 
estimated difference in two proportions is approximately normally distributed, but the estimated ratio of two proportions is 
highly skewed. In contrast, the log of the risk ratio is more closely normally distributed. 

Second, the variance of a ratio of two proportions is complicated mathematically and is not equal to the ratio of the 
variances of each proportion. However, since the log of a ratio is the difference in logs, approximating the variance of a 
difference is much easier. 

We now apply the risk ratio formula to the mortality study data set. Substituting the values for the estimated risk 
ratio, the cumulative incidences in each group, and the sample sizes, we obtain the lower and upper confidence limits shown 
here: 
 

 
 
 
Study Question (Q12.12) 
 

1. Interpret the above results. 
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Summary 
 

 The confidence interval formula for a ratio of two proportions is more mathematically complicated than the formula 
for a difference in two proportions. 

 The 95% risk ratio formula multiplies the estimated risk ratio by the exponential of plus or minus the quantity 1.96 
times the square root of the variance of the log of the estimated risk ratio. 

 This risk ratio formula is obtained by exponentiating a large sample confidence interval for the natural log of the risk 
ratio. 

 The estimated ratio of two proportions is highly skewed whereas the log of the risk ratio is more closely normally 
distributed. 

 The variance of the log of a risk ratio is mathematically easier to derive than is the variance of the risk ratio of itself, 
although an approximation is still required. 

 
 

Large-Sample Approximation Formula for a Confidence Interval for the Risk Ratio 
 

To obtain a 95% confidence interval for a risk ratio (RR), we might be inclined initially to use the interval: 
 

 R)R̂r(âV96.1RR̂  
 

However, this interval is not recommended because there is asymmetry in the distribution of the estimated RR, i.e., RR̂  
is not normally distributed.  The recommended approach involves working with the estimate of lnRR rather than RR itself, 
since the natural log transformation tends to change and skewed distribution to an approximately normal distribution.  A 
two-step procedure is used: First, a 95% large-sample confidence interval for lnRR is obtained of the form: 
 

 R)R̂r(lnâV1.96RR̂nl  
 
Then, since RR = exp(lnRR), the desired upper and lower values of the 95% confidence interval for RR are found by 

taking the anti logarithms of lower and upper values for the confidence interval for lnRR. The resulting formula takes the 
general form: 
 

 R)R̂r(lnâV1.96RexpR̂  

 

To complete the calculation, however, we need to find an expression for ).ˆ(lnˆ RRraV  Although an exact mathematical 
expression for this variance estimate is not readily available, a good approximation to this variance can be obtained by using 
what is called a Taylor Series approximation (for further details, see Kleinbaum, Kupper, and Morgenstern, 
Epidemiologic Research, p.298-299, John Wiley and Sons, 1982).  Using what is called a first-order Taylor-series 
approximation, the approximate formula for this variance is given by: 

 

 
00

0

11

1

IĈn
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where 1
ˆIC  and 0

ˆIC  denote the cumulative incidence for exposed persons and unexposed persons, respectively. Thus, the 
general 95% large-sample approximation confidence interval formula can be written as: 
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Compute Large-Sample Tests of Hypothesis and Confidence Intervals for Data from Cohort 
Studies Using DataDesk 

 
An example of calculating large sample tests of hypothesis and confidence intervals for cohort studies is demonstrated using 
the DataDesk program. 
 
 
Quiz (12.13) 
 
For the cohort study data shown below, the estimated probability of death among continuing smokers (CS) is 
0.303, and the estimated probability of death among smokers who quit (OS) is 0.256. 
 

 
 

1. What is the estimated probability of death among the entire sample: ???. 

2. Based on the computed probability values, use a calculator or computer to compute the value of the test 
statistic T for testing the null hypothesis that the RR equals 1.  Your answer is T* = ???. 

 
Choices 
0.279 0.475 0.491 0.533 0.721 2.20 2.23 2.27 2.31 
2.36 
 
 
The normal density tool that is described in an activity at the bottom of lesson book page 12-2 can be used to 
determine P-values.  The actual normal density tool is located on Lesson book page 16-2 in the Reference 
section of the ActivEpi CD-ROM. 
 

3. Use the normal density tool to find the P-value for based on the computed T statistic (2.23) and assuming 
an upper-one-sided alternative hypothesis. Your answer is: P-value = ???. 

4. Based on the P-value, you should reject the null hypothesis that RR=1 at the ??? significance level but 
not at the ??? significance level. 

 
Choices 
0.003 0.013 0.021 0.120 1% 5% 
 
 
The computed Z statistic for testing RR = 1 for these data is 2.23. 
 

5. Using the computed Z statistic, what is the value of the Mantel-Haenszel chi-square statistic for these 
data? MH CHISQ = ???. 

6. What is the P-value for a two-sided test of the null hypothesis that RR=1? (You may wish to use the chi 
square distribution tool located on lesson page 16-2 of the ActivEpi CD-ROM. ) P-value =???. 

7. Fisher's exact test is not necessary here because the sample size for this study is ???. 
 
Choices 
0.006 0.013 0.026 0.120 0.240 4.970 4.973 large small 
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Calculating Sample Size for Clinical Trials, Cohort Studies, and Cross-Sectional Studies 
 
When a research proposal for testing an etiologic hypothesis is submitted for funding, it is typically required that the 
number of subjects to be studied is large enough” to reject the null hypothesis if the null hypothesis is not true. This issue 
concerns the sample size advocated for the proposed study. The proposer typically will prepare a section of his/her proposal 
that describes the sample size calculations and resulting decisions about sample size requirements. 

Since most epidemiologic studies, even if considering a single dichotomous exposure variable, involve accounting for 
several (control) variables in the analysis, the methodology for determining sample size can be very complicated. As a 
result, many software programs have been developed to incorporate such multivariate complexities, e.g., Egret SIZ, PASS, 
and Power and Precision (a web-based package). The use of such programs is likely the most mathematically rigorous and 
computationally accurate way to carry out the necessary sample size deliberations. 

Nevertheless, there are basic principles from which all sophisticated software derive, and such principles are 
conveniently portrayed in the context of a 2x2 table that considers the simple (i.e., crude) analysis of the primary exposure-
disease relationship under study. Moreover, the use of sample size formulae for a simple analysis is often a convenient and 
non-black-box approach for providing a reasonable as well as understandable argument about sample size requirements for 
a given study. A description of such formulae now follows. 

All formulae for sample size requirements for hypothesis testing consider the two types of error that can be made from a 
statistical test of hypothesis. A Type I error occurs if the statistical test (incorrectly) rejects a true null hypothesis, and a 
Type II error occurs if the test (incorrectly) does not reject a false null hypothesis. The probability of making a Type I error 
is usually called , the significance level of the test. The probability of making a Type II error is usually called , and 1-  
is called the power of the test. All sample size formulae that concern hypothesis testing are aimed at determining that 
sample size for a given study that will achieve desired (small) values of  and  and that will detect a specific departure 
from the null hypothesis, often denoted as . Consequently, the investigator needs to specify values for ,  , and  into an 
appropriate formula to determine the required sample size. 

For clinical trials and cohort studies, the sample size formula for detecting a risk ratio (RR) that differs from the null 
value of 1 by at least , i.e. (  = RR –1) is given by the formula:  
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where 
 2/1Z = the 100(1 - /2) percent point of the N(0,1) distribution 

 1Z  = the 100(1 – ) percent point of the N(0,1) distribution 
 p2 = expected risk for unexposed subjects 
 p  = p2(RR + r) / (r+1) 
 p1    q  
 r = ratio of unexposed to exposed subjects 

 
(Note: if the sample sizes are to be equal in the exposed and unexposed groups, then r = 1. When r does not equal 1, the 

above formula provides the sample size for the exposed group; to get the sample size for the unexposed group, use n x r.) 
To illustrate the calculation of n, suppose  = .05,  = .20, RR = 2, p2 = .04, and r = 3. Then: 

 
 p  = (.04)(2 + 3) / (3 + 1) = .05 

and substituting these values into the formula for n yields: 69.311
31)(.04)(2

1)(3(.05)(.95)0.8416)  (1.96n
2

2
 

 
Thus, the sample size (n) needed to detect a risk ratio (RR) of 2 at an  of .05 and a  of .20, when the expected risk for 

exposed (p2) is .04 and the ratio of unexposed to exposed subjects (r) is 3, is 312 exposed subjects and 312 x 3 = 936 
unexposed subjects.  The above sample size formula can also be used to determine the sample size for estimating a 
prevalence ratio (i.e., PR) in a cross-sectional study; simply substitute PR for RR in the formula. 

 

“
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12-6 Simple Analyses (continued) 
 

Case-Control Studies 
 

Large-Sample (Z or Chi Square) Test 
 
The table shown below has been described in previous lessons illustrating data from a case-control study to determine the 
source of an outbreak of diarrhea at a resort in Haiti.  The odds ratio estimate here is larger than the null value of one, and 
therefore indicates that there is a moderately large effect of the exposure.  What can we conclude about the population 
exposure odds ratio based on the estimated odds ratio obtained from the sample? 
 

 
 

We can answer this question by performing a test of hypothesis that the population exposure odds ratio is 1.  The 
logical alternative hypothesis here is that the odds ratio is > 1, since prior to looking at the data the investigators were 
interested in whether eating raw hamburger was more likely than not eating raw hamburger to affect whether a person would 
develop a diarrheal illness.  The null hypothesis that the odds ratio equals 1 (H0: EOR = 1) can equivalently be expressed as 
the difference in two proportions being equal to zero. The proportions in this case are the proportion exposed among cases 
and the proportion exposed among controls. These exposure proportions are not risks since the study is a case-control 
study. Nevertheless, we can still use a large-sample Z statistic to test for the difference between these two proportions. 

 
Below is the test statistic, which gives the difference in the two estimated exposure proportions divided by the 

estimated standard error of this difference under the null hypothesis. If the sample sizes in both case and control groups are 
reasonably large, which we will assume is the case here, this test statistic has approximately a standard normal distribution 
under the null hypothesis. 
 

 
 

Because the large-sample statistic for testing the difference between two proportions is normally distributed, the 
square of test statistic has approximately a chi square distribution with 1 degree of freedom.  (Note: We will describe only the 
chi square version of this test here.  However, you may wish to either click on the asterisk on the lesson page next to the icon 
for this activity or see the box following this activity in this companion textbook to see the compute value of the T statistic 
and its corresponding P-value based on the normal distribution.) 
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The general data layout for this chi square test from case-control data is essentially the same as previously 
described for cohort data. The only difference is that for case-control data, the row margins are fixed prior to the start of the 
study, whereas for cohort data, the column margins are fixed in advance. 

 

 
 

Consequently the exact same chi square formula previously described for cohort data can be used for case-control 
data. 

 
Substituting the, cell frequencies from our case-control study data into the chi square statistic formula we obtain 

the value 4.74.  If the Mantel-Haenszel chi square formula is used instead, so that the numerator is replaced by n - 1, the chi 
square statistic changes only slightly to 4.67. 
 

 
 
 
Study Question (Q12.14) 
 

1. Using the Mantel Haenszel chi square value of 4.67, describe how you would determine the P-value for the one-
sided alternative that the exposure odds ratio is greater than 1?  (This question asks for a process, not a numerical 
value.) 

2. The 95 percent and 97.5 percent points of the chi square distribution with 1 df are 3.84 and 5.02, respectively.  
Based on this information, what can you say about the P-value for the Mantel-Haenszel test?  (You are being asked 
for a number or range of numbers for the P-value.) 

3. Is the estimated exposure odds ratio from the case-control study statistically significant at the 0.05 level of 
significance?  At the 0.01 level of significance? 

 
 
Summary 
 

 When testing the hypothesis about an odds ratio (OR) in a case-control study, the null hypothesis can be 
equivalently stated as either EOR = 1 or p1 – p2 = 0, where p1 and p2 are estimated exposure probabilities for cases 
and non-cases. 

 The alternative hypothesis can be stated in terms of the EOR either as EOR  1, EOR > 1, or EOR < 1, depending 
on whether the alternative is two-sided, upper one-sided, or lower one-sided, respectively. 

 One version of the test statistic is a large-sample N(0,1) statistic used to compare two proportions. 
 An alternative version is a large-sample chi square statistic, which is the square of the N(0,1) statistic. 
 A Mantel-Haenszel large-sample chi square statistic can alternatively be used for the chi square test. 
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The Z Statistic for a Large-Sample Test of an Odds Ratio 

 
The large-sample Z statistic to test for the difference between two exposure probabilities from a case-control study is given 
by the formula: 
 

 

)
n

1
n

1)(p̂(1p̂

)p̂p̂(
T

COCA

COCA  

 

where D)|r(EP̂p̂CA , D)not |r(EP̂p̂CO , and r(E)P̂p̂  
 

This statistic gives the difference in the two estimated exposure proportions divided by the estimated standard error of 
this difference under the null hypothesis that the odds ratio is one. If the sample sizes in both case and control groups are 
reasonably large, which we will assume is the case here, this test statistic has approximately the standard normal distribution 
under the null hypothesis. 

Using the data from the outbreak of diarrhea at a Haitian resort, the computed value of the test statistic, which we call 
T*, is obtained by substituting the estimated cumulative incidences and corresponding sample sizes into the test statistic 
formula. These values are: 
 

 .459
37
17p̂CA , 

33
7p̂CO , and .343

70
24p̂  

 
where nCA = 37 and nCO = 33 
 

The resulting value of the Z statistic is T* = 2.18.  The P-value for this test is then obtained by finding the area in the 
right tail of the standard normal distribution above the computed value of 2.18. This area is .0146.   This P-value is below 
the conventional significance level of .05 but above .01, we would therefore reject the null hypothesis at the 5 percent level 
but not at the 1 percent level. In other words, we have found that the odds ratio for the association between eating raw 
hamburger and the development of diarrheal illness is of borderline statistical significance. 
 
 
 

Testing When Sample Sizes Are Small 
 

This table displays hypothetical case-control results from the diarrheal outbreak study based on a sample of 19 
persons from the resort in Haiti. The total sample size here is less than one-third the sample size previously found for the 
actual outbreak data described in the previous activity.  The estimated odds ratio is 3.5. 
 

 
 

Is this odds ratio significantly different from the null value of one? We are considering a small sample size here, so 
a large-sample test of hypothesis is not appropriate. We can, however, use Fisher’s Exact Test for these data.  We again 
consider the general data layout for a 2 by 2 table with a dichotomous exposure and dichotomous disease result. To use 
Fisher’s exact test, we must assume that the values on the margins of the table are fixed prior to the start of the study. 
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Assuming fixed margins”, we only need to consider the outcome for one of the four cells of the table, say the a 
cell. We therefore would like to know what values we might get in the a cell that would be unlikely to occur under the null 
hypothesis.  In particular, we would like to determine whether the value obtained in the a cell for our case-control study, 
which turned out to be 5, is a rare enough event under the null hypothesis for us to reject the null hypothesis and conclude 
that the observed odds ratio is statistically significant. We can answer this question by computing the P-value for our test. 
 
 
Study Questions (Q12.15) 
 

 
 
Suppose the a cell value was 4 instead of 5, assuming the marginals are fixed. 
 

1. What would be the corresponding revised values for b, c, and d? 
2. What would be the odds ratio for the revised table? 
3. Is the revised odds ratio further away from the null odds ratio than the odds ratio of 3.5 actually observed? 
4. Are there any other possible values for the a cell that would be further away from the null odds ratio than 3.5? 
5. Based on previous questions, why would we want to compute the probability of getting an a cell value of 5, 6, or 7 

under the null hypothesis? 
 
 

To compute the P-value for Fisher s Exact test, we need to determine the probability distribution of the a cell 
frequency under the null hypothesis. Assuming fixed-marginals, this distribution is the hypergeometric distribution. The 
formula for this distribution and the corresponding P-value for Fisher’s Exact Test are given in the asterisk on the ActivEpi 
CD-ROM and in the box following the activity in this Companion Textbook. 

 
Study Questions (Q12.15) continued 
 
Using the hypergeometric distribution, this P-value is:  
Pr(a = 5 or 6 or 7|OR = 1)  =  Pr(a = 5|OR = 1) + Pr(a = 6|OR = 1) + Pr( a= 7|OR = 1) 

= .1800 + .0375 + .0024 = .2199 
 

6. What do you conclude about the null hypothesis? 
 
 
Summary 
 

 Fisher’s exact test provides a test of significance for an odds ratio as well as a risk ratio with the data are sparse. 
 To use Fisher’s exact test, we must assume that the values on the margins of a 2x2 table are fixed values prior to the 

start of the study. 
 To compute the P-value for Fisher’s exact test, we need to determine the probability distribution of the a cell 

frequency under the null hypothesis. 
 Assuming fixed-marginals, the a cell has the hypergeometric distribution. 
 Computer programs, including DataDesk for ActivEpi, are available to calculate the P-value for this test. 

 
 

’

“
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How to carry out Fisher’s Exact Test using the hypergeometric distribution in a  

Case-Control Study 
 
Fisher’s Exact Test procedure is the same regardless of whether the study design is case-control, cohort or cross-sectional, 
as long as the assumption of fixed marginals is assumed. The derivation of the procedure is now described (as previously 
done in an earlier asterisk/box when discussing small samples in cohort studies or clinical trials). An example of the use of 
Fisher’s Exact test with case-control data is then provided.  To compute the P-value for Fisher’s Exact test, we need to use 
the probability distribution of the a-cell frequency (i.e., the number of exposed cases) under the null hypothesis of no effect 
of exposure on disease. 
 
Data layout with fixed marginal totals and with cell “a” = “j” 
 

 E Not E  
D j m1 – j m1 

Not D n1 – j n0 – m1 + j m0 
 n1 n0  

 
Assuming fixed-marginals, this distribution is called the hypergeometric distribution, which is given by the following 
probability formula for a random variable A:  
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denotes the number of combinations of r items taken s at a time, and 
 r! = r(r-l)(r-2)...(3)(2)(1) denotes r factorial, 
 s! and (r-s)! denote s factorial and (r-s) factorial, respectively. 
 

It then follows that the exact P-value for a test of H0:OR = 1 versus HA: OR > 1 using the above hypergeometric 
formula is given by 

 
 
 
 
 

We illustrate the calculation of this P-value using the data from a hypothetical case-control study of an outbreak of a 
diarrheal disease at a Haitian resort involving 19 subjects (instead of the actual 70 subjects in the real outbreak).  Here again 
is the data:  
 
Hypothetical case-control study of an outbreak at a Haitian resort. 
 

 Raw Hamburger  
 Ate Did not Eat  

Case 5 5 10 
Control 2 7 9 

 7 12 19 
 

The P-value is thus calculated as the probability that the a cell is > 5 (but smaller than the minimal marginal values of 7 
and 10) under the null hypothesis that OR=l: 

 
 
 
 

Continued on next page
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How to carry out Fisher’s Exact Test using the hypergeometric distribution in a  
Case-Control Study (continued) 
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Since this P-value is much larger than .05, we conclude that the null hypothesis could not be rejected, i.e., there is not 
sufficient evidence from these 19 subjects that eating raw hamburger had a significant effect on whether or not a subject 
became ill. 
 
 
 

Large-Sample Confidence Interval 
 
We once again use the case-control data from an outbreak of diarrheal disease at a resort in Haiti, this time, to describe how 
to obtain a large-sample confidence interval for an odds ratio. The estimated odds ratio that describes the association of 
eating raw hamburger with diarrheal illness was 3.2. 
 

 
 

Below is the general formula for the 95% confidence interval for any odds ratio based on the general 2x2 data 
layout for a case-control study.  The lower and upper limits are also provided. 
 

 
 

An equivalent version of an odds ratio formula, which helps explain where this formula comes from, is shown 
here: 
 

 
 

This expression says that the confidence interval for an odds ratio is obtained by exponentiating a large sample 
confidence interval for the natural log of the odds ratio. The formula used for the estimated variance of the log of the odds 
ratio is actually an approximate, not an exact, formula. 
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We now apply the odds ratio formula to the case-control outbreak data set. Substituting into the formula the values 
for the estimated odds ratio and the four cell frequencies, we obtain the lower and upper confidence limits shown here. 
 

 
 
 
Study Question (12.16) 
 

1. What interpretation can you give to this confidence interval? 
 
 
Summary 
 

 The formula for a 95% confidence interval for an odds ratio formula multiplies the estimated odds ratio by the 
exponential of plus or minus the quantity 1.96 times the square root of the variance of the log of the estimated odds 
ratio. 

 The odds ratio formula is obtained by exponentiating a large sample confidence interval for the natural log of the 
odds ratio. 

 The variance of the log of an odds ratio is approximately equal to the sum of the inverses of the four cell frequencies 
in the 2x2 table layout. 

 
 

Deriving the Large-Sample Approximation Confidence Interval Formula for the Odds Ratio 
 

As with the risk ratio (RR), to obtain a 95% confidence interval for an odds ratio (OR), we might be inclined initially to use 
the interval: 
 

 R)Ôr(âV96.1RÔ  
 

However, this interval is not recommended because there is asymmetry in the distribution of the estimated OR, i.e., 
RÔ , is not normally distributed.  The recommended approach involves working with the estimate of lnOR rather than OR 

itself, since the natural log transformation tends to change and skewed distribution to an approximately normal distribution.  
A two-step procedure is used: First, a 95% large-sample confidence interval for lnOR is obtained of the form: 
 

 R)Ôr(lnâV1.96RÔln  
 
Then, since OR = exp(lnOR), the desired upper and lower values of the 95% confidence interval for OR are found by 

taking the anti logarithms of lower and upper values for the confidence interval for lnOR. The resulting formula takes the 
general form: 
 

 R)Ôr(lnâV1.96RexpÔ  

 

To complete the calculation, however, we need to find an expression for .R)Ôr(lnâV  Although an exact mathematical 
expression for this variance estimate is not readily available, a good approximation to this variance can be obtained by using 
what is called a Taylor Series approximation (for further details, see Kleinbaum, Kupper, and Morgenstern, 
Epidemiologic Research, p.298-299, John Wiley and Sons, 1982).  Using what is called a first-order Taylor-series 
approximation, the approximate formula for this variance is given by: 

Continued on next page
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 Deriving the Large-Sample Approximation Confidence Interval Formula for the Odds Ratio (continued) 
 

d
1

c
1

b
1

a
1R)Ôr(lnâV  

 
where a, b, c, d denote the cell frequencies in the 2x2 data layout for a case-control study. Thus, the general 95% large-
sample approximation confidence interval formula can be written as: 
 

 
d
1

c
1

b
1

a
11.96RexpÔ  

 
 
 

Compute Large-Sample Tests of Hypotheses and Confidence Intervals for  
Case-Control Studies Using DataDesk 

 
An example of calculating large sample tests of hypothesis and confidence intervals for case-control studies is demonstrated 
using the DataDesk program. 
 
 
Quiz (12.17) 
 

1. In the general data layout for a chi-square test from case-control data, the ??? are fixed prior to the start 
of the study. 

2. The general data layout for a chi-square test from cohort data has fixed ???. 

3. The large-sample chi square formula for case-control data is the ??? the large-sample chi square formula 
for cumulative incidence cohort data. 

4. The computing formula for Fisher’s exact test for case-control data is ??? the corresponding formula for 
cumulative incidence cohort data. 

 
Choices 
cell frequencies chi-square distributions column margins different from normal distributions 
row margins           same as 
 
 
Fill in the table's blanks. 
 

 
 

5. B = ??? 

6. C = ??? 

7. D = ??? 
 
Choices 
3 4 5 6 7 8 9 
 

Quiz continued on next page
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8. The expression below says that the ??? for an odds ratio is obtained by ??? a large sample ??? for the 
natural log of the ???. 

 

 
 
Choices 
confidence interval     exponentiating     hypothesis test     natural log odds ratio     risk ratio 
 
 

Calculating Sample Size for the Odds Ratio in Case-Control and Other Studies 
 
In an asterisk/box on the previous lesson page (12-5), we described a formula for determining the sample size (n) for 
estimating a risk ratio (RR) in clinical trials and cohort studies. This formula also applies to sample size calculations for 
the prevalence ratio (PR) in cross-sectional studies (i.e., replace RR with PR in the formula). We now describe and 
illustrate a variation of the above mentioned formula that can be used to determine the sample size for estimation an odds 
ratio (OR) in an unmatched case-control, clinical trial, cohort, or cross-sectional study. 

As with sample size formula for RR, when considering the OR instead, the investigator must specify values for the 
significance level , the probability of a Type II error , and the extent of departure of the study effect from the null effect, 
i.e., , into an appropriate formula to determine the required sample size.  For these studies, the sample size formula for 
detecting an odds ratio (OR) that differs from the null value of 1 by at least , i.e. (  = OR –1) is given by the formula: 
 

 
rp-p

1)(rqp)Z(Z
n 2
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2
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where 
 2/1Z = the 100(1 - /2) percent point of the N(0,1) distribution 

 1Z  = the 100(1 – ) percent point of the N(0,1) distribution 
 p1= expected proportion of cases with exposure 
 p2 = expected proportion of controls with exposure 
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OR  

 p  = (p1 + rp2) / (r+1) 
 p1    q  
 r = ratio of the number of controls to cases 

 
(Note: if the sample sizes are to be equal in the case and control groups, then r = 1. When r does not equal 1, the above 

formula provides the sample size for the case group; to get the sample size for the control group, use n x r.). 
To use the above formula, one typically specifies (a guess for) p2 and the OR to be detected, and then solves the OR 

formula for p1 in terms of OR and p2: 
 

To illustrate the calculation of n, suppose  = .05,  = .20, OR = 2, p2 = .040, and r = 3. Then: 
 

 

Continued on next page



370  Lesson 12.  Simple Analyses 

 
 

Calculating Sample Size for Case-Control and Cross-Sectional Studies (continued) 
 

 

 
.041

.04
p1

p
2OR

1

1  

and solving for p1 we get: 
 

 0769.
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(.04)(2)
ORpp1

ORp
p

22

2
1  

 
 p  = [.0769+3(.04)] / (3+1) = .0492 

 
and finally solve for n to yield: 
 

 54.359
304..0769

1)508)(3(.0492)(.90.8416)  (1.96n 2

2
 

 
Thus, the sample size (n) needed to detect an odds ratio (OR) of 2 at an  of .05 and a  of .20, when the expected 

proportion of exposed among controls (p2) is .04 and the ratio of controls to cases (r) is 3, is 360 cases and 360 x 3 = 1,080 
controls. 

 
 
 

12-7 Simple Analyses (continued) 
 

Cohort Studies Involving Rate Ratios 
 

Testing for Rate Ratios 
 
This table has been described in previous lessons to illustrate data from a person-time cohort study to assess the relationship 
between serum cholesterol level and mortality.  The effect measure in this study is a rate ratio, also called an incidence 
density ratio (IDR), and its point estimate is 3.46.  
 

 
 
 What can we conclude about the population rate ratio based on the estimated rate ratio obtained from the sample? 
We can perform a test of hypothesis that the population rate ratio is 1.  This null hypothesis can equivalently be expressed as 
the difference in two incidence rates being equal to zero.  
 

 
 

The rates in this case are the mortality rate for persons with borderline or high cholesterol ( 1R̂I )and the mortality 

rate for persons with normal cholesterol ( 0R̂I ). 
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The logical alternative hypothesis here is that the rate ratio is > 1, since prior to looking at the data the 
investigators were interested in whether persons with borderline high cholesterol have a higher mortality rate than persons 
with normal cholesterol.  Because we are dealing with rates, and not risk estimates, we cannot use a large sample Z test that 
compares two proportions or its equivalent chi square test. But, we can use a different large-sample Z statistic or its 
equivalent chi square statistic for comparing two rates.  Here is the general layout for computing a rate ratio. 
 

 
 

I1 and I0 denote the number of new cases in the exposed and unexposed groups, and PTl and PT0 denote the 
corresponding person time accumulation for these two groups.  Here is the test statistic, T, where p0 denotes the person-time 
for the exposed group divided by the total person-time for exposed and unexposed combined: 

 
This test statistic will have approximately a normal distribution under the null hypothesis provided the total 

number of new cases, I, is sufficiently large and p0 is not close to one or zero. We will refer to this statistic as a Z statistic.  If 
we square this Z statistic, we obtain an approximate one degree of freedom (1 df) chi square statistic. A simplified formula 
for this chi square statistic is shown here: 
 

 
 

We now compute Z2 for our cholesterol mortality dataset. The computed chi square value is 15.952. 
 

 
 
 
Study Question (12.18) 
 

1. Using the large-sample chi square value of 15.592, describe how you would determine the P-value for this one-sided 
alternative that the rate ratio (i.e., IDR) is greater than 1?  (You are being asked to describe a process, not to obtain a 
numerical value.) 
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2. The 99.95 percent point of the chi square distribution with 1 df is 12.116.  Based on this information, what can you 
say about the P-value for the large sample chi square test?  (You are now being asked to give a number or range of 
numbers.) 1R̂I  

3. Based on the above P-value, what do you conclude from this test of hypothesis? 
4. What is the computed value of the Z statistic that provides a test that is equivalent to the above chi square test? 

 
Summary 
 

 When testing the hypothesis about a rate ratio in a person-time cohort study, the null hypothesis can be equivalently 
stated as either IDR = 1 or IR1 – IR0 = 0. 

 IDR denotes the rate ratio (i.e., incidence density ratio) and IR1 and IR0 are the incidence rates for the exposed and 
unexposed groups. 

 The alternative hypothesis can be stated in terms of the IDR  1, IDR > 1, or IDR < 1 depending on whether the 
alternative is two-sided, upper one-sided, or lower one-sided, respectively. 

 One version of the test statistic is a large sample N(0,1) or Z statistic used to compare two incidence rates. 
 An alternative version is a large-sample chi square statistic, which is the square of the Z statistic. 

 
The rationale behind the Z-test for a rate ratio 

 
Here, we describe how to test H0: IDR = 1, or, equivalently, H0: IR1 - IR0 = 0, where IDR denotes the rate ratio (i.e., 

incidence density ratio) in a simple analysis of a person-time cohort study, and IR1 and IR0 are the incidence rates for 
exposed and unexposed groups. The data layout is given as follows: 

 
Data layout for person-time cohort study 
 Exposed Not Exposed Total 
New Cases (D) I1 I0 I 
Person-Time PT1 PT0 PT 

 

Since the estimates of 1R̂I  and 0R̂I  are not binomial proportions, a standard test that compares two binomial 
proportions is not appropriate here. However, a testing approach is possible if we assume that each of the I cases represents 
an independent Bernoulli trial, with success” and failure” defined as being in the exposed and unexposed categories, 
respectively. 

 Under this assumption, we can assume that the number of exposed cases, I1, has a binomial distribution for I trials and 
probability of success p0 under the null hypothesis, where p0 = PT1/PT, the proportion of total person-time associated with 
the exposed group.  

Thus, if A denotes the random variable for the number of cases out of I total cases that are exposed, it follows from the 
binomial distribution that the exact P-value for a test of H0: IDR = 1 versus HA: IDR > 1 using the above binomial 
formula is given by 
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denotes the number of combinations of r items taken s at a time, and 

r! = r(r-l)(r-2)...(3)(2)(1) denotes r factorial, 
s! and (r-s)! denote s factorial and (r-s) factorial, respectively. 
 
We illustrate the calculation of this P-value using the data from the person-time study of that compares the mortality 

rates for persons with borderline high cholesterol with persons with normal cholesterol. Here again is the data: 
 
Person-time cholesterol cohort study 
 Exposed Not Exposed Total 
Deaths (D) 26 14 40 
Person-Years 36,581 68,239 104,820 

Continued on next page
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The rationale behind the Z-test for a rate ratio (continued) 
The P-value is thus calculated as the probability that the number of exposed cases is 26 or higher (up to 40 total cases) 

under the null hypothesis that IDR=1: 
 

 
 
 

This expression involves the sum of 15 terms and is difficult to calculate without a computer program. However, 
a good approximation to this exact P-value can be obtained from a large-sample Z test. The Z test is therefore 
recommended unless the total number of cases is small, in which case one should use the exact P-value formula given 
above.  The large-sample Z-statistic is given by the following formula: 
 

 
 

 
For the cholesterol-mortality data given above, the computed Z is calculated as follows: 

 
 
 
 

 
The computed Z statistic is quite large; in particular, the P-value for a test of H0: IDR = 1 versus HA: IDR > 1 is 

extremely small, in fact, smaller than .0001. Consequently, the null hypothesis should be rejected and it can be concluded 
that persons with borderline high cholesterol have a significantly higher mortality rate than persons with normal cholesterol. 
 
 

Large-Sample Confidence Interval (CI) for a Rate Ratio 
 

To describe the general formula for a 95% confidence interval for a rate ratio, we again consider the data layout for a person-
time cohort study.  This confidence interval formula looks as follows:  
 

 
 

The lower and upper limits are then given by the following expressions: 
 

 
 

An equivalent version of the rate ratio formula looks like this:  
 

 
 

The formula used above for the estimated variance of the log of the rate ratio is an approximate, not an exact 
formula for the variance. 
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Let’s apply the rate ratio formula to the mortality study data set. Substituting into the formula the values for the 
estimated rate ratio and the cell frequencies for exposed and unexposed groups, we obtain the lower and upper confidence 
limits: 1.81 < IDR < 6.63 

 

 
 
 
Study Question (12.19) 
 

1. Interpret these results above.  What do they mean? 
 
 
Summary 
 

 The 95% CI formula for a rate ratio multiplies the estimate rate ratio by the exponential of plus or minus the quantity 
1.96 times the square root of the variance of the log of the estimated rate ratio. 

 This rate ratio formula is obtained by exponentiating a large sample confidence interval for the natural log of the rate 
ratio. 

 The variance of the log of a rate ratio is approximately equal to the sum of the inverses of the exposed and 
unexposed cases. 

 
Deriving the Large-Sample Approximation Confidence Interval Formula for the Rate Ratio 

 
As with the risk ratio (RR), to obtain a 95% confidence interval for rate ratio (IDR), we might be inclined initially to use 
the interval: 

 R)D̂r(IâV96.1RD̂I  
 

However, this interval is not recommended because the distribution of the estimated IDR is not normally distributed.  
The recommended approach involves working with the estimate of lnIDR rather than IDR itself, since the natural log 
transformation tends to change and skewed distribution to an approximately normal distribution.  A two-step procedure is 
used: First, a 95% large-sample confidence interval for lnIDR is obtained of the form: 
 

 R)D̂r(ln(IâV1.96RD̂lnI  
 
Then, since IDR = exp(lnIDR), the desired upper and lower values of the 95% confidence interval for IDR are found by 

taking the anti logarithms of lower and upper values for the confidence interval for lnIDR. The resulting formula takes the 
general form: 

 

 R)D̂r(lnIâV1.96RexpD̂I  

 

To complete the calculation, however, we need to find an expression for .R)D̂r(lnIâV  Using what is called a first-
order Taylor Series approximation, an approximate formula for this variance is given by: 
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1R)D̂r(lnIâV  

 
where I1 and I0 denote the number of exposed and unexposed cases, respectively. Thus, the general 95% large-sample 
approximation confidence interval formula can be written as: 

Continued on next page
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Deriving the Large-Sample Approximation Confidence Interval Formula for the Rate Ratio (continued) 
 

 
01 I

1
I
11.96RexpD̂I  

 
 

A Large-Sample Approximation CI Formula for the Rate Difference 
 
To obtain a 95% confidence interval for a rate difference (i.e., IDD = IR1 - IR0), where IR1 and IR0 denote the incidence 
rates for exposed and unexposed persons, respectively, the following formula may be used:  
 

 D)D̂r(IâV1.96DD̂I  
 

where 01 R̂IR̂IDD̂I  and an approximate large-sample formula for D)D̂r(IâV   is given by: 
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where I1, I0, PT1, PT0 are new cases and person-time information in the following data layout for a person-time cohort 
study: 
 
Data layout for person-time cohort study 

 Exposed Not Exposed Total 
New Cases (D) I1 I0 I 
Person-Time PT1 PT0 PT 

 
The above variance approximation formula derives from assuming that the number of exposed and unexposed cases, 

i.e., I1 and I0, each have a Poisson distribution from which the variances for each group can be estimated by I1/(PT1)2 and 
I0/(PT0)2 for exposed and unexposed groups, respectively. 

We illustrate the calculation of the large-sample CI for the IDD using the data from the person-time cohort study that 
compares persons with borderline high cholesterol with persons with normal cholesterol:  
 
Person-time cholesterol cohort study 

 Exposed Not Exposed Total 
Deaths (D) 26 14 40 

Person-Years 36,581 68,239 104,820 
 

Substituting the values in this table for I1, I0, PT1, PT0 in the confidence interval formula yields the following 95% 
confidence interval for the rate difference IDD: 
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Thus, the lower and upper limits of the CI for the rate difference is given by L =  2.1200  per 10,000 person-

years,  and U = 7.9918  per 10,000 person-years, where DDI ˆ =5.0559 per 10,000 person-years. 
 



376  Lesson 12.  Simple Analyses 

 
 

 
 

Compute Large-Sample Tests of Hypotheses and Confidence Intervals for  
Rate data from Cohort Studies 

 
An example of calculating large sample tests of hypothesis and confidence intervals for rate data from cohort studies is 
demonstrated using the DataDesk program. 
 
 
Quiz (12.20) 
 

1. The expression below says that the confidence interval for a ??? is obtained by ??? a large sample 
confidence interval for the ??? of the rate ratio. 

2. The formula used for the ??? variance of the log of the rate ratio is an ???, not an ???, formula for this 
variance. 

 
Choices 
approximate estimated exact   exponentiating   exponentiation   natural log 
odds ratio rate ratio  testing 
 

 
 
 
Nomenclature 
 
Table setup for cohort, case-control, and prevalence studies: 
 Exposed Not Exposed Total
Disease/cases a b m1
No Disease/controls c d m0
Total n1 n0 n 
 
Table setup for cohort data with person-time: 
 Exposed Not Exposed Total
Disease (New cases) I1 I0 I
No Disease - - -
Total disease-free person-
time 

PT1 PT0 PT 
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2 Chi square – see next page for formula
2
MH  Mantel-Haenszel chi square – see next page for formula

CI Confidence interval 
0IĈ  Cumulative incidence or “risk” in the nonexposed (b/n0)

1IĈ  Cumulative incidence or “risk” in the exposed (a/n1)

CID Cumulative incidence difference or risk difference, CI1 – CI0
e Exponentiation or “antilog”; e 2.71828
H0 Null hypothesis 
HA Alternative hypothesis 
I Number of new cases (I1 + I0)
I0 Number of new cases in nonexposed
I1 Number of new cases in exposed

DÎ  Incidence density (or “rate”) in the population (I/PT)

0DÎ  Incidence density (or “rate”) in the not exposed (I0/PT0)

1DÎ  Incidence density (or “rate”) in the exposed (I1/PT1)

IDD Incidence density difference or rate difference, ID1 – ID0
IDR Incidence density ratio or rate ratio: ID1 / ID0; same as Incidence Rate Ratio 

(IRR) 
IRR Incidence rate ratio or rate ratio: ID1 / ID0; same as Incidence Density Ratio 

(IDR) 
L Lower limit of the confidence interval
ln Natural log 
n Size of population under study
MH Mantel-Haenszel 
OR Odds ratio: ad/bc 
p Population proportion 
p̂  Sample proportion or the weighted average of two proportions

P or Pr Probability 
P0 Proportion with outcome in unexposed (b/n0)
P1 Proportion with outcome in exposed (a/n1)
PT Disease-free person-time 
PT0 Disease-free person-time in nonexposed
PT1 Disease-free person-time in exposed
RD Risk difference: risk in exposed minus risk in unexposed; same as cumulative 

incidence difference (CID) 
RR Risk ratio: risk in exposed divided by risk in unexposed; same as cumulative 

incidence ratio (CIR) 
ROR Risk odds ratio 
S Standard error 
T T test statistic 
T* Computed T test statistic 
U Upper confidence limit 
Var Variance 
Z Z test statistic 
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Formulae 
 
Statistical Tests 
 
T statistic for the difference between two sample proportions 
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Chi square statistic for a 2x2 table 
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Mantel-Haenszel chi square statistic for a 2x2 table 
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T statistic for the difference between two sample rates 
 

)1( 00
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Chi square statistic for comparing two rates 
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2
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Confidence Intervals 
 
Large sample 95% confidence interval for the difference between two proportions (cumulative or risk difference) 
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Large sample 95% confidence interval for the risk ratio (ratio of two proportions) 
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Large sample 95% confidence interval for the odds ratio 
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Large sample 95% confidence interval for the incidence density ratio 
 

01 I
1

I
1961RDI .expˆ    

 
Large sample 95% confidence interval for the incidence density difference 
 

2
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0
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Homework 
 
ACE-1.  Exposure Odds Ratio 
 
The following data are from a case-control study designed to investigate the theory that a certain study factor (E) is a 
determinant of some rare disease (D).  A representative group of incident cases of the disease arising in a given population 
over a five-year period was identified.  These cases were then compared to a random sample of an equal number of noncases 
from the same population. 
 

 Exposed Not Exposed Total 

Case 27 23 50 

Control 18 32 50 

Total 45 55 100 
 
a. Estimate the exposure odds ratio (EOR) for the data.  Can we say (using this point estimate alone) that there is statistical 

evidence of an association between the study factor and the disease?  Explain. 
b. Assess the statistical significance of the observed EOR value, using a Mantel-Haenszel chi-square test.  Determine the 

one-sided p-value and interpret the result. 
c. Calculate a 92% (!) large-sample confidence interval for the EOR. (You may wish to use the Data-desk template Crude 

OR/RR.ise to help with the calculations.) 
d. What do you conclude about the E-D relationship based on your findings in parts a, b, and c? 
 
ACE-2.  Difference Measure vs. Ratio Measure 
 
The following data are from a study of breast cancer among women with tuberculosis.  Women who were exposed repeatedly 
to multiple x-ray fluoroscopies were compared to women not so exposed: 
 

 Radiation Exposure  

 Yes No Total 

Breast Cancer 41 15 56 

Person-years 28,010 19,017 47,027 
 
a. Calculate an appropriate difference measure of association for these data and interpret your result. 
b. Calculate a 90% confidence interval for the difference measure in part a.  What do you conclude based on this result? 

(You may wish to use the Datadesk template Crude IDR.ise to help with the calculations.) 
c. Calculate an appropriate ratio measure of association for these data and interpret your result. 
d. Calculate a 90% confidence interval for the ratio measure in part c. (You may wish to use the Datadesk template Crude 

IDR.ise to help with the calculations.) 
e. Is your conclusion in part d regarding the association between the exposure and the outcome the same as previously (i.e. 

part b)? 
 
ACE-3.  Test of Hypothesis 
 
Helicobacter pylori (HP) is a bacterium that infects the cells that line the stomach, causing acute and chronic inflammation.  
The organism is considered a causal factor in peptic ulcer disease and has been linked epidemiologically to the development 
of gastric adenocarcinoma. A group of investigators was interested in assessing the relationship between alcohol consumption 
and HP infection.  They identified 300 subjects whose blood contained antibodies to HP, 63 of whom consumed alcohol.  Of 
267 subjects who were antibody-negative for HP, 91 consumed alcohol. 
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a. Use this information to fill in the 2 x 2 table below: 
 

  
Alcohol 

 
No Alcohol 

 
HP 

 
 

 
 

 
no HP 

 
 

 
 

 
b. Calculate and interpret the appropriate ratio measure of association for these data. 
c. Use these data to carry out a hypothesis test of the association between alcohol consumption and HP infection.  Be sure 

to state the null (Ho) and alternative (HA) hypotheses and provide an appropriate p-value.  What is your conclusion? 
d. Calculate a 95% confidence interval for the measure in part b above. 
  
ACE-4.  Fisher’s Exact Test 
 
The following table contains data from a case-control study relating an exposure (E) to a  disease (D). 
 

 Exposed Unexposed  

Diseased 5 6 11 

Non-diseased 3 2 5 

 8 8 16 
 
If the significance of the association between exposure and disease were to be assessed using a Fisher’s Exact test, how many 
terms would be summed in order to calculate the p-value? 
 

  i. 11 
               ii.   8 
 iii.   4 
 iv.   7 

 
a. Use the Contingency Tables command from the Calc menu in Datadesk to carry out the computation of Fisher’s exact 

test. What do you conclude from this test?  
 
ACE-5.  Incidence Density Ratio 
 
Suppose you wish to analyze the person-time cohort data given in the following table: 
 

 Exposure  

 Yes No Total 

Disease 50 150 200 

Person-years 10,000 40,000 50,000 
 
a. What is the incidence density ratio? 
b. Carry out a large-sample test of the hypothesis (H0: IDR=1). 
c. Provide a formula for computing a 95% confidence interval for the IDR. In stating this formula, put numerical values in 

place of the symbols that describe the general confidence interval formula for this situation. 
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d. Calculate the 95% confidence interval described in part c. (You may wish to use the Datadesk template Crude IDR.ise 
to carry out the calculations. 

e. Based on your answers to the previous question, what do you conclude about the E-D relationship? 
 
ACE-6.  Sample Size: Clinical Trial 
 
A clinical trial is being planned to evaluate the effectiveness of a new therapy for osteoporosis. The new therapy is to be 
compared to the standard therapy, which is known to produce a positive response (increased bone density) in 20% of patients.  
Preliminary data suggest that the new therapy may produce a positive response in twice the proportion of patients, compared 
to the standard.  If this is true, how many subjects will need to participate in the clinical trial in order to show a statistically 

 

n = (Z1 - /2 + Z 1 - )2 pq(r + 1)
[p2(RR - 1)]2r  

 
ACE-7.  Sample Size: Case-Control Study 
 
Data from the Tricontinental Seroconverter Study were used for a case-control analysis of the potential association between 
HIV status and substance use. Recent HIV seroconverters were compared to subjects who tested negative for HIV; all 
subjects were asked about their substance use in the year prior to study enrollment.  The following table summarizes the data 
on amphetamine use: 

 
 Amphetamine Use  
 Yes No Total
HIV + 78 267 345
HIV - 35 310 345 

 
a. Calculate the exposure odds ratio (EOR) for these data. 
b. How many cases and controls would the investigators have needed in order to detect the same EOR if they had decided 

 
                  Hint: You may use the following sample size formula: 

                          

n = (Z1 - /2 + Z 1 - )2 pq(r + 1)
[p1 - p2)]2r  

 
ACE-8.  Factors Affecting Sample Size 
 
An epidemiologist is planning a study to evaluate the association between an exposure (E) and a disease (D). For each of the 
following situations, indicate whether the required sample size would increase, decrease, or remain unchanged. 
 
a. 
b. A decrease in the expected impact of a new therapy (compared to standard). 
c. An increased willingness to risk a type I error. 
 
ACE-9.  Sample Size and Power 
 
The authors of an epidemiologic study were concerned that, due to small sample size, their study would have low power. 
Describe briefly the basis for their concern, i.e. what is the potential problem associated with low power in an epidemiologic 
study? 
 
 

significant response?  Assume that α  = 0.05 (2-sided) and β  = 0.10 (1-sided). Show your calculations. (Hint: use the sample 
size formula:         

to select r= 3 controls per case? Let αααα  = 0.05 (2-sided) and Power = 90%. 

An increase in α  from 0.05 to 0.10. 
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Answers to Study Questions and Quizzes 
 
Q12.1 
 

1. RR, the ratio or two proportions, or OR, the ratio of 
two odds, each of the form p/(1-p). 

2. The usual null hypothesis for a risk ratio is RR = 1, 
where 1 is the null value of the risk ratio. 

3. The usual null hypothesis for an odds ratio is OR = 
1, where 1 is the null value of the odds ratio. 

 
Q12.2 
 

1. The pooled estimate of the common proportion is 
given by {(.7972 x 1667) + (.2565 x 425)} / {1667 
+ 425} = .6874. 

 
Q12.3 
 

1. The 2-sided alternative A1, in the lower right 
corner. 

2. Because the normal curve is symmetric, the left and 
right tails have equal areas.  Thus, compute one 
tail’s area and then multiply by two. 

3. For an upper one-sided alternative, the P-value is 
the area under the normal curve to the right of 
T*=21.46.  From the table, we find P<.0001.  Thus, 
if the null hypothesis were true and our alternative 
hypothesis had been one-tailed, our results had less 
than a .01% chance of occurring. 

4. The P-value is twice the area beyond the value of 
21.46 under the curve, so P < 0.0002.  This is 
because a computed T* less than –21.46 in the left 
tail of the normal distribution would also represent 
a worse value under the null hypothesis than the T* 
= 21.46 that was actually observed.  Thus, if the 
null hypothesis were true and our alternative 
hypothesis had been two-tailed, our results had less 
than a .02% chance of occurring. 

5. Yes, the P-value, which represents the chance that 
our results would occur if the null hypothesis were 
true, is extremely small. 

6. Conclude that the test is significant, i.e., reject the 
null hypothesis and conclude that the proportions 
for men and women are significantly different. 

7. a) P > .01: Do not reject H0. b) P = .023: Reject H0. 
8. c) P < .001: Reject H0.  d) P = .54: Do not reject H0.  

e) P = .0002: Reject H0. 
9. a) P > .01: Do not reject H0. b) P = .023: Do no 

reject H0. 
10. c) P < .001: Reject H0.  d) .01 < P <  .05: Do not 

reject H0.  e) P = .0002: Reject H0. 
 
 
 

Q12.4 
 

1. hypothesis testing 
2. interval estimation 
3. hypothesis testing 
4. interval estimation 
5. significance level 
6. alternative hypothesis 
7. rejection region, null hypothesis, statistically 
8. P-value, null hypothesis 
9. not reject 
10. .01, .001 

 
Q12.5 
 

1. The standard error used here does not assume that 
the null hypothesis is true.  Thus, the variance for 
each proportion must be computed separately using 
its sample proportion value. 

 
 

Q12.6 
 

1. 100% confidence. 
2. The 99% confidence interval would be the widest 

and the 90% confidence interval would be the 
narrowest. 

3. Dataset A gives the more precise estimate because 
it’s confidence interval is narrower than that for 
Dataset B. 

 
Q12.7 
 

1. estimated standard error 
2. difference 
3. population parameter 
4. upper limit 
5. 95% 
6. 5% 

 
Q12.8 
 

1. Yes, because 7.04 is larger than 6.635, which is the 
.99 percent point of the chi square distribution with 
1 df. 

2. No, because 7.04 is less than 7.879, which is the 
.995 percent point of the chi square distribution 
with 1 df. 

3. Yes, because the P-value for a two-sided test is the 
area above 7.04, which is less than the area above 
6.635, which is .01. 
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4. No, because the P-value is the area above 7.04, 
which is greater than the area above 7.879, which is 
.005. 

5. Yes, because the upper one-sided test using the 
normal curve was significant at the 1 percent level. 

6. Yes, the one-tailed P-value using the normal 
distribution was .0040, which is less than .005. 

 
Q12.9 
 

1. The correct P-value is the area under the normal 
curve below +2.65, which is 1 minus the area above 
2.65, which is calculated to be 1 - .004 = .996.  The 
value of .996 can equivalently be obtained from the 
chi square curve by taking one half of .008 and 
subtracting from 1, i.e., 1 – (.008 / 2) = .996.  It 
would be incorrect, therefore, to take one-half of 
the area of .008 under the chi-square curve nor 
would it be correct to take one-half of 1 minus .008. 

2. Do not reject the null hypothesis because the P-
value is very high. 

3. The correct P-value is the area under the normal 
curve below –2.65, which is .004.  This can also be 
obtained by taking half of the area above the chi 
square value of 7.04, which is .008/2 = .004. 

4. Reject the null hypothesis because the P-value is 
very small, and much smaller than .05 and .01. 

 
Q12.10 
 

1. b = m1 – a; c = n1 – a; d = m0 – n1 + a 
2. b = 2; c = 1; d = 6 
3. b = 1; c = 0; d = 7 
4. RR = (5/5) / (1/8) = 8 
5. Yes 
6. No.  An a cell value greater than 5 is not possible 

because the assumed fixed column marginal of 5 
would then be exceeded. 

7. P(a=4 or 5|RR=1) = P(a=4|RR=1) + P(a=5|RR=1).  
This tells us how rare our observed results are 
under the null hypothesis.  It is the P-value for 
testing this hypothesis. 

8. Since P is greater than .05, we fail to reject at the 
.05 significance level for the null hypothesis that 
the RR = 1. 

 
Q12.11 
 

1. The one-sided p-value is .0630 / 2 = .0315 
2. The large-sample assumption does not hold. 
3. The sample size n = 13 is not large, so that the 

difference between n = 13 and n – 1 = 12 has a 
stronger effect on the calculation of each test 
statistic. 

 
 

Q12.12 
 

1. This confidence interval has a 9% probability of 
covering the true risk ratio that compares 
continuing smokers to smokers who quit.  Even 
though the confidence interval contains the null 
value of 1, it is wide enough to suggest that the true 
risk ratio might be either close to one or as large as 
3.6.  In other words, the point estimate of 2.1 is 
somewhat imprecise, and the true effect of quitting 
smoking after a heart attack may be either very 
weak or very strong. 

 
Q12.13 
 

1. 520/1863 = 0.279  
2. 2.23:  T* = (.303 - .256) / [sqrt{.279 * (1-.279) * 

[(1/915) + (1/948)]}] = 2.23 
3. .013 
4. 5%, 1% 
5. 4.970: MH chi square = (1862 * 2.232)/1863 = 

4.970 
6. 0.026 
7. large 
 

Q12.14 
 

1. Determine the area under the chi-square 
distribution with 1 df above the value 4.67.  The P-
value is one-half this area. 

2. The area under the chi square curve above 4.67 lies 
between .025 and .05.  Consequently, after dividing 
each limit by 2, the P-value for this test lies 
between .0125 and .025. 

3. At the 0.05 level, yes (significant).  At the 0.01 
level, no. 

 
Q12.15 
 

1. b=6, c=3, d=6 
2. OR = (4*6)/(6*3) = 1.3 
3. No.  An OR of 1.3 is closer to 1 than is an OR of 

3.5. 
4. Yes, a cell values of either 6 or 7 would give odds 

ratios larger than 3.5. 
5. Because Pr(a=5, 6, or 7|OR=1) = Pr(a=5|OR=1) + 

Pr(a=6|OR=1) + Pr(a=7|OR=1) tells us how rare is 
our observed result under the null hypothesis. 

6. Since P is much greater than .05, we would not 
reject the null hypothesis that the OR = 1 at the .05 
level of significance.  In other words, there is not 
statistically significant evidence in this hypothetical 
dataset to say that eating raw hamburger was the 
source of the outbreak. 
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Q12.16 
 

1. The confidence interval, ranging between 1.1 and 
9.1, is very wide, indicating a lack of precision in 
the estimated odds ratio of 3.2.  So, even though the 
estimated odds ratio is statistically significant at the 
.05 level, the true odds ratio might be either very 
weak (i.e., close to 1) or very strong (i.e., just over 
9). 

 
Q12.17 
 

1. row margins 
2. column margins 
3. same as 
4. same as 
5. 5 
6. 4 
7. 7 
8. confidence interval, exponentiation, confidence 

interval, odds ratio 
 
Q12.18 
 

1. Determine the area under the chi square distribution 
with 1 df above the value 15.952.  The P-value is 
one-half this area. 

2. The area under the chi square curve above 15.952 is 
less than .0005.  Consequently, after dividing by 2, 
the P-value for this test is less than .00025, which is 
extremely small. 

3. Persons with borderline high cholesterol have a 
significantly higher mortality rate than persons with 
normal cholesterol. 

4. Z-squared = 15.952, so Z = sqrt(125.952) = 3.994.  
This computed Z must be a positive number 
because persons with borderline high cholesterol 
have a higher estimated mortality rate (7.11 per 
10,000 py) than persons with normal cholesterol 
(2.05 per 10,000 py). 

 
Q12.19 
 

1. The confidence limits, which range from 1.81 to 
6.63, are quite wide, indicating imprecision in the 
rate ratio estimate of 3.46.  The true rate ratio might 
be either close to 2 or higher than 6.  Nevertheless, 
we are 95% confident that the true rate ratio is 
much larger than 1. 

 
Q12.20 
 

1. rate ratio, exponentiating, natural log 
2. estimated, approximate, exact 

 
  

 
 
 



    

 

 
 
 
 

LESSON   1133  

 
Control of Extraneous Factors 

 
In previous lessons, we have discussed and illustrated several important concepts concerning the control of additional 
(extraneous) variables when assessing a relationship between an exposure variable and a health-outcome variable.  In this 
lesson, we briefly review these concepts and then provide an overview of several options for the process of control that are 
available at both the design and analysis stages of a study. 
 

13-1 Control of Extraneous Factors 
 

What Do We Mean by Control? 
 
Suppose we are studying whether there is a link between exposure to a toxic chemical and the development of lung cancer in 
a chemical industry.  To answer this question properly, we would want to isolate the effect of the chemical from the possible 
influence of other variables, particularly age and smoking status, two known risk factors for lung cancer. That is, our goal is 
to determine whether or not exposure to the chemical contributes anything over and above the effects of age and smoking to 
the development of lung cancer. 

Variables such as age and smoking in this example are often referred to as control variables. When we assess the 
influence of such control variables on the E D relationship, we say we are controlling for extraneous variables. By 
extraneous, we simply mean that we are considering variables other than E and D that are not of primary interest but 
nevertheless could influence our conclusions about the E D relationship. 

In general, we typically carry out a simple analysis of an exposure-disease relationship as the starting point for more 
complicated analyses that we will likely have to undertake. A simple analysis allows us to see the crude association between 
exposure and disease and therefore allows us to make some preliminary insights about the exposure-disease relationship.  
Unfortunately, a simple analysis by definition ignores the influence that variables other than the exposure may have on the 
disease. If there are other variables already known to predict the disease, then the conclusions suggested by a simple analysis 
may have to be altered when such risk factors are taken into account. 

Consequently, when we control for extraneous variables, we assess the effect of the exposure E on the disease D at 
different combinations of values of the variables we are controlling. When appropriate, we evaluate the overall E D 
relationship by combining the information over the various combinations of control values. 
 

 

 
 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
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Study Questions (Q13.1) 
 
Consider a case-control study to assess whether a certain toxic chemical (E) is associated with the development of lung 
cancer (D) in a chemical industry.  Suppose we wish to consider the control of age and smoking status.  Assume that we 
categorize age into three groups: below 40, 40-55, and over 55.  We also categorize smoking as “ever smoked” versus “never 
smoked”. 
 

1. How many combinations are there of the categories of age and smoking? 
 

Two kinds of pooled analyses with these data are: 
 Pool 2x2 tables of these combinations into one overall “pooled” table and compute an odds ratio for this 

pooled table, and 
 Compute an odds ratio for each 2x2 table corresponding to each combination and then average these 

separate odds ratios in some way. 
 

2. Which of these two analyses controls for age and smoking? 
 
 

Several questions arise when considering the control of extraneous variables. Why do we want to control in the first 
place? That is, what do we accomplish by control? What are the different options that are available for carrying out control? 
Which option for control should we choose in our study? Which of the variables being considered should actually be 
controlled? What should we do if we have so many variables to control that we run out of data? These questions will be 
considered in the activities to follow. 

 

 
 

 
Summary 
 

 When assessing an E D relationship, we determine whether E contributes anything over and above the effects of 
other known predictors (i.e., control variables) of D. 

 When we assess the influence of control variables, we say we are controlling for extraneous variables. 
 A simple analysis ignores the control of extraneous variables. 
 Controlling assesses the E D relationship at combinations of values of the control variables. 
 When appropriate, controlling assesses the overall E D relationship after taking into account control variables. 

 
 

Reasons for Control 
 
The typical epidemiologic research question assesses the relationship between one or more health outcome variables, D, and 
one or more exposure variables, E, taking into account the effects of other variables, C, already known to predict the 
outcome. 
 

 
 

•

•
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When there is only one D and one E, and there are several control variables, the typical research question can be 
expressed as shown here, where the arrow indicates that the variable E and the C variables on the left are to be evaluated as 
predictors of the outcome D, on the right. 
 

 
 

Why are the C variables here? That is, what are the reasons why we want to control for the C
control is to ensure that whatever effect we may find of the exposure variable cannot be explained away by variables already 
known to have an effect on the health outcome. In other words, we want to make sure we have accounted for the possible 
confounding of the E D relationship due to the influence of known risk factors for the health outcome. 

A second reason for control is to ensure that we remove any variability in the estimate of the E D effect 
contributed by other known predictors. We might gain precision in our effect estimate, for example, a narrow confidence 
interval, as a result of controlling.  In some situations there may be a loss of precision when controlling for confounders. 

A third reason for control is to allow us to assess whether the effect of the exposure may vary depending on the 
characteristics of other predictors. For example, there may be a strong effect of exposure for smokers but no effect of 
exposures for non-smokers. This issue concerns interaction, or effect modification. 

These are the primary three reasons for controlling: 1) to control for confounding; 2) to increase precision; and 3) to 
account for the possibility of effect modification. 
 

 
 

All three reasons are important, but there is nevertheless an ordering of when they should be considered in the 
course of an analysis.  

 
The possibility of effect modification should be considered first, because if there is an effect modification, then a 

single adjusted estimate that controls for confounding may mask the fact that the E D relationship differs for different 
categories of a control variable. 

Once effect modification is addressed or found to be absent, confounding should be considered, particularly in 
terms of those control variables not found to be effect modifiers. Confounding should be assessed prior to precision because 
confounding concerns the validity of an estimate. Precision only concerns random error. We would rather have a valid 
estimate than a narrow confidence interval around a biased estimate. 
 
 
 
 
 
 
 
 

’s?  One reason for 
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Study Questions (Q13.2) 
 
Consider again a case-control study to assess whether a certain toxic chemical (E) is associated with the development of lung 
cancer (D) in a chemical industry, where we wish to control for age and smoking status.  Also, assume that we categorize age 
into three groups: below 40, 40-55, and over 55 years of age; and we categorize smoking as “ever smoked” versus “never 
smoked.” 
 

1. True of False.  We can assess confounding of either age or smoking by determining whether the E D relationship 
differs within different categories of either age or smoking or both combined. 

2. True or False.  A more precise estimate of the odds ratio (OR) for the E D association will be obtained if we 
control for both age and smoking status. 

 
Suppose that when controlling for both age and smoking status, the OR for the E D association is 3.5, but when ignoring 
both age and smoking status, the corresponding crude OR is 1.3. 
 

3. Does this indicate confounding, precision, or interaction? 
 
Suppose that when controlling for age and smoking status, the adjusted OR is 3.5, as above, with a 95% confidence interval 
ranging from 2.7 to 4.5, but that the crude OR of 1.3 has a 95% confidence interval from 1.1 to 1.5. 
 

4. Which of these to OR’s is more appropriate? 
 
Suppose in addition to the above information, you learned that the estimated OR relating E to D is 5.7 for smokers but only 
1.4 for non-smokers? 
 

5. Would you want to control for confounding of both age and smoking? 
 
 
Summary 
 

 The typical epi research question assesses the relationship of one or more E variables to one or more D variables 
controlling for several C variables. 

 The three reasons to control are confounding, precision, and effect modification. 
 The possibility of effect modification should be considered first, followed by confounding, and then precision. 

 
 

Options for Control 
 

Design Options 
 
Suppose you wish to assess the possible association of personality type and coronary heart disease. You decide to carry out a 
cohort study to compare the CHD risk for a group of subjects with Type A personality pattern with the corresponding risk for 
Type B subjects. You plan to follow both groups for the same duration, say 5 years. 

Your exposure variable, E, is therefore dichotomous. You recognize that age, gender, ethnicity, blood pressure, 
smoking status, and cholesterol level are important CHD risk factors that you need to observe or measure for control in your 
study. You also recognize that there are other factors such as genetic factors, daily stress level, physical activity level, social 
class, religious beliefs, that you might also like to consider but you don’t have the resources to measure. 
 



391     
    

 

 
 

How do you carry out your study to control for any or all of the variables we have just mentioned? That is, what are 
your options for control?  Some of your options need to be carried out at the study design stage prior to data collection. 
Other options are carried out during the analysis stage after the data has been obtained. It is possible to choose more than 
one option in the same study. 
 

 
 

This activity focuses only on the design options. One design option is randomization. You might wish to randomly 
assign an initial disease-free individual to either Type A or Type B personality type. If you could randomize, then the 
variables you want to control for, even those you don’t actually measure, might be distributed similarly for both exposure 
groups. However, this option is unavailable here. You can’t force people to be one personality type or another; they are what 
they are. 

A second design option is called restriction. This means specifying a narrow range of values for one or more of the 
control variables. For example, you might decide to restrict the study to African-Americans, to women, to persons older than 
50, or to all three, but not to restrict any of the other variables on your list. 
 
 
Study Questions (Q13.3) 
 

1. What is a drawback to limiting the study to women only? 
2. Other than generalizing to other age groups, what is another drawback to limiting the age range to persons over 50? 

 
 

A third design option is matching. Matching imposes a “partial restriction” on the control variable being matched.  
For example, if we match on smoking status using what is called pair matching, our cohort would consist of pairs of 
subjects, where each pair would have a Type A subject and Type B subject who are either both smokers or both non-smokers.  
Smoking status would therefore not be restricted to either all smokers or all non-smokers. What would be restricted, however, 
is the smoking status distribution, which would be the same for both Type A and Type B groups.  Matching is often not 
practical in cohort studies such as the study described here, so it is rarely used in cohort studies. Rather it is most often used 
in case-control studies or in clinical trials. 
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Study Questions (Q13.3) continued 
 
Suppose you carry out a case-control study to compare CHD risks for Type A with Type B subjects.  You decide to pair-
match on both smoking status (ever versus never) and gender.  Your cases are CHD patients identified from a cardiovascular 
disease registry and your controls are disease-free non-CHD subjects that are community-based. 
 

3. What is the smoking status and gender of a control subject who is matched with a male non-smoking case? 
4. If there are 110 cases in the study, what is the total number of study subjects?  (Assume pair matching, as described 

above.) 
5. Is there any restriction on the smoking status or gender of the cases? 
6. Is there any restriction on the smoking status or gender of the controls? 
 

 
Summary 
 
Three design options for controlling extraneous variables are: 

 Randomization – randomly allocating subjects to comparison groups 
 Restriction – specifying a narrow range of possible values of a control variable. 
 Matching – a partial restriction of the distribution of the comparison group. 

 
 

Analysis Options 
 
What control options are available at the analysis stage of a study? We’ll continue the illustration of a 5-year cohort study to 
assess the possible association of personality type and coronary heart disease. Once the data are collected, the most direct and 
logical analysis option is a stratified analysis. 

In our cohort study, if we have not used either restriction or matching at the design stage, stratification can be done 
by categorizing all control variables and forming combinations of categories called strata. For example, we might categorize 
age in three groups, say under 50, 50-60, and 60 and over; ethnicity into non-whites verses whites; diastolic blood pressure 
into below 95 and 95 or higher; and HDL level at or below 35 versus above 35. Because there are 6 variables being 
categorized into 3 categories for age and 2 categories for the other 5 variables, the total number of category combinations is 3 
times 25, or 96 strata. 
 

 
 

An example of a stratum is subjects over 60, female, non-white, with a diastolic blood pressure greater than 95, a 
smoker, and with HDL level below 35. For each stratum we form the 2x2 table that relates exposure, here personality type, to 
the disease, here, CHD status. 

 
 A B 

CHD   
No CHD   

 
A stratified analysis is then carried out by making decisions about the E-D relationship for individual strata and if 

appropriate, combining the information over all strata to provide an overall adjusted estimate that controls for all variables 
together. 
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Stratum 1 Stratum 2    Stratum k
 A B  A B     A B 

CHD   CHD      CHD   
No CHD   No CHD   . . . No CHD   
             
 Make decisions about individual strata 
 Obtain overall adjusted estimate (if appropriate) 
 
 
Study Questions (Q13.4) 
 

1. When would it not be appropriate to compute an overall adjusted estimate that combines the information over all 
strata? 

2. How would you assess the E D relationship within any given stratum? 
3. For the cohort study illustrated here, what is the biggest obstacle in carrying out stratum-specific analyses? 
4. How might you carry out stratified analyses that avoid dealing with a large number of strata containing zero cells? 
5. What would be an advantage and a disadvantage of doing several stratified analyses one variable at a time? 

 
 

A major problem with doing stratified analysis when there are many variables to control is that you quickly run out 
of subjects. An alternative option that gets around this problem is to use a mathematical model.  A mathematical model 
is a mathematical expression or formula that describes how an outcome variable, like CHD status in our example, can be 
predicted from other variables, which in our example are the exposure variable and the control variables we have measured or 
observed. In other words, we have a variable to be predicted, often referred to as the dependent variable and typically 
denoted Y, and predictors, often called independent variables and typically denoted with X
 

 
 

When modeling is used, we do not have to split up the data into strata. Instead, we obtain a formula to predict the 
dependent variable from the independent variables. We can also use the formula to obtain estimates of effect measures such 
as risk ratios or odds ratios.  But modeling has difficulties of its own. These include the choice of the model form to use, the 
variables to be included in the initial and final model, and the assumptions required for making statistical inferences. 
 

 
 

For dichotomous dependent variables like CHD in our example, the most popular mathematical model is called the 
logistic model. 
 
 
 
 
 
 
 

’s. 
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Study Questions (Q13.4) continued 
 
Suppose we want to use mathematical modeling to assess the relationship between personality type (E) and CHD status (D) 
controlling for age, gender, ethnicity, diastolic blood pressure (DBP), smoking (SMK), and high-density lipoprotein (HDL). 
 

6. True or False.  The only possible choices for the independent variables in this model are E and the above 6 control 
variables. 

7. True or False.  In a mathematical model, continuous variables must be categorized. 
8. True or False.  In a case-control study, the dependent variable is exposure status. 

 
Suppose f(X1, X2, X3, X4, X5, X6, X7) represents a mathematical formula that provides good prediction of CHD status, where 
X1 through X7 denote E and the 6 control variables described above. 
 

9. True or False.  If we substitute a person’s specific values for X1 through X7 into the formula, we will determine that 
person’s correct CHD status. 

Summary 
 
At the analysis stage, there are two options for control: 
 

 Stratified analysis - categorize the control variables and form combinations of categories or strata. 
 Mathematical modeling – use a mathematical expression for predicting the outcome from the exposure and the 

variables being controlled. 
 Stratified analysis has the drawback of running out of numbers when the number of strata is large. 
 Mathematical modeling has its drawbacks, including the choice of model and the variables to be included in the 

initial and final model. 
 
 
Quiz (Q13.5) 
 
The three primary reasons for controlling in an epidemiological study, listed in the order 
that they should be assessed, are: 
 

1. ??? 

2. ??? 

3. ??? 
 
Choices 
Confounding Effect Modification      Matching Mathematical Modeling  Precision 
Randomization  Restriction Stratification 
 
There are three options for control that can be implemented at the design stage. 
 

4. ??? is a technique for balancing how unmeasured variables are distributed among exposure groups. 

5. ??? limits the subjects in the study to a narrow range or values for one or more of the control variables. 

6. In a case-control study, ??? ensures that the some or possibly all control variables have the same or 
similar distribution among case and control groups. 

 
Choices 
Matching     Mathematical Modeling Optimization Randomization     Restriction     Stratification 
 

Quiz continued on next page 
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7. Stratification is an analysis technique that starts by dividing the subjects into different ??? based on 
categories of the ??? variables. 

8. A major problem with stratified analyses is having too many ??? variables, which can result in ??? data 
in some strata. 

 
Choices 
control      disease exposure     large numbers     random samples     sparse     strata treatment  
 
 

9. In mathematical modeling we use a formula to predict a ??? variable from one or more ??? variables. 

10. The problems with using a mathematical model include the choice of the ??? of the model, deciding what 
111 to include in the model, and the ??? required for making statistical inferences from the model. 

 
Choices 
assumptions cases  complexity   control dependent     form independent 
subjects treatments variables 
 
 

Randomization 
 

Randomization allocates subjects to exposure groups at random.  In epidemiologic research, randomization is used only in 
experimental studies such as clinical or community trials, and is never used in observational studies. 

What does randomization have to do with the control of extraneous variables? The goal of randomization is 
comparability. Randomization tends to make the comparison groups similar on demographic, behavioral, genetic, and other 
characteristics except for exposure status. The investigator hopes, therefore, that if the study finds any difference in health 
outcome between the comparison groups, that difference can only be attributable to their difference in exposure status. 
 

 
 

For example, if subjects are randomly allocated to either a new drug or a standard drug for the treatment of 
hypertension, then it is hoped that other factors, such as age and sex, might have approximately the same distribution for 
subjects receiving the new drug as for subjects receiving the standard drug.  Actually, there is no guarantee even with 
randomization that the distribution of age, for example, will be the same for the two treatment groups. The investigator can 
always check the data to see what has happened regarding any such characteristic, providing the characteristic is measured or 
observed in the study. If, for example, the age distribution is found to be different between the two treatment groups, the 
investigator can take this into account in the analysis by stratifying on age. 

An important advantage of randomization is what it offers for those variables not measured in the study. Variables 
that are not measured obviously cannot be taken into account in the analysis. Randomization offers insurance, though no 
guarantee, that such unmeasured variables are similarly distributed among the different exposure groups. In observational 
studies, on the other hand, the investigator can account for only those variables that are measured, allowing more possibility 
for spurious conclusions because of unknown effects of important unmeasured variables. 
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Study Questions (Q13.6) 
 
Suppose you plan to do a case-control study to assess whether personality type is a risk factor for colon cancer. 
 

1. Can you randomly assign your study subjects to different exposure groups? 
 
Suppose you plan a clinical trial to compare two anti-hypertensive drugs.  You wish to control for age, race, and gender, but 
you also wish to account for possible genetic factors that you cannot measure. 
 

2. Can you control for specific genetic factors in your analysis? 
3. Will the two drug groups have the same distributions of age, race, and gender? 
4. What do you hope randomization will accomplish regarding the genetic factors you have not measured? 

 
 
Summary 
 

 Experimental studies use randomization whereas observational studies do not use randomization. 
 The goal or randomization is comparability. 
 Randomization tends to make comparison groups similar on other factors to be controlled. 
 An important advantage of randomization is that it tends to make variable not measured similarly distributed among 

comparison groups. 
 There is not guarantee that randomization will automatically make comparison groups similar on other factors. 

 
 

13-2 Control of Extraneous Factors (continued) 
 

Restriction 
 
Restriction is another design option for control in which the eligibility of potential study subjects is narrowed by restricting 
the categories of one or more control variables.  Restriction can be applied to both continuous and categorical variables. For a 
categorical variable, like gender, restriction simply means that the study is limited to one or more of the categories.  For a 
continuous variable, restriction requires limiting the range of values, such as using a narrow age range, say from 40 to 50 
years of age. 

Restriction typically provides complete control of a variable. It is convenient, inexpensive, and it requires a simple 
analysis to achieve control. For example, if a study is restricted to females only, the analysis does not require obtaining an 
adjusted effect that averages over both genders. The main disadvantage of restriction is that we cannot generalize our findings 
beyond the restricted category.  For continuous variables, another disadvantage is that the range of values being restricted 
may not be sufficiently narrow, so there may still be confounding to be controlled within the chosen range. 
 

 
 

Given a list of several control variables to measure, we typically use restriction on a small number of variables. This 
allows hypotheses to be assessed over several categories of most control variables, thereby allowing for more generalizability 
of the findings.  
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For example, if we want to control for age, gender, ethnicity, diastolic blood pressure, smoking, and HDL level, we 
would likely use restriction for no more than two or three of these variables, say age and gender. 

Restriction may be used at the analysis stage even if not used at the design stage. For example, even though the 
study sample may include several ethnic groups, we may decide to only analyze the data for one of these groups, particularly 
if other ethnic groups have relatively few subjects. However, it’s more advantageous to choose restriction at the design stage 
to gain precision in the estimated effect or to reduce study costs. For example, for a fixed study size or fixed study cost, 
restricting ethnicity to African-Americans at the design stage will provide more African-American subjects, and therefore 
more precision in effect measures for African-Americans, than would be obtained if the design allowed several ethnic groups 
to be eligible. 
 
 
Summary 
 

 Restriction is a design option that narrows the eligibility of potential study subjects by restricting the categories of 
one or more control variables. 

 Restriction can be applied to both categorical and continuous variables. 
 Restriction typically provides complete control, is convenient, inexpensive, and requires a simple analysis to achieve 

control. 
 The main disadvantage of restriction is not being able to generalize findings beyond the restricted category. 
 For continuous variables, another disadvantage is the possibility of residual confounding within the range of 

restricted values. 
 Restriction may be used in the analysis stage, but if used at the design stage, precision may be gained and/or study 

costs may be reduced. 
 
 
Quiz (Q13.7) 
 
Label each of the following statements as True or False. 
 

1. Restriction can only be used with categorical variables.  . . . . ???  

2. An advantage of restriction is that it requires only a simple analysis to achieve control.  ??? 

3. One disadvantage of restriction is that it can be expensive to administer.  . . ??? 

4. Restriction can be used at both the design and analysis stage.  . . . ??? 
 
 

Matching 
 
Matching is a design option that can be used in experimental studies and in observational cohort studies, but is most 
widely used in case-control studies. A general definition of matching that allows other designs is given in Lesson 15. 

There are generally two types of matching: individual matching and frequency matching. When individual 
matching is used in a case-control study, one or more controls are chosen for each case so that the controls have the same or 
similar characteristics on each of the variables involved in the matching.  For example, if we match on age, race, and sex, and 
a given case is, say, 40 years old, black, and male, then the one or more controls matched to this case must also be close to or 
exactly 40 years old, black, and male. For continuous variables, like age, the categories used for matching must be specified 



398  Lesson 13.  Control of Extraneous Factors 

 

prior to the matching process. For age, say, if the matching categories are specified as 10-year age bands that include the age 
range 35-45, then the control match for a 40-year-old case must come from the 35-45 year old age range. 

Here, we are restricting the distribution of age, race, and gender in the control group to be the same as in the case 
group. But we are not restricting either the values or the distribution of age, race, and sex for the cases. That’s why we say 
that matching imposes a partial restriction on the control variables being matched. 
 

 
 

If frequency matching is used in a case-control study, then the matching is done on a group rather than individual 
basis. For example, suppose we wish to frequency match on race and gender in a case-control study, where the cases have the 
race-by-gender breakdown shown here: 
 

 
 

The controls then must be chosen as a group to have the same distribution as the cases over the four races by gender 
strata. If we want to have twice as many controls as cases, then the race by gender breakdown for controls will follow the 
same distribution pattern as the cases. 

Several issues need to be considered when matching.  
 

 First, what are the advantages and disadvantages of matching? A major reason for matching is to gain efficiency or 
precision in the estimate of effects, say, the odds ratio. 

 Should we match at all, or should we choose the cases and controls without matching? There is no simple answer to 
this question, but a rough guideline is to only match on variables that you think will be strong confounders in your 
data. 

 How many controls should we choose for each case? A rough guideline here is that usually no more than four 
controls per case will be necessary in order to gain precision. 

 How do we analyze matched data? The answer here depends in part on whether or not there are other variables to 
be controlled in the analysis besides the matching variables.  In particular, if the only variables being controlled are 
involved in the matching, than the appropriate analysis is a special kind of stratified analysis. But if in addition to 
the matching variables, there are other variables to be controlled, then the appropriate analysis involves 
mathematical modeling, usually using logistic regression methods. 
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Summary 
 

 Matching can be used in both experimental and observational studies, and is most often used in case-control studies. 
 There are two types of matching: individual matching and frequency matching. 
 A major reason for matching is to gain efficiency or precision in the estimate of effect. 
 Usually no more than four controls per case will be necessary in order to gain precision. 
 If the only variables being controlled are involved in the matching, then use stratified analysis. 
 If there are other variables to be controlled, then use mathematical modeling. 

 
 
Quiz (Q13.8) 
 
Label each of the following statements as True or False. 
 

1. Matching is used mostly with observational cohort studies.  . . . . ??? 

2. For continuous variables, the ranges used for creating matching categories must be specified prior to the 
matching process.  . . . . . . . . . ??? 

3. For frequency matching, there can be more controls than cases.  . . . . ??? 

4. Stratified Analysis is typically used for matched data to control for variables other than those involved in 
the matching.  . . . . . . . . . . ??? 

 
 

Stratified Analysis 
 
Stratified analysis is an analysis option for control that involves categorizing all study variables, and forming combinations 
of categories called strata. If both the exposure and the disease variables are dichotomous, then the strata are in the form of 
several two by two tables. The number of strata will depend on how many variables are to be controlled and how many 
categories are defined for each variable. 
 

 
 
 
Study Questions (Q13.9) 
 

1. If three variables are to be controlled and each variable is dichotomized, how many strata are obtained? 
2. If the control variables are age, race, and gender, give an example of one of the strata. 

 
 

Once the strata are defined, a stratified analysis is carried out by making stratum-specific simple analyses and, if 
appropriate, by making an overall summary assessment of the E D relationship that accounts for all control variables 
simultaneously. Both the stratum-specific analyses and the overall summary analyses will typically involve computing and 
interpreting a point estimate of the effect, say a risk ratio, a confidence interval for the point estimate, and a test of hypothesis 
for the significance of the point estimate. 

For an overall summary assessment, the point estimate is an adjusted estimate that is some form of weighted 
average of stratum-specific estimates. The confidence interval is an interval estimate around this weighted average, and the 
test of hypothesis is a generalization of the Mantel-Haenszel chi-square that now considers several strata. 
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Summary 
 
Stratified analysis involves the following steps: 

 Categorize all variables 
 Form combinations of categories (i.e., strata) 
 Carry out stratum-specific analyses 
 Carry out an overall E D assessment, if appropriate 
 Both stratum-specific analyses and overall assessment require point and interval estimates, and a test of hypothesis. 

 
For overall assessment: 

 The point estimate is an adjusted estimate that is a weighted average of stratum-specific estimates. 
 The confidence interval is an interval estimate around the adjusted (weighted) estimate. 
 The test of hypothesis is a generalization of the Mantel-Haenszel chi square test. 

 
 
Quiz (Q13.10) 
 
 
Label each of the following statements as True or False. 
 

1. Stratified analysis is an analysis option for control that involves categorizing all study variables, and 
forming combinations of categories called strata.  . . . . . ??? 

2. Tests of hypothesis are not appropriate for stratified analyses.  . . . . ??? 

3. When carrying out stratum-specific analyses, the point estimate is typically computed as a weighted 
average.   . . . . . . . . . . ??? 

4. When carrying out stratum-specific analyses, an appropriate test statistic for large samples is a Mantel-
Haenszel chi square statistic.   . . . . . . . . ??? 

5. If it is appropriate to carry out overall assessment over all strata, a recommended test statistic for large 
samples is a Mantel-Haenszel chi square statistic.  . . . . . ??? 

6. When carrying out overall assessment over all strata, a Mantel-Haenszel chi square statistic is always 
appropriate for large samples.  . . . . . . . . ??? 

 
 

13-3 Control of Extraneous Factors (continued) 
 

Mathematical Modeling 
 

Introduction to Mathematical Modeling 
 
A mathematical model is a mathematical expression or formula that describes how an outcome variable can be predicted 
from explanatory variables that affect the outcome. Below is a general expression for a mathematical model. In this 
formula, Y denotes the outcome variable, often called the dependent variable. The Xs in the formula denote the 
predictors, often called the independent variables. f denotes a mathematical formula or function that involves the Xs in 
some way. Because we can rarely perfectly predict Y from the Xs, e denotes the error that represents what is left over after 
we predict Y from the Xs using the formula f. 

 
In epidemiology, regardless of the mathematical form of the function, the Y variable is typically the health outcome 
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or disease variable, which we have generally called D.  At least one of the X variables is an exposure variable, which we 
have called E. Other X variables can be control variables, which we’ve denoted by the letter C.  Still other X variables can be 
functions of the C variables, like age2 if age is a continuous C variable, or product terms like E x age. Product terms 
involving the exposure variable and one or more control variables are often considered to evaluate interaction. The product 
term E x age, for example, considers the interaction of exposure with age, where age is viewed as a possible effect modifier 
of exposure. 
 

 
 
 
Study Questions (Q13.11) 
 
Suppose we want to use mathematical modeling to assess the relationship between personality type (PT) and CHD status (Y) 
controlling for gender, race, and SMK, all (0, 1) variables. 
 

1. Give a general expression (i.e., statement involving f) for a mathematical model containing these variables. 
 

 
The function f can take a variety of forms.  One of the most popular functions is called a linear function, and the 

corresponding model is called a linear model.  As an example, suppose the Xs in the model are the 0, 1 variables personality 
type, denoted PT, gender, race, and smoking status, denoted as SMK. Then, the function f for a linear model involving these 
variables might look as shown here:  
 

 
 
In this function, the quantities b0 through b4 are unknown parameters called regression coefficients that need to be 

estimated from the study data.  A more general form for a linear function is shown here, where we have replaced the four 
variables in the above example by several Xs.  
 

 
 
The Xs in a linear model can be categorical or quantitative factors. The model is still considered to be a linear 

model because it is a sum involving the regression coefficients. 
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Study Questions (Q13.11) continued 
 

 
 
Suppose the b’s in the linear model involving PT, gender, race, and SMK are, respectively: 
 

b0 = 0.10, b1 = 0.20, b2 = 0.25, b3 = 0.10, and b4 = 0.15 
 

2. What is the predicted value for CHD (i.e., Y) for a person with variable values PT = 1, gender = 1, race = 1, and 
SMK = 1? 

3. What is the predicted value for CHD for a person with variable valued PT = 0, gender = 1, race = 1, and SMK = 1? 
 
Suppose that in addition to the variables PT, gender, race, and SMK, the following product terms are added to the model: 
 

PT x gender, PT x race, PT x SMK 
 

4. State the form of the linear model that includes these new variables in addition to the original four variables. 
 
Suppose in the new model, the b’s are:  
 

b0= 0.08, b1= 0.18, b2= 0.35, b3= 0.07, b4= 0.12, b5= 0.03, b6= 0.02,  
and b7= 0.03 

 
5. What is the predicted value for CHD (i.e., Y) for a person with variable values PT = 1, gender = 1, race = 1, and 

SMK = 1? 
6. What is the predicted value for CHD for a person with variable values PT = 0, gender = 1, race = 1, and SMK = 1? 
 
 

Summary 
 

 A mathematical model is a mathematical expression or formula that describes how an outcome variable can be 
predicted from explanatory variables. 

 A general expression for a mathematical model is where Y is the dependent variable, the X’s are the independent 
variables, f is a mathematical function, and e is the error term. 

Y = f(X1, X2,…, Xp) + e 
 In epidemiology, Y is usually the health outcome, and the X’s may include exposure variables, control variables, 

and more complicated variables like product terms. 
 A very popular function is the linear function, which is generally of the form   f(X1, X2, …, Xp ) = b0 + b1X1 + b2X2 

+ … + bpXp. 
 A linear function is linear in the regression coefficients, even though it may include product terms as X’s. 

 
 

Expected Value 
 
Another way to write a mathematical model in terms of the expected value of Y given values for the X’s.  This expected 
value is the average value of Y over all persons in our study population with the same X values for each X in the model: 
 

 
(Note: the expected value may be presented as Exp(Y|…) or E(Y|…) in this Lesson.) 
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For example, if the X’s are age, race, and gender, then the expected value of Y for a person who is 30-years-old, 
black, and female is the average Y for all persons in the study population who are 30, black, and female.  Similarly, the 
expected value for a 50-year-old white male is the average Y for all persons who are 50, white, and male. 

The expected value of Y given the Xs equals the function value f (without the error term) because the expected 
value of error term always equals zero. That is, the average error over all subjects in the study population is assumed to be 
zero. 

When we estimate a mathematical model using data from our study, we write the estimated model as shown here: 
 

 
 

The Ŷ on the left side of this formula denotes the predicted value of Y that results from specifying values for the Xs 
in the estimated model for a particular individual. The estimated model is denoted as f̂ . We often refer to this model as the 
fitted model since this is the model we obtain when we fit the model to our study data. 

We can predict a Y using a linear model involving the X’s.  The formulae for the expected value and the fitted 
model will look like this:  
 

 
 

We have placed ‘hats’ for the regression coefficients in the fitted model, since the coefficients here represent 
estimates obtained from fitting the model to the study data. 
 
 
Study Questions (Q13.12) 
 
Suppose we wish to use a linear model to predict a person’s systolic blood pressure (SBP) from his or her age (as a 
continuous variable) and smoking status (SMK=1 if ever smoked and SMK = 0 if never smoked). 
 

1. State a simple linear model involving the above predictors using the expected value form of the model. 
 
Suppose you fit a linear model to your study data using the variables age, SMK, and age x SMK as your predictors. 
 

2. State the form of the predicted (i.e., estimated) model involving these variables. 
 
Suppose you fit the following linear model, Exp(SBP|age, SMK) = b0 + b1(age) + b2(SMK) and your estimated regression 
coefficients are 0b̂ = 50, 1b̂ = 2, 2b̂ = 10. 
 

3. What is the predicted value for SBP for a 30-year-old smoker? 
4. What is the predicted value for SBP for a 30-year-old non-smoker? 
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Summary 
 

 An alternative way to write a mathematical model is in terms of the expected value of Y given values for the X’s. 
 The expected value of Y given the X’s can be written as: 

Exp(Y|X1, X2,…, Xp) = f(Y|X1, X2,…, Xp) 
 The expected value of the error term is always zero. 
 The predicted value of Y is given by the expression ).X,...,X,(Xf̂Ŷ p21  

 The expected value for a linear model can be written as: 
 Exp(Y|X1, X2,…,Xp) = b0 + b1X1 + b2X2 + … + bpXp 

 The predicted value of Y for a linear model is given by ,Xb̂...Xb̂Xb̂b̂Ŷ pp22110  where the 

s'b̂ denote estimated regression coefficients obtained by fitting the model to the study data. 
 
 

The Logistic Model 
 
In epidemiology, many studies consider health outcome variables that are dichotomous. We may seek to determine whether 
or not a person develops a given disease, lives or dies, has high or normal blood pressure, gets ill or is not ill from an 
outbreak, and so on.  The dependent variable, Y, analyzed in such studies therefore takes on one of two possible values, 
often conveniently defined as either l or 0. 

When the dependent variable is dichotomous, the most popular mathematical model is a non-linear model called the 
logistic model. Here we show the general mathematical formulation of both a linear model and a logistic model: 
 

 
 

These two models look quite different. The logistic model, in particular, is a non-linear model because it is not 
written as a linear sum of the regression coefficients. There is, nevertheless, a linear component within the denominator of the 
logistic model, which gives the model special meaning to epidemiologists, as we will explain. The e in this model is the base 
for natural logarithms. 

In general, given specific values for the b’s and the X’s, these two models will yield different predicted values. 
 
 
Study Questions (Q13.13) 
 
Suppose Y = CHD (1=yes, 0=no), X1 = gender (1 = female, 0 = male), and X2 = SMK (1 = smoker, 0 = non-smoker).  
Suppose also that b0 = 0.10, b1 = 0.25, and b2 = 0.15. 
 

1. Compute and compare the predicted values using both the linear model and the logistic model for a female smoker.  
(You should use a calculator here, but it will help to know that exp(-.50) = .6065.) 

 
 

The logistic model has several features that are important to epidemiologists.  
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First, when the dependent variable Y takes on the values 1 or 0 depending on whether the health outcome occurs or 
not, the expected value expression simplifies to a probability statement. This means that using a logistic model describes the 
probability or risk that a person develops the health outcome as a function of predictor variables of interest. The predictors 
can include an exposure variable, control variables, and product terms of exposure with control variables. The logistic model 
thus conveniently allows for risk to be modeled from epidemiologic data. 

Another feature of the logistic model is that the non-linear function that defines the model has the property that, no 
matter what numerical values are specified for either the regression coefficients or the X
yield a value in the range between 0 and 1. This property ensures that the predicted value obtained for any individual is 
constrained to the range of values for a probability (i.e., 0 < Pr < 1). In contrast, a linear model may yield predicted values 
either below zero or above one for specified values of the predictors. 

Thirdly, the linear component in the logistic model can be expressed through a simple transformation of the 
probability expression for the model. In particular, the natural log of the probability divided by 1 minus the probability (i.e., 
ln[P/(1 – P)]) turns out from algebra to yield this linear component. 
 

 
 
 
Study Questions (Q13.13) continued 
 
Lets do a quick introduction and review of exponentials and natural logs (i.e., the latter is usually denoted by ln). 
Here are some rules:  

e = 2.7183 
ln(e) = 1.0000  
exp(z) = e raised to the power z (i.e., ez) 
ln[exp(z)] = z 
exp(z + w) = ez+w = exp(z)exp(w) 
ln(z * w) = ln(z) + ln(w) 
ln(z/w) = ln(z) – ln(w) 

 
2. Express ln(P/(1-P)] as a difference between two logs. 
3. Solve ln(A) = Z (in terms of exp) 
4. Solve ln[P/(1-P)] = Z for P/(1 – P) 
5. Solve Ln[P/(1 – P)] = Z for P (this one is tricky) 
6. If ln(OR) = 1, what is the OR? 
7. If ln(OR) = 0, what is the OR? 

 
This transformation (i.e., ln[P/(1 – P)]) is called the logit transformation, and it is meaningful to epidemiologists 

because the quantity P/(1-P) denotes an odds.  Consequently, the logit function allows us to express the log odds: 
 
 ln[P/(1 – P)] = ln(Odds) 
 
and therefore the odds for an individual with specific values for the X’s as a linear function of the X’s. If we compare the 
odds for one individual divided by the odds for another individual, we obtain an odds ratio, which is the fundamental measure 

’s, the logistic function will always 
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of effect that can be estimated from the logistic model. 
 

 
 
 
Study Questions (Q13.13) continued 
 

 
 
Consider a logistic model for which Y = CHD (1 = yes, 0 = no), X1 = gender (1 = female, 0 = male), and X2 = SMK (1 = 
smoke, 0 = non-smoker).  Suppose that for this model, the regression coefficients are b0 = 0.10, b1 = 0.25, and b2 = 0.15. 
 

8. What is the odds for a female smoker? 
9. What is the odds for a male smoker? 
10. What is the odds ratio that compares a female smoker to male smoker? 
11. What is the odds ratio that compares a female non-smoker to a male non-smoker? 

 
 
Summary 
 

 When Y is dichotomous, the most popular mathematical model is a non-linear model called the logistic model. 
 The expected value of the logistic model is: 

E(Y|X1,…,Xp) = )Xb...XbXb(b pp22110e1
1

 

 For Y(0, 1), the expected value simplifies to Pr(Y=1|X1,…,Xp), which describes the risk for developing the health 
outcome. 

 The logistic function will always yield predicted values that lie between 0 and 1. 
 Using the logit transformation, ln[P/(1-P)], the logistic model can estimate the odds for an individual and the odds 

ratio that compares two individuals. 
 
 

Risk Function – An Example 
 
Patients are often concerned about their prognosis. For example, a man who has been diagnosed with diabetes mellitus will 
ask his physician to give an indication of the risk of having a heart attack in the next ten years. The physician will base her 
risk prediction not only on the fact that this man is a diabetic, but also on the presence or absence of several other 
cardiovascular risk factors. 
 
 
Study Questions (Q13.14) 
 
1. What specific (risk factor) information will be important for the doctor to give an accurate risk prediction of the 

patient’s risk for having a heart attack in the next 10 years? 
 

The physician must integrate all of this information to predict the risk of cardiovascular disease for this particular 
patient. One way to make this prediction involves use of a risk function.  Risk functions can be computed using various 
mathematical models. One of these models is the logistic model. Here again is the general formula for this model. 
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The b x
In the following example, the l0-year risk of dying can be computed using the values of the b

factors that are given in the table shown here: 
 

 
 
 
Study Questions (Q13.14) continued 
 

 
 
2. Compute the 10-year risk of dying for a 62-year-old non-diabetic man who smokes 20 cigarettes/day, had a body mass 

index of 25 kg/m2, a blood pressure of 140 mmHg, a cholesterol level of 245 mg/100mL, and a heart rate of 80 
beats/min? 

3. Compute the 10-year risk for a 62-year-old non-diabetic man who does not smoke and has a body mass index of 25 
kg/m2, a blood pressure of 140 mmHg, a cholesterol level of 245 mg/100ml, and a heart rate of 80 beats/min. 

 
The answers to the previous two questions were 26.8% for the risk for a male non-diabetic who smokes 20 cigarettes per day 
and 18.8% for a male non-diabetic non-smoker, both of whom have identical values on 5 other risk factors. 
 
4. What is the risk ratio that compares these two subjects?  What does this say about the effect of smoking on the risk for a 

heart attack? 
5. What do the above risk estimates say about the risk ratio that compares a diabetic male to a non-diabetic male, 

controlling for the other risk factors on the list? 
6. How might you use the fitted model to compare a diabetic subject with a non-diabetic subject? 
 
 
Summary 
 

 The risk function can be used to determine an individual’s risk for a particular disease 
 Risk functions can be computed using various mathematical models, such as the logistic regression model.  The 

formula for this model is: 
 

Risk of disease = )Xb...XbXb(b pp22110e1
1

 

 
 
 
 
 

’s in the formula are estimated from the data. The ’s are the values of various cardiovascular risk factors. 
’s of various risk 
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Basic Features of the Logistic Model 

 
The following is a list of some important properties of the logistic model:  
 
1. General formula: 
 

 )Xb...XbXb(bp1 pp22110e1
1)X ..., ,X|1Pr(D  

 
2. An equivalent way to write this model is the logit form, which simplifies to the following linear function: 
 

 pp22110 Xb...XbXbb
P(X)-1

P(X)ln  P(X)logit  

 

where the parameters p210 ...b ,b ,b ,b  in this model represent unknown regression coefficients that need to be 

estimated.  (Note: Often Greek symbols rather than Latin symbols are used to denote regression coefficients, e.g., i  
instead of bi, but we will stay with b

 
3. The usual estimation method used is called Maximum Likelihood (ML) Estimation, and the estimators of these 

regression coefficients are called maximum likelihood estimators (MLE s) and are typically written with hats  over 
the parameters as follows: p210 b̂... ,b̂ ,b̂ ,b̂  

 
4. If Xl is a (0,1) variable and none of the other X product terms of the form

X1 x Wj, then the adjusted odds ratio for the effect of Xl, controlling for the other X
 

 )b̂exp(R̂O 1adj  
 

where b1 is the coefficient of X1 in the model. 
 

5. If Xl is a (0,1) variable and some of the other X
X1 x Wj,  then the adjusted odds ratio for the effect of Xl, controlling for the other X’s is given by the formula: 

 

 
]Wb̂b̂[

adj
jj1eR̂O  

 
where b1 is the coefficient of X1 x Wj in the model. 

 
6. If Xl is a (0,1) variable and none of the other X product terms of the form

X1 x Wj,  then a 95% confidence interval for the adjusted odds ratio for the effect of Xl, controlling for the other X
is given by the formula: 

 

 )s1.96b̂exp(
1b̂1  

 
where b1 is the coefficient of X1 and 

 

 )b̂r(âVs 1b̂1
 

 
is the estimated standard error of the estimate of b1.  

 
Continued on next page

’s in the description here.) 

’ ”

’s  are  product  terms of  the form

’s 

’s are 
’s is given by the formula:  

’s are 

“
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Basic Features of the Logistic Model (continued) 
 

7. The Wald test is one form of test of the null hypothesis that an adjusted odds ratio based on a logistic model is equal 
to the null value of 1.  If we again assume that our exposure variable of interest is the (0, I) variable X1 and that there 
are no product terms in the model, two alternative ways to state the null hypothesis are: 

 

 1eOR:Hor  0b:H 1b
010  

 
where b1 is the coefficient of X1. The Wald test statistic is a chi-square statistic given by the formula: 
 

)b̂r(âV
b̂

s
b̂Z

1

2
1

2

b̂

12

1

 

 
This statistic has the chi square distribution with 1 d.f. under the null hypothesis.  

 
8. An alternative test procedure, which is considered to have better statistical properties than the Wald test) is called the 

Likelihood Ratio (LR) test. Although both these tests may yield different computational results, they are both large-
sample tests and will more often than not give similar conclusions. When in doubt, however, use the LR test. 

 
 
Example: 
 

We now illustrate several of these features (except for the test procedures) of the logistic model for a study of the effect 
of smoking history (Xl = SMK, I if ever, 0 if never) on the development of coronary heart disease (D = CHD, 1 if yes, 0 if 
no) in a cohort of 609 men from Evans County, Georgia followed from 1960-1967. Two known risk factors, X2 = AGE 
(continuous) and X3 = GENDER (1 if female, 0 if male) are to be controlled.  A no-interaction logistic model for these data 
is given as follows: 
 

 GENDERbAGEbSMKbb  P(X)logit 3210  
 

The above model is called a no-interaction model because it does not contain any predictors of the form X1 x Wj, 
where Wj is a potential effect modifier.  The formula for the estimated adjusted odds ratio for the effect of SMK, adjusted 
for AGE and GENDER, is then equal to: 
 

 )b̂exp(R̂O 1adj  
 
where b1 is the coefficient of the exposure variable Xl = SMK.  (Note: the coefficients of the X2 and X3, which do not 
involve the exposure variable Xl = SMK, do not appear in the OR formula).   

An alternative logistic model for these data that allows for the possibility of interaction of the exposure variable SMK 
with both control variables AGE and GENDER is given by the following model:  
 

 
GENDERSMKb                        

AGESMKbGENDERbAGEbSMKbb  P(X)logit 

5

43210  

 
where 

 

 
GENDERSMKX

 AGE,SMKX GENDER,X AGE,X SMK,X

5

4321  

 
For this interaction model, there are two W W1= AGE and W2 = GENDER.  Thus, the formula for the adjusted 

odds ratio is given by: 
Continued on next page

’s, i.e.,
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Basic Features of the Logistic Model (continued) 
 

 GENDERb̂AGEb̂b̂exp(  R̂O 541adj  
 

so that the value of the interaction” odds ratio will change (i.e., is modified) depending on the values of the potential effect 
modifiers AGE and GENDER. 

As a (hypothetical) numerical example, suppose that the MLE b1, b4, and b5 are given by: 
 

 .03b̂ .01,b̂ .25,b̂ 541  
 
Then the adjusted odds ratio estimate takes the following computational form: 
 

 GENDER)03.AGE01.exp(.25  R̂O adj  
 

Therefore, if AGE = 40 and GENDER =1 (female), the estimated odds ratio is given by: 
 

 97.1)]1(03.)40(01.exp[.25  R̂O adj  
 

whereas if AGE = 60 and GENDER=1, the estimated odds ratio is given by (a different value): 
 

 41.2)]1(03.)60(01.exp[.25  R̂O adj  
 

Reference: Kleinbaum DG and Klein M, Logistic Regression- A Self-learning Text, 2nd edition, Springer-Verlag 
Publishers, 2002. 
 
 

The EVW Logistic Model 
 

An important special case of the logistic model that has special relevance for the analysis of epidemiologic data is the EVW 
version of the model, which is given by the following formula: 
 

 
)EWVE(

p1 2p

1j
jj

1p

1i
ii

e1

1P(X))X ..., ,X|1Pr(D  

 
An equivalent way to write this model is the logit form, defined as logit P(X), which is obtained by taking the natural 

log of P(X)/[1 - P(X)]. This logit form, from algebra, simplifies to the following linear function:  
 

 
21 p

1j
jj

p

1i
ii EWVE)P(logit X  

 
The , ’s, and b

asterisk/box) represent unknown regression coefficients that need to be estimated.  The usual estimation method used is 
called maximum likelihood (ML) estimation, and the estimators of these regression coefficients are called maximum 
likelihood estimators (MLE’s) and are typically written with hats” over the parameters as follows: 

~ and, ˆ ,ˆ ,ˆ . 
The E, V EW

variable E denotes a single exposure variable of interest, the V potential confounders), and 
the W effect modifiers that go into the model as product terms with the exposure variable E.  (Note: we 
refer to the V W potential confounders and potential effect modifiers because any of these variables may 
eventually be dropped from the model when the study data is analyzed.) 

 
Continued on next page

’s for 

’s denote control variables (i.e., 

’s as ’s and 

’s and ’s represent the predictor variables (i.e., the X’s) in this model. More specifically, the predictor 

’s, ’s in this model (previously denoted as ’s in the activity on logistic modeling corresponding to this 

’s denote potential 

“

“
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The EVW Logistic Model (continued) 
 

The general formula for the estimated adjusted odds ratio for the effect of a dichotomous (0,1) exposure variable E, 
adjusted for the V and W variables being controlled as potential confounders and potential effect modifiers, respectively, is 
given by the following expression:  
 

 )Wˆˆexp(R̂O
2p

1j
jjadj  

 

where ˆ  and the ˆ  are the MLE estimates of the coefficients of only those variables in the model that involve the 
exposure variable E (note: the coefficients of the V variables, which do not involve E, do not appear in the above OR 
formula). 

If the logistic model being considered contains no potential effect modifiers (i.e., no W’s in the model), then the above 
adjusted odds ratio expression (again assuming a 0,1 exposure variable) simplifies to:  
 

 )ˆexp(R̂O adj  
 
which only involves , the coefficient of the exposure variable E. 

We now illustrate the EVW logistic model for a study of the effect of smoking history (E =SMK, 1 if ever, 0 if never) 
on the development of coronary heart disease (D =CHD, 1 if yes, 0 if no) in a cohort of 609 men from Evans County, 
Georgia followed from 1960-1967. Two known risk factors, AGE (continuous) and GENDER (1 if female, 0 if male) are to 
be controlled. 

A no-interaction logistic model for these data based on the above general EVW formula is given as follows: 
 

 2211 VVEP(X)logit  
 

In this example, E = SMK, V1 = AGE, and V2 = GENDER.  The model is called a no-interaction model because it 
does not contain any predictors of the form EW, where W is a potential effect modifier.  The formula for the estimated 
adjusted odds ratio for the effect of SMK, adjusted for AGE and GENDER, is then equal to: 
 

 )ˆexp(R̂O adj  
 
where  is the coefficient of the exposure variable E = SMK.  (Again note: the coefficients of the V variables, which do not 
involve E, do not appear in the OR formula). 

An alternative logistic model for these data that allows for the possibility of interaction of the exposure variable SMK 
with both control variables AGE and GENDER is given by the following model: 
 

 22112211 EWEWVVEP(X)logit  
 
where E = SMK, V1 = AGE = W1, and V2 = GENDER = W2.  For this interaction model, the formula for the estimated 
adjusted odds ratio is given by: 
 

 GENDER)ˆAGEˆˆexp(R̂O 21adj                            
 

so that the value of the interaction” odds ratio will change (i.e., is modified) depending on the values of the potential effect 
modifiers AGE and GENDER. 

As a (hypothetical) numerical example, suppose that the MLE’s for , 1, and 2 are given by: 
 

 .03ˆ .01,ˆ .25,ˆ
211  

 
Then the adjusted odds ratio estimate takes the following computational form: 

Continued on next page
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The EVW Logistic Model (continued) 
 

 GENDER)03.AGE01.exp(.25  R̂O adj  
 
Therefore, if AGE = 40 and GENDER =1 (female), the estimated odds ratio is given by: 
 

 97.1)]1(03.)40(01.exp[.25  R̂O adj  
 

whereas if AGE = 60 and GENDER=1, the estimated odds ratio is given by (a different value): 
 

 41.2)]1(03.)60(01.exp[.25  R̂O adj  
 

Reference: Kleinbaum DG and Klein M, Logistic Regression- A Self-learning Text, 2nd edition, Springer-Verlag 
Publishers, 2002. 
 
 
 
Quiz (Q13.15) 
 
True or False, each of the following can be included as an X variable in a mathematical 
model: 
 

1. Control variables.  . . . ??? 

2. Disease variable.  . . . ??? 

3. Dependent variables.  . . . ??? 

4. Product terms of two or more X variables.  ???  

5. Functions of control variables.  . . ??? 
 
Fill in the Blanks 
 

6. For dichotomous dependent variables, the most popular form of a mathematical model is a ??? model. 

7. A mathematical model includes ???, which are estimated from the data in order to compute a predicted 
value for the y variable. 

 
Choices 
curved  linear  logistic  probabilities  regression coefficients 
 
 
A linear model has been built from a set of study data. The formula is given below: 
 

 
 

8. What is the predicted value for CHD for the following X variable values? PT =1, Gender=O, Race=O, and 
SMK=O. ??? 

9. What is the predicted value for CHD with these X variable values? PT =1, Gender=1, Race=O, and 
SMK=O? ??? 

10. If a logistic model involving the same data and same variables was used instead of a linear model, the 
answers to parts a. and b. would likely be ???. 

 
Choices 
.15 .25 .35 .45 .50 different identical 
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11. The expected value form of a mathematical model gives the ??? value of Y over all persons in the study 

population who have the same values for corresponding X's in the model. 

12. The expected value model does not include an error term because the average error over all the subjects 
in the study population is assumed to be ??? 

 
Choices 
1 average largest  smallest zero 
 

13. The logistic model predicts the probability that a person will develop the ??? of interest based on that 
person's values for the ??? and control variables used in the model. 

14. The ??? transformation allows the logistic model to provide information about an odds ratio. 
 
Choices 
arcsin  dependent expected value  exposure health outcome linear        
logit       square root 
 
Nomenclature 
 
bx In mathematical models, the regression coefficients, usually numbered bo-bp 
C Control variable or covariate
D Disease or outcome variable 
E Exposure variable, or in mathematical models, the expected value
Xx In mathematical models, the independent or predictor variables, usually numbered X1-Xp 
Y In mathematical models, the dependent or outcome variable 
 
General Linear Model 
 

pp2211op21 XbXbXbbXXXYE ...,...,,|  
 
General Logistic Model (non-linear) 
 

)...(,...,,|
pp2211o XbXbXbbp21

e1

1XXXYE  

 
Logit Transformation 
 

pp2211o XbXbXbb
P1

P ...ln  
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Homework 
 
ACE-1.  Control of Extraneous Variables 
 
a. What does it mean to say that “we are controlling for extraneous variables?” 
b. Describe three reasons why “we control for extraneous variables” and explain the order in which these three reasons 

should be considered when analyzing one’s data? 
c. State at least one advantage and one disadvantage of the following options for control: 
 

        Randomization 
        Restriction 
        Matching 
        Stratified Analysis 
        Mathematical Modeling 

 
d. What is the main reason why mathematical modeling is used instead of or in addition to stratified analysis? 
e. Suppose Y=CHD, X1=AGE, X2=SMK and X3=Age*SMK State the logistic model in terms of these variables. What 

part of this model is a “linear component” 
f. State the logit form of the logistic model described in part e. 
g. Why is the logit form of the model of particular importance to epidemiologists? 
 
ACE-2.  Logistic Model: Calculate an Odds Ratio 
 
An important rule involving the logistic model is: 

 
“If the independent variables in the model are E, C1, …, Cp, where E is a (0,1) exposure variable and none of the C’s are 
product terms of the form  E x C (e.g., E x Age), then the adjusted odds ratio for the effect of E on the outcome D, controlling 
for C1, …, Cp is given by the expression   

 
                        OR(E, D | C1, …, Cp)  =  exp(b)  
 
where b is the coefficient of E in the model.” 
 

a. Consider the logistic model given by the expression: 
 

          
P(CHD=1 | SMK, WGT, HPT) = 1

1 + exp [-(b0 + b1SMK + b2WGT + b3HPT)]  
 
   where  
    SMK=1 if ever-smoked and SMK=0 if never-smoked 
    WGT=1 if heavy and WGT=0 if normal weight 
    HPT=1 if hypertensive and HPT=0 if normotensive.    
 

For this model, what is the formula for the odds ratio for the effect of SMK on CHD, controlling for WGT and HPT? 
 

b. Suppose when fitting the above model to study data, the estimated regression coefficients are given by 
 

   b0 = -6.80 , b1 = 0.84 , b2 = 0.37   b3 = .44  
 

What is your estimate of the odds ratio for the effect of SMK on CHD, controlling for WGT and HPT? 
 
c. Using the same set of estimates given in part b, what is your estimate of the odds ratio for the effect of HPT on CHD 

controlling for SMK and WGT? 
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d. How would you revise the logistic model defined in part a if you wanted to estimate the odds ratio for the effect of SMK 
on CHD controlling only for HPT? What would be the formula for adjusted odds ratio in this revised model? Would you 
expect to get the same answer as you obtained in part b? 

 
ACE-3.  Logistic Model: Calculate a Confidence Interval 
 
Suppose as in question 2 above that the independent variables in the model are E, C1, …, Cp, where E is a (0,1) exposure 
variable and none of  the C’s are product terms of the form  E x C (e.g., E x Age), Then, a large-sample 95% confidence 
interval for the adjusted odds ratio for the effect of E on the outcome D, controlling for C1, …, Cp is given by the expression   

 

                                      exp  [ b  1.96 sb ] 
 

where  b is the coefficient of E in the model and  sb  is the estimated standard error of  b . 
 

Consider, as in question 2, the logistic model involving (0,1) predictor  variables given by the expression: 
 

        
P(CHD=1 | SMK, WGT, HPT) = 1

1 + exp [-(b0 + b1SMK + b2WGT + b3HPT)]  
 

Here is the computer output from fitting this model: 
 
Variable             Coefficient                  Std. Error     Wald Statistic       P-value   
Constant       - 6.7727  1.1402  35.3             .0000 
  SMK         0.8347  0.3052    7.5                .0062 
  WGT         0.3695  0.2936    1.6                .2083 
  HPT         0.4393  0.2908     2.3                .1309 
 

Calculate a 95% confidence interval for OR(SMK, CHD | WGT, HPT). 
 
ACE-4.  Wald Statistic 
 
The Wald Statistic is a large-sample test of the null hypothesis that the coefficient of a given variable in a logistic model 
equal to zero, i.e., H0: b = 0. Since exp(b) gives an odds ratio, it follows that an equivalent null hypothesis is H0: OR = 1. The 
formula for the Wald Statistic is given by:        

                                         
Z2 =  ( b

sb
 )

2
 
 

and this statistic has the chi-square distribution under the null hypothesis.  
 

Using the computer output provided in question 3 above, carry out separate Wald tests for the significance of SMK, WGT, 
and HPT, respectively. (In answering this question state the null hypothesis in terms of an adjusted odds ratio, state the value 
of the Wald statistic, its P-value, and draw a conclusion about statistical significance.) 

 
ACE-5.  Logistic Model: Interaction 

 
Another important rule involving the logistic model is: 

 
“If the independent variables in the model are E, C1, …, Cp, where E is a (0,1) exposure variable and some of the C’s are 
product terms of the form  E x W (e.g., E x Age), then the adjusted odds ratio for the effect of E on the outcome D, 
controlling for C1, …, Cp is given by the expression   
 

OR(E, D | C1, …, Cp)  =  exp(b + d1W1 + d2W2 + … + dqWq )  
 

where b is the coefficient of E in the model , W1 , W2 , … , Wq  are q variables that are in the model in the form  C = E x W, 
and the di are the coefficients of the product terms Ci = Ei x Wi , respectively 
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a. Consider the logistic model given by the expression: 
 

          P(CHD=1 | SMK, WGT, HPT)  
 

     
=  1

1 + exp [-(b0 + b1SMK + b2WGT + b3HPT +  d1(SMK  WGT) + d2(SMK  HPT)]  
 

where SMK, WGT, and HPT are (0,1) variables as defined in question 2. 
  

For this model, what is the formula for the odds ratio for the effect of SMK on CHD, controlling for WGT and HPT? In 
order to get a numerical value for this OR, what must you specify in addition to the values of certain regression coefficients? 
Which formula makes sense with regard to the meaning of interaction/effect modification? 
 
Answers to Study Questions and Quizzes 
 
Q13.1 
 

1. 3 x 2 = 6 combinations 
2. Approach 2 controls for age and smoking, since it 

considers what happens when variables are 
controlled.  Approach 1 ignores control of age and 
smoking. 

 
Q13.2 
 

1. False.  The statement addresses the question of 
interaction/ effect modification, not confounding. 

2. False.  The precision obtained will depend on the 
data; there is no guarantee that precision is always 
gained by controlling for extraneous variables. 

3. Confounding, since the statement concerns what 
happens when we compare a crude estimate of 
effect with an adjusted estimate of effect. 

4. If age and smoking are risk factors for lung cancer 
(they are), then the OR of 3.5 is more appropriate 
because it controls for confounding, even though it 
is less precise than the crude estimate; i.e., validity 
is more important than precision. 

5. No, estimated OR’s of 5.7 for smokers and 1.4 for 
non-smokers indicate strong interaction due to 
smoking (provided the observed interaction is 
statistically significant).  An assessment of 
confounding would require comparing a crude 
estimate to an adjusted estimate, but use of the 
latter would not be appropriate because it would 
mask the presence of strong interaction. 

 
Q13.3 
 

1. You cannot generalize your results to men; that is, 
generalizing to men is an “external validity” 
problem. 

2. The age group of persons over 50 is not necessarily 
narrow enough to completely control for age.  In 

particular, there may still be “residual” confounding 
due to age within the age group over 50. 

3. The control will have the same smoking status and 
gender as the case, i.e., the control will be a non-
smoking male. 

4. 220, since there will be 110 cases and 110 matched 
controls. 

5. No, cases can be either male or female and either 
smokers or non-smokers, and they can have any 
distribution possible of each of these variables. 

6. Yes, the controls are restricted to have the same 
distribution of both smoking status and gender as 
the cases. 

 
Q13.4 
 

1. It would not be appropriate to compute an overall 
adjusted estimate of there is strong evidence of 
interaction, e.g., if the estimated risk ratios in two 
or more strata are both statistically and 
meaningfully different. 

2. Carry out a simple analysis for the given stratum by 
computing a point estimate of effect (e.g., a risk 
ratio), a confidence interval around the point 
estimate, and a test of hypothesis about the 
significance of this estimate. 

3. There are 96 strata in all, so that it is highly likely 
that the entire dataset will be greatly thinned out 
upon stratification, including many strata 
containing one or more zero cells. 

4. Do a stratified analysis one variable or two 
variables at a time, rather than all the variables 
being controlled simultaneously. 

5. An advantage is that you can make some 
preliminary insights about confounding and 
interaction for every control variable.  A 
disadvantage is that you will not be controlling for 
all variables simultaneously. 

6. False.  If age is continuous, then age2 might also be 
used.  Similarly for other continuous variables.  
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Also, product terms like E x age, age x gender 
might be used. 

7. False.  Continuous variables can be treated as either 
continuous or categorical, depending on the 
investigator’s judgment.  However, for a stratified 
analysis, continuous variables must be categorical. 

8. False.  Even though cases and controls are selected 
first and previous exposure then determined, case-
control status is the dependent variable in a 
mathematical model because it represents the health 
outcome variable being predicted. 

9. False.  Mathematical models rarely, if ever, 
perfectly predict the outcome variable.  There is 
always some amount of error that represents the 
difference between a predicted value and the 
observed value. 

 
Q13.5 
 

1. Effect modification 
2. Confounding 
3. Precision 
4. Randomization 
5. Restriction 
6. Matching 
7. Strata, Control 
8. Control, Sparse 
9. Dependent, Independent 
10. Form, Variables, Assumptions 

 
Q13.6 
 

1. No.  In a case-control study, exposure status is 
determined only after cases and controls are 
selected.  Therefore, randomization to exposure 
groups (i.e., personality types) is not possible in 
case-control studies. 

2. No.  You cannot control for factors in your analysis 
that you have not measured. 

3. Not necessarily.  Randomization would tend to 
make the distribution of age, race, and gender 
similar in the two drug groups, but there is no 
guarantee that they will be the same. 

4. You hope that the distribution of genetic factors is 
similarly distributed within the two drug groups, 
even though these factors have not been measured.  
Moreover, you hope that, for any other unmeasured 
factors, randomization will distribute such factors 
similarly over the groups being considered. 

 
Q13.7 
 

1. False – Restriction can also be used to limit the 
range of values of a continuous variable. 

2. True – An advantage of restriction is that it is 
inexpensive to administer. 

3. False 
4. True 

 
Q13.8 
 

1. False – Matching is used mostly with case-control 
studies. 

2. True 
3. True 
4. False – If in addition to the matching variables, 

there are other variables to be controlled, then the 
appropriate analysis involves mathematical 
modeling using logistic regression methods. 

 
Q13.9 
 

1. 2 x 2 x 2 = 8 strata 
2. One stratum would contain all study subjects who 

are in a categorized age group and have the same 
race and gender (e.g., white females 30-40 years 
old). 

 
Q13.10 
 

1. True 
2. False – both the stratum-specific and the overall 

summary statistics will typically involve computing 
a point estimate, a confidence interval, and a test of 
hypothesis. 

3. False – when carrying out stratum-specific 
analyses, the point estimate is a simple point 
estimate calculated for a specific stratum. 

4. True 
5. True 
6. False – a Mantel-Haenszel test is not appropriate if 

there is significant and meaningful interaction over 
the strata. 

 
Q13.11 
 

1. CHD = f(PT, gender, race, SMK) + e 
2. 0.10 + 0.20(1) + 0.25(1) + 0.10(1) + 0.15(1) = 0.80 
3. 0.10 + 0.20(0) + 0.25(1) + 0.10(1) + 0.15(1) = 0.60 
4. f(PT, gender, race, SMK) = b0 + b1(PT) + 

b2(gender) +   b3(race) + b4(SMK) + b5(PT x 
gender) + b6(PT x race) + b7(PT x SMK) 

5. 0.08 + 0.18(1) + 0.35(1) + 0.07(1) + 0.12(1) + 
0.03(1x1) + 0.02(1x1) + 0.03(1x1) = 0.88 

6. 0.08 + 0.18(0) + 0.35(1) + 0.07(1) + 0.12(1) + 
0.03(1x0) + 0.02(1x0) + 0.03(1x0) = 0.62 

 
Q13.12 
 

1. Exp(SBP|age, SMK) = b0 + b1(age) + b2(SMK). 
Other possible models include: 



418  Lesson 13.  Control of Extraneous Factors 

 

Exp(SBP|age, SMK) = b0 + b1(age) + b2(SMK) + 
b3(age x SMK) 
Exp(SBP|age, SMK) = b0 + b1(age) + b2(SMK) + 
b3(age x SMK) + b4(age2) 

2. 
SMK)age(b̂

(SMK)b̂age)(b̂b̂PB̂S

3

210  

3. 50 + 2(30) + 10(1) = 120 
4. 50 + 2(30) + 10(0) = 110 

 
Q13.13 
 

1. Linear model: 0.50.15(1)  .24(1)  .10Ŷ  
Logistic model: 

6225.
e1

1Ŷ .15(1)).25(1)(.10-  

The two predicted values are quite different. 
2. ln[P/(1-P)] = ln(P) – ln(1 – P) 
3. A= exp(Z) 
4. P/(1 - P) = exp(Z) 
5. P = 1/[1 + exp{-Z}], a logistic function.  If Z = b0 + 

b1Z1 + … + bpXp, then P = a logistic model. 
6. OR = 2.7183 = e 
7. OR = 1 
8. ln[P/(1–P)] = 0.10 + 0.25(1) + 0.15(1) = .50.  So the 

odds = exp(.50) = 1.65. 
9. ln[P/(1–P)] = 0.10 + 0.25(0) + 0.15(1) = .25.  So the 

odds = exp(.25) = 1.28. 
10. Odds ratio (female smoker to male smoker) = 

1.65/1.28 = 1.29. 
11. Odds ratio (female non-smoker to male non-

smoker) = exp(.35)/exp(.10) = 1.29. 
 
Q13.14 
 

1. To give an accurate prediction of the man’s risk, 
the doctor will collect information on smoking 
behavior, body mass index, systolic blood pressure, 
cholesterol levels, medication use, and other 
possible cardiovascular risk factors. 

2. The 10-year risk of dying = 1/{1 + exp –(9.194 + 
.62*0.104 + 1*0.658 + 25*(-0.041) + 140*0.007 + 
245*0.001 + 0*1.251 + 20*0.023 + 80*0.0053)} = 
26.8%. 

3. The 10-year risk of dying = 1/{1 + exp –(9.194 +  
1*0.658 + 62*0.104 + 25*(-0.041) + 140*0.007 + 
245*0.001 + 0*1.251 + 0*0.023 + 80*0.0053)} = 
18.8%. 

4. RR = 26.8 / 18.8 = 14.4.  Without considering 
statistical significance, the risk for a non-diabetic 
male who smokes 20 cigarettes/day is about 1.4 
times the risk for a non-diabetic male non-smoker. 

5. The two risk estimates provide no information that 
compares a diabetic with a non-diabetic subject. 

6. Compare two computed risk function estimates, one 
in which the diabetes variable equals 1 and the 
other in which the diabetes variable equals 0, 
keeping corresponding values of all other variables 
at the same value. 

 
Q13.15 
 

1. True 
2. False – In a typical epidemiologic study, we try to 

determine predictors of a health outcome.  
Therefore the dependent variable is the health 
outcome of interest. 

3. False – The dependent variable by definition is the 
Y variable. 

4. True 
5. True 
6. Logistic 
7. Regression coefficient 
8. .25 
9. .45 
10. different 
11. average 
12. zero 
13. health outcome, exposure 
14. logit 
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Stratified Analysis 

 
This is an analysis option for the control of extraneous variables that involves the following steps: 
 

1. Categorize all variables. 
2. Form combinations of categories (i.e., strata). 
3. Perform stratum-specific analyses. 
4. Perform overall E-D assessment if appropriate. 

 
Both stratum-specific analyses and overall assessment require a point estimate, an interval estimate, and a test of 

hypothesis.  In this lesson, we focus on overall assessment, which is the most conceptually and mathematically complicated 
of the four steps. For overall assessment, the point estimate is an adjusted estimate that is typically in the form of a weighted 
average of stratum-specific estimates. The confidence interval is typically a large-sample interval estimate around the 
adjusted (weighted) estimate. The test of hypothesis is a generalization of the Mantel-Haenszel chi square test. 
 
 

14-1 Stratified Analysis 
 

An Example – 1 Control Variable 
 

We illustrate the four steps of a stratified analysis with an example: 
 

 
 

The tables below show data from a hypothetical retrospective cohort study to determine the effect of exposure to a 
suspected toxic chemical called TCX on the development of lung cancer.  Suppose here that the only control variable of 
interest is smoking. First, we categorize this variable into two groups, smokers and non-smokers. Second, we form two-way 
tables for each stratum. Third, we perform stratum specific analyses as shown here. These data illustrate confounding. The 
crude data that ignores the control of smoking yields a moderately strong risk ratio estimate of 2.1. This is meaningfully 
different from the two estimates obtained when smoking is controlled, both of which indicate no association. 
 

 
 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_14, © Springer Science+Business Media New York 2013 
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Step 3 also involves computing interval estimates and a P-value for each stratum and then interpreting the results 
separately for each stratum as well as for the crude data.  Each stratum-specific analysis is essentially a simple analysis for a 
two-way table. Here are the computed results: 
 

 
 
 
Study Questions (Q14.1) 
 

1. What is your interpretation of the stratum-specific results? 
2. Does there appear to be interaction due to smoking? 
3. Does there appear to be an overall effect of TCX exposure after controlling for smoking status? 

 
 
Step 4, the overall E D assessment, should only be performed when appropriate. When evidence of confounding 

is present, this assessment should be conducted. However, when there is sufficient evidence of interaction or effect 
modification, this step is considered inappropriate. In our example, the risk ratio estimates for both smoking groups are 
essentially the same, which indicates that it is reasonable to go ahead with a summary or overall assessment. 

To perform this step, we must do three things: compute an overall adjusted estimate of the exposure-disease effect 
over all the strata, carry out a test of hypothesis of whether or not there is an overall effect controlling for the stratification, 
and compute and interpret an interval estimate around the adjusted point estimate. 

 
The adjusted estimate typically is some form of weighted average of stratum-specific estimates. The test procedure 

P = 0.25
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is the Mantel-Haenszel test for stratified analysis. The interval estimate is typically computed as a large sample confidence 
interval based on percentage points of the normal distribution. These three components of overall assessment will be 
described further in the activities to follow. 

 
 

Study Questions (Q14.1) continued 
 
A precision-based adjusted risk ratio estimate of the TCX to lung cancer relationship is computer to be 1.25.  A 95% 
confidence interval around this estimate turns out to be (.78, 2.00).  The Mantel-Haenszel test statistic has a P-value of .28. 
 

4. What do you conclude from these results about the overall assessment of the E-D relationship in this study? 
 
 
Summary 
 

 The simplest form of stratification occurs when there is a single dichotomous variable to be controlled. 
 In this case, only one variable is categorized (step 1) and two strata are obtained (step 2). 
 Step 3 typically involves computing a point estimate, an interval estimate, and a P-value for each stratum. 
 Overall assessment (step 4) may not be appropriate if there is interaction/effect modification. 
 Step 4 involves computing an overall adjusted estimate of effect, a large-sample confidence interval for the adjusted 

effect, and a test of significance (the Mantel-Haenszel test). 
 
 

Overall Assessment? 
 
Because the risk ratio estimates for both smoking groups are essentially the same, we have concluded that it is reasonable to 
go ahead with an overall assessment using an adjusted estimate, a confidence interval around this adjusted estimate, and a 
Mantel-Haenszel test for the stratified data. The results are presented below. They clearly indicate that there is no 
meaningful or significant effect of TCX on the development of lung cancer when controlling for smoking. 
 

 
 
But, what if we obtained a different set of stratum specific estimates, for example, the results shown below 

(examples 2 and 3)? Would we still want to compute an adjusted estimate, obtain a confidence interval around it and compute 
a Mantel-Haenszel test? 

 

 
Note: The rows of risk ratio results are, from top to bottom, examples 1, 2, and 3, respectively. 
 

These two examples show a very strong interaction due to smoking. And, the type of interaction in example 2 is 
quite different from the interaction in example 3. The stratum-specific risk ratio estimates of 0.52 and 3.5 in example 2 are on 

)28.(18.1
2.20) (.80, CI 95%

1.33  RR̂a

2 P
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the opposite side of the null value of 1. In contrast, the stratum-specific risk ratio estimates of 1.1 and 4.2 from example 3 are 
on the same side of the null value, although they are also quite different. 

When stratum specific effects are on opposite sides of 1, as in example 2, it is possible that they can cancel each 
other in the computing of an adjusted effect. Consequently, in this situation, the use of such an adjusted estimate, 
corresponding confidence interval, and Mantel-Haenszel test is not recommended. The important results in this case are 
given by the contrasting stratum-specific effects, and these are likely to be masked by carrying out overall assessment. 

When stratum specific effects are all in the same direction, as in example 3, a spurious appearance of no association 
cannot arise from cancellation of opposite effects. It may therefore be worthwhile, despite the interaction, to perform overall 
assessment, depending on the investigator’s judgment of how large the difference between stratum-specific effects is or how 
stable these estimates are. 
 
 
Summary 
 

 Overall assessment (step 4) may not be appropriate if there is interaction/effect modification. 
 The most compelling case for not carrying out an overall assessment is when significant stratum-specific effects are 

on opposite sides of the null value. 
 When all stratum-specific effects are on the same side of the null value, overall assessment may be appropriate even 

if there is interaction. 
 The most appropriate situation for performing overall assessment is when stratum-specific effects are all 

approximately equal, indicating no interaction over the strata. 
 
 

The Breslow-Day (BD) Test for Interaction 
 
This is a test for interaction that can be used for stratified data obtained from a cumulative-incidence cohort study, case-
control study or cross-sectional study, and is based on the following data layout for stratum i: 
 
   Data Layout for Stratum i 

 E not E  
D ai bi m1i

not D ci di m0i

 n1i n0i ni 
 

The null hypothesis being tested is that there is no interaction over the strata, or equivalently, that the effects estimates 
over the strata are uniform (i.e., the same). The test statistic has the following form: 
 

 
G

1i i0

2
ii2

BD )(arâV
)a(a

 

 

In this formula, the quantity ia  denotes the expected value in the a cell of the table for stratum i assuming a common 

adjusted effect ˆ  (e.g., aOR, aRR, mOR, or mRR). This expected value is obtained by solving the following equation for 
the a term separately each stratum.  
 

 ˆ
)a)(na(m

)an(ma
i1ii1i

i1i0ii  

 
The variance term in the BD formula is given by the following expression:  

 
 
 
 

Continued on next page
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The Breslow-Day (BD) Test for Interaction (continued) 
 

 

i1i0ii1ii1ii

i0

anm
1

an
1

am
1

a
1

1)(arâV  

 
We illustrate the calculation of the BD test using hypothetical data given by the following two tables:  

 
 Stratum 1   Stratum 2  
 E not E   E not E  
D 15 5 20 D 5 15 20 

not D 85 95 180 not D 95 85 180 
 100 100 200  100 100 200 
 35.3R̂O    30.R̂O   

 
Based on these data, and letting  = aOR, the terms in the BD formula are calculated to give the following results: 

 

 5.4)(râV)(râV ,10a a 1,RÔa 201021 aa  
 

Substituting these terms in the B-D formula yields the following results:  
 

 11.11
4.5

10)(5
4.5

10)(15
)(arâV
)a(a

)(arâV
)a(a 22

20

2
22

10

2
112

BD  

 
Since there are G = 2 strata, the degrees of freedom for the chi square is G - 1 = 1. The P-value for this test is .0008, 

which is very small. Consequently, we would conclude that there is significant interaction over the two strata, which 
supports the observed interaction seen from comparing the point estimates in the two tables.  
 
 
 

An Example – Several Explanatory Variables 
 
In recent years, antibiotic resistance has become a major problem in the treatment of bacterial infections. Many antibiotics 
that used to provide effective treatment against certain bacteria, particularly Staphylococcus aureus, or Staph, no longer work 
because newer strains of Staph aureus are resistant to antimicrobial drugs. When someone is diagnosed with infection due to 
Staph aureus, the first line of treatment typically involves methicillin-based antimicrobial drugs. However, strains of Staph 
aureus resistant to those drugs are now are considered a major problem for patients seen in emergency rooms.  Resistant 
bacteria of this type are called methicillin-resistant Staph infections or MRSA. 

We may wonder what are the characteristics or risk factors associated with having an MRSA infection? To study 
this question, a cross-sectional study was carried out at Grady Hospital in Atlanta, Georgia involving 297 adult patients seen 
in an emergency department whose blood cultures taken within 24 hours of admission were found to have Staph aureus 
infection.  Information was obtained on several variables, some of which were previously described risk factors for 
methicillin resistance: 
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We use this information to illustrate a stratified analysis to assess whether previous hospitalization is associated with 
methicillin resistance, controlling for age, gender, and prior use of antimicrobial drugs.  Age is continuous so we will 
categorize age into two groups (1=age greater than 55 years; 0=age less than or equal to 55 years). 

We first consider the crude data relating previous hospitalization to MRSA status: 
 

 
 
 
Study Questions (Q14.2) 
 

1. Looking at the crude data only, is previous hospitalization associated with methicillin resistance? 
2. What reservations should you have about your answer to question 1? 
3. Should you automatically stratify on age, sex, and prior antimicrobial use since they were measured in the study? 
4. Since there were 297 persons in the study, why does the overall total equal 292? 

 
Now let’s see what happens when we stratify separately on age, sex, and prior antimicrobial drug use?  Each 

stratified table is depicted separately in the following. 
 
Relation between MRSA and Previous Hospitalization Stratified on Age 

 
 

5. Focusing on stratifying age only, does there appear to be interaction/effect modification due to age based on the 
stratum-specific results?  

6. The Breslow Day (BD) Test for Interaction provides a P-value for testing the null hypothesis that there is no 
interaction over the strata.  Based on this test with stratifying on age, is there evidence of interaction? 

7. Based on your answers to the above questions, is an overall assessment of the E-D relationship appropriate when 
stratifying on age? 

8. Is there confounding due to age? (Hint: RÔc = 11.67.) 
9. Does there appear to be a significant effect of previous hospitalization on MRSA when controlling for age? 
10. What does the confidence interval for the adjusted estimate say about this estimate? 
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Relation between MRSA and Previous Hospitalization Stratified on Sex 

 
 

11. Is an overall assessment of the E-D relationship appropriate when stratifying only on gender? 
12. Is there confounding due to gender? (Hint: RÔc = 11.67.) 
13. Does there appear to be a significant effect of previous hospitalization on MRSA status when controlling for gender? 

 
Relation between MRSA and Previous Hospitalization Stratified on Prior Antimicrobial Drug use (“PAMDU”) 

 
 

14. Is an overall assessment of the E-D relationship appropriate when stratifying only on PAMDU? 
15. Is there confounding due to PAMDU? (Hint: RÔc = 11.67.) 
16. Does there appear to be a significant effect of previous hospitalization on MRSA status when controlling for 

PAMDU? 
 
 
Summary 
 

 When several variables are being controlled using stratified analysis, the typical first step in the analysis is to 
analyze and interpret the crude data. 

 The next step typically is to stratify separately on each control variable including carrying out an overall assessment 
of the E-D relationship, if appropriate. 

 One approach to determine whether overall assessment is appropriate is to assess whether stratum-specific effects 
are more or less the same. 

 Another approach is to carry out a Breslow Day test of the null hypothesis that there is no interaction/effect 
modification due to the variable(s) being stratified. 
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An Example – Several Explanatory Variables (Continued) 
 
Here is a summary table that results from stratifying on each control variable separately. 
 

 
 
 
Study Questions (Q14.3) 
 

1. Based on the information in the above table, which, if any, of the variables age, gender, and previous antimicrobial 
drug use needs to be controlled?  

2. Is there a gain in precision from the control of any of the variables age, gender, and previous antimicrobial drug use? 
 
 

We now add to the summary table the results from controlling for two and three variables at a time. 
 

 
 

3. Does controlling for age, gender, or both have an affect on the results after already controlling for previous 
antimicrobial drug use (PAMDU 

4. Using the BD P-value, is there any evidence that there is interaction when stratifying on any or all of these three 
variables being controlled? 

5. Why do you think it is necessary to use a correction factor such as .5 in strata that contain a zero frequency? 
6. Based on all the information in the table, what is the most appropriate estimate of the odds ratio of interest? (You 

may choose two alternatives here.) 
7. Is there evidence that previous hospitalization has an effect on whether or not a person is methicillin resistant to 

Staph aureus? 
 
 

The stratum-specific results when simultaneously controlling for age, gender, and previous antimicrobial drug use 
are shown in the box at the end of this Activity.  There are 8 strata, because three variables are being controlled and each 
variable has two categories. 
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Study Questions (Q14.3) continued 
 (Note: there is no question 8) 
 

9. What is the most obvious characteristic that describes the stratified results just shown? 
10. What does your answer to the previous question indicate about stratum-specific analyses with these strata? 
11. Based on comparing stratum-specific odds ratio estimates, does there appear to be interaction within the stratified 

data? 
12. Give three reasons that justify doing an overall Mantel-Haenszel test using these data? 

 
 
Summary 
 

 When several variables are being controlled simultaneously using stratified analysis, not all of these variables may 
need to be controlled depending on whether a variable contributes to confounding or precision. 

 The simultaneous control of several variables typically leads to strata with small numbers and often zero cell 
frequencies. 

 When there are small numbers in some strata, stratum-specific conclusions may be unreliable. 
 There are three things to consider when assessing interaction in stratified data: 

o Are stratum-specific estimates essentially the same? 
o Is the Breslow-Day test for interaction significant? 
o Are stratum-specific estimates unreliable because of small numbers? 
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Stratum Specific Results 

 
Here are the stratum specific results when simultaneously controlling for age, gender, and previous antimicrobial drug use. 
 

1. Age < 55, Male, PAMDU=Yes 2. Age < 55, Male, PAMDU = No 
  Prev. Hosp.    Prev. Hosp.  
  Yes No    Yes No  
MRSA Yes 37 2 39 MRSA Yes 5 4 9 
 No 22 7 29  No 13 49 62 
  59 9 68   18 53 71 

RÔ =5.89  RÔ =4.71  
 

3. Age < 55, Female, PAMDU=Yes 4. Age < 55, Female, PAMDU = No 
  Prev. Hosp.    Prev. Hosp.  
  Yes No    Yes No  
MRSA Yes 9 0 9 MRSA Yes 0 0 0 
 No 14 3 17  No 2 13 15 
  23 3 26   2 13 15 

RÔ =4.59 with .5 adjustment  RÔ =5.4 with .5 adjustment  
 

5. Age > 55, Male, PAMDU=Yes 6. Age > 55, Male, PAMDU = No 
  Prev. Hosp.    Prev. Hosp.  
  Yes No    Yes No  
MRSA Yes 24 1 25 MRSA Yes 2 2 4 
 No 2 2 4  No 7 12 19 
  26 3 29   9 14 23 

RÔ =24.00  RÔ =1.71  
 

7. Age > 55, Female, PAMDU=Yes 8. Age > 55, Female, PAMDU = No 
  Prev. Hosp.    Prev. Hosp.  
  Yes No    Yes No  
MRSA Yes 22 0 22 MRSA Yes 3 3 6 
 No 9 1 10  No 5 15 20 
  31 1 68   8 18 26 

RÔ =7.11 with .5 adjustment  RÔ =3.00  
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Quiz (Q14.4) 
 
 
Label each of the following statements as True or False. 
 

1. Stratification only involves categorizing variables into two groups and conducting separate analysis for 
each group.   . . . . . . . . . ??? 

2. One of the four steps of a stratified analysis is to compute an overall summary E-D assessment when 
appropriate.   . . . . . . . . . ??? 

3. The calculation of an overall summary estimate may be considered inappropriate if there is considerable 
evidence of statistical interaction.  . . . . . . . ??? 

4. The calculation of an overall summary estimate may be considered inappropriate if there is considerable 
evidence of confounding.  . . . . . . . . ??? 

5. When considering the appropriateness of computing overall summary results, the investigator must 
exercise some judgment regarding the clinical importance of the observed differences among stratum-
specific estimates as well as to the stability of these estimates.  . . . .  ??? 

 
6. Compare the stratum specific RR estimates for each of the three situations below. Fill in the blank with 

yes, no or maybe regarding the appropriate use of a summary estimate. 
 
Situation: RR: Stratum 1 RR: Stratum 2 Overall Est. 
Opposite direction 0.7 3.5 ???
Same direction 1.5 4.8 ???
Uniform effect 2.3 2.9 ??? 

 
Choices 
Maybe   No Yes 
 
 

14-2 Stratified Analysis (continued) 
 

Testing for Overall Association – The Mantel-Haenszel Test 
 

General Purpose and Characteristics 
 

The Mantel-Haenszel test is the most widely used and recommended procedure for testing an overall association in a 
stratified analysis. The null hypothesis being tested is that there is no association over all the strata, or equivalently, that the 
adjusted effect measure over all the strata equals the null value. The typical alternative hypothesis is usually one-sided, since 
the investigator often wants to determine whether the adjusted effect is larger than the null value; however, a two-sided 
alternative or a lower one-sided alternative may also be considered. The test statistic has approximately the chi square 
distribution with one degree of freedom under the null hypothesis. 
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For dichotomous disease and exposure variables, the data layout in a given stratum can be described by one of two 
formats as shown here. The format depends on the study design: 
 

 
  
 But regardless of the study design, the test statistic has the basic computational structure shown here: 
 

 
 

In this formula, a denotes the total number of exposed cases; that is, a is the sum of the a cell frequencies over all 
the strata. The term E0(a) in the numerator gives the expected total number of exposed cases under the null hypothesis of no 
association between exposure and disease in any of the strata.  The term Var0(a) describes the variance of the total number of 
exposed cases under the same null hypothesis.  The specific computational form for the expected value and the variance term 
depend on the study design. For the first of the two data layouts, these terms are derived assuming the hypergeometric 
distribution, which we introduced in Lesson 12.  For a person-time cohort study, the expected value and variance terms are 
derived using the binomial distribution.  (Note: see the two boxes at then end of this activity for a description of how the 
expected values and variance terms are derived based on either the hypergeometric distribution or the binomial distribution.) 

For cumulative incidence cohort studies, case-control studies and cross-sectional studies the computing formula 
simplifies to the expression shown here:  
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This formula is written in terms of the cell frequencies and total frequencies given in the stratum layout. When there 
are only two strata, so that G equals two, the formula simplifies further: 

 
We now apply this formula to the retrospective cohort study data relating TCX to lung cancer. Substituting the data 

from the two strata into the Mantel-Haenszel formula, the computed value turns out to be 1.18.  For a two-sided alternative, 
the P-value is the area under the chi square distribution with 1 degree of freedom above the value 1.18.  This turns out to be 
0.28. 
 

 
 
 
Study Questions (Q14.5) 
 

1. Since the P-value for a two-sided Mantel-Haenszel test is .28, what is the P-value for a one-sided alternative? 
2. Based on your answer to the previous questions, what do you conclude about the overall effect of TCX on lung cancer 

controlling for smoking? 
 
(To be discussed in the next activity.)  In the MH formula for two strata, notice that the numerator sums two terms, one from 
each stratum, before squaring this sum. 
 

3. What might happen if, instead of the results previously described, the risk ratio for nonsmokers was on the opposite 
side of the null value than the risk ratio for smokers? 
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Summary 
 

 The Mantel-Haenszel (MH) test is the most widely used and recommended procedure for testing an overall 
association in a stratified analysis. 

 The null hypothesis is that there is no overall association over all the strata, or equivalently, that the adjusted effect 
measure equals the null value. 

 The typical alternative hypothesis is one-sided, but may instead be two-sided. 
 The MH test statistic is approximately chi square with 1 df under the null hypothesis. 
 For cumulative incidence cohort, case-control, and cross-sectional studies, the MH statistic is derived assuming the 

hypergeometric distribution. 
 For person-time cohort studies, the MH statistic is derived using the binomial distribution. 

 
Derivation of the Mantel-Haenszel Test for Cumulative-Incidence Cohort Studies, Case-Control Studies, and Cross-

Sectional Studies 
 
Here we describe how the Mantel-Haenszel (MH) Test is derived for Cumulative-Incidence Cohort Studies, Case-
Control Studies, and Cross-Sectional Studies where the data layout for the i-th stratum is given as follows: 
 

 Data Layout for Stratum i  
  E not E  

D ai bi m1i

not D ci di m0i

 n1i n0i ni 
 

For each of the above mentioned study designs, the Mantel-Haenszel test assumes that the marginal frequencies n1i, n0i, 
m1i, m0i are fixed within each stratum. It follows, as in a simple analysis with fixed margins, that the distribution of the 
number of exposed cases (in the a cell) has the hypergeometric distribution under the null hypothesis of no overall 
association controlling for the stratified variables.  From the hypergeometric distribution, the expected value and null 
variance of the number of exposed cases within each stratum are then given by the following formulae: 

 

 
i
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i0 n

mn)(aE  
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so that, summing over all strata, we get the expected mean total and variance mean total exposed cases to be: 
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Substituting the expressions for the expected mean and variance of total exposed cases into the general Mantel Haenszel 

(MH) test statistic formula: 
 
 
 
 
 

Continued on next page
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Derivation of the Mantel-Haenszel Test for Cumulative-Incidence Cohort Studies, Case-Control Studies, and Cross-
Sectional Studies (continued) 
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the test statistic simplifies (from algebra) into the following computing formula: 
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Under the null hypothesis of no overall association, this MH statistic is approximately chi square with 1 degree of 

freedom. 
 
 

Derivation of the Mantel-Haenszel Test for Person-Time Studies 
 

Here we describe how the Mantel-Haenszel (MH) Test is derived for Person-Time Cohort Studies where the data layout 
for the i-th stratum is given as follows: 
 
 Person-Time Cohort Study 

Data Layout for Stratum i
 

 E not E  
D I1i I0i Ii

PT PT1i PT0i PTi 
 

Under the null hypothesis of no overall association controlling for the stratified variables, this version of the MH 
test assumes that the distribution of the number of exposed cases (in the ‘a’ cell) within each stratum has the binomial 
distribution.  In particular, the number of exposed cases in stratum i, is assumed to be a binomial random variable with 
probability of success given by: 

 

 
i

1i
0i PT

PT
p  

 
and with number of trials equal to the total number of cases in the stratum, i.e., 

 

 i0i1ii IIIN  
so that the variance of the binomial probability is given by: 

 

 2
i

0i1ii
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PTPTI
)p(1pN)(pVar  

 
It follows, then, that the null mean and variance for the a-cell in the i-th stratum are given by the formulae:  

Continued on next page
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Derivation of the Mantel-Haenszel Test for Person-Time Studies (continued) 
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so that, summing over all strata, we get the expected mean total and variance mean total exposed cases to be: 
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The specific form that the MH test for person-time data is then obtained by substituting the expressions for the expected 

mean and variance of total exposed cases into the general Mantel Haenszel (MH) test statistic formula:  
 

 
(a)Var
(a)Ea

0

2
02

MH  

 
where a denotes the total number of observed exposed cases over all strata, i.e., 
 

 

G

1i
1iIa  

 
Under the null hypothesis of no overall association, this MH statistic is approximately chi square with 1 degree of 

freedom.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



435    

 

When Not to Use the MH Test 
 
Let’s consider an example in which the Mantel-Haenszel test would not be appropriate. Suppose the results from the 
retrospective cohort study relating TCX to lung cancer looked like this: 
 

 
 

These data show, for non-smokers, a moderately large positive risk ratio that is highly significant, and for smokers, a 
risk ratio that describes a moderately large negative association but is also highly significant. In contrast, the crude data show 
a non-significant risk ratio exactly equal to one. The two stratum specific effects are both strong and significant, but indicate 
opposite direction interaction. 

Let’s see what happens if we inappropriately conducted a Mantel-Haenszel test anyway. Here again is the Mantel-
Haenszel formula when there are two strata: 

 
Substituting the data from the two strata into the Mantel-Haenszel formula, the computed value turns out to be 

exactly zero. In particular, notice that the two terms in the numerator of the formula are the negative of each other, so when 
they are summed together, their sum is zero. 
 

 
 

When there is opposite direction interaction, use of the Mantel-Haenszel test is often inappropriate because it may 
mask a strong interaction effect that reflects the true exposure disease relationship. 

 
 
Study Questions (Q14.6) 
 

1. If there are four or more strata involved in the computation of the MH statistic, is it still possible that the test can give 
a misleading result? 

2. What can you say about the MH test result if there is strong interaction but on the same side of the null value? 
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Summary 
 

 The MH test may give misleading results and is often not appropriate when stratum-specific estimates are on 
opposite sides of the null value. 

 If there are strong and significant effects on the opposite sides of the null value, the MH test might be non-
significant, thereby giving a misleading impression of no exposure-disease effect. 

 The numerator in the MH formula is the square of a sum rather than a sum of squared terms. 
 Consequently, positive and negative terms in the sum may cancel each other out, thereby leading to a non-significant 

MH test. 
 
 

The MH Test for Person Time Cohort Data 
 
Let’s consider data from a person-time cohort study of the possible association between obesity and all-cause mortality 
among women ages 60 to 75 from a northeastern US urban population.  We consider 3 strata defined by categorizing age into 
3 groups. 
 

 
 

In looking at these data, the incidence density ratios for the 3 age strata are all about the same size and are also 
relatively close to the crude incidence density ratio of 1.67. So there is little if any evidence of interaction. An overall 
adjusted estimate appears justified, as does a corresponding confidence interval around this estimate and a Mantel-Haenszel 
test for overall association. Here, we focus only on the Mantel Haenszel test. 

The general data layout for the i-th stratum is shown here for person-time cohort studies.  
 

 
 
Notice that the a cell in the upper table, denoted as I1i and the b cell as I0i instead of ai and bi, respectively. Here 

again is the general form of the Mantel-Haenszel statistic: 
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 Here, a denotes the total number of exposed cases. E0(a) in the numerator denotes the expected number of exposed 

cases under the null hypothesis of no overall association.  Var0(a) denotes the variance of the total number of exposed cases 
under the same null hypothesis. 

The expected value and variance terms can be derived using a binomial distribution for which the probability of 
success is the proportion of total PT in the i-th strata that come from exposed persons, and the number of trials is the total 
number of cases in the i-th stratum. 
 

 
 

We now apply this formula to the person-time cohort data relating obesity to mortality. Substituting the data from 
the three strata into the Mantel-Haenszel formula, the computed chi-square value turns out to be 4.14. The area under the chi 
square distribution with 1 degree of freedom above the value 4.14 is .04 (two-sided p-value). 
 

 
 
 
Study Questions (Q14.7) 
 

1. What is the P-value for a one-sided alternative? 
2. Based on your answer to the previous question, what do you conclude about the overall effect of obesity on mortality 

controlling for age? 
 
 
Summary 
 

 For person-time cohort studies as well as cumulative incidence cohort, case-control, and cross-sectional studies, the 
MH statistic is approximately chi square with one df under the null hypothesis of no overall association. 

 The particular form that the MH formula takes for person-time data is derived by assuming that the number of 
exposed cases in a given stratum has the binomial distribution. 

 For the above binomial distribution, the probability of success is the proportion of total PT in the g-th stratum that 
come from the exposed persons, and the number of trials is the total number of cases in the g-th stratum. 
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Quiz (Q14.8) 
 
Fill in the Blanks 
 
A cohort of physical activity (PA) and incidence of diabetes was conducted over a six-year period among 
Japanese-American men in Honolulu. Data from that study are summarized below, stratified on body mass index 
(BMI): 
 

 
 

1. What is the rate ratio (IDR) for the High BMI group?  . . . . ???  

2. What is the rate ratio (IDR) for the Low BMI group?  . . . . ??? 

3. What is the crude IDR for these data? (Hint: combine data over both strata.)  . ??? 

4. Is there evidence of confounding in these data?  . . . . . ??? 

5. Is there evidence of interaction in these data?  . . . . . ??? 
 

Choices 
0.76 0.77 0.79 1.27 1.30 1.32 No Yes  

 
 
6. What would be the advantage of conducting an overall assessment for these data?  ??? 

7. The Mantel-Haenszel chi-square turns out to be 3.83, which corresponds to a 2-sided p-value of 0.051. 
Assuming a 5% significance level, do you reject or fail to reject the null hypothesis?  ??? 

8. Suppose this had been a one-tailed test, what would be your conclusion?  . ??? 
 
Choices 
decreased precision fail to reject the null hypothesis increased precision  
reject the null hypothesis 
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14-3 Stratified Analysis (continued) 
 

Overall Assessment Using Adjusted Estimates 
 
How do we obtain overall adjusted estimates of effect in a stratified analysis?  The answer depends on: 1) the type of 
mathematical approach considered; 2) the type of effect measure appropriate for the study design and study purpose; and 
3) the sparseness of the data within the strata.  The mathematical form may be either a weighted average or a maximum 
likelihood estimate.  The study design and purpose may call for either a ratio measure, such as a risk ratio, odds ratio or rate 
ratio, or difference effect measure, such as a risk difference or a rate difference.  And if some of the strata contain zero cells, 
the adjusted estimate must accommodate stratum-specific estimates that are undefined. 
 

 
 

Weighted averages, which are easy to understand, are more often used than maximum likelihood estimates in 
summarizing stratified analyses, so we will focus only on weighted average estimates here.  Nevertheless, maximum 
likelihood estimates are conveniently obtained by fitting mathematical models such as the logistic model, and such estimates 
are typically used whenever modeling is considered appropriate. Fortunately, in many instances, the results obtained from 
these two mathematical approaches are either very close or identical, particularly for matched data. 

Adjusted estimates that are weighted averages come in two forms shown following this paragraph in the simple case 
where there are only two strata. We denote the effect measure as theta ( ). So, depending on the study design and purpose,  
may be either a ratio measure such as a risk ratio or a difference measure, such as a risk difference. 

 
Linear weighting is always used for difference effect measures like the risk difference or the rate difference, and it is 

also used in certain kinds of ratio effect measures, particularly when there are zero cells in some of the strata.  In contrast, 
log-linear weighting is used to obtain adjusted estimates for ratio effects whenever the weights are chosen to reflect the 
precision of a stratum specific estimate. We call such adjusted estimates precision-based. 

When there are zero cells or even sparse data without zero cells, a special form of weighted average called a 
Mantel-Haenszel adjusted estimate is typically used.  Mantel-Haenszel estimates are often used instead of precision-based 
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estimates even when stratum-specific data are not sparse. This is because the Mantel Haenszel estimates have been shown to 
have desirable statistical properties, including being identical to maximum likelihood estimates for case-control data.  The 
specific form that precision-based and Mantel-Haenszel estimates take for ratio effect measures will be described and 
illustrated in the activities that follow. 
 
 
Summary 
 

 The mathematical form of an adjusted estimate may be either a weighted average or a maximum likelihood estimate. 
 The study design and purpose may call for either a ratio measure, such as a risk ratio, odds ratio, or rate ratio, or 

difference effect measure, such as a risk difference or rate difference. 
 If some of the strata contain zero cells, the adjusted estimate must accommodate stratum-specific estimates that are 

undefined. 
 Weighted average may involve either linear weighting or log-linear weighting, where the latter is used for ratio 

measures when the weights are precision-based. 
 Mantel-Haenszel estimates are used when there is sparse (i.e., zero cell) data, but also have good statistical 

properties even when there are no zero cells. 
 
 

Adjusted Estimates Using Weighting by Precision 
 
One common way to find an adjusted estimate of effect, say an adjusted risk ratio, is to weight the stratum-specific 
estimates according to their precision. This approach is available in most computer programs that compute adjusted 
estimates.  Mathematically, we define the precision of an estimate as one over the estimated variance of the estimate. We can 
also think of precision as a measure of how small the confidence interval around an estimate is. The smaller the confidence 
interval, the more precise the estimate.  
 

 
 

For two strata, the formula for the precision-based adjusted risk ratio is a weighted average of the natural logs of the 
risk ratios for each stratum, rather than a weighted average of the risk ratio estimates themselves. Given suitable weights wl 
and w2, this expression is computed by first obtaining a weighted average of the log of the stratum-specific risk ratios and 
then exponentiating this weighted average to get a value that is on a risk ratio scale. 
 

 
 

We take logs to simplify some of the underlying mathematics. The weights are precision-based and are obtained by 
computing the inverse of the estimated variance of the natural log of the stratum-specific risk ratio estimates.  Using the two-
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way data layout for stratum i, the actual formula for the weights is shown below in terms of cell frequencies a, b, c and d, and 
the exposure totals n1 and n0 for stratum i. 
 

 
 

Because the weights as well as the formula are complicated to compute, particularly when there are more than 2 
strata, we recommend that you use a computer to carry out the calculations. For the retrospective cohort example involving 
two smoking history strata, the formula is shown here. 
 

 
 

Our retrospective cohort example has wide discrepancies among the four cell frequencies of the table. In particular, 
for non-smokers one of the four cells has only one subject and another cell has only two subjects, but the other two cells have 
fairly large frequencies. We say that such a table is unbalanced. Using a computer program to do the computations, we find 
these following 95% confidence intervals for the estimated risk ratio in each table. The first table shows a much wider, less 
precise confidence interval than the second table. So more weight should be given to the second table than the first table in 
calculating the precision-based adjusted estimate. 
 

 
 

Using a computer program to carry out the calculations, we find that the adjusted estimate of the risk ratio rounds to 
1.3. This value is the same as obtained for the risk ratio estimate for smokers. Thus, the adjusted risk ratio gives almost all the 
weight to smokers, whose risk ratio estimate is much more precise than the estimate obtained for the non-smokers. 

When weighting by precision, the risk ratios from balanced tables are given more weight than risk ratios from 
unbalanced tables of the same total sample size. When calculating precision-based adjusted estimates, the weight used for 
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each stratum is influenced not only by the total sample size, but also by the amount of balance in the four cells of the table. 
 
 
Summary 
 

 When computing adjusted estimates, the typical weights are based on precision. 
 The smaller the variance, the higher the precision.  Also, the narrower the confidence interval, the higher the 

precision. 
 The precision-based formula for an aRR is obtained by exponentiating a weighted average of the log of the RR 

estimates. 
 Each weight is the inverse of the variance of the natural log of a stratum-specific estimate. 
 When weighting by precision, the risk ratios in balanced tables are given more weight than in unbalanced tables of 

the same total sample size. 
 
 
Quiz (Q14.9) 
 
Fill in the Blanks 
 

1. When weighting by precision, which of the following is NOT a factor in determining the precision-based 
stratum specific weights? ??? 

 
A. The sample size 
B. The magnitude of the risk ratio 
C. The table balance 
D. The variance of the estimate 

 
True or False 
 

2. When weighting by precision, the larger the confidence interval is around the estimate, the larger the 
weight will be.  . . . . . . . . . . ??? 

3. When weighting by precision, if the stratum specific risk ratios are the same, then the strata weights will be 
the same.  . . . . . . . . . . ??? 

4. Unbalanced data sets typically have smaller weights than balanced data sets.  . . ???  
5. The value of the adjusted risk ratio will lie between the two stratum-specific risk ratio estimates. ??? 

 
 

General Formula for a Precision-Based Adjusted Risk Ratio 
 
We can expand the precision-based formula for the adjusted risk ratio for two strata to a general precision-based formula 
for G strata. The general formula contains G weights. Each weight gives the estimated precision of the log of the estimated 
risk ratio for its stratum.  We can rewrite this formula using standard summation notation. We calculate the weight times the 
natural log of the risk ratio for each stratum then sum these over all strata. Then we divide by the sum of the weights over all 
the strata and exponentiate the result: 
 

 
 

Consider data with four strata, below are the four risk ratio estimates, their corresponding precision-based weights 
the table sample sizes, the crude risk ratio estimate and the corresponding sample size. Don’t worry how to find these 
numbers, particularly the weights, a computer can do this for you easily. Notice that the ordering of the weights does not 
correspond directly to the ordering of the stratum-specific sample sizes: 
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Study Question (Q14.10) 
 

1. In the summary table, the largest weight is given to stratum 3, which has the second highest sample size, whereas the 
smallest weight is given to stratum 1, which has the highest sample size.  How can this happen? 

 
 

We use these weighted average formulas to compute the adjusted risk ratio by substituting the values for the w’s and 
stratum-specific risk ratio estimates from the table into the formula. The resulting adjusted risk ratio is 1.71.  This value is 
somewhat lower than the crude risk ratio estimate of 2.45. Thus, there is some confounding due to age. The adjusted risk 
ratio should be used instead of the crude risk ratio to summarize the effect of exposure on disease. 
 

 
 
 
Summary 
 

 When there are G strata, the precision-based formula for an adjusted risk ratio is a weighted average of the natural 
logs of the risk ratio estimates of the G strata. 

 The weights are estimates of the precision of the logs of the stratum-specific risk ratio estimates. 
 The formula should be calculated using a computer program. 

 
The Precision-Based Adjusted Rate Ratio 

 
For stratified person-time data, the measure of effect of typical interest is the rate ratio or IDR (i.e., incidence 

density ratio), The following formula is used to obtain a precision-based adjusted rate ratio (i.e., aIDR) 
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The weights in this formula are approximate estimates of the inverse variance of the rate ratio in each stratum, and 
are given by the expression: 
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where I1i, I0i, and Ii for i = 1, 2, …, k denote the disease frequencies among exposed, unexposed, total number of subjects, 
respectively, in the study. 
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Compute a Precision-Based Adjusted Risk Ratio (aRR) in DataDesk 
 
An exercise is provided to demonstrate how to compute a precision-based adjusted risk ratio (aRR) using the DataDesk 
program. 
 
 

Compute a Precision-Based Adjusted Rate Ratio (aIDR) in Data Desk 
 
An exercise is provided to demonstrate how to compute a precision-based rate ratio (aIDR) using the DataDesk program. 
 
 

14-4 Stratified Analysis (continued) 
 

Precision-Based Adjusted Odds Ratio 
 
Thus far we have considered stratified data only from cohort studies where the adjusted measure of effect is a precision-
based risk ratio (aRR). We now describe how to compute a precision-based adjusted odds ratio (aOR) for stratified data 
from either case-control, cross-sectional, or cohort studies in which the odds ratio is the effect measure of interest.  Consider 
a general two-way data layout for one of several strata.  The precision-based adjusted odds ratio is the exponential of a 
weighted average of the natural log of the stratum-specific odds ratios. This formula applies whether the study design used 
calls for the risk odds ratio, the exposure odds ratio, or the prevalence odds ratio: 
 

 
 

Below is the formula for the weights, which is different for the adjusted odds ratio than for the adjusted risk ratio, 
because precision is computed differently for different effect measures. 

 

 
   

Let’s focus on the weights for the adjusted odds ratio. If all the cell frequencies for a given stratum are reasonably 
large, then the denominator will be small, so its reciprocal, which gives the precision, will be relatively large. 
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On the other hand, if one of the cell frequencies is very small, the precision will tend to be relatively small. This 

explains, at least for the odds ratio, why an unbalanced stratum with at least one small cell frequency is likely to yield a 
relatively small weight even if the total stratum size is large. 
 

 
 
 
Summary 
 

 The measure of association used to assess confounding will depend on the study design. 
 The formula for the adjusted risk ratio applies when the study design used calls for the prevalence ratio 
 The formula for the adjusted odds ratio applies whether the study design used calls for the risk odds ratio, the 

exposure odds ratio, or prevalence odds ratio. 
 The weights are computed differently for the adjusted odds ratio than for the adjusted risk ratio. 
 An unbalanced stratum with at least one small cell frequency is likely to yield a relatively small weight even if the 

total stratum size is large. 
 
 

Computing the Adjusted OR – An Example 
 
These tables show results from a case-control study to assess the relationship of alcohol consumption to oral cancer. The 
tables give the crude data when age is ignored and the stratified data when age has been categorized into three groups.   
 

 
 
 
 Below is the formula for the adjusted odds ratio for these data.  Now, given that the weights for each strata are as 
follows: 
 

n = 121 
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1. What is the estimated adjusted odds ratio for these data? (Hint: Try to answer without calculations.) 

2.1  2.3  1.9 
 
 The estimated odds ratio is 2.1. 
 
2. Are the crude and adjusted estimates meaningfully different? 

yes  no 
 
 Yes, the crude ratio of 2.8 indicates there is almost a three-fold excess risk but the adjusted estimate of 2.1 indicates 
approximately a two-fold excess risk. 
 
3. Which estimate is more appropriate, the crude or the adjusted estimate? 

crude  adjusted 
 
 The adjusted estimate is more appropriate because it is meaningfully different from the crude estimate and controls 
for the confounding due to age. 
 
 
Quiz (Q14.11) 
 
The data below are from a cross-sectional seroprevalence survey of HIV among prostitutes in relation to IV drug 
use.  The crude prevalence odds ratio is 3.59.  (You may wish to use a calculator to answer the following 
questions.) 
 

 
 

1. What is the estimated POR among the Black or Hispanic group?  . . . . .   ??? 

2. What is the estimated POR among the Whites?   . . . . . .   ??? 

3. Which table do you think is more balanced and thus will yield the highest precision-based weight?  .   ??? 
 
Choices 
3.25 3.59 4.00 4.31 4.69 Black or Hispanic White 
 
In the study described in the previous question, the estimated POR for the Black or Hispanic group was 4.00 and 
the estimated POR for the Whites was 4.69. The precision-based weight for the Black or Hispanic group is 
calculated to be 7.503 and the weight for the whites is 2.433. 
 

4. Using the formula below, calculate the adjusted POR for this study.     . . . . .   ??? 



447    

 

5. Recall that the crude POR was 3.59. Does this provide evidence of confounding?  . . .   ??? 
 

 
 
Choices 
1.00 4.16 4.35 4.97 debatable no yes 
 
 

14-5 Stratified Analysis (continued) 
 

Mantel-Haenszel Adjusted Estimates 
 

The Zero-Cell Problem 
 
Let’s consider the following set of results that might have occurred in a case control study relating an exposure variable E to a 
disease D: 
 

 
 
 The odds ratio for stratum 1 is undefined because of the zero cell frequency in this stratum. So we cannot say 
whether there is either confounding or interaction within these data.  One approach sometimes taken to resolve such a 
problem is to add a small number, usually .5, to each cell of any table with a zero cell.  If we add .5 here, the odds ratio for 
this modified table is 9.3. 
 

 
 

Now it appears that there is little evidence of interaction since the two stratum-specific odds ratios are very close. 
But, there is evidence of some confounding because the crude odds ratio is somewhat higher than either stratum specific odds 
ratios.  Although this approach to the zero-cell problem is reasonable, and is often used, we might be concerned that the 
choice of .5 is arbitrary. 
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Study Questions (Q14.12) 
 

 
 

1. Given the values a = 5, b = 6, c = 0, and d = 5 for stratum 1, what is the estimated odds ratio if 0.1 is added to each 
cell frequency? 

2. Given the values a = 5, b = 6, c = 0, and d = 5 for stratum 1, what is the estimated odds ratio if 1.0 is added to each 
cell frequency? 

3. What do your answers to the above questions say about the use of adding a small number to all cells in a stratum 
containing a zero cell frequency? 

 
 

We might also be concerned about computing a precision-based adjusted odds ratio that involves a questionably 
modified stratum-specific odds ratio. 
 
 
Study Questions (Q14.12) continued 
 
 The stratum-specific odds ratios obtained with .5 is added to stratum 1 are 9.31 for stratum 1 and 9.00 for stratum 2. 
 

4. If a precision-based adjusted odds ratio is computed by adding .5 to each cell frequency in stratum 1 the weights are 
.3972 for stratum 1 and .6618 for stratum 2.  What value do you obtain for the estimated aOR? 

 
The stratum-specific odds ratios obtained with .1 is added to stratum 1 are 41.64 for stratum 1 and 9.00 for stratum 2.  
 
5. If a precision-based adjusted odds ratio is computed by adding .1 to each cell frequency in stratum 1 the weights are 

.0947 for stratum 1 and .6618 for stratum 2.  What value do you obtain for the estimated aOR? 
6. How do your answers to the previous two questions compare? 
7. What do your answers to the previous questions say about the use of a precision-based adjusted odds ratio? 

 
 

Fortunately, there is an alternative form of adjusted estimate to deal with the zero-cell problem called the Mantel-
Haenszel odds ratio, which we describe in the next activity. 
 
 
Summary 
 

 When there are sparse data in some strata, particularly zero cells, stratum-specific odds ratios become unreliable and 
possibly undefined. 

 One approach when there are zero cell frequencies in a stratum is to add a small number, typically 0.5, to each cell 
frequency in the stratum. 

 A drawback to the latter approach is that the resulting modified stratum-specific effect estimate may radically 
change depending on the small number (e.g., .5, .1) that is added. 

 The use of a precision-based adjusted estimate in such a situation then becomes problematic. 
 Fortunately, there is an alternative approach to the zero-cell problem, which involves using what is called a Mantel-

Haenszel adjusted estimate. 
 
 

The Mantel-Haenszel Odds Ratio 
 
The Mantel-Haenszel adjusted estimate used in case-control studies is called the Mantel-Haenszel odds ratio, or the 
mOR. Here is its formula: 
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This formula can also be used to compute an adjusted odds ratio in cross-sectional and cohort studies. A key feature 

of the mOR is that it can be used without having to modify any stratum that contains a zero-cell frequency.  For example, if 
there is a zero-cell frequency as shown below for the c-cell, then the computation simply includes a zero in a sum in the 
denominator of the mOR, but the total sum will not necessarily be zero. 
 

 
 
 
Study Questions (Q14.13) 
 

1. Suppose there are G=5 strata and that either the b-cell or c-cell is zero in each and every strata.  What will happen if 
you compute the mOR for these data? 

2. Suppose there are G=5 strata and that either the a-cell or d-cell is zero in each and every strata.  What will happen if 
you compute the mOR for these data? 

3. What do your answers to the above questions say about using the mOR when there are zero cell frequencies? 
 

 
Another nice feature of the mOR is that, even though it doesn’t look it, the mOR can be written as a weighted 

average of stratum-specific odds ratios provided there are no zero cells in any strata. So the mOR will give a value 
somewhere between the minimum and maximum-specific odds ratios over all strata, as will any weighted average.   

 

 
 

Still another feature of the mOR is that it equals 1 only when the Mantel-Haenszel chi square statistic equals zero.  
It is possible for the precision-based aOR to be different from 1 even if the Mantel-Haenszel chi square statistic is exactly 
equal to zero.  In general, the mOR has been shown to have good statistical properties, particularly when used with matched 
case-control data. So it is often used instead of the precision-based aOR even when there are no zero-cells or the data are not 
sparse. 

We now apply the mOR formula to the stratified data example we have previously considered.  Substituting the cell-
frequencies from each stratum into the mOR formula, the estimated mOR turns out to be 15.25: 
 
 



450   Lesson 14.  Stratified Analysis 

 

 
 
This adjusted estimate is somewhat higher than the crude odds ratio of 12.7 and much higher than the odds ratio of 

9.0 in stratum 2. Because stratum 1 has an undefined odds ratio, we cannot say whether there is evidence of interaction. 
However, because the crude and adjusted odds ratios differ, there is evidence of confounding. 
 
 
Study Questions (Q14.13) continued 
 
If a precision-based adjusted odds ratio is computed by adding .5 to each cell in stratum 1, the aOR that is obtained is 9.11.  
If, instead, .1 is added to each cell frequency in stratum 1, the aOR is 10.65. 
 

4. Compare the aOR results above with the previously obtained mOR of 15.25.  Which estimate do you prefer? 
 
 
Summary 
 

 For case-control studies as well as other studies involving the odds ratio, an alternative to a precision-based adjusted 
odds ratio is the Mantel-Haenszel odds ratio (mOR) 

 Corresponding to the mOR, the mRR or mIDR can be used in cohort studies. 
 A key feature of the mOR is that it may be used without modification when there are zero cells in some of the strata. 
 The mOR can also be written as a weighted average of stratum-specific odds ratios provided there are no zero cells 

in any strata. 
 The mOR equals 1 only when the Mantel-Haenszel chi square statistic equals zero. 
 The mOR has been shown to have good statistical properties, particularly when used with matched case-control 

data. 

RÔm
 
= 15.25 
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Formulae for Mantel-Haenszel Risk Ratio and Rate Ratio 
 
The Mantel-Haenszel risk ratio (i.e., mRR) is given by the following formula: 
 

 k

1i i

1ii

k

1i i

0ii

n
nb

n
na

RR̂m  

 
where the quantities in the formula come from the cell frequencies in the 2x2 table of the i-th stratum for a cumulative 
incidence cohort study: 
 

 Data Layout for Stratum i  
  E not E  

D ai bi m1i

not D ci di m0i

 n1i n0i ni 
 

The Mantel-Haenszel rate ratio (i.e., mIDR) is given by the following formula: 
 

 k

1i i

1i0i

k

1i i

0i1i

PT
PTI

PT
PTI

RD̂mI  

 
where the quantities in the formula come from the cell frequencies in the 2x2 table of the i-th stratum for a person-time 
study: 
 
 Person-Time Cohort Study 

Data Layout for Stratum i
 

 E not E  
D I1i I0i Ii

PT PT1i PT0i PTi

    
 

 
 

Compute Adjusted Odds Ratios (aOR and mOR) in DataDesk 
 
An exercise is provided to demonstrate how to compute adjusted odds ratios using the DataDesk program. 
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Quiz (Q14.14) 
  
True or False 
 

1. The practice of adding a small number to each of the cells of a two by two table to eliminate a zero cell is 
arbitrary and should be used with caution.  . .  . . . . ??? 

2. It is the adjusted estimate that is most affected by adding a small number to each cell rather than the 
stratum specific estimates.  . . . . . . . . ??? 

3. When there are zero cell frequencies, the use of Mantel-Haenszel adjusted estimates should be preferred 
since they can usually be calculated without adjustment.  . . . .  . ??? 

 
 

Interval Estimation 
 

Interval Estimation - Introduction 
 
We now describe how to obtain a large-sample confidence interval around an adjusted estimate obtained in a stratified 
analysis. This interval estimate can take one of the two forms shown here: 
 

 
 

The Z in each expression denotes a percentage point of the standard normal distribution. The  (“theta”) in each 
expression denotes the effect measure of interest. It can be either a difference measure, such as risk difference, or a ratio 
measure, such as a risk ratio. Typically,  is a weighted average of stratum specific effects. In particular, for risk difference 
measures,  will have a linear weighting as shown here: 
 

 
 

Mantel-Haenszel adjusted estimates for ratio effect measures also have linear weighting. 
 

 
 

For precision-based ratio estimates,  will have log-linear weighting. 
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The variance component within the confidence interval will take on a specific mathematical form depending on the 
effect measure. For precision-based measures, the variance component conveniently simplifies into expressions that involve 
the sum of weights. In particular, for precision-based difference measures, the confidence interval formula reduces to form 
shown here: 
 

 
 

For precision-based ratio measures, the formula is written this way: 
 

 
 

As an example, we again consider cohort data involving four strata. We have four risk ratio estimates, their 
corresponding precision-based weights and sample sizes, the crude risk ratio estimate, and corresponding sample size.  
 

 
 

The adjusted risk ratio turns out to be 1.71. To obtain the 95% precision-based interval estimate for this adjusted risk 
ratio, we start with the formula shown here:  
 

 
 

  We then substitute into the formula 1.71 for RR̂a and the values shown in the table for the four weights: 
 

 
 

The lower and upper limits of the confidence interval then turn out to be 1.03 and 2.84, respectively 
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Study Questions (Q14.15) 
 

1. How would you interpret the above confidence interval? 
 

 
 
2. Based on the information above, calculate a 95% confidence interval for the adjusted risk difference.  (You will need 

to use a calculator to carry out this computation.) 
3. How do you interpret this confidence interval? 

 
 
Summary 
 

 A large-sample interval estimate around an adjusted estimate can take one of the two forms: 
 

)ˆr(âVZˆ p  for difference effect measures and 

 

)ˆr(lnâVZexpˆ p  for ratio effect measures 

 For risk difference measures and for Mantel-Haenszel estimates,  will have linear weighting. 
 For precision-based ratio estimates,  will have log-linear weighting. 
 For precision-based measures, the variance component involves the sum of weights as follows: 

i

p

w

Zˆ  for difference measures 

 

i

p

w

Z
exp ˆ for ratio measures 

 
 

Interval Estimation for the mOR 
 
Consider again the case-control stratified data involving sparse strata that we previously used to compute a Mantel-Haenszel 
odds ratio. For these data, the estimated Mantel-Haenszel odds ratio is 15.25. 
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We find a 95% confidence interval around this estimate with the formula shown here: 
 

 
 

The variance term in this formula is a complex expression involving the frequencies in each stratum. We present the 
variance formula here primarily to show you how complex it is. Use a computer program to do the actual calculations, which 
we will do for you here. 
 

 
 

Substituting the frequencies in each stratum into the formulae for Pi, Qi, Ri, and Si, we obtain the values below.  The 
estimated variance is shown here: 

 

 
 

The 95% confidence interval is shown on the next page.  Although this interval does not contain the null value of 1, 
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it is nevertheless extremely wide, which should not be surprising given the sparse strata. 
 

 
 
 
Summary 
 

 A 95% confidence interval around a Mantel-Haenszel odds ratio is given by the formula: 

 R)Ômr(ln âV1.96exp RÔm  

 The variance term in this formula is a complex expression involving the frequencies in each stratum. 
 You should use a computer to calculate the variance term in the formula. 
 You should not be surprised to find a very wide confidence interval if all strata are sparse. 

 
 

Large-sample Interval Estimation of the Mantel-Haenszel Risk Ratio and Mantel-Haenszel Rate Ratio 
 

A large-sample 95% confidence interval for the Mantel-Haenszel risk ratio (i.e., rnRR) is given by the following formula; 
 

 R)R̂mr(ln âV1.96exp RR̂m    

 
 where 
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and the variance expression in the formula is given by 
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The quantities in the variance formula come from the cell frequencies in the 2x2 table of the i-th stratum for a 

cumulative-incidence cohort study: 
Continued on next page
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Large-sample Interval Estimation of the Mantel-Haenszel Risk Ratio and Mantel-Haenszel Rate Ratio (continued) 
 

 Data Layout for Stratum i  
  E not E  

D ai bi m1i

not D ci di m0i

 n1i n0i ni 
 

A large-sample 95% confidence interval for the Mantel-Haenszel Rate Ratio (i.e., mlDR) is given by the following 
formula: 
 

 R)D̂mIr(ln âV1.96exp RD̂mI     

 
where 
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and the variance expression in the formula is given by: 
 

 
k

1i i

1i0i
k

1i i

0i1i

k

1i
2
i

0i1ii

PT
PTI

PT
PTI

PT

PTPTI

R)D̂mIr(ln âV  

 
The quantities in the variance formula come from the cell frequencies in the 2x2 table of the i-th stratum for a person-

time cohort study:  
 
 Person-Time Cohort Study 

Data Layout for Stratum i
 

 E not E  

D I1i I0i Ii

PT PT1i PT0i PTi

    
 

 
 

Compute a Mantel-Haenszel Odds Ratios (mOR) and a Large-Sample Confidence 
Interval for the mOR in DataDesk 

 
An exercise is provided to demonstrate how to compute the Mantel-Haenszel odds ratio with a large sample confidence 
interval using the DataDesk program. 
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Quiz (Q14.16) 
 
A case-control study was conducted to determine the relationship between smoking and lung cancer. The data 
were stratified into 3 age categories. The results were: aOR = 4.51, and the sum of the weights = 3.44. 
 

1. Calculate a precision based 95% confidence interval for these data.. . . .  ??? 

2. Do these results provide significant evidence that smoking is related to lung cancer when controlling for 
age?   . . . . . . . . . . ??? 

 
Choices 
1.25, 10.78 1.57, 12.98 no yes 
 

 
 
 

14-6  Stratified Analysis (continued) 
 

Extensions to More Than 2 Exposure Categories 
 

2xC Tables 
 
A natural extension of stratified analysis for 2x2 tables occurs when there are more than two categories of exposure. In such 
a case, the basic data layout is in the form of a 2xC table where C denotes the number of exposure categories. We now 
provide an overview of how to analyze stratified 2xC tables. 
 
The tables shown here give the cholesterol level and the coronary heart disease status for 609 white males within two age 
categories from a 10-year cohort study in Evans County Georgia from 1960 to 1969. 
 

 
 

These data show three rather than two categories of exposure for each of the two strata. How do we carry out a 
stratified analysis of such data?  We typically carry out stratum-specific analyses and overall assessment, if appropriate, of 
the exposure-disease relationship over all strata.  But because there are three exposure categories, we may wonder how to 
compute the multiplicity of effect measures possible for each table, how to summarize such information over all strata, and 
how to modify the hypothesis testing procedure for more than 2 categories. 

Typically we compute several effect measures, each of which compares one of the exposure categories to a referent 
exposure category.  In general, if there are C categories of exposure, the basic data layout is a 2xC table. The typical analysis 
then produces C-1 adjusted estimates, comparing C-1 exposure categories to the referent category. 
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 E1 E2 E3 … Ec 
D      
not D      

 
Adjusted Estimates: 

1-c321 RR̂a ... RR̂a RR̂a RR̂a  
 

In our example, we will designate low cholesterol to be the referent category. Because we have cumulative-
incidence cohort data, we compute two risk ratios per stratum, one comparing the High Cholesterol category to the Low 
Cholesterol Category and the other comparing the Medium Cholesterol category to the Low Cholesterol category. Below 
are these estimates for each age group, and precision-based adjusted estimates over both age groups.  These results indicate a 
slight dose-response effect of cholesterol on CHD risk. That is, the effect, as measured by the risk ratio, decreases as the 
index group changes from high cholesterol to medium cholesterol, when each group is compared to the low cholesterol 
group. 
 

 
 

95% confidence intervals for both stratum specific and adjusted odds ratios are shown below. The intervals for 
adjusted risk ratios are obtained using the previously described formula involving the sum of the weights. 
 

 
 
 
Study Questions (Q14.17) 
 

1. Based on the information provided above, is there evidence that age is an effect modifier of the relationship between 
cholesterol level and CHD risk? 

2. Based on your answer to the previous question, is it appropriate to carry out overall assessment in this stratified 
analysis? 

3. Is there evidence of confounding due to age? 
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Summary 
 

 When there are more than two categories of exposure, the basic data layout is in the form of a 2xC table where C 
denotes the number of exposure categories. 

 As with stratified 2x2 tables, the goal of overall assessment is an overall adjusted estimate, and overall test of 
hypothesis, and an interval estimate around the adjusted estimate. 

 When there are C exposure categories, the typical analysis produces C-1 adjusted estimates, which compare C-1 
exposure categories to a referent category. 

 
 

Test for Trend 
 
We now describe how to test hypotheses for stratified data with several exposure categories. We again consider the Evans 
County data shown here relating cholesterol level to the development of coronary heart disease stratified by age. 
 

 
 

The exposure variable, cholesterol level, has been categorized into three ordered categories. We can see that, for 
each stratum, the CHD risk decreases as the cholesterol level decreases. 

To see whether these stratum specific results are statistically significant, we must perform a test for trend. Such a 
test allows us to evaluate whether or not there is a significant dose-response relationship between the exposure variable and 
the health outcome.  The test for trend can be performed using an extension of the Mantel-Haenszel test procedure. This 
test requires that a numeric value or score be assigned to each category of exposure.  For example, the three ordered 
categories of exposure could be assigned scores of 2 when cholesterol is greater than 233, 1 when cholesterol is between 184 
and 233, and 0 if cholesterol is below 184. 
 

 
 

Alternatively, the scores might be determined by the mean cholesterol value in each of the ordered categories. For 
these data, then, the scores turn out to be 265.0, 207.8 and 164.4 for the high, medium, and low cholesterol categories, 
respectively. 
 

 
 

The general formula for the test statistic is shown here: 
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The number of strata is G. Typically this formula should be calculated using a computer. In our example, there are 
two age strata, so G=2. The trend test formula then simplifies as shown here (the box at the end of this activity shows how to 
perform the calculations): 
 

 
 

We will use this simplified formula to compute the test for trend where we will use as our scores rounded, mean-
cholesterol values for each cholesterol category. Here are the results: 
 

 
 
 
Study Questions (Q14.18) 
 

1. Give two equivalent ways to state the null hypothesis for the trend test in this example. 
2. Based on the results for the trend test, what do you conclude? 
3. If a different scoring method was used, what do you think would be the results of the trend test? 

 
 

Let’s see what the chi square results would be when we use a different scoring system. Here are the results when we 
use 2, 1, and 0. 
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Study Questions (Q14.18) continued 
 

4. How do the results based on 2, 1, 0 scoring compare to the results based on 265, 208, 164? 
5. What might you expect for the trend test results if the scoring was 3, 2, 1 instead of 2, 1, 0? 

 
 
Summary 
 

 If the exposure variable is ordinal, a one degree of freedom (df) chi square test for linear trend can be performed 
using an extension of the Mantel-Haenszel test procedure. 

 Such a “trend” test can be used to evaluate whether or not there is a linear dose-response relationship of exposure to 
disease risk. 

 To perform the test for trend, a numeric value or score must be assigned to each category of exposure. 
 The null hypothesis is that the risk for the health outcome is the same for each exposure category. 
 The alternative hypothesis is that the risk for the health outcome either increases or decreases as exposure level 

increases. 
 The test statistic is best calculated using a computer. 

 
Calculating the Mantel-Haenszel Test for Trend involving Several Exposure Categories 

 
Here we describe how the Mantel-Haenszel (MH) Test is extended to test for significant trend over several (ordinal) 
exposure categories. For this test, the data layout for the i-th stratum is given as follows: 
 
 E1 E2 E3 … EC  

D ai1 ai2 ai3  aiC m1i

not D      m0i

 ni1 ni2 ni3  niC ni 
The test statistic is given by the following general formula: 
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The terms in the above formula are defined as follows:  

 
C
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  Sj = the assigned score for the j-th exposure category 
 
 
 
 

Continued on next page
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Calculating the Mantel-Haenszel Test for Trend involving Several Exposure Categories (continued) 
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Under the null hypothesis of no significant overall trend of the effect measure over the exposure categories, the MH 

test for trend statistic is approximately chi square with 1 degree of freedom. For the special case when there are G=2, 
strata, the MH trend statistic simplifies to:  
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Testing for Trend Using Logistic Regression 
 
The test for trend that we described in the previous activity can alternatively be carried out using a logistic regression 
model.  Here again is the logistic model and its equivalent logit form as defined in an earlier lesson: 
 

 
 

The X independent variables or predictors; Y is the dichotomous dependent or outcome 
variable, indicating whether or not a person develops the disease.  We now describe the specific form of this model for the 
previously considered Evans County data, relating three categories of cholesterol to the development of CHD within 2 age 
categories. These data are shown again here: 
 

 
 

The logistic model appropriate for the trend test for these data takes the following logit form: 
 

 
 

The E variable in this model represents cholesterol. The A variable represents age. More specifically, E is an ordinal 
variable that assigns scores to the three categories of exposure. The scores can be defined as the mean cholesterol value in 
each cholesterol category: 
 

 
 

If the scores are instead, 2, 1, and 0, then we define the E variable as shown here: 
 

 
 

’s in the model are the 
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The A variable is called a dummy or indicator variable; it distinguishes the two age strata being considered: 
 

 
 
 
Study Questions (Q14.19) 
 
 In general, if there are S strata, then S – 1 dummy variables are required.  For example, if there were 3 strata, then 2 
dummy variables are required.  One way to define the 2 variables would be: 
 
 A1 = 1 if stratum 1, else 0, A2 = 1 if stratum 2, else 0 
 
 For such coding: 
 

A1 = 1, A2 = 0 for stratum 1 
A1 = 0, A2 = 1 for stratum 2 
A1 = 0, A2 = 0 for stratum 3 
 
Using such coding, stratum 3 is called the referent group. 

 
 Suppose we wanted to stratify by two categories of age (e.g., 1 = Age > 55 vs. 0 = Age < 55) and by gender (1 = 
females, 0 = males). 
 

1. How many dummy variables would you need to define? 
2. How would you define the dummy variables (e.g., D1, D2, etc.) if the referent group involved males under 55 years 

old? 
3. Define the logit form of the logistic model that would incorporate this situation and allow for a trend test the uses 

mean cholesterol values as the scores. 
 

For the model involving only 2 age strata, the null hypothesis for the test for trend is that the true coefficient of the 
exposure variable, E, is zero. This is equivalent to saying there is no linear trend in the CHD risk, after controlling for age. 
The alternative hypothesis is that there is a linear trend in the CHD risk, after controlling for age. 
 

 
 

We use a computer program to fit the logistic model to the Evans County data. When we define the E variable from 
the mean cholesterol in each exposure category, a chi square statistic that tests this null hypothesis has the value 4.56.  

 

 
 

This statistic is called the Likelihood Ratio statistic and it is approximately a chi square with 1 df. The P-value for 
this test turns out to be 0.0327. Because the P-value is less than .05, we reject the null hypothesis at the 5% significance level 
and conclude that there is significant linear trend in these data. 
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Study Questions (Q14.19) continued 
 
When exposure scores are assigned to be 2, 1, and 0 for HI-CHL, MED-CHL, and LO-CHL, respectively, the corresponding 
Likelihood Ratio test for the test for trend using logistic modeling yields a chi square value of 5.09 (P = .0240). 
 

4. How do these results compare with the results obtained using mean cholesterol scores? (chi square = 4.56, P = .0327) 
 

When computing the test for trend in the previous activity (using a summation formula), the results were as follows:  
 
Mean cholesterol scores:   chi square = 4.60 (P = .0320) 
2, 1, 0 scores:   chi square = 5.04 (P = .0248) 

 
5. Why do you think these latter chi square results are different from the results obtained from using logistic regression?  

Should this worry you? 
 
 
Summary 
 

 Testing hypothesis involving several categories of exposure can be carried out using logistic regression. 
 If the exposure is nominal, the logistic model requires dummy variables to distinguish exposure categories. 
 If the exposure is ordinal, the logistic model involves a linear term that assigns scores to exposure categories. 
 For either nominal or ordinal exposure variables, the test involved a 1 df chi square statistic. 
 The null hypothesis is no overall association between exposure and disease controlling for stratified covariates. 
 Equivalently, the null hypothesis is the coefficient of the exposure variable in the model is zero. 
 The test can be performed using either a likelihood ratio test or a Wald test, which usually give similar answers, 

though not always. 
 
 
Quiz (Q14.20) 
 
The data to the right are from a case-control study conducted to investigate the 
possible association between cigarette smoking and myocardial infarction (MI). All 
subjects were white males between the ages of 50 and 54. Current cigarette smoking 
practice was divided into three categories: nonsmokers (NS), light smokers (LS), who 
smoke a pack or less each day, and heavy smokers (HS), who smoke more than a 
pack per day. 
 

1. What is the odds ratio for HS vs. NS? ??? 

2. What is the odds ratio for LS vs. NS? ??? 
 
Choices 
1.47 1.78 2.66 2.70 3.06 
 
All subjects were categorized as having "high" or "low" social status (SS) according to their occupation, education, 
and income. The stratum-specific data are shown below. 
 

    Quiz continued on next page 
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3. Calculate the stratum specific odds ratios:  
a. High SS: HS vs. NS ??? 

b. High SS: LS vs. NS ??? 

c. Low SS: HS vs. NS ??? 

d. Low SS: LS vs. NS ??? 
 

4. Is it appropriate to conduct an overall assessment for these data? ???  
 
Choices 
0.01 1.20 1.93 3.50 3.60 5.40 maybe   no yes 
 
Consider the following results:  

Crude OR, HS vs. NS = 2.66  
Crude OR, LS vs. NS = 1.47  
Adjusted OR, HS vs. NS = 2.38  
Adjusted OR, LS vs. NS = 1.20 

 
5. Do these results provide evidence of trend? ???  

 
Choices 
no yes 
 
 
The Mantel-Haenszel test for trend was performed using scores of 0, 1, 2 for nonsmokers, light smokers, and 
heavy smokers, respectively. The Mantel-Haenszel Chi-square statistic = 5.1. This corresponds to a one-sided p-
value of 0.012. 
 

6. What do you conclude at the 0.05 level of significance? ???  
7. What do you conclude at the 0.01 level of significance? ???  

 
Choices 
fail to reject H0  reject H0 

 
 

8. An alternative test for trend for these data can be performed using a logistic model. Define the logit form of 
the logistic model that would incorporate this situation and allow for a trend test. ??? 

 
Choices 
Logit P = b0 + b1SMK + b2SES 
Logit P = b0 + b1SMK + b2SES1 + B3SES2 
Logit P = b0 + b1SMK + b2SMK2 + B3SMK3 + b4SES 
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Homework 
 
ACE-1.  Looking at Stratified Data 
 

A case-control study was performed to assess the relationship between alcohol consumption (ALC) and oral cancer (OCa).  
The results, stratified on smoking status, are displayed below: 
 

 
 

 
Current Smoker   Former Smoker 

 
 

 
ALC 

 
no ALC   ALC no ALC 

 
OCa 

 
42 

 
7  OCa 100 2 

 
No OCa 

 
3 

 
4  no OCa 48 5 

 
 
 Never Smoker 
 
 ALC no ALC 
 
OCa 158 4 
 
no OCa 125 8 

 
a. What is the crude odds ratio for these data? 
b. Calculate the stratum-specific ORs.  Is there evidence of effect modification by smoking status?  Justify your answer.  
c. Which of the following would be appropriate for the analysis of these data? [You may choose MORE than one.] 

i. Calculate an overall summary odds ratio for the relationship between alcohol and oral cancer, adjusted for 
smoking status. 

ii. Report stratum-specific effects. 
iii. Calculate 2 tests of association for the alcohol-oral cancer relationship SEPARATELY for the three strata. 
iv. Compare the crude and adjusted estimated ORs to determine whether there is confounding by smoking status. 
v. Calculate a test of heterogeneity to help determine whether there is effect modification by smoking status. 

 
 
 
 
 
 
 
 

χ
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ACE-2.  Overall Assessment 
 
Suppose another case-control study of the same exposure-disease relationship (i.e. alcohol and oral cancer) was performed, 
but this study was restricted to never smokers. Results of this study, stratified on age, are displayed below: 
  
 

 
Age 40-49 

 
  Age 50-59 

 
 

 
ALC 

 
no ALC 

 
  ALC no ALC 

 
OCa 

 
4 

 
25 

 
 OCa 12 10 

 
No OCa 

 
22 

 
309 

 
 no OCa 37 67 

 
 
 Age 60+ 
 
 

 
ALC no ALC 

 
OCa 

 
11 12 

 
no OCa 

 
31 67 

 
a. What is the crude odds ratio for these data? 
b. Calculate the stratum-specific ORs.  Is there evidence of effect modification by age?  Justify your answer.  
c. Is the observed overall association between ALC and OCa, stratified on age, statistically significant? (Answer this 

question by carrying out an appropriate 2 test.  Be sure to state the null hypothesis and the p-value for the test.) 
d. Calculate a precision-based summary odds ratio.  Show your calculations. Which stratum has the smallest variance? 

Justify your answer. 
e. Calculate a Mantel-Haenszel summary odds ratio.  Show your calculations.  Based on this summary estimate, is there 

evidence of confounding by age in these data? Justify your answer. 
 
ACE-3.  Paternal Radiation Exposure and Birth Defects 
 
A case-control study was conducted to assess whether paternal radiation exposure on the job was associated with birth 
defects. The investigators were concerned with maternal age as a potential confounder, so they stratified the data as follows: 
  

 
 

Maternal age >35   Maternal age <35 
 
 

 
Radiation 

 
No 

Radiation 
  Radiation No 

Radiation 
 
Birth Defect 

 
21 

 
26  Birth Defect 18 88 

 
Control 

 
17 

 
59  Control 7 95 

 
a. Calculate a Mantel-Haenszel summary odds ratio. Show your calculations. 
b. Is there evidence of confounding by maternal age in these data? Justify your answer. 
c. Is the observed association between paternal radiation exposure and birth defects, controlling for maternal age, 

statistically significant? (Answer this question by carrying out an appropriate statistical test. Be sure to state the null and 
alternative hypotheses and provide a p-value.) 

d. Calculate a test-based 95 % confidence interval for the summary estimate in part a above. (See “Hint” at the end of this 
entire question) 

e. When possible, information on paternal radiation exposure (for the study described above) was taken from employment 
records rather than from subject interviews. This was done in an effort to MINIMIZE which of the following? [Choose 
ONE best answer]: 
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i. Detection bias 
ii. Differential misclassification of the outcome 
iii. Recall bias 
iv. Selection bias 

 

alternative method for calculating a confidence interval that avoids having to calculate an complex mathematical 
expression for the estimated variance of ˆ . For a ratio measure of effect (e.g., OR, RR, IDR), the 95% test-based 
formula is given as follows: 

                                ) MHS1.96/   ˆ  

 
 
ACE-4.  Lead Exposure and Low Birth Weight 
 
The relation between paternal occupational lead exposure and low birth weight was examined in a retrospective cohort study. 
Men with a blood lead level (BLL) > 50 micrograms per deciliter were considered exposed. Low birth weight (LBW) was 
defined as a birth weight of less than 2500 grams. Data from the study, stratified on maternal age at child’s birth, are 
provided below: 

 
 
 

 
Maternal Age <20   

 
Maternal Age 21+ 

 
 

 
High BLL Low BLL   High BLL 

 
Low BLL 

 
LBW 

 
45 30  LBW 68 

 
48 

 
No LBW 

 
169 214  No LBW 257 

 
354 

 
a. Is maternal age an independent risk factor for LBW in these data? Show any calculations and justify your answer. 
b. Use the data-based method to determine whether there is confounding by maternal age in this study. Show any 

calculations and justify your answer. 
c. Is the observed association between paternal blood lead level and low birth weight, controlling for maternal age, 

statistically significant?  Answer this question by carrying out an appropriate statistical test. Be sure to state the null and 
alternative hypotheses and provide a p-value or p-value range. 

d. Calculate an overall summary risk ratio that gives equal weight to the two strata defined above. (i.e. a simple average) 
e. Calculate a 95% test-based confidence interval for the summary estimate determined for part d above. (See “Hint” at the 

the end of question 3 for the formula of a test-based confidence interval.) 
f. Suppose that, prior to analyzing the data, the investigators were concerned about the possibility of residual confounding. 

Which of the following would have been a useful method of addressing this concern? [Choose one best answer]: 
 

__Dividing blood lead level (BLL) into additional, narrower categories 
__Dividing low birth weight (LBW) into additional, narrower categories 
__Dividing maternal age into additional, narrower categories 
__All of the above 

 
g. Is there evidence of effect modification (by maternal age) on an additive scale in these data? Show any calculations and 

justify your answer. 
h. Based upon your answer to part 3.G. above, which of the following would be appropriate for the next step in the analysis 

of these data? [Choose one best answer]: 
__Report stratum-specific risk differences 
__Calculate an overall adjusted risk difference and associated confidence   interval 
__Report the crude risk difference  
__Perform a statistical test to assess whether there is confounding by maternal age 
__None of the above options is appropriate 

Hint: A test-based confidence interval for a measure of effect θ  (e.g., θ  is an OR or an RR) provides an 

where MHS  is the square-root of the Mantel-Haenszel chi-square statistic for a stratified analysis) χ
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ACE-5.  Stratified Analysis: Effect Modification 
 
When effect modification is present in a stratified analysis, how should the data be presented? (Choose one best answer.) 

 
_____ Provide the crude measure of association 

 
_____ Provide the adjusted measure of association 

 
_____ Provide the stratum-specific measures of association 

 
_____ None of the above 

 
ACE-6.  Stratified Analysis: Confounding 
 
When confounding is present in a stratified analysis, how should the data be presented? [Choose one best answer]: 
 

_____ Provide the crude measure of association 
 

_____ Provide the adjusted measure of association 
 

_____ Provide the stratum-specific measures of association 
 

_____ None of the above 
 
ACE-7.  Alcohol Consumption and Bladder Cancer: Race 
 
A case-control study was conducted to assess the potential relationship between alcohol consumption and bladder cancer. 
Data from the study are summarized below, stratified on three race categories. In answering some of the questions below you 
may wish to use the Datadesk template Stratified OR/RR.ise. 
 

 White   Black 
 
 

 
ALC 

 
no ALC 

 
  ALC no ALC 

 
Case 

 
72 

 
41 

 
 Case 93 54 

 
Control 

 
106 

 
105 

 
 Control 113 113 

 
 Asian 
 
 ALC no ALC 
 
Case 68 33 
 
Control 78 142 

 
a. Calculate the stratum-specific ORs.  Is there evidence of effect modification by race?  Justify your answer. (You might 

use a statistical test here, i.e., the Breslow-Day test, in addition to comparing the point estimates for the three strata.) 
b. Should you do an overall Mantel-Haenszel test for association that controls for race using all three strata?  Justify your 

answer.  
c. Considering only the information of black and white subjects, Is the observed overall association between ALC and 

Bladder Cancer, stratified on race, statistically significant? (Be sure to state the null    hypothesis and the p-value for the 
test.) 

d. Should you estimate an overall adjusted odds ratio that controls for race using all three strata? Justify your answer. 
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e. Considering only the information of black and white subjects, calculate both a precision-based aOR and a mOR. For the 
aOR, which group, black or white, receives more weight? 

f. Calculate and compare 95% CIs for the aOR and mOR. 
g. What do you conclude about the ALC, bladder cancer relationship? 

 
 
ACE-8.  Physical Activity and Incidence of Diabetes 
 
A cohort study of physical activity (PA) and incidence of diabetes was conducted over a six-year period among Japanese-
American men in Honolulu. Data from that study are summarized below, stratified on body mass index. In answering some 
of the questions below you may wish to use the Datadesk template Stratified IDR/IDD.ise. 
 

 
 

 
High BMI   Low BMI 

 
 

 
High PA 

 
Low PA   High PA Low PA 

 
Diabetes 

 
48 

 
62  Diabetes 54 71 

 
Person-yrs 

 
1050 

 
1067    Person-yrs 1132 1134 

 
a. Is there evidence of effect modification by BMI? Justify your answer. 
b. Calculate and compare a precision-based aIDR and a mIDR. 
c. Is there evidence of confounding by BMI in these data? 
d. Should you estimate an overall adjusted odds ratio that controls for BMI using all three strata? Justify your answer. 
e. Is the observed association between physical activity and diabetes, controlling for BMI, statistically significant? Be sure 

to state the null and alternative hypotheses being tested, the test statistic, and the P-value. 
f. Calculate and compare 95% confidence intervals for the aIDR and mIDR. 
g. What do you conclude about the relationship between PA and Diabetes based on these data? 
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Answers Study Questions and Quizzes 
 
Q14.1 
 

1. For both smokers and non-smokers separately, there 
appears to be no association between exposure to 
TXC and the development of lung cancer.  Never the 
less, it may be argued that the RR of 1.3 for smokers 
indicates a moderate association; however, this 
estimate is highly non-significant. 

2. No, the two stratum-specific risk ratio estimates are 
essentially equal.  Again, the RR of 1.3 for smokers 
indicates a small effect, but is highly non-significant. 

3. No, even though the crude estimate of effects is 2.1, 
the correct analysis requires that smoking be 
controlled, from which the data show no effect of 
TCX exposure.  An adjusted estimate over the two 
strata would provide an appropriate summary statistic 
that controls for smoking. 

4. Since the adjusted point estimate is close to the null 
value of 1 and the Mantel-Haenszel test statistic is 
very non-significant, you should conclude that there 
is no evidence of and E-D relationship from these 
data 

 
Q14.2 
 

1. Yes, the odds ratio of 11.67 is very high and the MH 
test is highly significant and, even though the 
confidence interval is wide, the interval does not 
include the null value. 

2. The association may change when one or more 
variables are controlled.  If this happens and the 
control variables are risk factors, then an adjusted 
estimate or estimates would be more appropriate. 

3. Not necessarily.  If one or more of these variables are 
not previously known risk factors for MRSA status, 
then such variables may not be controlled. 

4. Some (n=5) study subjects had to having missing 
information on either MSRA status or on previous 
hospitalization information.  In fact, it was on the 
latter variable that 5 observations were missing. 

5. No, the stratum-specific odds ratios within different 
age groups are very close (around 11). 

6. No, the P-value of .95 is very high, indicating no 
evidence of interaction due to age. 

7. Yes, overall assessment is appropriate because there 
is no evidence of interaction due to age. 

8. No, the crude and adjusted odds ratios are essentially 
equal. 

9. Yes, the Mantel-Haenszel test for stratified data is 
highly significant (P<.0001). 

10. The confidence interval is quite wide, indicating that 
even though the adjusted estimate is both statistically 
and meaningfully significant, there is little precision 

in this estimate. 
11. Yes, overall assessment is appropriate because there 

is no evidence of interaction due to gender. 
12. No confounding since, when controlling for gender, 

the crude and adjusted odds rations are essentially 
equal. 

13. Yes, the Mantel-Haenszel test for stratified data is 
highly significant (P<.0001). 

14. The answer to this question is “maybe.”  There 
appears to be interaction because the odds ratio is 
8.48 with previous drug use but only 3.66 with no 
previous drug use.  However, both odds ratio 
estimates are on the same side of 1, so an adjusted 
estimate will not be the result of opposite effects 
canceling each other.  Moreover, the BD test for 
interaction is non-significant, which supports doing 
overall assessment. 

15. Yes, when controlling for previous drug use, the 
crude odds ratio of 11.67 is quite different than the 
much smaller odds ratio of 5.00. 

16. Yes, the Mantel-Haenszel test for stratified data is 
highly significant (P<.0001), and although the 
confidence interval is wide, it still does not contain 
the null value. 

 
Q14.3 
 

1. Previous antimicrobial drug use needs to be 
controlled because it is a confounder. 

2. Yes, precision is gained from controlling for previous 
antimicrobial drug use, since the width of the 
confidence interval for the adjusted estimate is much 
narrower than the width of the corresponding 
confidence for the crude data. 

3. No, neither the adjusted odds ratio nor the confidence 
interval nor the MH P-value changes either 
significantly or meaningfully when comparing the 
results that control for PADMU alone with results 
that control for additional variables. 

4. No, all P-values are quite large, indicating that the 
null hypothesis of no interaction should not be 
rejected.  However, perhaps a comparison of stratum-
specific estimates may suggest interaction when more 
than one variable is controlled. 

5. Because the estimated odds ratio is undefined in a 
stratum with a zero cell frequency. 

6. OR=4.66 is an appropriate choice because it controls 
for all three variables. being considered for control.  
Alternatively, OR=5.00 is also appropriate because it 
results from controlling only for previous 
antimicrobial drug use, which is the only variable that 
affects confounding and precision. 

7. Yes, the adjusted odds ratio (close to 5.00) indicates a 
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strong effect that is also statistically significant.  The 
95% confidence interval indicates a lack of precision, 
but the results are overall indicative of a strong 
effect. 

8. (Note: there is no question 8) 
9. There are small numbers, including a number of 

zeros in almost all tables. 
10. Stratum-specific analyses, even when there are no 

zero cells, are on the whole unreliable because of 
small numbers. 

11. Yes, the odds ratio estimate in table 5 is 24.00 
whereas the odds ratio in table 6 is 1.71 and the odds 
ratio in table 1 is 5.89, all quite different estimates. 

12. The BD test is not significant, all odds ratio 
estimates, though different, are all on the same side 
of the null value, and the strata involve very small 
numbers. 

 
Q14.4 
 

1. F – Stratification also involves performing an overall 
assessment when appropriate. 

2. T 
3. T 
4. F – An overall summary estimate may be considered 

inappropriate if there is considerable evidence of 
interaction. 

5. T 
6. No, Maybe, Yes 

 
Q14.5 
 

1. For a one-sided alternative, the area in the right tail is 
twice the P-value, so the one-sided P-value is half of 
.28, or .14. 

2. Do not reject the null hypothesis of no overall effect.  
There is no evidence that exposure to TCX is 
associated with the development of lung cancer when 
controlling for smoking. 

3. If there was interaction on opposite sides of the null, 
then one of the two terms in the sum would be 
negative and the other would be positive.  
Consequently, the sum of these terms might be close 
to zero, yielding a non-significant chi square test, 
even if the stratum-specific tests were both 
significant. 

 
Q14.6 
 

1. Most definitely.  The numerator is always a sum of 
quantities that are then squared, in contrast to a sum 
of quantities that are squared before summing.  
Consequently, large positive values from some strata 
may cancel out large negative values of other strata, 
leading to a non-significant MH test. 

2. If the stratum-specific effects are all on the same side 

of the null value, than all quantities in the numerator 
of the test statistic have the same sign and therefore 
cannot cancel each other out. 

 
Q14.7 
 

1. For a one-sided alternative, the area in the right tail is 
twice the P-value so the one-sided P-value is half of 
.04, or .02. 

2. The null hypothesis of no overall effect would be 
rejected at the 5 percent level but not at the 1 percent 
level. 

 
Q14.8 
 

1. 0.79 
2. 0.76 
3. 0.77 
4. No (To compute the crude IDR, you need to combine 

the data over both strata). 
5. No 
6. increased precision 
7. fail to reject the null hypothesis 
8. reject the null hypothesis 

 
Q14.9 
 

1. B 
2. F: A larger confidence interval means less precision 

and hence a smaller weight. 
3. F: The magnitude of the risk ratio is not a factor in 

determining precision-based weights. 
4. T 
5. T 

 
Q14.10 
 

1. Remember that sample size is not as important as a 
balanced data set in determining precision.  The 
weights correspond to how balanced the data sets are.  
The more balance, the higher the weight. 

 
Q14.11 
 

1. 4.00 
2. 4.69 
3. Black or Hispanic 
4. 4.16 
5. debatable – The crude POR of 3.59 and the adjusted 

POR of 4.16 are different but not that far apart, so 
deciding whether there is a meaningful difference is 
debatable.  Note, however, that if we require a 10% 
difference for judging confounding, then 3.59 is 
below a 10% negative change (3.64) in the adjusted 
POR.  Thus, using a 10% change rule, we would 
conclude that there is confounding. 



475    

 

 
Q14.12 
 

1. OR(modified by 0.1) = (5.1x5.1) / (0.1x6.1) = 42.6 
2. OR(modified by 1.0) = (6x6) / (1x7) = 5.1 
3. The modified stratum-specific odds ratio may change 

radically depending on what value is used to adjust 
all cell frequencies in a stratum with a zero cell 
frequency.  Consequently, such an approach is quite 
problematic. 

4. 

11.9
0590.1

4541.18862.exp

6618.3972.
)}00.9ln(6618{.)}31.9ln(3972{.exp

ˆROa
 

5. 

65.10
7565.

4541.13354.exp

6618.0947.
)}00.9ln(6618{.)}64.42ln(0947{.exp

ˆROa
 

6. They are different (9.11 using a .5 adjustment vs. 
10.65 using a .1 adjustment), but not very different. 

7. It does not seem that the choice of adjustment factor 
has a great impact on the resulting aOR, even though 
it can have a great impact on the value of the odds 
ratio in the stratum being adjusted. 

 
Q14.13 
 

1. The mOR will be undefined because each term in the 
sum in the denominator will be zero. 

2. The mOR will be undefined because each term in the 
sum in the numerator will be zero. 

3. It is possible, although unlikely, that having zero cell 
frequencies in every stratum may make the mOR 
undefined.  Nevertheless, if such a situation occurs, 
the mOR will not work.  Instead, you may have to 
use as an alternative the approach that adds .5 to each 
cell frequency in any stratum with a zero cell. 

4. All three adjusted estimates are different, with the 
mOR being quite separate from the aOR estimates.  
A key reason for preferring the mOR is that it avoids 
using an arbitrary modifying value like .5 or .1.  
Also, the mOR has good statistical properties as 
described earlier. 

 
Q14.14 
 

1. True 
2. False – It is the stratum-specific estimates that are 

most affected by adding a small number to each cell. 
3. True 

 
 

Q14.15 
 

1. The null value of 1 is not contained in the confidence 
interval, but just barely.  Although the interval is not 
very wide, the point estimate of 1.71 is somewhat 
unreliable since the interval ranges from essentially 
no association to a moderately strong association. 

2. 95% CI for aRD:  

.1735) ,0035.(

0885.0850.

2243.490
96.10850.

 

3. The null value of 0 is just barely contained in the 
interval.  Although the interval is not very wide, the 
point estimate of .0850 is somewhat unreliable since 
the interval ranges from essentially no association to 
a moderately strong association of .17 for a risk 
difference. 

 
Q14.16 

 
1. 1.57, 12.98 
2. yes 

 
Q14.17 
 

1. The estimated risk ratios comparing HI-CHL with 
LO-CHL do not differ very much between the two 
age groups (2.51 vs. 2.15).  Similarly, when 
comparing MED-CHL with LO-CHL, the estimated 
risk ratios do not differ very much between the two 
age groups (2.25 vs. 1.90).  Overall, these findings 
indicate no meaningful interaction of age with 
cholesterol level. 

2. Overall assessment is appropriate because there is no 
evidence of interaction, particularly on opposite sides 
of the null value. 

3. No evidence of confounding, since crude and 
adjusted estimated are essentially equivalent when 
comparing HI vs. LO Cholesterol groups and when 
comparing MED vs. LO Cholesterol groups. 

 
Q14.18 
 

1. (1) There is no significant trend in the CHD risk over 
the three categories.  (2) The risks in each strata are 
the same. 

2. Since the P-value is 0.0320 (two-sided), conclude 
that there is a significant trend in the CHD risks over 
the three categories using the scoring method 
involving mean CHL values within each CHL 
category. 

3. The chi square statistic for trend would likely change 
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somewhat, but would probably lead to the same 
conclusion obtained for other scoring methods, 
although no guarantee that this would always occur. 

4. The chi square statistic and corresponding P-values 
are slightly different, but both statistics would reject 
the null hypothesis of no linear trend at the .05 
significance level. 

5. Identical chi square statistics and corresponding P-
values.  The reason: scores are equally distant.  This 
would also be the case if the scores where 15, 10, and 
5. 

 
Q14.19 
 

1. Three dummy variables, because there would be 2x2 
= 4 age-by-gender strata. 

2. D1 = 1 if female > 55 years, else 0; D2 = 1 if female 
< 55 years, else 0; and D3 = 1 if male > 55 years, else 
0. 

3. logit P = b0 + b1E + b2D1 + b3D2 + b4D3 where E 
takes on the three values 265, 208, and 164 for the 
three cholesterol strata. 

4. They are slightly different, as might be expected, but 
they lead to the same conclusion about the null 
hypothesis.  It is possible, however, that different 
scoring systems can give different conclusions. 

5. The logistic regression approach uses a slightly 
different approach (called maximum likelihood) for 
obtaining model estimates and the corresponding 
tests than the earlier approach (summation formula).  
Although both approaches can lead to slightly 
different answers, they are equivalent if the sample 
sizes are large enough.  Nevertheless, the logistic 
regression approach is preferred by most statisticians 
because of the properties of maximum likelihood 
estimates. 

 
Q14.20 
 

1. 2.66 
2. 1.47 
3. a. 3.60; b.1.20; c. 1.93; d. 1.20 
4. maybe: There is some evidence of interaction here, 

but since it is same side interaction, the investigator 
must decide whether the difference in 3.6 versus the 
other estimates is meaningful. 

5. yes 
6. reject H0 
7. fail to reject H0 
8. Logit P = b0 + b1SMK + b2SES 

 
 

 
 
 



  

 

 
 
 
 

LESSON   1155  

 
Matching 

 
Matching is an option for control that is available at the study design stage. We previously introduced matching on page 13-
2 in Lesson 13.  We suggest that you review that activity before proceeding further with this lesson.  The primary goal of 
matching is to gain precision in estimating the measure of effect of interest. There are other advantages to matching as well, 
and there are disadvantages. In this lesson, we define matching in general terms, describe different types of matching, 
discuss the issue of whether to match or not match, and describe how to analyze matched data. 
 

15-1 Matching 
 

Definition and Example of Matching 
 
Reye’s syndrome is a rare disease affecting the brain and liver that can result in delirium, coma, and death. It usually affects 
children and typically occurs following a viral illness. 

To investigate whether aspirin is a determinant of Reye’s syndrome, investigators in a 1982 study carried out a 
matched case-control study that used a statewide surveillance system to identify all incident cases with Reye’s syndrome in 
Ohio. Population-based matched controls were selected as the comparison group. Potential controls were first identified by 
statewide sampling of children who had experienced viral illnesses but who had not developed Reye’s syndrome. Study 
controls were then chosen by individually matching to each case one or more children of the same age and with the same 
viral illness as the case. Parents of both cases and controls were asked about their child’s use of medication, including aspirin, 
during the illness. 
 
 
Study Questions (Q15.1) 
 

1. Why do you think that type of viral illness was considered as one of the matching variables in this study? 
2. Why do you think age was selected as a matching variable? 

 
 

This study is a classic example of the use of individual matching in a case-control study. Although the simplest form 
of such matching is one-to-one or pair matching, this study allowed for more than one control per case. 

Matching typically involves two groups being compared, the index group and the comparison group. In a case-
control study, the index group is the collection of cases, for example, children with Reye’s syndrome, and the comparison 
group is the collection of controls. 

If the study design was a cohort study or clinical trial, the index group would instead be the collection of exposed 
persons and the comparison group would be the collection of unexposed persons. Because matching is rarely used in either 
cohort or clinical trial studies, our focus here will be on case-control studies. 
 

 

 
 
    
D.G. Kleinbaum et al., ActivEpi Companion Textbook: A supplement for use with the ActivEpi CD-Rom,   
DOI 10.1007/978-1-4614-5428-1_15, © Springer Science+Business Media New York 2013 
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No matter what type of matched design is used, the key feature is that the comparison group is restricted to be 

similar to the index group on the matching factors.  Thus, in the Reye’s Syndrome study, the controls were restricted to 
have the same distribution as the cases with regard to the variables age and type of viral illness. But we are not restricting the 
distribution of age or viral illness for the cases. That’s why we say that matching imposes a partial restriction on the control 
group in a case-control study. 
 
 
Summary 
 

 A 1982 study of the relationship of aspirin to Reye’s syndrome in children is a classic example of individually 
matching in a case-control study. 

 The simplest form of individual matching is one-to-one or pair matching, but can also involve more than one control 
per case. 

 Typically, matching compares an index group with a comparison group. 
 In a case-control study, the index group and the comparison group are the cases and controls, respectively. 
 In a cohort study or clinical trial, the index group and the comparison are the exposed and unexposed, respectively. 
 The key feature of matching is that the comparison group is restricted to be similar to the index group with regards 

to the distribution of the matching factors. 
 
 

Types of Matching 
 
There are two types of matching, individual matching and frequency matching.  Individual matching, say in a case-
control study, is carried out one case-at-a-time by sequentially selecting one or more controls for each case so that the 
controls have the same or similar characteristics as the case on each matching variable.  For example, if we match on age, 
race, and sex, then the controls for a given case are chosen to have the same or similar age, race and sex as the case. 

When matching on continuous variables, like age, we need to specify a rule for deciding when the value of the 
matching variable is “close-enough.”  The most popular approach for continuous variables is category matching. (Note: 
category matching is one of several ways to carry out individual matching involving a continuous variable.  See the box at the 
end of this activity for a description of other ways to match on a continuous variable.)  The categories chosen for this type of 
matching must be specified prior to the matching process.  For example, if the matching categories for age are specified as 
10-year age bands then the control match for a 40-year-old case must come from the 36-45 year old age range. 

The first step is to categorize each of the matching variables, whether continuous or discrete. Then for each index 
subject match by choosing one or more comparison subjects who are in the same category as the index subject for every one 
of the matching variables. 
 
 
Study Questions (Q15.2) 
 
Consider a case-control study that involves individual category matching on the variables age, gender, smoking status, blood 
pressure, and body size. 
 

1. What do you need to do first before you can carry out the matching? 
2. How do you carry out the matching for a given case? 
3. If the case is a 40-year-old male smoker who is obese and has high blood pressure, can its matched control be a 40-

year-old male smoker of normal body size with low blood pressure?  Explain. 
 
 

In frequency matching the matching is done on a group rather than individual basis. The controls are chosen as a 
group to have the same distribution as the cases on the matching variables. For example, we might frequency match on blood 
pressure and age in a case-control study where the cases have the blood pressure-by-age category breakdown shown below, 
by insuring that the controls have the same breakdown: 
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Study Questions (Q15.2) continued 
 
Suppose you wish to have three times as many total controls as cases.  Answer the following questions. 
 

4. What is the BP group by age group breakdown for the number of controls? 
5. What is the percentage breakdown by combined BP group and age group for the controls? 

 
 

How do you decide between individual matching and frequency matching? The choice depends primarily, on which 
type of matching is more convenient in terms of time, cost, and the type of information available on the matching variables. 
The choice also depends on how many variables are involved in the matching. The more matching variables there are, the 
more difficult it is to form matching groups without finding matches individual by individual. 
 
 
Study Questions (Q15.2) continued 
 
Suppose cases are women with ovarian cancer over 55 years of age in several different hospitals and you wanted to choose 
controls to be women hospitalized with accidental bone fractures matched on age and hospital. 
 

6. Which would be more convenient, frequency matching or individual matching? 
 
Suppose cases are women with ovarian cancer over 55 years of age in one hospital and controls were women hospitalized 
with accidental bone fractures and matched on age, race, number of children, age at first sexual intercourse, and age at first 
menstrual period. 
 

7. Which would be more convenient, frequency matching or individual matching? 
 
 
Summary 
 

 There are two general types of matching, individual versus frequency matching. 
 Individual matching in a case-control study is carried out one case at a time. 
 With individual matching, we sequentially select one or more controls for each case so that the controls have the 

same or similar characteristics as the given case on each matching variable.  
 For continuous variables, matching can be carried out using caliper matching, nearest neighbor matching, or 

category (the most popular) matching. 
 Frequency matching involves category matching on a group basis, rather than using individual matching. 
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Other Types of Matching on Continuous Variables 
 
Although category matching is the most popular approach for matching on continuous variables, like age, there are two 
other approaches that are sometimes used instead.  One procedure, called caliper matching, involves choosing the control 
to be within a certain defined interval as the case on the matching factor. For example, when matching on age, this interval, 
also called a caliper, might require that the control be within plus or minus 5 years of age as the case. 

In general, caliper matching is defined as specifying a value c and requiring two subjects to be matched if the 
comparison subject (e.g., the control) is within plus or minus c units on the matching variable as the index subject (e.g., 
case). 

One problem with caliper matching can occur if the choice of c’s very small (i.e., stringent), since it might then be 
difficult to find matched subjects. Another problem may occur if the choice of c is very large; if so, then the control group is 
effectively not necessarily restricted to have the same distribution as the cases on the matching factor. If, for example you 
matched on age using c=30 years, then the age distribution of the controls could be very different than the age distribution 
of the cases. 

A second alternative for matching continuous variables is called nearest neighbor matching. This procedure 
carries out the matching by selecting one or more subjects closest to the case on the matching variable.  Nearest neighbor 
matching be very time-consuming to carry out because it might require a comparison of all potential controls for a given 
case (provided no potential control has exactly the same value on the matching variable as the case). Also, when there are 
several matching variables, the nearest neighbor for one variable might not be the nearest neighbor for another variable for 
the same potential control. Thus, it may be difficult to find the nearest neighbor for several variables simultaneously. 

 
 
 

Matching Ratios 
 
An important design issue for a matched study is the ratio of the number of comparison subjects to the number of index 
subjects in each matched stratum. We call this ratio the matching ratio for the matched study.  Here is a list of different 
matching ratios that are possible: 
 

 
 

The smallest and simplest ratio is 1 to 1, also referred to as pair matching. In a case-control study, pair matching 
matches 1 control to each case and requires individual matching.  Why use pair matching? Pair matching can lead to a gain in 
precision in the estimated effect measure when compared to not matching at all for a study of the same total size. Also, it is 
easier to find one match than to find several matches per index subject. 

R to 1 matching in a case-control study involves choosing R controls for each case using individual matching. For 
example, 3 to 1 matching in a case-control study would require three controls for each case.  R to 1 matching is preferable to 
pair matching because even more precision can be gained from the larger total sample size would be increased. However, 
from a practical standpoint, it may be difficult to find more than several matched controls for each case. 

Ri to 1 matching allows for a varying number of matched subjects for different cases using individual matching. 
For example, 3 controls may be found for one case, but only 2 for another and perhaps only one control for a third.  Ri to 1 
matching is often not initially planned but instead results from trying to carry out R to 1 matching and then finding fewer than 
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R matches for some cases. 
Ri by Si matching allows for one or more controls to be matched as a group to several cases also considered as a 

group The letter i here denotes the i-th matched group or stratum containing Ri controls and Si cases.  This matching ratio 
typically results from frequency matching but can also occur from individual matching when pooling exchangeable 
matched strata. 
 
 
Study Questions (Q15.3) 
 
A detailed discussion of pooling is given in a later activity.  Consider an individually matched case-control study involving 2 
to 1 matching, where the only matched variable is smoking status (i.e., SMK = 0 for non-smokers and SMK = 1 for smokers).  
Suppose there are 100 matched sets in which 30 sets involve all smokers and 70 sets involve all non-smokers.  Suppose 
further that we pool the 30 (“exchangeable”) sets involving smokers into one combined stratum and the 70 (“exchangeable”) 
sets involving non-smokers into another combined stratum.   
 

1. How many cases and controls are in the first matched stratum (that combine 30 matched sets)? 
2. How many cases and controls are in the second matched stratum (that combines 70 matched sets)? 
3. What type of matching ratio scheme is being used involving pooled data, R to 1 or Ri to Si? 

 
Consider the following table determined by frequency matching on race and gender in a case-control study. 

 

 
 

4. How many matched strata are there in this frequency-matched study? 
5. What type of matching ratio describes this design: R to 1 or Ri to Si? 
6. What are the numbers of controls and cases in each stratum? 

 
 
Summary 
 

 The matching ratio for a matched design is the ratio of the number of comparison subjects to the number of index 
subjects in each matching stratum. 

 Matching ratios may be 1 to 1, R to 1, Ri to 1, or Ri to Si. 
 The simplest matching ratio is 1 to 1, also called pair matching. 
 R to 1 matching gives more precision than 1 to 1 matching because of increased sample size, but finding R matches 

per index subject may be difficult. 
 Ri to 1 matching typically occurs when trying for R to 1 matching but finding less than R comparison subjects for 

some index subjects. 
 Ri to Si matching typically results from frequency matching but may also result from pooling artificially matched 

strata from individual matching. 
 

 
How Many Matched Should You Select? 

 
If R to 1 matching is used, how large should R be?  The widely accepted answer to this question is that there is little to gain 
in terms of precision by using an R larger than four.  The usual justification is based on the Pitman Efficiency criterion, 
which is approximately the ratio of the variance of an adjusted odds ratio computed from pair matching to the corresponding 
variance computed from R to 1 matching.  Here is the Pitman efficiency formula: 
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Pitman Efficiency Criterion 
 approximately 
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Computing this criterion for several values of R yields the following table: 
 

 
 

This table shows diminishing returns once R exceeds 4. The Pitman efficiency increases 33.3 percent as R goes 
from 1 to 2, but only 4.2 percent as R goes from 4 to 5. The percent increase in efficiency clearly is quite small as R gets 
beyond 4. Moreover, the maximum possible efficiency is 2 and at R = 4 the efficiency is 1.6. 
 
Study Questions (15.4) 
 

1. Why does the Pitman efficiency increase as R increases? 
2. What does the previous table say about the efficiency of 2 to 1 matching relative to pair-matching? 

 
 
Summary 
 

 For R to 1 matching, there is little to gain in precision from choosing R to be greater than 4. 
 A criterion used to assess how large R needs to be is the Pitman Efficiency criterion, which compares the precision 

of R to 1 matching relative to pair matching. 
 A table of Pitman Efficiency values computed for different values of R indicates a diminishing return regarding 

efficiency once R exceeds 4. 
 
 
Quiz (15.5) 
 
True or False: 
 

1. If we match in a case-control study, the index group is composed of exposed subjects.  . ??? 

2. If we match in a cohort study, the comparison group is composed of non-cases.   . ??? 

3. If we individually category match on age and gender in a case-control study, then the control for a given 
case must be either in the same age category or have the same gender as the case.  . ??? 

4. When frequency matching on age and race in a case-control study, the age distribution of the controls is 
restricted to be the same as the age distribution of the cases.   . . . ??? 

5. Five-to-one matching will result in a more precise estimate of effect than obtained from 4-to-one-matching 
for the same number of cases.  . . . . . . . . ??? 

6. Ri-to-1 matching may result when trying to carry out R-to-1 matching.  . . . ??? 

7. Pair matching is a special case of Ri-to-Si matching.  . . . . . ??? 

8. Not much precision can be gained from choosing more than one control per case.  . ??? 
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15-2 Matching (continued) 
 

Reasons for Matching 
 
Why should we use matching to control for extraneous variables when designing an epidemiologic study?  The primary 
advantage of matching is that it can be used to gain precision in estimating the effect measure of interest. Matching can allow 
you to get a narrower confidence interval around the effect measure than you could obtain without matching. 
 

 
 

Another reason for matching is to control for variables that are difficult to measure.  For example, matching on 
neighborhood of residence would provide a way to control for social class, which is difficult to measure as a control variable. 
Matching on persons from the same family, say brothers or sisters, might be a convenient way of controlling for genetic, 
social, and environmental factors that would be otherwise difficult to measure. 

A third reason for matching is to take advantage of practical aspects of collecting the data, including convenience, 
timesaving, and cost-saving features. For example, if cases come from different hospitals, it may be practical to choose 
controls matched on the case’s hospital at the same time as you are identifying cases from the hospital’s records.  In an 
occupational study involving different companies in the same industry, controls can be conveniently matched to cases from 
the same company. Such controls will likely have social and environmental characteristics similar to the cases.  

Another reason often given for matching is to control for confounding. We have placed a question mark after this 
reason because, even if matching is not used, confounding may be controlled using stratified analysis or mathematical 
modeling. Also, if you match in a case-control study, you must make sure to do what we later describe as a matched analysis 
in order to properly control for confounding. 

Matching is usually limited to a restricted set of control variables. There are typically other variables not involved in 
the matching that we might want to control. Matching does not preclude controlling for confounding from those risk factors 
that are measured but not matched. 
 
 
Summary 
 
The reasons for matching include: 
 

 Gain precision 
 Control for variables difficult to measure 
 Practical aspects: convenience, time-saving, cost-savings 
 Can control confounding for both matched and unmatched variables. 

 
 

Reasons Against Matching 
 
Why might we decide not to use matching when designing an epidemiologic study?  One reason is that matching on a weak 
or non-risk factor is unlikely to gain precision and might even lose precision relative to not matching. If all potential control 
variables are at best weak risk factors, the use of matching will not achieve a gain in precision.  
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Study Questions (Q15.6) 
 
Suppose you match on hair color in a case-control study of occupational exposure for bladder cancer. 
 

1. Do you think hair color is a risk factor for bladder cancer? 
2. Based on your answer in the previous question, would you expect to gain precision in your estimate by matching on 

hair color?  Explain. 
 
 

Another reason not to use matching is the cost of time and labor required to find the appropriate matches, 
particularly when individual matching is used. To actually carry out the matching, a file that lists potential controls and their 
values on all matching variables must be prepared and a selection procedure for matching controls to cases must be specified 
and performed. This takes time and money that would not be required if controls were chosen by random sampling from a 
source population.  

A third reason for not matching is to avoid the possibility of what is called overmatching. Overmatching can occur 
if one or more matching variables are highly correlated with the exposure variable of interest. For example, in an 
occupational study, if we match on job title, and job title is a surrogate for the exposure being studied, then we will ‘match 
out’ the exposure variable. That is, when we overmatch, we are effectively matching on exposure, which would result in 
finding no exposure-disease effect even if such an effect were present.  

 
 
Study Questions (Q15.6) continued 
 

3. If the exposure variable is cholesterol level, how might overmatching occur from matching on a wide variety of 
dietary characteristics, including average amount of fast-food products reported in one’s diet? 

 
 

Another drawback of matching is that your study size might be reduced if you were not able to find matches for 
some index subjects. The precision that you hoped to gain from matching could be compromised by such a reduction in the 
planned study size. 
 
 
Study Questions (Q15.6) continued 
 

4. What study size problem might occur if you category-match on several variables using very narrow category 
ranges? 

 
 
Summary 
 
Reasons for not matching: 
 

 Matching on weak risk factors is unlikely to gain (and may lose) precision. 
 Matching may be costly in terms of time and money required to carry out the matching process. 
 You may inappropriately overmatch and therefore effectively match on exposure. 
 You may have difficulty finding matches and consequently lose sample size and correspondingly the precision you 

were hoping to gain from matching. 
 
 

To Match or Not to Match? 
 
How do we decide whether or not we should use matching when planning an epidemiologic study? And if we decide to 
match, how do we decide which variables to match on? The answer to both of these questions is “it depends”.  Let’s consider 
the list of reasons for and against matching that we described in the previous activities: 
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Your decision whether to match or not to match should be based on a careful review of the items in both columns of 
this list and on how you weigh these different reasons in the context of the study you are planning. 
 
 
Study Questions (Q15.7) 
 
Suppose the practical aspects for matching are outweighed by the cost in time and money for carrying out the matching.  Also 
suppose that previously identified risk factors for the health outcome are not known to be very strong predictors of this 
outcome. 
 

1. Should you match? 
 
Suppose age and smoking are considered very strong risk factors for the health outcome: 
 

2. Should you match or not match on age and smoking? 
 
Suppose you want to control for social and environmental factors. 
 

3. Should you match or not match on such factors? 
 
 

Although all items listed for or against matching are important, the primary statistical reason for matching is to gain 
precision. The first items on both lists concern precision and they suggest that whether or not matching will result in a gain in 
precision depends on the investigator’s prior knowledge about the important relationships among the disease, exposure, and 
potentially confounding variables. If such prior knowledge, is available, for example from the literature, and is used properly, 
a reasonable decision about matching can be made. 

It is widely recommended that, with regards to precision, the safest strategy is to match only on strong risk factors 
expected to show up as confounders in a study.  This recommendation clearly requires subjective judgment about what is 
likely to happen in one’s study regarding the distribution of potential confounders. In practice, a decision to use matching for 
precision gain applies to only those factors identified in the literature as strong predictors of the health outcome. 

 
 

Summary 
 

 The answer to the question “to match or not to match?” is “it depends”. 
 Your decision depends on a careful review of the reasons for and against matching and how you weigh these 

different reasons. 
 Whether or not you will gain precision depends on the investigators’ prior knowledge about the relationships of the 

variables being measured. 
 Recommendation regarding precision: match only on strong risk factors expected to show up as confounders in 

one’s study. 
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Quiz (15.8) 
 
True or False: 
 

1. One reason for deciding to match in a case-control study is to obtain a valid estimate of the odds ratio of 
interest.  . . . . . . . . . . ??? 

2. An advantage of matching over non-matching is that your sample size may be smaller from not matching. 
  . . . . . . . . . . ??? 

3. Matching on a weak risk factor may result in a loss of precision when compared to non-matching.  ??? 

 

Fill in the Blanks 

 
4. Which of the following choices are reasons against using matching.  . . . ??? 

a. You match on a non-risk factor. 
b. You want to control for a variable difficult to measure. 
c. You want to control for both matched and unmatched variables. 
d. Your matching variable is highly correlated with the exposure variable. 
e. It is costly to carry out the matching. 

 
Choices 
a only   a, b and c    a, b and d    a, d and e b only   b, c and d c only    d only    e only 
 

5. If matching is convenient and inexpensive to carry out, it should always be preferred to non-matching. 
 . . . . . . . . . . . ??? 

6. If your primary reason for considering matching is to gain precision in your estimated odds ratio, should 
you match or not match in a case-control study?   . . . . . ??? 

 
Choices 
False   It depends True Don’t match if costly     Match always   Match if convenient Never match 
 
 

15-3 Matching (continued) 
 

Analysis of Matched Data – Options and General Principles 
 
There are two options for analyzing matched data with dichotomous outcomes: stratified analysis using Mantel-Haenszel 
methods and mathematical modeling using logistic regression.  Mantel-Haenszel methods are appropriate whenever all the 
variables being controlled are involved in the matching.  Logistic regression methods are appropriate if some variables being 
controlled have not been matched-on and some variables have been matched-on. 
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For example, if we match in case-control study on age, race and sex and these three variables are the only ones being 

considered for control, then the Mantel-Haenszel methods, for stratified analysis, are appropriate.  In contrast, if we match on 
age, race and sex and we also want to control for other non-matched variables, such as physical activity level, body size, and 
blood pressure, then it is necessary to use logistic regression methods. 

When carrying out a matched analysis, we must consider four important principles. First, a matched analysis 
requires that you actually “control” for the matching variables. In particular, if you fail to control for the matching variables 
in a case-control study, you will not have addressed confounding due to these variables and your estimated odds ratio will be 
biased towards the null. And, if you don’t control for the matching variables in a follow-up study, you are likely not to gain 
the precision in your estimated risk ratio that you had intended to achieve through matching. 

Second, a matched analysis is a stratified analysis. The strata are the matched sets or pooled matched sets. For 
example, if you pair match in a case-control study and you have 100 cases, then there are l00 matched sets or strata to 
analyze. Each matched set would contain two persons, the case and the control: 
 

 
 

Third, when using logistic regression to do a matched analysis, the strata are defined using dummy or indicator 
variables. The number of dummy variables will be one less than the number of matching strata. For example, if we pair-
match in a case-control study and we have l00 cases, a logistic model for such data will require 99 dummy variables to 
incorporate the l00 matching strata. 
 
 
Study Questions (Q15.9) 
 

1. State the logit form of a logistic model that allows for the analysis of 100 case-control matched-pairs to describe the 
relationship of a dichotomous exposure variable E to a dichotomous outcome D. 

 
 

Fourth, a key advantage to using logistic modeling with matched data is that you can control for variables involved 
in the matching as well as variables not involved in the matching. If you use a stratified analysis instead, you will typically 
have to drop some matching strata from the analysis, and consequently will lose precision in your estimate. 
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Study Questions (Q15.9) continued 
 
Suppose you match on age, race, and sex in a case-control study involving 100 matched pairs.  For your analysis, you wish to 
control for systolic blood pressure (SBP) and cholesterol level (CHL), neither of which is involved in the matching, as well as 
controlling for the matching variables. 
 

2. State the logit form of a logistic model for carrying out the analysis described above. 
3. What information will be lost if a stratified analysis is carried out to control for the matching as well as for SBP and 

CHL? 
 
 
Summary 
 

 Two options for analyzing matched data are stratified analysis using Mantel-Haenszel methods and mathematical 
modeling using logistic regression. 

 A matched analysis requires that you control for the matching variables. 
 A matched analysis is a stratified analysis. 
 When using logistic regression to do a matched analysis, the strata are defined using dummy (i.e., indicator) 

variables. 
 When using logistic modeling with matched data, you can control for variables involved in the matching as well as 

variables not involved in the matching. 
 

Does Matching Control for Confounding? 
 
The answer to this question is clearly no if we wish to control for variables not matched on in addition to the variables 
involved in the matching. If, however, we assume that the only variables being controlled are involved in the matching, 
then the answer requires us to consider cohort and case-control studies separately. 

In a cohort study, matching automatically controls for confounding without the need to control for the matching 
variables. Nevertheless, you still need to control for the matching in order to gain the precision that you expected to gain by 
matching (assuming you made a good decision on which variables to match). 

In a case-control study, matching does not automatically control for confounding, so that it is necessary to control 
for the matching variables in order to control for confounding. 

To further explain the above statements, we need to describe conditions for data-based confounding. For simplicity in 
explanation, we will assume that there is only one matching variable, denoted here as F. We have previously defined data-
based confounding as present if: 

 

 ˆaˆc     where  ˆa and ˆc  
 
denote the crude and adjusted estimates of the measure of effect , respectively.  Equivalent conditions for confounding 
can also be given for a risk ratio (RR) and an odds ratio (OR) separately in terms of the relationship of the disease variable 
D to the matching variable F and the relationship of the exposure variable E to the matching variable F. 

Conditions for confounding of RR:  
 

1 R̂O and 1R̂O EF unexposed|DF  
 

Conditions for confounding of OR:  
 

1 R̂O and 1R̂O diseased-non|EF unexposed|DF  
 

 
If we apply the conditions for confounding in the RR to a matched cohort study, we can see that these conditions are not 
satisfied since 

 
 

Continued on next page 
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Does Matching Control for Confounding? (continued) 
 1 R̂O EF  
 

That is, a matched cohort study makes the different exposure groups have the same distribution with respect to the 
matching variable F. Thus, matching in a cohort study automatically controls for confounding in the risk ratio, i.e., the crude 
risk ratio will always equal the adjusted risk ratio, and so we can ignore controlling for the matching and still get a correct 
risk ratio.  

On the other hand, if we apply the conditions for confounding of the OR to a matched case-control study, we can see 
that: 

 1R̂O  DF  
 

which is not equivalent to the requirement that: 
  1R̂O  unexposed|DF  
 

That is, even though a matched case-control study makes the different disease groups have the same distribution with 
respect to the matching variable F, it does not automatically follow that the odds ratio relating F to disease D, conditional on 
exposure status (i.e., being unexposed) equals 1. It also does not follow that the odds ratio relating F to exposure E, 
conditional on disease status (i.e., being non-diseased) equals 1.  Matching in a case-control study therefore does not 
automatically control for confounding of the odds ratio.  

Moreover, it can be shown (details omitted here) that the crude odds ratio for matched case-control data is always 
biased towards the null value of 1.  Thus, it is necessary to control for the matching variable F (using stratified analysis or 
logistic regression) since ignoring the control of F (by using a crude odds ratio estimate) will give a biased answer tending 
towards concluding an absence of an effect.  

 
 
 

What are the Consequences from Not Doing a Matched Analysis 
 (Case-Control Data)? 

 
There are two ways to not carry out a matched analysis: 

1. Ignore the matching 
2. Break the matching 

 
1. If we match on one or more variables, but we analyze the resulting study data without controlling for any of the 

matched variables, then we are ignoring the matching.  As an example, suppose we have dichotomous E and D 
variables, 100 cases, and we pair-match on age and sex. If we ignore the matching and ignore controlling for any other 
risk factors not matched on, then we are effectively doing a crude analysis” of the data, i.e., our estimate is a crude 
odds ratio, cOR ‘hat’.  There are two fundamental criticisms of ignoring the matching: 

 
 

a. The estimated cOR is always biased towards the null value of 1 in matched (case-control and cohort) studies. Thus, 
the estimated cOR is expected to give a different (biased) odds ratio from the odds ratio (i.e., mOR) expected from 
a matched analysis. 

b. If the matching does its job (i.e., helps precision), the mOR estimate is expected to give better precision than the 
corresponding cOR estimate.  

 
2. If we match, but control for the matched variables without doing a matched analysis, then we are breaking the 

matching.  As an example, suppose, as above, we have dichotomous E and D variables, 100 cases, and we pair-match 
on age and sex. If we break the matching, then we control for age and sex by forming strata from combinations of 
these 2 variables, and then do a stratified analysis. The number of resulting strata is likely to be considerably less than 
100, e.g., if age has 3 categories and sex has 2 categories, then the number of strata is six.   If we do not break the 
matching, we control for age and sex by treating each matched set as a single stratum. Since there are 100 case-control 
pairs, a matched analysis would then be a stratified analysis involving 100 strata with 2 persons per strata.   

Continued on next page
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What are the Consequences from Not Doing a Matched Analysis  
(Case-Control Data)? (Continued) 

 
What is a good reason to break the matching?  In the above example, where age has 3 categories and sex has 2 
categories, breaking the matching is equivalent to pooling exchangeable matched sets, which is more appropriate than 
assuming that there are 100 distinct matching strata. [See the activity on Pooling  on Lesson Page 15-4].  What s are 
some of the problems with breaking the matching? 

a. If you break the matching, then it is possible that the precision of the estimated odds ratio might be less than the 
precision obtained by doing a matched analysis (with or without pooling). 

b. The strata resulting from breaking the matching may not be equivalent to the strata that would result from pooling 
exchangeable matched sets (the correct analysis). 

c. As a consequence of b, the estimated odds ratio obtained from a stratified analysis resulting from breaking the 
matching may be meaningfully different from the estimated odds ratio obtained from a pooled analysis. 

d. If you wish to control for variables that have not been matched in addition to the matching variables, then breaking 
the matching will require you to break up matched sets for those pairs that are in different categories of the 
unmatched variable(s). 

 
 

Analysis of Pair-Matched Case-Control Data 
 
We now illustrate a matched analysis using pair-matched case-control data.  The data can be analyzed using a stratified 
analysis to obtain a mOR, a MH test of hypothesis, and a confidence interval around the mOR. 
 
In the 1970s, several studies were carried out to evaluate whether the use of estrogen as a hormone replacement for 
menopausal women leads to endometrial cancer.  One such study used individual matching to carry out a pair-matched 
case-control study involving women living in a Los Angeles retirement community between 1971 and 1975. There were 63 
cases. Controls were chosen by individual matching to cases on age, marital status, and date of entry into the retirement 
community.  Each of the 63 matched-pairs represents 63 strata containing 2 persons per stratum. For each stratum, we form 
the 2 by 2 table that relates exposure, here estrogen use, to disease outcome, here, endometrial cancer status.  Each of these 
strata can take on one of the four forms shown below, depending on the exposure status determined for the case and control 
persons in a given stratum. 
 

 
 

Stratum Type 1 holds any matched pair where both the case and the controls are exposed, that is, both used 
estrogen. A matched pair of this type is called a concordant matched pair. We denote the number of concordant matched 
pairs of this type W.  The study actually found 27 matched pairs of this type. 

Stratum Type 4 holds those matched pairs where neither the case nor the control used estrogen. This type of stratum 
also holds concordant matched pairs since both cases and controls have the same exposure status, this time unexposed. We 
denote the number of concordant matched pairs of this type Z.  The study actually found 4 matched pairs of this type. 

The other two stratum types hold what are called discordant pairs. In stratum type 2, the case uses estrogen but the 
control does not. In stratum type 3, the case did not use estrogen, and the control did. In both these types of strata, the case 
has a different exposure than its matched control.  The numbers of discordant pairs of each type are called X and Y, 
respectively. The study found X equal to 29 and Y equal to 3.  Notice that the sum of W, X, Y, and Z is 63, the number of 
matched pairs in the study.   

How do we analyze these data?  A simple answer to this question is that we use a computer to carry out a stratified 
analyses of these 63 strata to obtain a Mantel-Haenszel odds ratio, a Mantel-Haenszel test of hypothesis, and a 95% 
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confidence interval around the estimated odds ratio.  We will carry out this analysis in the next activity. 
 
Study Question (Q15.10) 
 

1. Why is it necessary to compute an mOR instead of a precision-based adjusted odds ratio (i.e., aOR)? 
 
Summary 
 

 We illustrate a matched analysis using pair-matched case-control data. 
 The study involved 63 matched-pairs or strata with 2 persons per stratum. 
 There were 4 types of strata, 2 of which involved concordant matched pairs and 2 of which involved discordant 

matched pairs. 
 W = the number of concordant pairs where both the case and control are exposed. 
 X = the number of discordant pairs where the case is exposed and control unexposed. 
 Y = the number of discordant pairs where the case is unexposed and the control exposed. 
 Z = the number of concordant pairs where both the case and control are unexposed. 
 The data can be analyzed using a stratified analysis to obtain a mOR, a MH test of hypothesis, and a confidence 

interval around the mOR. 
 
 

Analysis of Pair-Matched Case-Control Data (continued) 
 
A stratified analysis of the 63 strata can be carried out using a computer to obtain a Mantel-Haenszel odds ratio, a Mantel-
Haenszel test of hypothesis, and a 95% confidence interval for the mOR.  Each of the 63 strata is of one of the four types 
shown in the table in the previous Activity. A convenient way to carry out this analysis without using a computer is to form 
the following table using the numbers of concordant and discordant pairs W, X, Y, and Z.   
 

 
 

This table is called McNemar’s table for pair-matched case-control data. The numbers in this table represent 
pairs of observations rather than individual observations.  Using this table, simple formulas can be written for the mOR, 
Mantel-Haenszel test statistic, and for a 95 percent confidence interval for the mOR (see table following this paragraph). 
Notice that all these formulas involve information only on the numbers of discordant pairs, X and Y; the concordant pair 
information is not used. 
 

 
 

Substituting the values for X and Y into each of these formulas, we obtain the results shown here: 
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Study Question (Q15.11) 
 

1. How do you interpret the above results in terms of the relationship between estrogen use (E) and endometrial cancer 
(D) that was addressed by the pair-matched case-control study? 

 
 
Summary 
 

 A convenient way to carry out a matched-pairs analysis for case-control data is to use McNemar’s table containing 
concordant and discordant matched pairs. 

 Using only the discordant pairs X and Y, simple formulae can be used to compute the mOR, the MH test of 
hypothesis, and a 95% CI around the mOR. 

 
The Case-Crossover Design 

 
The case-crossover design is a variant of the matched case-control study that is intended to be less prone to bias than the 
standard case-control design because of the way controls are selected.  The design incorporates elements of both a matched 
case-control study and a nonexperimental retrospective crossover experiment. (Note: In, a crossover design, each 
subject receives at least two different exposures/treatments at different occasions.) The fundamental aspect of the case-
crossover design is that each case serves as its own control. Time-varying exposures are compared between intervals when 
the outcome occurred (case intervals) and intervals when the outcome did not occur within the same individual. 

The case-crossover design was designed to evaluate the effect of brief exposures with transient effects on acute health 
outcomes when a traditional control group is not readily available. The primary advantage of the case-crossover design lies 
in its ability to help control confounding. Self-matching subjects against themselves automatically eliminates confounding 
between subjects and from both measured and unmeasured fixed covariates. 

As an example of a case-cross over design, Redlemeier and Tibshirani studied whether the use of a cellular telephone 
while driving increases the risk of a motor vehicle collision. Their data considered 699 drivers who had cellular telephones 
and who were involved in motor vehicle collisions resulting in substantial property damage but no personal injury. Each 
person’s cellular-telephone calls on the day of the collision and during the previous week were analyzed through the use of 
detailed billing records. 

Overall, 170 of the 699 subjects had used a cellular telephone during the l0-minute period immediately before collision, 
37 subjects had used the telephone during the same period on the day before the collision, and 13 subjects had used the 
telephone during both periods. This information provided the following McNemar table for analysis: 
 

 Day Before  
Crash Day Use Not Use  

Use 13 157 170
Not Use 24 505 529

 37 662 699 
 

From these data, the following matched analysis results were obtained: 
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95% confidence interval for the mOR: 
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The above results indicates a very strong and significant effect that indicates that cell phone use while driving increases 

the risk for motor vehicle collision. Furthermore, the primary analysis, which adjusted for intermittent driving, yielded an 
estimated mOR of 6.5 with a 95% confidence interval of 4.5 to 9.9. 
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Analyze Pair-Matched Case-Control Data in DataDesk 

 
An exercise is provided to demonstrate how to analyze pair-matched case-control data using the DataDesk program. 
 
 

Analysis of R-to-1 Matched Case-Control Data 
 
A 1969 matched case-control study considered the hypothesized relationship between history of induced abortion and tubal 
pregnancy outcome for women who had at least one earlier pregnancy.  This study involved 4 to 1 individual matching of 
controls to cases.  There were 18 cases, so that there were 18 matched sets or strata, each containing 5 subjects per stratum. 
The total number of subjects in the study was therefore 18 times 5, or 90. 

Controls were category-matched to each case on order of pregnancy, age, and husband’s age.  The 2 by 2 data layout 
for stratum i is shown here, where Yi equals 1 if the case in stratum i had a previous abortion and 0 if not, and where Xi 
denotes the number of controls out of 4 in stratum i who had a previous abortion. 
 

 
 

Here is a summary of the study results: 
 

 
 

The numbers in the body of the table represent counts of matched sets or strata. If you add up all these numbers, you 
get 18, which is the total number of matched sets in the study, where each matched set is of the general form shown for 
stratum i.  Each number in the body of the table gives the number of matched sets for which Xi of the controls have had a 
previous abortion and for which the case either had or did not have a previous abortion.  For example, the 1 in the top left cell 
indicates that 1 of the 18 matched sets had all 4 of the 4 controls with previous abortions and that the case also had a previous 
abortion.  The 5 in the bottom right cell, in contrast, indicates that there were 5 matched sets in which none of the 4 controls 
nor the case had a previous abortion. 

How do we analyze these data? The answer is that we use a computer to carry out a stratified analysis of the 18 
strata comprising this dataset to obtain a Mantel-Haenszel odds ratio estimate, a Mantel-Haenszel test of hypothesis, and a 
95% confidence interval for the mOR.  Here are the computed results. 
 

 
 
 
Study Questions (Q15.12) 
 

1. Why is the mOR being used here instead of a precision-based aOR? 
2. Since there are only 5 subjects in each stratum (i.e., matched set), how can you justify the use of the MH test statistic 

as a large-sample chi square statistic? 
3. What do you conclude from these results? 
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Summary 
 

 As with pair-matched data, the analysis of R to 1 matched data is a stratified analysis, although now there are R + 
1 subjects in each stratum. 

 The calculation of the mOR, the MH test, and a 95% confidence interval for the mOR are best carried out using a 
computer program 

 The i-th stratum has the data layout shown below where Yi denotes the number of cases (either 1 or 0) that are 
exposed and Xi denotes the number of controls out of R that are exposed in stratum i. 

 
 
Quiz (Q15.13) 
 
True or False: 
 

1. A matched analysis can be carried out using a stratified analysis in which the strata consists of the 
collection of matched sets or pooled matched sets.  . . . . .  ??? 

2. In a pair-matched case-control study, the mOR is computed as:  (X-Y)/(X + Y), where X and Y are 
discordant pair frequencies.  . . . . . . . . ??? 

3. Suppose in a pair-matched case-control study, the number of pairs in each of the 4 cells used for 
McNemar's test is given by W=50, X=30, Y=15, 2=100. Then the computed value of McNemar's test 
statistic is 2.   . . . . . .  . . . ??? 

4. The Mantel-Haenszel test Statistic is not appropriate when there is R-to-1 matching and R is at least 2. 
 . . . . . . . . . . .  ??? 

 
 
Consider the McNemar's table shown below from the "Agent Orange" study (Donovan et al., Med. J. Aus., 1984).  
This is a pair-matched case-control study. Cases are babies born with genetic anomalies and controls are babies 
born without such anomalies. The exposure factor is status of the father (1 =Vietnam veteran, 0=non-veteran). 
 

 
 

5. The mOR from this table is  . . . .  . . . . ??? 

6. The Mantel-Haenszel test statistic is computed to be  .  . . . . ??? 

7. A 95 % CI for the mOR is given by the limits  . .  . . . . ??? 

8. Based on the data, are Vietnam veterans more likely to have babies with genetic anomalies?  ??? 
 
Choices 
(0.76, 1.25) (0.80, 1.32) 0.07 0.97 1.03 3.98 no yes 
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15-4 Matching (continued) 
 

Pooling Matched Data 
 
Suppose smoking status, defined as ever versus never smoked, is the only matching variable in a pair-matched case-control 
study involving 100 cases. Suppose further that when the matching is carried out, 60 of the matched pairs contain 2 smokers 
and 40 of the remaining matched pairs contain 2 non-smokers. 

Now let’s consider any two of the matched pairs involving smokers, say pair A and pair B. Because the only variable 
being matched on is smoking, the control in pair A had been eligible to be chosen as the control for the case in pair B before 
the matching process. Similarly, the control smoker in pair B had been eligible to be the control smoker for the case in pair A. 

Even though this did not actually happen after matching took place, the potential exchangeability of these two 
controls suggests that pairs A and B should not be treated as separate strata in a matched analysis. Matched sets such as pairs 
A and B are called exchangeable matched sets.  For the entire study involving l00-matched pairs, the 60 matched pairs all of 
whom are smokers are exchangeable, and the remaining 40 matched pairs of non-smokers are separately exchangeable. 

If we ignored exchangeability, the typical analysis of these data would be a stratified analysis that treats all 100 
matched pairs as 100 separate strata. The analysis could then be carried out using the discordant pairs information in 
McNemar’s table, as we described earlier.  But should we actually ignore the exchangeability of matched sets? We say no, 
primarily because to treat exchangeable strata separately artificially assumes that such strata are unique from each other when 
in fact they are not. 

So how should the analysis be carried out? The answer here is to pool exchangeable matched sets.  In our example, 
pooling would mean that rather than analyzing l00 distinct strata with 2 persons per stratum, the analysis would consider only 
two pooled strata, one pooling 60 matched sets into a smoker’s stratum and the other pooling the other 40 matched sets into a 
non-smoker’s stratum. 
 

 
 

 
Study Questions (Q15.14) 
 
Consider a 2-to-1 matched case-control study that category-matches on age group (say, below 60 versus 60 or above) and on 
smoking status (ever versus never). 
 

1. What are the exchangeable matched sets in this study? 
 
Consider a different 2-to-1 matched case-control study that category matches on age group, smoking status, gender, physical 
activity level, body size, race, and ethnic group. 
 

2. Should the analysis require pooling of matched sets? 
 
 
Summary 
 

 Two or more matched sets are exchangeable if they have the same combination of matching categories. 
 A pooled analysis should be preferred to an unpooled analysis whenever there are exchangeable matched sets. 
 A pooled analysis involved combining exchangeable matched sets into a single pooled stratum and then performing 

a stratified analysis for the pooled strata. 
Summary continued on next page 
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 Pooling exchangeable matched sets is appropriate because keeping exchangeable strata separate artificially assumes 
that such strata are unique from each other when in fact they are not. 

 If several variables are matched, the results from a pooled analysis should be negligibly different from the results 
from an unpooled analysis. 

 
 

Pooling versus Frequency Matching 
 
We address three questions here: 

1. Is pooling of exchangeable matched sets equivalent to frequency matching? 
2. If you decide to pool exchangeable matched sets, are the numbers and definitions of the resulting strata identical 

with the strata that would be defined if you frequency matched instead? 
3. Will the results from analyzing pooled matched data always be identical to the results obtained if you had 

frequency matched instead? 
 

The answer to each of the three questions is no. However, under certain assumptions about the way the matching is 
carried out, the answer to the second question could be yes. 

Answer to 1: Pooling requires individual matching, which is a different procedure for selecting comparison subjects 
than is frequency matching. In particular, the number of matching strata resulting from pooling, the way the strata are 
defined, and the subjects that are selected within each stratum may not be identical to the corresponding items from a 
frequency matched study (see below).  

Answer to 2: If one or more of the matching variables is continuous (e.g., age), then the way exchangeability is defined 
can be different from the way frequency matched categories might be defined. For example, if individually matching on 
age, narrower age categories (e.g., 5 years) may be used than chosen and considered exchangeable than the categories 
chosen if frequency matching (e.g., 15 years) were used instead. In such a situation not only will the number of strata for a 
pooled analysis be different than for frequency-matched data, but also the strata definitions will be different. 

On the other hand, if either a) the exact same matching categories (e.g., 5 year age categories) would have been defined 
for both individual matching and frequency matching, or b) if the definition of exchangeability is broadened to be 
equivalent to the category definitions used for frequency matching, then both the number of strata and types of strata will be 
equivalent for both the pooled and frequency matched analysis. 

Answer to 3: The strata resulting from pooling exchangeable matched sets may not be equivalent to the strata that result 
from frequency matching. 

We illustrate with the following example: 
Suppose we match on only one variable, say, smoking status (ever versus never), in a case-control study. If we use 

individual pair matching and there are l00 cases, then the original strata will consist of l00 matched pairs, each pair 
containing one case and one control with the same smoking status. 

Since only one variable is involved in the matching, all matched pairs containing ever smokers are exchangeable and all 
matched pairs containing never smokers are also (separately) exchangeable. If, as recommended, we pool exchangeable 
matched sets, then we wind up with only two strata, one for ever smokers and the other for never smokers. 

If. in contrast to individual matching on smoking status, we frequency-match on smoking status with the same l00 
cases and the same total sample size, we would also wind up with the same two strata as obtained from pooling provided we 
chose the same control subjects as we would have chosen from frequency matching. 

However, even though we will choose the same number (100) of control subjects, there is no guarantee that we will 
choose the same subjects from the pool of possible controls as we would have obtained using individual matching. 
Consequently, the two strata obtained from frequency matching may contain different subjects than the two strata obtained 
from individual pair-matching and the resulting matched analysis are likely to lead to different numerical results (though not 
necessarily different statistical inference conclusions). 

As a second example, suppose we again have 100 cases for a case-control study. This time, we individually pair-match 
on 5 variables, say age, race, sex, smoking status, body size (categorized into obese and not-obese), and social class (say, in 
three categories). Then, two matched pairs are exchangeable if both case and control are in the same category of age, race, 
sex, smoking status, body size, and social class. Because 5 variables are involved in the matching here, there are not likely 
to be very many exchangeable strata, although there may certainly be some exchangeable strata. In fact, it might not even be 
possible to find a match for certain cases. Moreover, if we pool exchangeable strata, the total number of resulting strata is 
not likely to be reduced greatly from the original number of 100 unpooled strata. 

 
Continued on next page
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Pooling versus Frequency Matching (continued) 
 
Now suppose we frequency match on the same 100 cases by choosing 100 controls matched on the same 5 variables. 

As with matching on only one variable, even if the number of strata obtained from frequency matching is the same as that 
obtained from pooling individual matched strata, the actual subjects may be different depending on the control subjects that 
actually get selected. Consequently, the resulting analysis from frequency matching and individual matching might yield 
different results. 
 
 
 
Quiz (Q15.15) 
 
The data to the right are from a hypothetical pair-matched case-control 
study involving 5 matched pairs, where the only matching variable is 
smoking (SMK). The disease variable is called CASE and the exposure 
variable is called EXP. The matched set # is identified by the variable 
stratum. 
 

1. How many concordant pairs are there where both pair members are exposed?  . . ??? 

2. How many concordant pairs are there where both members are unexposed?  . . ??? 

3. How many discordant pairs are there where the case is exposed and the control is unexposed?  ??? 

4. How many discordant pairs are there where case is unexposed and the control is exposed?  ??? 
 
Choices 
0 1 2 3 4 
 
 
The table to the right summarizes the matched-pairs information described in 
the previous questions. 
 

5. This table is called ??? table. 

6. What is the estimated mOR for these data?   . ??? 

7. What type of matched analysis is being used with this table?  ??? 
 
Choices 
0.5 1 2 Berkson’s Mantel-Haenszel’s  McNemar’s 
pooled unpooled 
 
The table to the right groups the matched pairs information described 
in questions 1-4 into two smoking strata. 
 
 
 
 

8. What is the estimated mOR from these data?  . . ??? 

9. What type of matched analysis is being used here?  . ??? 

10. Which type of analysis should be preferred for these matched data (where smoking status is the only 
matched variable), pooled or unpooled?  . . . ??? 

 
Choices 
1 2 2.5 pooled undefined unpooled 

Quiz continued on next page 
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The data to the right switches the non-smoker control of stratum 
2 with the non-smoker control of stratum 4 from the dataset 
provided for previous questions 1-4. 
 
 
Let: 
  W = # concordant (E=1 ,E=1 ) pairs 

X = # discordant (E=1 , E=O) pairs 
U = # discordant ( E=O, E=1) pairs 
Z = # concordant (E=O, E=O) pairs    for the "switched" data. Then: 

 
11. W=  . . ???  

12. X=   . ???  

13. Y=  . ???  

14. Z=   . ??? 

15. mOR (unpooled) =  ??? 

16. mOR (pooled) =  ??? 
 
Choices 
0 1 2 2.5 3 4 undefined 
 
 
For the pair-matched data considered in questions 1-10, mOR(unpooled)=2 whereas mOR(pooled)=2.5. For the 
("switched") pair-matched data considered in questions 11-16, mOR(unpooled) was undefined whereas 
mOR(pooled)=2.5. 
 

 
 

17. Which of the following helps explain why the pooled mOR estimate should be preferred to the unpooled 
mOR? . . ??? 

a. The pooled mOR's are equal whereas the unpooled mOR's are different. 
b. The unpooled mOR's assume that exchangeable matched pairs are not unique. 
c. The pooled mOR's assume that exchangeable matched pairs are unique.  

 
Choices 
All None  a b c 
 
 

Analysis of Frequency Matched Data 
 
The table shown below gives the breakdown of cases and controls for a hypothetical matched case-control study that used 
frequency matching on race and gender.  The study involves twice as many controls as there are cases. Nevertheless, since 
numbers of cases and controls differ in each of the four strata, the matching ratio here is of the form Ri to Si, where Ri is the 
number of controls and Si is the number of cases in stratum i. 
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Following this paragraph are the study data obtained for each of the four strata.  How do we analyze these 
frequency-matched data? The answer is we carryout a stratified analysis of the data in the 4 strata to obtain a precision-
based odds ratio estimate, a Mantel-Haenszel test of hypothesis, and a 95% confidence interval for the aOR. Before 
computing such summary estimates, however, we must check to see that there is no meaningful or significant interaction over 
the strata.  Here are the computed results: 
 

 
 

Now here are some study questions based on these results. 
 
Study Questions (Q15.16) 
 

1. Is there confounding? 
2. Based on comparing the stratum-specific odds ratios, is it justifiable to carry out an overall assessment of the 

exposure-disease relationship? 
3. Why is an aOR computed instead of a mOR? 
4. Based on the results, what do you conclude about the E D association? 
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Summary 
 

 Frequency matched data may be analyzed using a standard stratified analysis. 
 For frequency-matched data, the strata typically have a varying matching ratio, with Ri controls and Si cases in 

stratum i. 
 Because frequency matched strata typically involve large cell frequencies and zero cell-frequencies are rare, a 

precision-based aOR is often used instead of a mOR as the overall point estimate. 
 
 
Quiz (Q15.17) 
 
A case-control study conducted in 1990 in Puerto Rico was aimed at determining risk factors associated with 
severe measles (D). Controls were frequency matched to cases by region of residence (5 regions). Potential risk 
factors that were examined included Annual Family Income < $5000 (yes or no), Underlying Illness (yes or no), 
Mother Without High School Degree (yes or no), Anemia (yes or no). 
 

1. True or False: When considering each potential risk factor separately as the exposure variable, the 
appropriate analysis is a stratified analysis involving 5 strata.  . . . . ??? 

 
 
In the frequency matched case-control study described previously, 16 cases (i.e., children with severe measles) 
were compared to selected children with non-severe measles as controls (39 hospitalized and 38 
nonhospitalized). An underlying illness was present in 50% of the cases and 16% of the nonhospitalized controls. 
Stratifying by region, it was found that mOR=5.3 with a 95% CI for mOR = (1.4, 20.2). 
 

2. Which of the following statements does not support the use of a mOR for this analysis:  ??? 
a. There were zero cells in some strata. 
b. Frequency matching was used. 
c. Logistic regression should have been used. 

 
3. True or False: Since controls were frequency matched to cases on region of residence, it is NOT 

necessary to control for region of residence in the analysis.   . . . ??? 

4. If we frequency match and choose 3 times as many controls as cases, the matching ratio is . ??? 

5. Will frequency matching on region of residence result in better precision of the adjusted odds ratio than if 
individual matching had been used instead?  . . . . . ??? 

 
Choices 
1-to-3  Always  False  Never Not necessarily R-to-1  Ri-to-Si    True 
 
 

 15-5 Matching (continued) 
 

Analysis of Matched Cohort Data 
 
We now describe how to analyze pair-matched data from a cohort study, where unexposed subjects are paired with exposed 
subjects on selected matching variables.  
 

Analysis of 1 to 1 Matched Cohort Data 
 
Thus far we have considered only matched case-control data. We now focus on the analysis of matched cohort data.  A 
retrospective cohort study used pair matching to investigate rotating shifts compared to steady shifts were associated with the 
development of chronic low back pain in a group of factory workers in Ohio from 1950-1975.  The study involved 80 
matched pairs of exposed versus unexposed workers. The exposed workers had been assigned to rotating shifts whereas the 
unexposed workers had been assigned to steady shifts. Matching involved seven variables: 1) year of birth; 2) year of hire; 3) 
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age at hire; 4) duration of employment; 5) type of job; 6) race; and 7) marital status. 
The health outcome, chronic low back pain status, was determined from worker reports 

obtained during mandatory bi-annual medical exams made through 1975.  As with matched case-control 
data, each of the 80 matched-pairs represent 80 strata containing 2 persons per strata.  The table to the 
right is the 2 by 2 table for stratum i that relates exposure, here rotating versus steady shift assignment, 
to health outcome, here, chronic low back pain. Because this is a matched cohort study, so we are 
matching on exposure status, the two column totals in stratum i are one. 

Each of the 80 strata can take on one of the four forms shown below, depending on the health 
outcome status determined for the exposed and unexposed persons in a given stratum: 
 

 
 

Stratum Type 1 identifies any matched pair where both the exposed and the unexposed subjects have the health 
outcome, that is, both have chronic low back pain. This is called a concordant matched pair. We denote the number of 
concordant matched pairs of this type P.  The study actually found 20 matched pairs of this type.  Stratum Type 4 identifies 
those matched pairs where neither the exposed nor the unexposed subject was determined to have chronic low back pain. 
These are also concordant matched pairs because both exposed and unexposed subjects have the same health outcome, 
which this time is no chronic back pain. We denote the number of concordant matched pairs of this type S. The study actually 
found 30 matched pairs of this type. 

The other two stratum types consider discordant pairs. In stratum type 2, the exposed subject develops the health 
outcome but the unexposed subject does not. In stratum type 3, the exposed subject does not develop the health outcome, but 
the unexposed subject does.  The number of discordant pairs of each type is called Q and R, respectively. The study found Q 
= 20 and R = 10. The sum of P, Q, R, and S = 80, the number of matched pairs in the study: 
 

 
 

How do we analyze these data?  As with any matched analysis, the general answer here is that we use a computer to 
carry out a stratified analyses of these 80 strata to obtain a Mantel-Haenszel risk ratio (mRR), a Mantel-Haenszel test of 
hypothesis, and a 95 percent confidence interval for the mRR. 

 
Study Question (Q15.18) 
 

1. Why is it necessary to compute an mRR instead of either a mOR or precision-based adjusted risk ratio (i.e., aRR)? 
 
 

We will carry out this analysis in the next activity. 
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Summary 
 

 We illustrate a matched analysis using pair-matched cohort data. 
 The study involved 80 matched-pairs or strata with two persons per stratum. 
 There were four types of strata: two involved concordant matched pairs and two discordant matched pairs. 
 P = number of concordant pairs:  exposed and unexposed cases 
 Q = number of discordant pairs: exposed case, unexposed non-case 
 R = number of discordant pairs: unexposed case, exposed non-case 
 S = number of concordant pairs: exposed and unexposed non-cases 
 The data can be analyzed using a stratified analysis to obtain an mRR, a MH test of hypothesis, and a confidence 

interval around the mRR. 
 
 

Analysis of Pair-Matched Cohort Data 
 

We continue to consider the pair-matched retrospective cohort study data shown here involving 80 matched pairs: 
 

 
 

A stratified analysis of the 80 strata can be carried out using a computer to obtain a Mantel-Haenszel risk ratio 
(mRR), a Mantel-Haenszel test of hypothesis, and a 95% confidence interval for the mRR.  Each of the 80 strata will be of 
one of the four types shown above, involving either concordant or discordant pairs. 

A convenient way to carry out this analysis without using a computer is to form the following table using the 
numbers of concordant and discordant pairs P, Q, R, and S.  This table is McNemar’s table for pair-matched cohort data.  
Each observation in this table represents a pair of observations rather than an individual observation.  Using this table we can 
obtain a formula for the mRR, Mantel-Haenszel test statistic, and a 95 percent confidence interval for the mRR. 
 

 
 

Notice that the formula for the mRR and its confidence interval involve the number, P, of concordant pairs with the 
health outcome, in addition to the numbers, Q and R of discordant pairs, although the concordant non-case pair information 
is not used.  Substituting the values for P, Q, and R into each of these formulas we obtain the results shown here: 
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Study Question (Q15.19) 
 

1. How do you interpret the above results in terms of the relationship between rotating vs. steady shifts (E) and chronic 
low back pain (D) that was addressed by the pair-matched cohort study? 

 
 
Summary 
 

 A convenient way to carry out a matched-pairs analysis for cohort data is to use McNemar’s table containing 
concordant and discordant matched pairs. 

 Simple formulae can be used to compute the mRR, the MH test of hypothesis, and a 95% CI for the mRR. 
 
 
Quiz (Q15.20) 
 
True or False: In a pair-matched cohort study: 
 

1. The total cases in each matched set is always 1.  . . . . . ??? 

2. The McNemar test of hypothesis involves only the discordant pair information.  . . ??? 
 
 
Using the McNemar table below: 
 

 
 

3. The estimated mRR is given by  . . . . . . . . ??? 

4. The McNemar test statistic is computed to be  . . . . . . ??? 

5. The 95% CI for the mRR has the following limits  . . . . . . ??? 
 
Choices 
(0.96, 1.50) (1.1, 1.6) 0.25 1.20 1.67 2.5 
 
 

Analyze Matched Follow-Up Data Using McNemar’s Table in DataDesk 
 
An exercise is provided to demonstrate how to analyze matched follow-up data using McNemar’s table within the DataDesk 
program. 
 
 

Logistic Regression – Matched and Unmatched Covariates for Matched Case-
Control Studies 

 
Why Stratified Analysis is Inappropriate in Matched Case-Control Studies 

 
We have previously described how to analyze pair-matched case-control study data by giving the results for 63 matched 
pairs by using McNemar’s Table to assess the relationship of estrogen to endometrial cancer.  A Mantel-Haenszel odds ratio 
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(mOR), Mantel-Haenszel test statistic, and the 95% confidence interval for the mOR are shown here: 
 

 
 

The matching in this study was on the three variables age, marital status, and date of entry into the retirement 
community, and these were the only variables that were controlled in the analysis.  Nevertheless, there were other variables 
not matched on that were also considered as possible control variables. One of these variables was gall bladder disease status, 
which the investigators considered to be a risk factor for endometrial cancer that also needed to be controlled.  How do we 
analyze the data to account for not only the matching variables but also for the variable describing gall bladder disease status?  
Unfortunately, a stratified analysis is not the best approach to use here. To explain this, here are the data on two pairs of 
subjects in the data set: 
 

 
 

In match pair A, the case has gall bladder disease but the control does not In pair B, the control has gall bladder 
disease, but the case does not.  If we want to stratify on gall bladder disease status and at the same time retain the matching, 
we will unfortunately have to drop these two matched pairs from the data set, because both members of each pair are in 
different categories of the gall bladder status variable.  There is a way to carry out the analysis without having to drop any 
matched pairs. The method to use here is logistic regression, which we illustrate for these data in the next activity. 
 
 
Summary 
 

 Stratified analysis is not the best approach for the analysis of matched data when there are unmatched variables to be 
controlled in addition to the matching variables. 

 When stratifying on unmatched variables as well as the matching variables in a pair-matched study, we must drop 
from the analysis those matching strata in which the two paired subjects fall in different categories of the unmatched 
variable. 

 Logistic regression can be used without dropping any matched strata to control for both matched and unmatched 
variables. 

 
 

Logistic Regression – Matched and Unmatched Covariates in Matched Case-Control Studies 
 
This activity describes how to use logistic regression to control for both matched and unmatched variables.  We consider 
again the pair-matched case-control data involving 63 matched pairs to assess the relationship of estrogen use to endometrial 
cancer.  The matching variables were age, marital status and date of entry into the retirement community. The only 
unmatched control variable is history of gall bladder disease.  The logit form of a logistic model for these data is shown here: 
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This model contains 62 dummy variables to distinguish the 63 matched-pairs. The model also contains the 
unmatched control variable GALL and the exposure variable E which indicates estrogen use status.  This model contains 65 
parameters, b0 through b64, which is more than half the total number of subjects.  Whenever, as in this example, the number 
of parameters is large relative to the total number of subjects, the logistic model is fit using the conditional maximum 
likelihood estimation or CMLE method. To carry out CMLE, use a computer program. 

When such a program is applied to fit this model, the estimated odds ratio that adjusts for both the matching 

variables and the unmatched variable GALL is given by the expression 63b̂e , where b̂  is the estimated coefficient of the 

exposure variable. The resulting estimate is 9.11exp[2.209](adj)R̂O  
 
 
Study Questions (Q15.2 
 

1. Why is the estimated odds ratio obtained from the above logistic model different from the mOR value of 9.67 
previously calculated for these data? 

2. How would you state the logit form of a logistic model for the effect of estrogen use that controls for the matching 
but does not account for the variable GALL? 

3. The conditional ML estimate of 63b̂  for the model in question 2 is 2.269.  What is the value of the adjusted odds 
ratio that controls for the matching?    

 
 

Using the logistic regression approach we can also obtain a chi square statistic to test the null hypothesis that the 
adjusted odds ratio is 1, that is, that there is no significant effect of estrogen use. An equivalent null hypothesis is that the 
coefficient of the exposure variable is zero.  The resulting chi square statistic, which is called the Likelihood Ratio statistic 
has the value 13.11.  This statistic is approximately a chi square with 1 df under the null hypothesis. 
 

 
 
 
Study Questions (Q15.21) continued 
 

4. What is the P-value for the chi square test?  Is the test significant? 
5. Why is the chi square statistic different from the McNemar chi square of 21.13 previously computed for these data? 

 
 

A 95% confidence interval for the adjusted odds ratio can also be obtained from the logistic model output. Here are 
both the formula for this confidence interval and the resulting confidence limits obtained from the computer output: 
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Study Questions (Q15.21) continued 
 

6. How do you interpret this confidence interval? 
 
 
Summary 
 

 Logistic regression can be used to control for both matched and unmatched variables. 
 The logistic model here contains G – 1 dummy variables for G matching strata, the exposure variable (E), and any 

unmatched variables also to be controlled. 
 For matched data, the logistic model is estimated using Conditional Maximum Likelihood Estimation (CMLE). 
 The model is estimated using conditional logistic regression when there are matched data. 
 If E is a (0, 1) variable and no predictor variables are product terms, then the adjusted OR for the effect of E is given 

by exp(b) where b is the coefficient of the E. 
 A test of the null hypothesis that the adjusted OR = 1 can be obtained using a Likelihood Ratio test based on 

logistic regression output. 
 A 95% CI for the effect of exposure is given by the formula  

exp[b+1.96 s.e.(b)] 
 

Maximum Likelihood Methods for Analyzing Matched Data Using  
Logistic Regression 

 
The most popular approach for estimating the parameters in a logistic regression models is maximum likelihood (ML) 
estimation. There are actually two alternative ML approaches: the unconditional method (UCMLE) and the conditional 
method (CMLE). These two methods require different computer programs. 

Of these two methods, the CMLE approach is typically used to analyze matched data. A survival analysis computer 
program can be used to carry out the CLME method, as provided in the computer software packages SAS and SPSS. 

The key distinction between the unconditional and the conditional ML approaches concerns the number of parameters 
(p) in the model being used relative to the total number of subjects (n) in the study.  If p is small relative to n, then 
UCMLE is typically used. If p is large relative to n, then CMLE is preferred. 

Exactly how large is large, however, has never been precisely determined by statisticians. Nevertheless, it is typically 
argued that the logistic model for matched data usually is in the large” category. 

For example, in a case-control study involving 100 matched pairs with matching on, say, AGE, RACE, and SEX, a 
logistic model (assuming no pooling and no interaction terms) would have the following form: 
 

 
99

1
100ii0 EbDbbP(X)logit 

i

 

 
where the D  to distinguish the 100 matching strata and E denotes a dichotomous exposure 
variable. 

The number of parameters in this model is p = 101 whereas the total number of subjects is n = 100 x 2 = 200. Here, p 
would usually be considered large relative to n, so the CMLE approach would be recommended. In fact, for pair-matched 
data, the odds ratio estimate obtained from using CMLE can be mathematically shown to be the square of the odds ratio that 
would have been obtained if UCLME had been used on the same model instead, i.e.: 

 2
CMLEUCMLE )R̂(OR̂O  

 
The odds ratio for the CMLE method has been shown to be the correct (i.e., unbiased) odds ratio, so this means that the 

(square) of this odds ratio obtained from the UCMLE method is biased. In particular, if the correct (i.e., CMLE) odds ratio 
turned out to be 3, then the biased (i.e., UCMLE) odds ratio would be 9, which is a very large bias. 

In contrast, if matching had not been used in a case-control study involving 200 subjects, a logistic model for assessing 
the effect of exposure E controlling for, say, AGE, RACE, and SEX would have the following form:  

Continued on next page

’s denote 99 dummy variables

“
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 Maximum Likelihood Methods for Analyzing Matched Data Using  
Logistic Regression (continued) 

 
 logit P(X) = b0 + blAGE + b2RACE + b3SEX + b4E 
 

The number of parameters in this model is p = 5 whereas the total number of subjects is n = 200. Here, in contrast to the 
model involving matching, p is clearly small relative to n, so the UCMLE approach would be recommended.  

In general, the CMLE method always gives the correct (i.e., unbiased) answer (e.g., odds ratio estimate). However, 
when p is small relative to n, the UCMLE method is preferred because not only will it give essentially the same answer as 
the CMLE method, but the UCMLE method will typically give a more precise confidence interval around the point 
estimate than obtained from the CMLE method.  
 
 

The EVW Logistic Model for Matched Data 
 
A general expression for the logistic model that allows for the analysis of matched data can be written as follows: 
 

 
31 2

1
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p

1i 1
2i2i1i1i EWEVV  P(X)logit 
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i

 

 
The , b’s in the activities on logistic modeling) in this model represent unknown 

regression coefficients that need to be estimated using (usually) conditional maximum likelihood estimation (i.e., CMLE).   
The E, V W EW E with one of 
the W E denotes a single exposure variable of interest, the first set of V
denote dummy variables to identify p1 + 1 matching strata, the second set of V potential 
confounders) that are not involved in the matching, and the W effect modifiers that go into the model as 
product terms with the exposure variable E.  

We illustrate this model for a study of the relationship of estrogen use (E = EST, 1 if yes, 0 if no) to endometrial cancer 
(D = ENC) involving p1 + 1 = 63 matched pairs of women in a Los Angeles retirement community. The matching variables 
were age, marital status, and date of entry into the community.  

Another variable, not matched, is presence or absence of gall bladder disease (GALL = 1 if present, 0 if absent).   A no 
interaction logistic model for these data based on the above general EVW formula is given as follows:  
 

 ESTGALLV  P(X)logit 
62

1i
211i1i  

 
The V1i p  1 = 62 dummy variables for the 63 matched pairs.   Since there is only one unmatched 

variable in the model, i.e., GALL, there is only one V2i term in the second sum in the general EVW formula, i.e., p2 = 1.  
When CMLE is used to estimate the parameters in the model, the only parameters actually estimated are the coefficients 

of EST and GALL, since  and the 
The formula for the estimated adjusted odds ratio for the effect of estrogen use, adjusted for the matching variables and 

for GALL, is then equal to:  
 

 exp(b)(adj)R̂O  where  ˆb  
 

An alternative logistic model for these data that allows for the possibility of interaction between estrogen use and gall 
bladder status is given by the following model:  

 
 
 
 

Continued on next page

’s, ’s, and ’s (previously denoted as 

’s and ’s represent the predictor variables in this model. Also the ’s represent product terms of 
’s.  More specifically, the predictor variable ’s 

’s denote potential 
’s denote control variables (i.e., 

’s In this model denote 

’s drop out of the conditional likelihood function that is maximized.  
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The EVW Logistic Model for Matched Data (continued) 

 GALLESTESTGALL V  P(X)logit 121

62

1i
1i1i  

 
For this interaction model, the formula for the estimated adjusted odds ratio is given by.  

 

 GALL)ˆexp(b(adj)R̂O 1  
 
so that the value of the “interaction” odds ratio will change (i.e., is modified) depending on the value of the potential effect 
modifier GALL. 
 
 
Quiz (Q15.22) 
 
Fill in the Blanks 
 
A matched case-control of cervical cancer was conducted in Sydney, Australia (Brock et. al., J. Nat. Cancer Inst., 
1988) involving 313 women. The outcome variable was cervical cancer status. The matching variables are age 
and socioeconomic (SOC) status. Additional variables not matched on were (0, 1) smoking status (SMK), number 
of lifetime sexual partners (NS), and age at first sexual intercourse (AS). 

 
1. Which of the logistic models shown below is appropriate for analyzing these data?  . ??? 

2. What method of estimation should be used to fit the appropriate model for these data?  . ??? 
 
Choices 
Conditional MLE Least Squares   Unconditional MLE      a b c 
 

 
 
 
The output shown below was obtained by fitting a logistic regression model to the cervical cancer data.  Assuming 
that the correct model was used, answer the following questions: 
 

 
 

3. What is the adjusted odds ratio for the effect of SMK on cervical cancer outcome?  . ??? 

4. Is number of lifetime sexual partners a significant predictor of cervical cancer outcome, controlling for the 
matching variables and the other non-matching variables?  . . . . ??? 

5. Are the matching variables being controlled?  . . . . . . ??? 

6. A 95% CI for the (adjusted) effect of SMK is given by the expression  . . . ??? 
 
Choices 
1.4361  1.4361±1.96(.3167) 1.4361/.3167        exp(1.4361)  exp[1.4361±.3167)   exp[1.4361±1.96(.3167)]    
no    yes 
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Homework 
 
ACE-1.  Types of Matching 
 
Suppose you are using a case-control study to investigate whether a dichotomous exposure variable E is associated with a 
dichotomous disease variable D, and you decide to match on age-group (3 categories) and gender.  Answer the following 
questions assuming that all a priori conditions for confounding are satisfied by age-group and gender. 
 
a. If you choose controls by frequency matching on age-group and gender, does this mean that you can ignore controlling 

for age-group and gender in your analysis? 
b. If you individually match on age-group and gender, does this mean that you can ignore controlling for age-group and 

gender in the analysis? 
c. If you individually match on age-group and gender, should you control for age-group and gender by doing a stratified 

analysis using individually matched sets as  your strata. (Assume no other variables are being controlled other than the 
matching factors.) 

d. Is pooling individually matched sets equivalent to frequency matching? 
e. If you frequency match on age-group and gender, can you consider pooling on one variable (say, age-group) without 

pooling on the other (say, gender)? 
f. If you frequency match on age-group and gender, will you obtain better precision (of the adjusted odds ratio) than if we 

individually match? 
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g. If you individually match on age-group and gender, will you obtain better precision (of the adjusted odds ratio) by 
pooling (exchangeable) individually matched sets than by using individually matched sets as the strata? 

h. If you individually match on age-group and gender, will you obtain the same adjusted odds ratio estimate whether or 
not you pool exchangeable matched sets or use individually matched sets as the strata? 

i. Would you expect frequency matching to give roughly the same odds ratio as obtained by pooling individually matched 
strata? 

j. When individual matching is used with several matching variables, including continuous variables, will it be 
advantageous to do a stratified analysis using pooled matched sets as your strata? 

  
ACE-2.  Analysis of Matched Data 
 
An investigator plans to conduct a case-control study to examine the relationship between an exposure variable E and a 
certain disease variable D, controlling for the potential confounding effect of a certain extraneous variable F. The following 
table describes the total (source) population being studied. 
 
 

 
 

 
F yes 

 
  F no 

 
 

 
E 

 
Not E 

 
  E Not E 

 
Cases 

 
  120 

 
   40 

 
 Cases   40    40 

 
Controls 

 
1080 

 
1080 

 
 Controls 360 1080 

     1200         1020        400            1020 
 
a. Based on the above data, does the variable F appear to be a “risk factor” for the disease? Explain. 
b. Assume that 240 controls are sampled randomly from the source population and that all the 240 cases are to be studied. 

Compute the “expected frequencies” for the two tables that would result from random sampling 
c. Is the variable F a confounder for the (expected) randomly sampled data? Explain. 
d. What is the appropriate method of analysis for the (expected) randomly sampled data: stratified or un-stratified? Explain. 
e. Assume that all 240 cases are used and that 240 controls are obtained by category matching. Compute the expected 

frequencies for the two tables that would result from this matched design. 
f. What is the appropriate method of analysis for the matched data of part e: stratified or un-stratified? Explain 
g. Carry out a stratified (matched) analysis of the expected frequency data. Make sure to compute a point estimate of the 

effect, a test of significance and a 95% CI. 
h. For the given population, which approach would you expect to give more precise results  (in the estimation of the 

adjusted odds ratio), matching or random sampling? Explain. 
i. In general, how would you decide whether to match or not match on extraneous variables when doing a case control 

study? 
 
ACE-3.  Matching: Follow-Up vs. Case-Control Studies 
 
This fictitious example illustrates and contrasts a matched follow-up study with a matched case-control study with respect to 
the control of confounding by a matched factor (age). Consider an underlying cohort of 2,000,000 people in which 50% are 
young and 50% are old.  Suppose 50% of the young are exposed while 10% of the old are exposed.  Also suppose that age is 
a risk factor for the disease.  The risk of disease for each exposure-age group, over a given time period, is summarized 
below: 

 
Group   Number Risk  Cases 

      Young Exposed  500,000 0.005  2,500 
      Young Unexposed   500,000 0.001     500 
      Old Exposed   100,000 0.030   3,000   
      Old Unexposed  900,000 0.006   5,400 
 
a. What is the risk ratio for exposed vs. unexposed among the young and among the old ? Is age an effect modifier? 
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b. Create the crude 2-by-2 table for exposure and disease.  What is crude risk ratio for exposure in this cohort?  Is age a 
confounder in this cohort? 

c. Suppose you had conducted a matched follow-up study from this cohort in the following manner:  One percent of the 
exposed subjects were enrolled (6,000 subjects).  You also enrolled 6,000 unexposed subjects that were matched by age 
group to the exposed subjects.  Create the 2-by-2 table (not stratified) that would result if this study was carried out 
correctly and there was no random error (i.e., give the expected counts). Calculate the risk ratio.  Is the risk ratio 
confounded? 

d. Suppose you conducted a matched case-control study with this cohort in the following manner:  One percent of the cases 
were enrolled (this should be 114 cases).  You also enrolled 5 controls for each case yielding 570 controls in which 
controls were chosen to have the same age distribution as the cases (i.e., controls were matched on age).  Create the 
resultant 2-by-2 table (not stratified) assuming no random error. Choose the controls from the entire cohort (not just from 
the non-diseased population – the numbers work out easier).  Calculate the exposure odds ratio.  Is the odds ratio biased?  

e. Adjust for the bias from part d (if necessary) by stratifying by age in the case-control study analysis (i.e., calculate 
stratum specific odds ratios). 

f. In part d), controls were chosen from the entire cohort rather from just the non-diseased portion of the cohort.  What 
measure of disease association, does the adjusted exposure odds ratio estimate when controls are chosen in this manner?  
Why in this study does it make little difference whether the controls were chosen from the entire cohort or just from the 
non-diseased portion of the cohort?  

g. Suppose you conducted a case-control control study in which controls were not matched to cases.  As in part d), 114 
cases were enrolled, and controls were chosen from the entire cohort.  Unlike part d), controls are not matched by age 
and 600 controls are selected.  Create the resultant 2-by-2 table assuming no random error.  

 
Calculate the exposure odds ratio.  Is the odds ratio biased?  

 
h. Adjust for the bias from part g) (if necessary) by stratifying by age in the case-control study (i.e., calculate stratum 

specific odds ratios). 
 

i. Is there any advantage in conducting the matched case-control study (as in parts d and e), as opposed to the unmatched 
case-control study (as in parts g and h)?  Answer this question just in terms of these particular studies and ignore the fact 
that a slightly different number of controls were chosen for each study (570 vs. 600).  The numbers were chosen to make 
the calculations simpler. 

j. Consider a case-control study in which it is desired to control for neighborhood of residence and each case resides in a 
different neighborhood.  Is there any advantage in conducting a matched case control study (matching on neighborhood) 
as opposed to an unmatched case control study?  Explain.  

k. Contrast the matched follow-up study conducted in part c) with the matched case-control study conducted in part d) with 
respect to the control of confounding by age (the matched factor). 

l. Below is an excerpt from Kenneth Rothman’s text Modern Epidemiology (first edition).  The quoted text is the first 
paragraph of his principles of matching section on page 237. Not withstanding the writing style, there is an important 
point being made concerning the principles of matching which this entire question attempted to illustrate.  Explain the 
point Rothman is making.  

 
Rothman quote: 
The topic of matching in epidemiology is beguiling.  What at first seems clear is seductively deceptive.  Whereas the clarity of 
an analysis in which confounding has been securely prevented by perfect matching of the compared series seems indubitable 
and impossible to misinterpret, the intuitive foundation for this cogency attained by matching is a surprisingly shaky 
structure that does not always support the conclusions that are apt to be drawn.  The difficulty is that our intuition about 
matching springs from knowledge of experiments or follow-up studies, whereas matching most always applied to case-
control studies, which differ enough from follow-up studies to make the implications of matching different and 
counterintuitive. 
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Answers to Study Questions and Quizzes 
 
Q15.1 
 

1. Reye’s syndrome was associated with only certain 
types of viruses, so “virus type” was an important 
risk factor for the outcome. 

2. Older children were less likely to develop Reye’s 
syndrome, i.e., age was an important risk factor. 

 
Q15.2 
 

1. You need to categorize the continuous variables 
age, blood pressure, and body size. 

2. Choose one or more controls to be in the same 
category of age, gender, smoking status, blood 
pressure, and body size as the case. 

3. No.  The case and controls have to be in the same 
category for each of the matching variable.  The 
control choice in the question is not appropriate 
because both body size and blood pressure 
categories of the control are different categories 
than observed on the case. 

4. {High BP, age > 55} = 120;  {High BP, age < 55} 
= 180; {Normal BP, age > 55} = 150; {Normal BP, 
age < 55} = 150 

5. {High BP, age > 55} = 20%;  {High BP, age < 55} 
= 30%; {Normal BP, age > 55} = 25%; {Normal 
BP, age < 55} = 25% 

6. Frequency matching because it should be 
logistically easier and less costly to find groups of 
control subjects, particularly by hospital than to 
find controls one case at a time. 

7. Individual matching because there are many 
variables to match on, many of which are quite 
individualized. 

 
Q15.3 
 

1. 30 cases and 60 controls 
2. 70 cases and 140 controls 
3. Ri to Si, since R1 = 60, S1 = 30, and R2 = 140, S2 = 

70 
4. Four 
5. Ri to Si matching ratio.  Even though there are 

twice as many controls overall as there are cases, 
the numbers of cases and controls vary within each 
stratum.  

6. White Male: R = 200, S = 100; White Female: R = 
200, S = 100; Black Male: R = 80, S = 40;  Black 
Female: R = 120, S = 60. 

 
Q15.4 
 

1. For a fixed number of index subjects, total sample 

size for the study increases as R increases 
2. There is a 33% increase in going from R = 1 to R = 

2.  This indicates that there is considerable 
precision to be gained by using 2 to 1 matching 
instead of 1 to 1 matching. 

 
Q15.5 
 

1. False – in a case-control study, the index group is 
composed of cases. 

2. False – in a cohort group, the comparison group is 
composed of unexposed individuals. 

3. False – The control of a given case in this situation 
would need to be the same regarding both matching 
factors. 

4. True 
5. True – Five to one matching will result in an 

increase in precision of 4.2% compared to four to 
one matching. 

6. True 
7. True 
8. False – Choosing 2 controls per case versus 1 per 

case will increase precision by 33%.  This increase 
in precision will continue with each added control 
per case.  However, the table of Pitman Efficiency, 
values computed for different values of R (number 
of controls per case) indicates a diminishing return 
regarding efficiency once R exceeds 4. 

 
Q15.6 
 

1. No, hair color has no known relationship to bladder 
cancer. 

2. Because hair color has no known relationship to 
bladder cancer, and is not a risk factor needing to 
be controlled, matching on hair color is unlikely to 
have any effect on the precision of the estimated 
exposure-disease effect, i.e., even though matching 
on hair color will make cases and controls 
“balanced” with respect to hair color, the estimated 
effect is unlikely to be more precise than would 
result from “unbalanced” data obtained from not 
matching. 

3. Fast-food products tend to be high in saturated fats, 
so if you match on amount of fast-food products in 
one’s diet, you may effectively be matching on 
cholesterol level. 

4. You will have difficulty finding matches for some 
index subjects, and consequently, are likely to 
obtain a much smaller sample size than originally 
planned. 
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Q15.7 
 

1. There is no strong reason for matching, and the 
reasons against outweigh the reasons for. 

2. You might expect to gain precision from matching, 
but you also need to weigh the other reasons listed, 
particularly the cost in time and money to carry out 
the matching. 

3. Again, your decision depends on how you weight 
all the reasons for and against matching.  Matching 
on neighborhood of residence may be a convenient 
way to control for social and environmental factors 
that are difficult to measure.  However, if the 
exposure variable has a behavioral component, you 
must be careful that you won’t overmatch in this 
situation. 

 
Q15.8 
 

1. False – one reason for deciding to match in a case-
control study is to obtain a more precise estimate of 
the odds ratio of interest. 

2. False – a reduction in the sample size due to not 
finding an appropriate match would be a 
disadvantage of matching. 

3. True 
4. a, d, and e 
5. False – you still need to be concerning about 

matching on weak risk factors and overmatching. 
6. It depends – it depends on at what cost you gain the 

precision.  It is important to consider other things 
such as cost, money, time, how strong or weak are 
the risk factors, overmatching, etc. 

 
Q15.9 
 

1. Logit P(X) = b0 + b1(D1) + b2(D2) + … + b99(D99) 
+ b100(E) where D1 through D99 are 99 dummy 
variables that distinguish the 100 matched pairs.  In 
particular, the Di may be defined as follows: Di=1 
for a subject in the i-th matched pair and Di = 0 for 
a subject not in the i-th matched pair.  Thus, for 
each of the two subjects in the first matched pair, 
D1 = 1, D2 = D3 =…= D99 = 0 and for each 
subject in the 100-th matched pair, D1 = D2 
=…D99 = 0. 

2. Logit P(X) = b0 + b1(D1) + b2(D2) + … + b99(D99) 
+ b100(SBP) + b101(CHL) + b102(E) where D1 
through D99 are 99 dummy variables that 
distinguish the 100 matched pairs. 

3. Any matched pair in which the case is in a different 
SBP or CHL category than is the corresponding 
control will have to be dropped from such a 
stratified analysis.  The only matched pairs to be 
kept for analysis will be those in which both the 
case and control are in the same SBP and CHL 

categories. 
 
Q15.10 
 

1. All strata have zero cells, so it is not possible to 
compute stratum-specific odds ratios. 

 
Q15.11 
 

1. The mOR estimate of 9.67 indicates a very strong 
relationship between estrogen usage and 
endometrial cancer, controlling for the matching 
variables.  The MH test has a P-value equal to zero 
to four decimal places.  Therefore, the point 
estimate is highly significant.  The 95% CI is quite 
wide, so there is considerable imprecision in the 
point estimate.  Overall, however, the results 
suggest a strong effect of estrogen use on the 
development of endometrial cancer. 

 
Q15.12 
 

1. All strata have at least one zero cell, since the one 
case in each stratum is either exposed or 
unexposed. 

2. Even though there are only 5 subjects per stratum, 
the total study size is 90.  The large-sample 
property of the MH test depends on the total sample 
size, not on the stratum-specific sample size. 

3. There is a very strong and significant effect (mOR 
= 33, P < .0001) of previous abortion and the 
development of tubal pregnancy for women with at 
least one previous pregnancy.  There is lack of 
precision in the estimate, however, likely due to the 
number of cases (18) and total sample size (90) 
being relatively small. 

 
Q15.13 
 

1. True 
2. False – in a pair-matched case-control study, the 

mOR is computed as X/Y where X and Y are 
discordant pair frequencies. 

3. False – the computed value for McNemar’s test 
statistic is: 
 (X – Y)2 / (X + Y) = 5. 

4. False- the MH test statistic is appropriate for R-to-1 
matching 

5.  1.03 
6.  0.07 
7.  (0.80, 1.32) 
8.  no 

 
Q15.14 
 

1. Four exchangeable sets: smokers below 60, 
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smokers 60 or above, non-smokers below 60, and 
non-smokers 60 or above. 

2. “It depends!”  If there are any exchangeable 
matched sets, pooling is certainly appropriate.  
However, there are so many variables being 
matched on that the study data is likely to contain 
only a few sets of exchangeable strata.  
Consequently, the use of a pooled analysis is likely 
to have a negligible effect on the estimates odds 
ratio and precision around this estimate when 
compared to an unpooled matched analysis. 

 
Q15.15 
 

1. 1 
2. 1 
3. 2 
4. 1 
5. McNemar’s 
6. 2 
7. unpooled 
8. 2.5 
9. pooled 
10. pooled 
11. 2 
12. 1 
13. 0 
14. 2 
15. undefined 
16. 2.5 
17. a 

 
Q15.16 
 

1. There is little evidence of confounding, since the 
crude (4.09) and adjusted (4.10) odds ratio 
estimates differ very little. 

2. There is very little evidence of interaction, since the 
stratum-specific odds ratios are quite close to each 
other (around 4).  Consequently, an overall 
assessment of the E-D relationship appears 
justified. 

3. There are large numbers in each of the four strata 
and there are no zero cells in any strata.  
Consequently, a mOR is not necessary (to deal with 
a zero-cell problem) and an aOR can therefore be 
computed. 

4. There is an approximate fourfold effect of exposure 
on disease.  This effect is significant (based on the 
MH test) and the estimated confidence interval 
gives a reasonably precise estimate of the effect. 

 
Q15.17 
 

1. True 
2. c – having zero cells in some strata supports the use 

of an mOR for this or any stratified analysis.  
Frequency matching does not usually indicate the 
need to use an mOR, but in this example, the use of 
frequency matching required an mOR because of at 
least one zero frequency in stratum 1 and perhaps 
other zero frequencies in other strata.  If logistic 
regression is used, then an mOR cannot be used to 
estimate the odds ratio. 

3. False – if we ignore control for the matching 
variable in a case-control study, our estimate is 
biased towards the null. 

4. Ri to Si – Using frequency matching, the matching 
ratio of controls to cases will usually be different 
for different strata. 

5. Not necessarily – you should expect to get better 
precision from frequency matching versus no 
matching, but there is no guarantee that frequency 
matching will give better precision than individual 
matching and vice versa. 

 
Q15.18 
 

1. The study is a cohort study, where we typically use 
a risk ratio (RR) as the measure of effect.  Also, 
since all strata have zero cells, it is not possible to 
compute stratum-specific risk or odds ratios, which 
need to be averaged to obtain an aRR. 

 
Q15.19 
 

1. The mRR estimate of 1.33 indicates a relatively 
weak relationship between shift type and chronic 
low back pain controlling for the matching 
variables.  The MH test has a P-value equal to 
.0680.  Consequently, the point estimate is of 
borderline significance and is not significant at the 
.05 level.  The 95% confidence interval lies 
between a lower limit (.98) just below 1 and an 
upper limit of moderate size (1.81) above 1, so 
there is considerable imprecision in the point 
estimate.  Overall, the results suggest a relatively 
weak effect of rotating shifts. 

 
Q15.20 
 

1. False – The total number of exposed in each 
matched set is always 1. 

2. True 
3. 1.2 
4. 2.5 
5. (0.96, 1.50) 

 
Q15.21 
 

1. The mOR value controls only for the matching 
variable, i.e., it does not control for GALL. 
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2. 
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3. The adjusted odds ratio is exp(2.269) = 9.67, which 
is the same value as the mOR. 

4. P=.0001, which is extremely small, so we reject the 
null hypothesis at the .05 and .05 levels and 
conclude that estrogen use is a significant predictor 
of endometrial cancer status control for the 
matching variables and for the unmatched variable 
GALL. 

5. The McNemar chi square statistic ignores the 
control of GALL, whereas the chi square statistic 

here controls for GALL. 
6. The confidence interval is quite wide, indicating 

that there is considerable imprecision in the 
estimated odds ratio. 

 
Q15.22 
 

1. b 
2. Conditional MLE 
3. exp(1.436) 
4. yes 
5. yes 
6. exp[1.4361 + 1.96(.3167)] 
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16-1 Data Desk Reference 
 
We hope that you will find the ActivEpi resources a valuable reference. This page on the ActivEpi CD ROM is designed to 
make it easy for you to find and use the reference materials in ActivEpi.  In addition to the icons on this page, you may want 
to take advantage of some special web services found by clicking the WEB icon in the control bar. 
 
A number of icons are presented on the ActivEpi CD-ROM for the following Data Desk Activities: 
 

Launch Data Desk 
See the Data Desk documentation 
Learn how to dichotomize a variable in Data Desk 
See Data Desk Interactive examples 
Perform a sample analysis in Data Desk. 

 
 

16-2  Tables Reference 
 
This page on the ActivEpi CD ROM provides access to tables found in many statistics textbooks.  For each of these 
distributions, the user can click on the distribution graphic or move around with the tables.  The distributions included are the 
Z, t, chi square, and F distributions.  A screen image for the Z (Standard normal) is presented below; the other distributions 
have similar types of presentation. 
 

Selected Statistical Tables 
 
Standard Normal Distribution Table 19 
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t Distribution Table 
 
 
 
Chi Square Distribution Table 
 
 
 
 
F Distribution Table 

 
 

 
16-3 Other Programs for Analyzing Epidemiologic Data 
 
A special student version Data Desk has been integrated into ActivEpi to provide you with a platform to practice applying the 
concepts you have learned. Several other popular analysis programs are available to analyze epidemiologic data. The names 
of the program, and the companies that make the programs, are listed below. Web links to each of these companies can be 
found in the Web page for this lesson. Click on the web icon in the title bar to access the web page. 
 

 Epi Info, from the Centers for Disease Control and Prevention. The CDC is located in Atlanta, GA. 
 OpenEpi, a web-based calculator-type program, www.OpenEpi.com 
 SAS, from the SAS Institute. The SAS Institute is one of the oldest data analysis software companies. They are 

located in Cary, NC. 
 SPSS, from SPSS Inc.. SPSS, Inc is located in Chicago, IL. 
 Stata, from the Stata Corporation. Stata Corporation is located in College Station TX.  
 S Plus, from Insightful. Insightful is located in Seattle, W A. 

 

•
•
•

•
•
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Glossary 
 
There are two Glossary sections: the first is for epidemiologic and statistical terms, and the second for terms 
specific to the ActivEpi CD and Textbook. 
 
Epidemiologic and Statistical Glossary 
 
1 
1-to-1 Synonym for 1-to-1 matching or pair-matching 
1-to-1 Matching Synonym for pair-matching. Individual matching in which one referent subject (e.g., a control in a case-

control study) is paired with one index subject (e.g., a case) in each matched pair so that there are exactly two subjects in 
each matched pair. 

 
A 
a-Cell  The number of exposed cases”  in a data layout that relates a dichotomous exposure variable to a dichotomous 

disease variable; the distribution of the random variable for the a-cell is used to derive the exact P-value for a test of 
hypothesis about a risk ratio, odds ratio, or rate ratio when the study sample size is small. 

Acceptance Region A set of possible values of the test statistic leading to the conclusion that the null hypothesis should not 
be rejected. 

Additive Interaction A departure from no interaction on the additive scale. 
Adjusted Cumulative Incidence Difference  A cumulative incidence density (i.e., risk difference) that controls for other 

variables. 
Adjusted Cumulative Incidence Ratio A cumulative incidence ratio (i.e., risk ratio) that controls for other variables. 
Adjusted Disease Odds Ratio An odds ratio that controls for other variables. 
Adjusted Effect A measure of effect, e.g., an adjusted odds ratio, that controls for other variables. 
Adjusted Estimate Estimate of a measure of effect, e.g., an adjusted odds ratio, that controls for other variables. 
Adjusted Exposure Odds Ratio An odds ratio from a case-control study that controls for other variables. 
Adjusted Incidence Density Difference An incidence density difference (i.e., risk difference) that controls for other 

variables. 
Adjusted Incidence Density Ratio An incidence density ration (i.e., rate ratio) that controls for other variables. 
Adjusted Odds Ratio An odds ratio that controls for other variables. 
Adjusted Prevalence Difference A prevalence difference that controls for other variables 
Adjusted Prevalence Odds Ratio An odds ratio from a cross-sectional study that controls for other variables. 
Adjusted Prevalence Ratio A prevalence ratio from a cross-sectional study that controls for other variables. 
Adjusted Rate Difference A rate difference (i.e., incidence density difference) that controls for other variables. 
Adjusted Rate Ratio A rate ratio (i.e., incidence density ratio) that controls for other variables. 
Adjusted Risk Difference A risk difference (i.e., cumulative incidence difference) that controls for other variables 
Adjusted Risk Ratio A risk ratio (i.e., cumulative incidence ratio) that controls for other variables. 
Age-Adjusted Summary (i.e., overall) rates, risks, or prevalence measures for comparing different populations in which 

underlying differences in the age distributions are removed. Also called age-standardized. 
Age-Adjusted Rates Summary (i.e., overall) rates for comparing different populations in which underlying differences in the 

age distributions are removed. Also called age-standardized rates. 
Age-Adjustment A procedure used to calculate summary rates, risks, or prevalences for comparing different populations in 

which underlying differences in the age distributions are removed. Also called age standardization. 
Age Standardization A procedure used to calculate summary rates, risks, or prevalences for comparing different populations 

in which underlying differences in the age distributions are removed. Also called age-adjustment. 
Age-Standardized Rates Summary (i.e., overall) rates, risks, or prevalence measures for comparing different populations in 

which underlying differences in the age distributions are removed. Also called age-adjusted. 
Age-Standardized Summary (i.e., overall) rates, risks, or prevalences for comparing different populations in which 

underlying differences in the age distributions are removed. Also called age-adjusted rates. 
aIDR Precision-based adjusted rate ratio (i.e., adjusted incidence density ratio).   
All-Causes Mortality A risk or rate measure of the incidence of deaths from all causes. 
Alternative Hypothesis A statistical hypothesis that disagrees with the null hypothesis and typically indicates what the 

investigator is interested in detecting; can be one-sided or two-sided. 
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Analogy One of Hill’s criteria for causation; when similar exposure-outcome associations have been found. 
aOR Precision-based adjusted odds ratio. 
aPOR Precision-based adjusted prevalence odds ratio 
Apriori Criteria Criteria that must be assessed prior to considering the actual data in one’s study. 
Apriori Probability Synonym for pre-test probability when used in the context of diagnostic test studies. More generally, the 

probability of an event of interest without (i.e., before) conditioning on the previous occurrence of another event. 
aRR Precision-based adjusted risk ratio  
Association The relationship between two or more variables; in epidemiology, an association is quantified using a measure 

of effect, e.g., an odds ratio, a risk ratio; a popular statistical measure of association is a correlation coefficient. 
Asymptomatic Without symptoms of a disease or health condition of interest. 
Attributable Prevalence Synonym for prevalence difference.  
Attributable Rate Synonym for rate difference. Sometimes used to denote the attributable rate percent, which has a different 

meaning. 
Attributable Rate Percent Synonym for population attributable rate, population attributable rate percent and etiologic 

fraction (EF); the proportion or corresponding percentage of new cases attributable to exposure based on rate estimates. 
Attributable Risk Synonym for risk difference. Sometimes used to denote the attributable risk percent, which has a different 

meaning. 
Attributable Risk Percent Synonym for population attributable risk, population attributable risk percent and etiologic 

fraction (EF); the proportion or corresponding percentage of new cases attributable to exposure; 
Attributable Risk Among Exposed Synonym for etiologic fraction among exposed, attributable risk percent among 

exposed; the proportion or corresponding percentage of exposed cases attributable to exposure; EFe = I*/I1, where I1 is 
the number of exposed cases that actually occurred and I* denotes the excess number of exposed cases due to exposure. 

Attributable Risk Percent Among Exposed Synonym for etiologic fraction among exposed, attributable risk among 
exposed; the proportion or corresponding percentage of exposed cases attributable to exposure; EFe = I*/I1, where I1 is 
the number of exposed cases that actually occurred and I* denotes the excess number of exposed cases due to exposure. 

Average Rate Number of new cases in (T0, T1) divided by PT where T0 and T1 denote the starting and ending time points 
of follow-up, and PT denotes the amount of disease-free person-time accumulated during the time interval from T0 to T1.  

Away From The Null Direction of bias in which the target parameter is over-estimated, i.e., the biased estimate is further 
away from the null value than is the correct estimate. 

 
B 
Backwards The directionality of a study in which the health outcome is observed before the exposure variable is observed; 

the study proceeds backwards”  over time; a case-control study always has backwards directionality.  
Balanced Tables Two-way tables with cell frequencies all about the same size. 
Basic Designs The most popular observational designs used in epidemiologic research: cohort, case-control, and cross-

sectional. 
Bayes Theorem or Rule A rule about conditional probabilities that allows P(D|E) and P(D|not E) to be expressed in terms of 

P(E|D) and P(E|not D). This rule is needed to show that EOR equals ROR; also used to express predictive value in terms 
of sensitivity, specificity and prevalence parameters. 

Berkson’ s Bias A type of selection bias in case-control studies involving hospital patients as cases and/or controls; this bias 
results because persons with two disease conditions or high risk behaviors are more likely to be hospitalized than subjects 
with a single condition. 

Bias The presence of systematic error; a flaw in the study design, the methods of data collection, or the methods of data 
analysis that may lead to spurious conclusions about an exposure-disease relationship. Three general sources of bias occur 
in: the selection of study subjects, incorrect information gathered on study subjects and the failure to adjust for variables 
other than the exposure, commonly called confounding.   

Binomial The distribution of a random variable whose values represent the number of successes  in n trials” , with a certain 
fixed probability of success (p); often denoted as B(n,p). 

Binomial Distribution The distribution of a random variable whose values represent the number of successes  in n trials” , 
with a certain fixed probability of success (p); often denoted as B(n,p). 

Binomial Random Variable A random variable whose values represent the number of successes  in n trials , with a 
certain fixed probability of success (p); often denoted as B(n,p). 

Biologic Plausibility One of Hill’s criteria for causation; is the possible association between an exposure and outcome 
plausible? 

Blinding A feature of a clinical trial in which neither the patient and/or investigator is aware of treatment assigned. 

”

”

” ”

”

” ”

””

” ”



521 
 

Breslow-Day Test A test of hypothesis for interaction in a stratified analysis; the null hypothesis is no interaction , or 
equivalently, ‘ uniformity of effect measures over the strata’, the test statistic has a chi square distribution with 1 degree of 
freedom under the null hypothesis. 

 
C 
Caliper Matching When choosing controls to be within a defined interval as the case 
Candidate Population The population/group that is eligible to have or develop a health outcome of interest, also called the 

population-at-risk, e.g., the disease-free population. 
Candidate Subset Of Confounders A subset of all variables being considered for control that give the same (i.e., not 

meaningfully different) adjusted estimate as obtained from controlling for all the variables being considered for control; 
may or may not give more precision than obtained when controlling for all variables. 

Case-Cohort A hybrid design that combines features of both case-control and cohort designs; controls are sampled from the 
original cohort. 

Case-Cohort Study A hybrid design that combines features of both case-control and cohort designs 
Case-Control A study that starts with persons who have a health outcome (i.e., the cases) and a suitable choice of persons 

without the health outcome (i.e., the controls), and looks back in time to determine prior exposure status. 
Case-Control Study A study that starts with persons who have a health outcome (i.e., the cases) and a suitable choice of 

persons without the health outcome (i.e., the controls), and looks back in time to determine prior exposure status. 
Case-Crossover An epidemiologic study design that is a variant of a matched case-control study in which each case serves 

as its own control; evaluates the effect of brief exposures with transient effects on acute health outcomes when a 
traditional control group is not readily available. 

Case-Crossover Design See case-crossover. 
Case-Fatality A risk or rate measure of the incidence of persons with a particular disease that die of that disease over a 

period of follow-up.  
Categorical Variable A variable that can take only a finite set of values; the values distinguish different categories or 

groups.   
Category-Matched Study data (or study subjects) obtained (or selected) by category matching. 
Category Matching A type of matching in which each matching variable is categorized and then combinations of categories 

or matching strata are formed. The matching is then carried out so that the index group and referent group have the same 
distribution over the matching strata. The most popular method for matching on continuous variables. 

Causation Relationship between a cause and an effect 
Chi Square A continuous random variable that takes on only non-negative possible values and whose distribution has a 

single parameter is called its degrees of freedom; the square of a normally distributed random variable always has the chi 
square distribution with 1 d.f.. 

Chi Square Distribution The distribution of a continuous random variable that takes on only non-negative possible values 
and whose distribution has a single parameter is called its degrees of freedom; the square of a normally distributed 
random variable always has the chi square distribution with 1 d.f.. 

Chi Square Statistic A statistic typically computed to test a hypothesis about an exposure-disease relationship from 
categorical data that is a continuous random variable that takes on only non-negative possible values and whose 
distribution has a single parameter is called its degrees of freedom; the square of a normally distributed random variable 
always has the chi square distribution with 1 d.f.. 

Chi Square Test A test of hypothesis in which the test statistic has the chi square distribution under the null hypothesis. 
CI Abbreviated notation for either a confidence interval or a measure of cumulative incidence; meaning depends on the 

context in which the abbreviation is use. 
CID Cumulative incidence difference or risk difference 
CIR Cumulative incidence ratio or risk ratio 
Clinical Trial An epidemiologic design that most closely resembles a laboratory experiment; the major objective is to test 

the efficacy of a therapeutic or preventive intervention.  
Cluster A group of cases that occur at about the same time or in the same location. Observational designs in which exposure 

levels are not observed directly, e.g., space/time cluster studies.   
Cluster Designs Observational designs in which exposure levels are not observed directly, e.g., space/time cluster studies.   
CMLE Acronym for conditional maximum likelihood estimation. 
Coherence of the Evidence One of Hill’s criteria for causality; are the findings consistent with the understanding of the 

natural history of the natural history of the disease? 
Cohort A group of persons who share a common attribute, such as birth in a particular year or residence in a particular town, 

who are followed over time; an observational study design involving such a group is called a cohort study. 
’

’
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Cohort Study An observational study in which subjects are sampled based on the presence (exposed) or absence 
(unexposed) of an exposure variable of interest; these subjects are followed over time for the development of a health 
outcome of interest; often used as a synonym for follow-up study. 

Community Intervention When communities or groups are randomized to different treatment arms. 
Comparison Group Synonym for the referent group; the group to which other groups, e.g., the index group are to be 

compared; the unexposed group in a follow-up study or the control group in a case-control study. 
Conceptual Hypothesis A statement or conjecture about a possible exposure-disease relationship that is based on insight 

obtained from research literature or conceptual theory.  
Concordant Synonym for concordant matched pair. 
Concordant Pair Synonym for concordant matched pair. 
Concordant Matched Pair A matched pair for which both the index subject and the referent subject have the same outcome 

(i.e., exposure status in a case-control study, disease status in a cohort study). In case-control study, there are two types: 
1) both case and control are exposed, or 2) both case and control are unexposed. 

Conditional Maximum Likelihood Estimation (CMLE) One of two maximum likelihood estimation methods for 
estimating the parameters in a logistic model. Typically used to analyze matched data. Recommended when the number 
of parameters in the model is 

’

large’ relative to the number of observations in the study. 
Conditional Probability The probability of an event given that another event has occurred, e.g., P(A | B) is the probability 

that the event A occurs given that B has occurred. If A is the event of being a smoker and B is the event of having lung 
cancer, than P(A | B) is the number of persons with lung cancer who are smokers divided by the total number of persons 
with lung cancer.   

Confidence Interval Synonym for interval estimate: an estimate of a population parameter described by lower and upper 
limits L and U, respectively, that give a range of values that cover the true parameter with a certain amount of confidence, 
e.g., 95% confidence; measures the precision of an estimate, i.e., the narrower the confidence interval, the greater the 
precision. 

Confounder A variable that needs to be controlled in order to avoid a bias in the assessment of an exposure-disease 
relationship. 

Confounding Bias resulting from failure to control for other variables in assessing an exposure-disease relationship. 
Confounding Bias Synonym for confounding. 
Confounding Factor A variable that needs to be controlled in order to avoid a bias in the assessment of an exposure-disease 

relationship. 
Consistency of Findings One of Hill’s criteria for causality; are the results from different studies consistent in their 

evaluation of an exposure-outcome association? 
Continuous Synonym for a continuous variable. 
Continuous Variable A variable whose possible values lie along a continuum; for any two possible values of such a 

variable, there is always a possible value between the two values. 
Control As a noun, a member of a control group. As a verb, to take into account or adjust for a risk factor or other covariate. 
Control Group Synonym for controls; the comparison/referent group in a case-control study; sometimes used to describe the 

referent group in a clinical trial or a cohort study. 
Control Variable A variable other than the exposure variable that has a potential effect on the outcome variable and is 

subject to control in the analysis. 
Controlled Adjusted for the influence of variables other than the exposure variable that have potential influence on the 

outcome variable. 
Controlling for Extraneous Variables Adjusting for the influence of variables other than the exposure variable that have 

potential influence on the outcome variable. 
Controls The comparison/referent group in a case-control study; sometimes used to describe the referent group in a clinical 

trial or a cohort study.   
Corrected Effect Measure An effect measure (e.g., odds ratio) that has been modified to remove bias; a term often used in 

the context of misclassification bias. 
Corrected Cell Frequencies Modification of the cell frequencies in an observed (i.e., classified) 2x2 table to remove 

misclassification bias; leads to a corrected effect measure. 
Covariate A variable that is measured or observed in a study; often considered as a control variable in the data analysis. 
Crossover Design A study design (often used in a clinical trial) in which each subject receives two or more of the 

exposures/treatments to be compared; a variant of such a design is a case-crossover design. 
Cross-Product Ratio The formula (a x d)/(b x c), where a, b, c, and d are the cell frequencies in a 2 x 2 table relating 

exposure to a health outcome. Also, used to describe an analogous formula involving selection ratios or selection 
probabilities when considering selection bias.   
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Cross-Sectional A basic observational study design in which all variables studied are observed at a single point or very short 
period in time. 

Cross-Sectional Study A basic observational study design in which all variables studied are observed at a single point or 
very short period in time. 

Crude Cumulative Incidence Difference  A cumulative incidence density (i.e., risk difference) that does not control for 
other variables. 

Crude Cumulative Incidence Ratio A cumulative incidence ratio (i.e., risk ratio) that does not control for other variables. 
Crude Death Rate Summary (i.e., overall) estimate of a death rate that ignores the control of other variables. 
Crude Disease Odds Ratio An odds ratio that controls for other variables. 
Crude Effect A measure of effect, e.g., an odds ratio, that ignores the control of other variables. 
Crude Estimate Estimate of a measure of effect, e.g., an odds ratio that ignores the control of other variables. 
Crude Exposure Odds Ratio An odds ratio from a case-control study that does not control for other variables. 
Crude Incidence Density Difference An incidence density difference (i.e., risk difference) that does not control for other 

variables. 
Crude Incidence Density Ratio An incidence density ration (i.e., rate ratio) that does not control for other variables. 
Crude Odds Ratio An odds ratio that does not control for other variables. 
Crude Prevalence Difference A prevalence difference that controls for other variables 
Crude Prevalence Odds Ratio An odds ratio from a cross-sectional study that controls for other variables. 
Crude Prevalence Ratio A prevalence ratio from a cross-sectional study that controls for other variables. 
Crude Rate Difference A rate difference (i.e., incidence density difference) that does not control for other variables. 
Crude Rate Ratio A rate ratio (i.e., incidence density ratio) that does not control for other variables. 
Crude Risk Difference A risk difference (i.e., cumulative incidence difference) that does not control for other variables. 
Crude Risk Ratio A risk ratio (i.e., cumulative incidence ratio) that does not control for other variables. 
Cumulative Incidence A population-based estimate of individual risk; the proportion of persons that develop a health 

outcome out of those candidates (e.g., disease-free) available for developing the health outcome. 
Cumulative Incidence Difference (CID) Measure of effect used in follow-up/cohort studies defined as the cumulative 

incidence (or risk) for one group minus the cumulative incidence for another group; synonym: risk difference 
Cumulative Incidence Ratio (CIR) Measure of effect used in follow-up/cohort studies defined as the cumulative incidence 

(or risk) for one group divided by the cumulative incidence for another group; synonym: risk ratio, relative risk 
 
D 
df Acronym for degrees of freedom.; the parameter of both the chi square distribution and the t distribution, whose value 

depends on the characteristics of the random variable being considered; in particular, the degrees of freedom for a chi 
square statistic used in the simple analysis of a 2 x 2 table of data, always has 1 degree of freedom, whereas a chi square 
statistic for an r x c table has (r-1)(c-1) degrees of freedom. 

Data-Based Criterion Requires that the crude estimate of effect be meaningfully different from the adjusted estimate of 
effect in the study data being analyzed; if this criterion is satisfied, we say that there is ‘ data-based confounding.’   

Degrees of Freedom (df); the parameter of both the chi square distribution and the t distribution, whose value depends on the 
characteristics of the random variable being considered; in particular, the degrees of freedom for a chi square statistic 
used in the simple analysis of a 2 x 2 table of data, always has 1 degree of freedom, whereas a chi square statistic for an r 
x c table has (r-1)(c-1) degrees of freedom. 

Dementia A general mental deterioration due to organic or psychological factors; Alzheimer’s disease is one form of  
dementia. 

Density Matching A method for choosing controls so that controls are matched to cases on the time of case diagnosis.  
Density Sampling A method for choosing controls so that controls are matched to cases on the time of case diagnosis.  
Dependent Variable The variable that is to be predicted by one or more explanatory variables in a mathematical model; 

often denoted as Y or as D (in epidemiology), and usually (in epidemiology) refers to the health outcome of interest. 
Determinant A variable that is predictive of a health outcome of interest; synonym for risk factor. 
Diagnostic Test A clinical procedure, usually performed or organized by a physician/clinician, to diagnose (i.e., determine) 

whether or not a disease condition is present in an individual presenting with certain symptoms. 
Diagnostic Testing Carrying out a clinical procedure, usually performed or organized by a physician/clinician, to diagnose 

(i.e., determine) whether or not a disease condition is present in an individual presenting with certain symptoms. 
Diagnostic Test Studies Studies carried out to evaluate the performance of a clinical test for diagnosing a disease condition 

of interest. In such a study, the clinician targets patients with a specific symptom and then compares the results from 
using a diagnostic test with results from a gold standard test procedure on these patients. 

Dichotomous A variable that takes on one of two possible values, usually, though not always, coded as 0 or 1. 
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Dichotomous Outcome An outcome variable that takes on one of two possible values, usually, though not always, coded as 
0 or 1. 

Difference Measure of Effect Quantity obtained by subtracting one measure of effect by another measure of effect; of the 
form M1 - M0 were M1 and M0 are measures of effect for groups 1 and 0, respectively, e.g., the risk difference, the rate 
difference, the prevalence difference. 

Differential See differential misclassification. 
Differential Misclassification Misclassification of the status of subjects with regard to one variable (e.g., exposure status) 

that is influenced by other characteristics of interest (e.g., disease status). Occurs if sensitivity or specificity parameters 
for misclassification of one variable (e.g., exposure) differ depending on the categories of another variable (e.g., disease) 

Direct Adjustment A method of adjusting a rate, risk or prevalence measure for a confounding factor that substitutes the 
distribution of the confounder in a standard population for the separate distributions of the confounder in groups being 
compared; synonyms, direct standardization, direct adjustment. 

Direct Method A method of adjusting a rate, risk or prevalence measure for a confounding factor that substitutes the 
distribution of the confounder in a standard population for the separate distributions of the confounder in groups being 
compared; synonyms, direct standardization, direct adjustment. 

Direction of Bias Whether or not the target parameter is over-estimated or under-estimated without specifying the magnitude 
of the bias. 

Directionality A design option that answers the question, Which did you observe first, the exposure or the disease?” ; can be 
forward, backwards, non-directional, or ambi-directional. 

Discordant Synonym for discordant matched pair. 
Discordant Matched Pair A matched pair for which the index subject and referent subject have different outcomes (i.e., 

exposure status in a case-control study, disease status in a cohort study). In case-control study, there are two types: 1) the 
case is exposed and the control is unexposed, or 2) the case is unexposed and the control is exposed. 

Discordant Pair Synonym for discordant matched pair. 
Disease Frequency How often a disease/health outcome occurs in a given study or population. 
Disease Odds Ratio (DOR) The odds ratio based on the odds of disease among exposed divided by the odds or disease 

among the unexposed; if the measure of disease frequency is risk, this may also be called a risk odds ratio (ROR); if the 
measure of disease frequency is prevalence, this may also be called a prevalence odds ratio (POR). 

Disease-Specific Mortality A risk or rate measure of the incidence of dying from a particular disease. 
Distribution A table, graph, or mathematical expression giving the probabilities with which a random variable takes different 

values or sets of values. 
DOR Acronym for disease odds ratio; The odds ratio based on the odds of disease among exposed divided by the odds or 

disease among the unexposed; if the measure of disease frequency is risk, this may also be called a risk odds ratio (ROR); 
if the measure of disease frequency is prevalence, this may also be called a prevalence odds ratio (POR). 

Dose-Response Relationship or Effect A relationship between two variables, say Y and X, such that Y increases or 
decreases as X increases. If this relationship is linear, often called a linear trend.  One of Hill’s criteria for causation. 

Dummy Variable Also called an indicator variable. A dichotomous variable used in a mathematical model to distinguish 
between two possible categories of the variable; typically (though not always) defined as a 0-1 variable; e.g., X = 1 for 
category 1 versus X = 0 for category 2. For a categorical variable with k categories, the model will require k - 1 dummy 
variables. 

Dynamic Cohort Synonym for a dynamic population. 
Dynamic Population A group of subjects that is continually changing, allowing for both the addition of new members and 

the loss of previously entered members during a period of follow-up..  
 
E 
Ecologic Observational studies in which the unit of analysis is a group, often defined geographically, such as a census tract, a 

state, or a country; subject to ecologic fallacy. 
Ecologic Fallacy An incorrect conclusion or misinterpretation of study results obtained from an ecologic study; a conclusion 

based on a group as the unit of analysis that does not carry over to individuals; data are available on the number of 
exposed persons and the number of cases within each group, but not on the number of exposed cases. 

Ecologic Study An observational study in which the unit of analysis is a group, often defined geographically, such as a 
census tract, a state, or a country; subject to ecologic fallacy. 

Ecologic Designs Observational studies in which the unit of analysis is a group, often defined geographically, such as a 
census tract, a state, or a country; subject to ecologic fallacy. 

EF Etiologic fraction in the population 
EFe Etiologic fraction in the exposed 

”
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Effect Synonym for measure of effect and for effect measure. 
Effect Measure Synonym for measure of effect. 
Effect Modification Typically used interchangeably with  the  term ‘ interaction’,  though emphasis  is  more  biological  and  less  

statistical;  exists when an effect between an exposure and outcome differs at different levels of another (control) variable.   
Effect Modifier A control variable for which the effect of an exposure on  a health outcome differs at different levels of the 

control variable. 
Effectiveness The effect that a treatment or other clinical procedure has on the well-being of individuals under ordinary 

circumstances. 
Efficacy The effect that a treatment or other clinical procedure has on the well-being of individuals under optimal 

circumstances. 
EOR Exposure Odds Ratio; the odds ratio computed in a case-control studies. 
Epidemiologic Relating to or concerned with epidemiology. 
Epidemiology The study of the distribution and determinants of health-related states or events in specified populations.   
Error Term The difference between the observed value of Y and the predicted value of Y in a mathematical model of the 

form Y = f(X1,X2,...,Xp) + e. 
Estimate A quantity computed from sample data that may be used to draw conclusions about a population parameter, e.g., an 

odds ratio obtained from a sample is an estimate of an odds ratio in a population being sampled.  
Ethical Concerns Concern that a proposed clinical trial uses a treatment that can harm the patient; a key rule of a clinical 

trial is: first, do no harm” .  
Etiologic Causal, i.e., having something to do with causality, particularly, in epidemiology, whether or not an exposure 

variable is a cause of a health outcome of interest. 
Etiologic Fraction EF; Synonym for Population attributable risk percent, population attributable risk, and attributable risk 

percent; the proportion or corresponding percentage of new cases attributable to exposure; EF = I*/I, where I is the 
number of new cases occurring during a period of follow-up and I* denotes the number of new cases that occurred minus 
the number of new cases that would have occurred in the absence of exposure; can also be used with rate (i.e., incidence 
density) estimates instead of risk estimates. 

Etiologic Fraction Among Exposed EFe; Synonym for attributable risk percent among exposed, attributable risk among 
exposed; the proportion or corresponding percentage of exposed cases attributable to exposure; EFe = I*/I1, where I1 is 
the number of exposed cases that actually occurred and I* denotes the excess number of exposed cases due to exposure. 

EULER’ S Constant Also denoted by the symbol e; the number 2.1783... with an unending number of decimals that is 
obtained as the sum of the infinite series 1 + 1/2! + 1/3! + 1/4! ... 

Excess Risk Synonym for risk difference and attributable risk; gives the risk or probability that an exposed person will 
develop the disease because of the additional influence of exposure over baseline risk. 

Exchangeable Synonym for exchangeable matching strata. 
Exchangeable Matched Sets Strata resulting from matching in which every subject has the same values on all variables 

involved in the matching. Such strata can be combined into a single larger stratum by pooling. 
Exchangeable Matching Strata Synonym for exchangeable matched sets. 
Expected Value The average over all values of a variable for a population of interest; in a mathematical model of the form                   

Y = f(X1,X2,...,Xp) + e, the expected value of Y is f(X1,X2,...,Xp) and the expected value of e is 0. 
Experimental A study in which randomization is used to allocate subjects to exposure/treatment/study groups. 
Experimental Study A study in which randomization is used to allocate subjects to exposure/treatment/study groups. 
Experimentation One of Hill’s criteria for causality; is there experimental evidence to support an exposure-outcome 

association? 
Exposoure An independent variable or predictor of primary interest in an epidemiologic study; a variable that an investigator 

wants to assess as to whether or not it predicts a health outcome. 
Exposure Odds For Cases The odds of exposure among the cases. 
Exposure Odds For Controls The odds of exposure among the controls. 
Exposure Odds Ratio EOR Odds ratio from a case-control study; the ratio of the exposure odds for cases divided by the 

exposure odds for non-cases.  
Exposure Variable An independent variable or predictor of primary interest in an epidemiologic study; a variable that an 

investigator wants to assess as to whether or not it predicts a health outcome. 
Exposure Variables The independent variables or predictors of primary interest in an epidemiologic study; those variables 

that an investigator wants to assess as to whether or not they predict a health outcome. 
Exposures The independent variables or predictors of primary interest in an epidemiologic study; those variables that an 

investigator wants to assess as to whether or not they predict a health outcome. 
External Population A group to which a study has not been restricted but to which one wants to generalize the study results. 

”
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External Validity Validity that results from drawing conclusions about an external population beyond a study s restricted 
interest. 

Extraneous An adjective used in epidemiologic research to describe a variable not of primary interest that you wish to 
consider for control because of its potential influence on an outcome variable of interest, e.g., a confounder or an effect 
modifier. 

Extraneous Variable A variable not of primary interest that you wish to consider for control because of its potential 
influence on an outcome variable of interest, e.g., a confounder or an effect modifier. 

 
F 
Fisher’ s Exact Test A procedure for a test of hypothesis when the sample size is small involving the data layout in a 2 x 2 

table of cell frequencies; uses the hypergeometric distribution to obtain a formula for the exact P-value of the test. 
Fixed Cohort A group (i.e., cohort) of subjects identified at some point in time and followed for a given period for detection 

of new cases. The cohort is fixed”  in the sense that no  entries are permitted into the study after the onset of follow-up, 
although subsequent losses of subjects may occur for various reasons such as withdrawal, migration, and death.  

Fixed-Marginals An assumption that the frequency counts on the margins (i.e., total rows and columns) of a 2 x 2 data 
layout are fixed non-random quantities; assumed for Fisher’s Exact Test. 

Fixed-Margins An assumption that the frequency counts on the margins (i.e., total rows and columns) of a 2 x 2 data layout 
are fixed non-random quantities; assumed for Fisher’s Exact Test. 

Fixed-Margins Assumption An assumption that the frequency counts on the margins (i.e., total rows and columns) of a 2 x 
2 data layout are fixed non-random quintiles; assumed for Fisher’s Exact Test. 

Follow-Up A study design in which disease-free subjects are followed over time to determine disease development 
Follow-Up Study A study design in which disease-free subjects are followed over time to determine disease development; 

often used interchangeably with the term cohort study. 
Forward The directionality of a study in which the exposure variable is observed before the health outcome is observed; the 

study proceeds forwards”  over time; a clinical trial and a cohort study always have forward directionality. 
Frequency Matching A type of matching in which index and referent subjects are chosen by category matching on a group 

basis, e.g., when frequency matching in a case-control study the control group is chosen to have the same distribution as 
the case group over the combined categories of the matching factors. An alternative to frequency matching is individual 
matching. The matching ratio when using frequency matching is Ri-to-Si 

 
G 
Gold Standard Procedure Synonym for gold standard test. 
Gold Standard Test A clinical procedure, usually performed or organized by a physician/clinician, to diagnose the true 

disease status of an individual; such a procedure is more detailed, expensive, or risky than a diagnostic test; used in 
diagnostic test studies. 

Group data Data in which the variables of interest are summary statistics obtained on different groups of subjects, e.g., mean 
income for different census tracts, disease rates for different states. 

 
H 
Hazard A synonym for rate; used primarily in survival analysis; also called incidence density. 
Hazard Ratio Ratio of two rates; used primarily in survival analysis; synonyms: rate ratio; incidence density ratio. 
Health Outcome The possible health-related states or events of interest; the dependent variable of interest; in epidemiology, 

usually the disease variable being studied, although the outcome of interest may alternatively be mortality status, recovery 
from illness, or any health condition other than a disease. 

Healthy Worker A source of selection bias called the healthy worker bias in an occupational cohort study; workers tend to 
be healthier than those in the general population and may therefore have a more favorable outcome regardless of exposure 
status. 

Healthy Worker Bias A type of selection bias in an occupational cohort study; workers tend to be healthier than those in the 
general population and may therefore have a more favorable outcome regardless of exposure status. 

Hybrid Designs Observational studies that combine the elements of at least two basic designs, or extends the strategy of one 
basic design through repetition; two popular hybrid designs are the nested case-control study and the case-cohort study. 

Hypergeometric The distribution of the number of exposed cases, i.e., the a-cell frequency, in a 2 x 2 data layout assumed to 
have fixed-margins; used to derive the formula for the exact P-value for Fisher’s Exact Test. 

Hypergeometric Distribution The distribution of the number of exposed cases, i.e., the a-cell frequency, in a 2 x 2 data 
layout assumed to have fixed-margins; used to derive the formula for the exact P-value for Fisher’s Exact Test. 

Hypothesis Testing Use of evidence from sample to reject or fail to reject the null hypothesis. 

”
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I 
IDD incidence density difference; rate difference; incidence rate difference. Measure of effect defined as the difference 

between two (average) rates. 
IDR Incidence density ratio; rate ratio; incidence rate ratio; hazard ratio. Measure of effect defined as the ratio of two 

(average) rates. 
Incidence New cases of a health outcome, e.g., disease, that occurs in a defined population over a specified period of follow-

up. 
Incidence Density A synonym for rate; also called a hazard. 
Incidence Density Difference IDD; measure of effect defined as the difference between two (average) rates; rate difference; 

synonyms: rate difference, incidence rate difference 
Incidence Density Datio IDR; measure of association defined as the ratio of two (average) rates, synonyms: rate ratio, 

incidence rate ratio, hazard ratio.   
Incidence Rate Synonym for rate and incidence density; a measure of the rapidity with which health events such as new 

cases of disease or deaths occur; also called hazard and incidence density. 
Incidence Rate Difference IRR, measure of effect defined as difference between two (average) rates, synonyms: rate 

difference, incidence density difference. 
Incidence Rate Ratio IRR, measure of association defined as the ratio of two (average) rates; synonyms: rate ratio, incidence 

density ratio. 
Incident New cases of a health outcome, e.g., disease, that occurs in a defined population over a specified period of follow-

up. 
Incident Cases New cases of a health outcome, e.g., disease, that occurs in a defined population over a specified period of 

follow-up. 
Incomplete Designs Observational studies in which information is missing on one or more relevant factors, e.g., an ecologic 

study, a proportional mortality study or a proportional morbidity study. 
Independent Misclassification Misclassification in which the probability of classifying exposure AND disease status equals 

the product of the probabilities of classifying disease status and  exposure status separately; the probability of how disease 
status is classified has nothing to do with how exposure status is classified, and vice versa.  

Independent Variable A variable that is one of the predictors (i.e., explanatory variables) in a mathematical model; typically 
(in epidemiology) refers to exposure variable(s), confounders and product terms involving exposures and/or confounders. 

Index Synonym for index subject or index group. 
Index Subject A study subject that is contained in an index group.  
Index Group The group of primary interest, e.g., the exposure group in a cohort study or the case group in a case-control 

study. 
Indicator Variable Synonym for dummy variable. A dichotomous variable used in a mathematical model to distinguish 

between two possible categories of the variable; typically (though not always) defined as a 0-1 variable; e.g., X = 1 for 
category 1 versus X = 0 for category 2. For a categorical variable with k categories, the model will require k - 1 dummy 
variables. 

Indirected Method of Standardization Typically a weighted average of (age-) specific rates for a select standard population 
using the distribution of the study population as weights; synonyms: indirect adjustment, indirect standardization. 

Individual Matching Matching carried out on an individual by individual basis, e.g., in a case-control study, each individual 
case is matched to one or more controls; in a cohort study, each individual exposed subject is matched to one or more 
unexposed subjects. An alternative to this type of matching is frequency matching.  

Information Bias Systematic error resulting from incorrect information obtained on one or more variables measured or 
observed in a study. If all study variables of interest are categorical (e.g., dichotomous), then information  bias is called 
misclassification bias. 

Instantaneous Rate A measure of how rapidly cases of a disease or other health outcome are occurring at a point in time; 
instantaneous potential at time t for the number of new cases that would develop between times t and t + dt per unit time 
relative to the population-at-risk at time t.  

Intention to Treat Analysis Analysis of the results of a clinical trial that is based on initial treatment assignment regardless 
of whether or not subjects completed the full course of treatment; analyze what you randomize” . 

Interaction Occurs when the estimate of effect, e.g., odds ratio, differs at different levels or strata of one or more factors 
being controlled; a product term in a mathematical model.  

Internal Validity The absence of systematic error from drawing conclusions about the source population based on 
information about the study population. 
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Interval Estimate Synonym for confidence interval. A range of numbers, say from L to U, determined from sample data 
used to measure the precision of a point estimate by accounting for sampling variability. 

Intervening Variable A variable whose causal effect lies entirely between two other variables; V is intervening if E -> V -> 
D. 

IRD See incidence rate difference 
IRR See incidence rate ratio 
 
J 
Joint Confounding Bias that occurs when a crude estimate of effect is meaningfully different from an adjusted estimate of 

effect that simultaneously controls for all variables being considered for control; the standard criterion for assessing 
confounding involving several control variables. 

Joint Probability The probability that two or more events will occur at the same time; alternatively, the probability of 
obtaining a collection of observations on different individuals over the course a study (used to form a likelihood function). 

 
L 
Large-Sample A characteristic of a statistical test of hypothesis or a confidence interval formula that indicates that the 

formula is approximately accurate when the study sample size is sufficiently ”  large; e.g., a large-sample test or a large-
sample confidence interval. 

Latency Time between exposure to a risk factor and subsequent development of clinical manifestations of a particular 
disease. 

Latencies Time between exposure to a risk factor and subsequent development of clinical manifestations of a particular 
disease. 

Level of Significance The probability of rejecting the null hypothesis when the null hypothesis is true; the probability of a 
Type I error. 

Likelihood Function A mathematical expression that gives the joint probability of obtaining observed sample data in terms 
of the unknown population parameters in a mathematical model. 

Likelihood Ratio Test A test of hypothesis approach used with a mathematical model that is estimated using maximum 
likelihood estimation. The test statistic is the difference between log-likelihood statistics obtained from two models being 
compared and is approximately chi square under the null hypothesis being tested. 

Linear Synonym for linear function or a linear model; a formula expressed as a sum involving regression coefficients. 
Linear Function A mathematical formula or function of the form f = b0 + b1(X1) + ..., + bp(Xp) where the b’s are called 

regression coefficients and the X’s are predictor variables; a formula expressed as a sum involving regression coefficients. 
Linear Model A mathematical model of the form Y = b0 + b1(X1) + ..., + bp(Xp) + e where the b’s are called regression 

coefficients, the X’s are predictor variables and e is the error term. 
Linear Trend A relationship in which one variable increases or decreases in approximately a straight line form as the values 

of another variable increases, e.g., a linear dose-response relationship. 
Linear Weighting A method for obtaining a weighted average of quantities (say, X1, ..., Xk) as a linear function of the form 

∑Wi Xi / ∑Wi. 
ln Acronym for natural log; logarithm to the base e, where ln e = 1, where e = 2.7183... is EULER’S constant 
Log-Likelihood Statistic A quantity obtained when using maximum likelihood estimation to fit a mathematical model given 

by the formula -2ln L hat’ where L‘ hat’ is the maximum value of the likelihood function for the model being fit. Used in a 
likelihood ratio test.  

Log-Linear Weighting A method for obtaining the exponential of a weighted average of quantities (say, X1, ..., Xk) as the 
exponential of a linear function of the natural logarithms of the form exp {∑(Wi lnXi) / ∑Wi }. 

Logistic Model A popular mathematical model used when there is a dichotomous outcome; a model that is not linear but 
whose logit transformation is linear.  

Logistic Regression A popular mathematical model approach used when there is a dichotomous outcome; involves the 
logistic model, whose logit transformation is linear. 

Logit The natural log of the quantity P/(1-P), where P is usually a number or formula whose values range between 0 and 1; 
when applied to the logistic model, the logit transformation yields a linear function. 

Logit Transformation The natural log of the quantity P/(1-P), where P is usually a number or formula whose values range 
between 0 and 1; when applied to the logistic model, the logit transformation yields a linear function. 

Loss-to-Follow-Up A source of selection bias in a cohort study; occurs when information on a subject selected for study 
becomes unavailable during follow-up. 
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M 
Mantel-Haenszel Chi Square Test A large-sample chi square test for the significance of an odds ratio or a risk ratio for 

either a simple analysis or a stratified analysis; a large-sample version of Fisher’s Exact Test for a 2 x 2 data layout. 
Mantel-Haenszel Adjusted Estimate An adjusted estimate of effect used as a summary measure in a stratified analysis that 

can be computed when there are zero cells in some of the strata and is also often used even if there are no zero cells; can 
be computed in a cohort study (mRR), a case-control study (mOR), a cross-sectional survey (mPR), and a person-time 
study (mIDR). 

Mantel-Haenszel Estimate An adjusted estimate of effect used as a summary measure in a stratified analysis that can be 
computed when there are zero cells in some of the strata and is also often used even if there are no zero cells; can be 
computed in a cohort study (mRR), a case-control study (mOR), a cross-sectional survey (mPR), and a person-time study 
(mIDR). 

Mantel-Haenszel Methods The collection of statistical inference and point estimation procedures for carrying out a stratified 
analysis that were described in a famous 1959 published paper by Mantel and Haenszel. The most well-known of these 
procedures is the Mantel-Haenszel chi square test. 

Mantel-Haenszel Odds Ratio Also denoted as mOR. A Mantel-Haenszel estimate that gives an adjusted estimate of an odds 
ratio in a stratified analysis. 

Mantel-Haenszel Prevalence Ratio Also denoted as mPR. A Mantel-Haenszel estimate that gives an adjusted estimate of a 
prevalence ratio in a stratified analysis. 

Mantel-Haenszel Rate Ratio Also denoted as mIDR. A Mantel-Haenszel estimate that gives an adjusted estimate of a rate 
ratio in a stratified analysis for a cohort study that involves person-time information. 

Mantel-Haenszel Risk Ratio Also denoted as mRR. A Mantel-Haenszel estimate that gives an adjusted estimate of a risk 
ratio in a stratified analysis for a cohort study that measures cumulative incidence. 

Mantel-Haenszel (MH) Test A large-sample chi square test for the significance of an odds ratio or a risk ratio for either a 
simple analysis or a stratified analysis; a large-sample version of Fisher’s Exact Test for a 2 x 2 data layout. 

Marginal Confounding Occurs when a crude estimate of effect is meaningfully different from an adjusted estimate of effect 
that controls for only one (or a subset) of variables being considered for control; may give different results than obtained 
from assessing joint confounding. 

Match Out A consequence of overmatching, in which the exposure variable is unintentionally controlled by the matching 
variables selected. 

Matched Case-Control Study A case-control study that uses matching. 
Matched Data Data obtained from matching. 
Matched Pair Two subjects that have been pair-matched in a study that uses individual matching. 
Matched Pair Design A study that uses one-to-one individual matching. 
Matched Sets Synonym for matching strata. 
Matching An option available at the design stage of a study for the control of extraneous variables in which constraints are 

employed in the selection of a comparison group (i.e., referent group) that make this group similar to the index group with 
respect to the distributions of one or more potentially confounding factors. 

Matching Factor A variable that is matched on in a study that uses matching. 
Matching Ratio The number of index subjects divided by the number of referent subjects in a given stratum from a study 

that uses matching. Matching ratios may be 1-to-1, R-to-1, Ri-to-1, or Ri-to-Si. 
Matching Strata The strata that result from individual matching (with or without pooling) or frequency matching, e.g., when 

pair-matching (without pooling), the matching strata are the different pairs of two subjects each that result from the 
matching. 

Matching Stratum a stratum often described by a 2x2 table that results from individual matching (with or without pooling) 
or frequency matching, e.g., when pair-matching (without pooling), a matching stratum is a given pair of two subjects that 
result from the matching. 

Matching Variable Synonym for matching factor. 
Mathematical Model A mathematical expression used to describe the relationship between a dependent variable (Y) and one 

or more independent variables (X’s); typically of the form Y = f(X1,X2,...,Xp) + e, where e denotes an error term. 
Mathematical Modeling An option available at the analysis stage of a study for the control of extraneous variables in which 

a mathematical formula or function is used to describe the relationship between a health outcome variable and one or 
more explanatory variables (e.g., exposures, confounders and effect modifiers). 

Maximum Likelihood Estimate An estimate of a population parameter that is obtained using maximum likelihood 
estimation. 
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Maximum Likelihood Estimation (MLE) A method for estimating one or more population parameters in a mathematical 
model that involves determining the value(s) of the parameter(s) that maximize a likelihood function defined in terms of 
the data and the model parameters. 

McNemar’ s Table A 2x2 table for pair-matched data from either a case-control or cohort study that contains counts of the 
number of matched pairs (rather than individual subjects) in one of four cells depending on the joint outcome of each pair. 
Two of the cells give frequencies of concordant matched pairs and the other two cells give frequencies of discordant 
matched pairs. 

McNemar’ s Test A chi square test for the null hypothesis of no overall association with pair-matched (case-control or 
cohort) data. Uses only the discordant pair information in McNemar’s table. 

Measure of Association Synonyms: Effect Measure, Measure of Effect. A quantity that expresses the strength of association 
between two variables, often referred to as the exposure variable and disease variable in epidemiologic research; a 
comparison of two or more measures of disease frequency. 

Measure of Disease Frequency A measure of how often a disease or other health outcome occurs in a population. 
Measures of Disease Frequency Two or more measures of how often a disease or other health outcome occurs in a 

population; a measure of effect compares two or more measures of disease frequency. 
Measure of Effect Synonyms: Effect Measure, Measure of Association. A quantity that expresses the strength of association 

between two variables, often referred to as the exposure variable and disease variable in epidemiologic research; a 
comparison of two or more measures of disease frequency. 

Measure of Potential Impact Quantifies the expected effect of changing the distribution of one or more risk factors in a 
particular population; gives the proportion of new cases that can be attributed to a risk factor, e.g., etiologic fraction (EF), 
prevented fraction (PF)  

MH test Also called the Mantel-Haenszel chi square test.  
mIDR A Mantel-Haenszel estimate that gives an adjusted estimate of a rate ratio in a stratified analysis for a cohort study 

that involves person-time information. 
Misclassification Incorrect assignment of the status of subjects with regard to one or more categorical variables under study. 

Can lead to misclassification bias. 
Misclassification Bias Distortion (i.e., bias) in an effect measure that results from incorrect assignment of the status of 

subjects with regard to one or more categorical variables under study. 
MLE Synonym for maximum likelihood estimate or maximum likelihood estimation. 
mOR A Mantel-Haenszel estimate that gives an adjusted estimate of an odds ratio in a stratified analysis. 
Mortality Deaths; a measure of the frequency at which deaths occur. 
Mortality Risk A measure of an individual’s probability of dying during a period of follow-up. 
Mortality Rate A measure of the rapidity at which persons are dying in a cohort followed over time. 
mPR A Mantel-Haenszel estimate that gives an adjusted estimate of a prevalence ratio in a stratified analysis for a cross-

sectional survey. 
mRR A Mantel-Haenszel estimate that gives an adjusted estimate of a risk ratio in a stratified analysis for a cohort study that 

measures cumulative incidence. 
Multiplicative Interation A departure from no interaction on the multiplicative scale. 
 
N 
Natural Log (ln) logarithm to the base e, where ln e = 1, where e = 2.7183... is EULER’S constant 
Negative Predictive Value Denoted as PV-. The probability of actually not having the disease condition when the result of a 

diagnostic test is negative. 
Nested Case-Control A hybrid design that is a variation of the case-cohort design in which controls are sampled by density 

sampling;  that is, controls are matched to cases on the time of case diagnosis. 
Nested Case-Control Study A hybrid design that is a variation of the case-cohort design in which controls are sampled by 

density sampling,that is, controls are matched to cases on the time of case diagnosis. 
NNT Notation for Number Needed to Treat; the inverse of the risk difference; the expected number of patients who must be 

treated with an experimental therapy in order to prevent one additional adverse outcome event (or, depending on the 
context, to expect one additional beneficial outcome). 

Non-Directional A characteristic of a study without directionality; a study in which the exposure variable and the health 
outcome are observed at essentially the same point of time; a cross-sectional study always is non-directional.   

Non-Response A source of selection bias in any study occurs when information on a subject selected for study does not (e.g., 
refuses to) participate in the study. 

Nondifferential See nondifferential misclassification. 
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Nondifferential Misclassification Misclassification of the status of subjects with regard to one variable (e.g., exposure 
status) that is not influenced by other characteristics of interest (e.g., disease status). Occurs if sensitivity or specificity 
parameters for misclassification of one variable (e.g., exposure) do not differ with different categories of another variable 
(e.g., disease) 

Normal The distribution of a continuous random variable, often denoted as N(mean, variance), that follows a bell-shaped 
curve, where the area under the curve between any two points on the x-axis describes a probability. 

Normal Distribution The distribution of a continuous random variable, often denoted as N(mean, variance), that follows a 
bell-shaped curve, where the area under the curve between any two points on the x-axis describes a probability. 

Normally Distributed A continuous random variable, often denoted as N(mean, variance), whose distribution follows a bell-
shaped curve, where the area under the curve between any two points on the x-axis describes a probability. 

Null Hypothesis A hypothesis about the value of a parameter, the truth of which is to be evaluated by a test of hypothesis; 
usually, in epidemiology, value of the parameter, e.g., the odds ratio, that represents no effect (i.e., OR = 1), or, in a 
clinical trial of a new treatment, the value of the parameter that reflects the standard or current state of knowledge. 

Null Value The value of a parameter under the null hypothesis; the null value of a ratio effect measure is 1, whereas the null 
value of a difference effect measure is 0. 

Number Needed to Treat Denoted as NNT; the inverse of the risk difference; the expected number of patients who must be 
treated with an experimental therapy in order to prevent one additional adverse outcome event (or, depending on the 
context, to expect one additional beneficial outcome). 

Numerator Study An observational study that only include observations on cases without information about the candidate 
population at risk for developing the health outcome; usually either a proportional morbidity study or a proportional 
mortality study. 

 
O 
Observational A study that does not involve randomization; the investigator monitors but does not influence the exposure 

status of individual subjects and their subsequent health outcome status. 
Observational Studies Studies that do not involve randomization; the investigator monitors but does not influence the 

exposure status of individual subjects and their subsequent health outcome status. 
Observational Study A study that does not involve randomization; the investigator monitors but does not influence the 

exposure status of individual subjects and their subsequent health outcome status. 
Observational Study Design A study that does not involve randomization; the investigator monitors but does not influence 

the exposure status of individual subjects and their subsequent health outcome status. 
Odds The odds of an event is defined as P/(1-P) where P is the probability of the event, e.g., if P=1/3, then the odds equals 

1/3 divided by 2/3, which equals 1/2, or 1 to 2. 
Odds Ratio The ratio of two odds; the exposure odds ratio is an odds ratio derived from a Case-Control study; the risk odds 

ratio is derived from a cohort study; the prevalence odds ratio is derived from a cross-sectional study. Computational 
formula: ad/bc, the cross product ratio from a 2 x 2 table. 

One-Sided An alternative hypothesis for which the parameter values of interest are either all higher or all lower (but not both 
higher and lower) than the value of the parameter under the null hypothesis, e.g., OR > 1 is an upper-one-sided 
hypothesis, whereas OR < 1 is a lower one-sided alternative hypothesis. 

One-Sided Alternative An alternative hypothesis for which the parameter values of interest are either all higher or all lower 
(but not both higher and lower) than the value of the parameter under the null hypothesis, e.g., OR > 1 is an upper-one-
sided hypothesis, whereas OR < 1 is a lower one-sided alternative hypothesis. 

One-Sided Hypothesis An alternative hypothesis for which the parameter values of interest are either all higher or all lower 
(but not both higher and lower) than the value of the parameter under the null hypothesis, e.g., OR > 1 is an upper-one-
sided hypothesis, whereas OR < 1 is a lower one-sided alternative hypothesis. 

One-Sided Test A test of hypothesis involving a one-sided alternative hypothesis. 
One-Tailed A test of hypothesis for which the rejection region consists of values of the test statistic extreme in only one 

direction, i.e., in only one (upper vs. lower) tail of the distribution of the test statistic under the null hypothesis. 
One-Tailed Test A test of hypothesis for which the rejection region consists of values of the test statistic extreme in only one 

direction, i.e., in only tail (upper vs. lower) of the distribution of the test statistic under the null hypothesis. 
One-to-One Synonym for one-to-one matching or pair-matching 
One-to-One Matching Synonym for pair-matching. Individual matching in which one referent subject (e.g., a control in a 

case-control study) is paired with one index subject (e.g., a case) in each matched pair so that there are exactly two 
subjects in each matched pair. 

Operational Hypothesis A statement about a possible exposure-disease relationship that translates a conceptual hypothesis 
into a testable form involving measurable variables and a clearly specified study plan. 
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OR Usual notation for odds ratio. 
Outcome Variable The variable that you want to predict or otherwise learn about in a research study, sometimes called the 

dependent variable. 
Overmatch An undesirable result that may occur when matching on either specific variables or on so many variables so that 

the exposure variable is accounted for within the collection of matching variables. A consequence of such overmatching 
is finding no exposure-disease relationship when in fact such a relationship actually is present. 

 
P 
P-value The significance level at which the observed value of the test statistic would just be significant; describes how 

unlikely the results obtained from one’s study are under the null hypothesis; gives the probability of getting a result at 
least as contrary to the null hypothesis as the result actually obtained. 

Pair-Matched A study subject who has been selected by pair-matching. Alternatively, may refer to a study design that uses 
pair-matching. 

Pair-Matching Synonym for one-to-one matching. Individual matching in which one referent subject (e.g., a control in a 
case-control study) is paired with one index subject (e.g., a case) in each matched pair so that there are exactly two 
subjects in each matched pair. 

Parameter Synonym for population parameter; a fixed (i.e., constant) quantity that describes a characteristic of a population 
of interest, e.g., the mean blood pressure in a population, or the odds ratio in a population; parameters are often, but not 
always, denoted by Greek letters, or by Latin errors without a hat”  over them, e.g., OR. 

PD see prevalence difference 
Period Prevalence The proportion of persons in a defined population who have a particular health outcome, e.g., disease, 

during a period of time; existing cases of a disease during a period of time. 
Person-Time The total amount of disease-free follow-up time experienced by all persons in a cohort that is being followed 

over a specified time period. 
Person-Time Study A cohort study in which person-time information is obtained on study subjects to account for different 

individual disease-free follow-up times; the typical measure of disease frequency in such a study is a rate or incidence 
density. 

PF Prevented fraction in the population 
PFe Prevented fraction in the exposed 
Pitman Efficiency A measure given by the formula 2R/(R+1) that gives the ratio of the variance of an adjusted odds ratio 

computed from pair-matching to the corresponding variance computed from R-to-1 matching. Used to justify why no 
more than 4 controls per case are needed in when matching in a case-control study. 

Point Estimate An estimate of a population parameter based on sample data that gives a single value or point from a 
possibly wide range of numbers that might have been obtained if different samples had been drawn. 

Point Estimation A process for obtaining one or more point estimates based on sample data. 
Point Prevalence The proportion of persons in a defined population who have a particular health outcome, e.g., disease, at a 

point time; existing cases of a disease at point in time. 
Pooled Analysis A stratified analysis or logistic regression analysis that involves pooling exchangeable matched sets. 
Pooling Combining several different strata into larger strata. Recommended for exchangeable matched sets. 
Pooling Exchangeable Matched Sets Combining exchangeable matched sets into larger strata, and carrying out the data 

analysis using the larger strata. 
Population A group of units (e.g., subjects, patients, animals, census tracts, countries, lab specimens) having quantifiable 

characteristics in common and to which conclusions about a study question of interest are to be drawn; the larger group of 
units to which statistical inferences are made based on data obtained in a sample. 

Population-at-Risk The population or group that is eligible to have or develop a health outcome of interest, also called the 
candidate population, e.g., the disease-free population. 

Population Attributable Rate Synonym for population attributable rate percent, attributable rate percent and etiologic 
fraction (EF); the proportion or corresponding percentage of new cases attributable to exposure based on rate estimates. 

Population Attributable Rate Percent Synonym for population attributable rate, attributable rate percent and etiologic 
fraction (EF); the proportion or corresponding percentage of new cases attributable to exposure based on rate estimates. 

Population Attributable Risk Synonym for etiologic fraction (EF), population attributable risk percent, and attributable risk 
percent; the proportion or corresponding percentage of new cases attributable to exposure; EF = I*/I, where I is the 
number of new cases occurring during a period of follow-up and I* denotes the number of new cases that occurred minus 
the number of new cases that would have occurred in the absence of exposure. 
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Population Attributable Risk Percent Synonym for etiologic fraction (EF), population attributable risk, and attributable 
risk percent; the proportion or corresponding percentage of new cases attributable to exposure; EF = I*/I, where I is the 
number of new cases occurring during a period of follow-up and I* denotes the number of new cases that occurred minus 
the number of new cases that would have occurred in the absence of exposure. 

Population Parameter A quantity that describes a characteristic of a population of interest, e.g., the mean blood pressure in 
a population, or the odds ratio in a population; parameters are often, but not always, denoted by Greek letters, or by Latin 
errors without a hat”  over them, e.g., OR. 

Population Prevented Risk Synonym for prevented fraction (PF) and population prevented risk percent; PF = I**/[I** + I] 
where I** denotes the total cases prevented by exposure and I denotes the total cases that actually occurred.  

Population Prevented Risk Percent Synonym for prevented fraction (PF) and population prevented risk; PF = I**/[I** + 
I] where I** denotes the total cases prevented by exposure and I denotes the total cases that actually occurred.  

POR Prevalence odds ratio; the odds ratio computed in cross-sectional studies. 
Positive Predictive Value Denoted as PV+. The probability of actually having the disease condition when the result of a 

diagnostic test is positive; synonym: predictive value positive. 
Post-Test Probability Synonym for predictive value; used in the context of diagnostic test studies. The probability that a 

disease condition is either present or absent in a patient presenting after accounting for the results of diagnostic testing. 
Potential Confounder A control variable, usually a risk factor, that an investigator wishes to assess as to whether or not it is 

a confounder in one’s study; such a variable may or may not, upon analysis, turn out to be a confounder of the exposure-
disease relationship of interest. 

Potential Impact The expected effect of changing the distribution of one or more risk factors in a particular population; a 
measure of potential impact gives the proportion of new cases that can be attributed to a risk factor, e.g., etiologic fraction 
(EF), prevented fraction (PF)  

Power The probability of rejecting the null hypothesis in a test of hypothesis when the null hypothesis is false; one minus the 
probability of a Type II error. 

PR Acronym for the prevalence ratio 
Pre-Test Probability Synonym for apriori probability used in the context of diagnostic test studies. The probability that a 

disease condition is present in a patient presenting with symptoms prior to undergoing diagnostic testing; typically 
estimated by a measure of prevalence of the disease.  

Precision Inverse of the variance; the higher the precision the narrower is the width of the corresponding confidence interval. 
Precision-Based A weighted average where the weights are chosen to correspond to the precision of each estimate. 
Predicted Value The value obtained for Y when specific values for X’s are substituted in a mathematical formula for the 

expected value of a dependent variable as a function of a set of predictor variable(s). 
Predictive Value Synonym for post-test probability. The probability of true disease status for an individual patient given the 

result of a diagnostic test. Two kinds: positive predictive value and negative predictive value. 
Predictive Value Negative (PV-), see negative predictive value 
Predictive Value Positive (PV+), see positive predictive value.  
Predictor Synonym for independent variable. 
Predictor Variable Synonym for independent variable. 
Prevalence The proportion of persons in a defined population who have a particular health outcome, e.g., disease, at a point 

or during a period of time; existing cases of a disease. 
Prevalence Difference PD; A difference measure of effect defined by the difference between the prevalences for two groups, 

e.g., PD = P1 - P0, where Pi denotes the prevalence for group i. 
Prevalence Odds Ratio POR; Odds ratio from a cross-sectional study. 
Prevalence Ratio PR; the ratio of the prevalence of disease in exposed divided by the prevalence in the unexposed. 
Prevalent A person with a disease of interest that was already diagnosed in the past. An existing case. 
Prevalent Case A person with a disease of interest that was already diagnosed in the past. An existing case. 
Prevented Fraction PF; Also called prevented fraction in the population, population prevented risk, and population 

prevented risk percent; PF = I**/[I** + I] where I** denotes the total cases prevented by exposure and I denotes the total 
cases that actually occurred; can also be used with rate (i.e., incidence density) estimates instead of risk estimates. 

Prevented Fraction Among Exposed PFe; Also called prevented risk among exposed and prevented risk percent among 
exposed; PFe = I**/[I** + I1] where I** denotes the number of exposed cases prevented by exposure and I1 denotes the 
number of exposed cases that actually occurred.  

Prevented Risk Among Exposed Also called prevented fraction among the exposed and prevented risk percent among 
exposed; PFe = I**/[I** + I1] where I** denotes the number of exposed cases prevented by exposure and I1 denotes the 
number of exposed cases that actually occurred.  
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Prevented Risk Percent Among Exposed Also called prevented fraction among exposed and prevented risk among 
exposed; PFe = I**/[I** + I1] where I** denotes the number of exposed cases prevented by exposure and I1 denotes the 
number of exposed cases that actually occurred.  

Preventive A treatment or other clinical procedure used in a clinical trial whose long-range goal is to prevent a disease. 
Preventive Intervention A treatment or other clinical procedure used in a clinical trial whose long-range goal is to prevent a 

disease. 
Probability A number between (and possibly including) 0 and 1 that represents how likely an event of interest will occur. 
Proportional An observational study design that only includes observations on cases without information about the 

candidate population at risk for developing the health outcome; sometimes referred to as a numerator study. 
Proportional Morbidity Study An observational study that only includes observations on living incident cases without 

information about the candidate population at risk for developing the health outcome; sometimes referred to as a 
numerator study. 

Proportional Mortality Study An observational study that only includes observations on deaths without information about 
the candidate population at risk for developing the health outcome; sometimes referred to as a numerator study. 

Proportional Study An observational study that only includes observations on cases without information about the candidate 
population at risk for developing the health outcome; sometimes referred to as a numerator study. 

Proportional Designs Observational designs that only include observations on cases without information about the candidate 
population at risk for developing the health outcome.   

Prospective A study in which the health outcomes occur after the study onset. 
Prospective Study A study in which the health outcomes occur after the study onset. 
PV- Synonym for negative predictive value. 
PV+ Synonym for positive predictive value. 
 
R 
R-to-1 Synonym for R-to-1 matching. 
R-to-1 Matching Individual matching in which R referent subjects (e.g., a control in a case-control study) are paired with 

one index subject (e.g., a case) in each matched set so that there are exactly R+1 subjects in each matched set. 
Ri-to-1 Synonym for Ri-to-1 matching. 
Ri-to-1 Matching Individual matching in which the number of referent subjects, Ri for stratum i, and the number of index 

subjects, Si for stratum i, in may vary for different matched sets but there is always one distinct index subject in each 
matched set. 

Ri-to-Si Synonym for Ri-to-Si matching. 
Ri-to-Si Matching Individual matching or frequency matching in which the number of referent subjects, Ri for stratum i, in 

may vary for different matched sets. 
Random Error A difference between an estimate computed from study data and the effect measure actually being estimated. 
Random Variable A variable that takes various values or sets of values with various probabilities, e.g., the possible values 

of a binomial random variable have probabilities described by the binomial distribution. 
Randomization An allocation procedure for assigning subjects to exposure/study groups by chance that attempts to make 

groups comparable with respect to other predictors of the health outcome. 
Rare Disease A disease that occurs so infrequently in the population of interest that the risk for any study subject is 

approximately zero. 
Rare Disease Assumption Assumes that the risk that any individual in the population being studied is very small (i.e., 

approximately zero); in follow-up studies, the ROR approximates the RR if the rare disease assumption holds; in case-
control studies, the EOR estimates an RR from a comparable follow-up study if the rare disease assumption holds, the 
cases are incident cases, and the controls are representative of the source population. 

Rate A measure of the rapidity with which health events such as new cases of disease or deaths occur; also called hazard and 
incidence density. 

Rate Adjustment A procedure used to calculate summary rates, risks, or prevalences for comparing populations in which 
underlying differences in the distribution of a confounding factor are removed. Also called rate standardization. 

Rate Difference Measure of effect obtained by subtracting the rate from one group from the rate for another group, e.g., RD 
= IR1 - IR0, IRi denotes the rate for group i; equivalently written in terms of the incidence density ratio as IDR = ID1 - 
ID0, where IDi denotes the incidence density for the group i; synonyms: incidence density difference (IDD); incidence 
rate difference 

Rate Ratio A measure of effect defined as the ratio of two rates; synonyms: incidence density ratio (IDR); incidence rate 
ratio, hazard ratio. 
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Rate Standardization A procedure used to calculate summary rates, risks, or prevalences for comparing populations in 
which underlying differences in the distribution of a confounding factor are removed. Also called rate adjustment. 

Ratio Measures Quantities obtained by dividing one measure by another measure; of the form M1/M0 were M1 and M0 are 
measures for groups 1 and 0, respectively, e.g., the risk ratio, the rate ratio, the odds ratio, the prevalence odds ratio, or the 
prevalence ratio. 

Ratio Measures of Effect Quantities obtained by dividing one measure of effect by another measure of effect; of the form 
M1/M0 were M1 and M0 are measures of effect for groups 1 and 0, respectively, e.g., the risk ratio, the rate ratio, the 
odds ratio, the prevalence odds ratio, or the prevalence ratio. 

RD Risk Difference 
Referent Synonym for referent group or referent subject.  
Referent Subject A study subject that is contained in a referent group.   
Referent Group Synonym for the comparison group; the group to which other groups, e.g., the index group are to be 

compared; the unexposed group in a cohort study or the control group in a case-control study. 
Regression Coefficients The values (i.e., constants, estimates) that are multiplied by corresponding X’s in a linear function; 

e.g., the b’s in the formula f = b0 + b1(X1) + ..., + bp(Xp). 
Rejection Region A set of possible values of the test statistic leading to the conclusion that the null hypothesis in a test of 

hypothesis should be rejected. 
Relative Risk Synonym for risk ratio and cumulative incidence ratio. 
Residual Confounding Confounding that remains when restriction of a continuous variable is not narrow enough to 

completely control for the restricted variable. 
Restriction An option available at the design stage of a study for the control of extraneous variables that limits the range of a 

continuous variable or restricts the categories of a categorical variable allowed for a study subject. 
Retrospective A study in which the data are derived from past experience; both the study factor and the health outcome 

occur before the onset of the study. 
Retrospective Study A study in which the data are derived from past experience; both the study factor and the health 

outcome occur before the onset of the study. 
Risk The probability that an individual will experience an event of interest within a specified period of follow-up. 
Risk difference Measure of effect obtained by subtracting the risk from one group from the risk for another group, e.g., RD 

= R1 - R0, Ri denotes the risk for group i.  Synonym: cumulative incidence difference. 
Risk Factor A variable that is predictive of the health outcome being studied based on the epidemiological literature and/or 

clinical/biological theory; an apriori criterion for confounding. 
Risk Function A mathematical formula used to predict the risk that a particular patient/subject will develop a health 

outcome/disease of interest; often computed using a mathematical model for predicting individual risk, i.e., a logistic 
model. 

Risk Odds Ratio Odds ratio from a cohort study or randomized controlled clinical trial. 
Risk Ratio Measure of effect used in follow-up/cohort studies defined as the risk for one group divided by the risk for 

another group; synonyms: cumulative incidence ratio, relative risk. 
ROR Risk odds ratio; the odds ratio computed in cohort studies or randomized controlled trials. 
RR Usual notation for risk ratio or relative risk; sometimes used for rate ratio.  
 
S 
Sample A subset of a larger group (i.e., population) on which study data is obtained and analyzed. 
Sampling Plan The plan for determining how study subjects are to be sampled in the study. 
Screening Studies Clinical studies that target a broad population of asymptomatic subjects to identify subjects that may 

require more detailed diagnostic evaluation; such subjects have not gone to a physician for a specific complaint. 
Selection Bias Systematic error that results from the way subjects are selected into the study and/or because there are 

selective losses of subjects prior to data analysis. 
Selection Parameters The underlying parameters that must be considered when assessing selection bias; synonym for 

selection ratios and/or selection probabilities. 
Selection Probabilities If the study population is a subset of the source population, these are the underlying parameters that 

must be considered when assessing selection bias; see selection probability. 
Selection Probability If the study population is a subset of the source population, gives the likelihood that a person from one 

of the four cells in the source population will be a member of the study population. 
Selection Ratio The number of subjects from one of the four cells in the study population divided by the corresponding 

number of subjects in the source population.     
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Selective Survival A source of selection bias in cross-sectional studies that can occur if the probability of surviving long 
enough to be included in the cross-sectional study is different for the four cells of the source population (cohort).   

Sensitivity The probability that a person who is truly diseased (or exposed) will be classified as diseased (or exposed) in 
one’s study; in diagnostic testing for disease, the probability that a person who has the disease, will have a positive (i.e., 
abnormal) test result.  

Sensitivity Parameter Synonym for sensitivity. 
Shifted Cohort A dynamic cohort for which subjects progressively enter the study at different calendar times, but whose 

follow-up time is shifted to start at the time of initial entry into the study. 
Significance Level The probability of rejecting the null hypothesis when the null hypothesis is true; the probability of a Type 

I error. 
Simple Analyses Analyses of data that consider the relationship of a dichotomous disease variable to a dichotomous 

exposure variable, ignoring the effects on this relationship of other variables, e.g., confounders or effect modifiers. 
Simple Analysis The analysis of data that considers the relationship of a dichotomous disease variable to a dichotomous 

exposure variable, ignoring the effects on this relationship of other variables, e.g., confounder or effect modifiers. 
Simple Cumulative Incidence A population-based estimate of risk that has the formula CI = I/N, where N denotes the size 

of a disease-free fixed cohort at the start of follow-up and I denotes the number of cases of a health outcome that develop 
over the follow-up period. 

Simpson’ s Paradox Not really a paradox at all, but, rather illustrates a general principle about the relationship between two 
variables E and D when a third variable C is also considered: if the variable C is both strongly related to E and to D, then 
the relationship between E and D for the combined data, which ignores C, can be different from the relationship between 
E and D when we stratify on categories of C. This principle is the basis of the data-based criterion for confounding. 

SMR Standardized mortality/morbidity ratio. Number of observed cases (O) divided by the number of expected cases (E). 
Source Population Alternatively called target population or study base. The population of restricted interest at risk for being 

a case and from which cases in one’s study were derived. 
Specificity The probability that a person who is truly non-diseased (or unexposed) will be classified as non-diseased (or 

unexposed) in one’s study; in diagnostic testing for disease, the probability that a person who does not have the disease, 
will have a negative (i.e., normal) test result.  

Specificity of the Association One of Hill’s criteria for causality; where the disease is associated with only one exposure or 
the exposure is associated with only one disease. 

Specificity Parameter Synonym for specificity. 
Stable Dynamic Population A dynamic population that undergoes no major demographic shifts during the time period of 

study; the size of such a population is typically estimated by the size of the entire population based on census data 
available close to the time period of the study. 

Stable Population A dynamic population that undergoes no major demographic shifts during the time period of study; the 
size of such a population is typically estimated by the size of the entire population based on census data available close to 
the time period of the study. 

Standard Deviation A measure of variability of an random variable; the square root of the variance; measured in the same 
units as the variable of interest. 

Standard Error The standard deviation of a statistic computed from sample data; a measure of variability of an estimate; 
measured in the same units as the variable of interest. 

Standard Population A population used for computing age-adjusted rates that provides a common age distribution that 
allows the comparison of two or more groups with differing age distributions, e.g., if death rates for Arizona and Alaska 
are to be compared, the standard population would typically be the US population; can also be used for any kind of rate 
adjustment.   

Standardized Mortality/Morbidity Ratio (SMR). Number of observed cases (O) divided by the number of expected cases 
(E). 

Statistic A variable or a value that describes information obtained in a sample. 
Statistical Inference Drawing conclusions about a population parameter based on an estimate obtained from a sample. 
Steady-State Key feature of a stable dynamic population: a population that undergoes no major demographic shifts during 

the time period of study; the size of such a population is typically estimated by the size of the entire population based on 
census data available close to the time period of the study. 

Stratification Synonym for stratified analysis 
Stratified Analysis An option at the analysis stage for the control of extraneous variables in which each control variable is 

categorized, categories are combined into strata, and both stratum-specific and overall summary analyses over all strata 
are performed.  
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Stength of the Association One of Hill’s criteria for causation; the stronger the association, the less likely the association is 
due to bias. 

Student’ s t The distribution of a continuous random variable usually defined as the ratio of a normally distributed variable 
divided by an estimate of its standard error; there are several t distributions, which are distinguished by a parameter called 
the degrees of freedom. 

distributed variable divided by an estimate of its standard error; there are several t distributions, which are distinguished 
by a parameter called the degrees of freedom. 

Study Base Synonym for source population and target population. 
Study Design The plan of the procedures and methods for implementing a research project. 
Study Population The study sample that would be expected if we could ignore random error; the group of individuals that is 

represented by the study sample that is eventually analyzed. 
Switchover Bias in which the target parameter is on the opposite side of the null value than is the correct estimate. 
Switchover Bias Bias in which the target parameter is on the opposite side of the null value than is the correct estimate. 
Systematic Error A property of a study in which there is difference between the target parameter and what is actually being 

estimated. 
Systematically Usually refers to the presence of systematic error; more generally (not necessarily in epidemiologic research) 

refers to any organized process. 
 
T 
t Distribution Synonym for Student’s t distribution; the distribution of a continuous random variable usually defined as the 

ratio of a normally distributed variable divided by an estimate of its standard error; there are several t distributions, which 
are distinguished by a parameter called the degrees of freedom. 

Target Parameter A parameter that describes a characteristic of a population being studied, which is usually (in an 
epidemiologic study) the source population from which the cases are derived.  

Target Population Synonym for source population and study base. 
Test of Hypothesis A decision procedure for evaluating the truth or falseness of a null hypothesis and based on examining 

the value of a test statistic computed from a sample and then deciding to accept or reject the null hypothesis according to 
whether the value falls into the rejection region or acceptance region, respectively. 

Test For Linear Trend A statistical test of hypothesis to determine whether one variable increases or decreases in 
approximately a straight line form as another variable increases. 

Test For Trend A statistical test of hypothesis to determine whether one variable increases or decreases as another variable 
increases; if interest is in whether or not the relationship is linear, such a test is called a test for linear trend. 

Test Statistic A random variable used in a test of hypothesis whose computed value from sample data is used to reject or not 
reject a null hypothesis. 

Therapeutic A treatment or other clinical procedure used in a clinical trial whose long-range goal is to cure or control a 
disease. 

Therapeutic Intervention A treatment or other clinical procedure used in a clinical trial whose long-range goal is to cure or 
control a disease. 

Timing A design option that answers the question, has the outcome already occurred before the study actually began?” ; can 
be retrospective, prospective, and ambispective. 

Towards the Null Direction of bias in which the target parameter is under-estimated, i.e., the biased estimate is closer to the 
null value than is the correct estimate. 

Trend Test Also called a test for trend. A statistical test of hypothesis to determine whether one variable increases or 
decreases as another variable increases; if interest is in whether or not the relationship is linear, such a test is called a test 
for linear trend. 

Two-Sided An alternative hypothesis for which the parameter values of interest can be either higher or lower than the value 
of the parameter under the null hypothesis, e.g., OR ≠ 1 ; not always two-tailed, e.g., chi square test. 

Two-Sided Alternative An alternative hypothesis for which the parameter values of interest can be either higher or lower 
than the value of the parameter under the null hypothesis, e.g., OR ≠ 1 ; not always two-tailed, e.g., chi square test. 

Two-Sided Hypothesis An alternative hypothesis for which the parameter values of interest can be either higher or lower 
than the value of the parameter under the null hypothesis, e.g., OR ≠ 1 , not always two-tailed, e.g. chi square test. 

Two-Sided Test A test of hypothesis involving a two-sided alternative hypothesis 
Two-Tailed A test of hypothesis for which the rejection region consists of values of the test statistic extreme in either 

direction, i.e., in either tail of the distribution of the test statistic under the null hypothesis. 

”

Student’ s t Distribution The distribution of a continuous random variable usually defined as the ratio of a normally 
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Two-Tailed Test A  test of hypothesis for which the rejection region consists of values of the test statistic extreme in either 
direction, i.e., in either tail of the distribution of the test statistic under the null hypothesis. 

Type I Error A possible error made in a test of hypothesis in which the null hypothesis is rejected when it is, in fact, true; 
the significance level is the probability of a Type I error. 

Type II Error A possible error made in a test of hypothesis in which the null hypothesis is not rejected when it is, in fact, 
false; the power of a test is one minus the probability of a Type I error. 

 
U 
Unbalanced Tables Two-way tables with cell frequencies of very different sizes. 
UCMLE Synonym for unconditional maximum likelihood estimation. 
Unconditional Maximum Likelihood Estimation (UCMLE) One of two maximum likelihood estimation methods for 

estimating the parameters in a logistic model. Typically recommended when the number of parameters in the model is 

Unpooled Analysis A stratified analysis or logistic regression analysis of matched data that does not involves pooling 
exchangeable matched sets. 

V 
Valid Estimate An estimate without systematic error, i.e., an estimate for which there is no difference between the target 

parameter and what is actually being estimated. 
Validity The absence of systematic error; concerns methodologic imperfections in the study design and/or analysis. 
Variability A measure of the amount that the values of a variable differ from one another; the most common measure of 

variability is the variance, or its square root, the standard deviation.  
Variable Any quantity that varies; any attribute, phenomenon, or event that can have different values. 
Variance A measure of variability associated with a random variable or an estimate obtained from sample data; measured in 

square units of the variable of interest. 
 
W 
Wald Statistic A statistical test obtained by dividing the point estimate by its standard error. 
Weighted Average An average of several quantities that does not give equal weights to the quantities being averaged. 
Withdrawal From Study A source of selection bias in a cohort study; occurs when information on a subject selected for 

study becomes unavailable because the subject removes himself/herself from the study during follow-up. 
Worst-Case Scenario A practical approach for assessing selection bias that considers the most extreme changes in the 

estimate of effect that are realistically possible as a result of the way subjects are selected.  
 
Z 
Z Distribution Also referred to as the normal distribution and has a mean of zero and standard deviation of one.   
Zero Cell An issue that arises with sparse data when one or more cells in a table have a zero value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

’

small’ relative to the number of observations in the study. 
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ActivEpi CD and Textbook Glossary 
 
A 
Activities In this course, we refer to each learning unit as an Activity.  Any excursion away from the Lesson Book is an 

Activity.  Most learning will take place in Activities. 
 
B 
Blue On the CD, Blue is the color used to designate terms that can be found in the Glossary. 
Bookmarks On the CD, Bookmarks in ActivEpi point to specific Activities.  Thus, a Bookmark file can record Activities 

that you want to return to, or a set of Activities for use in a Lecture. 
 
C 
Control Bar On the CD, the Control Bar is at the top of each page in the Lesson Book.  It offers direct access to the 

exploration application, the tools used on that page, Homework, Projects, the Help Guide, and the World Wide Web link. 
 
E 
Exercise In this course, an Exercise is review material for your own information.  Exercises are not ordinarily graded or 

reported. 
 
G 
Glossary The Glossary provides brief definitions of key terms.  On the CD the Glossary references are found in the Lesson 

Book and occasionally in Asterisk references.  Glossary references can even hold hyperlink references to other Glossary 
entries.  In the textbook the Glossary can be found towards the end of the book. 

 
H 
Help Guide On the CD, the Help Guide is selectable from the Help menu or clicking on the light bulb icon in the Control 

Bar.  It offers quick access to the Glossary, Index, Assistant, full-text search, and other help-related areas. 
Homework Most homework in this course consists of examining data or examples of research that uses statistics and writing 

short paragraphs about what you have learned.  Homework may include plots or tables from the statistics package.  Where 
arrangements have been made, homework may be submitted electronically. 

Hyperlink On the CD, a hypertext link is a word that appears in blue and underlined.  When clicked on with the mouse, it 
opens the Glossary at that term. 

 
L 
Lesson Book The Lesson Book is the principal organization of this course.  It is discussed in the Introductory Lesson. 
 
P 
Project Most Lessons suggest Projects for deeper learning.  Many Projects are appropriate for teams of students to work 

together.  Some Projects use the tools introduced in that lesson in new ways.  On the CD, Projects are found under the 
PROJ icon in the Control Bar. 

 
S 
Study Question Activities often offer Study Questions and, on the CD, they pause to permit you to work with them.  These 

questions are intended to guide your work. 
 
 



 
1 
1 to 1 matching, see also pair matching and one-to-one 

matching, 481 
 
 
A 
a-cell, 351-354, 364-365, 422, 430,  432-433, 436, 449 
acceptance region, 337-338 
accessibility, 13-15 
Activities, 4-13 
additive interaction, 297-298 
adjusted effect, see also adjusted estimate, 248, 313-315, 

400, 421-422, 429, 432 
adjusted estimate, see also adjusted effect, 214, 215, 287-

290, 313-317, 319-320, 322, 390, 392-393, 400, 419-
422, 424, 436, 439-442, 446-450, 452, 454, 458-460, 
488 

adjusted exposure odds ratio, see also adjusted odds ratio 
and aOR, 293, 302 

adjusted odds ratio, see also adjusted exposure odds ratio 
and aOR, 215-216, 295-296, 312, 319, 408-410, 444-
445, 448-451, 459, 481, 491, 505, 507-508 

adjusted prevalence odds ratio, see also aPOR, 293, 302 
adjusted rate ratio, see also aIDR, 443-444 
adjusted risk ratio, see also aRR, 216, 250, 251, 287-293, 

302, 315-319, 421, 440-445, 453, 459, 499  
age-adjusted, 93-94 
age-adjusted rates, 92-93 
age-adjustment, 92-93 
aIDR, 443-444 
all-causes mortality, 89 
alternative hypothesis, 334, 336-342, 347, 349, 350,  362,  

429, 432, 462, 465 
analogy, 39 
analytic studies, 37 
aOR, see also adjusted odds ratio, 321, 325, 422, 444, 

448-451, 458, 491, 493, 499, 500 
aPOR, 293, 302 
apriori criteria, 293 
aRR, see also adjusted risk ratio, 290, 313, 314, 322, 442,  

444, 501 
association, 21, 29, 33, 34, 38, 49, 170, 184, 195, 207, 

281, 285-287, 291-293, 296, 297, 300, 317, 387, 390, 
392, 419, 422, 430, 432-437,  445, 466, 499 

attributable rate, 142 
attributable risk, 140, 149, 150, 154-156 
attributable risk percent among exposed, 149, 150, 154 
average rate, 78-82, 90, 97, 99, 125, 141 
away from the null, 185-187, 191, 195, 197, 208, 245, 

250   
 
 

B 
backwards, 39, 40, 48 
balanced tables, 441-442 
Bayes Theorem, 124, 267-268 
Berkson’s bias, 175, 209-210 
bias, 2, 4, 18, 19, 25-26, 38, 40-42, 44-46, 48-49, 51-56, 

58, 115, 175-176, 183-190, 195-218, 229-268, 281-
286, 336, 487, 492, 506-507 

binomial, 332, 430, 432, 437 
binomial distribution, 430, 432, 433 
biologic plausibility, 38 
blinding, 42 
Bookmark, 9, 11, 12 
Breslow-Day test, 299, 422-423 
 
 
C 
caliper matching, 479, 480 
candidate subset of confounders, 319 
case-cohort, 43, 55-57, 123  
case-control, 24, 31, 40-41, 48-52, 55-58, 68, 105-106, 

108-110, 114-117, 122-124, 126-132, 141-143, 156, 
163, 175, 188, 195-198, 207-210, 216-217, 234-235, 
240, 243, 252, 259, 292-295, 298, 321, 326-327, 331-
332, 362-370, 391-392, 394-399, 422, 430, 432-433, 
440, 444-445, 448-450, 454, 477-508 

case-crossover, 55, 58, 492 
case-fatality, 72, 89-91 
category matching, 478-484 
causation, 37, 38 
chi square, 332, 349, 350, 355-357, 361, 372, 380, 400, 

419, 423, 429, 431-434, 437, 449-450, 461-466, 505, 
517, 518 

CI, see confidence interval or cumulative incidence 
CID, see cumulative incidence difference 
CIR, see cumulative incidence ratio 
clinical trial, 4, 37, 39, 41-43, 50, 52, 68, 107, 141, 196, 

217, 322, 391, 396, 477, 478 
CMLE, see conditional maximum likelihood estimate 
coherence of evidence, 38 
cohort, 23, 24, 39, 41-48, 50, 52, 55-58, 68, 72-84, 89, 90, 

95-96, 105-106, 128-132, 140-143, 151-156, 159, 160, 
163, 165, 184, 196, 198-202, 204-210 211-212, 217-
218, 250, 256, 285-292, 297, 311, 331-332, 347-349, 
360, 362, 370-378, 390-393, 397, 409, 411, 419, 422, 
430-438, 441, 444, 449-451, 453, 456-459, 477-478, 
488-489, 500-503 

community intervention trials, 39  
comparison group, 27, 38, 44, 93, 142, 188, 200, 207, 

392, 395-396, 477-478 
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conceptual hypothesis, 37 
concordant, 490-492, 501-503 
conditional maximum likelihood estimation (CMLE), 

505-507 
conditional probability, 263 
confidence interval, 58, 324, 332-335, 342-347, 357-360, 

367-370, 375-382, 391-392, 399-400, 408, 419, 421-
424, 436, 440-442, 452-459, 483, 490-494, 499-507 

confounder, 26, 92, 243, 284, 286, 291-294, 299, 311-
315, 319-323, 389, 410-411, 485, 507 

confounding, 25-27, 58, 92-95, 175-176, 184, 189-190, 
217, 228  243, 281-302, 311-324, 389-390, 394, 396-
397, 419-420, 427, 443-445 450, 483, 485, 487-489, 
490  

consistency of findings, 38 
continuous variable, 396-397, 403, 478-480 
Control Bar, 3, 5, 9, 12, 517 
control group, 49, 55, 58, 188, 207-209, 363, 398, 478, 

480, 492 
control variable, 18, 20, 189, 229-233, 286, 295, 298-301, 

387-402, 405, 409-413, 419, 425-426, 483, 504-507 
controls, 20, 31, 48-52, 55-58, 105, 109-112, 114, 122, 

124, 126-130, 180, 195-198, 207-210, 216, 234, 235, 
243, 244, 252, 273, 292, 299, 312-316, 320-322,  388-
392, 397-399, 446, 465, 469-474, 477-500, 505 

copy, 9, 13, 14 
corrected cell frequencies, 248, 250-260 
cross-product ratio, 213 
cross-sectional, 24, 40, 43, 48-55, 68, 86-88, 115, 116, 

141, 145, 177, 180, 196, 210-212, 293, 300, 422-423, 
430, 432-433, 437, 444, 446, 449 

crude analysis, 27, 489 
crude death rates (see crude mortality) 
crude effect, 303, 313-315 
crude estimate, 287-290, 293, 294, 296, 446 
crude incidence density ratio, 436 
crude mortality, 91 
crude odds ratio (cOR), 294, 295-296, 311, 320, 489 
crude rate, 92-96 
crude risk ratio, 287, 288, 293, 296, 315-319, 442-443, 

453, 489 
cumulative incidence, 70, 72-77, 88-90, 97, 140-144, 150-

152, 155, 156, 160-162, 165, 347, 348 357, 358,  430, 
432-433, 437, 451 

cumulative incidence difference (CID), 165, 377, see risk 
difference 

cumulative incidence ratio (CIR) , 165, 377, see risk ratio 
 
 
D 
data analysis, 3, 8, 19, 25-29, 175-178, 195, 291-292, 305, 518 
Data Desk, 2, 3, 8, 12, 13, 32, 96-97, 116, 148, 163, 178, 

444, 517, 518 
data-based confounding, 284, 291-294, 313-316, 488 
data-based criterion, 284, 287, 291-293, 309 
data-based joint confounding, 313, 315, 318, 320 

data-based marginal confounding, 314-316 
decision rule, 337, 338 
degree(s) of freedom, 348-349, 354, 361-362, 371-372,  

431-434, 437,  
density sampling, 56-58, 65,  
density-type case-control study, 56-57 
dependent variable, 393, 394, 400-402, 404-407, 418, 464 
descriptive studies, 37 
df, see degree(s) of freedom 
diagnostic test, 262-268 
dichotomous, 229, 296, 297, 315, 317, 331-332, 390, 393, 

399, 404, 406, 411-412, 421, 430, 464, 486 
difference measure(s), 105, 139, 141-143, 147, 166, 345,  

439, 452-454 
differential, 243-248, 250-255, 259-261 
differential misclassification, 243-245, 247, 248, 252, 

254, 255, 259-261 
direct adjustment, 94  
direct method, 92 
direct method of adjustment, 92 
direction of bias, 185 
directionality, 39-40, 44, 46, 48, 55 
discordant, 490-492, 495, 501-503 
disease frequency, 18-19, 24-26, 67-97, 105 
disease load, 148 
disease-specific mortality, 89-91 
DOR, see risk odds ratio 
dose-response, 27, 38, 46, 459, 460, 462 
double blinding, 42, 50 
dummy variable, 465-466, 487, 505-507 
dynamic cohort, 75, 76, 82, 83 
dynamic population, 74, 79-80, 85, 87 
 
 
E 
ecologic, 43, 59-61 
ecologic fallacy, 59, 60 
ecologic study, 59, 60 
EF, see etiologic fraction 
EFe, see etiologic fraction 
effect measure, 25, 175, 177, 185, 187, 210, 232, 247-

251, 254, 295, 298, 322, 331, 393, 397, 429, 432, 439-
440, 444, 452-454, 458, 463, 480, 483 

effect modification/modifier (see also interaction), 243, 
295-300, 311, 389-390, 401, 409-411, 420-422, 424, 
425, 507-508,  

effectiveness, 37, 42, 207, 322 
efficacy, 37, 41-42, 207 
EOR, see exposure odds ratio 
epidemiology, 1-2, 4-5, 17, 20, 23, 26, 37, 70, 71, 78-80, 

86, 402, 404,  
error term, 402-404 
ethical concerns,  42 
etiologic, 38, 60, 68, 148-161, 165-166, 211-212, 292,  
etiologic fraction in the population, exposed, 148-161, 

165, 166 
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Evans County, 409, 411, 458, 460, 464, 465 
excess risk, 46, 139-144, 146, 150, 294, 446 
exchangeable, 481, 490, 495-496 
exchangeable matched sets, 490, 495-496 
expected value, 94, 185, 402-406, 413, 422, 430, 432, 437 
experimental, 37, 39, 42, 144, 395-399 
experimentation, 39 
Expositions, 2-3, 13, 14, 247 
exposure(s), 17-33, 37-40, 42-60, 73, 82, 109, 110, 112, 

114-117, 122-127, 136, 140-143, 146-156, 159-161, 
163-165, 175-176, 180, 186, 195, 197-198, 201-202, 
205, 207, 209, 211, 229-262, 270-271, 284-287, 289, 
291-294, 296, 298, 299, 301, 302, 311-313, 315, 317, 
322-325, 331-332, 361-364, 387-396, 399, 401, 402, 
405, 409-413, 419-420, 430, 435, 438, 440-441, 443-
445, 447, 458-466, 484-492, 497, 501, 505-505  

exposure odds, 109-111 
exposure odds ratio (EOR), 115, 116, 122-124, 126, 127, 

136, 293, 294, 302, 362-363, 444, 445 
exposure variable, 18, 20-22, 25-26, 29-33, 39-40, 44, 55-

56, 149, 191, 237, 240, 250, 252, 253, 281, 298, 311, 
326-327, 331-332, 387-390, 393, 401-402, 405, 409-
413, 430, 447, 460, 462, 465, 466, 484, 487, 488, 505-
507 

external population, 180-182 
external validity, 181-182 
extraneous, 387, 392, 395, 400, 419, 481  
 
 
F 
Fisher’s exact test, 352-357, 364-367 
fixed cohort, 24, 72-74, 76, 79, 211 
fixed-marginals, 352-354, 355-366, 432 
follow-up, 22-23, 26, 31, 44-46, 50, 53, 55-56, 68, 71-90, 

95-96, 106, 108, 112-129, 139, 144, 149-151, 155, 
159, 161, 179-180, 184, 196, 198-204, 218-219, 247, 
262-263, 291, 312-315, 487, 503 

forward directionality/design, 39, 44 
Framingham heart study, 3, 44 
frequency matching, 397-364, 478-482, 496-498 
 
 
G 
Glossary, 3, 9-11 
gold standard, 250, 253, 262-264, 322-323 
gold standard test, 262 
 
 
H 
hazard, 77 
hazard ratio, 124-125, 134  
health outcome, 4, 17-29, 31, 37-41, 44, 48, 58-60, 67, 68, 

71, 105, 124, 126, 147, 180, 197-198, 285-286, 291-
293, 298-301, 331, 388-389, 395, 400-402, 404-406, 
460, 462, 485, 492, 501-502 

healthy worker effect/bias, 201, 217 

Hill’s criteria, 38-39 
Homework, 12-14 
hybrid designs, 43, 55-56 
hypergeometric distribution, 352, 353, 365-366, 430, 432 
hypothesis testing, 332, 334-341, 346-347, 360, 458 
 
 
I 
IDD, see incidence density difference 
IDR, see incidence density ratio 
incidence/incidence rate/incidence density, 39, 59, 67-90, 

97, 124, 132, 133, 136, 140-144, 148-157, 158-163, 
165, 211, 346-348, 356-358, 363, 372, 374, 377, 379, 
422, 430, 432-433, 437, 451, 456, 459 

incidence density difference (IDD), 165, 379, 472 
incidence density ratio (IDR), 124-127, 136, 152, 154, 

156, 163, 165, 331, 345, 372, 374, 379, 381-382, 436, 
443 

incidence rate difference (IRD), 345 (see incidence 
density difference and rate difference) 

incidence rate ratio (IRR), 377 
incident cases, 49, 53, 55-56, 60, 67, 70, 81, 88, 97, 115, 

120, 121, 124, 127, 217, 223, 380, 477 
incomplete designs, 43, 59-60 
independent misclassification, 246-247 
independent variable, 393, 400, 402, 414-415, 464 
index group, 459, 477-478 
indicator variable, 465, 487-488 
indirect adjustment, 95 
indirect method of standardization, 95 
individual matching, 397, 399, 477-481, 484, 490, 493, 

496-497 
information bias, 26, 41, 46, 48, 49, 51, 175, 176, 184, 

189-190, 224, 229-269 
instantaneous rate, 78-81, 85 
intention to treat analysis, 42 
interaction (also see effect modification), 295-300, 311, 

316, 323, 389, 401, 409-411, 420-429, 435, 436, 447, 
450, 499, 506-508 

internal validity, 181-182 
interval estimate/estimation, 332-335, 419-421, 452-458, 

460 
intervening variable, 291-293, 302 
IRD, see incidence rate difference, incidence density 

difference, and rate difference 
IRR, see incidence rate ratio, incidence density ratio, and 

rate ratio 
 
 
J 
joint confounding, 313-318, 320, 322 
 
L 
lack of temporal ambiguity, 38 
large-sample, 317, 342-343, 348-349, 354-363, 366-369, 

373-378, 380, 381, 415, 419, 421, 452, 454, 456-457 
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latencies/latency, 45, 48, 49, 51, 82 
Lesson Book, 1-14, 359 
level of significance, 353 (see also significance level) 
likelihood function, 507 
likelihood ratio, 409, 465, 466, 505, 506 
linear function, 401, 402, 408, 410 
linear model, 401-405, 412 
linear trend, 462, 465 
linear weighting, 439, 440, 452, 454 
ln 358, 367-368, 374, 377, 405-408, 443, 454, 456-455 

(see also natural log) 
log-linear weighting, 439, 440, 452, 454 
logistic model, 299, 393, 404-413, 439, 464-467, 487, 

488, 504-508 
logistic regression, 149, 311, 398, 407, 410, 464-466, 

486-489, 503-508 
logit, 405, 406, 408, 410, 413, 464, 465, 487, 488, 505-

508 
logit transformation, 405, 406, 411  
loss-to-follow-up, 45, 47, 74, 85, 179, 196, 198-200, 205, 

217, 305 
 
 
M 
Mantel-Haenszel (mh) test, 354-356, 421-422, 431-436, 

460-463, 490-494, 499, 502-504 
Mantel-Haenszel estimate/adjusted estimate, 439-440, 

447-448, 452, 454 
Mantel-Haenszel (MH) chi square test/statistic, 359, 362, 

380, 384, 399, 400, 419, 449, 450 
Mantel-Haenszel methods, 486-488 
Mantel-Haenszel odds ratio (mOR), 128-132, 448-450, 

454-457, 490-493, 503-504 
Mantel-Haenszel rate ratio (mIDR), 451, 456-457 
Mantel-Haenszel risk ratio (mRR), 451, 456-457, 501, 

502 
marginal confounding, 313-316, 319, 321 
match out, 484 
matched analysis, 483, 487-492, 495-497, 501, 502 
matched case-control, 58, 128, 369, 449, 450, 477, 481, 

489-505, 508, 510-511 
matched pair, 129, 487, 488, 490-492, 495-498, 500-507 
matched set, 481, 487, 489, 490, 493-497 
matching, 58, 128, 391-394, 397-399, 477-508 
matching factors, 478 
matching ratio, 480-481, 498, 500 
matching stratum, 481 
matching variable, 398, 477-481, 483-490, 495, 500, 504-

508 
mathematical model, 19, 26-28, 189, 229, 298, 311, 393-

395, 398-407, 413, 439, 483, 486, 488 
maximum likelihood estimate (mle), 408, 410, 439-440, 

505-507 
McNemar’s, 491, 492, 494, 495, 497, 502-505 
measure(s) of disease frequency, 18, 19, 24-26, 32, 67-96, 

105 

measure(s) of effect, 19, 24-25, 56, 57, 60, 105-133, 139, 
141-146, 176, 183-184, 224, 229, 286, 290, 293, 331-
332, 443, 444, 486  

measure(s) of potential impact, 105, 139-166 
mIDR, 450-457, see also Mantel-Haenszel incidence 

density ratio 
misclassification, 175, 176, 184, 207, 233-266, 270-271 
misclassification bias, 229-232, 235, 236, 238, 246-249, 

255 
MLE, see maximum likelihood estimate 
mOR, 128-132, 422, 448-451, 457-458, 489-494, 503-

505, see also Mantel-Haenszel odds ratio, 
morbidity, 60, 95 
mortality, 59, 60, 68, 72, 80, 86, 89-96, 128, 142, 149, 

153, 211, 331, 346, 348, 350, 354-357, 370-374, 436-
437 

mortality rate, 90-93, 125, 128, 169, 370-373 
mortality risk, 89-91, 211 
mRR, 422, 450, 451, 501-503, see also Mantel-Haenszel 

risk ratio 
multiplicative interaction, 297 
 
 
N 
natural log (ln), 357, 358, 366, 367, 374, 376, 377, 407, 

410, 440, 442-444 
nearest neighbor matching, 479-480 
negative predictive value (PV-), 264-267 
nested case-control, 43, 55-58, 128, 129, 217 
NNT, see number needed to treat 
non-directional, 40, 54 
non-response, 26, 49, 179, 189, 196, 198-200, 210, 211 
nondifferential, 240-243, 250-260, 270, 271 
normal distribution, 337-339, 342, 348-350, 361, 363,  

367, 368, 374, 383, 452, 517 
notes, taking, 13 
null hypothesis, 334-342, 347, 348, 350-354, 361-366, 

372, 373, 409, 415, 422, 424, 425, 429, 430, 432-434,  
437, 438, 462, 463, 465, 466, 505, 506 

null value, 107, 110, 140, 185-187, 331, 332, 347, 352, 
363, 364, 369, 409, 422, 429, 431, 432, 435, 436, 455, 
489 

number needed to treat (NNT),  143, 144, 165 
 
 
O 
observational,  34, 37-39, 42-47, 48, 52, 199, 217, 395-

397, 399 
observational studies/study, 37, 38, 43-47, 48, 52, 199, 

217, 395-397, 399 
odds, 25, 60, 105-129, 133, 165, 182, 184, 195, 197, 202-

206, 208-217, 219, 222, 229, 241, 247, 253-254, 259, 
260, 262, 271, 293-296, 302, 311-312, 320, 323-324, 
331, 332, 345, 347, 351, 352, 361-364, 366-370, 377, 
378, 388, 390, 393, 398, 405, 406, 408-413, 426, 427, 
439, 440, 444-451, 454, 456, 457, 458, 459, 481,  487-
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odds ratio (OR), 25, 60, 65, 105-129, 133, 165, 166, 182, 

184, 195, 197, 202-206, 208-217, 219, 222, 229, 241, 
247, 253, 254, 259, 260, 262, 271, 291, 293-296, 302, 
311, 312, 320, 323, 324, 331, 332, 334, 345, 347, 351, 
352, 361-364, 366-370, 377, 378, 393, 398, 405, 406, 
408-412, 426, 439, 440, 444-451, 454, 456, 457, 459, 
481, 487-491, 499, 503, 505-508 

one-sided, 336, 338, 339, 347, 349, 350, 352, 354-355, 
429, 431, 432 

one-tailed, 340, 350 
one-to-one, 477, 478 
operational hypothesis, 37 
OR, see odds ratio 
outbreak(s), 29-31, 72, 85, 108, 112, 331, 345, 361, 363 
outcome variable, 20, 28, 30, 31, 33, 331, 387, 388, 393, 

402, 404, 413, 464, 508 
overmatch, 484 
 
 
P 
p-value, 338-341, 347-355, 361-366, 371-373, 420-438, 

465-505 
pair-matched, 128, 490-506 
pair-matching, 482, 496 
parameter, 177, 183-187, 190, 201-203, 210, 213-219, 

221, 238-242, 245-246, 249-250, 266-269, 332-338, 
342-346, 401, 408, 410, 505-505  

partial restriction, 391-392, 398, 478 
PD, see prevalence difference 
period prevalence, 86-88, 97 
person-months, 81 
person-time, 70, 79-84, 90, 96-97, 124-129, 133, 141, 

152-159, 160, 163, 165, 331-332, 370-377, 430-437, 
451, 457 

person-years, 78, 81-84, 95-96, 125-128, 142, 145, 148, 
157, 372, 375 

PF, see prevented fraction 
PFe, see prevented fraction in the exposed 
Pitman efficiency, 481-482 
point estimate, 332-334, 370, 399-400, 419-423, 500, 507 
point prevalence, 86-88 
pooled analysis, 490, 495-496 
pooling exchangeable matched sets/strata/data, 481, 490, 

494  
population attributable risk (PAR), 149-150, 155 
population attributable risk percent, 149-150, 155 
population parameter, 177, 184-185, 332-338, 342-346 
population prevented risk, 159-160, 162 
population prevented risk percent, 159-160, 163 
population-at-risk, 60, 79-80 
POR, see prevalence odds ratio 
positive predictive value (PV+), 264-269 
post-test probability, 265-266 
potential confounder, 26, 288, 293, 299, 311-315, 322-

323, 410-411, 485, 507 

potential impact, 105, 139-166 
PR, see prevalence ratio 
pre-test probability, 263-265 
precision, 175-178, 290, 295, 322-323, 332-334, 344-345, 

360, 389-390, 397-399, 421, 426, 439-454, 459, 477, 
480-493, 499-501 

precision-based, 290, 295, 421, 439-454, 459, 491-493, 
499-501 

predictive value (PV), 264-269 
predictive value negative (PV-), see negative predictive 

value 
predictive value positive (PV+), 267, see positive 

predictive value 
prevalence, 25, 67-71, 86-88, 93, 97, 105, 114-116, 121, 

133, 141-143, 149, 156, 165-166, 177, 192, 211, 263-
269, 293, 300-302, 360, 369, 376, 444-446 

prevalence difference (PD), 141, 143, 165 
prevalence odds ratio (POR), 114-115, 133, 293-295, 302, 

444-446 
prevalence ratio (PR), 25, 165, 293, 301-302, 360, 369, 

445 
prevalent cases, 49, 53, 67-68, 88, 97, 115, 121, 124, 217 
prevented fraction, 148-149, 159-166 
prevented fraction among exposed, 163 
prevented risk, 159-163 
probability, 38, 71-72, 85-87, 108-111, 123, 140, 185, 

201-202, 210-211, 237-238, 246-247, 263-266, 335, 
338-340, 344-346, 352-354, 360, 364-366, 369, 372-
373, 405, 433, 437 

Projects, 3-4, 12-14 
proportional, 43, 60-61, 129, 149 
proportional morbidity study, 62  
proportional mortality study, 60 
prospective, 41-48, 198 
PV-, see negative predictive value 
PV+, see positive predictive value or predictive value 

positive 
 
R 
r-to-1, 128, 493 
random error, 176, 177, 183-185, 209, 299, 332, 389 
random variable, 344, 345, 353, 365, 372, 433 
randomization, 217, 391, 392, 395-397 
rare disease, 2, 45, 48-52, 117-118, 120-131, 166, 205-

206, 477 
rate, 25, 57, 59, 68-72, 77-97, 105, 124-133, 141-149, 

152-153, 156, 163, 165-166, 184, 199-200, 331-332, 
345, 370-378, 439-440, 443-444 

rate adjustment, 92-93 
rate difference, 25, 141-148, 165, 345, 375-377, 439-440, 

see incidence density difference 
rate ratio, 25, 57, 124-129, 133, 142, 148, 153, 165, 184, 

333-334, 370-377, 439-440, 443-444, 451, 456-457, 
see incidence density ratio 

ratio measures, 103, 123, 137, 144-145, 345, 442, 455-
456 
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RD, see risk difference and cumulative incidence difference 
referent, 149, 154, 458-460, 465 
regression coefficient, 401-413, 507 
rejection region, 337-338 
relative risk, 58, see risk ratio and cumulative incidence 

ratio 
residual confounding, 95, 397 
restriction, 208, 311, 391-398, 478 
retrospective, 41-48, 56-58, 200, 285, 287, 289, 419, 431, 

435, 441, 492, 500, 502 
retrospective study, 48 
ri to1, 480-482 
ri to si, 481-482, 498 
risk, 4, 17-19, 25-33, 42, 44, 46-52, 55-60, 67-68, 70-74, 

76-93, 97, 105-133, 139-166, 175, 178-190, 198-218, 
222, 234, 236, 250-254, 256, 262-264, 271, 285-302, 
311-327, 331-333, 336, 345-378, 387-388, 390-393, 
396, 399, 405-403, 419-423, 431-435, 439-444, 451-
462, 465, 483-494, 500-504 

risk difference (RD), 25, 139-150, 155-157, 162, 165, 
298, 345, 356-357, 377-378, 439-440, 452-454 

risk factor, 19, 32, 44, 50-51, 55, 57, 68, 87-88, 114-116, 
125, 146, 253, 286, 291-293, 299, 311-324, 387-390, 
406-411, 423, 483-486, 489, 504 

risk function, 406-407 
risk odds ratio (ROR), 114-124, 133, 347, 351, 377, 444-

445 
risk period, 71, 83 
risk ratio (RR), 25-27, 33, 56, 60, 105-114, 116-126, 133, 

139-140, 146-152, 165, 181-187, 190, 199-202, 205-
206, 215-218, 222, 236, 250-251, 271, 285-293, 296-
298, 302, 315-319, 324, 331-334, 345-360, 364, 367-
369, 374, 377-378, 393, 399, 419-422, 431, 435, 439-
445, 451-453, 456-459, 487-489, 501-502 

ROR, see risk odds ratio 
RR, see risk ratio or rate ratio 
 
S 
sample size, 48, 185, 289-290, 317, 337, 342, 347, 351, 

360-363, 369-370, 441-443, 453, 480-481, 484, 496 
sampling distribution , 336-338 
sampling plan, 19, 23 
screening test, 264 
selection bias, 26, 40, 44, 48, 115, 175-176, 184, 188-189, 

195-219, 234 
selection parameters, 213-221 
selection probability, 201-212, 221 
selection ratio, 201-209, 213, 216 
selective survival, 196, 211 
sensitivity, 237-256, 260-261, 263-271 
shifted cohort, 74 
shortcuts, 7, 12 
significance level, 336-341, 347-349, 360, 363, 369, 465 
simple analyses/analysis, 331-379, 389-390, 396-399, 

420, 432 
simple cumulative incidence, 72-76, 89-90 

Simpson’s Paradox, 281-285 
SMR, see standardize mortality/morbidity ratio 
Sound, 5, 7, 12, 14 
source population, 48-49, 56-57, 120-121, 124, 126-127, 

178-185, 188, 195-213, 216, 291-292  
specificity, 38, 237-246, 249-256, 260-261, 263-271 
specificity of the association, 38 
stable dynamic population, 80, 87 
stable population, 82, 210-212 
standard deviation, 337 
standard error, 336, 342-347, 356, 361, 363, 408 
standard normal distribution, 337-338, 342, 347-348, 361, 

363, 452, 517 
standard population, 92-98 
standardized mortality/morbidity ratio (SMR), 97 
statistic, 3-4, 12-13, 18, 26-28, 32, 45, 59, 68, 140, 142, 

177-180, 185, 199, 287-288, 296, 298-300, 331-341, 
345-351, 354-356, 359-363, 371-373, 377-379, 393, 
409, 421-422, 429-440, 449-450, 460-467, 485, 491, 
493-496, 502-506, 517 

statistical inference, 177-178, 331-335, 494  
steady-state, 69-70, 126-127 
stopwatch, 6, 9 
stratification, 19, 26-28, 243, 392, 420-421 
stratified analysis 27, 32, 128, 149, 189, 289-290, 392-

394, 398-400, 419-468, 483, 486-495, 499-504 
stratify, 38, 284, 297, 300, 311, 315-318, 395, 424-426, 

465, 500, 504 
strength of the association, 38, 352 
student’s t, 332 
study base, 178 
study design, 4, 18-19, 23-26, 31-32, 37-60, 67, 86, 89-

90, 105, 108, 112-115, 175-177, 183-185, 188-190, 
195, 218, 291, 293, 365, 391, 430, 432, 439-440, 444-
445, 477 

study population, 84, 86, 95, 146, 175, 178-190, 196, 199, 
201-212, 221-222, 300, 402-403, 413 

study question, 7, 18-20, 22, 26-31, 331 
switchover, 186-187 
systematic error, 176-180, 183, 185, 195-196, 229 
systematically, 184 
 
 
T 
t distribution, 518 
target parameter, 183-187 
target population, 59, 177-178, 182, 184, 187, 190, 232 
Taylor series, 358, 367, 374 
Teacher folder, 6 
Templates, 8, 13 
test for trend, 460-467 
test of hypothesis, 334-340, 346, 351, 354, 360-363, 370, 

372, 399-400, 419-420, 460, 490-493, 499-503 
test statistic, 336-341, 347-350, 354-355, 361-363, 371-

372, 377, 409, 421-422, 429-430, 432-434, 460, 462, 
491, 493, 502, 504 
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timing, 40-41, 48 
towards the null, 185-188, 195, 241, 243, 245, 461-469, 

487, 489 
trend test, 461-469 
two-sided, 336, 338-339, 347, 349-350, 355, 362, 372, 

429, 431-432, 437 
two-tailed, 337, 340 
 
 
U 
UCMLE, see unconditional maximum likelihood method 
unbalanced tables, 441-444 
unconditional maximum likelihood method (UCMLE), 

506-507 
unpooled analysis, 495-496 
 
 
V 
valid estimate, 175, 300, 323, 389 
validity, 175-190, 232, 287, 299-300, 312, 322-323, 389 
variability, 6, 28, 177, 289, 331-332, 389 

variance, 334, 342-343, 357-358, 366-367, 373-377, 422, 
430, 432-434, 437, 440, 442-443, 453-457, 463, 481 

variation, 56-57, 177 
video, 3, 13 
 
 
W 
Wald statistic, 409, 466 
Web, 12-13, 360, 517-518 
weighted average, 95, 129, 149, 289-290, 293, 296, 337, 

377, 399-400, 419-420, 439-444, 449-450, 452 
withdrawal, 45, 74, 83, 85, 179, 196, 198-199 
worst-case scenario, 218-219 
 
 
Z 
Z statistic, 349-350, 361, 363, 371-373 
zero cell, 129, 439-441, 447-450, 500 
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