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Preface

On March 15, 1901, Henri Bénard defended his thesis entitled “Les Tourbillons
cellulaires dans une nappe liquide propageant de la chaleur par convection en
régime permanent”1 at the University of Paris, Sorbonne. The results contained
in this thesis have been at the origin of recent intensive research activities on cel-
lular structures observed in many physicochemical systems far from equilibrium:
instabilities, spatio-temporal patterns, chaos, and turbulence.

The French Physical Society organized a scientific meeting to commemorate
the centenary of Bénard’s thesis, at the Ecole Supérieure de Physique et Chimie
Industrielles de Paris (ESPCI). This meeting, which gathered approximately
one hundred scientists and graduate students working in nonlinear science, was
honored by the presence of the director of the ESPCI, Professor Pierre-Gilles de
Gennes, Nobel laureate in physics (1991), who gave the opening talk.

At the conference, lectures were given by internationally recognized scholars
who have contributed to the development of Bénard’s work: J.E. Wesfreid, P.
Manneville, Y. Pomeau, M. Velarde, J. Gollub, M. Provansal, G. Nicolis, B. Cas-
taing, and P. Coullet. A poster session and a round table on further developments
in nonlinear physics were organized.

In the present book, we have extended the list of contributors in order to
cover all the aspects involved with Bénard’s work, with a main focus on ther-
mal convection, on Bénard–Marangoni instability and on Bénard–von Karman
instability.

We would like to thank Dr. Hans Koelsch from Springer for the publication of
this monography in the Springer Tracts in Modern Physics series. We acknowl-
edge a critical reading by C.D. Mitescu and a very helpful technical assistance
from Olivier Crumeyrolle.

Le Havre, Paris Innocent Mutabazi
10 May 2004 José Eduardo Wesfreid

Etienne Guyon

1 Cellular vortices in a thin liquid layer propagating heat by convection in a stationary
regime.
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Havre, 25, rue Philippe Lebon, F-76058 Le Havre Cedex, France, mutabazi@univ-
lehavre.fr

Y. Pomeau, Laboratoire de Physique Statistique de l’Ecole Normale Supérieure,
24, rue Lhomond, F-75231 Paris Cedex 05, France, pomeau@physique.ens.fr
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Part I

Introduction



1 The Context of Bénard Scientific Work and
Nonlinear Science

Innocent Mutabazi1, José Eduardo Wesfreid2, and Etienne Guyon2

1 Laboratoire de Mécanique, Physique et Géosciences, Université du Havre,
25, rue Philippe Lebon, BP.540, 76058 Le Havre Cedex, France

2 Physique et Mécanique des Milieux Hétérogènes(PMMH –UMR 7636 CNRS),
Ecole Supérieure de Physique et de Chimie Industrielles de Paris,
10, rue Vauquelin, 75231 Paris Cedex 05, France

The last thirty years have seen intense development of research activites in cel-
lular structures in physicochemical systems. Although the work of Henri Bénard
received rather little recognition for a long period, particularly in France, it be-
came seminal in the 1970’s. Beginning with the experiments of Pierre Bergé and
Monique Dubois in Saclay and theoretical support from Pierre Gilles de Gennes
and Yves Pomeau, French researchers displayed a renewed interest in the ther-
mal convection problem. New teams in Paris (A. Libchaber in the Ecole Normale
Suprieure known as “ENS”), Orsay (Orsay group on liquid crystals), and other
research centers all over the country started to work intensively on this subject
and related topics. In different countries (Belgium, Germany, the Soviet Union,
USA, Spain, Italy), Bénard convection became a table-top physical system that
gave rise to many important results using theoretical, numerical, and experimen-
tal tools. In fact, Bénard convection stimulated the development of new tools of
investigation as Laser light scattering and Laser Doppler anemometry, chaotic
signal processing, spatio–temporal diagrams technique, and so on.

Today, the Bénard problem and, more generally, the study of thermocon-
vective instabilities , has awakened the interest of physicists in fluid mechanics
problems thanks to a multiple conjunction: in the 1970’s there was a consider-
able interest in global theories of phase transitions and critical phenomena, and
Bénard convection offered a simple example of a mean field-like transition around
a convection threshold (e.g., Ginzburg–Landau theory: coherence length, critical
exponents, . . . ). On the other hand, the approach of the Brussels school of sta-
tistical physics under the influence of Prigogine connected dynamical convective
states to “far from equilibrium” thermodynamics and looked for the applica-
tions of some general criteria. Finally, the work of Ruelle and Takens came as a
“bomb” to focus this interest on thresholds of noisy states in dissipative systems.
Physicists such as P. Martin at Harvard on the theoretical level, and G. Ahlers
at Bell Labs and A. Libchaber in Paris, on the experimental side, soon came up
with new results although they generally dealt with extended (large aspect ratio)
boxes having a large number of degrees of freedom as opposed to small aspect
ratio boxes. The interest in dissipative crystallography led to the production of
spectacular images of convection patterns reproducing, in particular, some nice
illustrations originally due to H. Bénard. A few years later, these very same sci-
entists also considered the presence and organization of defects and textures, a
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field that is still active at the present time. The existence of dynamical order
far from equilibrium also triggered interest in other communities, in particu-
lar in the life sciences, concerned with the origin and organization of life since
the large initial disordered “soup” (although this does not appear today to be
the major basic mechanism). All these subjects referred to the Rayleigh–Bénard
problem, the “fruit fly” equivalent for dissipative systems! It should be men-
tioned however, for completeness, that these treatments did not get very deep
into the mechanical aspect of the problems nor have much to do with researchers
working in thermal physics, for example.

The second major contribution of Bénard is the investigation of the wake
behind bluff bodies, and his name should rightly be associated with that of
Theodore von Karman (1912), as the first of Bénard’s papers was published
four years before that date. The double array of alternating rolls—the vortex
street—is an example of a coherent structure that survives even at high Reynolds
numbers, although this aspect has been studied far less than that of the mix-
ing layers. Similar treatments of phase transitions also apply to the case of the
Bénard–von Karman structures. Finally, there are many present developments
of the Bénard–von Karman problem with major practical and industrial appli-
cations in particular those dealing with engineering tools (as the vortex-induced
vibrations problem in fluid structure interaction), with passive and active con-
trol, and with the connection with turbulent flows.

Thus, Bénard has investigated two major problems that have played a lead-
ing role in the development of hydrodynamic stability theory, and which are
formulated today in terms of closed systems (thermal convection) and open-flow
systems (wakes). It is now acknowledged that there exist major differences in the
transition to chaos and turbulence between such closed and open-flow systems.
The impact of Bénard’s work through these two major discoveries, as well as the
beauty of the experiments Bénard developed to characterize them, well deserve
the recognition provided by the present publication.

In a famous series of lectures given at the University of Baltimore in 1884
and recently reedited by MIT Press (1987), Lord Kelvin wrote “it seems to me
that the test of do we not understand or do we understand a particular point of
physics? is can we make a mechanical model of it?”. The work and heritage of
Henri Bénard have dealt largely with this view of the unity of physics, which was
well recognized by scientists at the end of the nineteenth century but was some-
times forgotten later, in particular after the end of the Second World War. The
commemoration of the centenary of Bénard’s thesis inevitably raises, within and
beyond his work, the question of the relationship between physics and mechan-
ics. Bénard’s scientific productivity is characterized by a remarkable richness in
the observations and images that used all the available physical techniques of his
time. He tracked the structures and 3-D profiles of hexagonal cells as well as the
arrays of vortices behind obstacles of various shapes, with experimental talent
and imagination, especially thanks to the use of the then-developing cinematog-
raphy. This general theme of visualization and instrumentation has remained a
subject of general interest in fluid mechanics. Not only has the laser revitalized
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and refined the acquisition and treatment of images and data (e.g., laser tomog-
raphy; PIV), but also the use of elastic- and inelastic-scattering spectroscopy has
allowed access to diffusive or convective variables in flow fields. All the various
techniques of physics experimentation (its tool box) have been, or will be, used
at some stage for the study of flows, although the ignorance of fluid mechanics
by many physicists has sometimes delayed this use. In France, a few decades ago,
the situation was such that a student graduating in physics could ignore the con-
cept of “viscosity” or “boundary layer”. In fact, the heavy mathematization of
mechanics teaching as well as, paradoxically, its strong engineering orientation,
did not favor a simple introduction of continuum mechanics in the basic train-
ing of physicists in France. The origin of this situation can be traced back to
the nineteenth century when France produced a series of great mathematicians
who were also engineers, such as Navier who produced the first formulation of
the Navier-Stokes equations in 1823. Navier was also an engineer who gradu-
ated from the “Ecole des Ponts et Chaussées”. However, throughout his life, he
strongly resented the fact that having calculated very precisely and tightly a
suspension bridge in Paris, improving through his theoretical calculations the
empirical production of British engineers, his bridge had to be destroyed before
being actually used, for lack of a large enough safety factor. The grand écart is
not an easy exercise!

Bénard’s work also raises the question of the relationship between theory
and experiment. It is interesting to note that Bénard’s work was not broadly
known prior to this 1970’s explosion, although a limited community had contin-
ued to work on the subject, without major new discoveries. One may note that,
in France, no major theoretical effort accompanied Bénard’s work, which was
seen more as a curiosity (a referee comment already noted on his thesis report).
This is different from what was taking place in the United Kingdom where the
work of Lord Rayleigh and G.I. Taylor provided explanations for the observed
phenomena, and led to experiments well coupled with a theoretical approach.
The absence of a similar approach in France probably explains the limited im-
pact of Bénard’s work. The genius of Taylor, in particular, who explored so many
problems in physics even outside fluid mechanics was well popularized in France
practically at the same time as the developments of the 1970 critical phenom-
ena studies, in particular thanks to the development of soft-matter physics. This
spirit of Taylor was well present in an Advanced Studies Institute that took place
in Les Houches in 1973, where some of the best experts in Mechanics of the time
were the lecturers (P. Germain, S. Orszag, E. Siggia, K. Moffatt) whereas some
already very senior physicists (such as P.G. de Gennes) were students! De Gennes
subsequent lecture series at the Collège de France and in Seville, in the follow-
ing year, made use of this school’s training while giving it his own style, and
produced a snowball effect within the physics community. Recent international
meetings in mechanics or physics clearly show that the gap between mechanics
and physics is getting smaller for the young generation of researchers, in partic-
ular in Bénard’s own country. One would hope that the present reorganization
of university curricula in Europe will include recommendations on their context
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such that, in particular, a suitable offer of joint advanced training in physics and
mechanics be presented to students in engineering and research programs.

In addition to his scientific work, Bénard was also interested in the promotion
of the physical sciences around the country. H. Bénard was president of the
French Physical Society in 1928, succeeding Paul Langevin (1926) and Louis
Lumière (1927) and before Jean Perrin (1929). P. Langevin and J. Perrin were
better known for their contribution in Physics and L. Lumière for the invention of
cinematography. Also note that the great mathematical physicist Henri Poincaré,
who considered himself primarily a physicist, had been the president in 1902. In
the context of the diffusion of science, it should be noted that at the creation, in
1937, of the Palais de la Découverte, the first museum devoted to the presentation
of active (hands-on) science, H. Bénard indeed presented convection experiments
in the meteorology section in connection with wind-generated cloud patterns.

The present book, containing the work of some of the major contributors
in the field,is an excellent example of the richness that can result from joint
studies of similar problems using the full set of experimental, theoretical, and
numerical tools developed in the physical sciences. In the spirit of the conference,
the book covers all the aspects involved in Bénard’s work, with a main focus on
thermal convection, on the Bénard–Marangoni instability, and on the Bénard–
von Kármán instability. The book is made up of three parts.

Part I contains the scientific biography of H. Bénard. This historical review
has been written by one of us (J.E.W.) after having collected many documents
from the archives of different institutions with which H. Bénard had been as-
sociated. We found it instructive to include this extended paper on Bénard’s
scientific biography which shows an atypical evolution of a scientist of the twen-
tieth century, and the place occupied by some branches of classical physics in
that period dominated by the development of modern physics (quantum and
subatomic physics, condensed-matter physics, and general relativity).

Part II contains articles by P. Manneville, Y. Pomeau, G. Ahlers and F.
Busse. The first two, theoreticians of the Saclay group, have produced some ma-
jor contributions in the study of the amplitude equations (to which the names
of Newell, Whitehead, Segel, Swift, and Hohenberg should also be added for
hydrodynamic instabilities) and the chaotic regime of intermittence. The third
physicist provided some of the most careful experiments by making use of tools
imported from other fields of condensed-matter physics and the study of criti-
cal phenomena. The contribution of F. Busse gives an application of Bénard’s
problem to geophysics (earth mantle, cloud structures, sunspots). It makes use
of different important developments on nonlinear problems by the author in
hydrodynamics and their extension to geophysical problems.

Part III addresses the problem of Bénard–Marangoni cellular structures. As
the original Bénard experiment was performed with a free upper surface and in-
volved the effect of the change of surface tension with temperature (Marangoni
effect), M. Velarde, who has produced much work on the theoretical develop-
ment of Bénard–Marangoni instability, presents a new approach of predictions
of overstability and onset of transverse and longitudinal waves in a Bénard layer
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heated from above. The contribution of K. Eckert and A. Thess contains re-
cent experimental results on secondary instability modes in Bénard convection.
A recent experiment on hydrothermal waves related to Marangoni convection,
described by N. Garnier, A. Chiffaudel, and F. Daviaud, is an example of the
extension of the Saclay group activity.

Although experiments on wakes had occupied a large part of Bénard’s life-
time, our conference devoted only a smaller part on vortex shedding in wakes,
which is, however, a subject of major current interest in fluid mechanics. The con-
tribution by M. Provansal thoroughly presents the properties of wakes behind
bodies of different shapes (cylinders, spheres) and the application of Landau
theory to this experiment which was developed extensively in Marseilles. The
problem of spatial inhomogeneity in convection and wakes (amplitude envelope)
is addressed in the chapter of S. Goujon-Durand and J.E. Wesfreid.

The last part is concerned with two topics related to Bénard’s problem.
J. Gollub gives here a description of patterns and quasistructures in Faraday
surface waves. The last chapter presents the Couette–Taylor system which can
be considered as the hydrodynamic twin of the Bénard problem. Indeed, the
history arising from the experiments of Maurice Couette and Arnulph Mallock
could be paralleled with that dealing with the Bénard instability in relation to
the works of Rayleigh and Taylor. Taylor–Couette instability has also led to
a very significant progress in the understanding of hydrodynamic stability and
turbulence in closed systems.

Readers will find a list of references at the end of each contribution. Here we
have just suggested a choice of a few books that thoroughly address the subjects of
the Rayleigh–Bénard, Bénard–Marangoni, and Bénard–von Karman instabilities.
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José Eduardo Wesfreid
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2.1 Biographical Notes

Henri Claude Bénard was born at Lieurey, a small French village in the region
of Eure, in Normandy, on October 25th, 1874. He was the only son of Felix A.
Bénard (1851-1884) and Hélène M. Mangeant (1837-1901) [1-3]. His father was
a small investor, who died very young. H. Bénard finished elementary school in
the district of Lisieux and in Caen, nearby his birthplace, and moved to Paris to
continue his studies at the Lycée Louis le Grand, one of the best high schools in
France. In 1894, he succeeded in the highly competitive entrance examinations
to the prestigious Ecole Normale Supérieure in Paris1. Indeed, this year, 17
students were selected from 307 candidates in the sciences section and 25 from
205 candidates in the humanities section [4].

H. Bénard studied with some subsequently very well-known companions (the
Normaliens): he was a classmate of the physicist Paul Langevin and of the
mathematician Henri Lebesgue2. In humanities studies, the 1894’s promotion
included Charles Péguy (poet), Albert Mathiez (historian), and Léon Bloch (who
started in Literature but worked as a physicist, in collaboration with his brother
Eugène). They participated in the activities of the centenary of the ENS and
knew the first manifestations of the intelligentsia in favor of the Captain Dreyfus
affair initiated by Paul Dupuy and Lucien Herr, the librarian of the ENS.

In 1897, Henri Bénard obtained the degree of agrégé de physique and began
to work, in the chair of experimental physics at the Collège de France3, as the
1 The Ecole Normale Supérieure (also known as “ENS” or Ulm, from the name of

the street where it is located) is a French Grande Ecole founded during the French
Revolution by a decree of the Convention. Originally meant to train high school
teachers, it became an elite institution, training researchers, university professors,
and civil servants. It focuses on training through research, with an emphasis on the
freedom of curriculum [5].

2 Paul Dupuy, the main supervisor of the ENS wrote [6]: ”in 1894, I see Paul Langevin
getting to the head of a promotion of the Ecole Normale, rich in promises, along
with Henri Béghin, Henri Bénard, Noël Bernard, Henri Lebesgue and Paul Montel”.
Indeed, this promotion gave four members to the Institute (the Academy of Sciences
of Paris).

3 The Collège de France is an institution dedicated to knowledge, created in 1529 by
the King François I. It has always been independent of any university and free from
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assistant of Eleuthère Mascart and Marcel Brillouin4. During the first year with
Mascart, a specialist in optics, he studied the angle through which polarized light
is rotated by sugar in solution. But it was during his second year at the Collège
de France that he began to be interested in fluid dynamics. Actually, Marcel
Brillouin wanted to repeat Poiseuille’s experiments on water-flow-rate laws. He
carried out these experiments with mercury, in order to study the influence
of viscosity. Great experimental skill was required, especially when measuring
the diameter and the cross section of capillary tubes used to study the flux of
mercury. Marcel Brillouin wrote, some years later, lectures titled Lessons about
the Viscosity of Liquids and Gases in which he particularly referred to Bénard’s
experiments on viscosity in mercury [9]. Under Brillouin’s direction, Bénard did
the French translation of the second volume of Boltzmann’s Lectures on Gas
Theory, published in 1905. At the same time, Bénard was preparing his Ph.D.
thesis. Observing by chance the motion of graphite particles in a molten paraffin
bath, he became interested in the organization displayed by particles on the
bottom layer of the liquid. Using optical methods, he then studied the movement
of the particles in a layer of fluid heated from below, paying special attention to
the deformation of the free surface due to convection, using the knowledge and
experience he had acquired with Mascart and Brillouin. On March 15, 1901, he
defended his thesis before a committee composed of Gabriel Lippmann (1845-
1921, Nobel Prize in Physics in 1908), Edmond Bouty (1846-1922) and Emile
Duclaux (1840-1904). The second subject of the thesis5 dealt with the rotation of
plane-polarized light by sugar in solutions. The jury did not place enough value
on the consequences and meaning of this Ph.D. thesis. In his report on Bénard’s
thesis, previous to the defense, E. Bouty said that the subject was innovative,
and the thesis, a very good one, much beyond the average of the other theses,
its main interest lying in the application of a wide range of optical methods, but
at the same time he pointed out that Bénard did not make any effort to provide
general theoretical explanations to the laws found through experiments. But the

supervision. The lectures are open to the public without registration. The Collège
de France does not deliver any certificate or degree. Nowadays, its range of studies
includes humanistic and scientific fields. Its faculty staff includes many distinguished
scholars.

4 E. Mascart (1837-1908), Professor of Experimental Physics at the Collège de France
from 1872 to 1908, was one of the first to study the influence of the earth on optic
phenomena. He introduced Maxwell’s electromagnetism in France and became very
well known for his work on electricity [7]. M. Brillouin (1854-1948) was Professor
of Mathematical Physics at the Collège de France from 1900 to 1931. He wrote
over 200 experimental and theoretical papers on topics including the kinetic theory
of gases, viscosity, thermodynamics, electricity, and physics of condensed matter.
Precursor of wave mechanics, and an open-minded scientist, he extended his work
from the history of science to the physics of the earth and of the atom. Both, Mascart
and Brillouin, were respectively, grand-father and father of another professor of the
Collège de France, the physicist Leon Brillouin (1889-1969) [8].

5 A second subject, mostly bibliographical, was at that time, required by the jury at
the final stage of doctoral studies.
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Fig. 2.1. The 1894 sciences promotion at the Ecole Normale Supérieure, in 1896.
Seated, from left to right: Renaud, Massoulier, Béghin, Langevin, Bénard and Mon-
tel. Standing, from left to right: Lebesgue, Bernard, Foulon, Angelloz-Pessey, Patte,
Cambefort, Meynier and Dubreuil (Centre de Ressources Historiques de l’ESPCI ).

The members of the 1894 sciences promotion were: Joseph Angelloz-Pessey (Professor
of Mathematics at the Lycée Buffon, ? -1932), Henri Béghin (professor at the Sor-
bonne, member of the Academy of Sciences; 1876-1969), Henri Bénard, Noël Bernard
(professor at the University of Poitiers; 1874-1911), Georges Cambefort (? -1964),
Louis Dubreuil (chemist, professor at the Collège Chaptal; 1873 -1922), Georges
Foulon (? -1958), Paul Langevin (he was the eldest of the promotion, as he previously
graduated from the Ecole Supérieure de Physique et Chimie Industrielles de Paris
(ESPCI), whose director he became in 1925, professor at the Collège de France, and
member of the Academy of Sciences; 1872-1946), Henri Lebesgue (Professor of the
Collège de France, member of the Academy of Sciences; 1875-1941), Pierre Massoulier
(General Inspector of high school teaching in Physics and Chemistry; 1874-1961), Paul
Montel (mathematician, member of the Academy of Sciences; 1876-1975), François
Meynier, Lucien Patte (professor of physics at the Lycée Charlemagne) and Jules
Renaud (? -1951).
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Fig. 2.2. H. Bénard’s Ph.D. thesis, published by Gauthier-Villars.
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report, established after the defense, mentioned that “. . . though Bénard‘s main
thesis was very peculiar, it did not bring significant elements to our knowledge.
The jury considered that the thesis should not be considered as the best of what
Bénard could produce”6.

Once H. Bénard finished his thesis, he settled down in Paris, with a fellowship
from the Foundation Thiers, and got married the same year, on December 23, to
Clémentine Malhèvre (1876-1943), a few months after his mother’s death. They
had no children. The following year he was appointed assistant professor at the
Faculty of Sciences in Lyon, where he was in charge of introductory courses. At
that moment, a new experimental activity began: the observation of the fluid
motion when a prismatic body is moved across a container filled with liquid.
Bénard was astonished by the deformations he observed on the free surface of
the liquid, which he associated with the presence of vortices in the fluid. This
observation led him to build an experimental facility in the university building’s
basement, in order to observe the deformation of the free surface of the liquid
when vortex shedding occurred.

Bénard’s scientific research is marked by a specific element: the use of cin-
ematography as an instrument of observation and measurement. In fact, in the
experiment performed in the Faculty of Science in Lyon, he used the movie cam-
era as a means of observation. He published the description of these alternating
vortices in two articles in the Comptes-Rendus Hebdomadaires des Séances de
l’Académie des Sciences de Paris, in 1908 [B12, B13]. In 1910, he was appointed
professor of physics at the Faculty of Science of the University of Bordeaux, where
Pierre Duhem7 was the head of the physics laboratory [10], and carried on the
analysis of the movies he had made in Lyon, particularly on the wavelength and
the frequency of emission of vortices as a function of different parameters such
as the velocity and the dimensions of a moving body. Simultaneously, he used a
movie camera to make many movies of convection for scientific popularization.
In 1914, the First World War broke out and Bénard, as a former student of the
Ecole Normale Supérieure, was mobilized with the rank of officer and appointed
to a military scientific commission. One of the subjects he dealt with was the
improvement of the refrigeration wagons transporting meat to the front. He ac-
tually conceived new methods for the measurements of the thermal diffusivity
of the wagon’s walls. This work was published after the war, in 1919 [B21, B23].
Later on, he was sent to the Superior Commission of Inventions of the Ministry
of War, to work on different aspects of optics. He had been interested in the
6 “Bien que la thèse principale de M. Bénard d’ailleurs fort curieuse, ne paraisse pas

susceptible par ses développements ultérieurs, d’ajouter grand chose de nouveau à
nos connaissances, le Jury a été unanime à estimer qu’il ne fallait pas prendre cette
thèse comme la mesure définitive de ce que M. Bénard peut donner.”

7 Pierre Duhem (1861-1916) was professor of theoretical physics at the University of
Bordeaux from 1894 until his death. He achieved works of leading importance in
the philosophy of science, historiography of science, and science itself. His interest
in science was mainly directed to areas of mathematical physics, and especially
thermodynamics.
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wakes produced by submarines, and had studied the traces of ships in the sea
and the advantages of using polarized light. Following his propositions, the Na-
tional Navy Office built a periscope with polarized prisms in spath of Island,
which was also provided to the Allies. Bénard also built panoramic glasses with
cylindrical lenses, trying to enlarge the image in one direction, an invention that
revealed itself useful for naval applications. Between 1917 and 1919, he partici-
pated in the Directorate of Inventions of the Ministry of War of which he later
became head of the physics section under the direction of Jules-Louis Breton8.

In 1922, Bénard moved from Bordeaux to Paris, where he was appointed as
assistant professor at the Faculty of Science of Sorbonne University. Four years
later, in 1926, he was named full professor and taught general physics to first-
year students. In 1928, he became president of the French Physical Society for
one year.

As far as experiments are concerned, he carried out new studies on alternat-
ing vortices and faced difficult moments in his career due to the lack of financial
support. But finally in 1929, he took part in the new Institute of Fluid Me-
chanics, whose creation was the result of an important cooperation between the
Sorbonne University of Paris and the Ministry of Aeronautics9, and a year later,
he was appointed professor of experimental fluid mechanics. In 1932, 19 persons
worked in this institute, including 12 fellowships supported by the Air Ministry.
They represented 11 percent of the researchers on the staff of the Faculty of
Sciences in Paris [15]. Bénard was in charge of the experimental fluid mechan-
ics laboratory, with enough room for a very important experiment on vortex
shedding: on the first floor was a container with a bluff body that produced the
emission of vortices, a phenomenon observed from two floors higher above by
means of a movie camera.

In his laboratory at the Institute of Fluid Mechanics, Bénard was the advisor
for several theses on different aspects of natural and forced convection and also
8 Jean-Louis Breton (1872-1940), deputy of the Republican Socialist Party, was head

of the War Office of Invention. The Office of Research and Inventions, established
in 1922, is one of the ancestors of the present CNRS.

9 The Ministry of Aeronautics, under the technical coordination of Albert Caquot,
created the Fluid Mechanics Institute of Paris at the University of Paris, and gave
strong financial support to scientific research in fluid mechanics, setting up the same
year, four chairs, with eight professors [11,12]. The Institute in Paris was then placed
under the direction of Henry Villat (1879-1972), who worked in mathematics and
in theoretical fluid dynamics. A member of the Academy, Villat became its presi-
dent in 1948 [13]. He maintained a close friendship with Bénard, as they were both
from Normandy. Other laboratories were opened in Marseille, under the direction of
Joseph Pérès (1890-1962), who moved in 1932 to the Institute in Paris [14], in Lille
under the direction of Marie-Joseph Kampé de Fériet (1893-1982) while in Toulouse,
activity developed with Charles Camichel (1871-1966). Five associated chairs were
also created in Caen, Lyon, Nantes, Poitiers, and Strasbourg.
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Fig. 2.3. Henri Bénard, Professor in Paris.

on vortex dynamics. Among his students and collaborators we can mention10 the
following. Dusan Avsec, from the Balkans, arrived in the laboratory in 1934 and
worked in thermal convection of forced flows. He also studied electroconvection
jointly with Michel Luntz. The latter worked on flow singularities. C. Woronetz
finished his Ph.D. in thermal convection in 1934. H. Journaud did experiments on
convection rolls until 1932, and his works was followed in 1936 by Victor Volko-
visky who finished his Ph.D. thesis on longitudinal rolls in 1939. Paul Schwarz
presented his Ph.D. thesis in 1937 on optical methods applied to the vortex shed-
ding experiments. V. Romanovsky studied convection in muds and G. Sartory,
convection induced by radiation. François-Joseph Bourrières, a former Bénard
student from Bordeaux and professor at the Lycée Stanislas, did research in the
Institute of Fluid Mechanics on fluid-structure interaction. Malterre worked on
solitons and L. Denes, from Hungary, on thermal conductivity. André Fortier
(?-1996) experimented on the viscosity of air and gases. In this group, Robert
Fabre (1908-2002) and E. Drussy were technical assistants. At the same time,
in the Institute, Lucien Malavard (1910-1990) and Lucien Romani (1909-1990),
assistant and technician respectively, were working on electrical analogies of phe-
nomena of fluid mechanics in the laboratory of Joseph Pérès, assistant professor.
Another group in the Institute, directed by Adrien Foch (1887-1980), assistant
professor, who designed a supersonic wind tunnel, included M. Dupuy, Lucien
10 According to the information we have presently, we could not verify the full list of

Bénard’s collaborators and not even if the ones mentioned as such in this list, were
really collaborators.
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Santon who did experiments on interferometry and wind tunnels, and Charles
Chartier, who accomplished a Ph.D. thesis on flow visualisation in 1937.

Henri Bénard died on March 29, 1939, at Neuilly-sur-Seine, near Paris. A.
Foch, assistant professor, succeeded Bénard as professor in experimental fluid
mechanics11 at the Institute of Fluid Mechanics and Yves Rocard (1903-1992)
moved from Clermont-Ferrand to Paris, in order to assume the assistantship.
After the war, Y. Rocard went to the Ecole Normale Supérieure as head of the
physics department, and worked in various fields of research such as semicon-
ductors, seismology, and radio astronomy. He was one of the main leaders of

Fig. 2.4. View of the laboratory at 4, rue de la Porte d’Issy, in Paris. In the picture,
from left to right, on the upper floor, D. P. Riabouchinsky, H. Bénard and H. Villat
and on the lower floor, L. Santon, C. Woronetz, and H. Journaud. At right, scheme of
the vortex shedding installation, observed in the back of the picture.

Dimitri P. Riabouchinsky (1882-1962) an emigrant from Russia worked in the Insti-
tute. He had previously founded a private Aeronautical Institute at Koutchino (Russia)
where in 1912 he built an important wind tunnel.

the new generation of French physicists of the post-war period and reorganized
research in various fields of physics. At the same time, the Institute of Fluid
Mechanics, with H. Villat, A. Foch, and J. Pérès, originated many activities in
11 Following Bénard’s lectures at the Sorbonne, Léonard Rosenthal and three other

students contacted A. Foch in 1939, in order to do research on the same topics. Foch
told them that Bénard’s subjects were exhausted and could no longer be subjects
for theses! (L.R., personal communication)
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mechanics, especially in aeronautical and military research. In September 1946,
H. Villat presided over the Sixth International Congress of Applied Mechanics
in Paris, and proposed, along with Johannes M. Burgers from Delft, the creation
of a permanent organization for the science of mechanics, under the form of an
International Union of Theoretical and Applied Mechanics (IUTAM).

2.2 Convection Cells

In 1898, when Henri Bénard was working at the Collège de France, and trying
to prepare a coherer with solid dielectrics, he observed, by chance, the presence
of semiregular polygonal figures in a melted paraffin bath in which graphite dust
had been incorporated. He inquired if this apparently common phenomenon had
already been observed scientifically and decided to prepare laboratory experi-
ments on thermal convection, in order to describe and measure, in a horizontal
liquid layer heated from below, the convection currents that prevailed, as near as
possible to their state of greatest stability. Much of his effort had been devoted to
avoiding any inhomogeneity in temperature that could initiate an uncontrolled
process in the movement of the liquid, a preoccupation he expressed by saying
“It is clear that, if even the littlest fluctuation or local excess of temperature, is
sufficient to create a centre of ascension; how is it possible to obtain a stable
regime?” Due to the construction of an apparatus with a metal container and
steam circulation, offering very homogeneous thermal conditions and a constant
temperature in the lower layer of the liquid, he observed different patterns of
convective movement. The main result of his observations was the discovery of
a pattern of almost regular hexagonal cells, called cellular vortices, that is to
say, a stable system with particular geometric characteristics to which he had
already devoted study during his Ph.D. work. He used the expression tourbil-
lons cellulaires, which were later known as Bénard cells (cellules de Bénard.)
He insisted on the polygonal characteristics of this cellular, semi-regular vortex,
due to the existence of polygons of four, five, six, and seven sides, but with a
predominance of hexagons. He pointed out the difficulty of producing regular
hexagons on a long surface without many defects. These cellular vortices could
be generated in a steady state, under a moderate heat flux. Bénard also observed
vortices in fairly volatile liquids, such as alcohol or hydrocarbon, underlying the
fact that evaporation chilled the surface, causing a vertical heat flux. In order to
produce a uniform thickness and to avoid evaporation problems, he worked with
higher temperatures, between 50˚C and 100˚C, using substances which melted
at 50˚C such as wax or spermaceti, a whale oil, which melts at 46˚C but has
no significant volatility below 100˚C. This allowed him to create liquid films of
one millimeter thickness controlled to with one micron and to obtain a spread
of the thin layers, which remained constant for many hours.

Bénard studied the circulation of the liquid within the convective cell. He
accurately determined the pattern of the trajectory with closed streamlines,
studying the warm liquid ascending through the axis of the hexagonal cell and
descending along the periphery bordered by vertical planes. He observed the



18 José Eduardo Wesfreid

CC

C
CC

C

C CD D

EI

U Y

OH

L L

P P
R R

O B

Q Q Q

T´ T

I

Fig. 2.5. Apparatus used by Bénard, during his Ph.D. work.

formation of a convective structure with different polygonal structures tending
to a hexagonal one as a limit state, with extremely slow deformations, up to the
point at which it reached a very regular shape that allowed him to measure the
distance between the vertical axes of two contiguous hexagonal cells. Bénard,
impressed by the periodicity discovered, studied the geometrical characteristics
of these convective structures using different methods, and more precisely, the
relation between the wavelength and the thickness of the liquid layer [18].

Bénard described two other types of cellular vortices that appeared in his
experiments. The first one was the tourbillons en bandes or convective rolls, to
update the expression, in a stable permanent regime whenever the heat flux is
small. Later, he used Rayleigh’s expression striped-vortices to define the phe-
nomenon, as well as cellular vortex of the second kind. He tended to use the
concept of tourbillons en bande in order to point out the fact that the struc-
ture exhibited the same spacing between strips, that is, a constant wavelength.
He described a third regime called tourbillons en chaine or vortex worm. This
regime, unstable and turbulent, is formed in liquids that evaporate in open air
and when the heat flux is important. Cinematography was particularly useful
in studying this régime. His study was mostly performed with experiments on
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free surfaces. Afterward, his colleague and collaborator Jean Camille Dauzère12

became interested in experiments with an upper covered rigid surface.
One of the characteristics of Bénard’s thesis work, developed in a relatively

short period of time, is the enormous number of experimental methods used for
the observation of the cell structures. Visualizations were achieved projecting
fine licopodium grains on a free surface and drawing their trajectories on the
free surface. He could also observe the border of the hexagonal cells by means
of the reflecting particles of graphite powder or aluminium. As the convective

Fig. 2.6. Picture from one of the Bénard’s movies, when the operator (Bénard him-
self?) introduces the particle tracer in the container.

motion in the liquid layer changed the pressure, the free surface was no longer
flat. Therefore Bénard used the reflection produced on the deformed free surface
as a concave mirror in the middle of the cells to visualize them. The best im-
ages of the polygonal structure were taken with optical transmission where the
light is transmitted across the liquid layer and reflected on a steel mirror on the
bottom of the recipient. He had recourse to Schlieren or Foucault’s method of
beam deflection on a disturbed surface to distinguish hills from valleys and to
identify the rising and descending streams. This method allowed him to obtain
very accurate free surface measurements. We should also note Bénard’s ability
12 C. Dauzère (1869-1944) was a professor of physics at the Lycée of Agen, in the

south of France, and later in Toulouse. His first experiments were performed in
Agen and published in 1907. During 1913-1914 he spent one year doing experiments
on solidification in the industrial chemistry laboratory of Professor Charles Fabre
in Toulouse and defended a Ph.D. thesis in Paris in 1919. He assumed the direction
of the Pic du Midi Astronomical Observatory in 1920 until 1937, where he became
interested in thunderstorms and hail [17].
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to measure thickness differences of 1 micrometer for liquid layers of 1-millimeter
thickness of spermaceti at an average temperature of 100˚C. With the interfer-
ence fringes obtained with a first beam reflected on the upper free surface and a
second one crossing the layer, reflected on the steel mirror in the bottom of the
layer, Bénard succeeded to plot the isotherms, separated by 0.1˚C, within the
convective cell.

In 1916, Lord Rayleigh (J.W. Strutt, 1842-1919) published in Philosophical
Magazine a paper about the stability of a fluid layer subjected to a vertical
gradient of temperature, referring to “the interesting results obtained by Bénard”.
In this article, Lord Rayleigh, considering a fluid with symmetrical free - free
horizontal boundary conditions, got results on the critical temperature difference
necessary to produce a convective motion. From the analysis of stability, he
determined the wavelength of convective cells on the instability threshold, equal
to two times the thickness. The fact that this article had been published during

Fig. 2.7. Convection cells.
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the war prevented Bénard from reading it before Lord Rayleigh’s death, a fact
he regretted because he was no longer able to discuss it with him. Several years
later, in 1928 and 1934, Bénard tried to compare the predicted onset values,
especially those from the new calculations from Jeffreys’ work on asymmetrical
rigid - free limit conditions. These conditions corresponded to the experiments he
had done with a free surface. For an hexagonal structure, Bénard concluded that
the theoretical value of the critical wavelength, equal to two times the thickness,
was very close to the value he had obtained in his experiments. He discovered
strong discrepancies between predicted and measured onset values, which were
understood several years later. Myron J. Block realized experiments in 1956
[19] (similar to the ones of Bénard), and suggesting that the buoyancy could
not be, in this experiment, the driving mechanism of the convection, considered
that the Bénard cells are produced by variations in the surface tension with
temperature. In 1958, Pearson [20] introduced the concept of surface tension
gradient instability (Marangoni effect). Six years later, Nield [21] proved that the
combined effect of buoyancy and Marangoni’s effect caused the instability. The
physical mechanism, actually responsible for the convective motion considered
by Rayleigh’s theoretical analysis, is the buoyancy, that is to say, the Archimedes
force13. Bénard cited only two references as previous work on cellular convection.

Fig. 2.8. Cells visualization by reflection and transmission: Temperature = 61,36˚C,
thickness = 0,640 mm.

The first one came from E.H. Weber, who, in 1855, had described polygonal
structures in drop dissolutions. Later, M.O. Lehmann gave a thermal origin of
this phenomenon. He also referred to A. Guébhard, who, in 1897, observed vortex
13 In fact, C. Dauzère [22] described that when he was boiling wax mixed with water, he

observed a very different stability in respect to Bénard’s observations. He provided
an explicit explanation of this situation by the fact that the composition of the liquid
modifies the surface tension and, consequently, the stability.
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motion in an abandoned bath of film developer. Bénard some time later found a
work by James Thomson (Lord Kelvin’s brother; 1822-1892) published in 1882,
entitled On Changing Tessellated Structures in Certain Liquids. This study dealt
with the cooling of saponaceous water and the apparition of polygonal prisms.

The observation of symmetry and periodicity of the cellular vortices induced
Bénard, like many other physicists of his time, to compare it with other struc-
tures observed in nature or even in life. But he knew that the thermoconvective
explanation was not valid for the origin of most of the hexagonal structures
observed in nature. In the thirties, he discussed the difference between living
tissue and hexagonal structures, the last ones being formed by one layer of cells,
and the former by several layers of superposed cells and wrongly mentioned
the analogy between these latter cells and the annular cells (or Taylor-Couette
rolls) observed by Geoffrey I. Taylor (1886-1975) in 1923, rolls he considered as
superposed cells.

After Paul Idrac’s work in 1920 [16], meteorologists became interested in
the existence of convective rolls of hundreds of meters in diameter in the at-
mosphere14. The only model for understanding cloud structure was the one trans-
verse to the wind and formed by shear layer instabilities (“Helmholtz waves” as
they were called at that time). The presence of thermoconvective longitudinal
rolls parallel to the wind, was a subject that Bénard promoted. He directed
experiments related to this explanation, performed by his students Journaud,
Avsec and Volkovisky at the Institute of Fluid Mechanics, experiments in which
the fluid layer heated from below is put in motion by an inclined plane or a
moving band. Dauzère observed through experiments on solidified wax that it
solidifies first at the top of the border of the hexagonal convective cell because of
the presence of cold currents inside the cell. From this observation and by anal-
ogy, Bénard provided a theory on the relief of craters on the moon, explained as
some sort of slow cooling and solidification of surface layers of the moon miner-
als instead of the impact of meteorites. He also published a paper [B16] where
he speculated about the analogy between cellular vortex patterns and fracture
patterns in soil15. Bénard was aware of Jansen’s observations in 1896 at the
Paris Observatory about sun granulation and subscribed to a convective theory
to explain these patterns. Also several scientists tried to study the polygonal
shape of the granules, immediately related to turbulent convection in terms of
Bénard’s hexagons. Today, the role of these convective mechanisms is accepted,
in the structure of solar granulation (see Chapter 6 of this book).

14 Schereschewsky said that Bénard probably discussed these ideas with Idrac (1885-
1935) when they worked together during the war, at the Commission of the
Inventions [3].

15 In a personal reprint of this paper, Bénard mentioning hand-script, “Ne pas diffuser”
(not to be distributed), suggesting that he was aware of the risk of this speculation.
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2.3 Vortex Shedding in Bluff Bodies

In 1898, Bénard began to be interested in experimental hydrodynamics, as he
was collaborating with Marcel Brillouin at the Collège de France, on the viscosity
of liquids. When he opened his laboratory at the Faculty of Science in Lyon, he
began in 1904, an experiment on an obstacle, an elongated lamina, moving in the
bottom of a rectangular container of 1.35 m x 0.35 m filled with a layer of 0.12
m. of water. He observed the deformation of the free surface, associated with
the presence of a double trail of alternating vortices in the wake and carried out
very meticulous experiments in order to obtain accurate measures of geometrical
and kinematical properties. In order to study the deformation on the free liquid
surface produced by pressure variation due to the existence of vortices, he used
the same Schlieren optical method that had been used in thermal convection.
Therefore, he was able to follow the position of the center of rotation of each
vortex. Facing some technical difficulties in photographing these capillary ripples
in the interface, he decided to use a movie camera, equipped with a motor,
developed by Louis Lumière (1864-1948). He could then film the vortex shedding
for a period of several seconds and in November 1908, he published the papers
[B12,B13] in which he described two results: the existence of an alternating row
of vortices and the fact that the distance between them depended only on the
transverse size of the bluff body16. By that time, he had already analyzed more
than 30,000 images from which he obtained the law of frequency as a function
of velocity, as well as the geometrical characteristics of the vortex emission.

He kept on studying the results of the films from Lyon until 1925. An analy-
sis of Bénard’s laws can be found in Provansal’s contribution, chapter 10 of this
book. After his 1908 papers, Bénard continued to process the pictures of his
experiments performed during 1908 and 1909, and in 1913 he published two new
papers [B17,B18]: the improvement due to the use of the movie camera made
possible the observation of the center of vortices and the precise determination
of their velocity and of the distance between them. The meticulosity of the data
analysis of the 133 films17 on vortex shedding experiments that he produced,
among which, after several years of research, he retained only 71, must be high-
lighted. From there he obtained spatio-temporal diagrams, one of which is shown
in Provansal’s contribution.

The analysis of this complete data set ended with four papers published in
the Comptes-Rendus de l’Académie des Sciences de Paris in 1926 [B28-B31].
In these papers, by analyzing the period fluctuations, estimated to be between
16 He later recognized that it was a speedy study and that the first one contained

a drawing mistake (the sense of the vortex’s rotation was inverted), mistake he
corrected in 1913 [B17].

17 During the Second World War, in June 1940, the German army held the buildings of
the Institute of Fluid Mechanics in Paris. L. Malavard and L. Romani, from Pérès’
laboratory, succeeded, in extremis, in taking away a rheological calculator to the Free
Zone[12]. One day, the German soldiers threw in the dustbin Bénard’s experimental
movies on vortex shedding in order to use the cupboard in which they had been
stored (R. Fabre, personal communication).
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five and ten percent, Bénard performed ingenious statistical analyses of a great
number of measures taken in order to obtain the law of the frequency as a
function of the flow velocity. As he himself recalled, the main purpose of his
thesis work on thermal convection was to measure with precision the periodicity
of cellular structures. He showed the same interest when he began to study the
alternating vortices behind a bluff body: his fundamental aim was to measure
the frequency of emission of vortex shedding. This explains not only the use
of the camera as a method of measurement, but also the great effort spent on
data analysis for several years in order to obtain the laws of the variation of
the frequency with the physical parameters of the experiment. The subject had
become a wide topic of investigation in hydrodynamics. In Toulouse (France),
C.H. Camichel, M. Teissie-Solier, L. Escande, and T. Dupin were specifically
working on vortices emitted by circular cylinders. In 1928, Bénard published two
other papers [B37, B38] in which he compared his observations with those of the
Toulouse group, particularly on the similar properties of the law of frequency
of the vortex shedding as a function of the Reynolds’ number, that is to say,
the nondimensional value of the fluid velocity. He expressed the frequency with
the Strouhal number S18 , which was the adequate frequency parameter he
had already proposed several years earlier. Bénard did not observe a minimal
Reynolds number for vortex shedding and concluded wrongly, as we now know,
that there is no critical parameter for vortex shedding. In addition, he questioned
the existence of similarity when comparing the results obtained with cylinders
and laminas.

Lord Rayleigh stated in a paper dated 1915 [23], relating to Aeolian sound19

and the emission of alternating vortices produced by the wind on cables, that
Bénard’s work had pointed out that the Strouhal’s number is actually a func-
tion of the Reynolds number. Although Bénard was not the first scientist to
observe vortices behind a bluff body, he may be considered as the first one to
have obtained experimentally the laws characterizing their periodicity. He did
not know if previous work had been done on the same phenomenon, but some
years later, he discovered H.R.A. Mallock’s20 paper published in 1907 [24], to
which he referred as the first work achieved on alternating vortices in fluids.
He also mentioned [B41] many times the similar emission of vortices observed
by Etienne Jules Marey,21 who was certainly the pioneer of visualization tech-
18 S = fd/U , where f is the frequency, U the fluid velocity, and d the typical size of

the object.
19 Since ancient times, it has been observed that wind causes vortex-induced vibrations

of the wires of an Aeolian harp. In 1878, Strouhal found that the Aeolian tunes
generated by a wire in the wind were proportional to the wind velocity divided by
the thickness of the wire.

20 Indeed, in this paper Henry Reginald Arnulph Mallock (a consulting engineer work-
ing in various branches of physics who invented and improved many instruments
of high scientific value), drew different possibilities of vortex emission including the
alternate raw.

21 Étienne-Jules Marey (1830-1904) French physician, inventor, and photographer, spe-
cialized in human and animal physiology. He held the chair of Natural History of
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Fig. 2.9. A typical Marey’s image of coherent structures (a) observed in his wind
tunnel (b), published in 1901.

niques in modern fluid mechanics [25]. In 1911 and 1912 Theodor von Kármán
(1881-1963) published two papers about his work on the stability of alternating
vortices in a street formation achieved at the University of Gottingen. Ludwig
Prandtl(1875-1953), a professor of applied mechanics, had founded a school of
aerodynamics and hydrodynamics there that had acquired a world reputation,
which was acquired as well by the activity in theoretical physics with Max Born,
with whom von Kármán collaborated in 1912 on lattice vibrations and their
connection with specific heat. He demonstrated that the distance between vor-
tices in the street, divided by the breadth of the street was equal to 1/0,238, in
order to ensure stability.22 This theoretical work, with H. Rubach’s experiments
[26], had important consequences and even today, the phenomenon known as
alternating vortex shedding produced by a bluff body is often referred as the
von Kármán’s street.

Of course, Henri Bénard reacted to von Karman’s supposed paternity on the
alternating vortex emission by moving bodies in fluid even if they referred to one

Organized Bodies at the Collège de France from 1868 until his death. He is mainly
known for his photographic experiments on the study of motion. In 1890, Marey
continued to study aerodynamics by building a wind tunnel and taking pictures of
coherent structures!

22 T. von Kármán relates in his book [27] how he got interested in the subject, after
L. Prandtl’s suggestion.
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of his 1908 papers [B12]. This is the reason why, for several years, Bénard argued
indirectly, trying to demonstrate that von Kármán’s and Rubach’s theoretical
results were idealistic and far from real conditions. An example can be found
in the paper he published in 1926 entitled, “About the Inaccuracy for Fluids in
Real Conditions of the Kármán’s Theoretical Laws Regarding Alternated Vortex
Stability”[B29]. Actually, Bénard experimentally showed that the dimensionless
frequencies measured with the Strouhal number S, vary with the velocity of the
object, whereas von Kármán’s result could imply that Strouhal number is con-
stant. As part of this polemic, Bénard insisted on the role played by the camera,
an instrument that could reduce the fluctuations on period measurements and
allow for better statistics. He quoted in a sarcastic way the 1912 von Kármán
and Rubach paper: “The authors said that it could be possible to use the cine-
matography, [an obvious reference to his own work], but such a method has no
important advantage in respect with the method they used”, and adding that the
authors, giving results on only two experiments, counted vortices with a clock
in hand, observing departure and arrival, “method already used for horse racing,
but which lacks precision for a 3 centimetres race course” [B49]. In 1926, Bénard
and von Kármán met at the Second International Congress of Applied Mechanics
in Zurich. Bénard said23 that von Karman kindly consented to him that the ac-
curacy of the few experiments made by Rubach and himself in 1912 could not be
compared to Bénard’s ones. Moreover, Kármán declared that he never claimed
paternity of the alternated vortex, with an exception, for the theory on its stabil-
ity. As Bénard told the story, von Kármán declared pettishly that the expression
Kármánsche Wirbelstrasse (Kármán Vortex Street) could be easily replaced by
the rue des tourbillons de Bénard (Bénard Vortex Street). Kármán’s version, in
his book The Wind and Beyond [27], placed the same discussion in 1930 (the
Third International Congress of Applied Mechanics held in Stockholm?) in the
course of which he declared he would accept to call it Kármán Street in Berlin
and London, and rue de Bénard in Paris.24 Even if both said that the problem
23 “M. Th. von Kármán a bien voulu m’accorder très aimablement que les quelques

expériences faites par Rubach et lui en 1912 ne pouvaient au point de précision être
comparées aux miens. D’autre part, il a déclaré n’avoir jamais réclamé la priorité
en ce qui concerne les tourbillons alternés, sauf pour sa théorie de leur stabilité. Il
a ajouté avec humeur que l’expression die Kármánsche Wirbelstrasse pourrait sans
incovenient être remplacée par la rue de tourbillons de Bénard. Mais, comme moi-
même, M. Kármán trouve plus sérieux que la question de priorité, mon désaccord
expérimental avec la loi de similitude dynamique, intangible aux yeux des hydrody-
namiciens” [B49].

24 I never asked to have my vortex theory named after me, but somehow the name
remained. There is always some danger in such matters, especially as one grows in
fame or importance. In 1930, almost two decades after my paper was published, a
French professor named Henri Bénard popped up at an international congress and
protested the name Kármán Vortex Street. He pointed out that he had observed the
phenomenon earlier and that he had taken pictures of alternating vortices before I
did. He was right, and as I did not wish to fight over names I said: “All right, I
do not object if in London this is called Kármán Vortex Street. In Berlin let us
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of priority was not important, Bénard’s insistence in spreading, even at the Paris
University Council, the discussion which had taken place in Zurich in 1926, has
to be underlined. His colleagues took care of his claim, as did H. Villat who,
in a report to the Science Academy, criticized the fact that in a recent book
Joukowski had dedicated a full chapter to von Karman, without any mention of
Bénard’s experiments. This attitude of Bénard about the conflict of paternity
of the vortex street has to be placed in the general context of the First World
War. We must keep in mind that in the immediate postwar period, scholars of
the victorious powers developed an attitude of refusal towards German scholars
and several academies of science decided to boycott the Germans from 1919 up
to 1926 [29] . For example, French scientists refused to attend the conference
on hydrodynamics and aerodynamics held in September 1922 in Innsbruck and
organized by Levy and von Kármán. It is worthwhile to quote Marcel Brillouin
(who had a great influence on Bénard’s formation) who refused the invitation
on August 8,1922, with a provocative letter: “Since German scientists and pro-
fessors have not understood that they would not be bound to pay if they had not
committed systematic devastations, and because they have done it, they have to
pay; my esteem for them is still insufficient to shake hands with, no matter their
scientific value”. Therefore, the strong insistence of Bénard to fight against von
Kármán’s priority (this is just a hypothesis) could have been fed by the strong
chauvinistic climate of the time.25 Even in 1924, the French were absent from
the First International Congress of Applied Mechanics at Delft [30-32], orga-
nized by Burgers and Biezeno, under the impetus of von Kármán.26 In addition,
these years were characterized by two opposite styles of making science, espe-
cially in mathematics: the “modern” or formalist one represented by Gottingen
University and Hilbert and the “conservative” or intuitive one by Poincaré and
French science. Chauvinism of the time tried to transform this difference into a
controversy.27

call it Karmansche Wirbelstrasse, and in Paris, Boulevard d’Henri Bénard”. We all
laughed heartily and Bénard and I became good friends”[27]. About the same event,
von Karman said: . . . Bénard did a great deal of work on the problem before I did,
but he chiefly observed the vortices in very viscous fluids or in colloidal solutions
and considered them more from the point of view of experimental physics than from
aerodynamics [28].

25 At that time, Paul Langevin was one of the few scientists in France who adopted
a definite position against this boycott and tried to develop scientific cooperation
with German scientists, in the first place, with A. Einstein [6].

26 In 1913, von Kármán became director of the Aachen Aerodynamics Institute and
in 1930, he moved to Caltech, in the USA. In 1937, he visited the Institute of
Fluid Mechanics in Paris and after the Second World War played an important role
in the French–American relationship. As an American delegate and Chairman of
the AGARD (a scientific advisor group of NATO) he frequently visited Paris and
developed a friendship with J. Pérès, L. Malavard, and other French scientists.

27 But, irony of history, after 1933, these qualifications changed. In France, the Bour-
baki group became the symbol of modern mathematics and, in Germany, formalism
was attacked as a “Jewish science”.



28 Jose Eduardo vVesfreid

Fig. 2.10. H. Benard (1) during the Third International Congress of Applied Mechan
ics l at Cambridge in 1934. Also attending this meeting were G.!. Taylor (2)l L. Prandtl
(3), and J. Burgers (4) (IUTAM).

2.4 Benard and Cinematography

Of course, Benard was not the first one to use the cinematograph in science and
we recall pioneers such as Etienne-Jules Marey, Georges Demen.\', Lucien Bull,
Louis and Auguste Lumiere, and Georges Melies [331. But Benard was one of the
first to use it, a Lumi€re-Carpentier camera, as a scientific instrument, in 1907
in Lyon for his first experiments on vortex shedding. Before this, in 1900, he
used a chronophotographic apparatus, supplied by L. Gaumont to take pictures
each five seconds of the turbulent vortex. Benard not only used cinematogra
phy as a technique of observation and measurement, but also as a means for
scientific popularization, which perhaps is the least known aspect of his work.
VVe have found in the archives of the Gaumont company, in the Joinville studios
founded by Leon Gaumont in 1895 near Paris, a series of seven films28 produced
by Benard and Dauzere between June and October 1913, entitled "The Cellular
Vortices", as part of another series called ~~Cinematography Applied to the Study
of Physical Science". On April 18, 1914, Dauzere and Benard presented the films

28 Les tourbillons cellulaires: PaTticules solides et methodes optiques (H. Benard,
8'28"); Les tourbillons ceUulaires du spermaceti: Leur regularisation progressive en
registree par les methodes optiques (H. Benard, 3'46"); Les chaines de tourhiltons
cellulaires de l'ether (H. Benard, 11'45"); Les tottrbillons cellulaires de l'ether: Re
lief de la surface libre (H. Benard, 5'49"); Tourhillons cellulaires isolis: Observation
par la methode optique en lumiere rejractee (G Dauzere, 4'40"); Les deux especes
de tourbiltons celtulaires (C. Dauzere, 4'2"); Solidification cellulaire (C. Dauzere,
4'48").
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in the amphitheatre of the Conservatoire des Arts et Métiers de Paris, to the
French Physical Society. This series of films has been listed in the Gaumont cat-
alogue since July 1914. We do not know if the films were actually shown in the
schools, because the ones we have found were too long and lacked mounting and
editing work, which leads us to think they were not considered, from the pro-
duction point of view, as finished. The most important thing to emphasize is the
interesting booklet [B19] added to the distribution of the films, probably meant
for teachers, with a very synthetic description of convective motion phenomena
intended for a wide public. In these films, the observation methods are explained
and comments are developed on the analogies between convective motion and
the biological phenomena, calling attention on the extraordinary beauty of de-
scriptive physics. It is important to observe that the movies were produced by
the Gaumont series on education. In fact, offering movies on craftwork, hygiene,
zoology, and physics, Léon Gaumont considered himself a progressive educator,
who thought that cinematography was an important educational support. In ad-
dition, Bénard participated in scientific popularization activities such as exhibi-
tions. For instance, he presented a special convection container shaped to project
a shadowgraph image on at exhibitions on physics [B42]. One of his assistants,
M.R. Fabre told us that he built a wood model of a hexagonal cell representing
convective motion that he showed in different activities and exhibitions.

Among the most spectacular contributions of Bénard and his team was the
one at the Universal Exposition of Paris in 1937, called “Exposition Interna-
tionale des Arts et Techniques dans la vie moderne”, which took place in the
building later called the Palais de la Découverte, the first interactive science
museum in the world. In the meteorology pavilion, Bénard’s team presented ex-
periments on convective cell production, where an air current was heating from
below (what could be called the ) and showing the longitudinal convective rolls,
analogue to the clouds, in order to explain the morphology of different clouds:
cirrocumulus, altocumulus and stratocumulus. It is worth mentioning that the
presentation said, “This organized pre-turbulent state, extremely important as
a transition from the laminar regime to the turbulent chaotic regime, has been
experimentally characterized at the stand on Meteorology, heating from below
the air contained in a glass channel where the bottom is made from a mobile
metallic tape and the other walls from glass”. Visualizing the air trajectory with
smoke, very beautiful cellular vortices were obtained with the static tape and,
with the tape in movement, longitudinal rolls were produced. In the same stand,
experiments were presented by Bénard’s students, M. Luntz and D. Avsec who
displayed electroconvective cellular vortices generated by a vertical gradient of
electric potential. The exposition catalogue explained that the photos chosen by
Bénard showed the most characteristic analogy between clouds in and , as well
as the granulations of the solar photosphere with . Actually, during the 1930s,
Bénard worked with the Commission of Atmospheric Turbulence, presided over
by Philippe Wherlé, director of the National Meteorological Office, and a team
of meteorologists and physicists. All together, they performed experiments on
air with André Japy as pilot, showing the analogy between convective rolls and
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parallel cirrus bands, a topic which became the subject of one of Bénard’s last
works [B47, B48].

2.5 Physics and Dynamical Systems

Bénard was a council member of the French Physical Society and president
from 1928 to 1929, following Louis Lumière and preceding Jean Perrin, Nobel
Prize in Physics in 1926. In his investiture address, Perrin recognized Bénard’s
role, “He has given to hydrodynamics the methods of the Physics, doing so, he
discovered and studied phenomena not foreseen by theoreticians”. Bénard himself
confessed in 1929, in his inaugural address in the Institute of Fluid Mechanics of
Paris [B41], that after his earlier work, he became interested in hydrodynamics
and adding that “he was like Monsieur Jourdain, who was writing prose without
knowing it.′′ In the same speech, he said that he had studied the classical treatises
of Lamb and Basset, comparing them with Lord Kelvin’s and Lord Rayleigh’s,
which he considered to have been written by physicists who had maintained
their link with reality. From his point of view, Lamb and Basset’s treatises were
concerned with pretty much theoretical and mathematical physics and did not
deal enough with experiments: there were no pictures, so one was led to the wrong
conclusion that physics was nothing but equations. He therefore had the idea
of making a photo album on fluid motion with images taken from photographs
and films in order to illustrate theoretical works. (This was actually done many
years later in Van Dyke’s famous Album of Fluid Motion).

Because Bénard’s works inspired, as shown in these proceedings, most of the
modern experimental works on dynamical systems and , one should quote a very
interesting work performed by Bénard’s group, in this direction. François-Joseph
Bourrières (1880-1970), who was a former undergraduate student of Bénard and
Duhem in Bordeaux,29 collaborated in Bénard’s laboratory in the Institute of
Fluid Mechanics, on the subject of fluid–structure interaction. Bénard explained
that he trained him in “the experimental and rational analysis of the phenom-
ena of and oscillation existing in real fluid mechanics” a topic on which he had
already drawn attention after 1900. Indeed, one of Bourrières’ subjects was the
study of the movements of the free end of a flexible rubber tube, inside which
a fluid was circulating. Bourrières described spontaneous oscillations as well as
29 The role of fluctuations in dynamical systems was Duhem’s concern. In 1898, W.S.

Franklin wrote in the Physical Review [34] a review of Duhem’s book, titled Traité
élémentaire de mécanique chimique published a year before in Paris. Impressed by
Duhem’s analysis, he said ,“ A state of unstable equilibrium is produced by the heating
of the lower strata of the atmosphere. An infinitesimal action as the waving of a fan,
may precipitate a sweep,. . . . in other words, an infinitesimal cause may produce
a finite effect. Long range detailed weather prediction is therefore impossible. . . the
accuracy of this prediction is subject to the condition that the flight of
a grasshopper in Montana may turn a storm aside from Philadelphia to
New York.” This reference is cited by R.C. Hilborn in a very recent study of the
evolution of the notion of sensitive dependence on initial conditions and chaos [35].
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more complex ones. In order to study the phenomenon through experiments, he
attached a little lamp at the extremity of the tube and took pictures, with an
open shutter, of their trajectory. He then could display a very clear picture of a
limit cycle and the attraction to this cycle limit during transitional phase and
perturbations. Bourrières published this experiment in 1939, with a foreword
by Bénard [36], in which the latter exposed the nonperiodic form the move-
ment could take, from whatever initial conditions, and how these conditions led
the system to a limit cycle, referring to the concept of self-oscillations due to
Alexandr A. Andronov (1901-1952) [37]. As it is known, one of great achieve-
ments of Andronov, who belonged to the group on nonlinear dynamics formed
in Moscow around Leonid I. Mandelstam (1879-1944), was to demonstrate, in
the late 1920s, the connection between Poincaré’s limit cycles and a whole range
of practical oscillatory processes.

Fig. 2.11. Physical limit cycle and transients, in Bourrières’ experiment [36].

2.6 Conclusion

This scientific biography provided us with the opportunity to bring to light the
remarkable homogeneity of Henri Bénard’s works in experimental hydrodynam-
ics, especially on the study and recording of the movement of liquids through
optical means. On two occasions he discovered, in this field, new phenomena
or phenomena hardly suspected before him. He found the geometric or kine-
matics laws of convective cells in 1899 and of the alternating vortex shedding
behind bluff bodies in motion, in 1906 to 1907. These studies, realized at the
very beginning of his career, were actually his most important contributions.

This scientific biography, allows us to guess how, in France after the Second
World War, experimental fluid dynamics, topics belonging to physics, withdrew
from it but, in the late seventies, came back, exactly around the topics Bénard
had previously explored.

Far from being a review of Bénard’s experiments, this biography nevertheless
permits us to understand the context his work was achieved in as well as the
limits its developments had suffered. Some science historians are nowadays won-
dering at the gap between founding works such as Bénard’s and modern studies
on physical hydrodynamics in dissipative structures. We hope this chapter will
contributes to the reduction of this very gap.
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(ESPCI), J.F. Stoffel (Liège), and also by the Palais de la Découverte and the
Centre de Ressources Historiques of ESPCI.

A. General References

1. A. Foch, Annuaire de la Fondation Thiers, 23–36 (1939/1940).
2. C. Charles and E. Telkes, Les professeurs de la Faculté des sciences de Paris:
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Acad. Sci., 12 décembre 1977.
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l’éther s’évaporant (2 films).
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offert à Marcel Brillouin Ed. Gauthier-Villars, Paris, 124–137 (1935).

46. H. Bénard, Revue des travaux expérimentaux récents sur la formation des
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F-91128 Palaiseau cedex, France
paul.manneville@ladhyx.polytechnique.fr

A brief review of Rayleigh–Bénard studies performed during the twentieth cen-
tury is presented, with an emphasis on the transition to turbulence and the
appropriate theoretical framework, relying on the strength of confinement ef-
fects and the distance to threshold, either dynamical systems for temporal chaos
in the strongly confined case, or models of space–time chaos when confinement
effects are weak.

3.1 Introduction

The idea of convection is quite old (Hadley, Lomonossov, Rumford, etc.) but the
first quantitative experiments were performed by Henri Bénard around year 1900
[2]. Figure 3.1 is a low-resolution reproduction of one of his original photographs.
In fact Bénard studied the stability of a thin fluid layer open to air and submit-
ted to a vertical temperature gradient. He accurately determined properties such
as the space periodicity of the hexagonal pattern, its variation, and the profile
of the interface. Later, in 1916, Lord Rayleigh [4] proposed his theory of a feed-
back coupling resting on buoyancy: a fluid particle hotter than its environment
encounters ever colder fluid as it rises, which leads to the instability, as sketched
in Figure 3.2 (left). He developed a complete linear stability analysis assum-
ing stress-free conditions for the velocity and good heat-conducting plates. This
mechanism was accepted as the explanation of Bénard’s results until the role of
the thermal Marangoni effect was pointed out, in particular by Pearson [3]: a
temperature fluctuation at the surface induces tangential stresses that can be
amplified by hot fluid coming from the inside, as suggested in Figure 3.2 (right).
Surface tension usually increases as the temperature decreases while surface ele-
ments with the larger want to shrink, so that the mechanism indeed works when
the temperature gradient is directed towards the interior of the layer. Some of
the confusion may be explained by the fact that hexagons are usually expected
when the top to bottom symmetry is broken, that is, when boundary conditions
at the top plate are different from those at the bottom plate, which was the
case of Bénard’s experiments with a free upper surface. In that case, the two
mechanisms are in competition but a bump is implied at the place where the
fluid rises when the buoyancy is involved, whereas the effect of surface tension
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Fig. 3.1. One of Bénard’s celebrated original photographs of the top view of convection
patterns in a thin layer of spermaceti heated from below.

Fig. 3.2. Mechanisms for Bénard convection: (left) Motion of fluid is self-sustained as
soon as gravitational energy release can overcomes dissipation losses (Rayleigh’s idea);
(right) The surface-tension mechanism (Marangoni effect) works even in zero-gravity
environment provided that hot fluid comes from inside.

is to create a dip. Buoyancy effect in the bulk will dominates in thick layers
and surface tension in thin ones so that there exists a compensation thickness
at which both deformations balance each other [4]. This being recognized, in the
following I restrict myself to the consideration of convection between solid plates
according to Rayleigh’s mechanism, hereafter called RB convection, as opposed
to BM, where “R” stands for Rayleigh, “B” for Bénard, and “M” for Marangoni.

I briefly review the results of linear stability analysis in Section 3.2, and then
some early nonlinear findings about secondary instabilities and the transition to
turbulence in Section 3.3. After these preliminaries I mainly turn to modeling
issues raised by the theoretical understanding of the results beyond the threshold.
As to weakly turbulent states developing moderately far from the threshold, I
insist on the role of confinement effects in controlling the nature of scenarios
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either towards chaos as envisioned in dynamical systems theory (Section 3.4)
or towards space–time chaos (Sections 3.5 to 3.7). Before closing the Chapter, I
also say few words in Section 3.8 about the account of strongly turbulent sates
when the applied temperature gradient becomes arbitrarily large.

The present review is of course sketchy and biased by my personal inter-
ests. For further information and complementary views, the reader is invited to
consult the works mentioned in the bibliography. An early self-contained presen-
tation can be found in the first chapters of Chandrasekhar’s book [1]. A more
recent general reference is by Koschmieder [16]. Consult also the reviews by
Busse [7] about nonlinear convection, and by Newell, Passot, and Lega [8] and
Cross and Hohenberg [9] for the theoretical approach of space–time chaos with
emphasis on the envelope formalism and general aspects of space–time chaos, re-
spectively. The most recent developments regarding the transition to turbulence
in convection can be found in the review by Bodenschatz, Pesch, and Ahlers [24],
and the article by Siggia [11] is devoted to fully developed turbulent convection.

3.2 RB Convection at Threshold

Rayleigh’s theory for the instability threshold 1 was developed within the so-
called Boussinesq approximation, that is, the Navier–Stokes equations for an
incompressible flow completed by the energy equation generalizing the Fourier
diffusion equation to a fluid medium. The simplifying assumption is that the
temperature only enters the state equation to account for thermal expansion,
and all other fluid parameters are kept constant. Within this approximation the
governing equations read:

∇h · vh + ∂zvz = 0 (3.1)
P−1 [(∂t + v · ∇)vh + ∇hp] = ∇2vh (3.2)
P−1 [(∂t + v · ∇) vz + ∂zp] =

(∇2vz + θ
)

(3.3)

(∂t + v · ∇) θ = ∇2θ +Rvz (3.4)

These equations are written here in dimensionless form for the perturbation
around the basic state. Coordinate z is along the vertical and the subscript h
indicates the horizontal direction. The temperature fluctuation θ is defined as
the departure from the linear temperature profile given by the Fourier law in the
fluid at rest: T0(z) = Tb − zΔT/h (h is the height of the cell and ΔT = Tb − Tt

is the temperature difference between the bottom and top plates). The natural
control parameter is the Rayleigh number defined as:

R =
αΔTgh3

κν
,

where α is the expansion coefficient and g the acceleration of gravity. The thermal
diffusivity κ and the kinematic viscosity ν parameterize the stabilizing dissipative
1 The material in this section is discussed at length in Chandrasekhar’s book [1].
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processes. The last parameter that shows up in these dimensionless equations is
the Prandtl number P = ν/κ that controls the nature, either mostly thermal
or rather hydrodynamic, of the physical processes at stake, as they depend on
the relaxation rates of temperature and vorticity fluctuations. Equation (3.1)
accounts for the continuity of the flow and (3.4) for heat conduction in the
fluid. Differential buoyancy shows up in (3.3) through the term in θ and, at
this stage the horizontal component of the Navier–Stokes equation (3.2) only
plays a passive role (closing of flow lines). Boundary conditions must be added
to these equations. The cleanest situation is for good conducting rigid (i.e.,
nonslip) plates, which yields:

θ(z = zp) = 0 and v(z = zp) = 0, (3.5)

where zp denotes the plate’s position. As already mentioned, Rayleigh assumed
stress-free boundary conditions at top and bottom, hence:

θ(z = zp) = 0 and vz (z = zp) = 0 , ∇hvh(z = zp) = 0 . (3.6)

He solved the problem for Fourier normal modes in the form ∝ exp(ikh · xh)
where all the functional dependencies in the vertical coordinate are absorbed
in the proportionality sign. A straightforward calculation from the Boussinesq
equations (3.1 to 3.4) and boundary condition (3.6) yields the marginal stability
condition:

Rm(k) =

(
k2 + π2

)3

k2
,

where k is the length of the horizontal wavevector kh. This curve is displayed
in Figure 3.3, together with that corresponding to the more realistic no-slip
velocity boundary conditions (3.5) obtained by Pellew and Southwell (1940).
The minimum of each curve defines the corresponding threshold above which
convection sets in, Rc = 27π4/4 � 657.5 and Rc � 1708 for stress-free and no-
slip conditions, respectively. The expected diameter of the convection cells is half
the critical wavelength λc = 2π/kc. In the no-slip case kc � 3.12, which makes
the predicted diameter very close to the height of the cell (π/3.12 � 1.007).
In the stress-free case one obtains kc = π/

√
2 which gives a somewhat larger

diameter (
√

2 � 1.4). This prediction could have partly been responsible for the
confusion alluded to above because it was close to Bénard’s observations (but
for a Marangoni-based mechanism) although, strictly speaking, one should have
compared it with the prediction for mixed boundary conditions (bottom: no-slip,
top: free) that yields Rc � 1101 and kc � 2.68. (Of course, other cases can also
be studied, especially by relaxing the assumption about the thermal conductivity
of the plates.)

3.3 RB Convection Beyond Threshold

As the Rayleigh number exceeds the threshold value, part of the heat is trans-
ported by convection which decreases the potential for instability, and thermal
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Fig. 3.3. Marginal stability curves for stress-free (A) and no-slip (B) velocity boundary
conditions and isothermal plates (infinitely large conductivity).

diffusion and viscous friction increase due to the horizontal gradients implied
by the modulation. This explains that the amplitude of the motions saturates
beyond threshold. For rolls, the bifurcation turns out to be supercritical, that
is, behaves continuously in the vicinity of the threshold and the system builds
up a well-defined steady pattern. Early studies have been devoted to the prob-
lem of which kind of periodic pattern was selected by nonlinearities, rolls made
of a single pair of wavevectors ±kx̂ where x̂ is a unit vector in the horizontal
plane, squares made of two pairs of wavevectors at right angles, and hexagons
with three pairs at 120◦ (Figure 3.4). The theory was again first developed
for stress-free boundary conditions (Malkus and Veronis, 1958 [12]) and later in
the no-slip case (Schlüter, Lortz, and Busse, 1965 [38]), both studies concluding
for roll patterns. Subsequent developments concerning the stability of the rolls
against various secondary mechanisms mainly belong to Busse and Clever [7].
The result is a surface in parameter space called the Busse balloon separating
stable roll patterns from unstable ones. In addition to the Rayleigh number,
stability depends on the wavelength of the cells and on the Prandtl number.
Some secondary modes are universal; that is, they do not depend on the fact
that the pattern is generated by the RB mechanism but on the symmetries of
the rolls (invariance through translation → Eckhaus instability, and rotation →
zigzag instability) or on the fact that the intensity of the convection is weak
close to the marginal curve (cross-roll instability). Other secondary modes are
much more specific to convection, with structures that strongly depend on the
value of P , for example the bimodal instability with secondary rolls localized
in thermal boundary layers at right angles with the primary pattern when P is
large. Figure 3.5 displays a picture of the Busse balloon.

Secondary instabilities are just a step towards more complex behavior as R
is increased. Different scenarios have indeed been observed, depending on the
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Fig. 3.4. Hexagons versus rolls. Hexagons result from the superposition of three pairs
of modes at 120◦. Those appearing in the thin convecting layer are produced by the
Marangoni effect and have fluid sinking in the center of the cells. In thicker layers, the
Rayleigh mechanism produces hexagons with fluid sinking at the cell edges. Both bifur-
cate subcritically. Rolls are obtained from a pair of modes with opposite wavevectors
that may point to any direction in the horizontal plane owing to orientational degen-
eracy in laterally unbounded layers. This degeneracy is then broken by the developing
mode. Rolls bifurcate supercritically.
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Fig. 3.5. Busse balloon in perspective in the (k, P, R)-space (after Busse [7]).
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value of P . Beyond the primary instability leading to the formation of time-
independent two-dimensional2 rolls, time dependence was observed to introduce
itself first and at relatively low R when P is small, but only after secondary
instabilities adding space dependence along the rolls (three-dimensional time
independent states) at large P at higher R. A compilation of early experimental
results, adapted from Krishnamurti [28], is displayed in Figure 3.6.

Fig. 3.6. Transition to turbulence in RB convection: experimental results collected
before 1973 by Krishnamurti [28].

In all cases the regime called “turbulent convection” was reached after a finite
number of steps. At first sight this fact seemed to support the revision by Ruelle
and Takens [15] of the classical Landau theory of transition to turbulence [16]:
three or four bifurcations before unpredictable behavior instead of n-periodicity
resulting from an infinite cascade of Hopf bifurcations. However, the situation
was not as satisfactory as one would have liked because the threshold values of
the observed transitions were not always well defined and a residual, more or
less random, component of the time dependence was most often recorded before
it was decided to consider the system as turbulent. This was due to the fact that
experiments were performed in wide containers (i.e., with many wavelengths),
whereas the transitions were most sensitive to defects in the roll patterns. For
example, a state observed at higher R could anticipate transition by nucleating
at dislocations. Checking the Ruelle–Takens dynamical systems approach more
carefully thus required a better control of the patterns. This has been achieved
by playing with confinement effects: only a small number of configurations are
available when the number of cells is limited, which makes the Ruelle–Takens
approach more relevant a priori, as exemplified in the following section. The case
of weakly confined systems is reviewed next.
2 That is, local functions of only one horizontal coordinate, say x, in addition to z.
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3.4 Weak Turbulence in Confined Systems and Chaos

When the lateral size of the container is of the order of its height, hence the
aspect ratio defined as Γ = �/h (where � is some typical horizontal scale) is of
order one, the structures of the convection modes strongly depend on its geom-
etry. The flow field can be analyzed in terms of a small number of elementary
motions characterizing the recirculating cells and to which individual ampli-
tudes can be attached. This directly leads to an interpretation of the observed
dynamics in terms of couplings between these variables. Formally, the success
of this approach rests on the appropriateness of the strategy of reduction to the
center manifold that expresses Haken’s slaving principle [17] in mathematical
terms. Basically, this “principle” says that, among the infinitely many degrees
of freedom accounting for a continuous medium, most can be eliminated owing
to dissipation that smooths out all high-frequency small-scale motions to leave
but few slowly evolving fundamental modes. This fundamental property opens
the way to an abstract analysis using the whole vocabulary and techniques of
dynamical systems theory. In practice, the reduction is, however, analytically
out of reach, so that the understanding gained might sound like a conjecture
about how things really happen. The beauty and the strength of that conjecture
rest on the applicability of the concepts brought forward by the mathematical
theory, especially their universal contents.

In fact, RB convection has concentrated a large part of the efforts in the
study of nontrivial features of nonlinear dynamics as applied to physical prob-
lems, namely, chaos, transition scenarios, strange attractors, and the empirical
reconstruction of experimental nonlinear dynamics. The main routes to chaos
predicted by theory have been observed: the subharmonic cascade [18], the two-
periodic route and its frequency lockings [19], several types of intermittency,
and even less generic situations such as quasi-periodic regimes with four or five
frequencies. It turns out that, although one is unable to predict which scenario
will take place in a given situation, when the system is engaged in a given well-
identified route, it strictly follows that route in its most intricate mathematical
properties until unavoidable experimental limitations enter to blur the details.
Here is the example of type III intermittency [20], the intermittency that devel-
ops beyond a subcritical subharmonic bifurcation. This scenario can be modeled
by means of an iteration [21]:

Xn+1 = −(1 + r)Xn −X3
n,

where X represents the amplitude of the departure from a limit cycle (cor-
responding to the fixed point of the iteration at X = 0) and r is a control
parameter (negative below threshold, positive above). This local map has to be
completed by a global assumption about the nature of the manifold on which this
reduced dynamics takes place and regarding the return of escaping iterates in the
vicinity of the fixed point. Type III intermittency was observed by Dubois et al.
[20] in convection using silicone oil (large P ). A typical time series is displayed
in Figure 3.7 (top). Displayed on the bottom line of that figure, the return maps
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of the maxima In of some observable plotted every two determinations, that is,
In+2 as a function of In and the statistics of the durations of closely periodic
sequences before escape—the so-called laminar intermissions—both agree quan-
titatively with corresponding theoretical predictions after appropriate empirical
rescaling.

Fig. 3.7. Type III intermittency in RB convection after Dubois et al. [20]. Top: time
series of a velocity component measured at some point in the cell. Bottom-left: effective
iteration obtained by displaying maxima of that variable every two steps. Bottom-right:
cumulative distribution function of the duration of laminar intermissions.

In the same spirit, Takens’ method of delays [22] has been used extensively
to reconstruct attractors [19] and determine quantities such as fractal dimen-
sions and Lyapunov exponents. An early example is shown in Figure 3.8, again
taken from the work of the Saclay group [23]. There, the correlation dimension 3

[24] has been determined from the so-called correlation integral (left) computed
with reconstructions at ever-larger embedding dimensions de and the saturation
observed (right) for d2 = 2.8 clearly indicates the low dimensionality of the
corresponding chaotic attractor.

These approaches in terms of dynamical systems with few degrees of freedom
culminated with the study of the universality and the multifractal properties of
chaos emerging from a two-periodic regime observed by Jensen et al. [25] in a

3 This quantity is often used to characterize the fractal component of strange at-
tractors. It is equivalent to the Renyi dimension d2. The Renyi dimensions dq are
defined by dq = limε→0 log(

∑
i pq

i )/ log(ε), where ε measure the size of balls covering
the fractal set and pi the occupation probability of ball i belonging to the covering of
the set. From their usual definitions, it is easily shown that the fractal dimension (or
capacity), the information dimension, and the correlation dimension are obtained as
dq with q = 0, 1, and 2, respectively.
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Fig. 3.8. Determination of fractal dimensions by Malraison et al. from Saclay RB
convection data. Left: Grassberger–Procaccia correlation integral C(r) as a function
of the distance r in embedding spaces with dimensions de ranging from 3 to 8. Right:
correlation dimension (slope of C(r) in log–log coordinates) for the RB experiment
saturating at ν = 2.8 (for comparison: increase observed for a synthetic noise signal).
After [23].

convection experiment with a conducting fluid (mercury) under periodic forcing
by a variable magnetic field. The left part of Figure 3.9 displays a section of the
two-periodic attractor at the margin of chaos and its right part the correspond-
ing “f-of-alpha spectrum” characterizing the distribution of singularities of the
distribution of points along the section.

Fig. 3.9. Multifractal properties of the attractor at the threshold of the two-periodic
route to chaos after Jensen et al. [25]. Left: section of the attractor. Right: f-of-alpha
spectrum.

It should again be stressed that the understanding of the transition to tem-
poral chaos has not been obtained ab initio from the primitive problem, for
example, by truncating a Galerkin expansion as done to obtain the celebrated
Lorenz model [26] (or its higher-dimensional generalizations), which is analyti-
cally tractable only at the price of nonphysical boundary conditions (stress-free
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at top and bottom, horizontally periodic). Rather, an inductive type of modeling
has been developed, resting on mathematical properties with universal contents
in the dynamical systems sense, that is, normal forms for bifurcations and their
consequences. This phenomenological approach involving generic dynamical sys-
tems, especially iterations, led to impressive results on a local scale in phase
space but, as a matter of fact, beyond threshold the global phase-space structure
of a confined RB convection system with realistic boundary conditions becomes
extremely complicated. This holds true in particular for large-P fluids at high
R, in which thin fluctuating internal thermal boundary layers were observed
as illustrated in Figure 3.10, whereas temporal chaos concepts should remain
relevant to the dynamics.

Fig. 3.10. Complicated patterns in silicone oil at high R. Adapted from [28], courtesy
of F. Daviaud (Saclay).

3.5 Patterns in Extended Systems at Large P

Furthermore, coexistence of separate attraction basins for different scenarios ap-
peared to be the rule. For example, Type I intermittency and the two-periodic
route were observed in the same experimental container with the same fluid (sili-
cone oil) but starting with initial conditions built according to different protocols
[27].

In the case of confined systems, the validity of universality concepts is backed
by the reduction to low-dimensional dynamical systems through adiabatic elimi-
nation of slaved variables. Appropriate adaptations are clearly needed for weakly
confined systems. On general grounds, lateral confinement effects are expected
to scale as 1/�2. This turns out to be an advantage because, for sufficiently wide
systems (Γ � 1), interesting phenomena may happen in a narrow neighborhood
of the threshold, thus accessible to perturbation techniques. The new meaning
of universality for structures with many cells can indeed be approached in terms
of modulations brought to uniformly periodic roll systems.

The standard multiscale formalism [8] is the most natural framework for the
study of weakly disordered patterns. Assuming that, close to the threshold, a
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modulated solution locally condensed on a pair of wavevectors k± = ±kcx̂ can
be searched for in the form

V (x, y, z, t) = A(x, y, t)V (z) exp(ikcx) + c.c.

A being a slowly varying envelope (∂t ∼ r, ∂x ∼ r1/2, ∂y ∼ r1/4, r = (R −
Rc)/Rc � 1). One is led to the Newell–Whitehead–Segel (NWS) equation [29,
30]:

τ0∂tA =
(
r − g|A|2)A+ ξ20

[
∂x +

1
2ikc

∂yy

]2

A,

where τ0 is the natural relaxation time of fluctuation and ξ0, linked to the curva-
ture of the marginal stability curve at threshold, is the natural coherence length
accounting for the reluctance of the system to adopt a wavevector with a value
different from kc.

Fig. 3.11. The amplitude of rolls parallel to a lateral wall follows the hyperbolic-
tangent law predicted by the Ginzburg–Landau theory up to the quantitative level
according to the measurements reported in [31].

This equation was obtained for stress-free boundary conditions but can be
shown to hold in the no-slip case with coefficients that can be computed and
checked against experiments. As seen in Figure 3.11, the modulation of the con-
vection amplitude close to a lateral boundary parallel to the roll axis predicted
by the theory is in excellent agreement with that experimentally measured by
Wesfreid et al. [31] in a long and narrow parallelepipedic container using high-P
silicone oil. An equally good quantitative agreement was observed for other phys-
ical properties, for example, the relaxation rate of fluctuations (critical slowing
down), showing that the classical Landau theory of second-order phase transi-
tions applies also to supercritical bifurcations in extended media.4

In the vicinity of the convection threshold, a large body of results about the
dynamics of disordered patterns, also called textures, can be understood within
4 Corrections to the classical behavior due to fluctuation effects similar to those in

thermodynamic phase transitions are not detectable in most practical situations.
These effects have been recently studied by Oh and Ahlers [32].
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the envelope formalism [33]. This remains true as long as the textures behave
relaxationally, which is the case when P � 1. A single scalar envelope field
can then be used, that is locally governed by the NWS equation. Owing to its
real coefficients, this equation derives from a potential so that solutions to it
relax towards essentially time-independent states. Solutions may be disordered,
with curvature and defects, owing to the fact that they have to accommodate
contradictory requirements, the most important ones being that the roll axis be
perpendicular to the lateral boundaries and that the local wavelength be roughly
constant and equal to its critical value in the bulk. Even in the limit P → ∞, the
envelope formalism is difficult to handle when textures are strongly disordered
[34]. An alternative is recourse to simplified models such as the Swift–Hohenberg
(SH) model [15]:

Fig. 3.12. Time-independent textured state obtained by simulation of the SH model
for r = 0.3 in a large square domain with boundary conditions w = ∇⊥w = 0 where
∇⊥ is the gradient along the normal to the boundary (kc = 1, � = 200).

τ0∂tw = rw − ξ4(∇2 + k2
c )

2w − g w3,

where w is now a two-dimensional field function of time and the horizontal
coordinates representing the local convection motion (e.g., the temperature at
midheight). The SH model was obtained by a semi-rigorous elimination of the
vertical dependence through a Galerkin expansion of the thermohydrodynamic
fields in the stress-free case. The original SH model, with its cubic nonlinearity,
derives from a potential and, as such, can only lead to time-independent tex-
tures. A typical simulation result obtained by myself is displayed in Figure 3.12,
illustrating the frustration of geometrical origin with “grains” of well-oriented
rolls and several kinds of defects joining them. Nonvariational corrections can be
expected, however, leading to unsteady textures with very slow residual time de-
pendence, at least as long as P is sufficiently large. Accordingly, the transition to
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turbulence can mostly be interpreted in terms of a “fusion” of two-dimensional
(scalar) textures. Variants of the SH model have been proposed to deal with
convection in different circumstances, when hexagons or squares are expected
owing to non-Boussinesq or heat-conductivity effects [36]. When P decreases,
the situation is more complicated because the velocity field recovers its rights to
control the dynamics. Turbulence is then seen to occur at a moderate distance
from the primary convection threshold (see Figure 3.6). A theoretical digression
is, however, necessary before I come back to this problem.

3.6 Weak Turbulence in Extended Systems at Small P

Within the stress-free model, Siggia and Zippelius [37] have shown that the NWS
envelope equation must be corrected at the lowest order to account for drift flows
induced by the curvature of rolls. They obtained a set of two coupled equations
for the amplitude A and the intensity U of the drift flow. The effect of the latter
is to push the rolls, hence a modified NWS equation

τ0(∂t + ikcU)A =
(
r − g|A|2)A+ ξ20

[
∂x +

1
2ikc

∂yy

]2

A

the drift flow U arising from the large-scale vertical vorticity Ω = −∂yU induced
by the curvature of the rolls according to

γ∂tΩ − ∂yyΩ = g ∂y

[
A∗

(
∂x +

1
2ikc

∂yy

)
A+ c.c.

]
,

where g ∝ (1+P )/P 2 ∼ 1/P for P � 1 and c.c. denotes the complex-conjugate
term. By contrast with the NWS equation, the new system does not derive from
a potential so that a less trivial dynamics can develop.5 Systematic expansions
in this vein have been developed by Decker and Pesch [38] for the realistic case of
no-slip boundary conditions leading to an account of stability properties of the
rolls in the neighborhood of the threshold in agreement with Busse’s previous
numerical findings [7] (and analytical results by Piquemal and myself for the
zigzag instability [39]).

Close to the threshold, but not asymptotically close to it, the stability of well-
aligned patterns can be studied within the phase formalism [40]. Technically the
full solution, symbolically written V (x, y, t), is searched for in the form V0[k0 x +
φ(x, y, t)] + V1 + ..., where φ is a slowly varying phase and x the coordinate
along the wavevector of the reference roll system. A compatibility condition for
φ leads to a diffusion equation:

∂tφ = D‖∂xxφ+D⊥∂yyφ,

5 The Galilean invariance of the stress-free Boussinesq problem is broken when no-slip
boundary conditions are considered but, when P is sufficiently small, this invariance
is approximately restored beyond threshold through thin viscous boundary layers at
the top and bottom plates so that the approach still makes sense.
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where the diffusion coefficients D‖ and D⊥ are functions of the wavevector k0

different from kc (but not too far from it) and the relative distance to threshold r.
Universal secondary instabilities occur when these diffusion coefficients become
negative (Eckhaus when D‖ < 0; zigzags when D⊥ < 0). The generalization of
this approach is due to Newell and Cross [34] who derive the diffusion equation
in a form independent of a reference frame linked to the local roll wavevector.
The solution being now written as V0(Θ(x, y, t)) = A(x, y, t) exp(iΘ(x, y, t)), the
local wavevector is given by kh(x, y, t) = ∇hΘ(x, y, t), k ≡ √

k2
h, the amplitude

A is enslaved to the phase Θ through an eikonal equation A = A(k), and Θ is
governed by

τ(k)∂tΘ(x, y, t) + ∇h · [khB(k)] = 0,

where τ(k) and B(k) are two functions of k. The previous diffusion equation
is recovered when a nearly uniform roll pattern is assumed, which yields D‖ =
−τ−1d(kB)/dk and D⊥ = −τ−1dB/dk. Cross and Newell then added drift
flows phenomenologically through the change: ∂t �→ ∂t + U · ∇h. The field U
that generalizes the variable U introduced earlier now describes a horizontal
incompressible flow deriving from a stream function Ψ (i.e., U ≡ (∂yΨ,−∂xΨ))
governed by

∇2Ψ = γ ẑ · ∇h × [
kh

(∇h · (khA
2
))]

,

where A is the amplitude and ẑ = x̂× ŷ. In practice, in the unstable range, gen-
eralized phase equations form an ill-posed problem leading to singularities and
some regularization is demanded, as discussed in detail by Newell and coworkers
(see, e.g., [8]).

These theoretical problems are indeed fully relevant to the understanding of
the transition to turbulence in low Prandtl number fluids that do not behave
relaxationally but have more active dynamics of inertial origin. Whereas it was
known for long from conventional studies that turbulent states can be observed
at moderate R when P ∼ 1 or below (see Figure 3.6), it was later discovered that
the range of strictly time-independent convection was extremely narrow at large
aspect ratios Γ � 1 [65]. However, the kind of time-dependence that developed
was not real high-frequency turbulence but resembled a low-frequency broad-
band noise with a power-law spectrum appearing before any trace of secondary
instability [42]. This behavior was not well understood until Pocheau et al. [43]
showed that this noise resulted from a cycle involving the nucleation, migration,
and annihilation of dislocations. Pictures of this cycle are displayed in Figure
3.13.

In an attempt to get a semi-microscopic account of convection at low Prandtl
number in weakly confined systems, it seems necessary to include drift flow
effects in the SH model. Paralleling Siggia and Zippelius, I derived a generalized
SH model by truncating at lowest significant order a Galerkin expansion of the
thermohydrodynamic fields while taking care of the large-scale flow driven by
curvature effects, obtaining [45, a]:

∂tw + U · ∇hw =
[
r − (∇2

h + 1)2
]
w −N (w),

(∂t + P∇2
h)∇2

hΨ = ∂yw ∂x∇2
hw − ∂xw ∂y∇2

hw,
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Fig. 3.13. In a cylindrical container (with argon under pressure as the working fluid),
lateral boundary effects on the roll orientation at the walls imply some curvature in
the buck. Interplaying with drift flow, a periodic process of nucleation, migration, and
annihilation of dislocations develops, at first roughly periodic in time. Irregularities
in the process lead to a noisy dynamics with power-law spectrum. Pictures kindly
provided by V. Croquette (ENS-Ulm); see [25] for details.

where, as above, Ψ is the stream function from which the velocity field U derives
and N (w) some nonlinear saturating term (either w3 as in the original SH model,
or for example, [(∇hw) + w2]w as in [45, a], or possibly more general—even
nonlocal—expressions). Numerical simulations of the extended SH model [45,
b] have led to an interpretation of weak turbulence in extended RB convection
systems in terms of a dynamical compatibility of drift flows to the spatially
disordered topology of patterns implied by the geometrical frustration imposed
by the lateral boundaries.

At larger but still small P , a quite different kind of weak turbulence, called
spiral–defect chaos (SDC) has also been observed by Ahlers and coworkers [46]
among others (Chapter 4 by Ahlers in this volume). This regime is illustrated in
Fig. 3.14 for two different values of R. Bistability with respect to this regime has
also to be noted: at the same R, straight rolls are still locally stable but, when it
is nucleated somewhere, the SDC regime invades the whole surface of the system
at the expense of the rolls. From a modeling viewpoint, the SDC regime has been
observed in simplified systems such as the generalized SH model presented above
[47] or other simplified models in the same spirit [84]. The role of drift flows seems
essential for such a space–time chaotic behavior but, on more general ground, its
extensive character (i.e., a density of spiral cores can be defined, independent of
the shape of the container provided it is sufficiently wide) makes it interesting
from the point of view of a statistical analysis of out-of-equilibrium systems at
the thermodynamic limit.
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Fig. 3.14. The density of spiral cores increases as R gets farther beyond the threshold
of SDC. Pictures kindly provided by G. Ahlers (UCSB); see [46].

3.7 Space–Time Intermittency and Statistical Physics

Another situation is of interest with respect to statistical aspects of the transition
to turbulence when confinement effects are exploited to produce a quasi-one-
dimensional pattern; see Figure 3.15. In the case described, the fluid is silicone oil
with moderate to high Prandtl number so that no strong large-scale flow effects
are expected. Seen from above the positions of the thin thermal boundary layers
between consecutive cells can be recorded as a function of time to construct
space–time diagrams. The most interesting experiments have been performed in
the narrow annular cell shown in Figure 3.16 (top), thus avoiding parasitic end
effects.

The transition to turbulence in this system happens via a new specific sce-
nario: the time-independent regular arrangement of cells below the transition is
disrupted by intermittent chaotic bursts above the threshold. At a given time
the system can be divided in laminar and turbulent domains and at a given
point in space the system is alternatively laminar or turbulent, hence the term
space–time intermittency (STI). This kind of transition has been observed in
several convection experiments [49, 50] but also in other physical systems. For a
review, consult [51].

The theoretical account of this scenario follows Pomeau’s idea [53] of an
equivalence of STI with a time–oriented stochastic process known as directed
percolation in statistical physics. This process deals with the modeling of epi-
demic processes in which subjects in good health (in the so-called absorbing
state) are contaminated by some disease (the excited state) with finite local
probability. The subjects stand at the nodes of a lattice and contamination is
from one node to its neighbors while time is advancing by steps. Above some
probability threshold, contamination is sustained and propagates to infinity with
finite probability, otherwise the epidemic ceases spontaneously. Directed perco-
lation is a critical phenomenon that defines a so-called universality class, with a
specific set of critical exponents, controlling, for example, the fraction of excited
states that grows as a power law of the distance to the threshold.
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An essential assumption is that, out of the two possible coexisting states at
each location, the one playing the role of the absorbing state is locally stable so
that there cannot be spontaneous birth of excited states. Coexistence of states
in the local phase space usually manifests itself by the formation of walls for
systems distributed in space. In the simplest case of a potential system these
walls move so as to minimize the potential. In the more complicated case where
the excited state is a chaotic transient, the motion of the wall through contam-
ination becomes random. In order to better understand how STI can occur in
deterministic systems, that is to say, how local transient temporal chaos can be
converted in sustained space–time chaos by the interaction between neighboring
subsystems, models in terms of coupled map lattices [54] have been built with
an appropriate local phase space structure [55]. The universality issue turns
out to be intricate, especially regarding the thermodynamic limit of infinitely
large systems in the long-time limit, after transients have decayed [56]. As far as
convection in the quasi-one-dimension is concerned, turbulence is obviously the
excited state. The statistics of the size of turbulent domains has been studied as
a function of R, showing that the STI transition was only imperfect [50] due to
a tiny probability of spontaneous nucleation of turbulent cells (possibly linked
to the focusing of a long-wavelength secondary instability of the convection cells
chain).

3.8 Convection at Large Rayleigh Numbers

Beyond the transitional stage, convection enters a fully developed turbulent
regime usually best characterized by physical properties scaling as some power
of R, as noticed by Siggia [11]. Most often one is interested in the behavior of
the Nusselt number defined as

N =
total heat flux

conduction heat flux
,

where the “total heat flux” is the measured flux and the “conduction heat flux”
is the flux computed from the applied temperature difference upon assuming
Fourier law in a fluid at rest, henceN = 1 below the primary threshold (R < Rc),
and N−1 measuring the contribution of beyond. In the weakly nonlinear regime
close to threshold it is expected to vary as

N − 1 ∝ vzθ ∝ R−Rc

Rc

because N−1 is the average over the cell of the product θvz, and each term scales
as [(R − Rc)/Rc]1/2. This behavior has been well observed experimentally long
ago and, as mentioned by Chandrasekhar [1], can serve to locate the threshold
with precision. When R becomes larger than a few hundreds of Rc, N increases
with R as a power law:

N ∼ Rγ
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but some confusion exists about the relevant value of γ that may depend on the
range of R considered, with crossovers between different regimes, the nature of
the fluid (value of P ) and to a lesser extent on the shape of the container or the
roughness of the top and bottom plates. Exact bounds can be given for γ (see
[57] for references) and early arguments predicted γ = 1/3 or γ = 1/2. The first
value is obtained by assuming that the turbulent heat flux is fully controlled
by finite-width thermal boundary layers so that it becomes independent of the
container height [12] and the second one, considered as the “ultimate regime”
at asymptotically large R, is reached when buoyancy is fully balanced by advec-
tion in the momentum equation so that the heat transfer no longer depends on
molecular properties κ and ν (Kraichnan, 1962). Consult [58] for an introduc-
tory presentation and [11] or [59] for more information. Some early experiments
seemed to support γ = 1/3 whereas others for P � 1 yielded rather γ = 1/4,
As a matter of fact, these early studies were performed in extended geometry
with many convection cells and did not allow testing of sufficiently large ranges
of parameters. Since 1985 new experiments specifically focusing on this problem
have been developed; see, for example, [60, 61, 62] among many others. In order
to reach high values of R without increasing the temperature difference too much

Fig. 3.17. Total heat flux as measured in terms of the Nusselt number as a function of
the Rayleigh number (in log–log scale). After the initial abrupt increase corresponding
to the weakly nonlinear regime, the Nusselt number varies more gently as Rγ . The
exponent is close to 2/7 over a four-decade range between 107 and 1011, and somewhat
larger, about 1/2, above. Adapted from Chavanne et al. [61, a].

(validity condition for the Boussinesq approximation), containers have indeed to
be tall because, from its definition, R grows as h3 at given ΔT . But large as-
pect ratios cannot be maintained if the experiment is to stay within reasonable
horizontal-size limits. In practice aspect ratios Γ = 1/2 or 1 have been used
and very large R, up to 1018 times the critical value, have been achieved. The
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drawback of small aspect ratios is that the mean large-scale flow may control an
important part of the heat transfer, especially by producing a “wind” along the
top and bottom plates. For example, thermal transfer through such a created
velocity boundary layer yields N ∼ R1/4 when they are laminar and N ∼ R2/7

when they are turbulent.
Figure 3.17, adapted from the results of Chavanne et al. in liquid helium

[61], is typical of the most recent experiments. One can easily identify the previ-
ously mentioned weakly nonlinear regime close to , 6 then the “soft turbulence”
regime where chaos is still mostly temporal, next “hard turbulence” with an
exponent γ � 2/7 explained by the theory involving thermal transfer through
turbulent layers sheared by the general circulation wind, and finally the “ulti-
mate” regime with exponent tending to 1/2. The existence of this last regime
has been challenged [60] and conditions for its observation clarified by Roche
et al. [61, c].

The different turbulence regimes have been reconsidered by Grossmann and
Lohse [59] who distinguish them from the origin of the main contributions to
the dissipation, in the bulk or within boundary layers, and give a unified scaling
picture of the strong turbulence problem in RB convection. According to this
picture, four main regimes can exist with different γ signatures and it is argued
that the scaling with γ = 2/7, although observed over a rather wide range of
Rayleigh numbers (and in spite of its appealing physical interpretation in terms
of heat transfer through turbulent boundary layers), is equally well accounted
for as a blend of regimes with γ = 1/4 and γ = 1/3 with appropriate weighting
coefficients. How these regimes depend on the Prandtl number (also possibly on
the shape of the container and associated bifurcations of the mean large-scale
flow) is the subject of recent studies, for example, [62].

3.9 Conclusion

One century after his first experiments, one cannot but notice that Bénard
opened a particularly rich field of research, accessible to detailed analysis both
theoretical and experimental. Once the initial misunderstanding about the role
of surface tension has been cleared up, RB convection (within the Boussinesq
approximation) has indeed presented itself as an ideal testing ground for the
interplay of mathematics and physics methods, especially during the last thirty
years. In particular, fundamental problems related to universality could be tack-
led, both for confine systems where the theory of dynamical systems is relevant
(chaos and transition scenarios, e.g., the subharmonic cascade) and for extended
systems where statistical physics is an appealing framework (Ginzburg–Landau
formalism and nonlinear pattern selection, space–time intermittency and di-
rected percolation). It should further be noticed that progress has been obtained
through an exemplary feedback process involving experiments, theory, and mod-
eling. Let us hope that the methods developed to reach such an improved un-
6 The threshold is shifted somewhat beyond 1708 owing to small aspect ratio effects.
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derstanding of the emergence of complexity in this specific physical system will
also fuel the study of issues crucial to the future of our natural environment.
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tifs,” C.R. Acad. Sc. Paris 297 Série II (1983) 209–214.

24. P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors,”
Physica D 9 (1983) 189–208.

25. M.H. Jensen, L.P. Kadanoff, A. Libchaber, I. Procaccia, J. Stavans, “Global uni-
versality at the onset of chaos: Results of a forced Rayleigh–Bénard experiment,”
Phys. Rev. Lett. 55 (1985) 2798–2801.

26. E.N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20 (1963) 130–141.
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47. (a) H.-w. Xi, J.D. Gunton, J. Viñals, “ Spiral defect chaos in a model of Rayleigh–
Bénard convection,” Phys. Rev. Lett. 71 (1993) 2030–2033. (b) H.-W. Xi, J.D.
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“Dynamical phases in a cellular automaton model for epidemic propagation,”
Physica D 103 (1997) 554–563.

57. (a) L. Howard, “Bounds on flow quantities,” Ann. Rev. Fluid Mech. 4 (1972) 473–
494. (b) F.H. Busse, “The optimum theory of turbulence,” Adv. Appl. Mech. 18
(1978) 77–121. (c) C.R. Doering, P. Constantin, “Variational bounds on energy
dissipation in incompressible flows. III. Convection,” Phys. Rev. E 53 (1996) 5957–
5981.

58. J. Sommeria, “The elusive ‘ultimate state’ of thermal convection,” Nature 398
(1999) 294–295 (news and views).

59. S. Grossmann, D. Lohse, (a) “Scaling in thermal convection: A unifying theory,”J.
Fluid Mech. 407 (2000) 27–56. (b) “Thermal convection for large Prandtl num-
bers,” Phys. Rev. Lett. 86 (2001) 3316–3319.

60. J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, “Turbulent convection
at very high Rayleigh numbers,” Nature 404 (2000) 837–840, err. 406 (2000) 439.
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After a brief review in the introduction of the major breakthroughs in the study
of Rayleigh–Bénard convection (RBC) since the experiments of Henri Bénard, a
few selected topics are presented in more detail. The effect of on the bifurcation
to convection is discussed because experimental work on this is quite recent and
as yet incomplete. Examples of spatio–temporal chaos are examined because
this interesting nonlinear state is as yet incompletely understood. The effect of
rotation on RBC is presented because some of the experimental results disagree
with modern theories.

4.1 Introduction

Convection in a shallow horizontal layer of a fluid heated from below had been
observed on several occasions during the nineteenth century [1]. However, the
carefully controlled and quantitative laboratory experiments of Henri Bénard
[2] focused the interest of other scientists on this fascinating problem. Bénard
studied the patterns of the convective flow in the presence of a free upper sur-
face, using a variety of fluids with different viscosities. He made quantitative
determinations of the deformation of the upper surface, of the characteristic
length scales of the pattern, and of the direction of flow within the fluid. Al-
though we now know that the beautiful hexagonal patterns observed by Bénard
[3] were caused by the contribution of a temperature dependent surface tension,
these experiments were the direct motivation of Lord Rayleigh’s seminal stability
analysis [4] for the case of free horizontal boundaries in the absence of surface
tension. Rayleigh’s opening remark in his paper in The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science was “The present is an
attempt to examine how far the interesting results obtained by Bénard in his
careful and skillful experiments can be explained theoretically”. Lord Rayleigh
recognized that there is a finite value of the temperature difference ΔT = ΔTc

for the onset of convection, and that the important combination of parameters
that determines the onset is

R =
αgd3ΔT

κν
, (4.1)

where α is the isobaric thermal expansion coefficient, κ the thermal diffusivity,
ν the kinematic viscosity, d the spacing between the plates, g the acceleration of
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gravity, and ΔT the temperature difference. We now refer to R as the “Rayleigh
number”. Lord Rayleigh also found that the instability occurs at finite wavenum-
ber kc, and that it is a stationary instability (i.e., that the relevant eigenvalues
are real). For the free boundary conditions that he used he was able to obtain
the analytic results Rc = 27π4/4 and kc = π/

√
2.

Fig. 4.1. Left: hexagonal pattern of non-Boussinesq convection in compressed SF6

near its critical point (from [6]). Middle: roll pattern for a Boussinesq fluid (from [7]).
Right: square pattern in binary-mixture convection (from [8]).

Fig. 4.2. Nusselt number measurements using ethanol in a circular cell with d = 1.54
mm and diameter D = 88 mm. Open (closed) circles: increasing (decreasing) ΔT (from
[14]).

The problem caught the attention of other giants in the field during the
next several decades. Here I mention only a few highlights. Rayleigh’s work
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was followed by the stability analysis for more realistic rigid boundaries by Sir
Harold Jeffreys [5], that (after some numerical problems) yielded the values
Rc = 1708 and kc = 3.117 relevant to experiments using fluids confined between
well-conducting solid parallel plates. There were a number of other milestones.
Particularly noteworthy on the theoretical side were the first weakly nonlinear
analyses that led to predictions of the stable convection patterns. On the basis
of the linear stability analysis of Lord Rayleigh or Sir Harold Jeffreys one knows
the magnitude of the critical wavedirector, but one cannot decide whether the
patterns above onset will consist of rolls, hexagons, or squares. Indeed all three
patterns occur in RBC as illustrated in Figure 4.1 [6, 7, 8], albeit under different
circumstances. Malkus and Veronis [9] predicted that the stable planform for
the case of free boundaries and Boussinesq conditions [10, 11] should be straight
rolls rather than, for example, squares or hexagons. The foundation for much of
the “modern” work on Rayleigh–Bénard convection was laid during the 1960’s
by the weakly nonlinear analysis of Schlüter, Lortz, and Busse (SLB) [38] for
rigid boundaries, that predicted stable straight rolls above onset also for this
realistic case. This prediction is in agreement with experiment, as illustrated
by the middle pattern of Figure 4.1 as well as by numerous other experiments.
SLB also established that the bifurcation to RBC is supercritical, and gave the
initial slope S1 of the Nusselt number N ≡ Qd/λΔT = 1 + S1ε + O(ε2) (λ is
the conductivity of the quiescent fluid and Q is the heat-scurrent density). This
was consistent with early measurements, for instance with those of Silveston
[13]. Modern measurements such as those shown in Figure 4.2 [14], even within
their much greater resolution, are also consistent with a supercritical bifurcation.
However, the experimental value of S1 varies somewhat from one experiment to
another and is always somewhat lower than the theoretical prediction (for the
data in Figure 4.2 S1 = 1.28 whereas the prediction is S1 = 1.43). Possibly
this problem is due to boundary effects at the side wall, but this issue is not
entirely settled. Conceptually the next great step forward was the realization
by Swift and Hohenberg [15] that the bifurcation to RBC, shown by SLB to
be supercritical in the deterministic system, becomes subcritical in the presence
of thermal noise. Although at the time the first-order nature of the transition
was believed to become significant only within a part per million or so of the
transition, thus being out of reach of the experimentalist, good evidence for it
has been obtained in very recent experiments [16, 17].

Equally important were seminal experimental contributions during the first
five or six decades following Bénard’s work. Here I mention only a couple. The
heat transport measurements of Schmidt and Milverton [18] confirmed the pre-
diction Rc = 1708 with an accuracy of better than 10%. The extensive experi-
ments of Silveston [13] already mentioned above provided data for N from below
onset to R � 5 × 106. Silveston also visualized the convection patterns in his
apparatus, using the shadowgraph method that has become so very important
in more recent times [19, 20, 21]. For additional historical notes, the reader may
wish to consult Chapter 3 in this volume, and the informative book by Chan-
drasekhar [1].
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During the last three decades, Rayleigh–Bénard convection (RBC) has be-
come a paradigm for the study of pattern formation [22, 23]. It reveals numerous
interesting phenomena in various ranges of ε ≡ ΔT/ΔTc −1. Many of these phe-
nomena have been studied in detail recently, using primarily compressed gases as
the fluid, sensitive shadowgraph flow-visualization, digital image analysis, and
quantitative heat-flux measurements [20, 24]. I briefly mention some of them
here, and then discuss a few of these in greater detail in separate sections below.

Even below onset, thermally driven fluctuations of the temperature and ve-
locity fields about their pure conduction averages provide a fascinating exam-
ple of critical phenomena in a nonequilibrium system. Twenty-eight years ago,
it was already predicted by Swift and Hohenberg [15] that these fluctuations
should alter the nature of the bifurcation to RBC, making it subcritical and
thus analogous to a first-order phase transition in equilibrium systems. Very
recent measurements [16, 17] suggest that this is indeed the case.

Above but close to onset the pattern for a Boussinesq system consists of
straight rolls (see Figure 4.1 middle), possibly with some defects induced by the
side walls [25]. When non-Boussinesq conditions prevail, a pattern of perfect,
defect-free hexagons evolves (see Figure 4.1 left).

Further above onset, for ε > 0.5 or so, an interesting qualitatively different
state of spatio–temporal chaos, known as spiral–defect chaos (SDC), occurs in
systems with Prandtl numbers σ ≡ ν/κ of order one or less [26]. This state
is a bulk property and not sidewall-induced; it has been studied intensely by
theorists as well as experimentalists.

Similarly, RBC was used to study the onset of time dependence over a wide
range of σ. [27, 28] Temporally periodic or chaotic patterns were found for ε >
O(1), with the onset occurring at smaller ε for smaller σ. However, quantitative
studies such as those carried out for SDC are still lacking at larger σ.

The system becomes more complex and interesting even near onset when it
is rotated about a vertical axis with an angular velocity Ω. For that case it was
predicted [29, 30, 31] and found experimentally [32, 33, 34] that, for Ω > Ωc, the
primary bifurcation from the conduction state remains supercritical and leads
to parallel rolls that are unstable. The instability is to plane-wave perturbations
with a wavedirector angle that is advanced relative to that of the rolls by an
angular increment ΘKL in the direction of Ω. This phenomenon is known as
the Küppers–Lortz (KL) instability. The pattern consists of domains of rolls
that incessantly replace each other, both by irregular domain-wall motion and
by the KL mechanism. The spatial and temporal behavior suggests the term
“domain chaos” for this state. Because this example of spatio–temporal chaos
occurs directly at onset, it should be more accessible to theoretical elucidation
than, for example, the spiral–defect chaos mentioned above.

Theoretically, the KL instability is expected to persist near onset up to large
values of Ω. Thus it was a surprise that the patterns found in experiments near
onset changed dramatically when Ω was increased [35]. For Ω ≥ 70, there was
no evidence of the characteristic domain chaos until ε was increased well above



4 Experiments with Rayleigh–Bénard Convection 71

0.1. At smaller ε, fourfold coordinated cellular patterns, and in some parameter
ranges, slowly rotating, aesthetically appealing, square lattices were encountered.

Relatively unexplored are experimental opportunities that RBC has to offer
in the range of σ well below unity. Pure fluids (with rare exceptions [36]) have
σ ≥ 0.7. Recently it was shown [37, 38] that smaller values of σ can be reached by
mixing two gases, one with a large and the other with a small atomic or molecular
weight. The most extreme example readily available is a mixture of H2 and Xe.
Prandtl numbers as small as 0.16 can be reached. In the range σ ≤ 0.6, several
interesting new phenomena are predicted to occur [31, 39, 40]. In the σ − Ω
plane they include subcritical bifurcations below a line of tricritical bifurcations,
Hopf bifurcations to standing waves, a line of codimension-two points where the
Hopf bifurcation meets the stationary bifurcation, and a codimension-three point
where the codimension-two line and the tricritical line meet.

Another rich and interesting modification of the Rayleigh–Bénard system is
achieved by inclining the layer relative to gravity [41, 42, 24]. This adds the
tilt angle γ as an additional parameter. In this case the basic state consists of
heat conduction and a parallel shear flow that breaks the rotational invariance
of the usual RBC. Depending on γ and σ, longitudinal, oblique, transverse, and
traveling transverse rolls are the possible flow structures at onset.

No doubt I neglected to mention additional important topics associated with
RBC. Nonetheless, at this point we proceed to a somewhat more detailed review
of a few of the phenomana listed above that I have found particularly interesting.

4.2 Fluctuations near the Onset of Convection

In the usual deterministic description of RBC, based on the Boussinesq or
Navier–Stokes equations, all velocities vanish below the onset of convection and
the temperature is given by the pure conduction profile. However, the Brown-
ian motion of the atoms or molecules that occurs because the system is at a
finite temperature leads to fluctuations of the temperature and velocity fields
that have zero mean but finite mean square. When the fluctuation amplitudes
are small enough, their interactions with each other can be neglected and the
amplitudes can be described well by stochastic linearized hydrodynamic equa-
tions [43]. To my knowledge, the first spatially extended nonequilibrium system
for which quantitative measurements of these fluctuations were made was elec-
troconvection in a nematic liquid crystal [44]. Soon thereafter, thermally driven
fluctuations were observed also for RBC [45] and quantitative measurements of
their amplitudes were made [46, 47]. In part these measurements were made
possible by the development of experimental techniques for the study of RBC in
compressed gases [25, 20]. There it is possible to use sample spacings an order
of magnitude smaller than for conventional liquids and kinematic viscosities are
relatively small, thus making the systems more susceptible to noise. In addition,
maximizing the sensitivity of the shadowgraph method and careful digital image
analysis have enhanced the experimental resolution [20].
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Fig. 4.3. Left: Shadowgraph snapshot of fluctuations below the onset of convection
(€ = -3 X 10-4

). Right: The average of the square of the modulus of the Fourier
transform of 64 images like that on the left. After [46].
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Fig. 4.4. Mean square amplitudes of the temperature fluctuations below the onset of
convection of a layer of C02 of thickness 0.47 mm and a mean temperature of 32°C.
The solid (open) circles are for a sample pressure of 42.3 (29.0) bars. The two lines are
the theoretical predictions. Note that there are no adjustable parameters. After [46].
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In the left part of Figure 4.3, we show a processed image of a layer of CO2

of thickness 0.47 mm at a pressure of 29 bars and at a mean temperature of
32.0◦C. The sample was at ε = −3 × 10−4, very close to but just below the
bifurcation point. The fluctuating pattern is barely detectable by eye. The right
half of the figure shows the average of the structure factors (squares of the moduli
of the Fourier transforms) of 64 such images. It demonstrates clearly that the
fluctuations have a characteristic wavenumber q. The value of q is in quantitative
agreement with the critical wavenumber qc = 3.117 for RBC. The ring in Fourier
space is azimuthally uniform, reflecting the continuous rotational symmetry of
the RBC system.

The power contained within the ring in Fourier space can be converted quan-
titatively to the mean-square amplitude of the temperature field [46, 20, 24]. Re-
sults for the temporal and spatial averages 〈δT 2〉 of the square of the deviations
of the temperature from the local time average (pure conduction) as a function
of ε at two different sample pressures are shown in Figure 4.4 using logarithmic
scales. The data can be described quite accurately by straight lines with slopes
close to −1/2, consistent with the powerlaw 〈δT 2〉 ∝ ε−1/2 as predicted by linear
theory.

The amplitudes of the fluctuating modes below but close to the onset of
RBC were calculated quantitatively from the linearized stochastic hydrodynamic
equations [43] by van Beijeren and Cohen [48], using realistic (no-slip) boundary
conditions at the top and bottom of the cell. For the mean square temperature
fluctuations their results give [49, 46]

〈δT 2(ε)〉 = c̃2
(
ΔTc

Rc

)2
F

4
√−ε , (4.2)

with c̃ = 3qc
√
Rc = 385.28. Here Rc = 1708 is the critical Rayleigh number, and

the noise intensity F is given by

F =
kBT

ρdν2
× 2σqc
ξoτoRc

, (4.3)

with ξo = 0.385 and τo � 0.0796. One sees that F depends on the density ρ
and kinematic viscosity ν, as well as on the Prandtl number σ = ν/DT (DT is
the thermal diffusivity). Using the fluid properties of the experimental samples
[20], one obtains the straight lines in Figure 4.4. Because there are no adjustable
parameters, the agreement between theory and experiment can be regarded as
excellent. This agreement lends strong support to the validity of Landau’s sto-
chastic hydrodynamic equations [43].

Sufficiently close to the bifurcation, where fluctuation amplitudes become
large, nonlinear interactions between them play a role and linear theory breaks
down. In this regime genuine critical phenomena that differ from the linear pre-
dictions are expected, and the precise critical behavior should depend on the
symmetry properties and the dimensionality of the system. Deviations from the
prediction of linear theory have been observed recently for electroconvection in
nematic liquid crystals [50, 51] that is exceptionally susceptible to the influence
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of thermal noise. Unfortunately, to this day there are no predictions of the crit-
ical phenomena to be expected for this interesting group of systems. For RBC,
Swift and Hohenberg were able to show that the system belongs to the same uni-
versality class as one considered by Brazovskii [15, 49, 52]. Equilibrium systems
belonging to this class include the crystallization of diblock copolymers [53]. For
this universality class the transition is of second order at the mean-field level,
but the fluctuations induce a first-order tarnsition. A common feature of all the
systems belonging to this class is that the order parameter near the bifurcation
has a relatively large volume of phase space accessible to it. In the RBC case
this is reflected in the rotational invariance of the system as demonstrated by the
ring in Fourier space shown in Figure 4.3. On the basis of this qualitative con-
sideration one would not expect the electroconvection system mentioned above
[50, 51] to belong to the Brazovskii universality class because the anisotropy due
to the director leads to only one or two pairs of spots in Fourier space.

Fig. 4.5. The temperature-density plane near the critical point of SF6. The dashed
line is the coexistence curve separating liquid and vapor. The vertical dotted line is the
critical isochore. The solid circle is the critical point Tc = 45.567◦C, Pc = 37.545 bars,
and ρc = 0.742 g/cm3. The solid lines represent the isobars P = 38.10 bars (lower line)
and 39.58 bars (upper line) used extensively in experiments. The heavy solid lines, each
ending in two circles, illustrate the density range spanned during measurements with
ΔT � ΔTc for a cell of spacing d = 34.3 μm (lower line) and d = 59.1 μm (upper line).

For RBC in ordinary liquids one can estimate [15] that nonlinear fluctuation
effects should be observable typically only for |ε| ≤ 10−6, that has not been ac-
cessible to experiments so far. For RBC in compressed gases the critical region is
a bit wider, reaching as far out as |ε| � 10−5; but as can be seen from Figure 4.4,
this too has been beyond experimental resolution. However, the situation is much
more favorable near a liquid–gas critical point (CP) [16, 17]. Part of the reason
for this can be seen by inspecting Equation 4.3. and the phase diagram of SF6
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shown in Figure 4.5. In that figure we see the temperature-density plane near
the CP. The vertical dotted line corresponds to the critical isochore, and the
two solid lines are isobars. As the CP is approached on the critical isochore from
higher temperatures, the viscosity ν has only a mild singularity and remains
finite, whereas the Prandtl number σ = ν/DT diverges because the thermal dif-
fusivity DT vanishes. Thus the divergence of σ at finite ν leads to a divergence
of F [54]. An equally important aspect is, however, that the fluid properties are
such that typical sample spacings d that can be used are in the range of 10
to 100 μm, thus increasing F by one or two orders of magnitude compared to
liquids and compressed gases away from the critical point. Another factor that
greatly increases the experimental shadowgraph resolution near the CP is the
value of the temperature derivative of the refractive index dn/dT . Typically we
have |dn/dT | � 0.1, whereas for ordinary fluids it tends to be two or three orders
of magnitude smaller.

Fig. 4.6. Shadowgraph images (top row) of a 1.28 × 1.28 mm2 part of a sample with
d = 34.3 μm, and the moduli of their Fourier transforms (bottom row). From left to
right, the images are for ε = 0.008,−0.001, and − 0.047. The mean temperature and
the pressure corresponded to the critical isochore at T = 46.22◦C. Adapted from [16].

In Figure 4.6 we show shadowgraph snapshots of fluctuations and roll pat-
terns for a cell of spacing d = 34.3 μm at a pressure P = 38.10 bars corre-
sponding to the lower isobar shown in Figure 4.5 [16]. The mean temperature
T̄ = 46.22◦C was kept constant during the experiment and had a value that
corresponded to the critical isochore. When the applied temperature difference
was equal to ΔTc = 0.131◦C, the sample occupied the heavy section of the line
representing the isobar. The theoretical value of F was 5 × 10−4 for this case.
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(a) (b)

Fig. 4.7. Shadowgraph power P as a function of ε ≡ ΔT/ΔTc − 1 for the experiment
of Figure 4.6 on (a) linear and (b) logarithmic scales. Solid lines: fit of the Swift–
Hohenberg prediction [49] to the data. From [16].

Fig. 4.8. Patterns from a sample with d = 59 μm at ε = 0.009. (a) Image of size 1.92 ×
1.92 mm2 and (b) the modulus of its Fourier transform. (c) The 0.96 ×0.96 mm2 area
inside the square in (a). (d) Same area as (c), but after a bandpass filter was applied
around the Fourier-transform peaks of (b). (e) Amplitude of the rolls of (a) obtained
by Fourier-transform demodulation. (f) Director angle of (a). Adapted from [16].
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The images are for several ε values. The bottom row shows the moduli of their
Fourier transforms. Just above onset the pattern consisted of convection rolls, as
predicted for the deterministic system [38]. Consistent with the Swift–Hohenberg
prediction of a first-order transition, there was a sharp transition from a rolls
pattern to one of disordered fluctuating cellular structures as ΔT was decreased
below ΔTc.

Figure 4.7 gives results for the shadowgraph power (the square of the modulus
of the Fourier transform) as a function of ε. One sees a dramatic change in the
power at ε = 0. The solid lines are a fit of the prediction of Swift and Hohenberg
to the data. This fit yielded F = 7×10−4, in good agreement with the prediction
based on the fluid properties.

Aside from the order of the transition, an issue of considerable interest is
the nature of the ordered state (i.e., the rolls) above onset. In Figure 4.8 we
show an example [16]. One sees that the rolls reveal several types of disorder.
Particularly in the enlarged image Figure 4.8c it can be seen that the rolls were
modulated along their axis. This was the result of the superposition of fluc-
tuations of random orientation. As seen in Figure 4.8d, it could be removed
by bandpass Fourier filtering with the filters centered on the two peaks of the
transform shown in Figure 4.8b. A second type of disorder took the form of an
amplitude modulation that varied irregularly in time and space. A snapshot of
the roll amplitude, obtained by Fourier demodulation, is shown in Figure 4.8e. A
third type of disorder took the form of roll undulations; that is, a variation of the
angle of the roll director along the roll axis. A gray-scale rendering of the director
angle, obtained from a local wavedirector analysis [57], is shown in Figure 4.8f.
We see that both the roll amplitude and the director-angle modulation are cor-
related over relatively long distances in the direction of the wavedirector, and
vary much more rapidly along the roll axis. Some of this noise-induced disorder
had been anticipated by Toner and Nelson [58], and should have a commonality
with disorder near phase transitions in other two-dimensional systems.

Interestingly, rolls are encountered above the bifurcation only when the mean
sample temperature is such that the density corresponds to the critical density.
Figure 4.9 shows the fluctuations just below (left image) and the ordered pattern
just above (right image) the bifurcation for an experiment in which the mean
temperature was 48.3◦C [6]. At the pressure of the experiment (39.58 bars) the
critical density would have been achieved at 48.0◦C. One sees that a dislocation-
free lattice of hexagons forms. Although the hexagons are reminiscent of Henri
Bénard’s beautiful patterns, they have their origin in non-Boussinesq effects
[59, 60] whereas Bénard’s hexagons were caused by a temperature-dependent
surface tension. Measurements of the hysteresis associated with the formation
and disappearance of the hexagons in Figure 4.9, as well as a transition to
rolls at larger ε, were in quite good agreement with predictions based on the
deterministic equations of motion [59] even though fluctuations were present
[61].
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Fig. 4.9. Shadowgraph images of a 1.92 × 1.92 mm2 part of a sample with d = 59
μm and a pressure of 39.58 bars. Left: ε = −0.0015. Right: ε = 0.0025. The mean
temperature was 48.3◦C.

Fig. 4.10. Shadowgraph images for CO2 at a pressure of 33.25 bars and mean tem-
perature of 21.16◦C in a cell with d = 1.5 mm and aspect ratio Γ = 28.7. The Prandtl
number was 1.0 and ΔTc was found to be 0.317◦C. The number near each image gives
the value of ε = ΔT/ΔTc − 1. After [62].
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4.3 Deterministic Patterns

When the effective noise intensity is relatively small, the system above onset can
be understood in terms of the deterministic equations of motion. The formation
of deterministic patterns takes many forms and depends on such parameters
as the Prandtl number, the aspect ratio, and the shape of the side walls. Any
attempt at a thorough review is well beyond the scope of this chapter. As an
example of the richness of pattern-formation phenomena that are encountered,
I show in Figure 4.10 some shadowgraph images for σ = 1.0 and Γ = 28.7 in
a cylindrical cell [62]. For this case F = 1 × 10−7, and stochastic effects do not
play an important role. The patterns were obtained with compressed CO2 as the
fluid, but the values of σ and Γ are fairly close to those studied by Croquette
and coworkers [25] using argon under pressure and to those of Hu et al. [63] using
CO2. Some of Croquette’s results are shown in the chapter by Manneville in this
volume (Chapter 3). Croquette found that a time-independent pattern existed
only close to onset, roughly for ε < 0.12. As ε increased, the rolls developed an
increasing tendency to terminate with their axes orthogonal to the side wall. The
consequent roll curvature and the associated mean flow caused a compression of
the rolls near the cell center. For ε close to 0.12 the wavenumber in the interior
crossed the skewed-varicose instability boundary [64] and a temporal succession
of dislocation pairs was formed, thus rendering the pattern time dependent. Most
likely this process provides the explanation of the time dependence observed
close to onset by heat-transport measurements in early cryogenic convection
experiments [65, 66].

As ε increased, the patterns became more complex as illustrated in Fig-
ure 4.10 for ε = 0.45. Typically three wall foci existed at this point. Because
of the associated roll curvature there were mean-flow fields emanating from the
foci. These flows were strong enough to cause a continuous emission of traveling
convection rolls from the foci, leading to a complicated dynamics in the cell in-
terior [63]. These patterns were, however, sidewall-induced and not intrinsic to
the interior of a very large system. This was shown in an experiment where the
walls were replaced by a very gentle radial ramp in the cell spacing that led to
a region of pure conduction surrounding the convecting interior [7]. An example
of a pattern in this system, for ε = 0.21, is shown in the middle of Figure 4.1.
In that case one found time-independent near-perfect rolls without defects and
with relatively little roll curvature.

Somewhere near ε = 0.8 a new phenomenon occurred. Small spirals formed
in the interior, as illustrated in Figure 4.10 for ε = 0.74 and 1.21. The formation
of these spirals was an intrinsic property of the bulk convection system and was
not induced by the side walls. This state, known as spiral–defect chaos, has been
known to exist only for the last decade or so [26] and is discussed in more detail
in Section 4.4.2.

As ε increased further, the structures became more disordered and the spi-
rals were a less dominant feature as seen at ε = 2.47. The next interesting
phenomenon was first noticeable for ε = 4.68, and became more pronounced as
ε increased to the larger values. This was a transverse perturbation of the con-
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vection rolls by a moduation that had a relatively short wavelength. This new
feature was due to the oscillatory instability predicted by Clever and Busse [67].
These transverse modulations of the rolls were traveling waves that moved along
the roll axes.

The evolution with increasing ε seen for the last three patterns is remarkable.
Although the patterns became more complex in the sense that the oscillatory
modulation became more pronounced, on a coarse-grained scale that averages
over the traveling waves they became simpler again. Thus, the pattern at ε = 11.6
was not unlike the one for ε = 0.45; both had three wall foci and similar defect
structures in the interior. It would be nice to be able to understand this reduction
of complexity with increasing stress.

4.4 Spatio-Temporal Chaos

4.4.1 Early Measurements

The early 1970s brought a broad survey over a wide range of Prandtl numbers of
the occurrence of time-dependent patterns in RBC [27, 28]. At about that time
quantitative studies of the statistical properties of spatio–temporal chaos (STC)
for σ near one were carried out on RBC at cryogenic temperatures [68, 69, 70,
71]. This early work was followed soon by quantitative measurements [72, 73]
on temporal chaos in systems without significant spatial extent that, for some
time, attracted far more attention because they made contact with concurrent
theoretical developments [74]; this interaction between theory and experiment
revived the field of dynamical systems as a branch of physics [75]. By now this
field has reached a certain level of maturity. Here I want to examine some of the
experimental results on chaos in systems with significant spatial variation. For
these the level of theoretical understanding is still much more limited than it is
for dynamical systems [76].

Results for the time-averaged Nusselt number 〈N〉 during the early cryogenic
experiments (for which there was no flow visualization) are shown in Figure 4.11a
as a function of ε ≡ ΔT/ΔTc − 1. A surprise at the time of those measurements
was that the convection depended nonperiodically on the time t already at the
relatively small values ε � 1. This is illustrated in Figure 4.11b for a circular cell
with an aspect ratio Γ (radius/height) = 5.3 and ε = 1.23. The power spectrum
of N (t) was broad, with a maximum at the frequency f = 0, and for large f it
fell off as f−4 as shown in Figure 4.11c. The experimentally observed algebraic
falloff was surprising because simple models of chaos in deterministic systems
with relatively few degrees of freedom, such as the Lorenz model, have a spec-
trum with an exponential falloff [77, 78]. It seems likely [69] that the onset of
time-dependence was associated with an adjustment of the wavenumber k as
a function of ε that caused the system to cross an instability boundary, from
our present vantage point most likely the skewed-varicose (SV) instability [64].
The apparently algebraic falloff of the spectrum presumably is then attributable
to the presence of a large number of chaotic interacting modes in the spatially
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Fig. 4.11. Results from RBC at cryogenic temperatures. (a) The time-averaged Nusselt
number as a function of ε. (b) Typical deviations of the Nusselt number from its mean
for ε = 1.23 as a function of time. (c) The power spectrum of a longer sequence of data
like those in (b) for ε = 1.23. After [70].

extended system that turns out to lead to effectively algebraic decay [77, 78]
over the experimentally accessible range of f ; but as far as I know a quantita-
tive explanation of this phenomenon is still lacking. In a qualitative sense this
suggestion that many modes come into play as the spatial extent increases is
an early indicator that spatio–temporal chaos is high-dimensional, and perhaps
extensive in the sense that the number of modes (or basis functions) needed to
describe it is proportional to (or at least increases with) the system size [79].

In order to provide a quantitative characterization of the chaotic state, the
square root of the variance σN of N (t) as well as the first moment f1 of its power
spectrum were determined as a funtion of R. As R increased, it turned out that
the chaotic state was entered with a discontinuous jump of σN from zero, and
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that f1 was finite at onset. With increasing R, f1 followed a powerlaw over the
two decades 1 < ε < 200, with an exponent close to 2/3. To this day I am not
aware of a theoretical explanation of these interesting quantitative experimental
results. It is also noteworthy that these experiments [68, 69] represent one of
the very early examples of computer control of experiments with automated
data acquisition [80]. Without this automation it would not have been possible
to obtain the results. Similarly, the use for the analysis of experimental results
of fast Fourier-transform techniques, that were still relatively new, was a novel
feature of this work.

Also still unexplained is the fact that the system remains in the chaotic SV-
unstable regime, instead of reducing its wavenumber so as to enter once more
a regime of stable rolls that is known to exist for smaller k [64]. This latter
phenomenon occurs in the one-dimensional case of a narrow rectangular cell
where the SV instability leads to the expulsion of a roll pair and a consequent
reduction of the wavenumber. Presumably the is the result of an as yet unknown
wavenumber selection process in the two-dimensional system with circular side
walls that forces the pattern to remain in the unstable regime. Another feature
of the data that was surprising at the time is that the chaos in this system
was not preceded by periodic and/or quasi-periodic states that were considered
typical of low-dimensional chaotic systems [72]. The absence of these states is
consistent, however, with the crossing of an instability boundary that suddenly
moves the system into a regime of high-dimensional chaos.

4.4.2 Spiral-Defect Chaos

In spite of its provocative early results and numerous experimental advantages
[70, 71], the cryogenic work on STC had its limitations because it did not per-
mit flow visualization. Modern experiments on RBC near ambient temperatures
have used the shadowgraph method [19, 20] to visualize the temperature field
associated with the convection. Recent experiments on RBC in compressed gases
with Prandtl numbers σ close to one led to the discovery [26] that a chaotic state
called “spiral–defect chaos” (SDC) is entered at modest ε when Γ is large. An
example of a shadowgraph image of SDC is shown in Figure 4.12a. SDC consists
of many small spirals, targets, and other defects in the roll structure. The defects
have a modest lifetime and drift about irregularly, and new ones are constantly
created as old ones disappear. The spirals coexist with regions of more or less
straight rolls. For the ε value of Figure 4.12 a these regions have a width of only
a few wavelengths; but near the onset of SDC, and particularly for very large
aspect ratiocells [81], the straight-roll regions can become quite large. By now
the SDC state has been studied in other experiments that are too numerous to
list at this point. A recent review of much of this work and numerous references
may be found in [24]. SDC also has been found in numerical solutions of model
equations [82, 83] and of the Boussinesq equations [84]. Here I mention only one
interesting aspect of this state. Figure 4.12b shows the azimuthal average of the
structure factor S(k) (square of the modulus of the Fourier transform) of SDC
images. S(k) can be used to compute the mean wavenumber k̄. Results for k̄ are
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shown as a function of ε in Figure 4.12c. One can see that all the results for k̄ lie
well within the range where straight rolls are also known to be stable [67, 64].
Thus we arrive at the interesting conclusion that SDC is not caused by a bulk
instability of the straight-roll patterns as apparently was the case in the smaller
aspect ratio cryogenic experiments. Instead there is bistability of SDC and the
usual roll state, that is, over a wide parameter range straight rolls (a fixed point)
as well as SDC (a chaotic attractor) are stable solutions of the equations of mo-
tion of the system. For Prandtl numbers close to or less than one it turns out
that the initial and boundary conditions of typical experiments fall within the
attractor basin of SDC, and that rolls without spirals are rarely observed for ε
greater than some onset value εs [85].

A quantitative understanding of SDC has not been achieved so far. The
problem is very difficult because the chaotic state evolves from a ground state
that is already extremely complex (see, e.g., the upper left image of Figure 4.10).
However, some insight into the dynamics of this state has been gained. Is seems
likely that mean-flow fields play a significant role [86, 24, 87]. A central feature
of the dynamics seems to be the competition between two wavenumber selection
processes [83]. The spiral tip selects one wavenumber, and the far field that is
dominated by a number of different defect types selects another. The resulting
wavenumber gradient orthogonal to the spiral arms leads to outward traveling
waves surrounding the spiral tips that are equivalent to spiral rotation.

Fig. 4.12. Spiral–defect chaos. (a) Shadowgraph image for Γ = 78, σ = 0.96, and
ε = 0.72. (b) Structure factor S(k) of images like that in (a), but for ε = 0.46 (vertical
dotted lines are stability boundaries of straight rolls). (c) k̄ as a function of ε (solid
lines are the Eckhaus and skewed-varicose instability of straight rolls; horizontal bars
are the widths of S(k)). After [26].

4.5 Effect of Rotation

4.5.1 Domain Chaos

As mentioned in the introduction, RBC becomes even more complex and in-
teresting when the sample is rotated about a vertical axis. In that case, the
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Coriolis force must be added to the equation of motion (the centrifugal force
usually is neglected because to lowest order it is balanced by a pressure gradient
sustained by the side wall). The result is that, for Ω > Ωc, the rolls that form
above onset are unstable to plane-wave perturbations with a wavedirector that
has a characteristic angle ΘKL relative to the roll wave director. For σ ≥ 0.33,
the bifurcation is expected to be supercritical both below and above Ωc. Thus
the KL instability offers a rare opportunity to study STC in a system where the
average flow amplitude evolves continuously from zero and where weakly nonlin-
ear theories are expected to be applicable. After receiving only limited attention
for several decades [29, 30, 31, 32, 88, 89, 90], the opportunity to study STC
has led to a recent increase in activity both theoretically and experimentally
[20, 33, 34, 91, 92, 93, 94, 95, 96, 97]. Indeed, as predicted theoretically [29], the
straight rolls at the onset of convection for Ω > Ωc are found to be unstable. In
the spatially extended system this leads to the coexistance of domains of rolls
of more or less uniform orientation with other domains of a different orientation
[32, 88]. A typical example is shown in Figure 4.13b. The replacement of a given
domain of rolls proceeded primarily via domain-wall propagation. More recently
the KL instability was investigated with shadowgraph flow-visualization very
close to onset. It was demonstrated that the bifurcation is indeed supercriti-
cal, and that the instability leads to a continuous domain switching through a
mechanism of domain-wall propagation also at small ε [98, 33, 99, 34]. This qual-
itative feature has been reproduced by Tu and Cross [93] in numerical solutions
of appropriate coupled Ginzburg–Landau (GL) equations, as well as by Neufeld
et al. [95] and Cross et al. [96] through numerical integration of a generalized
Swift–Hohenberg (SH) equation. There is, however, also a contribution to the
dynamics from nucleation of dislocation pairs via the KL mechanism [100].

(a) (c) (b) 

Fig. 4.13. Convection patterns for small ε. (a) is for Ω = 0 and Ar gas with σ = 0.69
and ε = 0.07 (from [37]). It shows the predicted [38] straight-roll pattern. (b) is for
Ω = 15.4 and CO2 at a pressure of 32 bar with σ = 1.0 and ε = 0.05 (from [33]). It is
a typical pattern in the Küppers–Lortz unstable range. (c) is for argon at 40 bar with
σ = 0.7, Ω = 145, and ε = 0.04 (from [35]); it shows no evidence of the Küppers–Lortz
instability, and instead consists of a slowly rotating square lattice.

Central features of the KL STC are the time and length scales of the
chaotic state near onset. The GL model assumes implicitly a characteristic time-
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Fig. 4.14. The characteristic frequencies ωa (left) and lengths ξ (right) of the KL
state. The data were divided by Ω-dependent constants ωr and ξr so as to collapse
them onto single curves. The dashed lines are shown for reference and have the slopes
1 for ωa and −1/2 for ξ that correspond to the theoretically expected exponents of
the time and length scales near onset. The data sets cover approximately the range
14 ≤ Ω ≤ 20. See [33, 99, 34] for details. .

dependence that varies as ε−1 and a correlation length that varies as ε−1/2.
Measurements of a correlation length given by the inverse width of the square of
the modulus of the Fourier transform as well as a domain-switching frequency
as revealed in Fourier space yielded the data in Figure 4.14 [33, 99]. These re-
sults seem to be inconsistent with GL equations because they show that the
time in the experiment scales approximately as ε−1/2 and that the two-point
correlation length scales approximately as ε−1/4. These results also differ from
numerical results based on a generalized SH equation [96] although the range of
ε in the numerical work is rather limited. We regard the disagreement between
experiment and theory as a major problem in our understanding of STC.

4.5.2 Square Patterns at Modest σ

Motivated by the unexpected scaling of length and time with ε for the KL state
at Ω ≤ 20, new investigations were undertaken recently in which the range of Ω
was significantly extended to larger values. Contrary to theoretical predictions
[31, 39, 101] based on Galerkin procedures and on the stability of appropriate
coupled GL equations, it was found [35] that for Ω ≥ 70 the nature of the pattern
near onset changed qualitatively although the bifurcation remained supercritical.
Square patterns like the one shown in Figure 4.13c were stable, instead of typ-
ical KL patterns like the one in Figure 4.13b. The squares occurred both when
argon with σ = 0.69 was used and when the fluid was water with σ � 5. They
were observed as well in He-Xe gas mixtures with σ � 0.5 [102]. For some para-
meter ranges the lattice was quite disordered; but the fourfold nearest-neighbor
coordination remained. The occurrence of squares in this system is completely
unexpected and not predicted by theory; the KL instability should continue to
be found near onset also at these higher values of Ω. Thus the experiments have
uncovered a qualitative disagreement with theoretical predictions in a parame-
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ter range where one might have expected the theory to be reliable. Interestingly,
very recent direct numerical simulations based on the Boussinesq equations have
reproduced the square patterns near onset [24].

A further interesting aspect of the square patterns is that the lattice rotates
slowly relative to the rotating frame of the apparatus. This was found in the
experiments with argon and water [35] as well as in the simulation [24]. Mea-
surements of the angular rotation rate ω of the lattice for the water experiment
are consistent with ω(ε) vanishing as ε goes to zero. Thus the experimental results
do not necessarily imply that the bifurcation to squares is a Hopf bifurcation.
Quite possibly, as the aspect ratio of the cell diverges, the slope of ω(ε) vanishes
because an infinitely extended lattice cannot rotate. Alternatively, of course, the
lattice might become unstable as Γ becomes large. It would be interesting to
study the Γ dependence of ω experimentally. To my knowledge there is as yet
no theoretical explanation of this rotation.

4.5.3 The Range 0.16 < σ < 0.7

When a RBC system is rotated about a vertical axis, the critical Rayleigh number
Rc(Ω) increases. Rc(Ω) is predicted to be independent of σ, and experiment [99]
and theory [1] for it are in excellent agreement as shown in Figure 4.15a. For
σ > 0.33, the bifurcation is expected to be supercritical and to lead to KL chaos
unless Ω is quite large. As discussed above in Section 4.5.2, recent experiments
have shown that this is not the case; for Ω ≥ 70 square patterns were found
that are unrelated to the typical KL domains. For large Ω and σ < 0.68, the
stationary bifurcation is predicted [39] to be preceded by a supercritical Hopf
bifurcation; but for σ > 0.33 experiments have not yet reached values of Ω
sufficiently high to encounter time-periodic patterns.

The experimentally accessible range 0.16 ≤ σ ≤ 0.33 is truly remarkable
because of the richness of the bifurcation phenomena that occur there when the
system is rotated. For instance, for σ = 0.26 there is a range from Ω � 16 to 190
over which the bifurcation is predicted to be subcritical. This is shown by the
dashed section of the curve in Figure 4.15c. The subcritical range depends on
σ. In Figure 4.15b it covers the area below the dashed curve. Thus, the dashed
curve is a line of tricritical bifurcations. It has a maximum in the Ω − σ plane,
terminating in a “tricritical endpoint”. An analysis of the bifurcation phenomena
that occur near it in terms of Landau equations may turn out to be interest-
ing. One may expect path-renormalization [103] of the classical exponents in the
vicinity of the maximum. We are not aware of equivalent phenomena in equi-
librium phase transitions, although presumably they exist in as yet unexplored
parameter ranges.

At relatively large Ω, the stationary bifurcation (regardless of whether it is
super- or sub-critical) is predicted to be preceded by a supercritical Hopf bifurca-
tion that is expected to lead to standing waves of convection rolls [39]. Standing
waves are relatively rare; usually a Hopf bifurcation in a spatially extended sys-
tem leads to traveling waves. An example is shown by the dash-dotted line near
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Fig. 4.15. The bifurcation diagram for RBC with rotation about a vertical axis.
(a) Experimental and theoretical results for Rc(Ω) obtained with water (open circles)
and Ar at three different pressures (triangles) on linear scales. After [35]. (b) The
theoretically predicted bifurcation diagram for RBC with rotation about a vertical axis.
The dashed curve gives the tricritical line. The dash-dotted line is the codimension-two
line where the Hopf bifurcation meets the stationary bifurcation (e.g., the solid circle
in (c)). For σ = 0.24 the codimension-two line intersects the tricritical line, leading to
the codimension-three point shown as an open circle in (c). The upper dotted line in
(b) corresponds to the path represented in (c). The lower dotted line in (b) represents
the lowest σ-value accessible to experiment using gas mixtures. (c) Bifurcation lines
for σ = 0.26. The dashed line shows the range over which the stationary bifurcation is
subcritical. The two plusses are the tricritical points. The dash-dotted line at large Ω
shows the Hopf bifurcation. From [40].

the right edge of Figure 4.13b. As can be seen there, the Hopf bifurcation ter-
minates at small Ω at a codimension-two point on the stationary bifurcation
that, depending on σ, can be super- or subcritical. The line of codimension-two
points is shown in Figure 4.15b as a dash-dotted line. One sees that the tricritical
line and the codimension-two line meet at a codimension-three point, located at
Ω � 270 and σ � 0.24. We note that this is well within the parameter range
accessible to experiments. We are not aware of any experimentally accessible
examples of codimension-three points. This particular case should be accessible
to analysis by weakly nonlinear theories, and a theoretical description in terms
of GL equations would be extremely interesting and could be compared with
experimental measurements.

The σ-range of interest is readily accessible to us by using mixtures of a
heavy and a light gas [38]. Values of σ versus the mole fraction x of the heavy
component for a typical pressure of 22 bar and at 25◦C are shown in Figure 4.4.
An important question in this relation is whether the mixtures will behave in
the same way as pure fluids with the same σ. We believe that to a good ap-
proximation this is the case because the Lewis numbers are of order one. This
means that heat diffusion and mass diffusion occur on similar time scales. In that
case, the concentration gradient will simply contribute to the buoyancyforce in
synchrony with the thermally induced density gradient, and thus the critical
Rayleigh number will be reduced. Scaling bifurcation lines by Rc(Ψ) (Ψ is the
separation ratio of the mixture) will mostly account for the mixture effect. To
a limited extent we showed already that this is the case [37, 38]. In more recent
work we have begun to show that the bifurcation line Rc(Ω)/Rc(0) is indepen-
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Fig. 4.16. The Prandtl number σ as a function of the mole fraction x of the heavy
component for three gas mixtures at a pressure of 22 bar and at 25◦C. From [38].

dent of Ψ . Nonetheless we recognize that a theoretical investigation of this issue
will be very important.

Assuming that the mixtures behave approximately like pure fluids, we see
that the codimension-three point can be reached using either H2–Xe or He–Xe
mixtures. The tricritical point can be reached also using He–SF6.

4.6 Conclusion

In these few pages, it has been possible to touch only on a few of the interesting
aspects of RBC. Some others are discussed in Chapter 3; but even collectively
these two contributions do not constitute a thorough review of the field. Nonethe-
less it is clear that a century of research since the original work of Henri Bénard
on this conceptually simple system has strongly advanced our understanding of
spatially extended nonlinear dissipative systems. However, much remains to be
done. For example, the study of external noise on the system is in its infancy. We
believe that the bifurcation to RBC becomes subcritical in the presence of noise,
but the influence of noise on the “ordered” state (i.e., the convection rolls) has
been examined only qualitatively. It also is apparent that there are a number
of unsolved problems. Although we have learned a lot from studies of SDC and
domain chaos, the general nature of STC is not understood at a quantitative
level. Important issues are whether a description in terms of general principles,
perhaps analogous to those of equilibrium statistical mechanics, is on the hori-
zon [104]. We also saw that there are several specific issues on which theory and
experiment conflict. These include the characteristic length and time scales of
domain chaos and the occurrence at onset of square patterns in the presence of
rotation. It will be interesting for future generations of physicists to see what
the next century will bring.
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5 Rayleigh–Bénard Convection as a Model of a
Nonlinear System: A Personal View

Yves Pomeau
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24 Rue Lhomond, 75231 Paris Cedex 05, France

Summary. This is a (personal) review of work done on Rayleigh–Bénard instability,
seen primarily as a model system generating periodic structures in space as more or
less parallel convection rolls. This nonequilibrium crystallography was and still is a rich
source of inspiration, as I show.

Over the years Rayleigh–Bénard convection has been a major theme of research
in nonequilibrium science, both because it is a great experimental model, partic-
ularly in the hands of skilled experimentalists such as Pierre Bergé and Monique
Dubois, and because the theory follows amplitude equations with a rather sim-
ple structure, at least near the onset of instability. This chapter reports work
done mostly with Paul Manneville whose collaboration over the years has been
invaluable.

Some could complain that this field is too far from the overimportant “appli-
cations”, something that is not completely true: with Loulergue and Manneville
years ago we invented a visualization device of infrared radiation, surprisingly
sensitive [1], based upon the distortions of the surface of a convecting liquid
due to the Marangoni effect (the one actually observed by Bénard). Of course
this device is not competitive with solid-state devices, but who knows what will
happen in the future? The sensitivity of this device is such that it shows well
the temperature differences across a living human face.

My research on Rayleigh–Bénard instability started, rather curiously, with
the writing of a review article [2]. Therein, I tried to understand the topic a
little better, which was not easy. At the time there were two antagonistic schools
studying thermal convection. One claimed that the roll pattern should be linked
to the geometry of the box. This geometrical influence explained everything,
except for the observed wavelength increase as the temperature difference got
larger (more on that later). The other school neglected completely the geometry
of the box and claimed that everything was explainable in terms of secondary
instability of the roll pattern, as a function of the wavelength. Another theme
was the possible existence of secondary transitions in the dependence of the heat
flux with respect to the temperature difference. Of course, with a large enough
spreading of the experimental results it is possible to find all sorts of bents and
transitions in experimental curves!

Unfortunately, all this deflected attention from more serious topics, such as
the actual transition from stationary to time-dependent convection, something
that was looked at by the Saclay group only much later.



96 Yves Pomeau

The first research on convection patterns (I refer here to the so-called large
boxes, forgetting anything related to the now classical dynamical systems with
a few degrees of freedom, for which one can consult [3] or [4]) tried to under-
stand the possible instabilities of a system of parallel rolls, following an analysis
inspired by the classical derivation of the equations of solid-state mechanics by
Cauchy, resting on the symmetries of the system. Paul Manneville and I found
the two modes of (space) phase diffusion of a pattern of parallel rolls: diffusion
parallel and perpendicular to the rolls. The parallel phase equation describes
how parallel rolls tend to have a constant wavelength when slightly displaced
from their exactly periodic positions, although perpendicular diffusion describes
the relaxation of slightly bent rolls. One interesting idea was that the wavelength
of marginal stability for perpendicular diffusion should play a special role: a re-
sult of Landau [5] on the elasticity of smectic liquid crystals points in the same
direction. This analysis was supported by the magnificent experiments of the
Saclay group [6] that showed the validity of the amplitude equation approach,
from which a particular limit of the phase equation follows at once. This for-
bade consideration of the wavelength for which D⊥ vanish to be the observed
optimal wavelength (the elastic buckling studied in [7] is special: there is an
underlying optimization principle and therefore an optimal wavelength for given
supercritical conditions). Therefore the question of what determines in practice
the optimal wavelength above threshold was still open, given the full interval
of possible wavelength for a pattern in an infinite system. A first answer, a bit
unexpected [8], was that this wavelength is severely constrained if the vertical
boundaries do not conduct heat. This result rests on the existence of a conserved
quantity perpendicular to the roll direction, which could be interpreted as a con-
stant pressure in a mechanical system. This explains in particular that all rolls
should have the same wavelength in a steady state. However, this does not ex-
plain the observation of an unique wavelength above threshold. The explanation
of this required two steps.

We did show first [9] that the wavelength of an axisymmetric structure is the
one that cancels D⊥: to remain steady bent rolls have to have no tendency to
straighten or bend, which implies that D⊥ = 0. This rational approach to the
problem was free of any unproved principle of optimization, as the much-used
maximization of the heat flux.

This showed too the relevance of geometrical effects: a single supercritical
wavenumber could be shown, but for slightly bent rolls only. This led us to look
at other geometries, including finite box effects and various distortions to exactly
straight rolls.

In this respect, a relatively recent contribution is worth mentionning [10]: let
us imagine a set of rolls such that the outer one is forced to follow an ellipse drawn
by the boundary of a box. The rolls inside the container draw near the external
boundary a set of curves parallel to the ellipse (these are fourth-order algebraic
curves), the distance between two consecutive rolls being half a wavelength. The
geometry is of course very reminiscent of a problem of geometrical optics: each
roll can be seen as a wave surface, distant from the other surface by a wavelength.
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It is well known in general that such a geometrical pattern (an idea of Huygens)
leads to caustics, that is to the fact that more than one wave surface passes
through a given point. For the linear wave equation, that more than one wave
surface crosses a point only implies that one must add the contribution of each
wave, except near the caustics where diffraction must be taken into account.

The case of nonlinear waves, such as the Rayleigh–Bénard rolls, is obviously
different, inasmuch as a linear superposition of a different solution does not
yield a new solution. The consequence is a rather curious phenomenon from the
point of view of the theory of defects in continuous media: the Huygens cusp is
replaced there by the end of a grain boundary. This grain boundary is at the
merging of two domains where the rolls have different orientations. The jump
of orientation across the grain boundary is a function of the distance along this
boundary that vanishes at the cusp of the Huygens construction (that is, at
a point of convergence of two caustics in geometrical optics). Thanks to this
grain boundary, and as expected, only one roll orientation exists everywhere,
except precisely near grain boundaries. There, an interesting nonlinear equation
replaces the (linear) diffraction problem solved by the Pearcey integral near the
Huygens cusp.

Another research theme was the one of slowly varying parameters [11]: this
was in some sense a systematic exploration of the various linear wave problems
to see what happens in the nonlinear case. There we tried to build up what could
be called a nonlinear WKB theory of the Bénard rolls. I review this question, re-
ferring the interested reader to the original publication. One tries to understand
what happens when the Rayleigh–Bénard rolls are set up in a medium with
properties changing slowly in space. More precisely the properties of the system
change little over one wavelength, but can change of order 1 over large distances
(which forbids using a regular perturbation scheme). For the Rayleigh–Bénard
instability this is an academic problem, but it is the usual situation in struc-
tures observed in nonlinear optics where the strength of the pump field changes
(usually) continuously from the center to the edge of the beam. The published
work is about the one–dimensional case, which I recall first. Then I present a few
ideas about the more general case of rolls in a medium with parameters slowly
changing both parallel and perpendicular to the rolls. To analyze this kind of
situation, one assumes that locally the rolls are given by a solution of the full
equation, with the value of the control parameter constant and equal to its local
value. Therefore the amplitude and wavelength of the rolls are functions of the
local conditions, summarized in the slow dependence with respect to x of the
control parameter ε. In an unbounded medium with a constant ε a continuum
of solutions exists, parameterized by the wavelength Λ, their amplitude being a
function A0(Λ, ε;x). The argument x in A0 is to recall that this solution depends
“fastly” on the position x, practically with the wavelength Λ, much shorter than
the typical range of ε:

Λ

ε

dε

dx
� 1 (5.1)
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Assuming ε constant, this function A0 is a solution of the primitive equations
of the field (Oberbeck–Boussinesq equations for the Rayleigh–Bénard instabil-
ity). Following the general ideas of the adiabatic method, one looks for a solution
by expansion in the small parameter, the gradient of ε, near the solution A0, ex-
actly valid for ε constant only. At first-order one finds a solvability condition
coming from the fact that the zeroth-order solution has a free continuous pa-
rameter, the wavelength. A small variation of this wavelength keeps the system
in the range of possible solutions, that generates a zero mode of the linearized
problem. The solvability condition that results from this relates practically the
slow variations of the wavelength and of ε. This solvability condition reads:

D(ε, Ψx)
dΨx

dx
+ C(ε, Ψx)

dε

dx
= 0 (5.2)

In Equation (5.2), I introduced Ψ , the spatial phase of the roll system. The
derivative Ψx = dΨ/dx is the local wavenumber of the roll system. Both this
wavenumber and ε are in the argument of the quantities C and D, the two coef-
ficients in the linear first-order Equation (5.2). Notice that Ψx = 2π/Λ replaces
the wavelength Λ in the argument of the functions.

Whenever the system is uniform in space, that is, when ε is independent of
x, Equation (5.2) reduces to the longitudinal part of the phase equation [12] in
the steady case. Therefore it is not too difficult, at least in principle, to extend
the analysis to the 2-D case, that is, to systems with ε changing both parallel
and perpendicular to the rolls. The idea is to base this on the extension of the
regular phase equation to include both parallel and perpendicular diffusion. It is
enough to replace the first term in Equation (5.2) by the full diffusion equation
(with parallel and perpendicular diffusion). This steady diffusion equation reads:

D//
∂2Ψ

∂x2
+D⊥

∂2Ψ

∂y2
= 0

x being the local coordinate perpendicular to the roll axis, and y the one parallel
to it. To write this phase diffusion term in an intrinsic way, one replaces the
derivation operator ∂/∂x by n.∇, where n = ∇Ψ/√(∇Ψ)2, ∇ being the usual
vector of coordinates ∂/∂X, ∂/∂Y in an arbitrary (but fixed) set of rectangular
coordinates (X,Y ). Similarly the operator ∂/∂y becomes ∇− n(n.∇). Whence
the adiabatic equation for Ψ in a slowly changing medium:

D//(ε,n.∇Ψ)(n.∇)2Ψ +D⊥(ε,n.∇Ψ) (∇− n(n.∇))2 Ψ
+ C(ε,n.∇Ψ)(n.∇)ε = 0 (5.3)

Of course, this assumes that one can uniformly define the phase Ψ , which is not
possible anymore if certain types of defects are present in the roll system. Let
us notice, however, that the grain boundary of [10] is compatible with a uniform
continuous phase, but with a singular gradient.

This brings me to the defects in roll structures. Actually these defects have
the same topology as defects in layered liquid crystals, as smectics. In roll sys-
tems one may build a dynamical theory of defects far more detailed than for real
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liquid crystals because the underlying equation, Oberbeck–Boussinesq far from
the onset of instability and amplitude equations near threshold, is well known.
The vanishing of the diffusion coefficient D⊥ brings a considerable complexity
to the analysis, as well as the possibility of large-scale flows. For instance, the
distortion of the phase near a dislocation cannot be derived from a linear equa-
tion, including in the far field [13]. Another interesting issue is the non adiabatic
coupling between the fast phase and the slow variation of the external parameter
[14]. The grain boundaries are free of this difficulty [15]. Their analysis brings in
an interesting result, namely, that the rolls have a typical healing length much
shorter along their axis than across it. This has remarkable consequences: it ex-
plains that in experiments without outside forcing of the structure, rolls tend
to cross the lateral boundary at right angles [8, 16]. Therefore, the equilibrium
structures in large boxes usually have defects inside.

Actually, all these theories concerned near-threshold situations, or at least not
too far from threshold. A first step to go away from this is to look at discontin-
uous transitions, so common in real shear flows, for instance. Besides numerical
simulations, one possible way of approaching this type of transition theoretically
is to take inspiration from simple mathematical models to understand the phe-
nomenology, and try afterwards, if possible, to see if the initial model is not too
simple and to derive from this new ideas. The simple relaxational model [17] I
had imagined allows us at least to understand early observations by Reynolds
himself, that do not seem to have attracted much attention, despite their rather
spectacular character. The transition to a turbulent state in this kind of model
takes place when the turbulent state invades the laminar state, as observed in
pipe flows. The transition is defined by the value of the parameter such that
the speed of expansion becomes positive. I had predicted too that, near this
transition, the turbulent fluctuations “renormalize” the exponents to their value
for the directed percolation, an assumption that seems to work rather well in
many cases. The same theory explains the formation of turbulent spirals in a
Taylor–Couette flow in a subcritical regime [18], where the growth of the turbu-
lent domain brings down the Reynolds number to its “equilibrium” value where
the growth stops.

Another prediction specific to non variational models, such as the Navier–
Stokes equations, is the possibility of stable localized structures [19] (such types
of structures exist as well in variational systems, but they are always unsta-
ble there, by an argument of Gibbs). This had been pointed out first by Boris
Malomed [20].

Of course, fluid mechanics tries first and foremost to understand what deter-
mines the structure of a given flow, given the various forces, such as buoyancy,
viscous stresses, inertia, etc. An interesting bifurcation in this set of researches
has been the consideration of the so-called passive scalar problems: one assumes
a frozen (= time-independent) flow and looks at the behavior of a particle that is
convected and that diffuses by Brownian motion. The interesting limit is one of
a large Péclet number, where the small molecular diffusion is a singular pertur-
bation. A first result there is that the effective molecular diffusion coefficient is
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the geometric average of the molecular and turbulent diffusion coefficients [21].
I have always thought that this result could be of practical interest for systems
where one needs to increase the contrast between the molecular diffusion coef-
ficients of different molecules to separate them physically. A nice application of
the same ideas explained the experiments of Blaise Simon [21]: he observed im-
purities settling at the bottom of upward-moving separatrices in a cellular flow.
Another application of the same kind of idea is to the case of reaction-diffusion
equations in frozen cellular flows, a healthy exercise in boundary layer methods
[22].

As a last example of this line of developments, I mention the application of
these ideas to elasticity problems, quite outside of Bénard interests for sure! For
a rather long time it has been known that a flat plate under in-plane pressure
buckles out of its plane. If it is long and narrow, the buckling pattern is periodic,
very much like the flow field in a system of Rayleigh–Bénard rolls. A first work on
this topic [7] had put in evidence the selection of the bifurcated structure by side
effects. This had raised my interest for elasticity problems, especially for what
I call for lack of better naming, the von Kármán problem. This is essentially
the question of finding the buckling pattern far above threshold. This question
makes sense in elasticity theory, not in fluid mechanics: there turbulence sets
in far above threshold and one is brought back to the (unsolved) problem of
turbulence at very large Rayleigh number.

By contrast the elasticity problem, at least in its Hookean limit, follows
from a variational principle and makes what one calls a well-posed problem.
Almost twenty years had been necessary, as well as the crucial help of Sergio
Rica, to solve the von Kármán problem [23]. For large stresses the structure
tends to a pattern that is made at large scale of a set of accordion folds. To
accomodate the lateral boundary conditions, these folds break into smaller folds
near the lateral edges of the plate, and in smaller and smaller folds until they
reach a scale where the bending effects take over (in a sense these bending
effects introduce the thickness of the plate as a relevant parameter). This was
partly inspired by a classical work of Landau on the real ferromagnets where
the magnetic domains merge with the surface by forming a cascade of domains
to minimize the magnetostatic energy. An interesting new idea in this field is
that the minimization should bring in a Cantor-like structure, because there is
a choice made locally at every step of the cascade. Moreover, it brings some
light too to the effect of the real boundaries, that could have some relevance for
turbulent flows, a domain where, as far as I can see, current understanding is
still poor.

To conclude, many, if not most of the ideas I just reviewed were born of many
discussions with many colleagues. In the first place I put Pierre Bergé whose loss
has been so painful to our community of scientists.
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6 Bénard Convection and
Geophysical Applications

Friedrich H. Busse

Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

Some typical relationships between experimental and theoretical studies of
Rayleigh–Bénard convection and convection phenomena observed in geophys-
ical and astrophysical systems are discussed. Because of the vast range of the
subject only a few examples are described in a qualitative manner. Convection
in planetary cores and its dynamo action receives special attention.

6.1 Introduction

The regular cellular fluid flows of Bénard convection have long been considered
a peculiar phenomenon without more general relevance. As can still be read in
older books (see, for instance, [1]) Bénard cells were regarded as an interesting
curiosity, but without relationship to fundamental questions such as the tran-
sition to turbulence in fluid systems. The transition to complex flows such as
turbulence was viewed as a stochastic process and it was not even generally ac-
cepted that the Navier–Stokes equations are capable of describing this process.
Beginning in the 1960s in the last century this view changed entirely. The tran-
sition from the static basic state to Bénard cells is now regarded as the primary
example for the transition from simple to more complex states of fluid flow, and
the direct transitions to turbulent states observed in pipe or channel flows must
now be considered as special cases due to their complex subcritical bifurcation
structures. Because in the Rayleigh–Bénard problem the onset of convection oc-
curs in the form of supercritical or only weakly subcritical bifurcations, the flow
is laminar and the breaking of the symmetry of the basic state is not associated
with the onset of time dependence and random behavior. This property can also
be observed in higher transitions, and steady cellular type flows can be realized
in experiments up to 500 times the critical value of the Rayleigh number [2]. It
is thus not surprising that Rayleigh–Bénard convection has become the primary
example for the study of sequences of bifurcations in nonlinear fluid dynam-
ics. Here and in the following we refer to Rayleigh–Bénard convection whenever
thermal buoyancy is the primary source of mechanical energy. As is well known
[3], Bénard originally did not realize that the temperature dependence of surface
tension was the origin of the cellular motion that he observed. Surface-tension-
driven flows are now referred to as Bénard–Marangoni convection.

The large family of Rayleigh–Bénard systems and its extensions have been
indicated in Figure 6.1. Only systems that are essentially isotropic in the hor-
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Fig. 6.1. Rayleigh–Bénard convection and its extensions to fluid systems that are
nearly isotropic in two dimensions.

izontal plane have been included. Many more systems exhibit similar scenarios
of supercritical onset of convection and sequences of bifurcations, but include
a preferred direction such as that of a shear flow superimposed on the convec-
tion layer or in the case of an inclined convection layer. The Taylor–Couette
system (see, e.g., the review of DiPrima and Swinney [4], or the contribution of
Prigent et al. Chapter 13 in this volume) should also be mentioned in this con-
nection, inasmuch as, it is another well-known system that exhibits sequences of
bifurcations and a delayed onset of turbulence.

Among the examples listed in Figure 6.1 quite a few are related to geophys-
ical phenomena and geophysical and astrophysical observations have often pro-
vided the motivation for research on Rayleigh–Bénard convection. Bénard and
his students were well aware that cumulus clouds represent a convection phe-
nomenon and in laboratory experiments they demonstrated that cloud streets
arise from the alignment of convection rolls with shear of a mean wind [5, 6].
These experiments were among the first of a long sequence of laboratory studies
of dynamical phenomena occurring in the atmosphere which continue to this day.
The fact that a close relationship exists between cellular structures realized in
a laboratory experiment and those observed in a highly turbulent system such
as the atmosphere is rather surprising, especially for scientists brought up on
the view that turbulence is just a random process that can be studied only with
statistical tools. Convection cells in the Earth’s atmosphere and on the sun are
particularly striking examples for coherent structures in turbulent systems and
support the notion that in a first approximation the effects of turbulence can be
taken into account in the form of an appropriate eddy viscosity.
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In the following we first briefly survey geophysical and astrophysical convec-
tion phenomena in Section 6.2 and then return in Section 6.3 to some exemplary
cases to be considered in detail. A particular subject of current intense research
is the generation of magnetic fields by convection in planetary cores and in stars
which is discussed in Section 6.4. The chapter concludes with an outlook on
future research.

6.2 Convection in Geophysical and Astrophysical Systems

6.2.1 Thermal Convection in the Atmosphere

Convection cells occur when a horizontal fluid layer of thickness d is heated
from below and the density difference between upper and lower parts becomes
sufficiently strong such that the potential energy gained by overturning motion
can overcome the losses due to thermal and viscous dissipation.

Fig. 6.2. Cloud bands caused by convection rolls that form when cold oceanic air
moves over heated land.
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This requirement is expressed mathematically in the form

R ≥ Rc with R ≡ α(T2 − T1)gd3

νκ
, (6.1)

where α is the coefficient of thermal expansion, T2 and T1 are the temperatures at
the lower and upper boundaries of the fluid layer, g is the acceleration of gravity,
and ν and κ are the kinematic viscosity and the thermal diffusivity of the fluid,
respectively. Besides the dimensionless parameter R, called the Rayleigh number,
an additional parameter, the Prandtl number P , is necessary to characterize the
properties of the fluid layer. P denotes the ratio ν/κ and enters the description
of convection usually only in the case of finite amplitude convection beyond the
critical value Rc of R. Rc assumes the value 1708 when rigid boundaries with
fixed temperatures are used.

Observations of convection cells should be a common experience of daily life
inasmuch as fluids are heated from below in pots or pans and in puddles of water
in the streets that are cooled from above by evaporation. But these motions are
not easily discerned and some method of visualization must be employed. Bénard
[7] used fine graphite powder, which he sprinkled on the surface of a layer of
molten spermaceti which he heated from below. Convection in the atmosphere
is easily visible when clouds are present. As the moist air in the rising part
of motion cools on its way up, water droplets appear owing to condensation
and clouds are formed. Here and in other cases where the hydrostatic pressure
varies significantly between the top and bottom of the convection layer it is
important to identify T2 − T1 in expression (6.1) with the superadiabatic part
of the temperature distribution. Otherwise the atmosphere would always be
convectively unstable according to criterion (1) because the temperature drops
by 6◦C per kilometer height on average. Because a parcel of air is cooled by
expansion on its way up, it can keep its buoyancy only if the surrounding air
is even cooler, that is, if the temperature gradient exceeds the adiabatic one
in absolute values. Figure 6.2 shows typical convection rolls in the atmosphere
made visible by clouds. Even the dislocation generated when two pairs of rolls
are joined into a single pair can be seen just in the same way as in a laboratory
experiment (see, e.g., [8, 9]).

Since the advent of satellite observations, the highly regular structure of
large-scale convection phenomena has become apparent. Cells of a typical di-
ameter of 30 km are made visible by the cloud patterns as seen, for example,
in Figure 6.3. These structures are known as mesoscale convection in the me-
teorological literature and have been the subject of intense research during the
past decades. For a recent review we refer to Atkinson and Zhang [10]. Although
there is little doubt that mesoscale convection is caused by thermal buoyancy,
the large horizontal extent of the cells that exceeds the height of the partici-
pating atmospheric layer by a factor of 20 or more is still not well understood.
Another interesting feature of mesoscale convection is the property that “open”
and “closed” cells can be distinguished. When the air in the middle of the cells
is descending, the water droplets tend to evaporate and the sky becomes clear or
“open”. The reverse situation occurs in closed cells. A similar distinction has long
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Fig. 6.3. Mesoscale convection visualized by cloud patterns with open and closed cells
photographed by the crew of the Shuttle Endeavour.

been observed in laboratory experiments where rising motions in the center of
the hexagonal cells are usually observed when convection occurs in liquids and
the opposite direction is found in convecting gases. These findings have been
attributed to the opposite temperature dependence of the viscosity in liquids
and in gases [11]. Experiments of V. Tippelskirch [12] on convection in molten
sulphur, which reverses the temperature dependence of its viscosity, confirmed
this interpretation. It should be kept in mind that material properties other
than viscosity have a similar influence through their dependence on the temper-
ature [13], but the temperature dependence of viscosity is usually the strongest.
Through the choice of the flow direction such that the viscosity is lowest where
the motion of highest strain occurs, namely, in the center of the hexagonal cell,
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a state of minimal dissipation at given amplitude of convection is achieved. This
interpretation is confirmed by the stability analysis for the competing hexagonal
patterns [13].

Different temperature dependences of material properties are not likely to
explain the preference for open or closed cells in mesoscale convection in the
atmosphere, inasmuch as both types of cells are often observed together. In this
connection the observations by Assenheimer and Steinberg [14] of coexisting up-
flow and downflow hexagons in a fluid with nearly constant material properties
are of interest. Indeed, a theoretical analysis of the stability of hexagonal con-
vection patterns has confirmed that both types of hexagonal convection become
stable in the experimentally relevant regime of Rayleigh–Bénard numbers of the
order of 104 [15]. This result indicates that the direction of motion in hexagonal
convection cells is not always a good indicator of properties of the fluid and may
sometimes just depend on initial conditions.

6.2.2 Some Remarks on Mantle Convection

Thermal convection is a ubiquitous source of motion in all fluid geophysical sys-
tems besides the atmosphere such as lakes and oceans or the liquid outer core
of the Earth. But even in the mantle of the Earth which is usually regarded
as solid because it transmits shear waves, slowly moving convection flows are
of fundamental importance because they break up continents and form moun-
tain ranges. The plate tectonic “revolution” in the geosciences around 1960 has
validated the early hypothesis that the continents are moving [16] and that the
mantle is convecting [17] and has led to extensive investigations of large-scale
flows in the Earth beneath our feet. If the mantle would convect like a laboratory
fluid layer heated from below, steady convection cells may be expected because
the Prandtl number is huge, P ≈ 1022. The analogue of hexagonal cells would
look like the patterns shown in Figure 6.4, depending on the radius ratio of the
participating mantle layer. Because the lighter continents cannot be subducted
into the mantle in contrast to the heavier, basaltic oceanic crust, the boundary
conditions for mantle convection differ strongly from those in the usual labora-
tory experiments. Phase transitions of the mantle material at depths of 400 km
and of 660 km also influence the dynamics of the mantle such that a strongly
time-dependent process results. It has to be kept in mind, of course, that the
typical time scale of mantle convection is counted in hundreds of millions of
years and that the continuing cooling of the Earth prevents the attainment of a
steady state anyhow.

There is considerable evidence from seismic tomography [20, 21] that a mode
of the quadrupolar form l = 2 such as that shown in the upper left corner of
Figure 6.4 dominates in mantle convection. The axis of this mode is not aligned
with the axis of rotation of the Earth as one might expect because of the equa-
torial bulge of the Earth. Instead the axis lies in the equatorial plane. It turns
out that the equatorial bulge of the Earth has little effect on mantle convection.
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Fig. 6.4. Preferred convection patterns in spherically symmetric fluid shells. The pat-
terns correspond to the degrees l = 2, 4 (upper row) and l = 3, 6 of the spherical
harmonics [18, 19].

It adjusts itself relatively quickly to the instantaneous axis of rotation. On the
contrary, it is the quadrupolar (l = 2) component of mantle convection that
determines the position of the axis of rotation. Because the latter coincides in
the time average with the axis of maximum moment of inertia and this in turn
is most strongly influenced by the dynamical effects of the quadrupolar compo-
nent of convection, the axis of rotation orients itself perpendicular to the axis
of the quadrupolar mode [22]. This feature is reflected in the corresponding de-
viations of the geoid and of the gravitational potential of the Earth from their
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axisymmetric forms and also in the property of the predominantly north–south
extension of the Atlantic and Pacific ocean basins.

These latter properties have long puzzled geophysicists because the Coriolis
force cannot have any effect on mantle convection because of the high viscosity
μ of the order of 1022Pa s. The corresponding dimensionless parameter τ , also
called the Coriolis number, is defined by τ = 2Ωd2�/μ, where Ω is the angular
velocity of the Earth, d is the thickness of the mantle, and � is its average
density which is roughly 5 ·103kg m−3. Based on these values τ ≈ 10−10 is found
which clearly indicates that only through the effect of the l = 2 convection
component on the moment of inertia of the Earth can a connection between
mantle convection and the axis of rotation be established.

There are many more aspects of mantle convection that can be related to
Bénard cells, such as the influence of varying viscosity or the influence of internal
heat sources of the fluid. We refer to the monographs by Peltier [23] and Schubert
et al. [24] where the subject of mantle convection is treated in detail.

6.2.3 Solar Convection

The granular appearance of the solar surface was already noticed by the British
astronomer William Herschel in 1801, but it was not associated with thermal
convection at that time. A hundred years later much more detailed observations
of the solar photosphere had become available and a connection between solar
granulation and thermal convection was discussed. Soon after he had published
his first observations, Henri Bénard was made aware of the similarity between
the convection patterns he had seen and the solar granulation photographed
by Janssen [25, 6]. The interpretation of the solar granulation as a convection
phenomenon was confirmed by theoretical considerations in the 1930s when it
became evident that the heat transport in the outer part of the sun could not
be carried solely by radiation and that the photosphere is indeed unstable with
respect to convective instabilities.

Today four separate scales of solar convection are distinguished. Convection
cells corresponding to the solar granulation have typical diameters of up to 2000
km and are highly time dependent such that their typical lifetimes are only about
5 minutes. A photograph of solar granulation is shown in Figure 6.5 which also
shows a sunspot. Convection is suppressed by the strong vertical magnetic field
in the dark umbra of the sunspot. In the surrounding penumbra, convection
rolls aligned with the horizontal component of the magnetic field are visible.
Mesoscale convection corresponding to cells with a diameter of 5000 to 104 km
have been identified only rather recently through observations of Doppler shifts
of photospheric spectral lines. The lifetimes of mesoscale cells may be as long as
a few hours. Supergranular cells can also be noticed through Doppler shifts of
spectral lines. But in contrast to the vertical component of the velocity observed
in the case of mesoscale cells, supergranulation is best seen through the Doppler
shifts caused by the horizontal component of the velocity field on the sun. The
size of supergranular cells is about 3·104 km and their lifetimes are of the order of
one day. All of these three types of convection have in common that the cells are
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Fig. 6.5. Photograph of solar granulation near a sunspot (from T. Rim-
mele/NSO/AURA/NSF).

polygonal and that the gas rises in the center, moves outward, and descends at
the rim of the cells. There is less observational evidence available for convection
in the form of giant cells that are supposed to extend throughout the entire
solar convection zone and thus correspond to a size between 105 and 2 · 105 km.
Because of their large size and their expected lifetime on the order of the period
of solar rotation, giant cells will assume the form of “banana” cells elongated in
the direction of the axis of rotation [26]. We return to the effects of rotation in
Section 6.3.

Convection at the surface of the sun represents the most turbulent system
accessible to direct observations. It is thus rather surprising that fairly discrete
scales should characterize this system rather than a broad spectrum of wavenum-
bers. A first theoretical attempt at an explanation of the discrete scale was made
by Simon and Weiss [27], but mesoscale convection was not known at that time.
The depths at which hydrogen and helium become ionized play a role. But it
should be kept in mind that turbulent convection transports heat most effec-
tively if it is done on discrete scales. Perhaps the solar convection zone exhibits
the discrete scales differing by about a factor of four which are predicted for an
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idealized vector field optimizing the heat transport at an asymptotically high
Rayleigh number [28].

6.3 Convection in Rapidly Rotating Fluid Spheres

The problem of convection in rotating spherical fluid shells is a fundamental
dynamical problem in geophysics and astrophysics. Many properties of celestial
bodies such as the magnetic fields of the Earth and other planets and of stars
or the band structures observed on the major planets depend on the dynamics
of convection in the interior of these systems. Moreover, it is important to know
about the heat transport in these systems in order to understand their evolution
in time. Not surprisingly, an extensive literature has been devoted to convection
in rotating spherical systems and we touch here only upon some basic features.

Fig. 6.6. Sketch of convection columns in an internally heated rapidly rotating, self-
gravitating fluid sphere.

Because the Coriolis force is the dominating force in the equations of motion
relative to the rotating frame of reference it can be balanced only by the pressure
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gradient unless one is considering motions in the form of inertial waves. But the
latter are rather inefficient in transporting heat and become preferred at onset
of convection only at very low Prandtl numbers. The balance between Coriolis
force and pressure gradient,

2Ω × �v ≈ −∇p, (6.2)

where Ω is the angular velocity vector of rotation and � is the density, also applies
to the atmosphere and has been christened “geostrophic balance” by meteorol-
ogists. A consequence of relationship (6.2) is the Proudman–Taylor theorem,

Ω · ∇�v ≈ 0, (6.3)

which is obtained after the curl of (6.2) is taken and the equation of continuity
in the form ∇ · �v = 0 is used. Equation (6.3) states that the momentum vector
�v must not depend on the coordinate in the direction of the axis of rotation
when the geostrophic balance is valid. Of course, in a three-dimensional world
velocity fields cannot obey the theorem in general. The boundary conditions
in a rotating spherical fluid shell alone prevent the exact validity of property
(6.3). But there is a tendency of the realized convection modes to approach this
property as is evident from the sketch of the asymptotic form of convection in a
rotating, internally heated fluid sphere as shown in Figure 6.6.

To understand the dynamics of convection in rotating spheres in more detail
it is convenient to consider the model of the rotating cylindrical annulus. As
sketched in Figure 6.7 the annular configuration with conical end surfaces can
be regarded as a cylindrical cut from the sphere including the region occupied by
the convection flow in Figure 6.6. Starting with a velocity field that is geostrophic
in first approximation

v = ∇ψ(x, y, t) × k + . . . , (6.4)

we obtain the following equation for the z-component of the vorticity, k ·∇×v =
−Δ2ψ,

∂

∂t
Δ2ψ + v · ∇Δ2ψ + τk · ∇v · k = −RΔ2Θ + ∇2Δ2ψ, (6.5)

whereΔ2 is the two-dimensional Laplacian,Δ2 = ∂2/∂x2+∂2/∂y2. We have used
dimensionless variables in Equations (6.4) and (6.5) based on the gap width D,
the time scaleD2/ν, and temperature scale T2−T1. Here ν denotes the kinematic
viscosity of the fluid, and T1 and T2 are the temperatures kept fixed at the
inner and outer cylindrical boundary of the annulus, respectively. A Cartesian
coordinate system x, y, z has been introduced with x in the radial direction, y
in the azimuthal direction, and z in the direction of the axis of rotation parallel
to the unit vector k because we are assuming the small gap approximation. We
also use the Boussinesq approximation in which the temperature dependence
� = �0[1−α(T2 −T1)(x/D+Θ)] of the density is taken into account only in the
gravity term and all material properties are regarded as constants otherwise.
In applications to convection in planetary cores, gravity would point radially
inward and T1 would exceed T2. But in laboratory realizations of the problem
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Fig. 6.7. Geometrical configuration of the rotating cylindrical annulus.

centrifugal force is used as effective gravity, g = Ω2r0, where r0 is the mean
radius of the annulus, and the temperature gradient must be reversed, T1 < T2.
Because only the product of gravity and applied temperature gradient enters,
the two cases are mathematically identical. We have written Equation (6.5) for
the laboratory case such that the Rayleigh number R given by (6.1) is positive.

Because the velocity field (6.4) is z-independent in first approximation, all
terms in Equation (6.4) are reproduced when it is averaged over z except for the
term proportional to τ = 2ΩD2/ν. Because of the z-derivative this term can be
replaced by

2τ
D

L
tgχ

∂ψ

∂y
≡ η

∂ψ

∂y
(6.6)

after the boundary condition

vx sinχ± vz cosχ = 0 at z =
1
2
L

D
(6.7)

at the conical top and bottom boundaries has been used. Of course, the angle χ
must be small, such that the assumption of a small nongeostrophic component
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of the velocity field v is justified. Indeed, in the limit χ → 0 the velocity field
is entirely geostrophic if no viscous stresses are exerted by the upper and lower
boundaries. In the presence of rigid boundaries, Ekman layers are formed that
give rise to a small z-component vz of v of the order τ−1/2 [29].

We have assumed that the deviation Θ of the temperature field from the
basic state of pure conduction is also independent of z. This property is satisfied
if the thermal conductivity of the conical boundaries is low compared to that of
the fluid. Θ thus obeys the equation

P

(
∂

∂t
+

∂

∂y
ψ
∂

∂x
− ∂

∂x
ψ
∂

∂y

)
Θ −Δ2Θ =

∂

∂y
ψ. (6.8)

This equation together with Equation (6.5), which can now be written in the
form (

∂

∂t
+

∂

∂y
ψ
∂

∂x
− ∂

∂x
ψ
∂

∂y
−Δ2

)
Δ2ψ − η

∂

∂y
ψ = R

∂

∂y
Θ, (6.9)

can be easily solved in the case when stress-free conditions can be assumed at
the cylindrical walls, x = ±1

2 , and when the amplitude of convection is suf-
ficiently small such that nonlinear terms can be neglected. Using the ansatz
ψ,Θ ∼ sinnπ(x + 1

2 ) exp{i(qy + ωt)} and using Equation (8a) to eliminate Θ
from Equation (8b) we obtain an algebraic equation, the real and imaginary
parts of which determine the values of ω and R for which a solution with given
q exists:

ω =
−ηq

(1 + P )[((nπ)2 + q2]
, R =

[(nπ)2 + q2]3

q2
+

2η2
p

(nπ)2 + q2
(6.10)

where the definition ηp ≡ √
2Pη(1 + P )−1 has been used.

The result (6.10) indicates that convection columns propagate as do Rossby
waves in the prograde (retrograde) direction when the height of the gap decreases
(increases) with increasing distance from the axis of rotation. Because of this
property this kind of convection has been called “ thermal Rossby waves.” In
the limit η = 0 the relationship for Rayleigh–Bénard convection is recovered in
which case it is well known that the mode with n = 1 corresponds to the lowest
value of R and thus describes the onset of convection. This property also holds
for finite values of η. But as the limit of large η is approached, the minimizing
Rayleigh number becomes independent of n in first approximation,

qc = η1/3
p (1 − 7

12
(nπ)2η−2/3

p + . . .), ωc = −
√

2P−1η2/3
p (1 − 5

12
(nπ)2η−3/2

p + . . .)

Rc = η4/3
p (3 + (nπ)2η−2/3

p + . . .). (6.11)

The property that the radial structure is of secondary importance has important
consequences:

(1) The nature of the cylindrical boundaries has little influence on the thermal
Rossby waves. This is the main reason that the annulus model can be applied
to the spherical case where the cylindrical boundaries are absent.
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Fig. 6.8. Influence of curved conical boundaries on convection columns. In the convex
case (a), the columns tend to spiral outward in the prograde direction creating thereby
a differential rotation as indicated. The opposite situation is found in the concave case
(b).

(2) Modes corresponding to different values of n compete at supercritical Rayleigh
numbers which leads to bifurcations from the state of simple thermal Rossby
waves.

An exact solution of equations (6.8, 6.9) is no longer possible when the coni-
cal boundaries are curved as shown in Figures 6.8a,b. The x- and y-dependences
are no longer separable if the parameter η is replaced by a function of x, say
η = η0(1 + εx). In the case of a convex boundary as in Figure 6.8a, we must
expect that the convection phase increases radially outward because the thermal
Rossby waves tend to propagate faster in the outer part than in the inner part of
the gap. The opposite situation occurs in the case of concave boundary (ε < 0)
as shown in Figure 6.8b. The most important consequence of the resulting tilt
of the convection columns is that an angular momentum transport is induced
owing to the Reynolds stress vxvy where the bar indicates the y-average. As a
consequence a differential rotation is generated as indicated in Figure 6.8a and
b. The two kinds of differential rotation with opposite signs have indeed been
observed in laboratory experiments [30].
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Fig. 6.9. The mean flow instability leading to either outward (a) or inward (b) trans-
port of prograde angular momentum.

There is another process that also causes differential rotation and which ap-
pears to be even more important in geophysical and astrophysical applications
of the theory. The mean flow instability of thermal Rossby waves causes a spon-
taneous tilt of the thermal Rossby waves as indicated in Figures 6.9a and 6.9b.
Because the differential rotation generated by the tilt tends to reinforce the
latter, an exponential growth of the instability occurs until a new equilibrium
is reached with asymmetric convection columns that are either stronger in the
inner or in the outer part of the gap. Both signs of the instability are equally
likely in the absence of curvature of the conical boundaries. But because the
spherical case is characterized by a convex curvature we expect that in this case
an equatorial acceleration will occur as is indeed observed.

The mean flow instability [31, 32] basically results from property (6.2) men-
tioned above. A perturbation with a sin 2π(x+ 1

2 )-dependence grows and yields
a Reynolds stress of positive or negative sign depending on the phase of the
perturbation relative to the stationary Rossby wave. With increasing Rayleigh
number, the differential rotation tends to grow even faster than the amplitude
A of convection because the Reynolds stress is proportional to A2. In the case
of spherical convection this leads to the phenomenon of “ localized convection”
where the convection columns are sheared off in the major part of the spherical
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Fig. 6.10. Regular (a) and localized turbulent convection (b) in a rotating spherical
fluid shell with τ = 104. Dark and light surfaces correspond to a fixed value of the radial
component of the velocity with positive and negative sign, respectively. Rayleigh and
Prandtl numbers are R = 3.8 · 105, P = 10 (a) and R = 7 · 105, P = 1 (b).

shell as indicated in Figure 6.10b. Only in a smaller part convection still occurs
and continues to drive the differential rotation. For further details see Grote and
Busse [33].

At even higher Rayleigh number values this delicate balance between the dif-
ferential rotation and convection is no longer possible and relaxation oscillations
set in. Once a strong differential rotation has been generated it shears off the
convection columns and convection dies. But without convection the differential
rotation can no longer be sustained and must decay owing to viscous dissipation.
As soon as the differential rotation has decayed sufficiently, convection columns
start to grow again and a sharp growth of the differential rotation occurs almost
simultaneously. As a result, the cycle thus repeats itself as illustrated in Fig-
ures 6.11 and b. It is remarkable how regular the relaxation oscillations occur
inasmuch as at this high Rayleigh number convection has long become turbulent.

6.4 Convection-Driven Dynamos in Spherical Fluid Shells

The generation of planetary and stellar magnetic fields by convection flows in
the electrically conducting fluid interiors of these celestial bodies is one of the
most fascinating subjects of geophysics and astrophysics. Since Larmor [34] pro-
posed the dynamo process as an explanation for the intense magnetic fields
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Fig. 6.11. (a) Relaxation oscillations of turbulent convection in the case τ = 1.5 · 104,
R = 1.2 · 106, P = 0.5. The dotted, dashed, and solid lines indicate the energies of the
differential rotation and of the toroidal and poloidal components of the nonaxisymmet-
ric convection columns as a function of time (for details, see [33]).

observed in sunspots, the induction of magnetic fields by motion in an elec-
trically conducting fluid has become an flourishing field of research. During
the first half of the twentieth century the dynamo process of the generation
of magnetic fields in simply connected regions of essentially uniform electrical
conductivity still appeared doubtful, because it seemed unlikely to many physi-
cists that an electromotive force could be generated by fluid flows without a
short-circuiting within the electrically conducting domain. Indeed, Cowling [35]
proved in 1934 that axisymmetric magnetic fields could not be generated by
the dynamo process. Through the dynamo models created by Backus [36] and
Herzenberg [37], however, it was demonstrated in a mathematically convincing
manner that the dynamo process is feasible.

Although in earlier work on dynamo theory attention was focused on the
kinematic dynamo problem which is concerned with the possibility of a growth
of a magnetic field in the presence of an arbitrarily chosen solenoidal vector field
as velocity field, it became evident that planetary and stellar dynamos can be
understood only if physically feasible velocity fields are used. The problem of
convection in planetary cores and in stars must thus be solved first, because
flows driven by thermal or chemical buoyancy are the most likely energy source
for the magnetic field. The onset of dynamo action can then be considered as an
instability which in contrast to the usual hydrodynamic instabilities exhibits the
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Fig. 6.11. (b) Time series of plots (left to right in first row, then second row with
Δt = 0.02) for the case of (a). The upper part shows lines of constant mean azimuthal
velocity ūϕ in the left half and streamlines of meridional circulation in the right half of
the circles. The lower part shows streamlines of convection columns in the equatorial
plane.
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Fig. 6.12. Transition from a dynamo convection state to a relaxation oscillation state
in the case τ = 1.5 · 104, R = 1.2 · 106, P = 0.5, Pm = 0.5. Magnetic energy (multiplied
by 7.5, dashed line), energy of differential rotation (dotted line), and Nusselt number
(solid line) are plotted in dependence on time t.

property that a new physical quantity, namely, the magnetic field, is associated
with it. The usual methods developed for the analysis of bifurcating solutions
in hydrodynamic problems can thus also be applied in dynamo theory; see, for
example, Childress and Soward [38], Soward [39], or Busse [40, 41]. For more re-
alistic simulations of convection-driven dynamos in rotating spherical fluid shells
numerical methods must be used such as the pseudo-spectral method described
by Glatzmaier [42]. For recent reviews of this rapidly expanding field of plane-
tary and stellar dynamos and for the geodynamo in particular we refer to the
articles by Busse [43], Dormy et al. [44], Fearn [45], and Roberts and Glatzmaier
[46].

A typical demonstration of the interaction of convection in a rotating spher-
ical shell and the magnetic field is shown in Figure 6.12. Because the dynamo
process could be sustained only marginally by convection in this particular case,
the chaotic dynamo decays after a while and convection returns to the state of
relaxation oscillations that was described in the preceding section. We thus see
the energy balances of convection in both states, with dynamo action and with-
out any significant magnetic field. In the former state the differential rotation
is suppressed through the braking effect of the Lorentz force. The amplitude of
convection is thus relatively high and the heat transport as measured by the
Nusselt number exceeds that realized in the absence of a magnetic field by an
order of magnitude. This type of interaction must be distinguished from the re-
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Fig. 6.13. Oscillating dipolar dynamo for τ = 5 · 103, R = 6 · 105, P = Pm = 5. The
time sequences of plots (from top to bottom with Δt = 0.08) show lines of constant
azimuthally averaged magnetic field component B̄ϕ in the left halves of the circles. In
the right halves meridional field lines are shown. The plots on the right show lines of
constant radial component Br at r = ri + 1.3d where ri is the inner radius and d is
the thickness of the shell. The plots cover roughly one period of the oscillations of the
chaotic dynamo convection state.
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duction of the critical Rayleigh number for onset of convection by an imposed
magnetic field which was found by Chandrasekar [47] for a rotating plane layer
and by Fearn [48] for a rotating sphere. A reduction of the critical Rayleigh
number for caused by the dynamo process has not yet been found.

Another interesting feature of convection-driven dynamos in rotating fluid
shells is the fact that the dynamo process may occur in an oscillatory fashion
outside the cylindrical surface touching the inner core at the equator, whereas the
field remains stationary in the polar regions inside this surface. Figure 6.13 shows
an example for this property obtained in recent dynamo simulations of Simitev
and Busse [49]. Because the magnetic field observed at the Earth’s surface mainly
reflects properties of the dynamo process in the high-latitude regions of the outer
core, it is thus conceivable that the geodynamo includes an oscillatory process
that is not evident from paleomagnetic measurement. Only occasionally it may
lead to a reversal of the entire geomagnetic field.

6.5 Concluding Remarks

The framework of this brief survey of the role played by convection processes in
geophysics and astrophysics is much too restricted to do justice to this flourish-
ing and growing field of research. The few examples discussed in the preceding
sections should simply demonstrate that the visions of Bénard and his cowork-
ers about the relevance of simple laboratory convection experiments to a broad
range of geophysical and astrophysical phenomena are still with us today. Lab-
oratory experiments and simple theoretical models continue to stimulate much
of today’s fluid dynamical studies in geophysics and astrophysics in spite of the
increasing role played by large-scale computer simulations. The solar dynamo,
the unusual dynamos of Neptune and Uranus and last but not least the geody-
namo are still not fully understood. In the Earth’s core the interplay of thermal
buoyancy and of chemical buoyancy generated by light elements left in solution
by the crystallizing inner core has received little attention. There are thus many
reasons that the investigations of convection processes will occupy geophysicists
and astrophysicists for a long time in the future.
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Provided here are predictions concerning overstability and the onset of oscillatory
motions leading to transverse capillary–gravity waves or longitudinal (dilational)
waves due to the Marangoni effect in a Bénard layer heated from the air side
above or subject to the ad/absorption of a relatively light component hence
leading to an apparently stably stratified state.

7.1 Introduction

The onset of Bénard convection and the evolution of Bénard cells when heating
a shallow from the bottom of the liquid side below, driven by surface tension
gradients and the Marangoni effect, have been intensively studied in the past
decade, at least for moderate values of the thermal gradient. Two recent mono-
graphs [1, 2] and a review paper [3] provide detailed information about the
present understanding of the problem. It remains, however, to study the evolu-
tion of the flow pattern when the thermal gradient takes high values, and hence
the corresponding Marangoni (Péclet) number grows large. This is the realm of
dissipative interfacial turbulence where inertia, although needed, plays a much
less significant role than in Reynolds–Kolmogorov turbulence (which is a nonlin-
ear problem where dissipation becomes significant only at the end of the energy
transfer cascade when little vortices are killed by viscosity). Particularly interest-
ing for dissipative interfacial turbulence is the case of liquids with high values of
the Prandtl number where the velocity field is slaved (vanishing usual Reynolds
number) by the temperature field and where the tangential boundary condition
with the Marangoni effect provides the velocity scale and the energy input to
the system. I wonder if, due to the fact that dissipation plays such a significant
role, a cascade from short to large scales appears as the latter dissipate less.

Another interesting problem, much less studied than steady cellular Bénard
convection is the onset of overstability eventually leading to wave motion driven
by the same Marangoni effect but when the liquid layer is heated from above. Al-
though recent monographs and various papers touch upon the problem, our un-
derstanding is still fragmentary [2, 4, 5, 6, 7, 8]. For the commemorative purposes
of the Bénard centennial and to attract the interest of experimentalists, I recount
here a few salient features of this problem dealing, in the simplest possible and
physically appealing way, with threshold values and instability mechanisms.
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When the equilibrium surface of a liquid layer open to ambient air is dis-
turbed, the interface behaves as does a membrane; it gets deformed and conse-
quently forces tending to return it to the original equilibrium state appear in
the liquid. Capillary forces (surface tension) tend to reduce the increased surface
and, if the liquid is in a gravitational field, gravitational forces tend to return
the interface to its original equipotential level shape. However, because of inertia
the liquid particles may overshoot their original equilibrium position (overstabil-
ity). As a consequence transverse waves may appear at the air–liquid interface
(capillary–gravity waves). Viscosity tends to damp these waves. For a frequency
of oscillation Ω and kinematic viscosity ν, the viscous penetration length of the
wave is of order (Ω/ν)1/2.

Generally, for high enough frequencies, Ω � ν/d2, the (viscous) wave pene-
tration depth is rather small with respect to the layer depth d, and viscosity can
be neglected in the bulk away from the interface. Accordingly, capillary–gravity
waves are directly controlled by stresses orthogonal to the interface and they can
be described, to a first –albeit significant– approximation using inviscid liquid
theory. Their dispersion relation is expected to depend on both surface tension
and gravitational acceleration, and indeed density. Note, however, that if a spon-
taneous fluctuation misaligns the surface deformation relative to the isotherms,
the Marangoni effect may help to bring the surface back to its equilibrium–
level position or, otherwise, depending on the sign of the thermal gradient, may
sustain the disturbance.

There is another possible wave disturbance, with motion mostly longitudinal
along the interface, and hence directly controlled by the tangential stresses as
discussed by Lucassen [9]. However, he only considered damped motions and
said nothing about a possible instability allowing the compression–expansion like
waves to be sustained. Its existence is not surprising if surfactants are present
and one takes the analogy between a monolayer–covered surface and an elastic
membrane. Compression–expansion motions are possible eventually leading to
interfacial waves whose dispersion relation is not related to surface tension but
rather to its variation along the interface. These waves are not affected by the
gravitational field and the associated motion is also expected to penetrate little
in the bulk of the liquid. The variation of the surface tension along the interface
brings into play the Marangoni effect and hence whether there are surfactants
present is immaterial provided this effect is present. Such could be the case even
in incompressible liquids if there is heat transfer along or across the interface.

I show how, past an instability threshold, wave motion can be sustained and I
provide the corresponding oscillation frequency and critical Marangoni numbers
in terms of Prandtl, or Schmidt, Bond, Galileo, and capillary numbers (defined
below). For the sake of completeness, I first consider the case of heat transfer
leading to capillary–gravity waves. Then I proceed to a study of both transverse
and longitudinal waves when surfactants are present. Both heat and surfactant
transfer lead, for transverse motions, to exactly the same capillary–gravity waves.
The same procedure applies to longitudinal motions but I discuss only the case of
surfactants. On the other hand, to use a physically appealing picture, I identify
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the harmonic oscillator underlying either transverse or longitudinal motions,
thus making transparent the role of the Marangoni effect both in the elastic
spring constant and in the energy supply term needed to overcome damping in
the system.

7.2 Heat Transfer and Capillary–Gravity Waves
(Laplace–Kelvin Waves)

At an air–liquid interface, hence at the open surface of a heated liquid layer, as
in Bénard’s experiments, flow disturbances obey the Navier–Stokes equations,
that in the simplest (x, z) two-dimensional (2-D) geometry reduce to

∂w

∂t
= − 1

ρ

∂p

∂z
+ ν

(
∂2w

∂x2
+
∂2w

∂z2

)
, (7.1)

where, for simplicity, we restrict consideration to an infinitely extended hori-
zontal liquid layer; t and zdenote time and the vertical coordinate, and w, ρ
and p are vertical velocity, density, and pressure, respectively. As w is the liquid
velocity, the kinematic condition, w = ∂ξ/∂t, at every time instant t provides
a direct relationship between the velocity of a point at the geometrical surface
and that of a material liquid point. ξ (x, t) denotes the deformation of the inter-
face. Neglecting the mechanical influence of the ambient air (the dynamic shear
viscosity of air is, generally, much lower than for a liquid), at the interface the
normal and tangential components of the stress tensor are

p− ρ g ξ + σ
∂2ξ

∂x2
= 2 η

∂w

∂z
(7.2)

and

η

(
∂u

∂z
+
∂w

∂x

)
=

∂σ

∂T

(
∂T

∂x
− β

∂ξ

∂x

)
, (7.3)

where u is the corresponding horizontal velocity component, g is the gravita-
tional acceleration, σ is the surface tension, T denotes temperature, and β is the
temperature gradient imposed across the liquid layer (β is here taken positive
when the layer is heated from the liquid side below); η = ρν is the dynamic
shear viscosity. Equation (7.2) shows that I do take gravity into account; other-
wise the capillary length (defined below) diverges to infinity which is unphysical
and, moreover, does not suit my purposes here. However, I disregard buoyancy
in the bulk.

In the high-frequency limit, the bottom of the liquid layer can be considered
at “practical” infinity from the interface. Then the liquid depth d becomes useless
and a suitable scale is the capillary length obtained when the static Bond number
Bo = ρgl2

/
σ, is set equal to unity. Then using Equations (7.1)to (7.3), the heat

Fourier diffusion equation, and the kinematic condition, one obtains

d2ξ

dt2
+ k2K

dξ

dt
+ Lξ = 0, (7.4)
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where

K =
[
4ν − kβ

ρ

∂σ

∂T

( χ

2Ω3

)1/2
]
,

L =
{
gk +

σk3

ρ

[
1 +

β

σ

∂σ

∂T

( χ

2Ω

)1/2
] }

,

and I have assumed that

ξ = − A

Ω
cos (kx+Ωt) , (7.5)

and similar Fourier normal mode expressions for all other disturbances; χ is the
thermal diffusivity.

Equation (7.4) is the harmonic oscillator equation obeyed by a point at the
air–liquid interface. The damping coefficient may be positive, negative, or van-
ishing according to the sign and values given to β for given ∂σ/∂T . Using the
capillary length as unit, l = (σ/ρg)1/2, Equation (7.4) takes on a dimensionless,
universal form

d2ζ

dτ2
+ K̃

dζ

dτ
+ L̃ ζ = 0, (7.6)

where

K̃ =
[
4a2 +

M a3

(2Pr3 ω3)1/2

]

and

L̃ =
[
C a (Bo+ a2)

Pr
− M

a (2Pr3 ω3)1/2

]

with ζ = ξ/l, τ = tν
/
l2, a = lk, and ω = Ω

/
νk2. Three dimensionless groups

appear: the Marangoni number M = − (∂σ/∂T ) βl2
/
ηχ, the Prandtl number

Pr = ν/χ and the capillary number C = σ l/ηχ. The Bond number explicitly
shows the relative influence of surface tension to gravity. Further simplification
of Equation (7.6) can be achieved by redundantly restricting consideration to
the above–invoked high–frequency limit. We see that in order to have vanishing
damping it suffices to set M = 0

(
ω3/2

)
, with Pr = 0 (1). We can also set

C = 0
(
ω2

)
, which is a reasonable assumption provided we are far from a critical

point or if the liquid layer is not too shallow. Then the second term in the spring
constant, the coefficient of ζ, can be neglected and Equation (7.6) reduces to

d2ζ

dτ2
+

[
4a2 +

M a3

(2Pr3 ω3)1/2

]
dζ

dτ
+

[
C a (Bo+ a2)

Pr

]
ζ = 0, (7.7)

which is the simplest (high-frequency) harmonic oscillator approximation to the
oscillatory transverse interfacial motion of the open surface in a liquid layer.
It contains, however, all the relevant physics. Indeed, the damping coefficient
vanishes when I set

M = − 4
a

(
2

3

Prω3

)1/2

, (7.8)
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thus allowing a “free” oscillation of (dimensionless) frequency given by

ω2 =
C a(Bo + a2)

Pr
= G̃ a

(
1 +

a2

Bo

)
(7.9)

or else, in dimensional form,

Ω2 = gk +
σk3

ρ
, (7.10)

which is the dispersion relation for capillary–gravity waves in an infinitely deep
liquid layer (Laplace–Kelvin law). Note that C/Pr = G̃/Bo, Pr G̃ = G, thus
defining G and G̃. The dispersion relation, for a layer of finite depth, is ω2 =
G̃ a

(
1 + a2

/
Bo

)
tanh a.

It does appear that for an air–liquid interface the oscillatory instability is
to be expected for negative values of the Marangoni number only. For standard
liquids (∂σ/∂T < 0), this means that the heating is from the ambient air above
or the layer is cooled from the liquid bottom below. The minimum Marangoni
number needed to sustain the oscillatory motion is

Mac = −7.93 (CPr)3/4 (7.11)

with a frequency
ω2

c = 6
√

5C
/
Pr (7.12)

and a wave number
ac = 1/

√
5. (7.13)

These results have also been obtained using a formally different approach [10]
(see also [4] for a full list of references).

It seems interesting to see how temperature and surface deformation appear
in the wave motion. To do this, I need to recall the explicit forms of the Fourier
normal modes. Besides Equation (7.5) we have

u =
(
Aekz +Bemz

)
eikx+λt (7.14)

and

w = −i
(
Aekz +

kB

m
emz

)
eikx+ λt (7.15)

with m2 =
(
k2 +Ω/ν

)
; λ is the complex time constant or growth rate. Note

that I could have taken eλt or e−λt, according to convention. Then Reλ > 0
(alternatively, Reλ < 0) implies instability, Reλ = 0 denotes a neutrally sta-
ble case, and Imλ ≡ Ω denotes the frequency of overstable oscillatory motions.
On the other hand, Reλ < 0 (alternatively, Reλ > 0) implies (linear or local)
stability. Linear stability analyses provide sufficient conditions for instability or
necessary conditions for stability. A system may be linearly stable but unsta-
ble to finite amplitude disturbances (a case not considered here). The equation
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Imλ = 0 provides the dispersion relation between frequency and corresponding
wavenumber (or wavelength).

The complete expression of the mode (7.5) is

ξ = − i

λ

(
A +

kB

m

)
eikx + λt, (7.16)

according to the above indicated kinematic boundary condition at z = 0. Equa-
tion (7.5) provides the real part of (7.16). Then in the earlier-invoked high-
frequency approximation the boundary condition involving the Marangoni effect
(7.3) yields

B =
(

2
ω

)1/2

(3 + i)A + O(ω−1/2) (7.17)

that, as expected, shows that for transverse oscillations the rotational part is
negligible in comparison with the potential one in the Fourier normal mode
solutions.

From the velocity field, (7.14) and (7.15), it follows that the temperature
disturbance along the interface is

T (0) − β ξ =
Aβ

Ω3/2
χ1/2k sin(kx+Ωt +

π

4
). (7.18)

Comparison of (7.18) and (7.16) shows that temperature and interfacial defor-
mation are such that the extrema of the former disturbance do not sit on those
of the latter, that is, on the crests and troughs of the wave for the hottest and
coldest spots, respectively (Figure 7.1). Then wave propagation can be enhanced
or suppressed by the Marangoni effect, according to the sign of the temperature
gradient. When for a standard liquid, the heating is from the air side (β negative)
the Marangoni effect brings liquid from the hot point, located, for example, at
x = 5π/4, to the cold point at x = π/4. Such flow favors the motion assumed for
the wave, right to left. In the opposite case when for the same standard liquid
we heat from the liquid side or cool it from the air above (β positive) the hot
point is, for example, at x = π/4, whereas the cold point is at x = 5π/4.

Now the Marangoni flow rather pushes the interfacial disturbance to the
right, opposes the wave propagation and eventually suppresses it. Thus we have
seen that transverse vibrations, and hence capillary–gravity waves, at the open
surface of a liquid can be excited, and eventually sustained, by the Marangoni ef-
fect. Note that, by providing a sufficient condition for instability, an approximate
linear theory (done here for high–frequency motions) may very well overestimate
the experimental value of the threshold. In the description presented above I have
used the capillary length as a natural scale and hence the liquid layer was tacitly
taken of infinite depth but not quite, only in the sense that viscous effects were
appreciable only very near the open surface of the liquid. If the bottom of the
layer affects the open surface it is expected to play a stabilizing role hence low-
ering the above given threshold value. The asymptotics used is also very limited
in scope. Thus, to have a complete picture of overstability, with better quanti-
tative estimates of its characteristic quantities, a two–layer system with the full
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(a)

0 x x2x x2x0 x

(b)Hot

Cold Hot

Coldξ ξ

Fig. 7.1. Transverse waves. Schematic, and exaggerated, sketch of the phase shift
between temperature (7.18) disturbances (hot and cold spots only) and surface defor-
mation ξ (7.11), in a capillary–gravity wave moving right to left. (a) The liquid layer is
heated from the ambient air above (β < 0); (b) the heating is done from the liquid side
below (β > 0). For standard liquids the Marangoni effect acts according to the arrows
(flow from hot to cold regions), and hence favors flow disturbance in the former case
whereas it tends to suppress it in the latter.

thermohydrodynamic equations needs to be considered with full description of
boundaries and boundary layers at the solid bottom and at the open surface as
well. Noteworthy is the fact that when two liquid layers are considered in full,
waves may appear for either sign of the Marangoni number, depending on the
ratio of (kinematic) viscosities and heat diffusivities.

7.3 Surfactants and Interfacial Waves

7.3.1 Disturbance Equations

To make the presentation almost self-contained and to clarify the limitations
of the role of surfactant transport here considered, let me recall the evolution
equations obeyed by flow disturbances and surfactant concentration [11]. Again,
as in the heat transfer problem, for simplicity I consider a horizontally infinitely
extended two–dimensional (x, z) liquid layer with infinite depth. The motionless
undisturbed surface is located at z = 0. The equations that small disturbances
upon the quiescent state obey are

∇ · v = 0, (7.19)

ρ
∂v

∂t
= −∇p+ η∇2v, (7.20)

∂c

∂t
− βcw = D∇2c, (7.21)

where v = (u, w), p is the velocity pressure, c the surfactant concentration, ρ
the density of the liquid, D is the mass diffusivity, and βc = (∂c/∂z)0 denotes
the surfactant gradient at the quiescent state; all other symbols are as earlier



136 Manuel G. Velarde

defined. The disturbances obey the following (linearized) boundary conditions
at the deformable surface [12, 13]

∂ζ

∂t
= w, (7.22)

−T0∇2
αζ + gρζ − p− 2η

∂w

∂z
= 0, (7.23)(

∂T

∂Γ

)
0

∇αγ − η

(
∇αw +

∂u

∂z

)
= 0, (7.24)

∂γ

∂t
+ Γ0∇α ∗ uα −Dα∇2

αγ +D
∂c

∂z
= 0, (7.25)

γ = k1 (c− βcζ)α , (7.26)

where ζ is the surface deviation from the z = 0 level, Γ is the excess surfactant
concentration at the surface, the subscript 0 indicates a value in a reference state,
and γ is the disturbance on Γ0; note that here T is the surface tension, and the
subscript α accounts for either a value taken on the surface or a derivative along
the surface.

New units allow us to rescale the quantities in the equations. As in the
preceding analysis the capillary length l = (T0/ρg)

1/2 is chosen as the length
scale; ν/l, l2

/
ν, ν2ρ

/
l2, βcl, and Γ0 are used as units for velocity, time, pressure,

surfactant concentration and excess surface concentration, respectively. Thus,
Equations (7.15) to (7.22) become

∇ · v = 0, (7.27)

∂v

∂t
= −∇p+ ∇2v, (7.28)

∂c

∂t
− w = S−1∇2c (7.29)

with boundary conditions at z = ζ,

∂ζ

∂t
= w, (7.30)

− 1
SC

∇2
αζ +

Bo

SC
ζ − p− 2

∂w

∂z
= 0, (7.31)

HE

SHz
∇αγ +

(
∇αγ +

∂u

∂z

)
= 0, (7.32)

HS

(
∂γ

∂t
+ ∇α ∗ uα − S−1

α ∇−2
α γ

)
+
∂c

∂z
= 0, (7.33)

γ =
Hz

H
(c− ζ)α , (7.34)
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where expecting no confusion for the reader I have used the same notation
for t, v, p, c, γ, and ζ in these dimensionless equations, as in the di-
mensional case. The following dimensionless parameters have been introduced:
S = v/D is the Schmidt number; Sα = v/Dα is the surface Schmidt number;
C = lT0/ηD, now is the capillary number; Bo = ρgl2

/
T0 is the Bond number;

E = − (∂c/∂Γ )0 k
lβl2 (ηD) is the surfactant (elasticity) Marangoni number;

H = Γ
/(
βcl2

)
is the surface excess surfactant number; and Hz = kl

/
l denotes

the Langmuir adsorption number [12, 13, 14]. Then Equations (7.15)to (7.22)
have solutions like (7.14), (7.15), and so on,

w = (Aeaz +Bemz) eiax+λt, (7.35)

u = (iAeaz + imBemz) eiax+λt, (7.36)

p = −
(
λAeaz

a

)
eiax+λt, (7.37)

c =
(
A

λ
eaz +

SB

λ (S − l)
emz + Feqz

)
eiax+λt, (7.38)

where here a denotes the Fourier mode with m2 = a2 + λ, q2 = a2 + Sλ, and
Imλ = ω.

7.3.2 Transverse Capillary-Gravity Waves
(Laplace–Kelvin Waves)

Assuming, for further simplicity, that adsorption and surface accumulation have
a negligible effect on the transverse surface waves, the above-posed problem
reduces to

Ea2

S
(c− ζ) +

(
∂2

∂z2
+ a2

)
w = 0, (7.39)

∂c

∂z
= 0. (7.40)

As for the heat transfer problem, Equation (7.16) gives the evolution equation
of the liquid layer. It is valid in the volume as well as at the surface, a part of
the liquid. On the other hand, there is a kinematic relation (7.18) on the surface.
Then at z = ζ, we have

∂2ζ

∂t2
= −∂p

∂z
+ ∇2w. (7.41)

Noting that ∂p/∂z = ap, equation (7.41) becomes

∂2ζ

∂t2
+
Bo+ a2

SC
aζ = −2a

∂w

∂z
− 2a2w − Ea2

S
(c− ζ) . (7.42)

To proceed further, I need the coefficients A, B, and F . We have

B =
λf (Bo) + 2a

λf (Bo) − λ/a− 2p
A (7.43)
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with

f (Bo) =
Bo+ a2

SCλ2
+

1
a
. (7.44)

For transverse waves the Laplace–Kelvin equation f (Bo) = 0 (see also equation
(7.9) or (7.10)) defines the dispersion relation for capillary–gravity waves, and
as the interfacial disturbance penetrates little in the liquid, ω >> a2. Then from
Equation (7.31) it follows that

B ≈ −2a2

λ
A << A. (7.45)

Clearly, as for heat transfer, the potential part is the significant ingredient in the
velocity field, which is consistent with the fact that transverse waves do exist in
inviscid fluids. Taking advantage of this simplification, Equation (7.42) becomes

d2ζ

dt2
+
Bo+ a2

SC
aζ = −4a2 dz

dt
− Ea2

S
(c− ζ) . (7.46)

The coefficient F can be obtained from Equation (7.38):

F = −1
q

(
a

λ
A+

mS

λ (S − 1)
B

)
≈ − a

qλ
A, (7.47)

which leads to

c− ζ =
(
F +

B

λ (S − l)

)
eiax+λt ≈ −aA

qλ
eiax+λt ≈ a

dζ/dt− ωζ

ω
√

2Sω
. (7.48)

Thus, Equation (7.46) becomes

d2ζ

dt2
+

(
4a2 +

Ea3

Sω
√

2Sω

)
dζ
dt

+
(
aC

Bo+ a2

S
− Ea3

S
√

2Sω

)
ζ = 0, (7.49)

and assuming that E = 0
(
ω3/2

)
, C = 0

(
ω2

)
, and S = 0 (1), it follows that

C a(B + a2)
S

>>
E a3

S
√

2Sω
.

Therefore, Equation (7.49) can be reduced to

d2ζ

dt2
+

(
4a2 +

Ea3

Sω
√

2Sω

)
dζ
dt

+
Bo+ a2

SC
aζ = 0. (7.50)

Equation (7.50) describes the oscillatory motion of the surface and takes the
form of a harmonic oscillator. In the absence of dissipation and the Marangoni
effect, the equation appears as an ideal oscillator as potential motion is indeed
the main character of a transverse wave. At the neutral state,

E = − 4
(2S3ω3)1/2

a
, (7.51)
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quite the same as equation (7.8) for the heat transfer problem, save the change
P for S.

The kinetic energy dissipated by viscosity and that produced by surface ten-
sion work (Marangoni effect) just compensate each other, sustaining the oscilla-
tor. Thus, the oscillation frequency is given by the dispersion relation (7.9)

ω2 =
C a (Bo + a2)

S
. (7.52)

By taking dE [(a, ω (a))]/da = 0 , the necessary condition for minimum yields
the neutral curve, that is, the critical values for sustained transverse waves:

ET
c ≈ −7.93 (CS)3/4 , (7.53)

ωT 2

c = 6
√

5C/S, (7.54)

and
aT

c = 1
/√

5, (7.55)

which correspond, respectively, to (7.11), (7.12), and (7.13) in the heat transfer
problem. Thus it clearly appears that heat and mass transfer play a similar role
and hence do excite the same type of transverse capillary–gravity waves when
the Marangoni effect operates in the system.

7.3.3 Transverse Waves Not Obeying the Laplace Law

The numerical exploration of the problem posed in the preceding subsection
shows that there exists a mode of transverse oscillation that does not follow from
the Laplace–Kelvin equation f (Bo) = 0, and hence it cannot be considered as
a standard capillary–gravity wave. From Equation (7.42) follows that

∂2ζ

∂t2
+
Bo+ a2

SC
aζ = −2a2 ∂z

∂t
+ 2a

∂w

∂z
− Ea2

S
(c− ζ) . (7.56)

Then we have

∂w

∂z
=
f (Bo) (a−m) − 1

2m− 2a− λ/a
λ
∂ζ

∂t

=
a

λ

[
λ+ 2ma+ 2a2 + f (Bo) (m+ 1)λ

] ∂ζ
∂t
, (7.57)

c− ζ = − 1
qλ

λf (Bo)
(
a+ q−mS

S−1

)
− λ+ 2a q−m

S−1

2m− 2a− λ/a
∂ζ

∂t

=
a

qλ3
(m+ a)

[
λf (Bo)

(
a+

q −mS

S − 1

)
− λ+ 2a

q −m

S − 1

]
∂ζ

∂t
. (7.58)

Using these relations, Equation (7.56) becomes
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∂2ζ

∂t2
+
Bo+ a2

SC
aζ = −4a2

[
1 +

a (a+m)
λ

]
∂ζ

∂t

− 2af2 (Bo) (m+ a)
∂ζ

∂t
− Ea3

Sqλ3
(m+ a)2

×
[
λf (Bo)

(
a+

q −mS

S − 1

)
− λ+ 2a

q −m

S − 1

]
∂ζ

∂t
, (7.59)

where the high-frequency approximation ω >> a2 has been redundantly used.
This permits a simplified exploration of the problem and is still reasonable as we
search for transverse oscillatory modes that due to viscous damping penetrate
little in the liquid layer. Then Equation (7.59) becomes

∂2ζ

∂t2
+
Bo+ a2

SC
aζ −

√
2ω3/2a2f (Bo) ζ = −4a2 ∂ζ

∂t
−
√

2ωa2f (Bo)
∂z

∂t

+
Ea3

Sqλ

[
1 − f (Bo)

q − aS
√
λ

S − 1

]
∂ζ

∂t
. (7.60)

Needless to say, Equation (7.60) yields the harmonic equation for capillary–
gravity waves ( Laplace–Kelvin waves) when f (Bo = 0).

Now let us explore the case f (Bo �= 0) [14]. Consider the case of low Schmidt
numbers S << a2

/
ω. Then it follows that

d2ζ

dt2
+

[
4a2 −

(
Ea

2
− a2

√
2ω

)
f (Bo)

]
dζ
dt

+
(
Bo+ a2

SC
a− Ea2

S

)
ζ = 0. (7.61)

This equation once more describes a harmonic oscillator. As done earlier, I search
for the neutral state. When the damping factor, i.e., the coefficient of the first
derivative with respect to time vanishes, one has

Bo+ a2

SC
a− ω2 =

Ea2

S
, (7.62)

(
Ea

2
−
√

2ωa2

) (
1
a

Bo+ a2

SCω2

)
− 4a2 = 0. (7.63)

It follows that
E2 − 2a

√
2ωE + 8Sω2 = 0. (7.64)

There are two roots (both of them are positive):

E = a
√

2ω
(

1 ±
√

1 − 4Sω
/
a2

)
≈ a

√
2ω

(
1 ± 1 ∓ 2Sω

a2

)
. (7.65)

It appears that the branch E ≈ 2a (2ω)1/2 has no minimum when the wavelength
varies in the capillary length range. Therefore, it has no physical meaning and
presumably is a spurious consequence of the above–used simplifications. I con-
sider the other root. Then the Marangoni number for neutral disturbances is
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E =
2
√

2Sω3/2

a
, (7.66)

with dispersion relation

Bo+ a2

SC
a− ω2 =

Ea2

S
, (7.67)

thus showing that this wave mode is predicted for positive values of the
Marangoni number, hence for the analogue heat transfer problem when the heat-
ing is done from the liquid side as for the onset of Bénard cells.

Equations (7.66) and (7.67) determine the neutral state. By minimizing, one
obtains the critical (elasticity) Marangoni number,

Ec =
5a2 −Bo

2aC
, (7.68)

which permits transverse waves to be sustained at the without being controlled
by the Laplace–Kelvin law f (Bo = 0). Generally, the threshold for this mode of
oscillation is higher than the threshold for steady cellular Bénard convection ex-
cept when the capillary and the Schmidt (or Prandtl) numbers are small enough,
as in the rather exotic case (albeit providing a possible experimental test) of a
liquid He-4 layer near the lambda line. Note that to avoid buoyancy masking
its observation the experiment should be conducted under low effective (micro)
gravity conditions.

7.3.4 Longitudinal Waves (Lucassen Waves)

To avoid some tedious and rather not so relevant complications, I first simplify
the problem. As the deformability of the surface has a negligible influence on
the longitudinal wave motion I can safely set the capillary number C to infinity.
Also, as the surfactant accumulation affects mainly high-frequency oscillations,
and the frequency of longitudinal waves is of relatively not so high value, the
number H can be neglected. With these assumptions Equations (7.39)-(7.43)
reduce to

w = 0, (7.69)

Ea2

S
c+

∂2w

∂z2
= 0, (7.70)

and
SHz

∂c

∂t
= −∂c

∂z
. (7.71)

The surfactant concentration on the surface is chosen as the relevant variable
in the harmonic oscillator. Differentiating Equation (7.38) with respect to z and
using Equation(7.71), yields

−SHz
∂2c

∂t2
=
∂w

∂z
+ S−1∇2 ∂c

∂z
. (7.72)
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Then from Equation (7.69) it follows that

B = −A, (7.73)

thus showing that here the rotational part is of the same order as the potential
one near the surface. Accordingly, both rotational and potential terms are needed
in the longitudinal wave case. Using Equation (7.73) and the long-wavelength
assumption a2 << ω << 1, one gets

∂w

∂z
≈ 1
m

(
1 − a√

λ

)
∂2w

∂z2
, (7.74)

which using Equation (7.70) yields

∂w

∂z
≈ Ea2q

(
∂c/∂t
S3/2ω2

− ac

Sqm
√
λ

)
. (7.75)

I also have
S−1 ∂

∂z
∇2c ≈ q

∂c

∂t
. (7.76)

Substitution of Equations (7.75) and (7.76) into (7.72) yields

−SHz

q

∂2c

∂t2
− Ea3

Sqm
√
λ
c =

(
1 +

Ea2

S3/2ω2

)
∂c
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. (7.77)

Note that

−SHz

q

∂2c

∂t2
≈ Hz

√
S√

2ω

(
∂2c

∂t2
+ ω
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∂t

)
(7.78)

and

− Ea3

Sqm
√
λ
c ≈ Ea3

Sω
√

2Sω

(
c+

1
ω

∂c

∂t

)
. (7.79)

Replacing (7.78) and (7.79) into Equation (7.77) and keeping only the leading
terms, one obtains

1√
2Sω

(
SHz

d2c

dt2
− Ea3

Sω
c

)
= −

(
1 +

Ea2

S3/2ω2

)
dc
dt
, (7.80)

which is an equation with the input–output energy balance written here for
convenience in the right-hand side. At variance with transverse waves, the leading
part in Equation (7.80) corresponds to the terms with first-order derivative, as∣∣∣∣ 1√

2Sω

(
SHz +

Ea3

Sω

)∣∣∣∣ <<
∣∣∣∣ω

(
1 +

Ea2

S3/2ω2

)∣∣∣∣ . (7.81)

The potential part of Equation (7.80), though small compared with the dissi-
pative one, determines the oscillating feature of this convective mode. In the
neutral case when energy dissipation and energy supply given by the Marangoni
effect compensate each other,
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E = −S3/2ω2
/
a2 or ω2 = |E|S−3/2 a2 (7.82)

together with
E = −S2Hzω

3
/
a3. (7.83)

Thus, Equations (7.66) and (7.82) describe the characteristics of the longitudinal
oscillation at the air–liquid interface and, clearly, E must take negative values,

E = −S1/2H−1
z . (7.84)

The dispersion relation is
ω2 = a2S−1H−2

z ,

hence describing dispersionless waves that are necessarily dissipative as equation
(66b) shows. E is non-vanishing, otherwise the longitudinal wave disappears.
Figure 7.2 illustrates the dispersionless waves found experimentally [15] (see
also [9]).

Fig. 7.2. Longitudinal waves excited by the Marangoni effect. Experimental data ob-
tained when pentane vapor is adsorbed and, subsequently, absorbed by liquid toluene.
(a) Dispersionless relation between frequency and wave number; (b) (phase) wave ve-
locity. Error bars indicate maximum and minimum values observed [15].

7.4 Concluding Remarks

I have shown how a motionless horizontal liquid layer adsorbing a light surfac-
tant (subsequently absorbed in the bulk) or, equivalently, being heated from the
air side (and not from the liquid side as originally done by Bénard), hence stably
stratified, can be made unstable with the Marangoni effect. Past a given thresh-
old, the layer is bound to exhibit oscillatory motions (overstability) in the form
of either transverse ( capillary–gravity waves obeying or not the ) or longitudinal
motions in the form of dispersionless compression–expansion like waves. I have
provided (linear) threshold values and the corresponding dispersion relations.
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Comparison of Equations (7.8) or (7.51) and (7.82) shows that instability
thresholds for both transverse and longitudinal motions depend on the Prandtl
or the Schmidt number. This is to be expected for (inertial) oscillatory motions at
variance with the onset of steady cellular Bénard convection which is insensitive
to the values of these numbers (inertia has no significant role on this threshold).

Transverse waves are directly related to the interfacial deformation (mea-
sured by C) whereas longitudinal waves rather depend on Langmuir adsorption
(measured by Hz). When these two waves are possible, cross-over from one to
the other mode of instability may occur [6, 7, 8]. Indeed, in the cases discussed
here depending on surface deformability (and surface tension) and/or surfac-
tant adsorption, in a way such that when S is greater (respectively, smaller)
than C3

/(
7.93H2

z

)4, longitudinal (respectively, transverse) waves are predicted
to occur first.

A possibility not discussed here is the excitation of internal waves [8] (Brunt–
Väisälä waves). Note that the actual liquid depth has played no role as I have
used as a length scale the capillary length (Bo = 1). Thus I wonder how much of
a role in experiments the layer depth plays. It is worth recalling that the shallow
layer case tends to favor (relatively) long wavelength disturbances [4, 5].

Few clear-cut experimental results exist concerning the onset of wave motion
occurring in the otherwise stably stratified motionless state. A truly systematic
exploration of the phenomena is still pending. The available results [16, 17]
obtained using n-Octane or n-Decane with heated air, and the pairs N2/diphenyl
or CO2/diphenyl show threshold values of the Marangoni number on the order of
105 corresponding to thermal gradients somewhere in the range 10 to 102 K/cm.
These critical values agree well with the predictions (7.11) or (7.53). Is there in
experiment a smooth transition from the motionless state to (linear) overstability
ending up in (weakly) nonlinear waves? Or is the transition abrupt? Noticeable
is that experiments have been conducted when there is strong excitation of
the system and, surely, the liquid layer was well above instability threshold,
leading to nonlinear solitonic waves. A rich variety of results in such a case
has been described in the past decade and full references are provided in [4].
Unfortunately, those experiments did not allow determination of threshold values
as the phenomena appeared in a drastic and rather uncontrolled manner.
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Rayleigh–Bénard and Bénard–Marangoni instabilities have been studied for
roughly a century and have served as prototypes for the transition to temporal
chaos as well as spatio–temporal chaos of an initially . Using the Marangoni
effect [1, 2] with a horizontal temperature gradient to drive the system out of
equilibrium, one can observe propagating wave instabilities: hydrothermal waves
[3]. This chapter presents different instability regimes of thermocapillary flows
in extended geometry, focusing on propagating waves. We first introduce ther-
mocapillary flows, and give some indications about physical effects involved. We
then review experimental results in cylindrical geometry and illustrate how rich
those systems are.

8.1 Thermocapillary Flows

The thermocapillary effect arises when a temperature gradient is applied to a
fluid with a free surface [2, 4]. We consider here a disk of fluid with a free
surface and a horizontal temperature gradient. The free surface is surrounded
by ambient air.

8.1.1 Nondimensional Numbers

The fluid is characterized by its Prandtl number Pr = ν/κ which is the ratio of
the diffusion coefficient of velocity to the one of temperature. But other numbers
are important to describe the flow regime. We write ρ the density and σ the
surface tension of the fluid. Those quantities depend on the temperature T , and
one can define

α = −1
ρ

∂ρ

∂T
as well as γ = − ∂σ

∂T
.

The thermal dilation coefficient α is always positive; γ is also positive for pure
fluids: when the temperature increases, interactions between molecules decrease,
and so does the surface tension.

The existence of a free surface, and therefore surface tension, implies that one
can compute a capillary length λc. This quantity represents the spatial extent
on which surface energy is comparable to bulk energy (e.g., gravity), that is it
represents the spatial extent on which surface tension effects are relevant for a
layer of fluid at rest. In the presence of gravity, the capillary length reads:
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λc =
√

σ

ρg
,

where g is the magnitude of the gravity field.
When the fluid depth h is lower than λc, surface tension is predominant over

gravity. Conversely, for h larger than λc, gravity is dominant. In fact, the ratio
of h to λc is nothing less than the static Bond number Bo, also defined as the
ratio of the surface tension forces to gravity:

Bo =
ρgh2

σ
=

(
h

λc

)2

When the temperature is not uniform, buoyancy is present, represented by
the Rayleigh number Ra as well as thermocapillarity, represented by the
Marangoni number Ma. The Rayleigh number Ra is constructed as the ratio
of buoyancy forces to viscous forces and Ma as the ratio of thermocapillary
forces to viscous ones. If ΔT/l is the temperature gradient applied over distance
l, they read

Ra =
αgh4

ν

ΔT

κl
and Ma =

γh2

ρνκ

ΔT

l
.

The dynamical Bond number Bd is then defined as the ratio of thermocapillary
forces to thermogravity forces:

Bd =
Ra
Ma

=
ραgh2

γ
=

(
h

λth

)2

This defines another length scale λth = λc

√
γ/(σα).

At ambient temperature (20◦C), one has λc = 2.8mm and λth = 88.5mm
for water. For the silicon oil we use, λc = 1.4mm and λth = 3.0mm.

This dimensional analysis suggests the existence of different flow regimes. It
turns out that those regimes are observed in the experiments as giving rise to
different pattern–forming instabilities, as depicted in Figure 8.1.

For higher fluid depth h > λth (i.e., for thermogravity flows), one observes
stationary pattern of rolls [5]; the axis of those rolls is parallel to the temperature
gradient; those rolls have been observed in cylindrical geometry as well [6]. We
are interested in wave patterns that appear in thermocapillary flows for h < λth,
among them are hydrothermal waves. Depending on the fluid depth, two types
of hydrothermal waves are observed: type 1 (HW1) for medium fluid depth,
and type 2 (HW2) for smaller fluid depth. Section 8.2 presents experimental
observations of hydrothermal waves in the thermocapillary regime.

Finally, one also has to consider aspect ratios to discriminate if confinement
is important. In the following, we assume large horizontal aspect ratios, that is,
that the two horizontal directions (parallel and perpendicular to the temperature
gradient) are much larger then the fluid depth h. In this case, confinement is
negligible and we have an extended system in the two horizontal directions, as
in the rectangular geometry of [7]. We are interested here in results obtained in
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Fig. 8.1. Different regimes for thermocapillary and thermogravitational flow, depend-
ing on the fluid depth h. Limits are approximated by h = λc and h = λth. We have
identified instabilities as stationary rolls or hydrothermal waves that are observed ex-
perimentally in those different regimes. For hydrothermal waves, two types are observed
(type 1, HW1, and type 2, HW2).

cylindrical geometry. The curvature is then an additional parameter that can be
defined locally; as we discuss in Section 8.2.3, one of its effects is to localize the
wave patterns [8].

8.1.2 Physical Mechanisms

Let’s now briefly give an heuristic description of instability mechanisms in a
fluid layer submitted to a vertical or horizontal temperature gradient. Oblique
temperature gradients have effects close to horizontal ones [9].

Vertical Temperature Gradient: Bénard–Marangoni Instability

Pearson [10] gave a simple mechanism to explain hexagon formation in Bénard–
Marangoni convection. In that case, the temperature gradient is purely vertical
and the fluid is at rest when the system is on the thermodynamic branch. If one
considers a positive temperature perturbation at the surface of the fluid, then
one deduces that due to a locally smaller surface tension at that point, the fluid
is flowing away from that point. Due to mass conservation, this implies that
fluid is flowing up to the point at the surface, from the bulk which is at a higher
temperature. So the perturbation is amplified: there is instability.

Horizontal Temperature Gradient

In that case, a basic flow exists when the system is on the thermodynamic branch,
and we expect an instability into propagating waves. Giving a physical mecha-
nism for propagating waves is a more tedious exercise than it is for stationary
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pattern. In the case of thermocapillary flows, the time-oscillatory nature of the
instability comes as a result of the existence of well-defined profiles for the tem-
perature and the velocity in the basic flow. A relevant mechanism has to involve
features from those profiles such as the local sign of the horizontal and vertical
temperature and velocity gradients. Smith [11] expressed two different mecha-
nisms depending on the Prandtl number. Each of those is based on the Pearson
mechanism, but whereas this former is Pr independent, Smith considered the
extreme cases of a flow dominated by inertial effects (Pr → 0) or by viscous
effects (Pr → ∞). The relaxation of temperature and velocity perturbations is
then occurring on very different time scales. Depending on the signs of the un-
derlying temperature and velocity gradients, an oscillatory behavior is shown to
be unstable and to propagate along the horizontal temperature gradient (small
Pr), or perpendicularly to it (large Pr).

It is worth mentioning that hydrothermal waves are an instability mode
present in the absence of surface deflections, that is, assuming that the free
surface is nondeformable. Taking into account surface deflections as in [12] may
lead to another instability mode. Our experiments suggest that fluid depth vari-
ations are small compared to the fluid depth so that they can be neglected. The
stability analysis of [3, 13] is then valid.

8.2 Experiments

We now present some experimental results, focusing on extended cylindrical
geometries, with large horizontal aspect ratios. A sketch of the experimental cell
is reproduced in Figure 8.2. The setup allows us to work at various fluid depths
h while always having no meniscus on the side walls [14] and thus a perfectly
homogeneous fluid depth h. We define the control parameter as ΔT = Text−Tint.
This quantity can be positive or negative, and both cases are not equivalent, due
to the presence of curvature [8].

Fig. 8.2. Sketch of the experimental cell. External diameter is 135 mm, fluid depth h
is of order 1 mm, and ΔT = Text − Tint is of order 10 K.
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We use silicon oil of Prandtl number Pr = 10 and work with h < λth =
3mm to have hydrothermal waves. Both cases h ≷ λc = 1.4mm are studied.
Figure 8.3 gives a phase diagram of the experiment. Detailed observations and
precise measurements have been performed for h = 1.2mm (small Bo) and
h = 1.9mm (large Bo) for both positive and negative ΔT and are reproduced
on Figure 8.3, left. The inset of Figure 8.3 (right) shows accurate determinations
of HW1 and HW2 instability onsets for ΔT > 0. The onset of each mode is
determined by searching at which value of ΔT the squared amplitude of the
corresponding pattern is vanishing, following a linear law. By doing so, we also
check that each instability is supercritical.

0.5
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10

12.5

15
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20

0.75 1 1.25 1.5 1.75 2

Fig. 8.3. Experimental phase diagram in a cylindrical cell. Left: General view. Right:
Precise measurements of HW1 (◦) and HW2 (�) onsets.

We report in Table 8.1 the experimental values of the critical temperature
difference for the wave instabilities. The critical values of the Rayleigh Ra and
Marangoni Ma numbers are also reported.

As can be seen in the phase diagram, the system exhibits a large variety of
pattern-forming instabilities. This richness cannot be inferred from the dimen-
sional analysis of the previous section. The following subsection details each of
the observed structures.
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Table 8.1. Critical Values at the Onset of Time-Oscillatory Patterns.

Fluid depth ΔTc Rac Mac Pattern

h = 1, 2 mm 7,8 K 80 500 HW2
18 K 190 1150 HW1

h = 1, 9 mm 11 K 735 1760 HW1
−5, 2 K 350 830 flowers
−10 K 670 1600 HW1

8.2.1 Tint < Text

Large Bond Number (Large Fluid Depth)

For higher values of the Bond number, the basic thermocapillary flow composed
of a single large roll is stable as long as ΔT < 8.5K. For ΔT > +8.5K a
structuring of the basic flow occurs: concentric corotative rolls exist. These rolls
first appear close to the hot side of the container, then invade the entire cell,
as represented in Figure 8.4. For a higher temperature gradient (ΔT > +11K),
hydrothermal waves appear. The corresponding pattern is composed of spiraling
waves. Two realizations are presented in Figure 8.5. A source of waves with a
large spatial extension may be present, as well as a (smaller) sink, and those
objects separate two regions of right- and left-turning waves. On some realiza-
tions, a single wave (right- or left-turning) is present. In both cases, the two
components of the local wavenumber are proportional; and their ratio is roughly
constant anywhere in the cell and does not depend on the control parameter.
Those hydrothermal waves are called HW1. They are also observed in rectan-
gular geometries [5, 7, 15] and are well described by linear stability analysis
[3, 13].

HW1 propagate with an angle from the temperature gradient. The radial
propagation (i.e., the propagation along the temperature gradient) is always
from the cold center (Tint) towards the hot perimeter (Text = Tint +ΔT ). The
orthoradial propagation is either to the right or to the left, both cases having
equal probability.

Small Bond Number (Small Fluid Depth)

For lower values of the Bond number, and increasing the temperature difference
ΔT from 0K, no structuring of the basic flow by stationary corotative rolls is
observed. The first instability mode appears for ΔT > 7.8K; it is a bidimen-
sional hydrothermal wave (HW2) [14] localized near the center of the cell. At
onset, the wavevector of the pattern is purely radial and the propagation is from
the cold center towards the hot perimeter. As the control parameter is increased,
the orthoradial component grows from zero. So the spatial structure of the HW2
mode evolves from a pulsing target to a spiraling pattern. Increasing the temper-
ature gradient also results in an extension of the domain occupied by the HW2
pattern (Figure 8.6).



8 Hydrothermal Waves 153

Fig. 8.4. Shadowgraph images for h = 1.9 mm and cold center. Stationary corotative
rolls appear on the hot side of the container (Left: ΔT = +10 K), and invade the entire
radial extension for higher temperature gradient (Right: ΔT = +11.75 K).

Fig. 8.5. Shadowgraph images for h = 1.9 mm and cold center. Left: ΔT = +13 K,
Right: ΔT = +14.25 K. Hydrothermal waves of type I (HW1) in the shape of rotating
spirals appear on top of the stationary rolls pattern. On the left, the pattern is composed
of a uniform right-turning spiral.

For larger temperature gradients, HW1 appear in the whole domain of the
cell where HW2 have a small or vanishing amplitude (Figure 8.7). Measurements
of the local frequency and of the local wavenumber along the radial direction
allow one to distinguish HW1 and HW2 instability modes. We have measured the
onset of HW1 on top of the HW2 pattern, and shown that the two modes do not
interact close to the onset of the second one (HW1). For a higher temperature
gradient, interactions occur and the overall pattern is spatio–temporally chaotic.
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Fig. 8.6. h = 1.2 mm and cold center. Hydrothermal waves of type II (HW2). Close to
onset (Left: ΔT = +8.5 K), the pattern is composed of pulsing targets and the wavevec-
tor is purely radial. Further in the supercritical region (Right: ΔT = +12 K), the
wavevector has an additional azimuthal component. No stationary pattern is present.
Arrows on the schematics represent the phase velocity.

8.2.2 Tint > Text

When the center is heated with respect to the outside perimeter, the dynamics
is less coherent and more localized near the hot center; the phase diagram in the
region ΔT < 0 is richer.

Large Bond Number (Large Fluid Depth)

For −2K < ΔT < 0K, the basic flow is stable. The first instability is stationary,
and as in the case ΔT > 0, it consists of a structuring of the base flow by
corotative rolls. Those rolls appear on the hot side of the container, that is
around the inner cylinder for |ΔT | > 2K (Figure 8.8, left).

For |ΔT | > 5.1K , a time-oscillatory instability develops around the hot
center. At onset, we observe a rotating hexagon (Figure 8.8, right). When the
temperature gradient is increased, each corner of the hexagon moves away from
the center, and the pattern then consists of a flower (Figure 8.9). While in-
creasing |ΔT |, one observes an elongation of the petals, then the apparition of
a seventh petal (due to a modulational instability like the Eckhaus instability
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Fig. 8.7. h = 1.2 mm and cold center, ΔT = +20 K. HW2 are localized near the center.
The HW1 pattern is either composed of right- and left-propagating waves (left pho-
tograph) or of a single wave (right photograph). Both configurations are unstable and
the system oscillates randomly between the two regimes. The schematics detail propa-
gation directions and source/sink positions for each realization. The radial propagation
is always from the center and towards the perimeter.

in the azimuthal direction). Outside the flower, a structure is present with the
same azimuthal wavenumber and it evolves with |ΔT | to form visible branches
that rotate at the same angular frequency as the flower.

For ΔT < −9K, HW1 appear. Again, their radial propagation is from the
cold side towards the hot side; so the HW1 pattern is such that energy flows from
the external perimeter to the center. As we detail further, this situation is not
comfortable and the structure has a strong tendency to be incoherent. Figure 8.10
presents a spatio–temporally chaotic realization for a large value of the control
parameter. Stationary rolls are visible, and HW1 are barely recognizable.
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Fig. 8.8. h = 1.9 mm and hot center. Left: ΔT = −5 K, Stationary corotative rolls are
present close to the hot center of the cell; Right: ΔT = −5.2 K, same stationary rolls,
with an additional hexagon turning around the center.

Fig. 8.9. h = 1.9 mm and hot center; Left: ΔT = −5.6 K, a six-petals flower is turning;
Right: ΔT = −7 K, an additional wavelength has appeared, as well as branches in
between the petals, outside the flower.
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Fig. 8.10. h = 1.9 mm and hot center; Left: ΔT = −15.0 K; Right: ΔT = −20.0 K.
Hydrothermal waves of type 1 have appeared on top of the flower pattern. Because
the radial component of the HW1 wavevector is pointing towards the center of the
cell, the spatial coherence of the resulting structure is small, and the overall pattern is
spatio–temporally chaotic.

Small Bond Number (Small Fluid Depth)

First, for small |ΔT |, only the basic flow is observed. For ΔT < −6K, corotative
rolls appear near the center. Their wavelength is small because they scale with
the fluid depth which is small in that case. The amplitude of this stationary
pattern is small and the corresponding shadowgraphic signal is very weak. Then,
for ΔT < −6.9K, spiral waves appear on top of the corotative rolls. We believe
those are hydrothermal waves. Like HW2, they are localized near the center and
their radial and azimuthal wavenumbers are not constant in space. An example
is reproduced in Figure 8.11, left. The radial component of the wavevector is
pointing towards the center, and the pattern is a left-turning wave. So the radial
direction of propagation is reversed compared to an HW1 (or HW2) pattern of
the same chirality obtained for ΔT > 0.

For ΔT < −9.5K, another propagating structure appears around the center
of the cell. This structure has a wavevector that is purely azimuthal, so we
label it “radii” as well. They are visible in Figure 8.11, right, very close to the
inner cylinder. We observed that radii have a frequency close to twice that of
hydrothermal waves. The azimuthal wavenumber is the same so the azimuthal
phase velocity of the radii is twice that of the spirals. This allows us to conclude
that they are different instabilities, although they may be 1:2 resonant. The
strong localization of the radii suggests that it may be an instability of the hot
boundary layer.
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Fig. 8.11. h = 1.2 mm and hot center. Left: ΔT = −8 K, left-turning spiral waves;
Right: ΔT = −11 K, right-turning spiral waves and radii. Radial propagation of the
spirals is from the external perimeter towards the inner plot. (Radii are not shown on
the schematics.)

8.2.3 Curvature and Localization

Recent analytical and numerical work [17, 18] have also reported spiraling hy-
drothermal waves in cylindrical geometry, as well as other experimentally ob-
served patterns. We can interpret to some extent the above observations using
local curvature as introduced in [8]. The first effect of curvature is to distribute
the temperature with a hyperbolic profile in the radial direction. This implies
that the temperature gradient is larger in magnitude close to the center. For this
reason, it is clear that the region close to the center becomes supercritical before
the rest of the cell. This explains why most of the wave patterns we observe
appear first close to the center, and afterwards in the bulk.

A second effect of curvature is to constrain the wavevectors. Close to the
center, the azimuthal direction is not as extended as it is farther from the center.
This implies that to keep a constant value of the wavenumber, the pattern has
to increase the number of wavelengths in the azimuthal direction, and reduce
the wavelength in the radial direction.

Moreover, in the case of hydrothermal waves, and in particular of HW1, the
radial propagation is always from the cold to the hot side. In one–dimensional
geometries [19, 20, 21], it has been checked that phase and group velocities point
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towards the same direction; this property seems satisfied as well in 2-D. When
the center is colder than the outside, the pattern propagates from the center,
and therefore spreads in the azimuthal direction. This can be achieved while
keeping the spatial coherence. In the opposite case when the outside perime-
ter is colder than the center, the propagation is from the outside towards the
inside, and the information (or energy) of the structure has to converge from
an extended region to a confined one; in that case, any inhomogeneity of the
structure (wavenumber, frequency, or amplitude) in the azimuthal direction will
result in a destruction of the coherence of the converging process. For example,
if the amplitude of the pattern is locally smaller at some given angle in the cell,
the equivalent of a Bénard cell at that point will be squeezed by neighboring
cells of larger amplitude, which will result in a decrease of the wavelength, and
therefore of the amplitude: there is instability. This will ultimately result in the
disappearance of the cell (i.e., of one wavelength), and the nucleation of modu-
lations of, for example, the amplitude. Those modulations will be amplified by
the same mechanism while the pattern converges towards the center. All those
events occur incoherently in time and in space, giving rise to a turbulent pattern
more easily when Tint > Text than in the reverse case.

8.2.4 About Rectangular Geometries

We have also conducted experiments in rectangular geometry. In that case, pos-
itive and negative temperature gradients are equivalent, and one recovers the
same behaviors: HW1 for high Bo and HW2 for low Bo. As in previous exper-
iments [5, 15, 16], we found that corotative rolls appear only for large Bo, and
prior to the HW1 instability; the HW1 are emitted by “line”-sources that extend
over the whole extension between the hot and the cold sides. For smaller depth
h < λc, HW2 are observed; they are emitted by point sources located on the
cold side of the container [5]. Moreover, for large fluid depth and therefore large
Bond number, hydrothermal waves instability is replaced by the stationary in-
stability into parallel rolls with the axis aligned with the temperature gradient,
as presented in Figure 8.1.

8.3 Applications

Many quantitative results have been obtained for hydrothermal waves, on the
theoretical side (linear stability analysis [3, 8, 9, 13]) as well as on the exper-
imental side [4, 5, 7, 14, 15, 16]. For more fundamental studies, hydrothermal
waves represent an ideal experimental nonlinear wave system. As for Bénard
cells, hydrothermal waves are not just nice-looking; we have used them to study
the transition to spatio–temporal chaos of a traveling wave system. In one hori-
zontal dimension, they are well modeled by a complex Ginzburg–Landau equa-
tion [19, 20]. As their group velocity is finite, they are subject to the convec-
tive/absolute instability distinction [19, 21], not only for their primary onset,
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but also for the onset of their secondary instabilities. In a small supercritical
range above onset, the hydrothermal wave pattern is advected out of the cell
by the group velocity, in the very same way as a Rayleigh–Bénard stationary
pattern is advected by an external flow.

One century after the pioneering work of Henri Bénard, thermocapillary flows
are still a promising field of research not only from the hydrodynamical point of
view, including challenging fundamental and applied industrial studies [1], but
also as a robust model for the study of nonlinear waves and spatio–temporal
chaos.
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We review recent experimental and theoretical findings on the behavior of sur-
face tension dominated thermal convection in a thin fluid layer for Marangoni
numbers significantly exceeding the threshold of the primary instability. Par-
ticular emphasis is placed on the description of a secondary instability which
leads to a transformation of hexagonal convective cells into squares, referred to
as the hexagon–square transition. Moreover, we explain the role of defects in the
transition process and discuss some theoretical work aiming at the prediction of
scaling laws for heat transport in the turbulent regime for low-Prandtl number
fluids.

9.1 Introduction

When a horizontal layer of fluid with a free upper surface is heated from below,
convective motion sets in as a result of two physical effects. The first one is the
buoyancy force due to the temperature dependence of the density. The second
one is the thermocapillary effect resulting from the temperature dependence
of the surface tension, also called the Marangoni effect. When the fluid layer is
sufficiently thin, thermocapillary effects dominate, and the influence of buoyancy
can be neglected [1]. This case was studied by Bénard and is the central focus
of the present work.

Since the first experiments of Henri Bénard [2, 3], surface-tension-driven con-
vection in shallow liquid layers has been identified with the hexagonal planform,
partially due to the suggestive power of aesthetic hexagonal patterns, and mostly
due to the absence of reliable experimental and theoretical studies, extending
sufficiently far into the nonlinear regime. This situation has been changed in
the 1990s both due to focussed experimental efforts in optimized setups and to
advanced computer resources allowing the direct numerical simulation of the gov-
erning equations. The present review intends to summarize these investigations,
which have led to the discovery of a secondary instability, called hexagon–square
transition, henceforth abbreviated to HST.

Surface-tension-driven Bénard convection is described by two parameters,
the Marangoni number M ≡ γΔTd/ρνκ, which is the main control parameter,
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and by the Prandtl number Pr = ν/κ, which is a property of the fluid. Here γ,
ΔT , d, ρ, ν, and κ refer to the coefficient of surface tension variation, temper-
ature difference across the fluid layer, thickness of the layer, density, kinematic
viscosity, and thermal diffusivity of the fluid. It is known from linear stability
analysis (Pearson [4] and Nield [5]) that the quiescent state of the fluid is stable
as long as M < Mc ≈ 79.6 and that convection sets in for M > Mc in the form of
hexagonal cells. The challenge of the past 15 years of research was to understand
the behavior of Bénard convection far beyond this instability threshold.

How can one achieve a sufficiently high supercriticality ε defined as ε =
(M−Mc)/Mc? One can employ either the thermocapillary or the solutocapillary
effect. The latter rests on the concentration dependence of the surface tension
rather than the temperature dependence.

Experimental studies of the interfacial convection during mass transfer of a
surface-tension-lowering solute were performed indeed much earlier than com-
parative studies on the thermocapillary effect. We mention the contributions of
Linde et al. [6, 7], Orell and Westwater [8] going back as far as the 1960s. The
systematic investigations of Linde and coworkers [9, 10] have much advanced
our understanding of surface-tension-driven pattern formation at high nonlin-
earity. In their picture of a hierarchic system of mostly nonstationary roll cells
of different order, the stationary hexagonal Bénard cells appear as a very special
case. They are observed when not too high supercriticality is accompanied by
a stronger damping as imposed by the no-slip bottom condition in thin layers.
Despite the advantage in achieving ε � 1, solutocapillary systems cannot com-
pete with the thermocapillary analogue with respect to an exact study of the
bifurcation of Bénard’s hexagons. Because a steady solute feeding is difficult to
realize, solutocapillary systems operate mostly under transient conditions which
complicates the accurate determination of the Marangoni number. Furthermore,
due to the small mass diffusivities a preferably linear stratification is difficult to
generate.

Important contributions to a systematic study of the weakly nonlinear behav-
ior of Bénard’s hexagonal cells, such as the wavenumber evolution, originate from
Koschmieder et al. [11, 12, 13, 14, 15]. With his very accurate experiments he laid
the foundation for the later experiments discussed in Section 8.2.1. Among other
things he introduced silicone oils as working fluids, due to their low sensitivity
against interfacial contamination, or the sapphire window due to its superior
heat conductivity, as top plate.

As following the recent developments on surface-tension-driven Bénard con-
vection in detail goes beyond the scope of this chapter, we refer the reader to
the excellent books or review articles by Davis [1], Koschmieder [16], Schatz and
Neitzel [17], Colinet et al. [18], and Nepomnyashchy et al. [19].

9.2 Moderate Supercriticality

It seems appropriate to group our observations into two classes, corresponding to
a moderately supercritical regime 0 < ε < 10 and a highly supercritical regime
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ε > 10. The present section, which is the main focus of the work, discusses the
former case.

9.2.1 The Hexagon–Square–Transition

For 0 < ε < 4 all experiments with a sufficiently large aspect-ratio (including
Bénard’s classical work) consistently lead to stable hexagonal pattern, which can
be considered as the primary state of surface-tension-driven Bénard convection.
A secondary instability of Bénard’s hexagonal cells was discovered experimen-
tally by Eckert (née Nitschke) and Thess ([20]; Eckert, Bestehorn, and Thess
[21], the latter being henceforth abbreviated to EBT) and was later confirmed
by Schatz, Van-Hook et al. (SVMSS) [22]. In parallel its existence has been
verified in direct numerical simulations by Bestehorn [21, 23].

Both experimental groups have worked with controlled liquid–air-layer sys-
tems sandwiched between an isothermal bottom and a sapphire window on top
whose temperatures (Tb and Tt) are precisely controlled to within ±0.005 K or
better. The ΔT used to quantify M and ε, respectively, is based on the con-
ductive temperature drop ΔTcd across the fluid layer assuming that both liquid
and air layers are in conduction, independent of the actual value of Tb − Tt.
Clearly, with onset of convection in the liquid, ΔTcd refers to a fictional system.
The advantage of ΔTcd, however, is the possibility of external control by varying
Tb − Tt, irrespective of the actual cellular pattern realized.

(a) (b)

Fig. 9.1. (a) Example of a pattern of mixed symmetry at ε = 4.65 (d = 1.67 mm,
dair = 0.34mm, Pr = 100). (b) Typical square pattern at ε = 5.3 (d = 1.56 mm,
dair = 0.46 mm, Pr = 100) [24].

Silicone oils are used having moderate Prandtl numbers ranging between 81
(SVMSS) and 100 to 200 (EBT, [24]). To guarantee surface tension gradients as
the main driving force, buoyancy effects must be kept small. The latter are char-
acterized by the Rayleigh number R ≡ αgΔTd3/νκ with the liquid expansion
coefficient α and the gravitational acceleration g. Thus, one requires the ratio
M/R to exceed unity. This task is most easily realized in a shallow fluid layer.
Eckert et al. [20, 21] used d = (1.00 − 1.80) mm yielding 2 < M/R < 6 and
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SVMSS employed d = (0.71− 0.96) mm allowing for 8 < M/R < 15. To exclude
air convection, the thickness of the air layer must be small which in parallel
minimizes the temperature difference lost across the air gap. Less than 0.47 mm
and 0.10 mm were used in EBT and SVMSS, respectively. The aspect–ratio Γ
defined as Γ = L/d, is moderate to large, and ranges between 20 and 65 where
L denotes the diameter of the circular container.

The control parameter ε is slowly ramped during the experiments. EBT have
chosen a time interval of about 4 h to achieve an ε-increase by Δε ∼ 0.1 and the
experiments of SVMSS proceeded approximately eight times faster. The typical
duration of the experiments is of the order of one to three weeks. For details of
the experimental setup and procedure we refer the reader to the original papers.

Let us now focus on the question of what happens with the nearly ideal
hexagonal patterns realizable in such experimental setups if supercriticality is
increased. We begin with the well-founded results before discussing items that
are not yet completely understood.

Fig. 9.2. Composition of the Bénard pattern: Fraction of hexagons, p6, fraction of
squares, p4 (a), and fraction of pentagons, p5 (b) as a function of ε (d = 1.41 mm,
dair = 0.26 mm, Γ = 64, Pr = 100) [21].

Experiments as well as numerical simulation provided clear evidence that
hexagons lose their stability at a certain threshold εs whose value is discussed
below. Beyond εs a state of mixed symmetry develops in which cells of hexagonal,
pentagonal, and square planform coexist (Figure 9.1a). On increasing ε further,
square cells begin to dominate until a state of nearly fourfold, square symmetry
is achieved (Figure 9.1b).

The simplest way to quantify these compositional changes of the pattern
as a function of ε is to introduce relative cell numbers pi = Ni/N . They are
defined as the ratio between the number of cells Ni of a given planform [hexagons
(i=6), pentagons (i = 5), squares (i = 4)] to the total amount of complete
cells N . The behavior of the pi at Pr = 100 in a large-aspect-ratio-container
(Γ = 64) is shown in Figure 9.2 for an experiment with increasing ε. At the onset
of convection, the pattern comprises approximately 350 cells that are almost
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completely hexagonal, that is p6 = 0.98. The deviation of p6 from unity is due
to a small amount of heptagonal and pentagonal cells that are unified in penta-
hepta-defects.
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Fig. 9.3. (a) Nusselt number Nu and fraction of square cells p4 as function of ε.
(d = 1.41 mm, dair = 0.26mm, Γ = 56, Pr = 100). (b) Temperature difference ΔTTE

in the liquid layer between bottom and a height h = 0.87d (d = 1.45 mm, dair = 0.51
mm, Γ = 56, Pr = 100). Convection sets in at ΔTc = 1.08K [21].

Up to ε ∼ 1 the hexagon fraction p6 can be kept as high as p6 = 0.96 ± 0.03
(Figure 9.2a). Beyond ε ∼ 2, p6 starts to decrease slowly at the expense of
a growing pentagon number, p5 (Figure 9.2b). These pentagons are no longer
completely linked to heptagons but become more and more organized in the
pentalines discussed later on. Beyond ε = 4, p6 decreases drastically. In parallel,
we detect a significant increase in p4. The pentagon number p5 grows, too, but
at a slower rate, and reaches a maximum at ε ∼ 4.7. Above this value, it again
decreases slowly. At ε ≥ 6.5 the pi - values show minor changes only. An increase
of p4 above 55% was not observed in the aspect ratio under study (Γ = 64).
With view to the larger pi values of SVMSS this fact might be attributed to the
lower value of M/R and to the higher Pr number. EBT and SVMSS performed
a series of experiments in which ε is first increased until square cells dominate
and then decreased again. They found that for decreasing ε a significant number
of squares can be preserved below that εs at which the onset of square was
detected for increasing ε. This hysteresis in the pi-numbers reveals the subcritical
nature of the transition. Experiments and numerical simulations in EBT provide
a Δε = 0.5 by which squares can be kept stable below εs.

To better understand the dynamics of the convective structure, measurements
of the global heat flux and of local temperature differences, using thin thermo-
couples, as function of ε have been performed by EBT. They detected bends
in the slopes of both the injected electric power and the temperature difference
between bottom and subsurface if the number of squares starts to rise. Trans-
lated into nondimensional quantities, Nusselt number Nu and ε, these changes
are plotted in Figure 9.3. With the onset of hexagonal Bénard cells the Nusselt
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Fig. 9.4. Example for the onset of square cells via the propagation of a pentagon front
at Pr = 200. (a) Distorted hexagonal pattern which is nearly free of other defects.
Although the angle between modes k1 and k2 is equal to ∠(k1, k2) ∼ 120◦, ∠(k2, k3)
and ∠(k3, k1) deviate from that value. This is visible in the orientational distribution
obtained from radial integration of the power spectrum in Fourier space. (b) Square
cells invade the hexagonal domain via propagation of a pentagon front (d = 1.72 mm,
dair = 0.28 mm; [24]).

number increases from unity. The second increase of the Nusselt number occur-
ing in parallel with the rise of the p4 number is remarkable. Any increase in the
heat flux transferred by the cellular pattern slows down the increase of the tem-
perature difference between bottom and surface in upstream regions, reflected
by Figure 9.3b. Thus, both independently measured quantities show that with
the appearance of square cells the heat flux through the layer increases. This
capability of squares to transport more heat than hexagons was corroborated by
the numerical simulations of Bestehorn on single hexagonal and square cells.

Another important and unexpected observation is the time-independence
of both the square and mixed symmetry patterns, which has been proven by
SVMSS. In experiments with a careful control of the lateral sidewall boundary
condition they showed the stationarity of the patterns over timespans of several
days. The stationary phase starts with the completion of a transient of less than
40 min after the ramping of ε is halted, in which the pattern activity relaxes.
SVMSS demonstrated that any small inhomogeneity in the temperature or the
surface pinning at the container wall causes a motion of adjacent cells parallel to
the wall, inducing motions also in the interior of the layer. The stationarity of the
pattern is in agreement with the simulations in EBT showing a time-dependent
pattern for Pr < 40 only. It is in disagreement with the experiments of EBT
where a slow spatio–temporal dynamics was observed with planform fluctuations
Δpi = ±7% over 20 h. In view of the finding of SVMSS we argue that indeed
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small pinning inhomogeneities along the rim of the container in EBT could be
the reason for that difference.

Before looking into the details of the transition itself we first discuss εs and
the wavenumber k, two quantities whose behavior still deserves a more detailed
understanding.

EBT studied the wavenumber of hexagons and squares during runs with
slowly increasing ε. During this type of evolution the wavenumber of the square
cells exceeds that of the hexagons by about 8%. Interestingly, this behavior
favors the squares by their higher perimeter-to-area-ratio which exceeds that of
hexagons by more than 20% [25]. The wavenumber of both cell types decreases
with increasing ε as expected from earlier works [14, 15, 26].

However, a different and rather peculiar behavior was found by SVMSS. They
distinguished between ε-cycles in the reduced interval 0 < p4 ≤ 0.5 and on the
full interval 0 < p4 ≤ 1. If SVMSS increased and decreased ε in the reduced in-
terval, i.e., remaining fully in the mixed-symmetry-state, they found the average
wavenumbers of hexagons and squares to be nearly identical and reproducible
for each ε-cycle. The wavenumbers exhibit no hysteresis while hysteresis in the
pi-numbers is present. If, however, ε is cycled through the full interval, that
is, comprising the hexagonal pattern and the nearly ideal square pattern, they
found a significant hysteresis in the wavenumber associated with the formation
of large squares which in turn induce large hexagons if ε is decreased again. Here,
the occurence of pi-number hysteresis depends on the initial conditions and on
the prehistory of the pattern.

We are faced with analogous problems if we are to determine precisely the
value εs for the onset of the transition. Both experiments deliver εs-values that
are afflicted with a considerable scatter as can be anticipated from the foregoing
discussion. EBT found εs = 4.5± 0.5 based on linear fits of the p4-function, and
εs = 4.2±0.3 when the bend of the heat flux curves is used. SVMSS based their
εs on reaching p4 = 0.5 and provided 4.5 < ε∗s < 6.4. If we rescale this interval
according to our definition of εs, based on the ε-value for which p4 starts to rise
(cf. EBT) we obtain εs ≈ 4.7± 0.9. Thus, both experiments provide comparable
values. The large scatter in determining εs is not a problem of insufficient accu-
racy but appears to be an intrinsic feature of this transition. Both experiments
showed that the onset of the HST depends on several factors such as the number
of defects in the initial pattern, the history of the pattern, and the actual route
by which square cells invade the pattern. Eckert [24] has distinguished between
a quasi-isotropic route according to which domains of square cells are formed
independently at five to six places within the container (cf. Figure 9.1a) and the
less frequent front propagation route (Figure 9.4). The precondition for the latter
route is the existence of a nearly perfect hexagonal pattern. On increasing ε this
pattern can be preserved to rather high ε-values. The only defect that develops
is a distortion of the pattern which shows in an increasing number of nonequi-
lateral hexagons (Figure 9.4a). Beyond a certain εs, which can exceed that of
the quasi-isotropic route by up to 30%, this distorted hexagonal pattern loses
stability. A domain of square cells appears that is separated by a pentagon front
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from the hexagonal domain. The squares invade the latter one as the pentagon
front propagates (Figure 9.4b). Although propagating fronts between hexagonal
or roll pattern and the equilibrium state have been studied (cf. Nepomnyashchy
et al. [19]), less is known about fronts separating squares and hexagons [27].

Until now we have left out the influence of the fluid properties on the HST.
Indeed any increase in the Prandtl number enhances εs. The numerical simu-
lations in EBT provide an estimation for the onset of the transition to occur
at εs = 0.28Pr0.68. For Pr = 100, the simulation predicts εsim

s = 6.4 ± 0.6
which is 30% larger than the experimental value in EBT. For Pr = 81 a value
εsim

s = 5.6±0.6 is obtained which lies in the transition range observed by SVMSS.
The differences were discussed in EBT in terms of a reduced mean flow in the
simulation, the neglect of buoyancy, and the different boundary conditions at
the lateral walls. This fit demonstrates that a higher viscosity leads to a retar-
dation of the HST. This was supported by Eckert’s experiments [24] who found
εs = 6.5 ± 1 for Pr = 200 (Figure 9.4). This shift towards higher supercritical-
ity is the reason why the extensive studies of Cerisier et al. [26, 28, 29, 30] at
O(Pr) ∼ 1000 revealed disordered hexagonal patterns only but no square cells.
The classical defect of such a disordered hexagonal pattern is the Penta-Hepta-
Defect (PHD, cf. Figure 9.5a). Fourier decomposition of the pattern (Ciliberto
et al. [31]) has shown that the PHD is a bound state of two dislocations on two
of the three roll subsystems, forming the hexagonal structure. The persistent
time–dependence observed by Cerisier et al. [29] at high Pr in such disordered
patterns is surprising in a twofold manner. On the one hand, the roll curvature,
introduced by the dislocations bound to the PHD, of course gives rise to the
production of vorticity. However, vertical vorticity ωz scales with Pr−1. Accord-
ing to EBT sufficiently low Pr-numbers are required to enable the action of ωz

as a kind of lubricant for the dislocation motion allowing the overcoming of the
pinning effects of the small scale structure. On the other hand, the experiments
of SVMSS, discussed above, brought evidence about the time-independence at a
much lower Pr number where time-dependent effects are expected to be stronger.
One possible source for the differences might be sought in the influences exerted
by the buoyancy-driven convection in the noncontrolled air layer.

9.2.2 The Defect-Mediated Nature of the Transition

The ideas about the elementary structure of the defects as a specific ensemble
of dislocations in the respective roll subsystems as well as about the action of
ωz, sketched above, are of help in describing details of the transition to square
cells more accurately.

Both EBT and SVMSS discussed the transformation chain hexagon → pen-
tagon → square occurring via shrinking of a cell edge to zero length implying
the coalescence of two threefold vertices. Eckert and Thess [32] found that first
this transformation can be traced back to a combined glide and climb motion of
dislocations. Second, this type of motion is responsible for the systematic trans-
formations in the defect shape that take place in the pattern on increasing ε
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(cf. Figure 9.5). Nucleus of the entire transformation process is the penta-hepta-
defect (Figure 9.5a). Above ε ∼ 2, the heptagon of the PHD shows a tendency
to diminish one cell side close to the pentagon until two of the seven cell knots
coalesce. As a result, a so-called (0,2)-pentaline is formed, consisting of two pen-
tagons and two nonequilateral hexagons (Figure 9.5b). (0,2) was used to describe
that non pentagonal cells neighbor the 2-pentagonal ones. The structure of the
(0,2)-pentaline obtained from Fourier decomposition is shown in Figure 9.6. As
in case of the PHD, the (0,2)-pentaline embedded in an otherwise hexagonal
pattern is an ensemble of two dislocations in two of the three roll subsystems.
The dislocation in roll set 1 with wave vector k1 (Figure 9.6a) was found close
to the shortest side of the left non equilateral hexagon of the (0,2)-pentaline.
The dislocation of roll set k2 is localized close to the central vertex1 of the newly
formed (0,2)-pentaline.

Remarkably, there is a separation distance between both dislocations of about
two average hexagon side lengths.

(a)  (b)  (c)   (d)

Fig. 9.5. Hierarchic system of defect transformation: (a) penta-hepta-defect; the penta-
gon is located near the center of the image; (b) (0,2)-pentaline; (c) (1,3)-pentaline; and
(d) (2,4)-pentaline. (b) to (d) were obtained from the binarization of shadowgraphs.
Pentagons are shown in light gray; after [32].

The existence of two nonbound dislocations is the basic difference between
the (0,2)-pentaline and the PHD. Such a state is impossible in the weakly su-
percritical range because the dislocations become attracted towards each other
(Rabinovich and Tsimring [33]). But in the moderately supercritical range, the
(0,2)-pentaline is the dominant defect type which can be recognized already in
the original photographs of Bénard’s experiment (Figure 9.7). The formation
of the (0,2)-pentaline and their subsequent evolution can be identified as the
reasons for the rise of the pentagon number in Figure 9.2b.

What happens finally with a (0,2)-pentaline when ε is increased? We observe
that this defect expands in the same manner as it was created. The expansion
proceeds in analogy to the closing of a zip fastener. The shortest side of one of
the two hexagons begins to shrink until both cell knots coalesce again. Conse-
quently, two new pentagons are formed. The first one below the two pentagons
of the (0,2)-pentaline and the other one beside them. In parallel, the hexagon
adjacent to both new pentagons becomes non equilateral again. This ensemble, a
1 This vertex has a coordination number four (four edges incident) as opposed to the

other cell knots which are vertices of coordination number three.
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k1

k2 k3

(a)     (b) (c)

Fig. 9.6. Structure of a (0,2)-pentaline. The three roll subsystems with wavenumber
ki(i = 1, 2, 3) are superposed to the binarized shadowgraphs; after [32].

(1,3)-pentaline, is shown in Figure 9.5(c). The formation of two new pentagons
is equivalent to a combined glide and climb motion of one dislocation, which
includes a gliding by 2π/ki together with a climbing by one to two hexagon side
lengths. This mechanism is shown by means of the transformation of a (0,2)-
into a (1,3)-pentaline in Figure 9.8. The mechanism of the pentagon formation
consists of a combination of glide (steps 1 and 2) and climb (step 3) motions.
The glide motion is initiated by the pinching off of a roll somewhere within the
shown rectangle (step 1). It is completed by the reformation of a new roll by the
movement of the original dislocation (denoted by A) and the lower part of the
pinched off roll towards each other (step 2). The direction of the movement is
indicated by arrows. The climb motion (step 3) of the newly formed dislocation
(denoted by B) finally causes the corresponding hexagon side to vanish. The
next cycle of glide and climb motion is started by another pinching off denoted
by 4. The figure shows an enlarged detail of Figure 9.6(b).

Inspecting the surroundings of the rolls (Figures 9.6(a-b) or Figure 7 in [32])
we have noted that rolls going through pentagons are more strongly curved than
rolls going through hexagons. A corresponding asymmetry in the mean flow can
be expected which might explain the existence of the preferred direction of the
combined glide and climb motions. This process continues via the appearance
of a (2,4)-pentaline [Figure 9.5(d)], until finally the pentalines comprise 8 to 16
pentagons. In this advanced stage the formation of square cells between both
pentagon cords of the pentaline is initiated (cf., e.g., Figure 9.1a). The process
underlying the transformation of pentagons into squares is again the coales-
cence of neighboring vertices which proceeds in analogy to the transformation
of hexagons into pentagons.

9.3 High Supercriticality and Outlook

A similarly fascinating issue as the HST itself is the question about the fate
of the square Bénard cells at sufficiently high supercriticality. Preliminary evi-
dence comes from Schatz [17] who showed a coarsening of the cells together with
the formation of a substructure inside the cells. Considerably more material is
available from mass-transfer systems where much higher supercriticality can be
realized related with the low solute diffusivities. As mentioned in Section 8.1
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Fig. 9.7. A reproduction of one of Bénard’s original photographs [3] displaying nu-
merous (0,2)-pentalines marked by arrows.

Fig. 9.8. The mechanism of the pentagon formation: Glide motion (steps 1 and 2) of
the original dislocation denoted by A and climb motion (step 3) of the new dislocation
B. The direction of the movement is indicated by arrows [32].

Linde et al. [9, 10] observed a hierarchic system of roll cells of first-, second- and
higher-order where the roll cells, e.g., of second order, are built up by the one-
order-in-magnitude smaller roll cells of first order traveling along the interface.
With increasing supercriticality the wavenumber spectrum becomes broader and
the cellular structure more and more disordered. Although experimental studies
of the thermocapillary regime with ε > 10 in high-Prandtl number fluids are still
lacking, numerical simulation (Thess and Orszag [34, 35]) indicates that strong
temperature gradients develop for sufficiently high Marangoni number between
the convective cells. This fact is illustrated in Figure 9.9, which shows the surface
temperature of infinite-Prandtl-number convection for M = 2000.

In addition to the behavior of high-Prandtl-number fluids (silicone oils), liq-
uid metals, characterized by a very low Prandtl number, have attracted the
attention of researchers. On the one hand, this is due to the fundamental inter-
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est in low-Prandtl-number convection. On the other hand, material processing
techniques such as laser welding and electron beam evaporation involve surface-
tension-driven flows at Marangoni numbers sometimes as high as M = 105

and require a thorough understanding of the fully developed turbulent regime.
High-resolution direct numerical simulations (Boeck and Thess [36, 37, 38]) have
helped to gain insight into this region of parameter space and to check the va-
lidity of phenomenological scaling models for the Nusselt number as a function
of the Marangoni number proposed by Pumir and Blumenfeld [39] and Karcher
et al. [40].

Fig. 9.9. Horizontal Laplacian applied to the surface temperature field. Marangoni
number is M = 2000, aspect ratio Γ = 3, spatial resolution 1282 x 64 [35].

We should mention finally that large portions in the parameter space of
surface-tension-driven Bénard convection, such as the influence of the Biot num-
ber or the ratio M/R of Marangoni to Rayleigh number, still remain unexplored.
Also, the exploration of the band of stable wavenumbers has started until recently
by application of a thermal laser writing technique [41]. Despite the progress in
weakly nonlinear theory and direct simulation, the problem of why hexagons
or squares are the preferred planforms is not yet understood in a physically
transparent way. We hope that this text will stimulate further research on this
fundamental problem in fluid dynamics. So, the analysis of similarities to square
cells found in other systems, such as ferrofluids [42], Rayleigh–Bénard convec-
tion (RBC) in binary mixtures [43] or RBC affected by temperature-dependent
viscosity [44] or rotation (cf. Chapter 4 by G. Ahlers in this volume) might de-
liver deeper insights. Furthermore, new generations of experiments, for example,
using substances near their critical point or high-purity liquid metals could help
to improve our understanding of Bénard convection in the coming century as
much as silicone oils did in the previous century after Bénard’s seminal work.
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The observation by Bénard of a vortex street in the wake of a circular cylinder
has been commonly associated with the stability analysis of the double alternate
street proposed by von Kármán. After a short historical review of these studies,
we present the main progress in understanding this instability during the last
decade. New experiments and the control of two-dimensional flows have clarified
the source of different modes as well as the results of three-dimensional numerical
simulations. The introduction of new concepts (absolute and convective insta-
bilities) allows us to link the velocity defect in the wake to the mechanism of
formation of the vortex street. The dynamics of the wake has been successfully
compared to the nonlinear Landau and Ginzburg–Landau models. Besides the
configuration of the circular cylinder wake, we describe different kinds of bluff
bodies and the diversity of their applications.

10.1 Introduction and Historical Aspects

Although the frequency of the sound emitted by a cylindrical rod translating
in air has been studied since 1878, after Strouhal paper [1], the observation of
the vortex street and the measurements of its geometrical characteristics were
reported for the first time by Henri Bénard in two different papers, in November
1908 [2, 3] (a“qualitative” study was previously published by A. Mallock in
1907 [2]). He described, “Les tourbillons produits périodiquement, se détachent
alternativement à droite et à gauche du remous d’arrière . . . pour former une
double rangée d’entonnoirs stationnaires, ceux de droite dextrogyres, ceux de
gauche lévogyres, séparés par des intervalles égaux (“The periodic vortex are
shed alternately on the right and on the left of the to form a double row of steady
funnels, separated by the same distances”). Also see Fig. 10.1 where there is a
wrong rotation of the vortices in the upper row. An ingenious setup, presented in
the second note of 1908 [3], permitted to Bénard [5] to film the movement of the
free surface by an optical method and cinematography. A careful investigation of
the best views, measuring with a 5 μm resolution the location of each vortex on
the free surface at each period, gave the spatio-temporal structure of the wake
(cf. Figure 10.2a and 10.2b). The first paper of 1908 [2] is now well known but
we should emphasize that this subject has attracted Bénard’s attention from
1908 to 1927 in Lyon [6, 7, 8, 9] (see Chapter 1 by J.E. Wesfreid in this volume).
His results are reported in at least seven different papers. Different experiments
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Fig. 10.2. (a) Pictures and (b) curves measured by H. Benard in 1913 [51.
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were performed by Riabouchinsky in water and in air [10] and von dem Borne
[11] visualized vortices in air with tobacco smoke. Theodore von Kármán [12]
wrote “that, at the same time, Prandtl had a doctoral candidate, Karl Hiemenz,
to whom he gave the task of constructing a water channel in which he could
observe the separation of the flow behind a cylinder. The object was to check
experimentally the separation point calculated by means of the boundary-layer
theory. For this purpose, it was first necessary to know the pressure distribution
around the cylinder in a steady flow. Much to his surprise, Hiemenz found that
the flow in his channel oscillated violently. When he reported this to Prandtl, the
latter told him: “Obviously your cylinder is not circula”. However, even after very
careful machining of the cylinder, the flow continued to oscillate. Then Hiemenz
was told that possibly the channel was not symmetric, and he started to adjust
it. I was not concerned with this problem, but every morning when I came in the
laboratory I asked him, “Herr Hiemenz, is the flow steady now?” He answered
very sadly,“It always oscillates.” “von Kármán thought that this phenomena was
partly intrinsic: he analysed the linear stability of point vortex configurations
and established a link between the drag on the cylinder and the structure of
the vortex street. Later (1954), he wrote “The arrangement of the vortices is
connected with my name: it is usually called a Kármán vortex street. But I
do not claim to have discovered these vortices: they were known long before I
was born. The earliest picture in which I have seen them is one in a church in
Bologna, Italy, where St Christopher is shown carrying the child Jesus across a
flowing stream. Behind the saint’s naked foot the painter indicated alternating
vortices”[13]. In 1908, Henri Bénard reported that “the ratio of the wavelength

Fig. 10.3. Visualization of the vortex behind a ciruclar cylinder (Courtesy of T.
Leweke).

to the diameter λ/D is independent of the velocity” (cf. Figure 10.3). In 1911 and
1912, von Kármán [14, 15, 16] predicted the stability of an alternate double street
of point vortex for a precise value of the geometrical ratio h /λ = 0.28. Bénard
performed many experiments to check this value and to specify the variation
of the frequency (Sur les lois de la fréquence des tourbillons alternés détachés
derrière un obstacle, 7 juin 1926 [7]). “The ratio h/λ varies from 0.15 to 0.49
with an average value around 0.32” (Sur l’inexactitude, pour les liquides réels,
des lois théoriques de Kármán relatives à la stabilité des tourbillons alternés,
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On the inaccuracy, for real liquids, of the theoretical laws of Kármán relative
to the stability of alternate vortices, 21 juin 1926 [8]). He has also corrected his
previous statement of 1908: “λ/D varies slightly with the velocity V and the
Reynolds number” and “when the Reynolds number goes from 73 to 1202, St
the Strouhal parameter has changed from 0.092 to 0.25,...” (Sur les écarts des
valeurs de la fréquence des tourbillons alternés par rapport à la loi de similitude
dynamique, 5 juillet 1927 [9]). In fact, on this subject also, we can recall the name
of Lord Rayleigh [17, 18], who proposed expressing the Strouhal number as a
development of the different powers of 1/Re and was interested in the emission
of sound associated with the vortex shedding process. According to von Kármán,
C. Runge was the first to make the connection between these phenomena.

10.2 The Instability Threshold and the Landau Model

Since the time of Bénard and von Kármán, many hundreds of papers have been
published on this instability. This very large number is linked to the importance
of applications in different engineering fields and to the apparent simplicity of
this configuration which seems to be two-dimensional. In this review, we mainly
focus on phenomena observed in the Reynolds number range Re ∈ [20, 300]
where there has been much progress during the last decade in our understand-
ing of three-dimensional phenomena and of the transition to turbulence. Even,
if many engineering problems appear for higher Reynolds numbers, it has been
shown that the study of the first bifurcations leading to oblique or parallel shed-
ding and its control are valuable for higher values. We refer to the reviews of
Berger and Wille [19], Coutanceau and Defaye [20], [21] and to the book of
Blevins [22] and Zradkovich[23] which give a description of the different regimes
on a wider Reynolds number range. Von Kármán’s analysis bears on an ideal
two-dimensional vortex street. The discussion of the criteria concerning the geo-
metrical ratio h/λ has been renewed by taking into account the stabilizing effect
of finite core size for a real vortex [24, 25] and three-dimensional instability.
However, this analysis does not link the details of the flow to the vortex shed-
ding. The concepts of absolute and convective instabilities have been introduced
in plasma physics [26] and applied recently to shear flows, see the review of
Huerre and Monkewitz [27]. They explain the development of a global mode of
wake oscillations by the existence of regions of absolute and convective instabil-
ity behind the body, due to the downstream evolution of the transverse velocity
profile. The selection of the frequency is linked to the feedback of a perturbation
upstream and downstream when the size of the region of absolute instability is
wide enough to create a global mode. The nonlinear effects and the saturation
of this mode are well described by the Landau model.

In his original paper, E. Hopf [28] underlined that the bifurcation of a periodic
solution from a stationary solution is observable for example, in the flow around
a solid body. The approach developed by Landau [29] analyzes the stability of a
steady flow. A nonstationary perturbation of the steady solution of the Navier–
Stokes equation is expanded as a sum of modes A(t). Let us consider a mode
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A(t) proportional to eσrtwith relative growth rate:

σ = σr + iσi = σr(1 + i c0) (10.1)

In the subcritical regime, Re < Rec, all disturbances are stable and σr is nega-
tive. At the instability threshold, when Re = Rec, one normal mode is marginally
stable, σr = 0, with two angular frequencies σi and −σi. As the Reynolds num-
ber is increased above the critical value, the coefficient σr becomes positive and,
near the instability threshold, it might be considered as a linear variation of the
Reynolds number, i.e. proportional to (Re−Rec). The expression for the ampli-
tude is no longer valid for long times and the Landau model takes into account
this nonlinear saturation in a new expression of the time derivative:

dA

dt
= σ A − l |A|2 A, (10.2)

where the complex nonlinear term is l = lr + i li = lr (1 + i c2). Setting the
complex amplitude A = Meiφ, one obtains evolution equations for the modulus
M and the phase φ:

dM

dt
= σr M − lr M

3 (10.3)

and
dφ

dt
= σi − liM

2 (10.4)

Both the scale of amplitude, (σr/lr)1/2, and the characteristic transient time of
oscillation, 1/σr, have been deduced from experiments. The evolution equation
of the modulus predicts the variation of the saturated energy of oscillation:

M2
eq =

σr

lr
∝ (Re − Rec) (10.5)

Although the measurements of the mean velocity profile and of the periodic
fluctuations have been performed by Kovasznay [30] or Roshko [31], these non-
linear effects were analysed only around 1980, following the results obtained
for Rayleigh–Bénard convection (see Chapter 3 by Manneville in this volume).
The linear relationship (10.5) provides a very accurate determination of the crit-
ical Reynolds number Rec by extrapolation to zero amplitude, which is now
taken equal to 47-50 rather than 40. The absence of any hysteresis, except in
the case of experiments with soap films [32], is characteristic of a supercriti-
cal bifurcation. In principle, this behaviour should be restricted to a narrow
range of Reynolds numbers near the bifurcation threshold, where the Landau
approximation is valid. However, for the flow behind circular cylinders and rings
[32, 33, 34, 35, 36], the Landau model has been validated from local measure-
ments of velocity fluctuations (Figure 10.4) in a surprisingly large interval of the
control parameter Re ∈ [50, 150]. Thus, the distinction, based on visualisations,
between two regimes with sinusoidal streakline and vortex formation around
Reynolds number 70 [20, 37] fades in a single periodic regime covering a large
Reynolds number range. Analysis of transient records (or impulse response) and
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Fig. 10.4. Variation of the streamwise velocity fluctuation with the Reynolds number
in the wake of a ring [33].

measurements of the amplitude and frequency have allowed us to determine the
variation of the real growth rate with the Reynolds number [12, 39, 40, 42]:
σr = (Re − Rec)/5 d2 The coefficient c2 = li/lr = − 3.0 has been determined
from the nonlinear influence of the amplitude upon the frequency of oscillation
[40, 42, 43].

Before the introduction of the Landau model, the Van der Pol oscillator
was used by Gaster [44], Blevins [22], and Noack, Ohle and Eckelmann [45]
in a qualitative manner. The Landau equation can be deduced as the time-
average approximation of a Duffing–van der Pol oscillator [46]. The amplitude
of oscillation, i.e. of the global mode, varies in the streamwise direction. Starting
from a zero value on the wall of the cylinder, it increases linearly, reaches a
maximum where saturation due to nonlinear effects is dominant, and decreases
further downstream (see Chapter 11 by Goujon-Durand and Wesfreid in this
volume) with the evolution of the velocity profile. The two rows of the vortex
street have also been taken as two non-linear coupled oscillators by Pomeau [47],
who inquired into the different symmetries of this configuration. Villermaux [48]
has proposed a new delay term A(t − τ) in the Landau equation, which takes
into account the convection time τ = D/U and the influence of the shear layer.
Moreover, the experimental relationship St− Re has been recovered on a large
Reynolds number range from the threshold to 4000.

The dynamics observed in the wake of axisymmetric objects (spheres, cones,
disks) has recently been analyzed in the same way [49, 50]. At low Reynolds num-
ber, the flow behind a sphere is axisymmetrical. Above a critical Reynolds num-
ber Re1 = 212, the bubble formed downstream of the sphere is no longer axisym-
metrical and two trails appear downstream the bubble. The three-dimensional
simulations of the birth of the azimuthal mode have been successfully compared
to the Landau model by Thompson et al. [51, 52], who have deduced both the
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(a) (b)

Fig. 10.5. (a) Growth and (b) saturation of the sphere wake instability at Re = 280
[51, 52].

linear and nonlinear terms. These two trails oscillate above a second critical
Reynolds number Re2 and for larger values in Reynolds number vortex loops,
are periodically shed. In these three-dimensional flows, the spatial axisymme-
try break occurs before the transition from steady to periodic flow. A small
upstream velocity gradient allows us to control the orientation of the wake. Al-
though small extrinsic perturbations might slightly change the critical Reynolds
number, the Landau model (Figure 10.5) has been verified in every configuration,
in agreement with numerical simulations [51, 52, 53]. Narrow ranges in Reynolds
number above the oscillation threshold were found, where the wakes are periodic
and where Landau’s law is valid. Downstream of the sphere, the maximum of
oscillation has been measured and the variation of the renormalized energy of os-
cillation is similar to the universal curve described in the cylinder configuration.
However, in the case of the sphere, the variation of the location of the maximum
changes from six diameters near the threshold to four diameters at the upper
value of the periodic range. This behavior is quite different from the wake of a
cylinder where the location of the maximum becomes infinite as (Re−Rec)−1/2

near the threshold.

10.3 Three-Dimensional Patterns and the
Ginzburg–Landau Model

In some experiments, Henri Bénard noticed the irregular shedding of vortices
and we can now see these phenomena as the consequence of three-dimensional
effects. A number of studies in recent years have shown the importance of three-
dimensional phenomena in the wake of nominally two-dimensional bodies, mainly
circular cylinders, and have pointed out the importance of end effects in creating
some of the three-dimensionalities [21]. Various patterns appear such as oblique
vortex shedding [19, 54], cells of different frequencies [55], “chevrons” [56], and
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vortex dislocations. For more than a century, the relationship between the fre-
quency of vortex shedding and the velocity of the flow has been the subject of
polemics. Thus, the Strouhal–Reynolds number dependence (see Figure 6a from
[57]) exhibited a scattering of 20 %, even if all the parameters have been mea-
sured with a precision of 1%. The discontinuities in this St-Re curve have been
observed by Tritton [58, 59] and discussed by Gaster [44, 60] and by Gerrard
[57]. The existence of oblique and parallel vortex shedding was shown in papers
of Berger and Wille [19] and of Ramberg [54], but it is only with the paper of
Williamson [61] that a nice collapse of the previous data appear by changing the
measured value of the Strouhal number Sθ to a new value St = Sθ/cosθ , after
correction of the oblique vortex shedding angle.
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Fig. 10.6. Strouhal–Reynolds variation: (a) From Gerrard [57] and (b) from
Williamson [21].

Fig. 10.7. Parallel vortex shedding behind a circular cylinder: (a) From Williamson
[56] and (b) with end cylinders [62].
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Moreover, different groups have found a parallel vortex shedding by passive
control of the flow through angling end plates (Williamson [56] Figure 10.7a),
ending larger coaxial cylinders (Figure 10. 7b [62, 63, 64]), large upstream cylin-
ders [65]. The configuration of the ring, studied by Roshko [31], has been inves-
tigated by Leweke and Provansal [33, 66] to avoid the end effects and observe a
parallel vortex shedding as a natural mode. A universal curve Strouhal number
versus the Reynolds number (Figure 10.6b) has been obtained with an accuracy
better than 1% between the measurements of different authors [33, 61, 65, 67].
These three-dimensional structures have been described by an extension of the
Landau model, including one spatial dimension (the spanwise direction) in which
the three-dimensional wake is now represented by a one-dimensional chain of
nonlinear coupled oscillators. A thin slice of the wake (for example between z
and z + dz is a local oscillator governed by the Landau equation. A diffusive
coupling along the spanwise direction is added with a complex diffusive coeffi-
cient μ = μr + iμi = μr(1 + i c1). The velocity fluctuations in the near–wake are
assumed to be proportional to the real part of a complex amplitude, solution
of the one-dimensional complex Ginzburg–Landau equation with appropriate
boundary conditions:

∂A

∂t
= σ A − l |A|2A+ μ

∂2A

∂z2
(10.6)

The introduction of the coefficient μrleads to a new scaling along the spanwise
direction (μr/σr)1/2 which goes to infinity near the instability threshold. A re-
duced length has been introduced [42]:

Lred = L

(
σr

μr

)1/2

=
(
ν

μr
(Re−Rec0)

)1/2
L

d
, (10.7)

where Rec0 is the critical Reynolds number for the parallel vortex shedding of an
infinite cylinder (L/d → ∞ Rec0 = 47 − 50). The linear theory predicts the in-
stability of a spanwise mode n when the reduced length is greater than nπ. This
approach results in a prediction for the variation of the critical Reynolds number
with aspect ratio, which is in good agreement with experimental measurements.
This simple model shows that both the aspect ratio with boundary conditions
and the Reynolds number are control parameters of the instability of real three-
dimensional flows. The control of the wake by a local retroaction creates a hole
or zero amplitude of oscillation that acts as a new boundary condition where
the wake can be described by a Ginzburg–Landau equation [68]. By increasing
the reduced length, more and more spatial modes appear: first the single mode
regime, then the second mode [42] and for larger values chevrons (see Figure
10.8 (a) chevrons [56] and (b) simulation by Albarède [46]), which are created
by the symmetrical shock of two oblique waves starting from the boundaries. The
chevrons give place to oblique vortex shedding when the boundary conditions are
strongly different. The presence of a small velocity gradient near the ends of the
cylinder leads to the existence of cells of different frequencies and dislocations,
obvious on an isophase simulation graph and similar to the experimental details.
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(a) (b)

Fig. 10.8. (a) Visualization of chevrons by Williamson [56], and (b) simulation from
[42].

As for the Landau mode, the parameter in this equation μr = 10 ν and c1 have
been determined from experiments [33, 42], because no formal derivation from
the equations of motion is available so far. The symmetry z,−z is preserved by
this modeling. However this model has also been successful in describing the
cells of different frequencies behind a cone [69, 70] or behind a cylinder with
an upstream velocity gradient [71] in configurations where the symmetry along
the spanwise direction is broken and where additional terms in ∂A/∂z should
be introduced. On short distances in the spanwise direction, which is the size of
the different cells, the diffusive term is also sufficient. Facchinetti et al. [72] have
analyzed these three-dimensional effects through a van der Pol equation and a
coupling along the spanwise direction. A more complete modeling has been ex-
amined by Chiffaudel [73] working on a Ginzburg–Landau equation with spatial
derivatives in both the spanwise and the streamwise directions to reflect the role
played by the downstream evolution in the mechanism of the absolute insta-
bility. On the ring configuration, different oblique modes or helices can coexist
for the same Reynolds number (Figure 10.10) [33]. Their conditions of stabil-
ity have been experimentally studied and compared to the predictions of the
Ginzburg–Landau model with periodic conditions along the spanwise direction.
The transition from oblique unstable mode to parallel stable mode was the first
observation of Eckhaus instability in open flows. After the ring, the propagation
of phase shocks and phase expansion have been observed in transient patterns
of cylinder wake by the manipulation of end effects [74, 75].

10.4 The Transition to Turbulence: The Modes A and B

Because the three-dimensional effects in the laminar regime, such as cells, dis-
locations, oblique and parallel vortex shedding, have been recently clarified, the
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(a) (b)

Fig. 10.9. (a) Cells of different frequencies [56] and (b) simulation by the Ginzburg–
Landau equation [42].

(a) (b)

(c) (d)

Fig. 10.10. Parallel and oblique modes in the wake of a ring: (a)Parallel mode,
(b) helix mode 1, (c) helix mode 2, and (d) helix mode 3 [33].
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transition regime has received a renewed attention during the last decade. The
transition to three-dimensionality of the two-dimensional wake of a circular cylin-
der happens in two distinct stages that can be described with reference to the
measurements of the Strouhal–Reynolds curve (Figure 10.6b and Williamson
[61]). Two discontinuous changes are visible. The first is in the Reynolds num-
ber range Re ∈ [150, 190], where the spanwise wavelength of this large scale
mode A is around four diameters. Increasing the Reynolds number up to 230-
260, there is again a discontinuity and a new mode B with spanwise modulation
along the fine scale of one diameter. These two modes A and B have distinct
unstable wavelength bands and different topologies and they lead rapidly to a
fully turbulent flow for higher Reynolds number [21, 76].

There is a wide range Re ∈ [150, 190] of experimental critical Reynolds num-
bers for wake transition reported in the literature. The level of the free-stream
turbulence has been proposed by Bloor [77] as a cause of this dispersion, although
the end conditions are unknown in these experiments. Miller and Williamson
[78] have found that the laminar regime for parallel shedding with clean end
conditions can be extended up to a critical value Rec = 194 and even beyond
Re = 200 for short periods of time. Experiments as well as numerical simulations
have confirmed the hystereretic character of this bifurcation. In fact, the subcrit-
ical character of that transition explains the dispersion upon the critical value of
each threshold between different experiments, depending on the turbulence level
and whether the flow speed is increased or decreased. Floquet stability analysis
[79, 80] predicted that mode A first becomes unstable for a spanwise wavelength
λ = 4D at a critical value of the first bifurcation, Rec = 189, pretty close to
the more recent and well-controlled experimental data. This is consistent with
the experimental flow visualizations of Williamson [61] which show the spanwise
wavelength to be between 3D and 4D or 3/5 to 4/5 primary wavelengths (the
injection of polymers allowed Cadot and Kumar [81], to change the primary
wavelength while keeping the same ratio 4/5 for the spanwise wavelength of the
mode A). In this mode, the primary vortices deform in a wavy fashion during the
shedding process (Figure 10.11a). This results in the formation of vortex loops
stretched into streamwise vortex pairs. The mode A structure and its length
scale are similar to the “in-phase” mode of vortex loop formation in an unsepa-
rated wake behind a splitter plate studied by Meiburg and Lasheras in 1988 [82].
There are also strong indications that the equivalent of mode A for a circular
cylinder is the initial transition mode for various two-dimensional bodies, such
square cylinders [83] and long plates with aerodynamic noses [84]. At higher
Reynolds numbers, finer-scale streamwise vortex pairs are formed as shown in
Figure 10.11b. The primary vortex deformation is more spanwise-uniform than
for mode A and the streamwise vortex structure has a smaller spanwise wave-
length of around 1/5 of a primary wavelength. Unlike mode A, mode B appears
unstable over a small wavelength band, even at higher Reynolds numbers. Some
characteristic features of mode B have been observed through visualizations and
spanwise cross-correlations at Re = 1000 [85]. For the cylinder as for the ring
configuration, the spectra of velocity fluctuations exhibit the same change from
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(a) (b)

Fig. 10.11. Visualizations of the spatial structure of modes: (a) A and (b) B [21].

one single narrow frequency to twin peaks of the larger spectrum and again
a single narrow peak when gradually transferring the energy from mode A to
mode B in the transition regime. At Re = 260, Floquet analysis shows that
the two-dimensional wake becomes unstable to a second shedding mode and the
critical wavelength λ = 0.8D is again consistent with experimental observations.
Thompson, Hourigan, and Sheridan [86] used a spectral element/Fourier series
discretization and they captured computationally the modes A and B for the
first time (Figure 10.12 a,b). The natural symmetries of modes A and B are
different: mode A exhibits a staggered sequence of streamwise vortices from one
braid to the next one and mode B comprises an inline arrangement ([21], Figure
10.13). Lasheras and Meiburg [87] have found two types of modes induced by
initial perturbations that have the symmetries of modes A and B respectively.
Despite the large number of experimental, theoretical, and numerical studies of
this transition, the precise nature of the secondary instabilities is still not fully
understood. Barkley et al. [88] showed that the development of three-dimensional
flow in the wake of a circular cylinder, including the hysteretic onset of mode A
and the energy shift from mode A to mode B, could be described by a coupled
pair of evolution equations. Similar results have been also obtained by Sheard et
al. [34] from numerical simulations. Williamson [21] realized that the two differ-
ent instabilities are associated with the two different length scales of the basic
two-dimensional flow. These scales are the core sizes of the primary vortices and
the width of the braids between the rollers. Leweke and Williamson [89] showed
that the elliptic instability theory of the vortex cores predicts the spanwise wave-
length of the mode A instability and explains the topology and the waviness of
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(a) (b)

Fig. 10.12. Numerical simulation of Modes (a) A and (b) B (fTom Thompson et al.
[86])

MODEB
MODE A

Fig. 10.13. Sketches of the symmetries of Modes A and B (from Williamson [21]).

the core vortices. Henderson [76] was critical of this scenario mainly because
the mode appears to have the largest amplitude outside the region in which
instability theory predicts it should develop. Direct numerical simulations (see,
for instance, [51, 52, 90, 91]) taking into account the contributions of elliptic
and hyperbolic flow regions to the three-dimensional transition, allow us to con
clude that the elliptic instability is dominant in the initiation and maintenance
of mode A perturbation. Mode B instability has been associated by Williamson
with an instability of the braid region and more precisely scales on the thickness
of the vorticity layer lying in the braid region.

10.5 Diversity of Applications

The work of Strouhal and Benard has strong applications in aeroacoustics [23].
The destruction of Tacoma Bridge under the action of the wind occurred between
the two World Wars and many studies have been devoted to the knowledge of
the vortex shedding frequency to avoid resonance of the structure. Thus, in
France at Ecole Normale Superieure, the team of Yves Rocard [92] was involved
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Fig. 10.14. (a) Parallel and (b) oblique vortex shedding for Re = 104 [21].

in the conception of the Tancarville Bridge near Le Havre. The variation of the
frequency with the flow velocity led to the conception of a new class of flow-
rate instruments. The detection of periodic velocity fluctuations by electronic
system avoids the rotation of mechanical systems and different patents have
been developed. Usually, tapered bluff bodies are selected rather than circular
cylinder shapes to get the vortex birth from the same point of the solid surface.

Moreover, the wake of a circular cylinder appears also as a prototype of
the wake behind a bluff body (boat, car, plane). The Album of Flow Motion
[93] shows the vortex shedding of petroleum behind a tanker. The vibrations
of cables in the wind or under the sea are of great interest in different fields:
telecommunications, offshore petroleum industry (cf. the review of Bearman
[94], and the three Bluff Body Wakes and Vortex Induced Vibrations Confer-
ences B.B.W.V.I.V 1,2,3 1998, 2000 and 2002 on these problems [95]). The use
of a sinuous cylinder along the spanwise direction [96], instead of a straight one,
leads to the reduction of amplitude and even to the suppression of vortex shed-
ding. In the previous section, we have related the diversity of three-dimensional
phenomena at a low Reynolds number. The methods used to promote parallel
vortex shedding or oblique vortex shedding are still useful for Re = 104, as it
is visible on the Figure 12 of Williamson [21]. Parallel vortex shedding results
in a collective synchronised effect of forces working on the whole span of the
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cylinder, when oblique vortex shedding will induce a weaker force on a shorter
span interval. The feedback control of the flow by an actuator can suppress the
vortex shedding [68].

The general properties of the wake are important also in heat transfer and
chemical engineering. Many empirical correlation laws used in heat transfer are
linked to the different regimes of oscillation. The influence of the periodic shed-
ding on the temperature distribution is obvious on the Figure 15 in Mathelin,
Bataille, and Lallemand’s study [97] which was motivated by the blowing of cool
gas in a turbomachine. We can also notice that the transverse distance between
the two rows is weak; in this case the wake is sometimes modeled as a single
row of alternate vortices. In the tube bank of heat exchangers [22], or around

Fig. 10.15. Temperature field behind a heated cylinder [96].

the columns of some bridges, the wakes behind bluff bodies placed next to each
other can interact and create a large variety of phenomena. An extension of the
Landau model has been proposed to study N coupled wakes which showed that
the wakes of a couple of cylinders [97] are uncoupled when the distance sepa-
rating their axes is larger than six times their diameter. For a larger number of
wakes, the coupled oscillators system takes the form of a discrete version of the
Ginzburg–Landau equation, where the coupling parameter is a function of the
distances separating the cylinder axes. At strong coupling, the entire population
of oscillators move in phase, at intermediate coupling spatio-temporal chaos oc-
curs and finally at weak coupling the wakes oscillate in phase opposition. These
theoretical predictions have been verified on a row of 21 identical cylinders placed
perpendicular to a uniform flow and separated by a distance equal to 1.5 times
the cylinders diameter, in order to create a very strong coupling. The size of
the cells depends on the intial conditions of the flow. Sligthly above Re = 110,
some vortex streets are generated by the cylinders belonging to some of the clus-
ters. These oscillating wakes, gathered in some regions of the row, are locked
in phase. These groups exist together with stationary regions, creating amazing
patterns (Figure 10.16). A decrease of the coupling by changing the distance
between neighbours shows the existence of the phase opposition mode. Figure
10.17 illustrates the permanence of these structures in different configurations.
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(a) (b)

Fig. 10.16. Coupled wakes of (a) a row and (b) a pair of circular cylinders [98].

The spatial photographs show the existence of regular alternate vortex shedding
behind mountains or volcanoes (Jan Mayen in the North Atlantic, Guadalupe, or
Socorro Island in Gulf of California or Cheju in the south of Korea, Figure 10.17-
a), even at very high Reynolds number and in stratified flows. Couder, Chomaz,
and Rabaud [100] have used soap films to study two-dimensional cylinder wakes.
This technique has been developed in another way by Gharib and Derango [101]
by a flow of liquid along wires. Even if some aspects of these dynamics and the
role of the film thickness might be clarified, the study of the wake of a flexi-
ble filament has been undertaken by Libchaber’s team [102] (Figure 10.18a,b,c).
This flow is one kind of prototype of one-dimensional flag instability. Moreover,
number of applications appear in biology such the swimming of small organisms
or the flight of insects.

10.6 Conclusion

Since the times of Bénard, much progress has been made in experimental tech-
niques, three-dimensional simulations, and theoretical scenarios of this instabil-
ity. However, except for the explanation of convective and absolute instability, a
theory of the linear threshold of this instability is still lacking. A number of qual-
itative and quantitative features of bluff-body wakes can be interpreted using
relatively simple amplitude equations. Different configurations such as cylin-
ders, rings, and axisymmetrical objects have been analyzed in this way. During
the last decade, the two-dimensional flow behind a circular cylinder has been
documented thanks to a careful control of end conditions. Three-dimensional
instabilities have been observed and characterized through visualizations and
quantitative data. The measurements of the amplitude and frequency of oscil-
lations, and wavelengths of primary instability have been obtained on different
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Fig. 10.17. Left vortex shedding behind the Guadalupe Island [103].
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Fig. 10.18. Model of one-dimensional flags in two-dimensional wind [102].

experimental setups with accuracy. The flow bifurcations that occur at various
Reynolds numbers have been identified and accurately described. The direct
numerical three-dimensional simulations are now a powerful tool to check the
elliptic or hyperbolic root of the mechanisms leading to the formation of modes
A and B. The approximate spanwise wavelengths of these modes have been
computed and successfully compared to the experiments. Various fields of ap-
plications find interest in these developments but it is remarkable that, after a
very large amount of work motivated by specific applications, the progress of our
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understanding came about through from basic experiments. In conclusion, the
artistic aspect of the patterns observed by Henri Bénard should be underlined
and it is still worthwhile to watch these vortices in a river [103] or the painting
of Madonna col Bambino tra i Santi Demenico, Pietro Martire e Cristoforo in
the Basilica di San Domenico, Bologna, Italy [104].
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Albarède, Françoise Bataille, Mark Thompson, and Charles Williamson in pro-
viding material for this review.

References

1. V. Strouhal, Uber eine besondere Art der Tonerregung. Wied, Anna. Phys. und
Chem. (Leipzig) Series 3, 216–251 (1878).

2. H. Bénard, Formation de centres de giration à l’arrière d’un obstacle en mouve-
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42. P. Albarède and P. A Monkewitz, A model for the formation of oblique shedding

and chevron patterns in cylinder wakes, Phys. Fluids A 4,. 744–756 (1992).
43. M. Schumm, E. Berger, and P.A. Monkewitz, Self-excited oscillations in the wake

of two-dimensional bluff bodies and their control, J. Fluid Mech. 271, 17–53
(1994).

44. M. Gaster, Vortex shedding from slender cones at low Reynolds numbers, J. Fluid
Mech. 38, 565–576 (1969).

45. B.R. Noack, F. Ohle, and H. Eckelmann, On cell formation in vortex streets, J.
Fluid Mech. 227, 293–308 (1991).
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92. Y. Rocard, L’instabilité en Mécanique: Automobiles, Avions, Ponts Suspendus,
Masson, Paris (1954).

93. M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Inc. (1982).
94. P.W. Bearman, Vortex shedding from oscillating bluff bodies, Ann. Rev. Fluid.

Mech. 16, 95 (1984).
95. P.W. Bearman, K. Hourigan, T. Leweke, and C.H.K. Williamson (eds), Bluff Body

Wakes and Vortex Induced Vibrations Conferences, B.B.V.I.V. 1, 2, 3: Proceedings
of the Conferences of Washington 1998, Marseille 2000 (cf. J. Fluid and Structures
2001, vol. 15 N◦3/4) and Port-Douglas 2002 (to appear in Eur. J. Fl. Mech. 2003).

96. J.C. Owen, A.A. Szewczyk, and P.W. Bearman, Suppression of Kármán Vortex
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We describe the spatial inhomogeneities in hydrodynamic patterns, in the cases
of confined systems such as the Rayleigh–Bénard convection and open systems
such as as the Bénard–von Karman instability of vortex shedding. From experi-
mental results, we define the typical correlation lengths and their scaling law in
each situation.

11.1 Envelope of Rayleigh–Bénard Convection

In the study and modeling of hydrodynamic instabilities, the experiments con-
cerning the thermoconvective Rayleigh–Bénard instability were determinant.
This instability, created by heating the bottom of a horizontal layer of fluid,
presents a remarkable spatial organization in the shape of convection rolls when
the temperature gradient applied on the layer reaches a critical value. Modern
studies of this instability have permitted the application of the universality con-
cepts and scaling laws from condensed matter physics, to other areas such as
fluid mechanics. Rayleigh–Bénard instability has been the subject of many stud-
ies, particularly in non-linear dynamics and deterministic chaos [1], as well as
spatio–temporal chaos [2] and developed turbulence [3].

The doctoral thesis of Henri Bénard defended at the Sorbonne in 1901, de-
voted to thermal convection with a free surface, opened the field of systemati-
cally experimental study of instabilities for physicists, using accurate methods
of observation, particularly optical methods [4]. This field is known as “Bénard–
Marangoni convection.”

One of the subjects that we review briefly is the evolution of the spatial en-
velope, that is the maximum amplitude of one of the velocity components of the
convective rolls, in Rayleigh–Bénard instability. One of the representative values
of the state of the system, near onset of instability, is given by the amplitude
A(x) which represents the spatial envelope of the roll structures, of wavenumber
q in the 2D convection. So, for the stationary case, one velocity component is
characterized by V = A(x)cos(qx + ϕ), where x is the position variable in the
direction perpendicular to the rolls and ϕ is the phase perturbation. In that
situation the amplitude A is the order parameter of the transition. A real flow
is characterized by spatial inhomogeneities: presence of wall structure defects,
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thickness variations, and so on. The extension of macroscopic perturbations,
that is the size of the boundary layers in the “ rolls” domain, is estimated by
equivalence with the correlation length ξ of the system. The coherence length
(or influence length), was determined using laser Doppler velocimetry, by mea-
surement the influence on side boundaries of the cells away from L associated
with the conditions A(0) = A(L) = 0, on the convective structure [5, 6] (Figure
11.1).

The coherence length is related to the relative distance at the onset of in-
stability ε = R/Rc − 1, where R is the Rayleigh number (nondimensional tem-
perature difference) and Rc its critical value at the onset instability. This length
shows critical behavior in ξ ∼ ε−1/2, whether beyond or below the onset of insta-
bility. Other experiments allowed us to determine the amplitude law A ∼ ε1/2

in the cells of the large lateral extension and showed the critical slowing down
of the temporary perturbations with characteristic time τ varying as ε−1.
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Fig. 11.1. Amplitude modulation induced by wall effects in thermal convection [5].

This series of experiments [7] has permitted, for the first time, the verification
of the validity of the slightly non-linear Newell–Whitehead–Segel model which
represents the particular case of the Ginzburg–Landau equation for Rayleigh–
Bénard convection.

These equations and their generalization have since been widely used as
model equations of a whole instabilities problem in confined systems [8]. It is in-
teresting today to recognize that Pierre Bergé and his Saclay group have played
a prominent role in the production of these scientific results and in developing
optical methods and physical concepts relevant to the Bénard work. The impact
of their approach extended to the study of defects in convective structures that
have been treated in general terms by considering the effect of compression and
deformation of structures at the large scale of the amplitude equation [9, 10, 11].
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11.2 Downstream Evolution of the Bénard–von Karman
Street

In the last years, theoretical and experimental studies have been focused on
hydrodynamic instabilities in open systems. The most typical cases are due to
shear forces as in mixing layers or behind a bluff body which induce vortex
shedding, in turn provoking transverse vortices in the flow. Other instabilities
produce a stationary vortex in the flow direction, a streamwise or longitudinal
vortex as a result of centrifugal instabilities due to flow streamline curvature, and
the instabilities resulting from rotation or presence of stagnation points. These
instabilities are largely represented in real flows either in natural conditions or
in industry.

In the first group we have Bénard–von Karman instability, characterized by
vortex shedding in the flow behind an obstacle (Figure 11.2). In the case of a
cylinder, of infinite lateral extent, the transition takes place when the Reynolds
number (nondimensional velocity) calculated on the diameter of the cylinder
R = V d/ν exceeds the value Rc = 47 [12, 13]. The base velocity profile U(x),
where x is the distance in the stream direction, presents a strong shearing which
is the source of instability. The strongest shearing occurs just behind a bluff
body where two recirculation bubbles form. Downstream, the relaxation of the
velocity profile, by viscous diffusion, reduces unstable features in the velocity
profile. This spatial inhomogeneity of the base flow is characteristic of most of
the instabilities in open systems, with, among other consequences, the presence
of a normal component of the velocity, through flow conservation. The flow can
in this way become non-parallel, if this inhomogeneity is strong enough.

Fig. 11.2. Laser-induced flurosceine view of vortex emission [14].
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We are concerned with the spatial inhomogeneities in the Bénard–von Kar-
man instabilities. The bluff body is of a trapezoidal or cylindrical form. We
performed experiments in a low velocity water tunnel with a laser Doppler ve-
locimeter. The longitudinal (Vx) and transverse (Vy) velocity components of the
instationary flow were measured along the central line of the flow behind the
obstacle, for supercritical Reynolds numbers (R > Rc), when vortex shedding
takes place. In this instability, the vortices behave like traveling waves with
wavenumber q and constant frequency f along the flow.

The amplitude or envelope A(x, y), defined in the previous section, accounts
for the spatial modulation of intensity of shedding vorticies. Boundary condi-
tions, on the bluff body and to infinity are A = 0. In Figure 11.3, we present the
envelope A(x, ymax) of the longitudinal component of the perturbation of flow
velocity vx = U −Vx , where ymax is the transversal position of the maximum of
the perturbation. This figure shows the typical shape of the envelope, increas-
ing the value of maximum and bringing it closer to the bluff body, as the flow
velocity or Reynolds numbers R increases [14, 15].

Fig. 11.3. Spatial evolution of the amplitude A(x, ymax) [15].

As it happens in confined system instabilities, we observe here the defor-
mation of the envelope with the Reynolds number. The value of the amplitude
at the maximum of the envelope Amax follows a Landau law : Amax ∼ ε1/2.
The abscise Xmax of this envelope maximum measured from the extremity of
the bluff body, follows the same law as the correlation length in the case of the
Rayleigh–Bénard instability, that is Xmax ∼ ε−1/2 [14, 15].

The existence of the two scaling laws allows us to renormalize the envelopes
for each value of the Reynolds number, near the onset of instability, by scaling the
velocity fluctuation of the velocity with Amax and the abscissa with Xmax. This
behavior was also observed in 2D numerical simulations with spectral methods
[16] (Figure 11.4). These simulations have also shown that the envelope grows
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locally in the linear stage of perturbation growth and starts wrapping in the non-
linear stage. We obtained similar properties of renormalization in forced wakes
[17].

Spatial inhomogeneity of the vortex intensity is correlated with inhomogene-
ity of the base flow. Local study of the linear stability of the base flow in the
region of the near wake close to the recirculation rolls, shows the existence of
the absolute instability (IA), that is a natural self-oscillation with narrow spec-
trum. Downstream the base flow presents a zone of convective instability (IC)
with the large noise spectrum amplification [18, 19]. Although each local profile
corresponds to instability onset and to different frequencies, the whole unstable
system selects one unique frequency characterized by a narrow spectrum (global
frequency). The criteria to obtain this global frequency are still subject of the-
oretical investigation. The unstable flow thus presents a strong synchronization
of the oscillations of a global rather than local nature [20]. A retroaction mech-
anism, common to all flows where an absolute instability region is followed by a
convective instability region downstream, results in the installation of the global
mode, so the measured envelope is the amplitude of the global mode.

The separation between IA and IC regions in XA can be assimilated to a
virtual permeable boundary of the system. Further downstream we have one
point where the base flow profile becomes linearly stable because of the relaxation
of the shear profile. Increasing part of the envelope (between bluff body and
Xmax) defines a wave propagation front, with a thickness ∼ ε−1/2. If this length
is smaller than the distance between the bluff body and the XA coordinate, it is
to be expected that Xmax coincides with the thickness of the wavefront [21]. On
the other hand if XA is smaller than this, we observe a strong inhomogeneity
situation (“small box”) but without the same scaling laws. This is always the
case for very small values of ε as appears in confined system instabilities, where
the correlation length is about the size of the box [7].

11.3 Current Developments

This short summary of results concerns the spatial inhomogeneities in the open
systems instabilities as Bénard–von Karman instabilities.

Other problems of interest are the spatial amplitude of the nonlinear sta-
tionary mode or zero frequency mode, which is of major importance in unstable
flows. Indeed, one of the most significant nonlinearities is the quadratic one that
generates a zero frequency mode (stationary) of order ε, describing the defor-
mation of the base flow caused by instability [22, 23, 24]. In the case of wake
(Bénard - von Karman instability), the spatial distribution or envelope of this
zero mode is concentrated on the axis, in the recirculation region behind the bluff
body [16]. The effect of this localization is to pump the fluid inside the region
of the negative velocity to oppose recirculation. For stationary flow (without
vortex emission), between the existence of recirculation loops (R ∼ 5) and until
the appearance of vortex shedding (R = Rc = 47), the recirculation length Lro

increases with flow velocity Uo [25, 26] according to Lro ∼ Uo. The existence of
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Fig. 11.4. Renormalization curve of the envelope for the (a) Vx and (b) Vy components
[16].

the zero-frequency mode decreases locally the flow velocity in this region in a
quantity proportional to ε, so that for Reynolds numbers R > Rc, the size of
the recirculation area Lrv, in the presence of the vortex emission should vary as

Lrv ∼ (Uo − Cte.ε),

a phenomenon that we have been able to put in evidence [27]. In addition, this
mode modifies the mean drag [28, 29].

Finally, recent investigations on the wakes behind a bluff body have been
concerned with developed turbulence situations. Their interest lays in the in-
homogeneous character of the turbulence that involves the impact of coherent
structures in their statistics. The latter are more significant in near–wake than
in far–wake where turbulence is more homogeneous. In this way intermittency
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exponents [30] measuring deviation from the predictions of Kolmogorov theories
in 1941 exhibit a spatial variation with a stronger intermittency in the near–
wake tending towards values characteristic of homogeneous turbulence in the
far–wake [31, 32].
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A brief review is given of ordered and disordered patterns formed on the surface
of a fluid layer subjected to vertical oscillation. We point out connections to
cellular Bénard patterns, and discuss the extent of our understanding of these
nonlinear states.

12.1 Introduction

The cellular structures studied by Bénard in thermal convection have parallels
in many other systems. One that has been studied prominently is a large fluid
layer with a free surface, subjected to vertical oscillation of the container at a
fixed frequency. When the excitation acceleration exceeds a frequency-dependent
threshold, patterns form that can include stripes, squares, hexagons, and even
quasi-crystalline patterns, depending on the frequency, viscosity, and the driving
waveform.

Michael Faraday [1] first studied these surface wave patterns in his 1831 paper
“On a Peculiar Class of Acoustical Figures, and on the Forms of Fluids Vibrating
on Elastic Surfaces”. This work was quite varied, and included observations of
granular material, “white of egg”, alcohol, and milk among others. He noted
that milk was advantageous for determining the form of the waves because of its
light scattering properties. The experiments were surprisingly ambitious: a large
version used “a board eighteen feet long” and a layer of water “twenty-eight
inches by twenty inches in extent”. He recognized that sloping the bottom near
the boundaries of the container could prevent reflections. In other words, the
experiments were remarkable for their time.

Faraday waves are attractive for studying cellular patterns for several reasons
[2]. The basic time scale for pattern evolution is much shorter than is the case
for thermal convection, which allows multiple parameters to be studied in a rea-
sonable time. Furthermore, the wavenumber of the pattern can be controlled by
the imposed forcing, thus allowing the differences between capillary and gravity
waves to be studied. All of the basic pattern symmetries of the plane can be
realized. However, the theoretical difficulty of the problem is much harder than
is the case for convection because of the free surface. Also, numerical computa-
tions are particularly demanding because the primary pattern is oscillatory, a
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fact that imposes demanding requirements on time resolution. Another difficulty
is the fact that lateral boundaries are important if the viscosity is low, so it is
difficult to reach the limit of an effectively infinite layer.

Since these early experiments, Faraday waves have been extensively explored,
and the subject is briefly summarized here. The reviews of Cross and Hohenberg
[3] and Miles and Henderson [4] provide a good starting point. The reader is also
referred to more extensive descriptions of regular waves [2] and quasi-crystalline
waves [5] that are available elsewhere. We begin with some history, proceed to a
discussion of regular wave patterns, and consider their description by amplitude
equations, including the effects of wave interactions on the dynamics. We then
consider more complex patterns arising in multifrequency forcing, such as quasi-
crystals and superlattices. We close with a brief discussion of spatio-temporal
chaos of parametric waves. The discussion given at the Workshop is roughly
parallel to an invited lecture given at the Centennial Meeting of the American
Physical Society. An audiotape and the visuals of this presentation are available
on the Web [6].

Faraday’s initial observations were unexplained. In 1883, Lord Rayleigh sug-
gested that the waves result from parametric resonance, as in a damped harmonic
oscillator of the following form:

d2x

dt2
+ 2μ

dx

dt
+ ω2

o(t)x = 0, (12.1)

where the natural angular frequency ωo is modulated at a frequency f , and the
resulting oscillation occurs at a frequency f/2.

In 1954, Benjamin and Ursell [7] showed from the inviscid Euler equations
that each normal mode of the container (for small amplitudes) acts as a harmonic
oscillator with time-dependent frequency determined by the dispersion relation
for capillary–gravity waves:

ω2
o(t) = [g(t)k +

σ k3

ρ
] tanh kh (12.2)

Here, g(t)represents the effective oscillation of the gravitational field resulting
from the vibration, h is the depth of the fluid layer, and k is the wavenumber.

Damping is very difficult to include properly. The stability problem with
damping was solved in 1994 by Kumar and Tuckerman [8] using Floquet analysis.
The finite damping causes the instability to occur at finite driving acceleration,
and the predictions are in good agreement with experiment [9].

12.2 Primary Patterns

Phase diagrams showing the patterns observed as a function of acceleration and
frequency have been published for sinusoidal forcing by Kudrolli and Gollub [2].
The general behavior is as follows. Stripes are found at the highest viscosities



12 Faraday Surface Waves 215

(above 1 cm2/s or so) over a wide range of frequencies. These often show defor-
mations similar to those found for thermal convection, due to boundary effects
that penetrate far into the interior, as shown in Figure 12.1. At lower viscosities,
squares are found for frequencies above 40 Hz or so, and hexagons dominate for
lower frequencies. The hexagons are quite regular, and have a special feature not
found for thermal convection. Because the waves are subharmonic relative to the
forcing frequency, there are two possible phases of the patterns relative to the
forcing, and hence phase defects can form, with part of the pattern having one
phase, whereas the remainder has the other pattern, as shown in Figure 12.2.

Fig. 12.1. Primary striped wave pattern formed at high viscosity ν = 1.0 cm2s−1 and
frequency f = 45Hz at large aspect ratio (from [2]).

At very low viscosities and a narrow range of moderate frequencies for which
both capillarity and gravity are significant, quasi-crystalline patterns can be
found, as has been demonstrated by Binks and van de Water [10].

Patterns containing domains of different symmetry can coexist. For example,
squares, stripes, and hexagons are sometimes found together, as shown in Figure
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12.3. This may be a consequence of the inhomogeneity induced by finite system
size.

Fig. 12.2. Hexagonal wave pattern showing a phase defect (ν = 0.2 cm2 s−1,f= 20
Hz ). The lighter and darker regions have different phases of oscillation relative to the
external modulation (from [2]).

Nonlinear evolution equations for standing wave patterns with amplitude B1

interacting with other waves of amplitude Bm were derived by Chen and Viñals
[11] for periodic forcing:

dB1

dt
= αB1 − goB

3
1 −

∑
m�=1

g(θm1)B2
mB1, (12.3)

where α and go are constants, and the quantities gθm1 are interaction coeffi-
cients that depend on the angles between two waves. The amplitude equation is
variational, minimizing the value of a certain functional F :
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F = −1
2
α

∑
m

B2
m +

1
4

∑
m�=n

g(θmn)B2
mB

2
n. (12.4)

There is no quadratic term in the amplitude equationas a consequence of sym-
metry: The fluid equations are invariant under time translation by one forcing
period, but this reverses the sign of B, so both B and −B must be solutions.
Therefore there can be no quadratic term. In thermal convection, hexagons are
explained by quadratic terms in the amplitude equation, so that a completely
different explanation is required here. Wave patterns near onset are determined
by the angular dependence of the nonlinear coupling coefficient g(θ), and this
gives rise to transitions as viscosity and driving frequency are varied.

Fig. 12.3. Weakly time-dependent coexistence of hexagons, squares, and stripes in
surface waves (ν = 0.5cm2s−1; f = 32.5Hz) (from [2]).

The key physical effect determining the structure of g(θ) (and hence the pre-
ferred pattern) is the presence of three-wave resonances between different modes,
which are affected by the shape of the wave dispersion relation. The frequencies
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and wavenumbers of the three interacting waves must satisfy conservation laws

ω1 + ω2 = ω3 and k1 + k2 = k3 (12.5)

as well as the dispersion relation of Equation (12.2). For capillary waves, the
preferred angle for nonlinear interactions is θ = 75◦. Two waves at frequency
ω near this angle lose energy to a wave at 2ω and are disfavored. On the other
hand, waves near 90◦ do not interact much and are hence favored, giving rise to
squares at low viscosity. As the viscosity is increased, a transition to stripes is
predicted and observed.

At lower frequency, where gravity accounts for most of the restoring force,
the resonant angle approaches zero, so waves at other angles do not interact
much, and it therefore pays to have more of them, according to the first term
in Equation (12.4). In this way, hexagons (a superposition of three real waves
at 60◦ relative angles) are favored over a fairly wide range of conditions. For a
much narrower range of conditions, quasi-crystalline patterns, with more than
three superposed real plane waves, are favored, consistent with the experimental
observations mentioned above.

12.3 Two-Frequency Forcing

Forcing simultaneously at two incommensurate frequencies (e.g., 4ω, 5ω) allows
quadratic terms to appear in the amplitude equation, and this can change the
favored symmetries of ordered patterns. In particular, hexagons are favored even
for pure capillary waves, which is not possible via the angular dependence of the
nonlinear coefficient in the amplitude equation.

Nonlinear wave interactions can lock various standing wave patterns together
to produce novel lattices. For example, the interaction of two hexagonal lattices
at a 30◦ relative orientation (i.e., six standing waves at 30◦) gives rise to a quasi-
crystalline pattern of twelvefold orientational symmetry, as shown in Figure 12.4.
This pattern was discovered by Edwards and Fauve [12], and was later studied
in [5]. The twelvefold symmetry can be seen by sighting along the figure at a
glancing angle. However, there is in principle no precise translational symmetry;
instead, the pattern comes arbitrarily close to repeating given a large enough
translation. Of course, in a finite system, quasi-periodicity is something of a
fiction. The transition from hexagons to the quasi-crystalline state is found to
be discontinuous.

Other patterns with distinct types of symmetry are also found for two-
frequency forcing. These are called superlattice patterns [5] because they involve
several apparent length scales. One of them, shown in Figure 12.5 and called
superlattice-1, is a spatially periodic pattern that can be viewed as consisting of
two hexagons oriented at a relative angle of 2 sin−1(1/2

√
7) ∼= 22◦. The spatial

phases of the pattern are also important. A point of sixfold symmetry of the
first hexagonal lattice coincides with a point of triangular symmetry of the sec-
ond. Although this first superlattice pattern was found for frequency ratio 6:7,
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Fig. 12.4. A quasi-crystalline wave pattern with twelvefold orientational symmetry,
produced by forcing a layer of silicone oil simultaneously at two frequencies, using a
method invented by Edwards and Fauve (from [12]).

a different one is found for ratio 4:5. The time average of this “superlattice-2”
pattern (Figure 12.6) can be represented as a combination of two hexagonal lat-
tices differing in wavenumber by a factor

√
3. However, the sixfold symmetry

visible in the time average pattern is broken at any particular instant. Super-
lattice patterns have also been investigated by Arbel and Fineberg [13], who
discovered further novel variations. Silber and Proctor [14] and Porter and Sil-
ber [15] have shown that considerable insight into these superlattice patterns
can be obtained by using symmetry arguments. Lifshitz and Petrich [16] also
modeled superlattice patterns.

These examples by no means exhaust the possibilities. Figure 12.7 shows
a final example, a snapshot of a hexagon/stripe mixed state that is strikingly
regular. In this example, the amplitudes of the three coupled standing waves are
unequal, with one apparently predominating.
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Fig. 12.5. Superlattice-I pattern obtained for two-frequency forcing of Faraday waves
with frequency ratio 6:7(magnified) (from [5]).

In summary, the regular patterns of parametrically forced surface waves arise
from nonlinear interactions between standing wave components characterized
by different wavevectors. An amplitude equation approach, in conjunction with
symmetry considerations, gives a quantitative explanation of the regular patterns
for single frequency forcing. Distinct pattern symmetries occur as parameters
are varied, modifying the allowed angles for three-wave resonances. The more
exotic patterns (e.g., superlattices involving coupled hexagonal patterns formed
by multiple frequency forcing) appear to be understood qualitatively.

12.4 Spatio–Temporal Chaos and
Other Complex Phenomena

Now we turn to the topic of spatio–temporal chaos (STC) of parametrically
forced waves. This phenomenon has been studied for a long time, starting with
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Fig. 12.6. Superlattice-II pattern produced for two-frequency forcing of Faraday waves
with frequency ratio 4:5 (magnified) (from [5]).

Ezersky et al. [17], where an amplitude modulation instability of square patterns
was shown to lead to STC.

Given that there are a host of primary patterns, and the fact that the stability
of the primary pattern must affect the transition to STC, it is evident that there
must be a host of mechanisms for producing STC. Three particular cases are:
(a) amplitude modulations of stripes, described theoretically by Milner [18];
(b) a mixed state in which order and spatiotemporal chaos coexist in different
regions of the cell [19]; and (c) a continuous melting transition of hexagons with
increasing excitation [2]. The last of these processes was hypothesized to involve
a breakdown of the coupling of the standing wave modes to each other, but this
has not been proven.

At high excitation and low viscosity, a state of “wave turbulence” occurs with
a very broad wavenumber spectrum [20] that appears to decay somewhat faster
than k−4 at high wavenumbers. The observations were compared to a hydrody-
namic cascade model whose predictions were fairly similar to the observations.

Another related research direction involves the study of waves in nontradi-
tional fluids, such as granular materials. Many of the patterns seen in simple
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fluids occur in granular material when a layer is subjected to vertical vibration,
as shown by Melo, Umbanhowar, and Swinney [21]. In addition, there are strik-
ing localized excitations that seem to arise from a featureless background [22].
Similar localized excitations can be formed in colloidal suspensions [23].

The subject of parametrically forced surface waves is extraordinarily rich. In
this brief review, we have seen that surface wave patterns have interesting par-
allels with Bénard convection. In both cases, a variety of cellular patterns are
formed that can be explained near onset using coupled amplitude equations. In
more complex nonlinear situations, novel ordered states such as quasi-crystalline
patterns and superlattices are formed. A variety of mechanisms leading to spatio–
temporal chaos and wave turbulence also occur. Some of these complex phe-
nomena are partially understood, whereas others place difficult demands on the
theory at its present state of development.

Fig. 12.7. Hexagon/stripe mixed state where the amplitude of one of the three stand-
ing wave components of the hexagons is enhanced.
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There is a strong analogy between Rayleigh-Benard convection and the Taylor
Couette system. This analogy is well known when dealing with the primary
instability, and is based on the existence of an unstable stratification in both
systems. We show that the analogy can be extended beyond the primary in
stability modes, to the weakly non-linear regime and even further to the fully
turbulent one.

13.1 Introduction

Early studies of the Taylor-Couette flow, the flow between two differentially
rotating coaxial cylinders [1, 2], are contemporaries of Benard's works on con
vection. Very soon, a strong analogy between both sytems was observed [31. In
both cases the flow developing at the onset of instability is made of vortices
called, respectively, Taylor vortices and Benard rolls (Figure 13.1).

(a) (b)

Fig. 13.1. Pictures and schematic views of (a) the Rayleigh-Benard rolls (courtesy of
F. Daviaud from SPEC-CEA, Saclay) and (b) the Taylor vortices.
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The first studies of the Taylor–Couette flow consisted of viscosity measure-
ments performed by Couette [1] and by Mallock [2]. In order to avoid the appear-
ance of instablities, Couette rotated the outer cylinder and fixed the inner one.
The instability of rotating flows was then considered by Rayleigh in a theoretical
paper [3] published the same year as his work on convection [4]. A few years later,
Taylor [5], conducting both experimental and theoretical works, re-examined the
whole Couette flow problem. Using an apparatus where both cylinders could ro-
tate independently, he predicted theoretically and verified experimentally the
instability thresholds for both co- and counterrotating regimes. He showed that
the flow, now called the Taylor vortex flow, developing at onset of instability
is axisymmetric, periodic in the axial direction, and quantitatively similar to
Bénard rolls of convection. This strong similarity is the signature of the anal-
ogy between the linear stability properties of rotating flows and the stability of
stratified fluid first reported by Rayleigh and subsequentely analyzed by many
authors [6, 7, 8, 9, 10].

In this chapter, we review the analogy between the two systems and extend
it beyond the primary instability modes. In the second section, we present the
basic states of both systems and the physical mechanisms of their destabiliza-
tion, which lead us to the detailed formulation of the analogy. The third section
addresses the weakly nonlinear and the secondary instability modes. Finally, in
the last section, we discuss the implications of the extension of the analogy to the
turbulent regime. More specifically, we show how it allows us to predict precise
scaling laws for the turbulent transport properties in the Taylor–Couette flow, on
the basis of precise measurements conducted in the turbulent Rayleigh–Bénard
convection.

13.2 Basic Flows and Instability Mechanisms

The Rayleigh–Bénard convection is obtained when a fluid layer of thickness d is
confined between two horizontal plates maintained at different temperatures, the
bottom plate being set to a higher temperature T0 +ΔT and the top one kept
at the temperature T0. In the presence of the gravity field g, the temperature
gradient, due to the difference in temperature between the two plates, induces
a vertical density stratification. The flow is controlled by the Rayleigh number
Ra = αΔTgd3/νκ, where α is the thermal expansion coefficient, ν is the kine-
matic viscosity, and κ is the thermal diffusivity. For small Ra the fluid is at rest,
the temperature transport is purely diffusive, and the density stratification re-
mains stable (conduction regime). There exists a critical value Rac above which
instability occurs and Rayleigh–Bénard rolls develop (Figure 13.1a).

The Taylor–Couette flow is realized with a fluid enclosed in the gap between
two independently rotating coaxial cylinders of common length L. If ri,o and
ωi,o are the radius and the angular velocity of the inner and outer cylinders,
then choosing d = ro − ri as unit length and d2/ν as unit time, the natural
control parameters are the radius ratio η = ri/ro, the aspect-ratio Γ = L/d, and
the Reynolds numbers defined for the inner and outer cylinders, respectively:
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Ri,o = ri,oωi,od/ν. In theoretical studies, it is sometimes convenient to replace
the Reynolds numbers by another set of parameters (μ, Ta) where μ = ωo/ωi

is the rotation ratio and Ta is the Taylor number that takes into account the
inertia, dissipation and curvature effects (i.e., Ta ∼ Ri2(d/ri)). For a given
geometry, η and Γ are constant and the primary instability threshold is given
by the curve Tac(μ) in the parameter space (μ, Ta). For Ta < Tac, the basic
flow, called the circular Couette flow, is purely azimuthal and depends only on
the radial coordinate r. The velocity and the pressure are given by

vθ = V (r) = Ar +
B

r

and

P (r) = P0 + ρ

∫
V 2(r)
r

dr,

where the constants A and B are determined by the no-slip boundary conditions
vθ(r = ri,o) = ri,oωi,o:

A =
ωi

(
μ− η2

)
1 − η2

and B =
ωir

2
i (1 − μ)
1 − η2

, (13.1)

where μ = ωo/ωi. For Ta > Tac, instability occurs and the Taylor vortices
appear (Figure 13.1b). One can already note at this stage that the circular
Couette flow is independent of the fluid viscosity in the same way the resting base
state in Rayleigh–Bénard convection is independent of the thermal diffusivity.
Also, as first shown by Jeffreys in 1928 [6], the analogy between both flows goes
far beyond the similarity evidenced in figure 13.1. In order to make this analogy
explicit, we now turn to the linear stability analysis of the basic states, focusing
on the Taylor–Couette case and referring to the chapter 3 by Manneville in the
present volume for Rayleigh–Bénard convection. Let us consider an infinitesimal
axisymmetric perturbation of the form v′(r, z) = (v′r, v

′
θ, v

′
z) and p′(r, z). The

linearized Navier–Stokes and continuity equations read:

∇.v′ = 0(
∂
∂t +M

)
v′ = −∇p′ + νΔv′,

(13.2)

where

M =

⎛
⎝ 0 − 2V

r 0
dV
dr + V

r 0 0
0 0 0

⎞
⎠ (13.3)

is the inertial operator for axisymmetric inviscid perturbations. As a result, one
obtains that the flow is linearly stable when the Rayleigh discriminant

φ(r) =
2V
r

(
dV

dr
+
V

r

)

is positive [11, 12]. The above equations are indeed similar in structure to the
linearized Boussinesq equations for Rayleigh–Bénard convection [13]. When ex-
panding the perturbation field into normal modes, in the small gap approx-
imation, these equations reduce to a single equation for the marginal mode
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v(x) exp(ikz):

(
d2

dx2
− q2

)3

v(x) = − [1 − (1 − μ)x]Ta q2v(x), (13.4)

where x = (r − ri) /d, q = kd and Ta is the Taylor number defined by

Ta =
−4Aωid

4

ν2
= 4

1 − η

1 + η
R2

i

(
1 − μ

η2

)
. (13.5)

Apart from the radial dependence of the coefficient of v(x) in the r.h.s. term,
Equation (13.4) is formally identical to the equation for the temperature pertur-
bation Θ in Rayleigh–Bénard convection as soon as one replaces the z-derivative
by the x-derivative and the Rayleigh number by the Taylor number Ta [7]:

(
d2

dz2
− q2

)3

Θ(z) = −Ra q2Θ(z) (13.6)

In the limit μ→ 1, the Taylor number for which instability occurs is Tac = 1708
and the corresponding wave number is qc = 3.12 [7]. These values are precisely
those obtained in Rayleigh–Bénard convection with rigid–rigid boundary con-
ditions. Outside this limit, the dependence of the instability threshold on the
radial coordinate calls for a physical prescription to determine the position at
which the instability first takes place. Studying the mechanism of the instability
will now provide us with a physical grounding of the analogy and thereby with
the desired prescription.

Let us consider a spherical fluid particle with radius R rotating near the
inner cylinder in the Couette flow. We introduce a small perturbation in the
form of a radial shift of this blob with velocity v (Figure 13.2a). This is the
analogue of a temperature perturbation in the form of a vertical shift in the
fluid at rest between the two differentially heated plates in the Rayleigh–Bénard
case (Figure 13.2b). If this blob experiences forces that tend to reinforce its
movement, the flow is unstable. In contrast, if forces tend to bring it back to
its initial position, the flow is stable. We first consider the inviscid case. In the
Taylor–Couette system, the centrifugal force per unit mass V 2/r acting in the
radial direction on a fluid element at position r is balanced by the centripetal
radial pressure gradient at this position. Now, consider an outward displacement
of the blob, initially at r, towards r′ = r+δr. Owing to axisymmetry, the angular
momentum per unit mass L = rV is a conserved quantity. At its new position,
the particle is submitted to a centrifugal force per unit mass f = L2/r′3. At this
new position, the centripetal pressure gradient is given by the local equilibrium
with the centrifugal force f ′ = L′2/r′3. If δf = f ′ − f > 0, the pressure gradient
pushes back the element to its initial position. On the contrary, if δf < 0, the
fluid continues to move outward until it reaches the outer cylinder where it is
forced to come back. Accordingly, the criterion for stability is given by
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(a) (b)

Fig. 13.2. (a) Displaced spherical fluid particle in the laminar circular Couette flow:
v stands for the radial velocity vr of the displaced particle; and (b) in the fluid at rest
in a Rayleigh–Bénard cell: v is the vertical velocity of the displaced particle.

δf

δr
=

1
r3
dL2(r)
dr

=
2V
r

(
dV

dr
+
V

r

)
= φ(r) > 0. (13.7)

Introducing now the effect of viscosity allows us to formulate this criterion with
the Taylor number as defined in equation (13.5). Indeed, the same mechanism
applies except that instability may occur only if the destabilizing force −δf
overpasses the viscous damping per unit mass fvisc ∼ ρνRvr/ρR

3 on a time
scale smaller than the viscous time τν ∼ R2

ν which limits the displacement of the
blob to δr � τνvr. As a result, the criterion for stability becomes

δf = φ(r)δr � −νvr

R2
; that is, φ(r) � − ν2

R4
. (13.8)

For the azimuthal profile V (r) = Ar+B/r, the above stability criterion becomes
4AΩ(r) � −ν2/R4, which in the most unstable situation (r = ri), and for a blob
size R ∼ d, is equivalent to

Ta < cte, (13.9)

where Ta is the Taylor number defined above. The constant on the r.h.s. of the
equation depends on geometric factors. It can be adjusted in order to fit the
critical value observed in experiments or given by the linear stability analysis.

The mechanism we have described is based on angular momentum strati-
fication in the same way as the mechanism of Rayleigh–Bénard convection is
based on vertical density stratification. The driving force of Rayleigh–Bénard
convection, the Archimedian buoyancy, is replaced by the net balance of the
centrifugal force. The temperature gradient is replaced by the velocity gradient
and thermal diffusion is replaced by momentum diffusion. The Taylor number is
therefore analogous to the Rayleigh number, the ratio of the Archimedian force
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over the viscous dissipation force. Note that viscosity acts twice in the Taylor–
Couette flow (so the dependence to its square value in the Taylor number):
it attenuates velocity gradients as the thermal diffusion attenuates tempera-
ture gradients and it dissipates the kinetic energy by friction. The characteristic
time associated with the destabilizing centrifugal force is τc = (1/ωi)

√
d/ri;

and the viscous dissipation time is τν = d2/ν, therefore the Taylor number can
be seen as Ta ∼ (τν/τc)2 in the same way the Rayleigh number is defined as
Ra = (τν/τA) × (τκ/τA) where τA is the characteristic time of the Archimedian
force and τκ = d2/κ is the thermal diffusion time. Table 13.1 summarizes the
other terms of the analogy.

Table 13.1. Analogy Between Rayleigh–Bénard Convection and Taylor–Couette Flow.

R.–B. convection T.–C. system

Coordinates z, (x, y) r, (θ, z)

Viscous dissipation μvd μvd

Stabilizing characteristic time d2/κ d2/ν

Driving instability force Archimedien buoyancy Centrifugal force

ρ0αg d5

κ
ΔT
d

v 4AΩρd3 d2

ν
v

Destabilizing characteristic time τA = ( d2

gαδT
)1/2 τc = 1

ω
( d

ri
)1/2

Control parameter Ra = αΔTgd3/νκ Ta = −4Aωid
4/ν2

Instability threshold value Rac = 1708 Tac = 1708

Critical wave number qc = 3.12 qc = 3.12

Perturbation characteristic 0.063 0.041
time τ0 (Pr = 490)

Perturbation characteristic 0.385 0.260
length ξ0 (η = 0.883, Γ = 70)

Let us point out that the stability criterion derived above is a local crite-
rion, which for the moment we have turned into a global one by the simplest
prescription concerning the localization of the instability. However, Esser and
Grossmann [14], on the basis of a detailed analysis of the basic destabilizing
mechanisms, have recently shown that the stability boundary can be much bet-
ter approximated by an analytic expression when being more precise on the
instability localization. As a result, they found a stability criterion of the form
Ta = Tac provided one redefines the Taylor number as [15]:

Ta = −Re2 (RΩ + 1)
(
RΩ + 1 − 1

ηξ2

)(
2η(ξ(η) − 1)

(1 − η)

)4

with

ξ(η) = rp/ri = 1 +
1 − η

2η
Δ

(
a(η)

dn

d

)
,
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dn

d
=

η

1 − η

(
1√

η(RΩ + 1)
− 1

)
,

a(η) = (1 − η)

(√
(1 + η)3

2(1 + 3η)
− η

)−1

, (13.10)

where Δ(y) is a function equal to y if y < 1 and equal to 1 if y > 1. Re, the
Reynolds number built on the mean shear S̄, and RΩ , the rotation number built
on the mean angular velocity Ω̄, are defined as

Re =
S̄d2

ν
=

2
1 + η

rid
|ωo − ωi|

ν
, (13.11)

RΩ =
2Ω̄
S̄

=
1 − η

η

ηωi + ωo

ωo − ωi
. (13.12)

These control parameters, which at first sight may look artificial, are indeed
based on dynamical propreties of the flow and therefore can be applied to any
rotating shear flow. As a matter of fact, such parameters have already been used
in rotating channel flows [16, 17]. They will be used when extending the analogy
to the turbulent flow.

13.3 Weakly Nonlinear Analysis and Secondary Modes

Both Rayleigh–Bénard rolls and Taylor vortices dynamics can be represented by
a field Ψ = A(t, z)eiqcx where the amplitude A(t, z) satisfies, near the onset of
instability, the Ginzburg–Landau equation:

τ0
∂A

∂t
= εA+ ξ20

∂2A

∂z2
− g|A|2A, (13.13)

where ε = (Ta− Tac)/Tac or (Ra−Rac)/Rac is the relative distance from the
onset of instability. The real coefficients τ0 and ξ0 depend only on the linear
terms in the flow equations and represent, respectively, the characteristic time
and the coherence length of perturbations, g is the Landau saturation constant.
The Ginzburg–Landau equation depends on the boundary conditions which differ
from one system to another. Its validity for Rayleigh–Bénard convection has been
confirmed in experiments by Wesfreid et al. [18]. For the Taylor–Couette flow,
it has been derived from Navier–Stokes equations by many authors [19, 20, 21,
22, 23]. In the Taylor–Couette system, the effect of boundary conditions have
been investigated by Dominguez-Lerma et al. [24] and Ahlers [25]. They showed
that for cylinders with finite length L, the critical Taylor number depends on
the aspect-ratio Γ = L/d as follows:

Tac (Γ )
Tac (∞)

= 1 +
2π2ξ20
Γ 2

+ ξ20 (q − qc)
2
, (13.14)
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where qc and Tac (∞) are calculated values for infinitely long cylinders. The
spatial variation of the pattern for Rayleigh–Bénard or Taylor–Couette flow can
be represented by the real amplitude A0(t, z) and the phase φ as follows:

A(t, z) = A0(t, z)eiφ(t,z) (13.15)

The real amplitude A0(t, z) satisfies the Ginzburg–Landau equation (13.13) and
the phase satisfies the following equation which is the simplest phase equation
valid only for ε << 1:

∂φ

∂t
= D

∂2φ

∂z2
with D = D0

ε− 3ξ20(q − qc)2

ε− ξ20(q − qc)2
(13.16)

The phase dynamics of a stationary pattern was investigated theoretically by
Pomeau and Manneville [26] who established the phase equation from general
principle. When the diffusion coefficient vanishes at the Eckhaus boundary ε =
3ξ20(q − qc)2, the stationary pattern pertains a modulational instability called
Eckhaus instability. The experimental investigation of the phase dynamics in
Rayleigh–Bénard convection was performed by Wesfreid and Croquette [27] who
found D0 = 2.35 for a silicon oil with Pr = 490. In the Taylor–Couette flow,
the phase dynamics was investigated theoretically by Paap and Riecke [28] who
have delimited the Eckhaus instability domains. Experiments were performed
by different groups [25, 29, 30, 31]. The latter found the value of the phase
coefficient for Taylor vortex flow to be about D0 = 1.643 for a system with a
radius ratio η = 0.883 and an aspect-ratio Γ = 70.

Note that in the case of sufficiently counterrotating cylinders, the first insta-
bility is a supercritical Hopf bifurcation that gives rise to a spiral vortex [32, 33],
whose weakly nonlinear behavior can be described by the complex Ginzburg–
Landau equation [22, 23, 34, 35]. Considering the analogy between the two sys-
tems when dealing with the secondary instabilities, there are still important
similarities. In both cases, the transition to turbulence occurs via a cascade
of successive bifurcations in a globally supercritical scenario. Also, the visual
inspection of secondary flows calls for a formal analogy. Figure 13.3 displays
modulated patterns obtained in both systems. They look strikingly similar. For
details on the observed flows, one may refer to [36] for Rayleigh–Bénard con-
vection and to [32] and [33] for the Taylor–Couette system. Unfortunately, no
systematic study of the analogy has been proposed.

13.4 Turbulent Regime

So far, we only considered the analogy in the regimes where perturbations are
small, resulting in linear or weakly nonlinear equations of motions. Dubrulle and
Hersant [37] have shown that this analogy can be extended into the turbulent
regime. Indeed, at small scales, turbulent motions are mainly slaved to the large
scales. Their dynamics can then be approximated by a linearized equation of
motions, in the spirit of the equations of the Rapid Distortion Theory. The
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t

(al (b)

Fig. 13.3. Pictures and schematic views of the secondary flows in (a) the Rayleigh
Benard convection (courtesy of F. Daviaud from SPEC-CEA, Saclay) and (b) the
Taylor-Couette flow,

same remark can be applied to Rayleigh-Benard convection, because an effective
shear is generated by large-scale motions. This extension of the analogy into the
turbulent regime yields a number of interesting consequences on the turbulent
transport and profiles.

13.4.1 Turbulent Transport

A classical quantity in convection is the nondimensional heat transfer Nu =

Hd/ I<i1T, called the Nusselt number, where H is the heat transfer. The ana
logue of this in the Taylor-Couette flow is a nondimensional angular momentum
transfer (with respect to the laminar value). This can be written using the non
dimensional torque G = T / pv2 L, where L is the cylinder length and T the
torque:

G
N u, == -;:---

Glaminar

G(I-1))'
Re 27[1)

(1317)

(13.18)

The normalization by Glaminar ensures that in the laminar case, Nu* = 1,
as in the convective analogue.

Near threshold, theoretical [381 and experimental [39] studies of convection
lead to identification of two regimes just above the critical Rayleigh number. For
f ~ (Ra - Rac)/ Rae:; I, one has a linear regime in which

Ra
(Nu - 1) -R ~ K,f,. ac

where the constant K , depends on the Prandtl number. For Pr ~ 1, it is K , '"
1/0.7 = 1.43 [381. For larger f, a scaling regime appears in which [39]
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(Nu− 1)
Ra

Rac
= K2ε

1.23, (13.19)

where K2 is a constant that is not predicted by the theory.
In the Taylor–Couette flow, the analogy yields the same scaling laws with

Ta and Nu∗ instead of Ra and Nu, respectively. Figure 13.4 shows how the
results of Wendt obtained for η = 0.935 near the instability threshold compare
with these two predictions. One sees that the linear regime is indeed obtained
for ε ≤ 10, and the scaling regime is obtained for larger values of 10 < ε < 100.
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Fig. 13.4. Comparison of the theoretical near-instability onset behavior with Wendt’s
data [43]. The symbols are the experimental measurements. The two lines are the
theoretical formula predicted by analogy with convection for ε < 1 ((Nu∗−1)Ta/Tac =
1.43ε and for ε > 1 ((Nu∗ − 1)Ta/Tac ∼ ε1.23). In the latter case, the proportionality
constant is not constrained by the analogy, and needs to be adjusted for a best fit.

Further from the threshold, one needs to compare the turbulent theories of
convection. In the Taylor–Couette flow, transport properties in the turbulent
regime have been investigated in a number of works. In the case of a rotating
inner cylinder and the outer one at rest, one observes a tendency of the torque
to behave as some power of the Reynolds number G ∼ Reα [40]. There is no
clear consensus about this dependence yet: the marginal stability computations
of King et al. [41] or Barcilon and Brindley [42] predict that the nondimen-
sional torque should vary like G ∼ Re5/3. Old experimental data indicated the
existence of two scaling regimes, one for Re > 104 where the exponent is 1.5,
and another for a larger Reynolds number, where the exponent switches towards
1.7− 1.8 [43, 44, 45]. Recent high-precision experimental data yielded no region
of constant exponent, and measured a “local” exponent d ln(G)/d ln(Re) that
varies continuously from 1.2 to 1.9, with a transition at Re ∼ 1.5 × 104 (for
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η = 0.7246). This transition was later found to correspond to a modification of
coherent structures in the flow [46].

This situation is reminiscent of turbulent convection where different scalings
regime for Nu as a function of Ra are observed. In the classical theory of convec-
tion, one usually considers three regimes: a first one, labeled “soft turbulence”,
in which Nu ∼ Ra1/3 [47]; this regime is followed by a “hard turbulence” regime
in which Nu ∼ Ra2/7 [48]; finally at very large Rayleigh numbers an ultra-
hard turbulence regime occurs in which Nu ∼ Ra1/2 [49, 50]. More recently,
Dubrulle [51, 52] used a quasi-linear turbulence model to predict slightly dif-
ferent dependence: at a low Rayleigh number, the dissipation is dominated by
the mean flow, and Nu = K1Ra

1/4Pr−1/12; at a larger Rayleigh number, the
kinetic energy dissipation starts being dominated by velocity fluctuations, and
the heat transport becomes NuPr1/9 = K2Ra

1/3/ ln(RaPr2/3/20)2/3. Finally
at a very large Rayleigh number, the heat dissipation also becomes dominated
by (heat) fluctuations, and Nu = K3Ra

1/2/ ln(Ra/Rac)3/2. This classification
summarized in Table 13.2 shows that it is unlikely that the three regimes co-
exist in Taylor–Couette flow. Indeed, since the temperature analogue is related
to the velocity, it might be impossible to excite velocity fluctuations without
exciting pseudo-temperature fluctuations. This would mean a direct transition
from regime 1 (mean flow dominated) to regime 3 (fluctuation dominated).

Table 13.2. Dissipation Mechanism in Both Flows when Increasing Re.

Re ↗ −→
R.–B. dissipation Mean flow Velocity fluctuations Velocity and heat fluctuations

T.–C. dissipation Mean flow Velocity fluctuations

The theory predicts two regimes for the torque behavior:

– A“low Reynolds number”regime, where mean flow (Taylor vortices) domi-
nates, in which

G = K4
(3 + η)1/4(ηRe)3/2

(1 − η)7/4(1 + η)1/2
. (13.20)

– A second regime in which

G = K7
(3 + η)1/2

(1 − η)3/2(1 + η)
(ηRe)2

(ln[(K(η)(ηRe)2])3/2
, (13.21)

where

K(η) = K8
(1 − η)(3 + η)

(1 + η)2
. (13.22)

The value of the unknown coefficients is found by analogy or by best fit of
the data. The analogy with convection predicts that K4 = 2πK1. The small
aspect-ratio convective experiment extrapolated at large aspect-ratio gives K1 =



236 Arnaud Prigent et al.

0.75×0.31, which translates into K4 = 1.46. This is in very good agreement with
the prefactor measured by Wendt [43] who found the same exact dependence in
η and Re for 400 < Re < 104, and with a prefactor of K4 = 1.45. The other
coefficients have to be fitted (because they occur in a situation where regime 2
is bypassed). Using the data of Swinney and Lewis at η = 0.72, one can obtain
K7 = 0.33 and K8 = 10−4. Note that the analogy enables a prediction of the
dependence of the torque as a function of other geometrical parameters, such as
the gap. This provides a parameter-free prediction, to be tested by experiment
with different gap. The result is shown in Figure 13.5, for three different gap
values η = 0.68, 0.85, 0.935. The agreement is excellent.
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η = 0.68

η = 0.935
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Fig. 13.5. Torque versus Reynolds number in Taylor–Couette flow for different gap
widths η = 0.68, η = 0.85, and η = 0.935. The symbols are the data of [43]. The
lines are the theoretical formula obtained in the soft and ultra-hard turbulence regimes
and computed using the analogy with convection. Soft turbulence Equation (13.20)
(full line); ultra-hard turbulence Equation (13.21) (dotted line). There is no adjustable
parameter in this comparison, all the constants being fixed either by the analogy with
convection, or by the comparison with the data of [46].

13.4.2 Velocity Profile

Mean profiles have been measured recently for different Reynolds numbers by
Lewis and Swinney [46] in the case with the outer cylinder at rest. They observed
that the mean angular momentum L̄ = r < vθ > is approximately constant
within the core of the flow: L̄ ∼ 0.5r2i ωi for Reynolds numbers between 1.4×104

and 6 × 105. At low Reynolds numbers, this feature can be explained by noting
that reducing the angular momentum is a way to damp the linear instability,
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and, thus, to saturate turbulence. This is in good agreement with turbulent
convection, which reaches saturation through the constancy of the temperature
within the core of the flow. However, at larger Reynolds numbers, the angular
momentum ceases to be constant, and instead reaches another regime, with
constant shear approximately equal to 1/4 of the laminar value.

This is in agreement with a theoretical prediction by Busse [53]. He claims
that the mean profiles obtained by Lewis and Swinney are actually in good
agreement with a profile obtained by maximizing turbulent transport in the
limit of high Reynolds numbers. This profile is given by an azimuthal circulation
[54], as follows:

u∞(r) =
ωi − ωo

4r
η2

1 − η2
+
ωiη

2(1 − 2η2) + ωo(2 − η2)
2(1 − η2)

(13.23)

In contrast, the same technique applied to convection predicts isothermal
temperature profiles at large Rayleigh numbers, even though the maximizing
principle differs only slightly from the maximizing Taylor–Couette flow. Accord-
ing to Busse, the difference originates in different ratios between the dissipation
of the mean profiles and the fluctuating components of the extremelizing vec-
tor fields. Although this ratio approaches unity in the case of the extremilizing
solution for the Couette problem, it reaches twice this value in the asymptotic
case of convection. This may be due to the fact that the real convection is tridi-
mensional (and not bidimensional as required by the analogy), resulting in more
degrees of freedom.

13.4.3 Fluctuations

The analogy perhaps provides more success when dealing with fluctuations.
In [46], the azimuthal turbulent intensity iθ =

√
< v2

θ >/Vθ was measured at
midgap with hot film probes, where Vθ is the average value of the azimuthal
velocity component of the turbulent flow. For Re > 1 × 104, a best fit yields

iθ = 0.10Re−0.125. (13.24)

Using the analogy, this intensity is related to the temperature fluctuations at
mid-gap, in the ultra-hard turbulent regime (regime 3). The total analogue tem-
perature fluctuation in fact also includes vertical velocity fluctuations (Table 2).
In an axisymmetric turbulence, one could therefore expect that the turbulent
intensity measured by Lewis and Swinney would be proportional to the tempera-
ture analogue. Recent measurements of this quantity at Rayleigh numbers up to
Ra = 1015 have been performed by [55] in a low aspect-ratio helium experiment.
They found θ/ΔT = 0.37Ra−0.145, but this was obtained in a regime where the
Nusselt number varies as in regime 2 (velocity fluctuation dominates but not
temperature fluctuation). Using the analogy, this would translate into a regime
where iθ ∼ Re−0.29, in clear contradiction to the data of Lewis and Swinney
(Figure 13.6). This might therefore be another proof of the absence of regime 2
in the Taylor–Couette flow.
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Unfortunately, we are not aware of laboratory temperature measurements in
convective turbulence in the ultra-hard regime. In a previous analysis of tem-
perature fluctuations in the atmospheric boundary layer (a large Rayleigh num-
ber medium, presumably being in the ultra-hard convective regime), Deardoff
and Willis [56] showed that temperature fluctuations follow the free convection
regime

θ

ΔT
∝ Nu

(PrRaNu)1/3
, (13.25)

where the proportionality constant is of the order 1. Using the analogy, this can
be translated into

iθ =
K11

ln(Re/Rec)
. (13.26)

Figure 13.6 shows the application of this scaling to the data of Lewis and Swin-
ney. The best agreement with the experimental fit of Lewis and Swinney is
obtained for a prefactor K11 = 0.18 and Rec = 44.4.
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Fig. 13.6. Azimuthal velocity fluctuations in Taylor–Couette flow. The circles are the
power-law fits of experimental measurements by [46]. The triangles are the power-law
fit to the temperature fluctuations (analogue of azimuthal velocities) in helium by [55].
The line is the prediction obtained with the analogue of the free-convective regime [56].

13.5 Conclusion

We have reviewed in detail the analogy between the Taylor–Couette flow and
Rayleigh–Bénard convection. Despite different symmetry properties, because in
Rayleigh–Bénard convection both transverse directions are equivalent whereas in
the Taylor–Couette system the axial and azimuthal directions are not equivalent,
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the instability mechanism appears to be the same in both systems. It is based on
density stratification in the former and on angular momentum stratification in
the second. The linear stability of the circular Couette flow in the small gap limit
and that of Rayleigh–Bénard convection in the Boussinesq approximation lead
to a similar perturbation equation, and thereby to the same threshold and criti-
cal wavenumber. The patterns appearing at onset of the primary and secondary
instabilities also look similar. This analogy has been used to develop stability
criteria in other systems, such as instabilities in liquid crystals, and Coriolis force
induced instabilities [9, 57, 12, 58, 59]. Above, but not too far from the insta-
bility threshold, both Taylor vortices and Bénard rolls may be described in the
framework of Ginzburg–Landau model. The phases obey the same equation and
patterns may become unstable against Eckhaus instability. Further above the
threshold, the secondary instabilities still present strong similarities. However,
the weakly nonlinear behavior of the patterns and their secondary instability
modes have subtle differences that call for careful investigation.

Finally, we have discussed the extension of the analogy to the turbulent
regime when the mean shear, generated by large scales, is taken into account
in the Rayleigh–Bénard system. Then, analogy allows theoretical predictions for
the angular momentum transfer and velocity profiles. In turbulent convection,
three regimes with different modes of dissipation are identified. At low Ra, the
dissipation is dominated by mean flow and it is dominated by velocity fluctua-
tions for larger Ra, and by velocity fluctuations at very large Ra. The analogy
leads to the identification of two flow regimes in the Taylor–Couette flow corre-
sponding to the first and the third ones in convection.
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