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Preface

Following the advance in computer technology, the numerical technique has
made significant progress in the past decades. Among the major techniques
available for numerically analyzing continuum mechanics problems, finite dif-
ference method is most early developed. It is difficult to deal with contin-
uum mechanics problems showing complex curvilinear geometries by using
this method. The other method that can consistently discretize continuum
mechanics problems showing arbitrarily complex geometries is finite element
method. In addition, boundary element method is also a useful numerical
method.

In the past decade, the differential quadrature and generic differential
quadratures based discrete element analysis methods have been developed and
used to solve various continuum mechanics problems. These methods have the
same advantage as finite element method of consistently discretizing contin-
uum mechanics problems having arbitrarily complex geometries. This book
includes my research results obtained in developing the related novel discrete
element analysis methods using both of the extended differential quadrature
based spacial and temporal elements. It is attempted to introduce the devel-
oped numerical techniques as applied to the solution of various continuum
mechanics problems, systematically.

This book is divided into sixteen chapters. Chapter 1 gives an overview
to the developed numerical techniques. Chapter 2 introduces the generaliza-
tion of differential quadrature – extended differential quadrature, with various
approximation techniques. Chapter 3 uses the one-dimensional elasticity prob-
lem as example to present the discretization procedures, and assemblage and
solution techniques for the resulting overall algebraic systems, of differential
quadrature element method as applied to the solutions of static deformation
and free vibration problems. The application of differential quadrature ele-
ment method to various structural mechanics problems like Euler-Bernoulli
beams, trusses, frames, Timoshenko beams and curved beams is dealt with
in Chapters 4 to 9. Chapter 10 uses the two-dimensional problem as exam-
ple to introduce the development of irregular elements for the discrete ele-
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ment analyses of continuum mechanics problems having arbitrarily curved
domain configurations. The application of differential quadrature element
method to general field problems with two-dimensional domains is presented in
Chapter 11. Chapter 12 deals with the application of differential quadra-
ture element method to the analysis of two-dimensional elasticity problems
with composite materials. The application of differential quadrature element
method to Kirchhoff-Love plate problems is introduced in Chapter 13. The ap-
plication of differential quadrature to the derivation of novel finite difference
operators and the use of the related analysis method, differential quadra-
ture finite difference method, to the solutions of various continuum mechanics
problems are presented in Chapter 14. The application of a generalized coor-
dinate differential quadrature element method to some continuum mechanics
problems is introduced in Chapter 15. Finally, the application of using ex-
tended differential quadrature to the development of direct time integration
schemes for solving general discrete transient equation systems is presented in
Chapter 16.

Chang-New Chen
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1

Introduction

The method of differential quadrature (DQ), proposed by Bellman, is an ef-
fective technique for solution of differential or partial differential equations
[1–11]. The DQ approximates a derivative or partial derivative of a variable
function φ with respect to a coordinate variable ξ at a node as a weighted
linear sum of the function values at all nodes along that coordinate direction.
The variable function is a function of the coordinate variable. Thus, the DQ
discretization for a partial derivative of order m can be expressed by

∂mφα

∂ξm
= Dξm

αᾱΦᾱ, α, ᾱ = 1, 2, ..., Nξ (1.1)

where Nξ is the number of nodes in ξ direction, α is a free index taking the
values 1,2,...,Nξ, ᾱ is a dummy index regarded as being summed from 1 to
Nξ, Φᾱ are function values at the nodes and Dξm

αᾱ are weighting coefficients
attached to the function values at the Nξ node points.

1.1 Computation of Weighting Coefficients

Various methods can be used to calculate the weighting coefficients Dξm

αᾱ .

1.1.1 Explicit Computation

Shifted Legendre polynomials can be used to explicitly calculate the weighting
coefficients. Assume that the range of ξ is 0 ≤ ξ ≤ 1. Legendre polynomials
can be generated from the following recurrent relation

(n + 1)Pn+1(ξ) = ξ(2n + 1)Pn(ξ) − nPn−1(ξ) (1.2)

with the initial member P0(ξ) = 0. The following Legendre polynomials can
also be defined
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P̃n(ξ) =
2nn! , n!

(2n)!

m∑
k=0

(−1)k (2n − 2k)! , ξ(n−2k)

2nk! , (n − k)! , (n − 2k)!
(1.3)

Shifted Legendre polynomials can be defined by using the Legendre polyno-
mials P̃n(ξ) and expressed as

P̂n(ξ) = P̃n(ξ)(1 − 2ξ) (1.4)

The following test functions are defined by using the shifted Legendre poly-
nomials

pβ(ξ) =
P̂N (ξ)

(ξ − ξβ)P̂ (1)
N (ξβ)

(1.5)

where ξβ are roots of P̂N (ξ) and P̂ (1)(ξβ) the first derivative of P̂N (ξ) with
respect to ξ at β. The test function is a polynomial of degree (N − 1) holding
the relation pβ(ξα) = δαβ . The introduction of pβ(ξ) into the definition equa-
tion of the first order DQ discretization equation at the discrete node point
ξα of a root of P̂N (ξ) leads to obtaining the following weighting coefficients

Dξ
αβ =

P̂
(1)
N (ξα)

(ξα − ξβ)P̂ (1)
N (ξβ)

, for α �= β (1.6)

Consider the following transformed Legendre differential equation

ξ(1 − ξ)P̂ (2)
N (ξ) + (1 − 2ξ)P̂ (1)

N (ξ) + N(N + 1)P̂N (ξ) = 0 (1.7)

By using the L’Hospital’s rule and the above equation, the weighting coeffi-
cients for α = β can be obtained

Dξ
αα =

1 − 2ξα

2ξα(ξα − 1)
(1.8)

1.1.2 Implicit Computation

The variable function can be approximated by an appropriate analytical func-
tion such as the polynomial,

φ(ξ) = ξp−1, p = 1, 2, ..., Nξ (1.9)

Substituting Eq. (1.9) in Eq. (1.1) leads to Nξ sets of linear algebraic system
with one row of Dξm

αᾱ as the unknowns of one linear algebraic set. Dξm

αᾱ can
be obtained by solving the Nξ sets of linear algebraic system. The coefficient
matrix of each set of linear algebraic system is a Vandermonde matrix. A
unique solution can thus be obtained.

DQ has been used to solve various continuum mechanics problems with
the boundary conditions only involving prescribed variable functions [7–17].
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For solving flexural deformation problems of structures with the kinematic
boundary conditions involving deflection slopes, a δ-grid arrangement is used
to define the DQ discretization. The δ-grid is designed to approximately de-
fine certain boundary conditions at a point close to the boundary [18–19].
Consequently, the definition of boundary conditions is inconsistent.

The DQ can be only used to discretize problems having regular domain
configurations. Consequently, its application is very limited.

A discrete element analysis method – differential quadrature element
method (DQEM) has been developed for solving generic scientific and en-
gineering problems having arbitrarily irregular domain configurations and
external environments [20]. The DQEM has been used to develop solution
algorithms for solving various problems [21–27].

Like finite element method, for the DQEM the domain of problems is sep-
arated into many subdomains or elements. Then the differential quadrature
discretization is carried out on an element-basis. The governing differential or
partial differential equation defined on the elements, the transition conditions
on inter-element boundaries and the boundary conditions on the boundary
of problem domains are in computable algebraic forms after the differential
quadrature discretization. In order to solve the problem, all discretized gov-
erning equations, transition conditions and boundary conditions have to be
assembled to obtain a global algebraic system. Since all relations governing
a continuous problem are satisfied, the essence of this method is to find a
rigorous solution numerically. For solving problems having a curved domain
boundary, the interior elements can be regular. However, in order to solve
the problem having an arbitrary analysis domain configuration, elements con-
nected to or near the analysis domain boundary might need to be irregular.
The mapping technique can be used to develop irregular elements. Therefore
this method has the same advantage as the finite element method of geometric
flexibility. Hence a generic engineering or scientific problem can be converted
into a numerical differential quadrature element algorithm. And the related
computer code can be systematically developed.

The gradient of a response function in the problem domain will depend on
the domain configuration and distribution of external causes. The adaptive
concept can be used to efficiently solve a generic engineering or scientific prob-
lem. The DQEM is suitable for adaptively discretize a continuous problem by
using various elements with variously assumed variable functions, simultane-
ously.

In treating a concentrated external cause existing in the problem domain,
two approaches are available. One of which is to generate the mesh by locating
the concentrated external cause on some inter-element boundaries and includ-
ing it into the natural transition conditions. The second one is to locate the
concentrated external cause in an element domain and use certain continuous
function defined over the element domain to approximate it based on the rule
of force equivalence.
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There is also a discrete element analysis technique QEM which also adopts
the DQ. The original QEM was proposed to solve truss and frame structures
[28]. In this method, the truss element is limited to a three-node second-order
approximation, while a δ-grid arrangement is used to define the DQ discretiza-
tion of the flexural deformation [18]. Consequently, the definition of boundary
conditions and inter-element transition conditions, is inconsistent. When de-
veloping the plane stress and plate bending QEM models, Striz et al adopted
a hybrid technique to incorporate the DQ discretization into a Galerkin finite
element formulation and define a discrete element analysis procedure [29].

In contrast to the QEM, the DQEM which can be used to develop solution
algorithms for the analysis of flexural problem of structures with the inter-
element transition conditions and boundary conditions numerically, exactly
satisfied [20–24]. Some numerical results involving the use of DQ to the solu-
tions of problems having a specifically nonrectangular domain configuration
can also be found in existing articles [30–33].

Generalization of DQ has been carried out. An extended differential
quadrature (EDQ) was developed. For the EDQ, a certain order derivative
or partial derivative of the variable function with respect to the coordinate
variables at a discrete point is expressed as the weighted linear sum of the val-
ues of variable function and/or its possible derivatives or partial derivatives at
all nodes [34–35]. The node and discrete point can be different. Consequently,
more analytical functions can be used to define the EDQ discretization. By
using certain analytical functions such as Hermite polynomials, not only deriv-
atives can be considered as independent variables but also only simple alge-
braic operations are necessary for computing the weighting coefficients. The
weighting coefficients for a grid model defined by a coordinate system having
arbitrary dimensions can also be generated. The configuration of a grid model
can be arbitrary. Consequently, problems with an arbitrary domain configu-
ration can be solved. Discrete element analysis method for solving problems
having an irregular domain without adopting the mapping technique can also
be constructed using this method to the element basis discretization [37].

Instead of using the function variables at nodes to define the differential
quadrature, a generalized coordinate differential quadrature (GCDQ) adopts
the generalized coordinates to define the differential quadrature discretization
and the related discrete element analysis method – generalized coordinate
differential quadrature element method (GCDQEM) [38]. The computation
of GCDQ weighting coefficients is always explicit.

A differential quadrature finite difference method (DQFDM) has also been
developed [39–41]. DQ or EDQ which adopts the values of variable function
at discrete points, only, to define the EDQ discretization, is used to derive
the finite difference operators. For a specified DQFDM grid with a specified
number of grid points, the order of DQ or GDQ approximation for deriv-
ing the finite difference operators defined at a discrete point in a discrete
element or a subdomain can be flexible. Different orders of derivatives exist-
ing in the fundamental equations can have different orders of DQ or EDQ
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approximations. It is different from the DQEM in which the orders of DQ
approximations for all orders of derivatives defined in an element are unique.
The approximate analytical functions in a DQEM element always span over
the whole element. Higher order DQFDM analysis models can be easily de-
veloped. Irregular DQFDM analysis models can be developed by using the
mapping technique or EDQ. DQ can also be used to the integral statement of
the finite element method. A discrete element analysis method - differential
quadrature finite element method (DQFEM) has also been developed [42–43].
This method uses DQ or EDQ to the element basis integral statement and
carries out the weak formulation.

The various discrete element analysis methods also have the same advan-
tage as the finite element method of general geometry and systematic bound-
ary treatment. These methods need less computer memory requirements than
the FEM. For solving free vibration problems, the mass matrix is diagonal
which requires a little storage space. The mass matrix is simpler to form and
cheaper to use as compared to the consistent mass matrix used in the FEM
analysis.

DQ and EDQ can also be used to develop the time-element by time-element
and stages by stages direct time integration methods for solving discrete tran-
sient problems existing in various areas of science and engineering [44–46].
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Generalization of DQ – Extended Differential
Quadrature

For the EDQ, a derivative or partial derivative of the variable function with
respect to the coordinate variables at an arbitrary discrete point is expressed
as a weighted linear sum of the values of function and/or its possible deriv-
atives at all grid nodes. The grid pattern can be fixed while the selection of
discrete points for defining discrete fundamental relations is flexible.

The configuration of EDQ grid model can be irregular. The design of grid
model is flexible. Weighting coefficients for general multi-coordinate grid mod-
els having arbitrary configurations can also be calculated. Three methods for
generating the weighting coefficients can be used. Typical procedures of EDQ
discretizations for grid models defined by one, two, three, four and arbitrary
finite-coordinate grid models are summarized.

2.1 One-Coordinate Grid Model

The grid configuration of the one-coordinate grid model can be a straight or
curved line. The EDQ discretization for a derivative of order m of the variable
function φ at discrete point α can be expressed by

dmφα

dξm
= Dξm

αi Φ̃i, i = 1, 2, ..., N̄ (2.1)

where N̄ is the number of degrees of freedom and Φ̃i the values of variable
function and/or its possible derivatives at the N nodes.

Three possible approaches can be used to calculate the weighting coeffi-
cients. The first approach is to assume that the variable function can be a
set of appropriate analytical functions denoted by Υp(ξ). The substitution of
Υp(ξ) in Eq. (2.1) leads to a linear algebraic system for implicitly determining
the weighting coefficients Dξm

αi .
Assume that the variable function can be approximated by using interpo-

lation functions
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φ(ξ) = Ψp(ξ)Φ̃p, p = 1, 2, ..., N̄ (2.2)

where Ψp(ξ) are the corresponding interpolation functions of Φ̃p. Adopting
Ψp(ξ) as the variable function φ(ξ) then substitute it in Eq. (2.1), a linear
algebraic system for determining Dξm

αi can be obtained. And the mth order
differentiation of Eq. (2.2) at discrete point α also leads to the EDQ discretiza-
tion equation (2.1) in which Dξm

αi is expressed by

Dξm

αi =
dmΨi

dξm
|α (2.3)

Using the above equation, the weighting coefficients can be easily obtained by
simple algebraic calculations. This second approach is an explicit method.

The third approach is to approximate the variable function by the following
equation

φ(ξ) = Υp(ξ)cp, p = 1, 2, ..., N̄ (2.4)

where Υp(ξ) are appropriate analytical functions and cp are unknown coeffi-
cients. The constraint conditions at all nodes can be expressed as

Φ̃p = χpp̄cp̄ (2.5)

where χpp̄ are composed of the values of Υp(ξ) and/or their possible derivatives
at all nodes. Solving Eq. (2.5) for cp̄ and substituting them back into Eq. (2.4),
the variable function can be rewritten as

φ(ξ) = Υp(ξ)χ−1
p̄p Φ̃p̄ (2.6)

Using Eq. (2.6), the weighting coefficients can also be obtained.

Dξm

αi =
∂mΥp̄

∂ξm
|α χ−1

ip̄ (2.7)

This third method calculates the weighting coefficients implicitly.

2.2 Two-Coordinate Grid Model

The grid configuration of a two-coordinate grid model can be a triangle, a
quadrilateral or a certain other configuration. The dimensions for defining the
discrete point and node can be different. By adopting a one-dimensional node
identification method to express both the discrete point and node, the EDQ
discretization for a partial derivative of order m+n at discrete point α can be
expressed by

∂(m+n)Φα

∂ξm∂ηn
= Dξmηn

αi Φ̃i, i = 1, 2, ..., N̄ (2.8)

The variable function can be a set of appropriate analytical functions denoted
by Υj(ξ, η). The substitution of Υj(ξ, η) in equation (2.8) leads to a linear
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algebraic system for determining Dξmηn

αi . The set of analytical functions can
also be expressed by a tensor having an order other than one. The variable
function can also be approximated by using interpolation functions

φ(ξ, η) = Ψj(ξ, η)Φ̃j , j = 1, 2, ..., N̄ (2.9)

where Φ̃j are the values of variable function and/or its possible partial deriva-
tives at the N nodes, and Ψj(ξ, η) are their corresponding interpolation func-
tions. Adopting the set of Ψj(ξ, η) as the variable function φ(ξ, η), the same
procedure can also be used to find Dξmηn

αi . And the (m+n)th order partial
differentiation of Eq. (2.9) at discrete point α also leads to the EDQ dis-
cretization equation (2.8) in which Dξmηn

αi is expressed by

Dξmηn

αi =
∂(m+n)Ψi

∂ξm∂ηn
|α (2.10)

The variable function can also be approximated by

φ(ξ, η) = Υj(ξ, η)cj , j = 1, 2, ..., N̄ (2.11)

Then the weighting coefficients can also be obtained by

Dξmηn

αi =
∂(m+n)Υj̄

∂ξm∂ηn
|α χ−1

ij̄
(2.12)

In Eq. (2.11), the unknown coefficients and appropriate analytical functions
can also be expressed by certain other tensors having orders other than one.

By adopting a two-dimensional node identification method to express both
discrete point and node, the EDQ discretization for a partial derivative of
order m + n at discrete point (α, β) can be expressed by

∂(m+n)φαβ

∂ξm∂ηn
= Dξmηn

αβij Φ̃ij (2.13)

The variable function can be a set of appropriate analytical functions denoted
by Υpq(ξ, η). The substitution of Υpq(ξ, η) in Eq. (2.13) leads to a linear al-
gebraic system for determining Dξmηn

αβij . The set of analytical functions can
also be expressed by a tensor having an order other than two. The variable
function can also be approximated by

φ(ξ, η) = Ψpq(ξ, η)Φ̃pq (2.14)

where Φ̃pq are the values of variable function and/or its possible partial deriv-
atives at the nodes, and Ψpq(ξ, η) are their corresponding interpolation func-
tions. Adopting the set of Ψpq(ξ, η) as the variable function φ(ξ, η), the same
procedure can also be used to determine Dξmηn

αβij . And the (m + n)th order
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partial differentiation of Eq. (2.14) at discrete point (α, β) also leads to the
EDQ discretization equation (2.13) in which Dξmηn

αβij is expressed by

Dξmηn

αβij =
∂(m+n)Ψij

∂ξm∂ηn
|αβ (2.15)

If the variable function φ(ξ, η) can be expressed by a different form

φ(ξ, η) = Ψp̄(ξ)Ψq̄(η)Φ̃p̄q̄, p̄ = 1, 2, ..., Nξ̄, q̄ = 1, 2, ..., Nη̄ (2.16)

where Nξ̄ and Nη̄ are the numbers of degrees of freedom attached to the nodes
in ξ and η directions, respectively, Dξmηn

αβij can be obtained by the following
equation

Dξmηn

αβij = Dξm

αi Dηn

βj (2.17)

There are three types of triangular grid:
(a) Pascal triangular grid,
(b) triangular grid having no interior node,
(c) triangular grid having interior nodes but not the Pascal triangular grid.
And there are also three types of quadrilateral grid:
(a) Lagrange family grid,
(b) quadrilateral grid having no interior node,
(c) quadrilateral grid having interior nodes but not the Lagrange family grid.
The discrete points based grid types can be similarly discussed.

An example is the use of complete polynomials for defining the 2-D tri-
angular EDQ model with Pascal triangular grid and 2-D node identification,
and calculating the related weighting coefficients. Let n denote the order of
the complete polynomials. These complete polynomials are expressed as

Υpk(x, y) = xp+1−kyk−1, 0 ≤ p ≤ n, 1 ≤ k ≤ n + 1

With the above analytical functions, the weighting coefficients can be calcu-
lated by using one of the two implicit methods with which a solution of a
linear algebraic system is necessary.

2.3 Three-Coordinate Grid Model

The grid configuration of a three-coordinate grid model can be a triangle with
the variable function defined by area coordinates, a tetrahedron, a triangular
prism, a hexahedron or a certain other configuration. The dimensions for
defining the discrete point and node can be different. By adopting a one-
dimensional node identification method to express both the discrete point and
the node, the EDQ discretization for a partial derivative of order m + n + o
at discrete point α can be expressed by
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∂(m+n+o)φα

∂ξmηnζo
= Dξmηnζo

αi Φ̃i, i = 1, 2, ..., N̄ (2.18)

The variable function can be a set of appropriate analytical functions denoted
by Υj(ξ, η, ζ). The substitution of Υj(ξ, η, ζ) in Eq. (2.18) leads to a linear
algebraic system for determining weighting coefficients Dξmηnζo

αi . The set of
analytical functions can also be expressed by a tensor having an order other
than one. The variable function can also be approximated by

φ(ξ, η, ζ) = Ψj(ξ, η, ζ)Φj , j = 1, 2, ..., N̄ (2.19)

where Ψj(ξ, η, ζ) are the corresponding interpolation functions of Φ̃j . Adopting
the set of Ψj(ξ, η, ζ) as the variable function φ(ξ, η, ζ), the same procedure can
also be used to determine Dξmηnζo

αi . And the (m+n+o)th order partial differ-
entiation of Eq. (2.19) at discrete point α also leads to the EDQ discretization
equation (2.18) in which Dξmηnζo

αi is expressed by

Dξmηnζo

αi =
∂(m+n+o)Ψi

∂ξm∂ηn∂ζo
|α (2.20)

The variable function can also be approximated by

φ(ξ, η, ζ) = Υj(ξ, η, ζ)cj , j = 1, 2, ..., N̄ (2.21)

Then the weighting coefficients can also be obtained by

Dξmηnζo

αi =
∂(m+n+o)Υj̄

∂ξm∂ηn∂ζo
|α χ−1

ij̄
(2.22)

In Eq. (2.21), the unknown coefficients and appropriate analytical functions
can also be expressed by certain other tensors having orders other than one.

By adopting a two-dimensional node identification method to express both
the discrete point and the node, the EDQ discretization for a partial derivative
of order m+n+o at discrete point (α, γ) can be expressed by

∂(m+n+o)φαγ

∂ξm∂ηn∂ζo
= Dξmηnζo

αγik Φ̃ik (2.23)

The variable function can be a set of appropriate analytical functions
Υjr(ξ, η, ζ). The substitution of Υjr(ξ, η, ζ) in Eq. (2.23) leads to a linear
algebraic system for determining Dξmηnζo

αγik . The set of analytical functions can
also be expressed by a tensor having an order other than two. The variable
function can also be approximated by

φ(ξ, η, ζ) = Ψjr(ξ, η, ζ)Φ̃jr (2.24)

where Φ̃jr are values of variable function and/or its possible partial derivatives
at the nodes, and Ψjr(ξ, η, ζ) are their corresponding interpolation functions.
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Adopting the set of Ψjr(ξ, η, ζ) as the variable function φ(ξ, η, ζ), the same
procedure can also be used to determine Dξmηnζo

αγik . And the (m + n + o)th
order partial differentiation of Eq. (2.24) at discrete point (α, γ) also leads to
the EDQ discretization equation (2.23) in which Dξmηnζo

αγik is expressed by

Dξmηnζo

αγik =
∂(m+n+o)Ψik

∂ξm∂ηn∂ζo
|αγ (2.25)

Consider that the interpolation functions can be expressed by forming prod-
ucts of two sets of functions with one set defined by two coordinate variables
while the other set defined by the remaining coordinate variable. Then a rep-
resentative of this type of interpolation functions can be Ψj(ξ, η)Ψr(ζ). By
using this type of interpolation functions, the weighting coefficients show to
have the following form:

Dξmηnζo

αγik = Dξmηn

αi Dζo

γk (2.26)

By adopting a three-dimensional node identification method to express
both the discrete point and node, the EDQ discretization for a partial deriv-
ative of order m+n+o at discrete point (α, β, γ) can be expressed by

∂(m+n+o)φαβγ

∂ξm∂ηnζo
= Dξmηnζo

αβγijk Φ̃ijk (2.27)

The variable function can be a set of appropriate analytical functions denoted
by Υpqr(ξ, η, ζ). The substitution of Υpqr(ξ, η, ζ) in equation (2.27) leads to a
linear algebraic system for determining Dξmηnζo

αβγijk . The set of analytical func-
tions can also be expressed by a tensor having an order other than three. The
variable function can also be approximated by

φ(ξ, η, ζ) = Ψpqr(ξ, η, ζ)Φ̃pqr (2.28)

where Φ̃pqr are the values of variable function and/or its possible partial deriv-
atives at the nodes, and Ψpqr(ξ, η, ζ) their corresponding interpolation func-
tions. Adopting the set of Ψpqr(ξ, η, ζ) as the variable function Φ(ξ, η, ζ), the
same procedure can also be used to determine Dξmηnζo

αβγijk . And the (m+n+o)th
order partial differentiation of Eq. (2.28) at discrete point (α, β, γ) also leads
to the EDQ discretization equation (2.27) in which Dξmηnζo

αβγijk is expressed by

Dξmηnζo

αβγijk =
∂(m+n+o)Ψijk

∂ξm∂ηn∂ζo
|αβγ (2.29)

Consider that the interpolation functions can be expressed by the product of
two sets of functions with one set defined by two coordinate variables while the
other set defined by the remaining coordinate variable. Then a representative
of this type of interpolation functions can be Ψ̄pq(ξ, η)Ψ̃r(ζ). By using this
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type of interpolation functions, the weighting coefficients show to have the
following form:

Dξmηnζo

αβγijk = Dξmηn

αβij Dζo

γk (2.30)

If the variable function φ(ξ, η, ζ) can be approximated by the following equa-
tion

φ(ξ, η, ζ) = Ψ̂p̄(ξ)Ψ̄q̄(η)Ψ̃r̄(ζ)Φ̃p̄q̄r̄,

p̄ = 1, 2, ..., Nξ̄, q̄ = 1, 2, ..., Nη̄, r̄ = 1, 2, ..., Nζ̄ (2.31)

where Nξ̄, Nη̄ and Nζ̄ are the numbers of degrees of freedom attached to the
nodes in ξ, η and ζ directions, respectively, Dξmηnζo

αβγijk can be obtained by the
following equation

Dξmηnζo

αβγijk = Dξm

αi Dηn

βj Dζo

γk (2.32)

For the triangular grid with the coordinate variables ξ, η and ζ being the
area coordinates L1, L2 and L3, the formulations are the same as the above
procedures.

Consider the Pascal triangular grid with the coordinate variables being
the area coordinates L1, L2 and L3. Let p̄ denote the level number of a node
in L1 direction with p̄ = 1 the base level L1 = 0, q̄ denote the level number
of the node in L2 direction and r̄ denote the level number of the node in L3

direction. By adopting the three-dimensional node identification method, the
variable function can be approximated by the following equation

φ(L1, L2, L3) = Ψp̄(L1)Ψq̄(L2)Ψr̄(L3)Φp̄q̄r̄ (2.33)

where Ψp̄(L1), Ψq̄(L2) and Ψr̄(L3) are Lagrange interpolation functions defined
in the range 0 ≤ Lk ≤ 1 and expressed by

Ψᾱ(Lk) =
M(Lk)

M (1)(Lkᾱ)
(2.34)

where

M(Lk) =
n+1∏

γ=1,γ �=ᾱ

(Lk − Lkγ),

M (1)(Lkᾱ) =
dM(Lkᾱ)

dLk
=

n+1∏
γ=1,γ �=ᾱ

(Lkᾱ − Lkγ)

with n the order of approximation. At a node, the order of approximation
and level numbers have the relation p̄ + q̄ + r̄ = n + 3. Then, the weighting
coefficients for a partial derivative of order m+n+o at discrete point (α, β, γ)
can be obtained by the following equation

D
Lm

1 Ln
2 Lo

3
αβγijk = D

Lm
1

αi D
Ln

2
βj D

Lo
3

γk (2.35)
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The types of triangular grid with the coordinate variables being the area
coordinates are the same as those listed in Section 2.2. There are three types
of tetrahedral grid:
(a) Pascal tetrahedral grid,
(b) tetrahedral grid having no interior node,
(c) tetrahedral grid having interior nodes but not being the Pascal tetrahedral

grid.
There are also three types of triangular prism grid:
(a) Lagrange family grid having the Pascal triangular cross sections,
(b) triangular prism grid having no interior node,
(c) triangular prism grid having interior nodes but not being the Lagrange

family grid.
And there are also three types of hexahedral grid:
(a) Lagrange family grid,
(b) hexahedral grid having no interior node,
(c) hexahedral grid having interior nodes but not being the Lagrange family
grid.
The discrete points based grid types can be similarly discussed.

2.4 Four-Coordinate Grid Model

The grid configuration of a four-coordinate grid model can be a triangular
prism with three of the four coordinate variables being the three area coordi-
nates for the triangular cross sections, the tetrahedron with the variable func-
tion defined by the volume coordinates or a certain other configuration. By
adopting a one-dimensional node identification method, the EDQ discretiza-
tion for a partial derivative of order m+n+o+p can be expressed by

∂(m+n+o+p)φi

∂ξm∂ηn∂ζo∂ϑp
= Dξmηnζoϑp

īi
Φ̃ī, i = 1, 2, ..., N, ī = 1, 2, ..., N̄ (2.36)

The variable function can be a set of appropriate analytical functions denoted
by Υj(ξ, η, ζ, ϑ). The substitution of Υj(ξ, η, ζ, ϑ) in Eq. (2.36) leads to N sets
of linear algebraic system for determining Dξmηnζoϑp

īi
. The variable function

can be approximated by

φ(ξ, η, ζ, ϑ) = Ψj(ξ, η, ζ, ϑ)Φ̃j , j = 1, 2, ..., N̄ (2.37)

where Φ̃j are the values of variable function and its possible partial deriv-
atives at the N nodes, and Ψj(ξ, η, ζ, ϑ) are their corresponding interpo-
lation functions. Adopting the set of Ψj(ξ, η, ζ, ϑ) as the variable function
Φ(ξ, η, ζ, ϑ), then the same procedure can also be used to find Dξmηnζoϑp

īi
. And

the (m+n+o+p)th order partial differentiations of Eq. (2.37) at all discrete
points also lead to the EDQ discretization equation (2.36) in which Dξmηnζoϑp

īi
is expressed by
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Dξmηnζoϑp

īi
=

∂(m+n+o+p)Ψī

∂ξm∂ηn∂ζo∂ϑp
|i (2.38)

The variable function can also be approximated by

φ(ξ, η, ζ, ϑ) = Υj(ξ, η, ζ, ϑ)cj , j = 1, 2, ..., N̄ (2.39)

Then the weighting coefficients can also be obtained by

Dξmηnζoϑp

īi
=

∂(m+n+o+p)Υj̄

∂ξm∂ηn∂ζo∂ϑp
|i χ−1

īj̄
(2.40)

By adopting a two-dimensional node identification method, the EDQ dis-
cretization for a partial derivative of order m+n+o+p can be expressed by

∂(m+n+o+p)φiδ

∂ξm∂ηn∂ζo∂ϑp
= Dξmηnζoϑp

iδīδ̄
Φ̃īδ̄ (2.41)

The variable function can be a set of analytical functions denoted by
Υjs(ξ, η, ζ, ϑ). Then Dξmηnζoϑp

iδīδ̄
can be obtained by using Υjs(ξ, η, ζ, ϑ) in Eq.

(2.41). The variable function can also be approximated by

φ(ξ, η, ζ, ϑ) = Ψjs(ξ, η, ζ, ϑ)Φ̃js (2.42)

where Φ̃js are values of variable function and its possible partial deriva-
tives at nodes, and Ψjs(ξ, η, ζ, ϑ) are their corresponding interpolation func-
tions. Adopting the set of Ψjs(ξ, η, ζ, ϑ) as the variable function Φ(ξ, η, ζ, ϑ),
Dξmηnζoϑp

iδīδ̄
can also be obtained by using Ψjs(ξ, η, ζ, ϑ) in Eq. (2.41). And

the (m+n+o+p)th order partial differentiations of Eq. (2.42) at all discrete
points also lead to the EDQ discretization equation (2.41) in which Dξmηnζoϑp

iδīδ̄
is expressed by

Dξmηnζoϑp

iδīδ̄
=

∂(m+n+o+p)Ψīδ̄

∂ξm∂ηn∂ζo∂ϑp
|iδ (2.43)

Consider that the interpolation functions can be expressed by forming prod-
ucts of two sets of functions with one set defined by three coordinate variables
while the other set defined by the remaining coordinate variable. Then a rep-
resentative of this type of interpolation functions can be Ψ̄j(ξ, η, ζ)Ψ̃s(ϑ). By
using this type of interpolation functions, the weighting coefficients show to
have the following form:

Dξmηnζoϑp

iδīδ̄
= Dξmηnζo

īi
Dϑp

δδ̄ (2.44)

By adopting a three-dimensional node identification method, the EDQ
discretization for a partial derivative of order m+n+o+p can be expressed by

∂(m+n+o+p)φiγδ

∂ξm∂ηn∂ζo∂ϑp
= Dξmηnζoϑp

iγδīγ̄δ̄
Φ̃īγ̄δ̄ (2.45)
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The variable function can be a set of analytical functions denoted by
Υjrs(ξ, η, ζ, ϑ). Then Dξmηnζoϑp

iγδīγ̄δ̄
can be obtained by using Υjrs(ξ, η, ζ, ϑ) in

Eq. (2.45). The variable function can also be approximated by

φ(ξ, η, ζ, ϑ) = Ψjrs(ξ, η, ζ, ϑ)Φ̃jrs (2.46)

where Φ̃jrs are values of variable function and its possible partial derivatives
at the nodes, and Ψjrs(ξ, η, ζ, ϑ) are their corresponding interpolation func-
tions. Adopting the set of Ψjrs(ξ, η, ζ, ϑ) as the variable function Φ(ξ, η, ζ, ϑ),
Dξmηnζoϑp

iγδīγ̄δ̄
can also be obtained by using Ψjrs(ξ, η, ζ, ϑ) in Eq. (2.45). And

the (m+n+o+p)th order partial differentiations of Eq. (2.46) at all discrete
points also lead to the EDQ discretization equation (2.45) in which Dξmηnζoϑp

iγδīγ̄δ̄

is expressed by

Dξmηnζoϑp

iγδīγ̄δ̄
=

∂(m+n+o+p)Ψīγ̄δ̄

∂ξm∂ηn∂ζo∂ϑp
|iγδ (2.47)

Consider that the interpolation functions can be expressed by forming prod-
ucts of two sets of functions with one set defined by three coordinate variables
while the other set defined by the remaining coordinate variable. Then a rep-
resentative of this type of interpolation functions can be Ψ̄jr(ξ, η, ζ)Ψ̃s(ϑ). By
using this type of interpolation functions, the weighting coefficients show to
have the following form:

Dξmηnζoϑp

iγδīγ̄δ̄
= Dξmηnζo

iγīγ̄
Dϑp

δδ̄ (2.48)

By adopting a four-dimensional node identification method, the EDQ dis-
cretization for a partial derivative of order m+n+o+p can be expressed by

∂(m+n+o+p)φαβγδ

∂ξm∂ηn∂ζo∂ϑp
= Dξmηnζoϑp

αβγδᾱβ̄γ̄δ̄
Φ̃ᾱβ̄γ̄δ̄ (2.49)

The variable function can be a set of appropriate analytical functions denoted
by Υpqrs(ξ, η, ζ, ϑ). Then Dξmηnζoϑp

αβγδᾱβ̄γ̄δ̄
can be obtained by using Υpqrs(ξ, η, ζ, ϑ)

in Eq. (2.49). The variable function can also be approximated by

φ(ξ, η, ζ, ϑ) = Ψpqrs(ξ, η, ζ, ϑ)Φ̃pqrs (2.50)

where Φ̃pqrs are values of variable function and its possible partial derivatives
at the nodes, and Ψpqrs(ξ, η, ζ, ϑ) are their corresponding interpolation func-
tions. Adopting the set of Ψpqrs(ξ, η, ζ, ϑ) as the variable function Φ(ξ, η, ζ, ϑ),
Dξmηnζoϑp

αβγδᾱβ̄γ̄δ̄
can also be obtaining by using Ψpqrs(ξ, η, ζ, ϑ) in Eq. (2.49). And

the (m+n+o+p)th order partial differentiations of Eq. (2.50) at all discrete
points also lead to the EDQ discretization equation (2.48) in which Dξmηnζoϑp

αβγδᾱβ̄ζ̄δ̄

is expressed by

Dξmηnζoϑp

αβγδᾱβ̄γ̄δ̄
=

∂(m+n+o+p)Ψᾱβ̄γ̄δ̄

∂ξm∂ηn∂ζo∂ϑp
|αβγδ (2.51)
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Consider that the interpolation functions can be expressed by forming prod-
ucts of two sets of functions with one set defined by three coordinate variables
while the other set defined by the remaining coordinate variable. Then a rep-
resentative of this type of interpolation functions can be Ψ̄pqr(ξ, η, ζ)Ψ̃s(ϑ).
By using this type of interpolation functions, the weighting coefficients show
to have the following form:

Dξmηnζoϑp

αβγδᾱβ̄γ̄δ̄
= Dξmηnζo

αβγᾱβ̄γ̄
Dϑp

δδ̄ (2.52)

For a triangular prism of Lagrange family grid having the Pascal triangular
cross sections, the variable function can be approximated by

φ(L1, L2, L3, ζ) = Ψp̄(L1)Ψq̄(L2)Ψr̄(L3)Ψs̄(ζ)Φ̃p̄q̄r̄s̄ (2.53)

Then, the weighting coefficients for a partial derivative of order m+n+o+p
can be obtained by the following equation

D
Lm

1 Ln
2 Lo

3ζp

αβγδᾱβ̄γ̄δ̄
= D

Lm
1

αᾱ D
Ln

2
ββ̄

D
Lo

3
γγ̄ Dζp

δδ̄
(2.54)

And for the Pascal tetrahedral grid with the coordinate variables being the vol-
ume coordinates L̄1, L̄2, L̄3 and L̄4, the variable function can be approximated
by the following equation which uses the four-dimensional node identification
method

φ(L̄1, L̄2, L̄3, L̄4) = Ψp̄(L̄1)Ψq̄(L̄2)Ψr̄(L̄3)Ψs̄(L̄4)Φ̃p̄q̄r̄s̄ (2.55)

where p̄, q̄, r̄ and s̄ are numbers of levels of a specified discrete point with
respect to L̄1, L̄2, L̄3 and L̄4, respectively, and Ψp̄(L̄1), Ψq̄(L̄2), Ψr̄(L̄3) and
Ψs̄(L̄4) can be defined by using the Lagrange interpolation functions expressed
by Eq. (2.34). Then, the weighting coefficients for a partial derivative of order
m+n+o+p can be obtained by the following equation

D
L̄m

1 L̄n
2 L̄o

3L̄p
4

αβγδᾱβ̄γ̄δ̄
= D

L̄m
1

αᾱ D
L̄n

2
ββ̄

D
L̄o

3
γγ̄ D

L̄p
4

δδ̄
(2.56)

2.5 Arbitrary Finite-Coordinate Model

Consider an arbitrary M -coordinate EDQ model with the number of coor-
dinate variables larger than two. The dimension and grid configuration for
defining the discrete point and node can be different. By adopting an one-
dimensional node identification method to express both the discrete point
and node, the EDQ discretization for a partial derivative of order m+...+p at
discrete point α can be expressed by

∂(m+...+p)φα

∂ξm...∂ϑp
= Dξm...ϑp

αi Φ̃i, i = 1, 2, ..., N̄ (2.57)
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The variable function can be a set of appropriate analytical functions denoted
by Υj(ξ, ..., ϑ). The substitution of Υj(ξ, ..., ϑ) in (2.18) leads to a linear al-
gebraic system for determining Dξm...ϑp

αi . The set of analytical functions can
also be expressed by a tensor having an order other than one. The variable
function can also be approximated by

φ(ξ, ..., ϑ) = Ψj(ξ, ..., ϑ)Φ̃j , j = 1, 2, ..., N̄ (2.58)

where Φ̃j are values of variable function and/or its possible partial derivatives
at the N nodes, and Ψj(ξ, ..., ϑ) are their corresponding interpolation func-
tions. Adopting the set of Ψj(ξ, ..., ϑ) as the variable function φ(ξ, ..., ϑ), the
same procedure can also be used to determine Dξm...ϑp

αi . And the (m+...+p)th
order partial differentiation of Eq. (2.58) at discrete point α also leads to the
EDQ discretization equation (2.57) in which Dξm...ϑp

αi is expressed by

Dξm...ϑp

αi =
∂(m+...+p)Ψi

∂ξm...∂ϑp
|α (2.59)

The variable function can also be approximated by

φ(ξ, ..., ϑ) = Υj(ξ, ..., ϑ)cj , j = 1, 2, ..., N̄ (2.60)

Then the weighting coefficients can also be obtained by

Dξm...ϑp

αi =
∂(m+...+p)Υj̄

∂ξm...∂ϑp
|α χ−1

ij̄
(2.61)

In Eq. (2.60), the unknown coefficients and appropriate analytical functions
can also be expressed by certain other tensors having orders other than one.

By adopting a two-dimensional node identification method to express both
the discrete point and node, the EDQ discretization for a partial derivative of
order m+...+p at discrete point (α, δ) can be expressed by

∂(m+...+p)φαδ

∂ξm...∂ϑp
= Dξm...ϑp

αδil Φ̃il (2.62)

The variable function can be a set of appropriate analytical functions denoted
by Υjs(ξ, ..., ϑ). The substitution of Υjs(ξ, ..., ϑ) in Eq. (2.62) leads to a linear
algebraic system for determining Dξm...ϑp

αδil The set of analytical functions can
also be expressed by a tensor having an order other than two. The variable
function can also be approximated by

φ(ξ, ..., ϑ) = Ψjs(ξ, ..., ϑ)Φ̃js (2.63)

where Φ̃js are values of variable function and/or its possible partial derivatives
at the nodes, and Ψjs(ξ, ..., ϑ) are their corresponding interpolation functions.
Adopting the set of Ψjs(ξ, ..., ϑ) as the variable function φ(ξ, ..., ϑ), the same
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procedure can also be used to determine Dξm...ϑp

αδil . And the (m+...+p)th order
partial differentiation of Eq. (2.63) at discrete point (α, δ) also leads to the
EDQ discretization equation (2.62) in which Dξm...ϑp

αδil is expressed by

Dξm...ϑp

αδil =
∂(m+...+p)Ψil

∂ξm...∂ϑp
|αδ (2.64)

Consider that the interpolation functions can be expressed by forming prod-
ucts of two sets of functions with one set defined by three coordinate variables
while the other set defined by the remaining coordinate variable. Then a rep-
resentative of this type of interpolation functions can be Ψ̄j(ξ, ...)Ψ̃s(ϑ). By
using this type of interpolation functions, the weighting coefficients show to
have the following form:

Dξm...ϑp

αδil = Dξm...
αi Dϑp

δl (2.65)

If the dimension of node identification and the number of coordinate
variables are the same in expressing both the discrete point and node, the
EDQ discretization for a partial derivative of order m+...+p at discrete point
(α, ..., δ) can be expressed by

∂(m+...+p)φα...δ

∂ξm...∂ϑp
= Dξm...ϑp

α...δi...lΦ̃i...l (2.66)

The variable function can be a set of appropriate analytical functions denoted
by Υp...s(ξ, ..., ϑ). The substitution of Υp...s(ξ, ..., ϑ) in Eq. (2.66) leads to a
linear algebraic system for determining Dξm...ϑp

α...δi...l. The set of analytical func-
tions can also be expressed by a tensor having an order other than M . The
variable function can also be approximated by

φ(ξ, ..., ϑ) = Ψp...s(ξ, ..., ϑ)Φ̃p...s (2.67)

where Φ̃p...s are the values of variable function and/or its possible partial
derivatives at the nodes, and Ψp...s(ξ, ..., ϑ) are their corresponding inter-
polation functions. Adopting the set of Ψp...s(ξ, ..., ϑ) as the variable func-
tion φ(ξ, ..., ϑ), the same procedure can also be used to determine Dξm...ϑp

α...δi...l.
And the (m+...+p)th order partial differentiation of Eq. (2.67) at discrete
point (α, ..., δ) also leads to the EDQ discretization equation (2.66) in which
Dξm...ϑp

α...δi...l is expressed by

Dξm...ϑp

α...δi...l =
∂(m+...+p)Ψi..l

∂ξm...ϑp
|α...δ (2.68)

Consider that the interpolation functions can be expressed by the product
of two sets of functions with one set defined by M − 1 coordinate variables
while the other set defined by the remaining coordinate variable. Then a
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representative of this type of interpolation functions can be Ψ̄p...(ξ, ...)Ψ̃s(ϑ).
By using this type of interpolation functions, the weighting coefficients show
to have the following form:

Dξm...ϑp

α...δi...l = Dξm...
α...i...D

ϑp

δl (2.69)

If the interpolation functions can be expressed by the product of P sets of
functions with P larger than two and a coordinate variable only appearing in
one set of functions, similar procedures can be used to determine the weighting
coefficients which are components of the outer product of P tensors.

2.6 Sample Applications

Various analytical functions such as sinc functions, Lagrange polynomials,
Chebyshev polynomials, Bernoulli polynomials, Euler polynomials, rational
functions, . . . , etc. can be used to define the weighting coefficients. To solve
problems having singularity properties, certain singular functions can be used
for the EDQ discretization. The problems having infinite domains can also be
treated.

2.6.1 Lagrange DQ Model

General polynomials can be used to implicitly calculate EDQ weighting coef-
ficients. By using Lagrange interpolation functions, the DQ weighting coeffi-
cients can explicitly be calculated. Consider the one-dimensional discretization
using only one DOF representing the variable function at the node to define
the DQ and Lagrange interpolation functions for explicitly express the weight-
ing coefficients. Lagrange interpolation functions L̂β(ξ) can be expressed by

L̂β(ξ) =
M(ξ)

(ξ − ξβ)M (1)(ξβ)
(2.70)

where

M(ξ) =
N∏

γ=1

(ξ − ξγ), M (1)(ξβ) =
dM(ξβ)

dξ
=

N∏
γ=1,γ �=β

(ξβ − ξγ)

The weighting coefficients can be derived

Dξ
αβ = dL̂β

dξ |α
= (ξα−ξβ)M(1)(ξβ)M(1)(ξα)−M(ξα)M(1)(ξβ)

[(ξα−ξβ)M(1)(ξβ)]2

=

{
M(1)(ξα)

(ξα−ξβ)M(1)(ξβ)
, for α �= β

−∑N
γ=1,γ �=α Dαγ , for α = β

(2.71)
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The truncation error of the first order Lagrange DQ discretization is duN (ζ(ξα))
N ! dξN

×∏N−1
β=1,β �=α(ξα − ξβ) for some number ζ(ξα). The weighting coefficients Dξm

αβ

for an mth order derivative with m larger than one can be similarly obtained.
When the uniform grid is used, Eq. (2.71) is reduced to

Dξ
αβ = (−1)α+β (α − 1)! (N − α)!

∆ξ(α − β)(β − 1)! (N − β)!
for α �= β (2.72)

where ∆ξ = ξα−ξβ . The mth order weighting coefficients Dξm

αβ can be similarly
calculated. Assume that the nodes are symmetric with respect to the middle
point and let r = N − α + 1 and s = N − β + 1. Then Dξm

αβ = Dξm

rs if m is

even, while Dξm

αβ = −Dξm

rs if m is odd. The number of arithmetic operations
can thus be reduced in calculating the weighting coefficients. Assume that the
nodes are symmetric with respect to the middle point and let r = N − α + 1
and s = N −β +1. Then Dξm

αβ = Dξm

rs if m is even, while Dξm

αβ = −Dξm

rs if m is
odd. The number of arithmetic operations can thus be reduced in calculating
the weighting coefficients.

Because only the variable functions at nodes are used to define the DQ,
the higher order weighting coefficients can also be calculated by the following
recurrent procedure by using the first order weighting coefficients Dξ

αβ

Dξ2

αβ =
N∑

γ=1

Dξ
αγDξ

γβ ,

Dξ3

αβ =
N∑

γ=1

Dξ2

αγDξ
γβ ,

.

.

.

Dξm

αβ =
N∑

γ=1

Dξm−1

αγ Dξ
γβ (2.73)

The above recurrent computation procedure is equivalent to the procedure
developed by Shu and Richard [30,47-48].

Consider a prismatic bar subjected to a quartically distributed force. The
governing equilibrium equation is

EA
d2u

dx2
= −x4 (2.74)

where u is axial displacement, E is Young’s modulus and A is area of cross
section. In the analysis, EA is set to be 1 and the length of the bar is equal
to 2. The boundary conditions are u(0) = 0 and EAdu(2)

dx = 0. Each node has
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a deformation parameter of axial displacement. Lagrange DQ model is used
to analyze the problem.

Using the DQ discretization, Eq. (2.74) can be discretized

EA

4

N∑
i=1

Dξ2

αiui = −x4
α (2.75)

The discrete natural boundary condition can be expressed by
EA
2

∑N
i=1 Dξ

αiui = 0. By considering the kinematic boundary condition, dis-
crete equilibrium equations and natural boundary condition, a linear equation
system can be constructed. The displacements at nodes can thus be found by
solving the linear equation system. In the analysis, nodes are equally spaced.
Numerical tests are carried out by gradually increasing the discrete points.
Numerical results of displacement at the free end and axial force at the fixed
end are summarized and presented. They are shown in Table 2.1. It shows
that results converge to the exact solutions by increasing the number of nodes
up to seven.

Table 2.1 Results of the bar problem

Number Displacement Axial force

of nodes at free end at fixed end

3 .20000×101 .20000×101

5 .95000×101 .61667×101

7 .10667×102 .64000×101

Exact solution .10667×102 .64000×101

2.6.2 Hermite EDQ model

In the Hermite EDQ discretization, each node has two deformation parame-
ters of lateral displacement and displacement gradient. Also consider that
the Hermite EDQ model has a unit length of the range and using Hermite
interpolation, displacement w(ξ) can be approximated by

φ(ξ) =
N∑

β=1

Hβ(ξ)Φβ +
N∑

β=1

H̃β(ξ)
dΦβ

dξ
(2.76)

where
Hβ(ξ) =

[
1 − 2(ξ − ξβ)L̂β,ξ(ξβ)

]
L̂2

β(ξ) (2.77)

and
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H̃β(ξ) = (ξ − ξβ)L̂2
β(ξ) (2.78)

are Hermite interpolation functions, and L̂β(ξ) the Lagrange interpolation
functions. Then the following relation can be defined

dφ

dξ
|α=

N∑
β=1

dHβ

dξ
|α Φβ +

N∑
β=1

dH̃β

dξ
|α dΦ

dξ
=

N∑
β=1

D̄ξ
αβΦβ +

N∑
β=1

D̃ξ
αβ

dΦβ

dξ
(2.79)

where

D̄ξ
αβ = 2L̂β(ξα){[1 − 2(ξ(α) − ξ(β))L̂(β),ξ(ξ(β))]L̂(β),ξ(ξ(α))

−L̂(β),ξ(ξ(β))L̂(β)(ξ(α))}
= 2L̂β(ξα){[1 − 2(ξ(α) − ξ(β))D

ξ
(β)(β)]D

ξ
(α)(β)

−Dξ
(β)(β)L̂(β)(ξ(α))} (2.80)

and

D̃ξ
αβ = L̂β(ξα)[L̂(β)(ξ(α)) + 2(ξ(α) − ξ(β))L̂(β),ξ(ξ(α))]

= L̂β(ξα)[L̂(β)(ξ(α)) + 2(ξ(α) − ξ(β))D
ξ
(α)(β)] (2.81)

Then the weighting coefficients Dξ
αβ defined by Hermite interpolation, with

the range of α and β being N̄ or 2N , can be explicitly formed by using
the elements of D̄ξ

αβ and D̃ξ
αβ . The weighting coefficients for higher-order

derivatives can be similarly calculated.
A Bernoulli-Euler cantilever beam subjected to a laterally distributed force

q = x5 is solved by using the Hermite EDQ model. The governing equilibrium
equation is expressed by

EI
d4w

dx4
= x5 (2.82)

where w is the lateral displacement and EI is the flexural rigidity. In the
analysis, EI is set to be 1. and the length of the beam is also equal to 1. The
boundary conditions are w(0) = 0, dw(0)/dx = 0, EId2w(1)/dx2 = 0 and
EId3w(1)/dx3 = 0. Using Hermite EDQ model, the equilibrium equation Eq.
(2.82) at an interior discrete point α can be discretized

EI

N̄∑
i=1

Dξ4

αiw̃i = x5
α (2.83)

where w̃i ≡ �w1 θ1 w2 θ2 ... wN θN �, with θi = dwi/dx. The two natural
boundary conditions can also be discretized

EI

N̄∑
i=1

Dξ3

(2N−1)iw̃i = 0, EI

N̄∑
i=1

Dξ2

(2N)iw̃i = 0 (2.84)
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In the analysis, nodes are equally spaced. Considering a (N̄ − 1)th order
Hermite EDQ model and defining ∆x = 1./(N̄−1), the interior discrete points
for defining discrete equilibrium equations are located at x = (p− 1)∆x, with
p = 2, ..., N̄ − 1. Numerical results of displacement at free end and bending
moment at fixed end for the analyses using three different node grids are listed
in Table 2.2. The first and last nodes which are also discrete points are used to
define the four boundary conditions. Numerical results in Table 2.2 converge
to exact solutions by increasing the DOF up to ten.

2.2 Numerical results of the Bernoulli-Euler beam problem

Number Displacement Bending moment

of DOF at free end at fixed end

6 .1534667×10−1 .5013334×10−1

8 .4021241×10−1 .1306400×100

10 .4398148×10−1 .1428571×100

Exact solution .4398148×10−1 .1428571×100

2.6.3 Other Approximations

(a) Chebyshev polynomials
With the range of ξ being −1 ≤ ξ ≤ 1, Chebyshev polynomials can be

generated from the following recurrent formula:

Tn+1(ξ) = 2ξTn(ξ) − Tn−1(ξ) (2.85)

with the two initial members T0(ξ) = 1 and T1(ξ) = ξ. Chebyshev polyno-
mials can be used to implicitly calculate the related DQ or EDQ weighting
coefficients of the Chebyshev DQ or EDQ models.
(b) Bernoulli polynomials

Bernoulli polynomials can be generated from the following equation

Bn(ξ) =
n∑

k=0

(
n
k

)
xn−kB̄k (2.86)

where B̄k are Bernoulli numbers which can be found in a mathematics hand-
book [49]. Bernoulli polynomials can be used to implicitly calculate the related
DQ or EDQ weighting coefficients of the Bernoulli DQ or EDQ models.

Table
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(c) Euler polynomials
Euler polynomials can be generated from the following recurrent formula

En(ξ) =
2

n + 1

n+1∑
k=1

(
1 − 2k

)(n + 1
k

)
xn+k−1Ēk (2.87)

where Ēk are Euler numbers. Euler polynomials can be used to implicitly
calculate the related DQ or EDQ weighting coefficients of the Euler DQ or
EDQ models.

(d) Laguerre polynomials
Laguerre polynomials and the first derivatives can be generated from the

following recurrent formulas:

Gn+1(ξ) = (2n + 1 − ξ)Gn(ξ) − n2Gn−1(ξ)

G
(1)
n+1(ξ) =

n + 1
ξ

[Gn+1(ξ) − (n + 1)Gn(ξ)] (2.88)

with the two initial members G0(ξ) = 1 and G1(ξ) = 1 − ξ. The Laguerre
polynomials and the first derivatives can be used to implicitly calculate the
related DQ or EDQ weighting coefficients of the Laguerre DQ or EDQ models.

(e) Sinc functions
Sinc functions are suitable for dealing problems with singularity property

or infinite domain. Assume that the range of ξ is 0 ≤ ξ ≤ 1 and that the
discrete points are equally spaced. Then the following transformation relation
can be defined

sα =
π

h
(ξ − αh) (2.89)

with h = 1
N−1 . The sinc functions can be defined as [50]

Sα(ξ, h) =
sin sα

sα
,

Sα(ξβ) = δαβ (2.90)

Consider that only one DOF representing the variable function at the discrete
point is used to define the DQ. Then sinc functions can be interpolation
functions used to define the DQ weighting coefficients. Using Eqs. (2.90) in
Eq. (1.1) weighting coefficients in explicit form can be obtained. Following are
first order weighting coefficients of the sinc DQ model

Dξ
αβ =

{
π
h

sαβ cos sαβ−sin sαβ

s2
αβ

, for α �= β

0, for α = β
(2.91)

Higher order weighting coefficients can be calculated by either the differ-
entiation of sinc functions or using the recurrent procedure represented by
Eq. (2.73).
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(f) Harmonic interpolation
Assume that the range of ξ is 0 ≤ ξ ≤ 1. Let n = (N − 2)/2 for N an even

number and n = (N − 1)/2 for N an odd number. The variable function φ(ξ)
can be approximated by the following harmonic interpolation

φ(ξ) =
1
2
a0 +

n∑
k=1

(ak cos 2πkξ + bk sin 2πkξ) (2.92)

If N is even, the undetermined constants a0, ak and bk are expressed as

a0 =
2

N − 1

N∑
β=1

Φβ ,

ak =
2

N − 1

N∑
β=1

Φβ cos 2πkξβ ,

bk =
2

N − 1

N∑
β=1

Φβ sin 2πkξβ , k = 1, ..., (N − 2)/2 (2.93)

The introduction of Eq. (2.93) in Eq. (2.92) leads to the following equation

φ(ξ) =
1
2
a0 +

N∑
β=1

2
N − 1

(N−2)/2∑
k=1

(cos 2πkξβ cos kξ

+ sin 2πkξβ sin kξ)Φβ (2.94)

with Φβ the values of variable function at nodes. Using the above equation in
Eq. (1.1), the harmonic DQ model can be defined with the related weighting
coefficients expressed by

Dm
αβ =

N∑
β=1

2
N − 1

(N−2)/2∑
k=1

(cos 2πkξβ
dm cos kξα

dξm

+ sin 2πkξβ
dm sin kξα

dξm
) (2.95)

Higher order weighting coefficients can also be calculated by using Dξ
αβ in the

recurrent relation equation (2.73).
If N is odd, the undetermined constants a0, ak and bk are expressed as

a0 =
2

N − 1

N∑
β=1

φβ ,

ak =
2

N − 1

N∑
β=1

φβ cos 2πkξβ ,
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bk =
1

N − 1

N∑
β=1

φβ sin 2πkξβ , k = 1, ..., (N − 1)/2 (2.96)

Introducing Eq. (2.96) in Eq. (2.92) then using the obtained φ(ξ) in Eq. (1.1),
the related weighting coefficients can also be obtained

Dm
αβ =

N∑
β=1

2
N − 1

(N−1)/2∑
k=1

(
cos 2πkξβ

dm cos kξα

dξm

+ sin 2πkξβ
dm sin kξα

dξm

)
(2.97)

The buckling of a simply supported prismatic beam subjected to an axial
load is solved by using the Chebyshev, Bernoulli and Euler Polynomials Based
EDQs. Chebyshev polynomials, Bernoulli polynomials and Euler polynomials
are used to calculate weighting coefficients and solve the problem, separately.
In using Chebyshev polynomials to solve the problem, the beam is mapped
onto the region Ω = {−1 ≤ ξ ≤ 1}. Chebyshev polynomials are 1, ξ, −1+2ξ2,
−3ξ + 4ξ3, 1 − 8ξ2 + 8ξ4, . . . , etc. In using Bernoulli or Euler polynomials to
solve the problem, the beam is mapped onto the region Ω = {0 ≤ ξ ≤ 1}.
Bernoulli polynomials are 1, −1

2 + ξ, 1
6 − ξ + ξ2, ξ

2 − 3ξ2

2 + ξ3, − 1
30 + ξ2 −

2ξ3 + ξ4, . . . , etc. Euler polynomials are 1, − 1
2 + ξ, −ξ + ξ2, 1

4 − 3ξ2

2 + ξ3,
ξ − 2ξ3 + ξ4, . . . , etc. Among the three methods for calculating weighting
coefficientsWeighting coefficients, the two implicit methods can be used.

Consider that the bar is subjected to a compressive end force P and buckles
in x− z plane. Let E, L and I denote the Young’s modulus, beam length and
moment of inertia of the cross section, respectively. The governing equation
can be expressed by

EI
d4w

dx4
+ P

d2w

dx2
= 0 (2.98)

The kinematic boundary conditions are w(0) = w(L) = 0, while the natural
boundary conditions are M(0) = M(L) = 0 with M the bending moment. As-
sume that the EDQ model has a unit length. Then by using EDQ to discretize
Eq. (2.98) at discrete point α leads to the following equation

4EI

L2

N̄∑
i=1

Dξ4

αiw̃i + P
N̄∑

i=1

Dξ2

αiw̃i = 0 (2.99)

In the analysis, three degrees of freedom representing the displacement
and the first and second order derivatives of displacement with respect to
x are assigned to each of the two boundary nodes, while only one degree of
freedom representing the displacement is assigned to each of the interior nodes.
The nodes are equally spaced. Refinement procedure is used to analyze the
problem. Three different grids representing the arrangement of discrete points
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are utilized to solve the problem separately. In using Chebyshev polynomials
to solve the problem, the type 1 grid is defined by ξ1 = −1; ξi = −1 + 2i

N̄−1
,

for i = 2, ..., N̄ −3; ξN̄−2 = 1. The type 2 grid adopts the Chebyshev sampling
points as the discrete points. These Chebyshev sampling points are defined
by ξ |α= −cos

[π(α−1)
N̄−3

]
, α = 1, ..., N̄ − 2. The type 3 grid is defined by ξ1 =

−1; ξi = −cos
[

πi
N̄−1

]
, for i = 2, ..., N̄ − 3; ξN̄−2 = 1. The interior discrete

points are used to define discrete buckling equilibrium equations. Since in
using Bernoulli and Euler polynomials to solve the problem the bar is mapped
onto a different region, the values of coordinates of a specified type of grid
are different from those used for the Chebyshev analysis. The corresponding
type 1 grid is defined by ξ1 = 0; ξi = i

N̄−1
, for i = 2, ..., N̄ − 3; ξN̄−2 = 1. The

corresponding type 2 grid is defined by 1
2

[
1−cosπ(i−1)

N̄−3

]
, α = 1, ..., N̄ −2. The

type 3 grid is defined by ξ1 = 0; 1
2

[
1−cos πi

N̄−1

]
, for i = 2, ..., N̄ −3; ξN̄−2 = 1.

The refinement procedure is used to analyze the problem. The relative error
er of the DQEM results with respect to the exact solution is the convergence
indicator. Defining C̄ = PL2

EI as the load factor, numerical results of the first
critical load factor are summarized and listed in Table 2.3. It shows that the
results always converge well following the increase of the order of Chebyshev
polynomials for all of the three different grids. It also shows that the results
of type 2 grid converge the best. Consequently, it is known that the EDQ
discretization adopting the type 2 grid approximates the best. Non-discrete
analyses using Bernoulli and Euler functions can also be found in existing
articles [51–53].

Table 2.3. The lowest critical load factor C̄1 of a compressed simply supported
prismatic beam

Type of DOF per Chebyshev Bernoulli Euler

element grid element polynomials polynomials polynomials

1 6 .900000×101 .833333×101 .833333×101

8 .992318×101 .100097×102 .100097×102

10 .986833×101 .986559×101 .986559×101

2 6 .106667×102 .106667×102 .106667×102

8 .986729×101 .986729×101 .986729×101

10 .986963×101 .986963×101 .986963×101

3 6 .884458×101 .884458×101 .884458×101

8 .991373×101 .991373×101 .991373×101

10 .986893×101 .986893×101 .986893×101

Exact solution .986960×101
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The static deflection of a clamped square plate with the length of sides
being a is also solved by using the Chebyshev EDQ model. The governing
equation is expressed by

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

q(x, y)
D

(2.100)

where w is the lateral displacement, D is the flexural rigidity and q(x, y) is
the distributed load. By locating the origin of the coordinate system at the
center of the plate, the boundary conditions are

w = 0,
∂w

∂x
= 0, for x = ±a

2
; w = 0,

∂w

∂y
= 0, for y = ±a

2
(2.101)

In the analysis, one element is used to represent the problem domain.
Various grids can be used. The two-dimensional node identification method
adopting the Lagrange family grid is used. For interior nodes only the degree
of freedom representing the lateral displacement is assigned while multiple
degrees of freedom are assigned to a node on the boundary to represent the
lateral displacement and displacement gradient in the direction normal to the
boundary line. Chebyshev polynomials are used to define the approximate
displacement function. Thus, the problem domain is mapped onto the region
Ω = {−1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1}. And Eq. (2.100) is transformed

∂4w

∂ξ4
+ 2

∂4w

∂ξ2∂η2
+

∂4w

∂η4
=

a4q

16D
(2.102)

where ξ and η are natural coordinates. Let Tp̃(ξi) denote the Chebyshev poly-
nomials. The displacement function can be defined by the two-dimensional
expansion of the Chebyshev polynomials

w(ξ, η) = Tp(ξ)Tq(η)cpq, p = 1, ..., Nξ + 2; q = 1, ..., Nη + 2 (2.103)

The weighting coefficients D
ξm

i

αβ for mth order partial derivative in ξi direction
can be calculated by using the implicit methods 1 or 3. At an interior discrete
point (α, β) Eq. (2.102) can be discretized

Nξ+2∑
i=1

Dξ4

αiw̃iβ
+ 2

Nξ+2∑
i=1

Nη+2∑
j=1

Dξ2

αiD
η2

βjw̃ij
+

Nη+2∑
j=1

Dη4

βjw̃αj
=

a4qαβ

16D
(2.104)

The discrete boundary conditions are

w1j
= w

Nξj
= 0, for j = 2, 3, ..., Nη − 1;

w1j,ξ
= w

Nξj,ξ
= 0, for j = 1, 2, ..., Nη

w
i1 = w

iNη
= 0, for i = 1, 2, ..., Nξ;

w
i1,η

= w
iNη,η

= 0, for i = 1, 2, ..., Nξ

(2.105)
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In the above equation, Nξ and Nη are the numbers of level of the Lagrange
family grid in ξ and η directions, respectively.

The Lagrange family grid is designed to have a form that at the dis-
crete points the Chebyshev polynomials in both ξ and η directions are zeros.
These Chebyshev sampling points are defined by ξi |ᾱ= −cos

(
π(ᾱ−1)
Nξi

−1

)
, ᾱ =

1, ..., Nξi
. Numerical results of the center displacements for the uniformly

loaded plate are listed in Table 2.4. The ordinary finite difference method
(FDM) and finite element method (FEM) Adini-Clough-Melosh element solu-
tions are also included in the table. It shows that the current results converge
fast by gradually increasing the Chebyshev sampling points. The Chebyshev
EDQ needs much less degrees of freedom (DOF) than the FEM and FDM to
converge.

Table 2.4. Results of the Chebyshev EDQ analysis of the uniformly loaded plate

Method Mesh type DOF π6Dw/(16qa4)

EDQ 5×5 9 .7707×10−1

7×7 25 .7603×10−1

9×9 49 .7603×10−1

FEM 8×8 108 .7833×10−1

12×12 300 .7710×10−1

16×16 588 .7661×10−1

FDM 21×21 361 .7766×10−1

31×31 841 .7676×10−1

41×41 1521 .7642×10−1

Exact solution .7603×10−1

2.7 Generation of EDQ Using DQ

Some EDQ models can be generated by using DQ through the establishment
of a transformation relation between the set of discrete function variables
πα of the equivalent DQ element and the set of discrete EDQ parameters
π̃α [54–56]. The weighting coefficients of these EDQ models are calculated by
using the related transformation matrices and the weighting coefficients of the
equivalent DQ model. For illustration, the C1 − C0 − C1 and C2 − C0 − C2

EDQ models used to the spacial discretization of DQEM analysis, and the
C1 −C0 EDQ model used to the temporal discretization of EDQ based direct
time integration methods for structural dynamic problems are introduced.
Cm represents that the node has the DOF of the function variable and its
derivatives up to the mth order.
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2.7.1 C1 − C0 − C1 EDQ Model

Consider the C1 −C0 −C1 EDQ model with each of the two boundary nodes
having two DOF of the function variable and its first order derivative, and
each of the interior nodes having only one DOF of the function variable. This
EDQ model is compatible and conformable, and can automatically set the
kinematic transition conditions on the inter-element boundary of two adjacent
elements and the kinematic boundary conditions for the DQEM analysis of
flexural deformation problems of structures.

Let D̄ξm

αi denote the weighting coefficients for the equivalent DQ model
defined on the natural space which is a C0 − C0 − C0 DQ model. For the
DQEM analysis of flexural deformation problems of structures using the DQ
model, the DOF assigned to the first two and last two nodes are used to define
either the transition conditions at the inter-element boundary of two adjacent
real physical elements or boundary conditions at the real physical domain
boundary. One of the two nodes at or next to one boundary node of the
equivalent DQ element is at the inter-element boundary of two real physical
elements used to separate the analysis domain or at the real physical domain
boundary, while the other one can be either outside or inside the real physical
elements, and next to the element boundary of the real physical element. If
the two extra nodes are inside the real physical element, the equivalent DQ
element coincide with the real physical element. If the two extra nodes are
outside the real physical element, the equivalent DQ element extends over
the two element boundary points of the real physical element. Consequently,
for the DQEM analysis of flexural deformation problems using DQ elements,
the two adjacent equivalent DQ elements are overlapped partially and the
equivalent DQ element containing the domain boundary is extended over the
physical domain boundary.

Let N̂ denote the number of the two boundary nodes of the C1 −C0 −C1

EDQ element plus the other N̄ − 4 interior nodes with N̄ = N . Also let l̄ and
l denote the physical element lengths of the equivalent physical DQ element
and the physical C1−C0−C1 EDQ element. l̄ equals l for the transformation
model with the physical EDQ element coinciding the physical DQ element,
while l̄ is larger than l for the transformation model with the two extra nodes
of the equivalent physical DQ element outside the physical EDQ element.

For the DQEM analysis of flexural deformation problems using EDQ ele-
ments, the DOF assigned to an auxiliary node of the equivalent DQ element
can be transformed to obtain one rotational DOF assigned to the related ele-
ment boundary node of the EDQ element. Figure 2.1 shows the C1 −C0 −C1

EDQ model generated by using the equivalent DQ model with the two aux-
iliary nodes inside the physical EDQ element. Assume that ξ is a natural
coordinate having one unit length for both the C1−C0−C1 EDQ model and
the equivalent DQ model defined on the natural space. The transformation
relation between the C1 −C0 −C1 EDQ model and the equivalent DQ model
can be represented by the following equation
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Fig. 2.1. C1 − C0 − C1 EDQ model generated by using the equivalent DQ model
with two auxiliary nodes inside the physical EDQ model.

{π̃} = [T ]{π} (2.106)

where
{π} = �π1 π2 π3 ... π

N−2 π
N−1 π

N �T , (2.107)

For this transformation, {π̃} and [T ] in Eq. (2.106) are expressed by

{π̃} = �π1
dπ1
dξ π3 ... π

N−2 π
N

dπ
N

dξ
�T , (2.108)

and

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ... 0 0 0
D̄ξ

11 D̄ξ
12 D̄ξ

13
... D̄ξ

1(N−2) D̄ξ
1(N−1) D̄ξ

1N

0 0 1 ... 0 0 0
. . . ... . . .
. . . ... . . .
. . . ... . . .
0 0 0 ... 1 0 0
0 0 0 ... 0 0 1

D̄ξ
N1 D̄ξ

N2 D̄ξ
N3

... D̄ξ
N(N−2) D̄ξ

N(N−1) D̄ξ
NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.109)

Figure 2.2 shows the C1−C0−C1 EDQ model generated by using the equiva-
lent DQ model with the two auxiliary nodes outside the physical EDQ element.
For this transformation, {π̃} and [T ] in Eq. (2.106) are expressed by

{π̃} = �π2
dπ2
dξ π3 ... π

N−2 π
N−1

dπ
N−1
dξ

�T , (2.110)

and
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Fig. 2.2. C1 − C0 − C1 EDQ model generated by using the equivalent DQ model
with two auxiliary nodes outside the physical EDQ model.

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ... 0 0 0
D̄ξ

21 D̄ξ
22 D̄ξ

23
... D̄ξ

2(N−2) D̄ξ
2(N−1) D̄ξ

2N

0 0 1 ... 0 0 0
. . . ... . . .
. . . ... . . .
. . . ... . . .
0 0 0 ... 1 0 0
0 0 0 ... 0 1 0

D̄ξ
(N−1)1 D̄ξ

(N−1)2 D̄ξ
(N−1)3

... D̄ξ
(N−1)(N−2) D̄ξ

(N−1)(N−1) D̄ξ
(N−1)N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.111)

Assume that Dξm

αi are weighting coefficients for the C1 −C0 −C1 EDQ model
defined on the natural space. By using the fact that the derivatives with
respect to the local element based physical coordinates at the N̂ grid nodes
are the same for both the C1 − C0 − C1 EDQ model and the DQ model, the
following relation can be obtained

D̄ξm

αi πi = Dξm

αi π̃i, α = 1, 2, ..., N̂ ; i = 1, 2, ..., N̄ (2.112)

The introduction of Eq. (2.106) into the above equation leads to the following
transformation equation for calculating the weighting coefficients for the C1−
C0 − C1 EDQ model

Dξm

αi = D̄ξm

αj T−1
ji , α = 1, 2, ..., N̂ ; i = 1, 2, ..., N̄ (2.113)

Dξm

αi is a N̂ × N̄ matrix with N̂ = N̄ −2. For applying the C1−C0−C1 EDQ
model to the DQEM analysis, the physical first order derivatives at the two
EDQ element boundary nodes are discrete EDQ parameters. Consequently,
the elements of the second and last columns of the related EDQ weighting
coefficient matrix Dξm

αi need to be multiplied by l.
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2.7.2 C2 − C0 − C2 EDQ Model

Consider the C2 −C0 −C2 EDQ model with each of the two boundary nodes
having three DOF of the function variable and its first and second order
derivatives, and each of the interior nodes having only one DOF of the func-
tion variable. This EDQ model can automatically set the kinematic transition
conditions and the continuity of the second order derivatives of displacements
on the inter-element boundary of two adjacent elements and the kinematic
boundary conditions and the bending moment related natural boundary con-
dition for the DQEM analysis of flexural deformation problems of structures.

To obtain the C2 − C0 − C2 EDQ model, two DOF of two nodes of the
equivalent DQ model close to a boundary node of the physical C2 −C0 −C2

EDQ model have to be transformed to the two DOF representing the first
order and second order derivatives at the related EDQ element boundary node.
These two nodes can be either inside or outside the physical C2 − C0 − C2

EDQ model. For illustration, the one of transforming the four DOF of four
equivalent physical DQ nodes inside the related physical C2 −C0 −C2 EDQ
model is introduced. Figure 2.3 shows the C2−C0−C2 EDQ model generated
by using the equivalent DQ model with the four auxiliary nodes inside the
physical EDQ element. The transformation relation between the C2−C0−C2

EDQ model and the equivalent DQ model is also represented by Eq. (2.106)
with

{π̃} = �π1
dπ1
dξ

d2π1
dξ2 π4 ... π

N−3 π
N

dπ
N

dξ

d2π
N

dξ2 �T , (2.114)

and

[T ]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 ... 0 0 0 0
D̄ξ

11 D̄ξ
12 D̄ξ

13 D̄ξ
14

... D̄ξ
1(N−3) D̄ξ

1(N−2) D̄ξ
1(N−1) D̄ξ

1N

D̄ξ2

11 D̄ξ2

12 D̄ξ2

13 D̄ξ2

14
... D̄ξ2

1(N−3) D̄ξ2

1(N−2) D̄ξ2

1(N−1) D̄ξ2

1N

0 0 0 1 ... 0 0 0 0
. . . . ... . . . .
. . . . ... . . . .
. . . . ... . . . .
0 0 0 0 ... 1 0 0 0
0 0 0 0 ... 0 0 0 1

D̄ξ
N1 D̄ξ

N2 D̄ξ
N3 D̄ξ

N4
... D̄ξ

N(N−3) D̄ξ
N(N−2) D̄ξ

N(N−1) D̄ξ
NN

D̄ξ2

N1 D̄ξ2

N2 D̄ξ2

N3 D̄ξ2

N4
... D̄ξ2

N(N−3) D̄ξ2

N(N−2) D̄ξ2

N(N−1) D̄ξ2

NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.115)

Using [T ] in Eq. (2.113), the weighting coefficients for the C2 − C0 −
C2 EDQ model can be obtained with N̂ = N̄ − 4. For applying the C2 −
C0 − C2 EDQ model to the DQEM analysis, the physical first and second
order derivatives at the two EDQ element boundary nodes are discrete EDQ
parameters. Consequently, the elements of the second and (N̄ − 1)th columns
of the related EDQ weighting coefficient matrix Dξm

αi need to be multiplied by
l, and the elements of the third and last columns need to be multiplied by l2.
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Fig. 2.3. C2 − C0 − C2 EDQ model generated by using the equivalent DQ model
with four auxiliary nodes inside the physical EDQ model.

2.7.3 C1 − C0 EDQ Model

Consider the C1 −C0 EDQ model with the first node having two DOF of the
function variable and its first derivative, and each of the other nodes having
only one DOF of the function variable. This EDQ model can automatically set
the initial conditions of each integration step for the EDQ based step-by-step
direct time integration method for solving transient structural problems.

To obtain the C1−C0 EDQ model, one DOF of one node of the equivalent
physical DQ model close to the first node of the related physical EDQ model
have to be transformed to the DOF representing the first order derivative at
the first node of the physical C1 − C0 EDQ model. This node can be either
inside or outside the physical C1 −C0 EDQ element. For illustration, the one
of transforming the DOF of one node of the equivalent physical DQ model
outside the physical C1 −C0 EDQ model is introduced. Figure 2.4 shows the
C1−C0 EDQ model generated by using the equivalent DQ model with the one
auxiliary node outside the physical EDQ element. The transformation relation
between the C1 − C0 EDQ model and the DQ model is also represented by
Eq. (2.106) with

{π̃} = �π2
dπ2
dξ π3 ... π

N−1 π
N �T , (2.116)

Fig. 2.4. C1 − C0 EDQ model generated by using the equivalent DQ model with
one auxiliary node inside the physical EDQ model.
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and

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ... 0 0
D̄ξ

21 D̄ξ
22 D̄ξ

23
... D̄ξ

2(N−1) D̄ξ
2N

0 0 1 ... 0 0
. . . ... . .
. . . ... . .
. . . ... . .
0 0 0 ... 1 0
0 0 0 ... 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.117)

Using [T ] in Eq. (2.113), the weighting coefficients for the C1−C0 EDQ model
can be obtained with N̂ = N̄ − 1. For applying the C1 − C0 EDQ model to
the transient structural analysis, the physical first order derivative at the first
EDQ element boundary node is a discrete EDQ parameter. Consequently, the
elements of the second column of the related EDQ weighting coefficient matrix
Dξm

αi need to be multiplied by l.

Table 2.5 The first four frequency factors of a clamped square plate solved by the
DQEM using the C1 − C0 − C1 EDQ model generated by using the equivalent DQ

model with two auxiliary nodes inside the physical EDQ model

Order of C1 C2 C3 C4

appr.

6 .368344×102 .650341×102 .650341×102 .901151×102

8 .360286×102 .796985×102 .796985×102

10 .359929×102 .730596×102 .730596×102 .105345×103

Leissa’s sol. .35992×102 .73413×102 .73413×102 .10827×103

Table 2.6 The first four frequency factors of a clamped square plate solved by the
DQEM using the C1 − C0 − C1 EDQ model generated by using the equivalent DQ

model with two auxiliary nodes outside the physical EDQ model

Order of C1 C2 C3 C4

appr.

4 .3475629×102

6 .3630833×102 .7160144×102 .7160144×102 .1022950×103

8 .3600669×102 .7433538×102 .7433538×102 .1097962×103

10 .3599020×102 .7335022×102 .7335022×102 .1082930×103

Leissa’s sol. .35992×102 .73413×102 .73413×102 .10827×103
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The free vibration of the clamped square plate was analyzed by using one
DQEM element. The problem was solved by using the C1 − C0 − C1 EDQ
model generated by using both of the equivalent Lagrange DQ models with
equally spaced nodes and with the two auxiliary nodes inside and outside the
physical EDQ model. Let a, δ, D and ρ denote the edge length, thickness,
flexural rigidity and mass density of a square plate. Also let the natural fre-
quency ωn of the nth vibration mode be expressed by ωn = Cn

a2

√
D
ρδ with

Cn the frequency factor. The first four frequency factors obtained by the two
DQEM models are listed in Tables 2.5 and 2.6, separately. They are compared
with the results obtained by Leissa [57].



3

DQEM Analysis of One-Dimensional
Elasticity Problems

This chapter introduces the DQEM analysis procedures to the solution of
static deformation and vibration of nonprismatic bar structures. The mapping
technique is adopted. Consequently, the computation of weighting coefficients
for every element is not necessary. DQ is used to carry out the element basis
discretization.

A direct assemblage procedure of assembling discrete governing equations
defined at interior discrete points of an element, and discrete element bound-
ary forces, expressed by elementary displacement parameters for establishing
the natural transition condition on the inter-element boundary of two adjacent
elements or natural boundary condition on the natural boundary, are directly
assembled to the overall algebraic equation system based on an element by
element procedure. Consequently, an element basis explicit element stiffness
equation is not necessary to be formed for each element.

The solution strategies and implementation of DQEM computer program
are also introduced.

3.1 Static Deformation of Bars

The governing differential equilibrium equation of one-dimensional elasticity
problems is

d

dx

(
EA

du

dx

)
= −f (3.1)

where u is axial displacement, E is Young’s modulus, A is the area of cross
section and f is the distributed axial force. Let L denote the length of the bar.
The boundary conditions at the natural boundary xσ and kinetic boundary
xu of domain 0 ≤ x ≤ L are

EA
du

dx
|x=xσ

= P̄ |x=xσ
(3.2)

and
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u |x=xu
= ū |x=xu

(3.3)

where ū is the prescribed displacement and P̄ is the concentrated boundary
load.

3.1.1 DQEM Formulation

The governing differential equilibrium equation and boundary conditions are
defined on the physical coordinate system, while the differential quadrature
discretization is carried out on the natural coordinate system. Therefore, in
using the differential quadrature technique to discretize the governing dif-
ferential equilibrium equation and boundary conditions, the transformation
operations of coordinates and derivatives of displacement between two differ-
ent coordinate systems have to be carried out. Figure 3.1 shows the mapping

Fig. 3.1. Mapping of element configuration

of a parent element onto a physical element. The physical coordinate xe can
be written as:

xe = (0.5 − ξ)xe
1 + (0.5 + ξ)xe

N e (3.4)

where xe
1 and xe

N e are the coordinates of first node and Neth node, respec-
tively, of a Ne-node element and ξ the natural coordinate. It should be noted
that the range of the parent element is −0.5 ≤ ξ ≤ 0.5. Using Eq. (3.4), the
differential of xe can be expressed as:

dxe = (xe
N e − xe

1)dξ = Jedξ (3.5)

where Je = xe
N e − xe

1 = le is the Jacobian and le is the length of the element.
From the above equation, the following relation can be obtained

dξ

dxe
=

1
Je

=
1

xe
N e − xe

1

(3.6)
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Then the first and second order derivatives of element displacement ue with
respect to xe can be written as:

due

dxe
=

1
Je

due

dξ
(3.7)

and
d2ue

d(xe)2
=

1
(Je)2

d2ue

dξ2
(3.8)

The DQ model which only uses the displacements at element nodes to define
the discretization of the first and second order derivatives of element displace-
ment ue with respect to the local coordinate xe at node points is adopted.

The equilibrium conditions of interior node points of all elements are used
in constructing a discrete algebraic system for a problem. For elements having
no distributed load, the number of nodes can be 2. Since Eq. (3.1) is a second
order differential equation, without using a certain technique to calculate the
two equivalent nodal loads for the distributed load of a two-node linear element
and include them into the natural transition conditions or natural boundary
conditions, the order of approximate displacement must at least be two and
the element must at least have one node point at which the discrete element
equilibrium equation is defined. The DQEM linear element is equivalent to
the FEM linear element. For elements having a distributed load, the number
of nodes must be larger than 2 in order to get an efficient convergence. The
discrete element equilibrium equation at a node point α in an element e can
be expressed as

1
(Je)2

⎡
⎣d(EA)e

(α)

dξ

Ne∑
β=1

Deξ
αβ +(EA)e

(α)

Ne∑
β=1

Deξ2

αβ

⎤
⎦ue

β =−fe
α,

α = 2, 3, ..., Ne − 1 (3.9)

where Deξm

αβ are weighting coefficients for the mth order derivative with respect
to ξ. In the above equation, the derivative of axial rigidity at the related
node points can also be calculated by the DQ. It is especially useful if the
distribution of EA is not continuously differentiable up to the order of its
derivative. The values of EA at the Ne element nodes are used to define the
DQ discretization of the derivative. Then the derivative of EA at a node α
can be expressed by

d(EA)e
α

dξ
=

Ne∑
p=1

Deξ
αp(EA)e

p (3.10)

The internal axial stresses at node points in the element can be expressed
by using the displacements

σe
α =

Ee

Je

Ne∑
β=1

Deξ
αβue

β (3.11)
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Fig. 3.2. Equilibrium of forces at the inter-element boundary

The transition conditions of two adjacent elements are the continuity of
displacements and the equilibrium of axial forces at the inter-element bound-
ary. At the inter-element boundary of two adjacent elements i and i + 1, the
condition of displacement continuity is expressed as:

ui
Ni = ui+1

1 (3.12)

Let P i,i+1 denote the concentrated axial force applied at the inter-element
boundary x = xi,i+1. The condition of force equilibrium can be established
by referring to Fig. 3.2

P i
Ni − P i+1

1 = P i,i+1 (3.13)

or

(EA)i
Ni

dui
Ni

dxi
− (EA)i+1

1

dui+1
1

dxi+1
= P i,i+1 (3.14)

The above equation can be discretized by using Eq. (3.7) and the DQ

(EA)i
Ni

J i

Ni∑
α=1

Diξ

Niα
ui

α − (EA)i+1
1

J i+1

Ni+1∑
β=1

D
(i+1)ξ
1β ui+1

β = P i,i+1 (3.15)

Letting element n be an element having one or more nodes on the natural
boundary, the natural boundary condition represented by Eq. (3.2) can be
discretized which shows to have the following form:

(EA)n
In

Jn

Nn∑
β=1

Dnξ
Inβun

β = P̄ |x=xσ
, In = 1 or = Nn (3.16)

Also letting element m be an element having one or more nodes on the kine-
matic boundary, the discrete description of Eq. (3.3) is

um
Im = ū |x=xu

, Im = 1 or Nm (3.17)

3.1.2 Assemblage and Solution

Keeping the kinematic transition conditions (3.12) in mind, assembling the
discrete element equilibrium equations (3.9) for elements having more than
two nodes, the discrete natural transition conditions (3.15), and the discrete
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natural boundary conditions (3.16) for the boundary elements with natural
boundary, an overall discrete equilibrium/transition/boundary equation can
be obtained. It is the overall stiffness equation of the DQEM. This stiffness
equation is expressed by

[K]{D} = {R} (3.18)

where [K] is the overall stiffness matrix, {D} is the overall displacement vector
and {R} is the overall load vector. Considering the discrete kinematic bound-
ary condition (3.17) and using a certain solver, the overall linear algebraic
system can be solved to obtain displacements at all node points.

Like FEM, the assemblage is based on an element by element procedure.
When assembling the discrete equations of element e, the discrete element
equilibrium equations (3.9) and the two discrete element boundary forces, ex-
pressed by displacements, at the two element boundary nodes are directly as-
sembled into the overall discrete equation system. This direct assembling pro-
cedure can reduce the computer costs required for the preprocessing phases.
Consequently, an element basis explicit matrix equation, containing the dis-
crete element equilibrium equations and the discrete element boundary forces
placed at the first and last rows, is not necessary to be formed in the as-
sembling process. This element basis explicit matrix equation is an element
stiffness equation. Using Eqs. (3.9) and (3.11), this equation can be expressed
by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− (EA)e

Je Deξ
11

1
(Je)2

[
d(EA)e

2
dξ Deξ

21+(EA)e
2D

eξ2

21

]
.
.
.

1
(Je)2

[
d(EA)e

(Ne−1)

dξ Deξ
(Ne−1)1+(EA)e

(Ne−1)D
eξ2

(Ne−1)1

]
(EA)e

Je Deξ
Ne1

− (EA)e

Je Deξ
12 ...

1
(Je)2

[
d(EA)e

2
dξ Deξ

22+(EA)e
2D

eξ2

22

]
...

. ...

. ...

. ...
1

(Je)2

[
d(EA)e

(Ne−1)

dξ Deξ
(Ne−1)2+(EA)e

(Ne−1)D
eξ2

(Ne−1)2

]
...

(EA)e

Je Deξ
Ne2 ...
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− (EA)e

Je Deξ
1(Ne−1)

1
(Je)2

[
d(EA)e

2
dξ Deξ

2(Ne−1)+(EA)e
2D

eξ2

2(Ne−1)

]
.
.
.

1
(Je)2

[
d(EA)e

(Ne−1)

dξ Deξ
(Ne−1)(Ne−1)+(EA)e

(Ne−1)D
eξ2

(Ne−1)(Ne−1)

]
(EA)e

Je Deξ
Ne(Ne−1)

− (EA)e

Je Deξ
1Ne

1
(Je)2

[
d(EA)e

2
dξ Deξ

2Ne +(EA)e
2D

eξ2

2Ne

]
.
.
.

1
(Je)2

[
d(EA)e

(Ne−1)

dξ Deξ
(Ne−1)Ne +(EA)e

(Ne−1)D
eξ2

(Ne−1)Ne

]
(EA)e

Je Deξ
NeNe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue
1

ue
2

.

.

.
ue

Ne−1

ue
Ne

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(Aσ)e
1

−fe
2

.

.

.
−fe

Ne−1

(Aσ)e
Ne

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

or
[ke]{δe} = {re} (3.20)

where [ke] is a Ne × Ne element stiffness matrix,

{δe} = � ue
1 ue

2 . . . ue
Ne−1 ue

Ne �T (3.21)

is the element displacement vector, and

{re} = � −(Aσ)e
1 −fe

2 ... −fe
Ne−1 (Aσ)e

Ne �T (3.22)

is the element load vector. As Eq. (3.20) contains discrete resultant forces at
the two element boundary nodes, equilibriums of resultant forces and external
forces at the inter-element boundary of two adjacent elements and the natural
boundary are exactly satisfied. Consequently, the DQEM is different from
FEM which needs to form the element stiffness equation, and which neglects
the exact equilibriums.

Equation (3.18) can be partitioned into the following form:
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[K11] [K12]
[K21] [K22]

]{{D1}
{D2}

}
=
{{R1}
{R2}

}
(3.23)

where {D1} is the column vector consisting of all unknown displacements
at the nodes with {R1} the related load vector, {D2} is the column vector
consisting of all prescribed nodal displacements with {R2} the related column
vector consisting of all reaction forces. From the upper part of Eq. (3.23), the
unknown displacements can be obtained by solving the following equation

[K11] {D1} = {R1} − [K12] {D2} (3.24)

The reaction forces can then be computed by using the lower part of Eq.
(3.23)

{R2} = [K21] {D1} + [K22] {D2} (3.25)

3.1.3 Implementation of DQEM Computer Program

When implementing the DQEM analysis program, it is necessary to consider
the effective use of computer memory units and computational efficiency. The
overall stiffness matrix in the overall stiffness equation is sparse. Consequently,
various techniques considering the sparseness can be incorporated into the
solver to minimize the computer memory requirements, number of arithmeti-
cal operations and round off error [58–61]. Many of the developed compact
storage techniques can be used to the DQEM analysis.

The linear equation systems existing in the DQEM analysis can be solved
by using a certain direct or iterative solver. The most commonly used direct
solvers are Gauss elimination, Cholesky decomposition and frontal method.
Various techniques including various pivotal strategies, sparse implementa-
tion strategies, the domain decomposition and the parallel implementation
can be considered in implementing an efficient direct solution procedure into
a computer program [62–72, 82]. There are also many iterative solvers that
can be used to solve a linear equation system [73–75]. Among the indirect
solvers the preconditioned conjugate gradient (PCG) methods are very at-
tractive [76–79]. In solving large linear equation systems, the PCG methods
can offer promising performances due to the substantial reductions in com-
puter memory requirements and the function of taking the advantage of vector
and parallel processing strategies on computers that support these features
[80]. The iterative solvers possess a relatively high degree of natural concur-
rency, with the predominant operations in PCG algorithms being saxpy op-
erations, inner products and matrix-vector multiplications. Among the PCG
algorithms, the stabilized and accelerated version of the biconjugate gradient
method, which is an extension of the conjugate gradient method, is one of
the most commonly used iterative solvers. There is also a predictor-corrector
iteration procedure which cab be used to efficiently solve equation systems
[84]. It is an explicit iteration procedure in the nonlinear iteration. Instead of
using an assembled overall equivalent stiffness matrix, this method only uses
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the diagonal elements of the overall stiffness matrix to predict the incremental
displacement vector in carrying out the iterative solution. Consequently, only
the diagonal elements of the element equivalent stiffness matrices are needed
to be calculated. Thus the computer memory requirement can be minimized.

The adoption of techniques for reducing computer memory requirements
and the use of vector and parallel processing strategies on computers that
support these features can raise the performance of the computer program
[81–83]. When implementing the DQEM analysis program, various phases in-
cluding preprocessing, calculation of elemental discrete equations, incorpora-
tion of boundary conditions, solution of system equations and postprocessing
can be parallelized. However, the assembly of elemental discrete equations
cannot take the advantage of parallel operation efficiently.

3.1.4 Problems

Figure 3.3 shows a bar subjected to a quartically distributed force. In the
analysis, Lagrange DQ model with equally spaced nodes is used. The elements
are also equally spaced. Numerical results of displacement at the free end
and axial stress at the fixed end are summarized and listed in Table 3.1. It
shows that the results can converge fast to exact solutions by either increasing
the number of elements or the nodes per element. It also shows that the
convergence performs better by increasing the nodes per element.

Fig. 3.3. A bar subjected to a quartically distributed force

3.2 Free Vibration of Bars

Let ω and ρ denote the natural frequency and mass density, respectively. By
using U to replace u and represent the modal displacement of the vibration,
and the inertia force ρAω2u to replace the distributed external load in the
static equilibrium equation, the governing differential eigenvalue equation of
free vibration of bars can be expressed by

d

dx

(
EA

dU

dx

)
+ ρAω2U = 0 (3.26)
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Table 3.1. Convergence of the numerical results of a bar subjected to a
quartically distributed force

Nodes per Number of Displacement Stress

element elements at end b at end a

3 1 .20000×101 .20000×101

2 .76250×101 .51250×101

4 .98516×101 .60703×101

8 .10459×102 .63169×101

5 1 .95000×101 .61667×101

2 .10594×102 .63854×101

4 .10662×102 .63991×101

8 .10666×102 .63999×101

7 1 .10067×102 .64000×101

2 .10067×102 .64000×101

Exact solution .10067×102 .64000×101

Assume that a concentrated mass M̃n is attached to the natural boundary.
By using the inertia force M̃nω2Un to replace the concentrated external load
applied to the natural boundary, the natural boundary conditions can be
expressed as

EA
dU

dx
− νnM̃ω2U = 0 (3.27)

where νn equals 1 for the right boundary and equals -1 for the left boundary.

3.2.1 DQEM Formulation

For better convergence, the element nodes must be more than two with the
extra nodes used to define discrete element eigenvalue equations at the related
locations. The differential eigenvalue equation at a node point α in an element
e can be discretized by using the DQ

1
(Je)2

⎡
⎣d(EA)e

(α)

dξ

Ne∑
β=1

Deξ
αβ + (EA)e

(α)

Ne∑
β=1

Deξ2

αβ

⎤
⎦Ue

β + (ρA)e
(α)ω

2Ue
α = 0,

α = 2, 3, ..., Ne − 1 (3.28)

The internal axial stresses at node points in the element can be expressed
by using the modal displacement Ue

β to replace ue
β in Eq. (3.11). Assume

that a concentrated mass M̃ i,i+1 is attached to the inter-element boundary of
two adjacent element i and i+1. By using the inertia force ω2M̃ i,i+1U i,i+1 to
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replace the externally applied load P i,i+1 in Eq. (3.13), the following dynamic
equilibrium condition at the inter-element boundary can be obtained[

(EA)i
Ni

dU i
Ni

dxi
− (EA)i+1

1

dU i+1
1

dxi+1

]
− M̃ i,i+1ω2U i,i+1 = 0 (3.29)

The above equation can be discretized by using DQ

(EA)i
Ni

J i

Ni∑
α=1

Diξ
N iα

U i
α−

(EA)i+1
1

J i+1

Ni+1∑
β=1

D
(i+1)ξ
1β U i+1

β −M̃ i,i+1ω2U i
Ni = 0 (3.30)

The natural boundary condition represented by Eq. (3.27) can also be
discretized which shows to have the following form:

(EA)n
In

Jn

Nn∑
β=1

Dnξ
InβUn

β − νnM̃ω2Un
In = 0, In = 1or Nn (3.31)

3.2.2 Assemblage and Solution

Keeping the kinematic transition condition (3.12) in mind, assembling the
discrete element eigenvalue equations (3.28) for all elements, the discrete nat-
ural transition conditions (3.30), and the discrete natural boundary conditions
(3.31), the overall discrete eigenvalue equation system can be obtained. Con-
sidering the discrete kinematic boundary condition (3.17), the overall discrete
eigenvalue equation system can be expressed as(

[K] − ω2 [M ]
) {D̃} = {0} (3.32)

where [K] is the overall stiffness matrix, [M ] the overall mass matrix and
{D̃} the overall modal displacement vector. [K] is a sparse matrix. [M ] is
a diagonal matrix with zeros appearing on-diagonal. The overall eigenvalue
system is positive semidefinite.

Like FEM, the assemblage is based on an element by element procedure.
When assembling the discrete equations of element e, the discrete element
eigenvalue equations (3.28), and the two discrete element boundary forces of
axial forces, expressed by modal displacements, at the two element bound-
ary nodes are directly assembled into the overall discrete eigenvalue equation
system. Consequently, an element basis explicit matrix equation, containing
the discrete element eigenvalue equations and the discrete element boundary
forces placed at the first and last rows, is not necessary to be formed in the
assembling process. This element basis explicit matrix equation is an element
eigenvalue equation which can be expressed by

([k̂e] − ω2[m̂e]){ϑe} = {0} (3.33)
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where [k̂e] and [m̂e] are Ne × Ne local element stiffness matrix and Local
element mass matrix, respectively, and

{ϑe} = � Ue
1 Ue

2 ... Ue
Ne−1 Ue

Ne �T (3.34)

is the local element modal displacement vector. As Eq. (3.33) contains dis-
crete resultant forces at the two element boundary nodes, equilibriums of
resultant forces and inertia forces at the inter-element boundary of two adja-
cent elements and the natural boundary are exactly satisfied in the assembling
process. Consequently, the DQEM is different from FEM which needs to form
the element eigenvalue equation, and which neglects the exact equilibriums.

3.2.3 Solution of Discrete Eigenvalue System

Equation (3.32) is a generalized eigenvalue problem with infinite frequencies
existing. Premultiplication of equation (3.32) by [K]−1 leads to

([A] − λ [I]) {D̃} = {0} (3.35)

where [A] = [K]−1 [M ] and λ = 1
ω2 . Equation (3.35) can be solved by using

either an exact solution technique or an approximate solution technique. If the
order of the eigenvalue system is large, the approximation algorithms which
calculate the eigenpairs in descending order can reduce the expense.

Some DOF can be condensed before solving Eq. (3.32). If no mass is at-
tached to an inter-element boundary or natural boundary, the related modal
displacement can also be condensed. This condensation technique is espe-
cially useful for solving the eigenvalue problem of vibration of Timoshenko
beam structures by neglecting the rotary effect. The condensation treatment
can reduce the size of eigenvalue system and CPU time required, drastically,
with the sample solutions can be seen in Chapter 8. Considering the nonex-
istence of inertia forces for some component equations existing in Eq. (3.32),
the equation can be rewritten as([

[Kaa] [Kab]
[Kba] [Kbb]

]
− ω2

[
[Maa] [0]

[0] [0]

]){{D̃a}
{D̃b}

}
=
{ {0}
{0}

}
(3.36)

with [Maa] a diagonal matrix without zeros appearing on-diagonal. From the
lower part of Eq. (3.36), the following relation can be obtained

{D̃b} = − [Kbb]
−1 [Kba] {D̃a} (3.37)

The substitution of Eq. (3.37) into the upper part of Eq. (3.36) yields([
K̄aa

]− ω2 [Maa]
) {D̃a} = {0} (3.38)

where [
K̄aa

]
= [Kaa] + [Kab] [Kbb]

−1 [Kba] (3.39)
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Equation (3.38) can be treated and solved by the same procedure that trans-
fers Eq. (3.32) into Eq. (3.35). It can also be solved by adopting the advantage
of the diagonality of [Maa]. Defining [Maa] = [L]2 and {D̃a} = [L]−1 {Y }, sub-
stituting them into Eq. (3.38), and then premultiplying the resulting matrix
equation by [L]−1, the following eigenvalue problem can be obtained(

[H] − ω2 [I]
) {Y } = {0} (3.40)

where [H] = [L]−1 [
K̄aa

]
[L]−1. For economically solving a large eigenvalue

problem, the approximation algorithms which calculate the eigenpairs in as-
cending order can be used.

In addition to the above condensation procedure, the efficiency of solving
an eigenvalue system resulting from a DQEM problem can be improved, fur-
ther, by considering the sparseness and partial extraction, and by adopting
various existing numerical techniques [85–93].

3.2.4 Problems

In the analysis, Young’s modulus E, mass density ρ, area of cross section A
and length of bar L are all equal to 1. The number of nodes is the same for
all elements. The elements and nodes are equally spaced.

The free vibration of a fixed-free bar was solved. The natural frequencies
obtained are listed in Table 3.2. They are compared with exact solutions [94].
It shows that the numerical results converge very fast by increasing either the

Table 3.2. Convergence of the first five natural frequencies of a fixed-free bar

DOF per Number of

element elements ω1 ω2 ω3 ω4 ω5

3 2 1.59005 4.88105

4 1.57579 4.83313 8.22315 10.8910

6 1.57303 4.77016 8.09335 11.5003 14.6432

8 1.57205 4.74560 7.99985 11.3571 14.7698

5 2 1.57053 4.65492 7.44257 9.71602 12.0789

4 1.57078 4.70839 7.80585 10.7509 13.6306

6 1.57079 4.71158 7.84390 10.9437 13.9647

8 1.57080 4.71213 7.85073 10.9785 14.0792

7 2 1.57080 4.71418 7.90301 11.3440 14.8300

4 1.57080 4.71242 7.85505 11.0055 14.1882

6 1.57080 4.71239 7.85399 10.9961 14.1419

8 1.57080 4.71239 7.85399 10.9957 14.1379

Exact solution 1.57080 4.71239 7.85398 10.9956 14.1372
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Table 3.3. Convergence of the first three natural frequencies of a fixed-free bar
with a concentrated mass attached to the free end

DOF per Number of

element elements ω1 ω2 ω3

5 2 0.86237 3.54315 6.91639

4 0.86059 3.44639 6.53406

7 2 0.86109 3.47654 6.60278

4 0.86044 3.43372 6.48289

6 0.86035 3.42814 6.45321

Exact solution 0.8602 3.4267 6.4373

number of elements or nodes per element. The problem is resolved by attaching
a concentrated mass M = 1 to the free end. The natural frequencies obtained
are listed in Table 3.3. They are compared with exact solutions [94]. It also
shows that the convergence of numerical results is excellent.



4

DQEM Analysis of Euler-Bernoulli
Beam Structures

Slender beam member is widely used in designing an engineering structure.
Euler-Bernoulli beam theory describes the deformation behaviors of slender
beam. In this chapter, the DQEM analysis models of static deflection, vibra-
tion and buckling of Euler-Bernoulli beam structures are introduced. Various
EDQ models or DQ model can be used to carry out the element basis dis-
cretization.

4.1 Static Deflection of Euler-Bernoulli Beam

For reference in the sequel and for establishing notation, the equations of a
nonprismatic Euler-Bernoulli beam resting on a Winkler elastic foundation
are first summarized. Referring to Fig. 4.1, a x-z Cartesian coordinate system
with x-axis coincident with the beam’s neutral axis is used to describe the
problem. The governing differential equilibrium equation is

Fig. 4.1. Euler-Bernoulli beam on a Winkler foundation
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d2

dx2

(
EI

d2w

dx2

)
+ kw = −p (4.1)

where w is the transverse displacement, E is Young’s modulus, I is the moment
of inertia of the cross-sectional area, p is the distributed load and k is the
foundation modulus. The stress resultants of bending moment and shear force
are

M = EI
d2w

dx2
(4.2)

and

V =
d

dx

(
EI

d2w

dx2

)
, (4.3)

respectively.

4.1.1 DQEM Formulation

For elements having no distributed load, the DOF of the element can be 4.
Since Eq. (4.1) is a fourth order differential equation, without using a certain
technique to calculate the four equivalent nodal loads for the distributed load
of a four-DOF cubic element and include them into the natural transition con-
ditions or natural boundary conditions, the order of approximate displacement
must at least be four and the element must at least have one discrete point
for defining a discrete element equilibrium equation at the discrete point. The
DQEM cubic element is equivalent to the FEM cubic element. For elements
having distributed load, the number of DOF must be larger than 4 in order to
get an efficient convergence. For elements having five or more DOF, discrete
element equilibrium equations at N̄e-4 discrete points are defined, with N̄e the
number of DOF assigned to the element. The selection of the discrete points
can be arbitrary. Considering that Young’s modulus is constant in an element
and that the range of the parent element is 0 ≤ ξ ≤ 1, and substituting the
mapping equation (3.5) and EDQ discretization equation (2.1) into Eq. (4.1),
the following discrete element equilibrium equation at a discrete point α can
be obtained

Ee

(le)4

⎡
⎣d2Ie

(α)

dξ2

N̄e∑
β=1

Deξ2

αβ + 2
dIe

(α)

dξ

N̄e∑
β=1

Deξ3

αβ + Ie
(α)

N̄e∑
β=1

Deξ4

αβ

⎤
⎦ w̃e

β

+ke
(α)w

e
α = −pe

α (4.4)

where w̃e
β represents the element displacement vector {δe},

{δe} = � we
1 . . ... . . we

Ne . . �T (4.5)

where we
1 and we

Ne are lateral displacements at the first and last element
nodes, respectively. It should be noted that DOF representing various orders
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of derivatives with respect to the coordinate variable can also be assigned to
the two element boundary nodes.

The internal bending moment and shear force at a discrete point α can be
expressed by

Me
α =

Ee

(le)2

⎛
⎝Ie

(α)

N̄e∑
β=1

Deξ2

αβ

⎞
⎠ w̃e

β (4.6)

and

V e
α =

Ee

(le)3

⎛
⎝dIe

(α)

dξ

N̄e∑
β=1

Deξ2

αβ + Ie
(α)

N̄e∑
β=1

Deξ3

αβ

⎞
⎠ w̃e

β (4.7)

In Eqs. (4), (6) and (7), the derivatives of the section constant I at the
related discrete points can also be calculated by the DQ. It is especially useful
if the distribution function of I is not continuously differentiable up to the
order of its derivative for which the derivatives of I at a discrete point might
not be able to be obtained by only carrying out the differential operation.
The values of I at the two element boundary nodes and some interior dis-
crete points are used to define the DQ discretizations of the derivatives. The
DQ discretization for the mth order derivative of I at a discrete point α is
expressed by

dmIe
α

dξm
=

Ñe∑
i=1

D̄eξm

αi Ie
i (4.8)

where D̄eξm

αi are weighting coefficients and Ñe is the number of nodes for
defining the DQ discretization.

Four transition conditions at an inter-element boundary of two adjacent
elements are also necessary for constructing the overall discrete equation sys-
tem. These four transition conditions are the continuities of displacements
and displacement gradients, and the equilibriums of moments and transverse
forces at the inter-element boundary of two adjacent elements i and i+1. The
condition of displacement continuity is expressed as:

wi
Ni = wi+1

1 (4.9)

where N i is the right boundary node of element i. Since the DOF representing
the displacement is always assigned to the element boundary nodes, the above
equation is always automatically satisfied, and the DOF can be used to define
a discrete natural transition condition at the inter-element boundary of two
adjacent elements or a discrete natural boundary condition at the natural
boundary. The continuity of displacement gradient is

dwi
Ni

dxi
− dwi+1

1

dxi+1
= 0 (4.10)

If the DOF representing the deflection slope at an element boundary node is
assigned to the element boundary node, Eq. (4.10) is automatically satisfied,
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and the DOF can be used to define a discrete natural transition condition
at the inter-element boundary of two adjacent elements or a discrete natural
boundary condition at the natural boundary in the DQEM analysis of flexural
deflection of structures [34–35]. Otherwise, Eq. (4.10) needs to be discretized.
The EDQ discretization of the above equation leads to

1
li

N̄i∑
β=1

Diξ
Niαw̃i

α − 1
li+1

N̄i+1∑
β=1

D
(i+1)ξ
1β w̃i+1

β = 0 (4.11)

Then, one DOF other than the DOF representing the displacement of ele-
ment boundary nodes is required for defining the above discrete conforma-
bility condition, and two more DOF are necessary for defining the remaining
two discrete natural transition conditions at the inter-element boundary of
two adjacent elements or two discrete natural boundary conditions at the
natural boundary. A representative application has been used to the DQEM
analysis of flexural deflection of structures [20,22]. Figure 4.2 shows the equi-
librium of moments, in which M i,i+1 is the concentrated moment applied on
the inter-element boundary. The equilibrium of moments is

−M i
Ni + M i+1

1 = M i,i+1 (4.12)

Upon the substitution of Eq. (4.6) into Eq. (4.12), the following discretized
equation can be obtained

−EiIi
Ni

(li)2

N̄i∑
α=1

Diξ2

Niαw̃i
α +

Ei+1Ii+1
1

(li+1)2

N̄i+1∑
β=1

D
(i+1)ξ2

1β w̃i+1
β = M i,i+1 (4.13)

Figure 4.2 also shows the equilibrium of transverse forces in which P i,i+1 is
the concentrated transverse load applied on the inter-element boundary, and

Fig. 4.2. Equilibrium of transverse forces
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k̄i,i+1 is the spring constant of a concentrated spring at the inter-element
boundary. Referring to the figure, the following equilibrium equation can be
obtained

V i
Ni − V i+1

1 − k̄i,i+1wi,i+1 = P i,i+1 (4.14)

The substitution of Eq. (4.7) into Eq. (4.14) leads to the following discretized
equation:

Ei

(li)3

⎛
⎝dIi

Ni

dξ

N̄i∑
α=1

Diξ2

Niα + Ii
Ni

N̄i∑
α=1

Diξ3

Niα

⎞
⎠ w̃i

α

− Ei+1

(li+1)3

⎛
⎝dIi+1

1

dξ

N̄i+1∑
β=1

D
(i+1)ξ2

1β + Ii+1
1

N̄i+1∑
β=1

D
(i+1)ξ3

1β

⎞
⎠ w̃i+1

β

−k̄i,i+1wi,i+1 = P i,i+1 (4.15)

For pin-connected inter-element boundaries, Eqs. (4.10) and (4.12) are re-
placed by the following two equations

EiIi
Ni

d2wi
Ni

d(xi)2
= 0, Ei+1Ii+1

1

d2wi+1
1

d(xi+1)2
= 0 (4.16)

The EDQ discretization of Eqs. (4.16) leads to

EiIi
Ni

(li)2

N̄i∑
β=1

Diξ2

Niβw̃i
β = 0,

Ei+1Ii+1
1

(li+1)2

N̄i+1∑
β=1

D
(i+1)ξ2

1β w̃i+1
β = 0 (4.17)

The kinematic boundary conditions are w = w̄ and dw
dx = dw̄

dx in which w̄

and dw̄
dx are prescribed values, on the kinematic boundary. Letting m be an

element having one or more nodes on the kinematic boundary, the kinematic
boundary conditions can be rewritten as wm

Im = w̄m
Im and dwm

Im

dxm = dw̄m
Im

dxm in
which Im equals 1 or Nm representing the first or last node of the element.
The EDQ discretization of dwm

Im

dxm = dw̄m
Im

dxm leads to

1
lm

N̄m∑
β=1

Dmξ
Imβw̃m

β =
dw̄m

Im

dxm
, Im = 1 or Nm (4.18)

Let n be an element having one or more nodes on the natural boundary. The
natural boundary condition of equilibrium of moments is

EnIn
In

d2wn
In

d(xn)2
= M̄n

In , In = 1 or Nn (4.19)

where M̄n is the moment applied on the natural boundary. The EDQ dis-
cretization of the above equation leads to
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EnIn
In

(ln)2

N̄n∑
β=1

Dnξ2

Inβw̃n
β = M̄n

In , In = 1 or Nn (4.20)

Let V̄ n denote the transverse tip load applied downward on the free end. If
the natural boundary is at the left end, the natural boundary condition of the
equilibrium of transverse forces can be expressed as

−V n
1 − k̄nwn

1 = V̄ n
1 (4.21)

where k̄n is the spring constant of a spring at the natural boundary. Upon the
substitution of Eq. (4.7) into Eq. (4.21) and the use of EDQ discretization,
the following discretized equation can be obtained

− En

(ln)3

⎛
⎝dIn

1

dξ

N̄n∑
β=1

Dnξ2

1β + In
1

N̄n∑
β=1

Dnξ3

1β

⎞
⎠ w̃n

β − k̄nwn
1 = V̄ n

1 (4.22)

If the natural boundary is at the right end, the natural boundary condition
of the equilibrium of transverse forces can be expressed as

V n
Nn − k̄nwn

Nn = V̄ n
Nn (4.23)

The substitution of Eq. (4.7) into Eq. (4.23) and the use of EDQ discretization
leads to the following discretized equation

En

(ln)3

⎛
⎝dIn

Nn

dξ

N̄n∑
β=1

Dnξ2

Nnβ + In
Nn

N̄n∑
β=1

Dnξ3

Nnβ

⎞
⎠ w̃n

β − k̄nwn
Nn = V̄ n

Nn (4.24)

4.1.2 Assemblage

Keeping the compatibility condition (4.9), and conformability condition (4.11)
for the inter-element boundary with the two adjacent elements having the
DOF representing the deflection slopes at the inter-element boundary in mind,
assembling Eq. (4.4) for elements having interior discrete points, Eq. (4.11) for
the inter-element boundary with the two adjacent elements having no DOF
representing the deflection slopes at the inter-element boundary, Eqs. (4.13)
and (4.15) for all inter-element boundaries, Eq. (4.18) for boundary elements
with kinematic boundary and having no DOF representing the deflection slope
at the kinematic boundary, and Eqs. (4.20), (4.22) and (4.24) for boundary
elements with natural boundary, an overall linear algebraic system can be
obtained. It is the overall stiffness equation. For pin-connected inter-element
boundaries, Eqs. (4.16) and (4.17) need to be used to replace the related
discrete equations and assembled into the overall stiffness equation. The as-
semblage is based on an element by element procedure. The overall stiffness
equation can be expressed as:
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[K] +

[
K̄
]) {D} = {R} (4.25)

where [K] is the overall stiffness matrix of beam, [K̄] the overall stiffness
matrix of foundation, {D} the overall displacement vector and {R} the overall
load vector.

Like FEM, the assemblage is based on an element by element procedure.
When assembling the discrete equations of element e, the discrete element
equilibrium equations (4.4), and the four discrete element boundary forces,
expressed by displacement parameters, at the two element boundary nodes
are directly assembled to the overall discrete equation system. Consequently,
an element basis explicit matrix equation, containing the discrete element
equilibrium equations and the discrete element boundary forces placed at the
first and last two rows, is not necessary to be formed in the assembling process.
This element basis explicit matrix equation is an element stiffness equation
which can be expressed by

([ke] + [k̄e]){δe} = {re} (4.26)

where [ke] and [k̄e] are N̄e × N̄e element stiffness matrices of beam and foun-
dation, respectively, and {re} is the element load vector. The element load
vector can be expressed by

{re} = � −V e
1 −R̄e−1,e Me

1 −pe
3 ... −pe

N̄e−2
V e

Ne −Me
Ne �T , for an

interior element with R̄e−1,e = k̄e−1,ewe−1,e the spring force,
= � −V 1

1 −R̄1 M1
1 −p1

3 ... −p1
N̄1−2

V 1
N1 −M1

N1 �T , for the
first or left boundary element,

= � −V s
1 −R̄s Ms

1 −ps
3 ... −ps

N̄s−2
V s

Ns−R̄s −Ms
Ns �T , for the

last or right boundary element (4.27)

As Eq. (4.26) contains discrete resultant forces and spring forces at the two
element boundary nodes, equilibriums of resultant forces, spring forces and
external forces at the inter-element boundary of two adjacent elements and
the natural boundary are exactly satisfied in the assembling process. Conse-
quently, the DQEM is different from FEM which needs to form the element
stiffness equation, and which neglects the exact equilibriums.

4.1.3 Problems

The static deflection of a fixed-free beam resting on a Winkler foundation and
subjected to a uniformly distributed load p = 1 was solved. The geometrical
quantities and material constants are: length of beam = 3, I = 1, E = 1 and
k = 1. A is the left end and B is the right end. Lagrange DQ model is used to
carry out the element basis discretization. In the analysis, the elements and
node points in an element are equally spaced. Since the DOF representing
the deflection slope is not assigned to the element boundary nodes, the DOF
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assigned to the interior node next to the related element boundary node is
also used to define either a discrete transition condition or a discrete bound-
ary condition, instead of using it to define a discrete element equilibrium
equation at the node. Numerical results obtained by the DQEM are listed in
Table 4.1. They are compared with exact solutions [95]. It shows that the
DQEM solutions converge fast by increasing either the number of elements or
nodes per element.

Table 4.1. Convergence of the numerical results of a prismatic cantilever beam
subjected to a uniformly distributed load and resting on a Winkler foundation

DOF per Number of Deflection Bending moment Shear force

element elements at B at A at A

5 2 –.1382796 × 101 –.9791807 × 100 .1236154 × 101

4 –.1274248 × 101 –.9707436 × 100 .1302256 × 101

6 –.1256901 × 101 –.9700371 × 100 .1311689 × 101

7 2 –.1243156 × 101 –.9683331 × 100 .1323559 × 101

4 –.1243531 × 101 –.9697217 × 100 .1319060 × 101

6 –.1243556 × 101 –.9698504 × 100 .1318822 × 101

9 2 –.1243483 × 101 –.9698806 × 100 .1318828 × 101

4 –.1243563 × 101 –.9698853 × 100 .1318765 × 101

6 –.1243563 × 101 –.9698852 × 100 .1318764 × 101

Exact solution –.1243562 × 101 –.9698853 × 100 .1318764 × 101

In solving the next two problems, two degrees of freedom representing the
lateral displacement and deflection slope are assigned to each of the element
boundary nodes, while only one DOF representing the lateral displacement is
assigned to an interior node. Explicit Lagrange DQ weighting coefficients with
the grid points equally spaced are used to generate the C1 − C0 − C1 EDQ
model. Consider a N̄e-DOF element and define ∆ξ = 1./(N̄e−1). The interior
discrete points for defining the element-based discrete equilibrium equations
are located at ξ = (p − 1)∆ξ, p = 3, ..., N̄e − 2.

A nonprismatic cantilever beam having a rectangular cross section sub-
jected to a transverse tip load which can be seen in Fig. 4.3. was solved. In
solving the problem, the elements are equally spaced. Let A0 and I0 denote
the area and moment of inertia of the cross section at the fixed end x = 0,
respectively. The distributions of A and I are expressed as A = A0(1−0.1x/l)
and I = I0(1 − 0.1x/l)3, respectively. The beam model for carrying out the
numerical test has the values of E, A0, I0 and L all equal to 1. The value of
transverse tip load P is also equal to 1. Numerical results obtained by using
the DQEM are listed in Table 4.2. It shows that the results converge fast to
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Fig. 4.3. A nonprismatic cantilever beam subjected to a transverse tip load

Table 4.2. Convergence of the numerical results of a nonprismatic cantilever
beam subjected to a transverse tip load

DOF per Number of Deflection Bending moment Shear force

element elements at B at A at A

5 1 –.6012931 –1.2801724 .4655172

2 –.4773527 –1.0302632 .8958810

3 –.4597839 –1.0118832 .9552016

7 1 –.4653140 –1.0351111 .9416616

2 –.4489403 –1.0015277 .9957239

3 –.4478343 –1.0002687 .9991200

9 1 –.4490091 –1.0029813 .9953998

2 –.4475927 –1.0000359 .9999012

3 –.4475611 –1.0000028 .9999907

11 1 –.4476460 –1.0001849 .9997271

2 –.4475586 –1.0000006 .9999983

3 –.4475579 –1.0000000 .9999999

Exact solution –.4475579 –1.0000000 1.000000

close to the analytical solutions by either increasing the number of elements
or the number of DOF per element [96].

The static deflection of a fixed beam composed of two prismatic segments
and subjected to distributed loads and resting on a Winkler foundation which
is shown in Fig. 4.4 was also solved. The values of parameters used for the
analysis are: E1 = L1 = 1, I1 = P1 = 1; E2 = I2 = L2 = P2 = 1, k = 1.
In the analysis, two DQEM elements are used to model the composed beam.
The convergence can be assured by increasing the order of approximation.
Numerical results obtained are listed in Table 4.3.



62 4 DQEM Analysis of Euler-Bernoulli Beam Structures

Fig. 4.4. A fixed beam composed of two prismatic elements and subjected to
distributed loads

Table 4.3. Convergence of the numerical results of a composed beam subjected to
a distributed load

DOF per Deflection Bending moment Bending moment Bending moment

element at B at A at B at C

5 –.0434515 –.6271896 .2385751 –.3713788

7 –.0431278 –.6245045 .2364095 –.3697859

9 –.0431745 –.6249026 .2367386 –.3700341

11 –.0431745 –.6249029 .2367389 –.3700342

4.2 Free Vibration of Euler-Bernoulli Beam

In this analysis model, the effect of rotary inertia is neglected. By using W to
replace w and represent the modal displacement, and using the inertia force
ρAω2W to replace the distributed load -p in the static equilibrium equation,
the governing differential eigenvalue equation of free vibration is

d2

dx2

[
EI

d2W (x)
dx2

]
+ kW (x) − ρAω2W = 0 (4.28)

4.2.1 DQEM Formulation

In the DQEM formulation, the DOF of an element must be five or more.
The discrete element eigenvalue equations are defined at N̄e-4 discrete points.
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The selection of the discrete points can be arbitrary. The following discrete
element eigenvalue equation at a discrete point α is expressed by

Ee

(le)4

⎡
⎣d2Ie
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dξ2

N̄e∑
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Deξ2

αβ + 2
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⎤
⎦ W̃ e

β

+ke
(α)W

e
α − ρAe

(α)ω
2W e

α = 0 (4.29)

The two kinematic transition conditions have been discretized and ex-
pressed by Eqs. (4.9) and (4.11). Assume that a concentrated mass M̃ i,i+1 is
attached to the inter-element boundary of two adjacent element i and i + 1.
Neglecting the effect of the rotary inertia of the concentrated mass, the dis-
crete natural transition condition of dynamic equilibrium of moments can be
obtained from Eq. (4.13)

−EiIi
Ni

(li)2

N̄i∑
β=1

Diξ2

NiβW̃ i
β +

Ei+1Ii+1
1

(li+1)2
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D
(i+1)ξ2

1β W̃ i+1
β = 0 (4.30)

By using the inertia force M̃ i,i+1ω2W i,i+1 to replace the externally applied
load -P i,i+1 in Eq. (4.15), the discrete natural transition condition of dynamic
equilibrium of lateral forces can be obtained
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−k̄i,i+1W i,i+1 + M̃ i,i+1ω2W i,i+1 = 0 (4.31)

The discrete kinematic boundary conditions are the same as those for the
static deflection analysis. Let M̃n denote the concentrated mass attached to
the free end. The discrete natural boundary condition of dynamic equilibrium
of moments can be expressed by

EnIn
I

(ln)2

N̄n∑
β=1

Dnξ2

Iβ W̃n
β = 0, I = 1 or Nn (4.32)

By using the inertia force M̃nω2Wn to replace the tip load V̄ n in Eqs. (4.22)
and (4.24), the discrete natural boundary conditions of dynamic equilibrium
of transverse forces can be obtained. If the natural boundary is at the left
end, the discrete equation is expressed by
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If the natural boundary is at the right end, the discrete equation is expressed
by

En
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⎝dIn
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Dnξ2

Nnβ + In
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Nnβ

⎞
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β − k̄nWn
Nn

+M̃nω2Wn
Nn = 0 (4.34)

4.2.2 Assemblage

Keeping Eq. (4.9), and Eq. (4.10) for the inter-element boundary with the two
adjacent elements having the DOF representing the modal deflection slopes
at the inter-element boundary in mind, assembling Eq. (4.29) for all elements,
Eq. (4.11) for the inter-element boundary with the two adjacent elements
having no DOF representing the modal deflection slopes at the inter-element
boundary, Eqs. (4.30) and (4.31) for all inter-element boundaries, Eq. (4.18)
for boundary elements with kinematic boundary and having no DOF rep-
resenting the modal deflection slope at the kinematic boundary, and Eqs.
(4.32), (4.33) and (4.34) for boundary elements with natural boundary, an
overall linear eigenvalue equation system can be obtained. The overall eigen-
value equation system considering the discrete kinematic boundary conditions
is represented by Eq. (3.32).

4.2.3 Problems

A problem involves the transverse vibration of a nonprismatic cantilever beam
having a circular cross section and a concentrated mass at the free end and
resting on a Winkler foundation was solved [97]. In carrying out the DQEM
vibration analysis, elements and nodes in an element are equally spaced. The
structure is shown in Fig. 4.5. Let A0 and I0 denote the area and the moment
of inertia of the cross section at the fixed end z = 0, respectively. Also let L
denote the length of the beam. The distributions of A and I are expressed as
A = A0(1 − x/L)2 and I = I0(1 − x/L)4. In this analysis, the rotary inertia
of the concentrated mass is neglected. The beam model for carrying out the
numerical test has the values of E, ρ, A0 and I0 all equal to 1. The length of the
beam is 0.5. The value of the concentrated mass is also 0.5. In the analysis, the
DOF of modal displacement and deflection slope are assigned to an element
boundary node, while only one DOF of modal displacement is assigned to an
interior node. At the interior nodes, discrete element eigenvalue equations are
defined. The C1−C0−C1 EDQ model and positions of interior nodes are the
same as those used to the static deflection analysis of nonprismatic beams.
Numerical results for the beam with and without a Winkler foundation with
foundation modulus k = 1 are summarized and listed in Tables 4.4 and 4.5.
It shows that the results converge fast to close to the analytical solutions
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Table 4.4. The first three natural frequencies of a nonprismatic cantilever beam
having a circular cross section and a concentrated mass at the free end

DOF per Number of ω1 ω2 ω3

element elements

5 1 .31118363×101 .48164473×102

2 .50548209×101 .32830290×102 .18038164×103

3 .49184053×101 .43682655×102 .13032745×103

7 1 .41386874×101 .51784248×102 .14659378×103

2 .47396084×101 .51435204×102 .14782394×103

3 .47533172×101 .52045419×102 .15735178×103

9 1 .45799844×101 .52373517×102 .14498368×103

2 .47458288×101 .52187430×102 .15353384×103

3 .47478046×101 .52295521×102 .15344593×103

11 1 .47122791×101 .52329384×102 .15423109×103

2 .47474227×101 .52302511×102 .15367730×103

3 .47475890×101 .52318144×102 .15359321×103

Analytical

solution .47476052×101 .52319471×102 .15359835×103

Table 4.5. The first three natural frequencies of a nonprismatic cantilever beam
having a circular cross section and a concentrated mass at the free end and resting

on a Winkler foundation

DOF per Number of ω1 ω2 ω3

element elements

5 1 .31137898×101 .48182799×102

2 .50683376×101 .32866029×102 .18038547×103

3 .49357297×101 .43707340×102 .13033635×103

7 1 .41479616×101 .51804248×102 .14659459×103

2 .47578132×101 .51454238×102 .14783099×103

3 .47721754×101 .52064281×102 .15735808×103

9 1 .45954499×101 .52392705×102 .14499096×103

2 .47646426×101 .52206256×102 .15354071×103

3 .47666911×101 .52314553×102 .15345261×103

11 1 .47303334×101 .52348451×102 .15423802×103

2 .47663027×101 .52321560×102 .15368398×103

3 .47664746×101 .52337202×102 .15359990×103



66 4 DQEM Analysis of Euler-Bernoulli Beam Structures

Fig. 4.5. A nonprismatic cantilever beam having a concentrated mass at the
free end

obtained by Lau by either increasing the number of elements or the number
of DOF per element [98].

The other problem solved involves the transverse vibration of a fixed-roller
supported ASTM Standard Strong steel pipe having a concentrated mass
at the mid-span and resting on a Winkler elastic foundation. The nominal
diameter of the pipe is 10 in with the outside diameter 10.75 in and inside
diameter 10.02 in. The area of cross section is 11.9 in2, while the moment
of inertia of the cross section is 161 in4. The length of the pipe is 40 ft.
The weight of the concentrated mass and the weight of the pipe per feet
are 1000. lb and 40.48 lb, respectively. The Young’s modulus of the pipe is
E = 2.9×107 psi. In carrying out the DQEM analysis, two elements were used
to model the pipe with the mid-span being the inter-element boundary. The
rotary inertia of the concentrated mass is neglected. The convergence can be
assured by the increase of DOF per element. The vibration without Winkler
foundation was first solved. In this analysis, Hermite EDQ model was used
to carry out the element basis discretization. Consequently, each node has
two DOF representing the modal displacement and modal deflection slope.
The nodes for defining the Hermite EDQ model are equally spaced, while
the arrangement of interior discrete points is the same as that of the first
problem. Numerical results of the first four natural frequencies are summarized
and listed in Table 4.6. It shows fast convergence. In solving the problem
with Winkler foundation, a Chebyshev EDQ model was used to carry out the
element basis discretization. The Ne − 2 interior nodes are used to define the
discrete element eigenvalue equations. The value of foundation modulus is 7.5
lb/in. Numerical results of the first four natural frequencies are summarized
and listed in Table 4.7. It also shows excellent convergence.



4.3 Buckling of Euler-Bernoulli Beam 67

Table 4.6. The first four natural frequencies of a fixed-roller supported beam
having a concentrated mass at the midspan (cycles/sec)

DOF per ω1 ω2 ω3 ω4

element

6 .1297143×102 .4137066×102 .8333984×102 .1295109×103

8 .1349680×102 .4722486×102 .9010459×102 .1739265×103

10 .1347260×102 .4560830×102 .9261325×102 .1628337×103

12 .1347292×102 .4562152×102 .9229664×102 .1629238×103

14 .1347287×102 .4560231×102 .9235354×102 .1629862×103

Table 4.7. The first four natural frequencies of a fixed-roller supported beam
having a concentrated mass at the mid-span and resting on a Winkler foundation

(cycles/sec)

DOF per ω1 ω2 ω3 ω4

element

5 .1647340×102 .4363615×102 .1697997×103

7 .1560780×102 .4611839×102 .8375120×102 .1328202×103

9 .1570467×102 .4641352×102 .9433294×102 .1723055×103

11 .1570331×102 .4639374×102 .9260515×102 .1626785×103

13 .1570333×102 .4639476×102 .9268929×102 .1632215×103

15 .1570333×102 .4639474×102 .9268660×102 .1631978×103

4.3 Buckling of Euler-Bernoulli Beam

Considering that the beam is subjected to a compressive force P and rest-
ing on a Winkler foundation, the differential eigenvalue equation of buckling
equilibrium is expressed by

d2

dx2

[
EI

d2w(x)
dx2

]
+ kw(x) + P

d2w

dx2
= 0 (4.35)

In the above equation, w represents the displacement of the buckling mode.

4.3.1 DQEM Formulation

In the DQEM formulation, the DOF of an element must be five or more.
The discrete element eigenvalue equations are defined at N̄e-4 discrete points.
The selection of the discrete points can be arbitrary. The following discrete
element eigenvalue equation at a discrete point α is expressed by
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Fig. 4.6. Equilibriums at the inter-element boundary

The two kinematic transition conditions have been discretized and ex-
pressed by Eqs. (4.9) and (4.11). The discrete natural boundary condition
of moment equilibrium is expressed by Eq. (4.30).Referring to Fig. 4.6, the
discrete natural transition condition of equilibrium of lateral forces can also
be obtained
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The discrete kinematic boundary conditions are the same as those for the
static deflection analysis. The discrete natural boundary condition of moment
equilibrium is expressed by Eq. (4.29). The discrete natural boundary condi-
tion of equilibrium of transverse forces is expressed as
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if the natural boundary is at the left end, and
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if the natural boundary is at the right end.

4.3.2 Assemblage

The assemblage of discrete equations for the DQEM buckling analysis of Euler-
Bernoulli beam structures can be carried out following the procedures intro-
duced in Subsection 4.2.2 regarding the assemblage of discrete equations for
the DQEM vibration analysis of Euler-Bernoulli beam structures. Consider-
ing the discrete kinematic boundary conditions, the overall discrete eigenvalue
equation system can be expressed as([

K̃
]
− P [Kg]

)
{D̃} = {0} (4.40)

where [K̃] = [K] + [K̄], −P [Kg] is the overall initial stress matrix, and {D̃}
is the overall displacement vector. [Kg] is a sparse matrix.

Equation (4.40) is a generalized eigenvalue problem. Pre-multiplication of

equation (4.40) by
[
K̃
]−1

leads to

([
Ā
]− λ̄ [I]

) {D̃} = {0} (4.41)

where [Ā] = [K̃]−1 [Kg] and λ̄ = 1
P . Some DOF can be eliminated before solv-

ing Eq. (4.40). The related solution procedures are introduced in Subsection
3.2.2.

4.3.3 Problems

The buckling analysis of a nonprismatic overhanging bar with length L
subjected to a compressive force P at the free end was also carried out
[99]. The bar structure is shown in Fig. 4.7. At the middle point there
is a roller support. The bar is a solid truncated cone with I expressed as

I = I0
2

[
2

1
4 −

(
2

1
4 − 1

)
x
L

]4
, where I0 is the value of I at the fixed end x = 0.

The C1−C0−C1 EDQ model used for the static deflection analyses is adopted
for carrying out the element basis discretization. Defining C̄ = PL2

EI0
as the load

factor, numerical results of the first three critical load factors are summarized
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Fig. 4.7. Buckling of a nonprismatic overhanging bar

Table 4.8. The lowest critical load factor C̄1 of a compressed nonprismatic
overhanging bar

DOF per Number of C̄1 C̄2 C̄3

element elements

5 2 .4651052×101 .2699958×102

4 .4440624×101 .3410679×102 .7358817×102

6 .4393859×101 .3501234×102 .8847569×102

7 2 .4397124×101 .3221310×102

4 .4358650×101 .3452757×102 .8546602×102

6 .4356912×101 .3452336×102 .8351979×102

9 2 .4355639×101 .3494950×102

4 .4356483×101 .3453623×102 .8418209×102

6 .4356497×101 .3454465×102 .8431407×102

and listed in Table 4.8. It shows that the convergence performance is also
excellent for solving the nonprismatic overhanging bar problem.

A compressed cantilever beam composed of two prismatic segments having
different cross sections, shown in Fig. 4.8, was also solved. The length of the
bar is L with portion 1 and portion 2 being 0.6L and 0.4L long, respectively.
Portion 2 has a fixed end, while portion 1 has the free end. The section con-
stant I of portion 2 is I2, while I of portion 1 is I1 = 0.4I2. The Hermite
EDQ model that used to the vibration analysis is adopted for carrying out
the element basis discretization. Defining C̄ = PL2

EI2
as the load factor, numer-

ical results of the first three critical load factors are summarized and listed
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Fig. 4.8. Buckling of a nonprismatic cantilever bar composed of two prismatic
segments

in Table 4.9. It also shows that the DQEM buckling analysis can efficiently
converge to the analytical solutions. Numerical results of the analytical so-
lution are calculated by using the Newton iteration procedure to the related
characteristic equation resulting from solving the eigenvalue problem of the
governing differential equation [100–101].

The problem by resting the composed cantilever beam on a Winkler foun-
dation was also solved. In solving the problem, only two elements were used
to model the structure. A Chebyshev EDQ model was used for the element

Table 4.9. Critical load factors of a compressed cantilever beam composed of two
segments having different cross sections

DOF per Number of

element elements C̄1 C̄2 C̄3

6 6 .1672846×10 .1177810×102 .3009922×102

10 .1670577×10 .1231134×102 .3118579×102

8 2 .1668739×10 .1426503×102 .2380288×102

6 .1669341×10 .1265800×102 .3203857×102

10 .1669346×10 .1264754×102 .3198959×102

10 2 .1669351×10 .1259495×102 .3268258×102

6 .1669347×10 .1264593×102 .3197285×102

Analytical

solution .1669347×10 .1264599×102 .3198116×102



72 4 DQEM Analysis of Euler-Bernoulli Beam Structures

Table 4.10. Critical load factors of a compressed cantilever beam consisting of
two segments having different cross sections and resting on a Winkler foundation

Number of DOF per

elements element C̄1 C̄2 C̄3

2 5 .204080589×10 .770401757×10

7 .173135162×10 .147423536×102 .368890794×102

9 .173750776×10 .126942928×102 .359061315×102

11 .173746133×10 .127427997×102 .318516725×102

13 .173746149×10 .127418218×102 .320090482×102

15 .173746148×10 .127418333×102 .319978039×102

basis discretization. Defining C̄ = PL2

EI2
as the load factor, numerical results of

the first three critical load factors for kL4

EI = .5 are summarized and listed in
Table 4.10. It also shows that the convergence performance of using Chebyshev
EDQ model is excellent.
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DQEM Analysis of Static Deflection
of Three-Dimensional Trusses

The DQEM truss analysis model uses various DQ models to the element basis
local discretization. The discrete local element equilibrium equations and ele-
ment boundary forces at the two element boundary nodes can be transformed
using transformation matrices defined by the local and global coordinates.
Only displacements at the two element boundary nodes are transformed into
the global coordinate system. The equilibriums of forces at joints are consid-
ered in constructing the overall stiffness equation. The discrete local element
equilibrium equations are defined on the spaces of local coordinates.

5.1 Discrete Element Equations

5.1.1 Discrete Element Equilibrium Equations

The differential equilibrium equation of a nonprismatic bar in the axial direc-
tion is

Ee d

dz̄e

(
Ae dūe

dz̄e

)
= −f̄e (5.1)

where w̄e is the axial displacement, z̄e the local physical coordinate, Ee

Young’s modulus, Ae the area of cross section and f̄e the distributed axial
force.

The DQ model which only uses the axial displacements at element nodes to
represent the DQ discretization is adopted. In carrying out the element-based
DQ discretization, z̄e

Ne which is equal to the element length can be calcu-
lated by using the global coordinates of node 1 and node Ne. Let (xe

1, y
e
1, z

e
1)

and (xe
Ne , ye

Ne , ze
Ne ) denote the global coordinates of node 1 and node Ne,

respectively. The element length le is expressed as:
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Ne − ye

1)
2 + (ze
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2
]1/2

= z̄e
Ne (5.2)
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For the developed three-dimensional DQEM truss analysis model, the two-
node prismatic element can be used to model prismatic truss members hav-
ing no distributed load. The two-node prismatic element is the same as the
two-node finite element truss element. However, generic truss problems might
have axially distributed external causes. Without using a certain technique
to obtain the equivalent nodal loads and include them into the natural tran-
sition conditions or boundary conditions, the element must have three or
more nodes. This method can better describe local responses caused by lo-
cally, highly nonlinear distributed external causes either through the use of
adaptive discretization or by using more elements to discretize certain spe-
cific structural members. This DQEM truss analysis model is also efficient for
solving vibrations of truss structures. There are Ne − 2 discrete equilibrium
equations in an element for Ne being larger than two. The selection of the
Ne − 2 nodes, at which discrete equilibrium equations are defined, is flexible.
Here, nodes 2, 3, ..., Ne − 2 and Ne − 1 are used. Consider that the range of
the natural coordinate ζ is 0 ≤ ζ ≤ 1. Using DQ, Eq. (5.1) can be discretized

Ee

(le)2
(dAe

(α)

dζ

Ne∑
β=1

Deζ
αβ +Ae

(α)

Ne∑
β=1

Deζ2

αβ

)
w̄e

β = −f̄e
α, α = 2, 3, ..., Ne−1 (5.3)

In the above equation, the first derivatives of Ae with respect to ζ at element
nodes can also be calculated by DQ. It is especially useful if the distribution
function of Ae is not continuously differentiable up to the order of its deriv-
ative. The above equation can be rewritten to obtain the following discrete
local element equilibrium equation

[κ̄e]{δ̄e} = {r̄e} (5.4)

where

[κ̄e] =
Ee

(le)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dAe
1

dζ Deζ
11 + Ae

1D
eζ2

11
dAe

1
dζ Deζ

12 + Ae
1D

eζ2

12
...

dAe
2

dζ Deζ
21 + Ae

2D
eζ2

21
dAe

2
dζ Deζ

22 + Ae
2D

eζ2

22
...

. . .

. . .

. . .
dAe

Ne

dζ Deζ
Ne1 + Ae

NeD
eζ2

Ne1
dAe

Ne

dζ Deζ
Ne2 + Ae

NeD
eζ2

Ne2
...

dAe
1

dζ Deζ
1Ne + Ae

1D
eζ2

1Ne

dAe
2

dζ Deζ
2Ne + Ae

2D
eζ2

2Ne

.

.

.
dAe

Ne

dζ Deζ
NeNe + Ae

NeD
eζ2

NeNe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5)

is a (Ne − 2) × Ne local element stiffness coefficient matrix,
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{δ̄e} = � w̄e
1 w̄e

2 w̄e
3 ... w̄e

Ne−1
w̄e

Ne �T (5.6)

is the Ne × 1 local element displacement vector, and

{f̄e} = � −f̄e
2 −f̄e

3 ... −f̄e
Ne−2

−f̄e
Ne−1

�T (5.7)

is the (Ne − 2) × 1 local element distributed force vector.

5.1.2 Coordinate Transformations

In order to solve truss problems, the discrete local element equilibrium equa-
tions of all discrete elements have to be assembled into the overall algebraic
equation system. In the overall algebraic equation system, displacement com-
ponents of nodes 1 and Ne are in directions of global coordinates, therefore
the six displacement components at the two element boundary nodes have to
be transformed into the global coordinate system. The transformation of a
vector can be accomplished through the use of a transformation matrix which
is defined by the direction cosines of the nine direction angles between the
three local coordinate axes x̄, ȳ, z̄ and the three global coordinate axes x, y,
z. Using the direction cosines, a transformation relation of the displacement
vectors in the two coordinate systems can be constructed⎡

⎣ cos(x̄, x) cos(x̄, y) cos(x̄, z)
cos(ȳ, x) cos(ȳ, y) cos(ȳ, z)
cos(z̄, x) cos(z̄, y) cos(z̄, z)

⎤
⎦
⎧⎨
⎩

u
v
w

⎫⎬
⎭ =

⎧⎨
⎩

ū
v̄
w̄

⎫⎬
⎭ (5.8)

The 3 × 3 rotational transformation matrix in the above equation can be
expressed by using the notation [ter]

[ter] =

⎡
⎣ cos(x̄, x) cos(x̄, y) cos(x̄, z)

cos(ȳ, x) cos(ȳ, y) cos(ȳ, z)
cos(z̄, x) cos(z̄, y) cos(z̄, z)

⎤
⎦ (5.9)

A transformation relation between the element displacement vector in local-
global coordinate system and the element displacement vector in local coor-
dinate system can be obtained through the use of the third row, �ter3�, of
[ter]

[T e]{δe} = {δ̄e} (5.10)

where {δ̄e} is the local element displacement vector expressed by Eq. (5.6),

{δe} = � ue
1 ve

1 we
1 w̄e

2 w̄e
3 ... w̄e

Ne−1
ue

Ne ve
Ne we

Ne �T (5.11)

is the local-global element displacement vector, and

[T e] =

⎡
⎢⎢⎢⎢⎢⎢⎣

�ter3�
1

.
.
1
�ter3�

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.12)
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is the element transformation matrix. Employing Eq. (5.10) in Eq. (5.4), the
following matrix equation can be obtained

[κ̄e][T e]{δe} = {f̄e} (5.13)

The above equation can be rewritten as

[κe]{δe} = {f̄e} (5.14)

where
[κe] = [κ̄e][T e] (5.15)

is the local-global element stiffness coefficient matrix. Equation (5.14) is the
discrete local-global element equilibrium equation in which the element dis-
placement vector is defined on both of local and global coordinate systems and
the local element distributed force vector is defined on the local coordinate
system.

5.1.3 Discrete Element Internal Forces

The internal forces of a discrete element at nodes can be obtained using the
technique of DQ discretization. Denote F̄ e

z̄ the axial force at an arbitrary point
z̄e in the element. F̄ e

z̄ is expressed as

F̄ e
z̄ = EeAe dw̄e

dz̄e
(5.16)

Using DQ in Eq. (5.16), axial forces at a node point α can be obtained:

F̄ e
z̄α =

EeAe
(α)

le

Ne∑
β=1

Deζ
αβw̄e

β =
EeAe

(α)

le
�Deζ

α �{δ̄e} (5.17)

where
�Deζ

α � = � Deζ
α1 Deζ

α2
... Deζ

α(Ne−1) Deζ
αNe � (5.18)

Employing Eq. (5.10) in Eq. (5.17), F̄ e
z̄α can be related to the local-global

element displacement vector, which is written as:

F̄ e
z̄α =

EeAe
(α)

le
�Deζ

α �[T e]{δe} (5.19)

5.2 Discrete Condition Equations of Joints

DQEM requires that all condition equations at joints are satisfied. The con-
dition equations include compatibility conditions and equilibrium of external
and internal forces at joints. The condition equations have to be expressed as
discrete forms using DQ.
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5.2.1 Discrete Joint Compatibility Conditions

Let M j denote the number of elements connected to joint j. Also let Imj

denote the element node number of the mjth element connected to the joint.
Then Imj

is equal to 1 or Nmj

, with Nmj

being the largest node number of
the mjth element. Let {dmj

Imj } = �umj

Imj vmj

Imj wmj

Imj �T and {dj} = �uj vj wj �T

represent the globally nodal displacement vector of node Imj

of the mjth
element and the global joint displacement vector of joint j, respectively. Then
the compatibility conditions, which are kinematic conditions, of joint j can
be expressed as follows:{

d1j

I1j

}
=
{

d2j

I2j

}
=...=

{
dmj

Imj

}
=...=

{
dMj

IMj

}
=
{
dj
}

(5.20)

5.2.2 Discrete Joint Equilibrium Conditions

For a three-dimensional DQEM truss analysis model, the equilibrium condi-
tions of external and internal forces at joints also have to be satisfied. Each
equilibrium condition is either a natural transition condition or a natural
boundary condition. Let νmj

denote an indicator defined by the local element
node number of an element at the joint. νmj

is defined as:

νmj

=

{
+1, if Imj

= Nmj

−1, if Imj

= 1
(5.21)

Let {P j} denote the vector of concentrated forces applied at joint j. And con-
sider the inverse transformation of a vector by using the transformation matrix
defined by Eq. (5.8), the axially nodal force of the mjth element at joint j can
be transformed into the global coordinates. Let {V mj} = �V mj

x V mj

y V mj

z �T

denote the globally nodal force vector of the mjth element at joint j. The three
translational equilibrium conditions of joint j can be expressed as follows:

Mj∑
mj=1

νmj{V mj} = {P j} (5.22)

The globally nodal force vector can be related to the locally internal force
F̄mj

z̄Imj

{V mj} = �tmj

r1 �T F̄mj

z̄Imj (5.23)

where �tmj

r1 �T is the transpose of the first row of [tm
j

r ]. Using Eqs. (5.19) and
(5.23), Eq. (5.22) can be rewritten as

Mj∑
mj=1

νmj�tmj

r1 �T

(
Emj

Amj)
(Imj

)

lmj

⌊
Dmjζ

Imj

⌋ [
Tmj

]{
δmj

}
= {P j} (5.24)
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5.2.3 Prescribed Joint Displacements

A joint might have one or more prescribed displacement components. Let {d̂j
p}

and {dj
p} denote the prescribed joint displacement vector and the correspond-

ing joint displacement vector of joint j, respectively. The condition equations
of prescribed displacements can be obtained from the following vector equa-
tion: {

dj
p

}
=
{

d̂j
p

}
(5.25)

5.2.4 Inclined Roller

Let (x̃, ỹ, z̃) denote the three coordinate axes of a local rectangular Cartesian
coordinate system with x̃ and ỹ axes located on the inclined surface and
z̃ axis outward normal to the inclined surface, respectively. Also let {d̃j} =
� ũj ṽj w̃j �T denote the related prescribed displacement vector with the three
components in x̃, ỹ and x̃ coordinate directions. The transformation matrix
{t̃r} can be defined by using x̃, ỹ and z̃ to replace x̄, ȳ and z̄ in Eq. (5.8). Then
the kinematic condition equations can be expressed by the following matrix
equation [

t̃r
] {dj} = {d̃j} (5.26)

Let P̃ j
x̃ and P̃ j

ỹ denote the external forces in x̃ and ỹ directions, respectively.
Also let �t̃r1� and �t̃r2� denote the first and second rows of [t̃r], respectively.
The two natural condition equations which are translational equilibrium equa-
tions can be expressed by the following matrix equation

[t̃r12]
Mj∑

mj=1

νmj{V mj} = [t̃r12]{P j} = {P̃ j} (5.27)

where {P̃ j} = � P̃ j
x̃ P̃ j

ỹ �T , and [t̃r12] =
[ �t̃r1�
�t̃r2�

]
. By using Eqs. (5.22), (5.23)

and (5.24), Eq. (5.27) can be rewritten as

[t̃r12]
Mj∑

mj=1

νmj

[t̃r12]�tmj

r1 �T

(
Emj

Amj)
(Imj

)

lmj �Dmjζ

Imj �
[
Tmj

]
{δmj}

= {P̃ j} (5.28)

5.3 Assemblage

With the discrete joint compatibility conditions in mind, then by assembling
all discrete local-global element equilibrium equations (5.14) for elements hav-
ing more than two nodes, joint equilibrium conditions (5.24) and (5.28), for
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the general joints and inclined rollers, respectively, and the prescribed joint
displacement conditions (5.25) and (5.26) for the general joints and inclined
rollers, respectively, the overall algebraic system represented by Eq. (3.18) can
be obtained. Like FEM, the assemblage is based on an element by element pro-
cedure. The discrete local-global element equilibrium equations Eq. (5.14) for
elements having more than two nodes, and discrete element boundary forces
existing in Eqs. (5.24) and (5.28) defined at the two element boundary nodes
and expressed by displacements, for all elements, are directly assembled to
the overall discrete equation system. Consequently, an element basis explicit
matrix equation is not necessary to be formed in the assembling process.

This element basis explicit matrix equation is an element stiffness equa-
tion. It contains the relations between the two axial forces and the local ele-
ment displacement vector expressed by Eq. (5.6) and placed at the first and
last rows, and component equations of the discrete local element equilibrium
equation (5.14), for an element having more that two nodes, placed at the
remaining Ne − 2 rows. This element stiffness equation can be expressed by[

k̂e
]
{δ̄e} = {r̂e} (5.29)

where [k̂e] is a Ne × Ne local element stiffness matrix with the first and last
rows filled by coefficients for calculating the two discrete element boundary
forces, and

{r̂e} = � −F̄ e
z̄1 −f̄e

2 −f̄e
3 ... −f̄e

Ne−2 −f̄e
Ne−1 F̄ e

z̄Ne �T (5.30)

is the local element load vector. Using the element transformation matrix
[T e] in Eq. (5.29), the following local-global element stiffness equation can be
obtained

[k̃e]{δe} = {r̃e} (5.31)

where
[k̃e] = [T e]T [k̂e][T e] (5.32)

is the transformed local-global element stiffness matrix and

{r̃e} = [T e]T {r̂e} (5.33)

is the transformed local-global element load vector. By assembling Eq. (5.31)
for all elements having more than two nodes and considering Eqs. (5.22) and
(5.27), for the general joints and inclined rollers, respectively, the overall stiff-
ness equation represented by Eq. (3.18) can also be obtained.

5.4 Problems

In the analyses, the Lagrange DQ model with equally spaced grid nodes is
used for the element-based discretization. Only the degree of freedom of the
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axial displacement is assigned to each node. The interior nodes are used to
define discrete equilibrium equations while the two element boundary nodes
are used to define the joint condition equations.

Figure 5.1 shows a fixed-free I-bar subjected to a uniformly distributed
axial force. z axis is coincident with the centroid line. The cross sections
at A and B are shown in Fig. 5.2. The web has the same thickness as the
flange. The variation of width is expressed by b(z) = bo(1 − z/L + z2/2L2)
with bo = 40. mm and L = 1000. mm. The variation of depth is expressed
by d(z) = do(1 − z/L + z2/2L2) with do = 80. mm. The values of Young’s
modulus is E = 206000 N/mm2. In the analysis, the elements are equally
spaced. Numerical results obtained are summarized and listed in Table 5.1.
They are compared with exact solutions. By increasing either the number of
elements or degrees of freedom per element, the results converge very fast to
the exact solutions.

Fig. 5.1. A nonprismatic bar subjected to a distributed load

Fig. 5.2. The cross sections at A and B

The two-dimensional truss structure shown in Fig. 5.3 has 29 prismatic
members and a support settlement and is subjected to concentrated and dis-
tributed loads. In the DQEM analysis, 29 elements were used to model the
structure. Elements 3 and 4 which are subjected to linearly distributed loads
are four-node elements. Three-node element is used to represent elements 17,
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Table 5.1. The results of a nonprismatic I-bar subjected to a uniformly
distributed axial load

Element Number of w (mm) P (N) log |w−wexact|
|wexact|

type elements (at B) (at A) (at B)

5-node 2 .1052838×10−1 .9998271×103 –2.894704

4 .1051554×10−1 .9999883×103 –4.273620

6 .1051508×10−1 .9999977×103 –5.021809

9-node 2 .1051500×10−1 .1000000×104 –5.720779

4 .1051498×10−1 .1000000×104 <–7.000000

Exact

solution .1051498×10−1 .1000000×104

Fig. 5.3. A truss structure subjected to concentrated and axially distributed
loads, and a support settlement

22 and 27 which are subjected to uniformly distributed loads. All other el-
ements are two-node elements. The results of displacement and axial force
are plotted, and shown in Figs. 5.4 and 5.5, respectively. Constant, linear
and nonlinear distributions of axial forces were obtained. Since the satisfied
mechanics relations are enough, the results are exact.

The three-dimensional truss structure shown in Fig. 5.6 is composed of
eighteen prismatic members. Only concentrated loads are applied at four
joints. Thus the two-node element is used to represent each of the eighteen
members. Numerical results of member internal forces are summarized and
listed in Table 5.2. They are exact values.
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Fig. 5.4. Displacement diagram

Fig. 5.5. Axial force diagram

Fig. 5.6. A three-dimensional truss structure
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Table 5.2. The results of a three-dimensional truss problem

Member Member Exact solution

force (kN)

AB 14.59 14.59

CD –7.92 –7.92

BC 3.61 3.61

AD 0.00 0.00

AC 0.25 0.25

EF 14.17 14.17

GH –5.00 –5.00

FG –2.78 –2.78

EH –2.78 –2.78

FH 1.00 1.00

AE 2.06 2.06

BF –4.13 –4.13

CG –40.21 –40.21

DH –19.59 –19.59

BE –26.13 –26.13

CF 4.42 4.42

DG 22.56 22.56

AH –1.11 –1.11



6

DQEM Analysis of Static Deflection
of Three-Dimensional Frames

The DQEM frame analysis model uses various EDQ models which can auto-
matically set compatibility and conformability conditions at the joints to the
element basis local discretization. The discrete local element equilibrium equa-
tions and element boundary forces at the two element boundary nodes can
be transformed using various transformation matrices. Only displacements at
the two element boundary nodes are transformed into the global coordinate
system. The equilibriums of forces at joints are considered in constructing the
overall stiffness equation. The discrete local element equilibrium equations are
defined on the local coordinates. All discrete equations are directly assembled
into the overall stiffness equation.

6.1 Fundamental Relations of Nonprismatic Beam

For a nonprismatic beam of length l, assume that the material is isotropic
and homogeneous with Young’s modulus E and shear modulus G. Figure 6.1

Fig. 6.1. The centroid and shear center on a cross section
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shows a cross section of a beam with B the centroid and S the shear center.
By locating the origin of the local coordinate system (x̄, ȳ, z̄) at the centroid of
the cross section and orienting the two axes on the cross section to the princi-
pal directions, various section constants can be defined. Then, the coordinates
(x̄S , ȳ

S
) defining the shear center S can be calculated by using certain cross

section constants. Let ūS and v̄S denote the two lateral displacement compo-
nents at the shear center in x̂S and ŷ

S
directions, respectively. Also let w̄ and

θ̄z̄ denote the average axial displacement and angle of twist. Neglecting the
effect of warping torsion, the equilibrium equations of the beam considering
the flexural, axial and torsional deformations are expressed by:

E
d2

dz̄2

(
Ix̄x̄

d2ūS

dz̄2

)
= qx̄ − dmȳ

dz̄
, E

d2

dz̄2

(
Iȳȳ

d2v̄S

dz̄2

)
= qȳ +

dmx̄

dz̄
,

E
d

dz̄

(
A

dw̄

dz̄

)
= −p, G

d

dz̄

(
J

dθ̄z̄

dz̄

)
= −m

(s)
z̄ (6.1)

The boundary conditions are:

EIx̄x̄
d2ūS

dz̄2
= M̄ȳ or δ

(
dūS

dz̄

)
= 0,

−E
d

dz̄

(
Ix̄x̄

d2ūS

dz̄2

)
= V̄x̄ + mȳ or δūS = 0,

EIȳȳ
d2v̄S

dz̄2
= −M̄x̄ or δ

(
dv̄S

dz̄

)
= 0,

−E
d

dz̄

(
Iȳȳ

d2v̄S

dz̄2

)
= V̄ȳ − mx̄ or δv̄S = 0,

EA
dw̄

dz̄
= P̄ or δw̄ = 0,

GJ
dθ̄z̄

dz̄
= M̄

(s)
z̄ or δθ̄z̄ = 0 (6.2)

where J is the torsional constant. In Eqs. (6.1) and (6.2), the following rela-
tions are used

IS = Ip + A(x̄2
S + ȳ2

S
), m

(s)
z̄ = mz̄ + (ȳ

S
qx̄ − x̄Sqȳ),

M̄
(s)
z̄ = M̄z̄ + (ȳ

S
V̄x̄ − x̄SV̄ȳ) (6.3)

where Ix̄x̄ and Iȳȳ are moments of inertia of the cross section with respect to
ȳ and x̄ axes, respectively, Ip = Ix̄x̄ + Iȳȳ is the polar moment of inertia, qx̄

and qȳ are distributed external forces in x̄ and ȳ axes, respectively, mx̄ and
mȳ are intensities of distributed external moments with respect to x̄ and ȳ
axes, respectively, mz̄ is the intensity of distributed torque, V̄x̄ and V̄ȳ are
lateral forces in x̄ and ȳ directions, respectively, M̄x̄ and M̄ȳ are the external
moments with respect to x̄ and ȳ axes, respectively, and M̄z̄ is the external
torque, applied on the natural boundary.
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6.2 Discrete Element Equations

6.2.1 Discrete Element Equilibrium Equations

The fundamental relations are referred to the physical coordinate system while
the EDQ discretization is carried out on the natural coordinate system. There-
fore, in using the EDQ technique to discretize the fundamental relations, the
transformation operations of coordinates and derivatives of displacements be-
tween two different coordinate systems, have to be carried out. Let (xe

1, y
e
1, z

e
1)

and (xe
Ne , ye

Ne , ze
Ne ) denote the global coordinates of node 1 and node Ne which

are two end nodes, respectively. The element length le can thus be calculated
by using Eq. (5.2).

The element degrees of freedom for defining the axial, flexural and torsional
discretizations must equal the corresponding element-basis discrete fundamen-
tal relations for constructing the overall discrete equation system. In addition
to the degrees of freedom for representing displacement components, the de-
grees of freedom for representing derivatives of a local displacement compo-
nent with respect to z̄e at an element boundary node can also be assigned
to that element boundary node. The selection of derivatives can be flexible
[35,102]. In order to automatically set the kinematic transition conditions by
only using the degrees of freedom assigned to the element boundary nodes,
the degrees of freedom representing the two first order derivatives of flexural
deflections must be assigned to the element boundary nodes. In the present
DQEM frame analysis model, only the degrees of freedom which are necessary
for automatically setting the kinematic transition conditions are assigned to
the element boundary nodes.

Since the highest order of derivatives of displacement parameters existing
in the third and fourth of Eqs. (6.1) is two, without using a specific technique
to calculate the two sets of equivalent nodal forces, separately, and include
them into the related natural transition conditions or natural boundary con-
ditions, the order of approximate axial displacement and/or angle of twist
must at least be two and the element must at least have one discrete point for
defining the discrete axial and/or torsional equilibrium equations, separately,
for the element having distributed axial and/or torsional loads. However, the
order of approximate axial displacement and/or angle of twist can be one and
no interior discrete point is necessary for the element having no distributed
axial and/or torsional loads. The DQEM linear element is equivalent to the
FEM linear element. Since the highest order of derivatives of the two lateral
displacements is four, without using a specific technique to calculate the two
sets of four equivalent nodal forces for the two distributed loads, separately,
and include them into the related natural transition conditions or natural
boundary conditions, the order of the two approximate lateral displacements
must at least be four, and each of the related two equilibrium equations needs
at least one discrete point for defining its discrete equation. The DQEM cubic
element is equivalent to the FEM Hermite cubic element. The discrete points
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for defining the discrete equilibrium equations can be either in the interior of
the element or on the element boundary.

In the present frame analysis model, only interior discrete points are used
to define discrete element equilibrium equations.

Figure 6.2 shows the element with the two element boundary nodes and
four representative interior nodes with the assigned deformation parameters,
ūS , v̄S , w̄ and θ̄z̄, used to define various EDQ discretizations at the discrete
points. In the numerical simulation, the nodes used to define the axial dis-
cretization, the nodes used to define the flexural discretizations and the nodes
used to define the torsional discretization can be different.

Fig. 6.2. The two element boundary nodes and four representative interior nodes
with the assigned deformation parameters used to define various EDQ

discretizations at the discrete points

Figure 6.3 shows the element with each of the four interior nodes a repre-
sentative node for defining the element basis EDQ discretization of a derivative
of a displacement parameter among ūS , v̄S , w̄ and θ̄z̄. The deformation pa-
rameters at an interior node used to define the EDQ discretization can be

Fig. 6.3. Representative interior discrete points at which various discrete
equilibrium equations are defined
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the displacement parameter and/or it derivatives at that interior nodes. Two
or more nodes among these four interior nodes can be located at the same
place. Let Ne

A, Ne
Bu

, Ne
Bv

and Ne
T denote the numbers of nodes for defining

the axial discretization, the flexural discretization in x̄e direction, the flexural
discretization in ȳe direction and the torsional discretization, respectively, N̄e

A,
N̄e

Bu
, N̄e

Bv
and N̄e

T denote the corresponding element degrees of freedom, N̂e
A,

N̂e
Bu

, N̂e
Bv

and N̂e
T denote the numbers of the corresponding interior discrete

points for defining the related discrete equilibrium equations plus the two
element boundary nodes, and Deζm

γk , Deζm

ı , Deζm

βj and Deζm

δl denote the cor-
responding weighting coefficients. Also let the origin of the local coordinate
system be located at node 1 and the range of the natural coordinate ζ be
0. ≤ ζ ≤ 1. Then by using the EDQ, the discrete equation of the first of Eqs.
(6.1) at a discrete point α in element e can be expressed as

Ee

(le)4

⎡
⎣d2Ie

x̄x̄(α)

dζ2

N̄e
Bu∑

i=1

Deζ2

αi + 2
dIe

x̄x̄(α)

dζ

N̄e
Bu∑

i=1

Deζ3

αi + Ie
x̄x̄(α)

N̄e
Bu∑

i=1

Deζ4

αi

⎤
⎦ ũe

Si

= qe
x̄α − 1

le
dme

ȳα

dζ
, α = 2, ..., N̂e

Bu
− 1 (6.4)

The discrete equation of the second of Eqs. (6.1) at a discrete point β can be
similarly expressed as

Ee

(le)4

⎡
⎣d2Ie

ȳȳ(β)

dζ2

N̄e
Bv∑

j=1

Deζ2

βj + 2
dIe

ȳȳ(β)

dζ

N̄e
Bv∑

j=1

Deζ3

βj + Ie
ȳȳ(β)

N̄e
Bv∑

j=1

Deζ4

βj

⎤
⎦ ṽe

Sj

= qe
ȳβ +

1
le

dme
x̄β

dζ
, β = 2, ..., N̂e

Bv
− 1 (6.5)

The discrete equation of the third of Eqs. (6.1) at a discrete point γ can be
expressed as

Ee

(le)2

⎡
⎣dAe

(γ)

dζ

N̄e
A∑

k=1

Deζ
γk + Ae

(γ)

N̄e
A∑

k=1

Deζ2

(γ)k

⎤
⎦ w̃e

k = −pe
γ , γ = 2, ..., N̂e

A − 1 (6.6)

And the discrete equation of the last of Eqs. (6.1) at a discrete point δ can
be expressed as

Ge

(le)2

⎡
⎣dJe

(δ)

dζ

N̄e
T∑

l=1

Deζ
δl + Je

(δ)

N̄e
T∑

l=1

Deζ2

δl

⎤
⎦ θ̃e

z̄l = −m
(s)e
z̄δ , δ = 2, ..., N̂e

T − 1 (6.7)

In Eqs. (6.4) to (6.7), the derivatives of section constants, me
ȳ and me

x̄ at
the related discrete points can also be calculated by the DQ. It is especially
useful if the distribution function of a section constant, me

x̄ or me
ȳ is not con-

tinuously differentiable up to the order of its derivative. The values of section
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constants, me
x̄ and me

ȳ at the two element boundary nodes and certain interior
discrete points are used to define the DQ discretizations of the derivatives of
these quantities. Let φ̄(ζ) denote the distribution of these quantities. Then
the DQ discretization for the mth order derivative of φ̄ at a discrete point α
is expressed by

dmφ̄e
α

dζm
=

Ñe
D∑

ī=1

D̄eζm

αī
Φ̄e

ī (6.8)

where D̄eζm

αī
are weighting coefficients and Ñe

D is the number of points for
defining the DQ discretization. Let Ñe

A, Ñe
I1, Ñe

I2, Ñe
J and Ñe

b1 denote the
numbers of nodes for defining the discretizations of the derivatives of Ae, Ie

x̄x̄,
Ie
ȳȳ, Je, me

x̄ and me
ȳ, respectively. Then the derivatives at the related discrete

points can be expressed by the following DQ discretization equations

dAe
γ

dζ
=

Ñe
A∑

k̄=1

D̄ζ

γk̄
Ae

k̄,
dIe

x̄x̄α

dζ
=

Ñe
I1∑

ī=1

D̄ζ
αī

Ie
x̄x̄ī,

d2Ie
x̄x̄α

dζ2
=

Ñe
I1∑

ī=1

D̄ζ2

αī
Ie
x̄x̄ī,

dIe
ȳȳβ

dζ
=

Ñe
I2∑

j̄=1

D̄ζ
βj̄

Ie
ȳȳj̄ ,

d2Ie
ȳȳβ

dζ2
=

Ñe
I2∑

j̄=1

D̄ζ2

βj̄
Ie
ȳȳj̄ ,

dJe
δ

dζ
=

Ñe
I3∑

l̄=1

D̄ζ

δl̄
Je

l̄ ,

dme
x̄β

dζ
=

Ñe
b1∑

t=1

D̄ζ
βt̄m

e
x̄t̄,

dme
ȳα

dζ
=

Ñe
b1∑

t=1

D̄ζ
αt̄m

e
ȳt̄ (6.9)

Using Eqs. (6.4) to (6.7), the discrete local element equilibrium equation
represented by Eq. (5.4) can be constructed. In the discrete local element
equilibrium equation, the local element stiffness coefficient matrix [κ̄e] is a
(N̂e

Bu
+ N̂e

Bv
+ N̂e

A + N̂e
T − 8) × (N̄e

Bu
+ N̄e

Bv
+ N̄e

A + N̄e
T ) matrix with the

values of elements in the matrix depending on geometrical constants, material
constants and weighting coefficients. The local element displacement vector
{δ̄e} is a (N̄e

Bu
+ N̄e

Bv
+ N̄e

A + N̄e
T ) × 1 vector expressed as

{δ̄e} = � ūe
S1 v̄e

S1 w̄e
1 θ̄e

x̄S2 θ̄e
ȳS2 θ̄e

z̄1 ... ūe
S(N̄e

Bu
−1)

v̄e
S(N̄e

Bv
−1)

w̄e
N̄e

A

θ̄e
x̄SN̄e

Bv

θ̄e
ȳSN̄e

Bu

θ̄e
z̄N̄e

T
�T (6.10)

The local element distributed force vector {r̄e} is a (N̂e
Bu

+ N̂e
Bv

+ N̂e
A + N̂e

T −
8) × 1 vector expressed as

{r̄e} = � −pe
2 q̄e

x̄2 q̄e
ȳ2 −m

(s)e
z̄2 ... −pe

N̂e
A
−1

q̄e
x̄(N̂e

Bu
−1)

q̄e
ȳ(N̂e

Bv
−1)

−m
(s)e

z̄(N̂e
T
−1) �T (6.11)
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In Eq. (6.10), we see that each of the two element boundary nodes has six de-
grees of freedom. In Eq. (6.11), we see that the maximum number of discrete
element equilibrium equations defined at an interior discrete point is four. It
should also be noted that {δ̄e} twelve more elements than {r̄}. In Eq. (6.10),
θ̄e

x̄Si and θ̄e
ȳSi Represent the rotation angles −dv̄e

S

dz̄e = − 1
le

dv̄e
S

dζ and dūe
S

dz̄e = 1
le

dūe
S

dζ ,

respectively, at node i. In Eq. (6.11), q̄e
x̄i, q̄e

ȳi and m
(s)e
z̄i represent qe

x̄ − 1
le

dme
ȳ

dζ ,

qe
ȳ + 1

le
dme

x̄

dζ and m
(s)e
z̄ , respectively, at node i. If no axially distributed force is

applied, interior discrete points can be neglected and only two discrete points
of the two element boundary nodes are necessary which are used to define
natural transition conditions or natural boundary conditions involving axial
forces. Then no discrete axial equilibrium equation needs to be included in
the discrete local element equilibrium equation (5.4). If the element is axi-
ally rigid, w̄e

i in {δ̄e} and the related columns in [κ̄e] can also be eliminated.
Similarly, if no laterally distributed force in a certain direction is applied the
discrete flexural equilibrium equations in that direction can be neglected. If
the element is flexurally rigid in a certain direction the lateral displacements
and their gradients in {δ̄e} and the related columns in [κ̄e] can also be elimi-
nated. Furthermore, if no distributed torque is applied the discrete torsional
equilibrium equations can be neglected. If the element is torsional rigid, the
angles of twist and the angles of twist per unit length in {δ̄e} and the related
columns in [κ̄e] can be eliminated.

6.2.2 Coordinate Transformations

All elements connected to a joint must have the same position, which is the
joint node, to define the global displacements at that position and express
the displacements of the element boundary nodes as the global displacements
of that position. Thus the coordinate transformations have to be carried out.
The local displacements Ū(x̄, ȳ, z̄), V̄ (x̄, ȳ, z̄) and W̄ (x̄, ȳ, z̄) of a point (x̄, ȳ, z̄)
on the cross section can be related to the local displacements of the centroid
ū(z̄), v̄(z̄), the average axial displacement w̄(z̄) and the local angle of twist
θ̄z̄(z̄) through the following equations

Ū(x̄, ȳ, z̄) = ū(z̄) − ȳθ̄z̄(z̄), V̄ (x̄, ȳ, z̄) = v̄(z̄) + x̄θ̄z̄(z̄),

W̄ (x̄, ȳ, z̄) = w̄(z̄) − x̄ū,z̄(z̄) − ȳv̄,z̄(z̄) (6.12)

If the joint is rigid and has a finite size, the relations between the local dis-
placements of the shear center and the local displacements of a point R which
is the joint node used to define the transition conditions are necessary to be
constructed. If the rigid joint does not have a finite size, the transition con-
ditions can also be defined at a point which is not the shear center. Let O
be a certain point on the cross section. Assuming that the deformation of
torsion is negligible as compared to the deformation of bending, the relations
between the local displacements ūS(z̄), v̄S(z̄), w̄(z̄), θ̄x̄S , θ̄ȳS and θz̄, and the
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displacements ūO, v̄O, w̄O, θ̄x̄O, θ̄ȳO and θ̄z̄O of point O can be obtained by
using Eqn. (6.12)

{d̄O} = [tSO]{d̄S} (6.13)

where
{d̄O} = � ūO v̄O w̄O θ̄x̄O θ̄ȳO θ̄z̄O �T (6.14)

is the local displacement vector of point O,

{d̄S} = � ūS v̄S w̄ θ̄x̄S θ̄ȳS θ̄z̄ �T (6.15)

and

[tSO] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −ȳ
SO

0 1 0 0 0 x̄SO

0 0 1 ȳ
O

−x̄O 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.16)

The relations between the local displacements of point O and the local dis-
placements ūR, v̄R, w̄R, θ̄x̄R, θ̄ȳR and θ̄z̄R of point R can also be defined by
using the concept of kinematics of rigid body motion. Then the local dis-
placements of O can be expressed by the local displacements of R through
the following matrix equation{

d̄O

}
= [tt]

{
d̄R

}
(6.17)

where
{d̄R} = � ūR v̄R w̄R θ̄x̄R θ̄ȳR θ̄z̄R �T (6.18)

[tRO] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −z̄OR ȳ
OR

0 1 0 z̄OR 0 −x̄OR

0 0 1 −ȳ
OR

x̄OR 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.19)

Using Eqs. (6.13) and (6.17), the local displacements of S can be related to
the local displacements of R through the following matrix equation

{d̄S} = [tt]{d̄R} (6.20)

where
[tt] = [tSO]−1[tRO] (6.21)

is the translational transformation matrix. In [tSO] and [tRO], the relations
x̄SO = x̄O − x̄S , ȳ

SO
= ȳ

O
− ȳ

S
, x̄OR = x̄R − x̄O, ȳ

OR
= ȳ

R
− ȳ

O
, and

z̄OR = z̄R − z̄O are used.
In the overall algebraic system, displacement components at joints must

be in directions of global coordinates while the displacement components at
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the interior nodes can be in the directions of global or local coordinates. In
the present numerical simulation, only the displacement components at joints
are transformed to express them as the global joint displacements. Therefore
the local element displacement vector {δ̄e} have to be transformed to obtain
a local-global element displacement vector. The transformation of a vector
can be accomplished through the use of the rotational transformation matrix
represented by Eq. (5.9). The relations between the global displacements and
the local displacements of the joint node R can be expressed by the following
equation

[tR] {dR} = {d̄R} (6.22)

where

[tR] =
[

[ter]
[ter]

]
(6.23)

is the joint transformation matrix with [ter] the rotational transformation ma-
trix defined by Eq. (5.9), and

{dR} = � uR vR wR θxR θyR θzR �T (6.24)

the global displacement vector of the joint node R. Using Eqs. (6.20) and
(6.22), the transformation relation between the local displacement vector of
the shear center and the global displacement vector of the joint node R can
be expressed by the following equation{

d̄S

}
= [te] {dR} (6.25)

where
[te] = [tt][tR] (6.26)

A transformation relation between the element displacement vector in
global coordinate system and the element displacement vector in local co-
ordinate system can be obtained through the use of [te]

[T e]{δe} = {δ̄e} (6.27)

where {δ̄e} is the local element displacement vector expressed by Eq. (6.10),

{δe} = � ue
R1 ve

R1 we
R1 θe

xR1 θe
yR1 θe

zR1 ...

ue
RNe ve

RNe we
RNe θe

xRNe θe
yRNe θe

zRNe �T (6.28)

the local-global element displacement vector, and

[T e] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[te]
1

1
.
.
.
1

1
[te]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.29)
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the element transformation matrix. Employing Eq. (6.27) in Eq. (5.4), the
discrete local-global element equilibrium equation represented by Eq. 5.14
can be obtained.

6.2.3 Discrete Element Internal Forces

The internal forces of a discrete element at an arbitrary point can be cal-
culated. Figure 6.4 shows the internal forces at the two element boundary
nodes and an interior point. Denote F̄ e

z̄ the axial force in the element. F̄ e
z̄ is

expressed as F̄ e
z̄ = (EA)e dw̄e

dz̄e . Using the EDQ discretization, the axial force
at an arbitrary point γ can be obtained:

F̄ e
z̄γ =

EeAe
(γ)

le

N̄e
A∑

k=1

Deζ
γkw̃e

k =
EeAe

(γ)

le
�Deζ

w̄γ�{δ̄e} (6.30)

where
�Deζ

w̄γ
� = � 0 0 Deζ

γ1 ... Deζ
γN̄e

A

0 0 0 � (6.31)

Employing Eq. (6.28) in Eq. (6.31), F̄ e
z̄γ can be related to the local-global

element displacement vector, which is written as:

F̄ e
z̄γ =

EeAe
(γ)

le
�Deζ

w̄γ�[T e]{δe} (6.32)

The distributions of bending moments in the element are

M̄e
x̄ = −EeIe

ȳȳ

d2v̄e
S

d(z̄e)2
, M̄e

ȳ = EeIe
x̄x̄

d2ūe
S

d(z̄e)2

Using the EDQ discretization, bending moments M̄e
x̄ at point β and M̄e

ȳ at
point α can be obtained:

Fig. 6.4. Internal forces at the two element boundary sections and an interior
cross section
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M̄e
x̄β = −

EeIe
ȳȳ(β)

(le)2

N̄e
Bv∑

j=1

Deζ2

βj ṽe
Sj = −

EeIe
ȳȳ(β)

(le)2
�Deζ2

v̄β �{δ̄e},

M̄e
ȳ(α) =

EeIe
x̄x̄(α)

(le)2

N̄e
Bu∑

i=1

Deζ2

αi ũe
Si =

EeIe
x̄x̄(α)

(le)2
�Deζ2

ūα �{δ̄e} (6.33)

where
�Deζ2

ūα � = � Deζ2

α1 0 0 ... 0 leDeζ2

αN̄e
Bu

0 �,

�Deζ2

v̄β � = � 0 Deζ2

β1 0 ... −leDeζ2

βN̄e
Bv

0 0 � (6.34)

Employing Eq. (6.27) in Eqs. (6.33), M̄e
xβ and M̄e

yα can be related to the
local-global element displacement vector, which are written as:

M̄e
x̄β = −

EeIe
ȳȳ(β)

(le)2
�Deζ2

v̄β �[T e]{δe}, M̄e
ȳα =

EeIe
x̄x̄(α)

(le)2
�Deζ2

ūα �[T e]{δe} (6.35)

The distributions of internal shear forces in the element are

Q̄e
x̄ = −Ee d

dz̄e

[
Ie
x̄x̄

d2ūe
S

d(z̄e)2

]
, Q̄e

ȳ = −Ee d

dz̄e

[
Ie
ȳȳ

d2v̄e
S

d(z̄e)2

]

Using the EDQ discretization, shear forces Q̄e
x̄ at point α and Q̄e

ȳ at point β
can be obtained:

Q̄e
x̄α = − Ee

(le)3

⎡
⎣dIe

x̄x̄(α)

dζ

N̄e
Bu∑

i=1

Deζ2

αi + Ie
x̄x̄(α)

N̄e
Bu∑

i=1

Deζ3

αi

⎤
⎦ ũe

Si

= − Ee

(le)3

[
dIe

x̄x̄(α)

dζ
�Deζ2

ūα � + Ie
x̄x̄(α)�Deζ3

ūα �
]
{δ̄e},

Q̄e
ȳβ = − Ee

(le)3

⎡
⎣dIe

ȳȳ(β)

dζ

N̄e
Bv∑

j=1

Deζ2

βi + Ie
ȳȳ(β)

N̄e
Bv∑

j=1

Deζ3

βj

⎤
⎦ ṽe

Sj

= − Ee

(le)3

[
dIe

ȳȳ(β)

dζ
�Deζ2

v̄β � + Ie
ȳȳ(β)�Deζ3

v̄β �
]
{δ̄e} (6.36)

where
�Deζ3

ūα � = � Dζ3

α1 0 0 ... 0 leDeζ3

αN̄e
Bu

0 �,

�Deζ3

v̄β � = � 0 Dζ3

β1 0 ... −leDeζ3

βN̄e
Bv

0 0 � (6.37)

Employing Eq. (6.27) in Eqs. (6.37), Q̄e
x̄α and Q̄e

ȳβ can be related to the
local-global element displacement vector, which are written as
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Q̄e
x̄α = − Ee

(le)3

[
dIe

x̄x̄(α)

dζ
�Deζ2

ūα � + Ie
x̄x̄(α)�Deζ3

ūα �
]

[T e]{δe},

Q̄e
ȳβ = − Ee

(le)3

[
dIe

ȳȳ(β)

dζ
�Deζ2

v̄β � + Ie
ȳȳ(β)�Deζ3

v̄β �
]

[T e]{δe} (6.38)

The distribution of Saint Venant torsion moment M̄st,e
z̄ in the element is

M̄st,e
z̄ = (GJ)e dθ̄e

z̄

dz̄e . Using the EDQ discretization, M̄st,e
z̄ at point δ can be

obtained

M̄st,e
z̄δ =

GeJe
(δ)

le

N̄e
T∑

l=1

Deζ
δl θ̃e

z̄l =
GeJe

(δ)

le
�Deζ

θ̄z̄δ
�{δ̄e} (6.39)

where

�Deζ

θ̄z̄δ
� = � 0 0 0 0 0 Deζ

α1 ... 0 0 Deζ
αN̄e

T
� (6.40)

6.3 Discrete Condition Equations of Joints

The DQEM requires that all condition equations at joints are satisfied. The
condition equations include compatibility conditions, conformability condi-
tions, and equilibriums of external and internal forces at joints. The condition
equations have to be expressed as discrete forms using EDQ.

6.3.1 Discrete Joint Compatibility Conditions

Let M j denote the number of elements connected to joint j. Also let Imj

denote the element node number of the mjth element connected to the joint.
Then Imj

is equal to 1 or the other element boundary node Nmj

of the mjth
element. Then the compatibility conditions, which are kinematic transition
conditions, of joint j can be expressed as follows:{

d1j

I1j

}
=
{

d2j

I2j

}
=...

{
dmj

Imj

}
=...

{
dMj

IMj

}
=
{
dj
}

(6.41)

where {dmj

Imj } and {dj} represent the globally nodal displacement vector of

node Imj

of the mjth element and the global joint displacement vector of
joint j, respectively.

6.3.2 Discrete Joint Equilibrium Conditions

For the DQEM frame analysis model, the equilibrium conditions of external
and internal forces at joints also have to be satisfied. Each equilibrium condi-
tion is either a natural transition condition or a natural boundary condition.
Let V̄ mj

x̄ = Q̄mj

x̄ −mmj

ȳ and V̄ mj

ȳ = Q̄mj

ȳ + mmj

x̄ denote the two lateral forces,
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F̄mj

z̄ denote the axial force, M̄mj

x̄ and M̄mj

ȳ denote the two bending moments,
and M̃mj

z̄ denote the twisting moment, of the mjth element at joint j. Also
let P j

x , P j
y and P j

z denote the three concentrated forces, and M j
x, M j

y and M j
z

denote the three concentrated moments, applied at the joint. Using the in-
verse transformation of Eq. (5.8) the force vectors formed by the nodal forces
at joint j for all elements connected to the joint can be transformed into the
global coordinate system. Let {V mj} = �V mj

x V mj

y Fmj

z Mmj

x Mmj

y Mmj

z �T

denote the globally nodal force vector. Then the equilibrium conditions of
joint j can be expressed as the following matrix equation:

Mj∑
mj=1

νmj{V mj} = {P j} (6.42)

where {P j} = �P j
x P j

y P j
z M j

x M j
y M j

z �T and the value of νmj

is expressed by
Eq. (5.21). The globally nodal force vector can be related to locally internal
force vector by the following equation

{V mj} = [tm
j

]T
(
{Q̄mj} − {P̄mj}

)
(6.43)

where {Q̄mj} = � Q̄mj

x̄ Q̄mj

ȳ F̄mj

z̄ M̄mj

x̄ M̄mj

ȳ M̄mj

z̄ �T is the locally element

internal force vector at the joint, and {P̄mj} = �mmj

ȳ −mmj

x̄ 0 0 0 0 �T . Using
Eqs. (6.32), (6.35), (6.38) and (6.43), Eq. (42) can be written as

Mj∑
mj=1

νmj

[tm
j

]T
(
[Smj

][Tmj

]{δmj} − {P̄mj}
)

= {P j} (6.44)

where [Smj

] is a matrix having six rows expressed by

�Smj

1 � = − Emj

(lmj )3

(
dImj

x̄x̄Imj

dζ
�Dmjζ2

ūImj � + Imj

x̄x̄Imj �Dmjζ3

ūImj �
)

,

�Smj

2 � = − Emj

(lmj )3

⎛
⎝dImj

ȳȳImj

dζ
�Dmjζ2

v̄Imj � + Imj

ȳȳImj �Dmjζ3

v̄Imj �
⎞
⎠ ,

�Smj

3 � =
Emj

Amj

Imj

lmj �Dmjζ

w̄Imj �, �Smj

4 � = −
Emj

Imj

ȳȳImj

(lmj )2
�Dmjζ2

v̄Imj �,

�Smj

5 � =
Emj

Imj

x̄x̄Imj

(lmj )2
�Dmjζ2

ūImj �, �Smj

6 � =
Gmj

Jmj

Imj

lmj �Dmjζ

θ̄z̄Imj � (6.45)

and
{P̄ j} = � mȳImj −mx̄Imj 0 0 0 0 �T
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6.3.3 Prescribed Joint Displacement or Rotation

A joint might have one or more prescribed displacement components. Let {d̂j
p}

and {dj
p} denote the vector formed by the prescribed displacement components

and the vector formed by the corresponding displacement components of the
joint, respectively. The condition equations of prescribed displacements can
be obtained from the following vector equation: {dj

p} = {d̂j
p}.

6.3.4 Inclined Roller

There are six kinematic condition equations. Among the six condition equa-
tions of the inclined roller, the three translational condition equations need to
be transformed while the three rotational conditions are the same as those of
a joint. The transformation procedure has been stated in Chapter 4 regarding
the analysis of truss structures. For this frame analysis model, the kinematic
condition equations can be expressed by the following matrix equation[

˙̃tr
]
{dj} = {d̃j} (6.46)

where [
˙̃tr
]

=
[

[t̃r] [0]
[0] [I]

]
(6.47)

is the transformation matrix, [0] is a 3 × 3 zero matrix, [I] is a 3 × 3 unit
matrix, and {d̃j} = � ũ ṽ w̃ θ̄x θ̄y θ̄z �T is the prescribed displacement vector
with the three translational components in x̃, ỹ and z̃ coordinate directions,
and the three rotational components in x, y and z coordinate directions.

There are five natural conditions which can be represented by the following
equation [

¨̃tr
] Mj∑

mj=1

νmj{V mj} = {P̃ j} (6.48)

where [
¨̃tr
]

=
[

[t̃r12] [0]
[0]T [I]

]
(6.49)

is a 5 × 5 transformation matrix with [t̃r12]T the 2 × 3 matrix used in Eqs.
(5.26) and (5.27), [0] a 2 × 3 zero matrix and [I] a 3 × 3 unit matrix, and
{P̃ j} = � P̃ j

x̃ P̃ j
ỹ M̄x M̄y M̄z �T . The five natural conditions can be expressed

by the element nodal displacement vectors at the joint on the inclined surface

[
¨̃tr
] Mj∑

mj=1

νmj

[tm
j

]T
(
[Smj

][Tmj

]{δmj} − {P̄mj}
)

= {P̃ j} (6.50)
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6.4 Assemblage

With the discrete joint compatibility conditions in mind, then by assembling
all discrete local-global element equilibrium equations represented by Eq.
(5.14) for elements having interior discrete points, joint equilibrium condition
equations (6.44) and (6.50), for the general joints and inclined rollers, respec-
tively, and the prescribed joint displacement conditions, the overall algebraic
system represented by Eq. (3.18) can be obtained. Like FEM, the assemblage
is based on an element by element procedure. The discrete local-global ele-
ment equilibrium equations (5.14) for element having interior discrete points,
and discrete element boundary forces existing in Eqs. (6.44) and (6.50) de-
fined at the two element boundary nodes and expressed by displacements, for
all elements, are directly assembled to the overall discrete equation system.

Another approach can be used to assemble all discrete fundamental re-
lations. This approach includes the twelve discrete equations for defining
the internal element boundary forces in the local element stiffness equation
to form another matrix equation. In this new matrix equation, each of the
first six component equations represents one equation for defining an in-
ternal force corresponding to each individual degree of freedom assigned to
node 1 while each of the last six component equations represents one equa-
tion for defining an internal force corresponding to each individual degree
of freedom assigned to the other element boundary node. The component
equations of the discrete local element equilibrium equation (5.14), for an
element having interior discrete points, are placed at the remaining rows.
This matrix equation is represented by Eq. (5.29). In Eq. (5.29), [κ̂e] is a
(N̄e

Bu
+ N̄e

Bv
+ N̄e

T + N̄e
A)× (N̄e

Bu
+ N̄e

Bv
+ N̄e

T + N̄e
A) matrix with the first and

last six rows filled by coefficients for calculating the twelve element boundary
forces,

{r̂e} = � − (V̄ e
x̄1 + mȳ1

) − (V̄ e
ȳ1 − mx̄1

) −F̄ e
z̄1 −M̄e

x̄1 −M̄e
ȳ1

−M̄e
z̄1 ... V̄ e

x̄Ne + mȳNe V̄ e
ȳNe − mx̄Ne

F̄ e
z̄Ne M̄e

x̄Ne M̄e
ȳNe M̄e

z̄Ne �T (6.51)

is the local element load vector. Using the element transformation matrix [T e]
represented by Eq. (6.29) in Eq. (5.29), the local-global element stiffness equa-
tion can be obtained. The transformed local-global element load vector, {r̃e},
represented by Eq. (5.33) are defined on the local-global coordinate system.
Then, the overall algebraic equation system represented by Eq. (3.18) can be
obtained by assembling the transformed local-global element stiffness equa-
tion, represented by Eq. (5.29), for all elements and by considering the joint
equilibrium equations, (6.42) and (6.48) for the general joints and inclined
rollers, respectively.
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6.5 Problems

For the analyses, the axial discretization adopts a two-noded element repre-
sented by a Lagrange DQ model. The first problem solved involves the analy-
sis of a two-dimensional frame structure subjected to uniformly distributed
and concentrated loads, and a support settlement. The structure is shown in
Fig. 6.5 in which joint A is a roller support. In the DQEM analysis, 10 elements
are used to represent the 10 beam members which form the frame structure.
Elements 3 and 4 which are subjected to uniformly distributed lateral loads
are three-noded elements with the interior middle node having one degree of
freedom representing the locally lateral displacement. These two elements use
the C1−C0−C1 EDQ model generated by using the equivalent Lagrange DQ
models with equally spaced nodes and with the two auxiliary nodes inside the
physical EDQ model. A discrete lateral equilibrium equation is defined at this
node. The other eight elements are two-noded elements adopting the Hermite
EDQ model. In carrying out the element basis discretization, the order of
EDQ discretization adopted is based on the external cause applied on the el-
ement. Consequently, different elements might adopt different orders of EDQ
approximation. By using this adaptive DQEM discretization, exact results can
be obtained. Certain numerical results are listed in Table 6.1.

The second problem solved involves a 3-D frame structure subjected to
distributed loads which is shown in Fig. 6.6. All three members are circular
bars. Three elements are used to model the three members with each ele-
ment boundary node having three translational degrees of freedom and three
rotational degrees of freedom. Element AB has five equally spaced nodes

Fig. 6.5. A two-dimensional frame structure subjected to uniformly distributed
and concentrated loads, and a support settlement
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Table 6.1. The results of a two-dimensional frame structure subjected to
uniformly distributed and concentrated loads, and a support settlement

Location C E

Displ. (mm) u –.464238×10−3 –.467829×10−3

(Exact sol.) (–.464238×10−3) (–.467829×10−3)

v .226480×10−3 –.240607×10−3

(Exact sol.) (.226480×10−3) (–.240607×10−3)

Location I G

Moment (N.m) M̄ȳ .109176×104 .453136×103

(Exact sol.) (.109176×104) (.453136×103)

Shear (N) Q̄x̄ .234755×103 .120953×103

(Exact sol.) (.234755×103) (.120953×103)

Fig. 6.6. A 3 − D frame structure subjected to distributed loads

while in addition to the two element boundary nodes element BC has one
center node. Each interior node has one degree of freedom used to repre-
sent the displacement in z direction and define a discrete flexural equilibrium
equation in that direction. These two elements uses the C1 − C0 − C1 EDQ
model generated by using the equivalent Lagrange DQ models with equally
spaced nodes and with the two auxiliary nodes inside the physical EDQ model.
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Table 6.2. The results of a 3-D frame structure subjected to distributed loads

Location B Exact sol.

Displ. (mm) u –.923014×10−5 –.923014×10−5

v –.630199×10−6 –.630199×10−6

w –.459265×10−4 –.459265×10−4

Rot. angle (rad) θx –.906850×10−7 –.906850×10−7

θy –.504007×10−7 –.504007×10−7

θz –.973273×10−8 –.973273×10−8

Location D Exact sol.

Moment (N.m) M̄x̄ .911577×101 .911577×101

M̄ȳ .434781×100 .434781×100

M̄z̄ –.194655×100 –.194655×100

Element BD has no interior node and adopts the Hermite EDQ model with
two grid nodes. No discrete equilibrium equation needs to be defined in this el-
ement. The EDQ discretization also adopts the optimum approach with which
the order of EDQ discretization is dependent on the external cause applied.
Considering, for example, the member AB which is subjected to a quadrati-
cally distributed force in z direction, the orders of EDQ approximations for
the flexural deflections in z and y directions are six and three, respectively.
By using this DQEM discretization, exact results can be obtained. Certain
numerical data are listed in Table 6.2.
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DQEM Analysis of Vibration
of Frames Considering Warping Torsion

This DQEM vibration analysis model considers the warping torsion of frame
members. The element basis discretization uses various EDQ models which
can automatically set compatibility and conformability conditions at the
joints. The discrete local element eigenvalue equations and element bound-
ary forces at the two element boundary nodes can be transformed using var-
ious transformation matrices. Only modal displacements at the two element
boundary nodes are transformed into the global coordinate system. The equi-
libriums of dynamic forces at joints are considered in constructing the overall
eigenvalue equation. The discrete local element eigenvalue equations are de-
fined on the local coordinates. All discrete equations are directly assembled
into the overall eigenvalue equation.

7.1 Fundamental Relations

Assume that the material is isotropic and homogeneous. A representative
cross section and the local coordinates are shown in Fig. 6.1. For the static
deflection analysis model introduced in Chapter 6, the effect of warping torsion
is neglected. In the vibration analysis model, the effect of warping torsion is
considered [103]. Let ω̂(x̄, ȳ) denote the warping function defined on the cross
section. The warping function can be defined by using Saint Venant’s torsion
theory. If the beam is thin-walled, the Leibnitz sectorial formula can also
be used to define the warping function. Let Iω̂ denote the first moment of
sectorial area. Also let ω̄ denote the normalized warping function. Then ω̄ can
be calculated by the following equation using the cross section area A and ω̂:
ω̄ = ω̂ − Iω̂/A.

Let Iω̄x̄, Iω̄x̄, J and Iω̄ω̄ denote the two warping cross products, Saint
Venant’s torsional constant and warping torsional constant with respect to
the centroid of the cross section, respectively. These section constants can be
defined by the following relations:



104 7 DQEM Analysis of Vibration of Frames Considering Warping Torsion

Iω̄x̄ =
∫ ∫

A

ω̄x̄dx̄dȳ, Iω̄ȳ =
∫ ∫

A

ω̄ȳdx̄dȳ,

J =
∫ ∫

A

[(
∂ω̄

∂x̄
− ȳ

)2

+
(

∂ω̄

∂ȳ
+ x̄

)2]
dx̄dȳ, Iω̄ω̄ =

∫ ∫
A

ω̄2dx̄dȳ (7.1)

The coordinates, (x̄S , ȳS) of the shear center can be defined by the following
relations

x̄S = −Iω̄ȳ

Iyy
, ȳS =

Iω̄x̄

Ixx
(7.2)

The polar moment of inertia Is and warping torsional constant I
(s)
ω̄ω̄ with

respect to the shear center can be defined by the following relations

Is = Ixx + Iyy + A(x2
S + y2

S), I
(s)
ω̄ω̄ = Iω̄ω̄ − ȳ2

SIx̄x̄ − x̄2
SIȳȳ (7.3)

Let ŪS and V̄S denote the two lateral modal displacements of the shear
center, W̄ denote the average axial modal displacement and Θ̄z̄ denote the
modal angle of twist of the cross section, with respect to the local coordinate
system. Also let ω denote the natural frequency. For a nonprismatic beam of
length l, the dynamic equilibrium equations considering elastic restoring forces
and inertia forces can be expressed by the following differential eigenvalue
equations:

E
d2

dz̄2

(
Ix̄x̄

d2ŪS

dz̄2

)
− ρAω2ŪS + ρω2 d

dz̄

(
Ix̄x̄

dŪS

dz̄

)
− ȳSρAω2Θ̄z̄ = 0,

E
d2

dz̄2

(
Iȳȳ

d2V̄S

dz̄2

)
− ρAω2V̄S + ρω2 d

dz̄

(
Iȳȳ

dV̄S

dz̄

)
+ x̄SρAω2Θ̄z̄ = 0,

−E
d

dz̄

(
A

dW̄

dz̄

)
− ρω2AW̄ = 0,

−ȳSρAω2ŪS + E
d2

dz̄2

(
I
(s)
ω̄ω̄

d2Θ̄z̄

dz̄2

)
+ x̄SρAω2V̄S − G

d

dz̄

(
J

dΘ̄z̄

dz̄

)

−ρω2IsΘ̄z̄ + ρω2 d

dz̄

(
I
(s)
ω̄ω̄

d3Θ̄z̄

dz̄

)
= 0 (7.4)

Assume that no rigid body is attached to the ends, the natural boundary
conditions are:

EIx̄x̄
d2ŪS

dz̄2
= 0, E

d

dz̄

(
Ix̄x̄

d2ŪS

dz̄2

)
+ ρIx̄x̄ω2 ŪS

dz̄
= 0, EIȳȳ

d2V̄S

dz̄2
= 0,

E
d

dz̄

(
Iȳȳ

d2V̄S

dz̄2

)
+ ρIȳȳω2 dV̄S

dz̄
= 0, EA

dW̄

dz̄
= 0, EI

(s)
ω̄ω̄

d2Θ̄z̄

dz̄2
= 0,
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−E
d

dz̄

(
I
(s)
ω̄ω̄

d2Θ̄z̄

dz̄2

)
+ GJ

dΘ̄z̄

dz̄
− ρI

(s)
ω̄ω̄ω2 dΘ̄z̄

dz̄
= 0 (7.5)

The kinematic boundary conditions are:

dŪS

dz̄
= Θ̂ȳS , ŪS = ÛS , −dV̄S

dz̄
= Θ̂x̄S , V̄S = V̂S , W̄ = Ŵ ,

dΘ̄z̄

dz̄
= β̂z̄, Θ̄z̄ = Θ̂z̄ (7.6)

on the kinematic boundary, where Θ̂ȳS , ÛS , Θ̂x̄S , V̂S , Ŵ , β̂z̄ and Θ̂z̄ are
prescribed values.

7.2 Discrete Element Equations

7.2.1 Discrete Element Eigenvalue Equations

The element degrees of freedom for defining the axial, flexural and torsional
discretizations must equal the corresponding element basis discrete fundamen-
tal relations for constructing the overall discrete equation system. In addition
to the degrees of freedom for representing modal displacement parameters, the
degrees of freedom for representing derivatives of a local component of modal
displacement with respect to z̄e at an element boundary node can also be
assigned to that element boundary node. The selection of derivatives can be
flexible. In order to automatically set the kinematic transition conditions and
kinematic boundary conditions by only using the degrees of freedom assigned
to the element boundary nodes, the degrees of freedom representing the two
first order derivatives of flexural deflections must be assigned to the element
boundary nodes. In the present DQEM frame vibration analysis model, only
the degrees of freedom which are necessary for automatically setting the kine-
matic transition conditions and kinematic boundary conditions are assigned
to the element boundary nodes.

Since the highest order of the spacial derivatives of axial modal displace-
ment existing in the third one of Eqs. (7.4) is two, without using a specific
technique to calculate the respective two equivalent nodal inertia forces at
the two element boundary nodes, and include them into the related natural
transition conditions or natural boundary conditions, the order of approxi-
mate axial modal displacement must at least be two and the element must at
least have one discrete point for defining the discrete element eigenvalue equa-
tions of axial vibration. The DQEM linear element is equivalent to the FEM
linear element. Since the highest order of the spacial derivatives of the two lat-
eral modal displacements and the modal angle of twist is four, without using
a specific technique to calculate the respective four equivalent nodal inertia
forces at the two element boundary nodes, and include them into the related
natural transition conditions or natural boundary conditions, the orders of
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approximate lateral modal displacements and modal angle of twist must at
least be four and each of the related three differential eigenvalue equations
needs at least one discrete point for defining one of its discrete element eigen-
value equation. The DQEM cubic element is equivalent to the FEM Hermite
cubic element. The discrete points for defining the discrete element eigen-
value equations can be either in the interior of the element or on the element
boundary.

For the present DQEM vibration analysis model of frame structures, only
interior discrete points are used to define the discrete element eigenvalue equa-
tions. Figure 7.1 shows the element with the two element boundary nodes and
four representative interior nodes with the assigned modal displacement pa-
rameters, ŪS , V̄S , W̄ and Θ̄z̄, used to define various EDQ discretizations at
the discrete points.

Figure 7.2 shows the element with each of the four interior nodes a repre-
sentative node for defining the element basis EDQ discretization of a deriv-
ative of a modal displacement among ŪS , V̄S , W̄ and Θ̄z̄. Let the origin of
the local coordinate system be located at node 1 and the range of the natural
coordinate ζ be 0. ≤ ζ ≤ 1. Using EDQ, the discrete equation of the first of

Fig. 7.1. The two element boundary nodes and four representative interior nodes
with the assigned modal deformation parameters used to define various EDQ

discretizations at the discrete points

Fig. 7.2. Representative interior discrete points at which various discrete element
eigenvalue equations are defined
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Eqs. (7.4) at a discrete point α in element e can be expressed as

Ee

(le)4

[
d2Ie

x̄x̄(α)

dζ2

N̄e
Bu∑

i=1

Deζ2

αi + 2
dIe

x̄x̄(α)

dζ

N̄e
Bu∑

i=1

Deζ3

αi + Ie
x̄x̄(α)

N̄e
Bu∑

i=1

Deζ4

αi

]
Ũe

Si

−ρeω2

{[
Ae

(α)δαi − 1
(le)2

(
dIe

x̄x̄(α)

dζ

N̄e
Bu∑

i=1

Deζ
αi + Ie

x̄x̄(α)

N̄e
Bu∑

i=1

Deζ2

αi

)]
Ũe

Si

+ȳe
S(α)A

e
(α)δαlΘ̃

e
z̄l

}
= 0, α = 2, ..., N̂e

Bu
− 1 (7.7)

The discrete equation of the second of Eqs. (7.4) at a discrete point β can be
similarly expressed as

Ee

(le)4

[
d2Ie

ȳȳ(β)

dζ2

N̄e
Bv∑

j=1

Deζ2

βj + 2
dIe

ȳȳ(β)

dζ

N̄e
Bv∑

j=1

Deζ3

βj + Ie
ȳȳ(β)

N̄e
Bv∑

j=1

Deζ4

βj

]
Ṽ e

Sj

−ρeω2

{[
Ae

(β)δβj − 1
(le)2

(
dIe

ȳȳ(β)

dζ

N̄e
Bv∑

j=1

Deζ
βj + Ie

ȳȳ(β)

N̄e
Bv∑

j=1

Deζ2

βj

)]
Ṽ e

Sj

−xe
S(β)A(β)δβlΘ̃

e
z̄l

}
= 0, β = 2, ..., N̂e

Bv
− 1 (7.8)

The discrete equation of the third of Eqs. (7.4) at a discrete point γ can be
expressed as

− Ee

(le)2

(
dAe

(γ)

dζ

N̄e
A∑

k=1

Deζ
γk + Ae

(γ)

N̄e
A∑

k=1

Deζ2

γk

)
W̃ e

k − ρeω2Ae
(γ)δγkW̃ e

k

= 0, γ = 2, ..., N̂e
A − 1 (7.9)

The discrete equation of the fourth of Eqs. (7.4) at a discrete point δ can be
expressed as

[
Ee

(le)4

(
d2I

(s)e
ω̄ω̄(δ)

dζ2

N̄e
T∑

l=1

Deζ2

δl + 2
dI

(s)e
ω̄ω̄(δ)

dζ

N̄e
T∑

l=1

Deζ3

δl + I
(s)e
ω̄ω̄(δ)

N̄e
T∑

l=1

Deζ4

δl

)

− Ge

(le)2

(
dJe

(δ)

dζ

N̄e
T∑

l=1

Deζ
δl +Je

(δ)

N̄e
T∑

l=1

Deζ2

δl

)]
Θ̃e

z̄l+ρeω2

{
−ȳe

S(δ)A(δ)δ(δ)iŨ
e
Si

+x̄e
S(δ)A(δ)δδj Ṽ

e
Sj −

[
Ie
p(δ)δδl +

1
(le)2

(
dI

(s)e
ω̄ω̄(δ)

dζ

N̄e
T∑

l=1

Deζ
δl

+I
(s)e
ω̄ω̄(δ)

N̄e
T∑

l=1

Deζ2

δl

)]
Θ̃e

z̄l

}
= 0, δ = 2, ..., N̂e

T − 1 (7.10)
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In Eqs. (7.7) to (7.10), the derivatives of section constants at the related
discrete points can also be calculated by the DQ. The formulas for the com-
putation are listed in Eqs. (6.9) except for the computation of the derivatives
of I

(s)e
ω̄ω̄ . Let Ñe

I3 denote the number of nodes for defining the discretization
of the derivatives of I

(s)e
ω̄ω̄ . Then the derivatives at the related discrete points

can be expressed by the following DQ discretization equations

dI
(s)e
ω̄ω̄δ

dζ
=

Ñe
I3∑

l̄=1

D̄eζ

δl̄
I
(s)e

ω̄ω̄l̄
,

d2I
(s)e
ω̄ω̄δ

dζ2
=

Ñe
I3∑

l̄=1

D̄eζ2

δl̄
I
(s)e

ω̄ω̄l̄
(7.11)

Using Eqs. (7.7) to (7.10), the following discrete local element eigenvalue equa-
tion can be constructed

([κ̄e] − ω2[m̄e]){ϑ̄e} = {0} (7.12)

where [κ̄e] is the local element stiffness coefficient matrix, [m̄e] is the local
element mass coefficient matrix

{ϑ̄e} = � Ūe
S1 V̄ e

S1 W̄ e
1 Θ̄e

x̄S1 Θ̄e
ȳS1 Θ̄e

z̄1 β̄e
z̄1 0 ... 0 Ūe

SNe
Bu

V̄ e
SNe

Bv

W̄ e
Ne

A
Θ̄e

x̄SNe
Bv

Θ̄e
ȳSNe

Bu

Θ̄e
z̄Ne

T
β̄e

z̄Ne
T
�T (7.13)

the local element modal displacement vector. In the above equation, Θ̄e
x̄S , Θ̄e

ȳS

and β̄e
z̄ represent the modal rotation angles −dV̄ e

S

dz̄ = − 1
le

dV̄ e
S

dζ , dŪe
S

dz̄ = 1
le

dŪe
S

dζ

and the modal angle of twist per unit length dΘ̄e
z̄

dz̄ = 1
le

dΘ̄e
z̄

dζ , respectively. If the
element is axially rigid, W̄ e

i in {ϑ̄e} and the related columns in [κ̄e] can also be
eliminated. If the element is flexurally rigid in a specific direction, the lateral
modal displacements and their derivatives in {ϑ̄e} and the related columns in
[κ̄e] can also be eliminated. Furthermore, if the element is torsional rigid, the
modal angles of twist and the modal angles of twist per unit length in {ϑ̄e}
and the related columns in [κ̄e] can be eliminated. It should be noted that the
local element mass coefficient matrix has to be similarly treated.

7.2.2 Coordinate Transformations

In order to solve frame problems, the discrete element fundamental relations of
all discrete elements are assembled into the overall discrete eigenvalue system.
All elements connected to a joint must have the same position, which is the
joint node, to define the global modal displacements at that position and
express the modal displacements of the element boundary nodes as the global
modal displacements of that position. Thus the coordinate transformations
have to be carried out. Consider a point O on the cross section. Since the
cross section is rigid in its own plane, the local modal displacements at O can
be related to the local modal displacements at the shear center S
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{ϕ̄O} = [t̄SO]{ϕ̄} (7.14)

where

{ϕ̄O} = � ŪO V̄O W̄O Θ̄x̄O Θ̄ȳO Θ̄z̄O β̄z̄O �T (7.15)

is the local modal displacement vector of point O, and

{ϕ̄} = � ŪS V̄S W̄ Θ̄x̄S Θ̄ȳS Θ̄z̄ β̄z̄ �T (7.16)

and

[t̄SO] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 −ȳSO 0
0 1 0 0 0 x̄SO 0
0 0 1 ȳO −x̄O 0 ω̃O

0 0 0 1 0 0 −ȳSO

0 0 0 0 1 0 x̄SO

0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.17)

with ω̃O = ω̄(x̄O, ȳO) − x̄OȳS + ȳOx̄S . If the rigid joint has a finite size, O
will be at the intersection of the beam and the rigid joint. Then the relations
between the local modal displacements of O and the local modal displacements
of a point R on the rigid joint have to be constructed. R is the joint node
used to define the transition conditions. If the rigid joint does not have a
finite size, O coincides with R. Let x̄R, ȳ

R
and z̄R denote the coordinates of

R. The relations between the local modal displacements of point O and the
local modal displacements ŪR, V̄R, W̄R, Θ̄x̄R, Θ̄ȳR, Θ̄z̄R and β̄z̄R of point R
are defined by

{ϕ̄A} = [t̄RO]{ϕ̄R} (7.18)

where

{ϕ̄R} = � ŪR V̄R W̄R Θ̄x̄R Θ̄ȳR Θ̄z̄R β̄z̄R �T (7.19)

and

[t̄RO] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 −z̄OR ȳOR 0
0 1 0 z̄OR 0 −x̄OR 0
0 0 1 −ȳOR x̄OR 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.20)

Using Eqs. (7.14) and (7.19), the local modal displacements of S can be
related to the local modal displacements of R through the following matrix
equation

{ϕ̄} = [t̄t] {ϕ̄R
} (7.21)

where
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[t̄t] = [t̄SO]−1[t̄RO] (7.22)

is the translational transformation matrix.
In the overall discrete eigenvalue system, modal displacement components

at joints are in directions of global coordinates, while the modal displacement
components at the interior nodes can be in the directions of global or local
coordinates. In the present numerical simulation, only the modal displacement
components at joints are transformed to express them as the global joint modal
displacements. Therefore the local element modal displacement vector {ϑ̄e}
have to be transformed to obtain a local-global element modal displacement
vector. The modal angle of twist per unit length of the beam, β̄z̄, can also
be expressed by the global components of the modal angle of twist per unit
length, βx, βy and βz, through the following transformation equation

�ter3�{β} = β̄z̄ (7.23)

where �ter3� is a row vector defined by the third row of the rotational trans-
formation matrix [ter] expressed by Eq. (5.9) and {β} = �βx βy βz �T . Then
the relations between the global modal displacements and the local modal
displacements of the joint node R can be expressed by the following equation

[t̄R] {ϕ
R
} = {ϕ̄

R
} (7.24)

where

[t̄R] =

⎡
⎣ [ter]

[ter]
�ter3�

⎤
⎦ (7.25)

is the joint transformation matrix, and

{ϕ
R
} = � UR VR WR ΘxR ΘyR ΘzR βx βy βz �T (7.26)

is the global modal displacement vector of joint node R. Using Eqs. (7.21)
and (7.24), the transformation relation between the local modal displacement
vector of S and the global modal displacement vector of the joint node R can
be expressed by the following equation

{ϕ̄} = [t̄e] {ϕR
} (7.27)

where
[t̄e] = [t̄t][t̄R] (7.28)

A transformation relation between the element modal displacement vector
in global coordinate system and the element modal displacement vector in
local coordinate system can be obtained through the use of [t̄e]

[T̄ e]{ϑe} = {ϑ̄e} (7.29)

where {ϑ̄e} is the local element modal displacement vector,
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{ϑe} = �Ue
R1 V e

R1 W e
R1 Θe

xR1 Θe
yR1 Θe

zR1 βe
xR1 βe

yR1 βe
zR1 ... Ue

RNe

V e
RNe W e

RNe Θe
xRNe Θe

yRNe Θe
zRNe βe

xRNe βe
yRNe βe

zRNe �T (7.30)

the local-global element modal displacement vector, and [T̄ e] the element
transformation matrix. [T̄ e] can be expressed by using [t̄e] to replace [te] in
Eq. (6.30). Employing Eq. (7.29) in Eq. (7.12), the following matrix equation
can be obtained

([κ̄e] − ω2[m̄e])[T̄ e]{ϑe} = {0} (7.31)

The above equation can be rewritten as

([κe] − ω2[me]){ϑe} = {0}, (7.32)

where
[κe] = [κ̄e][T̄ e]; and[me] = [m̄e][T̄ e] (7.33)

are transformed local-global element stiffness coefficient matrix, and local-
global element mass coefficient matrix, respectively. Equation (7.32) is the
discrete local-global element eigenvalue equation in which the local-global
element modal displacement vector is defined on both of local and global
coordinate systems.

7.2.3 Discrete Element Boundary Forces

Figure 7.3 shows the internal forces at the two element boundary nodes and
an interior point. For calculating the internal forces of a discrete element at a
specific point, certain local derivatives of modal displacements at that point
must be discretized. The discrete equations can be expressed by the local-
global element modal displacement vector. Using the mapping technique, the
mth order derivative of ŪS with respect to z̄e at point α can be expressed as

dmŪe
Sα

d(z̄e)m
=

1
(le)m

�Deζm

ūα �{ϑ̄e} (7.34)

Fig. 7.3. Internal forces at the two element boundary nodes and an interior point
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where �Deζm

ūα � = �Deζm

α1 0 0 ... 0 leDeζm

αN̄e
Bu

0 0 �. The introduction of Eq. (7.29)
into Eq. (7.34) leads to the following equation

dmŪe
Sα

d(z̄e)m
=

1
(le)m

�Deζm

ūα �[T̄ e]{ϑe} (7.35)

The mth order derivatives of V̄ e
S , W̄ e and Θ̄e

z̄ with respect to z̄e at discrete
points β, γ and δ can be similarly obtained

dmV̄ e
Sβ

d(z̄e)m
=

1
(le)m

�Deζm

v̄β �[T̄ e]{ϑe} (7.36)

dmW̄ e
γ

d(z̄e)m
=

1
(le)m

�Deζm

w̄γ �[T̄ e]{ϑe} (7.37)

dmΘ̄e
z̄δ

d(z̄e)m
=

1
(le)m

�Deζm

θ̄z̄δ
�[T e]{ϑe} (7.38)

where

�Deζm

v̄β � = � 0 Deζm

β1 0 ... −leDeζm

αN̄e
Bv

0 0 0 � (7.39)

�Deζm

w̄γ � = � 0 0 Deζm

γ1 ... Deζm

γN̄e
A

0 0 0 0 � (7.40)

�Deζm

θ̄z̄δ
� = � 0 0 0 0 0 Deζm

δ1 ... 0 0 Deζm

δ(N̄e
T
−1)

leDeζm

δN̄e
T

� (7.41)

The internal forces at a discrete point can be calculated by using the
local-global element modal displacement vector. Following the procedures for
calculating the internal forces used in the static deflection analysis model,
the axial force at the element boundary node Ie without considering a body
attached to the node can be expressed by

F̄ e
z̄Ie = EeAe

Ie

dW̄ e
Ie

dz̄e
=

EeAe
Ie

(le)
�Deζ

w̄Ie�[T̄ e]{ϑe} (7.42)

The bending moment M̄e
x̄Ie at the element boundary node Ie can be expressed

by

M̄e
x̄Ie = −EeIe

ȳȳIe

d2V̄ e
SIe

d(z̄e)2
= −EeIe

ȳȳIe

(le)2
�Deζ2

v̄Ie�[T̄ e]{ϑe} (7.43)

Then bending moment M̄e
ȳIe at the element boundary node Ie can be ex-

pressed by

M̄e
ȳIe = EeIe

x̄x̄Ie

d2Ūe
SIe

d(z̄e)2
=

EeIe
x̄x̄Ie

(le)2
�Deζ2

ūIe�[T̄ e]{ϑe} (7.44)

The lateral forces V̄ e
x̄Ie at an element boundary node Ie can be expressed by
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V̄ e
x̄Ie = −Ee d

dz̄e

[
Ie
x̄x̄Ie

d2Ūe
SIe

d(z̄e)2

]
− ρeIe

x̄x̄Ieω2 ∂Ūe
SIe

∂z̄e

= − Ee

(le)3

(
dIe

x̄x̄Ie

dζ
�Deζ2

ūIe� + Ie
x̄x̄Ie�e

IeD
eζ3

ūIe�
)

[T̄ e]{ϑe}

−ρeIe
x̄x̄Ie

le
�Deζ

ūIe�[T̄ e]{ϑe} (7.45)

The lateral forces V̄ e
ȳIe at an element boundary node Ie can be expressed by

V̄ e
ȳIe = −Ee d

dz̄e

(
Ie
ȳȳIe

d2V̄ e
SIe

d(z̄e)2

)
− ρeIe

ȳȳIeω2 ∂V̄ e
SIe

∂z̄e

= − Ee

(le)3

(
dIe

ȳȳIe

dζ
�Deζ2

v̄Ie� + Ie
ȳȳIe�Deζ3

v̄Ie�
)

[T̄ e]{δe}

−ρeIe
ȳȳIe

le
�Deζ

v̄Ie�[T̄ e]{ϑe} (7.46)

The bimoment M̄e
ω̄Ie at the element boundary node Ie can be expressed by

M̄e
ω̄Ie = EeI

(s)e
ω̄ω̄Ie

d2Θ̄e
z̄Ie

d(z̄e)2
=

EeI
(s)e
ω̄ω̄Ie

(le)2
�Deζ2

θ̄z̄Ie�[T̄ e]{ϑe} (7.47)

The warping torsion moment M̄ω,e
z̄Ie at the element boundary node Ie can be

expressed by

M̄ω,e
z̄Ie = −Ee d

dz̄e

(
I
(s)e
ω̄ω̄Ie

d2Θ̄e
z̄Ie

d(z̄e)2

)
− ρeI

(s)e
ω̄ω̄Ieω

2 ∂Θ̄e
z̄Ie

∂z̄e

= − Ee

(le)3

(
dI

(s)e
ω̄ω̄Ie

dζ
�Deζ2

θ̄z̄Ie� + I
(s)e
ω̄ω̄Ie�Deζ3

θ̄z̄Ie�
)

[T̄ e]{ϑe}

−ρeI
(s)e
ω̄ω̄Ie

le
�Deζ

θ̄z̄Ie�[T̄ e]{ϑe} (7.48)

The Saint Venant torsion moment M̄st,e
z̄Ie at the element boundary node Ie can

be expressed by

M̄st,e
z̄Ie = GeJe

Ie

dΘ̄e
z̄Ie

dz̄e
=

GeJe
Ie

le
�Deζ

θ̄z̄Ie�[T e]{ϑe} (7.49)

The total torque M̄e
z̄Ie at the element boundary node Ie can be expressed by

M̄e
z̄Ie = M̄ ω̄,e

z̄Ie + M̄st,e
z̄Ie (7.50)

7.3 Discrete Condition Equations of Joints

The DQEM requires that all condition equations at joints are satisfied. The
condition equations have to be expressed as discrete forms. The compatibility
conditions, which are kinematic transition conditions, of joint j can be ex-
pressed by using the modal displacement vectors in Eq. (6.41). The natural
transition conditions involve the equilibriums of forces at joints.
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7.3.1 Discrete Dynamic Equilibrium Equations of Joints

For the DQEM model, the dynamic equilibrium conditions of elastic restor-
ing and inertia forces at joints also have to be satisfied. Let V̄ mj

x̄ and V̄ mj

ȳ

denote the two lateral forces, F̄mj

z̄ denote the axial force, M̄mj

x̄ and M̄mj

ȳ

denote the two bending moments, M̄mj

ω̄ denote the bimoment, and M̄mj

z̄ de-
note the total torque, of the mjth element at joint j. Consider that a mass
M̃ j with a finite volume is attached to the joint, and let P̂ j

x , P̂ j
y and P̂ j

z de-
note the three translational inertia forces, and M̂ j

x, M̂ j
y and M̂ j

z denote the
three inertia moments of the mass. Using the inverse transformation of Eq.
(5.9), the force vectors formed by the nodal forces at joint j for all elements
connected to the joint can be transformed into the global coordinate system.
Let {V mj} = �V mj

x V mj

y Fmj

z Mmj

x Mmj

y Mmj

z Mmj

ω̄ �T denote the globally
nodal force vector of the mjth element at joint j. Then the dynamic equilib-
rium conditions of joint j can be expressed as the following matrix equation:

Mj∑
mj=1

νmj{V mj} = {P̂ j} (7.51)

where

{P̂ j} = � P̂ j
x P̂ j

y P̂ j
z M̂ j

x M̂ j
y M̂ j

z 0 0 0 �T (7.52)

is the joint inertia force vector and the value of νmj

is expressed by Eq. (5.21).
The globally nodal force vector of the mjth element at joint j can be related
to the locally nodal force vector by the following equation

{V mj} = [t̄m
j

]T {Q̄mj} (7.53)

where

{Q̄mj} = � V̄ mj

x̄ V̄ mj

ȳ F̄mj

z̄ M̄mj

x̄ M̄mj

ȳ M̄mj

z̄ M̄mj

ω̄ �T (7.54)

is the locally element nodal force vector of the element at the joint, and [tm
j

]
is the joint transformation matrix.

Let (xC , y
C
, zC) denote the global coordinates of the center C of a rigid

body with the mass M̃ j . The mass is rigidly connected to the joint node R.
Also let uj

iR and θj
jR denote the translational displacements and deflection

slopes, respectively, of the joint node R. The translational inertia forces can
be expressed by P̌ j

i = −M̃ j ∂2

∂t2 (uj
iR + εijkθj

jRxkRC), where εijk is the permu-
tation symbol and xkRC = xkC − xkR. Considering the harmonic motion, the
components of translational inertia forces of the vibration can be expressed
by

P̂ j
xR = M̃ jω2

(
U j

R + zRCΘj
yR − y

RC
Θj

zR

)
,



7.3 Discrete Condition Equations of Joints 115

P̂ j
yR = M̃ jω2

(
V j

R + xRCΘj
zR − z

RC
Θj

xR

)
,

P̂ j
zR = M̃ jω2

(
W j

R + y
RC

Θj
xR − xRCΘj

yR

)
(7.55)

Let Hj
iC denote the angular momentum of the mass M̃ j with respect to C. Also

let Îj

îĵ
denote the inertia tensor of the mass M̃ j with respect to the coordinate

system (x̂, ŷ, ẑ) which has the origin located at C and the coordinate axes x̂,
ŷ and ẑ oriented in x, y and z directions, respectively. The inertia moments

can be expressed by M̌ j
iR = −∂Hj

iC

∂t + M̃ jεijkxjRC(∂2xkR

∂t2 + εklm
∂2θj

lR

∂t2 xmRC).
Considering the harmonic motion, the components of inertia moments of the
vibration can be expressed by

M̂ j
xR = ω2

{
Ĩx̂x̂Θj

xR − Ĩj
x̂ŷΘj

yR − Ĩj
x̂ẑΘ

j
zR + M̃ j

[
y

RC
W j

R − zRCV j
R

+(z2
RC + y2

RC)Θj
xR − y

RC
xRCΘj

yR − zRCxRCΘj
zR

]}
,

M̂ j
yR = ω2

{
−Ĩx̂ŷΘj

xR + Ĩj
ŷŷΘj

yR − Ĩj
ŷẑΘ

j
zR + M̃ j

[
zRCU j

R − xRCW j
R

−xRCy
RC

Θj
xR + (x2

RC + z2
RC)Θj

yR − zRCy
RC

Θj
zR

]}
,

M̂ j
zR = ω2

{
−Ĩx̂ẑΘ

j
xR − Ĩj

ŷẑΘ
j
yR + Ĩj

ẑẑΘ
j
zR + M̃ j

[
xRCV j

R − y
RC

U j
R

−xRCzRCΘj
xR − y

RC
zRCΘj

yR + (x2
RC + y2

RC
)Θj

zR

]}
(7.56)

Using Eqs. (7.42) to (7.50), and Eqs. (7.52) to (7.56), Eq. (7.51) can be
rewritten as

Mj∑
mj=1

νmj

(
[t̄m

j

]T [S̄mj

] − ρmj

ω2[t̄m
j

126][Ŝ
mj

]
)

[T̄mj

]{ϑmj}

−ω2[M̂ j ]{ϕj
R} = 0 (7.57)

where [S̄mj

] is a matrix having seven rows with the first five rows same as
those listed in Eq. (6.46) and the last two rows expressed by
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�Smj

6 � = − Emj

(lmj )3

(
dI

(s)mj

ω̄ω̄Imj

dζ
�Dmjζ2

θ̄z̄Imj � + I
(s)mj

ω̄ω̄Imj �Dmjζ3

θ̄z̄Imj �
)

+
Gmj

Jmj

Imj

lmj �Dmjζ

θ̄z̄Imj �, �Smj

7 � =
Emj

I
(s)mj

ω̄ω̄Imj

(lmj )2
�Dmjζ2

θ̄z̄Imj � (7.58)

[Ŝmj

] is a matrix having three rows expressed by

�Ŝmj

1 � =
Imj

x̄x̄Imj

lmj �Dmjζ

ūImj �, �Ŝmj

2 � =
Imj

ȳȳImj

lmj �Dmjζ

v̄Imj �,

�Ŝmj

3 � = −
I
(s)mj

ω̄ω̄Imj

lmj �Dmjζ

θ̄z̄Imj � (7.59)

and [t̄m
j

126] is a matrix having three rows and is expressed by

[t̄m
j

126] =

⎡
⎢⎣ �t̄mj

1 �
�t̄mj

2 �
�t̄mj

6 �

⎤
⎥⎦ (7.60)

with �t̄mj

1 �, �t̄mj

2 � and �t̄mj

6 � row vectors representing the first, second and
sixth rows, respectively, of [t̄m

j

], {ϕj
R} the global modal displacement vector

of the joint node R of joint j, and [M̂ j ] a matrix having seven rows expressed
by

�M̂ j
1� = � −M̃ j 0 0 0 −zRCM̃ j yRC

M̃ j 0 0 0 �,
�M̂ j

2� = � 0 −M̃ j 0 zRCM̃ j 0 −xRCM̃ j 0 0 0 �,
�M̂ j

3� = � 0 0 −M̃ j −yRC
M̃ j xRCM̃ j 0 0 0 0 �,

�M̂ j
4� = � 0 zRCM̃ j −y

RC
M̃ j −Ĩj

x̂x̂ − (y2
RC + z2

RC)M̃ j

Ĩj
x̂ŷ + y

RC
xRCM̃ j Ĩj

x̂ẑ + zRCxRCM̃ j 0 0 0 �,

�M̂ j
5� = � −zRCM̃ j 0 xRCM̃ j Ĩj

x̂ŷ + xRCy
RC

M̃ j

−Ĩj
ŷŷ − (x2

RC + z2
RC)M̃ j Ĩj

ŷẑ + zRCy
RC

M̃ j 0 0 0 �,

�M̂ j
6� = � y

RC
M̃ j −xRCM̃ j 0 Ĩj

x̂ẑ + xRCzRCM̃ j Ĩj
x̂ŷ + y

RC
zRCM̃ j

−Ĩj
x̂ẑ − (x2

RC + y2
RC)M̃ j 0 0 0 �

�M̂ j
7� = � 0 0 0 0 0 0 0 0 0 � (7.61)
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7.3.2 Inclined Roller

There are nine kinematic condition equations. Among the nine condition equa-
tions of the inclined roller, the three translational condition equations need to
be transformed while the six rotational conditions are the same as those of a
joint. The procedure of transformation has been stated in Chapter 4 regarding
the analysis of truss structures. For this frame analysis model, the kinematic
condition equations can be expressed by the following matrix equation[

˙̃tr
]
{dj} = {d̃j} (7.62)

where [
˙̃tr
]

=

⎡
⎣
[

˙̃tr
]

[0]

[0]T [I]

⎤
⎦ (7.63)

is the transformation matrix, [0] is a 3× 6 zero matrix, [I] is a 6× 6 unit ma-
trix, and {d̃j} = � Ũ Ṽ W̃ Θ̄x Θ̄y Θ̄z β̄x β̄y β̄z �T is the prescribed displace-
ment vector with the three translational components in x̃, ỹ and z̃ coordinate
directions, and the six rotational components in x, y and z coordinate direc-
tions.

There are eight natural conditions which can be represented by the follow-
ing equation [

¨̃tr
] Mj∑

mj=1

νmj{V mj} = {P̂ j} (7.64)

where [
¨̃tr
]

=
[

[t̃r12] [0]
[0]T [I]

]
(7.65)

is a 8×8 transformation matrix with [t̃r12]T the 2×3 matrix used in Eqs. (5.27)
and (5.28), [0] a 2 × 6 zero matrix and [I] a 6 × 6 unit matrix, and {P̂ j} =
� P̂ j

x̃ P̂ j
ỹ M̂x M̂y M̂z 0 0 0 �T . The eight natural conditions can be expressed

by the element nodal displacement vectors at the joint on the inclined surface

[
¨̃tr
] Mj∑

mj=1

νmj

(
[t̄m

j

]T [S̄mj

] − ρmj

ω2[t̄m
j

126][Ŝ
mj

]
)

[T̄mj

]{ϑmj}

−ω2[M̂ j ]{ϕj
R} = 0 (7.66)

7.4 Assemblage

With the discrete joint compatibility conditions in mind, then by assembling
all discrete local-global element eigenvalue equations represented by Eq. (7.32)
for all elements, dynamic equilibrium condition equations (7.57) and (7.66),
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for the general joints and inclined rollers, respectively, and the prescribed joint
displacement conditions, the overall eigenvalue equation system represented
by Eq. (3.32) can be obtained. Like FEM, the assemblage is based on an
element by element procedure. The discrete local-global element eigenvalue
equation (7.32) for all elements, and discrete element boundary forces existing
in Eqs. (7.57) and (7.66) defined at the two element boundary nodes and
expressed by modal displacement parameters, are directly assembled to the
overall eigenvalue equation system.

Another approach can be used to assemble all discrete fundamental re-
lations. This approach includes the fourteen discrete equations for defining
the element boundary forces in the local element eigenvalue equation to form
another matrix equation. In this new matrix equation, each of the first seven
component equations represents one equation for defining a boundary force
corresponding to each individual degree of freedom assigned to node 1 while
each of the last seven component equations represents one equation for defin-
ing a boundary force corresponding to each individual degree of freedom as-
signed to the other element boundary node. The component equations of the
local element eigenvalue equation (7.12) are placed at the remaining rows.
This matrix equation is expressed as([

k̂e
]
− ω2 [m̂e]

)
{ϑ̄e} = {γ̂e} (7.67)

where the first and last seven rows of [k̂e] and [m̂e] are coefficients for calcu-
lating the fourteen element boundary forces caused by modal displacements
and local element mass matrix, respectively, and

{γ̂e} = � −V̄ e
x̄1 −V̄ e

ȳ1 −F̄ e
z̄1 −M̄e

x̄1 −M̄e
ȳ1 −M̄e

z̄1 −M̄e
ω̄1 0 ... 0 V̄ e

x̄Ne

V̄ e
ȳNe F̄ e

z̄Ne M̄e
x̄Ne M̄e

ȳNe M̄e
z̄Ne M̄e

ω̄Ne �T (7.68)

is a force vector in which the first and last seven elements are element bound-
ary forces, caused by modal displacements, at the two element boundary
nodes, while all other elements equal zero. Using the element transformation
matrix [T e] to Eq. (7.67), the following matrix equation can be obtained(

[k̃e] − ω2[m̃e]
)
{ϑe} = {γ̃e} (7.69)

where
[k̃e] = [T e]T [k̂e][T e] (7.70)

and
{γ̃e} = [T e]T {γ̂e} (7.71)

In Eq. (7.69) both of {ϑe} and {γ̃e} are defined on the local-global coordi-
nate system. Then, the overall eigenvalue equation system represented by Eq.
(3.32) can be obtained by assembling the transformed local-global element
eigenvalue equation (7.69) for all elements and by considering the joint equi-
librium equations, (7.51) and (7.64) for the general joints and inclined rollers,
respectively.
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7.5 Problems

In all problems analyzed, the rotary inertia of the beam member is neglected.
For the first two sample problems solved, DOF per element is the same for

all elements. The DOF of flexural deformation, N̄e
Bu

, and the DOF of axial
deformation, Ne

A, are the same. Defining ∆ζ = 1./(N̄e
Bu

− 1), the interior
discrete points for defining the element-based discrete eigenvalue equations
of flexural vibration are located at ζ = (p − 1)∆ζ, p = 3, ..., N̄e

Bu
− 2 while

the interior discrete points for defining the element-based discrete eigenvalue
equations are located at ζ = (p − 1)∆ζ, p = 2, ..., N̄e

Bu
− 1.

The first problem solved involves the lateral vibration of a fixed-roller
supported ASTM Standard Strong steel pipe having a concentrated mass at
the mid-span. The nominal diameter of the pipe is 10 in with the outside
diameter 10.75 in and inside diameter 10.02 in. The area of cross section is
11.9 in2, while the moment of inertia of the cross section is 161 in4. The
length of the pipe is 40 ft. The weight of the concentrated mass and the
weight of the pipe per feet are 1000 lb and 40.48 lb, respectively. The Young’s
modulus of the pipe is E = 2.9×107 psi. In carrying out the DQEM analysis,
two elements were used to model the pipe with the mid-span being the inter-
element boundary. The rotary inertia of the concentrated mass is neglected.
The convergence can be assured by the increase of DOF per element. In this
analysis, Hermite EDQ model with equally spaced nodes was used to define
the element basis discretization. Numerical results of the first five natural
frequencies are summarized and listed in Table 7.1.

Table 7.1. Natural frequencies of a fixed-roller supported beam having a
concentrated mass at mid-span (cycles/sec)

DOF per ω1 ω2 ω3 ω4 ω5

element

6 .1297143×102 .4137066×102 .8333984×102 .1295109×103 .3552924×103

8 .1349680×102 .4722486×102 .9010459×102 .1739265×103 .2362307×103

10 .1347260×102 .4560830×102 .9261325×102 .1628337×103

12 .1347292×102 .4562152×102 .9229664×102 .1629238×103 .2381861×103

14 .1347287×102 .4560231×102 .9235354×102 .1629862×103 .2418579×103

The second problem solved involves the in-plane vibration of a 2-D frame
shown in Fig. 7.4. The frame is composed of three members represented by
three elements using the Lagrange DQ model with equally spaced nodes to
discretize the axial vibration and the C1 − C0 − C1 EDQ model generated
by using the equivalent Lagrange DQ model with the two auxiliary nodes in-
side the physical EDQ model to discretize the flexural vibration. The results
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Fig. 7.4. A rigid frame

Table 7.2. Natural frequencies of a rigid frame (cycles/sec)

Order of ω1 ω2 ω3 ω4 ω5

appr.

4 .3804234×102 .1637141×103 .3021523×103 .3310787×103 .1718983×104

6 .3538218×102 .1383518×103 .2551181×103 .3680264×103 .5911810×103

8 .3501835×102 .1365928×103 .2609614×103 .3626262×103 .8123097×103

10 .3468862×102 .1349798×103 .2636522×103 .3613131×103 .7282262×103

12 .3445046×102 .1340322×103 .2652008×103 .3607489×103 .7352545×103

14 .3426740×102 .1333968×103 .2661616×103 .3604070×103 .7352840×103

can converge by gradually increasing the order of approximation. Numerical
results of the first five natural frequencies are summarized and listed in
Table 7.2.

The last problem solved involves the in-plane vibration of a frame having
an inclined roller, which is shown in Fig. 7.5. In this analysis, Chebyshev DQ
model is used to define the axial discretization while the Chebyshev C1−C0−
C1 EDQ model is used to define the flexural discretization. Numerical results
of the first five natural frequencies are summarized and listed in Table 7.3.
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Fig. 7.5. A frame having an inclined roller

Table 7.3. Natural frequencies of a frame having an inclined roller (cycles/sec)

Order of ω1 ω2 ω3 ω4 ω5

appr.

5 .5475179×101 .9100309×101 .2007844×102 .2402838×102 .3027174×102

7 .5038403×101 .7486477×101 .1580610×102 .2505351×102 .2951792×102

9 .4933217×101 .7477772×101 .1560026×102 .2486025×102 .2924089×102

11 .4868941×101 .7447270×101 .1529314×102 .2484656×102 .2924195×102

13 .4830217×101 .7429235×101 .1511627×102 .2483721×102 .2924107×102

15 .4805049×101 .7417450×101 .1500265×102 .2483068×102 .2924067×102



8

DQEM Analysis of Timoshenko
Beam Structures

The Timoshenko beam theory is suitable for modelling moderately thick beam
members in solving structural mechanics problems. Static deflection and vi-
bration analysis models using DQEM are developed. The related numerical
procedures are stated.

8.1 Static Deflection of Timoshenko Beam

8.1.1 Fundamental Relations

The equations of nonprismatic Timoshenko beam theory are first summarized.
Consider that the beam resting on a Winkler elastic foundation, shown in
Fig. 8.1, is shear deformable. The two displacement parameters employed are
the transverse displacement w and the bending rotation ψ. Assume that the
beam is homogeneous and isotropic. The differential equilibrium equations

Fig. 8.1. A nonprismatic Timoshenko beam resting on a Winkler elastic
foundation
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of shear deformable Timoshenko beam resting on an elastic foundation are
expressed by [95]

G
d

dx

[
ksA

(
dw

dx
+ ψ

)]
+ kw = −p (8.1)

and

E
d

dx

(
I
dψ

dx

)
− ksGA

(
dw

dx
+ ψ

)
= 0 (8.2)

where k is the foundation constant, I is moment of inertia of the cross-sectional
area and ks is shear correction coefficient. The stress resultants of bending
moment and shear force are

M = EI
dψ

dx
(8.3)

and

V = ksGA

(
ψ +

dw

dx

)
, (8.4)

respectively. The kinematic boundary conditions are

w = w̄ (8.5)

and
ψ = ψ̄ (8.6)

where w̄ and ψ̄ are prescribed transverse displacement and bending rotation,
respectively. Let V̄ and M̄ denote the transverse force and moment, respec-
tively, applied on the natural boundary. The natural boundary conditions can
be expressed by

ksGA

(
ψ +

dw

dx

)
= V̄ (8.7)

and
EI

dψ

dx
= M̄ (8.8)

8.1.2 DQEM Formulation

The DQ which uses the function variable at element nodes to define the DQ
discretization is adopted for the formulation. For analyzing the nonprismatic
shear deformable beam problems, two-node element can be used for elements
having no distributed external load. But the number of element node must
be at least three for elements having distributed external cause. Assume that
shear correction coefficient, shear modulus and Young’s modulus are constant
in an element. Then by using Eq. (3.6) and DQ, Eqs. (8.7) and (8.8) can be
discretized which show to have the following forms:
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⎩ke

sG
e

(le)2

⎡
⎣ Ne∑

β̄=1

Deξ

(α)β̄
Ae

β̄

Ne∑
β=1

Deξ
αβ + Ae

(α)

Ne∑
β=1

Deξ2

αβ

⎤
⎦+ ke

(α)δαβ

⎫⎬
⎭we

β

+
ke

sG
eAe

(α)

le

Ne∑
β=1

Deξ
αβψe

β +
ke

sG
e

le

Ne∑
β̄=1

Deξ

(α)β̄
Ae

β̄ψe
α = 0,

α = 2, 3, ..., Ne − 1 (8.9)

−
ke

sG
eAe

(α)

le

Ne∑
β=1

Deξ
αβwe

β − ke
sG

eAe
(α)ψ

e
α +

Ee

(le)2

[
Ne∑
β̄=1

Deξ

(α)β̄
Ie
β̄

Ne∑
β=1

Deξ
αβ

+Ie
(α)

Ne∑
β=1

Deξ2

αβ

]
ψe

β = 0, α = 2, 3, ..., Ne − 1 (8.10)

The bending moment and shear force at an element node α in the element
can be obtained by using Eqs. (8.3) and (8.4)

Me
α =

EeIe
(α)

le

Ne∑
β=1

Deξ
αβψe

β (8.11)

V e
α = ke

sG
eAe

(α)

(
ψe

α +
1
le

Ne∑
β=1

Deξ
αβwe

β

)
(8.12)

kinematic transition conditions are continuities of transverse displacement
and bending rotation. Let x = xi,i+1 denote the inter-element boundary of
two adjacent elements i and i+1. The discrete kinematic transition conditions
are

wi
Ni = wi+1

1 (8.13)

and
ψi

Ni = ψi+1
1 (8.14)

Natural transition conditions are equilibriums of discrete element bound-
ary forces and external loads at the inter-element boundary of two adjacent
elements i and i+1. Figure 8.2 shows the forces on the inter-element boundary
in which M i,i+1, P i,i+1 and k̄i,i+1 are moment, transversely applied load and
constant of the concentrated spring located at the inter-element boundary.
The equilibrium of lateral forces is expressed by

ki
sG

iAi
Ni

(
ψi

Ni +
dwi

Ni

dx

)
− ki+1

s Gi+1Ai+1
1

(
ψi+1

1 +
dwi+1

1

dx

)

− k̄i,i+1wi,i+1 = P i,i+1 (8.15)
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Fig. 8.2. Forces on the inter-element boundary

The introduction of mapping transformation and DQ discretization into the
above equation leads to

ki
sG

iAi
Ni

(
ψi

Ni +
1
li

Ni∑
α=1

Diξ
Niαwi

α

)
− ki+1

s Gi+1Ai+1
1

(
ψi+1

1

+
1

li+1

Ni+1∑
β=1

D
(i+1)ξ
1β wi+1

β

)
− k̄i,i+1wi,i+1

Ni = P i,i+1 (8.16)

The equilibrium of moments is expressed by

−EiIi
Ni

dψi
Ni

dxi
+ Ei+1Ii+1

1

dψi+1
1

dxi+1
= M i,i+1 (8.17)

The above equation can be similarly discretized

−EiIi
Ni

li

Ni∑
α=1

Diξ
Niαψi

α +
Ei+1Ii+1

1

li+1

Ni+1∑
β=1

D
(i+1)ξ
1β ψi+1

β = M i,i+1 (8.18)

For the pin connected inter-element boundary, Eqs. (8.14) and (8.18) are
replaced by the following two equations

EiIi
Ni

li

Ni∑
β=1

Diξ
Niβψi

β = 0 (8.19)

and
Ei+1Ii+1

1

li+1

Ni+1∑
β=1

D
(i+1)ξ
1β ψi+1

β = 0 (8.20)

If forced displacements are imposed on an inter-element boundary, the discrete
natural transition conditions (8.16) and (8.18) are replaced by the condition
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equations of forced displacement wi
Ni = w̄i,i+1 and displacement gradient

1
li

∑Ni

β=1 Diξ
Niβwi

β = dw̄i,i+1

dx where w̄i,i+1 and dw̄i,i+1

dx are prescribed values.
Letting element m be an element having one or more nodes on the kine-

matic boundary, the kinematic boundary conditions (8.13) and (8.14) can be
rewritten as

wm
Im = w̄m

Im , Im = 1 or Nm (8.21)

and
ψm

Im = ψ̄m
Im , Im = 1 or Nm (8.22)

Also letting element n be an element having one or more nodes on the natural
boundary, the discrete natural boundary conditions can be defined using Eqs.
(8.7) and (8.8)

kn
s GnAn

In

⎛
⎝ψn

In +
1
ln

Nn∑
β=1

Dnξ
Inβwn

β

⎞
⎠ = νnV̄ , In = 1 or Nn (8.23)

EnIn
In

ln

Nn∑
β=1

Dnξ
Inβψn

β = −νnM̄, In = 1 or Nn (8.24)

where νn is a sign indicator equal to 1 for the right boundary and −1 for the
left boundary.

8.1.3 Assemblage

With the kinematic transition conditions (8.13) and (8.14) defined at the
inter-element boundary in mind, upon assembling the discrete element equi-
librium equations (8.9) and (8.10) for elements having more than two nodes,
discrete natural boundary conditions (8.15) and (8.16) for all inter-element
boundaries, and discrete natural boundary conditions (8.23) and (8.24) for
boundary elements with natural boundary, an overall linear algebraic system
can be obtained. It is the overall stiffness equation which is represented by
Eq. (3.18). The overall stiffness equation can be solved by Considering the
kinematic boundary conditions (8.21) and (8.22) for boundary elements with
kinematic boundary.

Like FEM, the assemblage is based on an element by element procedure.
When assembling the discrete equations of element e, the discrete element
equilibrium equations (8.9) and (8.10), and the four discrete element boundary
forces, expressed by displacement parameters, at the two element boundary
nodes are directly assembled to the overall discrete equation system. Conse-
quently, an element basis explicit matrix equation, containing discrete element
equilibrium equations and discrete element boundary forces placed at the first
and last two rows, is not necessary to be formed in the assembling process.
This element basis explicit matrix equation is an element stiffness equation
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which can be expressed by Eq. (3.20) in which [ke] is a 2Ne × 2Ne element
stiffness matrix,

{δe} = � we
1 ψe

1 ... we
Ne ψe

Ne �T (8.25)

is the element displacement vector, and {re} is the element load vector. The
element load vector can be expressed by

{re} = � −V e
1 −R̄e−1,e Me

1 −pe
2 0 ... −pe

Ne−1 0 V e
Ne −Me

Ne �T , for

an interior element with R̄e−1,e = k̄e−1,ewe−1,e the spring force,
= � −V 1

1 −R̄1 M1
1 −p1

2 0 ... −p1
N1−1 0 V 1

N1 −M1
N1 �T ,

for the first or left boundary element,
= � −V s

1 −R̄s Ms
1 −ps

2 0 ... −ps
Ns−1 0 V s

Ns−R̄s −Ms
Ns �T , for

the last or right boundary element (8.26)

As the element stiffness equation contains discrete resultant forces and spring
forces at the two element boundary nodes, equilibriums of resultant forces,
spring forces and external forces at the inter-element boundary of two adjacent
elements and the natural boundary are exactly satisfied in the assembling
process. Consequently, the DQEM is different from FEM which needs to form
the element stiffness equation, and which neglects the exact equilibriums.

8.1.4 Problems

A cantilever Timoshenko beam composed of two prismatic elements resting on
a Winkler foundation and subjected to a concentrated tip load was solved. The
structure is shown in Fig. 8.3. The values of Young’s modulus, shear modulus,
shear correction coefficient and foundation constant are: E = 2.66666667 Pa,

Fig. 8.3. A cantilever Timoshenko beam composed of two prismatic elements
resting on a Winkler foundation
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G = 1 Pa, ks = .66666667 and k = 1 N/m. In the analysis, Chebyshev DQ
model is adopted for the element basis discretization. Chebyshev polynomials
are used to implicitly calculate the weighting coefficients. In an element, the
position of DQ nodes are defined by the roots of Chebyshev polynomials.
Numerical results obtained are summarized and listed in Table 8.1. It shows
that the results can converge by either increasing the order of approximation
or the number of elements used to model the beam structure.

Table 8.1. Results of the beam composed of two prismatic elements resting on an
elastic foundation and subjected to a concentrated tip load

Nodes per Number of Displacement Bending moment Shear force

element grid elements at B (mm) at A (N .m) at A (N)

3 2 .1000193×101 .8326154×10−2 –.2630099×100

4 .8962702×101 .7011425×10−2 –.5999550×10−1

6 .8838056×101 .5646578×10−2 –.3119224×10−1

5 2 .7898007×101 .2872152×10−2 –.2738131×10−1

4 .8669395×101 .4164640×10−2 –.1506932×10−1

6 .8745051×101 .4201717×10−2 –.1400644×10−1

7 2 .8745051×101 .4137852×10−2 –.1330204×10−1

4 .8772212×101 .4205389×10−2 –.1372138×10−1

6 .8772605×101 .4206730×10−2 –.1372650×10−1

9 2 .8772902×101 .4207227×10−2 –.1369951×10−1

4 .8772644×101 .4206849×10−2 –.1372682×10−1

6 .8772642×101 .4206852×10−2 –.1372692×10−1

Another problem solved involves the static deflection of a nonprismatic
cantilever Timoshenko beam resting on a Winkler foundation. The beam is
subjected to a concentrated tip load and shown in Fig. 8.4. With the fixed
end A being the origin of the coordinate system, the variation of depth is
d(z) = d0(1 − z/L + z2/2L2) with d0 = .2 m and L = 1 m. The values of
Young’s modulus, shear modulus, shear correction coefficient and foundation
constant are: E = 2.6 Pa, G = 1 Pa, ks = .85 and k = 1 N/m. In carrying
out the DQEM analysis, Lagrange DQ model is used for the element basis
discretization. Elements and nodes in an element are equally spaced. The
DQEM results are summarized and listed in Table 8.2. It also shows excellent
convergence.
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Fig. 8.4. A nonprismatic cantilever Timoshenko beam resting on a Winkler
foundation

Table 8.2. Results of a nonprismatic beam resting on an elastic foundation and
subjected to a concentrated tip load

Nodes per Number of Displacement Bending moment Shear force

element grid elements at B (mm) at A (N .m) at A (N)

3 2 .15669494×102 .25558355×10−1 –.42480499×100

4 .13490726×102 .12921292×10−1 –.45070993×10−1

6 .12972890×102 .73025184×10−2 –.13758632×10−1

5 2 .96386025×101 .19531531×10−1 –.17100329×10−1

4 .11430845×102 .34378907×10−2 –.76044995×10−2

6 .12115994×102 .34054717×10−2 –.47640084×10−2

7 2 .11223759×102 .18152135×10−2 –.69916636×10−2

4 .12337228×102 .33698395×10−2 –.41576248×10−2

6 .12426370×102 .33836369×10−2 –.39137329×10−2

9 2 .1222707×102 .31169229×10−2 –.44340489×10−2

4 .12435530×102 .33842902×10−2 –.38963901×10−2

6 .12440173×102 .33849592×10−2 –.38848593×10−2

8.2 Free Vibration of Timoshenko Beam

By using the modal displacement parameters W and Ψ to replace w and ψ,
respectively, ρAω2W to replace the distributed external load p, and consid-
ering the effect of rotary inertia, the static equilibrium equations (8.1) and
(8.2) can be converted into the following differential eigenvalue equations of
dynamic equilibrium

d

dx

[
ksGA

(
dW

dx
+ Ψ

)]
+ kW + ρAω2W = 0 (8.27)
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d

dx

(
EI

dΨ

dx

)
− ksGA

(
dW

dx
+ Ψ

)
+ ρIω2Ψ = 0 (8.28)

Assume that a body having the mass M̃n and moment of inertia Ĩn is attached
to the natural boundary. Then by using the inertia force −νnM̃nω2W to
replace V̄ in Eq. (8.7), and the inertia moment νnĨω2Ψ to replace M̄ in Eq.
(8.8), the corresponding natural boundary conditions can be expressed by

ksGA

(
Ψ +

dW

dx

)
− νnk̄nW + νnM̃nω2W = 0 (8.29)

and
EI

dΨ

dx
− νnĨnΨ = 0 (8.30)

where νn is the sign indicator equal to 1 for the right boundary and −1 for
the left boundary.

8.2.1 DQEM Formulation

Assume that the mass density ρ is constant in an element. Equations (8.27)
and (8.28) at a node α in an element e can be discretized⎧⎨
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Assume that a body having the mass M̃ i,i+1 and moment of inertia Ĩi,i+1

is attached to the inter-element boundary of two adjacent element i and i+1.
By using the inertia force −M̃ i,i+1ω2W i,i+1

Ni to replace P i,i+1 in Eq. (8.16),
the following discrete dynamic equilibrium equation of lateral forces at the
inter-element boundary can be obtained

ki
sG

iAi
Ni

(
Ψ i

Ni +
1
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Ni∑
α=1

Diξ
NiαW i

α

)
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− ki+1
s Gi+1Ai+1

1

(
Ψ i+1

1 +
1

li+1

Ni+1∑
β=1

D
(i+1)ξ
1β W i+1

β

)

− k̄i,i+1W i
Ni + M̃ i,i+1ω2W i

Ni = 0 (8.33)

Also by using the inertia moment Ĩi,i+1ω2Ψ i
Ni to replace M i,i+1 in Eq. (8.18),

the following discrete dynamic equilibrium equation of moments can be ob-
tained

−EiIi
Ni

li

Ni∑
α=1

Diξ
NiαΨ i

α − Ei+1Ii+1
1

li+1

Ni+1∑
β=1

D
(i+1)ξ
1β Ψ i+1

β − Ĩi,i+1ω2W i,i+1

= 0 (8.34)

Using Eqs. (8.33) and (8.34), the following discrete natural boundary condi-
tions can be obtained

kn
s GnAn

In

⎛
⎝Ψn

In +
1
ln

Nn∑
β=1

Dnξ
InβWn

β

⎞
⎠− νnk̄nWn

In + νnM̃nω2Wn
In = 0,

In = 1 or Nn (8.35)

EnIn
In

ln

Nn∑
β=1

Dnξ
InβΨn

β − νnĨnω2Ψn
In = 0, In = 1 or Nn (8.36)

8.2.2 Assemblage

With the kinematic transition conditions (8.13) and (8.14) in mind, upon
assembling the discrete element eigenvalue equations (8.31) and (8.32) for
elements having more than two nodes, discrete natural transition conditions
(8.33) and (8.34), and discrete natural boundary conditions (8.35) and (8.36),
an overall discrete eigenvalue equation system of nonprismatic Timoshenko
beam problems can be obtained. The overall eigenvalue equation considering
the discrete kinematic boundary conditions is represented by Eq. (3.32). If
the rotary inertia is neglected, modal displacement parameters Ψαs at all
element interior nodes can be eliminated before solving the eigenvalue system.
If no mass is attached to an inter-element boundary or natural boundary, the
modal displacement parameters associated with it can also be eliminated.
Considering the nonexistence of inertia forces for some component equations
existing in the overall discrete eigenvalue equation system, the procedures
stated in Subsection 3.2.3 for reducing the solution system and efficiently
solving the eigenvalue problem can be used to calculate the eigenpairs of a
Timoshenko beam structure resting on a Winkler foundation.
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8.2.3 Problems

The free vibration of a uniform cantilever Timoshenko beam was solved. The
non-dimensional rotary inertia parameter of the beam defined as r = γ/L
with γ being the radius of gyration of the cross section is selected to
be 0.05, while the non-dimensional shear flexibility parameter defined as
s = (EI/ksAGL2)1/2 is selected to be 0.1. A representative beam has the
following material and geometrical properties: rectangular cross section with
the depth of the cross section h = .17320508 m, the width b = .57735027 m,
the beam length L = 1 m, the shear correction coefficient ks = .66666667,
mass density ρ = .66666667× 10−4 kg/m3, Young’s modulus E = 2.66666667
Pa and shear modulus G = 1 Pa. Let bi denote the analytical solutions of the
natural frequencies of Euler-Bernoulli beam. Numerical results and analytical
solutions of the ratios of the first three natural frequencies of the Timoshenko
beam to bi are summarized and listed in Table 8.3 [104]. It shows that the re-
sults can converge fast to analytical solutions by either increasing the number
of nodes per element or the number of elements.

Table 8.3. The first three natural frequencies of a prismatic cantilever
Timoshenko beam considering the effect of rotary inertia

Nodes per Number of ω1/b1 ω2/b2 ω3/b3

element elements

3 4 1.303559 1.182778 1.060439

6 1.130902 1.002834 .8846225

5 2 .9544300 .7495082 .6532353

4 .9711311 .8370633 .7052438

6 .9720688 .8431605 .7195133

7 2 .9723885 .8475282 .7305820

4 .9716780 .8447689 .7237495

6 .9723245 .8447462 .7234423

9 2 .9720762 .8446972 .7231421

4 .9731479 .8447698 .7234108

6 .9710939 .8446963 .7234039

Analytical sol. .9723 .8447 .7234

Free vibration of the cantilever beam composed of two prismatic elements
and shown in Fig. 8.3 was solved. It was first analyzed without resting the
composed beam on an Winkler foundation. The effect of rotary inertia is con-
sidered. Two elements adopting Chebyshev DQ model to define the element
basis discretization are used to model the structure. Numerical results of the
first four natural frequencies are summarized and listed in Table 8.4. It also
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Table 8.4. The first four natural frequencies of a shear deformable cantilever
beam composed of two prismatic elements considering the effect of rotary inertia

(cycles/sec)

Nodes per ω1 ω2 ω3 ω4

element

3 .5863078×101 .3798482×102 .1599888×103 .2037513×103

5 .2768917×101 .1584239×102 .4127034×102 .6109054×102

7 .2813875×101 .1749714×102 .4578586×102 .7700861×102

9 .2813415×101 .1745975×102 .4547572×102 .7405805×102

11 .2813242×101 .1746005×102 .4548344×102 .7418299×102

shows that the convergence properties are excellent. The problem was rean-
alyzed by resting the composed beam on an Winkler foundation with the
foundation constant k = 1 N/m. Numerical results obtained by using the
same DQEM modelling as the previous analysis are summarized and listed
in Table 8.5. It shows the same convergence tendency. It also shows that the
values of natural frequencies of lower modes increase more than the higher
modes by resting the composed beam on an Winkler foundation.

Table 8.5. The first four natural frequencies of a shear deformable cantilever
beam composed of two prismatic elements resting on a Winkler foundation and

considering the effect of rotary inertia (cycles/sec)

Nodes per ω1 ω2 ω3 ω4

element

3 .3627203×102 .5688747×102 .1310366×103 .2529273×103

5 .3591770×102 .4057903×102 .5616760×102 .7204069×102

7 .3590355×102 .4129053×102 .5948750×102 .8575786×102

9 .3590296×102 .4127607×102 .4547572×102 .8323640×102

The last problem solved involves the free vibration of a nonprismatic can-
tilever beam resting on a Winkler foundation which is shown in Fig. 8.4. In the
analysis, the effect of rotary inertia is considered. The same DQEM modelling
as that is used for the static deflection analysis was adopted. Numerical re-
sults of the first three natural frequencies are summarized and listed in Table
8.6. It also shows that DQEM has excellent convergence properties.
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Table 8.6. The first three natural frequencies of a shear deformable nonprismatic
cantilever beam resting on an elastic foundation and considering the effect of

rotary inertia (cycles/sec)

Nodes per Number of ω1 ω2 ω3

element elements

3 2 .4443144×102 .5689754×102 .2001291×103

4 .4448764×102 .4971019×102 .7629094×102

6 .4393554×102 .4877331×102 .6706347×102

5 2 .4273247×102 .4749201×102 .5705289×102

4 .4321339×102 .4817797×102 .5842086×102

6 .4324357×102 .4823142×102 .5910570×102

7 2 .4327764×102 .4835176×102 .5925708×102

4 .4325222×102 .4824901×102 .5931240×102

6 .4325158×102 .4824598×102 .5930851×102

9 2 .4325257×102 .4825859×102 .5929692×102

4 .4325147×102 .4824596×102 .5930803×102

6 .4325126×102 .4824601×102 .5930836×102
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DQEM Analysis of Curved Beam Structures

DQEM is effective for solving out-of-plane deflection and in-plane deflection of
curved beam structures. The developed DQEM algorithms neglect the effect
of transverse shear deformation. The EDQ is used to the DQEM element
discretization.

9.1 Out-of-Plane Deflection Analysis

9.1.1 Fundamental Relations

The fundamental equations of the deflection of out-of-plane nonprismatic
curved beam structures are first summarized [105]. Consider the out-of-plane
deflection of a circular beam shown in Fig. 9.1, the coordinate system Oxyz
is a Cartesian one with the origin O at the centroid of the cross section, the
x- and y-axes coinciding with the principal axes of the cross section and the
z-axis coinciding with the tangent to the center line at O. In Fig. 9.1, v is the
displacement of centroid O in the direction of y-axis, β the angle of twist of
the cross section about the z-axis, Mx the moment about the x-axis, Mz the

Fig. 9.1. Coordinates of the curved beam
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moment about the z-axis, V the shear force in the direction of the y-axis and
φ the angle measured from the reference end. Let EI and GJ be the flexural
and torsional rigidities, respectively. The moments Mx and Mz, and shear
force V for the nonprismatic curved beam can be expressed as

V =
1

R2

{
d

dφ

[
EI

(
β − 1

R

d2v

dφ2

)]
+ GJ

(
dβ

dφ
+

1
R

dv

dφ

)}
,

Mx =
EI

R

(
β − 1

R

d2v

dφ2

)
, Mz =

GJ

R

(
dβ

dφ
+

1
R

dv

dφ

)
(9.1)

Let p(φ) denote the distributed load in the y-direction per unit angle. Also let
mz(φ) denote the distributed torque per unit angle. The equilibrium equations
of the curved beam are expressed as

1
R3

d

dφ

{
d

dφ

[
EI

(
β − 1

R

d2v

dφ2

)]
+ GJ

(
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+

1
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)}
= −p,

1
R2

d

dφ

[
GJ

(
dβ

dφ
+

1
R

dv

dφ

)]
− EI

R2

(
β − 1

R

d2v

dφ2

)
= −mz (9.2)

The kinematic boundary conditions at the kinematic boundary are

v = v̄, β = β̄ (9.3)

where v̄ and β̄ are prescribed values. The natural boundary conditions at the
natural boundary are

1
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[
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d3v
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− 1
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d(EI)
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d2v

dφ2
+
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R
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d(EI)
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]
= V̄ ,

EI

R

(
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d2v

dφ2

)
= M̄x,

GJ

R

(
dβ

dφ
+

1
R

dv

dφ

)
= M̄z (9.4)

where M̄x, M̄z and V̄ are prescribed values.

9.1.2 DQEM Formulation

Since the second of Eqs. (9.2) is a second order differential equation, with-
out using a certain technique to calculate the two equivalent nodal loads for
the distributed torque of a two-node linear element and include them into
the natural transition conditions or natural boundary conditions, the order
of approximate angle of twist must at least be two, and the element needs at
least one discrete point for defining the discrete element torsional equilibrium
equation. The DQEM linear element is equivalent to the FEM linear element.
Since the first of Eqs.(9.2) is a fourth order differential equation, without us-
ing a certain technique to calculate the four nodal loads for the distributed
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loads of a two-node cubic element and include them into the natural transition
conditions or natural boundary conditions, the order of approximate lateral
displacement must at least be four and the element needs at least one dis-
crete point for defining one discrete element lateral equilibrium equation. The
DQEM cubic element is equivalent to the FEM cubic Hermite element. Dis-
crete points for defining discrete element equilibrium equations can be either
in the interior of the element or on the element boundary.

In the present analysis model, only interior discrete points are used to de-
fine the discrete element equilibrium equations. In the numerical simulation,
the nodes used to define the flexural discretizations and the nodes used to
define the torsional discretization can be different. In addition to the DOF
assigned to interior nodes, three DOF of the lateral displacement v, rotation
about the x-axis and the angle of twist are assigned to each of the two element
boundary nodes. Consequently, the second and last columns of the weighting
coefficient matrices for the flexural discretization defined by using the nat-
ural coordinate, ξ, must be modified by multiplying each element in the two
columns by −RΦe with Φe the range of open angle of the element. Let Ne

B

and Ne
T denote the numbers of nodes for defining the flexural discretization

and the torsional discretization, respectively, N̄e
B and N̄e

T denote the corre-
sponding element degrees of freedom. Also let N̂e

B denote the number of the
corresponding interior discrete points for defining the v-related discrete ele-
ment equilibrium equations plus the two element boundary nodes, and Deξm

Bαr

denote the corresponding weighting coefficients for the mth order derivative
with respect to ξ. And the number of the corresponding interior discrete points
for defining the β-related discrete element equilibrium equations plus the two
element boundary nodes is denoted by N̂e

T with the corresponding weighting
coefficients for the mth order derivative with respect to ξ being denoted by
Deξm

Tβs. Then the numbers of discrete points need to be used to discretize the
element lateral and torsional equilibrium equations are N̂e

B − 2 and N̄e
T − 2,

respectively. Let ϑ̄i(ξ) denote the interpolation functions. βe(ξ) in an element
can be expressed as βe(ξ) = ϑ̄i(ξ)β̃e

i . The introduction of mapping and EDQ
into the first of Eqs. (9.2) leads to the following discrete element equilibrium
equation at a discrete point α in the element e
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+ϑ̄s(ξα)
d2(EI)e

(s)

d(φe)2

}
β̃e

s = −pe
α, α = 2, ..., N̂e

B − 1 (9.5)

If the discrete point α is a node for discretizing the angle of twist β, ϑ̄s(ξα)
represents the Kronecker delta δαs. Similarly, the discrete element equilibrium
equation of the second of Eqs. (9.2) at a discrete point β in the element e is
expressed as
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In Eqs. (9.5) and (9.6), if α and β are not coincident, the matrices of v

related weighting coefficients Deξm

Bαr and Deξm

Bβr are different and they need to
be calculated, separately. The same calculations are also necessary for the
weighting coefficients Deξm

Tαr and Deξm

Tβr.
The moments and shear force at a discrete point γ in an element can be

expressed by
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The transition conditions of two adjacent elements are kinematic transition
conditions and natural transition conditions. Kinematic transition conditions
are continuities of transverse displacements, first derivatives of transverse dis-
placements and angles of twist of cross section. The discrete kinematic transi-
tion conditions at the inter-element boundary (i, i+1) of two adjacent elements
i and i + 1 are expressed as
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ṽi
N̄i

B
−1 − ṽi+1

1 = 0, ṽi
N̄i

B
− ṽi+1

2 = 0, β̃i
N̄i

T
− β̃i+1

1 = 0 (9.8)

These conditions are automatically satisfied when assembling discrete funda-
mental equations. The natural transition conditions are equilibriums of forces
on the inter-element boundary. Let P i,i+1, M i,i+1

x and M i,i+1
z denote the

concentrated force in the y direction and moments directed toward x and z,
respectively, applied on the inter-element boundary of element i and element
i + 1. Then, the equilibrium of lateral forces on the inter-element boundary
can be defined

V i
N̂i

B

− V i+1
1 = P i,i+1 (9.9)

The substitution of the first of Eqs. (9.7) into the above equilibrium equation
leads to the following explicit discrete equation
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The equilibrium of moments about the x-axis on the inter-element boundary
can also be defined

M i
xN̂i
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x1 = M i,i+1

x (9.11)

The substitution of the second of Eqs. (9.7) into the above equilibrium equa-
tion leads to the following explicit discrete equation
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ṽi

α +
(EI)i

N̂i
T

R
β̃i

N̄i
T

+
(EI)i+1

1

(RΦi+1)2

N̄i+1
B∑

α=1

D
(i+1)ξ2

B1α ṽi+1
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The equilibrium of torques on the inter-element boundary can also be defined
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The substitution of the third of Eqs. (9.7) into the above equilibrium equation
leads to the following explicit discrete equation
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Letting element m be an element consisting of the kinematic boundary,
and I

¯
m and Īm equal to 1 for the kinematic boundary with the node number

of the node at the kinematic boundary equal to 1, and N̄m
B − 1 and N̄m

T ,
respectively, for the kinematic boundary with the node number of the node
at the kinematic boundary equal to Nm, the kinematic boundary conditions
can be rewritten as
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, β̃m
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Īm (9.15)

where v̄m
I
¯

m , v̄m
I
¯

m
+1

and β̄m
Īm are prescribed transverse displacement, bending

rotation and angle of twist, respectively. Let element n be an element having
one or more nodes on the natural boundary with V̄ n the concentrated forces
in y direction, M̄n

x and M̄n
z the moments directed toward the coordinate

directions x and z, respectively, applied on the natural boundary, and Ĭn, I
¯
n

and Īn equal to 1 for the natural boundary with the node number of the node
at the natural boundary equal to 1, and N̂n

v , N̄n
v − 1 and N̂n

β , respectively,
for the natural boundary with the node number of the node at the natural
boundary equal to Nn. Also let νn denote an indicator defined by the node
number of element n. νn is defined as: νn = −1, if the node number of the
node at the natural boundary equal to 1; νn = +1, if the node number of
the node equal to Nn. Then the discrete natural boundary conditions can be
obtained from Eqs. (9.10), (9.12) and (9.14)
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+
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¯
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¯

n β̃n
In = νnM̄n
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N̄n
B∑

β=1

Dnξ
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T Īnβ
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z (9.16)
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9.1.3 Assemblage

With the kinematic transition conditions in mind, upon assembling the dis-
crete element equilibrium equations (9.5) and (9.6) for elements having more
than two nodes, discrete natural transition conditions, and discrete nat-
ural boundary conditions, an overall discrete equilibrium/transition/boundary
equation can be obtained. It is the overall stiffness equation represented by
Eq. (3.18). Consider the kinematic boundary conditions and solve the overall
discrete equilibrium/transition/boundary equation, transverse displacements
and bending rotations at all nodes can be obtained.

Like FEM, the assemblage is based on an element by element procedure.
When assembling the discrete equations of element e, the discrete element
equilibrium equations (9.5) and (9.6), and the six discrete element boundary
forces of moments and shear forces, expressed by displacements, at the two
element boundary nodes are directly assembled to the overall discrete equation
system. Consequently, an element basis explicit matrix equation, containing
the discrete element equilibrium equations and the discrete element boundary
forces placed at the first and last three rows, is not necessary to be formed
in the assemblage process. This element basis explicit matrix equation is an
element stiffness equation which can be expressed by Eq. (3.20) with [ke] a
(N̄e

B + N̄e
T ) × (N̄e

B + N̄e
T ) element stiffness matrix,

{δe} = � ṽe
1 ṽe

2 β̃e
1 ... ṽe

N̄e
B
−1

ṽe
N̄e

B

β̃e
N̄e

T
�T (9.17)

is the element displacement vector, and

{re} = � −V e
1 −Me

x1 −Me
z1 −pe

1 −me
z1 ...

−pe
N̂e

B
−1

−me
z(N̂e

T
−1)

V e
N̂e

B

Me
xN̂e

B

Me
zN̂e

T
�T (9.18)

is the element load vector. In Eq. (9.17), ṽe
1 and ṽe

N̄e
B
−1

represent the lateral
displacements at first and last element nodes, respectively, ṽe

2 and ṽe
N̄e

B

rep-

resent the deflection slope, − 1
R

dve

dφe = − 1
RΦe

dve

dξ , or θe
x, at the first and last

element nodes, respectively, and β̃e
1 and β̃e

N̄e
T

represent the angle of twist at
the first and last element nodes, respectively. As the element stiffness equation
contains discrete resultant forces at the two element boundary nodes, equi-
libriums of resultant forces and external forces at the inter-element boundary
of two adjacent elements and the natural boundary are exactly satisfied in
the assemblage process. Consequently, the DQEM model is different from the
FEM model which needs to form the element stiffness equation, and which
neglects the exact equilibriums.

9.1.4 Problems

In solving the problems, the elements are equally spaced. The DOF of flex-
ural deformation, N̄e

B , and the DOF of torsional deformation, N̄e
T , are the
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same. Defining ∆ξ = 1./(N̄e
B − 1), the interior discrete points for defining the

element-based transverse equilibrium equations are located at ξ = (p− 1)∆ξ,
p = 3, ..., N̄e

B − 2 while the interior discrete points for defining the element-
based torsional equilibrium equations are located at ξ = (p − 1)∆ξ, p =
2, ..., N̄e

B − 1. Only one DOF representing the lateral displacement and one
DOF representing the angle of twist are assigned to an interior node. Explicit
Lagrange DQ weighting coefficients are used for the torsional discretization.
They are also used to generate the C1 − C0 − C1 EDQ model with the node
points of the equivalent Lagrange DQ model equally spaced and having two
auxiliary node points. The resulting weighting coefficients are used for the
flexural discretization.

The first problem solved involves a clamped prismatic circular bow girder
made of reinforced concrete with the Young’s modulus E = 3 × 106 psi and
subjected to a uniformly distributed load of 0.25 tons/ft [106]. The cross
section of the curved beam is a rectangle having the width 20 in and the
depth 12 in. The value of radius R equals 10 ft while the range of the open
angle between the two ends is 1200. The ratio of the torsional stiffness to the
flexural stiffness is 0.5. The analyses by both the p refinement procedure of
increasing the number of DOF per element and the h refinement procedure
of increasing the number of elements are carried out, separately. Numerical
results of displacement parameters and stress resultants at some positions are
summarized and listed in Table 9.1. They are compared with exact solutions
[107]. It shows that the results converge fast to exact solutions by either
increasing the DOF per element or the number of elements. It also shows that

Table 9.1. Results of a clamped prismatic circular bow girder subjected to a
uniformly distributed load

DOF per No. of Displacement Angle of twist Bending moment

element elements at φ = 60◦ (in) at φ = 60◦ (rad) at φ = 60◦ (ft − tons)

10 2 .2557343×10−1 .4168421×10−3 .3892901×101

4 .2481342×10−1 .3868535×10−3 .3759391×101

6 .2456347×10−1 .3561457×10−3 .3659023×101

14 2 .2420569×10−1 .3544746×10−3 .3639998×101

4 .2417680×10−1 .3482164×10−3 .3625651×101

6 .2416554×10−1 .3469548×10−3 .3628673×101

18 2 .2416061×10−1 .3463458×10−3 .3629501×101

6 .2415964×10−1 .3468756×10−3 .3629923×101

22 2 .2415543×10−1 .3468755×10−3 .3629821×101

4 .2415467×10−1 .3468737×10−3 .3629938×101

6 .2415424×10−1 .3468676×10−3 .3629956×101

Exact sol. .2415429×10−1 .3468679×10−3 .3629987×101
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the solution procedure of increasing the DOF per element is more efficient than
the solution procedure of increasing the number of elements. Let er denote
the convergence indicator which is the relative error of the angle of twist at
φ = 60◦, obtained by the DQEM, with respect to the exact solution.

The convergence rates can be seen in Fig. 9.2 which shows that the two
refinement procedures possess high convergence rates. It also shows that the
convergence rate of the p refinement procedure is higher than that of the h
refinement procedure.

Fig. 9.2. Convergence of the angle of tist at φ = 60◦

The second problem solved involves a clamped nonprismatic curved box
beam composed of three segments with the Young’s modulus E = 3× 106 psi
and subjected to a uniformly distributed load of 0.25 tons/ft. The structure
is shown in Fig. 9.3.

The value of radius R equals 10 ft. Each segment has the open angle of 40◦.
The middle segment is a prismatic thin-walled square box with the side length
24 in and the wall thickness 1 in. The two side segments also have the thin-
walled square cross section with the wall thickness 1 in. They are nonprismatic
segments with the side length increasing linearly from 24 in at the intersection
to 48 in at the support end. In carrying out the numerical computations, three
elements are used to model the structure with each element representing a
segment. Results listed in Table 9.2 show that the convergence is assured by
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Fig. 9.3. A nonprismatic circular beam girder subjected to a uniformly
distributed load

Table 9.2. Results of a nonprismatic circular beam girder subjected to a
uniformly distributed load

DOF per No. of Displacement Angle of twist Bending moment

element elements at φ = 60◦ (in) at φ = 60◦ (rad) at φ = 60◦ (ft − tons)

10 3 .4357344×101 –.2568429×101 –.1389251×101

14 3 .4249578×101 –.2344485×101 –.1363998×101

18 3 .4236414×101 –.2223731×101 –.1369501×101

22 3 .4238689×101 –.2224340×101 –.1362911×101

26 3 .4238711×101 –.2224421×101 –.1362751×101

30 3 .4238715×101 –.2224428×101 –.1362749×101

Fig. 9.4. Distribution of lateral displacement

the increase of the number of DOF per element. The distributions of converged
lateral displacement and stress resultants are shown in Figs. 9.4 to 9.7.

9.2 In-Plane Deflection Analysis

The results are difficult to converge by using some FEM models to analyze
the in-plane deflection of curved beam structures, due to the locking. Many
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Fig. 9.5. Distribution of bending moment

Fig. 9.6. Distribution of torque

Fig. 9.7. Distribution of lateral shear

techniques including the reduced integration, partial approximation, mixed
formulation,. . . , etc. have been used to overcome the locking problem and
solve the curved beams [108]. DQEM analysis model for solving this type of
structural problems is introduced.
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9.2.1 Fundamental Relations

Consider that an isotropic and homogeneous curved beam, shown in Fig. 9.8,
with Young’s modulus, E, cross-section area, A, and moment of inertia of
cross-section, I. Let r and φ denote the coordinate variables of radius and
angle with the horizontal axis, respectively. Also let w and v denote the radial
displacement and tangential displacement, respectively.

Fig. 9.8. Coordinates of an arbitrarily curved beam

Refer to Fig. 9.9 and let pr, pt and t denote the distribution of radial
force, tangential force and moment, respectively. Also let F , M and V denote
the axial force, bending moment and shear force, respectively. These stress
resultants are expressed as [109]

F =
EA

r

[(
dv

dφ
+ w

)
+

I

r2A

(
d2w

dφ2
+ w

)]
,

M = −EI

r2

(
d2w

dφ2
+ w

)
,

Fig. 9.9. Stress resultants and external loads
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V =
1
r

dM

dφ
− t

= −EI

[
1
r3

(
d3w

dφ3
+

dw

dφ

)
− 2

r4

dr

dφ

(
d2w

dφ2
+ w

)]
(9.19)

Assume that EA and EI are constant in a DQEM element. The equilibrium
equation in the tangential direction at any point in a DQEM element is ex-
pressed as

1
r

(
dF

dφ
+ V

)
= −pt

or

−EI

r5

dr

dφ

d2w

dφ2
+

EA

r2

dw
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−
(

EA
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+
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r5

)
dr

dφ
w +

EA

r2

d2v

dφ2
− EA

r3

dr

dφ

dv

dφ

= −pt (9.20)

The equilibrium equation in the radial direction is expressed as

1
r

(
dv

dφ
− F

)
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or

−EI

r4

d4w
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5EI
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− 1
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]
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}
w − EA

r2
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dφ

= −pr (9.21)

The kinematic boundary conditions are expressed as

w = w̄,
1
r

dw

dφ
=

1
r

dw̄

dφ
, v = v̄ (9.22)

In the above equations, 1
r

(
dw̄
dφ − v

)
represents the rotation of cross section.

Assume that F̄ , M̄ and V̄ are prescribed tangential force, moment and radial
force, respectively. The natural boundary conditions are expressed as

EA

r

[(
dv

dφ
+ w

)
+

I

r2A

(
d2w

dφ2
+ w

)]
= F̄ , −EI

r2

(
d2w

dφ2
+ w

)
= M̄,

−EI
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1
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(
d3w

dφ3
+
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dφ

)
− 2

r4

dr

dφ

(
d2w

dφ2
+ w

)]
= V̄ (9.23)
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9.2.2 DQEM Formulation

Since the orders of w and v related differentiations existing in the fundamen-
tal relations are four and two, respectively, the orders of the corresponding
approximate displacement components can be three and one, respectively, for
an element without distributed load. However, the orders of the corresponding
approximate displacement components must at least be four and two, respec-
tively, and each of the two equilibrium equations needs at least one discrete
point for defining one discrete element equilibrium equation. The discrete
points for defining discrete equilibrium equations can be either in the interior
of the element or on the element boundary.

In the present DQEM curved beam analysis model, only the degrees of
freedom representing w, dw

rdφ and v, which are necessary for automatically set-
ting the kinematic transition conditions and kinematic boundary conditions
are assigned to the element boundary nodes. Consequently, the second and
last columns of the weighting coefficient matrices for the flexural discretization
defined by using the natural coordinate, ξ, must be modified by multiplying
each element in the two columns by rΦe. Only interior discrete points are used
to define the discrete element equilibrium equations. Let Ne

w denote the num-
ber of nodes for defining the w related discretization, N̄e

w denote the number
of the corresponding element DOF, w̃e

i denote the w related element basis dis-
crete displacement parameters, and Deξq

wαi denote the corresponding qth order
weighting coefficients. Also let Ne

v denote the number of nodes for defining the
v related discretization, N̄e

v denote the number of the corresponding element
DOF, ṽe

i denote the v related element basis discrete displacement parameters,
and Deξq

vαi denote the corresponding weighting coefficients. When defining the
discrete fundamental relations, the number of discrete points at which the
w related discrete element equilibrium equations in the radial direction are
defined is N̄e

w − 4, while the number of discrete points at which the v related
discrete element equilibrium equations in the tangential direction are defined
is N̄e

v −2. The DOF assigned to an interior node for defining the w or v related
discretization can be flexible. If only the DOF representing v is assigned to the
interior nodes for defining the v related discretization and the Lagrange inter-
polation functions are used to calculate the weighting coefficients, Lagrange
DQ model is adopted. If only the DOF representing w and dw

dφ are assigned
to the interior nodes for defining the w related discretization and Hermite in-
terpolation functions are used to calculate the weighting coefficients, Hermite
EDQ model is adopted.

When discretizing the fundamental relations, if a discrete point at which a
discrete fundamental relation needs to be defined is not an element node, the
interpolation is necessary for expressing w existing in the fundamental rela-
tion. Let ϑi(ξ) denote the interpolation functions. Then, we(ξ) in an element
can be expressed as we(ξ) = ϑi(ξ)w̃e

i . If both of pt and pr are not zero, each
of Eqs. (20) and (21) needs at least one interior discrete point for defining the
discrete element equilibrium equations. Let N̂e

w and N̂e
v denote the numbers
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of the corresponding interior discrete points for defining the discrete element
equilibrium equations related to w and v, respectively, plus the two element
nodes. Then the following two relations hold: N̂e

w = N̄e
w − 2 and N̂e

v = N̄e
v .

The introduction of mapping into Eq. (9.20) and the use of EDQ discretization
at an interior discrete point α in an element e lead to the following discrete
equation{
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If the discrete point α is a node for discretizing w, ϑi(ξα) represents the
Kronecker delta δαi. Similarly, the introduction of mapping into Eq. (9.20)
and the use of EDQ discretization at a discrete point β lead to the following
discrete equation{
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w − 1 (9.25)

The stress resultants F e
α, Me

α and V e
α at a discrete point α of an element e

can be expressed by

F e
α =

[
(EI)e

(re
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V e
α =

(EI)e

(re
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Fig. 9.10. Forces at the inter-element of two adjacent elements i and i + 1

The compatibility and conformability conditions at the inter-element
boundary of two adjacent elements are automatically satisfied. The equilib-
rium conditions of stress resultants and external forces at the inter-element
boundary or natural boundary also need to be satisfied. Each equilibrium con-
dition is either a natural transition condition or a natural boundary condition.
Assume that P i,i+1

r , P i,i+1
t and T i,i+1 shown in Fig. 9.10 are external radial

force, tangential force and moment, respectively, applied on the inter-element
boundary i, i + 1. The equilibrium condition of moments is expressed as

M i+1
1 − M i

N̂i
w

= T i,i+1 (9.27)

Introducing the second of Eqs. (9.26) into the above equation, the following
explicit discrete equilibrium condition of moments can be obtained:

(EI)i

(ri
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w

)2

[
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1 )2
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]
w̃i+1

i = T i,i+1 (9.28)

where δ1i and δ(N̄i
w−1)i are first and (N̄ i

w − 1)th rows of Kronecker delta δαi.
The equilibrium condition of forces in the radial direction is expressed as

V i
N̂i

w
− V i+1

1 = P i,i+1
r (9.29)
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The introduction of the third of Eqs. (9.26) into the above equation leads to
the following explicit discrete equation
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The equilibrium condition of forces in the tangential direction is expressed as

F i
N̂i

v
− F i+1

1 = P i,i+1
t (9.31)

The introduction of the first of Eqs. (9.26) into the above equation leads to
the following explicit discrete equation
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Letting element m be an element consisting of the kinematic boundary, and
I
¯
m and Īm equal to 1 for the kinematic boundary with the node number

of the node at the kinematic boundary equal to 1, and N̄m
w − 1 and N̄m

v ,
respectively, for the kinematic boundary with the node number of the node
at the kinematic boundary equal to Nm, the discrete kinematic boundary
conditions are expressed by

w̃m
I
¯

m = w̄m
I
¯

m , w̃m
I
¯

m
+1

= θ̄m
I
¯

m
+1

, ṽm
Īm = v̄m

Īm (9.33)

Where w̄m
Im , w̄m

Im+1 and v̄m
Īm are prescribed radial displacement, bending rota-

tion and tangential displacement. Letting element n be an element consisting
of the natural boundary, and Ĭn, I

¯
n and Īn equal to 1 for the natural bound-

ary with the node number of the node at the natural boundary equal to 1,
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and N̂n
w, N̄n

w−1 and N̂n
v , respectively, for the natural boundary with the node

number of the node at the natural boundary equal to Nn, the discrete natural
boundary conditions can be obtained by discretizing Eqs. (9.23)

{
(EI)n

(rn
Īn)3(Φn)2

N̄n
w∑

i=1

Dnξ2

wĪni
+

[
(EA)n

rn
Īn

+
(EI)n

(rn
Īn)3

]
δI
¯

n
i

}
w̃n

i

+
(EA)n

rn
ĪnΦn

N̄n
v∑

j=1

Dnξ
vĪnj

ṽn
j = F̄ ,

− (EI)n

(rn
Ĭn

)2

[
1

(Φn)2

N̄n
w∑

i=1

Dnξ2

wĬni
+ δI

¯
n

i

]
w̃n

i = M̄,

(EI)n

(rn
Ĭn

)3

[
− 1

(Φn)3

N̄n
w∑

i=1

Dnξ3

wĬni
+

2
rn
Ĭn

(Φn)2
drn

Ĭn

dφ

N̄n
w∑

i=1

Dnξ2

wĬni

− 1
Φn

N̄n
w∑

i=1

Dnξ

wĬni
+

2
rn
Ĭn

drn
Ĭn

dφ
δI
¯

n
i

]
w̃n

i = V̄ (9.34)

9.2.3 Assemblage

With the kinematic transition conditions in mind, then assemble the dis-
crete element equilibrium equations (9.24) and (9.25) for elements having
more than two nodes, discrete natural transition conditions (9.28), (9.30) and
(9.32), and discrete natural boundary conditions (9.34), an overall discrete
equilibrium/transition/boundary equation can be obtained. It is the overall
stiffness equation represented by Eq. (3.18). Consider the kinematic bound-
ary conditions and solve the overall discrete equilibrium/transition/boundary
equation, tangential displacements, radial displacements and bending rota-
tions at all nodes can be obtained. Like FEM, the assemblage is based on
an element by element procedure. When assembling the discrete equations
of element e, the discrete element equilibrium equations (9.24) and (9.25),
and the six discrete element boundary forces of moments and shear forces,
expressed by displacements, at the two element boundary nodes are directly
assembled to the overall discrete equation system. An element basis explicit
matrix equation, containing the discrete element equilibrium equations and
the discrete element boundary forces placed at the first and last three rows, is
not necessary to be formed in the assemblage process. This element basis ex-
plicit matrix equation is an element stiffness equation which can be expressed
by Eq. (3.20) with [ke] a (N̄e

w + N̄e
v ) × (N̄e

w + N̄e
v ) element stiffness matrix,

{δe} = � w̃e
1 w̃e

2 ṽe
1 ... w̃e

N̄e
w−1

w̃e
N̄e

w
ṽe

N̄e
v

�T (9.35)
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is the element displacement vector, and

{re} = � −V e
1 −Me

1 −F e
1 −re

2p
e
r2 −re

2p
e
t2 ...

−re
N̂e

w−1
pe

r(N̂e
w−1)

−re
N̂e

v−1
pe

r(N̂e
v−1)

V e
N̂e

w

Me
N̂e

w

F e
N̂e

v
�T (9.36)

is the element load vector. In Eq. (9.35), w̃e
2 and w̃e

N̄e
w

represent the values

of 1
r

dwe

dφe = 1
rΦe

dwe

dξ at nodes 1 and Ne, respectively. As Eq. (3.20) contains
discrete resultant forces at the two element boundary nodes, equilibriums of
resultant forces and external forces at the inter-element boundary of two adja-
cent elements and the natural boundary are exactly satisfied in the assemblage
process.

9.2.4 Problems

In solving the problem, the elements are equally spaced. The DOF of flex-
ural deformation, N̄e

w, and the DOF of tangential deformation, Ne
v , are the

same. Defining ∆ξ = 1./(N̄e
w − 1), the interior discrete points for defining

the element-based radial equilibrium equations are located at ξ = (p − 1)∆ξ,
p = 3, ..., N̄e

w − 2 while the interior discrete points for defining the element-
based extensional equilibrium equations are located at ξ = (p − 1)∆ξ,
p = 2, ..., N̄e

w − 1. Only one DOF representing the radial displacement and
one DOF representing the tangential displacement are assigned to an interior
node. Explicit Lagrange DQ weighting coefficients are used for the v-related
discretization. They are also used to generate the C1 − C0 − C1 EDQ model
used for the w-related discretization.

The problem solved involves a simply supported prismatic circular arch,
subjected to a concentrated force P and shown in Fig. 9.11, with the values
of radius r, area of cross section A, moment of inertia of cross section I,
Young’s modulus E, and concentrated force P equal to 1. The range of open

Fig. 9.11. A simply supported circular arch subjected to a concentrated force
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Table 9.3. Results of a simply supported curved beam

DOF per Number of

element elements wB NA MB

10 2 –.185194870×10−1 –.526387466×100 –.185164252×100

4 –.184702325×10−1 –.508564260×100 –.184500372×100

6 –.183169531×10−1 –.504656312×100 –.184092580×100

14 2 –.183099455×10−1 –.500194872×100 –.183857117×100

4 –.183019268×10−1 –.500005198×100 –.183198376×100

6 –.182851892×10−1 –.500001875×100 –.182913655×100

18 2 –.182751443×10−1 –.500002427×100 –.182538425×100

4 –.182654927×10−1 –.500001253×100 –.182377047×100

6 –.182550496×10−1 –.500000362×100 –.182373975×100

Analytical solution –.182550423×10−1 –.500000000×100 –.182373661×100

Fig. 9.12. Distribution of radial displacement

angle of the arch is 180◦. The analyses by both the p refinement procedure of
increasing the number of DOF per element and the h refinement procedure of
increasing the number of elements are carried out, separately [110]. Numerical
results are summarized and listed in Table 9.3. The results are compared
with analytical solutions which can be obtained by using the complementary
virtual work method to solve this statically indeterminate structural problem
[111]. It shows that the results converge fast to the exact solutions by either
increasing the DOF per element or the number of elements. It also shows that
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Fig. 9.13. Distribution of tangential displacement

Fig. 9.14. Distribution of bending moment

the solution procedure of increasing the DOF per element is more efficient than
the solution procedure of increasing the number of elements. The converged
distributions of displacements and stress resultants are shown in Figs. 9.12 to
9.16.
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Fig. 9.15. Distribution of axial

Fig. 9.16. Distribution of shear force
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Development of DQEM Irregular Elements

The DQ or EDQ discretizations are carried out on an element basis with
the element regular. However the physical element might be irregular. Con-
sequently, mapping is necessary for carrying out the DQEM analysis of prob-
lems with irregular domain configurations. Some two-dimensional irregular
elements with quadrilateral or triangular shapes are summarized. The gen-
eration of mesh and design of element grid are introduced. The calculation
of outward unit normal vector on the element boundary is also necessary for
the DQEM analysis. The method of using shape functions for mapping asso-
ciated with the tangent relation, and the method of using secant relation are
introduced.

10.1 Irregular Elements

The element configuration would change from element to element in the mesh
[20,25]. By introducing an invertible transformation between a master element
Ω̃ of regular shape and an arbitrary physical element Ωe it should be possible
to transform the partial differential operations on Ωe so that they hold on Ω̃
[113].

The mapping of Ω̃ onto Ωe is defined by the following coordinate trans-
formations

x = x(ξ, η), y = y(ξ, η) (10.1)

where x and y are physical coordinates in Ωe and ξ and η are natural coor-
dinates in Ω̃. Then the transformations of the first derivatives of the variable
function φ of element e are

φe
i,x = ξ,xφe

i,ξ + η,xφe
i,η, φe

i,y = ξ,yφe
i,ξ + η,yφe

i,η (10.2)

And the transformations of the second order derivatives of the variable func-
tion are
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φe
i,xx = ξ2

,xφe
i,ξξ + η2

,xφe
i,ηη + 2ξ,xη,xφe

i,ξη + ξ,xxφe
i,ξ + η,xxφe

i,η,

φe
i,xy = ξ,xξ,yφe

i,ξξ + η,xη,yφe
i,ηη + (ξ,xη,y + ξ,yη,x)φe

i,ξη

+2ξ,xyφe
i,ξ + 2η,xyφe

i,η,

φe
i,yy = ξ2

,yφe
i,ξξ + η2

,yφe
i,ηη + 2ξ,yη,yφe

i,ξη + ξ,yyφe
i,ξ + η,yyφe

i,η (10.3)

Suppose that the functions x and y are continuously differentiable with
respect to ξ and η. Then the infinitesimals dξ and dη can be transformed into
dx and dy according to the following equations

dx = x,ξdξ + x,ηdη, dy = y,ξdξ + y,ηdη (10.4)

The above two equations can be expressed by the following matrix equation{
dx
dy

}
=
[

x,ξ x,η

y,ξ y,η

]{
dξ
dη

}
(10.5)

The 2× 2 matrix of partial derivatives in Eq. (10.5) is the Jacobian matrix of
the transformation Eq. (10.4), and is denoted J. The determinant | J | of the
Jacobian matrix is

| J |= detJ = x,ξy,η − x,ηy,ξ (10.6)

An inverse transformation of Eq. (10.5) can be constructed if | J | is larger
than zero. This inverse transformation is expressed as{

dξ
dη

}
= J−1

{
dx
dy

}
=| J |−1

[
y,η −x,η

−y,ξ x,ξ

]{
dx
dy

}
(10.7)

The infinitesimals dx and dy can also be transformed into dξ and dη according
to the following matrix equation{

dξ
dη

}
=
[

ξ,x ξ,y

η,x η,y

]{
dx
dy

}
(10.8)

Equating terms in Eqs. (10.7) and (10.8), the following relationships can be
obtained

ξ,x = | J |−1 y,η, ξ,y = − | J |−1 x,η,

η,x = − | J |−1 y,ξ, η,y = | J |−1 x,ξ (10.9)

Using Eq. (10.9), the following two equations can be obtained

∂

∂x
= | J |−1

(
y,η

∂

∂ξ
− y,ξ

∂

∂η

)
,

∂

∂y
= | J |−1

(
−x,η

∂

∂ξ
+ x,ξ

∂

∂η

)
(10.10)

And the use of Eq. (10.6) leads to the following two equations

| J |,ξ= x,ξy,ξη − y,ξx,ξη + y,ηx,ξξ − x,ηy,ξξ,
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| J |,η = y,ηx,ξη − x,ηy,ξη + x,ξy,ηη − y,ξx,ηη (10.11)

Using Eq. (10.10), the following second derivatives of the natural coordinates
with respect to physical coordinates can be obtained

ξ,xx = | J |−2 (y,ηy,ξη − y,ξy,ηη)− | J |−3 (y2
,η | J |,ξ − y,ξy,η | J |,η),

ξ,xy = | J |−2 (x,ξy,ηη − x,ηy,ξη)+ | J |−3 (x,ηy,η | J |,ξ − x,ξy,η | J |,η),

ξ,yy = | J |−2 (x,ηx,ξη − x,ξx,ηη)− | J |−3 (x2
,η | J |,ξ − x,ξx,η | J |,η),

η,xx = | J |−2 (y,ξy,ξη − y,ηy,ξξ)+ | J |−3 (y,ξy,η | J |,ξ − y2
,ξ | J |,η),

η,xy = | J |−2 (y,ηx,ξξ − y,ξx,ξη)− | J |−3 (x,ξy,η | J |,ξ − x,ξy,ξ | J |,η),

η,yy = | J |−2 (x,ξx,ξη − x,ηx,ξξ)+ | J |−3 (x,ξx,η | J |,ξ − x2
,ξ | J |,η) (10.12)

The outlined mapping transformations are generic which hold good for
adopting any kinds of appropriate analytical functions. Thus various domain
configurations and mapping techniques can be adopted [113]. The simulation
for transformation adopting polynomials is carried out [25–27]. The transfor-
mation relations are expressed by

xī = Nγ(ξr)x̃īγ , γ = 1, 2, ..., Nc (10.13)

where x̃īγ are xī and their possible partial derivatives with respective to ξr

at nodes used to define the transformations, Nγ(ξr) are the corresponding
shape functions and Nc is the total degrees of freedom. Using Eq. (10.13), the
first order partial derivatives of the physical coordinates with respect to the
natural coordinates can be obtained.

xī,ξj̄
= Nγ,ξj̄

(ξr)x̃īγ (10.14)

And the second order partial derivatives of the physical coordinates with re-
spect to the natural coordinates are

xī,ξj̄ξk̄
= Nγ,ξj̄ξk̄

(ξr)x̃īγ (10.15)

The shape functions of serendipity C0 triangular elements, serendipity trian-
gular elements with incomplete first order derivatives, serendipity C0 quadri-
lateral elements and serendipity Hermitian quadrilateral elements which are
necessary for carrying out the mapping transformation and developing irreg-
ular DQEM elements are summarized [114–115].
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10.1.1 Serendipity C0 Triangular Elements

In constructing the mapping transformation, the master triangular element
in the natural space may be an arbitrary linear triangle. For convenience,
the rectangular unit triangle is adopted. Let the natural coordinates be L1

and L2. A representative serendipity rectangular unit C0 triangular element
is shown in Fig. 10.1. Assume that the physical coordinates are nth order on
side 1 − n + 1, lth order on side n + 1 − n + l + 1 and mth order on side
n + l + 1− 1 in terms of the natural coordinates. The shape functions can be
expressed by

Ni =
L1

2(1 − L2)
Ψn

n−i+1(1 − L2)Ψn
i−1(L2)

+
L2

2(1 − L1)
Ψn

n−i+1(L1)Ψn
i−1(1 − L1), 2 ≤ i ≤ n,

Ni =
L2

2(L1 + L2)
Ψ l

l+n+1−i(L1 + L2)Ψ l
i−n−1(1 − L1 − L2)

+
1 − L1 − L2

2(1 − L2)
Ψ l

l+n+1−i(L2)Ψ l
i−n−1(1 − L2), n + 2 ≤ i ≤ n + l,

Ni =
1 − L1 − L2

2(1 − L1)
Ψm

l+m+n+1−i(1 − L1)Ψm
i−l−n−1(L1)

+
L1

2(L1 + L2)
Ψm

l+m+n+1−i(1 − L1 − L2)Ψm
i−l−n−1(L1 + L2),

l + n + 2 ≤ i ≤ l + m + n,

N1 =
1 − L1 − L2

2(1 − L1)
Ψm

m (L1) +
L1

2(L1 + L2)
Ψm

m (L1 + L2)

+
L1

2(1 − L2)
Ψn

n (1 − L2) +
L2

2(1 − L1)
Ψn

n (L1) − L1

2
,

Nn+1 =
L1

2(1 − L2)
Ψn

n (L2) +
L2

2(1 − L1)
Ψn

n (1 − L1)

+
L2

2(L1 + L2)
Ψ l

l (L1 + L2) +
1 − L1 − L2

2(1 − L2)
Ψ l

l (L2) − L2

2
,

Nl+n+1 =
L2

2(L1 + L2)
Ψ l

l (1 − L1 − L2) +
1 − L1 − L2

2(1 − L2)
Ψ l

l (1 − L2)

+
1 − L1 − L2

2(1 − L1)
Ψm

m (1 − L1)

+
L1

2(L1 + L2)
Ψm

m (1 − L1 − L2) − 1 − L1 − L2

2
(10.16)
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Fig. 10.1. The serendipity rectangular unit C0 triangular element

where
Ψ n̄

p̄ (L) =
∏p̄

k=1
n̄L−k+1

k , 1 ≤ p̄ ≤ n̄
= 1, p̄ = 0

(10.17)

in which n̄ is the order of one side. Assume that the three sides have the same
order n and define

λn
p (L) =

∏p−1
k=1

nL−k
p−k , 2 ≤ p ≤ n

= 1, p = 1
(10.18)

Then the shape functions can be expressed by

Ni =
n2L1L2

2(i − 1)(n − i + 1)
[
λn

n−i+1(L1)λn
i−1(1 − L1)

+λn
n−i+1(1 − L2)λn

i−1(L2)
]
, 2 ≤ i ≤ n,

Ni =
n2L2(1 − L1 − L2)

2(i − n − 1)(2n − i + 1)
[
λn

2n−i+1(L2)λn
i−n−1(1 − L2)

+λn
2n−i+1(L1 + L2)λn

i−n−1(1 − L1 − L2)
]
, n + 2 ≤ i ≤ 2n,

Ni =
n2L1(1 − L1 − L2)

2(i − 2n − 1)(3n − i + 1)
[
λn

3n−i+1(1 − L1 − L2)λn
i−2n−1(L1 + L2)

+λn
3n−i+1(1 − L1)λn

i−2n−1(L1)
]
, 2n + 2 ≤ i ≤ 3n,

N1 =
L1

2
[
λn

n(L1) + λn
n(L1 + L2) + λn

n(1 − L2) − 1
]
,
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Nn+1 =
L2

2
[
λn

n(L2) + λn
n(1 − L1) + λn

n(L1 + L2) − 1
]
,

N2n+1 =
1 − L1 − L2

2
[
λn

n(1−L1−L2)+λn
n(1−L2)+λn

n(1−L1)−1
]

(10.19)

10.1.2 Serendipity Triangular Element
with Incomplete First Order Derivatives

Denote ζ the natural coordinate along a straight line having n nodes in the
L1 − L2 plane with ζ1 = 0, ζn = 1. Then by using the first order one-
dimensional Hermitian interpolation formula, the physical coordinate variable
x can be expressed by

x(ζ) = fn
i (ζ)x

i
+ gn

i (ζ)
[
(L1(n) − L1(1))xi,L1

+ (L2(n) − L2(1))xi,L2

]
,

i = 1, 2, ..., n (10.20)

where fn
i represents Hi(ζ) expressed by Eq. (2.77). It can also be written as

fn
i = [1 + ψn

i (ζ − ζi)] [ϕn
i (ζ)]2 , gn

i (ζ) = (ζ − ζi) [ϕn
i (ζ)]2 ,

ψn
i = −2

n∏
k=1,k �=i

1
ζi − ζk

, ϕn
i (ζ) =

n∏
k=1,k �=i

ζ − ζk

ζi − ζk
(10.21)

In the above equation ϕn
i (ζ) represents the (n − 1)th order Lagrange inter-

polation function with respect to i, L̂n
i (ζ) expressed by Eq. (2.70), and ψn

i

represents the first order derivative of the Lagrange interpolation function
L̂n

i (ζ) with respect to ζ at ζi multiplied by −2. Equation (10.20) can be used
to derive shape functions of serendipity triangular elements with incomplete
first order derivatives. Serendipity Hermitian triangular elements with higher
order derivatives can also be used for the mapping transformation.

10.1.3 Serendipity C0 Quadrilateral Elements

In constructing the mapping transformation, the master quadrilateral element
in the natural space may be an arbitrary rectangle. For convenience, the unit
square is adopted. A representative serendipity unit C0 quadrilateral element
is shown in Fig. 10.2. Assume that the physical coordinates are pth order on
side 1 - p + 1, qth order on side p + 1 - p + q + 1, rth order on side p + q + 1 -
p + q + r + 1 and sth order on side p + q + r + 1 - 1 in terms of the natural
coordinates. The shape functions can be expressed by

Ni = (1 − η)ϕp+1
i (ξ), 2 ≤ i ≤ p,

Ni = ξϕq+1
i−p (η), p + 2 ≤ i ≤ p + q,

Ni = ηϕr+1
p+q+r+2−i(ξ), p + q + 2 ≤ i ≤ p + q + r,
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Fig. 10.2. The serendipity unit C0 quadrilateral element

Ni = (1 − ξ)ϕs+1
p+q+r+s+2−i(η), p + q + r + 2 ≤ i ≤ p + q + r + s,

N1 = (1 − η)ϕp+1
1 (ξ) + (1 − ξ)ϕs+1

1 (η) − (1 − ξ)(1 − η),

Np+1 = (1 − η)ϕp+1
p+1(ξ) + ξϕq+1

1 (η) − ξ(1 − η),

Np+q+1 = ηϕr+1
r+1(ξ) + ξϕq+1

q+1 − ξη,

Np+q+r+1 = ηϕr+1
1 (ξ) + (1 − ξ)ϕs+1

s+1 − (1 − ξ)η (10.22)

Assume that the four sides have the same order p. Then the shape functions
can be expressed by

Ni = (1 − η)ϕp+1
i (ξ), 2 ≤ i ≤ p,

Ni = ξϕp+1
i−p (η), p + 2 ≤ i ≤ 2p,

Ni = ηϕp+1
3p+2−i(ξ), 2p + 2 ≤ i ≤ 3p,

Ni = (1 − ξ)ϕp+1
4p+2−i(η), 3p + 2 ≤ i ≤ 4p,

N1 = (1 − η)ϕp+1
1 (ξ) + (1 − ξ)ϕp+1

1 (η) − (1 − ξ)(1 − η),

Np+1 = (1 − η)ϕp+1
p+1(ξ) + ξϕp+1

1 (η) − ξ(1 − η),

N2p+1 = ηϕp+1
p+1(ξ) + ξϕp+1

p+1(η) − ξη,

N3p+1 = ηϕp+1
1 (ξ) + (1 − ξ)ϕp+1

p+1(η) − (1 − ξ)η (10.23)
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10.1.4 Serendipity Hermitian Quadrilateral Elements

Consider that the unit square in the natural space has an m × n serendipity
grid. By using the two-dimensional node identification method, the following
relations hold

D̂s
ξD̂

t
ηxαβ = D̂s

ξD̂
t
ηx̃αβ , 0 ≤ s ≤ m − 1, 0 ≤ t ≤ n − 1 (10.24)

where the following relation is used

D̂s
ξD̂

t
ηxαβ =

∂(s+t)x(ξ, η)
∂ξs∂ηt

|αβ (10.25)

The physical coordinate x can be expressed by

x(ξ, η) = xξ + xη − x̄ (10.26)

Let a(0, 0), b(1, 0), c(1, 1) and d(0, 1) be the four corner nodes. Then

xξ =
m∑

α=1

[m−1∑
s=0

Hm−1,s
α (m, ξ)D̂s

ξ

×
n−1∑
t=0

(
Hn−1,t

1 (2, η)D̂t
ηxα |ab +Hn−1,t

2 (2, η)D̂t
ηxα |dc

)]
, (10.27)

xη =
n∑

β=1

[n−1∑
t=0

Hn−1,t
β (n, η)D̂t

η

×
m−1∑
s=0

(
Hm−1,s

1 (2, ξ)D̂s
ξxβ |ad +Hm−1,s

2 (2, ξ)D̂s
ξxβ |bc

)]
, (10.28)

and

x̄ =
m−1∑
s=0

n−1∑
t=0

[
Hm−1,s

1 (2, ξ)Hn−1,t
1 (2, η)D̂s

ξD̂
t
ηxa

+Hm−1,s
2 (2, ξ)Hn−1

1 (2, η)D̂s
ξD̂

t
ηxb

+Hm−1
2 (2, ξ)Hn−1

2 (2, η)D̂s
ξD̂

t
ηxc

+Hm−1
1 (2, ξ)Hn−1

2 (2, η)D̂s
ξD̂

t
ηxd

]
(10.29)

where Hm−1,s
α and Hn−1,t

β are Hermitian polynomials expressed by Eq. (2.77).
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10.1.5 Cn∗ Elements

The Cn∗ elements are also effective for defining the mapping transformation
[116]. For illustration, consider the four-node twelve-DOF quadrilateral C1∗

element. Each of the four nodes has three DOF representing xi, ∂xi

∂ξ and
∂yi

∂η . Considering that the natural coordinates of the four element nodes 1,
2, 3 and 4 are (ξ1, η1) = (−1,−1), (ξ2, η2) = (1,−1), (ξ3, η3) = (1, 1), and
(ξ4, η4) = (−1, 1), respectively, the twelve shape functions are expressed by

N1 =
1
4
[
1 − (3ξ/2 − ξ3/2) − (3η/2 − η3/2) + (2ξη − ξ3η/2 − ξη3/2)

]
,

N2 =
1
8
[
1 − (ξ + ξ2 − ξ3) − η + (ξη + ξ2η − ξ3η)

]
,

N3 =
1
8
[
1 − ξ + (−η − η2 + η3) + (ξη + ξη2 − ξη3)

]
,

N4 =
1
4
[
1 + (3ξ/2 − ξ3/2) − (3η/2 − η3/2) − (2ξη − ξ3η/2 − ξη3/2)

]
,

N5 =
1
8
[−1 − (ξ − ξ2 − ξ3) + η + (ξη − ξ2η − ξ3η)

]
,

N6 =
1
8
[
1 + ξ − (η + η2 − η3) − (ξη + ξη2 − ξη3)

]
,

N7 =
1
4
[
1 + (3ξ/2 − ξ3/2) + (3η/2 − η3/2) + (2ξη − ξ3η/2 − ξη3/2)

]
,

N8 =
1
8
[−1 − (ξ − ξ2 − ξ3) − η − (ξη − ξ2η − ξ3η)

]
,

N9 =
1
8
[−1 − ξ(η − η2 − η3) − (ξη − ξη2 − ξη3)

]
,

N10 =
1
4
[
1 − (3ξ/2 − ξ3/2) + (3η/2 − η3/2) − (2ξη − ξ3η/2 − ξη3/2)

]
,

N11 =
1
8
[
1 − (ξ + ξ2 − ξ3) + η − (ξη + ξ2η − ξ3η)

]
,

N12 =
1
8
[−1 + ξ − (η − η2 − η3) + (ξη − ξη2 − ξη3)

]

10.2 Mesh and Element Grids

Both of h and p DQEM procedures can be used to solve a problem and get
converged results. Since the p version is more efficient than the h version,
in the real engineering or scientific application the concept of adaptive dis-
cretization can be adopted and the number of elements used to model the
analysis domain must be as small as possible [20,25,117]. Various techniques
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can be used to generate the mesh and element grids. The mapping technique
is used. The grid of an element can be flexible. Consider the quadrilateral
element and let ξ and η denote the nondimensional one unit natural coordi-
nates corresponding to the physical coordinates x and y, respectively. Also
consider the Lagrange family grid and let Nξ and Nη denote the numbers of
levels in ξ and η directions, respectively, in the master element of a physi-
cal element. For solving a problem having irregular analysis domain bound-
ary which has a curved line or a straight line not parallel to x and y axes,
by designing the mesh in such a way that interior elements are rectangles
with the element grid lines parallel to x or y axes the assembled overall al-
gebraic system will have more zero elements in the coefficient matrix. It can
reduce the computer memory and CPU time required for solving the problem.
Figure 10.3 shows an efficient mesh. Mapping is also not necessary for trian-
gular elements having three linear sides. For the solution of field problems,
the concept of generating efficient mesh can be similarly used to design effi-
cient element grid of an irregular element with the inclined or curved element
side attached to the analysis domain boundary. Figure 10.4 shows an efficient
element grid model of an irregular element. The form of the assembled overall
coefficient matrix, when assemble a discrete governing equation at an interior
node, the number of data filled in is Nξ+Nη-1 for the efficient element grid
model as compared to Nξ ×Nη for a fully irregular element grid model. When
assemble a discrete natural boundary condition if the natural boundary is a
straight line parallel to one of the coordinate axes, the adoption of efficient
element grid model can also reduce the number of data filled in. Considering
a boundary node at the intersection of a natural boundary line parallel to
the y axis and an interior grid line parallel to the x axis, the number of data

Fig. 10.3. The efficient mesh
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Fig. 10.4. Efficient element grid model

filled in is Nξ for the efficient element grid model as compared to Nξ+Nη-1
for a fully irregular element grid model. When assembling the discrete natural
boundary condition at a node on an inclined or curved natural boundary line
the number of data filled in is also Nξ+Nη-1. When assembling the discrete
natural transition condition the number of data filled in can also be reduced
if the efficient mesh and efficient element grid model are used. It should be
mentioned that the design of efficient element grid model for an element with
inclined and/or curved sides attached to the analysis domain boundary might
result in an extremely nonuniform distribution of element nodes. The DQEM
analysis using elements having extremely nonuniform distributions of element
nodes also have excellent numerical performance [27].

For two adjacent elements having different numbers of nodes on the inter-
element boundary, the number of kinematic transition conditions must be
larger than the number of natural transition conditions. Let nd denote the
difference between the two node numbers which equals the difference between
the two numbers of transition conditions. To set up the kinematic transition
conditions, the nodes on the inter-element boundary must be arranged in such
a way that only nd nodes in one element are not coincident with the nodes in
the other element. The nd extra nodes are used to define nd extra kinematic
transition conditions. In defining the nd extra kinematic conditions, the in-
terpolation technique must be used. In addition, the transition conditions can
be easily set up by designing the grids of the two adjacent elements in such a
way that both elements have the same numbers of nodes on the inter-element
boundary no matter what the orders of approximations and grid configura-
tions are. The concept of efficient element grid can be similarly used to design
the grids of two adjacent elements which have this type of connection.
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10.3 Outward Unit Normal Vector on Element Boundary

The direction cosines of the outward unit normal vector at a discrete point on
the element boundary is necessary for defining the discrete natural transition
conditions or natural boundary conditions at the discrete point.

10.3.1 Mapping for Calculating the Direction Cosines

The mapping technique can be used to calculate the direction cosines of the
outward unit normal vector on the element boundary [25–27].

For illustration, consider the mapping of the bilinear element shown in
Fig. 10.5. The four shape functions which define the mapping are expressed

Fig. 10.5. Mapping of the bilinear element

as

Ψ1 =
1
4
(1 − ξ)(1 − η), Ψ2 =

1
4
(1 + ξ)(1 − η),

Ψ3 =
1
4
(1 + ξ)(1 + η), Ψ4 =

1
4
(1 − ξ)(1 + η) (10.30)

Referring to Fig. 10.6, the position vector of a point on side η = −1 is

R(ξ) = xi + yj

=
1
2

[(1 − ξ)x1 + (1 + ξ)x2] i +
1
2

[(1 − ξ)y1 + (1 + ξ)y2] j (10.31)

Then the unit tangent vector t can be expressed by

t =
dR(ξ)

dξ

| dR(ξ)
dξ |

=
(x2 − x1)i + (y2 − y1)j

[(x2 − x1)2 + (y2 − y1)2]
1
2

= ᾱi + β̄j (10.32)

Hence, the direction cosines of t are
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Fig. 10.6. A bilinear element

ᾱ =
x2 − x1

[(x2 − x1)2 + (y2 − y1)2]
1
2
, β̄ =

y2 − y1

[(x2 − x1)2 + (y2 − y1)2]
1
2

(10.33)

And the direction cosines of the outward unit normal vector n = li + mj can
be obtained

l = ᾱcos
π

2
+ β̄sin

π

2
= β̄, m = −ᾱsin

π

2
+ β̄cos

π

2
= −ᾱ (10.34)

For side ξ = 1, the direction cosines of the unit tangent vector are found to
be

ᾱ =
x3 − x2

[(x3 − x2)2 + (y3 − y2)2]
1
2
, β̄ =

y3 − y2

[(x3 − x2)2 + (y3 − y2)2]
1
2

(10.35)

And the direction cosines of the outward unit normal vector are

l = β̄, m = −ᾱ (10.36)

For side η = 1, the direction cosines of the unit tangent vector are found to
be

ᾱ =
x3 − x4

[(x3 − x4)2 + (y3 − y4)2]
1
2
, β̄ =

y3 − y4

[(x3 − x4)2 + (y3 − y4)2]
1
2

(10.37)

And the direction cosines of the outward unit normal vector are

l = −β̄, m = ᾱ (10.38)

For side ξ = −1, the direction cosines of the unit tangent vector are found to
be

ᾱ =
x4 − x1

[(x4 − x1)2 + (y4 − y1)2]
1
2
, β̄ =

y4 − y1

[(x4 − x1)2 + (y4 − y1)2]
1
2

(10.39)
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Fig. 10.7. Mapping of the quadratic serendipity element

And the direction cosines of the outward unit normal vector are

l = −β̄, m = ᾱ (10.40)

Also considering the mapping of the quadratic serendipity element shown
in Fig. 10.7. The eight shape functions which define the mapping are expressed
as

Ψ1 = −1
4
(1 − ξ)(1 − η)(1 + ξ + η), Ψ2 =

1
4
(1 + ξ)(1 − η)(−1 + ξ − η),

Ψ3 =
1
4
(1 + ξ)(1 + η)(−1 + ξ + η), Ψ4 =

1
4
(1 − ξ)(1 + η)(−1 − ξ + η),

Ψ5 =
1
2
(1 − ξ2)(1 − η), Ψ6 =

1
2
(1 + ξ)(1 − η2),

Ψ7 =
1
2
(1 − ξ2)(1 + η), Ψ8 =

1
2
(1 − ξ)(1 − η2) (10.41)

Referring to Fig. 10.8, the position vector of a point on side η = −1 is

R(ξ) = xi + yj =
[
1
2
(ξ2 − ξ)x1 +

1
2
(ξ2 + ξ)x2 + (1 − ξ2)x5

]
i

+
[
1
2
(ξ2 − ξ)y1 +

1
2
(ξ2 + ξ)y2 + (1 − ξ2)y5

]
j (10.42)

Then the unit tangent vector t can be expressed by

t =
dR(ξ)

dξ

| dR(ξ)
dξ |

=
Ai + Bj

(A2 + B2)
1
2

(10.43)

where

A =
1
2
(2ξ − 1)x1 +

1
2
(2ξ + 1)x2 − 2ξx5,

B =
1
2
(2ξ − 1)y1 +

1
2
(2ξ + 1)y2 − 2ξy5 (10.44)
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Fig. 10.8. A quadratic serendipity element

Hence, the direction cosines of t are

ᾱ =
A

(A2 + B2)
1
2
, β̄ =

B

(A2 + B2)
1
2

(10.45)

Then the direction cosines of the outward unit normal vector can be obtained
by using ᾱ and β̄ in Eq. (10.25). For side ξ = 1, A and B for defining the
direction cosines of the unit tangent vector, expressed by Eqs. (10.36), are
found to be

A =
1
2
(2η − 1)x2 +

1
2
(2η + 1)x3 − 2ηx6,

B =
1
2
(2η − 1)y2 +

1
2
(2η + 1)y3 − 2ηy6 (10.46)

Then the direction cosines of the outward unit normal vector can be obtained
by using ᾱ and β̄ in Eq. (10.25). For side η = 1, A and B for defining the
direction cosines of the unit tangent vector, expressed by Eqs. (10.37), are
found to be

A =
1
2
(2ξ − 1)x4 +

1
2
(2ξ + 1)x3 − 2ξx7,

B =
1
2
(2ξ − 1)y4 +

1
2
(2ξ + 1)y3 − 2ξy7 (10.47)

Then the direction cosines of the outward unit normal vector can be obtained
by using ᾱ and β̄ in Eq. (10.25). For side ξ = −1, A and B for defining the
direction cosines of the unit tangent vector, expressed by Eqs. (10.36), are
found to be

A =
1
2
(2η − 1)x1 +

1
2
(2η + 1)x4 − 2ηx8,

B =
1
2
(2η − 1)y1 +

1
2
(2η + 1)y4 − 2ηy8 (10.48)

And the direction cosines of the outward unit normal vector can be obtained
by using ᾱ and β̄ in Eq. (10.25).
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10.3.2 Secant Relation for Calculating the Direction Cosines

The unit tangent vector at a discrete point on the element boundary is con-
structed by the secant approximation which uses two or three consecutive
discrete points on the element boundary. Then the direction cosines of the
corresponding outward unit normal vector can be obtained by using the trans-
formation law for first-order Cartesian tensors. Consider three counterclock-
wise consecutive nodes i, j, and k, viewed at a point inside the element, on
one side of an element. Then the unit tangent vector tj can be approximated
by

tj =
(xk − xi)i + (yk − yi)j

[(xk − xi)2 + (yk − yi)2]
1
2

= ᾱi + β̄j (10.49)

If i is the starting point of the element side, the unit tangent vector ti can be
expressed by

ti =
(xj − xi)i + (yj − yi)j

[(xj − xi)2 + (yj − yi)2]
1
2

= ᾱi + β̄j (10.50)

And if k is the end point of the element side, the unit tangent vector tk can
be expressed by

tk =
(xk − xj)i + (yk − yj)j

[(xk − xj)2 + (yk − yj)2]
1
2

= ᾱi + β̄j (10.51)

Using ᾱ and β̄, the direction cosines of the outward unit normal vector n =
li + mj can be obtained

l = ᾱcos
π

2
+ β̄sin

π

2
= β̄, m = −ᾱsin

π

2
+ β̄cos

π

2
= −ᾱ (10.52)
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DQEM Analysis of Two-Dimensional
Steady-State Field Problems

Potential flows, heat conductions, electrostatic fields, and stress function and
warping function formulations of the torsion of solid shafts,..., are field prob-
lems. In this chapter, numerical formulation of the DQEM analysis of two-
dimensional steady-state field problems is carried out. The quadrilateral and
triangular element models are introduced. The assemblage of all discrete equa-
tions into the overall algebraic system is discussed. The DQEM is used to the
analysis of various field problems. Both Lagrange DQ model and Chebyshev
DQ model adopted for sample DQEM analyses.

11.1 Fundamental Relations

The governing mathematical model of steady-state field problems is a bound-
ary value problem of partial differential equation [118–120]. For the two-
dimensional nonuniform problems with orthotropic media, the governing qua-
siharmonic equation is expressed as

(k̃xφ,x),x + (k̃yφ,y),y + Q̃ = 0 (11.1)

where φ is the field variable, k̃x = δkx, k̃y = δky, Q̃ = δQ are functions of the
coordinate variables x and y with δ the thickness of medium and variable in
the 2-D space. For the 2-D steady-state heat transfer problem, φ represents
the temperature, kx and ky represent thermal conductivities and Q represents
the heat generation rate per unit volume.

There are three possible boundary conditions: Dirichlet, Neumann and
Cauchy boundary conditions for the domain A. Let SD, SN and SC denote the
Dirichlet, Neumann and Cauchy boundaries, respectively. The three boundary
conditions are expressed as:

φ = φ̄, on SD (11.2)
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kxlφ,x + kymφ,y = q̄, on SN (11.3)

kxlφ,x + kymφ,y = ch(φ0 − φ), on SC (11.4)

In the above three equations, φ̄, q̄ and φ0 are prescribed field variable, field
flux and ambient field variable, respectively, l and m are direction cosines of
the outward unit normal vector on the natural boundary, and ch is a coeffi-
cient. Dirichlet boundary condition is a kinematic boundary condition, while
Neumann and Cauchy boundary conditions are natural boundary conditions.
For the 2-D steady-state heat transfer problem, φ̄, q̄, φ0 and ch are prescribed
temperature, boundary heat flux into the domain, ambient temperature and
convective heat transfer coefficient, respectively.

Solution of the boundary value problem of the governing equation provides
the following defined two components of the internal field flux

qx = −kxφ,x, qy = −kyφ,y (11.5)

For the 2-D steady-state heat transfer problem, qx and qy are the two com-
ponents of internal heat flux.

11.2 DQEM Formulation

Consider that the number of natural coordinates used to define the element
e is two. By using Eqs. (10.2) and (10.3) to transform φe

,x, φe
,y, φe

,xx, φe
,yy,

k̃e
x,x and k̃e

y,y then substituting them into Eq. (11.1) leads to the following
governing equation:

F e
1 (ξ, η)φe

,ξξ + F e
2 (ξ, η)φe

,ξη + F e
3 (ξ, η)φe

,ηη + F e
4 (ξ, η)φe

,ξ + F e
5 (ξ, η)φe

,η

+ q̃e = 0 (11.6)

where

F e
1 (ξ, η) = k̃e

xξ2
,x + k̃e

yξ2
,y, F e

2 (ξ, η) = 2(k̃e
xξ,xη,x + k̃e

yξ,yη,y),

F e
3 (ξ, η) = k̃e

xη2
,x + k̃e

yη2
,y,

F e
4 (ξ, η) = k̃e

xξ,xx + k̃e
yξ,yy + k̃e

x,ξξ
2
,x + k̃e

x,ηξ,xη,x + k̃e
y,ξξ

2
,y + k̃e

y,ηξ,yη,y,

F e
5 (ξ, η) = k̃e

xη,xx + k̃e
yη,yy + k̃e

x,ξξ,xη,x + k̃e
x,ηη2

,x + k̃e
y,ξξ,yη,y + k̃e

y,ηη2
,y

(11.7)

Let n denote the element having at least one edge on the Neumann boundary,
and c denote the element having at least one edge on the Cauchy boundary.
The use of Eq. (10.2) in Eqs. (11.3) and (11.4) leads to the following two
transformed equations

(kn
x lnξ,x + kn

y mnξ,y)φn
,ξ + (kn

x lnη,x + kn
y mnη,y)φn

,η = q̄n (11.8)
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(kc
xlcξ,x + kc

ymcξ,y)φc
,ξ + (kc

xlcη,x + kc
ymcη,y)φc

,η + cc
hφc = cc

hφ̄c
0 (11.9)

Equation (11.5) can also be transformed by using Eq. (10.2)

qe
x = −ke

x(ξ,xφe
,ξ + η,xφe

,η), qe
y = −ke

y(ξ,yφe
,ξ + η,yφe

,η) (11.10)

The kinematic transition condition on the inter-element boundary ∂Ωr,s
D

of two adjacent elements r and s is the continuity of the field variable φ which
is expressed as

φr = φs (11.11)

or the assumption of field variable φ which is expressed as

φr = φs = φ̄r,s (11.12)

where φ̄r,s is the prescribed field variable. By using Eq. (11.8), the natural
transition condition involving the field flux into the domain on the inter-
element boundary ∂Ωr,s

N can be written as(
kr

xlrξr
,x + kr

ymrξr
,y

)
φr

,ξ +
(
kr

xlrηr
,x + kr

ymrηr
,y

)
φr

,η

+
(
ks

xlsξs
,x + ks

ymsξs
,y

)
φs

,ξ +
(
ks

xlsηs
,x + ks

ymsηs
,y

)
φs

,η = q̃r,s (11.13)

where q̃r,s is the field flux into the domain. By using Eq. (11.9), another
natural transition condition on the inter-element boundary ∂Ωr,s

C can also be
defined (

kr
xlrξr

,x + kr
ymrξr

,y

)
φr

,ξ +
(
kr

xlrηr
,x + kr

ymrηr
,y

)
φr

,η

+
(
ks

xlsξs
,x + ks

ymsξs
,y

)
φs

,ξ +
(
ks

xlsηs
,x + ks

ymsηs
,y

)
φs

,η

+ cr,s
h φr,s = cr,s

h φ̃r,s
0 (11.14)

where φ̃r,s
0 is a prescribed field variable.

11.2.1 Quadrilateral Element

Using the DQ which uses the field variables at the element nodes to define the
DQ discretization in Eq. (11.6) at node (α, β) leads to the following equation

F e
1 (ξα, ηβ)Deξ2

αmφe
mβ + F e

2 (ξα, ηβ)Deη
βnDeξ

αmφe
mn + F e

3 (ξα, ηβ)Deη2

βn φe
αn

+ F e
4 (ξα, ηβ)Deξ

αmφe
mβ + F e

5 (ξα, ηβ)Deη
βnφe

αn + Q̃e
αβ = 0 (11.15)

where Deξ2

αm and Deη2

βn are weighting coefficients for the second order deriva-
tives in ξ and η directions, respectively, and Deξ

αm and Deη
βn are corresponding

weighting coefficients for the first order derivatives. The components of the
internal field flux at nodes in an element e can also be expressed by using the
DQ and Eq. (11.10)
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qe
x,αβ = −ke

x(α)(β)ξ
e
(α)(β),xDeξ

αmφe
mβ − ke

x(α)(β)η
e
(α)(β),xDeη

βnφe
αn,

qe
y,αβ = −ke

y(α)(β)ξ
e
(α)(β),yDeξ

αmφe
mβ − ke

y(α)(β)η
e
(α)(β),yDeη

βnφe
αn (11.16)

Consider the inter-element boundary which is the ξ = 1 side of element
r and the ξ = 0 side of element s. Using Eq. (11.11), the discrete continuity
conditions of field variable are expressed by

φr
Nr

ξ
β = φs

1β , β = 1, 2, ..., Nr
η (11.17)

and the condition of prescribed field variable at a node on the inter-element
boundary is

φr
Nr

ξ
β = φs

1β = φ̄r,s
β (11.18)

Using the DQ in Eq. (11.13), the related natural transition condition at a
node on the inter-element boundary can be obtained(

kr
xNr

ξ
(β)l

r
Nr

ξ
(β)ξ

r
Nr

ξ
(β),x + kr

yNr
ξ
(β)m

r
Nr

ξ
(β)ξ

r
Nr

ξ
(β),y

)
Drξ

Nr
ξ

mφr
mβ

+
(
kr

xNr
ξ
(β)l

r
Nr

ξ
(β)η

r
Nr

ξ
(β),x + kr

yNr
ξ
(β)m

r
Nr

ξ
(β)η

r
Nr

ξ
(β),y

)
Drη

βnφr
Nr

ξ
n

+
(
ks

x1(β)l
s
1(β)ξ

s
1(β),x + ks

y1(β)m
s
1(β)ξ

s
1(β),y

)
Dsξ

1mφs
mβ

+
(
ks

x1(β)l
s
1(β)η

s
1(β),x + ks

y1(β)m
s
1(β)η

s
1(β),y

)
Dsη

βnφs
1n = q̃r,s

β (11.19)

Using the DQ in Eq. (11.14), the related natural transition condition at a
node on the inter-element boundary can also be obtained(
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ξ
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+
(
kr

xNr
ξ
(β)l

r
Nr

ξ
(β)η
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ξ
β = cr,s

h(β)φ̃
r,s
0β (11.20)

Letting element n be an element with the ξ = 1 side on the Neumann bound-
ary, the discrete Neumann boundary condition at a node on the boundary can
be obtained by using the DQ in Eq. (11.8)(
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xNn
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n
Nn

ξ
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n
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ξ
(β),x + kn

yNn
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ξ
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ξ
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Nn

ξ
(β),y
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βnφn
Nn

ξ
n

= q̄β (11.21)

If the side of the element is on the Cauchy boundary, the discrete Cauchy
boundary conditions can be similarly obtained
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xNc
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ξ
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0β (11.22)

11.2.2 Triangular Element

In constructing the mapping transformation, the master triangular element
in the natural space may be an arbitrary linear triangle. For convenience, the
rectangular unit triangle is adopted. Let the natural coordinates be L1 and L2.
A representative serendipity rectangular unit C0 triangular element is shown
in Fig. 10.1. Using the area coordinates L1, L2 and L3 as coordinate variables
and substituting the transformation equations for φe

,x, φe
,y, k̃e

x,x, k̃e
y,y, φe

,xx and
φe

,yy into Eq. (11.1) leads to the following equation defined on Ω̃

F e
1 (L1, L2)φe

,L1L1
+ F e

2 (L1, L2)φe
,L2L2

+ F e
3 (L1, L2)φe

,L3L3

+ F e
4 (L1, L2)φe

,L1L2
+ F e

5 (L1, L2)φe
,L1L3

+ F e
6 (L1, L2)φe

,L2L3

+ F e
7 (L1, L2)φe

,L1
+ F e

8 (L1, L2)φe
,L2

+ F e
9 (L1, L2)φe

,L3
+ Q̃e = 0 (11.23)

where

F e
1 (L1, L2) = k̃e

xL2
1,x + k̃e

yL2
1,y, F e

2 (L1, L2) = k̃e
xL2

2,x + k̃e
yL2

2,y,

F e
3 (L1, L2) = k̃e

x(L1,x + L2,x)2 + k̃e
y(L1,y + L2,y)2,

F e
4 (L1, L2) = k̃e

xL1,xL2,x + k̃e
yL1,yL2,y,

F e
5 (L1, L2) = −2[k̃e

xL1,x(L1,x + L2,x) + k̃e
yL1,y(L1,y + L2,y)],

F e
6 (L1, L2) = −2[k̃e

xL2,x(L1,x + L2,x) + k̃e
yL2,y(L1,y + L2,y)],

F e
7 (L1, L2) = k̃e

xL1,xx + k̃e
yL1,yy + k̃e

x,xL1,x + k̃e
y,yL1,y,

F e
8 (L1, L2) = k̃e

xL2,xx + k̃e
yL2,yy + k̃e

x,xL2,x + k̃e
y,yL2,y,

F e
9 (L1, L2) = −k̃e

x(L1,xx + L2,xx) − k̃e
y(L1,yy + L2,yy)

−k̃e
x,x(L1,x + L2,x) − k̃e

y,y(L1,y + L2,y) (11.24)

The transformed Neumann boundary condition is

(kn
x lnLn

1,x + kn
y mnLn

1,y)φn
,L1

+ (kn
x lnLn

2,x + kn
y mnLn

2,y)φn
,L2

− [
kn

x ln(Ln
1,x + Ln

2,x) + kn
y mn(Ln

1,y + Ln
2,y)

]
φn

,L3
= q̄n (11.25)

And the transformed Cauchy boundary condition is

(kc
xlcLc

1,x + kc
ymcLc

1,y)φc
,L1

+ (kc
xlcLc

2,x + kc
ymcLc

2,y)φc
,L2

− [
kc

xlc(Lc
1,x + Lc

2,x) + kc
ymc(Lc

1,y + Lc
2,y)

]
φc

,L3
+ cc

hφc = cc
hφ̄c

0 (11.26)

The component equations of field flux can also be transformed
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qe
x = −ke

x

[
Le

1,xφe
,L1

+ Le
2,xφe

,L2
− (Le

1,x + Le
2,x)φe

,L3

]
,

qe
y = −ke

y

[
Le

1,yφe
,L1

+ Le
2,yφe

,L2
− (Le

1,y + Le
2,y)φe

,L3

]
(11.27)

The kinematic transition condition is the same as that of the quadrilateral ele-
ment formulation. The natural transition condition on ∂Ωr,s

N can be expressed
by

(kxlrLr
1,x + kymrLr

1,y)φr
,L1

+ (kxlrLr
2,x + kymrLr

2,y)φr
,L2

− [
kxlr(Lr

1,x + Lr
2,x) + kymr(Lr

1,y + Lr
2,y)

]
φr

,L3

+ (kxlsLs
1,x + kymsLs

1,y)φs
,L1

+ (kxlsLs
2,x + kymsLs

2,y)φs
,L2

− [
kxls(Ls

1,x + Ls
2,x) + kyms(Ls

1,y + Ls
2,y)

]
φs

,L3
= q̃r,s (11.28)

The natural transition condition on ∂Ωr,s
C can be expressed by

(kxlrLr
1,x + kymrLr

1,y)φr
,L1

+ (kxlrLr
2,x + kymrLr

2,y)φr
,L2

− [
kxlr(Lr

1,x + Lr
2,x) + kymr(Lr

1,y + Lr
2,y)

]
φr

,L3

+ (kxlsLs
1,x + kymsLs

1,y)φs
,L1

+ (kxlsLs
2,x + kymsLs

2,y)φs
,L2

− [
kxls(Ls

1,x + Ls
2,x) + kyms(Ls

1,y + Ls
2,y)

]
φs

,L3
+ cr,s

h φr,s

= cr,s
h φ̃r,s

0 (11.29)

The Pascal triangular grid and the three-dimensional node identification
method are used. It is designed by first using n + 1 parallel lines to subdivide
the domain, in each direction of area coordinates, into n subregions with
n being the order of approximate polynomials. The parallel lines define the
levels of the Pascal triangular grid with the boundary line being the level
1. The level number will increase following the increase of the value of area
coordinate. The highest level is level n + 1. Let L denote the level number
of a level below the highest level. Then n + 2 − L equally spaced nodes are
given to each level. Using the DQ discretization, the governing Eq. (11.23) at
a node (α, β, γ) in the element e can be discretized

F e
1 (L1α, L2β)DeL2

1
αᾱ φe

ᾱβγ + F e
2 (L1α, L2β)DeL2

2
ββ̄

φe
αβ̄γ

+ F e
3 (L1α, L2β)DeL2

3
γγ̄ φe

αβγ̄ + F e
4 (L1α, L2β)DeL1

αβ̄
DeL2

ββ̄
φe

ᾱβ̄γ

+ F e
5 (L1α, L2β)DeL1

αᾱ DeL3
γγ̄ φe

ᾱβγ̄ + F e
6 (L1α, L2β)DeL2

ββ̄
DeL3

γγ̄ φe
αβ̄γ̄

+ F e
7 (L1α, L2β)DeL1

αᾱ φe
ᾱβγ + F e

8 (L1α, L2β)DeL2
ββ̄

φe
αβ̄γ

+ F e
9 (L1α, L2β)DeL3

γγ̄ φe
αβγ̄ + Q̃e

αβγ = 0 (11.30)

The components of the field flux at a node (α, β, γ) can also be expressed by
using the DQ in Eqs. (11.27)

qe
x,αβγ = −ke

x,(α)(β)

[
Le

1(α)(β),xDeL1
αᾱ φe

ᾱβγ + Le
2(α)(β),xDeL2

ββ̄
φe

αβ̄γ

−(Le
1(α)(β),x + Le

2(α)(β),x

)
DeL3

γγ̄ φe
αβγ̄

]
,
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qe
y,αβγ = −ke

y,(α)(β)

[
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αᾱ φe
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φe
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2(α)(β),y

)
DeL3

γγ̄ φe
αβγ̄

]
(11.31)

Using DQ in Eq. (11.28), the related natural transition condition at a node
(α̃, β̃, γ̃) on the inter-element boundary ∂Ωr,s

N can be obtained(
kr

x(α̃)(β̃)
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1(α̃)(β̃),x
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)
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x(α̃)(β̃)
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(11.32)

Using DQ in Eq. (11.29), the related natural transition condition at a node
(α̃, β̃, γ̃) on the inter-element boundary ∂Ωr,s

N can be obtained(
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(11.33)

It should be noted that (α̃, β̃, γ̃) represents a common node of element r
and element s on the inter-element boundary. Consequently, the two sets
of (α̃, β̃, γ̃) represent the two local element nodes of element r and element
s, separately. Letting element n be an element connected to the Neumann
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boundary, the discrete Neumann boundary condition at a node (α̃, β̃, γ̃) can
be obtained by using the DQ in Eq. (11.25)(
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mn
(α̃)(β̃)

Ln
2(α̃)(β̃),y
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= q̄n
α̃β̃γ̃

(11.34)

If the element is connected to the Cauchy boundary, the discrete Cauchy
boundary condition at a node (α̃, β̃, γ̃) can also be obtained by using the DQ
in Eq. (11.26)(

kc
x(α̃)(β̃)

lc
(α̃)(β̃)

Lc
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(
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+ Lc
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α̃β̃γ̄
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h(α̃)(β̃)(γ̃)

φc
α̃β̃γ̃
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h(α̃)(β̃)(γ̃)
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0α̃β̃γ̃

(11.35)

11.3 Assemblage

For the assemblage of discrete equations of quadrilateral elements, by keep-
ing the kinematic transition conditions in mind, then assemble the discrete
element governing equations (11.15) for all elements, discrete natural transi-
tion conditions (11.19) and (11.20), discrete Neumann boundary conditions
(11.21), and discrete Cauchy boundary conditions (11.22), an overall discrete
governing/transition/boundary equation can be obtained. It is the overall field
equation expresses as [

K̂
]
{Φ} = {RQ} (11.36)

where
[
K̂
]

is the overall field stiffness matrix, {Φ} is the overall field variable
vector, and {RQ} is the overall field load vector Considering the Dirichlet
boundary conditions and solving the overall field equation system, field vari-
ables at all nodes can be obtained. Like FEM, the assemblage is based on an
element by element procedure. In assembling the discrete equations of element
e, the discrete element governing equations (11.15), and the discrete element
boundary field fluxes, expressed by field variables, at the nodes on element
boundary edges are directly assembled to the overall discrete equation system.
An element basis explicit matrix equation, containing the discrete element



11.4 Overall Algebraic System 183

governing equations and the discrete element boundary field fluxes placed at
the rows with the assigned DOF related to the corresponding discrete element
boundary field fluxes, is not necessary to be formed in the assemblage process.
This element basis explicit matrix equation is an element field equation which
can be expressed by

[k̂e]{φe} = {re
Q} (11.37)

where [k̂e] is a (Ne
ξ × Ne

η ) × (Ne
ξ × Ne

η ) element field stiffness matrix,

{φe} = � φe
1 φe

2 φe
3 φe

4 . ... . �T (11.38)

is the element field variable vector, and {re
Q} is the element field load vec-

tor containing Q̃e
α at the related internal nodes, and discrete internal element

boundary field fluxes. As Eq. (11.37) contains discrete internal element bound-
ary field fluxes at nodes on the four element boundary edges, equilibriums of
internal field fluxes and external field fluxes into the medium at nodes on the
inter-element boundary of two adjacent elements and the natural boundary
are exactly satisfied in the assemblage process. Consequently, the DQEM is
different from FEM which needs to explicitly form the element field equation,
and which neglects the exactness of Eqs. (11.19) to (11.22).

11.4 Overall Algebraic System

In this section, the design and construction of the overall discrete funda-
mental equation system is introduced [25–27]. For the DQEM field problem
analysis model, the total degrees of freedom must equal the number of dis-
crete constraint equations. The governing equation at a node is a governing
equation constraint condition. An interior node can define only one discrete
governing equation. The discrete Dirichlet and natural boundary conditions
are defined on the Dirichlet and natural boundaries, respectively. A node on
the analysis domain boundary (ADB) but not an element corner node can
define one boundary condition and one governing equation. At a node on the
inter-element boundary, if the node is not an element corner node, in addition
to the continuity of field variable one discrete constraint equation of prescribed
field variable or natural transition condition and up to two discrete constraint
governing equations attached to the two adjacent elements can be defined. An
element corner node might be able to define even more constraint equations.

Consider that discrete governing equations are only defined at interior
nodes. For an element corner node in the analysis domain which is the common
node of NN natural inter-element boundaries (IEB) and NK kinematic inter-
element boundaries, let NT denote the number of all constraint conditions.
Then, for NK �= 0, NT = NN + 1; for NK = 0 and Φ not prescribed at the
node, NT = NN ; for NK = 0 and Φ prescribed, NT = NN + 1. The equation
of setting Φ as a prescribed value is also a kinematic constraint condition.
Figure 11.1 is a typical element corner node in the analysis domain.
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Fig. 11.1. Typical element corner node in the analysis domain

For an element corner node on the analysis domain boundary with two
element-based segments of the analysis domain boundary being connected to
it, if the two segments are natural boundaries, NT for various connections are:
for NK �= 0, NT = NN + 3; for NK = 0 and Φ not prescribed at the node,
NT = NN + 2; for NK = 0 and Φ prescribed, NT = NN + 3. For this type of
element corner node, if only two elements are connected to the node with the
inter-element boundary perpendicular to the analysis domain boundary which
is a straight line within the two connected elements, then only one natural
boundary condition can be applied. If one of the analysis domain boundary
segment is natural boundary while the other one is Dirichlet boundary, NT for
various connections are: for NK �= 0, NT = NN +2; for NK = 0, NT = NN +2.
And if both of the two analysis domain boundary segments are Dirichlet
boundaries, NT for various connections are: for NK �= 0, NT = NN + 1; for
NK = 0, NT = NN + 1. A representative of this type of element corner node
is shown in Fig. 11.2 which is the type 1 element corner node on the analysis
domain boundary.

For an element corner node on the analysis domain boundary with one
element-based segment of the analysis domain boundary connected to it, if
the segment is natural boundary, NT for various connections are: for NK �= 0,
NT = NN + 2; for NK = 0 and Φ not prescribed at the node, NT = NN + 1;
for NK = 0 and Φ prescribed, NT = NN +2. If the analysis domain boundary
segment is Dirichlet boundary, NT for various connections are: for NK �= 0,

Fig. 11.2. Type 1 element corner node on the analysis domain boundary
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Fig. 11.3. Type 2 element corner node on the analysis domain boundary

NT = NN + 1; for NK = 0, NT = NN + 1. A representative of this type of
element corner node is shown in Fig. 11.3 which is the type 2 element corner
node on the analysis domain boundary.

Consider that only the values of field variable at nodes are used to define
the DQ discretization. Then in order to satisfy all constraint conditions at an
element corner node, at the assemblage stage, one degree of freedom might
not enough. However, we can use more than one constraint condition at that
corner node by neglecting certain constraint conditions at interior nodes or at
node on the inter-element boundary and other than corner nodes, and giving
their degrees of freedom to the inclusion of extra constraint conditions other
than the first one.

For the DQEM field problem analysis model, the NT constraint conditions
can partially or fully be satisfied. We can also neglect all of the NT constraint
conditions and give the degree of freedom of that node to the discrete gov-
erning equation at that node. The discrete governing equation at the element
corner node can be defined as the average of the discrete governing equations
of all elements connected to that node.

The various techniques for selecting and implementing the constraint con-
ditions at element corner nodes are flexible. Different approaches lead to differ-
ent programming efforts. The overall algebraic system obtained by assembling
all discrete constraint conditions is the discrete governing/transition/boundary
equation system.

The EDQ can adopt the degrees of freedom used to represent the deriv-
atives or partial derivatives of the field variable. In conjunction with the use
of the EDQ with which the discretization can be defined at discrete points
which are not nodes, the DQEM can also assign the degrees of freedom of the
partial derivatives of the field variable to the element boundary nodes.

For analyzing the two-dimensional field problems in order to automati-
cally set the kinematic transition conditions by only using certain degrees of
freedom assigned to the element boundary nodes, the degrees of freedom rep-
resenting the field variable must be assigned to the element boundary nodes.
The degrees of freedom representing the partial derivatives of the field variable
can also be assigned to the nodes of all neighbor elements on the inter-element
boundary and the compatibility conditions of higher order partial derivatives
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can also be considered. However, if certain external cause such as the fluid
flow, conduction heat flux, etc. is applied no compatibility condition of partial
derivatives can be considered. The discrete governing equations can be defined
on the inter-element boundaries as the average discrete governing equations
of multiple elements. They can also be defined on the element boundaries
without adopting the average treatment. Thus, elements having no interior
node can also be used to the DQEM analysis. For analyzing beam or plate
problems in order to automatically set the kinematic transition conditions
by only using certain degrees of freedom assigned to the element boundary
nodes, the degrees of freedom representing the lateral displacement and first
order derivative or partial derivatives of the lateral displacement must be as-
signed to the element boundary nodes. The degrees of freedom representing
higher order derivatives or partial derivatives of the displacement can also be
assigned to the nodes of all neighbor elements on the inter-element bound-
ary and the compatibility conditions of the higher order derivatives or partial
derivatives can also be considered. However, if the moment is applied the high-
est order of derivative or partial derivative that the compatibility condition
can be considered is one. On the other hand, if the lateral force is applied on
the inter-element boundary the highest order of derivative or partial deriva-
tive that the compatibility condition can be considered is two. The concept
can also be used to treat the boundary conditions. It should be noted that if
the highest order of derivative or partial derivative assigned to the element
boundary nodes is larger than one, the EDQ has to be used.

The philosophy inherent in the outlined techniques for defining discrete
connection conditions on the inter-element boundaries, the discrete boundary
conditions on the boundary and the discrete constraint conditions at the ele-
ment corner nodes also holds good for other scientific or engineering problems.

11.5 Problems

11.5.1 Problem 11.1

The steady-state heat conduction of an isotropic medium having a square
region R = {0 ≤ x, y ≤ π} was solved. For solving the field problem of
heat conduction, the field variable φ used in the formulation of general field
problems represents the temperature T , kx and ky represent thermal conduc-
tivities, Q represents the heat generation rate per unit volume, q̄ and q̃ repre-
sent the conduction heat fluxes into the medium on the Neumann boundary
and inter-element boundary of two adjacent elements, respectively, the nat-
ural boundary condition and inter-element boundary condition involving the
transfer coefficient ch represent the convective heat transfer, qx and qy in Eq.
(11.5) represent the two components of internal heat flux. The values of Q, kx,
ky and ch for this heat conduction problem solved are all equal to 1. Dirichlet
conditions are applied on the four sides with T̄ (0, y) = T̄ (π, y) = T̄ (x, π) = 0
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Fig. 11.4. 4-element mesh for the square region

and T̄ (x, 0) = sinx. In order to demonstrate the generality of the DQEM dis-
crete element analysis technique, four bilinear elements are used to model the
problem domain though it can be solved by using only one element to repre-
sent the whole domain. The mesh is shown in Fig. 11.4. All four elements have
the same type of element grid. The Lagrange DQ model and equally spaced
node points in both ξ and η directions are adopted for defining the element
grid. One constraint condition at D is applied in the analysis. Three different
types of constraint are adopted for the numerical tests to study the conver-
gence. Type 1 constraint is the natural transition condition on DF . Type 2
constraint is the natural transition condition on DA. And type 3 constraint is
the discrete governing equation at D. Numerical results of temperatures and
heat fluxes at different points are listed in Table 11.1. Analytical solutions are
also included for comparison [121–122]. It shows that the results converge
fast by gradually increasing the node points in an element for all of the three
different types of constraint. The convergence characters of the three different
types of constraint make no significant difference. The results converge up to
six digit accuracy by increasing the element node points up to 5 × 5. The
convergence test is also carried out by increasing the number of 3× 3 grid el-
ements. One constraint condition for each element corner node in the domain
is applied. It is the discrete governing equation at the corner node. Figures
11.5 and 11.6 show the 3× 3 grid 16-element mesh and 3× 3 grid 36-element
mesh, respectively. The numerical results are listed in Table 11.2. They also
converge well by gradually increasing the number of elements.
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Table 11.1. Convergence by increasing the number of nodes per element for the
steady-state heat conduction analysis in a square region

Element Constraint T,C qx,A qy,B

grid type

3×3 1 .389560×100 –.205404×100 .433558×10−1

2 .389375×100 –.199279×100 .369948×10−1

3 .389515×100 –.198798×100 .418028×10−1

5×5 1 .419921×100 –.197209×100 .624946×10−1

2 .419921×100 –.197167×100 .624467×10−1

3 .419922×100 –.196848×100 .620789×10−1

7×7 1 .418209×100 –.199277×100 .612420×10−1

2 .418209×100 –.199277×100 .612422×10−1

3 .418209×100 –.199277×100 .612412×10−1

9×9 1 .418229×100 –.199268×100 .612283×10−1

2 .418229×100 –.199268×100 .612283×10−1

3 .418229×100 –.199268×100 .612283×10−1

Analytical sol. .418229×100 –.199268×100 .612281×10−1

Fig. 11.5. 16-element mesh for the square region

11.5.2 Problem 11.2

A two-dimensional potential flow problem was analyzed. The governing math-
ematical model of the incompressible inviscid fluid flow is a boundary value
problem of partial differential equation. For the velocity potential formula-
tion, the condition of irrotationality and the continuity equation of the two-
dimensional incompressible potential flow lead to the Laplace equation. There
only two boundaries SD and SN exist for this flow problem.
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Fig. 11.7. Potential flow past a cylinder in a rectangular channel

For solving the field problem of potential flow, the field variable φ used
in the formulation of general field problems represents the velocity potential
Φ, kx and ky equal 1, Q vanishes, δq̄ and δq̃ represent the rates of fluid
flow, per unit length along the boundary, out of the Neumann boundary and
inter-element boundary of two adjacent elements, respectively, of the analysis

Fig. 11.6. 36-element mesh for the square region

Table 11.2. Convergence by increasing the number of elements for the
steady-state heat conduction analysis in a square region

Element Number of T,C qx,A qy,B

grid elements

3×3 3 .389515×100 –.198798×100 .418028×10−1

3×3 16 .421206×100 –.200779×100 .574711×10−1

3×3 36 .197862×100 –.201226×100 .599995×10−1

Analytical sol. .418229×100 –.199268×100 .612281×10−1
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Fig. 11.8. Mesh for analyzing the problem of flow past a cylinder

domain, and the two components of field flux in Eq. (11.5) represent the two
components of velocity, vx = −qx and vy = −qy.

The problem solved concerns the flow past a cylinder in a rectangular chan-
nel with a uniform inlet flow. The problem is shown in Fig. 11.7. By using
centerline symmetry and midstream antisymmetry, one fourth of the domain
shown in Fig. 11.8 is used for the analysis. The boundary of the analysis do-
main consists of four Neumann boundaries and one Dirichlet boundary. The
Neumann boundary conditions involve zero normal velocity v̄ = Φ,n = 0 along
AB, BC and DE, and a uniform inflow v̄ = −1 along AE. The antisymme-
try on CD leads to vy = 0. Thus Φ is constant along CD, and is set to be
zero in the analysis. The mesh which is formed by two quadratic serendipity
elements, one bilinear element and two regular elements with element sides
parallel to the physical coordinate axes is shown in Fig. 11.8. On AB, for all
nodes except A and B one Neumann condition per node is applied. The ap-
plied Neumann condition at G is defined on element 1. On BC, for all nodes
except C one Neumann condition per node is applied. The applied Neumann
condition at I is defined on element 3. On CD, one Dirichlet condition is
applied to each node. On DE, for all nodes except D and E one Neumann
condition per node is applied. On AE, one Neumann condition is applied to
each node. One constraint condition at J is considered in the analysis. The
DQ and element grid models are the same as those used for the analysis
of Problem 11.1. Numerical tests adopting four different types of constraint,
separately, are carried out. Type 1 constraint is the natural transition con-
dition on JH. Type 2 constraint is the natural transition condition on JF .
Type 3 constraint is the natural transition condition on JG. And type 4 con-
straint is the averaged discrete governing equation at J . All five elements have
the same type of element grid. Equally spaced nodes in both ξ and η direc-
tions are adopted for defining the element grid. The p refinement procedure is
used to analyze the problem. Numerical results are summarized and listed in
Table 11.3. It shows that the velocity potentials and velocities at certain nodes
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Table 11.3. Convergence by increasing the number of element nodes for the
potential flow analysis

Element Constraint Φ,A vx,C vy,D

grid type

3×3 1 –.105347×102 .317507×101 .211672×101

2 –.105142×102 .316755×101 .210847×101

3 –.105226×102 .317063×101 .211185×101

4 –.105431×102 .317814×101 .212009×101

5×5 1 –.986284×101 .251048×101 .172663×101

2 –.986281×101 .251087×101 .172633×101

3 –.986282×101 .251086×101 .172633×101

4 –.986274×101 .251093×101 .172631×101

7×7 1 –.100184×102 .261774×101 .178964×101

2 –.100183×102 .261775×101 .178965×101

3 –.100183×102 .261774×101 .178964×101

4 –.100184×102 .261774×101 .178964×101

9×9 1 –.998552×101 .261106×101 .177848×101

2 –.998552×101 .261106×101 .177848×101

3 –.998552×101 .261106×101 .177848×101

4 –.998552×101 .261106×101 .177848×101

11×11 1 –.999217×101 .262216×101 .178065×101

2 –.999217×101 .262216×101 .178065×101

3 –.999217×101 .262216×101 .178065×101

4 –.999217×101 .262216×101 .178065×101

13×13 1 –.999053×101 .262727×101 .178007×101

2 –.999053×101 .191643×101 .178007×101

3 –.999053×101 .262727×101 .178007×101

4 –.999053×101 .191642×101 .178007×101

converge fast by gradually increasing the number of nodes of an element, for
all of the four different types of constraint. The convergence characters of the
four different types of constraint make no significant difference in the sense
that numerical results of all different types of constraint are up to the fifth
digit identical by only increasing the element nodes up to 5 × 5. It should be
mentioned that this problem can also be analyzed by simply using two ele-
ments to model the analysis domain. It can even be solved by using a single
pentagon element to represent the analysis domain and analyze the problem.
Since the p version is more efficient than the h version, in the real engineering
or scientific application the concept of adaptive discretization can be adopted
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and the number of elements used to model the analysis domain must be as
much as possible small.

11.5.3 Problem 11.3

The problem solved concerns the torsion of a prismatic solid bar having a
rectangular cross section. The Prandtl’s stress function formulation of torsion
theory was used. For solving the field problem of the torsion of a prismatic
solid bar by the stress function formulation, the field variable φ used in the
formulation of general field problems represents the stress function Ψ , kx and
ky equal 1, Q equals 2Gθ with G the shear modulus and θ the angle of twist
per unit length, qx in Eq. (11.5) represents the component of shear stress
in the y direction, qx ≡ τzy, qy in Eq. (11.5) represents the negative value
of the component of shear stress in the x direction, qy ≡ −τzx. Equation
(11.3) with q̄ = 0 represents that the normal shear on the analysis domain
boundary vanishes, and Eq. (11.13) with q̃r,s = 0 represents that the normal
shears on the inter-element boundary of two adjacent elements r and s are in
equilibrium. There only the boundary condition, Ψ = 0 on SD, exists for this
problem.

This problem can be solved by using only one rectangular element to rep-
resent the problem domain. However, a mesh shown in Fig. 11.9 and having
four elements is used for analyzing the problem by adopting the p refinement
procedure. Two of the four elements are extremely distorted. All four elements
have the same type of element grid. Equally spaced discrete points in both
ξ and η directions are adopted for defining the element grid. One constraint
condition at the element corner node with the four elements being connected
to it is applied. Three different types of constraint are adopted for the numer-
ical tests to study the convergence. The type 1 constraint is the equilibrium of
shear stresses on OD. The type 2 constraint is the equilibrium of shear stresses

Fig. 11.9. Extremely distorted mesh for the rectangular cross section
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on OE. The type 3 constraint is the discrete governing equation at O. Numer-
ical results are summarized and listed in Table 11.4. They are compared with
the results of analytical solution [95]. It shows excellent convergence though
extremely distorted elements are used.

Table 11.4. Convergence by increasing the number of element nodes for the
torsion analysis of a prismatic solid bar using extremely distorted elements

Element Constraint Ψ,A τzy,B

grid type

3×3 1 .846407×101 .564271×101

2 .735872×101 .600386×101

3 .755576×101 .593948×101

5×5 1 .803784×101 .561706×101

2 .799405×101 .563183×101

3 .797751×101 .563741×101

7×7 1 .816400×101 .559335×101

2 .815705×101 .559573×101

3 .815529×101 .559633×101

9×9 1 .818002×101 .558581×101

2 .817804×101 .558649×101

3 .817730×101 .558674×101

11×11 1 .818786×101 .558345×101

2 .818710×101 .558372×101

3 .818677×101 .558383×101

13×13 1 .819188×101 .558253×101

2 .819152×101 .558265×101

3 .819136×101 .558271×101

15×15 1 .819418×101 .558212×101

2 .819400×101 .558219×101

3 .819391×101 .558222×101

Analytical sol. .819877×101 .558036×101

11.5.4 Problem 11.4

The problem solved involves the DQEM analysis of the steady-state heat con-
duction in a rectangular region with a quarter circular cut. The medium is
isotropic with the thermal conductivity equal to 1. The problem is shown in
Fig. 11.10. The geometrical parameters are: a = 6, b = 8, c = 4 and d = 5.
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Fig. 11.10. Heat conduction in a rectangular medium with a quarter circular cut

The boundary of the domain consists of four Neumann boundaries and one
Dirichlet boundary. The Neumann boundary conditions involve the conduc-
tion heat flux into the domain. q̄ equals zero along AB, BC, DE and EF , and
q̄ equals 5 along AF . The temperature is prescribed and zero along CD. And
there is no heat generation rate. Two elements are used to model the domain.
On AB, for all node points except A and B, one Neumann condition per node
is applied. On BC, for all node points except C, one Neumann condition per
node is applied. The applied Neumann condition at B is attached to element
2. On CD, each discrete point is set to have one Dirichlet condition. On DE,
for all node points except D, one Neumann condition per node is applied. On
EF , for all node points except E and F , one Neumann condition per node
is applied. On EB, for all node points except E and B, one natural transi-
tion condition per node is applied. On AF , each node point is set to have
one Neumann condition. The mapping technique is used to generate the grid
points in an element and calculate the direction cosines at a node point on the
inter-element boundary or natural boundary. Shape functions, expressed by
Eq. (10.30), of the C1∗ element which is a four-node twelve-DOF element, are
used for the mapping transformations to approximately describe the shape of
curved elements. Lagrange DQ model with equally spaced grid is used for the
element basis discretization. Numerical results obtained by the DQEM are
summarized and listed in Table 11.5. It shows that the heat fluxes at certain
node points converge fast following the increase of node points in an element.
It also shows that the value of heat flux in x direction is rather large at C.

11.5.5 Problem 11.5

The problem solved involves the DQEM analysis of the two-dimensional
heat conduction of a medium shown in Fig. 11.11 [123]. There are two sub-
domains having different materials and uniformly distributed heat genera-
tion rates. The shape of each subdomain is represented by the quadratic
serendipity shape functions. The problem has both the Neumann and Dirich-
let boundaries. There is also a constant heat flux into the medium on the
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Table 11.5. Convergence of heat conduction in a rectangular medium with a
quarter circular cut

Element grid qx,C qx,G qx,D

7×7 .13092×102 .96325×101 .89480×101

9×9 .13057×102 .95730×101 .88924×101

11×11 .13113×102 .95850×101 .89034×101

13×13 .13134×102 .95820×101 .89004×101

Fig. 11.11. Heat conduction in an irregular orthotropic medium composed of two
irregular subdomains

inter-subdomain boundary. At a corner node, one discrete condition equa-
tion is considered. At the intersection of the Neumann boundary and the
inter-subdomain boundary, the discrete Neumann condition defined on the
left subdomain is considered. At D and F , the considered conditions are
Dirichlet conditions. At A and C, the considered Dirichlet condition is T̄ = 0.
Chebyshev DQ model with the Chebyshev grid defined by using the roots
of Chebyshev polynomials are used to carry out the element basis DQ dis-
cretization. Numerical results of temperature T,E at E, and heat fluxes qy,Bl

and qy,Br
in the left subdomain and right subdomain , respectively, at B are

summarized and listed in Table 11.6. It also shows good convergence.

11.5.6 Problem 11.6

A problem involves the DQEM solution of heat conduction in a half circular
region with the radius equal to 3 was solved. The medium is also isotropic
with the thermal conductivity equal to 1. The half circle is expressed by
∂ΩN = {x2 +y2 = 9, y ≥ 0} which is a Neumann boundary with q̄ = −1/9,
while the boundary segment ∂ΩD = {−3 ≤ x ≤ 3, y = 0} is a Dirich-
let boundary having a prescribed temperature T̄ = 5/3. There is no heat
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Table 11.6. Convergence of heat conduction in an orthotropic medium

Grid (a subd.) T,E qy,Bl qy,Br

5×5 .466232×101 –.840864×101 –.126130×102

7×7 .453529×101 –.957623×101 –.143643×102

9×9 .458084×101 –.104391×102 –.156586×102

11×11 .460776×101 –.110384×102 –.165576×102

13×13 .463075×101 –.114903×102 –.172355×102

15×15 .464870×101 –.118507×102 –.177760×102

Table 11.7. Convergence of the analysis of 2-D heat conduction in a half circular
isotropic medium by using a curved triangular element

Order of Pascal

triangular grid T,A T,B T,C T,D

4 .155564×101 .144620×101 .133926×101 .124040×101

6 .151935×101 .137616×101 .124376×101 .113206×101

8 .151461×101 .137071×101 .124666×101 .115677×101

generation rate. The domain is modelled by a twelve-node C0 triangular ele-
ment with node 1, node 2 and node 3 located at (−3, 0), (3, 0) and (0, 3), re-
spectively. Numerical results of temperatures at four points A(0, .6), B(0, 1.2),
C(0, 1.8) and D(0, 2.4) are listed in Table 11.7. It also shows that the results
converge well by gradually increasing the order of the Pascal triangular grid.
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DQEM Analysis of Two-Dimensional
Elasticity Problems

Two-dimensional elasticity problems with orthotropic materials are consid-
ered. Numerical formulation DQEM analysis using quadrilateral element is
introduced. The assemblage of all discrete equations into the overall algebraic
system is discussed. Both Lagrange DQ model and Chebyshev DQ model
adopted for sample DQEM analyses.

12.1 Fundamental Relations

Let u and v denote the two displacement components in x and y directions,
respectively, and εxx, εyy and γxy denote the three strain components. Then,
the following relations hold good: εxx = u,x, εyy = v,y and γxy = u,y + v,x.
Consider orthotropic material and let Q̄11, Q̄12, Q̄16, Q̄22, Q̄26 and Q̄66 denote
the reduced stiffnesses, and Nxx, Nyy and Nxy denote the stress resultants.
These stress resultants can be related to strains and expressed as [124]⎧⎨

⎩
Nxx

Nyy

Nxy

⎫⎬
⎭ =

⎡
⎣ B̄11 B̄12 B̄16

B̄12 B̄22 B̄26

B̄16 B̄26 B̄66

⎤
⎦
⎧⎨
⎩

u,x

v,y

u,y + v,x

⎫⎬
⎭ (12.1)

where B̄ij =
∫ h/2

−h/2
Q̄ijdz with h being the thickness of the elastic medium.

If the averaging approach is adopted, the effective stiffnesses Q̃ij are used to
calculate B̄ij , B̄ij = tQ̃ij . The reduced stiffnesses are obtained by the elastic
stiffnesses Qij through coordinate transformation. Let E1, E2, ν12, ν21 and G13

be the elastic constants, the following relations hold good: ν12/E1 = ν21/E2,
Q11 = E1/(1 − ν12ν21), Q22 = E2/(1 − ν12ν21), Q12 = ν12E2/(1 − ν12ν21),
Q66 = G13.

By introducing the strain-displacement relations and Eq. (12.1) into the
equilibrium equations expressed by stress resultants, the equilibrium equations
expressed by displacements can be obtained
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(B̄11,x + B̄16,y)u,x + (B̄16,x + B̄66,y)u,y + B̄11u,xx + B̄66u,yy

+ 2B̄16u,xy + (B̄16,x + B̄66,y)v,x + (B̄12,x

+ B̄26,y)v,y + B̄16v,xx + B̄26v,yy + (B̄12 + B̄66)v,xy + hρbx = 0,

(B̄16,x + B̄12,y)u,x + (B̄66,x + B̄26,y)u,y + B̄16u,xx + B̄26u,yy

+ (B̄12 + B̄66)u,xy + (B̄66,x + B̄26,y)v,x + (B̄26,x + B̄22,y)v,y

+ B̄66v,xx + B̄22v,yy + 2B̄26v,xy + hρby = 0 (12.2)

In the above two equations, ρbx and ρby are the two body forces in the x
and the y directions, respectively. The kinematic boundary conditions can be
expressed as

u = ū, v = v̄ (12.3)

where ū and v̄ are prescribed values. Let l and m denote the direction cosines
of the outward unit normal vector on the natural boundary. Also let t̄x and
t̄y denote the prescribed traction forces applied on the natural boundary. The
natural boundary conditions can be expressed as

l[B̄11u,x + B̄12v,y + B̄16(u,y + v,x)]
+ m[B̄16u,x + B̄26v,y + B̄66(u,y + v,x)] = t̄x,

l[B̄16u,x + B̄26v,y + B̄66(u,y + v,x)]
+ m[B̄12u,x + B̄22v,y + B̄26(u,y + v,x)] = t̄y (12.4)

12.2 DQEM Formulation

12.2.1 Irregular Element

Consider the quadrilateral element. The substitution of mapping transforma-
tion relations (10.2) and (10.3) into Eqs. (12.2) leads to the following two
equilibrium equations defined on the master element [125]
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2(ξ, η)ue

,ξη + Ēe
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where
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16ξ,xξ,y,

Ee
2(ξ, η) = 2[B̄e

11ξ,xη,x + B̄e
66ξ,yη,y + B̄e
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Ee
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11η
2
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66η
2
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16η,xη,y,

Ee
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16,x + B̄e
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F e
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16ξ
2
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26ξ
2
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F e
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16η
2
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+(B̄e
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Ēe
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Ēe
3(ξ, η) = B̄e

16η
2
,x + B̄e

26η
2
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Ēe
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Ēe
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66ξ
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22ξ,yη,y + B̄e
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F̄ e
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26,y)ξ,x
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F̄ e
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22η,yy + (B̄e
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26,y)η,x

+(B̄e
26,x + B̄e

22,y)η,y (12.6)

Equation (12.1) can also be transformed by using Eqs. (10.2). The stress
resultants in the element defined by the natural coordinates are expressed by

Ne
xx = Ie

1(ξ, η)ue
,ξ + Ie

2(ξ, η)ue
,η + Je

1 (ξ, η)ve
,ξ + Je

2 (ξ, η)ve
,η,
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Ne
yy = Īe

1(ξ, η)ue
,ξ + Īe

2(ξ, η)ue
,η + J̄e

1 (ξ, η)ve
,ξ + J̄e

2 (ξ, η)ve
,η,

Ne
xy = Ĩe

1(ξ, η)ue
,ξ + Ĩe

2(ξ, η)ue
,η + J̃e

1 (ξ, η)ve
,ξ + J̃e

2 (ξ, η)ve
,η (12.7)

where
Ie
1(ξ, η) = ξ,xB̄e

11 + ξ,yB̄e
16, Ie

2(ξ, η) = η,xB̄e
11 + η,yB̄e

16,

Je
1 (ξ, η) = ξ,xB̄e

16 + ξ,yB̄e
12, Je

2 (ξ, η) = η,xB̄e
16 + η,yB̄e

12,

Īe
1(ξ, η) = ξ,xB̄e

12 + ξ,yB̄e
26, Īe

2(ξ, η) = η,xB̄e
12 + η,yB̄e

26,

J̄e
1 (ξ, η) = ξ,xB̄e

26 + ξ,yB̄e
22, J̄e

2 (ξ, η) = η,xB̄e
26 + η,yB̄e

22,

Ĩe
1(ξ, η) = ξ,xB̄e

16 + ξ,yB̄e
66, Ĩe

2(ξ, η) = η,xB̄e
16 + η,yB̄e

66,

J̃e
1 (ξ, η) = ξ,xB̄e

66 + ξ,yB̄e
26, J̃e

2 (ξ, η) = η,xB̄e
66 + η,yB̄e

26 (12.8)

The substitution of Eqs. (10.2) into Eqs. (12.4) leads to the following
transformed natural boundary conditions

Ge
1(ξ, η)ue

,ξ + Ge
2(ξ, η)ue

,η + He
1(ξ, η)ve

,ξ + He
2(ξ, η)ve

,η + m̃e ∂2ue

∂t2
= t̄ex,

Ḡe
1(ξ, η)ue

,ξ + Ḡe
2(ξ, η)ue

,η + H̄e
1(ξ, η)ve

,ξ + H̄e
2(ξ, η)ve

,η + m̃e ∂2ve

∂t2
= t̄ey (12.9)

where
Ge

1(ξ, η) = le(ξ,xB̄e
11 + ξ,yB̄e

16) + me(ξ,xB̄e
16 + ξ,yB̄e

66),

Ge
2(ξ, η) = le(η,xB̄e

11 + η,yB̄e
16) + me(η,xB̄e

16 + η,yB̄e
66),

He
1(ξ, η) = le(ξ,xB̄e

16 + ξ,yB̄e
12) + me(ξ,xB̄e

66 + ξ,yB̄e
26),

He
2(ξ, η) = le(η,xB̄e

16 + η,yB̄e
12) + me(η,xB̄e

66 + η,yB̄e
26),

Ḡe
1(ξ, η) = le(ξ,xB̄e

16 + ξ,yB̄e
66) + me(ξ,xB̄e

12 + ξ,yB̄e
26),

Ḡe
2(ξ, η) = le(η,xB̄e

16 + η,yB̄e
66) + me(η,xB̄e

12 + η,yB̄e
26),

H̄e
1(ξ, η) = le(ξ,xB̄e

66 + ξ,yB̄e
26) + me(ξ,xB̄e

26 + ξ,yB̄e
22),

H̄e
2(ξ, η) = le(η,xB̄e

66 + η,yB̄e
26) + me(η,xB̄e

26 + η,yB̄e
22) (12.10)

The kinematic transition conditions on the inter-element boundary ∂Ωr,s

of two adjacent elements r and s are the continuities of displacements which
are expressed as

ur
i = us

i , on ∂Ωr,s (12.11)

If displacements on the inter-element boundary are assumed, the following
relation holds

ur
i = us

i = ūr,s
i on ∂Ωr,s (12.12)
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where ūr,s
i are prescribed displacements. By using Eqs. (12.9), the natural

transition conditions which are equilibrium conditions on the inter-element
boundary can also be written as

Gr
1(ξ

r, ηr)ur
,ξr + Gr

2(ξ
r, ηr)ur

,ηr + Hr
1 (ξr, ηr)vr

,ξr + Hr
2 (ξr, ηr)vr

,ηr

+ Gs
1(ξ

s, ηs)us
,ξs + Gs

2(ξ
s, ηs)us

,ηs + Hs
1(ξs, ηs)vs

,ξs + Hs
2(ξs, ηs)vs

,ηs = t̃r,s
x ,

Ḡr
1(ξ

r, ηr)ur
,ξr + Ḡr

2(ξ
r, ηr)ur

,ηr + H̄r
1 (ξr, ηr)vr

,ξr + H̄r
2 (ξr, ηr)vr

,ηr

+ Ḡs
1(ξ

s, ηs)us
,ξs + Ḡs

2(ξ
s, ηs)us

,ηs + H̄s
1(ξs, ηs)vs

,ξs + H̄s
2(ξs, ηs)vs

,ηs

= t̃r,s
y on ∂Ωr,s (12.13)

where t̃r,s
i are distributed line forces applied on the inter-element boundary.

12.2.2 Element Basis DQ Discretization

Considering a quadrilateral element and using DQ, the equilibrium conditions
(12.5) at a node (α, β) in an element e can be discretized

[ Ee
1(ξα, ηβ)Deξ2

αm + Ee
4(ξα, ηβ)Deξ

αm]ue
mβ + [Ee

3(ξα, ηβ)Deη2

βn

+Ee
5(ξα, ηβ)Deη

βn]ue
αn + Ee

2(ξα, ηβ)Deη
βnDeξ

αmue
mn + [F e

1 (ξα, ηβ)Deξ2

αm

+F e
4 (ξα, ηβ)Deξ

αm]ve
mβ + [F e

3 (ξα, ηβ)Deη2

βn + F e
5 (ξα, ηβ)Deη

βn]ve
αn

+F e
2 (ξα, ηβ)Deη

βnDeξ
αmve

mn = −(tρbx)e
α,β ,

[ Ēe
1(ξα, ηβ)Deξ2

αm + Ēe
4(ξα, ηβ)Deξ

αm]ue
mβ + [Ēe

3(ξα, ηβ)Deη2

βn

+Ēe
5(ξα, ηβ)Deη

βn]ue
αn + Ēe

2(ξα, ηβ)Deη
βnDeξ

αmue
mn + [F̄ e

1 (ξα, ηβ)Deξ2

αm

+F̄ e
4 (ξα, ηβ)Deξ

αm]ve
mβ + [F̄ e

3 (ξα, ηβ)Deη2

βn + F̄ e
5 (ξα, ηβ)Deη

βn]ve
αn

+F̄ e
2 (ξα, ηβ)Deη

βnDeξ
αmve

mn = −(tρby)e
α,β , (12.14)

The stress resultants at a node (α, β) in an element e can also be obtained by
using the DQ in Eqs. (12.9)

Ne
xxαβ = Ie

1(ξα,β , ηα,β)Deξ
αmue

mβ + Ie
2(ξα,β , ηα,β)Deη

βnue
αn

+Je
1 (ξα,β , ηα,β)Deξ

αmve
mβ + Je

2 (ξα,β , ηα,β)Deη
βnve

αnve
,η,

Ne
yyαβ = Īe

1(ξα,β , ηα,β)Deξ
αmue

mβ + Īe
2(ξα,β , ηα,β)Deη

βnue
αn

+J̄e
1 (ξα,β , ηα,β)Deξ

αmve
mβ + J̄e

2 (ξα,β , ηα,β)Deη
βnve

αn,
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Ne
xyαβ = Ĩe

1(ξα,β , ηα,β)Deξ
αmue

mβ + Ĩe
2(ξα,β , ηα,β)Deη

βnue
αn

+J̃e
1 (ξα,β , ηα,β)Deξ

αmve
mβ + J̃e

2 (ξα,β , ηα,β)Deη
βnve

αn (12.15)

Consider the inter-element boundary of the ξ = 1 side of element r and the
ξ = −1 side of element s. The discrete continuity equations of displacements
at a node β on the inter-element boundary can be expressed by

ur
iNr

ξ
β = us

1β , ur
iNr

ξ
β = us

1β = ūr,s
β (12.16)

Using the DQ in Eqs. (12.13), the discrete natural transition conditions at the
node are expressed as

Gr
1(ξ

r
Nr

ξ
β , ηr

Nr
ξ

β)Drξ
Nr

ξ
mur

mβ + Gr
2(ξ
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ξ
β , ηr
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ξ

β)Drη
βnur
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1 (ξr
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ξ
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1β)Dsη
βnus
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ξ
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ξ
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2(ξ
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ξ
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ξ

n
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ξ
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ξ
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ξ
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ξ
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1n = t̃r,s
yβ (12.17)

Letting element n be an element with ξ = 1 side aligned along the natural
boundary, the discrete natural boundary conditions at the node β can be
obtained by using DQ in Eqs. (12.7)

Gn
1 (ξn

Nn
ξ

β , ηn
Nn

ξ
β)Dnξ
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mun
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Nn
ξ

β)Dnη
βnun
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Ḡn
1 (ξn

Nn
ξ
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Nn
ξ

β , ηn
Nn

ξ
β)Dnξ

Nn
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mvn
mβ + H̄n

2 (ξn
Nn

ξ
β , ηn

Nn
ξ

β)Dnη
βnvn

Nn
ξ

n = t̄nyβ

(12.18)

12.3 Assemblage

With the kinematic transition conditions in mind, then assemble the discrete
element equilibrium equations (12.14) for all elements, discrete natural transi-
tion conditions (12.17), and discrete natural boundary conditions (12.18), an



12.4 Overall Algebraic System 203

overall discrete equilibrium/transition/boundary equation represented by Eq.
(3.18) can be obtained. It is the overall stiffness equation represented by Eq.
(3.18). Considering the kinematic boundary conditions and solving the overall
discrete equilibrium/transition/boundary equation, displacements at all nodes
can be obtained. Like FEM, the assemblage is based on an element by element
procedure. In assembling the discrete equations of element e, the discrete ele-
ment equilibrium equations (12.14), and the discrete element boundary forces,
expressed by displacements, at the nodes on the four element boundary edges
are directly assembled to the overall discrete equation system. An element
basis explicit matrix equation, containing the discrete element equilibrium
equations and the discrete element boundary forces placed at the rows with
the assigned DOF related to the corresponding discrete element boundary
forces, is not necessary to be formed in the assemblage process. This element
basis explicit matrix equation is an element stiffness equation represented by
Eq. (3.20) in which [ke] is a (2Ne

ξ Ne
η ) × (2Ne

ξ Ne
η ) element stiffness matrix,

{δe} = � ue
1 ve

1 ue
2 ve

2 . ... . �T (12.19)

is the element displacement vector, and {re} is the element load vector con-
taining the corresponding loading forces and discrete element boundary forces.
As Eq. (3.20) contain discrete element boundary forces at the four element
boundary edges, equilibriums of internal forces and external forces at the
inter-element boundary of two adjacent elements and the natural boundary
are exactly satisfied in the assemblage process. Consequently, the DQEM is
different from FEM which needs to form the element stiffness equation, and
which neglects the exact equilibriums.

12.4 Overall Algebraic System

Considering the Lagrange family grid, denote Ne
ξ and Ne

η the numbers of lev-
els in ξ and η directions, respectively, in the master element of a physical
element. The minimum value of Ne

ξ and Ne
η is 2. The convergence character

of this 4-noded element is poor. If the element is a rectangle and the ele-
ment sides are parallel to x or y axes, mapping results in scaling the lengths
of the sides. It can reduce the arithmetic operations in calculating the ele-
ment stiffness equations. For two adjacent elements having different numbers
of nodes on the inter-element boundary, the number of kinematic transition
conditions must be larger than the number of natural transition conditions.
Let nd denote the difference between the two node numbers which equals
the difference between the two numbers of transition conditions. To set up
the kinematic transition conditions, the nodes on the inter-element boundary
must be arranged in such a way that only nd nodes in one element are not
coincident with the nodes in the other element. The nd extra nodes are used
to define 2nd extra kinematic transition conditions. In defining the 2nd extra
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kinematic conditions, the interpolation technique must be used. In addition,
the transition conditions can be easily set up by designing the grids of the
two adjacent elements in such a way that both elements have the same num-
bers of nodes on the inter-element boundary no matter what the orders of
approximations and grid configurations are.

For the DQEM 2-D elasticity analysis models, the total degrees of freedom
must equal the number of discrete constraint equations. The two equilibrium
equations defined at a node are equilibrium constraint conditions. An inte-
rior node can define only two discrete equilibrium equations. The discrete
kinematic and natural boundary conditions are defined on the kinematic and
natural boundaries, respectively. A node on the analysis domain boundary
(ADB) but not an element corner node can define two boundary conditions
and two equilibrium equations. At a node on the inter-element boundary, if
the node is not an element corner node, in addition to the continuities of dis-
placements, two discrete constraint equations of prescribed displacements or
natural transition conditions and up to four discrete constraint equilibrium
equations attached to the two adjacent elements can be defined. An element
corner node might be able to define even more constraint equations.

Consider that discrete element equilibrium equations are only defined at
interior nodes. For an element corner node in the analysis domain which is
the common node of NN natural inter-element boundaries (IEB) and NK

kinematic inter-element boundaries, let NT denote the number of all constraint
conditions. Then, for NK �= 0, NT = 2NN + 2; for NK = 0 and the two
displacement components ui not prescribed at the node, NT = 2NN ; for
NK = 0 and one of the two displacement components ui prescribed at the
node, NT = 2NN + 1; for NK = 0 and the two displacement components
ui prescribed, NT = 2NN + 2. The two equations of setting ui as prescribed
values are also kinematic constraint conditions. Figure 11.1 is a typical element
corner node in the analysis domain.

For an element corner node on the analysis domain boundary (ADB) with
two element-based segments of the analysis domain boundary being connected
to it, if the two segments are natural boundaries, NT for various connections
are: for NK �= 0, NT = 2NN + 6; for NK = 0 and the two displacement
components ui not prescribed at the node, NT = 2NN +4; for NK = 0 and one
of the two displacement components ui prescribed at the node, NT = 2NN +
5; for NK = 0 and the two displacement components ui prescribed, NT =
2NN +6. If one of the analysis domain boundary segment is natural boundary
while the other one is kinematic boundary, NT for various connections are: for
NK �= 0, NT = 2NN + 4; for NK = 0, NT = 2NN + 4. And if both of the two
analysis domain boundary segments are kinematic boundaries, NT for various
connections are: for NK �= 0, NT = 2NN + 2; for NK = 0, NT = 2NN + 2. A
representative of this type of element corner node is shown in Fig. 11.2 which
is the type 1 element corner node on the analysis domain boundary.

For an element corner node on the analysis domain boundary with one
element-based segment of the analysis domain boundary connected to it, if
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the segment is natural boundary, NT for various connections are: for NK �= 0,
NT = 2NN + 4; for NK = 0 and the two displacement components ui not
prescribed at the node, NT = 2NN + 2; for NK = 0 and one of the two
displacement components ui prescribed at the node, NT = 2NN + 3; for
NK = 0 and the two displacement components ui prescribed, NT = 2NN +4. If
the analysis domain boundary segment is kinematic boundary, NT for various
connections are: for NK �= 0, NT = 2NN + 2; for NK = 0, NT = 2NN + 2. A
representative of this type of element corner node is shown in Fig. 11.3 which
is the type 2 element corner node on the analysis domain boundary.

Only the values of the two displacement components at nodes are used
to define the DQ discretization. Then in order to satisfy all constraint con-
ditions at an element corner node, at the assemblage stage, two degrees of
freedom might not be enough. However, we can use more than two constraint
conditions at that corner node by neglecting certain constraint conditions
at interior nodes or at nodes on the inter-element boundary and other than
corner nodes, and giving their degrees of freedom to the inclusion of extra
constraint conditions other than the first two.

For the developed DQEM analysis models, the NT constraint conditions
can partially or fully be satisfied. We can also neglect all of the NT constraint
conditions and give the degrees of freedom of that node to the discrete element
equilibrium equations at that node. The discrete equilibrium equations at the
element corner node can be defined as the averages of the respective discrete
equilibrium equations of all elements connected to that node.

The various techniques for selecting and implementing the constraint con-
ditions at element corner nodes are flexible. Different approaches lead to differ-
ent programming efforts. The overall algebraic system obtained by assembling
all discrete constraint conditions is the discrete equilibrium/transition/
boundary equation system.

EDQ can also be used to the DQEM analysis. For analyzing the 2-D elastic-
ity problems, in order to automatically set the kinematic transition conditions
by only using certain degrees of freedom assigned to the element boundary
nodes, the degrees of freedom representing displacements must be assigned to
the element boundary nodes. The degrees of freedom representing the partial
derivatives of the displacement parameters can also be assigned to the nodes
of all neighbor elements on the inter-element boundary and the compatibil-
ity conditions of the higher order partial derivatives can also be considered.
However, if distributed line loads are applied, no compatibility condition of
partial derivatives can be considered. The discrete element equilibrium equa-
tions can be defined on the inter-element boundaries as the average discrete
equilibrium equations of multiple elements. They can also be defined on the
element boundaries without adopting the average treatment. Thus, elements
having no interior node can also be used to the DQEM analysis. For analyzing
beam or plate problems in order to automatically set the kinematic transition
conditions by only using certain degrees of freedom assigned to the element
boundary nodes, the degrees of freedom representing the lateral displacement
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and first order derivative or partial derivatives of the lateral displacement
must be assigned to the element boundary nodes. The degrees of freedom rep-
resenting higher order derivatives or partial derivatives of the displacement
can also be assigned to the nodes of all neighbor elements on the inter-element
boundary and the compatibility conditions of the higher order derivatives or
partial derivatives can also be considered. However, if the moment is applied
the highest order of derivative or partial derivative that the compatibility
condition can be considered is one. On the other hand, if the lateral force
is applied on the inter-element boundary the highest order of derivative or
partial derivative that the compatibility condition can be considered is two.
The concept can also be used to treat the boundary conditions. It should be
noted that if the highest order of derivative or partial derivative assigned to
the element boundary nodes is larger than one, the EDQ has to be used.

The philosophy inherent in the outlined techniques for defining discrete
connection conditions on the inter-element boundaries, the discrete boundary
conditions on the boundary and the discrete constraint conditions at the ele-
ment corner nodes also holds good for other scientific or engineering problems.

12.5 Problems

12.5.1 Problem 12.1

The problem solved involves the elastic deformation of a square plate having
the E glass/epoxy material. For a 00 ply plate with a fiber having the volume
fraction 0.70, the effective stiffnesses are: Q11 = 9.× 106 psi, Q12 = .85× 106

psi, Q22 = 3.68 × 106 psi, Q66 = 1.74 × 106 psi and Q16 = Q26 = 0. They

Table 12.1. Results of the DQEM analysis of a rectangular orthotropic plate

Algorithm Grid v at B (in) v at C (in)

DQEM 3×3 .1034483×10−2 .5453523×10−3

5×5 .9396767×10−3 .7424176×10−3

7×7 .8529769×10−3 .6190472×10−3

9×9 .8224254×10−3 .5578523×10−3

11×11 .8120461×10−3 .5358458×10−3

FDM 5×5 .9484796×10−3 .5689211×10−3

7×7 .8866070×10−3 .5579871×10−3

9×9 .8562929×10−3 .5479859×10−3

11×11 .8397994×10−3 .5417193×10−3

13×13 .8300573×10−3 .5378151×10−3

15×15 .8239102×10−3 .5353501×10−3
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are constant through the thickness of the plate. The plate is uniform with
the thickness being 1 in. The four boundary edges of the plate are: x = 0,
x = 10 ft, y = 0 and y = 10 ft. The two x-edges are fixed. The edge y = 10
ft is a free edge, while the edge y = 0 is a natural boundary edge subjected
to a compressive traction force t̄y = sin(πx/120) lb/ft. The plate was solved
by using one DQEM element to model the problem domain. Equally spaced
Lagrange DQ is used for the analysis. Numerical results of the displacement
v, at two different points B(5 ft, 5 ft) and C(5 ft, 10 ft), obtained by using
various order of DQEM approximation are summarized and listed in Table
12.1. They are compared with the results of the traditional FDM. It also
shows that the results of DQEM analysis converge fast. Especially for the
vertical displacement of B, the convergence of FDM is very slow.

12.5.2 Problem 12.2

The second problem solved involves the DQEM analysis of an isotropic plate
structure subjected to a uniformly distributed load which is shown in Fig. 12.1.
The thickness of the plate is t = 1 cm. The material is steel with the material
constants: Young’s modulus E = 210 GPa, shear modulus G = 80 GPa and
Poisson’s ratio ν = .30. Consequently, the stress resultants-strain relation co-
efficients B̄ij are: B̄11 = B̄22 = 2.3076923 GN/m, B̄12 = .69230769 GN/m,
B̄66 = .80769231 GN/m and B̄16 = B̄26 = 0. The plate structure is modelled
by one regular square element and one irregular bilinear element. In construct-
ing the overall discrete equilibrium/transition/boundary equation system, all
kinematic transition conditions and kinematic boundary conditions at the re-
lated nodes are satisfied. All discrete natural transition conditions and natural
boundary conditions are satisfied except at B and E. Since at these two nodes

Fig. 12.1. An isotropic plate structure subjected to a uniformly distributed
in-plane load
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Table 12.2. Results of the DQEM analysis of an isotropic 2-D elasticity problem

DQEM grid uF (mm) vF (mm) NxxG (N/mm) NxyG (N/mm)

lines (an elem.)

5×5 –.604889×100 –.131142×101 –.169673×103 –.498540×102

7×7 –.614451×100 –.128779×101 –.166769×103 –.499494×102

9×9 –.619910×100 –.129438×101 –.167796×103 –.502051×102

11×11 –.622087×100 –.129747×101 –.168548×103 –.504974×102

only one vertical natural boundary condition can be defined. Each of the two
vertical natural boundary conditions at these two nodes is defined on the
right element. In addition, two equilibrium equations are defined at all inte-
rior nodes. In the analysis, grid lines on the master element are equally spaced.
Lagrange polynomials are used to calculate the DQ weighting coefficients. The
convergence of numerical solutions can be assured by increasing the order of
DQ approximation. Numerical results of displacement components at F and
stress resultants at G are summarized and listed in Table 12.2. It shows that
the results converge effectively.

Fig. 12.2. A composite plate structure with two different orthotropic plate
elements
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12.5.3 Problem 12.3

The problem solved involves the DQEM analysis of a plate structure com-
posed of two orthotropic composite plate elements which is shown in Fig.
12.2. Each of the two plate elements is represented by an eight-node serendip-
ity element. The plate is subjected to a uniformly distributed load, 5 × 104

N/m upward, on the top edge of the plate. The left element is a uniform
900 ply composite laminate of T300/5208 graphite-epoxy with the thickness
t = 1 cm, and B̄11 = 1.54 GN/m, B̄12 = .03291 GN/m, B̄22 = .1097 GN/m
and B̄66 = .056 GN/m, while the right element is a uniform 900 ply lam-
inate of T300/934 graphite-epoxy with the thickness t also equal to 1 cm,
and B̄11 = 1.645 GN/m GN/m, B̄12 = .03594 GN/m, B̄22 = .1198 and
B̄66 = .065 GN/m. The discrete vertical natural boundary condition at D is
defined on the right element. Chebyshev polynomials are used to calculate the
DQ weighting coefficients. In an element, the DQ nodes are defined by the
roots of Chebyshev polynomials. Numerical results of vertical displacement at
D and vertical stress resultants at F are summarized and listed in Table 12.3.
The convergence of numerical results can be assured by increasing the order
of Chebyshev DQ approximation.

Table 12.3. Results of the DQEM analysis of a curved orthotropic plate

DQEM grid vF (mm) NyyG (N/mm)

lines (an elem.)

5×5 .115484×100 .519315×102

9×9 .108449×100 .510423×102

13×13 .959177×10−1 .492538×102
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DQEM Analysis of Kirchhoff-Love
Plate Problems

DQEM analysis of Both static deflection and free vibration of Kirchhoff-Love
plate structures is carried. In the DQEM discretization, EDQ model with
rotational degrees of freedom assigned to nodes on element edges is used
to define the discrete element model. The development of this DQEM plate
analysis model adopting anisotropic plate theory.

13.1 Static Deflection Analysis

13.1.1 Fundamental Relations

Consider the composite plate problems. Let w denote the lateral displacement
in z direction in a right-handed Cartesian rectangular coordinate system xyz
with xy plane coincident with the neutral surface of the plate. Figure 13.1
shows the plate with the stress resultants, and external moments and trans-
verse forces, per unit length, applied along the edges x = 0 and y = 0 and
directed toward the related coordinate directions. By neglecting the trans-
verse shear deformation, the relations between displacement w, and internal
moments mx, my and mxy per unit length can be expressed by [124]

⎧⎨
⎩

mx

my

mxy

⎫⎬
⎭ = −

⎡
⎣ D̄11 D̄12 D̄16

D̄12 D̄22 D̄26

D̄16 D̄26 D̄66

⎤
⎦
⎧⎪⎨
⎪⎩

∂2w
∂x2

∂2w
∂y2

2 ∂2w
∂x∂y

⎫⎪⎬
⎪⎭ (13.1)

where D̄ij are plate rigidities which can be expressed by the reduced stiffnesses
Q̄ij and the thickness of the plate δ, D̄ij =

∫ δ/2

δ/2
Q̄ijz

2dz. The internal shear
forces qx and qy can thus expressed by

qx =
∂mx

∂x
+

∂mxy

∂y
, qy =

∂mxy

∂x
+

∂my

∂y
(13.2)
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Fig. 13.1. The plate with stress resultants

Let p(x, y) denote the laterally distributed load. The equilibrium equation of
the plate can be expressed by
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∂4w
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Consider that the plate is placed in the region with x ≥ 0 and x = 0 a
boundary edge. The kinematic boundary conditions are

w(y) = w̄(y), and
∂w(y)

∂x
= −θ̄y(y) (13.4)
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where w̄(y) and −θ̄y(y) are prescribed displacement and rotation angle, re-
spectively, applied on the edge and directed toward the related coordinate
directions. Assume that the distributed moment m̄x(y) and transverse force
v̄x(y), per unit length, are applied along the edge shown in Fig. 13.1. If the
edge is simply supported, the boundary conditions are the first of Eq. (13.4)
and −mx(y) = m̄x(y). The second one can be expressed by the lateral dis-
placement

D̄11
∂2w

∂x2
+ 2D̄16

∂2w

∂x∂y
+ D̄12

∂2w

∂y2
= m̄x(y) (13.5)

If the edge is free, the lateral edge force per unit length is vx(y) = qx(y) +
∂mxy(y)

∂y . Then, the boundary conditions are represented by Eq. (13.5) and
−vx(y) = v̄x(y). The second one can be expressed by the lateral displacement
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+ 4D̄16
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+ (D̄12 + 4D̄66)
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)
∂2w

∂y2
= v̄x(y) (13.6)

For an edge parallel to x axis, the boundary conditions can be similarly ex-
pressed. At a boundary corner, torsional moments add up. Consequently, an
extra corner force exists,

R = 2mxy = −2
(

D̄16
∂2w

∂x2
+ D̄26

∂2w

∂y2
+ 2D̄66

∂2w

∂x∂y

)
(13.7)

At the intersection of two fixed edges or two free edges without externally
applied torsional moment, the extra corner force vanishes.

13.1.2 DQEM Formulation

In addition to the degrees of freedom for representing the lateral displacement
w, the DOF for representing derivatives of the displacement with respect to
one coordinate variable at a node on an element boundary edge can also
be assigned. The selection of derivative DOF can be flexible. In order to
automatically set the compatibility and conformability conditions by only
using the DOF assigned to the element boundary nodes, the DOF representing
the first order derivative of w with respect to the coordinate variable with the
coordinate direction normal to the related element edge must be assigned to
the element boundary nodes. In the present plate analysis model, only the
DOF which are necessary for automatically setting the kinematic transition
conditions and kinematic boundary conditions are assigned to the element
boundary nodes.
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Since the highest order of partial differentiations with respect to each co-
ordinate variable existing in the fundamental relations is four, the order of
approximate displacement with respect to the related coordinate direction
must at least be four, and we need to define at least one discrete element
equilibrium equation at one discrete point. The discrete points at which dis-
crete element equilibrium equations are defined can be either in the interior
of the element or on the element boundary.

In the present analysis model, each element boundary node has the DOF
representing w and the first derivative of w with respect to the coordinate
variable with the coordinate direction normal to the related element edge.
Only interior discrete points are used to define the discrete element equilibrium
equations. Consider the EDQ discretization in the natural space with the two
natural coordinates ξ and η. Let Ne

ξ and Ne
η denote the number of nodes for

defining the discretization with respect to ξ and η, respectively, N̄e
ξ and N̄e

η

denote the number of the corresponding DOF, w̃e
jβ and w̃e

αk denote the related
discrete displacement parameters with j = 1, 2, ..., N̄e

ξ , k = 1, 2, ..., N̄e
η , and α

and β two typical node lines in ξ and η directions, and Deξp

jm and Deηq

kn denote
the corresponding pth order and qth order weighting coefficients.

When defining the discrete fundamental relations, the numbers of grid lines
with the discrete element equilibrium equations defined at discrete points on
the grid lines in ξ and η directions are N̄e

ξ − 4 and N̄e
η − 4, respectively. The

DOF assigned to an interior node for defining the EDQ discretization can be
flexible. If only DOF representing w and dw

dξ (or dw
dη ) are assigned to the interior

nodes and the Hermite interpolation functions are used to explicitly calculate
the weighting coefficients, the Hermite EDQ model is adopted. Let N̂e

ξ and N̂e
η

denote the numbers of the related interior grid lines with the discrete element
equilibrium equations defined at the discrete points located on these grid lines,
plus the two element boundary nodes in the related coordinate directions.
Then the following two relations hold: N̂e

ξ = N̄e
ξ − 2 and N̂e

η = N̄e
η − 2.

Assume that the side lengths of a rectangular element e in the x and y
directions are he

x and he
y, respectively. The EDQ weighting coefficients are

defined with the range for both ξ and η being 1. In the analysis, since the
physical rotation DOF at nodes on the element edges are used, the elements
of the second and last columns of the EDQ weighting coefficient matrices Deξp

jm

and Deηq

kn need to be scaled by using he
x and he

y, respectively, to multiply the
related coefficient elements.

Then, the discrete equilibrium equation at a discrete point (j, k) in the
element can be obtained by using the EDQ in Eq. (13.3)
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The discrete bending moment me
x,jk at a discrete point (j, k) in the element

can be obtained by using the EDQ into the first component equation of the
matrix equation (13.1)
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The other two discrete interior moments at a discrete point in the element
can be similarly obtained. The discrete shear force qe

x,jk at a discrete point
(j, k) in the element can be obtained by using the EDQ into the first of Eq.
(13.2)
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Equation (13.7) at an element corner node can also be discretized by using
the EDQ.

In solving a plate problem with multiple subregions, the transition con-
ditions on the inter-element boundary have to be satisfied. These conditions
include displacement compatibility, deflection conformability, equilibrium of
normal moments and equilibrium of lateral forces. Consider that the inter-
element boundary of two adjacent elements r and s shown in Fig. 13.2, with
x increasing from r to s is at x = xr,s. Assume that the distributed moment
m̄r,s(y) and transverse force v̄r,s(y), per unit length, are applied along the
inter-element boundary and directed toward the related coordinate directions.
The transition conditions can be expressed by

Fig. 13.2. Forces on the inter-element boundary of two adjacent plate element

[wr(y) − ws(y)] |x=xr,s= 0,

[
∂wr(y)

∂x
− ∂ws(y)

∂x

]
|x=xr,s= 0,

[vr
x(y) − vs

x(y)] |x=xr,s= v̄r,s
x (y),

[mr
x(y) − ms

x(y)] |x=xr,s= m̄r,s
x (y) (13.11)

where vx(y) = qx(y) + ∂mxy(y)
∂y . If a forced displacement w̄r,s is applied, the

third relation of the above equation is replaced by wr,s = w̄r,s, while if a forced
rotation −θ̄y(y) is applied and directed toward the y coordinate direction the
last relation of the above equation is replaced by ∂wr,s

∂x = −θ̄r,s
y (y). The first

two of Eq. (13.11) at a node on the inter-element boundary can be expressed
by
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2β (13.12)

The explicit discrete equations of the last two of Eq. (13.11) at a discrete
point β on the inter-element boundary can be expressed by
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x,β (13.14)

Assume that element m has an edge on the kinematic boundary x = 0.
The kinematic boundary conditions (13.4) at a discrete point (1, β) on the
edge can be expressed by
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w̃m
1β = w̄m

1β and w̃m
2β = −θ̄m

y1β (13.15)

where w̄m
1β and −θ̄m

y1β are prescribed displacement and rotation angle, respec-
tively, at the node (1, β) on the kinematic boundary. Also assume that element
n has an edge on the natural boundary x = 0. The natural boundary condi-
tions (13.5) and (13.6) at a discrete point (1, β) on the edge can be similarly
expressed as

D̄n
11,1(β)

(hn
x)2

Dnξ2

1m w̃n
mβ + 2

D̄n
12,1(β)

(hn
y )2

Dnη2

βn w̃n
1n

+
D̄n

16,1(β)

hn
xhn

y

Dnξ
1mDnη

βnw̃n
mn = m̄n

1β (13.16)

and

D̄n
11,1(β)

(hn
x)3

Dnξ3

1m w̃n
mβ +

4D̄n
16,1(β)

(hn
x)2hn

y

Dnξ2

1m Dnη
βnw̃n

mn
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(
D̄n

12,1(β) + 4D̄n
66,1(β)

)
hn

x(hn
y )2

Dnξ
1mDnη2

βn w̃n
mn

+
1
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x)2

[
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11,1(β)

∂x
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∂D̄n
16,1(β)

∂y

]
Dnξ2

1m w̃n
mβ

+
2

hn
xhn

y

[
∂D̄n

16,1(β)

∂x
+ 2

∂D̄n
66,1(β)

∂y

]
Dnξ

1mDnη
βnw̃n

mn

+
1

(hn
y )2

[
∂D̄n

12,1(β)

∂x
+ 2

∂D̄n
26,1(β)

∂y

]
Dnη2

βn w̃n
1n = v̄n

1β (13.17)

where m̄n
1β and v̄n

1β are prescribed moment and transverse force, respectively,
applied at the discrete point (1, β) on the natural boundary.

13.1.3 Assemblage

With the discrete kinematic transition conditions in mind, then assemble the
discrete element equilibrium equations (13.8) for all elements, discrete natural
transition conditions, and discrete natural boundary conditions, an overall dis-
crete equation system can be obtained. It is the overall equilibrium/transition/
boundary equation or the overall stiffness equation. This overall stiffness equa-
tion can be represented by Eq. (3.18).

Like FEM, the assemblage is based on an element by element procedure.
In assembling the discrete equations of element e, the discrete element equilib-
rium equations (13.8), and the discrete element boundary forces, expressed by
displacements, at the nodes on the four element boundary edges are directly
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assembled to the overall discrete equation system. An element basis explicit
element stiffness equation, containing the discrete element equilibrium equa-
tions and the discrete element boundary forces placed at the rows with the
assigned DOF related to the corresponding discrete element boundary forces,
is not necessary to be formed in the assemblage process. This element basis
explicit matrix equation is an element stiffness equation which is represented
by Eq. (3.20), in which [ke] is a N̄e

ξ ×Ne
η + N̄e

η ×Ne
ξ element stiffness matrix,

{δe} = � w̃e
1 w̃e

2 . ... . �T (13.18)

is the element displacement vector, and {re} is the element load vector con-
taining the corresponding loading forces and discrete element boundary forces.

13.1.4 Problems

A clamped square plate with the length of the edge a subjected to a uniformly
distributed load q was analyzed. The plate is isotropic with the flexural rigidity
D. The p refinement procedure is used to analyze the problem. One DQEM
element is used to model the plate domain. Explicit weighting coefficients for
Lagrange DQ model with the node points equally spaced are used to generate
the C1−C0−C1 EDQ model with the two auxiliary nodes inside the equivalent
DQ element. The resulting weighting coefficients are used for the element basis
discretization.

Numerical results of the center displacements are listed in Table 13.1. It
shows that the DQEM results converge fast to the analytical solutions by
gradually increasing the order of EDQ approximation.

Table 13.1. Results of the DQEM analysis of the uniformly loaded clamped plate

Element grid line DOF π6Dw/(16qa4)

5×5 9 .75517×10−1

7×7 25 .76046×10−1

9×9 49 .76022×10−1

11×11 81 .76028×10−1

Analytical

solution .76028×10−1

13.2 Free Vibration Analysis

Let ρ and ω denote the mass density and natural frequency, respectively, of the
plate. Then, the differential eigenvalue equation can be obtained by using the
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modal displacement W and inertia force ρδω2W to replace the displacement
w and externally distributed load p, respectively, in Eq. 13.3. Consider the
related dynamic boundary condition of the static boundary condition (13.5).
Assume that a distributed mass with M̃(y) and Ĩ(y) the mass and moment of
inertia of the mass, respectively, per unit length exists along the edge. Then,
the related dynamic boundary condition can be obtained by using the modal
displacement W and inertia force −Ĩ(y)ω2 ∂W

∂x to replace the displacement w
and externally distributed moment m̄, respectively, in Eq. 13.5. Also consider
the related dynamic boundary condition of the static boundary condition
(13.6). Then, the related dynamic boundary condition can be obtained by
using the modal displacement W and inertia force M̃(y)ω2W to replace the
displacement w and externally distributed transverse force v̄, respectively, in
Eq. 13.6. The DQEM formulation for the free vibration analysis of plates can
also be carried out using the introduced information [127].

13.2.1 Problems

Free vibration of a paneling shown in Fig. 13.3 with a = 24 in was also solved.
All boundary lines are simply supported. There exists two interior support
lines at y = 12 in and x = 12 in. The two interior support lines and the
domain boundary lines separate the plate into three elements. The subdomain
with y ≥ 12 in is element 1. The subdomain with x ≤ 12 in and y ≤ 12 in
is element 2. The subdomain with x ≥ 12 in is element 3. The material
constants are: Young’s modulus E = 1. × 107 lb/in2 and Poisson’s ratio ν =
.33. The thickness of the plate is δ = 0.5 in. The values of mass density is
10.52 slugs/ft3. Each panel has the same material and thickness. The DQEM
element model used to solve the previous sample problem is adopted for this

Fig. 13.3. A simply supported 3-subdomain plate
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Table 13.2. Natural frequencies of a 3-subdomain paneling (cycles/sec)

Element grid ω1 ω2 ω3 ω4

line

3×3 .7513254×107 .9322435×107 .1321467×108

5×5 .8734809×107 .1068452×108 .1431324×108 .4253762×108

9×9 .8658938×107 .1061133×108 .1427745×108 .5412661×108

13×13 .8659160×107 .1061039×108 .1427718×108 .5412493×108

analysis. Three elements are used to model the plate and representing the
three subdomains. The first four natural frequencies obtained by the DQEM
are listed in Table 13.2. The convergence property is also excellent.
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DQFDM Analysis

The finite difference operators are derived by the differential quadrature
method. They can be obtained by using the weighting coefficients for dif-
ferential quadrature discretizations. The derivation is straight and easy. By
using different order or the same order but different grid differential quadra-
ture discretizations for the same derivative or partial derivative, various finite
difference operators for the same differential or partial differential operators
can be obtained. Finite difference operators for unequally spaced and irregular
grids can also be generated. The derivation of higher order finite difference
operators is also easy. Numerical procedures of this DQFDM are summarized.
The DQFDM can be used to develop various numerical algorithms for solving
various scientific or engineering problems.

14.1 DQ Derivation of Finite Difference Operators

In this section, the derivations of certain difference operators by DQ are il-
lustrated [39]. The Lagrange DQ model is used. For the nondimensional one-
dimension grid model having one unit domain length. If the grid has two
discrete points, the weighting coefficient matrix is

[
2Dξ

]
=
[−1 1
−1 1

]
(14.1)

If the grid has three equally spaced discrete points, the weighting coefficient
matrices are

[
3Dξ

]
=

⎡
⎣−3 4 −1
−1 0 1
1 −4 3

⎤
⎦ ,

[
3Dξ2

]
=

⎡
⎣4 −8 4

4 −8 4
4 −8 4

⎤
⎦ (14.2)

If the grid has five equally spaced discrete points, the weighting coefficient
matrices are
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[
5Dξ2

]
=

1
3
×

⎡
⎢⎢⎢⎢⎣

140 −416 456 −224 44
44 −80 24 16 −4
−4 64 −120 64 −4
−4 16 24 −80 44
44 −224 456 −416 140

⎤
⎥⎥⎥⎥⎦ ,

[
5Dξ3

]
=

⎡
⎢⎢⎢⎢⎣
−160 576 −768 448 −96
−96 320 −386 192 −32
−32 64 0 −64 32
32 −192 384 −320 96
96 −448 768 −576 160

⎤
⎥⎥⎥⎥⎦ ,

[
5Dξ4

]
=

⎡
⎢⎢⎢⎢⎣

256 −1024 1536 −1024 256
256 −1024 1536 −1024 256
256 −1024 1536 −1024 256
256 −1024 1536 −1024 256
256 −1024 1536 −1024 256

⎤
⎥⎥⎥⎥⎦ (14.3)

First consider the problem having only one coordinate variable x. Let h be
the distance between two discrete points for three consecutive points j − 1, j
and j + 1. Then, by scaling and by using the first row of

[
2Dξ

]
, the forward-

difference formula for the first order derivative of the variable function φ with
respect to the coordinate variable at the discrete point j can be obtained

dφ

dx
|j= 1

h

dφ

dξ
|j= 1

h
(φj+1 − φj) (14.4)

The backward-difference formula can also be obtained by using the second
row of

[
2Dξ

]
dφ

dx
|j= 1

h

dφ

dξ
|j= 1

h
(φj − φj−1) (14.5)

and the central-difference formula can be obtained by using the second row
of
[

3Dξ
]

dφ

dx
|j= 1

2h

dφ

dξ
|j= 1

2h
(φj+1 − φj−1) (14.6)

The difference expression for the second order derivative can be obtained by
using the second row of

[
3Dξ3

]
d2φ

dx2
|j= 1

(2h)2
d2φ

dξ2
|j= 1

h2
(φj−1 − 2φj + φj+1) (14.7)

The 5-node grid is used to define the third order derivative. Then, from the
third row of

[
5Dξ3

]
, the difference expression can be obtained

d3φ

dz3
=

1
(4h)3

d3φ

dξ3
|j= 1

2h3
(−φj−2 + 2φj−1 − 2φj+1 + φj+2) (14.8)
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The difference expression for the fourth order derivative can also be obtained
by using the third row of

[
5Dξ4

]
d4φ

dx4
|j= 1

(4h)4
d4φ

dξ4
|j= 1

h4
(φj−2 − 4φj−1 + 6φj − 4φj+1 + φj+2) (14.9)

Next consider the case where φ is a function of the two coordinate variables
x and y. Assume that the distances between two discrete points in both x and
y directions have the same value, h. Let j−1, j and j +1 be three consecutive
discrete points on a grid line in x direction. Also, let k − 1, k and k + 1 be
three consecutive discrete points on a grid line in y direction. Then, the partial
derivative ∂2φ

∂x∂y at the point (xj , yk) can be defined by

∂2φ

∂x∂y
|j,k=

1
4h2

∂2φ

∂ξ∂η
|j,k=

1
4h2

3Dη2n3Dξ2mφ(j+m−2)(k+n−2) (14.10)

The above equation is a difference expression with a range of three on both
summed indices m and n. The finite difference operator ∂2

∂x∂y |j,k can be

represented in the form of the coefficient pattern 4h2 ∂2

∂x∂y |j,k. This coefficient
pattern can be expanded by using the second row of

[
3Dξ

]
; see Fig. 14.1.

Fig. 14.1. Coefficient pattern 4h2 ∂2

∂x∂y
|j,k

The partial derivative ∂3φ
∂x2∂y at the point (xj , yk) can also be defined by

the following difference expression:

∂3φ

∂x2∂y
|j,k=

1
8h3

∂3φ

∂ξ2∂η
|j,k=

1
8h3

3Dη
2n

3Dξ3

2mφ(j+m−2)(k+n−2) (14.11)

where the range on both summed indices m and n is three. Then, the finite
difference operator ∂3

∂x2∂y |j,k can be represented in the form of the coefficient

pattern 2h3 ∂3

∂x2∂y |j,k. This coefficient pattern can be expressed by using the

second row of
[

3Dξ
]

and
[

3Dξ2
]
; see Fig. 14.2.



226 14 DQFDM Analysis

Fig. 14.2. Coefficient pattern 2h3 ∂3

∂x2∂y
|j,k

Fig. 14.3. Coefficient pattern 2h3 ∂3

∂x∂y2 |j,k

The finite difference operator ∂3

∂x∂y2 |j,k can be similarly represented in the

form of the coefficient pattern 2h3 ∂3

∂x∂y2 |j,k. This coefficient pattern is shown
in Fig. 14.3.

The difference expression of the Laplacian operation �2φ |j,k can be de-
fined by

�2φ |j,k =
1

4h2

[
3Dξ2

2mφ(j+m−2)k + 3Dη2

2nφj(k+n−2)

]
=

1
4h2

[
3Dξ2

2mδk(k+n−2) + 3Dη2

2nδj(j+m−2)

]
φ(j+m−2)(k+n−2)

(14.12)

where the range on both summed indices m and n is three. Then, the finite
difference operator �2 |j,k can be represented in the form of the coefficient
pattern h2�2 |j,k. This coefficient pattern can be expanded by using the

second row of
[

3Dξ2
]
; see Fig. 14.4.

Also let j − 2, j − 1, j, j + 1 and j + 2 be five consecutive discrete points
on a grid line in x direction, and let k − 2, k − 1, k, k + 1 and k + 2 be five
consecutive discrete points on a grid line in y direction. Assume that all line
spaces have the same value h. The difference expression of the biharmonic
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Fig. 14.4. Coefficient pattern h2�2 |j,k

operation �4φ |j,k can be defined by using five discrete points for the fourth
order derivatives and three discrete points for the second order derivatives

�4φ |j,k =
1

(4h)4

[
5Dξ4

3mφ(j+m−3)k + 32 3Dη2

2q
3Dξ2

2pφ(j+p−2)(k+q−2)

+5Dη4

3nφj(k+n−3)

]
(14.13)

where the range on the summed indices m and n is five while the range on
the summed indices p and q is three. Then, the finite difference operator
�4 |j,k can be represented in the form of the coefficient pattern h4�4 |j,k.

This coefficient pattern can be expanded by using the second row of
[

3Dξ2
]

and the third row of
[

5Dξ4
]
; see Fig. 14.5.

Fig. 14.5. Coefficient pattern h4�4 |j,k
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By using five discrete points for both of the fourth order and second order
derivatives, another difference expression of the biharmonic operation �̄4φ |j,k
can be defined

�̄4φ |j,k =
1

(4h)4

[
5Dξ4

3mφ(j+m−3)k + 2 5Dη2

3n
5Dξ2

3mφ(j+m−3)(k+n−3)

+ 5Dη4

3nφj(k+n−3)

]

=
1

256h4

[
5Dξ4

3mδk(k+n−3) + 2 5Dη2

3n
5Dξ2

3m + 5Dη4

3nδj(j+m−3)

]
×φ(j+m−3)(k+n−3) (14.14)

where the range on both summed indices m and n is five. The corresponding
finite difference operator �̄4 |j,k can be represented in the form of the coef-
ficient pattern h4

72 �̄4 |j,k. This coefficient pattern can be expanded by using

the third row of
[

5Dξ2
]

and
[

5Dξ4
]
; see Fig. 14.6.

Fig. 14.6. Coefficient pattern h4

72
�̄4 |j,k

One more finite difference operator �̃4 |j,k can be obtained by using five
discrete points for the fourth order derivatives and three discrete points, hav-
ing the distance 2h between two discrete points, for the second order deriva-
tives. This finite difference operator is expressed by

�̃4φ |j,k =
1

(4h)4

[
5Dξ4

3mφ(j+m−3)k + 2 3Dη2

2qDξ2

2pφ(j+2p−4)(k+2q−4)

+ 5Dη4

3nφj(k+n−3)

]
(14.15)
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where the range on the summed indices m and n is five while the range on
the summed indices p and q is three. The derivation of higher order finite
difference operators is also easy. To illustrate how this concept works, let ...,
j − 3, j − 2, j − 1, j, j + 1, j + 2, j + 3, ... be N consecutive discrete points
on a grid line in the x direction, and let ..., j − 3, j − 2, j − 1, j, j + 1, j + 2,
j + 3, ... be N consecutive discrete points on a grid line in the y direction.
Assume that all line spaces have the same value, h. Then, a higher order finite
difference expression of the biharmonic operation �̂4φ |j,k can be defined by
using N discrete points for both the fourth and second order derivatives

�̂Nφ |j,k =
1

[(N − 1)h]4

[
NDξ4

[(N+1)/2]mφ(j+m−3)k

+2 NDη2

[(N+1)/2]n
NDξ2

[(N+1)/2]mφ(j+m−3)(k+n−3)

+ NDη4

[(N+1)/2]nφj(k+n−3)

]

=
1

(N − 1)4h4

[
NDξ4

[(N+1)/2]mδk(k+n−3)

+2 NDη2

[(N+1)/2]n
NDξ2

[(N+1)/2]m

+ NDη4

[(N+1)/2]nδj(j+m−3)

]
φ(j+m−3)(k+n−3) (14.16)

14.2 DQFDM Plate Analysis

14.2.1 DQFDM Formulation

Consider the static deflection problem [40]. Let... , j−3, j−2, j−1, j, j+1, j+2,
j +3,... be consecutive discrete points on a grid line in the x direction, and let
..., k−3, k−2, k−1, k, k+1, k+2, k+3,... be consecutive discrete points on a
grid line in the y direction. Assume that the discrete points in x direction have
the same distance hx between two consecutive points, while the discrete points
in y direction have the same distance hy between two consecutive points. Also
assume that Dξp

mn and Dηq

mn are the weighting coefficients for the pth and qth
order partial derivatives with respect to ξ and η, respectively, with the range
for both ξ and η being 1. Let the orders of Lagrange polynomials for defining
Dξp

mn and Dηq

mn be M and N , respectively. Also let j and k be the rth and sth
DQ discrete points, respectively. Then, the finite difference equation of Eq.
(13.3) at the discrete point (j, k) can be derived by using the DQ discretization

D̄11,jk

M4h4
x

Dξ4

rmw(j+m−r)k +
4D̄16,jk

M3Nh3
xhy

Dξ3

rmDη
snw(j+m−r)(k+n−s)

+
2(D̄12,jk + 2D̄66,jk)

M2N2h2
xh2

y

Dξ2

rmDη2

snw(j+m−r)(k+n−s)
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+
4D̄26,jk

MN3hxh3
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Dξ2
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+
2

MNhxhy
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∂2D̄16,jk
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∂2D̄66,jk

∂x∂y
+

∂2D̄26,jk

∂y2

)
Dξ

rmDη
snw(j+m−r)(k+n−s)

+
1

N2h2
y

(
∂2D̄12,jk

∂x2
+ 2

∂2D̄26,jk

∂x∂y
+

∂2D̄22,jk

∂y2

)
Dη2

snwj(k+n−s) = p
jk

(14.17)

In solving the plate problems, if the distance from the discrete point (j, k)
to an x edge is larger than (M−3)hx

2 , then r can be equal to M−1
2 which is a

central difference in the x direction. Otherwise, r can not be equal to M−1
2

and the central difference can not be used.
Similar concepts can be adopted for designing the finite difference model in

y direction. In addition to the boundary line, one more grid line is necessary for
defining the finite difference equations of the boundary conditions. This grid
line can be either one auxiliary grid line just outside the plate and parallel to
the boundary edge or the interior grid line next to the boundary line. Assume
that the auxiliary grid line is added, and that the edge x = 0 is a boundary
line. Then the finite difference equations of the boundary conditions (13.4) for
the edge x = 0 at a discrete point (1, β) can be expressed by

w2β = w̄2β and
1

Mhx
Dξ

2mw(2+m−r)β = −θ̄y2β (14.18)

where −θ̄y2β is the prescribed rotation angle along the boundary line toward
the y coordinate direction. The finite difference equations of boundary condi-
tions (13.5) and (13.6) at a discrete point (1, β) on the edge can be similarly
expressed as
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D̄11,2β

M2h2
x

Dξ2

2mw(2+m−r)β + 2
D̄12,2β

N2h2
y

Dη2

snw2(β+n−s)

+
D̄16,2β

MNhxhy
Dξ

2mDη
snw(2+m−r)(β+n−s) = m̄x,2β (14.19)

and

D̄11,2β

M3h3
x

Dξ3

2mw(2+m−r)β + 4
D̄16,2β

M2Nh2
xhy

Dξ2

2mDη
snw(2+m−r)(β+n−s)

+
(D̄12,2β + 4D̄66,2β)

MN2hxh2
y

Dξ
2mDη2

snw(2+m−r)(β+n−s)

+
1

M2h2
x

(
∂D̄11,2β

∂x
+

∂D̄16,2β

∂y

)
Dξ2

2mw(2+m−r)β

+
1

MNhxhy

(
∂D̄16,2β

∂x
+ 2

∂D̄66,2β

∂y

)
Dξ

2mDη
snw(2+m−r)(β+n−s)

+
1

N2h2
y

(
∂(D̄12,2β

∂x
+ 2

∂D̄26,2β

∂y

)
Dη2

snw2(β+n−s) = v̄x,2β (14.20)

In the analysis using higher algorithms, forward or backward discretization is
necessary for discretizing a fundamental equation defined at a discrete point
on a discrete line near or on the domain boundary. In real application it is
not necessary that the values of M and N are fixed in the sense that different
terms in the finite difference equations can adopt different values of M and
N . It should be mentioned that the partial derivatives of plate rigidities at a
discrete point can also be approximated by the finite difference discretization.

It should be noted that the numerical formulation for the DQFDM analysis
of plate problems can also be on the element basis. Consequently, finite differ-
ence operators can be defined on an element basis and the discrete DQFDM
analysis can thus be carried out.

14.2.2 Problems

The problem can be solved with or without adding an auxiliary grid line out-
side the domain and near the boundary line. If an auxiliary grid line is added
, discrete points on this grid line and the boundary line are used to define
the two boundary conditions at a discrete point on the boundary line. On
the other hand, if an auxiliary grid line is not added, discrete points on the
boundary line and the interior grid line next to the boundary line are used to
define the two boundary conditions at a discrete point on the boundary line.
Various DQFDM algorithms can be constructed by adjusting the values of M
and N for different terms in the finite difference equations. In carrying out
the numerical tests, four different algorithms are used. In the algorithm A1,
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both M and N are four for discretizing a fourth order partial derivative with
respect to a coordinate variable, while both M and N are two for discretizing
a first or second order partial derivative with respect to a coordinate variable.
In the algorithm A2, both M and N are four for discretizing a second or fourth
order partial derivative, existing in the governing equation, with respect to a
coordinate variable. However, in discretizing the boundary conditions, both
M and N are two for discretizing a first or second order partial derivative with
respect to a coordinate variable. In the algorithm A3, both M and N are four
for discretizing a first, second or fourth order partial derivative, existing in
the equilibrium equation or boundary conditions, with respect to a coordi-
nate variable. In the algorithm A4, both M and N are four for discretizing a
fourth order partial derivative existing in the equilibrium equation and a sec-
ond order partial derivative existing in the boundary conditions, with respect
to a coordinate variable. However, in discretizing the second order partial
derivative, existing in the equilibrium equation, with respect to a coordinate
variable both M and N are two with the discretizing grid distance twice of
other difference discretizations. For all of algorithms A1, A2, A3 and A4, an
auxiliary grid line is added outside the domain and near the boundary line.

A simply supported isotropic uniform square plate subjected to a uniformly
distributed load p0 was solved by using Algorithms A1, A2, A3 and A4, sep-
arately. The four boundary edges of the square plates are x = 0, x = a, y = 0
and y = a. Numerical results of the nondimensional maximum displacement
are summarized and listed in Table 14.1. It shows that the results converge
to exact solutions and that the algorithm A3 performs the best among the
algorithms A1, A2, A3 and A4 which have the same maximum order of ap-
proximation due to the consistent discretization of adopting the same M and
N for all finite difference discretizations [126].

Table 14.1. The nondimensional maximum displacement wmax × π6D
16p0a4 of a

simply supported isotropic uniform square plate subjected to a uniformly
distributed lateral load

DQFDM grid line Algorithm A1 Algorithm A2 Algorithm A3 Algorithm A4

3×3 .234714×100 .199403×100 .177982×100 .395308×100

5×5 .242049×100 .231221×100 .229864×100 .286312×100

7×7 .243253×100 .238257×100 .233587×100 .263118×100

9×9 .243638×100 .240792×100 .237595×100 .254837×100

11×11 .243807×100 .241976×100 .239669×100 .250982×100

13×13 .243897×100 .242622×100 .240886×100 .248882×100

15×15 .243950×100 .243012×100 .241661×100 .247613×100

17×17 .243984×100 .243265×100 .242186×100 .246790×100

19×19 .244008×100 .243439×100 .242557×100 .246224×100

Exact solution .242666×100
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A clamped isotropic uniform square plate subjected to a uniformly distrib-
uted load p0 was also solved. Higher order algorithms are also used to solve
this problem. In the algorithm B3, both M and N are six for discretizing
a first, second or fourth order partial derivative, existing in the equilibrium
equation or boundary conditions, with respect to a coordinate variable. In
the algorithm C3, both M and N are eight for discretizing a first, second or
fourth order partial derivative existing in the equilibrium equation or bound-
ary conditions, with respect to a coordinate variable. In the algorithm D3,
both M and N are ten for discretizing a first, second or fourth order partial
derivative, existing in the equilibrium equation or boundary conditions, with
respect to a coordinate variable. Algorithms B3, C3 and D3 also adopt the
auxiliary grid line. Numerical results of the nondimensional maximum dis-
placement are summarized and listed in Table 14.2. It also shows that the
algorithm A3 performs the best among the algorithms A1, A2 and A3, and
that the performance of the algorithm can be improved by increasing the order
of approximation.

Table 14.2. The nondimensional maximum displacement wmax × π6D
16p0a4 of a

clamped isotropic uniform square plate subjected to a uniformly distributed lateral
load

DQFDM grid line Algorithm A1 Algorithm A2 Algorithm A3 Algorithm B3

5×5 .108127×100 .999138×10−1 .100032×100 .757052×10−1

7×7 .921963×10−1 .887323×10−1 .873039×10−1 .760169×10−1

9×9 .855878×10−1 .836868×10−1 .818896×10−1 .760577×10−1

11×11 .823009×10−1 .810985×10−1 .792915×10−1 .760498×10−1

13×13 .804471×10−1 .796174×10−1 .779108×10−1 .760417×10−1

15×15 .793041×10−1 .786970×10−1 .771176×10−1 .760369×10−1

17×17 .785516×10−1 .780880×10−1 .766343×10−1 .760341×10−1

19×19 .780306×10−1 .776650×10−1 .763264×10−1

Exact solution .760279×10−1

A simply supported uniform anisotropic plate subjected to the same uni-
formly distributed load was also solved by using the algorithm A3. The plate
rigidities have the following relations: D̄12 = D̄11, D̄12+2D̄66 = 1.061D̄11 and
D̄16 = D̄26 = −0.174D̄11. Numerical results are listed in Table 14.3. It shows
that the algorithm A3 converges rather slow for the solution of anisotropic
plate problem as compared to the solution of isotropic plate problem. How-
ever, it always converge well.

A simply supported isotropic nonuniform square plate subjected to a uni-
formly distributed load p0 was also solved. The thickness of the plate is ex-
pressed by δ(x, y) = δ0(1 + x/a)(1 + y/b). Denote D0 as the flexural rigidity
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Algorithm C3 Algorithm D3

- -

.760585×10−1 -

.760318×10−1 .760254×10−1

.760279×10−1 .760263×10−1

.760278×10−1 .760275×10−1

.760282×10−1 .760283×10−1

Table 14.3. The nondimensional displacement w × D̄11
p0a4 of a simply supported

anisotropic square plate subjected to a uniformly distributed lateral load

DQFDM grid line at ( a
4
, a

4
) at ( 3a

8
, 3a

8
) at (a

2
, a

2
)

5×5 .194874×10−2 - .363461×10−2

9×9 .207903×10−2 .337379×10−2 .388439×10−2

13×13 .211296×10−2 - .394564×10−2

21×21 .213156×10−2 - .397777×10−2

25×25 .213533×10−2 .346140×10−2 .398422×10−2

31×31 - - .399458×10−2

Exact solution .411×10−2

of the plate at the origin (0, 0). Numerical results obtained by the algorithm
A3 are summarized and listed in Table 14.4. It also shows that the results
converge well.

The free vibration of an isotropic clamped square plate was also solved
using the same order of DQFDM approximation, in a specific coordinate di-
rection, to the partial derivatives involved. Let the natural frequency ωn of

Table 14.4. The nondimensional displacement w × π6D
16p0a4 of a simply supported

isotropic nonrectangular plate subjected to a uniformly distributed lateral load

DQFDM grid line at ( a
4
, a

4
) at (a

2
, a

2
) at ( 3a

4
, 3a

4
)

5×5 .851025×10−3 .102334×10−2 .380420×10−3

7×7 - .138524×10−2 -

11×11 - .178991×10−2 -

21×21 .184495×10−2 .218457×10−2 .791357×10−3

25×25 .189921×10−2 .223957×10−2 .809483×10−3

31×31 - .233296×10−2 -
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the nth vibration mode be expressed by ωn = Cn

a2

√
D
ρδ with Cn the frequency

factor and δ the depth of the plate. The first four frequency factors obtained
by the DQFDM without adding four straight auxiliary grid lines outside the
plate domain are listed in Table 14.5. They are compared with those obtained
by Leissa [57]. The results of adding four straight auxiliary grid lines outside
the plate domain are also obtained and listed in Table 14.6.

The two interior support lines in the simply supported nonrectangular
plate shown in Fig. 13.3 were freed and replaced by two line loads. The
two line loads are q1 = 10sin(πx/12) applied on the line y = 12 in, and

Table 14.5 The first four frequency factors of a clamped square plate (without
auxiliary grid lines)

Order of DQFDM C1 C2 C3 C4

appr. grid line

4 7×7 .362126×102 .701674×102 .701674×102 .108000×103

9×9 .362358×102 .707662×102 .707662×102 .107348×103

11×11 .361757×102 .717800×102 .717800×102 .107993×103

13×13 .361235×102 .723785×102 .723785×102 .108271×103

15×15 .360868×102 .727111×102 .727111×102 .108352×103

17×17 .360617×102 .729048×102 .729048×102 .108359×103

19×19 .360442×102 .730250×102 .730250×102 .108343×103

6 7×7 .368344×102 .650341×102 .650341×102 .901151×102

9×9 .363784×102 .734359×102 .734359×102 .108156×103

11×11 .361481×102 .743960×102 .743960×102 .110417×103

13×13 .360594×102 .740078×102 .740078×102 .109540×103

15×15 .360226×102 .737245×102 .737245×102 .108971×103

17×17 .360056×102 .735735×102 .735735×102 .108656×103

19×19 .359971×102 .734949×102 .734949×102 .108482×103

8 11×11 .360123×102 .741418×102 .741418×102 .109729×103

13×13 .359998×102 .735130×102 .735130×102 .108675×103

15×15 .359932×102 .734220×102 .734220×102 .108411×103

17×17 .359898×102 .734052×102 .734052×102 .108316×103

19×19 .359879×102 .734005×102 .734005×102 .108272×103

10 11×11 .359929×102 .730596×102 .730596×102 .125345×103

13×13 .359907×102 .733625×102 .733625×102 .108343×103

15×15 .359882×102 .734025×102 .734025×102 .108288×103

17×17 .359868×102 .734016×102 .734016×102 .108254×103

19×19 .359861×102 .733985×102 .733985×102 .108237×103

Lessa’s sol. .35992×102 .73413×102 .73413×102 .10827×103
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Table 14.6 The first four frequency factors of a clamped square plate (with
auxiliary grid lines)

Order of DQFDM C1 C2 C3 C4

appr. subd.

4 2×2 .3475629×102

4×4 .3607781×102 .6626038×102 .6626038×102 .8317439×103

6×6 .3603904×102 .7019709×102 .7019709×102 .1049749×103

8×8 .3604560×102 .7145926×102 .7145926×102 .1065734×103

10×10 .3604122×102 .7212046×102 .7212046×102 .1072856×103

12×12 .3603353×102 .7250439×102 .7250439×102 .1076521×103

14×14 .3602602×102 .7274250×102 .7274250×102 .1078551×103

16×16 .3601958×102 .7289844×102 .7289844×102 .1079743×103

6 4×4 .3630833×102 .7160144×102 .7160144×102 .1022950×103

6×6 .3604462×102 .7317862×102 .7317862×102 .1087108×103

8×8 .3598971×102 .7334781×102 .7334781×102 .1084552×103

10×10 .3598075×102 .7334579×102 .7334579×102 .1082798×103

12×12 .3598032×102 .7335128×102 .7335128×102 .1082162×103

14×14 .3598127×102 .7336070×102 .7336070×102 .1082276×103

16×16 .3598223×102 .7336915×102 .7336915×102 .1081947×103

8 6×6 .3600669×102 .7433538×102 .7433538×102 .1097962×103

8×8 .3599354×102 .7343884×102 .7343884×102 .1084133×103

10×10 .3598863×102 .7339503×102 .7339503×102 .1082685×103

12×12 .3598676×102 .7339449×102 .7339449×102 .1082385×103

14×14 .3598597×102 .7339462×102 .7339462×102 .1082276×103

16×16 .3598560×102 .7339446×102 .7339446×102 .1082227×103

10 8×8 .3599020×102 .7335022×102 .7335022×102 .1082930×103

10×10 .3598723×102 .7339637×102 .7339637×102 .1082685×103

12×12 .3598598×102 .7339706×102 .7339706×102 .1082330×103

14×14 .3598552×102 .7339548×102 .7339548×102 .1082240×103

16×16 .3598553×102 .7339464×102 .7339464×102 .1082202×103

Lessa’s sol. .35992×102 .73413×102 .73413×102 .10827×103

q2 = 10sin(πy/12) applied on the line x = 12 in. The material constants
are: Young’s modulus E = 1. × 107 lb/in2 and Poisson’s ratio ν = .33. The
thickness of the plate is δ = 0.5 in. The two load lines and domain boundary
lines separate the plate into three subregions. The subregion with y ≥ 12 in is
subregion 1. The subregion with x ≤ 12 in and y ≤ 12 in is subregion 2. The
subregion with x ≥ 12 in is subregion 3. This nonrectangular plate problem
was solved by DQFDM.
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In the analysis, the DQFDM uses the same order of approximation to
the partial derivatives involved, and no auxiliary grid line added is adopted.
On each domain boundary line, the lateral displacement and normal moment
must vanish. The active DOF assigned to the two inter-subregion boundary
lines are used to define the equilibrium of lateral forces.

The DOF assigned to the four interior grid lines next to the domain bound-
ary lines are used to define the conditions of normal moment free. The DOF
assigned to the four interior grid lines next to the two inter-subregion bound-
ary lines are used to define the transition conditions. The DOF assigned to the
related interior grid line in subregion 1, except the two DOF assigned to the
two end points which are used to define two conditions of normal moment free
on the domain boundary, are used to define the condition of slope compati-
bility. The DOF assigned to the related interior grid line parallel to x axis, in
subregion 2, except the two DOF assigned to the two end points, are used to
define the equilibrium of moments. The DOF assigned to the end point close
to the domain boundary line x = 0 is used to define the condition of normal
moment free, while the DOF assigned to the other end point is used to de-
fine the condition of slope compatibility on the inter-subregion boundary line
parallel to y axis. The DOF assigned to the related interior grid line parallel
to y axis, in subregion 2, except the two DOF assigned to the two end points,
are used to define the condition of slope compatibility. The DOF assigned to
the related interior grid line in subregion 3, except the two DOF assigned to
the two end points, are used to define the equilibrium of moments.

Numerical results of the displacements at E(6 in, 12 in) and F (6 in, 6
in) are summarized and listed in Table 14.6. It shows that a higher-order
DQFDM approximation has a better performance.

14.3 DQFDM 2-D Elasticity Problem Analysis

For the 2-D elasticity problems, the partial derivatives involve only the first
and second orders with respect to a specific coordinate. Consequently, no
auxiliary grid line is necessary for the DQFDM analysis. In addition, the
nature of DQFDM formulation is the same as that of DQEM formulation
introduced in Chapter 12, except that the span of the DQ grid model for the
DQFDM is generally smaller than the element grid, while the DQ grid model
for the DQEM is used to represent the element.

14.3.1 Problems

A problem solved involves the plane strain elasticity deformation of a unit
square isotropic medium [41]. The four boundary edges are: x = 0, x = 1,
y = 0 and y = 1. They are fixed edges. The material constants are:
Young’s modulus E = 2.5, Poisson’s ratio ν = .25. The body forces are:
ρbx = 4π2sin(πx)sin(πy) − 2π2cos(πx)cos(πy), ρby = 4π2sin(πx)sin(πy) −
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2π2cos(πx)cos(πy). The exact solutions of displacements are: u = sin(πx)sin
(πy), v = sin(πx)sin(πy). The displacements u and v are the same at the
center of the medium. The DQFDM analysis is carried out by using various
DQFDM approximations to solve the problem. Numerical results show that
the two displacement components at the center of the medium are the same.
They are summarized and listed in Table 14.7. It shows that the DQFDM
results converge fast to the exact solution.

Table 14.7. Displacements at the center of a square region having the plain strain
deformation behavior

Order of appr. DQFDM grid line uctr

2 3×3 .1233701×101

5×5 .1048482×101

7×7 .1019951×101

9×9 .1010823×101

11×11 .1006794×101

13×13 .1004665×101

15×15 .1003403×101

4 5×5 .9950335×100

7×7 .9987416×100

9×9 .9996459×100

11×11 .9998803×100

13×13 .9999532×100

6 7×7 .1000122×101

11×11 .1000011×101

13×13 .1000004×101

15×15 .1000001×101

Exact solution .1000000×101

A problem involving the in-plane vibration analysis of a square plate hav-
ing the E glass/epoxy material was also solved. For a 00 ply plate with a fiber
having the volume fraction 0.70, the effective stiffnesses are: Q11 = 9. × 106

psi, Q12 = .85 × 106 psi, Q22 = 3.68 × 106 psi, Q66 = 1.74 × 106 psi and
Q16 = Q26 = 0. They are constant through the thickness of the plate. The
plate is uniform with the thickness being 1 in. The four boundary edges of
the plate are: x = 0, x = 10 ft, y = 0 and y = 10 ft. The two x-edges
are fixed. The two y-edges are free edges. The value of mass density ρ is
4.942259 slugs/ft3. In the analysis, all partial derivatives involved in the
DQFDM discretization adopt the same order of approximation in a specific
coordinate direction. Numerical computations are carried out using various
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Table 14.8. The first two natural frequencies of the free vibration of an
anisotropic uniform rectangular plate (cycles/sec)

Order of appr. DQFDM grid line ω1 ω2

2 7×7 .2070215×104 .3785482×104

9×9 .2105678×104 .3740718×104

11×11 .2083700×104 .3748755×104

13×13 .2087046×104 .3740718×104

15×15 .2089232×104 .3742979×104

4 7×7 .2109269×104 .3721591×104

9×9 .2105678×104 .3740718×104

11×11 .2102912×104 .3743706×104

13×13 .2100939×104 .3743513×104

15×15 .2099510×104 .3742758×104

6 11×11 .2097632×104 .3742400×104

13×13 .2096811×104 .3741041×104

15×15 .2096215×104 .3740313×104

8 9×9 .2080713×104 .3754644×104

11×11 .2095710×104 .3740861×104

13×13 .2095644×104 .3739740×104

15×15 .2096215×104 .3740313×104

11 11×11 .2089917×104 .3744125×104

13×13 .2095041×104 .3739494×104

15×15 .2095042×104 .3739152×104

orders of DQFDQ approximation. Numerical results of the first two natural
frequencies are summarized and listed in Table 14.8. It also shows that the
convergence performance of the DQFDM is excellent.

14.4 DQFDM Analysis of 2-D Heat Conduction
Problems

Like the 2-D elasticity problems, the 2-D heat conduction problems also in-
volves only the first and second order partial derivatives with respect to a
specific coordinate. Consequently, the nature of the spacial discretization of
the DQFDM 2-D heat conduction problems is the same as that of the 2-D elas-
ticity problems. Regards the spacial discretization of the 2-D heat conduction
problems, Chapter 11 can be referred.
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14.4.1 Problems

A problem involving the 2-D steady state heat conduction in an orthotropic
medium, shown in Fig. 14.7 was solved. The values of thermal conductivities
kx and ky are 1 and 2, respectively. The domain of the medium has three
subdomains with the two inter-subdomain boundary lines having a half sine
curve distributed heat flux into the medium and one subdomain having a
constant heat generation rate. The domain boundary has piecewise constant
prescribed temperatures. Numerical results of temperature at three points
obtained by DQFDM are summarized and listed in Table 14.9. It shows that
the results can converge fast by increasing either the order of approximation
or the number of grid lines.

Fig. 14.7. Heat conduction in an orthotropic medium solved by DQFDM

The 2-D heat conduction of a medium having two different isotropic mate-
rials shown in Fig. 14.8 was also solved. There are two subdomains having their
own materials and uniformly distributed heat generation rates. The shape of
each subdomain can be described by the quadratic serendipity shape func-
tions. The problem has both the Neumann and Dirichlet boundaries. There is
also a constant heat flux into the medium on the inter-subdomain boundary.
At a corner node, one discrete condition equation is considered. At the in-
tersection of the Neumann boundary and the inter-subdomain boundary, the
discrete Neumann condition defined on the left subdomain is considered. At
D and F , the considered conditions are Dirichlet conditions. At A and C, the
considered Dirichlet condition is T̄ = 0. Various techniques concerning the
setup of discrete transition conditions on an inter-subdomain boundary and a
corner node are introduced in Section 11.4. Numerical results of temperature
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Table 14.9. Convergence of heat conduction in an orthotropic medium solved by
DQFDM

Order of DQFDM grid line

appr. (each subregion) T,I T,J T,K

2 3×3 .5775253×102 .1193838×103 .3079798×102

5×5 .4462011×102 .9022232×102 .2365371×102

7×7 .4174511×102 .8462334×102 .2241048×102

4 5×5 .3914354×102 .7973436×102 .2153298×102

7×7 .3925651×102 .7999988×102 .2149636×102

9×9 .3933606×102 .8012240×102 .2148978×102

6 7×7 .3944487×102 .8027652×102 .2151097×102

9×9 .3939666×102 .8020003×102 .2148732×102

11×11 .3938110×102 .8017486×102 .2147587×102

8 9×9 .3938821×102 .8018365×102 .2148170×102

11×11 .3937298×102 .8103031×102 .2147498×102

13×13 .3936902×102 .8015594×102 .2147306×102

10 11×11 .3937603×102 .8016577×102 .2147587×102

13×13 .3936718×102 .8015319×102 .2147213×102

15×15 .3936492×102 .8014990×102 .2147109×102

12 13×13 .3936951×102 .8015638×102 .2147299×102

15×15 .3936390×102 .8014839×102 .2147061×102

Fig. 14.8. Heat conduction in a medium having two different orthotropic
materials solved by DQFDM

T,E at E, and heat fluxes qy,Bl
and qy,Br

in the left subdomain and right
subdomain , respectively, at B are summarized and listed in Table 14.10. It
also shows good convergence.
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Table 14.10. Convergence of heat conduction in a medium having two different
materials

Order of DQFDM grid line

appr. (each subregion) T,E qy,Bl qy,Br

4 5×5 .884638×101 -.183467×101 -.733866×101

6 7×7 .840760×101 -.211950×101 -.847801×101

8 9×9 .818825×101 -.244051×101 -.976204×101

10 11×11 .805528×101 -.270015×101 -.108006×102

12 13×13 .797701×101 -.294005×101 -.117602×102

15×15 .786765×101 -.318140×101 -.127256×102

17×17 .781550×101 -.326632×101 -.130653×102
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Generalized Coordinate Differential
Quadrature Element Method

For the generalized coordinate differential quadrature element method, the
element weighting coefficients are generated by a generalized approach with
which the element weighting coefficients for elements having arbitrary configu-
rations can straightly be generated. The computation of weighting coefficients
is explicit. By using this generalized coordinate differential quadrature tech-
nique the governing differential or partial differential equations, the transition
conditions of two adjacent elements and the boundary conditions can be dis-
cretized. A global algebraic equation system can be obtained by assembling
all of the discretized equations.

15.1 Generalized Coordinate Differential Quadrature
Discretization

Typical procedures for calculating weighting coefficients for grid models de-
fined by one, two and three coordinates, separately, are summarized [128].
The coordinate variables can be physical or natural.

15.1.1 One-Coordinate Model

The grid configuration of the one-coordinate grid model can be a spacially
straight or curved line. The GCDQ discretization for a derivative of order m
at discrete point α can be expressed by

dmφα

dξm
= Gξm

αi ci, i = 1, 2, ..., Ñc (15.1)

where ci are generalized coordinates, Ñc is the number of generalized coor-
dinates, and Gξm

αi ci are weighting coefficients. The variable function can be
approximated by

φ(ξ) = Υp(ξ)cp, p = 1, 2, ..., Ñc (15.2)
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where Υp(ξ) are appropriate analytical functions. The mth order differentia-
tion of Eq. (15.2) at discrete point α leads to the GCDQ discretization equa-
tion (15.1) in which Gξm

αi can be calculated by the following explicit equation

Gξm

αi =
dmΥi

dξm
|α (15.3)

The generalized coordinates and appropriate analytical functions can also be
expressed by certain other tensors having orders other than one. Using the
above equation, the weighting coefficients can be easily obtained by simple
algebraic calculations. For m > 1, the weighting coefficients Gξm

īi
for defining

the mth order derivatives at the Ñc discrete points can also be obtained by
m-1 times of matrix multiplications of the weighting coefficient matrix Gξ

jj̄

defining the first order derivative GCDQ discretizations at the Ñc discrete
points

Gξm

īi
= Gξ

ij1
Gξ

j1j2
...Gξ

jm−1 ī
(15.4)

15.1.2 Two-Coordinate Grid Model

The grid configuration of a two-coordinate grid model can be a triangle, a
quadrilateral or a certain other configuration. By adopting a one-dimensional
node identification method, the GCDQ discretization for a partial derivative
of order m+n at discrete point α can be expressed by

∂(m+n)φα

∂ξm∂ηn
= Gξmηn

αi ci, i = 1, 2, ..., Ñc (15.5)

The variable function can be approximated by

φ(ξ, η) = Υj(ξ, η)cj , j = 1, 2, ..., Ñc (15.6)

where cj are generalized coordinates and Υj(ξ, η) are appropriate analytical
functions. The (m+n)th order partial differentiation of Eq. (15.6) at discrete
point α leads to the GCDQ discretization equation (15.5) in which Gξmηn

αi are
expressed by

Gξmηn

αi =
∂(m+n)Υi

∂ξm∂ηn
|α (15.7)

The generalized coordinates and appropriate analytical functions can also be
expressed by certain other tensors having orders other than one.

By adopting a two-dimensional node identification method, the GCDQ
discretization for a partial derivative of order m+n at discrete point (α, β)
can be expressed by

∂(m+n)φαβ

∂ξm∂ηn
= Gξmηn

αβi ci (15.8)
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The (m + n)th order partial differentiation of Eq. (15.6) at discrete point
(α, β) leads to the GCDQ discretization equation (15.8) in which the weighting
coefficients, Gξmηn

αβi , are expressed by

Gξmηn

αβi =
∂(m+n)Υi

∂ξm∂ηn
|αβ (15.9)

The generalized coordinates and appropriate analytical functions can also
be expressed by certain other tensors having orders other than one. If the
Lagrange family grid is adopted and the variable function φ(ξ, η) is expressed
by

φ(ξ, η) = Υp(ξ)Υq(η)cpq, p = 1, 2, ..., N̄ξ + 1, q = 1, 2, ..., N̄η + 1 (15.10)

where N̄ξ and N̄η are the orders of approximations in ξ and η directions,
respectively. The GCDQ discretization equation (15.8) can be rewritten as

∂(m+n)φαβ

∂ξm∂ηn
= Gξmηn

αβij cij (15.11)

where Gξmηn

αβij can be obtained by the following equation

Gξmηn

αβij = Gξm

αi Gηn

βj (15.12)

15.1.3 Three-Coordinate Grid Model

The grid configuration of a three-coordinate grid model can be a triangle
with the variable function defined by the area coordinates, a tetrahedron, a
triangular prism, a hexahedron or a certain other configuration. By adopting
a one-dimensional node identification method, the GCDQ discretization for a
partial derivative of order m+n+o at discrete point α can be expressed by

∂(m+n+o)φα

∂ξmηnζo
= Gξmηnζo

αi ci, i = 1, 2, ..., Ñc (15.13)

The variable function can be approximated by

φ(ξ, η, ζ) = Υj(ξ, η, ζ)cj , j = 1, 2, ..., Ñc (15.14)

where cj are generalized coordinates and Υj(ξ, η, ζ) are appropriate analytical
functions. The (m+n+o)th order partial differentiation of Eq. (15.14) at dis-
crete point α leads to the generalized GCDQ discretization equation (15.13)
in which the weighting coefficients, Gξmηnζo

αi , are expressed by

Gξmηnζo

αi =
∂(m+n+o)Υi

∂ξm∂ηn∂ζo
|α (15.15)
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The generalized coordinates and appropriate analytical functions can also be
expressed by certain other tensors having orders other than one. Consider that
the analytical function can be expressed by the inner products of two sets of
functions, with one set defined by two coordinate variables while the other
set defined by the remaining coordinate variable, and one set of generalized
coordinates. A representative of the variable function can be expressed by

φ(ξ, η, ζ) = Υj(ξ, η)Υr(ζ)cjr (15.16)

Then the GCDQ discretization equation (15.13) can be rewritten as

∂(m+n+o)φα

∂ξmηnζo
= Gξmηnζo

αik cik (15.17)

where the weighting coefficients show to have the following form:

Gξmηnζo

αik = Gξmηn

(α)i Gζo

αk (15.18)

By adopting a two-dimensional node identification method, the GCDQ
discretization for a partial derivative of order m+n+o at discrete point (α, γ)
can be expressed by

∂(m+n+o)φαγ

∂ξm∂ηn∂ζo
= Gξmηnζo

αγi ci (15.19)

The (m+n+o)th order partial differentiation of (15.14) at discrete point (α, γ)
leads to the GCDQ discretization equation (15.19) in which the weighting
coefficients, Gξmηnζo

αγi , are expressed by

Gξmηnζo

αγi =
∂(m+n+o)Υi

∂ξm∂ηn∂ζo
|αγ (15.20)

The generalized coordinates and appropriate analytical functions can also be
expressed by certain other tensors having orders other than one. If the vari-
able function can be approximated by Eq. (15.16), the GCDQ discretization
equation (15.19) can be rewritten as

∂(m+n+o)φαγ

∂ξm∂ηn∂ζo
= Gξmηnζo

αγik cik (15.21)

where the weighting coefficients show to have the following form:

Gξmηnζo

αγik = Gξmηn

αi Gζo

γk (15.22)

By adopting a three-dimensional node identification method, the GCDQ
discretization for a partial derivative of order m+n+o at discrete point
(α, β, γ) can be expressed by

∂(m+n+o)φαβγ

∂ξm∂ηnζo
= Gξmηnζo

αβγi ci (15.23)
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The (m + n + o)th order partial differentiation of (15.14) at discrete point
(α, β, γ) leads to the GCDQ discretization equation (15.23) in which the
weighting coefficients, Gξmηnζo

αβγi , are expressed by

Gξmηnζo

αβγi =
∂(m+n+o)Υi

∂ξm∂ηn∂ζo
|αβγ (15.24)

The generalized coordinates and appropriate analytical functions can also be
expressed by certain other tensors having orders other than one. If the vari-
able function can be approximated by Eq. (15.16), the GCDQ discretization
equation (15.23) can be rewritten as

∂(m+n+o)φαβγ

∂ξm∂ηnζo
= Gξmηnζo

αβγik cik (15.25)

where the weighting coefficients show to have the following form:

Gξmηnζo

αβγik = Gξmηn

αβi Gζo

γk (15.26)

If the hexahedral Lagrange family grid is adopted and the variable function
φ(ξ, η, ζ) is expressed by

φ(ξ, η, ζ) = Υp(ξ)Υq(η)Υr(ζ)cpqr,

p = 1, 2, ..., N̄ξ + 1, q = 1, 2, ..., N̄η + 1, r = 1, 2, ..., N̄ζ + 1
(15.27)

where N̄ξ, N̄η and N̄ζ are the orders of approximations in ξ, η and ζ directions,
respectively. The GCDQ discretization equation can be rewritten as

∂(m+n+o)φαβγ

∂ξm∂ηnζo
= Gξmηnζo

αβγijk cijk (15.28)

where Gξmηnζo

αβγijk can be obtained by the following equation

Gξmηnζo

αβγijk = Gξm

αi Gηn

βj Gζo

γk (15.29)

15.2 Generalized Coordinate Differential Quadrature
Element Analyses

Sample problems solved are introduced to explain the numerical procedures of
generalized coordinate differential quadrature based discrete element analysis.
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15.2.1 Beam Vibration

GCDQEM Formulation

The GCDQEM beam vibration analysis is illustrated. Considering the pris-
matic beam, the governing differential eigenvalue equation of beam vibration
is expressed as

EIW,xxxx − ρAω2W (x) = 0 (15.30)

Using the GCDQ represented by Eq. (15.1) to discretize Eq. (15.30) at a
discrete point α, the following equation can be obtained

(EI)eGex4

αβ ce
β − ρeω2Υ e

β(xe
α)ce

β = 0, β = 1, 2, ..., Ne (15.31)

where Ne is the number of discrete points or nodes of the element e.
The use of Eq. (15.2) in Eq. (4.9) leads to the following continuity condition

of modal displacement at the inter-element boundary of two adjacent elements
i and i + 1

Υ i
β(xi

Ni)ci
β = Υ i+1

β̄
(xi+1

1 )ci+1
β̄

(15.32)

The use of Eq. (15.2) in Eq. (4.10) leads to the following continuity condition
of modal deflection slope

Gix
Niβci

β − G
(i+1)x

1β̄
ci+1
β̄

= 0 (15.33)

Assume that a concentrated mass M̃ i,i+1 is attached to the inter-element
boundary of two adjacent element i and i + 1. Neglecting the effect of rotary
inertia of the concentrated mass, the equilibrium of moments is

−(EI)iW i
Ni,xx + (EI)i+1W i+1

1,xx = 0 (15.34)

The above equation can be discretized

−(EI)iGix2

Niβci
β + (EI)i+1G

(i+1)x2

1β̄
ci+1
β̄

= 0 (15.35)

The equilibrium of transverse forces is

(EI)iW i
Ni,xxx − (EI)i+1W i+1

1,xxx + ω2M̃ i,i+1W i,i+1 = 0 (15.36)

The above equation can be discretized

(EI)iGix3

Niβci
β − Ei+1Ii+1G

(i+1)x3

1β̄
ci+1
β̄

− ω2M̃ i,i+1Υ i
β(xi

Ni)ci
β = 0 (15.37)

The kinematic boundary conditions can be expressed as Wm
Im = W̄m

Im and
Wm

Im,x = W̄m
Im,x in which Im is 1 or Nm. The discrete equation of the first

kinematic boundary condition can be obtained using Eq. (15.32)

Υβ(xm
Im)cm

β = W̄m
Im (15.38)
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The discrete equation of the second kinematic boundary condition can be
obtained using Eq. (15.33)

Gx
Imβcm

β = w̄m
I,x, I = 1 or Nm (15.39)

Let n be an element consisting of the natural boundary. The discrete natural
boundary condition of equilibrium of moments can be obtained using Eq.
(15.35)

(EI)nGnx2

Inβcn
β = 0, In = 1 or Nn (15.40)

Referring to (15.33), the discrete natural boundary condition of the equilib-
rium of transverse forces is expressed by

(EI)nGnx3

Inβcn
β = ω2MnΥn

β (xn
1 )cn

β , for left boundary (15.41)

= −ω2M̃nΥn
β (xn

Nn)cn
β , for right boundary (15.42)

where M̃n is the concentrated mass placed at the natural boundary.
In constructing the numerical model, the local coordinate system defined

on each element with the origin located at the first node of the element can
be used. Then the nondimensional coordinate defined as the local coordinate
variable divided by the length of the element can be used to carry out the
GCDQ discretization. By using this approach, all elements have the same
one unit nondimensional subdomain. Then only one GCDQ discretization is
necessary for elements having the same grid in their nondimensional subdo-
mains. This can reduce the arithmetic operations in carrying out the GCDQ
discretizations for all elements.

The problem solved involves the lateral vibration of the fixed-fixed non-
prismatic beam shown in Fig. 4.4 in Subsection 4.1.3. The beam is composed
of two prismatic segments having the same length 1. The materials of the two
segments are also the same with both the Young’s modulus and mass density
equal to 1. One segment has both the area and moment of inertia of the cross
section equal to 1, while the other segment also has the same value of 2 for
both the area and the moment of inertia of the cross section. In solving this
problem, the effect of rotary inertia is neglected and the elements are equally
spaced.

Denote ξ the nondimensional coordinate. The set of polynomials ξk−1,
k = 1, 2, ..., Ne is used to carry out the element basis GCDQ discretization.
In a segment, the elements used to model the segment have the same length.
Transition or boundary conditions are defined at the element boundary nodes.
Though the discrete element eigenvalue equations can also be defined at the
element boundary nodes, in this sample analysis the discrete element eigen-
value equations are only defined at interior discrete points. The interior dis-
crete points are equally spaced. Let he = le/(Ne + 1). The interior discrete
points are located at 2he, 3he, ..., (Ne−1)he. The natural frequencies obtained
are listed in Table 15.1. It shows that the GCDQEM results converge very fast
by increasing either the number of elements or discrete points per element.
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Table 15.1. The first five natural frequencies of a nonprismatic beam composed of
two segments

DOF per Number of ω1 ω2 ω3 ω4 ω5

element elements

5 2 6.4345458 14.078064

4 5.5670666 16.898637 38.812658 47.364824

6 5.5073212 16.123268 31.841268 56.251621 95.333048

7 2 5.3282936 15.748253 26.369430 39.858780 65.627698

4 5.4559686 15.490456 28.522681 50.050799 69.157952

6 5.4613323 15.619719 29.692799 49.341898 69.971431

9 2 5.4661943 15.648038 31.325120 55.544366 85.939373

4 5.4626645 15.653397 29.969711 50.412941 74.997004

6 5.4626307 15.650285 29.907237 50.417707 74.364319

11 2 5.4625368 15.649903 29.817807 49.945043 77.346002

4 5.4626271 15.649944 29.901405 50.379680 74.086114

6 5.4626274 15.649999 29.903108 50.381025 74.124804

15.2.2 Steady State Field Problems

Numerical simulation involving the steady-state heat conduction in a two-
dimensional uniform medium is illustrated. Assume that the medium is
isotropic. The governing partial differential equation is expressed as

kT,xx + kT,yy + Q = 0 (15.43)

The Neumann boundary condition is expressed as

q̄ = kT,n = klT,x + kmT,y (15.44)

Solution of the boundary value problem of Poisson equation provides compo-
nents of the internal heat flux through the following definition

qx = −kT,x, qy = −kT,y (15.45)

In the GCDQEM analysis, the analysis domain and element configuration
can be arbitrary. If the mapping technique is used, the fundamental relations
must be transformed into the natural space. In GCDQEM, the GCDQ dis-
cretizations can be directly carried out in the physical space for regular or
irregular elements. The element must have four or more discrete points. The
discrete points at which the discrete element governing equations defined can
be either in the interior of the element or on the element boundary. The aver-
age discrete governing equation defined at a discrete point on the inter-element
boundary can also be a discrete fundamental equation. The one-dimensional
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node identification method is adopted for carrying out the GCDQ discretiza-
tion. The discrete equation of (15.42) at node α in the element e is

keGx2

αjc
e
j + keGy2

αjc
e
j + Qe

α = 0, j = 1, 2, ..., Ñc (15.46)

The discrete Neumann boundary condition at node ᾱ can be obtained from
(15.43)

q̄n
ᾱ = knln(ᾱ)G

x
ᾱjc

n
j + knmn

(ᾱ)G
y
ᾱjc

n
j (15.47)

Let the discrete point β of element r and the discrete point β̄ of element s
be a common node On the inter-element boundary, ∂Ωr,s, of two adjacent
elements r and s. The discrete kinematic transition condition at this node is
the continuity of temperatures which is expressed as

T r
β = T s

β̄ (15.48)

The above equation leads to

Υ r
γ (xr

β , yr
β)cr

γ = Υ s
γ̄ (xs

β̄ , ys
β̄)cs

γ̄ (15.49)

The temperature can also be prescribed on the inter-element boundary which
is expressed as

T r
β = T s

β̄ = T̄ r,s

β,β̄
(15.50)

where T̄ r,s

β,β̄
is the prescribed temperature. The above equation leads to

Υ r
γ (xr

β , yr
β)cr

γ = Υ s
γ̄ (xs

β̄ , ys
β̄)cs

γ̄ = T̄ r,s

β,β̄
(15.51)

By using (15.46), the natural transition condition at the common node can
be defined

krlr(β)G
x
βpc

r
p + krmr

(β)G
y
βpc

r
p + ksls(β̄)G

x
β̄qc

s
q + ksms

(β̄)G
y

β̄q
cs
q = q̃ (15.52)

where q̃ is the conduction heat flux into the domain. The components of
internal heat flux at the discrete point α in element e can also be obtained
from (15.44)

qe
x,α = −keGx

αjc
e
j , qe

y,α = −keGy
αjc

e
j (15.53)

Irregular element can be developed with or without using the mapping
technique. The generation of mesh and element grid can be referred to Section
4.2. Considering the Lagrange family grid for a quadrilateral element, denote
Nξ and Nη the numbers of level in ξ and η directions, respectively, in the
master element of a physical element. The set of polynomials xp−1yq−1, p =
1, 2, ..., Nξ, q = 1, 2, ..., Nη can be used to construct the first order tensor
expressed analytical functions and generate the weighting coefficients. Since
this approximation possesses the property of geometric property, the approach
of adopting the mapping technique and the approach without adopting the
mapping technique result in obtaining the same approximation.
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15.2.3 Problems

Steady-State Heat Conduction

The problem solved involves the heat conduction in one quarter of an annular
region which is shown in Fig. 15.1. The domain is modelled by four partial
annuluses having the same range angle. The thermal conductivity k is 1. The
temperatures on the boundaries of two concentric circles of radii 1 and 5 are
prescribed which are T̄ = 100 and T̄ = 40, respectively. On boundaries FH
and GI, conduction heat fluxes of q̄ = −10 and q̄ = 10, respectively, are
applied. On the inter-element boundary which separates the quarter annulus
into two equally ranged partial annuluses, the conduction heat flux of q̃ = 5 is
also applied. And in the subdomain FAHKBJ the internal heat generation
rate Q = −1 is applied. In carrying out the numerical tests, equally spaced
discrete points in both ξ and η directions are adopted for defining the element
grid. All four elements have the same type of element grid. Numerical results
of temperatures at five different discrete points are listed in Table 15.2. It
shows excellent convergence.

Fig. 15.1. 4-element meshed quarter annular region.

Torsion of a Prismatic Bar Having a Half Elliptic Cross Section

The domain boundary is described by x2 + y2

4 = 1, y > 0 and y = 0. The
half elliptic section is considered to be a triangular grid with the three ver-
tices located at Ā(−1, 0), A(1, 0) and B(0, 2). In calculating the weighting
coefficients, the complete polynomials are used. Let n denote the order of
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Table 15.2. Convergence by increasing the discrete points in an element for the
heat conduction in a quarter annulus

Element grid TA TB TC TD TE

3×3 .460915×102 .558711×102 .634581×102 .667050×102 .751272×102

5×5 .457174×102 .553609×102 .628760×102 .661010×102 .743623×102

9×9 .455149×102 .551904×102 .627573×102 .660273×102 .743219×102

11×11 .455047×102 .551814×102 .627523×102 .660263×102 .743220×102

the approximate complete polynomial. The distribution of stress function can
be expressed by φ(x, y) = Υpk(x, y)cpk, 0 ≤ p ≤ n, 1 ≤ k ≤ n + 1 where
Υpk(x, y) = xp+1−kyk−1 and cpk are unknown coefficients. Υpk are complete
polynomials. By arranging the complete polynomials into a one-dimensional
array and substituting them into (15.3), the weighting coefficients can be cal-
culated. Prandtl’s stress function formulation of torsion theory was used. The
p refinement procedure adopting the Pascal triangular grid is used to analyze
the problem. Numerical results of stress function at C(0, 2

3 ) and shear stresses
at O(0, 0) and B(0, 2) are listed in Table 15.3. It also shows that the results
converge well by gradually increasing the order of the Pascal triangular grid.

Table 15.3. Numerical results of the torsion of a prismatic bar having a half
elliptic cross section

Order of Pascal triangular grid ΦC τzx,O τzx,O

3 .507937×100 .285714×100 –.571429×100

5 .475582×100 .407713×100 –.489659×100

7 .474765×100 .423569×100 –.546460×100

Torsion of a Prismatic Bar Having a Triangular Cross Section

The sides of the triangle are the three straight lines x = 0, y = 0 and x+y = 1.
p refinement procedure adopting the Pascal triangular grid is used to analyze
problem. The Pascal triangular grid is designed by first using n+1 lines parallel
to the Lk-axis to subdivide the rectangular unit triangle into n subregions, in
each area coordinate direction, with n the order of approximate polynomials.
The n + 1 lines define the levels of the Pascal triangular grid with the side
Lk = 0 being the level zero. The level number will increase following the
increase of the value of Lk. The highest level is level n + 1. Though the
distance between two levels can be different, it is set to be constant in the
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present numerical analysis. The complete polynomials used for the analysis of
last sample problem are also used to define the GCDQ weighting coefficients
and carry out the numerical computation. Numerical results of the stress
function at A(1

3 , 1
3 ), and the shear stresses at A and B(0, 1

2 ) are summarized
and listed in Table 15.4. The results converge fast by gradually increasing the
order of Pascal triangular grid.

Table 15.4. Results of the torsion of a prismatic bar having a triangular cross
section

Order of Pacal

triangular grid ΦA τzx,A τzy,A τzy,B

3 .555556×10−1 .000000×10−1 .000000×100 –.375000×100

5 .581439×10−1 –.374110×10−1 .374110×10−1 –.421402×100

7 .580757×10−1 –.389181×10−1 .389181×10−1 –.407827×100

9 .579874×10−1 –.390231×10−1 .390231×10−1 –.407347×100

11 .579595×10−1 –.391414×10−1 .391414×10−1 –.408301×100

13 .579466×10−1 –.391865×10−1 .391865×10−1 –.407915×100

15 .579397×10−1 –.392097×10−1 .392097×10−1 –.407818×100

15.2.4 Steady Poiseuille Flow in a Pipe with Elliptic Cross Section

The problem concerns the steady uniform incompressible viscous flow in a
pipe of elliptic cross section in the direction of z-axis. The governing equation
is

− 1
µ

∂p

∂z
+
(

∂2vz

∂x2
+

∂2vz

∂y2

)
= 0 (15.54)

where µ is the viscosity of the fluid, vz the velocity component in the z direc-
tion and p the distribution of pressure. The cross section of the pipe is defined
by x2

4 + y2

16 = 1. In the analysis, the pressure gradient ∂p
∂z is set to be −1, and

µ is set to be .25. The velocity vz(x, y) is approximated by

vz(x, y) = c1+xc2+yc3+x2c4+y2c5+xyc6+x3c7+y3c8+x2yc9+xy2c10+.....

(15.55)
The cross section is represented by one elliptic GCDQ element. Two analyses
were carried out by using the four-node element and the five-node element,
separately. In the analysis using a four-node element, a discrete governing
equation is defined at the node (0, 0), and three discrete boundary conditions
are defined at the other three points (2, 0), (0, 4) and (−2, 0). In the analysis
using a five-node element, one more discrete boundary condition is defined
at one additional point (0,−4). Numerical results of velocity at four different
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Table 15.5. Results of a steady Poiseuille flow problem

Nodes of nodes Vz(, ) Vz(, ) Vz(, ) Vz(, )

4 .80000×101 .60000×101 .40000×101 .20000×101

5 .64000×101 .48000×101 .48000×101 .32000×101

Exact solution .64000×101 .48000×101 .48000×101 .32000×101

points are listed in Table 15.5. Exact results were obtained for the five-node
analysis.
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EDQ Based Direct Time Integration Methods

EDQ based time integration algorithms developed for solving the discrete
transient equation system of a continuum mechanics problem are introduced.
They are direct integration integration methods. Two algorithms are devel-
oped. They are time-element by time-element method and stages by stages
method. These two time integration methods can be used to solve generic dis-
crete transient equation system of an originally discrete system or a discrete
system resulting from the discretization of a transient system of continuum
mechanics problems by using a certain discretization technique such as the
DQEM, FEM, FDM, . . . , etc.

16.1 Second Order Problems

Transient problems with fundamental equations having second order deriva-
tives with respect to the time variable are widely existing in the regime of
scientific and engineering. Dynamic response of structures is a representative
of these transient problems. The numerical procedures of EDQ based time
integration algorithms for structural dynamics are introduced [44].

16.1.1 EDQ Basis Time-Element by Time-Element
Integration Algorithm

Consider that an EDQ grid model with the temporal coordinate variable, t.
Then, the EDQ grid model can be defined as a time-element. The transient
response can be solved by increasing the time, step by step. Each step repre-
sents a time-element. Consider that the transient equation system, at a stage
of the tth incremental step, of the transient problems of structures is expressed
by

MrsÜ
t
s + CrsU̇

t
s + KrsU

t
s = F t

r (16.1)

where Crs is the damping matrix, U t
s is the overall displacement vector and F t

r

is the overall load vector. Let ∆t and τ denote the time increment or the size
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of time-element and the natural coordinate with respect to the time t. Then,
by using the EDQ to discretize U̇ t

s and Ü t
s in the above equation, the discrete

equation at the time stage p of the tth incremental step can be expressed by
the following equation(

1
∆t2

MrsD
τ2

pq +
1

∆t
CrsD

τ
pq + KrsΨpq

)
Ũ t,q

s = F t,p
r (16.2)

where Ũ t,q
s are displacements and/or their derivatives with respect to t, and

Ψpq are the corresponding interpolation functions of the EDQ discretization.
In order to solve the above equation, two initial conditions are required. Let
Ū t

s denote the initial displacements of the tth incremental step. The initial
condition of displacements is expressed as

U t,1
s = Ū t

s (16.3)

Let ˙̄U
t

s denote the initial velocities of the tth incremental step. The initial
condition of velocities is expressed as

1
∆t

Dτ
1qŨ

t,q
s = ˙̄U

t

s (16.4)

The values of Ū t
s and ˙̄U

t

s can be obtained from the solutions of the (t − 1)th
incremental step. The response histories can be updated by a time-element
by time-element procedure.

Various time-elements can be used to develop the direct integration
schemes. Consider the Lagrange time-element having L stage nodes. Since
no time derivative of displacement is adopted for the time-element, discrete
time stages for defining the discrete equations of motion coincide the node
stages of the element, and Ψpq represents the Kronecker delta δpq. Use the
DOF assigned to the first node stage to define the condition of initial dis-
placements, and use the DOF assigned to the second node stages to define
the initial condition of velocities. Then, by using Eqs. (16.2), (16.3) and (16.4),
the following matrix equation can be obtained

Ū t
s{K̄RI} + [K̄RR]{U t,R} = {F̄ t,R} (16.5)

where

{U t,R} = � U t,2
s U t,3

s
... U t,L

s �T , {F̄ t,R} = � ˙̄U
t

s F t,3
s

... F t,L
s

�T ,

{K̄RI} = � 1
∆tδrsD

τ
11

1
∆t2 MrsD

τ2

31 + 1
∆tCrsD

τ
31

... 1
∆t2 MrsD

τ2

L1 + 1
∆tCrsD

τ
L1 �T ,

and
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[K̄RR] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
∆tδrsD

τ
12

1
∆tδrsD

τ
13

1
∆t2 MrsD

τ2

32 + 1
∆tCrsD

τ
32

1
∆t2 MrsD

τ2

33 + 1
∆tCrsD

τ
33 + Ksr

. .

. .

. .
1

∆t2 MrsD
τ2

L2 + 1
∆tCrsD

τ
L2

1
∆t2 MrsD

τ2

L3 + 1
∆tCrsD

τ
L3

... 1
∆tδrsD

τ
1L

... 1
∆t2 MrsD

τ2

3L + 1
∆tCrsD

τ
3L

... .

... .

... .

... 1
∆t2 MrsD

τ2

LL + 1
∆tCrsD

τ
LL + Krs

⎤
⎥⎥⎥⎥⎥⎥⎦

(16.6)

Using Eq. (16.5), displacements {U t,R} of the remaining L − 1 node stages
can be found

{U t,R} = [K̄RR]−1({F̄ t,R} − Ū t
s{K̄RI}) (16.7)

It should be noted that if the problem is linear and that the size of the time-
element is constant, then [K̄RR] is a constant matrix. Consequently, only
one decomposition is necessary for updating the response histories if a direct
solution scheme is used.

Consider a C1−C0 EDQ time-element having E stage nodes and L DOF.
Assume that the two DOF assigned to the first stage node represent the
displacement and velocity of the stage node, and that each of the remaining
E − 1 stage nodes has one DOF representing the displacement of the stage
node. The two DOF assigned to the first stage node are used to define the
two initial conditions of an element step, while the DOF assigned to each
other stage node is used to define a discrete equation of motion. By using
Eqs. (16.2), (16.3) and (16.4), the following matrix equation can be obtained

[K̄RI ]{ ˜̄U
t,I} + [K̃RR]{Ũ t,R} = {F̃ t,R} (16.8)

where

{ ˜̄U
t,I} = � Ū t

s
˙̄U

t

s
�T , {Ũ t,R} = � U t,2

s U t,3
s

... U t,L−1
s �T ,

{F̃ t,R} = � F t,2
s F t,3

s
... F t,L−1

s �T ,

[K̃RI ] =

⎡
⎢⎢⎢⎢⎣

1
∆t2 MrsD

τ2

21 + 1
∆tCrsD

τ
21

.

.

.
1

∆t2 MrsD
τ2

(L−1)1 + 1
∆tCrsD

τ
(L−1)1
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1
∆tMrsD

τ2

22 + CrsD
τ
22

.

.

.
1

∆tMrsD
τ2

(L−1)2 + CrsD
τ
(L−1)2

⎤
⎥⎥⎥⎥⎦

and

[K̃RR] =

⎡
⎢⎢⎢⎢⎣

1
∆t2 MrsD

τ2

23 + 1
∆tCrsD

τ
23 + Krs

...

. ...

. ...

. ...
1

∆t2 MrsD
τ2

(L−1)3 + 1
∆tCrsD

τ
(L−1)3

...

1
∆t2 MrsD

τ2

2L + 1
∆tCrsD

τ
2L

.

.

.
1

∆t2 MrsD
τ2

(L−1)L + 1
∆tCrsD

τ
(L−1)L + Krs

⎤
⎥⎥⎥⎥⎦ (16.9)

Using Eq. (16.8), displacements {U t,R} of the remaining L − 2 node stages
can be found

{Ũ t,R} = [K̃RR]−1({F̃ t,R} − [K̃RI ]{ ˜̄U
t,I}) (16.10)

It should be noted that if L − 1 in the superscripts implies that the C1 − C0

time-element has L−1 stage nodes, while L in the subscripts implies that the
time-element has L DOF.

16.1.2 DQ Basis Stages by Stages Integration Algorithm

A different algorithm was developed to solve the discrete transient equilibrium
equation system. In this algorithm, the equally spaced Lagrange DQ model
is used to discretize U̇ t

s and Ü t
s. One incremental step solution similar to the

time-element by time-element solution procedure of the previous algorithm
is first carried out. Since no rotational DOF is assigned to the Lagrange DQ
model, the DOF assigned to the second node is used to define the initial
condition of velocity. After this solution step, the time variable is increased
by adding one time increment. Assume that the Lagrange DQ model has L
nodes and that the value of the time increment equals the distance spanning
N+1 consecutive stages (nodes) of the initial solution step. N further time
stages are thus defined. Then, by using this newly increased N stages and the
previous L-N stages, the same DQ model can be used to discretize U̇ t

s and Ü t
s

at the newly increased N stages. The discretized equation is expressed by(
1

∆t2
MrsD

τ2

αm +
1

∆t
CrsD

τ
αm + Krsδαm

)
Ûm

s

= F̂α
r , α = L − N + 1, L − N + 2, ..., L (16.11)
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where Ûm
s is the displacement vector of the temporal discretization using DQ

and F̂α
r is the load vector of the newly increased N stages. Since only dis-

placements at the newly increased N stages are unknowns, matrix partition
technique can be used to obtain an equation system with unknowns the dis-
placements at the newly increased N stages. This solution system is smaller
than the solution system of the time-element by time-element solution algo-
rithm and the first incremental step solution of the current algorithm which
has the displacements of L-2 stages as unknowns. In this direct integration al-
gorithm, the response histories can be updated by a stages by stages solution
procedure. For solving transient problems of structures, the maximum value
of N will be L-2. If the value of N is larger than 1, the numerical stability
is rather poor. The approach of adopting N = 1 is a stage by stage method.
For the solution of linear problem, both the two solution systems need only
one decomposition if a direct solution scheme is used. However, the previous
algorithm has better numerical stability.

16.1.3 Problems

Dynamic Response of a Shear-Deformable Axisymmetric
Circular Plate

The dynamic response of an axisymmetric orthotropic laminated shear-
deformable circular plate subjected to a uniformly distributed dynamic load,
q = 106sin(5t) N/m, was analyzed. The radius of the circular plate is 3 m,
while the thickness of the plate is h = 1 m. The laminate is a cross-ply with
[00/900/00] which has the orthotropic property in the radial and circumferen-
tial directions, with each ply being 1

3 m thick. The top and bottom plies have
the following elastic stiffnesses: Ē1 = 14 GPa, Ē2 = 7 GPa, Ḡ13 = 3.5 GPa,
ν̄12 = 0.25, ν̄21 = 0.125, while the middle ply has the following elastic prop-
erties: Ē1 = 7 GPa, Ē2 = 14 GPa, Ḡ13 = 7 GPa, ν̄12 = 0.125, ν̄21 = 0.25.
Then the reduced stiffnesses of each ply can be calculated by the following
relationships: Q̄11 = Ē1

1−ν12ν21
, Q̄22 = Ē2

1−ν12ν21
, Q̄12 = ν̄12Ē2

1−ν12ν21
. The elastic

stiffnesses also have the following relationship: ν̄12
Ē1

= ν̄21
Ē2

. Consequently, the
bending stiffnesses and shear modulus can be obtained by the integrations:
D̄ij =

∫ h/2

−h/2
Q̄ijz

2dz, G13 = 1
h

∫ h/2

−h/2
Ḡ13dz. The values are: D̄11 = 1.1819992

GN .m, D̄22 = .62445241 GN .m, D̄12 = .15053763 GN .m, G13 = 4.6666667
GPa. The mass density is ρ = 0.1019368 Gkg/m3. One DQEM element adopt-
ing the nine-node Lagrange DQ model is used to the spacial discretization of
the circular plate. In modelling the structure, the symmetry property at the
center is considered for defining the boundary conditions. In carrying out the
direct time integration, the Lagrange time-element by time-element method
is used. The problem is solved by using various orders of time integration and
sizes of time increment. Lateral displacement of four different time stages at
the center are summarized and listed in Table 16.1. It shows that the devel-
oped algorithms are effective.
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Table 16.1. Lateral displacements of the center, at four different time stages, of
the orthotropically laminated shear-deformable circular plate subjected to a

uniformly distributed dynamic load (mm)

DOF per Time t = .9 (sec) t = 1.5 (sec) t = 3.9 (sec)

step increment

3 .3 –.148676 –.0852588 .135237

.15 –.180251 –.120042 .128247

.075 –.183327 –.139845 .118845

4 .3 –.181309 –.166141 .199508

.15 –.187509 –.162138 .118284

7 .3 –.180211 –.162005 .114624

Dynamic Response of a Deflected Euler-Bernoulli Beam

The problem solved involves the dynamic response of a simply supported beam
deflected into an initial position and then released. The length of the beam,
area of cross section, moment of inertia of cross section, Young’s modulus and
mass density are all equal to 1. With x = 0. the origin of the coordinate,
the initial deflection of the beam is expressed as w(x, 0) = x − 2x3 + x4.
The analytical solution of displacement response is expressed as w(x, t) =
96
π5

∑∞
n=0,1,2,...

1
(2n+1)5 sin (2n+1)πx

cos [(2n+1)π]2t. One DQEM element adopting
the 13 − DOF Lagrange DQ model was used to model the beam and carry
out the spacial discretization to obtain the discrete equations of motion.

The dynamic response was solved by using the C1 − C0 time-element
by time-element direct time integration procedure. In the analysis, damping
effect is neglected. Numerical results of the mid-span displacements at four
different time stages are summarized and listed in Table 16.2 with which the
convergence and stability can be seen.

Dynamic Response of a Deflected Bar

The problem solved involves the dynamic response of a fixed-free bar deflected
into an initial position and then released. The length of the bar, area of cross
section, mass density and Young’s modulus are all equal to 1. With x = 0.
the origin of the coordinate, the initial displacement of the bar is expressed
as u(x, 0) = x. One DQEM element adopting the 11 − DOF Chebyshev DQ
model was used to model the bar and carry out the spacial discretization to
obtain the discrete equations of motion of the bar. In the analysis, the stage
by stage solution procedure was used to carry out the time integration. The
damping effect is also neglected. Numerical results of using various orders of
DQ approximation for the stage by stage procedure are summarized and listed
in Table 16.3. The convergence can be seen in the table.
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Table 16.2. Mid-span displacements of the beam at four different time stages
(C1 − C0 time-element by time-element method)

DOF per Size of t = .08 t = .12 t = .28 t = .32

time-element time-element

4 .04 .199747 .094101 –.201222 –.190752

.02 .198464 .084182 –.250999 –.232869

.01 .198954 .080568 –.281162 –.260233

5 .04 .226180 .128442 –.285116 –.317038

.02 .229152 .131350 –.281540 –.316651

.01 .227875 .132752 –.281850 –.314308

6 .04 .197956 .082509 –.265425 –.246877

.02 .198491 .079470 –.288865 –.267533

.01 .199701 .077879 –.301616 –.279772

7 .04 .213634 .103578 –.298788 –.303921

.02 .214513 .103103 –.302044 –.308994

.01 .214013 .102636 –.303409 –.312018

Anal. sol. .220073 .118635 –.292681 –.312466

Table 16.3. Displacements of free end at four different time stages

Stages of Period of t = 1. t = 2. t = 3. t = 4.

DQ DQ

3 .25 .578140 .283307 .425257 .614877

.125 .533093 .200649 .459974 .718572

.0625 .515750 .141466 .482326 .800278

.03125 .503459 .097964 .494900 .859948

4 .25 .433064 .083640 .460351 .894515

.125 .495808 .068693 .513613 .899695

.0625 .502787 .014689 .514166 1.08634

5 .25 .499217 .029679 .571059 .876318

.125 .507078 .009580 .490286 .944378
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Dynamic Response of a Deformed Membrane

The problem solved involves the dynamic response of a square membrane.
Let u(x, y, t) denote the displacement. The dynamic equilibrium equation is
expressed by ∂2u

∂x2 + ∂2u
∂y2 − ∂2u

∂t2 = 0. The boundary condition is u = 0 on the
boundary of the membrane for all t ≤ 0. The membrane is deflected into
an initial position u(x, y, 0) = sinπxsin2πy and then released. One DQEM
element adopting the 11 × 11 Chebyshev DQ model was used to model the
membrane and carry out the spacial discretization to obtain the discrete equa-
tion of motion of the membrane. In the analysis, Lagrange time-element by
time-element procedure was used to carry out the time integration. Let T1

denote the first natural frequency of the membrane. Numerical results of the
displacement at (.5, .25) at four different time stages using various orders of
DQ approximation for the Lagrange time-element by time-element procedure
are summarized and listed in Table 16.4. It shows that the numerical stability
and convergence rate are excellent. The problem was resolved by consider-
ing the effect of damping with the damping coefficient equal to 1. Then the
dynamic equilibrium equation is expressed by ∂2u

∂x2 + ∂2u
∂y2 − ∂2u

∂t2 + ∂u
∂t = 0.

Numerical results obtained are summarized and listed in Table 16.5. It also
shows that the numerical stability and convergence rate are excellent.

Van der Pol’s Equation

Van del Pol’s equation is a self-excited nonlinear vibration equation expressed
as

mü + c(u2 − 1)u̇ + ku = 0

Table 16.4. Displacements of the point (.5, .25) at four different time stages
(neglecting the effect of damping)

DOF per Time t/T1 = .12 t/T1 = .36 t/T1 = .60 t/T1 = .90

step increment

3 .02 .747818 –.435300 –.633678 .413503

.01 .736821 –.534268 –.708526 .588892

.005 .732512 –.585537 –.755020 .693230

.0025 .730648 –.611458 –.780991 .749796

4 .02 .725067 –.646534 –.792620 .823697

.01 .728096 –.639930 –.805258 .813633

5 .02 .728900 –.638195 –.809501 .810936

.01 .728962 –.637576 –.809021 .809503

6 .02 .728975 –.637478 –.808969 .809285

7 .02 .728969 –.637492 –.808942 .809307
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Table 16.5. Displacements of the point (.5, .25) at four different time stages
(considering the effect of damping)

DOF per Time t/T1 = .12 t/T1 = .36 t/T1 = .60 t/T1 = .90

step increment

3 .02 .747818 –.435300 –.633679 .413504

.01 .732030 –.592242 –.761318 .707620

.005 .728301 –.644958 –.815156 .826296

.0025 .726734 –.671467 –.845271 .890214

4 .02 .721229 –.708923 –.860561 .977129

6 .02 .725361 –.697966 –.877701 .957052

where u is the displacement, m is the mass, c is the damping coefficient and
k is the elastic stiffness. A response analysis with m/c = 10 was analyzed
using both the EDQ based time-element by time-element method and the
Newmark β method, separately. In the EDQ based time integration analysis,
C1 − C0 EDQ time-element by time-element procedure, generated by using
the third order equivalent Lagrange DQ model with equally spaced nodes,
having one auxiliary node outside the physical EDQ model to represent the
time-element was used to integrate the discrete equation of motion. The size of
time-element for the EDQ base time integration is ten times of the time step of
the Newmark β method. In Fig. 16.1, the solid line represents the displacement
response obtained by the Newmark β method, while the dot line represents the
displacement response obtained by the EDQ based time integration method.
It shows that the error of response obtained by the Newmark β method grows
faster following the increase of time.

16.2 First Order Problems

DQ can be used to develop integration algorithms for solving discrete tran-
sient problems having first order derivatives with respect to the time variable.
A representative of transient continuum mechanics problem is the transient
response of field problems. The numerical procedures of the DQ based time
integration algorithms for field problems are introduced.

16.2.1 DQ Basis Time-Element by Time-Element
Integration Algorithm

Consider that the transient equation system, at a stage of the tth incremental
step, of the transient problems is expressed by

CrsU̇
t
s + KrsU

t
s = F t

r (16.12)
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Fig. 16.1. Displacement response of a self-excited Van del Pol’s equation. (dot
line: EDQ based time integration; solid line: Newmark β method)

where Crs and Krs are coefficient matrices, U t
s the vector of response variables

and F t
r the vector of external causes. Let ∆t and τ denote the time increment

or size of time-element and the natural coordinate with respect to the time
t. Then, by using the DQ to discretize U̇ t

s in the above equation, the discrete
equation at the time stage p of the tth incremental step can be expressed by
the following equation(

1
∆t

CrsD
τ
pq + Krsδpq

)
U t,q

s = F t,p
r (16.13)

where U t,q
s are response variables. In order to solve the above equation, one

initial condition is required. The transient responses can be updated by in-
creasing the time, step by step. Each step represents a time-element. One
initial condition is required for solving each incremental step. Let Ū t

s denote
the initial response variables of the tth incremental step. The initial condition
is expressed as

U t,1
s = Ū t

s (16.14)

The values of Ū t
s can be obtained from the solutions of the (t−1)th incremental

step. The response histories can be updated by a time-element by time-element
procedure.

The time-element used to develop the direct integration scheme is the
Lagrange time-element having L stage nodes. For this time-element, discrete
time stages for defining the discrete transient equations coincide the node
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stages of the element. Use the DOF assigned to the first node stage to define
the condition of initial response variables. Then, by using Eqs. (16.12) and
(16.14), the following matrix equation can be obtained

Ū t
s{K̄RI} + [K̄RR]{U t,R} = {F̄ t,R} (16.15)

where

{U t,R} = � U t,2
s U t,3

s
... U t,L

s �T ,

{F̄ t,R} = � F t,2
s F t,3

s
... F t,L

s �T ,

{K̄RI} = � 1
∆tCrsD

τ
21

1
∆tCrsD

τ
31

... 1
∆tCrsD

τ
L1 �T ,

and

[K̄RR] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
∆tCrsD

τ
21

1
∆tCrsD

τ
22

... 1
∆tCrsD

τ
2L

1
∆tCrsD

τ
31

1
∆tCrsD

τ
32 + Krs

... 1
∆tCrsD

τ
3L

. . ... .

. . ... .

. . ... .
1

∆tCrsD
τ
L1

1
∆tCrsD

τ
L2

... 1
∆tCrsD

τ
LL + Krs

⎤
⎥⎥⎥⎥⎥⎥⎦

(16.16)
Using Eq. (16.15), displacements {U t,R} of the remaining L−1 node stages

can be found
{U t,R} = [K̄RR]−1({F̄ t,R} − Ū t

s{K̄RI}) (16.17)

It should be noted that if the problem is linear and that the size of the time-
element is constant, then [K̄RR] is a constant matrix. Consequently, only
one decomposition is necessary for updating the response histories if a direct
solution scheme is used.

16.2.2 DQ Basis Stages by Stages Integration Algorithm

A different algorithm was developed to solve the discrete transient equation
system. In this algorithm, the equally spaced grid Lagrange DQ is used to
discretize U̇ t

s. One incremental step DQ solution similar to the time-element by
time-element solution procedure of the previous algorithm is first carried out.
The DOF assigned to the first node is used to define the initial condition. After
this solution step, a time increment is increased. Assume that the Lagrange
DQ model has L nodes and that the value of the time increment equals the
distance spanning N+1 consecutive stages (nodes) of the initial solution step.
N further time stages are thus defined. Then, by using this newly increased
N stages and the previous L-N stages, the same DQ model as the first DQ
solution can be used to discretize U̇ t

s at the newly increased N stages. The
discretized equation is expressed by(

1
∆t

CrsD
τ
αm + Krsδαm

)
Ûm

s

= F̂α
r , α = L − N + 1, L − N + 2, ..., L (16.18)
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where Ûm
s is the response vector of the DQ temporal discretization, and F̂α

r

is the vector of external cause of the newly increased N stages. Since only
response variables at the newly increased N stages are unknowns, matrix
partition technique can be used to obtain an equation system with unknowns
the response variables at the newly increased N stages. This solution system is
smaller than the solution system of the time-element by time-element solution
algorithm and the first incremental step DQ solution of the current algorithm
which has the response variables of L-1 stages as unknowns. In this direct
integration algorithm, the response histories can be updated by a stages by
stages solution procedure. For solving transient problems, the maximum value
of N will be L-1. If the value of N is larger than 1, the numerical stability is
rather poor. The approach of adopting N = 1 is a stage by stage method.

16.2.3 Problems

Let ρ and σ denote the density and specific heat of the medium, respectively.
For the two-dimensional nonuniform problem with orthotropic medium, the
governing equation is expressed by

(k̃xT,x),x + (k̃yT,y),y + Q̃ − ρσ
∂T

∂t
= 0 (16.19)

The transient heat conduction of the problem shown in Fig. 11.11 is solved.
The values of σρ of the left medium and right medium are 1 and 2, respec-
tively. The same spacial discretization procedures as those used to solve the
problem in Section 11.5 with the element grid, 11 × 11, are used. The La-
grange time-element by time-element scheme is used to directly integrate the
discrete transient equation system. Numerical results of the temperature T,E

at E of four different time stages for the solutions using various orders of time
integration and sizes of time increment are summarized and listed in Table
16.6. It shows fast convergence.

Table 16.6. Temperatures of point E at four different time stages

DOF per Time t = .02 t = .04 t = .06 t = .08

step increment

2 .02 .296029×100 .418709×100 .501445×102 .577310×100

.01 .329958×100 .420525×100 .506143×102 .587442×100

.005 .344314×100 .416052×100 .510106×102 .594914×100

3 .02 .369079×100 .411212×100 .516184×102 .602999×100

.01 .348732×100 .409533×100 .517565×102 .604012×100
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Finite difference method (FDM) 30
Finite difference operators 4, 223,

225–228
Finite element method (FEM) 3, 5,

30, 43
First moment of sectorial area 103
Flexural stiffness 144
Forward-difference formula 224
Foundation modulus 54
Four-coordinate grid model 7, 14
Four-dimensional node identification

16, 17
Free index 1
Frequency factor 235, 236
Frontal method 45
Function variable 124

Gauss elimination 45
Generalized coordinate differential

quadrature (GCDQ) 4
Generalized coordinate differential

quadrature element method
(GCDQEM) 243

Generalized coordinate differential
quadrature element method
(GCDQEM) 4

Generalized coordinates 4, 243–247
Generalized eigenvalue problem 49
Global coordinate system 73, 75, 76,

85, 87, 92, 93, 97, 103
Global joint displacements 93
Globally nodal force vector 77, 97
Grid lines 214

Harmonic DQ model 26

Harmonic interpolation 26
Harmonic motion 114, 115
Heat conduction 175, 186, 193, 195,

239–241, 268
Heat flux 176, 186, 194, 240, 241,

250–252
Heat generation rate 175, 186, 194,

196, 240, 252
Hermite EDQ model 22–24, 66, 70,

119, 150, 214
Hermite interpolation functions 23
Hexahedral grid 10, 14

Implicit computation 2
Inertia forces 104, 114, 220
Inter-element boundary 3, 31, 34, 42,

44, 48, 49, 55–59, 63, 64, 66, 119,
125–128, 131, 132, 140, 141, 143,
152, 155, 169, 177, 178, 181, 183,
185, 186, 189, 194, 200–206, 216,
217, 248, 251, 252

Inter-subdomain boundary 240
Interpolation functions 7–9, 11–20, 25,

139, 150, 258
Inverse transformation 160
Invertible transformation 159
Irregular element 159, 168, 169, 198
Iterative solver 45

Jacobian matrix 160
Joint displacement vector 77, 78, 96
Joint equilibrium conditions 77, 78, 96
Joint node 91, 93, 108–110, 116
Joint transformation matrix 93, 110

Kinematic boundary conditions 57,
105, 124, 127, 138, 142, 143, 149,
150, 153, 154, 207, 213

Kinematic inter-element boundary
204

Kinematic transition conditions 42,
48, 63, 68, 87, 96, 105, 113, 125,
127, 140, 143, 154, 182, 185, 186,
200, 202, 203, 205, 207, 213

Kirchhoff-Love plate 211
Kronecker delta 140, 151, 152, 258

Lagrange DQ model 20–22, 46, 59,
60, 79, 119, 144, 150, 155, 187, 194,
207, 208, 219, 223, 260, 261
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Lagrange interpolation functions 13,
20, 23

Laguerre DQ model 25
Laguerre EDQ model 25
Laguerre polynomials 25
Legendre polynomials 1, 2
Leibnitz sectorial formula 103
Load factor 69, 70, 72
Local coordinate system 73, 75, 76, 85,

86, 89, 93, 103, 104, 106
Local displacement vector 87, 92, 93
Local element displacement vector 75,

79, 90, 93
Local element distributed force vector

75, 76, 90
Local element load vector 79, 99
Local element mass coefficient matrix

108
Local element mass matrix 49
Local element modal displacement

vector 49, 108, 110
Local element stiffness coefficient

matrix 74, 90, 108
Local element stiffness matrix 49, 79
Local-global coordinate system 75, 99
Local-global element displacement

vector 75, 76, 93–95
Local-global element load vector 79,

99
Local-global element mass coefficient

matrix 111
Local-global element modal displace-

ment vector 110–112
Local-global element stiffness coefficient

matrix 76, 111
Local-global element stiffness equation

79, 99
Local-global element stiffness matrix

79
Locking 146

Mapping technique 3–5, 159, 161, 168,
170, 194

Mapping transformation 161, 162, 164,
167, 179, 194, 198

Mass density 46, 50, 131, 219, 220, 261,
262

Master element 159, 168, 198, 203, 208
Master triangular element 162, 179

Mesh 159, 167, 168, 187
Mixed formulation 147
Modal angle of twist 105, 106
Modal angle of twist per unit length

108, 110
Modal displacement 46–48, 62, 64, 66,

105, 106, 108, 118, 130, 132, 220,
248

Natural boundary conditions 41, 42,
47, 87, 91, 96, 104, 105, 124, 131,
138, 139, 149, 176, 183, 198, 200,
202, 204, 207, 218

Natural coordinates 159, 161, 162, 164,
167, 168, 176

Natural frequency 37, 46, 104, 219, 221
Natural inter-element boundary 204
Natural transition conditions 3, 41, 77,

87, 91, 96, 105, 113, 125, 138–141,
169, 182, 190, 201–204, 251

Neumann boundary 176, 182, 186, 189,
194, 195

Neumann boundary conditions 175,
176, 178, 179, 182, 194, 250, 251

Newmark β method 265
Nodal displacement vector 77, 96
Normal moments 216
Normalized warping function 103

One-coordinate grid model 7
One-dimensional node identification

8, 10, 14, 17
Open angle 139, 144, 145, 156
Orthotropic materials 197
Outward unit normal vector 159,

170–174, 176, 198
Overall coefficient matrix 168
Overall displacement vector 43, 48, 59,

257
Overall eigenvalue equation 48, 103,

118
Overall field equation 182
Overall field load vector 182
Overall field stiffness matrix 182
Overall field variable vector 182
Overall load vector 43, 59, 257
Overall mass matrix 48
Overall stiffness equation 43, 45, 58,

73, 79, 85, 127, 143, 154, 203, 218
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Overall stiffness matrix 43, 45, 48, 59

Parallel operation 45, 46
Parent element 40
Partial approximation 147
Physical coordinates 159, 161, 162,

164, 168
Physical element 40, 159, 168, 203
Pivotal strategy 45
Poisson’s ratio 207, 220, 236, 237
Polar moment of inertia 86, 104
Potential flows 175, 188
Preconditioned conjugate gradient

(PCG) 45

Quadratic serendipity element 172,
173, 190, 194

Quadrature element method (QEM) 4
Quadrilateral element 159, 164, 168,

175, 177, 182, 197, 198, 201
Quadrilateral grid 8, 10
Quasiharmonic equation 175

Radial displacement 148, 155
Radial force 148, 149
Radius of gyration 133
Rectangular unit triangle 162, 179
Reduced integration 147
Reduced stiffnesses 197, 211, 261
Relative error 28, 145
Response histories 259
Rotary inertia 62, 64, 66, 119, 130,

132–134
Rotational transformation matrix 75,

93, 110

Saint Venant torsion moment 96, 113
Saint Venant’s torsion theory 103
Secant approximation 174
Secant relation 159, 174
Serendipity C0 quadrilateral elements

161, 164, 209
Serendipity C0 triangular elements

161, 162
Serendipity Hermitian quadrilateral

elements 161, 166
Serendipity Hermitian triangular

elements with higher order
derivatives 164

Serendipity rectangular unit C0

triangular element 162, 179

Serendipity triangular elements with
incomplete first order derivatives
161, 164

Serendipity unit C0 quadrilateral
elements 164

Shape functions 159, 161–165, 167,
170, 172, 194

Shear center 86, 91, 108

Shear correction coefficient 124, 133

Shear modulus 85, 124, 192, 207, 261

Shear stress 192

Shifted Legendre polynomials 1, 2

Sinc DQ model 25

Sinc functions 25

Sparse implementation 45

Specific heat 268

Stages by stages method 5, 257,
260–262, 267, 268

Strains 197

Stress function 175, 192, 253

Stress resultants 124, 144, 146, 148,
151, 152, 197, 199, 201, 207–209,
211

T300/5208 graphite-epoxy 209

T300/934 graphite-epoxy 209

Tangent relation 159

Tangential displacement 148, 155

Tangential force 148, 149

Tetrahedral grid 10, 14, 17

Thermal conductivity 175, 186, 193,
195, 240, 252

Three-coordinate grid model 7, 10

Three-dimensional node identification
12, 13, 15, 180

Time-element 257, 258, 266, 267

Time-element by time-element method
5, 257, 258, 260–268

Timoshenko beam 123, 124

Torsional constant 86, 103

Torsional moments 213

Torsional stiffness 144

Total torque 114

Traction forces 198, 207

Transition conditions 3, 4, 42, 55, 140,
169, 203, 204, 216, 237
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Translational transformation matrix
92, 110

Transverse shear 137
Triangular element 159, 168, 175, 179,

196
Triangular grid 8, 10, 13, 14
Triangular prism grid 10, 14, 17
Twisting moment 97
Two-coordinate grid model 7, 8
Two-dimensional node identification

9, 11, 15, 18, 166

Unit tangent vector 170–174

Velocity potential 189
Vibration mode 37, 235
Volume coordinates 14, 17

Volume fraction 206, 238

Warping cross products 103
Warping function 103, 175
Warping torsion 86, 103
Warping torsion moment 113
Warping torsional constant 103, 104
Weighting coefficients 1, 2, 4, 7–13,

15–21, 23, 29–31, 33, 36, 41, 177,
223, 229

Weighting functions 10
Winkler foundation 53, 59–61, 64–67,

123, 128, 129, 132–134

Young’s modulus 21, 39, 50, 54, 66,
73, 85, 124, 144, 145, 148, 155, 207,
220, 236, 237, 249, 262
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