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Preface

In 1988, in an article on the analysis of the measurements of the variations in the
radial velocities of a number of stars, Campbell, Walker, and Yang reported an in-
teresting phenomenon; the radial velocity variations of � Cephei seemed to suggest
the existence of a Jupiter-like planet around this star. This was a very exciting and,
at the same time, very surprising discovery. It was exciting because if true, it would
have marked the detection of the first planet outside of our solar system. It was
surprising because the planet-hosting star is the primary of a binary system with a
separation less than 19 AU, a distance comparable to the planetary distances in our
solar system.

The moderately close orbit of the stellar companion of � Cephei raised questions
about the reality of its planet. The skepticism over the interpretation of the results
(which was primarily based on the idea that binary star systems with small separa-
tions would not be favorable places for planet formation) became so strong that in
a subsequent paper in 1992, Walker and his colleagues suggested that the planet in
the � Cephei binary might not be real, and the variations in the radial velocity of
this star might have been due to its chromospheric activities.

Despite the 1992 article, the search for planets in binaries did not stop. Gamma
Cephei was continuously monitored and more precise measurements of its radial ve-
locity variations were obtained. In 2003, 15 years after the first announcement of the
planet of this system, these efforts fruited, and in an article in Astrophysical Journal,
Hatzes and his colleagues confirmed the existence of a Jupiter-like planet around the
primary of � Cephei. The planet became real, and so became many challenges that
it introduced to the planetary science.

The 2003 confirmation of � Cephei’s planet, and the subsequent detection of
giant planets in three other moderately close binary stars, GL 86, HD 41004 and
HD 196885, marked the beginning of a new era on theoretical and observational
research on planets in dual-star systems. During the past few years, much research
has been carried out in this area, and a large number of excellent articles have been
published on different aspects of observational and theoretical studies of planets in
moderately close binaries. The depth of these articles, combined with their great
diversity and the rich history of literature on the dynamical evolution of planets in
dual-star systems has turned the field of planets in binaries into a well-established
and an independent branch of exoplanetary science. This book is intended to intro-
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vi Preface

duce this field to the community. In doing so, this volume presents the reader with
the current state of the research on the detection and formation of planets in binary
stars, written by teams of experts on these topics. The first half of the book focuses
on the observational evidence for the birthplace of planets in binary systems, and
techniques of detecting planets in and around dual-stars. The second half discusses
the status of theoretical research on the formation of planets in binaries, from plan-
etesimals, to planetary embryos, and eventually to giant and terrestrial planets. The
last chapter presents a complete review of the dynamics of planets in binary star
systems and the possibility of habitable planet formation in these environments.

In making of this book, I had the privilege of collaborating with an outstanding
team of authors and referees. I am grateful to the authors for their participa-
tion in this project and for their responsiveness during the editorial phase. I am
also indebted to the referees, Richard Durisen, Eric Jensen, John Johnson, Greg
Laughlin, Mercedes Lopez-Morales, Fred Rasio, Kevin Rauch, John Rayner, Steinn
Sigurdsson, Gordon Walker, Russel White, and Jason Wright, for accepting to re-
view chapters of this book, and for their constructive comments and suggestions.
Each chapter in this book has been reviewed by at least one of these reviewers and
myself. I am also thankful to the NASA Astrobiology Institute at the University of
Hawaii for their continuous support during this project, and to the NASA Astrobi-
ology Central for their financial support for the production of this book.

IfA/UH-NAI Nader Haghighipour
University of Hawaii
September 2009
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Chapter 1
Disks Around Young Binary Stars

Lisa Prato and Alycia J. Weinberger

1.1 Introduction

Multiple star systems provide a complicated mix of conditions for planet formation.
Whereas circumstellar disks around single stars are likely routine sites for planet
formation, binary systems can have circumprimary (around the more massive star),
circumsecondary (around the less massive star), and circumbinary (around both
stars) disks. These heterogeneous locations can provide opportunities as well as
hazards.

The frequency and separation of young binary populations are perhaps most im-
portant when examined in light of the impact of companion stars on the potential
for planet formation. Even for star-forming regions in which the binary frequency is
similar to that of the local field population, roughly two thirds of all member stars
form in multiple systems. For a certain range of stellar separations, the presence
of a companion star will clearly impact the formation, structure, and evolution of
circumstellar disks, and, hence any potential planet formation. Another aspect of
planet formation in young binaries is that we can assume that the stars in a binary
are relatively coeval. Differences in the planet forming properties between two stars
of similar age in the same local environment provide key information for under-
standing what stellar properties are more or less favorable for planets. Thus, the
two stars in a young binary provide a built-in control sample.

It is an observational fact that among young stars in many nearby star forming
regions (SFRs) an excess binary population exists (Ghez et al. 1993; Leinert et al.
1993; Simon et al. 1993 and reviews in Mathieu et al. 2007; Duchêne et al. 2007).
This overabundance of young doubles, in comparison to field stars in the solar
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2 L. Prato and A.J. Weinberger

neighborhood (Duquennoy and Mayor 1991), anti-correlates with the property
of stellar density (Prosser et al. 1994; Petr et al. 1998; Patience et al. 2002;
Beck et al. 2003). Thus, the denser clusters, in which most stars form, contain a
lower fraction of bound multiple systems, comparable to the fraction found among
field stars. The maximum separation of bound systems is also related to the stellar
density. Based on analysis of a two-point correlation function, the transition be-
tween the binary and large-scale clustering regimes, and hence the cutoff separation
for the likelihood of a bound pair, increases from 400 AU (Orion Trapezium) to
5,000 AU (Ophiuchus) to 12,000 AU (Taurus), while the average stellar surface
density decreases (Simon 1997). Studies of large samples of binaries in a wide va-
riety of star-forming regions are key to unravelling the nature of binary formation
mechanisms and the impact of environment on multiplicity fraction, distribution,
and evolution.

An insoluble problem among main-sequence field stars is the possibility of prior
dynamical evolution of the system (Portegies Zwart and McMillan 2005). The in-
teractions between young stars and their associated circumstellar and circumbinary
disks may set in motion such evolution. Examining systems while they are still
young tells us about the initial potential for planet formation. Field star observa-
tions tell us if this potential was realized.

For very small-separation binaries, models indicate that planet formation should
be possible in a circumbinary disk (Quintana and Lissauer 2006). Several exam-
ples of close young binaries with circumbinary disks are well known, such as DQ
Tau (Mathieu et al. 1997), UZ Tau E (Prato et al. 2002; Martı́n et al. 2005) and
HD 98800 B (Koerner et al. 2000; Prato et al. 2001). Figures 1.1 and 1.2 show the
system of HD 98800. These pairs have separations of approximately 30 solar-radii to
1 AU (Basri et al. 1997; Prato et al. 2002; Boden et al. 2005). The GG Tau and UY
Aur binaries, with stellar separations of tens of AU, are surrounded by angularly
large and therefore well-studied circumbinary disks (McCabe et al. 2002; Close
et al. 1998). Spitzer Space Telescope observations of main-sequence pairs revealed
circumbinary debris disk material in 12 systems with stellar separations of several
solar-radii to �5 AU (Trilling et al. 2007). However, in spite of these promising disk
observations and model predictions, no planet has yet been detected orbiting a small
separation, main-sequence binary (although a 2.4 MJup minimum-mass planet orbits
the G6V star HD 202206 and its 0.83 AU substellar companion; Udry et al. 2002).
This dearth of detections may simply reflect the difficulties inherent in radial veloc-
ity (RV) searches for planets around binaries and the fact that binaries are typically
eliminated from RV samples (Eggenberger et al. 2004; Konacki 2005).

Models also indicate a favorable outcome for planet formation in the circumstel-
lar disks of wide binaries (Quintana et al. 2007). Reservoirs for this process, the op-
tically thick, circumstellar disks around component stars, are routinely observed in
binary systems with separations as small as �14 AU (Hartigan and Kenyon 2003).
A Spitzer study of dust evolution in the circumstellar disks of wide binaries shows
no difference in the initial processing stages, such as grain growth and crystal-
lization, between the binary and single stars (Pascucci et al. 2008). More than
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Fig. 1.1 Keck/MIRLIN imaging of the thermal infrared emission from the HD 98800 quadruple
system oriented with up axis aligned due north. The spectroscopic binaries HD 98800A and HD
98800B are clearly resolved from each other and are identified, respectively, with northern and
southern point sources separated by 0.8 arc sec (38 AU). Emission from HD 98800A steadily
decreases with wavelength as ��2 and is no longer detected in the 20�m images. In contrast,
radiation from the optical secondary, HD 98800B, increases dramatically out to 24:5�m. Figure
from Prato et al. (2001)

Fig. 1.2 Spectral energy distributions for HD 98800 A (left) and HD 98800 B (right). For HD
98800 A, no excess emission is evident out to the longest observed wavelength of 18.2 m; the 3932
K blackbody is plotted for reference. The 3562 K blackbody fit to HD 98800 B is also shown.
Figure from Prato et al. (2001)
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30 extrasolar planets (�20%) have been reported around one component in bina-
ries with separations of tens of AU up to thousands of AU (Eggenberger et al. 2004;
Raghavan et al. 2006) – circumstellar planet formation seems to be common in mul-
tiple systems.

Inevitable truncation of the outer portions of circumstellar disks in binaries with
separations of a few to several tens of AU likely delineates a “planet-free” zone,
at least for formation. Subsequent dynamical evolution in multiple systems could
still bring planets into this region (Jang-Condell 2007). Interestingly, this fiducial
separation is similar to that of the peak in the separation distribution for binaries
in most SFRs (Patience et al. 2002). This planet-free regime of binary separation
is also notably the least well-studied; components at such separations are too dis-
tant to be observed as spectroscopic binaries (orbital induced RV variations are on
the order of star spot induced RV variations; Saar et al. 1998), yet too close to be
easily angularly resolved. For example, two solar-mass stars in a circular orbit with
a 10 AU semi-major axis would have a period of 22.4 years, and a maximum or-
bital velocity of �1 km/s. At the 140 pc distance typical to the nearest SFRs, the
maximum angular separation would be 0.0700, slightly greater than the diffraction
limit at a 10 m telescope in the near-infrared. Furthermore, angular resolution is
more straightforward in a relatively face on orbit, but at the cost of modulation of
the observed radial velocity by a sin i factor, where i is the angle between the plane
of the sky and that of the orbit; a timescale of decades is required to observe a full
cycle of radial velocity modulation in such a system.

A recent Spitzer study of the �Chamaeleontis cluster suggested that circumstellar
disks were absent in 80% of the close binary systems while present around 80%
of the single stars, although the study had a very small sample size and did not
spatially resolve the binaries (Bouwman et al. 2006). At this point, such studies are
suggestive, rather than definitive, of faster disk removal in close binaries.

It is not surprising that few data sets that go beyond initial binary identifica-
tion exist, although there are some exceptions such as Hartigan and Kenyon (2003).
We loosely define the binary separation regime most interesting, under-studied, and
potentially treacherous to the formation and longevity of circumstellar disks, and
therefore to the formation of planets, as spanning a few AU to 30 AU. This defini-
tion is naturally modulo eccentricity and mass-ratio, properties that could reinforce
circumstellar disk destruction on short timescales.

In this chapter, we will discuss the current state of observations of disks in
young multiple systems with an emphasis on circumstellar structures. Disks in so-
lar analogue and low-mass stellar systems will be primarily considered. The topics
covered in this review are (i) the evolution of inner disks in binaries (Section 1.2),
(ii) the evolution of outer disks and the determination of disk masses as derived
from submillimeter astronomy (Section 1.3), (iii) the orientation of disks in binary
systems (Section 1.4), and (iv) the structure of debris disks in such environments
(Section 1.5). We will present these topics through the lens of the potential for planet
formation in these systems. In summary, Section 1.6 will present a discussion of fu-
ture experiments and observations required to move knowledge in this field forward.
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1.2 Inner Disks

Hydrogen emission line diagnostics (H˛ or Br� ) and near-infrared colors are
effective determinants of weak-lined (no or little inner disk material) and classical
(optically thick inner disk) young stars (see Prato and Simon 1997; Martı́n 1998).
Substantial line emission and near-infrared excesses attest to the presence of gas
and warm dust located in the inner �1 AU of a circumstellar disk around a G–M
spectral type young star. The inner few AU of a circumstellar disk delineate the
likely site of terrestrial planet formation and giant planet migration, and thus are
particularly important. Inner disks are thought to evolve quickly from optically thick
to thin states; few systems have been found in the intermediate “transition” state.
In an overview of about a dozen Taurus SFR transition objects, Najita et al. (2007)
find that although their mass accretion rates are typically an order of magnitude
lower than those of classical T Tauri stars, their median disk masses are about four
times larger, consistent with a scenario in which an object with a massive disk is
in transition because a Jovian-mass planet is opening a large gap and effectively
starving the inner disk (D’Alessio et al. 2005). Several of Najita et al.’s transition
systems are binaries (Najita et al. 2007), one with projected separation �120 AU
(FQ Tau) and two with projected separations �30 AU (FO Tau and V773 Tau
(Fig. 1.3); the A component of the latter is also a 51 day period spectroscopic
binary; Welty 1995). These separations are relatively wide and easily allow for
the presence of inner disks. If the interpretation of on-going planet formation is

Fig. 1.3 X-ray image of V773 Tau in the 0.5–2 keV energy band obtained with XMM-Newton/UV
Monitor image in the U-band of the young brown dwarf 2MASS J0414. This image is centered on
the weak-line T Tauri star V773 Tau located only 2400 away from the brown dwarf. The Classical T
Tauri star FM Tau is also visible. 2MASS J0414 is located on the PSF wings of V773 Tau, where
no X-ray counterpart was found with the source detection algorithm. Figure from Grosso et al.
(2007)
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correct, these binaries illustrate the feasibility of this process in multiple systems.
Confirmation of this hypothesis is, however, a challenge. One potential approach
is to use high-resolution spectroscopy coupled with adaptive optics observations
in order to angularly resolve these visual pairs and study the accretion signatures
for the individual stars. A sufficiently massive planet could reveal its presence with
radial velocity shifted hydrogen emission lines.

On the basis of the line emission and color diagnostics described above, Monin
et al. (2007) classified a sample of young binaries with separations of �15–
1,500 AU. In an extensive search of the young star binary literature, only �60
systems were found for which both component spectral types were known, and for
which angularly resolved H˛, Br� , K–L, or K–N (K D 2:2 �m, L D 3:4 �m, and
N D 10�m) color data were available. These few dozen systems are drawn from a
variety of star-forming regions, and thus do not represent a homogeneous sample.
This dramatically underscores the unavoidable small number statistics inherent in
any analysis of this sample, and the pressing need for a substantial observational
effort in this area.

In spite of the small sample size, Monin et al.’s analysis revealed intriguing re-
sults and trends (see Figure 4 of Monin et al. 2007). One surprising and relatively
robust outcome is that mixed pairs, in which the components appear to be in
different evolutionary stages, are not as rare as once thought (Prato and Simon 1997;
Hartigan and Kenyon 2003, composing 38% of the sample, exclusive of pure weak-
lined systems (Table 1, Monin et al. 2007)). Less statistically notable are the sug-
gestions that mixed systems are more common among the larger separation pairs
and that a slight majority of these systems are detected among the lower mass-ratio
pairs. There is also a hint in the available data that the frequency of mixed pairs
may vary between star forming regions; this was previously suggested by Prato and
Monin (2001) (see their Table 1). Unfortunately, because of the sparse data, these
results are all at the 2� level at best. Because the young star binary distribution
peaks at subarcsecond angular separations, producing statistically large (hundreds
of stars) samples in the nearby SFRs will require years of work at relatively large
facilities which supply adaptive optics capabilities.

The determination of the stellar properties associated with long-lived, inner
circumstellar disks allows us to predict what kind of stars are most likely to
host planets. For example, if disk-locking is the main mechanism for control-
ling stellar angular momentum, stellar rotation rates over time will depend on
inner disk masses. A young, slowly rotating star locked to a massive inner disk
is therefore a likely candidate for future planet formation. Angularly resolved
high-resolution spectroscopy of close young binaries yields v sin i measurements,
providing insight into either the alignment of stellar rotation axes, or component
stellar rotation rates. This degeneracy can be resolved with time series obser-
vations designed to determine component rotation periods. If rotation axes are
aligned, discrepant rotation periods suggest star-disk locking in only one compo-
nent, or some other differential source of angular momentum loss. Binary formation
with discrepant component rotation is difficult to explain but also cannot be ruled
out. Figure 1.4 shows a young binary with component v sin i ’s discrepant by a
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Fig. 1.4 R D 30,000 spectra of the components in the young binary WSB 28. The v sin i ’s are
discrepant by a factor of 2�3, indicating either unaligned rotation axes or significantly different
rotation periods. Veiling from circumstellar material cannot account for the shallow features in the
M3 primary because this component is not associated with any circumstellar material, although the
M7 secondary is (McCabe et al. 2006)

factor of 2�3. Intriguingly, this �700 AU separation Ophiuchus binary, an M3
and an M7, is a mixed system (Prato et al. 2003). The rapidly rotating primary is not
associated with dusty circumstellar material; however, the low mass companion is
(McCabe et al. 2006), as we might expect from a disk-locking scenario. Similar dis-
crepancies have also been observed in other systems, including the 30 AU separation
young hierarchical triple, Elias 12, in Taurus (Schaefer 2004; Schaefer et al. 2006).

To determine the inclination of a stellar rotation axis, the system v sin i must
first be measured. The sine of the inclination is proportional to v sin i multiplied by
the period and divided by the stellar radius. The radius must be estimated based on
models appropriate for the measured stellar parameters and is relatively uncertain
but probably by a factor of less than two. For young binaries, the determination
of the period is very challenging. Small separation systems require adaptive optics
observations to resolve them, but most facilities offering this capability would be
unlikely to schedule high cadence observations over a 10�20 day block conducive
to rotation period determination. Furthermore, currently available adaptive optics
systems function in the infrared regime, not ideal for measurements of flux modula-
tion from star spots as the spot contrast and therefore signal amplitude is reduced at
longer wavelengths. Larger separation systems (>1�200) might be observed readily
at 1�2 m telescopes which can be allocated for long term, multiple night programs.
However, most stars in the nearest SFRs are relatively late type and are therefore
faint, posing special challenges, particularly for large flux ratio binaries such as
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WSB 28 (Fig. 1.4). The primary in this �500 pair has an I -band magnitude of
�13. The Gunn z filter, relatively similar to I -band, component flux ratio listed in
Reipurth and Zinnecker (1993) is 0.06. Thus, the secondary’s I magnitude is �16.
These observations are not impossible, but will require careful planning.

How much of an impact might selection effects have on the results presented
here? Certainly small mass-ratio systems are more difficult to detect as well
as to characterize, particularly in the most interesting small separation regime
(Section 1.1). Systems classified as weak-lined T Tauris, unresolved, might also
harbor truncated inner disks around the secondary stars. Such small structures could
go undetected as the result of dilution from a relatively bright primary. Circumstel-
lar disks with central holes that show excesses in the mid-infrared but not in the
near-infrared, and which do not show signatures of accretion, may also be present
but are effectively undetectable. Even if sensitive but low-angular resolution Spitzer
observations could reveal the presence of such a structure, there is little recourse
for ground-based mid-infrared follow up at sufficiently high sensitivity and angular
resolution to determine structure and location. Only four of the circumstellar disks
in the young binary sample of McCabe et al. (2006) (T Tau N and S, UZ Tau E,
and RW Aur A) are brighter than the N D 4 mag limit of the VLTI mid-infrared
instrument MIDI.

We must also take into account that the completeness of our knowledge of bi-
nary populations varies markedly between different star-forming regions, possibly
leading to an inaccurate determination of differences in mixed pair fractions, etc.,
between regions. Although Taurus, given its small size and ready accessibility in the
northern skies, is arguably the most thoroughly studied region, its faintest members
are only now being surveyed for multiplicity (Konopacky et al. 2007). Ultimately,
however, it is not enough to take a simple census of binary frequency and to char-
acterize systems by their unresolved properties. Knowledge of the configuration
of the circumstellar and circumbinary dust and gas is required to truly assess the
planet-forming potential of young stars, and to determine if SFRs as a whole possess
environments particularly conducive, or not, to planet formation. Global properties
such as initial molecular cloud angular momentum, the presence of high mass, pho-
toionizing sources, stellar density, etc., may all influence disk and thereby planet
formation.

1.3 Outer Disks

Outer circumstellar disks, here taken to mean beyond about 10 AU, may also host
planet formation. In addition, they provide an important reservoir of material that
feeds the inner disk as well as a critical source of angular momentum transfer for
interior material. The cool gas and dust in outer disks, including circumbinary disks,
are best surveyed using far-infrared or submillimeter observations. Disks are usually
optically thin at long wavelengths, so these observations have the additional benefit
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of providing total disk masses (Beckwith et al. 1990) in the region analogous to
where giant planets formed in the Solar System.

Although estimates of the binary fraction were highly incomplete when the first
submillimeter surveys were done, it was still clear immediately that binary stars with
separations closer than 100 AU were deficient in disks (Beckwith et al. 1990; Jensen
et al. 1994; Osterloh and Beckwith 1995). In a recent work, a survey of 150 young
stars in Taurus (including 62 multiple stars) showed lower submillimeter fluxes, and
hence disk masses, in binaries closer than �100 AU than in single stars, while wide
binaries were similar to single stars in disk mass (Andrews and Williams 2005).
Disks were present, albeit at these lower masses, in approximately the same frac-
tion of multiple star as single star systems. Perhaps these disks can still form giant
planets, but of lower average mass than the single stars.

The surveys described above were carried out with single dish telescopes and
therefore have low spatial resolution incapable of distinguishing primary and sec-
ondary disks in the interesting separation range of �100 AU. A smaller number
of objects have been surveyed with interferometers that can resolve the multiple
systems. In one such survey, the primary stars of four binaries in Ophiuchus hosted
higher mass disks, even when the secondaries were still accreting, while in four
binaries in Taurus the circumsecondary disks were more massive (Patience et al.
2005). In these very young objects, the true “primary,” i.e., more massive star of the
pair, may have been misidentified in extinguished visual-wavelength data, or these
trends may relate to the initial conditions. In another study of four wider systems,
also in Taurus, the circumprimary disks were again the most massive (and again
comparable to single stars in Taurus) (Jensen and Akeson 2003).

Models of disk dissipation generally show that the circumsecondary disk, which
is expected to be truncated closer to the star than the circumprimary disk, should dis-
sipate faster (Armitage and Clarke 1999). In single stars, however, outer disk mass
is not correlated with stellar mass (Andrews and Williams 2005), therefore it is pos-
sible for circumsecondary disks to form with more mass than circumprimary disks.
These initial conditions could overwhelm the difference in dissipation timescale.

Finally, it is worth noting that total disk masses for single stars or wide compan-
ions in Taurus or Ophiuchus, i.e., regions of low-mass star formation, are typically
in the range 0.005–0.01 solar-masses although with wide dispersion and a substan-
tial fraction (about 20%) of larger disk masses. For comparison, the mass of the
“Minimum Mass Solar Nebula” necessary for forming our system’s planets is about
0.01 Mˇ. Results for clusters with massive stars such as the Orion Nebula clus-
ter (Bally et al. 1998) and NGC 2024 (Eisner and Carpenter 2003) suggest that
there are fewer massive disks than in low-mass SFRs. It is possible that these disks
dissipate more rapidly because of external radiation, for example. These regions
of massive star formation are generally further away, so binary surveys are much
less complete and single dish submillimeter measurements are less likely to resolve
multiple stars (Fig. 1.5). However, just as early unresolved work in Taurus showed
a general trend of lower disk mass with binarity, we expect this same trend to hold
in regions of more massive star formation, as well.
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Fig. 1.5 Circumstellar disk around T Tau N. 108 GHz continuum emission using only the longest
spacing array. The contour levels plotted are 2� . The size of the error bars on the millimeter emis-
sion center position (cross) represents the absolute positional uncertainty for the millimeter image
of 0.07 arc sec. Figure from Akeson et al. (1998)

1.4 Orientation of Disks in Young Binaries

A single star plus disk system contains a single plane: that of the disk. A binary
system, however, is associated with four relevant planes: a circumstellar disk around
each star, the plane of the binary orbit, and the plane of any circumbinary disk. Al-
though circumbinary disks appear to be relatively rare in young systems (Jensen
and Mathieu 1997), recent observations by Trilling et al. (2007) find evidence for
circumbinary debris disks around 12 small separation main-sequence binaries of
relatively early spectral type, A3�F8. Whether or not these disks are aligned with
the binary orbit is not known. Alignment of circumstellar disks does not necessarily
imply coplanarity of the binary orbital plane with that of the aligned disks (Fig. 1.6).
The studies of Jensen et al. (2004) and Monin et al. (2006) trace circumstellar
alignment, for relatively wide, angularly resolved young binaries, using the position
angle of the integrated, linear polarization of the light scattered from a circumstel-
lar disk. Because the position angle is parallel to the plane of the disk, it provides
a proxy for disk orientation (but see additional discussion in Monin et al. (2007)).
Jensen et al. (2004) and Monin et al. (2006) found that most simple binary systems
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Fig. 1.6 Circumstellar disks
in a simple binary orbit:
(a) aligned and coplanar,
(b) aligned but non-coplanar,
(c) unaligned and
non-coplanar

a

b

c

a

b

c

studied exhibit aligned disks with polarization position angles consistent to within
<30 degrees, although higher order multiples show a large range of variation in
polarization position angles.

The orientations of the highly collimated jets that emanate from many young star
systems are also a proxy for determining disk orientations in unresolved binaries,
as jets are thought to launch perpendicular to the inner circumstellar disks. Multiple
misaligned jets are known to exist in a number of young systems (Monin et al. 2007
and references therein), suggesting that it is possible for small separation binaries
to actually form with misaligned disks (Fig. 1.6, case c). Thus, formation models
must account for this counterintuitive evidence.

The coplanarity of disks and binary orbits is readily studied for some well-
separated pairs. Interestingly, it appears likely that circumbinary disks are aligned
with close binary star orbits, e.g., for DQ Tau, UZ Tau E, and HD 98800 B (Mathieu
et al. 1997; Prato et al. 2001; Prato et al. 2002). However, systems with a circum-
stellar disk around at least one component of a wider binary, e.g., HV Tau AB-C,
HK Tau A-B, UZ Tau E-W, T Tau N-S, and HD 98800 N-S (Stapelfeldt et al. 2003,
1998; Prato et al. 2001, 2002; Akeson et al. 2002), do not appear to be coplanar.
We note that with the possible exception of HK Tau, these systems are all higher
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order multiples, a condition which may well play a role in the non-coplanarity
(Jensen et al. 2004). What are the implications of these observations for potential
planet formation? An interesting case study is the quadruple system HD 98800. The
wide pair has a separation of �40 AU (Prato et al. 2001), a period of 300�430 years,
and an inclination of �88 degrees (Tokovinin 1999). Each component of the wide
pair is a spectroscopic binary of similar properties, with K5 and K7 spectral type
primaries, 262 and 315 day periods, and eccentricities of 0.484 and 0.781 for the
A and B components, respectively. However, circumstellar material is only present
around the HD 98800 B binary. The inclination of this stellar pair is 67 degrees
(Boden et al. 2005). Recently, Akeson et al. (2007) showed that the associated cir-
cumbinary disk is likely warped by interactions with the distant A component. The
primary mystery in this system, however, is the complete absence of circumbinary
material surrounding HD 98800 A. Speculation by Prato et al. (2001) suggests that
because of the relative orientations of the HD 98800 A and B circumbinary disks
during repeated periastron passages of the wide pair over the �10 Myr lifetime of
the system, B’s disk was perturbed and A’s disk was completely disrupted. See the
next section for more discussion of the planetesimal dynamics in this system.

The dynamics of circumbinary and even close circumstellar disks and the in-
terrelationship between disks and orbits appears to be complex and is not yet well
understood. We present these conclusions as a cautionary tale: even binaries with
separations of a few tens of AU – or less – cannot be assumed to harbor aligned
disks coplanar with binary orbits. In higher order multiples, misalignments may be
the rule. It is possible that, in at least some cases, misalignment may have its origins
in the formation dynamics of these systems.

1.5 Debris Disks and Binaries

Transitional and debris disks are generally older than the massive disks discussed
earlier. Their primordial material, particularly gas, is partially or totally dissipated
and remaining solids are large enough that their major destruction mechanism is col-
lisions (either aggregation onto planets or disruptive). Giant planets must either have
already formed, or will not form, in these systems, and terrestrial planets may be in
their final stages of accumulation, perhaps eras akin to the late heavy bombardment
in the Solar System.

To be detected in sensitivity-limited observations, debris disks must be closer to
the Sun than the nearest sites of recent/ongoing star formation discussed earlier; this
has the benefit that the effect of binarity on the disks can be observed in some detail.
We will discuss two examples.

HD 141569 is a hierarchical triple system (Fig. 1.7) consisting of an A0-type
primary star, which sports an extended disk containing small quantities of both gas
and dust, and two M-type companion stars located about 1,000 AU away. The low
mass stars, and presumably the whole system, are about 5 Myr old (Weinberger
et al. 2000). Spiral structure at 200–500 AU in the primary’s disk can be explained
by either a highly eccentric (e � 0.7) binary A-BC orbit (Augereau and Papaloizou
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Fig. 1.7 Top: A near-infrared view of the disk surrounding HD 141569 recorded in 1998 by
the Hubble Space Telescope. Bottom: Coronagraphic image of the protoplanetary disk around
HD141569 taken with the Advanced Camera for Surveys (ACS) in the Hubble Space Telescope
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2004; Quillen et al. 2005; Ardila et al. 2005) or a recent (�1;000 years ago) stellar
flyby (Beust 2005). In both cases, the affected portion of the disk is at a radius of
a few hundred AU, and structure in the disk at <150 AU must have another cause,
perhaps a planet. Interestingly, the two M-type stars have no detectable disks down
to the level (in LIR;disk=L�; a measure of disk mass where LIR;disk is the luminosity
of the disk and L� is that of its central star) of the primary’s disk. This could be
attributed to the small separation of their orbit, �150 AU.

HD 98800 is a member of the �8 Myr old TW Hya Association and the interest-
ing arrangement of its fours stars and dust disk is described in the previous section
and in Low et al. (1999), Koerner et al. (2000), and Prato et al. (2001). The system
has characteristics of both a circumbinary and circumstellar disk. The HD 98800 B
binary is eccentric (e D 0.78) with a semi-major axis of 1 AU (Boden et al. 2005).
Based on its temperature, the inner edge of the dust disk sits at 1.2 – 2.1 AU (Prato
et al. 2001). This is just barely consistent with estimates of the dynamical tidal trun-
cation (Artymowicz and Lubow 1994). The A-B orbit is also significantly eccentric
(0.3–0.6) with a periastron approach of perhaps 35 AU (Tokovinin 1999). The outer
edge of the dust disk is less well constrained by the infrared/submillimeter obser-
vations, but is >5 AU and could be as large as 25 AU (Koerner et al. 2000). An
outer size of 10 AU would fit both the observations of the dust temperature and the
expected dynamical truncation from the A-B orbit.

While both of these systems provide interesting examples of the dynamical influ-
ence of multiplicity on the disk, they also illustrate that planet formation is possible
under such complicated circumstances. The small dust grains in the HD 141569
A and HD 98800 B disks are regenerated in collisions (Weinberger et al. 1999;
Augereau and Papaloizou 2004; Low et al. 1999) and indicate that planetesimals
did form on timescales short enough that gas could have been present simultane-
ously with solid bodies.

Statistics of the incidence of debris disks around binaries are consistent with the
idea that wide binaries do not affect disk evolution. A survey of 69 FGK stars in-
cluding binaries of separations >500 AU finds 3/8 of the debris disks are around
binary members (Bryden et al. 2006). A larger survey of old A and F-type stars
(Trilling et al. 2007) looked at the incidence of debris disks as a function of sepa-
ration and found that there were fewer disks in 3–50 AU separation systems than
in closer or wider systems (Fig. 1.8). The total numbers of disks in this Spitzer sur-
vey were comparable to surveys of single stars and contained just as much dust.
Although Spitzer did not resolve the individual components, the dust temperatures
imply that both circumbinary and circumstellar debris disks are common, at least
amongst stars somewhat more massive than the Sun (Fig. 1.8).

1.6 Future Tests and Observations

As noted throughout this review, binary star systems do indeed host circumstellar
and circumbinary disks over their entire lifetimes from pre-main sequence to mature
stars. At separations larger than a few hundred AU, disk evolution around a binary
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Fig. 1.8 Fraction of binary systems in each of three logarithmic bins (0–3 AU, 3–50 AU,
50–200 AU) that have 24�m (diagonal pattern lower left to upper right), 70�m (diagonal pattern
lower right to upper left), or 24 or 70�m excesses (clear). Binomial error bars are shown for the
24 or 70�m excess category. Each category reads from the bottom of the plot (that is, the fraction
of close binaries with 70�m excesses is 47%). Some systems have excesses at both wavelengths,
and the number of observed systems is not the same at 24 and 70�m, so the combined fractions
do not simply equal the sum of the two subcategories. The separations of the individual systems
with excesses contained within each bin are indicated by the filled (24�m) and open (70�m) cir-
cles (with arbitrary y-axis values). Medium-separation systems have fewer excesses than small- or
large-separation systems. Figure from Trilling et al. (2007)

component may proceed no differently than if the stars were not bound together.
However, a tremendous observational effort is required to explore the most populous
binary separation regime, and that of most scientific interest with respect to the
impact of multiplicity on planet formation – a few to �30 AU separations (Fig. 1.9).

With concerted observational attention, it seems a solvable problem to measure
the dissipation timescales of primary and secondary disks. Ongoing spatially re-
solved spectroscopy with adaptive optics systems on large telescopes will assess
the accretion parameters and optical depths of inner circumstellar disks in close
binaries. Ground based interferometers will get detailed orbits for close binaries
which can then be compared to disk sizes for empirical verification of dynamical
estimates of tidal disruption and dissipation (Boden et al. 2005).

Progress on the determination of masses and orientations of circumstellar disks
in young binaries, which cannot not be accomplished with the limited sensitivity
and spatial resolution of the current generation of millimeter interferometers, will
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Fig. 1.9 Histogram of dust distance in units of binary separation (left axis) and fractional luminos-
ity as a function of dust distance in units of binary separation (right axis). Left axis: dashed vertical
lines show the approximate boundaries of the unstable zone (histogram bar shaded gray). Dust in
three systems is found to reside within this dynamically unstable region. Right axis: there is no
strong trend between fractional luminosity and dust location. Binary systems with small, medium,
large, and very large physical separations are indicated. Not surprisingly, circumbinary disks are
generally found in small-separation systems and circumstellar disks are found in large-separation
systems. Dust in unstable regions is found only in medium separation systems. Fractional lumi-
nosities for the maximum-temperature cases are indicated by the symbols. “Tails” on the symbols
indicate the locus of solutions, from maximum-temperature solutions (symbols) to 50 K (minimum
reasonable) solutions at the other ends of the tails. Figure from Trilling et al. (2007)

advance markedly with the advent of the Atacama Large Millimeter Array (ALMA).
Scheduled to begin full operation in 2012 and providing sub-arcsecond resolution
and high sensitivity, ALMA will be able to probe component disk masses not only
in nearby Taurus and Ophiuchus but also in clusters containing massive stars.

Imaging the dynamical effects of binarity on individual nearby disks will take
advantage of ongoing, improving capabilities, such as more sensitive adaptive op-
tics on 8�10 m ground-based telescopes. Furthermore, the James Webb Space
Telescope (JWST), due to be launched in 2013, represents a leap in the quality of
direct imaging in the near- and mid-infrared. A 6.5 m telescope, JWST will provide
coronagraphic imaging at 1�23�m for detailed disk studies.

The quantitative, detailed study of disks in young binaries has grown rapidly over
the last decade, following quickly, and to some degree simultaneously, on the re-
sults of the initial discovery surveys. The upcoming decade promises to provide
a number of powerful new and innovative tools and approaches for this field. Al-
though many of the observations necessary to progress into the most interesting (and
common) small binary separation regime require time at high-demand facilities, we
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emphasize that this work merits the investment: binary stars, and particularly young
binary stars, dominate the stellar census. The particulars of planet formation in these
systems determine the range of planetary system architectures present in the Galaxy.

The authors are grateful to the anonymous referee and to N. Haghighipour
for comments that improved the presentation of this chapter. We thank
S. Zoonematkermani for rendering Fig. 1.6.
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Chapter 2
Probing the Impact of Stellar Duplicity
on Planet Occurrence with Spectroscopic
and Imaging Observations

Anne Eggenberger and Stéphane Udry

2.1 Introduction

Over the past 14 years, Doppler spectroscopy has been very successful in detecting
and characterizing extrasolar planets, providing us with a wealth of information
on these distant worlds (e.g., Marcy et al. 2005a; Udry and Santos 2007b;
Udry et al. 2007a). One important and considerably unexpected fact these new
data have taught us is that diversity is the rule in the planetary world. Diversity
is found not only in the characteristics and orbital properties of the �340 planets
detected thus far,1 but also in the types of environments in which they reside and
are able to form. This observation has prompted a serious revision of the theories of
planet formation (e.g., Lissauer and Stevenson 2007; Durisen et al. 2007; Nagasawa
et al. 2007), leading to the idea that planet formation may be a richer and more
robust process than originally thought.

It is well known that nearby G, K, and M dwarfs are more likely found in pairs
or in multiple systems. Specifically, 57% of the G dwarf primaries within 22 pc
of the Sun have at least one stellar companion (Duquennoy and Mayor 1991). The
multiplicity among K dwarfs is very similar (Halbwachs et al. 2003; Eggenberger
et al. 2004b), and among nearby M dwarfs is close to 30% (Fischer and Marcy
1992; Delfosse et al. 2004). Altogether, these figures imply that more than half
of the nearby F7–M4 dwarfs are in binaries or in higher order systems. Since
these stars constitute the bulk of the targets searched for extrasolar planets via

1 See the Extrasolar Planet Encyclopedia, http://exoplanet.eu/, for an up-to-date list.
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Doppler spectroscopy, the question of the existence of planets in binary and multiple
star systems is fundamental and cannot be avoided when one tries to assess the over-
all frequency of planets.

From the theoretical perspective, the existence of planets in binary and multiple
star systems is not guaranteed a priori as the presence of a stellar companion may
disrupt both planet formation and long-term stability. On the other hand, young
binary systems often possess more than one protoplanetary disk (Monin et al. 2007
and references therein), meaning that planets may form around any of the two stellar
components (circumstellar planets) and/or around the pair as a whole (circumbinary
planets). Although theoretically both circumstellar and circumbinary planets should
exist (Barbieri et al. 2002; Mayer et al. 2005; Boss 2006; Thébault et al. 2006;
Quintana and Lissauer 2006; Haghighipour and Raymond 2007; Quintana et al.
2007; Pierens and Nelson 2007), our present planet search programs are essentially
aimed at detecting circumstellar planets, and only these will be considered in this
chapter. Our discussion will furthermore be focused on giant planets, which are less
challenging to detect by means of the Doppler spectroscopy technique than lower
mass objects.

Two different scenarios have been proposed to explain the formation of gaseous
giant planets. According to the core accretion model, giant planets form in a proto-
planetary disk through the accretion of solid planetesimals followed by gas capture
(see, e.g., Lissauer and Stevenson (2007) for a review and references). Despite
some remaining uncertainties, this scenario is commonly considered as the favored
mechanism to explain the formation of giant planets. An important point in this
model is that the protoplanetary cores that give rise to the giant planets may have to
form beyond the snow line (i.e., beyond 1–4 AU for solar-type stars) to benefit from
the presence of ices as catalysts.

An alternative way to view giant planet formation is to consider that these plan-
ets form by direct fragmentation of the protoplanetary disk. This is the so-called
disk instability model (see Durisen et al. 2007 and chapter : : : for a review and
references). Since it is not clear yet whether real protoplanetary disks actually meet
the requirements for fragmentation, and whether the fragments will live long enough
to contract into permanent planets, the disk instability scenario has remained some-
what speculative. Observational tests that would help characterizing and quantifying
the likelihood of forming giant planets by this method are thus desirable.

Regardless of the exact formation process, tidal perturbations from a stellar
companion within �100 AU may affect planet formation by truncating, stirring,
and heating a potential circumstellar protoplanetary disk (e.g., Artymowicz and
Lubow 1994; Nelson 2000; Mayer et al. 2005; Pichardo et al. 2005; Boss 2006;
Thébault et al. 2006). Disk truncation is a serious concern as it reduces the amount
of material available for planet formation and it may cut the disk inside the snow
line. This is a direct threat to planet formation in binary stars and explains why the
naive outlook for planet formation in moderately close binaries is pessimistic.

The impact of disk stirring and heating on planet formation is not so easily under-
stood and requires dedicated simulations. According to Nelson (2000), giant planet
formation is inhibited in equal-mass binaries with a separation of 50 AU whatever
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the formation mechanism, whereas Boss (2006) claims that giant planets are able
to form in binaries with periastrons as small as 25 AU. Other studies on the subject
concluded that planetesimal accretion is perturbed but remains possible in various
binary systems closer than 50 AU (Thébault et al. 2004, 2006), and that the two
possible formation mechanisms may yield different predictions as to the occurrence
of giant planets in binaries separated by 60–100 AU (Mayer et al. 2005). This last
conclusion is particularly interesting since it implies that planets in 60–100 AU bi-
naries might be used to identify the main formation mechanism for giant planets.

Assuming that planets can form in various types of binary systems, another im-
portant concern is their survival. The extensive body of literature on this subject
can be summarized as follows. For low-inclination planetary orbits (i . 39ı), the
survival time is primarily determined by the binary periastron. A stellar compan-
ion with a periastron wider than approximately 5–7 times the planetary semimajor
axis does not constitute a serious threat to the long-term (�5 Gyr) stability of
Jovian-mass planets (e.g., Holman and Wiegert 1999; Fatuzzo et al. 2006). The sur-
vival time of planets on higher inclination orbits depends not only on the binary
periastron, but also on the inclination angle (Innanen et al. 1997; Haghighipour
2006; Malmberg et al. 2007), meaning that planetary orbits become more easily
unstable, even if the semimajor axis is quite large (several hundred of AU). This
additional type of instability is due to the so-called Kozai mechanism, which causes
synchronous oscillations of the planet eccentricity and inclination (e.g., Kozai 1962;
Holman et al. 1997; Mazeh et al. 1997; Takeda and Rasio 2005).

To sum up, if giant planets are to form in binaries with a separation below
�100 AU, then the most sensitive (but also less understood) issue regarding their
occurrence in these systems seems to be whether or not these planets can form in the
first place. This conclusion is quite appealing as it implies that quantifying the oc-
currence of planets in moderately close binaries may be a means of obtaining some
observational constraints on the processes underlying planet formation. Yet, recent
work made to explain the existence of a close-in Jovian planet around HD 188753 A
emphasized the alternative possibility that moderately close double and multiple star
systems originally void of giant planets may acquire one via dynamical interactions
(stellar encounters or exchanges), in which case the present orbital configuration of
the system would not be indicative of the planetary formation process (Pfahl 2005;
Portegies Zwart and McMillan 2005). Pfahl and Muterspaugh (2006) have tried to
quantify the likelihood that a binary system could acquire a giant planet in this way
and concluded that dynamical processes could deposit Jovian planets in �0.1% of
the binaries closer than 50 AU. Therefore, to test the possibility of forming giant
planets in binaries closer than �100 AU, one needs not only to detect giant planets
in these systems, but above all, to quantify their frequency.

From the observational perspective, the existence of planets in wide binaries and
multiple star systems has been supported by observations almost since the first
discoveries. In 1997 three planets were found to orbit the primary components of
wide binaries HR 3522, HR 5185, and HR 458 (Butler et al. 1997), while an-
other one was discovered around 16 Cyg B, the secondary component of a triple
system (Cochran et al. 1997). Three years later, the detection of a giant planet
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around Gl 86 A (Queloz et al. 2000) brought a clear evidence that Jovian planets
can also exist in the much closer spectroscopic binaries, as suggested previously by
the possible detection of a giant planet around � Cephei A (Campbell et al. 1988;
Walker et al. 1992; Hatzes et al. 2003). These discoveries rapidly prompted a new
interest in the study of planets in binaries, raising the possibility that planets may be
common in double and multiple star systems.

When considering planets in binaries, it is important to note that most Doppler
planet searches used to be, and still are, strongly biased against binaries closer than
�200 AU. As a consequence, present data from these surveys provide incomplete
information on the suitability of .200 AU binaries for planetary systems. Similarly,
the actual frequency of planets in these systems remains unconstrained.

Recognizing early the importance and the interest of including binary stars in ex-
trasolar planet studies, we have investigated the impact of stellar duplicity on planet
occurrence for a few years. This investigation follows two different approaches.
The first one uses Doppler spectroscopy to quantify the occurrence of giant planets
in spectroscopic binaries (Eggenberger et al. 2003, 2008b). Combining the results
from these surveys targeting moderately close binaries with the results from our
“classical” planet searches with ELODIE (Perrier et al. 2003) and CORALIE
(Queloz et al. 2000; Udry et al. 2000), we aim at quantifying the occurrence of giant
planets in binaries with various separations. The second approach to our study makes
useofdirect imaging to probe themultiplicity statusofnearbysolar-typestarswith and
without planets. This work aims at tracing out the impact of stellar duplicity on planet
occurrence and properties in binaries with typical separations between 35 and 250 AU
(Udry et al. 2004; Eggenberger et al. 2004c, 2007b, 2008, 2008b).

The outline for this chapter is as follows. In Section 2.2 we present the res-
ults from classical Doppler planet searches, whose outcomes constitute the gen-
eral framework within which lie more specific studies dedicated to binaries. In
Section 2.3 we describe how direct imaging can be used to probe the impact of stel-
lar duplicity on planet occurrence and to test whether the frequency of giant planets
is reduced in binaries closer than �100 AU. In Section 2.4 we discuss some prelimi-
nary results from our Doppler surveys dedicated to the search for circumstellar plan-
ets in spectroscopic binaries. All these results are finally summarized in Section 2.5.

2.2 Results from Classical Doppler Planet Searches

Most of the information gathered to date on planets in binary and multiple star
systems2 has been obtained by “classical” Doppler surveys searching for planets
around G and K dwarfs within 100 pc of the Sun (Udry et al. 2007a and refer-
ences therein). Here, we present and discuss these observational results, together
with the selection effects against binary systems that affect classical Doppler plan-
ets searches.

2 For the sake of conciseness, we will henceforth call “planets in binaries” the planets residing
either in true binaries or in hierarchical multiple systems.
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2.2.1 Selection Effects Against Binaries in Doppler
Planet Searches

In a general way, Doppler searches for planets around nearby G and K dwarfs avoid
binaries closer than 200 to 600 (systems that we will call moderately close binaries in
this chapter) (Udry et al. 2000; Perrier et al. 2003; Marcy et al. 2005b; Jones et al.
2006), meaning that these programs reject from their samples many star systems
closer than �200 AU. The reason for this discrimination is twofold. First, the naive
prospect of finding giant planets in moderately close binaries used to be quite poor
and until recently moderately close binaries were not considered particularly inter-
esting targets for planet searches. Secondly, double stars with an angular separation
similar to, or smaller than, the size (projected onto the sky) of the spectrograph’s
fiber or slit present technical difficulties since they cannot be observed as two iso-
lated stars. As explained in Section 2.4, this often complicates the extraction of the
radial velocity, rendering classical cross-correlation techniques inadequate to search
for planets in certain types of spectroscopic and visual binaries.

When designing our ELODIE and CORALIE planet search programs, we
rejected from the main samples all the G and K dwarfs belonging either to
“short-period” single-lined spectroscopic binaries (.10 years) or to double-lined
spectroscopic binaries3 (Udry et al. 2000; Perrier et al. 2003). This discrimination
was performed in the first place on the basis of former radial-velocity measurements
gathered with the two CORAVEL instruments,4 but additional systems discovered
later in the course of our planet programs met the same fate and were rejected as
well. However, we kept in the samples single-lined spectroscopic binaries with long
periods (&10 years) since in those systems, not only was the prospect of finding
giant planets higher than in double-lined spectroscopic binaries with more massive
secondaries, but also the technical difficulties were thought to be minimal.

Our initial policy on wider binaries was less drastic and we kept all visual bina-
ries in our ELODIE and CORALIE samples. However, the data accumulated in the
early phases of the CORALIE program showed that radial velocity measurements
of primary components of moderately close visual binaries were generally noisier
and more variable than expected, suggesting that the secondaries in these systems
often contribute to some extent to the recorded flux. Consequently, we flagged as
second-priority targets, all the visual binaries closer than �600 and with a mag-
nitude difference �V . 4. These targets are then observed less often than regular
single stars.

3 Single-lined spectroscopic binaries are systems for which only the spectrum of the primary com-
ponent is detected, while double-lined spectroscopic binaries are systems for which the spectra of
both components are detected. See Section 2.4 for further details on spectroscopic binaries.
4 The two CORAVEL instruments (Baranne et al. 1979) were used extensively between 1977 and
1998 to monitor the radial velocity of more than 60,000 nearby stars at an intermediate precision
(typically 300 m s�1) in both hemispheres.
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2.2.2 The Sample of Planets in Binaries

Thanks mostly to recent searches for common proper motion companions to
planet-host stars (Section 2.3), the number of planets known to reside in binary and
multiple star systems has been growing rapidly in the past few years (Patience et al.
2002; Eggenberger et al. 2004, 2007b; Mugrauer et al. 2005, 2006; Chauvin et al.
2006; Raghavan et al. 2006; Desidera and Barbieri 2007) and has now reached to
40 planets in 35 planetary systems. In terms of system architecture, these planets
were found in binaries with projected separations between �20 and �12,000 AU.
With few exceptions, all these planets orbit the primary components (Eggenberger
et al. 2004; Raghavan et al. 2006; Desidera and Barbieri 2007). This last feature is
partly a selection effect, the secondaries being often too faint to belong to the target
samples used by Doppler planet searches. Not surprisingly, only a couple of planets
were found in binary or multiple systems closer than �100 AU. Although some
theoretical models predict a shortage of giant planets in binaries closer than �100
AU (Nelson 2000; Mayer et al. 2005; Thébault et al. 2006), current Doppler surveys
are too severely biased against these particular systems to claim that observations
meet theoretical predictions on this point. In particular, the fact that three of the
few planets detected in binaries closer than 100 AU were found in systems with
separations of about 20 AU likely reflects the selection effects just mentioned in
Section 2.2.1. Indeed, for targets within 50 pc and for spectrographs like ELODIE
or CORALIE, the separation range between �10 and �30 AU corresponds to both
long-period spectroscopic binaries (that were kept in the samples) and to visual
binaries that are compact enough for technical difficulties to remain acceptable if
the secondary component is not too bright (see Section 2.4 for details). As a conse-
quence, Doppler planet searches such as the ELODIE and the CORALIE surveys
are presently more likely to detect planets in 10–30 AU systems than in .10 AU or
in 30–100 AU systems.

The apparent lack of planets in binaries closer than �20 AU is also worth notic-
ing. According to theoretical models, the formation of giant planets in binaries
closer than �20 AU is possible only for low binary eccentricities, if at all (Nelson
2000; Thébault et al. 2004, 2006; Mayer et al. 2005; Boss 2006). Many short-
period spectroscopic binaries may then be free from giant planets and the “limit” at
�20 AU might have a true meaning. Nonetheless, the present observational material
does not allow us to rule out the alternative hypothesis that the lack of planetary de-
tections in systems closer than �20 AU actually reflects the discrimination against
short-period spectroscopic binaries in classical Doppler surveys. On that basis, the
question of the closest binaries susceptible of hosting circumstellar giant planets
remains open.

To sum up, classical Doppler planet searches have brought observational evi-
dence that circumstellar giant planets do exist in many types of binaries, including
spectroscopic systems. Yet, this observational material is incomplete with regard to
the closest binaries and we can derive from the present sample of planets in binaries
only a minimum value for the fraction of planets residing in double and multiple star
systems. This minimum fraction is 21%. Deriving the actual frequency of planets in
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binaries closer than �200 AU and probing the existence of giant planets in binaries
closer than �20 AU both call for the need of planet search programs capable of deal-
ing with spectroscopic and moderately close visual binaries. Two such programs are
presently underway (Konacki 2005b; Eggenberger et al. 2003) and we discuss our
own surveys in Section 2.4.

2.2.3 Different Properties for Planets in Binaries?

The first hint that planets found in binaries may possess some distinct proper-
ties and characteristics was brought by Zucker and Mazeh (2002). These authors
pointed out that planets in binary systems seem to follow a different period-mass
correlation than that of planets orbiting single stars. In a similar vein, in 2003,
we performed a statistical study considering not only the period-mass but also the
period-eccentricity relation (Eggenberger et al. 2004) (see also Mugrauer et al. 2005;
Desidera and Barbieri 2007 for more recent studies). As shown in Fig. 2.1, our anal-
ysis confirms that the three planets with minimum masses5 M2 sin i & 2 MJup and
periodsP . 40 days all orbit the components of binaries or multiple stars. However,
the inclusion, in our sample, of several newly discovered planets with periods longer
than 100 days and minimum masses in the range 3–5 MJup, which were found in

Fig. 2.1 Left: minimum mass versus orbital period for all the extrasolar planetary candidates
known in 2003. Planets orbiting a single star are represented as open circles, while planets re-
siding in binary or multiple star systems are represented as dots. The dashed line approximately
delimits the zone where only extrasolar planets belonging to binaries are found. Right: eccentricity
versus orbital period for the same planetary candidates as before. The dashed line approximately
delimits the region where no planet-in-binary is found

5 In the expression for the minimum mass, M2 is the true mass of the planet and i is the inclination
of the orbit with respect to the tangent plane of the sky.
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binaries, decreases the significance of the negative period-mass correlation indicated
by Zucker and Mazeh (2002). Yet, marginal signs of this correlation subsist in the
form of a shortage of very massive planets (M2 sin i & 5MJup) on long-period orbits
(P & 100 days).

Our analysis also emphasizes that planets with periodsP . 40 days which reside
in binaries tend to have low eccentricities (e. 0:05) compared to their counterparts
in orbits around single stars (Fig. 2.1). In other words, the minimum period for a
significant eccentricity seems larger for planets in binaries (P � 40 days) than for
planets around single stars (P � 5 days). The statistical significance of this finding
is very modest, though, and calls for confirmation.

The two above-mentioned emerging trends are interesting because they
might constitute the first observational evidence of two theoretical predictions.
For instance, according to Kley (2000) the migration and mass growth rates of a
Jovian protoplanet are enhanced when this object is embedded in a circumprimary
disk in a 50–100 AU binary system. At the same time, the protoplanet’s eccentricity
decreases with time due to the damping action of the disk. Taken at face value,
these theoretical predictions may provide a nice and self-consistent explanation for
the observation that the most massive short-period planets are all found in binaries
and have small eccentricities. Yet, the weak point in this reasoning is that the five
circumprimary planets with periods shorter than 40 days, reside in systems with
very different separations, from �20 to �1,000 AU. Kley’s conclusions (Kley 2000)
may thus apply to some of these systems, but not to all of them.

Another theoretical prediction that might find a first observational evidence
in our results is the so-called Kozai migration. This migration process, spe-
cific to binaries, results from the coupling of the Kozai mechanism with tidal
dissipation (Wu and Murray 2003; Fabrycky and Tremaine 2007). As shown by
Takeda and Rasio (2005), if this mechanism has been at work in many planetary
systems, it should have produced an excess of low-eccentricity planets. Again, this
seems to provide a nice explanation to the observation that short-period planets
found in binaries tend to have low eccentricities. The weak point here is that several
requirements must be simultaneously met in order for the Kozai mechanism to op-
erate (Holman et al. 1997; Wu and Murray 2003). Kozai migration may thus explain
the low eccentricity of some of the five short-period planets found in binaries, but it
is unlikely to explain the distinctive characteristics of all of them.

To summarize, the emerging trends seen in the period-mass and period-
eccentricity diagrams are potentially interesting and might constitute a first
indication that planetary migration can proceed differently in some binary systems
than around single stars. To confirm and specify the present observational results,
future investigations will have to improve on three points: (1) to increase the present
sample of planets in binaries, (2) to systematically probe the presence of stellar
companions to the known planet-hosting stars, and (3) to take into account the
selection effects against moderately close binaries. We describe in the next two
sections our efforts to tackle these issues, aiming at better understanding the impact
of stellar duplicity, not only on planet occurrence, but also on planet properties and
characteristics.
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2.3 Results from Imaging Surveys

The problem of quantifying the impact of stellar duplicity on planet occurrence can
be tackled in a somewhat indirect way by comparing the multiplicity among planet-
bearing stars to the multiplicity among similar stars but without known planetary
companions. Indeed, if the presence of a nearby stellar companion hinders planet
formation, or drastically reduces the potential stability zones, the frequency of plan-
ets in binaries closer than a given separation (modulo eccentricity and mass-ratio)
should be lower than the nominal frequency of planets around single stars. That
is, the binary fraction among planet-hosting stars should be smaller than the bi-
nary fraction among single stars. Alternatively, if the presence of a nearby stellar
companion stimulates planet formation one way or another, planets should be more
common in binaries with a specific range of separations (again modulo eccentricity
and mass-ratio) than around single stars. The binary fraction among planet-hosting
stars should then be larger than the binary fraction among single stars. This indirect
approach was first followed by Patience et al. (2002), who probed the multiplic-
ity status of 11 planet-hosting stars and concluded that the companion star fraction
among planet-bearing stars is not significantly different from that among field stars.
The more than 300 planet-hosting stars known today, and the different conclusions
of theoretical studies as to the impact of stellar duplicity on giant planet occurrence,
both motivate a new analysis and a reconsideration of the multiplicity among planet-
bearing stars.

To quantify the impact of stellar duplicity on planet occurrence and properties
in binaries closer than �200 AU, we initiated in 2002 a large-scale adaptive op-
tics search for stellar companions to �200 nearby solar-type stars with and without
known planetary companions (Udry et al. 2004; Eggenberger et al. 2004c, 2007b,
2008, 2008b). To cover a substantial fraction of the sky, the main program was
divided into two subprograms: a southern survey (130 stars) carried out with NAOS-
CONICA (NACO) on the Very Large Telescope (VLT), and a northern survey (about
70 stars) carried out with PUEO on the Canada-France-Hawaii Telescope (CFHT).
The southern survey has been completed, whereas, at the time of the writing of this
chapter, the northern survey was still in progress. We present and discuss in this
chapter observational and preliminary statistical results from our southern survey.

2.3.1 Our VLT/NACO Search for Stellar Companions
to 130 Nearby Stars with and Without Planets

2.3.1.1 Sample and Observing Strategy

One major limitation that prevents all imaging surveys done to date (Luhman and
Jayawardhana 2002; Patience et al. 2002; Mugrauer et al. 2005, 2006; Chauvin
et al. 2006; Raghavan et al. 2006; Bonavita and Desidera 2007) to draw robust
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conclusions on the impact of stellar duplicity on planet occurrence is the absence of
a well-defined control sample of non-planet-bearing stars. The use of a controlled
sample is essential for two reasons. First, as explained in Section 2.2.1, Doppler
planet searches suffer from noticeable selection effects against the closest binaries
and these biases must be taken into account to obtain meaningful results. Second, to
be rigorous, statistical studies must compare the multiplicity among planet-hosting
stars with the multiplicity among similar stars but without planetary companions.
To be as rigorous as possible, we included in our NACO survey both a subsam-
ple of planet-hosting stars and a controlled subsample of nearby field stars from
our CORALIE planet search program showing no obvious evidence for planetary
companions from radial-velocity measurements. Proceeding in this way, we had
at hand high-precision radial-velocity data that place constraints on the potential
giant-planet-bearing status of each comparison star. We matched the target selec-
tion criteria for Doppler planet searches, and minimized the corrections related to
observational effects.

Our NACO survey therefore relies on a sample of 57 planet-host stars, together
with 73 comparison stars (see Eggenberger et al. 2007b for further details on the
definition of each subsample). Note that we purposely excluded from our observing
list most planet-host stars observed by Patience et al. (2002) and by Chauvin et al.
(2006) to avoid repeating existing observations. These stars will be included in our
statistical analysis, though, balancing the two subsample sizes to about 70 stars in
each subsample (Section 2.3.2). Since most of our targets are within 50 pc, the
1300 � 1300 field of view of NACO translates into a projected separation range of a
few AU (diffraction limit) to about 325 AU. Recalling the theoretical predictions
mentioned in Section 2.1, this means that our survey probes a large fraction of
the separation range where the presence of a stellar companion should affect giant
planet formation (hence giant planet occurrence) to some degree.

The survey observing strategy consisted of taking a first image of each of our
targets (planet-hosting and controlled stars) to detect companion candidates. To
distinguish true companions from unrelated background stars, we relied on two-
epoch astrometry. Since most of our targets have a proper motion above 0:100 year�1,
astrometric parameters of bound companions are not expected to vary much over a
few years, except for some orbital motion in the closest systems (Fig. 2.2). On the
other hand, astrometric parameters of background objects without significant proper
motion should vary according to the proper and parallactic motion of the primaries
(Fig. 2.2). For relatively wide and bright companion candidates (projected separa-
tion >1000, magnitude in the K band <14), a pre-existing astrometric epoch could
usually be found in the 2MASS catalog (Skrutskie et al. 2006), meaning that only
one NACO observation was needed to identify true companions. However, due to
the high angular resolution of NACO we could not rely on such preexisting data on
a regular basis and we tried to re-observe the targets with companion candidates at
a later epoch during the survey.
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Fig. 2.2 Examples of multi-epoch astrometry from our NACO survey. Solid lines depict the
evolution of angular separation and position angle for background objects with negligible proper
motions. The gray zones are the related uncertainties. Dots represent our NACO observations and
dotted lines depict the evolution expected for bound companions without significant orbital motion
over the survey time span. The left panels show an example of true companion, while the right
panels show an example of unrelated background star

2.3.1.2 Observational Results

Our NACO survey revealed 95 companion candidates in the vicinity of 33 targets.
On the basis of two-epoch astrometry, we identified 19 true companions, 2 likely
bound objects, and 34 background stars. The remaining 40 companion candidates
(near 16 targets, most of them controlled stars) either lack second-epoch mea-
surements (most of the objects), or have inconclusive astrometric results due to
insufficiently sensitive images at one epoch (few objects). Follow-up observations
have been carried out and will be used to complete the second-epoch observations.

The bound and likely bound systems identified in our NACO survey are listed
in Table 2.1. Among planet-host stars, we discovered two very low mass com-
panions to HD 65216, an early-M companion to HD 177830, and we resolved the
previously known companion to HD 196050 into a close pair of M dwarfs. Besides
these discoveries, our data confirm the bound nature of the companions to HD 142,
HD 16141, and HD 46375. The remaining 11 true companions and the two likely
bound objects all orbit control stars. These companions are late-K stars or M dwarfs,
and have projected separations between 7 and 505 AU.

As illustrated on Fig. 2.3, the typical sensitivity of our survey enabled us to detect
stellar companions down to �M5 dwarfs at 0:200, and down to the L-dwarf domain
above 0:6500, providing us with a very complete census of the stellar multiplicity
among our 130 targets.
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Table 2.1 True (upper portion) and likely bound (lower portion) systems from our NACO survey.
We refer the reader to Eggenberger et al. ( 2007b) for additional information on all these systems

Primary Secondary Proj. sep.
Primary Sample spec. type Secondary spec. type (AU)

HD 142 A Planet G1IV HD 142 B K8.5–M1.5 105:1˙ 1:8

HD 7895 A Control K1V HD 7895 D M2–M5 28:7˙ 0:8

HD 16141 A Planet G5IV HD 16141 B M1–M4 223˙ 11

HD 24331 A Control K2V HD 24331 B M4–M6 73:2˙ 1:7

HD 31412 Aa Control F8 HD 31412 Ab M0–M3 7:1˙ 0:3

HD 40397 A Control G0 HD 40397 B M0–M2 58:7˙ 1:7

HD 43834 A Control G5V HD 43834 B M3.5–M6.5 30:9˙ 0:3

HD 46375 A Planet K1IV HD 46375 B K9.5–M1.5 345˙ 12

HD 65216 A Planet G5V HD 65216 Ba M6.5–L0 255:2˙ 6:4

HD 65216 Ba M6.5–L0 HD 65216 Bb M7.5–L4 5:7˙ 1:1

HD 70923 A Control G0 HD 70923 B M2–M5 36:9˙ 1:5

HD 78351 A Control G8/K0V HD 78351 B M1–M4 70:5˙ 2:6

HD 104263 A Control G5 HD 104263 B M2.5–M4.5 68:6˙ 3:2

HD 129642 A Control K3V HD 129642 B M2.5–M5.5 157:4˙ 5:3

HD 154682 A Control G5V HD 154682 B M1.5–M4.5 45:3˙ 2:3

HD 177830 A Planet K0 HD 177830 B M2–M5 97:1˙ 4:4

HD 196050 A Planet G3V HD 196050 Ba M1.5–M4.5 501˙ 22

HD 196050 Ba M1.5–M4.5 HD 196050 Bb M2.5–M5.5 19:7˙ 1:0

HD 223913 A Control G0V HD 223913 B K9.5–M2.5 314:0˙ 5:1

HD 82241 Control F8V CC1 M0–M3 16:3˙ 0:4

HD 134180 Control K3V CC2 M2.5–M5.5 505˙ 28

Fig. 2.3 Sensitivity limits and detections from our NACO survey in theH band (left) and in theK
band (right). Dots represent bound and likely bound companions, open circles represent unbound
objects, and crosses denote companion candidates with only one astrometric epoch. Solid lines
are the median detection limits obtained with the two different detectors of NACO (a detector
change occurred in the middle of our survey). Labels on the right-hand side of each plot show the
relationship between magnitude (narrow-band photometry) and spectral type for companions to a
typical old K0 dwarf
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2.3.2 The Impact of Stellar Duplicity on Planet Occurrence

The observational results obtained in the context of our NACO survey form an
unprecedented data set to study the impact of stellar duplicity on planet occurrence.
Indeed, adding to our own results the targets surveyed by Patience et al. (2002) and
Chauvin et al. (2006), we have a precise and homogeneous census of the multi-
plicity status of 73 planet-hosting stars and 66 comparison stars. We present here a
preliminary statistical analysis aimed at obtaining a first quantification of the global
impact of stellar duplicity on planet occurrence in binaries with mean semimajor
axes between 35 and 250 AU.

2.3.2.1 Preliminary Statistical Analysis Based on the NACO Survey

A potentially sensitive issue in estimating the impact of stellar duplicity on planet
occurrence is the exact definition of the controlled subsample, especially regard-
ing the non giant-planet-bearing status of these stars. The main issue here is that a
small amplitude radial velocity drift can just as well be the signature of a planetary
companion as that of a more distant stellar companion. To test the sensitivity of our
results to the exact definition of each subsample, we performed our first analysis
based on two different sample redefinitions: (i) a loose re-definition where both
subsamples were slightly modified except for a homogeneous cut-off at close sepa-
ration (�0:700) to exclude the few stars with significant radial-velocity drifts; (ii) a
more stringent redefinition where both subsamples were limited in distance to 50 pc,
and where control stars showing any type of radial-velocity variation (small radial-
velocity drifts, short-period variability, : : :) were excluded. This additional selection
was aimed at keeping in the controlled subsample as little potential planet-hosting
stars as possible. Hereafter, the loosely redefined subsamples will be called “full”
subsamples, while the more refined subsamples will be called “re-defined”.

To quantify the global impact of stellar duplicity on giant planet occurrence, we
computed the binary fraction for the four subsamples described above. According
to our data, the binary fraction among planet-hosting stars is 5:5˙ 2:7% (4/73) for
the full subsample and 4:9˙ 2:7% (3/62) for the redefined subsample. For control
stars, we obtain binary fractions of 13:7˙ 4:2% (9/66) and 17:4˙ 5:2% (9/52) for
the full and redefined subsamples, respectively. These results translate into a dif-
ference in binary fraction (controlled � planet-hosting) of 8:2 ˙ 5:0% for the full
subsample and of 12:5 ˙ 5:9% for the redefined one. Although the relative errors
on these results are quite large due to the small number of available companions,
both sample definitions yield a positive difference with a statistical significance of
1.6-2.1� . In physical terms, this positive difference implies that planets (mainly gi-
ant ones) are less frequent in binaries with mean semimajor axes between 35 and
250 AU than around single stars. In other words, stellar duplicity seems to negatively
impact the occurrence of giant planets in such binary systems.

To extend the investigation one step further and to seek for a possible trend with
mean semimajor axis, we computed the difference in binary fraction for a few bins
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Fig. 2.4 Difference (in per cent) between the binary fraction among control stars and the binary
fraction among planet-hosting stars as a function of binary mean semimajor axis. The left plot is
based on the redefined subsamples, while the right plot is based on the full subsamples

in separation between 20 and 280 AU. The results for both the full and redefined
subsamples are shown in Fig. 2.4. These two plots show that the difference in bi-
nary fraction does not seem to spread uniformly over the range of the semimajor
axis studied here. But it seems rather concentrated below �100 AU. This result is
appealing since it might corroborate the theoretical studies that predict a negative
impact of stellar duplicity on planet formation in binaries closer than �100 AU.
Nonetheless, as partly visible on Fig. 2.4, the small number of true companions
available for the statistics still limits our analysis.

Given the range of semimajor axes considered in our analysis, the apparent lower
frequency of planets in binaries closer than �100 AU is likely to be related to the
actual formation of these planets rather than their long-term survival. Recalling the
conclusions from theoretical studies, one possible explanation to our observations
would be that the disk instability scenario may be a more viable mechanism for the
formation of giant planets, and as suggested by Mayer et al. (2005), this mecha-
nism is inhibited in binaries closer than �100 AU. However, a weak point in this
argument is that Mayer et al. (2005) did not actually study planet formation via
core-accretion. The prediction by these authors that the formation of giant planets
via core-accretion model proceeds undisturbed in binaries with separations down to
�60 AU is solely based on the temperature profiles of their simulated disks, whereas
additional effects (especially those affecting the relative velocities among planetesi-
mals) may come into play to inhibit planet formation. Our observational results can,
however, confirm that core-accretion may in fact be the only formation mechanism
for planets, and that its efficiency is reduced in binaries closer than �100 AU. This
point of view may be consistent with the conclusion by Thébault et al. (2004) who
state that planetesimal accretion is possible in the � Cephei system (semimajor axis
of 19 AU), but requires a delicate balance between gas-drag and secular perturba-
tions by the secondary star.
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2.3.2.2 Concluding Remarks on the Results from Imaging Surveys

The preliminary statistical results presented above are quite encouraging and already
extend beyond what has been done before since the analyses by Patience et al.
(2002), Raghavan et al. (2006), and Bonavita and Desidera (2007) could not cor-
rect the results for the selection effects against moderately close binaries. By adding
about 70 stars to the statistics, the future results from our northern survey will make
a valuable contribution to the analysis and will improve the statistical significance
of the present results. The completion of the second-epoch measurements from our
NACO survey will also strengthen our conclusions.

One point on which all observational studies agree is that if stellar duplicity
impacts the formation and/or survival of circumstellar giant planets only in some
types of binaries, it will not be easy to identify and quantify this effect in practice.
This conclusion may result from practical limitations in the surveys (small sam-
ple sizes, difficulty to correct for selection effects, the need for radial-velocity data
to ensure that controlled stars are free from giant planets, . . . ), but it may alterna-
tively have a more physical origin (e.g., not only binary semimajor axis, but also
eccentricity and mass-ratio will likely play key roles in determining the impact of
stellar duplicity on planet formation and evolution. Dynamical evolution may also
significantly alter the initial distributions of planet-forming material and destroy the
imprints of the formation process.). Further advances on both the theoretical and
the observational fronts will be needed to specify this point. From the observational
perspective, as we will see in the next section, Doppler searches for planets in spec-
troscopic binaries constitute another avenue to study the impact of stellar duplicity
on the occurrence of giant planets in .200 AU binaries.

2.4 Results from Doppler Planet Searches
in Spectroscopic Binaries

Nearby binary systems closer than 2–600 can be classified into two categories: true
spectroscopic binaries and moderately close visual binaries. True spectroscopic bi-
naries are unresolved systems whose binary nature is known through the periodic
translation of their spectra or, more pragmatically, through their periodic variations
in radial velocity. Moderately close visual binaries are generally long-period spec-
troscopic systems as well, but they possess the additional property of being spatially
resolved. Strictly speaking, this makes a small difference in terms of data analysis.
We will also ignore this here and only consider the spectroscopic nature of all these
systems. However, we will distinguish single-lined spectroscopic binaries (SB1s),
for which only the spectrum of the primary star is detected, from double-lined spec-
troscopic binaries (SB2s), for which the spectra of both components are detected.
The corollary of this distinction is that for SB1s we can only measure the radial
velocity of the primary star, whereas for SB2s we can measure the individual veloc-
ities of both components. It should be noted that the classification of spectroscopic



34 A. Eggenberger and S. Udry

binaries into single- and double-lined systems is not absolute and depends on the
instrument used for the observations and on the procedure used to analyze the data.

Until 2000–2002, planet searches in binaries closer than 2–600 (.200 AU) were
only of marginal interest. The discovery of two giant planets in the single-lined spec-
troscopic binaries Gl 86 and � Cephei (projected separations of 20 AU and 19 AU,
respectively Queloz et al. 2000; Hatzes et al. 2003) and the observation that the
few most massive short-period planets all orbit the components of double or multi-
ple star systems (Udry et al. 2002; Zucker and Mazeh 2002), changed this point of
view and led to an ever-increasing interest for planet searches in moderately close
binaries. Despite such an interest, classical Doppler surveys still avoid most 2–600
binaries. The main issue with these systems is that each stellar component cannot be
observed individually. That is, Doppler data of systems closer than 2–600 consist gen-
erally of a composite spectrum made of two (or possibly more) stellar spectra, not of
a single stellar spectrum. Obviously, this introduces some complications into the ex-
traction of the radial velocity, rendering classical one-dimensional cross-correlation
techniques not well adapted to the search for circumstellar planets in moderately
close binaries. The inclusion of spectroscopic binaries into Doppler planet searches
thus necessitated the development of data reduction techniques specially designed
to extract precise radial velocities from composite spectra.

A rather natural way to analyze composite spectra and to extract precise radial
velocities for the individual components of double-lined spectroscopic binaries
is to generalize the concept of one-dimensional cross-correlation to that of two-
dimensional correlation. This approach was followed some time ago by S. Zucker
and T. Mazeh, who developed a two-dimensional correlation algorithm named
TODCOR (Zucker and Mazeh 1994). Because we are interested in including spec-
troscopic binaries in our radial-velocity planet searches, these authors modified their
TODCOR algorithm to allow it to work with our ELODIE and CORALIE echelle
spectra. This resulted in a new multi-order TODCOR algorithm (Zucker et al. 2003),
which has already produced some very interesting results (Zucker et al. 2003, 2004;
Eggenberger et al. 2007a, 2008b). We are now using this algorithm extensively to
search for planets in spectroscopic and moderately close visual binaries.

We present in this section some results from our ongoing searches for planets
in spectroscopic binaries. Our presentation will follow an increasing order of diffi-
culty in terms of radial-velocity extraction. We start with the easiest systems that are
single-lined spectroscopic binaries (SB1s) and end with more complicated double-
lined spectroscopic ones (SB2s).

2.4.1 Planet Searches in Single-Lined Spectroscopic Binaries

In order to obtain the first quantification of the occurrence of planets in the closest
binaries capable of hosting circumstellar planets, we initiated in 2001, a systematic
Doppler search for short-period circumprimary planets in single-lined spectro-
scopic binaries (Eggenberger et al. 2003, 2008b). The prime motivation for this
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program was the observation that the few most massive short-period planets are
all in binaries or multiple systems (Section 2.2.3). The restriction of our survey to
SB1s was motivated by two considerations. First, the faintness of the secondary
components in these systems gave us good hopes that we could use our standard
cross-correlation technique to extract precise radial velocities for the primary com-
ponents. Second, the prospect of finding giant planets is higher in SB1s than in SB2s
with similar separations but more massive secondaries. Our survey for giant planets
in SB1s was thus designed as a first exploratory investigation that may be comple-
mented later, in the case of positive results, by an additional survey targeting SB2s.

2.4.1.1 Sample and Observations

Our sample of binaries was selected on the basis of former CORAVEL surveys
carried out to study the multiplicity among G and K dwarfs of the solar neigh-
borhood (Duquennoy et al. 1991b; Halbwachs et al. 2003). Basically, we retained
all the 140 SB1 candidates with periods longer than �1.5 years (some of them
with well-characterized orbits, others with long-period drifts). Note that CORAVEL
velocities have a typical precision of 300 m s�1 and thus cannot be used to search
for planets. To search for planets in our sample of 140 SB1s we took 10–15
additional high-precision radial-velocity measurements of each system, either with
the ELODIE spectrograph (Observatoire de Haute-Provence, France; Baranne et al.
1996; Perrier et al. 2003) or with the CORALIE spectrograph (La Silla Observatory,
Chile; Queloz et al. 2000; Udry et al. 2000). Given our initial aim to analyze these
high-precision data with standard cross-correlation techniques, we rejected during
the observations, the systems that turned out to be SB2s at the higher resolution
of ELODIE and CORALIE, as well as the binaries that were resolved within the
guiding field of the telescope. After this additional selection, we ended up with
101 SB1s that form the core of our survey.

2.4.1.2 First Analysis Based on One-Dimensional Cross-Correlation

As a first step in the analysis, the spectra obtained with ELODIE and CORALIE
were reduced online, and the radial velocities were extracted using our standard
cross-correlation pipeline. When searching for planets in binaries, what we are in-
terested in are not the radial velocities themselves but instead the residual (radial)
velocities around the binary orbits. The planet search was thus carried out by search-
ing for short-period variations in these residual velocities.

Figure 2.5 shows the distribution of the residual-velocity variations for our 101
targets. These variations are quantified by a normalized root-mean-square (rms),
which is the ratio of the external error (i.e., the standard deviation around the orbit
or around the drift) to the mean internal error (i.e., the mean of individual photon-
noise errors). As shown by Fig. 2.5, most of our targets (74%) have normalized rms
close to 1, indicating that no source of radial-velocity variation other than the orbital
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Fig. 2.5 Normalized residual-velocity rms for all our SB1s. � is the standard deviation around a
Keplerian orbit or around a drift, and �i is the mean measurement uncertainty. Systems with an rms
larger than 7 are all gathered together in the last bin

motion is present (see Fig. 2.6 for an example). In contrast, 12.5% of our targets
are clearly variable and exhibit normalized rms greater than 3 (see Fig. 2.6 for an
example). The remaining systems (13.5%) are marginally variable, with normalized
rms between 2 and 3.

In terms of planetary prospects, the most interesting systems are the variable and
marginally variable binaries. Nonetheless, the presence of a planetary companion
in orbit around the primary star is not the only way to produce residual-velocity
variations like those observed. Alternative possibilities include: (i) the primary star
is intrinsically variable, (ii) the system is an unrecognized SB2 (i.e., an SB1 when
analyzed via one-dimensional cross-correlation, but an SB2 when analyzed via two-
dimensional correlation), and (iii) the system is in fact triple and the secondary is
itself a short-period spectroscopic binary. Assuming that planets are as common in
close binaries as around single stars, we expect to find only one or two planets more
massive than 0.5 MJup and with periods shorter than �40 days in our sample. This
rough estimation shows that most of the observed residual-velocity variations are
probably not related to the presence of planetary companions, but likely stemmed
from the binary or multiple nature of our targets. Therefore, to identify the few
potential planet-bearing stars among the several variable and marginally variable
systems, we must find a way to precisely characterize the cause of the residual-
velocity variations.
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Fig. 2.6 Top: example of a binary exhibiting no residual-velocity variation. CORAVEL data are
depicted as stars (large error bars) while CORALIE data are depicted as dots. The bottom panel
shows the residual velocities (CORALIE data only). Bottom: example of a binary with variable
residual velocities. This system was exceptionally observed with both ELODIE and CORALIE.
Figures on the top refer to the ELODIE velocities (represented as circles), while figures on the
bottom refer to the CORALIE velocities (represented as dots)
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2.4.1.3 Identifying the Origin of Residual-Velocity Variations

Binaries with intrinsically variable primaries can be identified similar to single
active stars by considering the chromospheric emission flux in the Ca II H and K
lines. Using one-dimensional cross-correlation techniques, identifying triple sys-
tems and unrecognized SB2s is feasible in some instances (Santos et al. 2002;
Eggenberger et al. 2003, 2008b), but two-dimensional correlation is a much more
efficient tool for this purpose. We are thus presently analyzing all the variable and
marginally variable systems with the two-dimensional algorithm TODCOR. This
work is in progress and only four variable systems have been studied in some detail
so far. Of these four systems, two turned out to be triple star systems (see Fig. 2.7
or Eggenberger et al. 2003, 2008b for an example), while the two others turned out
to be unrecognized SB2s (see Fig. 2.8 for an example). None of these four systems
shows hints of the presence of a circumprimary planet.

2.4.1.4 Preliminary General Results on Planet Searches in SB1s

The present results from our search for circumprimary short-period planets in SB1s
show that in most of these systems (74%) the secondary component is so faint (mag-
nitude difference �V & 6) that it does not contribute significantly to the recorded
flux. Doppler data of such systems can be analyzed similar to the Doppler data of
single stars and the precision achieved on the measurements of the radial velocities
of their primary stars are as good as those of single stars.

In contrast, analyzing the Doppler data of the 26 SB1s that exhibit residual-
velocity variations is not straightforward. In many of these systems the secondary
component (and also possibly the tertiary component) significantly contributes to
the recorded flux (�V 2 Œ�3;�6	), rendering the use of two-dimensional correla-
tion mandatory to unambiguously identify the origin of the variations observed, and
hence to search for circumprimary planets. Our current results do not enable us
to precisely characterize our detection capabilities in terms of circumprimary planet
searches, but we estimate that typical precisions on the radial velocity of the primary
star range between 10 and 20 m s�1. Although these precisions are not as good as
for single stars, they remain good enough to search for giant planets.

The preliminary results from our search for circumprimary giant planets in SB1s
thus confirm that such a program has grounds for existence. So far, our survey
has unveiled no promising planetary candidate, but the data of 22 variable and
marginally variable systems remain to be analyzed in detail with two-dimensional
correlation. Since contamination effects stemming from the stellar companions
are likely to prevail over potential planetary signals, two-dimensional analyses must
be completed before concluding on the existence or absence of planets in our sam-
ple. All we can say at present is that less than 22% of the SB1s from our sample
have a short-period (P . 40 days) giant (minimum mass &0.5 MJup) planetary com-
panion. Definitive results from our program will enable us to obtain a much stronger
constraint.



2 Probing the Impact of Stellar Duplicity on Planet Occurrence 39
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Fig. 2.7 An example of triple system: HD 223084. (a) CORAVEL (crosses, large error bars)
and CORALIE (dots) velocities for HD 223084. The binary orbit is tentative and is used only as
a proxy to compute residual velocities. The bottom panel of Fig. (a) shows the residual veloci-
ties (CORALIE data only). (b) TODCOR velocities for HD 223084 A (dots) and HD 223084 Ba
(open circles) after having removed the 202-day modulation of the Ba–Bb inner pair. (c) SB2 orbit
for HD 223084 Ba (dots) and HD 223084 Bb (open circles). This orbit is characterized by a pe-
riod of 202 days and velocity semiamplitudes of 16.1 and 18 km s�1 for components Ba and Bb,
respectively
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Fig. 2.8 An example of unrecognized SB2: HD 63077. Top: CORAVEL (crosses, large error bars)
and CORALIE (dots) velocities for HD 63077. The binary orbit is tentative and is used only as a
proxy to compute residual velocities. The bottom panel shows the residual velocities (CORALIE
data only). Bottom: TODCOR velocities for HD 63077 A (dots) and HD 63077 B (crosses)
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2.4.2 Planet Searches in Double-Lined Spectroscopic Binaries

Double-lined spectroscopic binaries have not been systematically included in any of
our observing programs yet, but several of the visual binaries closer than �600 and
with magnitude differences of �V . 4 are in fact unrecognized SB2s (i.e., SB1s
when analyzed via one-dimensional cross-correlation, but SB2s when analyzed via
two-dimensional correlation). To properly analyze the data of these systems and to
characterize the feasibility of Doppler searches for circumstellar planets in SB2s, we
are presently conducting a series of observational tests and simulations on SB2
systems with various characteristics. To illustrate both the interest in including SB2s
in planet searches and the challenges faced by Doppler planet searches in such
systems, we present here the results we have obtained for our best-studied case,
the triple system HD 188753 (Eggenberger et al. 2007a).

2.4.2.1 The Example of HD 188753

HD 188753 has attracted much attention since July 2005 when Konacki (2005) re-
ported the discovery of a 1.14-MJup planet on a 3.35-day orbit around the primary
component of this triple star system. Aside from the planet, HD 188753 consists
of a primary star (HD 188753 A) orbited by a visual companion, HD 188753 B,
which itself is a spectroscopic binary with two components HD 188753 Ba and
HD 188753 Bb. The visual orbit of the AB pair is characterized by a period of
25.7 years, a semimajor axis of 12.3 AU (0:2700 separation) and an eccentricity
of 0.5 (Söderhjelm 1999). The spectroscopic orbit of HD 188753 B has a period
of 155 days (Griffin 1977; Konacki 2005). What renders this discovery particu-
larly important and interesting is that the periastron distance of the AB pair may be
small enough to preclude giant planet formation around HD 188753 A through the
canonical planet-formation models (Nelson 2000; Mayer et al. 2005; Boss 2006;
Jang-Condell 2007). The discovery of a close-in giant planet around this star has
thus been perceived as a serious challenge to planet-formation theories, though the
alternative possibility that HD 188753 A might have acquired its planet through
dynamical interactions was also pointed out (Pfahl 2005; Portegies Zwart and
McMillan 2005).

When observed with ELODIE, HD 188753 reveals itself as an SB2, the spectrum
of the faintest component (Bb) being undetectable in most of our observations. Our
TODCOR radial velocities for HD 188753 A and HD 188753 Ba are displayed in
Fig. 2.9. These velocities confirm that HD 188753 Ba is a spectroscopic binary with
a period of 155 days. However, our velocities for HD 188753 A show a steady de-
crease consistent with the 25.7-year orbital motion of the AB pair, but no sign of the
3.35-day planetary signal as reported by Konacki (2005). Instead, our results indi-
cate that the residuals around the long-period drift are basically noise and the rms of
60 m s�1 can be interpreted as the precision we achieve on the measurement of the
radial velocity of this star. Monte Carlo simulations run to check our ability to detect
the potential planet around HD 188753 A showed that we had both the precision and
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Fig. 2.9 Radial velocities and orbital solutions for HD 188753 A (top) and HD 188753 Ba
(bottom). For component A, the solid line represents the 25.7-year orbital motion of the visual
pair shown in full in the inset. For component Ba, the orbital solution corresponds to the 155-day
modulation and it includes a linear drift to take the 25.7-year orbital motion into account
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the temporal sampling required to detect a planetary signal like the one reported by
Konacki (2005). On that basis, we conclude that our data show no evidence of a
1.14 MJup on a 3.35-day orbit around HD 188753 A.

In addition to the question of whether there is or is not a hot Jupiter around
HD 188753 A, our analysis of HD 188753 raises several more questions. In particu-
lar, the precision of 60 m s�1 obtained on the radial velocity of HD 188753 A looks
abnormally poor compared to the results presented in Section 2.4.1. The triple na-
ture of HD 188753 may partly explain this result, but it is probably not the primary
reason. Rather, the search for circumprimary planets in SB2s seems to require higher
quality data (mainly a better spectral resolution) than the search for circumprimary
planets in SB1s. Investigations are currently underway to specify this point.

2.4.2.2 Concluding Remarks on Planet Searches in SB2s

Based on our current experience, Doppler searches for circumprimary planets look
more challenging in SB2s than in SB1s, even when using two-dimensional corre-
lation. Clearly, considerable work remains to be done to precisely characterize our
detection capabilities in spectroscopic binaries with various characteristics and to
identify the main factor that limits our precision for each type of system. Nonethe-
less, including SB2s in planet searches is desirable since these systems are the most
susceptible of providing us with interesting constraints on planet-formation mecha-
nisms. Furthermore, SB2s are the potential targets for circumbinary planet searches,
which offer a still unexplored research field worth of interest.

2.5 Conclusion and Perspectives

Over the past 5 years, binaries have become increasingly interesting targets of planet
searches. On one hand, Doppler surveys have shown that giant planets exist even in
spectroscopic binaries (Queloz et al. 2000; Hatzes et al. 2003; Zucker et al. 2004),
raising the possibility that planets may be quite common in binary and multiple star
systems. On the other hand, theoretical studies have shown that the presence of a
stellar companion within �100 AU likely affects the formation and subsequent evo-
lution of circumstellar giant planets (Kley 2000; Nelson 2000; Mayer et al. 2005;
Boss 2006; Thébault et al. 2006), leaving potential imprints in the occurrence,
characteristics, and properties of the planets residing in these systems. The study of
circumstellar planets found in binaries closer than �100 AU might thus provide a
unique means to probe the formation and evolution processes at work in planetary
systems.

Imaging surveys searching for stellar companions to the known planet-bearing
stars have been very successful, revealing several new binary planet-hosting systems
and yielding a precise characterization of the multiplicity status of more than
70 planet-hosting stars (Luhman and Jayawardhana 2002; Patience et al. 2002;
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Mugrauer et al. 2005, 2006; Chauvin et al. 2006; Raghavan et al. 2006; Eggenberger
et al. 2007b). Additionally, our NACO survey has provided us with the multiplic-
ity among a control sample of about 70 nearby stars showing no evidence for giant
planetary companions, and affected by the same selection effects than planet-hosting
stars. A preliminary statistical analysis based on our NACO data brings the first ob-
servational evidence that the occurrence of giant planets is reduced in binaries closer
than �100 AU (Eggenberger et al. 2008). Given our present knowledge of planet-
formation mechanisms, two possible explanations can be put forward to explain this
result: either disk instability is a viable formation mechanism that accounts for the
existence of a significant number of the planets known presently, or core accretion
is the only formation channel but its efficiency is reduced in binaries closer than
�100 AU. Differentiating between these two possibilities will require additional
work, both on the theoretical and on the observational sides. Yet, the important
point to notice is that observations have caught up with theoretical studies on the
investigation of the impact of stellar duplicity on giant planet formation, meaning
that some theoretical predictions can now be confronted with observational results.

The recent discoveries from imaging surveys have somewhat decreased the statis-
tical significance of the emerging trends suggesting that short-period planets found
in binary and multiple star systems possess distinctive characteristics and proper-
ties compared to their counterparts orbiting single stars (Zucker and Mazeh 2002;
Eggenberger et al. 2004; Mugrauer et al. 2005; Desidera and Barbieri 2007). The
most robust feature in this respect is still the observation that the few most massive
short-period planets all orbit the components of binaries or triple stars. Nonetheless,
such planets are still sparse and even the most recent statistical studies remain af-
fected by the selection effects against moderately close binaries and by the uncertain
multiplicity status of many planet-hosting stars. The combined results from our
NACO and PUEO surveys will remove these two last uncertainties to a large ex-
tent, allowing for a major reinvestigation of possible differences in the eccentricity
distributions of planets found in binaries and around single stars.

Over the past few years, significant effort has been put into extending radial-
velocity planet searches to spectroscopic and moderately close visual binaries
(Zucker et al. 2003, 2004; Konacki 2005a, 2005b; Eggenberger et al. 2007a, 2008b).
In a general way, planet searches in moderately close binaries are still in their
early phases and only partial results are available. Current results demonstrate that
Doppler searches for giant planets are technically feasible in single-lined and in
some types of double-lined spectroscopic binaries. However, the feasibility of planet
searches in double-lined spectroscopic binaries with small magnitude differences
remains to be characterized and confirmed.

Final results from the presently ongoing planet searches in spectroscopic binaries
are awaited with great interest for several reasons. First, Doppler planets searches
are the best tool to expand the size of the still limited sample of planets residing in
binary and multiple star systems. Second, these surveys constitute the only current
possibility to directly probe the occurrence of giant planets in binaries closer than
�200 AU and to characterize the closest systems potentially capable of hosting cir-
cumstellar giant planets. In particular, Doppler searches for planets in spectroscopic
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binaries will provide us with stronger constraints on the reality of the 20-AU “limit”
and on its possible interpretation as a minimum separation for considering that a
binary possibly harbors a giant planet. Finally, by probing the occurrence of giant
planets in binaries closer than �35 AU, planet searches in spectroscopic binaries
will nicely complement the results from our NACO and PUEO surveys. Gathering
together the observational results from our imaging and spectroscopic programs,
we might then obtain some constraints as to whether most giant planets found in
binaries closer than �100 AU actually formed in these systems or were deposited at
their present location through dynamical interactions.

As planet searches progress, the conviction that planets are common objects in
the universe continually strengthen. The discovery of planets in environments pre-
viously considered as relatively hostile to their existence (spectroscopic binaries,
pulsars, : : :) has contributed to this development, showing that planet formation
is not as easily inhibited as originally thought. In addition to the encouraging re-
sults obtained thus far for giant planets, the expectation that terrestrial planets form
alongside their Jovian counterparts suggests that discoveries are limited by instru-
mental sensitivity rather than the availability of planets. Even if the presence of
a nearby stellar companion lowers the efficiency of planet formation, theoretical
studies support the existence of circumstellar terrestrial planets in many types of
binaries (Barbieri et al. 2002; Haghighipour and Raymond 2007; Quintana et al.
2007). Circumbinary planets are also expected to exist around various types of bi-
nary systems (Quintana and Lissauer 2006; Pierens and Nelson 2007) and searches
for circumbinary planets offer a still unexplored field of investigation for planet
hunters. In view of the potential information they can yield on the overall frequency
of planets and on the processes underlying planet formation, planet searches in and
around binaries are thus not only meaningful but also desirable.
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P. Thébault, F. Marzari, and H. Scholl. Relative velocities among accreting planetesimals in binary

systems: The circumprimary case. Icarus, 183:193–206, July 2006.
S. Udry, M. Mayor, D. Naef, F. Pepe, D. Queloz, N. C. Santos, M. Burnet, B. Confino, and C. Melo.

The CORALIE survey for southern extra-solar planets. II. The short-period planetary compan-
ions to HD 75289 and HD 130322. A&A, 356:590–598, April 2000.



2 Probing the Impact of Stellar Duplicity on Planet Occurrence 49

S. Udry, M. Mayor, D. Naef, F. Pepe, D. Queloz, N. C. Santos, and M. Burnet. The
CORALIE survey for southern extra-solar planets. VIII. The very low-mass companions of
HD 141937, HD 162020, HD 168443 and HD 202206: Brown dwarfs or “superplanets”? A&A,
390:267–279, July 2002.

S. Udry, A. Eggenberger, J.-L. Beuzit, A.-M. Lagrange, M. Mayor, and G. Chauvin. The bi-
narity status of stars with and without planets probed with VLT/NACO. In C. Allen and
C. Scarfe, editors, Revista Mexicana de Astronomia y Astrofisica Conference Series, pages
215–216, August 2004.

S. Udry, D. Fischer, and D. Queloz. A decade of radial-velocity discoveries in the exoplanet
domain. In B. Reipurth, D. Jewitt, and K. Keil, editors, Protostars and Planets V, pages
685–699, 2007a.

S. Udry and N. C. Santos. Statistical properties of exoplanets. ARAA, 45:397–439, September
2007b.

G. A. H. Walker, D. A. Bohlender, A. R. Walker, A. W. Irwin, S. L. S. Yang, and A. Larson.
Gamma Cephei - Rotation or planetary companion? ApJ, 396:L91–L94, September 1992.

Y. Wu and N. Murray. Planet migration and binary companions: The case of HD 80606b. ApJ,
589:605–614, May 2003.

S. Zucker and T. Mazeh. Study of spectroscopic binaries with TODCOR. 1: A new two-
dimensional correlation algorithm to derive the radial velocities of the two components. ApJ,
420:806–810, January 1994.

S. Zucker and T. Mazeh. On the mass-period correlation of the extrasolar planets. ApJL, 568:
L113–L116, April 2002.

S. Zucker, T. Mazeh, N. C. Santos, S. Udry, and M. Mayor. Multi-order TODCOR: Application to
observations taken with the CORALIE echelle spectrograph. I. The system HD 41004. A&A,
404:775–781, June 2003.

S. Zucker, T. Mazeh, N. C. Santos, S. Udry, and M. Mayor. Multi-order TODCOR: Applica-
tion to observations taken with the CORALIE echelle spectrograph. II. A planet in the system
HD 41004. A&A, 426:695–698, November 2004.



Chapter 3
The Detection of Extrasolar Planets
Using Precise Stellar Radial Velocities

Artie P. Hatzes, William D. Cochran, and Michael Endl

3.1 Introduction

The discovery of extrasolar planets (Latham et al. 1989; Wolszczan et al. 1992;
Mayor and Queloz 1995) is arguably one of the most exciting developments in as-
tronomical observations in the past two decades. At the time of this writing over
400 planets were known to orbit around stars other than the Sun. Majority of these
planets have been discovered using the so-called “Doppler wobble” method: the
measurement of the subtle Doppler shifts of the stellar absorption lines due to the
motion of the star about the star-planet barycenter.

The measurement of stellar radial velocities is a technique that dates back over
100 years, starting with the first measurements by Huggins (1868) and Vogel (1872).
With such an old technique, why did it take a century to discover extrasolar planets?
The answer is simple: precision. Classical techniques could rarely achieve stan-
dard errors of better than a few tenths of kilometer per second. By comparison, the
best modern stellar radial velocity measurements can achieve a radial velocity (RV)
precision of �1 m s�1.

Figure 3.1 shows the velocity amplitude of a solar-mass star about the barycenter
as a function of orbital period due to the presence of stellar companions in the mass
range 0.05–0.5Mˇ. Also shown is the velocity amplitude as a function of period for
substellar companions with masses in the range of 0.35–10MJupiter (0.01Mˇ). The
horizontal line shows the nominal precision of traditional methods for the measure-
ment of a star’s radial velocity (here we take � � 0.5 km s�1). The small points show
the RV amplitude and periods for known extrasolar planets around solar-type stars.
The large symbols show the location of the first two extrasolar planets discovered:
HD 114762 b (square) and 51 Peg b (triangle). The large dot marks the location of
Jupiter.
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Fig. 3.1 The velocity of a solar-type star about the barycenter due to various mass companions.
Companion masses are in solar masses except for the bottom two which are in Jupiter masses.
Small points are the known extrasolar planets. Large points are 51 Peg b (triangle), HD 114762 b
(square), and Jupiter (dot)

From this figure it is clear that classical techniques could have only discovered
those extrasolar planets for which the host star had the highest amplitude reflex mo-
tion. HD 114762 was discovered using a more traditional method for measurement
of the stellar radial velocity, but only because of the relatively high RV amplitude
due to the mass of the planet (11 MJupiter) and its short period (90 days). The com-
panion to 51 Peg or even a Jupiter analog would have been impossible to discover
using traditional RV measurement methods.

This book is devoted to planets in binary stars. Even though most planet searches
have focused on single stars, the basic technique for the detection of planets in
binary systems is the same – the measurement of precise stellar radial velocities. In
this chapter we will review the various methods for achieving a very precise stellar
radial velocity measurement required for the detection of extrasolar planets. We end
this contribution by presenting a few examples of planets in binary stars.

3.2 Traditional Methods of Stellar RV Measurements

Most astronomical detectors such as charge-coupled devices (CCDs) do not record
any wavelength information; they merely record the intensity of light as a function of
location on the detector. This spectral intensity, as a function of detector position
(pixel) must be converted into intensity versus wavelength by observing a cali-
bration source, typically a Thorium-Argon hollow cathode lamp. The problem for
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precise stellar RV measurements is that the wavelength comparison source is taken
at a different time (either before or after the stellar spectrum), and usually the light
from the star traverses a different optical path through the telescopeCspectrograph.
Most modern spectrographs do not have the mechanical and thermal stability to
achieve an intrinsic velocity precision at the level of 10 m s�1. These uncontrolled
or unmeasured instrumental shifts ultimately limit one’s ability to detect extrasolar
planets with the Doppler method.

Figure 3.2 shows the instrumental shifts in meters per second from two spectro-
graphs, the CES spectrograph of the European Southern Observatory at La Silla,
and the coude spectrograph of the 2.7 m telescope at McDonald Observatory. These
shifts were calculated from a long time series of observations of an iodine absorp-
tion cell (see below). Both show long-term trends, where the spectrograph shifts by
at least 100 m s�1 over 1–2 h. There are also short-term shifts up to 100 m s�1 on

Fig. 3.2 Instrumental shifts for two spectrographs. Top: The CES Spectrograph of the European
Southern Observatory. Bottom: The coude spectrograph of the 2.7 m telescope of McDonald
Observatory
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Fig. 3.3 RV measurements for the binary star � Cep. Dots represent measurements made using
traditional RV measurements. Crosses are those taken with precise RV measurements, in this case
with an iodine absorption cell. The solid line represents the binary orbital solution

time scales of several minutes. Clearly, if one had to depend on the intrinsic stability
of these spectrographs, it would be impossible to detect extrasolar planets around
stars with an expected reflex motion around 10 m s�1.

Figure 3.3 shows RV measurements of � Cep, a binary star whose primary star
hosts a giant planet (Hatzes et al. 2003). The dots represent measurements made
with more traditional techniques by Griffin et al. (2002). The crosses are modern
precise RV measurements taken at McDonald Observatory with an iodine absorption
cell. The improvement is dramatic. One can see slight variations on top of the binary
orbit (solid line) with the precise RVs that are due to the planetary companion.
These are completely hidden in the older measurements due to the much poorer RV
precision. These can only detect the high amplitude orbital motion due to the stellar
companion.

In the following sections we describe in detail how astronomers were able to
achieve a factor of 100–1,000 improvement in the RV precision in the last two
decades. These improvements allowed for the phenomenal progress in the field of
extrasolar planets.

Modern precise stellar radial velocity measurements correct for the instrumental
shifts like the ones shown in Fig. 3.2 by recording the wavelength reference simul-
taneously to that of the stellar spectrum. We will discuss three approaches for doing
this: (1) using telluric features produced by the Earth’s atmosphere, (2) gas absorp-
tion cells, and (3) simultaneous Thorium-Argon calibration.
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3.3 The Telluric Technique

Griffin and Griffin (1973) were the first to point out that one factor limiting the
precision of stellar radial velocity measurements is that the light from the wave-
length comparison source is taken at a different time and usually traverses a different
optical path. They proposed using telluric O2 lines at 6,300 Å as a wavelength
reference that is recorded simultaneously with the stellar spectrum. As starlight
passes through the Earth’s atmosphere, molecular oxygen produces sharp absorp-
tion features. If one measures radial velocity shifts with respect to these telluric
lines, instrumental shifts are minimized because both the reference and stellar light
illuminate the spectrograph in the same manner, and are recorded at the same time.

Figure 3.4 shows the spectral region covered by the telluric O2 features. The
top panel is a spectrum of Vega, an A0-type star that has no spectral features in
this wavelength region. The narrow lines appearing as doublets are caused by atmo-
spheric O2. The bottom panel shows a spectrum of a solar-type star, 
 Her where
the O2 features are now superimposed on the stellar spectrum. Doppler shifts of the
star are computed with respect to the telluric O2 lines.

Griffin and Griffin (1973) suggested that a velocity precision of 15–20 m s�1 was
possible using the telluric method. During the initial stages of the McDonald Ob-
servatory Planet Search Program, we employed the telluric O2 technique to search
for extrasolar planets and our experience indeed confirms that a velocity precision
of �20 m s�1 is indeed possible. Figure 3.5 shows radial velocity measurements for
HD 114762 using the telluric method (Cochran et al. 1991). These are shown by
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Fig. 3.4 The telluric method for RV measurements. (Top) A spectrum of Vega. The absorption
features shown are due only to telluric O2. (Bottom) A spectrum of the solar-type star 
 Her.
Spectral features are from both the star and telluric O2
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Fig. 3.5 Radial velocity measurements of HD 114762 taken with the telluric method (large dots)
and with traditional techniques (small dots). The solid line represents the orbital solution. Figure
from Cochran et al. (1991)

the large dots. Also shown as small dots are the measurements from the discovery
paper of Latham et al. (1989). These were taken with a more traditional technique
for the RV measurement with a precision of �500 m s�1. The improvement is sub-
stantial. The traditional method was also able to detect this sub-stellar companion,
but it required far more measurements than the telluric method.

The advantages of the telluric method is that it is simple, inexpensive, and easy
to use. Almost any high resolution spectrograph can be used to achieve an RV pre-
cision of a few tens of meters per second. This method has also been extended to
the near infrared using the telluric A and B bands between 6,860 and 6,930 Å, and
7,600 and 7,700 Å, respectively (Guenther and Wuchterl 2003). There are, however,
significant disadvantages. Suitable O2 lines are found only over a very narrow wave-
length range and this translates into a poorer RV precision. The biggest disadvantage
is that one is unable to control the Earth’s atmosphere. Pressure and temperature
changes, as well as winds in the earth’s atmosphere are ultimately what limit the RV
precision.

3.4 Absorption Cells

The telluric method could be improved if we could somehow control the absorbing
gas that creates the wavelength reference. This is the principle behind the use of
a gas absorption cell. One chooses a gas that creates a characteristic absorption
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spectrum (preferably with lines not found in the stellar or Earth’s atmospheres) and
inserts it into a sealed glass cell that is then placed in the optical path of the tele-
scope. This cell is temperature stabilized so that the absorption spectrum of the
gas is constant. Like the telluric method, the wavelength reference will be superim-
posed on the stellar spectrum, only in this case there are no shifts of the wavelength
reference due to temperature or pressure changes, or wind! The use of a gas absorp-
tion cell as a wavelength metric is not a new idea and has been employed by solar
astronomers in the past (Beckers 1976; Koch and Wöhl 1984). Marcy and Butler
(1992) were the first to apply this technique to stellar radial velocities.

3.4.1 The Hydrogen-Fluoride Absorption Cell

The first use of a gas cell for planet detection via the RV method was the pioneering
work of Campbell and Walker (1979). This program used the 3–0 band R-branch
absorption lines of Hydrogen-Fluoride (HF) at 8,670–8,770 Å as the velocity metric.
Figure 3.6 shows the spectral region of the HF at 8,700 Å along with spectrum of a
star taken with and without the HF cell.

Campbell and Walker (1979) were able to demonstrate that the HF cell could
achieve an RV precision of 13 m s�1. From Fig. 3.1 one can see that these authors
had sufficient RV precision to have detected most of the currently known extrasolar
planets. Indeed, their measurements were the first to detect the possible perturba-
tions of the binary orbit of � Cep, and they hypothesized that these could result
from a planetary companion (Campbell et al. 1988).

Later in the chapter we will show that their RV measurements did show evidence
for an extrasolar planet. Why did Campbell et al. (1988) not discover more extrasolar
planets? Simply because the sample size was too small. The CHFT sample consisted
only of 26 solar-type stars. We currently believe that approximately 5% of solar-type
stars have giant planets. With this frequency, Campbell et al. (1988) should have
found at most one extrasolar planet. Indeed, they did detect the planetary companion
to � Cep; however, Walker et al. (1992) later cast doubt on this by suggesting that
this additional RV variations might be due to stellar rotation. If they had a signifi-
cantly larger sample size, or a bit of luck, the field of extrasolar planets would be
entering its third decade.

Although the HF cell is capable of achieving good RV precision, there were
several disadvantages to using HF as the absorbing medium:

� It provides absorption features over only a limited wavelength range in the optical
(about 100 Å).

� HF is sensitive to pressure shifts.
� HF requires a rather large path length (about 1 m) to produce suitable absorption

lines. This could be a problem if space was limited in your spectrograph.
� HF is a highly corrosive and dangerous gas. The HF cell had to be filled for each

observing run. So safety concerns are a real issue.
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Fig. 3.6 Top: Spectrum of the HF cell at 8,720 Å. Bottom: Spectrum of a star taken without top
spectrum and with HF. Figure from Campbell and Walker (1979)

3.4.2 Iodine Absorption Cells

An alternative to the HF cell is the use of iodine absorption cell. Molecular iodine
has several advantages over HF for absorption cells: (1) It is a relatively benign
gas that can be permanently sealed in a glass cell. The amount of iodine that is
used is so small that there is no health hazard should the cell break. (2) I2 has
useful absorption lines over the interval 5,000–6,000 Å. This increases the number
of spectral lines used for the Doppler measure by about a factor of 10 over the
telluric and HF techniques. (3) A typical pathlength for an I2 cell is about 10 cm,
which can easily fit in front of the entrance slit of most spectrographs. (4) The I2

cell can be stabilized at relatively modest temperatures (50–70ıC). (5) Molecular
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iodine is less sensitive to pressure shifts than HF. (6) The rich density of narrow I2

absorption lines enables one to model the instrumental profile of the spectrograph
(more on this later).

Figure 3.7 shows a typical iodine gas absorption cell. Cells are typically about
10–15 cm in length and a have a width of a few cm. The iodine is permanently sealed
in a glass that is surrounded by a heater foil and a temperature sensor that ensures
that the cell is thermally stabilized during its use. Figure 3.8 shows the spectrum of
a white light source taken through an iodine cell with an echelle spectrograph. Note
the rich forest of spectral lines.

Iodine cells have become a popular method for the measurement of precise stel-
lar radial velocities. Such cells are currently in use at the McDonald Observatory
2.7 m (Wittenmyer et al. 2006) and 2.1 m telescopes (Cochran et al. 2004), The
Hobby-Eberly Telescope (Cochran et al. 2004), Lick Observatory (Butler et al.
1996), ESO’s VLTCUVES (Kürster et al. 2000), Keck Observatory (Vogt et al.
2000), Tautenburg Observatory (Hatzes et al. 2005), the Anglo Australian Telescope

Fig. 3.7 A typical iodine gas absorption cell. The cell is about 15 cm long and 5 cm in diameter.
When in use, the cell is surrounded by a heater, temperature sensor, and insulation

Fig. 3.8 A spectrum of molecular iodine taken with an echelle spectrograph. Each band represents
a different spectral order and redder wavelengths are to the right and bottom. The iodine spectral
lines begin to become visible at about 5,000 Å
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(Tinney et al. 2001), Bohyunsan Optical Astronomical Observatory (Kim et al.
2006), to name a few. The majority of known extrasolar planets discovered by the
Doppler method were made using iodine absorption cells.

3.4.2.1 Details on the Use of the Iodine Absorption Cell

After constructing the cell, a very high resolution (RD�=ı�D 500;000), high
signal-to-noise spectrum of the cell is made with a Fourier Transform Spectrom-
eter (FTS). This spectrum must be taken at the same temperature that the cell will
be operated at the telescope. This high resolution spectrum is required not only to
provide the wavelength reference to for the RV measurement, but also to model
the instrumental profile (IP) of the spectrograph, or equivalently the ı-function re-
sponse of the spectrograph primarily caused by the optics. This is important because
changes in the IP, particularly asymmetric ones, can introduce shifts in the spectral
lines of order 1–10 m s�1. Since the FTS spectrum is taken at much higher reso-
lution than the spectrograph used for the RV measurements (these typically have
R D 60,000 – 100,000), when this is re-binned to the observed I2 spectrum used for
the stellar observations, it is a suitable approximation of the ı-function response of
the spectrograph. Comparing this to the observed I2 taken with the spectrograph
optics enables one to reconstruct the IP (Valenti et al. 1995).

The observational procedure consists of taking a “template” spectrum, IS (known
as the intrinsic stellar spectrum), of each target star made without the I2 cell. This
requires a high signal-to-noise spectrum. For the best precision this template should
be deconvolved by the instrumental profile as determined using the iodine spectral
lines. To measure the IP, a spectrum of the I2 cell must be made with the spec-
trograph optics illuminated in the same manner as the stellar observations. This
is commonly done by taking a spectrum of a hot, rapidly rotating early-type star
through the cell. The velocity computation consists of computing the model spec-
trum, Im which best matches the observed spectrum:

Im D kŒTI2
.�/IS .�C ı�/	 � IP (3.1)

where TI2
is the transmission function of the I2 cell, k is a normalization factor, ı�

is the wavelength (Doppler) shift, IP is the spectrograph instrumental profile, and �
represents the convolution. Use of the IP modeling in the calculation of the Doppler
shift was pioneered by Butler et al. (1996), and with modifications by Endl et al.
(2000).

The results of the modeling process is shown in Fig. 3.9. The observed spectrum
(solid line) of a star taken through the I2 cell has absorption lines from both the star
and the gas cell. The “pure” stellar template spectrum (without I2) is shown as the
dashed line, and the high resolution FTS I2 spectrum re-binned to the dispersion of
the stellar observation is shown as the dotted line. The model spectrum computed
according to Eq. (3.1) is shown as the dot-dashed line, which is coincident with the
solid observed star spectrum. The difference of the observed and model spectrum is
shown as the long-dashed line at the top.
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Fig. 3.9 Modeling the observed spectrum taken with an iodine cell. The pure stellar spectrum
is Doppler shifted and multiplied by the pure iodine spectrum. This product is then convolved
with the instrumental profile to give the model spectrum. The difference between the observed and
model spectra is shown at the top

The key to obtaining the best RV precision is a proper modeling of the IP. Valenti
et al. (1995) proposed parameterizing the IP as a sum of several Gaussian com-
ponents which is the most common practice, but other functions may be used as
well, including a slit function. Figure 3.10 illustrates the IP parameterization pro-
cess for one echelle spectral order of the cs23 spectrograph on the 2.7 m telescope
at McDonald Observatory (Tull et al. 1995). The spectrum has been divided into
20 different wavelength chunks of width typically a few Angstronms (only 16 are
shown). The IP in each chunk has been parameterized by a superposition of five
Gaussian functions and the sum convolved with a top-hat function giving the result-
ing curve.

Figure 3.11 demonstrates the value of the IP modeling procedure. It shows the
RV measurements for a constant star, � Ceti, taken with the CES spectrograph of
the European Southern Observatory’s 3.6 m telescope at La Silla (Endl et al. 2000).
Without the treatment of the IP asymmetries the scatter of the RV measurements is
about 36 m s�1. By treating the IP asymmetries, the scatter of the measurements de-
creases by more than a factor of three to � D 11.6 m s�1. The improvement in the RV
precision by modeling the IP depends, of course, on the stability of the spectrograph.
If the instrument is intrinsically stable, then one may only achieve small improve-
ments in the RV precision. If the spectrograph has large thermal and mechanical
variations, then the IP modeling should improve the RV precision. However, if these
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Fig. 3.10 An example of the instrumental profile determination for one echelle order of a spectrum
taken with the McDonald Observatory 2.7 m cs23 spectrograph. The grey curves are the individual
Gaussian functions and the dotted line is the slit function. The heavy line shows the final IP

variations are too large, it may be difficult to achieve a proper parameterization of
the IP, making it difficult to achieve the best quoted precisions of 1–3 m s�1.

3.5 Simultaneous Thorium-Argon Calibration

Use of an absorption cell is not the only technique capable of achieving a precise
measurement of the stellar radial velocity. An alternative method is to use a tradi-
tional hollow-cathode lamp such as Thorium-Argon, but to record this simultane-
ously with the stellar spectrum. This is done using one fiber optic to feed the light
from the star into the spectrograph, and a second to feed the light from the Th-Ar
lamp during the exposure. The Th-Ar spectrum is recorded on the CCD detector ad-
jacent to the stellar spectrum. Since the wavelength calibration spectrum is recorded
at the same time as the stellar observation, instrumental shifts like those shown
in Fig. 3.2 are minimized. This technique was pioneered with the ELODIE spec-
trograph (Baranne et al. 1996). Subsequent improvements to the techniques were
incorporated into CORALIE (Queloz et al. 2000) and finally HARPS (Pepe et al.
2000).
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Fig. 3.11 RV measurements of the constant star � Ceti taken with the CES spectrograph of the
ESO 3.6 m telescope at La Silla. (Top) With modeling of the IP asymmetries. (Bottom) Without
modeling of the IP asymmetries. Figure from Endl et al. (2000)

Figure 3.12 shows a stellar spectrum recorded using the HARPS spectrograph
of ESO’s 3.6 m telescope at La Silla using the simultaneous Th-Ar technique. The
continuous bands represent the stellar spectrum. In between these, one can see the
emission spectrum from the Th-Ar fiber. This method has also been quite successful
at discovering extrasolar planets such as 51 Peg b using the CORALIE spectrograph
(Mayor and Queloz 1995).
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Fig. 3.12 A spectrum recorded with the HARPS spectrograph. The solid bands are from the star
fiber. The emission line spectrum of Th-Ar above the stellar one comes from the calibration fiber

Although simultaneous Th-Ar technique can eliminate overall instrumental
shifts, it is unable to monitor any changes in the IP. The reason is that the Th-Ar
emission lines have relatively large intrinsic widths compared to iodine lines.
Minute changes in the voltage applied to the hollow cathode lamp can cause varia-
tions in the intrinsic width of the Th-Ar emission lines not associated with changes
in the IP. For these reasons, the HARPS spectrograph was designed with thermal
and mechanical stability in mind. HARPS is a state-of-the-art spectrograph specif-
ically designed to achieve very high precision. It housed in a vacuum chamber
where the temperature is held constant to within several mK. Care was also taken to
minimize mechanical vibrations. The thermal and mechanical stability that the IP
remains constant. A key improvement to the HARPS spectrograph is the use of two
sequential fiber optics in a double scrambler mode to ensure a stable illumination
of the spectrograph that is insensitive to variations due to seeing and guiding errors.
With such stability, HARPS has been able to achieve a short-term precision better
than 1 m s�1.

The key to obtaining the very highest RV precision lies in minimizing the instru-
mental and IP shifts of the spectrograph, and there are two philosophical approaches
to this. The HARPS approach is to stabilize the spectrograph as best as possible,
thermally, mechanically, and optically. These ensure that the IP does not change
over time. Furthermore, to guarantee that a stable optical image is provided to the
spectrograph, double scrambling using two optical fibers is employed. However,
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since Th-Ar emission lines are inadequate for monitoring changes in the IP, one has
to have faith that if one maintains the spectrograph at the same temperature and
pressure everything in the spectrograph, including the optics, do not change with
time. The iodine cell approach is to use a permanently sealed cell of molecular io-
dine that is temperature regulated to produce a constant reference spectrum that can
be used to model any temporal changes to the IP of the spectrograph.

3.5.1 Iodine Cells Versus Simultaneous Th-Ar

As mentioned earlier, there are currently two techniques for achieving very high
RV precision: iodine cells and simultaneous Th-Ar calibration. The practitioners in
each camp can be rather passionate about their respective technique; each thinks
their technique is superior. So which one is, indeed?

Both methods have had tremendous success at discovering extrasolar planets.
Both have also demonstrated velocity precision of 1–3 m s�1. With all these, one
could argue that the question of superiority may be moot. However, we do not
think so. We have employed the iodine cell technique for over 15 years and yes,
we are passionate about the technique. We are possibly not in the best position to
make unbiased judgments on the methods, but here we will try our best to give a
dispassionate assessment of the advantages and disadvantages of the Th-Ar method
compared to gas absorption cells.

3.5.1.1 Advantages of Th-Ar

� Computational Simplicity
Computing RVs using the Th-Ar method is relatively simple and fast. This
usually entails computing a cross-correlation function after putting all the spec-
tra on the same wavelength scale (done using the simultaneous Th-Ar). The
iodine cell method is rather computationally intensive. If one wants to model
adequately the IP in order to eke out the highest precision, then this requires di-
viding the spectrum into several hundred wavelength chunks and calculating the
IP in each chunk. The IP function requires five or more Gaussian functions each
with their own position, amplitude, and width. The computational time required
by the iodine cell method can be more than a factor of 10 greater than the simple
cross-correlation required by the Th-Ar method.

� Higher Efficiency
In principle the Th-Ar method has a higher efficiency than the iodine cell method.
Losses due the reflections off the glass cell as well as absorption by the iodine gas
can be as high as 50%. Furthermore, the Th-Ar method is not restricted to just
the 5,000–6,000 Å covered by iodine absorption lines. In principle, one can use
the full spectral range offered by modern echelle spectrographs, typically 3,000–
9,000 Å. Because more spectral lines can be used for the velocity measurement,
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a higher RV precision can be obtained. However, a large part of this increased ef-
ficiency is offset by the need to use optical fibers, often two in a double scramble
mode. Iodine cells can achieve very high precision using slits without the need
to feed the spectrograph with a fiber. Furthermore, telluric atmospheric lines be-
yond about 6,500 Å largely make the red regions of the stellar spectrum less
ideal for stellar RV measurements. In reality the efficiency of both methods may
be comparable.

� Uncontaminated Spectral Features
The Th-Ar technique does not contaminate the stellar spectrum (not strictly true,
see below) as does the absorbing gas of a cell. This means that each stellar ob-
servation can be used for measurements of the spectral line shapes or other kinds
of spectral analyses (abundance, temperature, etc.). These are important if they
are required to provide confirmation of planet detections with the RV method.
(RV variations due to a planet are not accompanied by other forms of spectral
variability.) Since the iodine spectrum contaminates a broad wavelength range of
spectral data, one either needs to remove the iodine spectrum from the stellar ob-
servation, which may introduce significant errors in the analysis, or one needs to
take an additional spectrum of the star without the cell, which requires increased
observing overhead.

3.5.1.2 Disadvantages of Th-Ar

In spite of these advantages there are several significant disadvantages of the Th-Ar
method that may make it inappropriate for some applications.

� Finite Lifetime of Th-Ar Lamps
If one is interested in obtaining precise stellar radial velocities over a 10–20 year
time span or longer, then Th-Ar may not be the appropriate method to use. An
individual iodine cell is sealed permanently for the entire life of the cell. The
absorption cell is a passive device and the molecular iodine in the cell does not
change with time. The wavelength reference and the radial velocity stability is
provided by molecular physics in a device that is easy to stabilize. The authors
have used several iodine cells for over 15 years and the resulting iodine absorp-
tion spectrum has not changed in the interim. Unless an accident destroys a cell,
it never has to be replaced. By comparison Th-Ar cathode lamps are active de-
vices where one has to apply high voltages. These lamps are known to change
with time and ultimately will fail through regular use. Figure 3.13 shows a spec-
trum of a Th-Ar lamp taken 7 years apart. The intensity ratio of many of the lines
change. Some weak emission features disappear and others reappear. It almost
seems as though one has used a different lamp. Changes in the wavelength ref-
erence will almost certainly translate into RV instrumental variations. (The lamp
used for the data of Fig. 3.13 failed in 2005 and had to be replaced.)

� Inability to Monitor Changes in the Instrumental Profile
Although simultaneous Th-Ar can monitor mechanical instrumental shifts and
changes in the wavelength scale, it is unable to monitor changes in the asymmetry
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Fig. 3.13 Changes in Th-Ar spectrum due to aging of the hollow cathode lamp. Top: Spectrum
from 1995. Bottom: Spectrum with same lamp from 2002

in the IP of the spectrograph. The Th-Ar emission lines are inadequate for this
because they almost always have an intrinsic width comparable to the resolution
of the spectrograph. Plus, changes in their shape may be intrinsic to the lamp
and not the spectrograph. HARPS minimizes changes in the IP by stabilizing the
spectrograph thermally and mechanically. There is no guarantee, however, that
the IP remains constant over many years and it is difficult, if not impossible, to
monitor these changes with Th-Ar emission lines alone. Furthermore, even if one
could monitor changes in the IP of a HARPS-like instrument, it would be difficult
to incorporate these into the modeling process. On the other hand, the iodine cell
provides a natural way to monitor changes in the IP in situ and these changes are
included as part of the RV calculation.

� Contamination of the Stellar Spectrum by Th-Ar
There can be “cross talk” between the stellar and Th-Ar fibers, and for strong
emission lines, light from the Th-Ar channel can spill over into the stellar spec-
trum. This can be seen in Fig. 3.12 where light from the strong Th-Ar lines cross
into the stellar spectrum. This contamination is difficult to treat in the analysis.
For long exposures, it may be difficult to adjust the intensity level of the Th-Ar
lamps to minimize such contamination. The contamination of the stellar spec-
trum by iodine lines by comparison is treated in the modeling process that is
used to compute the RV. In fact for HARPS, a common practice is to not use the
simultaneous Th-Ar calibration, only the non-simultaneous calibration taken at
the beginning or end of the night (e.g., Galland et al. 2006).
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� Costs
The simultaneous Th-Ar method is considerably more expensive than an iodine
cell. It requires a fiber optic feed, often in a double scramble mode (two separate
fiber optics for each channel). To stabilize the IP, which cannot be measured
in-situ, requires that the spectrograph to be sealed in a vacuum chamber that is
temperature stabilized. The resulting increase in the cost of the design of the
spectrograph then becomes substantial. By comparison, an iodine cell, including
the heater foil, insulation, and temperature controller can be constructed for a
few hundred U.S. Dollars. This inexpensive device can be used to convert any
existing high resolution spectrograph into an RV machine.

In summary, both methods produce comparable results, but if costs, and long-
term stability (>10 years) is a prime consideration, then an iodine absorption cell is
the only viable option.

3.5.2 Spectrograph Requirements for Precise RV Measurements

Suppose you have a very stable spectrograph, or at least a measurement technique
that has eliminated all sources of instrumental errors. How does the RV precision de-
pend on such parameters as signal-to-noise ratio, wavelength coverage, and spectral
resolution?

� Signal-to-Noise Ratio
The RV precision should be inversely proportional to the amount of noise in the
data. The more noise, the less precise the measurement.

� Wavelength Coverage
Each spectral line represents an individual measurement of the Doppler shift of
the star. If a total ofN lines are used for the Doppler measurement, then the error
will be decreased by a factor of

p
N over a single line measurement.

� Spectral Resolution
An RV measurement can be thought of as basically measuring the centroid of the
line. If there are more points sampling the spectral line profile, one can determine
this centroid more accurately. If we can measure the position of a spectral line to
some fraction of pixel (say 0.001), then higher velocity resolution per pixel will
result in more accurate determination of RV. In other words, higher the spectral
resolution will produce more accurate RV measurement. It is, however, impor-
tant to note that this goes counter to the first two points. First, higher resolution
spectrographs usually have more limited wavelength coverage than lower reso-
lution ones, which decreases the number of spectral lines that can be used for the
RV measurement. Second, high resolution spectrographs spread the light over
more detector pixels thus decreasing the signal-to-noise ratio per pixel for a fixed
exposure time.

The RV precision also depends on the type of star. For a precise RV measurement,
a star with a plethora of stellar absorption lines that are narrow and not broadened
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by stellar rotation are more desired. This implies late-type stars with spectral type
later than about F6. Early-type stars are hot and thus have few spectral lines for good
RV measurements. They also rotate very rapidly which results in spectral lines that
are very shallow and broad – difficult for determining a line position that is needed
to measure the Doppler shift. Hatzes and Cochran (1992) performed numerical sim-
ulations to determine how the RV precision depended on these various parameters.
An updated version of their expression is

�.m=s/ D C.S=N/�1R�3=2B�1=2Œf .Sp:T /	�1=2.v sin i=2/�1 (3.2)

where .S=N / is the signal-to-noise ratio of the data, R is the resolving power
(D�=ı�) of the spectrograph, B is the wavelength coverage in Å of the stellar spec-
trum used for the RV measurement, and C is a constant of proportionality.

The quantity v sin i in Eq. (3.2) is the projected rotational velocity of the star in
kilometers per second. The RV precision is roughly proportional to the inverse of
the rotational velocity of the star scaled to a nominal slowly rotating star that has a
equatorial velocity of 2 km s�1. (For stars rotating less than this nominal value the
v sin i term should just be discarded.) The function f .Sp:T / represents the relative
line density for the star as a function of stellar type. If we take f D 1 for a G-type
star, then f � 0:1 for an A-type star, and f � 10 for an M-type star.

The value of the constant C can be estimated using the performance of the
HARPS spectrograph. For S=N � 150, R D 110;000, B D 2000, Å, the quan-
tity � will be equal to 1 m s�1 for a G-type star. This results in C � 2:4 � 1011.
With this expression one should be able to estimate the expected RV precision of a
spectrograph to within a factor of a few. Note that for a fixed detector size, � should
be proportional to R�1, as noted by Hatzes and Cochran (1992).

3.6 Extrasolar Planets in Binary Systems

As of this writing there are over 400 known extrasolar planets that have been
detected via the RV method. Most of these planets orbit stars that are single. This
is certainly a bias effect as early RV surveys chose targets that were believed to be
single stars. Several factors influence one’s decision to search for planets in binary
systems. If the binary is a wide pair in the sky and thus in a long period orbit, there
would be no problems. The orbital period will be long so that RV binary motion will
be small. If the binary pair has a small separation of say less than about 2 arcsec,
then there is a danger that light from both components would enter the spectrograph
slit. This will seriously affect the RV measurement. Such close “visual” pairs are
avoided by most, if not all surveys. Short period (P < 10 years) single-line spectro-
scopic binary stars have RV variations that show complex variations resulted from
the combination of the large binary motion and much smaller motion of a plan-
etary companion, if present. It is still possible to detect planetary companions in
such systems, but one needs enough RV measurements to completely parameterize
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the binary orbit. Improper removal of the binary motion could result in a spurious
detection. For relative long binary orbits (�years) this would, of course, delay the
detection of planetary companions. Sometimes when stars in such planet surveys
are found to be new binary systems, the targets are often removed from the program
(e.g., Vogt et al. 2002). Finally, if the binary system is a double-lined spectroscopic
binary (mass-ratios near unity), the RV analysis would be greatly complicated as one
has to measure accurately the RV variations of two spectral components, plus any
additional variation due to planets around either or both (i.e., circumbinary) stars.
To-date there has been no RV survey that has included a large sample of double-
lined spectroscopic binary stars.

In spite of these challenges, there have been extrasolar planets discovered in bi-
nary systems, and these can give us important clues as to the process of planet
formation. Here we give a few representative examples of extrasolar planets in bi-
nary stars, and highlight their importance for planet formation theory.

3.6.1 16 Cyg B

The 16 Cyg A and B system consists of two main sequence stars with spectral types
of G1.5 and G2.5. Friel et al. (1993) derived the stellar parameters for this system.
To within the measurement errors, these stars have similar effective temperatures
[Teff .A/ D 5785˙ 25 K, Teff .B/ D 5760˙ 20 K], surface gravities [Log g.A/ D
4:28˙0:07, Log g.B/ D 4:35˙0:07], and abundances ([Fe/H]A D C0:06˙0:04,
[Fe/H]B D C0:02 ˙ 0:04). Essentially these stars are “identical twins”. The only
apparent difference is that 16 Cyg B shows a slight depletion in Li abundance [Log
N.Li/A D 1:27 ˙ 0:04, Log N.Li/B D 0:48 (King et al. 1997). The two stars
have an apparent separation of 39 arcsec which corresponds to a separation of about
835 AU. The orbit for this system is very poorly known.

The planetary companion to 16 Cyg B was discovered by Cochran et al. (1997)
and was one of the earliest discovered extrasolar planets. Figure 3.14 shows more
recent RV measurements for both 16 Cyg A and B taken at McDonald Observatory.
The top panel shows the RV variations for 16 Cyg B. At the time of its discovery, this
planet was the only extrasolar planet with the highest orbital eccentricity (e D 0:63)
and gave the first indication that extrasolar planets can have very eccentric orbits.
The highly eccentric orbit is readily apparent as displayed by the sawtooth pattern
of the RV variations. The lower panel of Fig. 3.14 shows the RV measurements for
16 Cyg A. These are constant to a level of � D 5:34m s�1. Note that there is clear
downward trend in the 16 Cyg A velocities which may be due to the binary motion.
It has been proposed that the high eccentricity of this object might be caused by the
presence of the binary companion (Holman et al. 1997). Table 3.1 lists the orbital
properties of this extrasolar planet.

The planetary system of 16 Cyg is a remarkable system. Here are two nearly
identical stars in a binary system with the same effective temperature, mass, age,
and chemical composition. Presumably they were born in essentially the same
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Fig. 3.14 RV measurements for 16 Cyg A (bottom) and B (top). 16 Cyg B shows RV variations
due to the presence of a planet in an eccentric orbit. The orbital solution is shown as a line. Over
the same time 16 Cyg A has shown no RV variations to a level less than 6 m s�1

Table 3.1 Orbital elements
for the planet around
16 Cyg B

Element Value

Period (days) 802.22 ˙ 2.29
T (Julian Day) 2,450,533.10 ˙ 7.18
Eccentricity 0.665 ˙ 0.031
! (deg) 80.82 ˙ 7.18
K1 (m s�1) 46.5 ˙ 3.1
f .m/ (solar masses) (3.48 ˙ 0.92) � 10�9

Semi-major axis (AU) 20.18 ˙ 0.66
m sin i (MJupiter) 1.51 ˙ 0.32

environment. One has a giant extrasolar planet and the other clearly does not. Our
full RV measurements for 16 Cyg A span over 15 years and these can exclude Jupiter
mass companions of 2.45 MJupiter masses out to 5.2 AU (Wittenmyer et al. 2006).
What is that extra ingredient that caused 16 Cyg B to form a planet and 16 Cyg A
not? One hint may be the different lithium abundance which may point to a different
angular momentum history for the stars (Cochran et al. 1997). Clearly, searching for
planets around similar binary “twins” may help shed light on the precise conditions
required for extrasolar planet formation.
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3.6.2 � Cep

The pioneering radial velocity survey of Campbell and Walker (1979) first detected
the Doppler wobble of a possible planetary companion to � Cep A. These authors
noted that their detected wobble was superimposed on a long-term trend that was
clearly due to a stellar companion and suggested that it might have been caused
by a planetary object (Campbell et al. 1988). In a subsequent paper these authors
retracted their planetary idea concluded that their observed Doppler wobble was
most likely due to stellar rotation (Walker et al. 1992). This conclusion was made
based on possible variations in the Ca II 8662 equivalent width with the RV period.
Later Hatzes et al. (2003) combined over 20 years of radial velocity data for this
star and by performing a careful re-analysis of the Ca II data, concluded that the RV
variations in the � Cep A were in fact due to a planetary companion.

Figure 3.15 shows the RV measurements of � Cep from four different data sets:
the original data from HF survey (Walker et al. 1995), the survey on the Canada
France Hawaii Telescope (CFHT), and three phases of the McDonald Observatory
Planet Search Program. The large variations (top panel) are due to the binary com-
panion. One can see from this figure that superimposed on the binary orbit is a subtle
“wobble” due to the planetary companion. The bottom panel shows the RV varia-
tions after removing the orbital contribution of the stellar companion and phased
to the orbital period for the four data sets. The RV variations of � Cep have been
coherent and in phase for over 20 years.

Recently the binary companion of � Cep A was imaged using adaptive optics by
Neuhäuser et al. (2007). By combining the imaging, radial velocity, and astrometric
data, these authors were able to derive a refined orbit for both the binary system and
the planetary companion. Table 3.2 list the orbital elements and masses of the binary,
and Table 3.3 lists the orbital elements for the planetary companion from Neuhäuser
et al. (2007). The orbital inclination for the A/B system is i D 119:3˙ 1:0 degrees
(Neuhäuser et al. 2007). Assuming that the planet and binary orbits are co-planar,
the true mass for the stellar companion would be mb D 1.83MJupiter.

Figure 3.16 shows the � Cep system compared to our solar system. The entire
binaryCplanet system would fit within the orbit of Neptune. With that, what are
the implications of � Cep b for planet formation theories? The standard scenario
for planet formation suggests that giant planets like Jupiter must form in a region
beyond the so-called snowline, the minimum distance from the star where solid
material can condense. This snow line is typically beyond about 3 AU (Sasselov
and Lecar 2000). Once a Jupiter-mass planet is formed, it may open a gap in the
circumstellar disk and tidal forces may cause it to migrate from its birth location
(e.g., Ward 1997). In the � Cep binary system, given the mass-ratio and the binary
separation (approximately 20 AU), any truncation of the proto-planetary disk would
have occurred outside the snowline. This implies that the planet around � Cep A
could thus have formed at the snowline and only migrated a short distance.

Although the existence of a planet around � Cep A is consistent with the standard
model for planet formation (Jang-Condell et al. 2008), the suggestion of a planet in
the HD 188,753 binary system (Konacki 2005) is not (Jang-Condell 2007). In 2005,
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Fig. 3.15 (Top) The RV measurements for � Cep using four different data sets. The large variations
are due to the binary motion. (Bottom) RV variations after removal of the binary motion and phased
to the orbital period of the planetary companion. The orbital solution is for the binaryC planet (top)
and planet only (bottom)
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Table 3.2 Binary orbital
elements for � Cep

Element Value

Period (years) 67 ˙ 1.4
T (year) 253,156.8 ˙ 52.4
Eccentricity 0.4085 ˙ 0.0065
! (deg) 160.96 ˙ 0.4
i (deg) 119.3 ˙ 1.0
K1 (m s�1) 1,925 ˙ 14
Semimajor axis (AU) 20.18 ˙ 0.66
MassA 1.40 ˙ 0.12
MassB 0.409 ˙ 0.018

Table 3.3 Orbital elements
for the planet around � Cep

Element Value

Period (days) 902.96 ˙ 5.99
T (Julian Day) 1,991.606 ˙ 0.032
Eccentricity 0.200 ˙ 0.069
! (deg) 75.6 ˙ 18.8
K1 (m s�1) 26.3 ˙ 5
f .m/ (solar masses) (1.60˙ 0.92) � 10�9

Semimajor axis (AU) 2.13 ˙ 0.05
m sin i (MJupiter) 1.46 ˙ 0.32
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Fig. 3.16 The � Cep binary plus planet system in comparison to the solar system
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Konacki (2005) reported the discovery of a giant planet with an orbital period of
3.35 days (i.e., a ‘hot Jupiter’) around the primary star in the triple system HD
188,753. The primary of this system has a mass of 1.06Mˇ and its secondary is it-
self a binary with a total mass of 1.63Mˇ. The separation between the primary and
secondary is only 12.3 AU. Given this separation and mass-ratio the proto-planetary
disk of the primary star would have been truncated to a radius of only 1.3 AU, well
within the snowline. Based on the standard theory of giant planet formation, the
planet around HD 188,753 A, if indeed is present, should not exist (Jang-Condell
2007). More recent RV measurements for this system agree with these theoretical
model and refuted the presence the hot Jupiter (Eggenberger 2007). So for now,
migration theory is safe, but the initial excitement generated by the purported dis-
covery of HD 188,753 Ab demonstrates that future discoveries of exoplanets in
binary systems may provide important clues to understanding the process of planet
formation.
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Chapter 4
Observational Techniques for Detecting
Planets in Binary Systems

Matthew W. Muterspaugh, Maciej Konacki, Benjamin F. Lane, and Eric Pfahl

4.1 Why Focus Planet Searches on Binary Stars?

Searches for planets in close binary systems explore the degree to which stellar
multiplicity inhibits or promotes planet formation. There is a degeneracy between
planet formation models when only systems with single stars are studied – several
mechanisms appear to be able to produce such a final result. This degeneracy is
lifted by searching for planets in binary systems; the resulting detections (or evi-
dence of non-existence) of planets in binaries isolates which models may contribute
to how planets form in nature. Some models in which giant planet formation oc-
curs over large amounts of time (e.g., the core-accretion scenario) predict that an
extra-turbulent environment, such as those around binary stars, will disrupt planet
formation. If the timescale is short (as in the gravitational instability theory), the
process may continue, or even be enhanced due to additional instabilities in the
planet-forming disks. It may be that multiple mechanisms contribute to giant planet
formation in nature. Establishing the rate at which giant planets exist in binaries will
distinguish the relative frequencies at which different processes contribute.
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Studying relatively close pairs of stars, where dynamic perturbations are the
strongest, provides the most restrictive constraints of this type (see, for example,
Thébault et al. 2004). Exoplanet searches targeting these systems will determine
whether the planet formation mechanisms found in nature are sensitive to such
dynamics or not, a property which must be matched by theoretical models (Hatzes
and Wuchterl 2005).

In this chapter, we consider observational efforts to detect planetary compan-
ions to binary stars in two types of hierarchical planet-binary configurations: first
“S-type” planets which orbit just one of the stars, with the binary period being
much longer than that of the planet’s; second, “P-type” or circumbinary planets,
where the planet simultaneously orbits both stars, and the planetary orbital period is
much longer than that of the binary (Dvorak 1982). Simulations show that each of
these two types has a large range of stable configurations (see, e.g., also, this book,
Chapter by Haghighipour et al.; Rabl and Dvorak 1988; Benest 1988, 1989, 1993,
1996, 2003; Holman and Wiegert 1999; Broucke 2001; Pilat-Lohinger and Dvorak
2002, 2003). We review the use of dual-star astrometry and iodine-cell referenced
radial velocimetry for detecting S-type planets in wide binaries, PHASES astrom-
etry, modified iodine velocimetry, and eclipse-timing for finding S-type planets in
closer binaries, and velocimetry and eclipse-timing for finding P-type planets.

4.2 S-Type Planets

S-Type planets orbit just one of the stars in a binary, and the binary separation is
much larger than that between the star and planet. Some of the binaries are so widely
separated (projected semimajor axis ab & 1 arcsec, where ab is the semimajor axis
of the binary) that they can be spatially resolved by ground-based telescopes without
active image correction. For these binaries, traditional planet-finding techniques can
be used. In fact, astrometric methods often perform best in this regime, as the sec-
ondary star serves as a convenient reference for the primary, and vice versa. Here,
astrometric and radial velocity (RV) programs are considered as the most versa-
tile search methods. (While transit searches might also be possible, these typically
have very limited spatial resolutions, and the second star can act as a photometric
“contaminant.”) When the binaries are not spatially resolved with simple imaging,
modifications must be made to meet the measurement precisions required for de-
tecting extrasolar planets. These modifications are detailed in Section 4.2.2.

4.2.1 Wide Binaries

Traditional planet-finding techniques can be used to study the environments of
widely separated binaries. We review the dual-star astrometry and iodine-cell ref-
erenced velocimetry techniques here. From an observational standpoint, “wide”
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binaries are considered to be those that can be resolved by traditional (uncorrected)
imaging techniques. Due to atmospheric seeing, this sets the projected sky separa-
tion at larger than roughly 1 arcsec.

4.2.1.1 Dual-Star Astrometry

Interferometric narrow-angle astrometry (Shao and Colavita 1992; Colavita 1994)
promises astrometric performance at the 10–100 �as level for pairs of stars sepa-
rated by 1–60 arcsec. The lower limit of the allowable binary separation for this
technique is that the binary is resolved by the individual telescopes in the interfer-
ometer; the upper limit is set by the scale over which the effects of atmospheric
turbulence are correlated. This technique was first demonstrated with the Mark III
interferometer for short integrations (Colavita 1994). It was later on extended to
longer integrations, and shown to work at the 100�as level at the Palomar Testbed
Interferometer (PTI, Lane et al. 2000).

Achieving such performance requires simultaneous measurement of the inter-
ferometric fringe positions of both stars, greatly complicating the instrument (two
beam combiners and metrology throughout the entire array are required). In ad-

dition, the instrumental baseline vector
�!
B connecting the unit telescopes must be

known to high precision (�100 �m).
In an optical interferometer, light is collected at two or more apertures and

brought to a central location where beams are combined and a fringe pattern is
produced on a detector. For a broadband source of central wavelength � and opti-
cal bandwidth ��, the fringe pattern is limited in extent, and appears only when
the optical paths through the arms of the interferometer are equalized to within a
coherence length ƒ D �2=��. For a two-aperture interferometer, neglecting chro-
matic dispersion by unequal air paths, the intensity measured at one of the combined
beams is given by

I.x/ D I0

�
1C V

sin .x=ƒ/

.x=ƒ/
sin .2x=�/

�
; (4.1)

where V is the fringe contrast or “visibility”, which can be related to the morphology
of the source, and x is the optical path difference between arms of the interferometer
(Fig. 4.1). More detailed analysis of the operation of optical interferometers can be
found in Lawson (2000).

The location of the resulting interference fringes are related to the position of the
target star and the observing geometry via

d D �!
B 	 �!

S C ıa

��!
S ; t

�
C c: (4.2)

In this equation d is the optical path-length that one must introduce between the two

arms of the interferometer to find fringes (often called the “delay”),
�!
S is the unit
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Fig. 4.1 The response of an interferometer. The top two curves have been offset by 2 and 4 for
clarity. The widths of the fringe packets are determined by the bandpass of the instrument, and the
wavelength of fringes are determined by an averaged wavelength of starlight. The top curve shows
the intensity pattern obtained by observing two stars separated by a small angle on the sky – the
observable is the distance between the fringe packets

vector in the source direction, and c is a constant that represents additional scalar

delay introduced by the instrument. The term ıa

��!
S ; t

�
in Eq. (4.2) is related to the

differential amount of path introduced by the atmosphere over each telescope due to
variations in refractive index.

If the other quantities are known or small, measurement of the instrumental path

length d (required to observe fringes) determines the position of the star
�!
S . For

a 100-m baseline interferometer, an astrometric precision of 10�as corresponds to
knowing d to 5 nm, a difficult but not impossible proposition for all terms except
that related to the atmospheric delay. Atmospheric turbulence, which changes over
distances of tens of centimeters and on millisecond timescales, forces one to use
very short exposures to maintain fringe contrast, and hence limits the sensitivity of
the instrument. It also severely limits the astrometric accuracy of a simple interfer-
ometer, at least over large sky-angles.

However, in narrow-angle astrometry, one is concerned with a close pair of stars,
and the observable is a differential astrometric measurement. In other words, one

is interested in knowing the angle between the two stars (
�!
�s D �!s2 � �!s1 ). The

atmospheric turbulence is correlated over small angles. If the measurements of the
two stars are simultaneous, or nearly so, the atmospheric term subtracts out making
high precision “narrow-angle” astrometry possible.

The requirement that the target and reference stars be observed simultane-
ously, results in a significant instrumental complexity. That means, essentially two
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Fig. 4.2 Schematic of splitting the light in a dual-star interferometer. Figure from Colavita (1999)

complete interferometers are required to share the same set of apertures (Fig. 4.2).
The splitting of light from the stars into two separate sets of delay lines, beam trans-
port systems, and beam combiners, is done in a “dual-star module” located just after
the apertures, with the split generally being accomplished using a beam-splitter.
Considerable care must be taken in designing the system in order to avoid small
pathlength measurement errors.

The exact level of astrometric precision that can be achieved depends on many
factors, including the separation of the target/reference pair, the size of the interfer-
ometric baseline, and the levels and distribution of atmospheric turbulence. For a
typical Mauna Kea seeing profile, the astrometric precision is given by

�a ' 300
�p
tB2=3

.arcsec/; (4.3)

where B is the baseline length in meters, � is the target/reference separation in
radians, and t is the integration time in seconds. For typical baselines of �100 m,
and an angular separation of �30 arcsec, Eq. (4.3) implies an astrometric precision
of 30 microarcsecond in an hour (Fig. 4.3). Better performance is possible from
space; the Space Interferometry Mission (SIM-Planetquest) (Shao et al. 1995) will
be capable of astrometry at the single microarcsecond level for a variety of science
topics, including the characterization of rocky planets around nearby stars.
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Fig. 4.3 Astrometric accuracy vs. star separation in a 1-h integration for different baseline lengths.
Model atmospheres providing 1/2 and 1.0 arcsec seeing are shown. These results assume an infinite
outer scale. Better results are achieved when the baseline exceeds the outer scale, as would be
expected with a 100 m baseline at most sites. Measurements with the Mark III interferometer of a
3.3 arcsec binary star are consistent with the model. Figure from Colavita (1999)

The magnitude of the astrometric signal of the star’s motion about its center of
mass (CM) with its planet is given by:

�aCM D 2
Mp

Ms

ap D Mp=MJ

Ms=Mˇ
ap

524
; (4.4)

whereMp,Ms,MJ , Mˇ are masses of the planet, star, Jupiter, and the Sun, and ap

is the semimajor axis of the planet’s orbit.
The minimum mass that can be detected is thus roughly given by

Mp=MJ & 524
�a

ap

Ms

Mˇ
(4.5)

& 0:1
�a=20� arcsec

ap=1.AU/

d 0

10pc

Ms

Mˇ
(4.6)

Mp=M˚ & 1:6
�a=1� arcsec

ap=1.AU/

d 0

10pc

Ms

Mˇ
(4.7)

where M˚ is the mass of the Earth, and d 0 is the distance to the target star.
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4.2.1.2 Radial Velocities

When the stars in a binary can be spatially resolved without active image correction
on ground based telescopes, the spectrum of each star can be recorded separately
without contamination from the other, and the standard precision RV method de-
scribed below can be used (see, for example, Campbell et al. 1988; Butler et al.
1996). Similarly, if the secondary is much fainter than the primary, precision RV
might be performed on the brighter star as though it were single, although there
is concern about the influence of the fainter lines. Several (�30) exoplanet can-
didates in binaries have been discovered in this manner. In some cases, the stars
were not previously known to be binaries, and their natures were only discovered
by long-term RV trends, or follow-up adaptive optics imaging. Some of these ef-
forts to detect planets in binary stellar systems include that of Toyota et al. (2005)
for single-lined and wide binaries (Desidera et al. 2006) targeting wide binaries, and
the program targeting single-lined and wide binaries by Udry et al. (2004).

The highest precision RV observations are obtained either from the I2 (molecular
iodine) absorption cell, or the use of carefully designed spectrographs with fiber
scrambling. In order to achieve an RV precision of �1 m s�1, an iodine absorption
cell is used to superimpose a reference spectrum on the stellar spectrum by sending a
starlight through the cell. The spectrum provides a fiducial wavelength-scale against
which radial velocity shifts are measured.

Thanks to its conceptual simplicity, the iodine technique is the most com-
monly adopted way to obtain precision radial velocities. Iodine absorption cells
are available on many spectrographs for the purpose of planet detection, includ-
ing: HIRES at the 10 m Keck I (Keck Observatory), Hamilton at the 3 m Shane
(Lick Observatory), SARG at the 3.6 m TNG (Canary Islands), UCLES at the 3.9 m
Anglo-Australian Telescope (Anglo-Australian Observatory), HRS at the 9 m HET
(McDonald Observatory), MIKE at the 6.5 m Magellan (Las Campanas Observa-
tory), UVES at the 8 m Kueyen (Cerro Paranal), and HDS at the 8.2 m Subaru
(National Astronomical Observatory of Japan).

In the iodine absorption cell technique, the Doppler shift of a star spectrum is
determined by solving the following equation (Marcy and Butler 1992)

Iobs.�/ D ŒIs.�C��s/ TI2
.�C��I2

/	 ˝ PSF; (4.8)

where ��s is the shift of the star spectrum, ��I2
is the shift of the iodine trans-

mission function TI2
, ˝ represents a convolution, and PSF is the spectrograph’s

point-spread function. The parameters��s and��I2
, as well as the parameters de-

scribing the PSF, are determined by performing a least-squares fit to the observed
spectrum, Iobs, as seen through the iodine cell. To this end, one also needs a high
SNR (signal-to-noise) star spectrum taken without the cell, Is , which serves as a
template for all the spectra observed through the cell, as well as the I2 transmission
function, TI2

. The latter can be obtained with a Fourier Transform Spectrometer
such as the one at the Kitt Peak National Observatory. The Doppler shift of a star
spectrum is then given by �� D ��s ���I2

.
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The velocity reflex amplitude of a star due to an unseen companion is given by

�vb D 2
2ap sin ip

Pp

Mp

Ms CMp

D 2
p
GMp sin ipq�
Ms CMp

�
ap

D 56:9m s�1 � Mp sin ip=MJq��
Ms CMp

�
=Mˇ

	 �
ap=1AU

� : (4.9)

Here Pp is the period of the planet’s orbit, G is the gravitational constant, and ip is
the inclination of the planet’s orbit with respect to the sky.

For an RV precision of �rv, the minimum mass that can be detected is roughly
equal to

Mp sin ip=MJ & 0:018
�rv

1m s�1

q��
Ms CMp

�
=Mˇ

	 �
ap=1AU

�
; (4.10)

Mp sin ip=M˚ & 5:6
�rv

1m s�1

q��
Ms CMp

�
=Mˇ

	 �
ap=1AU

�
: (4.11)

4.2.1.3 Observational Precisions

Astrometry is most sensitive to long period planets, RV to short period ones.
Figure 4.4 shows the companion masses one can detect for each method, assum-
ing 20�as ground-based astrometry, 1�as space-based astrometry, and 1m s�1 RV
precisions.
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Fig. 4.4 Sensitivity to S-type planets in wide binaries, comparing astrometric and radial velocity
techniques. All calculations assume solar-mass stars. Astrometric sensitivity assumes a distance of
10 pc to the target system
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4.2.2 Close Binaries

Radial velocity surveys for extrasolar planets have been restricted largely to stars
within '100 pc due to sensitivity limits. The majority of detected exoplanets are
at distances of 10–50 pc. Therefore, our observational definition of a “wide” binary
corresponds to projected orbital separations of &50 AU. More compact systems
form the complementary class of “close” binaries. From a theoretical standpoint,
binaries with semimajor axes of .50 AU pose important challenges to standard
ideas about the formation of giant planets (Norwood and Haghighipour 2002).

Imagine a protoplanetary disk around one star in a newly formed binary. Sup-
pose that the binary orbit has semimajor axis ab and eccentricity eb , and assume, for
simplicity, that the stars have equal masses. The tidal gravitational field of the com-
panion star truncates the circumprimary disk at a radius ofRt ' 0:26ab.1�eb

2/1:2

(Pichardo et al. 2005). If Rt . 3AU (i.e., inside the so-called “ice line”), it seems
unlikely that icy grains could form and grow into planetesimals, thus precluding the
embryonic stage of giant planet formation in the core-accretion scenario (Lissauer
1993). In more extreme cases, when Rt . 1AU, there may be insufficient mate-
rial in the disk to yield a Jovian-mass planet (Jang-Condell 2006). Even when Rt

is as large as '10 AU, stirring of the disk by the tidal field and the thermal dis-
sipation of spiral waves may inhibit planetesimal formation, as well as stabilize
the disk against fragmentation (Nelson 2000; Thébault et al. 2004; Thébault et al.
2006). In this case, it may be that neither the core-accretion picture nor gravita-
tional instability (Boss 2000) are accessible modes of giant planet formation. We
adopt Rt D 10AU (ab . 40AU for modest eb) as a fiducial upper limit for which
Jovian planet formation is significantly perturbed and perhaps strongly inhibited.
This provides a simple theoretical definition of a close binary that roughly matches
our observational measure.

A handful of planets in binaries with ab . 20AU have already been discovered
(see Table 4.1). The tightest of these candidate systems (HD 188753 Konacki 2005b)

Table 4.1 Close binaries with planets. When no eccentricity is given, only
the projected binary separation is known. The quantity M1=M2 is the plane-
tary host mass divided by companion mass. In HD 188753, the secondary is
a binary with semimajor axis 0.67 AU. In GJ 86, the secondary is a white
dwarf; to estimate the tidal truncation radius Rt , an original companion mass of
1M

ˇ

is assumed. (1) Konacki (2005a), (2) Campbell et al. (1988), (3) Hatzes
et al. (2003), (4) Queloz et al. (2000), (5) Mugrauer and Neuhäuser (2005),
(6) Lagrange et al. (2006), (7) Zucker et al. (2004), and (8) Chauvin et al. (2006)

Object ab (AU) e M1=M2 Rt (AU) Refs.

HD 188753 12.3 0.50 1.06/1.63 1.3 1
� Cephei 18.5 0.36 1.59/0.34 3.6 2, 3
GJ 86 �20 0.7/1.0 �5 4, 5, 6
HD 41004 �20 0.7/0.4 �6 7
HD 196885 �25 1.3/0.6 �7 8
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has a periastron separation of only '6 AU, which seems severely at odds with the
conventional lore on Jovian planet formation. While further study of this system is
needed due to the non-detection of the giant planet as reported by Eggenberger et al.
2007 (also see Jang-Condell 2006 for a supporting theoretical argument), (it should
be noted that the lower spectral resolution and technique used by Eggenberger et al.
(2007), which does not deconvolve the instrumental PSF, may be a factor in their
lower RV precision and thus lack of detection), this and other systems have in-
spired considerations into how giant planets might come to be in close binaries.
Pfahl (2005) and Portegies Zwart and McMillan (2005) suggested that the plane-
tary host star may have been acquired in a dynamical exchange interaction in a star
cluster after the planet formed, thus circumventing the complicating factors listed
above. As most stars are born in clustered environments, one wonders how often
dynamics can account for planets in close binaries. This idea was explored in Pfahl
and Muterspaugh (2006), where it was found that exchange interactions can account
for only �0.1% of close binaries hosting planets. However, the (admittedly small)
sample of systems in Table 4.1 seems to indicate that a larger fraction of �1% of
close binaries harbor giant planets (see Pfahl and Muterspaugh (2006) for details),
and perhaps planets do somehow form frequently in these hostile environments. It
is crucial that we begin to develop a census of planets in close binaries in order to
test the different theories about planet formation and dynamics.

4.2.2.1 PHASES Astrometry

The dual-star astrometry method can be modified to be applicable to binaries that are
so close that the individual telescopes of an interferometer cannot resolve the pair
(Lane and Muterspaugh 2004). The interferometer itself over-resolves the binary
(Fig. 4.1) and its high spatial resolution will then allow for precision astrometric
measurements. In this mode, the small separation of the binary results in both com-
ponents being in the field of view of a single interferometric beam-combiner. The
fringe positions are measured by modulating the instrumental delay with an ampli-
tude large enough to record both fringe packets.

Since the fringe position measurement of the two stars is no longer truly si-
multaneous, it is, however, possible for the atmosphere to introduce path-length
changes (and hence positional error) in the time between measurements of the sepa-
rate fringes. To reduce this effect, a fraction of the incoming starlight is redirected to
a separate beam-combiner. This beam-combiner is used in a “fringe-tracking” mode
(Shao and Staelin 1980; Colavita et al. 1999), where it rapidly (10 ms) measures
the phase of one of the starlight fringes, and adjusts the internal delay to keep that
phase constant. The fringe tracking data is used both in real-time as a feed-back
servo, after which a small residual phase error remains, and in post-processing,
where the measured residual error is applied to the data as a feed-forward servo.
This technique – known as phase referencing – has the effect of stabilizing the fringe
measured by the astrometric beam-combiner. For this observing mode, laser metrol-
ogy is only required between the two beam-combiners through the location of the



4 Observational Techniques for Detecting Planets in Binary Systems 87

0.001

0.01

0.1

1

10

100

10 100 1000 10000

A
st

ro
m

et
ri
c 

P
er

f.
 (

m
as

 *
sq

rt
(h

r)
)

Separation (mas)

Model Perf. w/o phase ref

Model Perf. w/ phase ref

AnisoplanatismPhot. NoiseCoherence Loss

Fig. 4.5 The expected narrow-angle astrometric performance in mas for the phase-referenced
fringe-scanning approach, for a fixed delay sweep rate, and an interferometric baseline of 110 m.
Also shown is the magnitude of the temporal loss of coherence effect in the absence of phase
referencing, illustrating why stabilizing the fringe via phase referencing is necessary

light split (which occurs after the optical delay has been introduced), rather than
throughout the entire array. Without phase referencing, the obtainable astrometric
precision is a factor of a hundred worse (see Fig. 4.5).

The first beam-combiner is now stabilized against atmospheric motions, and
modulates the interferometric delay to observe the fringe packets formed by each
star in the binary. To analyze this data, a double fringe packet based on Eq. (4.1)
is then fit to the data, and the differential optical path between fringe packets is
measured. A grid is constructed in differential right ascension and declination over
which the search is made. For each point in the search grid, the expected differen-
tial delay is calculated based on the interferometer location, baseline geometry, and
time of observation for each scan. A model of a double-fringe packet is calculated
and compared to the observed scan to derive a �2 value. This is repeated for each
scan, co-adding all of the �2 values associated with that point in the search grid, and
making a �2 surface as a function of differential right ascension (R.A.) and decli-
nation. The best-fit astrometric position is found at the minimum �2 position. The
uncertainties associated with this position are defined by the appropriate �2 con-
tour, which depends on the number of the degrees of freedom in the problem and
the value of the minimum �2. The final product is a measurement of the apparent
vector between the stars and associated uncertainty ellipse. Because the data were
obtained with a single-baseline instrument, the resulting error contours are very el-
liptical, with aspect ratios that sometimes exceed 10:1.
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Fig. 4.6 The visual orbits of � Pegasi showing perturbations by the third component. The spiral
line represents the apparent motion of the short-period pair’s center of light. The ellipses represent
the 1� uncertainties for PHASES measurements

The Palomar High-precision Astrometric Search for Exoplanet Systems
(PHASES) program uses this technique to monitor approximately 50 binaries
to search for substellar companions. An example of such systems is � Pegasi which
is a well-known, nearby triple star system. This system consists of a “wide” pair
with a semimajor axis of 235 mas (8.14 AU). One component of this system is a
single-line spectroscopic binary and has a semimajor axis of 2.5 mas and a physical
separation of 0.087 AU (Fig. 4.6). The perturbation due to the unseen (faint) short-
period component of this system is evident from Fig. 4.6. Similar sized perturbations
with longer orbital periods would indicate the presence of planetary companions.
Figure 4.7 shows the mass-period phase space in which PHASES observations
show companions do not exist in face-on, circular orbits in the 13 Pegasi system.

4.2.2.2 Radial Velocities

In the case when a composite spectrum of a binary star is observed, the classical
approach with the iodine cell (described in Section 4.2.1.2) cannot be used since
it is not possible to observationally obtain two separate template spectra of the bi-
nary components. To resolve this problem, one can proceed as follows. First, one
always takes two sequential exposures of each (binary) target – one with and the
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Fig. 4.7 The 13 Pegasi mass-period companion phase-space shows PHASES observations can
rule out tertiary objects as small as two Jupiter-masses. A few mass-period combinations introduce
slight improvements over the single-Keplerian model, but none of these are more significant than
1:7� , and are probably not astrophysical in origin. There is a long-period cutoff in sensitivity due
to the finite span of the observations. Similar detection limits have recently been published on other
PHASES targets (Muterspaugh et al. 2006)

other without the cell. This is contrary to the standard approach for single stars
where an exposure without the cell (a template) is taken only once. This way one
obtains an instantaneous template that is used to model only the adjacent exposure
taken with the cell. Next, one performs the usual least-squares fit and obtains the pa-
rameters described in Eq. (4.8). Obviously, the derived Doppler shift, ��i (where i
denotes the epoch of the observation), carries no meaning since each time a different
template is used. Moreover, it describes a Doppler “shift” of a composed spectrum
that is typically different at each epoch. However, the parameters – in particular the
wavelength solution and the parameters describing PSF – are accurately determined
and can be used to extract the star spectrum, I?;i

obs .�/, for each epoch i , by inverting
Eq. (4.8). That is,

I
?;i
obs .�/ D ŒI i

obs.�/ ˝�1 PSFi 	=TI2
.�/; (4.12)

where ˝�1 denotes deconvolution, and PSFi represents the set of parameters de-
scribing PSF at the epoch i . Such a star spectrum has an accurate wavelength
solution, and is free of the I2 lines and the influence of a varying PSF. In the final
step, the velocities of both components of a binary target can be measured with the
well-known two-dimensional cross-correlation technique TODCOR (Zucker and
Mazeh 1994) using as templates the synthetic spectra derived with the ATLAS 9 and



90 M.W. Muterspaugh et al.

ATLAS 12 programs (Kurucz 1995) and matched to the observed spectrum, Is.�/.
The formal errors of the velocities can be derived from the distribution between the
velocities from different echelle orders or using the formalism of TODCOR (Zucker
and Mazeh 1994). The technique currently produces RVs of binary stars with an av-
erage precision of 20 m s�1 (Konacki 2005b). Improvements to the technique are
being introduced to reach the level below 10 m s�1 (Konacki 2009).

With this modified iodine technique, Konacki (2005b) initiated the first RV
survey for circumprimary or circumsecondary planets of binary or multiple stars
(mainly hierarchical triples). The survey’s sample of �450 binaries (northern and
southern hemisphere) was selected based on the following criteria. (1) The appar-
ent separation of the components had to be smaller than the width of the slit (e.g.,
0.6 arcseconds for Keck-I/HIRES) to avoid possible systematic effects. Such sys-
tems will remain unresolved under most seeing conditions. (2) The brightness ratio
between the components should not be too large (at the order of 10 or less) to be
able to clearly identify spectra of both components. (3) The orbits of the binaries
should be well known to constitute a firm ground on which one can discuss pos-
sible detection (or lack) of planets and substellar companions in the context of the
binary characteristics. All these requirements could be satisfied by targeting a sub-
set of speckle binaries that have determined orbits from the Catalog of Orbits of
Visual Binary Stars (Hartkopf et al. 2001). This catalog contains 1,700 binaries, of
which 1,300 have projected semimajor axes smaller than 1 arcsec. The sample is
sufficiently large to produce meaningful statistics. Also, such binaries have been
ignored by previous RV studies.

The survey was initiated in 2003 at the Keck-I/HIRES and continued there until
mid-2007. It was also carried out for a year (2006–2007) at the TNG/SARG. Ap-
proximately 150 speckle binary and triple stellar systems were observed. The first
candidate planet in a triple star system was announced by Konacki (2005b). This
and a few other interesting targets, including several new triple star systems, were
followed up with the TNG/SARG and HET/HRS. All collected spectra are now be-
ing re-reduced with a new data pipeline and a publication summarizing this effort
will be prepared in the near future.

4.2.2.3 Eclipse Timing

Should a binary happen to be oriented with its orbital plane in the line of sight, it
will exhibit eclipses as one star passes in front of another. It has long been recog-
nized that periodic shifts in the observed times of photometric minima of eclipsing
binaries can indicate the presence of an additional component to the system (see,
for example, Woltjer 1922; Irwin 1952; Frieboes-Conde and Herczeg 1973; Doyle
et al. 1998). For a binary with separation wide enough to allow for stable planetary
systems to exist around just one component, the probability of such an alignment
is extremely small, and very few targets are accessible. However, should one find
such a fortunate happenstance, one can detect the planetary companions by pre-
cision timing of the eclipses. Clearly, this method has no direct analog for single
systems.
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This method can detect S-type planets or similarly moons of transiting planets.
For this evaluation, it is assumed that the depth of the planet (or moon) eclipse is
sufficiently small as to be ignored (in such a detection, one could then re-evaluate
light curves to look for such transit signals) and the binary orbit is circular. The
velocity of the stars orbiting each other and the offset of the star-planet center of
mass from the center of the star itself determines the timing variation observed as

�t D xCM=vb

D


apMp sin �

M2 CMp

�

Pb

2ab

�

� 57 sec � .Pb=month/
ap

.ab=7/

�
Mp=MJ

�
.M2=Mˇ/

sin� (4.13)

where M2 is the mass of the secondary star (or the transiting planet, assumed to
host the S-type companion), Mp is the mass of the S-type object orbiting M2, �
is angle between the planet’s orbital angular momentum vector and the direction
of motion of the host star during eclipse, and Pb is the period of the binary orbit.
The eclipse timing delays due to orbit of M2 about the center of mass of M2-Mp

system. The factor of 7 in Eq. (4.13) is an approximate criteria for stability, imply-
ing that the planet’s semimajor axis is seven times smaller than that of the binary
(this factor varies by the system, and can be determined through detailed simula-
tions). Equation (4.13) is thus an upper limit for the timing effect. Converting the
semimajor axis to orbital periods, this equation becomes

�t � 41 sec � .Pb=month/1=3
�
Pp=day

�2=3 Mp=MJ�
M

1=3

b
M

2=3
2

�
=Mˇ

sin �

� 65 sec � .Pb=month/1=3
�
Pp=day

�2=3 Mp=MJ

Mb=Mˇ
sin �: (4.14)

In this equation,Mb D M1 CM2 CMp. here it has been assumed that M1 � M2,
in which case the maximum stable planet period is 1/13 times that of the binary
period, implying days and months are the natural units for each respectively (S-type
planets cannot exist in much shorter period systems, and longer period systems are
even less likely to show eclipses). The equivalent relationship for a moon orbiting
an eclipsing Jupiter is

�t � 13:3 sec � .Pb=month/1=3
�
Pp=day

�2=3 Mp=M˚
.Mb=Mˇ/1=3 .M2=MJ /

2=3
sin�

(4.15)

where now the b subscript refers to the star-Jupiter analog system and p to the
Jupiter analog’s moon.

The precision with which eclipse minima can be timed is derived using stan-
dard �2 fitting techniques. Assume a photometric data set fyig occurring at times



92 M.W. Muterspaugh et al.

ftig with measurement precisions f�ig, and a model photometric light curve of flux
F.t � t0/. The corresponding intensity is I.t � t0/ D fF.t � t0/D2�t=4, where
f (0 � f � 1) is the fractional efficiency and throughput of the telescope,D is the
telescope diameter, and �t is the sample integration time. The quantity F.t � t0/

might be determined to high precision by observing multiple eclipse events. The
fit parameter t0 is uncertain by an amount equal to the difference between the
value for which �2 is minimized and the value for which it is increased by one:
1C �2.t0/ D �2.t0 C �t0/,

1C �2 D 1C
NX

iD1

�
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Because t0 is the minimizing point, the first derivative of �2 at t0 is zero. That is,
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Rearrangement of terms in Eq. (4.16) leads to
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An eclipse of length � is approximated as a trapezoid-shape light curve (Fig. 4.8)
with maximum and minimum photon fluxes F0 and F0.1 � h=2/. Here h is a di-
mensionless positive number producing an eclipse depth of hF0=2. In the case of
a faint secondary, h is roughly twice the ratio of the squares of the stellar radii
.2R2

2=R
2
1/. The ingress and egress are each assumed to be of length k�=2. The quan-

tity k � 2R2=.R1 CR2/ is unity in the case of an eclipsing binary with components
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of equal size, when the trapezoid becomes a “V”-shape. In a functional form, the
above-mentioned model is given by (also, see Fig. 4.8)

F.t�t0/D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

F0 t � t0 � ��=2
F0 .1 � ht= .k�/ � h= .2k// ��=2 � t � t0 � ��=2Ck�=2
F0 .1 � h=2/ ��=2C k�=2 � t � t0 � �=2� k�=2
F0 .1C ht= .k�/ � h= .2k// �=2� k�=2 � t � t0 � �=2

F0 �=2 � t � t0
Only portions of the light curve during ingress and egress have nonzero slopeˇ̌

ˇ @F .t/
@t

ˇ̌
ˇ D hF0= .k�/. In more accurate models, the slope of the light curve will

be non-zero but small in other regions, and will not contribute much to the sum in
Eq. (4.16).

The number of data points contributing to the sum is thus N D gk�=�t , where
0 � g � 1 is the fraction of the observed eclipses and also accounts for the fraction
of time that was lost (e.g., to camera readout). The quantity �t is the integration
time for each measurement. The measurement noise �I is given by

�I D
�
I C �2

sc C Ibg C ndark�t C �2
rn

�1=2

(4.18)

where Ibg D fFbgD
2�t=4 is the sky background, ndark is detector dark current,

�rn is detector read noise, and �sc is scintillation noise given by Young (1967) as

�sc D 0:09I .D=1 cm/�2=3Xe�h=.8000 m/=.2�t=1 sec/1=2 (4.19)

� 0:003I .D=1m/�2=3=.�t=1 sec/1=2 (4.20)
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where X is the airmass and h is the altitude of the observatory. The drop in noise
during eclipse is ignored (a factor less than �1:4) and Eq. (4.18) is combined with
Eq. (4.17) to obtain an overall timing precision (in seconds) of

�t0 D
s
k .�=1 sec/

gh2

"
4

fF0 .D=1m/2
C 9 � 10�6

.D=1m/4=3

CD2fFbg=4C ndark C �2
rn= .�t=1 sec/

f 2F 2
0 

2 .D=1m/4 =16

#1=2

(4.21)

� 0:18 sec �
s
k .�=1 hr/

fgh2

"
10.V �12/=2:5

.D=1m/2
C f

.D=1m/4=3

#1=2

: (4.22)

The last term in the first line (associated with dark current, read noise, and back-
ground) is generally smallest and will be ignored. In most cases, the second term
– associated with scintillation – is dominant (though zero in the case of space-
based observatories). The exponent of .V � 12/=2:5 in Eq. (4.21) shows that for
meter-sized telescopes, photon noise is only dominant for stars fainter than twelfth
magnitude.

Systematic and astrophysical noise sources may have effects that limit the actual
precisions achieved. Mass transfer between stars can cause drifts in orbital periods.
Variations of this type are non-periodic, distinguishing themselves from companion
signals. Applegate (1992) has shown that gravitational coupling to the shapes of
magnetically active stars can cause periodic modulations over decade timescales.
This gravitational/magnetic coupling requires the star to be inherently variable (false
positives can be removed using the overall calibrations of photometric data). It is
possible that star spots will have large effects on timing residuals that are particularly
difficult to calibrate (Watson and Dhillon 2004). Due to orbit-rotation tidal locking,
the effect of a starspot on the light curve can be detected from the light curves of
several orbits, and fitting the starspot can potentially remove the introduced timing
biases.

The timescale for eclipses of such long period binaries is of the order of 12 h.
Comparing Eqs. (4.14) and (4.21), one finds that S-type planets with periods of a
few days can be detected around either star in eclipsing binaries with month-long
periods if their masses are more than

Mp=M˚

& 3

�
Mb=M

ˇ

�
.Pb=month/1=3

�
Pp=day

�2=3
s
k .�=12 hr/

fgh2

"
10.V�12/=2:5

.D=1m/2
C f

.D=1m/4=3

#1=2
:

(4.23)

Equation 4.21 indicates that a meter-class ground-based telescope can time a gi-
ant planet transit (h� 0:02, k� 0:18) to approximately 9.4 s in the regime where the
photometric precision is dominated by scintillation noise, assuming a Jupiter-sized
planet orbiting a star of solar-size and mass with period of a month (implying 6-h
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Fig. 4.9 Sensitivity to S-Type planets in narrow binaries, comparing astrometric, radial velocity,
and eclipse timing techniques. All calculations assume solar-mass stars. The PHASES sensitivity
assumes 20�as precision and a distance to the system of 20 pc. Eclipse timing assumes a 1 m pho-
tometric telescope observing a V D 10 magnitude system with binary orbital period of 2 months
(longer period systems are even less likely to show eclipses). The eclipse timing sensitivity curve
only extends to the region where planets are likely to have stable orbits

duration eclipses). Figure 4.9 shows the companion masses one can detect for each
method, assuming 20�as ground-based astrometry, 20m s�1 RV, and 1 m ground-
based photometric telescope for eclipse timing. This precision is sufficient to find
Earth-mass moons. For bright stars, space-based observatories offer even better pre-
cisions. The planetary system of HD 80606 is one of such long-period transiting
systems (Gillon 2009, arXiv:0906.4904v1). However, the eccentricity of its giant
planet is so large (0.934) that moons might not be realistic to expect.

Space-based photometric missions such as Kepler have, as their primary goal,
the detection of Earth-like planets via transits of the planet across the star. However,
such photometric events can be explained by other astrophysical phenomena, such
as a transiting Jupiter blended with a background star, otherwise these results may
be unreliable. However, Earth-like moons of transiting Jupiters might be identified
through timing, and it is possible to confirm the nature of such a system. In such
a scenario, a transiting Jupiter can be positively confirmed by ground-based radial
velocity observations. Once this has been established, variations in the transit times
would be used to detect Earth-sized moons. Because these photometric missions
have limited lifetimes (�3 years), detections of moons are only possible for short
period (few months or less) Jupiters, for which many transit events can be observed
(unless a follow-up ground-based campaign is pursued with large telescopes). If
the planet/moon are to be in the habitable zone, one must look for such systems
around late-type (cool) stars. It is possible that such systems have the greatest like-
lihood of being habitable; tidal-locking of the Earth-sized moon to the Jupiter-like



96 M.W. Muterspaugh et al.

planet would ensure that the moon has day/night cycles and stabilize its rotational
axis similar to the way in which the Earth’s is stabilized by its own moon. Both of
these conditions have been argued as favorable for life (see, for example, Laskar
et al. 1993).

4.3 P-Type (Circumbinary) Planets

All the confirmed planets found in binary systems thus far are in S-type orbits.
Discovery of circumbinary planets would constitute a new class of planetary system
and would inspire new considerations to the interplay between system dynamics and
planet formation.

4.3.1 Radial Velocities

A circumbinary planet will exhibit two indirect effects on the velocities of the stellar
components of the system. First, the apparent system velocity will vary in a periodic
manner due to the motion of the binary about the system barycenter. Second, the
finite speed of light will cause apparent changes in the phase of the binary orbit.
These effects may be detectable using modern observational techniques.

The first effect, that is, periodic changes in the apparent system velocity, is the
same effect as seen in a single star. However, it may be harder to detect for three rea-
sons: (1) the binary system is usually more massive than a single star of the same
magnitude, (2) extremely short-period planetary orbits (to which system velocity
measurements are most sensitive) are unstable around binaries, and (3) the presence
of two sets of spectral lines may complicate the measurement, as in Section 4.2.2.2.
Equation (4.9) shows that a Jupiter-mass planet with the shortest period stable orbit
around a 10-day period binary causes a 2Mˇ binary to move about its barycenter
by �40 m s�1, with the amplitude decreasing as the square root of planet’s semima-
jor axis. Radial velocity observations with 20m s�1 precision as demonstrated by
Konacki’s method (Konacki 2005a) can detect Jupiter-like planets in orbits of the
size �4 AU or less, down to the critically stable orbit (Holman and Wiegert 1999).

The second observable effect is the additional light travel time as the binary sys-
tem undergoes reflex motion caused by the planet. The magnitude of this effect is
given by

�t D 2
apMp sin ip

cMb

D 0:95 sec

�
ap=1AU

� �
Mp=MJ

�
sin ip

Mb=Mˇ
:
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Following a similar derivation as that for finding the expected precision of
eclipse-timing, the precision with which one can estimate the orbital phase of a
binary, based on radial velocity measurements, is

�� D �rvsP
i



@vi

@�

�2
: (4.24)

The quantity �rv in this equation presents the precision of the radial velocity mea-
surement and @vi=@� is the derivative of the model radial velocity curve with respect
to orbital phase, evaluated at times ti . The timing precision corresponding to the
phase precision above is given by ��=2 D �t=Pb, where Pb is the binary period.

Assuming a circular orbit for the binary, v .t/ � K cos .2t=Pb C �/ where K
is the semiamplitude of the RV signal. IfN measurements (each with two measured
velocities, one for each star) are approximately evenly distributed in phase,

�� D
p
2�rvp

.2N � 12/K
; (4.25)

�t D Pb�rvp
2 .2N � 12/K

; (4.26)

where 12 is the number of degrees of freedom for the model. If the lines from both
stars are observed, the effective K is K1 C K2 and the resulting (1�) minimum
detectable mass is given by

Mp D 41:4MJ

�
�rv=20 m s�1

�
.Pb=10 days/4=3 .Mb=Mˇ/2=3

p
2N � 12 sin ib sin ip

�
ap=1 AU

� ; (4.27)

where ib and ip are the inclinations of the binary and planet orbits with respect to
the sky, respectively. Twenty-five 20m s�1 radial velocity measurements of a 10-day
binary of Sun-like stars detect moderate-mass brown dwarfs (�30 MJ ) at inner-
most stable orbit. Objects at the planet/brown dwarf threshold of 13 MJ are only
detectable in orbits larger than 0.82 AU. Alternatively, if only one set of lines are
observed, the resulting expression becomes

Mp D 41:4MJ



1C M1

M2

� �
�rv=20 m s�1

�
.Pb=10 days/4=3 .Mb=Mˇ/2=3

p
N � 11 sin ib sin ip

�
ap=1 AU

� :

(4.28)

Here M1 is the mass of the star whose lines are observed, and M2 is that of the
faint star.

High precision radial velocity observations are only possible on slowly rotating
(v sin i < 10m s�1) stars. Here v is the stellar rotational velocity, and i is the incli-
nation of its spin vector. Measurements of more rapidly rotating stars are limited
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Fig. 4.10 Sensitivity of radial velocity measurements to circumbinary planets. The two vertical
lines at the left represent the approximate critical orbits around 5-day (to the left) and 10-day
period binaries. Shorter period companions have unstable orbits. Stars whose rotation rates are
tidally locked to orbital periods less than about 5 days show sufficient rotational line broadening
to prevent 20m s�1 radial velocity precisions. The calculations assume the binary consists of two
stars each with a mass of 1 M

ˇ

by line broadening to levels worse than the nominal 20m s�1 that has been used in
the present chapter. This effect is particularly important for finding planets around
short-period binaries, in which the stars’ rotation rates are often tidally locked to the
binary orbital period (Fig. 4.10). These rotation rates limit the observed precisions
for systems with periods approximately 5 days or less.

4.3.2 Eclipse Timing

Similar to the case of S-type binaries, Eclipse Timing can be used to detect planetary
objects in P-type binary systems.

The amplitude of the eclipse timing variation effect is given by Eq. (4.13). As
with RV measurements, there is a mass/inclination ambiguity; the following deriva-
tion assumes no correlation between binary and planet inclinations (Fig. 4.11).

Dividing the precision of an individual measurement by Nobs � 6, where Nobs is
the number of observed eclipses and there are six parameters to a timing perturbation
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, 6 h eclipses,Nobs D 25 observations (150 total
hours of data), V D 10 magnitudes, and 1� detections. From top to bottom, lines show sensitivity
for D D 0:1 m on the ground, D D 0:5m on the ground, D D 1:0m in space (i.e., Kepler),
D D 10m on the ground, and D D 2:5m in space (HST, SOFIA)

fit (two periods, the orbital eccentricity, angle of periastron, epoch of periastron, and
the ratio of the mass of the planet to the total mass of the binary), convertingF0 to V
magnitude, and combining Eq. (4.21) with that for the timing effect of reflex motion
(Eq. 4.24) gives a minimum detectable companion mass of

Mp D 0:19MJ

s
k .�=1 hr/

fgh2 .Nobs � 6/

Mb=Mˇ�
ap=1AU

�
sin ip

"
10.V �12/=2:5

.D=1m/2
C f

.D=1m/4=3

#1=2

:

(4.29)

Figure 4.12 compares the sensitivity of RV and eclipse timing for circumbinary
planets. Eclipse timing is more sensitive to long period planets, while RV studies
can be more generally applied, as they do not require the special circumstances of
an edge-on binary orbit.

One might also inquire about the sensitivity of this technique to outer planets
in systems comprised of a single star and a transiting “hot” Jupiter. In this case,
h � 2R2

p=R
2
star � 0:02 and k � 2Rp=.Rstar CRp/ � 0:18, the “binary” is half as

massive, and the eclipse duration is half as long. The companion sensitivity drops
by a factor of 8, and the technique is (barely) in the range of detecting additional
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Fig. 4.12 Sensitivity to circumbinary planets, comparing radial velocity and eclipse timing
techniques. All calculations assume solar-mass stars. Radial velocity assumes 20 m s�1 precision.
Both the system velocity and apparent period variation observables are included for the sensitivity
curve, the latter assumes a 5 day binary orbital period. Eclipse timing assumes either a 1 m ground-
based photometric telescope or 2.5 m space-based telescope (such as HST or SOFIA), observing a
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companions of planet mass. However, for the typically V D 10 magnitude transit-
ing planet systems being discovered, 3 m s�1 radial velocity observations are more
sensitive than half-meter telescope transit timing for companions with periods up to
60 years; even for observatories such as HST and SOFIA (for which scintillation
noise is small or zero), this transition occurs at 15 year period companions.

It should be noted that the above description does not account for the possibil-
ity of resonant orbits, for which timing perturbations can be greatly enhanced by
many-body dynamics – we have assumed independent Keplerian orbits for the sub-
systems. Resonant effects on timing perturbations have been considered by Holman
and Murray (2005) and Agol et al. (2005).
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Chapter 5
The SARG Planet Search

S. Desidera, R. Gratton, M. Endl, A.F. Martinez Fiorenzano, M. Barbieri,
R. Claudi, R. Cosentino, S. Scuderi, and M. Bonavita

5.1 Introduction

The search for planets in multiple systems allows to improve our knowledge of
planet formation and evolution. On one hand, the frequency of planets in binary
systems has a strong effect on the global frequency of planets, as more than half of
solar-type stars are in binary or multiple systems (Duquennoy and Mayor 1991). On
the other hand, the properties of planets in binaries, and their differences with the
properties of the planets orbiting single stars, would shed light on the effects caused
by the presence of the companion stars. Indeed, the first analysis of the properties of
planets in binaries showed the occurrence of some differences with respect to those
orbiting single stars (Zucker and Mazeh 2002; Eggenberger et al. 2004).

The search for planets in binaries can follow two complementary approaches.
The first approach is to perform dedicated surveys looking for planets in binary sys-
tems. Several programs currently in progress, focusing on different types of binaries
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are described in this book. The second approach is to study the binarity of the hosts
of planets discovered in general surveys, which include many binary stars in their
lists in spite of some selection biases against them (Patience et al. 2002; Chauvin
et al. 2006; Mugrauer et al. 2006).

In this chapter, we describe the first planet search entirely dedicated to binary
systems, the survey on-going at TNG (Telescopio Nazionale Galileo) using the high
resolution spectrograph SARG (Spettrografo Alta Risoluzione Galileo). The main
goal of the project is to search for planets in binaries with similar stellar compo-
nents and typical separations between 50 and 500 AU. The second major goal of
the SARG survey is to search for abundance anomalies caused by the ingestion of
planetary material by the central star.

5.2 Properties of Planets in Binary Systems

More than 40 planets have been found in binary or multiple systems (see Desidera
and Barbieri (2007) for a recent compilation). We performed a statistical analysis
of the properties of known planets in binaries and made a comparison with those
orbiting single stars, based on the planet and stellar parameters listed in the Cata-
log of Nearby Exoplanets by Butler et al. (2006). Figure 5.1 shows the mass-ratio1

Fig. 5.1 Mass-ratio vs semimajor axis of binaries with planets. Open circles represent binaries
for which orbits are available. Open squares correspond to those for which only the separation is
available. Figure from Desidera and Barbieri (2007)

1 The mass-ratio is defined here as Mcompanion=Mplanethost. In nearly all cases, the companion is less
massive than the planet host.
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vs semimajor axis for stars with planets in binary (or multiple star) systems. For
hierarchical triple systems in which the planet orbits the isolated companion,2 the
masses of the farther companions are summed. It results from Fig. 5.1 that planets
might exist in binaries with very different properties. In the case of low-mass com-
panions at a very wide separation (e.g., larger than 1,000 AU), the dynamical effects
of the companion on the formation and evolution of the planetary system might be
very limited, while in the cases of very tight binaries with separation smaller than
about 20 AU (e.g., � Cep, GL 86, HD 41004) the presence of the planet represents
a challenge for the current models of planet formation (Hatzes and Wuchterl 2005).
Figure 5.1 also shows a broad range of companion mass, from masses similar or
even larger than the planet-hosting star down to substellar masses in a few cases. In
most cases, the companions of planet hosts are low-mass stars.

Figure 5.2 shows the projected mass vs orbital period of extrasolar planets orbit-
ing single stars as well as the components of binary stars. As shown in this figure,
broad ranges of masses and periods exist for these objects. It appears that massive
short period planets are mostly found in binary systems.

The large variety of the binary properties, in terms of separation and mass-ratio,
makes necessary the use of some quantitative estimate of the dynamical effects
of the binary companion(s). We use the critical semimajor axis acrit (Holman and
Wiegert 2001) as a reference value to determine the dynamical stability of a planet

Fig. 5.2 Projected mass vs orbital period of extrasolar planets. Open circles: single stars; filled
circles: binary stars. The size of the symbol is proportional to the critical semimajor axis for dy-
namical stability (larger symbols refer to the tighter binaries). Figure from Desidera and Barbieri
(2007)

2 16 Cyg (Patience et al. 2002), HD 178911 (Tokovinin et al. 2000) plus HD 40979 (Mugrauer
et al. 2007a), HD65216 (Mugrauer et al. 2007b) discovered after the publication of Desidera and
Barbieri ( 2007).
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Fig. 5.3 Values of the semimajor axis for dynamical stability acrit (solid line) and limit of the
region in which the encounter velocities of planetesimal is small enough to allow the accretion of
kilometer-sized planetesimals across (dashed line) and the radius of tidal truncation of the circum-
stellar disk atid (dotted line), versus binary semimajor axis, for e = 0.31, Mcom = 0.5 M

ˇ

, and
Mobj D 1M

ˇ

. Figure from Desidera and Barbieri (2007)

in a binary system. This quantity is a physical quantity that represents the dynamical
effects due to a companion on planet formation and stability, and includes the orbital
parameters and mass-ratio.3 For this reason, acrit is more useful than the projected
binary separation. Other useful quantities are the radius of tidal truncation of the
circumstellar disk atid (Pfhal and Mutherspaugh 2006) and the limit of the region
in which the encounter velocities of planetesimal is small enough to allow the ac-
cretion of kilometer-sized bodies across (Thebault et al. 2006). Figure 5.3 shows a
comparison between these quantities.

The critical semimajor axis acrit was used by us (Desidera and Barbieri 2007)
to divide the sample of binary stars with planets, according to the relevance of the
dynamical effects. We define a ‘tight’ (or ‘close’) binary as one with acrit <75 AU
and a ‘wide’ binary as one with acrit >75AU. The boundary between tight and wide
binaries (i.e., acrit D 75AU) corresponds to a projected separation of about 200–300
AU depending on the mass-ratio.

3 The critical semimajor axis for dynamical stability of a planet in a binary as defined by Holman
and Wiegert (2001) is given by

acrit D .0:464� 0:380
� 0:631ebin C 0:586
ebin/ abin C �
0:150e2bin � 0:198
e2bin

�
abin: (5.1)

In this equation, abin and ebin are the binary semimajor axis and eccentricity, and 
 is the mass-
ratio defined as 
 D Mcomp=.Mobj CMcomp/. The quantity Mobj is the mass of the object for
which the critical semimajor axis for dynamical stability is computed and Mcomp is the mass of its
companion. The critical semimajor axis given by Eq. (5.1) refers to a planet in a circular orbit on
the same plane as that of the binary.
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As discussed in Section 5.1, the study of the properties of planets in binaries and
the search for differences between the characteristics of these objects and those of
planets orbiting single stars, is crucial to the understanding of the role of binarity
in planet formation and evolution. Such a study was first carried out by Zucker and
Mazeh (2002) and Eggenberger et al. (2004), and more recently on an expanded
sample of planet by us (Desidera and Barbieri 2007). We have tested the hypothesis
that the parameters of planets (mass, period, eccentricity) in tight and wide binaries,
as well as in single stars, can be drawn from the same parent distribution, using the
Kolmogorov–Smirnov and Mann–Whitney U tests.

The following results were found (see Fig. 5.4):

� The mass distribution of short period (P < 40 days) planets in tight binaries is
significantly (>99%) different from that of planets orbiting single stars as well
as the components of wide binaries. Massive, short period planets are mostly
found in tight binaries (Figs. 5.2–5.4a). This somewhat resembles the evidence
that short-period spectroscopic binaries have, in most cases, a farther companion
(Tokovinin et al. 2006).

� The mass distribution of planets with periods longer than 40 days in tight and
wide binaries and around single stars are not significantly different (Fig. 5.4b).

� The differences in period distribution are also not highly significant (Fig. 5.4c).
However, there is a marginal indication of the lack of long period planets in tight
binaries (no planet with period longer than 1,000 days).

� The eccentricity distribution of planets in tight binaries with periods longer than
40 days is not significantly different from those orbiting single stars. On the other
hand, there is a marginal indication of larger eccentricity of planets in wide bina-
ries (Figs. 5.4d–5.5).4

� The frequency of systems with more than one planet around the components of
wide binaries is similar to that of planets orbiting single stars. No multiple planets
have been yet discovered around the components of tight binaries. The small
number of planets in tight binaries (and their 15% probability of occurrence)
makes the lack of multiple planets in tight binaries insignificant.

We conclude that planets in close binaries have different characteristics compared
to those orbiting single stars and components of wide binaries.

The understanding of the formation mechanism of the planets in close binaries
is a key problem. One possibility is that these planets formed before the binary
configuration was modified by stellar encounters in the native star cluster (Pfhal and
Mutherspaugh 2006). The alternative is that planets do form in close binaries in
spite of the seemingly unfavorable conditions.

The mass and period distributions of planets in wide binaries do not have statis-
tically significant difference with to those of planets orbiting single stars. The only

4 The very recent discovery of planets in highly eccentric orbits, orbiting stars in binary systems
(Tamuz et al. 2007), adds further support to the link between binarity and extreme planet
eccentricities.
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a

b

c

d

Fig. 5.4 Cumulative distributions of planets parameters for planets orbiting single stars (continu-
ous lines), components of wide binaries (dotted lines), and components of tight binaries (dashed
lines). (a): mass distribution of planets with periods shorter than 40 days. (b): mass distribution of
planets with periods longer than 40 days. (c): period distribution. (d): eccentricity distribution of
planets with periods longer than 40 days. Figure from Desidera and Barbieri (2007)
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Fig. 5.5 Eccentricity vs orbital period for planets in binaries (filled circles) and those orbiting
single stars (empty circles). Different sizes of filled circles refer to different periastron distances of
the binary orbit (larger sizes: closer orbits). Figure from Desidera and Barbieri (2007)

marginally significant difference between planets orbiting single stars and those or-
biting the components of wide binaries is in the planet’s orbital eccentricity. In any
case, large eccentricities are not unique to planets in binaries, and the possible differ-
ences in eccentricity appears to be limited to the range e � 0.5–0.6. This indicates
that there are mechanism(s) generating planet eccentricity up to 0.4–0.5 that are
independent of the binarity of the planet-hosting star, and are characteristic of for-
mation and evolution of a planetary system (e.g., disk–planet interactions (Tremaine
and Zakamska 2004), planet–planet scattering (Marzari and Weidenschilling 2002)).
These probably act during or shortly after planet formation. Further eccentricity en-
hancements, possibly linked to the presence of a companion, might take place at
later epochs. In fact, Takeda et al. (2007) noted that most high-eccentricity planets
orbit old stars (ages > 5 Gyr). Mechanisms that require long time scales to modify
planetary orbits, such as Kozai oscillations (Wu and Murray 2003) and chaotic evo-
lution of planetary orbits induced by dynamical perturbations (Benest and Gonczi
2003; Marzari et al. 2005) then seem favored.

In summary, these results indicate that a companion at large separation
(�300–500 AU, exact limit not well constrained) probably does not affect planet
formation around the other component too much, whereas the effect of the compan-
ion is much more relevant at small separations, causing significant differences in the
physical properties of the planets. The exploration of the frequency and properties
of planets at intermediate binary separations (100–300 AU), the range of a large
fraction of the binaries of the SARG planet search, is important to establish the
separation required to show the peculiar features of planet frequency and character-
istics. This is a separation range where some planet formation models predicts little
or no effect (e.g., Thebault et al. 2006, a prediction to be tested observationally.
This is the main goal of the SARG planet search project.
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5.3 Binary Systems as a Tool to Study the Ingestion of Planetary
Material by the Central Star

The evidence for a high metal content in stars harboring planets is becoming
stronger as planet discoveries cumulate and suitable planet hosts and control sam-
ples are studied using homogeneous procedures (Santos et al. 2004; Fischer and
Valenti 2005). Two alternative hypotheses have been proposed to explain these
observations: either the high metallicity is responsible for the presence of planets,
making their formation easier (see, e.g., Ida and Lin 2004), or the planets are the
cause of the high metallicity, because of pollution of metal-rich planetary material
onto the (outer region of the) central star (Gonzalez 1997).

Infall of planetesimals on the star during planet formation phase is generally
expected on the basis of current models. The orbital migration proposed to explain
the occurrence of the close-in giant planets found by radial velocity surveys also
points to the infall of portions of the proto-planetary disk on the star.

Most of the accretion of planetary metal-rich material is expected to take place
during the early phases of the planetary system lifetime. However, when a star is
still in the phase of gravitational contraction, its convective zone is much thicker
than that of main sequence stars (see, e.g., Murray et al. 2001). In this case, the
metal-rich material should be uniformly distributed by convective mixing over a
large portion of the star, resulting in a negligible photospheric chemical alteration
even for rather large amounts of accreted material. Accretion at later times, when the
star is approaching or has already reached the main sequence (stellar age larger than
about 10 Myr for a solar-type star) is likely required to produce observable differ-
ences. The ingestion of planets scattered toward the star by dynamical interactions
(Marzari and Weidenschilling 2002) might also produce metallicity enhancements
at late phases.

Murray et al. (2001) found that the Sun should have ingested some 2M˚ of
meteoritic material (about 0:4M˚ of iron) during its main-sequence lifetime, con-
sidering the drop of iron density in the asteroid region and the time distribution
of the impact craters. This corresponds to a metallicity enhancement of 0.017 dex.
Such a small difference in abundance is not detectable when considering a field
star, for which no proper reference for the original unpolluted abundance is avail-
able. In binary systems and star clusters, instead such a reference is provided by the
other companion/members of the system. Therefore, the comparison of the chemical
composition of wide binaries is a very powerful approach to study the occurrence of
planetary pollution, provided that differential abundance analysis with a precision
of about 0.02 dex can be obtained. The occurrence of large amounts of accretion
of metal-rich material is required if the high metallicity is the result of planets or
planetesimal ingestion (Gonzalez 1997). In this case, some systematic difference
is expected between members of a binary system with and without planetary com-
panions. The SARG planet search, that includes both the radial velocity monitoring
to search for planets and the differential abundance analysis, is ideal to test this
hypothesis.
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5.4 The SARG Sample

With the two science goals identified in Sections 5.1–5.3 (i.e., the search for planets
in a sample of binaries at a separation at which dynamical effects may start to be
relevant, and the search for abundance anomalies caused by the ingestion of metal-
rich planetary material), we started a radial velocity (RV) survey of the components
of wide binaries, a few years ago. We are using SARG, the high resolution spectro-
graph of the TNG (Gratton et al. 2001), equipped with an iodine cell to derive high
precision RVs.

Our sample binaries were selected from the Hipparcos Multiple Star Catalog. We
considered binaries in the magnitude range of 7:0<V <10:0 and with a magnitude-
difference-between-the-components of �V <1:0. The projected separations of
our sample binaries were larger than 2 arcsec (to avoid contamination of the
spectra), their parallaxes were larger than 10 mas, with errors smaller than 5 mas,
B � V > 0:45, and spectral types later than F7. About 50 pairs of such wide
binaries with mass-ratios close to 1 were selected.

Considering systems with similar components is crucial for the accuracy of the
differential chemical abundance analysis. Figure 5.6 shows the distribution of the
projected separations in AU. For most of the pairs, the separation is between 50
and 600 AU. Figure 5.7 shows the distribution of the V band magnitude differences
between the components.

Fig. 5.6 Distribution of the projected separations of the binaries in the sample of the SARG survey
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Fig. 5.7 Distribution of the visual magnitude differences of the binaries in the sample of the SARG
survey

5.5 Observations

The observations used for the radial velocity determinations are acquired with the
SARG spectrograph (Gratton et al. 2001) using the Yellow Grism, that covers the
spectral range 4,600–7,900 Å without gaps, and the 0.25 arcsec slit. The resulting
resolution is R D 150,000 (two pixels sampling). The iodine cell is inserted into
the optical path, superimposing a dense forest of absorption lines used as reference
spectrum for the radial velocity determination (Butler et al. 1996). Exposure times
are fixed in most cases at 15 min, to reduce the errors in barycentric correction
caused by the lack of knowledge of the exact flux mid time of the exposure. A high
signal to noise spectrum without the iodine cell was also acquired for all the targets,
to be used for the abundance analysis (see Section 5.6) and as template for the radial
velocity determination (see Section 5.7).

During the observations, the slit is usually oriented perpendicularly to the sep-
aration of the components to minimize the contamination of the spectra by the
companion. The closest pairs (separation 2–3 arcsec) are observed only in good
seeing conditions. In spite of these efforts, some residual contamination of the spec-
tra is present in a few cases. This issue is discussed in Section 5.8. The survey was
recently completed (about 20 spectra per object acquired on average) and further
observations are limited to the follow-up of the planet candidates.
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5.6 Abundance Analysis

The abundance analysis of about half of the pairs of the SARG survey has been
published in Desidera et al. (2004a). We also studied 33 pairs of Southern declina-
tion observed with the FEROS spectrograph at ESO-La Silla, selected with similar
criteria (Desidera et al. 2006). Taking into account the small overlap between the
two samples, we have in hand the results for 50 pairs.

Performing a line-by-line differential analysis (Fig. 5.8) and exploiting the phys-
ical link between the components (same distance from the Sun), we found that
errors in estimating the difference of iron content between the two components of
about 0.02 dex can be achieved for pairs with temperature differences smaller than
300–400 K and slow-rotating components with effective temperatures in the range
5,500–6,300 K. This is adequate for detailed study of chemical alterations in the
external convective layer.

Most of the pairs have abundance difference smaller than 0.03 dex (Fig. 5.9).
We found one case (HIP 64030 D HD 113984) with a large (0.25 dex) abundance
difference, with the primary showing lower metal abundances. The primary of this
binary appears to be a blue straggler, and the abundance difference might be due
to the peculiar evolution of the star (see Section 5.6.1). A few other pairs show
small abundance differences (�0.09 dex). In a few cases these differences suggest
the ingestion of a small amount of metal rich material, but in others they are likely
spurious, because of the large temperature difference between the components, the
high level of magnetic activity, that might cause alterations in the stellar atmosphere

Fig. 5.8 Iron abundance derived for each line of the components of HIP 114914 A and B.
A clear correlation can be seen, indicating that the use of a line-by-line differential analy-
sis significantly reduces the errors on abundance difference between the components. Figure
from Desidera et al. (2006)
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Fig. 5.9 Iron abundance difference (primary–secondary) between the components of pairs as a
function of temperature difference for the pairs studied in Desidera et al. (2004, 2006)

or additional errors in our analysis because of intrinsic variability, or possible
contamination of the spectra by an additional star in close orbit around one of
the components. Some cases of abundance differences involving pairs with warm
(Teff � 6;000 K) primaries might be due to the diffusion of heavy elements.

Figure 5.10 shows the amount of iron accreted by the nominally metal richer
component of the binary to explain the observed abundance difference. For most of
the slow-rotating stars warmer than 5,500 K, characterized by a thinner convective
envelope and for which our analysis appears to be of higher accuracy, this is similar
to the estimates of rocky material accreted by the Sun during its main sequence
lifetime (about 0.4 Earth–masses of iron, Murray et al. 2001). We then conclude
that the occurrence of large alterations in stellar abundances caused by the ingestion
of metal rich, rocky material is not a common event. For at least 65% of the pairs
with components warmer than 5,500 K, the limits on the amount of rocky material
accreted by the program stars are comparable to the estimates of rocky material
accreted by the Sun during its main-sequence lifetime.

5.6.1 The Special Case of the Blue Straggler HD 113984

The wide binary HIP64030 D HD 113984 is the only pair in our sample that shows
a large (about 0:25 dex) iron content difference, with the primary showing lower
metal abundances. The positions of the components on the color magnitude diagram
suggest that the primary is a blue straggler (Note that this blue straggler itself is a
spectroscopic binary). Therefore, the abundance difference may be somewhat linked
to the peculiar evolutionary history of the system.
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Fig. 5.10 Estimate of iron accreted by the metal-rich component of each pair as a function of its
effective temperature, taking into account the mass of the mixing zone as in Murray et al. (2001).
The less severe limits at lower effective temperatures are mostly due to the more massive convective
zone of cool stars. The horizontal lines show the amount of iron expected to have been accreted
by the Sun during the main sequence lifetime (0:4 M

˚

, Murray et al. 2001), and the amount of
iron corresponding to the upper limit on abundance difference between the inner and outer regions
of the Sun according to helioseismology (2 M

˚

, Winnick et al. 2002). The mass of meteoritic
material is assumed to be about 5.5 times the mass of iron. Figure from Desidera et al. (2006)

The analysis of additional elements beside iron (Desidera et al. 2007) shows
that the abundance difference for the elements studied increases with increasing
condensation temperature, suggesting that accretion of chemically fractionated ma-
terial might have occurred in the system (Fig. 5.11). Alteration of C and N likely
due to CNO processing is also observed, as expected for the mass transfer pro-
cess occurring during the formation of the blue straggler. We also showed that the
blue straggler component is a spectroscopic binary with a period of 445 days and
moderate eccentricity, as typical for field blue stragglers (Preston and Sneden 2000).

Two scenarios were explored to explain the observed abundance pattern. In the
first, both the light-element and heavy-element abundance anomalies occur on the
blue straggler. If this is the case, the dust-gas separation may have occurred in a
circumbinary disk around the blue straggler and its expected white dwarf compan-
ion, as observed in several RV Tauri and post AGB binaries (Van Winckel 2003).
In the second scenario, accretion of dust-rich material occurs on the secondary. This
would also explain the anomalous carbon isotopic ratio of this star. Such a scenario
requires that a substantial amount of mass, lost by the central star, to have been
accreted by the wider component.
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Fig. 5.11 Abundance difference for the components of HD 113984 as a function of the condensa-
tion temperature. Figure from Desidera and Barbieri (2007)

5.6.2 Abundance Difference Between Components of Binary
Systems with Planetary Companions

The analysis of 50 pairs shown in Section 5.6 suggests that the frequency of
pairs with large alterations in chemical composition is rather small. Therefore, it
seems unlikely that the ingestion of planetary material can account for the strong
correlation between the frequency of planets and metallicity. However, none of the
stars studied by Desidera et al. (2004, 2006) have confirmed planet detections (most
of the pairs of the FEROS sample are probably not being searched for planets).
Therefore, to better test the hypothesis that the abundance of stars with planets is
changed by accretion of metal-rich material (see Section 5.3), it is important to
consider the abundance-difference between the components of binary systems for
which one of the components has a planet. We consider only pairs with similar stars,
as errors in differential chemical abundances becomes larger for large temperature
difference (see discussion in Desidera et al. 2006).

Among the binary systems with planets, there are five pairs with mass-ratios
between 0.8 and 1.2. Only for 16 Cyg high-precision differential abundance anal-
ysis between the components has been carried out. Laws and Gonzalez (2001)
found a small abundance-difference of 0.025 dex, with the planet-hosting star (the
secondary) being more metal-rich. However, Takeda (2005) did not confirm the re-
ality of such a small abundance-difference.

For the pairs HD 80606/7, HD 99491/2 and ADS 16402, the standard abun-
dance analysis does not reveal significant abundance-difference (see Table 5.1).
For HD 20781 and its planet-hosting companion HD 20782, there are no
high-resolution abundance analysis, and the abundance-difference derived from
Strömgren photometry is not significant (errors about 0.1 dex).
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Table 5.1 Abundance-difference between the components of binary planet hosts with similar
components

System Planet host � [Fe/H] Refs.

16 Cyg B �0:025˙ 0:009 Laws and Gonzalez (2001)
16 Cyg B 0:00˙ 0:01 Takeda (2005)
HD 80606/7 A �0:01˙ 0:11 Heiter and Luck (2003)
HD 80606/7 A C0:002˙ 0:081 Taylor (2005)
HD 99491/2 B �0:02˙ 0:03 Valenti and Fischer (2005)
HD 99491/2 B C0:04˙ 0:13 Heiter and Luck (2003)
HD 99491/2 B C0:076˙ 0:059 Taylor (2005)
HD 20781/2 A C0:12˙ 0:10 Nordstrom et al. (2004)
ADS 16402 (HAT-P-1) B �0:01˙ 0:05 Bakos et al. (2007)
GSC 03413-00005 (XO-2) B C0:02˙ 0:03 Burke et al. (2007)

In summary, there is currently no evidence for large (�0.1 dex) alterations of
chemical abundances in the components of binary systems with/without planets.
This supports the conclusion of our dedicated study on the abundance-difference
between the components of binaries that large alteration of chemical abundance
caused by the ingestion of planetary material are rare, if any.

5.7 Radial Velocities

High precision RVs for the stars in the SARG sample were determined using the
AUSTRAL code (Endl et al. 2000) as described in Desidera et al. (2003). Typi-
cal errors are 1–3 m/s for bright stars observed as standards to monitor instrument
performances (Fig. 5.12) and 3–10 m/s for the V �7–9 program stars.

5.7.1 Planet Candidates and Low Amplitude Variables

The RV time series were searched for periodic variations. A few interesting candi-
dates emerged from the survey but they have not yet achieved the confidence level
adequate to claim the planet detection. This can be attributed to the period longer
than our current time baseline, or to the low amplitude of the radial velocity vari-
ations, which in two cases suggests multiple periods (i.e., two planets). Intensive
radial velocity monitoring is still on-going on for the best candidates.

Some further stars show RV variability above internal errors. In most cases this
can be explained by stellar activity jitter and residual contamination of the spectra
from the companion (see Section 5.8). One case we investigated in detail is that of
HD 219542B. The 2000–2002 data indicated a possible periodicity of 111 days with
a significance of about 97% (Desidera et al. 2003). However, the continuation of the
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Fig. 5.12 Radial velocities of 51 Peg obtained with SARG phased to the known orbital period

Fig. 5.13 Radial velocity curve for HD 219542 B. The data taken in the 2003 season do not
follow the tentative orbital solution previously derived in Desidera et al. (2003) (overplotted as a
solid line). Figure from Desidera et al. (2004b)

observations revealed that the RV variations are likely due to stellar activity (see
Fig. 5.13, Desidera et al. 2004). In particular, the chromospheric emission measure-
ments indicate that HD 219542 B underwent a phase of enhanced stellar activity in
2002 while the activity level has been lower in both 2001 and 2003.
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5.7.2 New Triple Systems and Stars with Long Term Trends

More than 10% of the stars in the sample show long term radial velocity trends. In a
few cases the trends are due to the known companion, as trends with opposite sign
and nearly the same magnitude are observed for the two components. Figure 5.14
shows the case of HD 186858, for which a reliable visual C astrometric solu-
tion was presented by Soderhjelm (1999). The RV slopes of each components
and their absolute RV difference follow very well the orbital solution. The full
characterization of the binary orbit and individual masses of the systems that we
are surveying are useful for the study of the frequency binary systems with/without
planets, as described in Section 5.10.

In most cases the trends are due to new low mass stars orbiting one of the
components. In one case, however, a substellar companion is compatible with the
available data. One example of such RV trends with significant curvature is shown
in Fig. 5.15. The continuation of the radial velocity monitoring will reveal the period
and nature of these objects.

We recently started an adaptive optics program to identify the companions of
stars with long-term trends using AdOpt@TNG (Cecconi et al. 2006). The direct
identification of one new companion, probably responsible for the observed RV
trend, is shown in Fig. 5.16.

Fig. 5.14 Solid lines: predicted RV curve for the components of the binary system HD 186858
according to the visual C astrometric solution derived by Soderhjelm (1999). Filled circles: high-
precision RV obtained with SARG over 6 years. The RV slopes of each components and their
absolute RV difference follow the orbital solution very well
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Fig. 5.15 Radial velocity curve of one of the stars showing a long-term trend, with significant
curvature. The companion is likely a low mass star

Fig. 5.16 Adaptive optics identification of a close companion around a star with a linear RV
trend (Fig. 5.15). Left panel: image of the star with RV trend. Middle panel: image of the wide
companion. Right panel: difference between the two images. PSF artifacts were removed fairly
well, allowing the identification of a close companion at 0.2 arcsec from the star. This is probably
responsible for the observed RV trend

The direct identification of the companions that caused the observed RV trends
is of specific interest because it allows to measure the mass and separation of the
companion, and then estimate its effective gravitational influence. This is relevant
to the main science goal of the project, the determination of frequency of planets
in binaries with different characteristics. Furthermore, direct detection of low mass
stars and substellar objects orbiting stars with well determined characteristics (age
and chemical composition) are crucial for the calibration of theoretical models of
these objects.
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Finally, we also detected a few new spectroscopic binaries among the compo-
nents of the wide binaries. These systems consist of at least three components. Some
of these systems are presented in Desidera et al. (2006).

5.8 Line Bisectors: A Tool to Study Stellar Activity
and Contamination

The relevance of activity jitter to the interpretation of the RV data prompted us
to develop a tool to measure and possibly to correct for its effect. The differen-
tial RV variations induced by stellar activity are due to changes in the profile of
spectral lines caused by the presence of spots and/or the alteration of the gran-
ulation pattern in active regions. The activity jitter of a star may be predicted
through of statistical relations from its chromospheric emission, rotational velocity,
or amplitude of photometric variations (Saar et al. 1998; Paulson et al. 2004; Wright
2005). Simultaneous determination of RV, chromospheric emission, and/or photom-
etry is even more powerful in disentangling the origin of the observed RV variations
(Keplerian vs. stellar activity). The measurement of the line profile alterations on the
same spectra (ideally on the same spectral lines) represents a direct measurement of
the activity jitter. The existence of a correlation between the variations of the RV
and those of the line profile is a strong indication for non-Keplerian origin for the
observed RV variations.

The study of line profile as a tool to disentangle Keplerian motion and activity
jitter is usually performed using a few well-isolated lines on high S/N spectra (see,
e.g., Hatzes et al. 1998) or by combining the cross-correlation profiles of many
spectral lines at moderate S/N ratios with a suitable template mask (see, e.g., Queloz
et al. 2001). In our case, we followed the latter approach, but we had to handle the
complication of having the iodine lines superimposed to the stellar spectra. On the
other hand, these lines offer the opportunity to improve the wavelength calibration
of the spectra, required for accurate estimates of the line bisectors. The iodine lines
were removed by means of a suitable spectrum of a fast rotating early type star with
the iodine cell in the optical path. The procedure is described in detail in Martinez
et al. (2005).

The bisector of an absorption line is the middle point of the horizontal segment
connecting points on the left and right sides of the profile with the same flux level.
The line bisector is obtained by combining bisector points starting from the core to-
ward the wings of the line. To quantify the asymmetry of the spectral lines and look
for correlation with RV, it is useful to introduce the bisector velocity span (hereafter
BVS, Toner and Gray 1988). This quantity is determined by considering a top zone
near the wings and a bottom zone close to the core of the lines, which represent
interesting regions to study the velocity given by the bisector (see Fig. 5.17). The
difference of the average values of velocities in the top and bottom zones, VT and
VB respectively, determine the bisector velocity span.
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Fig. 5.17 Spectrum of HD 166435. In the top panel we show the normalized cross correlation
profile, the line bisector, the top, and the bottom zones both with �F D topf � topi D botf �
boti D 0:02, where�F is the size (in units of relative flux) in the line profile of the top and bottom
zones used for the measurement of the bisector velocity span. In the bottom panel we show a zoom
of the profile with the RV scale increased to better display the asymmetries of the line bisector.
Figure from Martinez et al. (2005)

The star HD 166435 shows evidence of RV variations, photometric variability,
and magnetic activity. Furthermore, previous analysis of the variation of the line
bisectors revealed a correlation between RV and line bisector orientation (Queloz et
al. 2001). We used this star to test our procedure. As shown in Fig. 5.18, there is a
clear anti-correlation between radial velocity and BVS variations.

The study of line shape is relevant for our program also as a diagnostic for the
contamination of the spectra by the wide companion. Contaminated spectra are not
easy to handle when analyzing the radial velocity curve. In fact, the internal radial
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Fig. 5.18 Radial velocity – line bisector correlation for the active star HD 166435

Fig. 5.19 Radial velocity – line bisector correlation for HD 8071B. This is likely due to the
contamination by the companion HD 8071A

velocity errors are estimated from the scatter of individual portions of spectrum on
which the spectrum is modeled separately. In the case of contamination, all these
pieces deviate systematically by a similar amount (our pairs are always formed by
similar stars) and the radial velocity shift might largely exceed the internal errors,
causing a spurious but formally highly significant variability.

Also in the case of contamination, we observe a positive correlation between
the bisector velocity span and the radial velocity. The worst case of contamination
in our sample occurs for HD 8071B (see Fig. 5.19). This pair is one of the closest
binaries (separation of 2.1 arcsec). The primary of this system, HD 8071 A itself
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is a single-lined spectroscopic binary with an RV semi-amplitude of about 7 km/s.
This causes significant spectra-to-spectra variations of the contamination both in
amplitude (because of the variable observing conditions) and wavelength (because
of the orbital motion of HD 8071A).

5.9 Upper Limits on Planetary Companions

While no confirmed planet detection emerged up to now from our survey, a detailed
analysis of the negative results would allow to constrain the frequency of planets in
binary systems. Since we are focusing on a specific type of binaries, wide binaries
with similar components at intermediate separations (a few hundreds AU), such a
study is complementary to other studies of planets in binaries.

To this aim, we derived upper limits on the planetary companions still compatible
with the observations. Our method, a Montecarlo simulation based on the evaluation
of the excess of radial velocity variability caused by the presence of hypothetical
planets, allows us a complete exploration of the possible orbital parameters for
eccentric orbits (the real case, since most of the known planets are in eccentric
orbits). Our approach is described in detail in Desidera et al. (2003).

Figure 5.20 shows the upper limits on planetary companion on short-period cir-
cular orbit for four stars representative of our sample. Figure 5.21 shows the limits
for long period planets with eccentricities as large as 0.95. The average limits for the
whole sample are shown in Fig. 5.22. These results indicate a lack of planets with
period shorter than a few years and moderately large mass in our sample.5 Con-
sidering the frequency of this kind of planets from other surveys (e.g., Fischer and
Valenti 2005, see Section 5.10), our null result is significant at about 2� level.

5.10 On the Frequency of Planets in Binary Systems

The lack of planets with RV semiamplitude larger than 30 m/s and period shorter
than the survey duration in the SARG sample appears as an indication for a low
frequency of planets in the kind of binary systems we are surveying. Since our
sample includes only binaries, a reference sample is needed for a full statistical
evaluation. A useful comparison sample is represented by the ‘Uniform Detectabil-
ity’ sample identified by Fischer and Valenti (2005).

The Uniform Detectability (UD) sample has been built from the full target lists of
Lick, Keck and Anglo Australian Surveys (1330 stars), satisfying the requirement of
completeness for detections of planets with velocity amplitudes K > 30 m/s and or-
bital periods shorter than 4 years. Stars that were added after a planet was discovered

5 The planet candidates discussed in Section 5.7 have either long periods or low velocity amplitudes
and therefore are not of concern in this discussion.
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a

b

c

d

Fig. 5.20 Upper limits on planetary companions on short-period circular orbits for four stars rep-
resentative of our sample. From (a) to (d), the different lines refer to planets exclusion limits of
95%, 90%, 75%, 50%, and 25%, respectively. For the star on the (a) corner planet detectability is
strongly limited by stellar activity. The star on the (b) corner is the one with the best limits, thanks
to the low dispersion of RVs and the large number of measurements. The behavior of the other two
stars is more typical for our survey. The ‘noisy’ run of exclusion limits with period for the star in
the (d) corner is due to the small number of measurements
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Fig. 5.21 Upper limits on planetary companions on long-period eccentric orbits for the same four
stars shown in Fig. 5.20
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Fig. 5.22 Summary of estimates of exclusion/compatibility of planets in the SARG sample with
current data for the stars with at least ten observations. For each period, the mass corresponding to
the planet exclusion of (from top to bottom) 95%, 90%, 75%, 50%, and 25% (taking into account
planet eccentricity) is shown. The results of individual stars were averaged to produce the plot

Table 5.2 Frequency of planets in binaries with different values of acrit. Table
from Bonavita and Desidera (2007)

acrit Nstars Nplanets Nplanets=Nstars

<20 AU 89 2 0.022 ˙ 0.018
20–50 AU 18 2 0.111 ˙ 0.105
50–100 AU 24 2 0.083 ˙ 0.076
100–250 AU 26 4 0.154 ˙ 0.107
>250 AU 45 5 0.111 ˙ 0.066
UD Singles sub-sample 647 34 0.053 ˙ 0.011
Entire UD binary sub-sample 202 15 0.074 ˙ 0.024

by other groups were not included in the sample. However, stars independently
present in one of these surveys were considered even if a planet was detected first by
another group. Only planets with K> 30 m/s and orbital periods shorter than 4 years
were considered for the study of planet frequency. This corresponds to Saturn-mass
planets for the shortest periods and Jupiter-mass planets for 4 year orbits.

The UD sample is biased against binaries, as the stars with companions closer
than 2 arcsec known at the time of the target selection were excluded. Bonavita and
Desidera (2007) performed a detailed literature search for binarity of the 850 stars in
the UD sample, and identified 202 of these stars as members of binaries. For some
of these stars, only long-term radial velocity and astrometric trends are available.

Among the binaries in the UD sample, 15 have planets, so the global frequency
of planets in the UD binary sample is approximately 7.4%. If we consider the single-
stars sub-sample, we found that 5.3% of UD single stars have planets (see Table 5.2).
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The two frequencies are compatible within their errors. The slightly higher value of
the global frequency in the binary sub-sample is probably due to higher complete-
ness level of binary census in stars with planet.

Incompleteness effects are unlikely to deeply modify this picture. Even assuming
that the frequency of binaries in the sample is that found by Duquennoy and Mayor
(1991) (an upper limit because of the exclusion of binaries with separation less than
2 arcsec known at the time of sample selection) and that all the companions of planet
hosts have been already identified, it can be seen that the global frequency of planets
in binaries cannot be lower by more than a factor of three compared to that of single
stars.

The rather large sample size allows us to make some sub-samples with different
values of critical semimajor axis for dynamical stability of planets (acrit, see Holman
and Wiegert 2001 and Section 5.2). All the stars with RV and/or astrometric trends
are included in the closest bin, as it is likely that the companion responsible for the
trend is at small separation.

We found that there is no significant dependence of the frequency on acrit except
for companions with acrit less than 20 AU corresponds to a binary separation smaller
than 50–100 AU, depending on the mass–ratio of the two stars. Considering also
the similitude of the mass and period distribution of planets orbiting single stars and
components of wide binaries (see Desidera and Barbieri 2007 and Section 5.2), we
conclude that a wide companion plays a marginal role in the formation and evolution
of giant planets around the primary.

For the planets in tight binaries, the results are more intriguing. On one hand,
the frequency of planets in close binaries results to be lower than that of planets
orbiting single stars and components of wide binaries. On the other hand, there are
indications that the properties of planets in tight binaries are significantly different
from those of exoplanets orbiting wide binaries or single stars (see Desidera and
Barbieri 2007 and Section 5.2).

The frequency of planets in close binaries can be used to further investigate how
these planets formed and the origin of their anomalous properties. Indeed, Pfhal and
Mutherspaugh (2006) showed that the knowledge of the value of the frequency of
planets in close binaries6 should allow to disentangle between two alternative for-
mation scenarios. A low frequency (less than 0.1% but with an uncertainty of about
one order of magnitude, so they consider 1% as a limit-value) would be compatible
with dynamical interactions that cause the formation of the tight binary after planet
formation. While not fully conclusive because of the poor statistics, our results sug-
gests that frequency of planets in close binaries probably is not as low as required
to explain their presence only as the results of modifications of the binary orbit af-
ter the planet formation. Therefore, it appears that planets do form in binaries with
separations smaller than 20 AU in spite of the strong gravitational interactions that
might work against.

6 Defined by Pfhal and Mutherspaugh (2006) as those binaries with semimajor axis less than
50 AU.
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However, crucial issues still need clarification. There are some hints that the run
of the frequency of planets is not characterized by a continuous decrease when mov-
ing to smaller separation: in the full list of planets in binaries by Desidera and
Barbieri (2007) there is only one planet with critical semimajor axis in the range
of 10–30 AU, while there are five planets with acrit less than 10 AU and four planets
with 30 < acrit < 50 AU. This suggests a bimodal distribution of planet frequency,
with a secondary maximum at acrit �3–5 AU, but the analysis of the UD sam-
ple does not allow us to confirm it because of the small number of binaries with
10 < acrit < 30 AU and the lack of binary characterization (orbital parameters,
mass–ratio) for the stars with only RV and/or astrometric trends.

The targets of the SARG planet search are crossing this range of separation (see
Fig. 5.23), and therefore the completion of the survey, coupled with an estimate
of planet detectability homogeneous with that of comparison samples will allow
us to better address this issue. The current lack of planets in the SARG survey
might suggest a relevant role of the binary mass–ratio in the occurrence of planets.
A complementary very important approach is represented by a detailed characteriza-
tion of the binaries in current samples of RV surveys (complete detection of binaries
and, when possible, full determination of the orbital elements). The availability of a
larger and more complete sample will allow us to better understand planet frequency
in binaries and, at the same time, to disentangle the questions about the formation
and different characteristics of the planets in these peculiar environments.

Fig. 5.23 Critical semimajor axis for dynamical stability for the binaries in the UD sample (filled
circles: stars with planets; empty circles: stars without planets) and in the sample of the SARG
planet search (asterisks)
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Chapter 6
Early Evolution of Planets in Binaries:
Planet–Disk Interaction

Willy Kley and Richard P. Nelson

6.1 Introduction

6.1.1 Summary of Observations

At the time of writing, approximately 35 extrasolar planets have been discovered
in binary star systems, all of which are orbiting about a single component of the
binary. For a review of the global statistics see the papers by Eggenberger et al.
(2004) and Mugrauer et al. (2007), as well as the relevant chapters in this book (see
the chapter by Eggenberger and Udry). So far, there have been no discoveries of
circumbinary planets. The binary star systems that host planets are very diverse in
their properties, with binary semimajor axes ranging from '6,400 AU down to '20
AU. In the case where the orbits are eccentric, the binary periastron can be as small
as '12 AU, such that important dynamical effects are expected to have occurred
during and after planet formation. One such example is the well studied system �

Cep (Hatzes et al. 2003) which contains a planet of mass mp sin i ' 1:6 Jupiter-
masses with a semimajor axis of '2.1 AU. Here the binary semimajor axis is '20
AU and periastron is '12 AU (see the chapter by Hatzes et al.). Another interesting
case is GL86 (Mugrauer and Neuhäuser 2005), which consists of a binary system
whose secondary is a '0.55 Mˇ white dwarf with a projected orbital separation
of '21 AU. GL86 is reported to host a planet with m sin i ' 4 Jupiter-masses
(Queloz et al. 2000). It is worth noting that the white dwarf progenitor was probably
a Solar-mass main sequence star, such that the orbital separation was even smaller
in the past. As the influence of the secondaries on the planet formation process will
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obviously be smaller for larger binary separations, the mere existence of planets in
systems with abin ' 20 AU represents a special challenge to any kind of forma-
tion process.

Clearly the close binary systems containing planets provide an excellent
laboratory for testing theories of planet formation, as the presence of the companion
may create conditions normally thought to be inconducive to planet formation. It is
these closer systems that we mainly focus on in this article.

6.1.2 Summary of Planet Formation in Binaries

In a binary star system the early formation of planets may be strongly influenced
by changes in the structure of the protoplanetary disk caused by tidal forces from
the binary companion. For a circumstellar disk, significant effects will occur if the
disk outer edge is tidally truncated by the binary companion, as strong spiral shock
waves will be launched near the disk edge and propagate inward. For a circumstellar
disk in a binary system which is not subject to strong tidal forcing, it seems likely
that the effect of the companion star will be modest, unless the orbital inclinations
are such that the Kozai effect becomes important (Innanen et al. 1997). In a cir-
cumbinary disk one can almost always expect strong tidal interaction between the
binary and disk, and hence significant effects on planet formation. In this chapter we
restrict our discussion to two basic scenarios. The first is planet formation and evo-
lution in a circumstellar disk around the primary (most massive) star, the so called
S-type configurations, although we note that of the 35 binary systems with known
planets, two host planets around the secondary star (16 Cyg and HD178911). The
second scenario is planet formation in circumbinary disks (P-type configuration).
We restrict our discussion to those early phases of planetary formation that occur in
a gas-rich environment where the young protoplanet is still embedded in the proto-
planetary disk and interacts with it.

In a circumstellar disk, the tidal torques of the companion star generate strong
spiral shocks, and angular momentum is transferred to the binary orbit. This in turn
leads to disk truncation. Using analytical and numerical methods, Artymowicz and
Lubow (1994) showed how the truncation radius rt of the disk depends on the binary
semimajor axis abin, its eccentricity ebin, the mass ratio qDM2=M1 (where M1,
M2 denote the masses of the primary and secondary stars, respectively), and the
viscosity � of the disk. For typical values of q � 0:5 and ebin D 0:3, the disk will
be truncated to a radius of rt � 1=3abin for typical disk Reynold’s numbers of 105

(Artymowicz and Lubow 1994; Larwood et al. 1996; Armitage et al. 1999). For a
given mass ratio q and semimajor axis abin an increase in ebin will reduce the size
of the disk while a large � will increase the disk’s radius. Not only will the disk
be truncated, but the overall structure and density stratification may be modified by
the binary companion. In Section 6.2 we will illustrate this effect.

In a circumbinary disk, the binary creates a tidally-induced inner cavity. For
typical disk and binary parameters (e.g., ebin D 0:3, qD 0:5) the size of the cavity is
'2:7 � abin (Artymowicz and Lubow 1994).
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Whether these changes in the disk structure in circumstellar or circumbinary
systems have an influence on the likelihood of planet formation in such environ-
ments has long been a matter of debate. The dynamical action of the binary has
several potential consequences which may be adverse to planet formation: (i) it
changes the stability properties of orbits, (ii) it increases the velocity dispersion of
planetesimals, (iii) it reduces the lifetime of the disk, and (iv) it increases the disk’s
temperature.

In a numerical study, Nelson (2000) investigated the hydrodynamical evolution
of two circumstellar disks in an equal-mass binary with a separation of 50 AU and
an eccentricity of 0:3. The simulations included heating of the disk through viscous
effects and radiative cooling. Nelson argued that both main scenarios of giant planet
formation (i.e., core accretion and gravitational instability) are strongly handicapped
in forming planets in such binaries because the eccentric companion will induce
a periodic heating of the disk up to temperatures possibly above 1,200 K. Since
the condensation of particles as well as the occurrence of gravitational instability
require lower temperatures, planet formation will be made more difficult in both
scenarios. Clearly the strength of this effect will depend on the binary separation
and its mass-ratio.

In addition to the approach taken by Nelson (2000), the influence that a stellar
companion may have on the evolution of a massive planet embedded in a circum-
stellar disk was investigated by Kley (2000). This author studied the evolution of the
embedded planet through hydrodynamical simulations (see also the review article
by Kley and Burkert 2000). and found that due to the compression of the disk and the
increased density, the migration and accretion timescales are reduced compared to a
disk that is unperturbed. It is important to note that in these preliminary simulations,
only very short time spans have been covered and the initial disk configuration may
have been unrealistic.

Recent numerical studies of the final stages of terrestrial planet formation in
rather close binaries with separations of only 20–30 AU, that involve giant impacts
between lunar-mass planetary embryos, show that it is indeed possible to form ter-
restrial planets in such systems (Lissauer et al. 2004; Turrini et al. 2005; Quintana
et al. 2007; Haghighipour 2007), provided it is possible for the planetary embryos
themselves to form.

It is already the case for planet formation around single stars that the lifetime
of the disk represents a limiting factor in the formation of planets, and it has been
suspected that the dynamical action of a companion will reduce the lifetime of disks
substantially. However, a recent analysis of the observational data of disks in bi-
nary stars finds no or very little change in the lifetimes of the disks, at least for
separations larger than about 20 AU (Monin et al. 2007).

The early phase of planetesimal formation and subsequent formation of Earth-
like planets is described in more detail in other chapters of this book. Here we will
concentrate on the formation and evolution of planets in a gas rich environment,
where inclusion of the full dynamics of the protoplanetary disk is crucial. We con-
sider the dynamics of planetesimals, low-mass planets, and high-mass planets in
circumstellar and circumbinary disks.
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6.2 Evolution of Planets in Circumstellar Disks
with a Companion

The presence of a companion star influences the structure of a circumstellar disk
around the primary star due to gravitational torques acting on the disk. This leads to
an exchange of energy and angular momentum between the binary and the disk. For
close binaries the disk becomes truncated where the truncation radius rt depends
primarily on the parameters of the binary, i.e., the mass-ratio q, the semimajor axis
abin, and eccentricity ebin, and the viscosity of the disk. The radius rt has been cal-
culated semi-analytically and numerically by Artymowicz and Lubow (1994).

The effects of the companion on planet formation are likely to be most pro-
nounced in binaries with separations �20 AU, rather than in long period systems
with abin > 1,000 AU. Among the very close binary stars containing planets is the
well studied system � Cep. Including observations taken over decades, Hatzes et al.
(2003) confirmed the presence of a planet orbiting the primary star in this sys-
tem. Very recently, new radial velocity measurements and additional Hipparcos data
have refined the binary orbit (Torres 2007) and the direct imaging of the secondary
has fixed the masses of the binary to M1 D 1:4Mˇ and M2 D 0:4Mˇ (Neuhäuser
et al. 2007). This system with a binary separation of about 20AU contains a massive
planet with a minimum mass of 1.6MJup orbiting the primary star at a distance of
approximately 2.1 AU.

Gamma Cep is the tightest binary system known to contain a Jupiter-sized planet.
For this reason, it has attracted much attention in the past several years. Several stud-
ies looked at the stability and/or the possibility of (additional) habitable planets in
this system (e.g., Dvorak et al. (2004); Turrini et al. (2004); Haghighipour (2006);
Verrier and Evans (2006)). Assuming that the planet has not been captured at a later
time, or that the binary orbit has not shrunk since planet formation, this system rep-
resents a very challenging environment for the formation of planets indeed, and we
choose it to illustrate the main influence a close companion can have on the planet
formation process. Note that we focus here on this particular short period system
since it makes the additional challenges and problems generated by the presence
of the binary to the process of planet formation most obvious. Other more distant
systems will experience similar behavior, although weakened. We focus here on the
planet formation process via the core-accretion scenario. The gravitational instabil-
ity route is discussed the chapter by Mayer et al.

6.2.1 Disk Evolution in the Presence of a Companion

When studying the formation of planets in a protoplanetary disk in the presence of
a secondary star, it is necessary to first follow the evolution of the perturbed disk
without an embedded planet, and bring the system into equilibrium, before adding
a planetary embryo at a later time.
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We choose to model a specific system where the orbital elements of the binary
have been chosen to match those of � Cep quite closely. The data for this system
have been taken from (Hatzes et al. 2003) which do not include the most recent
improvements mentioned above (Neuhäuser et al. 2007). These newest refinements
primarily concern the mass of the primary and do not alter our conclusions at all. We
are interested here in demonstrating the principle physical effects rather than trying
to achieve a perfect match with all the observations of this particular system.

For this study we choose a binary with M1 D 1:59Mˇ, M2 D 0:38Mˇ,
abin D 18:5 AU and ebin D 0:36, which translates into a binary period of P D 56:7

years. We assume that the primary star is surrounded by a flat circumstellar disk,
where the binary orbit and the disk are coplanar. In a numerical hydrodynamical
model of the system, the fact that the disk’s vertical thickness H.r/ at a given
distance r from the primary is typically small with respect to the radius (H=r 
 1)
is used to perform restricted two-dimensional (2D) simulations and neglect the
vertical extent altogether. Here, we present such 2D hydrodynamical simulations of
a circumstellar disk which is perturbed by the secondary. We assume that the effects
of the intrinsic turbulence of the disk can be described approximately through the
viscous Navier–Stokes equations, which are solved by a finite volume method that
is second order in space and time. To substantiate our results, we utilize two differ-
ent codes RH2D (Kley 1989, 1999) and NIRVANA (Nelson et al. 2000; Ziegler and
Yorke 1997).

The planet evolution and the orbital motion of the binary proceed on time scales
much longer than the typical dynamical timescale of the disk, and consequently very
many time steps need to be calculated just in one simulation. To allow for param-
eter studies, we have increased the performance of the runs by implementing the
FARGO-algorithm in our codes, which is particularly designed to model differen-
tially rotating flows (Masset 2000) efficiently. For our chosen radial range and grid
resolution, we find a speed-up factor of about 7.5 over the standard case. Then, ap-
plying a Courant number of 0.75 still about 160,000 time steps are required for only
10 binary orbits for our radial range and a standard resolution of 300 � 300. We
checked the accuracy of the FARGO implementation against several test cases.

The results of these investigations of the � Cep system are presented in more
detail in Kley and Nelson (2008).

6.2.1.1 Numerical Setup

As the disk is orbiting only one star, we utilize an adapted cylindrical coordinate
system (r , ') which is centered on the primary. It extends radially from
rmin D 0:5 AU to rmax D 8 AU and in azimuth around a whole annulus ('min D 0;

'max D 2). Within this domain, at the beginning of the simulations (t D 0) an
axisymmetric disk (with respect to the primary) is initialized with a surface density
profile ˙.r/D˙0r

�1=2. The reference density ˙0 is chosen such that the total
mass in the computational domain (within rmin and rmax) equals 1:75 � 10�3Mˇ
which implies˙0 D 1:89�10�5Mˇ/AU2. The temperature profile is fixed here and
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given by T .r/ / r�1, which follows from the assumed constancy of the scale
height hDH=r , which is fixed to hD 0:05. For the viscosity we assume an ˛-type
prescription where the coefficient of the kinematic viscosity is given by �D˛csH

with ˛D 0:005, and the sound speed cs.r/Dh vkep.r/. The binary is initialized at
apocenter using the above orbital parameter.

The boundary conditions are chosen such that material may escape through the
radial boundaries. At the outer boundary (rmax) we impose a so called zero-gradient
outflow condition. During periastron when large spirals may extend beyond rmax this
condition will allow material to leave the system and not create numerical artifacts.
At the inner boundary we set a viscous outflow condition where the material may
flow through rmin with the local (azimuthally averaged) viscous inflow referring to
an accretion disk in equilibrium. No matter is allowed to flow back into the system
and the mass of the disk will slowly decline. To ensure a uniform setup for the
planets we rescale the disk mass when inserting them.

6.2.1.2 The Structure of the Disk

The presence of an eccentric secondary star leads to a strong periodic disturbance of
the disk whenever the secondary is at periastron. This effect is illustrated in Fig. 6.1
where we display the surface density ˙ of the disk in gray scale at two different
times in the early evolution of the disk [see also Nelson (2000)]. As shown here,
two strong spiral arms (shock waves) are created in the disk which carry material
beyond the outer boundary of the computational domain. In between the periapses
the disk settles down and becomes more circular again. Figure 6.2 shows the radial
surface density and eccentricity of primary’s circumstellar disk. Already the very
first approaches with the binary lead to a truncation of the disk as visible in left
panel of Fig. 6.2 for the curve at t D 10 binary orbits. Slowly the whole disk struc-
ture rearranges and equilibrates at around t D 50 where it shows a much steeper
density slope than in the initial state. The timescale for this equilibration process
depends on the magnitude of the disk viscosity. The eccentricity of the disk in the
final quasi-equilibrium state of the simulations (after around 60–70 orbits) varies ap-
proximately between 0.1 and 0.16 depending on the position of the binary in its orbit
as shown in the left panel of Fig. 6.3. The disk eccentricity edisk.r/ has been obtained
by calculating the eccentricity of each disk element, as if in a two-body motion with
the primary star, and then averaged over the respective annulus. At the same time
the disk as a whole precesses as is shown in the right panel of Fig. 6.3. This coherent
slow retrograde precession with a pattern speed much smaller than the orbital period
of the disk material around the star is caused by the non-negligible pressure forces
operating in the disk. Similar behaviour has been demonstrated for disks with free
eccentricities (Papaloizou 2005). This dynamical origin of an eccentric and precess-
ing disk in a binary system is highly interesting and complex in itself, a fact which
has been pointed out recently by Paardekooper et al. (2008).
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Fig. 6.1 Grayscale plot of the two-dimensional density distribution of the circumstellar disk
around the primary at two different orbital phases of the binary. Top shortly after apocenter at
about 20 binary orbits, and Bottom shortly after closest approach (pericenter)

6.2.1.3 The Orbital Elements of the Binary

In the previous section we have seen that the gravitational torques of the binary lead
to a truncation of the disk and re-arrangement of the material within. In turn, we
expect a change in the orbital elements of the binary.
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Fig. 6.2 The radial surface density distribution (left) and the eccentricity (right) of the circumstel-
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Fig. 6.3 The evolution of the global mass averaged disk eccentricity (left) and the position angle
of the disk’s periapse (right)

To estimate theoretically the magnitude of the back reaction a circumstellar disk
has on the orbital elements of the binary during the initial phase of readjustment,
we assume an idealized system consisting of a binary system and a ring-like mass
distribution with mass mring orbiting the primary star at a distance (ı-function) of
rring. The energyEbin and angular momentum Lbin of the binary are given by

Ebin D � GM


2abin
; (6.1)
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and
Lbin D 


�
GMabin .1 � e2

bin/
	1=2

; (6.2)

where M DM1 C M2 is the total mass of the two stars and 
DM1M2=M is the
reduced mass. The corresponding quantities of the ring are

Ering D � GM1mdisk

2rring
(6.3)

and
Lring D mring

�
GM1rring

�1=2
; (6.4)

Respectively. Now, suppose that the ring is shifted from its initial position r˛
ring to

a smaller radius rˇ
ring keeping all its mass. This change of radius mimics the initial

truncation of disk by the binary. Through this process the ring’s energy and angular
momentum are reduced from E˛

ring and L˛
ring to Eˇ

ring and Lˇ
ring. From the conserva-

tion of total energy and angular momentum,

E D Ering C Ebin (6.5)

and
L D Lring C Lbin; (6.6)

we can calculate the corresponding change in the orbital elements of the binary
from E˛

bin and L˛
bin to Eˇ

bin and Lˇ
bin. For the binary masses of M1 D 1:6Mˇ and

M2 D 0:4Mˇ, and with initial orbital elements of a˛
bin D 18:5 AU and e˛

bin D 0:36,
we find that for the shift of a ring with mring D 4 � 10�3Mˇ and initial radius

r˛
ring D 4:0 AU to a final radius of rˇ

ring D 2:0 AU, the binary elements change to

a
ˇ
bin D 19:4 AU and eˇ

bin D 0:41 – A quite substantial change considering the small-
ness of the ring’s mass in comparison to the stellar masses. But the closeness to the
primary allows to gain a substantial amount of binding energy from the ring. The
calculation is approximate in the sense that the energy and angular momentum of
the ring are calculated with respect to the non-inertial coordinate frame centered on
the primary.

We can now compare this estimate with the previous hydrodynamical simula-
tions, and plot in Fig. 6.4 the evolution of abin and ebin for about the first 100 binary
periods with no planet included. As demonstrated in this figure, the binary expands
as it gains energy from the compressed disk and increases its eccentricity. The in-
crease in ebin does not lead to a decrease in the angular momentum however, since
its separation has also increased, (see Eqs. 6.1 and 6.2). Whenever the secondary is
near periastron, the gravitational interaction with the disk is maximal, which results
in the strong periodic spikes in the binary elements. The changes in the orbital el-
ements of the binary is somewhat smaller than the estimated values because (i) the
mass of the disk is smaller in the hydrodynamic calculation and (ii) disk mass and
angular momentum are stripped off by the secondary and are lost through the outer
boundary of the computational domain. The loss through the (open) inner boundary
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Fig. 6.4 The evolution of the binary elements due to the interaction with the circumstellar disk
around the primary star without an embedded planet. One binary orbit refers to approximately
57 years. Left: abin.t /; Right: ebin.t /

of the disk is only marginal. The changes in the orbital elements of the binary, as
displayed in Fig. 6.4, is initially large during the equilibration phase of the disk and
then slows down such that the semimajor axis and eccentricity change only very
slowly. As long as a disk is present, the binary will evolve as well and only if the
disk has dissipated, its evolution will come to a halt. This slow evolution, however,
does not affect our conclusions about the planet formation process as discussed in
this work.

6.2.1.4 The Behaviour of an Embedded Planet

In the previous section we have seen that the gravitational torques of the binary lead
to a truncation of the disk and a rearrangement of the disk material. To study the
influence of the companion on the evolution of small protoplanets, we embed, after
an equilibration time of 100 binary orbits (nearly 6,000 years), a 30MEarth planet in
the disk and follow its subsequent evolution. This rather time consuming procedure
to generate the initial state is necessary to obtain realistic initial conditions for the
growing protoplanet. At the time of insertion of the planet, the remaining disk mass
is rescaled to contain 3 MJup within the computational domain.

As a first sample case we follow the planet’s orbital evolution while keeping its
mass constant, i.e., the planet is not allowed to accrete mass from its environment.
This model will serve as a reference for the subsequent cases which will allow for
planetary mass growth. The planet is released at ap D 2:5 AU on a circular orbit.
After insertion of the planet its orbital elements will change due to gravitational in-
teraction with the disk and the binary. The planet migrates inward due to the torques
of the disk, with a rate of 0.1 AU in about 2,800 years. While the overall migra-
tion is approximately linear over this time, it is modulated by the binary companion
and the precessing, eccentric disk (see left panel of Fig. 6.5). At the same time, the
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Fig. 6.6 The evolution of the argument of pericenter of the disk, the planet, and the binary after
insertion of a 30 MEarth object

planetary eccentricity ep increases to about 0.3, with the eccentric disk yielding
the prime contribution to its growth. The oscillatory behaviour originates from the
changing degree of apsidal alignment between eccentric disk and planet as they un-
dergo relative precession.

The evolution of the argument of pericenter of the disk, the planet and the binary
are displayed in Fig. 6.6. While the disk continues its retrograde precession and the
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Fig. 6.7 The evolution of the mass of the planet for different accretion rates. Initially the planet
had a mass of 30 MEarth

binary remains unchanged, the planet undergoes initially a retrograde precession
and then settles to an approximately constant value with oscillations whose fre-
quency is given by the precession frequency of the whole disk in which it is
embedded.

To study more realistic cases, we now allow the planet to grow in mass by ac-
creting material from the disk during its motion through it. The accretion process
is modeled numerically in a simple manner. At each time step, a certain fraction of
the material within the Roche lobe of the planet is taken out of the computational
domain and added to planet’s mass. In Fig. 6.7 we show the evolution of the mass
of the planet for different accretion rates. For the largest accretion rates, the planet
acquires over 1:8MJup within the first 700 years of its evolution, a value that is
unrealistically high. This model is used to set the limiting case for the others. The
model with the small accretion only doubles the mass of the planet from 30 to 60
MEarth during the first 1,000 years, which gives a more realistic accretion rate. The
no-accreting case is given by the horizontal line.

More interesting is now the different orbital behaviour of each accreting planet,
which is displayed in Fig. 6.8. The planet with the constant mass has the slow-
est migration, and the larger the accretion rate the larger is the migration speed.
This is consistent with the estimated migration rates for different masses (D’Angelo
et al. 2003). The planet with the maximum accretion rate grows rapidly in mass
and approaches 1 MJup limit after 280 years, when its migration rate slows down
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Fig. 6.8 The evolution of the semimajor axis (top) and eccentricity (bottom) of embedded planets
in the circumstellar accretion disk. The planets all started with the same mass but accreted at
different rates from the accretion disk (see Fig. 6.7). The planets are inserted after 100 orbital
binary periods, and the time is reset to zero

and levels off as the mass in the disk decreases and the driving agent disappears.
The intermediate cases migrate initially with the same speed as the non-accreting
model but accelerate as the planetary mass increases.
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Concerning the eccentricity evolution, the lightest planet experiences the largest
growth. For the large accretion rate the eccentricity soon levels off to a value of
ep D 0:05.

6.2.1.5 Comparison with � Cep

The most up to date observational data suggest the following parameters for the
planet in the � Cep system: ap ' 2:044, ep ' 0:115 and mp sin i ' 1:60MJup

(Neuhäuser et al. 2007). If this planet formed according to the core accretion model,
then our simulations raise a number of important questions that should be addressed
in the future. Simulations which cover a wider parameter set of initial conditions are
presented in Kley and Nelson (2008).

First, a low mass, non accreting planet embedded in an eccentric disk experiences
substantial growth in eccentricity (see Fig. 6.5). This has clear implications for the
accretion of planetesimals because their velocity dispersion may become very large
due to this effect. Thébault et al. (2004) examined the evolution of planetesimal
orbits under the influence of the binary companion and aerodynamical gas-drag.
They concluded that accretion of planetesimals would occur in the shear dominated
regime because orbital alignment was maintained due to the gas-drag. This work,
however, did not include the effects of an eccentric disk, and so it remains un-
clear whether planetesimal orbits will remain aligned. We will discuss the effects
of including the full dynamics of the disk when calculating the orbital evolution of
planetesimals in the � Cep system in the next section.

A second issue is related to the type I migration of the giant planet core that must
survive before gas accretion occurs. Figure 6.5 shows the non-accreting, low-mass
planet undergoing quite rapid inward migration. The migration, however, is mod-
ulated by the eccentricity of the planet, such that at high eccentricity phases the
migration rate decreases. It is possible that longer run times will show an essential
stalling of this migration if the planet eccentricity grows beyond its final value of
ep ' 0.3.

Once gas accretion is switched on, our calculations have shown that a disk mass
of about three Jupiter masses, where the outer disk radius is tidally truncated at
r ' 5 AU, will be sufficient to grow a planet that is close to the minimum observed
mass of mp sin i ' 2:044MJup. It is also clear that we can construct a model in
which a low-mass planet growing from an initially circular orbit can achieve a final
mass of mp ' 2MJup, and have a final eccentricity of ep ' 0:1. Calculations to see
if a planetary core on an initially eccentric orbit (as expected from Fig. 6.5), will
circularize as it accretes gas from the disk, such as in a self consistent model that
fits the observation, will be interesting to construct.

A final comment regarding to the final mass of the planet. Our simulations sug-
gest that a disk mass of about three Jupiter-masses will be enough to form a gas-giant
of the required minimum mass. A future test of the models by which the planet in
� Cep may have formed (gravitational instability versus core accretion) will be the
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determination of its actual mass. We suspect that a disk that is massive enough to
form a planet through gravitational instability will lead to a planet whose final mass
is substantially larger than the minimum value observed.

6.3 Evolution of Planetesimals in a Circumstellar Disk
with a Companion

We now describe preliminary results from simulations of planetesimals embedded
in circumstellar disks with a companion star. We take as our basic model the disk
and binary system described in Section 6.2. As in the models in which low mass
protoplanets were considered, we evolve the system for 100 binary orbits prior to
inserting 100 planetesimals of various sizes. At the point when the planetesimals
are inserted, the disk mass is augmented so that it contains three Jupiter masses in
total. The planetesimals are randomly distributed initially between orbital radii of
1.5 and 2.5 AU on circular Keplerian orbits. We consider here planetesimals whose
physical radii are 100 m and 1 km. A broader range of sizes will be discussed in
Kley and Nelson (2008). The planetesimals experience aerodynamic gas-drag us-
ing the standard formulae found in Weidenschilling (1977), and also experience the
gravitational force due to the disk, central star and companion star. Although the
simulations we describe here are two dimensional, we assume that the planetesi-
mals lie in the disk midplane and calculate the volumetric density from the surface
density by assuming that the vertical density profile is Gaussian with scale height
H D 0:05 r , where r is the orbital radius. We use linear interpolation to calculate
the gas density and velocity at the planetesimal positions for use in the gas-drag
formula. The evolution of the semimajor axes, eccentricities and longitudes of peri-
center for five representative 100 m-sized planetesimals are shown in Fig. 6.9. We
see that the planetesimals migrate inward on the expected timescale due to the aero-
dynamic gas-drag, and are also excited onto orbits with high eccentricity (e � 0:12).
The eccentricity is driven upward primarily by gravitational interaction with the
eccentric gas disk, and not because of direct interaction with the binary companion.
As the planetesimals drift inward their eccentricity decays slightly but still remains
significant. We see also that the eccentric orbits remain highly-aligned, suggesting
that encounter velocities between these same-sized planetesimals will remain dom-
inated by Keplerian shear, and therefore will remain small. Similar results were
found for the 1 km-sized bodies.

The picture changes, however, when we consider planetesimals of different sizes.
In Fig. 6.10 we show the evolution of two representative planetesimals, one being
of size 100 m, the other being 1 km in radius. The top left panel shows the semi-
major axes, and we see that the 100 m sized body (which is initially further out in
the disc) crosses the orbit of the 1 km sized planetesimal after �700 orbits, since
it migrates in at a higher speed due to aerodynamic drag. The top right panel of
Fig. 6.10 shows the eccentricities, and the lower left panel shows the longitudes of
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a

b

c

Fig. 6.9 The evolution of the semi-major axes (a), eccentricities (b), and longitudes of pericenter
of embedded 100m-sized planetesimals in the circumstellar accretion disk (c)



6 Early Evolution of Planets in Binaries: Planet–Disk Interaction 151

Fig. 6.10 The evolution of the semimajor axes (top left panel), eccentricities (top right panel),
longitudes of pericenter (lower left panel) and orbital radii (lower right panel) for the 100 m and
1 km sized planetesimals described in the text. The 100 m sized planetesimal is shown by the green
line, and the 1 km sized body is shown in red

pericenter. This latter panel shows that at the point where the two orbits cross, the
eccentric orbits are significantly misaligned, resulting in the orbit crossing which is
shown in the lower right panel, where the orbital radii are plotted. The implication is
that large collisional velocities are highly likely between planetesimals of different
sizes. Although we do not have sufficient numbers of particles to make statistically
significant measures of planetesimal collision velocities, we note that eccentricities
of e ' 0:1 at orbital radii '1.5 AU imply encounter velocities '2 km s�1. Recent
results presented by Paardekooper et al. (2008) who considered a similar model,
suggest encounter velocities between 1 km and 5 km-sized bodies of '500 m s�1.
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Simulations of colliding icy bodies with radii '100 m performed by Benz and
Asphaug (1999) suggest that disruption occurs for impact velocities '15 m s�1.
Clearly the results presented here suggest that it will be difficult to build up large
planetesimals and planetary embryos through planetesimal accretion in protoplan-
etary discs in close binary systems. This raises questions about the applicability of
the standard core accretion model when applied to close binary systems such as
� Cep, as it would appear that impacts between planetesimals will be destructive
rather than accretional.

6.4 Evolution of Planets in Circumbinary Disks

In this section we present the results of simulations that examine the evolution of
both low and high mass protoplanets which form in circumbinary disks. A more
expansive discussion of the work relating to low mass planets is presented in Pierens
and Nelson (2007), and a detailed description of the simulations relating to high
mass planets is presented in Nelson (2003).

We consider the interaction between a coplanar binary and protoplanet system
and a two-dimensional, gaseous, viscous, circumbinary disk within which proto-
planets are assumed to form. We do not address the formation process itself, but
rather assume that circumbinary protoplanets can form, and examine its dynamical
consequences.

Each of the stellar components and each protoplanet experience the gravitational
force of the other two, as well as that due to the disk. For simplicity, we refer to
a protoplanet as a planet in the rest of this section. The planet and binary orbits
are evolved using a fifth-order Runge–Kutta scheme (Press et al. 1992). The force
of the protoplanet on the disk, and of the disk on the planet, is softened using a
gravitational softening parameter bD 0:5ap.H=r/, where ap is the semimajor axis
of the planet, andH=r is the disk aspect ratio. We assume that the mass of the planet
is fixed, and disk models have effective aspect ratio H=r D 0:05.

6.4.1 Low Mass Circumbinary Planets

The simulation described below was performed using the hydrodynamics code
GENESIS (Pierens et al. 2005; de Val-Borro et al. 2006). The Shakura–Sunyaev
viscosity parameter ˛D 2 � 10�4, and the disk was initialized to have a mass
of 0.04 Mˇ within a radius of 40 AU. The interaction between gas disc and the
circumbinary planet is expected to be very dominant compared to the interaction
between the planet and any planetesimals that may be embedded in the circumbi-
nary disc. Therefore dynamical friction due to planetesimals is not included. An
expanded version of the following discussion is presented in Pierens and Nelson
(2007).
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Fig. 6.11 The evolution of the binary elements due to interaction with the circumbinary disk.
The top panel shows the semimajor axis evolution over time (expressed in binary orbits), and the
bottom panel shows the eccentricity evolution. The binary orbital period is �92 days

The simulation was initialized with a binary star system on a circular or-
bit surrounded by an unperturbed circumbinary disk. The stellar masses were
M1 D .1=11/Mˇ and M2 D .1=110/Mˇ (i.e., the mass ratio was qD 0:1), and the
semimajor axis abin D 0:4 AU. The top panel of Fig. 6.11 shows the slow decline of
the binary semimajor axis over a timescale of about 80,000 years (the binary orbital
period is approximately 92 days) and the bottom panel shows the growth and sat-
uration of the binary eccentricity. As expected, interaction with the disk drives the
growth of binary eccentricity through the action of eccentric Lindblad resonances
(e.g., Papaloizou, Nelson and Masset 2001), and the eccentricity eventually reaches
a steady value of ebin ' 0:08, at which point additional resonances have presumably
become active further out in the disc which contribute to eccentricity damping.
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Fig. 6.12 The evolution of the planet elements due to interaction with the circumbinary disk. The
top panel shows the semimajor axis evolution over time in years, and the bottom panel shows the
eccentricity evolution

Once the binary eccentricity reaches a constant value, a low-mass protoplanet
(mp D 50 M˚) was inserted in the disk on a circular orbit with semimajor axis
ap D 3 AU and allowed to evolve. The planet migrates inward due to interaction
with the disk, as shown in Fig. 6.12, which also shows the planet eccentricity evo-
lution. As the planet semimajor axis reaches a value of ap ' 1:1 AU, we see that
migration suddenly stalls. This halting of migration appears to be robust, and occurs
for planets whose masses are too small for gap formation in the gas disk to occur
(Pierens and Nelson 2007). We ascribe this behavior to an increase in the corotation
torque as the planet enters the inner cavity that is cleared by the tidal torques of the
binary. A similar effect has been described by Masset et al. (2006) who show that
planet migration can be halted due to the action of corotation torques at surface den-
sity transitions. As such, we expect this stalling of migration for low-mass planets
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to be a generic feature within circumbinary disks, and to occur near the edge of the
tidally truncated cavity generated by the binary. We note here that the stability anal-
ysis presented by Holman and Wiegert (1999) suggests that the critical semimajor
axis for stability of a planet orbiting a binary system with eb ' 0.08 and mass ratio
of 0.1 is '2.3 ab . The planets in our simulation stall at with semimajor axes '3.0
ab , suggesting that they will be stable on long time scales. The top panel of Fig. 6.13
shows the azimuthally averaged surface density in the disk as a function of radius

Fig. 6.13 The top panel shows the azimuthally averaged surface density profile at the end of the
simulation. The bottom panel shows an image of the disk along with the planet and binary system.
This image corresponds to an earlier time during which the planet is migrating inward toward the
central binary system
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at the end of the simulation, and illustrates the point that the planet stalls within
the inner cavity due to corotation torques. The bottom panel shows an image of the
binary, planet and circumbinary disk at the end of the simulation.

6.4.2 High Mass Circumbinary Planets

The simulations described below were evolved using the hydrodynamics code
NIRVANA (Ziegler and Yorke 1997). The viscosity parameter is ˛D 5 � 10�3,
and the surface density is normalized such that the disk contains about four Jupiter
masses interior to the initial planet semimajor axis (Nelson 2003). The total mass
of the binary plus protoplanet system is assumed to be 1 Mˇ. We use units in which
the gravitational constant GD 1, and the unit of length is approximately 3.6 AU.
The initial binary semimajor axis is abin D 0:4 in our computational units, and the
initial planet semimajor axis is ap D 1:4. The latter corresponds to 5 AU in physi-
cal units. Thus the planet lies just outside the 6:1 mean motion resonance with the
binary. According to the stability criterion obtained by Holman and Wiegert (1999),
planets orbiting at this semimajor axis should be stable for all binary eccentricities
considered here, though it is worth noting that Holman and Wiegert (1999) found
islands of instability at the locations of exterior mean motion resonances in their
study. The effect of a protoplanetary disc, however, was not included in their study.

Simulations were performed for a variety of initial binary eccentricities, ebin, and
the protoplanet was initially in circular orbit. The binary mass-ratio qbin D 0:1 for
all simulations presented in this section, but larger values were considered in Nelson
(2003). The unit of time quoted in the discussion below is the orbital period at r D 1.

The results of the simulations can be divided into three main categories (Mode 1,
Mode 2, and Mode 3), which are described below, and are most strongly correlated
with changes in the binary mass-ratio, qbin, and binary eccentricity ebin. Changes to
the disk mass and/or planet mass appear to be less important. Here we present the
results of just three simulations that illustrate these basic modes of evolution.

In some runs, the planet entered the 4:1 mean motion resonance with the binary.
The associated resonant angles in the coplanar case are defined by:

 1 D 4�s � �p � 3!s  2 D 4�s � �p � 3!p

 3 D 4�s � �p � 2!s � !p  4 D 4�s � �p � 2!p � !s (6.7)

where �s, �p are the mean longitudes, and !s , !p are the longitudes of pericen-
ters of the secondary and planet, respectively. When the planet is in resonance with
the binary,  3 and/or  4 should librate. If the resonance is such that  3 and  4

both librate, then  1 and  2 will also librate because they can be expressed as lin-
ear combinations of  3 and  4. In principle the planet is able to enter higher order
resonances than 4:1, such as 5:1 or 6:1, since its initial location lies beyond these res-
onance locations. However, none of the simulations presented here resulted in such
a capture. Test calculations indicate that capture into higher order resonances re-
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quires slower planetary migration rates than those that arise in these simulations. For
significantly faster migration rates the planet may pass through the 4:1 resonance
(Nelson 2003).

6.4.2.1 Mode 1 – Planetary Scattering

A number of simulations resulted in a close encounter between the planet and binary
system, leading to gravitational scattering of the planet to larger radii, or into an
unbound state. We label this mode of evolution as ‘Mode 1’. Typically the initial
scattering causes the eccentricity of the planet to grow to values ep ' 0:9, and the
semimajor axis to increase to ap ' 6�8 in code units (this corresponds to an actual
distance of 15–24 AU since a code unit corresponds to 2.5 AU. Note that the code
unit in these simulations are different from the simulations of Section 6.4.2). In runs
that were continued for significant times after this initial scattering, ejection of the
planet could occur after subsequent close encounters.

We illustrate this mode of evolution using a simulation with mp D 3 Jupiter-
masses and qbin D 0:1. A series of snapshots of the simulation are shown in Fig. 6.14.
Mode 1 evolution proceeds as follows. The planet migrates in toward the central bi-
nary due to interaction with the circumbinary disk, and temporarily enters the 4:1
mean motion resonance with the binary. The migration and eccentricity evolution
is shown in the top panel of Fig. 6.15, and the resonance angles are shown in the
bottom panel. The resonant angle  3 librates with low amplitude, indicating that
the planet is strongly locked in the resonance. The resonance drives the eccentricity
of the planet upward until it has a close encounter with the secondary star during or
close to periapse. At this state, the planet is scattered out of the resonance into a high
eccentricity orbit with significantly larger semimajor axis. We note that the existence
of a resonance normally helps to maintain the stability of two objects orbiting about
a central mass. However, when one of the objects is a star, the large perturbations ex-
perienced by the planet can cause the resonance to break when the eccentricities are
significant. Once out of resonance, the chances of a close encounter and subsequent
scattering are greatly increased. This provides a method of forming ‘free-floating
planets’.

6.4.2.2 Mode 2 – Near-Resonant Protoplanet

A mode of evolution was found in some of the simulations leading to the planet
orbiting stably just outside of 4:1 resonance. We label this mode as Mode 2 and
illustrate it by a simulation corresponds to mp D 1, qbin D 0:1, and ebin D 0:1. The
evolution of the orbital elements at this mode are shown in Fig. 6.16. As shown
in this figure, the planet migrates inward and becomes weakly locked into the 4:1
resonance, with the resonant angle  3 librating with large amplitude. The reso-
nance becomes undefined and breaks when the planet’s eccentricity momentarily
approaches zero during its high amplitude oscillations that accompany the libration
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Fig. 6.14 This figure shows surface density contours for run in which the planet is ejected by the
binary

of  3. At this stage, the planet undergoes a period of outward migration through
interaction with the disk by virtue of the eccentricity having attained values of
ep ' 0:17 once the resonance is broken. Unpublished simulations show that gap-
forming planets orbiting in tidally truncated disks undergo outward migration if
they are given eccentricities of this magnitude impulsively. The outward migra-
tion moves the planet to a safer distance away from the binary, helping to avoid
instability. We note that the stability criterion derived by Holman and Wiegert (1999)
for binaries with mass-ratios of 0.1 and eccentricities 0.1 suggests that planets
orbiting with semimajor axes ap D 2:4066 abin are on the cusp of instability. The
planet shown in Fig. 6.16 orbits beyond ap D 2:52 abin, and is therefore expected to
be stable in the long-term.
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Fig. 6.15 The top panel shows the semimajor axes and eccentricities for a run in which planet
is scattered by the binary. The bottom panel shows the resonant angles for the 4:1 resonance,
indicating capture into this resonance prior to scattering
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Fig. 6.16 This figure shows semimajor axes and eccentricities for the Mode 2 run described
in the text

Once the planet has migrated to just beyond the 4:1 resonance, the outward
migration halts since the planet’s eccentricity reduces slightly. Planet, then, re-
mains there for the duration of the simulation and the system achieves a balance
between eccentricity damping by the disk and eccentricity excitation by the binary,
maintaining a mean value of ep ' 0:12 (Nelson 2003). The torque exerted by the
disk on the protoplanet is significantly weakened by virtue of the finite eccentricity
(Nelson 2003), preventing the planet from migrating back toward the binary.

Continuation of this run in the absence of the disk indicates that the planet re-
mains stable for over 6 � 106 orbits. This is in good agreement with the stability
criteria obtained by Holman and Wiegert (1999) since the protoplanet lies just out-
side of the zone of instability found by their study.

6.4.2.3 Mode 3 – Eccentric Disk

A mode of evolution was found in which the planetary migration was halted before
the protoplanet could approach the central binary and reach the 4:1 resonance. This
only occurred when the central binary had an initial eccentricity of ebin � 0:2.
The migration stalls because the circumbinary disk becomes eccentric. We label this
mode of evolution as Mode 3, and illustrate it using a simulation withmp D 1MJup,
qbin D 0:1, and ebin D 0:2. The top panel of Fig. 6.17 shows snapshots of the surface
density at different times during the simulation, with the disk becoming noticeably
eccentric. Interaction between the planet and the eccentric disk leads to a dramatic
reduction or even reversal of the time-averaged torque driving the migration. This
is because the disk–planet interaction becomes dominated by the mD 1 surface
density perturbation in the disk rather than by the usual interaction at Lindblad
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Fig. 6.17 The top panel shows contours of surface density for the Mode 3 run described in the
text. The bottom panel shows the resulting changes to the semimajor axis and eccentricity of the
protoplanet
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resonances in the disk. Here m is the azimuthal wave number. The value of mD 1

refers to eccentric disks. Linear calculations of planets orbiting in eccentric disks
also show the possibility of outward or stalled migration (Papaloizou 2002).

The bottom panel of Fig. 6.17 shows the evolution of the semimajor axis and
eccentricity of the planet, illustrating the stalled migration. Simulations of this type
can be run for many thousands of planetary orbits without any significant net inward
migration occurring. Such systems are likely to be stable long after the circumbi-
nary disk has dispersed, since the planets remain in the region of stability defined
by the work of Holman and Wiegert (1999) and are probably the best candidates for
finding stable circumbinary extrasolar planets. Interestingly, spectroscopic binary
systems with large eccentricities are significantly more numerous than those with
lower eccentricities (Duquennoy and Mayor 1991; Mathieu et al. 2000), suggesting
that circumbinary planets may be common if planets are able to form in circumbi-
nary disks.

6.5 Conclusions

Much of the work presented in this article is presently under active research. More
details can be found in (Pierens and Nelson 2007; Paardekooper et al. 2008; Kley
and Nelson 2008). The conclusions about planet formation and evolution in binary
systems via the core-accretion scenario that we are able to draw thus far are:

� In systems such as � Cep, the nascent circumstellar disk is expected to be tidally
truncated at a radius of '4 AU, and to be driven into an eccentric and precessing
state by the binary gravitational potential.

� A low-mass planet that forms in such a disk will itself become eccentric, and will
migrate inward on a fairly rapid time scale.

� Gas accretion onto such a planet is likely to be highly efficient because of the
induced orbital eccentricity, such that a large fraction of the disk gas will accrete
onto the planet. Simulations indicate that a gas disk containing '3 Jupiter-
masses will form a planet of '2 Jupiter-masses, as required to fit the minimum
mass of the planet detected in the � Cep system.

� Simulations of different-sized planetesimals orbiting in a tidally truncated and
eccentric protoplanetary disk indicate that high velocity collisions are likely, in
agreement with Paardekooper et al. (2008). Such collisions will probably lead to
fragmentation of the planetesimals rather than their growth. Our simulations of
planetesimals with the same size show that the orbits remain aligned, in agree-
ment with the results Thébault et al. (2004), suggesting that collisions between
equal sized bodies will not be destructive. Further work is required to confirm
this picture.

� Low-mass planets in circumbinary disk migrate inward until they reach the gap
edge, where they appear to stall due to the action of corotation torques.
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� Should these low-mass planets grow to become gas giants, a range of outcomes
seem likely. These include stalled migration leading to the formation of stable
circumbinary giant planets, and inward migration followed by scattering and
ejection by the central binary.
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Chapter 7
Dynamics and Planet Formation
in/Around Binaries

Francesco Marzari, Philippe Thébault, Steve Kortenkamp, and Hans Scholl

7.1 Introduction

7.1.1 The “Standard” Planet Formation Scenario

It is believed that extrasolar planets, detected in orbits around an increasing number
of nearby stars may have formed either by core accretion or by disk instability
(e.g., Boss 1997, 2007). While core accretion requires a few million years to form
a gas-giant planet (Alibert et al. 2004), in the competing model, self-gravitating
clumps formed by disk instability will contract to planetary densities in times of
a few hundred years (Boss 2004, 2006). The two formation mechanisms are both
viable and, at the moment, there is no reason to definitively exclude one in favor of
the other. However, it is believed that extrasolar planets around metal-rich stars pref-
erentially formed by core accretion because of a significant parent-star metallicity
correlation (Santos et al. 2004). The recent finding of an exoplanet with a massive
core of about 70 M˚ (Sato et al. 2005) seems to confirm this view. In this chapter
we will concentrate on planetesimal accretion as a common mechanism for forming
either terrestrial planets or the core of gaseous giants.

A fundamental step in the “standard” scenario for the formation of planets,
either terrestrial or gaseous giant, is the collisional accumulation of kilometer-sized

F. Marzari (�)
Dipartimento di Fisica, Via Marzolo 8, 35131 Paduva, Italy
e-mail: marzari@pd.infn.it
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planetesimals in successively larger bodies. It is widely accepted that planetesimals
emerge from the coagulation of silicate and ice grains in the midplane of protoplan-
etary disks on timescales of the order of 104 years, even though at present the details
of this coagulation process are not well understood. Colliding with each other, plan-
etesimals grow into large planetary embryos (Lunar- to Mars-size) through a phase
of “runaway” and “oligarchic” growth on a timescale of the order of 104–105 years
(Greenberg et al. 1978; Wetherill and Stewart 1989; Barge and Pellat 1993; Lissauer
1993; Kokubo and Ida 1998, 2000; Rafikov 2003, 2004). This is a robust finding cor-
roborated by distinct numerical methods (see review by Kortenkamp et al. 2000).
For terrestrial planets, the formation process reaches completion after a final phase
of giant impacts and mutual accretion of planetary embryos resulting in 1027–1028 g
full-size bodies in about 107–108 years on stable separated orbits (Chambers and
Wetherill 1998). In the case of giant planets, protoplanets accumulate into a solid
core that, once sufficiently massive, begins to accrete a gaseous envelope. Initially,
this envelope is in hydrostatic equilibrium sustained by the luminosity provided by
the accreting planetesimals and is increasing at a slow rate compared to that of the
solid core. However, at a critical core mass (in between 5 and 15 M˚) a phase of
runaway gas accretion occurs, the planet mass increases rapidly and it reaches its
final value on a timescale estimated to be only a few 103 years. For a given density
of solids and gas in the disk, hydrodynamical calculations can determine for which
mass of the core the envelope is able to remain static or collapse, and the rate at
which the mass flows onto the planet (see, e.g., Wuchterl et al. 2000). At the end of
the gas rapid infall, the planet evolves into the isolated stage during which it cannot
grow any further because of the exhaustion of the gas supply either because of its
removal by effects of the star or as a result of gap formation around the planet or-
bit triggered by disk-planet tidal interaction (Papaloizou and Lin 1984). The planet
finally cools down and contracts to its present size. This scenario for giant planet for-
mation, called core accretion (Pollack et al. 1996), is based on the interior models
for Jupiter and Saturn which strongly suggest the presence of a dense central core
surrounded by an envelope composed mainly by hydrogen and helium for both plan-
ets. There are large uncertainties on the mass of the core and detailed calculations
performed by e.g., Guillot (1999) and Guillot (2004) predict an upper limit of 10
M˚ for Jupiter’s core while for Saturn the core mass ranges from 6 to 17M˚.

In a given protoplanetary disk, the potentiality of a planetesimal swarm to accu-
mulate into larger bodies is measured by two critical parameters.

� The Surface Density of Solid Material The concentration of condensible mate-
rial determines the final mass in the case of a terrestrial planet, while it must lead
to a reasonable formation time for the core of a giant planet that must be com-
patible with the lifetime of the gaseous disk. Disk ages are estimated to range
from 0.1 to 10 Myr (Strom et al. 1993; Haisch et al. 2001; Chen and Kamp
2004), while 3 Myr is the age at which half of the stars show evidence of disks.
Simulations of the accumulation of Jovian planets (Bodenheimer and Lin 2002)
show that if the surface density of solids in the disk is assumed to be at least three
times larger than that of the minimum-mass solar nebula (Weidenschilling 1977),
then the formation time for Jupiter mass planets is within 2–3 Myr at 5 AU from
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the star. If planetary migration is included in the simulations, the timescale for
forming Jupiter is reduced to 1–2 Myr even with solid surface density closer to
the minimum mass solar nebula (Rice and Armitage 2003).

� The Relative Encounter Velocities Between Planetesimals The random en-
counter velocities in a planetesimal swarm determine whether mutual impacts
will result in accretion or on the contrary, in cratering or fragmentation. The
key mechanisms controlling the impact velocities are: (1) mutual gravitational
encounters between planetesimals, (2) physical collisions, (3) gas-drag, in pres-
ence of the gaseous component of the disk. Several numerical studies have shown
that in an unperturbed swarm of kilometer-sized planetesimals around a single
star, the average random encounter velocity h�vi is low enough to favor the
collisional accumulation of bodies (e.g., Greenberg et al. 1978; Wetherill and
Stewart 1989, 1993; Weidenschilling et al.1991, 1997). At the early stages of ac-
cretion, a low h�vi is also a fundamental requirement for permitting a phase of
rapid “runaway” growth which significantly shortens the timescale for the forma-
tion of planetary embryos. Indeed, under this condition, the ratio vesc.R/=h�vi
between the escape speed of the largest bodies and the average impact veloc-
ities is �1, thus making their gravitational cross-section quite larger than the
geometrical cross-section. This gravitational focusing enhances the growth-rate
of the larger planetesimals which grow much faster than the rest of the popula-
tion (e.g., Lissauer 1993). A direct consequence of this crucial h�vi dependence
is that planetesimal growth is very sensitive to any increase of the encounter
velocities. It could thus be significantly slowed down or even stopped if the grav-
itational influence of a massive body external to the swarm, like a pre-existing
giant planets (e.g., Jupiter in our solar system), or a companion star in a binary
system is able to excite large impact velocities. Thébault et al. (2002) have shown
that the formation of terrestrial planets in those exoplanetary systems hosting a
giant planet on an external orbit may have been indeed halted. They find that in
both the � Eridani and 47 Uma planetary systems, the relative velocity between
planetesimals in the terrestrial planet region may have quickly exceeded the crit-
ical threshold value vero beyond which erosion dominates before the completion
of the runaway growth if the massive outer planet rapidly reaches its present
mass. Of course, the threshold velocity that preferentially result in disruption
rather than accretion is a sensitive function of the internal strength of planetes-
imals, their bulk density, and the fraction of impact energy partitioned into the
fragments after the impact. These physical parameters strongly depend on the
initial radial density and temperature profile in the disk midplane.

7.1.2 Planets in Binary Star Systems

In this chapter we will focus on how the presence of a companion star affects the
planetesimal accretion process either in the formation of terrestrial planets or the
core of a giant planet. While the existence of extrasolar Earth-like planets has yet to
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be assessed, some of the giant exoplanets (more than 40 at the time of the writing of
this chapter) have been detected in the so-called S-type orbits that encircle one com-
ponent of a binary system (e.g., Raghavan et al. 2006; Desidera and Barbieri 2007).
Most of these are widely separated pairs where the stellar companion probably does
not have a significant influence on the planetesimal accretion around the other star.
However, in three of the systems, � Cephei, GL 86, and HD41004, the companion
is within 20–25 AU from the star hosting the planet. The � Cephei system consists
of a central star with an estimated mass of 1:40 ˙ 0:12Mˇ, a planet orbiting at
2:13 ˙ 0:05 AU with a minimum mass of 1:46 ˙ 0:32 MJ and a companion star
on an eccentric orbit (e D 0:4085˙ 0:0065) with semimajor axis of 20:18˙ 0:66

AU and mass of about 0:4Mˇ (see also the chapter by Hatzes et al. in this volume
Hatzes et al. 2003; Torres 2007; Neuhäuser et al. 2007). GL 86 is a dwarf star some-
what less massive than the Sun (about 0:7Mˇ, e.g., Santos et al. 2004 with a white
dwarf companion of 0:55Mˇ Mugrauer and Neuhauser 2005 on an orbit having
a semimajor axis of 18.42 AU and an eccentricity of e D 0.3974 (Lagrange et al.
2006). A massive Jovian planet (M sin.i/ D 3:91MJ ) moves around the primary
star on an almost circular orbit (e D 0:0416) with a semimajor axis of a D 0:113

AU (Eggenberger et al. 2003). HD41004 A is a 0:7Mˇ star with a dwarf M4V com-
panion orbiting at '22 AU. The primary star has a M sin.i/ D 2:3MJ planetary
companion on a very eccentric e D 0:39 orbit at a D 1:31AU (Zucker et al. 2004;
Raghavan et al. 2006). Note that this system is a hierarchical quadruple, since the
stellar companion is itself orbited at a D 0:016 AU by a brown dwarf of minimum
mass 18:4MJ (Zucker et al. 2004).

The observed characteristics of these systems, e.g., the proximity of the compan-
ion star and its eccentric orbit, strongly suggest that the presence of the secondary
star must have had an influence on the formation of the detected planets. The gravi-
tational pull of the companion star acts on the h�vi of the planetesimal disk around
the primary star. As previously mentioned, this can modify the course of the accre-
tion process which strongly depends on the ratio vesc=h�vi, where vesc is the surface
escape velocity of the biggest accreting bodies. Timing is an important issue since
the perturbations will be effective in altering the planetesimal formation process
only if tsec, the timescale required by the secular perturbations of the star to induce a
significant�v increase, is shorter than tgrow, the timescale for the runaway/oligarchic
formation of embryos which is typically of the order of 104 to 105 years. We can
outline three possible different evolutions for a perturbed planetesimal swarm:

� If h�vi remains smaller than vesc during the growth phase, planetary formation
proceeds almost unaffected by the companion perturbations and the “classical”
planetesimal accumulation scenario holds.

� For values of h�vi larger than vesc but still smaller than vero, the threshold velocity
for erosion to dominate over accretion, planetary accretion will still be possible
but runaway growth will either not occur or will occur only after large enough
bodies have formed such that vesc > h�vi (the so-called Type II runaway growth
described in Section 7.6 below).
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� If h�vi is increased beyond vero, in the majority of collisions cratering and
fragmentation will overcome accretion and the planetesimal population will be
slowly ground down to dust, failing to form a full size planet.

In the following, we will focus on the determination of h�vi for different
parameters of the binary star system with the goal of evaluating when planetesi-
mal accretion is possible. We have performed a series of deterministic numerical
simulations, following the dynamical evolution of a swarm of test planetesimals,
under the influence of the companion star’s gravitational pull and friction by the gas
in which the planetesimals are imbedded. Crucial parameters, such as the compan-
ion star’s mass (relative to the mass of the primary, i.e., the binary mass-ratio) mb,
semimajor axis ab and orbital eccentricity eb are explored as free parameters.

We use a code initially developed for the study of planetesimal systems perturbed
by giant planets (Thébault and Brahic 1998; Thébault and Beust 2001; Thébault
et al. 2002) and adapted to the circumprimary case (Marzari and Scholl 2000;
Thébault et al. 2004, 2006). This 3-D code has a close encounter tracking algorithm
which enables precise determination of the �v within the system.

In a first step we present a detailed study of the planetesimal secular dynamics
in presence of a companion star (Section 7.2). We will then proceed by introducing
the effects of gas-drag and by estimating how the combined action of the friction
force with the secular perturbations affect the value of h�vi (Section 7.3). We
then compare the derived h�vi with an approximate estimate of vero to derive a
yes-or-no criterion for planetary formation as a function of the binary orbital pa-
rameters (Section 7.4). Finally, in Section 7.5, we present and describe one possible
accretion-growth mode for planetesimals in perturbed binary star systems, the so-
called Type II runaway growth mechanism.

7.2 Planetesimal Dynamics in a Binary Star System:
the Secular Approximation

Hereinafter, we will assume that the orbit of the secondary star is coplanar to the
planetesimal disk so that we can neglect the inclination of the bodies. This is a
reasonable assumption when the star is close to the primary because of the short
relaxation time of the disk into the plane of the binary orbit.

Heppenheimer (1978) developed a simplified theory for the evolution of the plan-
etesimal eccentricity with time based on an expansion of the disturbing function in a
power series of the ratio of the semimajor axes a=ab where a is the semimajor axis
of the planetesimal and ab that of the companion star. The approximation holds if a
is small compared to ab and it stays within the critical semimajor axis ac for dynam-
ical stability derived using direct numerical integrations by Holman and Wiegert
(1999). By truncating the disturbing function of the secondary star at the second
order in the eccentricity of the planetesimal, the secular equations simplify and lead
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to the following expressions for the forced eccentricity eF and the frequency u of
circulation of the perihelion$ :

eF D 5

4

a

ab

eb

1 � e2
b

; (7.1)

u D 3

4
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with

tan.$.t// D � sin.2ut/

1 � cos.2ut/
: (7.3)

Note that the units chosen in these equations are such that all masses are renor-
malized to the mass of the primary star (which has been assumed to be 1 solar-mass),
all distances to 1 AU, and all times to 1 year, i.e., the orbital period at 1 AU from
a solar-mass primary. In these units, the quantity mb , the mass-ratio of the binary,
will also represent the mass of the secondary star when the primary is solar-mass.

Thebault et al. (2006) compared the predictions of the above equations with
direct numerical simulations and found significant discrepancies, especially for
the oscillation frequency u. They empirically derived a revised expression for the
frequency u which reads:
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The discrepancy between the numerical and analytical estimate of u is reduced from
about 70%, in most of the cases with high eb and e, to less than 5%.

To illustrate the dynamical evolution of a planetesimal swarm under the secular
perturbations of a companion star, we have performed a “pedagogical” numerical
simulation where we integrate the orbits of massless test bodies, initially on circular
orbits, for about 105 years. In Fig. 7.1 we plot the location of each particle in the
.a; e/ plane at different times. The eccentricity of each single body oscillates with
a frequency u that depends on the semimajor axis of the body. If we freeze the
dynamical system at subsequent times, the slow de-phasing of the eccentricity of
nearby orbits will translate into a wavy pattern whose density grows with time.

7.3 Effects of the Secular Perturbations on h�vi

If the orientations of the perihelia were fully randomized in the planetesimal swarm,
the effect of the secular perturbations of the companion star on h�vi would be easy
to derive through the standard relation (Lissauer and Stewart, 1993):

h�vi ' .5=4/1=2eF vK (7.5)
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Fig. 7.1 Evolution of a test particle population perturbed by a stellar companion having
approximately the characteristics of � Cephei with mb D 0:25, ab D 20AU, and eb D 0:3.
The dotted line represents the distribution of average encounter velocities between the bodies of
the system

where vK is the local Keplerian velocity. According to this equation, even very low
values of forced eccentricity would halt accretion. In the � Cephei binary system, for
example, h�vi would be approximately 1:8� 103 m s�1 at 2 AU, the distance from
the star where the planet has been found. This large relative velocity would certainly
prevent mutual accretion in any swarm of kilometer-sized planetesimals (which have
escape velocities of the order of a few m s�1). In addition, a proper eccentricity
component ep has to be added to the planetesimal eccentricities, causing oscillations
of the eccentricity around eF with an amplitude equal to ep, which leads to even
higher impact velocities. If this was the scenario in the early phases of planetesimal
accumulation in close binary systems, secular perturbations would pose a serious
threat to planetary formation. However, the predictions of Eq. 7.5 strongly depend
on the assumption that planetesimal trajectories have a randomized distribution of
orbital angles. This is not true at the beginning of the dynamical evolution, because
secular perturbations force a strong phasing of the orbits. The large eccentricity
oscillations induced by the companion star are in-phase and associated to a very
efficient periastron alignment between neighboring orbits. This configuration leads
to planetesimal encounters on almost tangential trajectories and, notwithstanding
the very high values of forced eccentricity, to low and accretion friendly relative
velocities, dominated by the Keplerian shear.
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At subsequent times, however, the dependence of the precession frequency u of
$ on a3=2 causes a progressive de-phasing of nearby orbits. At some point neigh-
boring orbits eventually cross [see the detailed discussion in Thébault et al. (2006)],
leading to a sudden and very sharp increase of the encounter velocities. This is illus-
trated in Fig. 7.1 where we have superimposed to the .e; a/ graph the corresponding
evolution of the average relative velocity h�vi. The transition between the inner
regions, where the orbital phasing is still strong by preventing orbital crossing, and
the outer regions, where orbits already cross is very abrupt: h�vi changes from a few
m s�1 to about 1 km s�1, an accretion-inhibiting value for kilometer-sized planetes-
imals, within '0.1 AU. Thébault et al. (2006) have derived an analytical estimate of
the location in semimajor axis across where the orbital crossing occurs as a function
of time:

C1a
1=2
cross
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Conversely, for a given location a in the planetesimal swarm, the time tcr required
by the wavefront of high impact speeds to reach across is (Thébault et al. 2006):

tcr D 6:98 � 102

�
1 � e2

b

�3
eb




b

Mˇ

�1:1 � ab

10AU

�4:3 �across

1AU

��2:8

year: (7.8)

These analytical formulae hold for ab > 10AU and for 0:05 < eb < 0:8.
In Fig. 7.2 we show the time required by the high speed regime to reach 1 AU for
different values of ab and eb and for mb D 0:5. Note that for low eb and large ab ,
tcr is longer than 105 years, giving a chance to runaway growth to build up large
protoplanets before an erosion regime is established.

An implicit assumption of this scenario is that the initial encounter veloci-
ties in the planetesimal swarm are very low, i.e., that the initial orbits are either
circular or fully phased. This assumption is commonly adopted when addressing
planetesimal accretion in binaries (e.g., Heppenheimer 1978; Whitmire et al. 1998;
Thébault et al. 2004), but should however be handled with care. Its validity depends
on how and how fast planetesimals decouple from the gas of the protoplanetary disk
to follow their own Keplerian orbits around the main star. If the decoupling occurs
almost at the same time for all planetesimals, and if they are at that moment on al-
most circular orbits, their proper eccentricities ep will be approximately all equal to
eF , and their$’s will be grouped around 0 with consequent low relative velocities.
Basically, it all goes down to how the “initial” kilometer-sized planetesimals are be-
ing formed. Unfortunately, so far there are no clues on how planetesimals form in a
disk perturbed by the gravity of the secondary star and how these perturbations may
affect their trajectories as they emerge from the gas of the disk. As a matter of fact,
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Fig. 7.2 Value of the minimum companion semimajor axis, leading to orbital crossing of plan-
etesimals at 1 AU, for different values of the crossing time tcr, as a function of the companion
eccentricity. The companion’s mass is fixed with mb D 0:5. The dotted lines represent constant
values of h�vi at orbital crossing, as given by Eq. 7.5

there is not even full agreement on how planetesimals form around “normal” quiet
single-stars. There are schematically two competing models for planetesimal for-
mation in a quiescent protoplanetary disk: gravitational instability (e.g., Goldreich
and Ward 1973; Youdin and Shu 2002; Youdin and Chiang 2004), where kilometer-
sized bodies directly form from small solids in a dense unstable solid grain layer
in the midplane of the protoplanetary disk, and collisional-chemical sticking (e.g.,
Weidenschilling 1980; Dominik and Tielens 1997; Dullemond and Dominik 2005;
Johansen et al. 2006, 2007; Johansen and Youdin 2007), in which planetesimals are
the outcome of a progressive mutual grain sticking. If gravitational instability works
out also for disks in binary systems, then the planetesimal formation timescale is
likely to be negligible compared to the typical timescales for runaway growth and
for the onset of fully de-phased secular perturbations by the companion star. In this
case, it is reasonable to expect an initial orbital alignment within the swarm. The
decoupling from the gas occurs at a slower rate in the chemical sticking scenario
where planetesimals grow progressively. They might begin to feel the compan-
ion star perturbations when they are not yet fully detached from gas streamlines.
However, numerical simulations indicate that the whole growth process from grains
to kilometer-sized bodies might not exceed a few 103 years (Weidenschilling 2000),
i.e., still shorter than both runaway growth and secular perturbations timescales.
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7.4 Role of Gas Drag

So far, all effects other than the gravitational perturbations of the companion star
have been neglected. However, in the standard planetary formation scenario, the
initial stages of planetesimal accumulation are believed to take place in presence
of significant amounts of primordial gas. Marzari and Scholl (2000) have shown
that gas-drag damps planetesimal eccentricities and also restores a strong perihelion
alignment for equal-size bodies. If the density of the gas is large enough all the $s
of planetesimals halt their circulations and tend towards a fixed value $al equal
to 270ı. This tends to cancel out the large eccentricity oscillations forced by the
companion. In Fig. 7.3 we show this phenomenon for 5 km planetesimals embedded
in a protostellar disk similar to the minimum-mass solar nebula and perturbed by an
outer star. The parameters of the binary system recall those of ˛ Centauri. In this
simulation and in all the following ones, the drag force is modeled in laminar gas
approximation as

Rr D �Kvrelvrel; (7.9)

Fig. 7.3 Periastron and eccentricity distributions of a swarm of 5 km diameter planetesimals sur-
rounding the main star of the Alpha Centauri system. After 104 years from the beginning of the
simulation, the planetesimals orbits were strongly aligned because of the coupling between gas-
drag and secular perturbations of the companion star
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where K is the drag parameter given by K D 3�gCd=8�plR (Kary et al. 1993),
R is the radius of a planetesimal, �pl its mass density, �g is the density of the gas
in the protoplanetary disk, and Cd is a dimensionless drag coefficient related to the
shape of the body (�0.4 for spherical bodies).1

The orbits of the planetesimals are all aligned for an indefinite time up to about
2 AU from the star and the h�vi is of the order of a few meters per second. Under
this condition, planetesimal collisions lead to accretion all the time.

Unfortunately, this alignment depends on the balancing between the drag force
and the strength of the secular perturbations. For a lower gas density or for a larger
size of the planetesimals, the perihelia moves away from$al towards larger values
and the alignment is perturbed by a wavy pattern that forewarns the onset of a regime
dominated by secular perturbations. This behavior is illustrated in Fig. 7.4 for a
bimodal planetesimal population characterized by two different sizes.

Fig. 7.4 Example gas-drag run. Snapshots (at t D 3 � 103 years) of the .e; a/ and .$ �$b; a/

distributions for two planetesimal populations of sizes R1 D 1 km and R2 D 5 km. The quantity
$ � $b is the difference, in angular degrees, between the particles and the companion star’s
longitude of periastron. The companion star orbital parameters are ab D 10AU, eb D 0:3, and
mb D 0:5M

ˇ

1 Our gas-drag model is a simplified one where the gas disk is assumed to be fully axisymmetric
and follows a classical (Hayashi 1981) power law distribution. It is however more than likely that
in reality the gas disk should depart from this simplified view because it would also “feel” the
companion star’s perturbations. Several numerical studies have investigated the complex behav-
ior of gaseous disks in binary systems. They all show that pronounced spiral structures rapidly
form within the disk (e.g., Artymowicz and Lubow 1994; Savonije et al. 1994) and that gas
streamlines exhibit radial velocities. To follow the dynamical behavior of planetesimals in such
non-axisymmetric gas profiles would require a study of the coupled evolution of both gas and plan-
etesimal populations, which have to rely on hydrodynamic-code modeling of the gas in addition
to N-body type simulations for the planetesimals. Such an all-encompassing gas C planetesimals
modeling is clearly the next step in binary disk studies and have already been started by several
teams. It is interesting to note that preliminary results seem to show that planetesimal behaviors in
systems with “realistic” gas disk modeling do not seem to drastically depart from the behavior in
the axisymmetric case. There is in particular no phase alignment between eccentric planetesimal
orbits and gas streamlines, so that gas friction on planetesimals is still very high (S.J. Paardekooper,
private communication).
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The different alignment of planetesimals according to their size has a crucial
impact on the accretion process. While equal-size planetesimals keep a low h�vi,
since their orbits are oriented towards the same angle, when different-size plan-
etesimals encounter each other, their relative velocities are large most of the time
because of their forced unpaired orbital alignment. The high eccentricities of these
objects,induced by the secular perturbations, introduce large non-tangential compo-
nents in the relative velocities that easily overcome the Keplerian shear and cause
high velocity impacts. In Tables 7.1 and 7.2 we report the average encounter veloc-
ities < �v.R1; R2/ > between planetesimals of size R1 and R2 for two different
binary star orbital configurations. The assumed density of the gas corresponds to that
of the minimum-mass solar nebulae derived by (Hayashi 1981). The velocity values
have been obtained with numerical integrations of the planetesimal trajectories over

Table 7.1 Average encounter velocities in m s�1 at 1 AU from the primary within a population of
“small” planetesimals (1 < R < 10 km) for a gas-drag simulation with the companion star with
parameters mb D 0:5, ab D 10AU and eb D 0:3. The values of the quantity�vR1;R2 are averaged
over the time interval 0 < t < 2� 104 years. Initial starting encounter velocities are such that
�v0 ' 10m s�1. The values of �v in bold correspond to accreting impacts for all tested collision
outcome prescriptions. Underlined values are those for which we obtained different accretion vs.
erosion balance depending on the tested prescription. Values in classical roman characters corre-
spond to cases for which all tested models agreed on a net erosive outcome

Sizes (km) 1 2 3 4 5 6 7 8 9 10

1 10 154 233 285 327 360 391 426 452 458
2 172 10 94 133 187 223 262 287 316 334
3 238 84 11 54 99 137 177 200 230 254
4 289 144 63 12 40 80 115 149 171 198
5 325 188 103 43 12 32 70 100 122 154
6 373 228 144 83 32 11 36 56 84 104
7 400 261 182 113 68 36 12 35 48 76
8 428 298 212 147 98 56 35 12 36 45
9 450 310 238 168 123 83 48 36 13 31
10 453 338 263 196 152 107 73 48 31 13

Table 7.2 Same as Table 7.1, but with companion star parameters mb D 0:5, ab D 20AU and
eb D 0:4

Sizes (km) 1 2 3 4 5 6 7 8 9 10

1 11 127 204 255 298 342 368 390 417 442
2 126 10 84 139 185 227 258 290 317 340
3 200 91 11 68 108 158 186 218 246 272
4 258 146 61 9 48 88 120 154 186 209
5 301 192 113 54 12 44 75 111 136 164
6 339 232 152 99 43 10 31 66 92 119
7 361 262 181 126 77 28 13 26 56 87
8 395 295 219 159 112 68 26 11 28 48
9 425 320 246 190 136 92 55 25 11 23
10 446 346 266 208 163 122 82 49 22 12
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2�104 years. For the case displayed in Table 7.1, it is worth noticing that, in absence
of the gaseous component, the parameters of the binary system would lead to orbital
crossing of nearby planetesimal orbits in less than '5� 103 years (see Fig. 7.2).
The swarm would stop growing and erosion would take place. When we include
the effects of gas-drag, the h�vi remains always low for equal-size planetesimals.
However, for bodies of different sizes, the different phasing caused by the coupling
between gas-drag and secular perturbations, pump ups the relative velocities.

7.5 Dependence of the Accretion Process
on the Binary Parameters

Once we determine the h�v.R1;R2/i for any pair of planetesimal sizes, we must com-
pare it with the threshold velocity vero for that pair of projectile-target to test whether
either erosion or accretion will be the result of the collision. As pointed out in
Thébault et al. (2006), one can find in the literature many prescriptions of the colli-
sional outcome between two planetesimals given their impact velocity. Adopting the
approach outlined in Thébault et al. (2006), three different values of vero are com-
puted according to Holsapple (1994), Marzari et al. (1995) and Benz and Asphaug
(1999). Erosion (or accumulation) is assumed to occur when h�v.R1;R2/i is higher
(or lower) than all the three values of vero. In the intermediate cases we prefer not to
draw any definitive conclusion letting them as undefined cases. In Tables 7.1 and 7.2
a different text font is used to indicate when the computed h�v.R1;R2/i leads to ac-
cretion, erosion, or to an undefined situation. An inspection of these tables show that
anytime we depart from the diagonal stripe R1 D R2, there will be a sharp increase
in h�vi, almost always exceeding the threshold value for accretion, at least for the
binary parameters adopted in the tables.

The knowledge of the relative velocities between different-size planetesimals is
the first step towards imposing constraints on a dynamical environment that allows
planetary formation. These velocities should be used in the context of a full nu-
merical model for planetesimal accretion that also takes into account the frequency
with which different or equal-size planetesimals collide. If the size distribution of
the swarm privileges impacts between equal-size planetesimals, it comes out clearly
from the data in the tables that accretion is also possible for very close and eccentric
binary systems. On the other hand, if collisions between different-size planetesimals
dominate the evolution of the planetesimal swarm, then the different alignment of
perihelia might halt the accretion process. Unfortunately, the size distribution of a
planetesimal swarm is poorly constrained at the beginning of the accretion process
and it may also be a misleading concept (Wetherill and Inaba 2000).

The frequently adopted assumption that “initial” planetesimals have a given size
R is numerically convenient but certainly an oversimplification. Regardless of the
details of the planetesimal formation process, there has to be a dispersion �R in
planetesimal sizes. The amplitude of �R is difficult to estimate, but it seems likely
that it spans over at least one (if not several) order(s) of magnitude (see for instance
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Figure 3 of Weidenschilling 2000). If this is the case, then in the binary stars cases
explored here, encounters leading to erosion (“NA” type encounters) might largely
dominate over those leading to accretion (type “A”). We have checked this by per-
forming a simplified test where we assume for the planetesimal size distribution
a Gaussian function centered on R D 5 km of variance �R2. By counting the
number of A-type encounters vs. NA-types using the values of h�vi.R1;R2/ re-
ported in Tables 7.1 and 7.2 we find that accretion dominates over erosion only
when �R < 0:8 km. This value of �R appears to be small, possibly too small for
any realistic initial size distribution. As a consequence, gas-drag tends to prevent,
or at least slow down, accretion in the initial stages of planetesimal evolution. As
accretion proceeds, larger bodies are formed and impacts occur more and more fre-
quently between different size bodies. The different phasing caused by gas-drag for
different-size planetesimals increases the number of NA-type encounters and ero-
sion dominates, at least for the binary parameters given in the tables.

The limit of a purely dynamical approach that estimates the planetesimals’
relative velocities but neglects their size distribution can be partly overcome by
taking into account that on average the projectiles delivering the maximum ki-
netic energy to a target of size R2 are roughly those of size R1 ' 1=2R2 (see
Thébault et al. 2006). With this assumption we can probe the feasibility of accretion
by testing h�vi against vero only for a limited number of different-size body pairs.
By exploiting this simplification, Thébault et al. (2006) have tested the chances of
planetesimal accretion for 120 different binary systems with semimajor axes rang-
ing from 10 to 50 AU and eccentricity from 0.05 to 0.9. The mass-ratios of these
binaries were kept constant and equal to 
b D 0:5. In all simulations only two size
pairs were considered, .R1; R2/ D .2:5; 5/ km, representative of small planetesi-
mals, and .R1; R2/ D .15; 50/ km, representative of intermediate-size bodies in the
swarm. In Figs. 7.5 and 7.6 different color coding are used to outline the planetesi-
mal collisional fate, depending on the binary parameters:

� Dark Green The evolution of a planetesimal disk in binaries belonging to these
regions is not significantly affected by the companion star perturbations. The
quantity h�vi remains low and accretion should proceed as in the standard model
for single stars.

� Light Green Within these regions, h�vi is increased by the gas-drag coupling
to the secular perturbations but remains below vero. Accretion is still possible
but the amplitude of the gravitational focusing factor .vesc.R2/=�v/2 is signifi-
cantly reduced. This slows down the accretion rate compared to the single-star
unperturbed case.

� Yellow Here h�vi is comparable to the erosion velocities computed with the
different prescriptions adopted at the beginning of the study for vero. This is a
limiting situation where the preference of the system towards accretion or erosion
depends on the details of the still not well-defined collisional physics. We prefer
not to draw any definite conclusion in this case.

� Orange and Red In these regions, h�vi exceeds vero for all three different
collision outcome prescriptions considered. Collisions always result in a net
mass-loss and mutual accretion is impossible.
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Fig. 7.5 Encounter velocities between two objects with sizes R1 D 2:5 km and R2 D 5 km at
1 AU from the primary star, averaged over the time interval of 0 < t < 2� 104 years, for different
values of the semimajor axis and eccentricity of the stellar companion. The short black vertical
segments mark the limit beyond which the values of h�v.R1;R2/i correspond to eroding impacts for
all tested collision outcome prescriptions

Fig. 7.6 Same as in Fig. 7.5, but for R1 D 15 km and R2 D 50 km bodies. The short black
vertical segments mark the limit beyond which h�v.R1;R2/i corresponds to eroding impacts for
all tested collision outcome prescriptions. The short dashed vertical segments mark the position
beyond which, despite the effects of gas-drag, orbital crossing occurs for 50 km bodies
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As expected, systems with higher eccentricity or lower binary separation are
more critical for planetesimal accretion. An empirical fit has been performed in
Thébault et al. (2006) to outline the region in the (ab , eb) phase space where accre-
tion is possible for the two different-size ranges of planetesimals:

eb ' 0:013
� ab

10AU

�2

; for small 1 < R < 10 km planetesimals; (7.10)

and

eb ' 0:018
� ab

10AU

�2

; for large 10 < R < 50 km planetesimals: (7.11)

By extrapolating the fit to large values of ab one can figure out that for binary sepa-
rations ab � 90AU the planetesimal accretion process is not significantly perturbed
by the companion star gravity.

The results shown in Figs. 7.5 and 7.6 may be easily extended to different mass-
ratios. In addition, focusing on a single system makes it possible to improve the
N-body model and explore in more details the accretion versus fragmentation trend
for planetesimal populations with any given size distribution, and to investigate the
influence of the gas disk density, radial profile, and dissipation timescale (Xie and
Zhou 2008) on the process. In recent studies (Thebault et al. 2008, 2009), we con-
centrated on the planetesimals-to-embryos accretion phase around both Alpha Cen
A and B, our closest neighbors in space. In Fig. 7.7, we illustrate how the accumula-
tion process depends on the initial size distribution of planetesimals. The fraction of
impacts leading to accretion is computed at different distances from the primary star
(Alpha Cen A) assuming a Maxwellian distribution for the planetesimal sizes peak-
ing at a median value of 5 km for the planetesimal radius, a collisional-‘equilibrium’
power-law with a �3.5 exponent, and Gaussians centered on a radius of 5 km and
with various variances. Apart for the unrealistic case with an almost Dirac-like
Gaussian distribution with variance 0.25 km2, all models predict that planetesimal
accumulation is halted for r > 0:5 AU from Alpha Cen A. A similar study for dif-
ferent density values and profiles of the gaseous disk (Thebault et al. 2008) shows
that the accretion limit moves to 0.75 AU for a gas density equal to 10 times that
of the MMSN (Minimum Mass Solar Nebula), while it shrinks for decreasing gas
density down to 0.2 AU when the gas density is 1/100 of that of the MMSN.

One intriguing possibility is that planets formed in the Alpha Cen system when
the stars had a different orbital configuration. Most stars are born in clusters where
close stellar encounters are frequent. A binary system may have had different orbital
parameters at the time of planet formation compared to the present ones. A present-
day binary could even be what is left of an initially triple (or more) system (Marzari
and Barbieri 2007a,b). As a consequence, there might be an important difference
between the presently observed orbit of a binary system and the one it had when
planetary-formation was undergoing. A crucial question is, which initial orbital
configurations of the Alpha Cen system could have allowed planetesimal accre-
tion to occur in the Habitable Zone (HZ) of the stars? We have explored this issue
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Fig. 7.7 Fraction of accreting impacts for different prescriptions of the initial planetesimal
size-distribution. The curve corresponding to the extremely narrow Gaussian is possibly unrealis-
tic. Planetesimal accretion occurs in spite of the binary perturbations when the fraction of impacts
leading to accumulation is larger than 0.5. The gas density is assumed to be equal to that of the
standard MMSN with �g0 D 1:4 � 10�9g cm�3 at 1 AU, and declining as �g D �g0r

�2:75

for Alpha Cen B finding that in order to have the HZ fully accretion-friendly, one
needs an initial semimajor axis for the system of ab � 37 AU. More favorable is
a scenario in which the initial binary eccentricity eb was lower. As an example, for
eb D 0:26 (half of the present-day value), the entire HZ becomes accretion-friendly
when ab � 26 AU (see Fig. 7.8).

7.6 Inclined Binaries

A systematic study by Hale (1994) on binary systems with solar-type components
suggests that in those systems, the spin of the two stars is aligned only for binary
separations of 30–40 AU or less. Beyond these values, the primary’s equator, and
thus a putative planetesimal disk surrounding it, would be randomly inclined with
respect to the binary orbit. As a consequence, planetary accretion may occur in a sig-
nificantly inclined disk when ab > 30–40 AU. In this scenario, planetesimals would
most likely decouple from the gaseous disk because of the forced inclination due to
the companion star and also because of the randomization of the nodal longitudes.
For inclinations larger than approximately 10ı, the evolution of planetesimals would
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Fig. 7.8 Dominant collisional outcome (erosion, perturbed accretion, unperturbed accretion) in
a planetesimal disk located in the HZ (0.50.9 AU) around Alpha Cen B for different possible
primordial orbital configurations of the Alpha Cen binary system

occur as in a gas-free environment. The gaseous disk, in fact, either remains a long-
lived coherent entity in spite of the binary perturbations, and planetesimals would
cross it only at the nodal lines of their orbits, or it is warped and finally disrupted by
the binary perturbations losing coherence. Even in this second case, planetesimals
would not be affected by gas-drag during the accumulation process. A third possi-
bility is that, for very large viscosities, the disk relaxes to the binary plane on a short
timescale and planet accretion would occur as in initially coplanar systems.

In the two more likely scenarios in which planetesimals evolve free from gas
friction, accretion would strongly depend on the balance between the timescale for
node randomization and that for planetesimal accumulation into bigger bodies. The
nodal randomization has in fact two negative effects on accretion: (1) it introduces
an additional out-of-plane component in the relative velocity between the bodies
favoring cratering and fragmentation, and (2) it leads to a sparser distribution of
planetesimals in space causing a lower impact rate. In spite of these adverse effects,
planet formation can still occur if the relative impact velocity is lower than the ero-
sion limit for a time long enough for the planetesimals to grow big enough to sustain
high energy collisions. As it can be seen in Fig. 7.9, in a binary configuration with
ab D 50 AU, eb D 0 and ib D 30ı, the whole system is accretion-friendly within
4 AU from the star for a population of 10 km size bodies for 105 years, a conserva-
tive timescale for runaway growth. We recall here that in binaries, runaway growth
(when it occurs) is necessarily slower compared to the case of single stars because
of the companion perturbations.
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Fig. 7.9 Average impact rate in a planetesimal swarm in an inclined binary system as a function
of time at different radial distances from the primary star. The grey bands show the erosion limit
for planetesimals 1–10 km in size (lower band) and 10–50 km (upper band). The initial inclination
between the planetesimal disk and the binary orbit is ib D 30ı

Marzari et al. (2009) have computed the distance from the primary star within
which accretion is possible for different binary orbital parameters and the outcome
of this analysis is shown in the form of 2-dimensional maps in Fig. 7.10.

For small values of the binary semimajor axis, there is a significant dependence
of the limiting semimajor axis beyond which planetesimal accretion is possible .al /

on ib showing that the cause of the shrinking of the planet formation zone is the
randomization of the nodes. For binary semimajor axes larger than 50 AU, the effect
of the secular perturbations of the inclined binaries are weaker except for ib � 40ı
where Kozai oscillations dominate the planetesimal dynamics. In this regime, the
impact velocities halt the planetesimal accretion close to the star also for large binary
semimajor axes.

7.7 Type II Runaway Growth

One interesting feature of Figs. 7.5 and 7.6 is the extent of the “light-green” region
where planetesimal accretion is not halted, but possibly slowed down since the grav-
itational focusing factor is reduced. As a consequence, “classical” runaway growth
is not possible and might be replaced by the alternative, possibly slower type II
runaway mode identified by Kortenkamp et al. (2001).
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In this section we describe details of planetesimal accretion simulations in the
Sun–Jupiter “binary” system (Kortenkamp and Wetherill 2000a; Kortenkamp et al.
2001). This system has traditionally been used for initial characterizations of dy-
namical effects in binary-star systems (e.g., Heppenheimer 1978; Whitmire et al.
1998). In the models described here we use units of binary separationD rather than
AU. Note also that the modeling included Saturn as well (a triple system) but we
omit Saturn from most of the discussion, referring simply instead to the Sun–Jupiter
“binary.”

Initial orbits for the planetesimals were circular, coplanar with the nebular mid-
plane, and uniformly distributed from 10–50% of D. As the system evolves, the
combination of gas-drag and secular perturbations from the companion Jupiter (and
Saturn) leads to a size-dependence in the planetesimal eccentricity and inclination
as well as in the phasing of the orbital orientation angles, as described earlier in this
chapter. Note that the system is fully three dimensional. The companion orbits are
inclined with respect to each other and the protoplanetary disk.

As described above, the distribution of encounter velocities is a critical factor
which determines how a population of planetesimals will accumulate into larger
bodies. High encounter velocities can actually lead to impact erosion of the target
rather than growth. On the other hand, low encounter velocities can gravitationally
enhance the collision cross-section of the target (Öpik 1951). The effective cross-
section becomes

�eff D �



1C V 2

esc

v2
enc

�
; (7.12)

where � is the target’s geometric cross-section, venc is the projectile’s encounter
velocity, and Vesc is the combined surface escape velocity of the target and projectile.

The size-dependent phasing of orbital elements leads to low encounter veloci-
ties between similar size bodies and high encounter velocities between bodies of
markedly different sizes. For the Sun–Jupiter model described above “binary” en-
counter velocities were calculated for all intersecting orbits over the entire range
of planetesimal sizes. Figure 7.11 shows examples of these encounter velocities
for various target bodies and equal or lesser size projectile bodies with orbits near
33% D, where, again,D is the Sun–Jupiter separation distance.

Modeling the growth of planetesimals in this scenario is considerably more
difficult than tracking their orbital evolution. Full-scale N -body simulations of
planetesimal growth that include mutual gravitational perturbations, secular per-
turbations, and gas-drag are beyond the reach of current techniques. Theoretically

J
Fig. 7.10 Maps showing the limiting values for accretion al as a function of the binary orbital
parameters (ab , ib). The top plot refers to the case with eb D 0:0, the middle plot to eb D 0:2,
and the lower plot to eb D 0:4. The color coding gives different values of al (in AU), the limiting
semimajor axis beyond which planetesimal accretion is possible. Each square of the map refers to
the lower value of the labels in the axes. The cases for ib D 0ı do not include gas-drag, so they are
only indicative
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Fig. 7.11 Mean encounter velocities (˙� ) are shown for various size planetesimals with inter-
secting orbits near 33% D, where D is the Sun–Jupiter separation distance. The size-dependent
orbital phasing of bodies on intersecting orbits leads to high encounter velocities between bodies
of markedly different sizes. The surface escape velocity of the combined target/projectile is shown
by the horizontal dashed line. In the top two panels the erosion limit is indicated by the horizontal
solid line. For encounter velocities above the erosion limit impacting projectiles crush and eject
more than their own mass (crushing strength was assumed to be 108 ergs/g). Top: Encounter veloc-
ities for 1018 g targets and projectiles of equal or lessor mass. Middle: Targets with masses of 1021

g are large enough that impacts of all projectiles lead to growth. Bottom: Planetesimals capable
of growing to 1024 g have surface escape velocities near 500 m s�1 . Encounter velocities between
these large planetesimals and bodies as much as 8–10 orders of magnitude less massive are below
the escape velocity, allowing for significant gravitational focusing
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one would need to include �1012 small (�1014 g) planetesimals to form a single
1026 g terrestrial planet embryo. DirectN -body integrations of mutually perturbing
planetesimals cannot even remotely approach this figure, treating only about �104

bodies over the time scale required. On the other hand, existing statistical simula-
tions of planetary growth are not limited by the number of bodies. However, these
simulations assume that the orbits are completely randomized so they cannot easily
accommodate the size-dependent orbital evolution described above. To overcome
these shortcomings, Kortenkamp et al. (2001) developed a hybrid approach that cap-
italizes on the strengths of each technique. They used N -body integration to map
the size-dependent velocity distributions. These velocity distributions are then used
in modified statistical accretion simulations to model the collisional accumulation
of the planetesimals.

This approach led to the identification of an alternative form of runaway growth
that is facilitated by the secular perturbations of massive companions (Kortenkamp
et al. 2001). Figure 7.12 shows results from these growth simulations.

Four separate simulations were performed, centered on 15%, 25%, 33% and 40%
ofD. For comparison, the habitable zone extends from about 10–25% ofD (crudely
defined as the Venus–Mars region). In all four regions the growth is character-
ized as “orderly” (non-runaway, see Safronov 1969) until the distribution reaches
approximately 1024 g, or about the size of the largest asteroid – (1) Ceres. The plan-
etesimal size distribution then becomes bi-modal, transitioning to runaway growth
and producing Mars-size embryos. All planetesimals were assumed to be uniformly
distributed across a region and any bodies separated by more than 10 mutual Hill
radii were considered dynamically isolated (Chambers et al. 1996) and not allowed
to collide. This resulted in multiple runaway embryos emerging in each region.

Note that mutual perturbations between planetesimals were not included in these
calculations. This new form of runaway growth arises when secular perturbations
and gas-drag act together to establish size-dependent encounter velocities that re-
main low when colliding bodies are of similar size. Collisions between bodies of
significantly different sizes are at high velocity and can lead to cratering and erosion,
but these simulations show that growth overcomes erosion (Fig. 7.12). This alter-
native mode of growth, which was eloquently dubbed “Type II” runaway growth,
allowed for the formation of terrestrial planet embryos throughout the habitable zone
of the Sun–Jupiter “binary.” This general result should apply regardless of whether
the perturbations are from Jupiter-like companions formed earlier by disk-instability
(e.g., Boss 1997; Mayer et al. 2002), stellar-mass objects in multiple-star systems,
or some other source, as long as the source of the dynamical perturbations pre-dates
the formation of terrestrial planet embryos. It is conceivable to expect that in binary
star systems, “Type II” runaway growth leads to the formation not only of terrestrial
planets but also of giant planets by favoring the growth on a short timescale of a
massive core, the first step of the core-accretion model.

Classical “Type I” runaway growth occurs in a self-gravitating population of
planetesimals. Random orbital kinetic energy is exchanged during gravitational en-
counters between large and small bodies and the population trends towards energy
equipartition, a process dubbed “dynamical friction” (Stewart and Kaula 1980).
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Fig. 7.12 Growth of planetesimals in a circumsolar disk perturbed by the “companion” Jupiter
at a distance D from the sun. The habitable zone, simply defined here as the Venus–Mars region,
stretches from about 10–25% of D. Initially all planetesimals have identical masses of 1014 g.
The initial surface density of planetesimals at 15% of D is 10 g cm�2, scaling as r�3=2 with
heliocentric distance r . This is roughly consistent with the so-called “minimum mass” surface
density. Collision fragments smaller than 107 g (�1m) are presumed lost via nebular gas-drag
and therefore removed from the simulation. Growth is calculated in four different regions centered
on 15%, 25%, 33%, and 40% of D. For comparison, the masses of Earth and Mars are indicated
by their respective symbols. The top two panels represent growth in the habitable zone and show
initial orderly growth transitioning to Type II runaway growth of Mars-size planetary embryos in
105 to 106 years. Beyond the habitable zone (bottom panels) growth is slower but eventually also
produces Mars-size embryos. Figure is adapted from Kortenkamp et al. (2001)

Dynamical friction lowers the encounter velocities of the larger bodies with respect
to each other, enhancing their effective collision cross-sections and increasing the
rate at which they accumulate each other. Under these conditions nearly the entire
growth period up to embryo-size is in type I runaway mode. In our simulations,
which are not self-gravitating, the size-dependent phasing of orbital elements holds
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encounter velocities low between all similar-size bodies (typically 1–10 m s�1,
see Fig. 7.11). Initially these encounter velocities exceed the planetesimal escape
velocities so there is no enhancement of collision cross-sections and growth is or-
derly. As larger and larger bodies grow their escape velocities approach and then
exceed the relatively low encounter velocities, causing the transition from orderly
growth to type II runaway growth. In this way, the effects of dynamical friction are
mimicked by the size-dependent phasing of orbital elements.

7.8 Conclusions

The process of planetary formation around the primary star of a binary system is
complicated in all its stages by the gravitational perturbations of the companion
star. However, the existence of some gas giant planets in binary systems with sep-
aration of a few tens of AU suggests that these perturbations are not always strong
enough to prevent the formation of a planet. We have analyzed within the standard
model of planet growth how the secular perturbations of the companion star affect
the various stages of planetesimal accretion. Ours studies show that when we include
also the effects of gas-drag on the motion of small planetesimals, their eccentrici-
ties and perihelion longitudes become aligned (Marzari and Scholl 2000). At a first
sight, this alignment favors fast accretion keeping low the encounter velocities be-
tween the bodies in spite of the large values of eccentricity forced by the secular
perturbations. However, the angle towards which the perihelia align depends on the
size of the planetesimals and on their distance from the star (Thébault et al. 2004,
2006). In the earlier stages of planetesimal accretion, all the bodies have roughly
the same size and the encounter velocities are low because of the local strong or-
bital alignment. However, as soon as larger bodies emerge from the population
by coagulation, their perihelia are no longer aligned to those of smaller planetes-
imals leading to larger impact velocities. This may prevent the onset of runaway
growth or even cause erosion of the bodies, inhibiting the formation of a planet.
Through a full numerical approach, we have analyzed to what extent the differ-
ent alignment influences the random planetesimal velocities. We have also mapped
the values of the binary orbital parameters (semimajor axis and eccentricity) for
which accumulation dominates over erosion despite of the secular perturbations, or
vice-versa. Our modeling shows that for binaries of separations ab � 40 AU, only
very low eb allow planetesimal accretion to proceed as in the standard single-star
case. On the contrary, only relatively high eb values (of at least 0.2 in the closest
ab D 10AU separation explored and at least �0.7 for ab D 40AU) lead to a com-
plete stop of planetesimal accretion. In most cases, when the perturbations of the
massive companion on the planetesimal disk is significant but not strong enough
to halt accretion, runaway growth can still occur, but in a different way with re-
spect to the classical “Type I” runaway growth typical of planetesimal populations
around single stars. This new type of growth termed “Type II” runaway growth, al-
lows planet formation to occur in binary-star systems with much tighter orbits than
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previously suggested (Heppenheimer 1978; Whitmire et al. 1998). However, there is
(at least) one caveat. As already noted, the growth simulations described above and
represented in Fig. 7.12 did not include mutual perturbations of the planetesimals
themselves. Crude attempts at including self-gravitating planetesimals (Kortenkamp
and Wetherill 2000b) indicated that when the size distribution reaches 1024 to 1025

g the mutual perturbations are beginning to become important, although they are
still dominated by the size-dependent phasing of secular perturbations. This sug-
gests that just as type II runaway growth is getting underway accretion may either
stall or perhaps transition to the classical type I runaway growth. To explore these
possibilities we are working to modify the multi-zone planetesimal accretion code
of Weidenschilling et al. (1997) to include secular perturbations from massive com-
panions as well as mutual perturbations from planetesimals and nebular gas drag
(Kortenkamp et al. 2006).

Acnowledgments S. Kortenkamp acknowledges support from NASA for some of this work under
grants NNG04GP56G and NNG04GI14G.
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Chapter 8
Gravitational Instability in Binary
Protoplanetary Disks

Lucio Mayer, Alan Boss, and Andrew F. Nelson

8.1 Introduction

Gravitational instabilities (GIs) can occur in any region of a gas disk that becomes
sufficiently cool or develops a high enough surface density. In the nonlinear regime,
GIs can produce local and global spiral waves, self-gravitating turbulence, mass
and angular momentum transport, and disk fragmentation into dense clumps and
substructure. It has been quite some time since the idea was first suggested by
Kuiper (1951) and Cameron (1978), and revived by Boss (1997, 1998) stating that
the dense clumps in a disk fragmented by GIs may become self-gravitating pre-
cursors to gas giant planets. This particular idea for gas giant planet formation has
come to be known as the disk instability theory. The idea is appealing since gravi-
tational instability develops on very short timescales compared to the accumulation
of planetesimals by gravity and the subsequent accretion of gas by a rocky core, the
conventional two-stage giant planet formation theory known as core accretion (see
the chapter by Marzari et al.).

The particular emphasis of this review chapter is on how gravitational insta-
bility develops when a protoplanetary disk is not isolated but is a member of a
binary or multiple star system. Indeed such a configuration is likely to be the most
common in the Galaxy: the majority of solar-type stars in the Galaxy belong to
double or multiple stellar systems (Duquennoy and Mayor 1991; Eggenberger et al.
2004). Radial velocity surveys have shown that planets exist in binary or multiple
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stellar systems where the stars have separations from �20 to several thousand AU
(Eggenberger et al. 2004; see the chapter by Eggenberger and Udry). Although the
samples are still small, attempts have been made to compare properties of planets
in single and multiple stellar systems (Patience et al. 2002; Udry et al. 2004). Adap-
tive optics surveys designed to quantify the relative frequency of planets in single
and multiple systems are underway (Udry et al. 2004; Chauvin 2006). At least 30%
of extrasolar planetary systems appear to occur in binary or multiple star systems
(Raghavan et al. 2006). These surveys could offer a new way to test theories of
giant planet formation, provided that different formation models yield different pre-
dictions about the effects of a stellar companion.

8.1.1 Gravitational Instabilities

The stability analysis of density perturbations in self-gravitating gaseous disks can
be studied analytically only in a local sense and only in the case of infinitesimally
thin disks. This analysis is conducted by seeking perturbative solutions to the fluid
and Poisson equations treating the disk as an ideal gas. A major outcome of such
analysis is a parameter that determines whether such a thin gas disk is stable or
unstable to local axisymmetric perturbations (one can show that such a disk will
be always stable to local non-axisymmetric perturbations, see Binney and Tremaine
1987) is

Q D c�=G˙; (8.1)

where c is the sound speed, � is the epicyclic frequency at which a fluid element
oscillates when perturbed from circular motion, G is the gravitational constant, and
˙ is the surface density. In a nearly Keplerian disk, � is approximately equal to
the rotational angular speed˝ . For axisymmetric (ring-like) disturbances, disks are
stable when Q > 1 (Toomre 1964). At high Q-values, pressure, represented by
c in equation (8.1), stabilizes short wavelengths, and rotation, represented by �,
stabilizes long wavelengths. The most unstable wavelength whenQ < 1 is given by
�m � 22G˙=�2, and it is known as Toomre wavelength.

The study of global stability to both axisymmetric and non-axisymmetric per-
turbations can be carried out with the aid of numerical simulations. With three-
dimensional simulations, this analysis can be extended further to realistic disks
with a finite thickness. For axisymmetric perturbations, Q D 1 represents the
neutral stability regime exactly as in the local case. For non-axisymmetric pertur-
bations, instead, several works, beginning with Papaloizou and Savonije (1991),
show that these become unstable forQ<�1:5. They manifest themselves as multi-
armed spirals in the disk, grow exponentially on the timescale of a rotation period
Prot D 2=˝ , have a predominantly trailing pattern, and several modes can ap-
pear simultaneously (Boss 1998; Laughlin et al. 1997; Nelson et al. 1998; Pickett
et al. 1998). Spiral waves grow, produce shocks, and thus strong localized heating
(Pickett et al. 1998, 2000; Nelson 2000). Gas is also heated by compression on
larger scales and through net mass transport due to gravitational torques.
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The subsequent evolution of the spiral modes, in particular whether their
nonlinear amplitude saturates or continues to grow until the gas becomes dense
enough to collapse locally under the action of gravity, depends on mainly two
factors, disk thermodynamics and nonlinear mode coupling. During the highly
nonlinear phase, the vertical structure of the disk also plays a crucial role, both for
cooling and for essential aspects of the dynamics (Pickett et al. 1998, 2000, 2003,
Boley and Durisen 2006).

Laughlin et al. (1997, 1998) studied nonlinear mode coupling. Using second and
third-order governing equations for spiral modes, and comparing their results with
a full nonlinear hydrodynamics treatment, these authors showed that even if only
a single mode becomes nonlinear, power is quickly distributed over modes with a
wide variety of wavelengths and number of arms. At this point the disk enters in
a turbulent regime. The turbulence being generated by self-gravity itself. As high
densities are generated by the various modes all over the disk, the chances of frag-
mentation increase.

Ultimately, the balance between heating and the loss of disk thermal energy by
radiative or convective cooling is what decides if fragmentation happens or not.
In locally isothermal simulations, in which the disk instantaneously radiates away
all the heat generated by self-gravity, local thin-disk calculations, as well as 3D
hydro simulations, find fragmentation when Q < 1:4 (Johnson and Gammie 2003,
Boss 2000; Nelson et al. 1998; Pickett et al. 2000, 2003; Mayer et al. 2002, 2004).
Figure 8.1 shows a classic example of a fragmenting disk.

A thermal self-regulation regime of GIs can be reached according to numerical
experiments of various authors, provided that the cooling time is moderate (Tomley
et al. 1991; Pickett et al. 1998, 2000, 2003; Nelson et al. 2000 Gammie 2001; Rice
et al. 2003b; Lodato and Rice 2004, 2005; Mejı́a et al. 2005; Cai et al. 2006a,b).
During self-regulation,Q remains close to 1 but does not fall below unity. Instead,
if the cooling rate is fast, no self-regulation occurs and Q drops below unity. In
this case, the disk fragments. There have been various attempts to model radiative
cooling in self-gravitating disks. For a recent overview of the different methods
appearing in the literature and for a general discussion of gravitational instability in
protoplanetary disks, we point the reader to Durisen et al. (2007). In this chapter, we
will focus on the radiative cooling models that have been used in the few existing
works on binary self-gravitating protoplanetary disks.

8.1.2 Fragmentation and Survival of Clumps

When the disk cools fast, on a timescale comparable or shorter than the local orbital
time, fragmentation happens, both in local thin-disk calculations (Gammie 2001)
and in global 3D simulations (Rice et al. 2003b; Mejı́a et al. 2005; Mayer et al.
2005). If we define the cooling time tcool D U= PU , where U is the internal energy
of the gas, then the condition for fragmentation is tcool � 3˝�1, or, equivalently,
tcool � Prot=2. Finite thickness has a slight stabilizing influence (Rice et al. 2003b;
Mayer et al. 2004). If radiative cooling is included, the cooling time varies as the
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Fig. 8.1 Midplane density contours after 339 years of evolution of a 0:091M
ˇ

disk in orbit
around a single 1M

ˇ

protostar, showing the formation of a self-gravitating clump of mass 1:4MJup

at 4 o’clock (Boss 2001)

gravitational instability develops and grows (Johnson and Gammie 2003), and in
particular it tends to increase in the highly nonlinear phase (a tendency which op-
poses fragmentation – see Cai et al. 2006a,b).

Rice et al. (2003b) found a dependence of the fragmentation criterion on disk
mass, with the critical cooling time rising up to tcool D 5˝�1 for their most mas-
sive disks. The same happens if the adiabatic index is decreased, typically from
� D 5=3 to � D 7=5 (Rice et al. 2003b; Mayer et al. 2005). This latter estimate is
in agreement with the timescales for cooling found in 3D models with diffusion ap-
proximation radiative transfer and convective-like motions that led to fragmentation
into self-gravitating clumps (Boss 2001, 2004a).

Although there is general agreement on conditions for fragmentation, two im-
portant questions remain. Do real disks ever cool fast enough for fragmentation to
occur, and do the fragments last long enough to contract into permanent protoplan-
ets before being disrupted by tidal stresses, shear stresses, physical collisions, and
shocks? Recent simulations have just begun to address the issue of the long term
survival of clumps once they have been produced in a disk (Durisen 2007). None of
these long-term simulations has explored the case of binary systems and therefore
their results are not necessarily valid in that case (for example, they do not take into
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account the effect of eventual orbital resonances with the companion). However,
except for clumps forming at the very periphery of one of the two disks, one would
expect the tidal stresses to be dominated by the central star of their own disk, in
which case the results of isolated disks are still relevant. In addition, clumps are un-
likely to form near the outskirts of disks since the surface density should be too low
there. High spatial resolution appears to be crucial for the survival of clumps. Pickett
et al. (2003) found that 256 azimuthal cells were not enough to resolve self-gravity
on a scale of a fraction of AU, leading to artificial dissolution of overdensities. An
increased ability of clumps to persist and become gravitationally bound as the res-
olution is increased was also found by Boss (2001) and Mayer et al. (2004). High
spatial resolution of the gravitational force is crucial, as is the accuracy of a gravity
solver for a given resolution element. These features are extremely code-dependent
and are briefly discussed below in Section 8.2.2.

8.2 Numerical Techniques and Assumptions

To date, only three papers have been published that consider the possibility of form-
ing giant planets by disk instability in binary star systems: Nelson (2000); Mayer
et al. (2005); and Boss (2006). In short, Nelson (2000) found that binarity prevented
fragmentation from occurring, Boss (2006) found that binarity could enhance clump
formation, and Mayer et al. (2005) found the binarity could discourage fragmenta-
tion in some cases, but permit it in other cases. These three papers are the focus
of the remainder of this chapter, as we try to decipher the reasons for this apparent
dispersion in outcomes.

8.2.1 Hydrodynamics Methods

Three codes have been used so far to follow the evolution of binary protoplane-
tary disks, two smoothed particle hydrodynamics (SPH) codes (Nelson 2000; Mayer
et al. 2005) and one finite-difference grid-based code (Boss 2006; described in detail
by Boss and Myhill 1992). The two SPH codes are, respectively, a modified ver-
sion (Nelson 2000) of a code originally developed by Benz (1990) and GASOLINE
(Wadsley et al. 2004; Mayer et al. 2005). We begin with a description of the codes.

Although the codes used, respectively, in Mayer et al. (2005) and Nelson (2000)
are based on a similar implementation of SPH, there are some differences in the
details of the method that need to be recalled. One major difference is that the ver-
sion of the code used in Nelson (2000) is 2D while GASOLINE is 3D, as is the
Boss (2006) code. Evidence has been accumulated recently that gravitational in-
stability in a protoplanetary disk is an intrinsically three-dimensional phenomenon
(Cai et al. 2006a,b). At the same time, at the resolution for which affordable sim-
ulations can be done, 3D codes resolve only very poorly the structure of the disk
in the third dimension. Nelson (2006) has shown that if the vertical structure is not
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well resolved, both from a hydrodynamical standpoint and from a radiative transfer
standpoint, serious errors in the evolution of the disks may develop. Therefore, even
with all other things being equal, this difference alone could result in a different
evolution of the spiral patterns, and thus of the outcome of gravitational instabil-
ity. In what follows, we will highlight the most important features of the two SPH
codes and we will explicitly indicate in what ways the two codes differ and what the
expected outcome of such differences will be.

SPH is an approach to hydrodynamical modeling first developed by Lucy (1977)
and Gingold and Monaghan (1977). It is a particle-based method that does not refer
to grids for the calculation of hydrodynamical quantities: all forces and fluid prop-
erties are determined by moving particles, and the resulting calculation of smoothed
physical variables is spatially adaptive in all modern implementations of the method.
The Boss and Myhill (1992) code is an Eulerian code, with all quantities defined on
a spherical coordinate grid. The code is second-order accurate in both space and
time, a crucial factor for keeping numerical diffusion at a tolerable level.

The basis of the SPH method is the Lagrangian representation and evolution
of smoothly varying fluid quantities whose value is only known at disordered dis-
crete points in space occupied by particles. Particles are the fundamental resolution
elements comparable to cells in a grid. SPH operates through local summation oper-
ations over particles weighted with a smoothing kernel,W , that approximates a local
integral. The smoothing operation provides a basis from which to obtain derivatives.
Thus, estimates of density-related physical quantities and gradients are generated.

Both GASOLINE and Nelson’s codes use a fairly standard implementation of
the hydrodynamical equations of motion for SPH (Monaghan 1992). The density
at the location of each particle with index i is calculated from a sum over particle
masses mj

�i D
nX

j D1

mjWij : (8.2)

where j is an index running on the entire set of n particles and Wij is the kernel
function used to compute smoothed averages (see Monaghan 1992). The momentum
equation is expressed as

dvi

dt
D �

nX
j D1

mj

 
Pi

�2
i

C Pj

�2
j

C˘ij

!
riWij ; (8.3)

where Pj is pressure, vi is velocity, and the artificial viscosity term is ˘ij . This
form of the momentum equation has to be viewed as the usual Euler equation for an
inviscid, ideal gas while the artificial viscosity term is purely motivated by numerical
reasons (see Section 8.2.4) and is not intended to represent a physical viscosity.

The kernel is a standard B-spline with compact support in both codes
(Hernquist and Katz 1989). The number of neighbors, or in other words, the number
of particles around a given particle that are considered for smoothed sums, is fixed
in GASOLINE at 32 and varies between 10 and 30 in the 2D version of Nelson’s
code, depending on the local flow.
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The Boss and Myhill (1992) code solves the equations of hydrodynamics in
spherical coordinates (r; �; �) in conservation law form. The continuity equation is

@�

@t
C r 	 .�v/ D 0; (8.4)

while the three momentum equations are
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where � is the mass density, v D .vr ; v� ; v�/ is the Eulerian fluid velocity, A D
r sin �v� is the specific angular momentum, p is the gas pressure, ˚ is the gravita-
tional potential, J is the mean intensity, c is the speed of light, and the Q terms are
the diagonal terms of a tensor artificial viscosity. Quantities ˚ , J , and the Q terms
are discussed in further detail in the appropriate sections below.

8.2.2 Gravity Solvers

Clearly gravity solvers represent a crucial aspect of simulations of self-gravitating
disks. They need to be both accurate and efficient, and possibly parallelized in order
to take advantage of modern computer architectures and permitting very high reso-
lution calculations to be performed. Both GASOLINE and Nelson’s code compute
gravity using a tree-based solver, which is fast, easily parallelizable and a natural
choice for a particle-based hydrodynamical code such as SPH, since once a tree
is built it can also be re-used as an efficient search method for hydrodynamical
forces as well. Both codes use a modified versions of the binary tree described in
Benz (1990) which approximates the gravity of groups of distant particles in a
multipole expansion while calculating interactions of nearby particles explicitly.
Gravitational forces due to neighbor particles are softened to avoid divergences as
particles pass near each other. The force calculation in tree algorithms requires work
proportional to O.N logN/, whereN is the number of particles in the simulation, as
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opposed to work proportional to N 2 in “direct” N-Body algorithms where all grav-
itational forces between individual particles are computed directly. The drawback
is that, except for very nearby particles whose interactions may be calculated as in
direct summation codes, the forces are approximate rather than exact when using a
tree. A particularly useful property of tree codes is the ability to efficiently calculate
forces for a subset of the bodies. This is critical if there is a large range of time-
scales in a simulation and multiple independent timesteps are employed (see below).
At the cost of force calculations no longer being synchronized among the particles,
substantial gains in time-to-solution may be realized. Multiple timesteps are partic-
ularly important for applications where the primary interest and thus need for high
spatial resolution tends to be focused on small regions within a larger simulated
volume; a protoplanetary disk undergoing fragmentation locally is one such ap-
plication. GASOLINE uses fourth (hexadecapole) rather than second (quadrupole)
order multipole moments of the gravitational potential (as used by most tree codes,
including Nelson’s) to represent the gravitational force from the mass distribution
organized in cells at each level of the tree. This results in less computation for the
same level of accuracy, better pipelining, smaller interaction lists for each particle,
and reduced communication demands in parallel. The current implementation in
GASOLINE uses reduced moments that require only n C 1 terms to be stored for
the nth moment. For a detailed discussion of the accuracy and efficiency of the tree
algorithm as a function the order of the multipoles used, see Stadel (2001).

Relaxation effects compromise the attempt to model continuous fluids using
particles. Both in GASOLINE and in Nelson’s code the particle masses are ef-
fectively smoothed in space using the same spline kernels employed in the SPH
calculation. This means that the gravitational forces vanish at zero separation and
return to Newtonian 1=r2 at a separation of �i C�j where �i is the gravitational soft-
ening applied to each particle. In this sense the gravitational forces are well matched
to the SPH forces. However, in GASOLINE, gravitational softening is constant over
time and fixed at the beginning of the simulation, while in Nelson’s code it is time-
dependent and always equal to the local SPH smoothing length.

The use of adaptive softening in Nelson’s code ensures that gravitational and
pressure forces are always represented with the same resolution. Bate and Burkert
(1997) have shown that when an imbalance between pressure and gravitational
forces occurs, artificial fragmentation or suppression of physical fragmentation can
arise. Bate and Burkert (1997) found that such imbalance leads to spurious results
when it occurs at a scale comparable with the local Jeans length of the system, where

the Jeans length is defined as �j D .c2=G�/
1=2

More recently Nelson (2006) has
shown that particle clumping was amplified for imbalances in softening/smoothing
even when the Toomre wavelength (see Section 8.1.1) was well resolved, which is a
much more limiting condition. When the gravitational softening is fixed over time,
such as in GASOLINE, care has to be taken that this be comparable to the SPH
smoothing length at the scale of the Jeans length. Mayer et al. (2005) choose the soft-
ening according to the latter prescription at the beginning of the simulation and set
its value so that outside 10 AU the softening drops to �1/2 the local smoothing
length. An argument can be made that later in the evolution, when strong overden-



8 Gravitational Instability in Binary Protoplanetary Disks 203

sities develop along the spiral arms, the SPH smoothing length drops significantly,
becoming smaller than the gravitational softening, thereby degrading the propensity
for numerical fragmentation. Both the initial softening/smoothing inequality and the
later evolution of disks towards fragmentation were examined by Nelson (2006).
Nelson (2006) found that when the softening is initially smaller than the smoothing
length, fragmentation was enhanced, but after it began, the fragments did not con-
tinue to contract indefinitely, rather they remained comparable in size to the fixed
softening value. Mayer and collaborators have not published systematic tests of the
same kind yet, although Mayer et al. (2004) did compare simulations with increasing
mass resolution for isolated disks (in the highest resolution simulations the smooth-
ing length was always comparable or smaller than the softening length, even in the
outer disk) and found fragmentation to be confirmed and even enhanced as the mass
resolution, namely the number of SPH particles, was increased compared to the
standard setup (i.e. that in which the softening is �1/2 the local smoothing length in
the outer disk). In conclusion, a slight inequality of softening and smoothing length
seems to be a problem only when insufficient mass resolution is used. Moreover,
as the new study conducted within the Wengen code comparison is showing, using
equal lengths would not guarantee that the numerical result is correct, but requires
further validation by means of convergence tests with increasing mass resolution
(see Mayer and Gawryszczak 2008). Adaptive softening codes, which guarantee
that smoothing and softening lengths are always equal, have also other possible
flaws; particles have a time-dependent potential energy, which induces fluctuations
in the potential that can in principle increase force errors, eventually affecting the
accuracy of the integration. This is known to be problematic for purely gravitational
simulations such as those of cosmological structure formation, but its consequences
have not been studied systematically for the case of self-gravitating fluids. Recent
work of Price and Monaghan (2006) has shown how adaptive softening may be used
while still conserving energy, but their technique has not yet seen wide adoption.

The Wengen code comparison represents the first effort to compare SPH and
adaptive mesh refinement (AMR) codes for the case of self-gravitating protoplan-
etary disks (Mayer and Gawryszczak 2008, see also Durisen et al. 2007) and will
provide an independent check of the reliability of fragmentation in SPH. Prelimi-
nary results show with the standard choice of numerical parameters used in Mayer
et al. (2004, 2005) for the SPH code GASOLINE the results converge to those
of AMR codes such as FLASH in the case of isothermal calculations (Mayer and
Gawryszczak 2008). The only drawback of non-adaptive softening manifesting in
those calculations is that, once the clumps form, their collapse is artificially slowed
down at some stage, but the same problem is seen also in AMR codes once the max-
imum level of refinement is reached (the codes are thus comparable at similar spatial
resolution). The only way to improve here is to continue increase the resolution of
the calculations.

In the Boss and Myhill (1992) code, Poisson’s equation

r2˚ D 4G�; (8.8)



204 L. Mayer et al.

is solved for the gravitational potential at each time step. This solution is achieved
by using a spherical harmonic (Ylm) expansion of the density and gravitational po-
tential, with terms in the expansion up to l; m D 32 or 48 typically being used.
Boss (2000, 2001) found that the number of terms in this expansion was just as
important for robust clump formation as the spatial resolution. Because the compu-
tational effort involved scales as the number of terms squared, however, in practice
this value cannot be increased much beyond 48 without having the Poisson solver
dominate the effort. Boss (2005) showed that the introduction of point masses to
represent very high density clumps led to better defined, more massive clumps, but
the computational effort associated with introducing these point masses also led to
an appreciable slowing the execution speeds.

8.2.3 Timestepping

Nelson’s code uses the Runge–Kutta–Fahlberg method to evolve the equations of
motion. It employs a global timestep for all particles in the disk, which is in-
creased or decreased depending on the conditions in the simulations. The integrator
is a first order accurate method with second order error control and the scheme
provides limits on the second order error term in all of the various variables.
GASOLINE incorporates the timestep scheme described as Kick-Drift-Kick (KDK)
(see Wadsley et al. 2004). Without gas forces, this is a symplectic leap-frog inte-
gration, which ensures the conservation of total energy. This being not guaranteed
with the Runge–Kutta method (Quinn et al. 1997; Tremaine 2003), though much
better conservation can be had when a single time step for all particles is used, as
was done in Nelson (2000). The leap-frog scheme requires only one force evalua-
tion and minimum storage. GASOLINE uses multiple timesteps, hence at any given
time, different particles in the disk can be evolved with different timesteps. The base
(maximum) timestep is divided in a hierarchy of smaller steps (rungs), with differ-
ent particles being assigned to different rungs. This allows the use of a much smaller
step size when and where it is required, allowing the code to probe a much higher dy-
namic range and follow correctly the dynamics of regions with very high densities.
The drawback is that the scheme is no longer strictly symplectic if particles change
rungs during the integration which they generally must do to satisfy their individ-
ual timestep criteria. Adaptivity in the time integration, hence the ability to achieve
smaller timesteps than the dynamics or hydrodynamics require, can be important to
model correctly the formation and evolution of overdensities and clumps. In fact, if
the step size�t is not small enough, the acceleration inside the overdensities, which
varies as 1=�t2, can be underestimated. This is equivalent to underestimating the
self-gravity of clumps and can in principle lead to their artificial dissolution, al-
though no systematic tests have ever been performed. GASOLINE uses a standard
timestep criterion based on the particle acceleration (see Wadsley et al. 2004) and
for gas particles, the Courant condition and the expansion cooling rate. Nelson’s
code adopts the Courant condition as well for hydrodynamical forces and addition-
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ally a set of constraints based on the position and velocities of particles. If the latter
are not met after a timestep, the scheme tries again with a smaller timestep.

The Boss and Myhill (1992) code uses a single-size timestep based on the
Courant condition, and uses a predictor–corrector method to achieve second-order
accuracy in time.

8.2.4 Artificial Viscosity

Most hydrodynamic methods, including SPH, need artificial viscosity to stabilize
the flow by avoiding particle interpenetration and to resolve, in an approximate man-
ner, the physical dissipation present in shocks. Both Mayer et al. (2005) and Nelson
(2000) use bulk and von Neumann–Richtmyer (so called N̨ and ˇ) viscosities to sim-
ulate viscous pressures, which are linear and quadratic in the velocity divergence.
They both incorporate a switch (see Balsara 1995) that acts to reduce substantially
the large undesirable shear component associated with the standard form.

In both GASOLINE and Nelson’s code, the artificial viscosity term reads

˘ij D

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

�˛1
2
.ci C cj /
ij C ˇ
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ij
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(8.9)

where


ij D h.vij 	 rij /

r 2
ij C 0:01.hi C hj /2

: (8.10)

In these equations, rij D ri � rj and vij D vi � vj where ri and vi are, respectively,
the position and velocity vectors of particle i , h is the SPH smoothing length, and ci

and cj are the sound speeds in cells i and j . Quantities ˛ D 1 and ˇ D 2 are stan-
dard values of the coefficients of artificial viscosity, known to result in acceptable
dissipative behavior across a wide variety of test problems.

In protoplanetary disks, Mach numbers nm D v=c, where v is the bulk velocity of
the flow, and c is the speed of sound, are high (nm D 10�20). However, shocks are
not as strong (i.e. the density jumps are not as pronounced) as when gas collapses or
collides with other gas along nearly radial trajectories, like in cosmological structure
formation. This is important because it means that the standard settings for the vis-
cous coefficients may be higher than strictly necessary for correct evolution of the
flow. Since artificial viscosity is essentially a nuisance with regard to improving the
modeling of the hydrodynamical flow, any improvement which decreases the impor-
tance of unphysical side effects while retaining the required stability and dissipative
effects of the code, is desirable.
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Mayer et al. (2004) have therefore experimented with lowering the coefficients
of artificial viscosity, finding that for e.g. ˛ D 0:5 and ˇ D 0 or ˛ D 0:5 and ˇ D 1,
fragmentation is more vigorous. However, the simulations of binary protoplanetary
disks in Mayer et al. (2005) were designed following a conservative approach, hence
the standard values ˛ D 1 and ˇ D 2 were employed. They do, however, include
the Balsara (1995) modification of the computation of the velocity divergence from
its usual form by multiplying the above equation by a correction factor

fi D j.r 	 vi /j
j.r 	 vi /j C j.r � vi /j C 0:0001ci=hi

: (8.11)

to reduce shear viscosity. This factor is near unity when the flow is strongly com-
pressive, but near zero in shear flows. In the simulations of Nelson et al. (2000) and
Nelson (2000), the typical reduction of viscosity due to this term is a factor of three
or better.

Nelson’s code starts from the same formulation of artificial viscosity shown
above (except that surface density replaces volume density), modified by the same
Balsara shear factor, but then also includes a second treatment to obtain a locally
varying artificial viscosity. This treatment is due to Morris and Monaghan (1997),
who implemented a time dependence to the coefficient N̨ that allows growth in
regions where it is physically appropriate (strong compressions) and decay in qui-
escent regions where it is inappropriate. The decay takes place over distances of a
few SPH smoothing lengths, after which the coefficient stabilizes to a constant, qui-
escent value. Nelson adopts a formulation including both the N̨ and ˇ terms, where
N̨=ˇ D 0:5, but the magnitudes of the coefficients vary in time and space according
to the Morris and Monaghan (1997) formulation. Thus, except in strongly com-
pressing regions (shocks) where it is required to stabilize the flow, artificial viscous
dissipation is minimized.

In GASOLINE, only the Balsara correction term is added. Therefore, in general
the GASOLINE simulations presented in Mayer et al. (2005) should be more dif-
fusive, which should go in the direction of suppressing fragmentation if all other
aspects of the modeling are the same. Figure 8.2 supports the claim of Mayer et al.
(2004) on the effect of artificial viscosity by showing that even the simple omission
of the Balsara term to reduce spurious shear viscosity can suppress fragmentation in
an otherwise fragmenting disk. However, we note that the effect of artificial viscos-
ity is more subtle than this, and that tests such as those of Fig. 8.2 probably address
only the impact of viscosity on the transition between mild overdensities and those
strong enough to begin collapsing. Once they start collapsing, the prevailing effect
of artificial viscosity could actually enhance the growth and survival of the clumps
by taking kinetic energy out of the system. The issue of how viscosity can affect the
collapse of the clumps is addressed in Pickett and Durisen (2007) (however, note
that the formulation of the latter viscosity is different from the standard Monaghan
viscosityCBalsara switch used in GASOLINE by Mayer et al. (2004)).

Artificial viscosity, be it explicitly inserted or implicit to the code, is one way
in which actual physical processes occurring on the sub-grid scale, such as shock



8 Gravitational Instability in Binary Protoplanetary Disks 207

Fig. 8.2 Color coded density maps of two isothermal runs evolved with 1 million SPH particles.
The disk starts with a minimum Toomre parameter approaching Q� 1. The snapshots after about
eight orbital times at 10 AU, i.e. about 240 years, are shown. On the left, a run without the Balsara
correction term is shown. On the right, the same disk is evolved with the Balsara term on

front heating and dissipation, can be included in the calculation. A tensor formula-
tion artificial viscosity is included in the Boss and Myhill (1992) code, employing
the diagonal termsQr

r , Q�
�

, andQ�
� , but is generally not used in the disk instability

models, except to discern the extent to which artificial viscosity can suppress frag-
mentation (Boss 2006). Numerical stability is maintained instead by using as small
a fraction of the Courant time step as is needed, sometimes as low as 1% of the
Courant value. Boss (2006) showed that his code reproduced an analytical (Burg-
ers) shock wave solution nearly as well without any artificial viscosity as when a
standard amount (CQ D 1, see Boss and Myhill 1992) of artificial viscosity was
employed, implying that the intrinsic numerical viscosity of his code was sufficient
to stabilize such a shock front. Tests on the full set of hydrodynamic equations have
not been undertaken because of the lack of a similarly analytical shock wave solu-
tion in three dimensional spherical coordinates.

8.2.5 Internal Energy Equation

Both GASOLINE and Nelson’s code employ the following energy equation (called
“asymmetric”), advocated by Evrard (1990) and Benz (1990), which conserves en-
ergy exactly in each pairwise exchange and is dependent only on the local particle
pressure,

dui

dt
D Pi

�2
i

nX
j D1

mj vij 	 riWij ; (8.12)
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where ui is the internal energy of particle i , which is equal to 1=.� � 1/Pi=�i

for an ideal gas (� is the adiabatic index). In this formulation entropy is closely
conserved making it similar to alternative entropy integration approaches, such as
that proposed by Springel and Hernquist (2002). The equation above includes only
the part related to adiabatic heating and cooling due to mechanical compression and
expansion, while the full energy equation has a term due to artificial viscosity and
one due to cooling to be discussed below.

The adiabatic index � is different in Nelson (2000) and Mayer et al. (2005) be-
cause Nelson (2000) performs only two dimensional simulations. In both cases, the
assumed value of � is for a gas at temperatures less than 1,000 K in which rota-
tional transitions are active, but not the vibrational ones. Because of the differences
in dimensionality, this assumption yields � D 1:4 in 3D for the pure hydrogen gas
(i.e. average molecular weight of 2.0) assumed by Mayer et al. (2004, 2005) and
� � 1:53 in 2D, for the solar composition gas (average molecular weight 2.31) used
by Nelson (see also Nelson 2006 for a discussion of issues that affect the ratio of
specific heats in 2D calculations). A value of � D 1:42 was incorporated into the
vertical structure models used in Nelson (2000) in order to remain consistent, since
the assumptions implicit in that calculation required a 3D treatment. Other published
works adopt � D 5=3 (Rice et al. 2003a, 2005; Cai et al. 2006a,b). As explained in
general in Lodato and Rice (2004, 2005), and shown by Mayer et al. (2005) for the
case of binary protoplanetary disks, the value of � can have an impact on whether
fragmentation occurs or not in a self-gravitating disk. In particular, a higher � fa-
vors stability versus fragmentation by delivering stronger compressional heating in
spiral shocks Lodato and Rice (2004, 2005). A recent paper (Boley et al. 2007b)
explains how fixing a value of the adiabatic index without relating the choice to the
local temperature and density of the gas is a poor approximation to the actual ther-
modynamics of molecular hydrogen (the main constituent of protoplanetary disks).
Future work will need to asses that.

A term dependent on artificial viscosity in the form of

nX
j D1

mj

1

2
˘ij vij 	 riWij (8.13)

is added to Eq. (8.7). This term allows the modeling of irreversible heating occurred
in shocks and the related changes in the entropy of the fluid.

If no radiative cooling is included, the resulting model is sometimes dubbed
“adiabatic” to distinguish it from the “isentropic” cases in which no irreversible
heating is included (Durisen et al. 2007). However, in the simulations of binary pro-
toplanetary disks of Mayer et al. (2005) and Nelson (2000), a cooling term is always
present. The cooling term is described in the following section.

Boss and Myhill (1992) code an equation for the specific internal energy with ex-
plicit time differencing, in the same manner as the other hydrodynamic equations are
solved. This energy equation includes the effects of compressional heating and cool-
ing and of radiative transfer, in either the diffusion or Eddington approximations.
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In the latter case, a separate equation for the mean intensity must be solved. In the
diffusion approximation, the energy equation is solved by Boss’ code (Boss 2001)
in the for

@.�E/

@t
C r 	 .�Ev/ D �pr 	 v C r 	

�
4

3��
r.�T 4/

�
; (8.14)

whereE.�; T / is the specific internal energy, �.�; T / is the Rosseland mean opacity
of the gas and dust, T is the gas and dust temperature, and � D 5:67�10�5 cgs is the
Stefan–Boltzmann constant. The diffusion approximation energy equation has been
used in all Boss’ disk instability models with radiative transfer to-date. However,
the Eddington approximation energy equation was used to derive the initial quasi-
steady state thermal profiles (Boss 1996), used for the initial conditions in Boss’ disk
instability models. In the Eddington approximation code, the energy equation is

@.�E/

@t
C r 	 .�Ev/ D �pr 	 v C L; (8.15)

where L is the rate of the change of internal energy due to radiative transfer. The
formulation of L depends on the optical depth � as

L D 4��.J � B/; � < �c ; (8.16)

L D 4

3
r 	



1

��
rJ

�
; � > �c ; (8.17)

where �c is a critical value for the optical depth (�c � 1), and B D �T 4= is the
Planck function. The mean intensity J is determined by the equation

1

3

1

��
r 	



1

��
rJ

�
� J D �B: (8.18)

The computational burden associated with the iterative solution of the mean inten-
sity equation in the Eddington approximation has so far precluded its use in disk
instability models with the high spatial resolution needed to follow the evolution
over many orbital periods. Because of the high optical depths at the midplane (up to
� � 104) of these disks, however, the diffusion approximation is valid near the crit-
ical disk midplane, and radiative transfer in the diffusion approximation imposes
little added computational burden.

8.2.6 Cooling in the Simulations

Nelson et al. (2000) and Nelson (2000) require that the disk be in instantaneous
vertical entropy equilibrium and instantaneous vertical thermal balance in order to
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determine its structure. This implicitly assumes that the disk will be convectively
unstable vertically over a short timescale and quickly restores thermal balance.
Convection is expected given the high optical depths of massive gravitationally
unstable disks (Ruden and Pollack 1991). Vigorous vertical currents with features
resembling convective instabilities have indeed been observed in massive protoplan-
etary disks modeled with both SPH and grid codes (Boss 2003, 2004a; Mayer et al.
2007), though Boley et al. (2006) found convective-like motions early in their grid
code disk simulations but not at later times when the disk became strongly gravita-
tionally unstable. Under these assumptions, the gas is locally (and instantaneously)
adiabatic as a function of z. In an adiabatic medium, the gas pressure and density
are related by p D K�� (K is the adiabatic constant) and the heat capacity of the
gas, CV , is a constant (by extension, so is the ratio of specific heats, � , see above).
In fact, this will not be the case in general because, in various temperature regimes,
molecular hydrogen will have active rotational or vibrational modes. It may disso-
ciate into atomic form or it may become ionized.

From the known .�; T / structure, Nelson et al. (2000) derive the temperature of
the disk photosphere by a numerical integration of the optical depth, � , from z D 1
to the altitude at which the optical depth becomes � D 2=3

� D 2=3 D
Z zphot

1
�.z/�.�; T /d z: (8.19)

In optically thin regions, for which � < 2=3 at the midplane, these authors assumed
that the photosphere temperature is equal to that of the midplane. The photosphere
temperature was then tabulated as a function of the three input variables radius, sur-
face density, and specific internal energy. At each time the photosphere temperature
was determined for each particle from such a table and used to cool the particle as a
blackbody at that temperature. The cooling of any particular particle proceeds as

dui

dt
D �2�T 4

eff

˙i

(8.20)

where ˙i is the specific surface density of particle i and Teff is its photospheric
temperature. In the optically thin regime (� < 2=3), the above expression was mul-
tiplied by � . The factor of two accounts for the two surfaces of the disk. On every
particle, the condition that the temperature (both midplane and photosphere) never
falls below the 3 K cosmic background temperature was enforced. Rosseland mean
opacities from the tables of Pollack et al. (1985) were used, and opacities for packets
of matter above the grain destruction temperature were taken from Alexander and
Ferguson (1994).

In parts of the disk where the calculated midplane temperature was greater than
dust vaporization temperature, the opacity was temporarily reduced to �5% of its
tabulated values over the entire column above and below that point in the disk. This
accounts for the fact that dust formation, after once being vaporized, may occur at
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rates slower than the timescales for vertical transport through the column. In other
regions of the disk it was assumed that the opacity remains unaffected.

Cooling is treated very differently in Mayer et al. (2005). It is independent of
distance from the midplane (so there is no dependence on z, as if there was con-
stant thermal equilibrium vertically) but there is an explicit dependence on the
distance from the center. The cooling term is proportional to the local orbital time,
Porb D 2=˝ , where ˝ is the angular velocity, via the following equation

� D dU=dt D U=A˝�1 (8.21)

The disk orbital time is a natural characteristic timescale for spiral modes devel-
oping in a rotating disk. Cooling is switched off inside 5 AU in order to maintain
temperatures high enough to be comparable to those in protosolar nebula models
(e.g. Boss 1998), and in regions reaching a density above 10�10 g/cm3 to account
for the local high optical depth. Indeed according to the simulations of Boss (2002)
with flux-limited diffusion, the temperature of the gas evolves nearly adiabatically
above such densities. In practice, in these regions the gas simply obeys Eq. (8.7)
with the artificial viscosity term (9). Mayer et al. (2005) considered cooling times
from 0:3 to 1:5 the local orbital time. The jury is still out on whether these cool-
ing times are credible or excessively short. Calculations by Boss (2002, 2004a) and
Mayer et al. (2007), which use different approximate treatments of radiative transfer,
do find cooling times of this magnitude through a combination of radiative losses
and convection, but other works employing different codes and different radiation
schemes, such as those of Cai et al. (2006a) and Boley et al. (2006, 2007a,b), have
encountered longer cooling times and have not found fragmentation.

The cooling times naturally arising in Nelson (2000) as a result of his radiative
scheme were about 25 times longer than the typical orbital time in the region (5–10
AU). Hence they were much longer than those assumed in Mayer et al. (2005).
As we shall see, the different cooling time has profound implications on the final
outcome of the simulations. Finally, we note that Rafikov (2005, 2007) uses an ana-
lytical model including convection, and finds that cooling times are longer than the
orbital time, and thus fragmentation should not happen at a distance less than 50 AU
from the center of a massive protoplanetary disk. We caution, however, that these
analytical models are one-dimensional by nature while gravitational instability is
inherently a three-dimensional problem (Mayer and Gawryszczak 2008).

In a recent work, one of the authors, L. Mayer, began performing simulations
of binary protoplanetary disks using the new flux-limited diffusion scheme for ra-
diative transfer adopted in Mayer et al. (2007). The latter uses the flux-limiter of
Bodenheimer et al. (1991) to model the transition between optically thick and op-
tically thin regions of the disk. The disk then radiates as a blackbody at the edge,
with the radiative efficiency being modulated by a parameter that defines how large
is the emitting surface area, or in other words, the part of the disk that qualifies
as edge. In Section 8.5 we briefly describe some preliminary results of these new
calculations.
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Boss (2001) noted that in his diffusion approximation models, the radiative flux
term is set equal to zero in regions where the optical depth � drops below 10, so that
the diffusion approximation does not affect the solution in low optical depth regions
where it is not valid. This assumption is intended to err on the conservative side
of limiting radiative cooling. A test model (Boss 2001) that varied this assumption
by using a critical �c D 1 instead of 10, led to essentially the same results as with
�c D 10, implying insensitivity of the results to this assumption. Another test model
(Boss 2001) used a more detailed flux-limiter to ensure that the radiative energy
flux did not exceed the speed of light (specifically, that the magnitude of the net flux
vector H did not exceed the mean intensity J ), and also yielded essentially the same
results as the model with the standard assumptions. In low optical depth regions such
as the disk envelope, the gas and dust temperature is assumed to be 50 K.

In the Boss (2006) models, the disk was assumed to be embedded in an infalling
envelope of gas and dust that formed a thermal bath with a temperature of 50 K.
Thus the effective surface boundary condition on the disk was 50 K in the radiative
diffusion calculation. Boss (2004a) found that convective-like motions occurred in
the models with a vigor sufficient to transport the heat produced at the midplane
by clump formation to the surface of the disk, where it is effectively assumed to be
radiated away into the protostellar envelope. This code also employed a full thermo-
dynamical description of the gas, including detailed equations of state for the gas
pressure, the specific internal energy, and the dust grain and atomic opacities in the
Rosseland mean approximation.

In all of the Boss code models to date, the dissociation of molecular hydrogen
into atomic hydrogen is calculated using a dissociation constant, and the transition
between para- and ortho-hydrogen is included in the specific internal energy as fol-
lows. Linear interpolation from 100 K to 200 K is used to represent the variations
between a specific internal energy per gram of hydrogen, i.e., 3RgT=2
g (where
Rg is the gas constant D 8:314 � 107 cgs, and 
g is the mean molecular weight
for the gas) for temperatures less than 100 K, and 5RgT=2
 for temperatures above
200 K. No discontinuity is present in this internal energy equation of state, which
has been used in all of Boss’ disk instability models, though the first adiabatic index
�1 is discontinuous at 100 K and 200 K.1

Rafikov (2007) has noted that while vigorous convection is possible in disks,
the disk photosphere will limit the disk’s radiative losses and so may control the
outcome of a disk instability. Numerical experiments designed to further test the
radiative transfer treatment employed in the Boss models (beyond the tests described
above) have been completed (Boss 2007, 2008). Understanding the extent to which
the surface of a fully 3D disk, with optical depths that vary in all directions and with
corrugations that may shield the disk’s surface from the central protostar and other
regions of the disk, requires a fully numerical treatment and is not amenable to a
simple analytical approach.

1 The first adiabatic index �1 for a simple perfect gas is the same as � and is equal to
1C Rg=.
gCV /.
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8.3 Initial and Boundary Conditions

Here we describe the initial and boundary conditions for the models, focusing on
the different choices made by different workers. These choices include (1) density
and temperature profiles of the disks, (2) disk masses and Toomre parameters,
(3) spatial resolution, (4) the boundary conditions, and (5) the orbital configuration
in the binary experiments.

One important difference between the initial conditions used in Mayer et al.
(2005) and those employed in the other two works is that only in the former paper the
individual disks are grown in isolation before the binary configuration is initialized.
The disk mass is grown until it reaches the desired value while keeping the temper-
ature of the particles constant over time. The Toomre parameter is prevented from
falling below 2 by setting the temperature of the disk sufficiently high at the start.
This way the initial conditions used for the binary experiments are those of a gravi-
tationally stable disk. The Toomre parameter is then lowered to a value in the range
1.4–2 by resetting the temperature of the particles before placing the starCdisk sys-
tem on the binary orbit (the temperature is set to 65 K, hence the Toomre parameter
will depend on the mass of the disk, see below in the next two sections). As the disk
evolves in isolation, it expands slightly, losing the sharp outer edges. The inner hole
also fills up partially, but most of the particles remain on very similar orbits. Once
the star C disk system is placed on an orbit around a companion disk, the system is
further evolved using the full energy equation plus a cooling term dependent on the
orbital time, therefore including adiabatic compression and expansion, irreversible
shock heating and radiative cooling. Nelson (2000) does not grow the disk but starts
with a treatment that also solves the full energy equation but treats the cooling term
differently (see above).

In both Mayer et al. (2005) and Nelson (2000) matter is set up on initially circular
orbits assuming rotational equilibrium in the disk. The central star is modeled by a
single massive, softened particle. Radial velocities are set to zero. Gravitational and
pressure forces are balanced by centrifugal forces including the small contribution of
the disk mass.The magnitudes of the pressure and self-gravitational forces are small
compared to the stellar term, therefore the disk is nearly Keplerian in character. No
explicit initial perturbations are assumed beyond computational roundoff error in
either Mayer et al. (2005) or Nelson (2000). Due to the discrete representation of the
fluid variables, this perturbation translates to a noise level of order �10�3 � 10�2

for the SPH calculations. The relatively large amplitude of the noise originates from
the fact that the hydrodynamic quantities are smoothed using a comparatively small
number of neighbors (see Herant and Woosley 1994). An increase in the number
of particles does not necessarily decrease the noise unless the smoothing extends
over a larger number of neighbors. This perturbation provides the initial seed that
can be amplified by gravitational instability. The initial disk model in Boss (2006)
is rotating with a near-Keplerian angular velocity chosen to maximize the stability
of the initial equilibrium state, with zero translational motions. The envelope above
the disk, however, is assumed to be falling down with free-fall velocities but with
the same angular velocity profile as the rotating disk, the same assumptions as are
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used in the single star and disk models (e.g., Boss 2005). Random cell-to-cell noise
at the level of 10% is introduced to the disk density to seed the cloud with non-
axisymmetry at a controlled level.

8.3.1 Density and Temperature Profiles

Mayer et al. (2005) grow the disks slowly over time until the desired mass is reached.
Their initial disk models extend from 4 to 20 AU and have a surface density profile
˙.r/ � r�1:5 with an exponential cut-off at both the inner and outer edge. The
initial vertical density structure of the disks is imposed by assuming hydrostatic
equilibrium for an assumed temperature profile T .r/.

Nelson (2000) adopts a power law for the initial disk surface density profile of
the form

˙.r/ D ˙0

"
1C



r

rc

�2
#�p=2

; (8.22)

where p is 3/2, ˙0 is the central surface density of the disk, which is determined
once the total disk mass is assigned, and rc is the core radius. The Nelson (2000)
disk extends from 0.3 to 15 AU and the core radius used for the power laws has the
value of rc D 1 AU. The initial temperature profile of this disk is given by

T .r/ D T0
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; (8.23)

where q is 1/2, and T0 is the central temperature, which is determined once the
minimum desired Toomre parameter (and hence the minimum temperature) is de-
termined. The stars in Nelson (2000) have Plummer softening of 0:2 AU each, while
a softening length of 2 AU was used with the spline kernel softening in Mayer
et al. (2005).

The shape of the initial temperature profile in Mayer et al. (2005) is similar to
that used by Boss (1998, 2001) and is shown in Fig. 8.3 together with the profiles of
several runs with either binary or isolated disks after a few orbits of evolution. As
shown in this figure, the temperature depends only on radius, so there is no differ-
ence between midplane and an atmosphere. Between 5 and 10 AU the temperature
varies as �r�1=2, which resembles the slope obtained if viscous accretion onto the
central star is the key driver of disk evolution (Boss 1993). Between 4 and 5 AU,
the temperature profile rises more steeply in agreement with the 2D radiative trans-
fer calculations of Boss (1996). Beyond 10 AU, however, the temperature smoothly
flattens out and reaches a constant minimum (an exponential cut-off is used).

In Mayer et al. (2005) the minimum temperature is fixed to 65 K. It is implicitly
assumed that the disk temperature is related to the temperature of the embedding
molecular cloud core from which the disk would be accreting material (Boss 1996).
Note that, at least for the protosolar nebula, 50 K is probably a conservative upper
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Fig. 8.3 Azimuthally averaged mid-plane temperature profiles at the time of maximum amplitude
of the overdensities (at between 120 years and 2,000 years of evolution depending on the model) in
some of the runs described in Mayer et al. (2005). The initial temperature profile is shown by the
thick solid line. We show the results for a run with two massive disks (M D 0:1M

ˇ

, thick short-
dashed line, the disks do not fragment) at a separation of about 60 AU, a run with just one of these
two disks in isolation (thin long-dashed line, disk fragments), a run with the same massive disks
at a larger separation of 116 AU (thin solid line, disks fragment) and a run with two light disks
(M D 0:01M

ˇ

, the disks do not fragment) at a separation of 60 AU (thick long-dashed line). The
runs adopt cooling times in the range 0:5 � 1:5 the local orbital time. A smaller separation and a
larger disk mass both favor stronger spiral shocks and hence a larger temperature increase during
the evolution

limit for the characteristic temperature at r > 10 AU based on the chemical com-
position of comets in the Solar System (temperatures as low as 20 K are suggested
in the recent study by Kawakita et al. 2001). Temperatures in the outer part of the
disk between 30 and 70 K are found also for several T Tauri disks by modeling
their spectral energy distribution assuming a mixture of gas and dust and including
radiative transfer (D’Alessio et al. 2001).

In the Boss (2006), the initial disk is an approximate semi-analytic equilibrium
model (Boss 1993) with a temperature profile derived from the Eddington approxi-
mation radiative transfer models of Boss (1996). The outer disk temperatures were
taken to be 40, 50, 60, 70, or 80 K, in order to test the effects of starting with disks
that were either marginally gravitationally unstable (40, 50 K) or gravitationally sta-
ble (60, 70, 80 K). The disk temperature is not allowed to fall below its initial value,
an approximation that errs on the side of suppressing fragmentation.

Figure 8.4 shows the initial radial temperature profile for the models with an outer
disk temperature of 80 K, as was assumed in the Boss (2006) and shown in Fig. 8.7.
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Fig. 8.4 Initial radial temperature profile for the midplane of the Boss (2006) models with outer
disk temperatures of 80 K. Each dot corresponds to a radial grid point (100 in all) distributed
between 4 AU and 20 AU. This initial profile was used for the model shown in Fig. 8.7

The temperature rises strongly toward the protostar at 0 AU because of the heating
associated with mass accretion onto the disk from the protostellar envelope and onto
the central protostar from the disk (Boss (1993, 1996). The temperature distributions
in Boss (1993, 1996) are steady state solutions for axisymmetric (2D) protoplanetary
disks with varied disk and stellar masses, opacities, and other parameters.

8.3.2 Disk Masses and Toomre Parameters

Both Nelson (2000) and Mayer et al. (2005) consider a system composed of two
disks with their central stars. Boss (2006) considers different disk-star systems with
stellar companions that are introduced later during the disk’s evolution. In Boss
(2006) models, the back-reaction of a star-disk system on its binary companion
(which is assumed to be a point masses) is not calculated. The two disks in Nelson
(2000) have equal masses of 0:05Mˇ whereas Mayer et al. (2005) consider a range
of disk masses encompassing models from as light as the lowest expected values of
the minimum mass solar nebula (0:012Mˇ) to as massive as the heaviest among T
Tauri disks .0:1Mˇ/. A few simulations with disks having unequal masses were
also performed by Mayer et al. (2005). However, in the majority of the runs, the
disks have the same mass. In the Boss (2006) models, the disk mass is 0:091Mˇ
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Fig. 8.5 Initial Toomre Q profile for the midplane of the Boss (2006) models with outer disk
temperatures of 80 K, used for the model shown in Fig. 8.7

Boss (2006) considers systems with 1Mˇ equal-mass stars. The mass of the cen-
tral star is usually 1Mˇ in Mayer et al. (2005) and 0:5Mˇ in Nelson (2000). The
minimum value of the Toomre parameter varies from 1.3 to 1.9 in Boss (2006)
models as the outer disk temperatures in those models are varied from 40 to 80 K.
Figure 8.5 shows the radial profile of the Toomre parameter for the Boss (2006)
models with an outer disk temperature of 80 K, the same as for the model shown in
Figs. 8.4 and 8.7. The disk is very stable to gravitational perturbations in its inner
regions, because of the high inner disk temperatures (Fig. 8.4). However, Q drops
to a minimum value of 1.9 in the outer region.

The minimum Toomre parameter is �1:5 in Nelson (2000), achieved just inside
the outer edge of the disk at 10–12 AU, whereas it is approximately 1.4 or higher in
Mayer et al. (2005) at the disk edge where the temperature also falls to its minimum.
The details of the individual models can be found in Mayer et al. (2005). The initial
surface densities and Toomre profiles differ between the two works and give rise
to a different susceptibility to various channels by which non-axisymmetric models
can grow. In Nelson (2000), Q is nearly flat over the largest portion of the disk,
with a steep rise at small radii and a shallow increase towards the outer edge of the
disk. In Mayer et al. (2005), disks are constructed in such a way that they begin with
a steep inner rise of Q, which decreases outwards and reaches its minimum at the
disk edge (Mayer et al. 2004). However, as the disk grows in mass, the Q profile
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changes; its minimum shifts inwards near 15 AU so that the overall profile becomes
quite similar to that of Nelson (2000), by the beginning of the simulations. We refer
to Mayer et al. (2004) and Nelson et al. (2000) for details on the Q profiles.

8.3.3 Numerical Resolution

Nelson (2000) employs 60,000 particles per disk in his 2D simulations, while Mayer
et al. (2005) uses 200,000 particles per disk. Due to the differences in dimension-
ality, the mass resolution along the disk midplane in both models is similar. So in
this respect, the two simulations are quite comparable. The gravitational softening
is fixed at �0:06 AU in Mayer et al. (2005), but it can become smaller than that in
Nelson (2000) in overdense regions forming during the simulation.

Boss (2006) used a grid with either 100�22� 256D 0:56 � 106, or 100 � 22 �
512 D 1:1 � 106 grid points, distributed over the top hemisphere of the calcula-
tional grid, and either 32 or 48 terms in the spherical harmonic expansion for the
gravitational potential.

8.3.4 Boundary Conditions

Mayer et al. (2005) adopt no boundary conditions at all in their disks. The central
star is free to move in response to deviations of the gravitational potential of the disk
from the initial equilibrium and gas particles can get as close as resolution allows.
Although such a choice is not ideal from the point of view of computational effi-
ciency, since particles nearest to the center have the shortest timesteps, this should
reduce fluctuations in the inner density and pressure profiles due to the sudden re-
moval of particles. Nelson (2000) instead implements an inner boundary condition
by treating the central star as a sink particle, namely a particle that absorbs the mass
and momentum of particles falling below some threshold radius. He uses an accre-
tion radius of 0.2 AU as a compromise between the numerical requirement that the
integration timestep not be so small that long period evolution cannot be followed,
and the desire to model as large a radial extent of the disk as possible. The gravita-
tional softening of the central star in Mayer et al. (2005) is 2 AU, which for a spline
kernel softening means that effectively, the force resolution is 4 AU. In both Mayer
et al. (2005) and Nelson (2000) the initial location of the innermost ring of particles
lies slightly outside the inner accretion radius or gravitational softening of the star.
There is no outer boundary condition in either of these works.

In the Boss (2006) models, the inner boundary at 4 AU is allowed to remove
mass and angular momentum from the grid and deposit it onto the central protostar.
The outer boundary at 20 AU is fixed in space, and attempts to capture gas which
reaches it while suppressing its tendency to bounce back inward. As a result of
the strong tidal forces by the binary companions in Boss (2006), disk gas which
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attempts to flow outward, becomes artificially trapped in the outermost shell of cells.
Thus any clumps observed on the or close to the outer boundary of the Boss (2006)
are artifacts of the outer boundary conditions and should be disregarded. In most
cases, these clumps contain only a small fraction of the disk’s mass, and so their
influence on the evolution of the rest of the disk should be minor.

8.3.5 Orbital Parameters

Both Mayer et al. (2005) and Nelson (2000) consider coplanar disks corotating with
their orbital motion as expected from fragmentation of a cloud core (Bate 2000).
If core formation and fragmentation is a highly dynamical process, as recent sim-
ulations of gravoturbulent molecular cloud collapse suggest, so that several cores
interact strongly during collapse, more complicated orbital configurations will arise.
These will need to be explored in the future. Fast close encounters between disks
will also occur in the latter scenario, as Lodato et al. (2007) have investigated. In
Nelson (2000) the semi-major axis of the relative orbit is set to an initial value of 50
AU and the orbit has an eccentricity of 0.3. Mayer et al. (2005) consider a more cir-
cular orbit (e D 0:14) and two different values of semimajor axes, 58 and 116 AU.
The calculation starts with the companion disk being at the apoastron of the orbit.

Boss (2006) considers only a single disk in his models, with the binary compan-
ion being a point mass protostar. The orbit of the binary companion was chosen
to have a semimajor axis of either 50 or 100 AU [comparable to those chosen by
Mayer et al. (2005)], and eccentricities of either 0.25 or 0.5. The calculations start
off with the binary companion at either apoastron or periastron in its orbit. The mod-
els assume that the mass of the binary companion is the same as that of the central
protostar, (i.e., 1Mˇ).

Note that in the Boss (2006) models, the binary semimajor axis is defined to be
equal to the radial separation between the two protostars, so that in a model with a
semimajor axis of 50 AU and an eccentricity of 0.5, the closest approach between
the two protostars is 25 AU, just beyond the edge of the 20 AU-radius of the disk
that is being perturbed by the binary companion. If the binary companion had a
similar size disk, these disks would collide, but the binary companion is assumed to
be a diskless point mass in all of the Boss (2006) models.

8.4 Gravitational Instability in Binary Systems

8.4.1 Does Binarity Help or Suppress Disk Fragmentation?

The three studies seemingly reached very different conclusions regarding the
role of binary companions in disk instabilities. Nelson (2000) found no aid to
fragmentation, Mayer et al. (2005) found fragmentation in a few cases but also
found an indication that binarity might reduce the susceptibility to fragment, while
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Boss (2006) found fragmentation to be enhanced by binarity. In the following we
analyze in more detail these differences, trying to understand their causes.

As we have seen in the previous sections, there are many differences in the codes
and setup of the numerical experiments. Mayer et al. (2005) performed a larger
number of experiments, thus exploring a larger parameter-space in terms of initial
conditions. Nelson (2000) and Boss (2006) had more realistic treatments of radia-
tion transfer. Boss (2006) ran the experiments with the highest number of resolution
elements. We note, however, that while they begin with a smaller number of reso-
lution elements, the SPH simulations by Nelson (2000) and Mayer et al. (2005) are
adaptive, hence the resolution increases with time, especially in the most overdense
regions. In addition, simulations in Nelson et al. (2000) are two-dimensional, which
implies a higher effective resolution in the midplane compared to 3D calculations
for equal number of particles.

Disk thermodynamics is crucial for the outcome of gravitational instability. Frag-
mentation will occur only if cooling times are comparable to the orbital time.
Therefore, leaving alone all the other differences, the simple fact that Nelson (2000)
had cooling times in a large fraction of his disks that were longer than ten times the
orbital times can explain why fragmentation did not occur in his models. With such
long cooling times, disks will not fragment in isolation, no matter how strong the
spiral structure appearing in the disk is, and irrespective of whether this structure is
spontaneous or is tidally triggered by a nearby companion. Nevertheless, fragmen-
tation is not determined by the longest cooling times in the disk, but by the shortest.
Nelson’s disks did exhibit short cooling times at larger radii, but in spite of this fact,
did not fragment.

Rapid cooling of the disk midplane by convective-like motions in 3D disks has
been shown to occur with several different codes (Boss 2004a, 2005; Mayer et al.
2007) and can lead to disk fragmentation (Boss 2004a, 2005), provided that the
heat transported upward by these motions to the disk’s surface can be radiated away
to the protostellar envelope, a condition disputed by Rafikov (2007). The vertical
structure model of Nelson (2000) assumed efficient vertical energy transport via
convection, but did not produce fragmentation. The thermal boundary conditions on
the disk surface then become of critical importance, and these boundary conditions
are the subject of current research. Until the issue of disk thermal boundary condi-
tions can be further clarified, it is useful to ask whether for relatively short cooling
times, comparable to or less than the orbital period, binarity promotes or suppresses
fragmentation. The latter question is what both Mayer et al. (2005) and Boss (2006)
tried to answer.

Mayer et al. (2005) explored a range of cooling times, from less than 0.5 to 1.5
times the orbital period. They found that the effect of binarity changed with the disk
mass; except for the shortest cooling time (0:3Torb), massive disks .Md D 0:1Mˇ/
that fragment in isolation, do not fragment when in a binary with a separation of
�60 AU whereas disks with masses of 0:05 � 0:08Mˇ that do not fragment in
isolation, do fragment in such binaries provided that the cooling time is some-
what shorter than the disk orbital time. When the separation grows from 60 AU to
116 AU, the behavior of disks becomes almost indistinguishable from that seen in
isolation and fragmentation becomes possible in disks with 0:1Mˇ. Finally, very
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Fig. 8.6 Face-on density maps for two simulations of interacting M D 0:1M
ˇ

protoplanetary
disks in binaries with tcool D 0:5Prot. The binary in the top panel has a nearly circular orbit with
an initial separation of 60 AU. A snapshot of this system is shown on left after 150 years (the time
of the first pericentric passage) and on right after 450 years. Large tidally induced spiral arms are
visible at 150 years. The panel in the bottom shows a snapshot of the simulation of a system with
an initial orbital separation twice larger than the system in the top. The time of the snapshot is 160
years after the start of the simulation. In this case, fragmentation into permanent clumps occurs
after a few disk orbital times. Figures adapted from Mayer et al. (2005).

light disks, with masses of �0:01Mˇ do not fragment irrespective of whether they
are in isolation or in a binary system. Simulations from this work are presented
in Fig. 8.6, which shows how larger separations are more favorable to fragmen-
tation in the case of massive disks. Mayer et al. (2005) interpreted the different
behavior of disks having different masses as the product of different net cooling
times at different mass scales. In more massive disks, the spiral arms grow stronger
as they are better amplified by self-gravity. As a result, shocks are more oblique
and disk material acquires higher eccentricities, resulting in overall higher Mach
numbers and stronger heating. For a given cooling time, the “net cooling”, namely
the ratio between cooling and heating, is higher for lighter disks. This explains the
higher susceptibility towards fragmentation for disks with intermediate masses of
�0:05 � 0:08Mˇ. Then, as the mass decreases further, a third regime is reached.
When Md � 0:01Mˇ, the self-gravity is so low that spiral arms are too weak in
the first place and cannot form significant overdensities, no matter how strong the
perturbation of the companion, and even if the cooling time is comparable to or
shorter than the disk orbital time. Figure 8.3 shows the temperature evolution of the
disk in some of the runs performed in Mayer et al. (2005). It shows that temperature
increase in the outer disk, which opposes fragmentation, is larger in more massive
disks and at smaller binary separations, supporting the interpretation of the authors
concerning why fragmentation can be suppressed. The results of Mayer et al. (2005)
are not in conflict with those of Nelson (2000) for runs that have similar orbital pa-
rameters and comparable disk masses (i.e. disk/star systems with mass-ratios of
0.1 and separations of 50–60 AU). It is true that in some of the latter runs disks
fragment in Mayer et al. (2005) while they never fragment in Nelson (2000), but
this discrepancy is seen only for the shortest cooling times (0:3 � 0:5 Torb) used in
Mayer et al. (2005), these are more than an order of magnitude shorter than the
typical cooling times of Nelson (2000).
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Boss (2006) used his standard radiative transfer approach (i.e., diffusion approx-
imation radiation transport, Rosseland mean dust opacities, and detailed equations
of state for the gas pressure and specific internal energy)to handle the disk thermo-
dynamics. One model from Boss (2006) was particularly similar to that of Nelson
(2000). In that model, the binary companion has a semimajor axis of �50 AU, and
an eccentricity of 0.25. Similar to Nelson (2000), the initial value of Toomre’sQ in
that model was �2 throughout most of the inner disk implying that the disk in both
models were initially stable. While the total mass of the system was twice as high
in Boss (2006) as in Nelson (2000), the ratio of the disk-mass to the protostar mass
was the same (and approximately equal to 0.1) in both models. In the case of Nelson
(2000), the disk formed strong spiral arms but never fragmented. The disk heated
up as a result of viscous dissipation and also partially because of the spiral shocks,
finally reaching a steady state characterized by a Toomre Q in the range of 4 to 5
(i.e., quite stable to the growth of gravitational perturbations, Fig. 8.8). By
comparison, in the Boss (2006) model (see Fig. 8.7) the disk also formed strong

Fig. 8.7 Midplane density contours after 241 year of evolution of a 0:091M
ˇ

disk in an orbit
around a member of a binary 1M

ˇ

protostar system, showing the formation of a self-gravitating
clump of mass 4:7MJup at 10 o’clock (Boss 2006)
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Fig. 8.8 Particle distribution of the binary system after periapse passage. Mass surface density
units are in log (g cm�2). The trajectory of each component is counterclockwise, and periapse
occurs when the stars (at each disk center) reach the y D 0 axis and are 35 AU apart. The tidal
torques have caused the appearance of two-armed spiral structures in the disks along with a signif-
icant mass redistribution, but no fragmentation. The figure has been adopted from Nelson (2000)

spiral arms, but a self-gravitating clumps was able to form as well, with a mass
of 4.7 MJup. When Boss (2006) ran an identical model, except with the binary
companion in a more eccentric orbit (e D 0:5), the clump that formed at a similar
time to the one in Fig. 8.5 was not massive enough (only 0.68 MJup) to be self-
gravitating, though later in the evolution, self-gravitating clumps did form. These
two models show that in Boss (2006), the ability of a binary companion to induce
disk fragmentation depends strongly on the orbital parameters.

It is important to note that while Nelson (2000) was able to follow the evolution
of the disk through several periastron passages and monitor the resultant disk heat-
ing, Boss (2006) only followed a single periastron, largely because of the pile-up of
disk-mass at the outer edge of the disk, an obvious numerical artifact that greatly
reduced the value of carrying the models any further in time. Thus, it is uncertain
what would happen to the clumps that formed after the first periastron passage in
the Boss (2006) models, if subsequent periastron passages were calculated as well.
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The models of Boss (2006) included binary companions having eccentric or-
bits with semimajor axes of 50 AU or 100 AU. Mayer et al. (2005), on the other
hand, considered 13 models with stellar companions at 58 AU, and four models with
semimajor axes of 116 AU. The models with a D 116 AU fragmented similar to the
100 AU models in Boss (2006). For the models with a D 58AU, Mayer et al. (2005)
found that whether or not fragmentation occurred depended on the disk-masses and
the assumed cooling times, as described previously. The models with a D 58 AU,
disk-masses of 0.1 Mˇ, and protostars with masses of 1 Mˇ, can be compared di-
rectly with some of Boss’s models having essentially the same parameters. While
such models never fragmented in Mayer et al. (2005), or only produced transient
clumps that disappeared in a few disk orbital times, fragmentation always occurred
in Boss (2006). A subtle issue in this comparison is that all fragments obtained by
Boss (2006) were in fact transient fragments, because the finite-difference code used
in Boss (2006) simulations is unable to provide the enhanced local spatial resolution
that is needed to allow self-gravitating clumps to survive and orbit indefinitely. On
the other end, Mayer et al. (2005) did not run the same model at higher resolution as
they had done for isolated disk models in previous works (e.g. Mayer et al. 2004),
and therefore one cannot exclude that their clumps would survive longer or fragmen-
tation would be aided in the first place with an increased number of particles and
proportionally smaller softening length. The azimuthal resolution in Boss (2006) is
indeed higher than the hydrodynamical resolution and even more than the gravita-
tional force resolution adopted by Mayer et al. (2005). In Mayer et al. (2005), mild
overdensities build up along the spiral arms and after the periastron of the relative
orbit even in the runs that do not fragment (Fig. 8.6) but they are immediately dis-
solved. It is possible that based on the preliminary results of the aforementioned
code comparison between AMR and SPH codes (Mayer and Gawryszczak 2008),
with higher resolution, these overdensities become more nonlinear and collapse.
Nevertheless, the difference remains that a companion on a tighter orbit suppresses
fragmentation according to Mayer et al. (2005), whereas it promotes fragmentation
according to Boss (2006).

The intense heating can be considered as the reason for the suppression of frag-
mentation in Mayer et al. (2005). Such heating is apparently not present in Boss
(2006). Whether the SPH artificial viscosity is biasing the results too much with
the stronger shocks present in binary systems or whether the disks in Boss (2006)
cool too fast, is at the moment unclear. It is especially noteworthy that Nelson
(2000) studied a 50 AU binary system with SPH, at lower resolution than in Mayer
et al. (2005). This system should therefore be even more strongly affected by the
presence of heating from artificial viscosity. Instead, Nelson (2000) finds that the
disks are in fact too cold compared to the observed L1551 IRS5 system implying
that still more heating is required than artificial viscosity provides, making his disks
even less likely to fragment.

Another difference in the setup that might explain the above-mentioned dis-
crepancies is the fact that in Boss (2006), the companion is simply a protostar,
whereas in Mayer et al. (2005) the companion is a protostar with a disk. In tight
binary systems, the presence of the other disk might have an effect; near periastron
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of the orbit, the two disks almost touch each other, possibly enhancing tidal and
compressional heating on one another. Since the orbits in Mayer et al. (2005) are
nearly circular, in the binaries with 58 AU separations, the two disks are almost
always in the latter situation. This would also mean that the behavior of real tight
binary systems, which will normally have two disks orbiting each other, should be
closer to what found by Mayer et al. (2005) and Nelson (2000).

8.4.2 Disk Evolution: Internal vs. External

Mayer et al. (2005) saw very different behavior when they compared the a disk
evolving in isolation and with a companion. Since gravitational instability is regu-
lated by thermal pressure and mass density, remarkable differences should be seen
in both quantities when comparing isolated and binary disks. Indeed, we have al-
ready seen the effect of temperature (Fig. 8.3). Here we discuss the effect on mass
density on the surface density profile of a disk. In particular, the following ques-
tion arises; how much of the restructuring of the disk-mass distribution is due to the
disk’s self-gravity and how much is due to tidal torques induced by the companion?

Figure 8.9 shows the evolution of the disk surface density profile in one of
the binary disk simulations of Mayer et al. (2005) evolved both with and without

Fig. 8.9 Thick solid line: The azimuthally averaged surface density profile of a disk with a mass
of 0:1M

ˇ

at t D 0. Dashed line: the evolved state of the same disk after being run without
self-gravity for two orbits around an equally massive companion. The thin solid line shows the
disk’s surface density with self-gravity. A cooling time equivalent to 0.3 times the orbital time was
adopted in both runs. Figure from Mayer et al. (2005)
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self-gravity. The tidal interaction modifies the disk structure in both cases, but such
changes are moderate compared to those occurring when self-gravity is introduced.
When self-gravity is included, the density peak developing as a result of inflow
driven by internal gravitational torques is almost a factor of 2–3 higher than the
maximum density in similar disk models evolved in isolation (Mayer et al. 2004).
This statement applies to all of the runs in Mayer et al. (2005). The density in the
tidally perturbed disks grows not only in the center but even out to several AUs,
which explains why models with masses lower than 0:1Mˇ become more prone
to fragmentation in the region around 5–10 AU when perturbed by a binary com-
panion. Evidently in these lighter disks, the heating from shocks is not enough to
compensate such a large density increase. Since disks are truncated within 15 AU,
when clumps form, they do so within such radius, typically between 8 AU and 12
AU. The locations where the clumps form correspond to the location of the density
maximum and are slightly closer to the star compared to those of clumps in the
isolated disks studied by Mayer et al. (2004). In fact, in isolation, gravitationally
unstable disks typically develop a density maximum between 12 and 15 AU, and
that is where Q drops below 1 and fragmentation occurs (Mayer et al. 2004). The
conclusion is that in all the simulations of Mayer et al. (2005), the restructuring of
the disk results from a combination of tidal torques and self-gravity of the disks.

The mass transport present even without self-gravity is the result of tidal
torques induced by the gravitational interaction with the companion. These tidal
torques produce a two-armed spiral mode in the otherwise passive disk. The disk
becomes truncated to a smaller radius and more mass piles up in the inner few
AU as the arms redistribute angular momentum. We recall that the disks in Mayer
et al. (2005) have been slowly grown in mass in isolation before being evolved
with a companion. While the disk evolves in isolation, the inner hole, present in the
initial conditions, is gradually filled and therefore the rapid accumulation of mass
seen in the binary case is not an artificial result of the inner boundary condition.
The mass inflow produces compressional heating, raising the temperature of the
disk inside 10 AU. Exchange of mass between the two disks occurs but their mass
varies by only �10%.

8.4.3 Temperatures in Binary Self-Gravitating Disks
and Effects on Dust Grains

Both Nelson (2000) and Mayer et al. (2005) found significant heating along spiral
shocks in binary systems. Mayer et al. (2005) found that the temperatures can be a
factor of 2–3 higher relative to the same disk in isolation for disks in the mass range
of �0.05–0.1 solar-masses. This has important implications for the destruction of
dust grains, hence on the formation of planetesimals and thus of those Earth-sized
rocky cores that are a necessary step to form giant planets in the core-accretion
model. The consequence of the high temperatures in the GI active outer region of
the disk is the vaporization of ice grains, which constitute as much as 30–40% of
the dust content in the disk.
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Fig. 8.10 Temperature profiles of the disks in Nelson (2000) shown before (solid line) and after
(dashed line) the 4th periapse. The initial profile is shown with a dashed–dotted line. The dotted
line shows the maximum temperature reached inside the spiral arms at that radius. At the right are
vaporization temperatures of the major grain species in the solar nebula and their fraction of the
total grain mas, as discussed in Pickett et al. (1994)

The results of Nelson (2000) are shown in Fig. 8.10. The actual surface density
of solids might be reduced by up to 40% as a result of vaporization compared to iso-
lated disks. The direct consequence would be that core accretion will be less efficient
in binary systems compared to isolated disks. Strong heating is instead absent in
light disks (Md D 0:01Mˇ) whose temperatures increase by less than 50%. There-
fore core accretion should be favored in such light disks, with masses comparable
to the minimum mass solar nebula, because a larger relative dust content would be
maintained. Those, however, are also the disks in which the growth of rocky cores of
a few Earth masses (necessary to trigger runaway gas accretion) would take longer
owing to their low surface densities. Vaporization would have other effects as well
that are not included in the simulations carried out so far and might be relevant for
the outcome of gravitational instability. For instance, vaporization will lower the
opacity. This leads to even stronger shocks (and heating) but, at the same time, may
reduce the cooling time. Which effect wins in terms of fragmentation is unclear. In
addition, vaporization might lower the local molecular weight, which goes in the di-
rection of favoring fragmentation (Mayer et al. 2007). Future simulations will have
to investigate all these effects simultaneously.

A caveat in the above discussion is that the surface density of massive disks
(Md > 0:05Mˇ) at distances of 10–15 AU from the center is 50% higher than it
would be without a companion by the end of the simulation. Assuming a uniform
gas-to-dust ratio in the disk, the increase in surface density could compensate for
the vaporization of dust grains, making massive disks not less favorable then light
disks for giant planet formation via core accretion (see above). Spiral arms might
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also gather solids as a result of pressure gradients (Haghighipour and Boss 2003a,b;
Rice et al. 2004, 2006; Haghighipour 2005) leading to an enhanced gas-to-dust ratio
inside them, another effect that could favor core accretion. Given the wide param-
eter space involved here (including both disk initial conditions and composition
changes), only more realistic calculations incorporating directly both vaporization
and dust particle dynamics within the gaseous disk will be able to settle this issue.

8.4.4 Effects of Artificial Viscosity

Boss (2006) did not employ artificial viscosity in his standard models, but did in-
clude the artificial viscosity in a subset of models designed to determine to what
extent the use of artificial viscosity in either a finite-difference code (e.g., Pickett et
al. 2000) or an SPH code (e.g., Nelson 2000) might affect the disk instability pro-
cess. Boss (2006) ran four models with varying amounts of artificial viscosity and
found that only when the artificial viscosity was set to a value of 10 times higher
than the standard value (CQ D 1) did the disk become so hot as to appreciably stifle
fragmentation.

One possible source of the different outcomes between the results of Boss (2006),
Nelson (2000) and Mayer et al. (2005), is the amount and effect of artificial viscosity
assumed in these models. An artificial viscosity equivalent to an effective viscosity
(˛eff) with ˛eff D 0.002 to 0.005 was included in Nelson (2000) to correctly model
shock heating in his SPH code. The same applies to the Mayer et al. (2005) models
[the value of the corresponding ˛eff is comparable to that in Nelson (2000)]. In the
Boss (2006) models, however, artificial viscosity did not have an explicit term, but
the level of implicit numerical viscosity appears to be equivalent to ˛� 10�4 (Boss
2004b), approximately 20 to 50 times lower than that in Nelson (2000). Given the
experiments of Boss (2006) with artificial viscosity, the use of this level of artificial
viscosity in Nelson (2000) is consistent with the absence of fragmentation and the
difference in his net cooling times with that in Boss (2006). Relatively short cooling
times are obtained in models without artificial viscosity [e.g., �1 to 2 orbital peri-
ods (Boss 2004a)] compared to the effective cooling time reported in Nelson (2000)
[approximately 5–15 orbital periods for orbital distances from 10 AU to 5 AU, re-
spectively]. Of course this leaves us with an open question; how viscous will be
disks in reality, and therefore which of the three works produces the answer closest
to reality.

A hint on how realistic a chosen amount of artificial viscosity is might be given by
the amount of heating that it produces. The use of artificial viscosity by Nelson
(2000) was motivated by a good reason, namely to model shock dissipation in
the disks, and produced substantial heating. Nevertheless, an analysis of the flux
densities derived from his simulations fell nearly an order of magnitude short of
that required to reproduce the observations of the L1551 IRS5 binary system, on
which his initial conditions were based.
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It is of some interest that Boss and Yorke (1993, 1996) were able to match
spectral energy distributions of the eponymous T Tauri system T Tau, with axisym-
metric disk models similar to those that form the basis for Boss (2006) models,
without using the artificial viscosity that Nelson (2000) found necessary to model
L1551 IRS5. A part of this difference can perhaps be explained by the fact that the
system modeled by Boss and Yorke was T Tau, a system at a much later evolution-
ary stage than L1551 IRS5, with correspondingly different energy output. We look
to future observations using the ALMA telescope with great interest, because of
the likelihood for observing younger, and much more deeply embedded objects, of
greater relevance to the earliest stages of disk evolution where gravitational insta-
bilities are more probable.

8.4.5 Initial Conditions in the Context of Star Formation

Are the initial conditions adopted in the existing simulations of binary, self-
gravitating protoplanetary disks realistic? In reality, the two disks will be
communicating since their beginning, undergoing mass transfer, and growing
out of gas flowing from the periphery of the molecular cloud core. This is quite
different from the setup assumed in the simulations discussed so far. Tidal pertur-
bations and mass transfer might be too sudden in the computations described in
this chapter, where as in reality they will be achieved gradually. However, if star
formation occurs in gravoturbulent clouds, such as those modeled by Bate et al.
(2002), rather than in isolated cores, disks will not have time to slowly adjust to
such an extremely dynamic environment by the time they become gravitationally
unstable. In the gravoturbulent model, the collapse of the individual cores would
occur on a timescale much smaller than the average collapse timescale of the larger
star-forming region. A short collapse time of cores is also suggested by observa-
tions. Among the latter, we recall the large column densities of prestellar cores
and the fact that molecular abundances in such cores are consistent with a rapid
collapse (Aikawa 2004). The resulting systems would have undergone several tidal
interactions with bound or unbound companions since their birth. Turbulent molec-
ular clouds have velocity dispersions of order 2–5 km s�1, which means the typical
crossing time of a region 10�2 pc in size will be �103 years. The characteristic
timescale of encounters between cores in such a turbulent cloud has to be of the
same order of magnitude, i.e. once again comparable with the binary orbital time.

Despite the above, Mayer et al. (2005) studied the case of two self-gravitating
disks reaching gradually the conditions present at the beginning of the simulations
by starting with very light, nearly non-self gravitating disks and growing the disk
slowly over the course of a few binary orbital periods (Fig. 8.11). This way the disk
profile had time to adjust. The spiral arms, tidally induced on the third orbit, were
slightly weaker than those in the standard run, and transient localized overdensities
were apparent which were not present before. However, no gravitationally bound
clumps occurred in the disk and the outer disk temperature after one orbit (�300 K)
became comparable to that in the original run.
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Fig. 8.11 Azimuthally averaged surface density profile after two binary orbits for a run employing
two massive disks with Md D 0:1M

ˇ

. The disks were evolved with a cooling time equivalent to
0.3 times the local orbital time with self-gravity (solid line) and with self-gravity switched off on
the first binary orbit (dashed line)

The final surface density profiles of the disks in the two runs were also quite
similar. Mass redistribution due to gravitational torques led to a profile which could
not be described by a single power-law, had a remarkable density peak close to 7–8
AU, and was steeper than r�2 outside this radius (Figs. 8.9 and 8.11). The surface
density profiles were steeper than those produced by gravitational instabilities when
there is no companion. The mass inflow towards the center was greater. One would
be tempted to conclude that the viscous evolution of the disk, where the “viscosity”
is due to gravitational instability, is faster in binary systems. This might lead to a
faster dissipation of the disk and a faster growth of the star since gas flows outside in.
However, while we believe that our results are qualitatively correct, we caution that
they might be still somewhat uncertain on the quantitative side because the large,
initially massless hole in the middle of the disks might affect the mass transfer (gas
particles in the inner annulus do not feel any pressure gradient and will tend to flow
inward if they are slightly perturbed from the initial centrifugal equilibrium).

In the simulations of Mayer et al. (2005), the restructuring of the disk results
from a combination of tidal torques and intrinsic self-gravity (see Section 8.4.5).
Since in the early stages, protoplanetary disks should be massive enough to be
self-gravitating (Yorke and Bodenheimer 1999), it seems that this profound restruc-
turing driven by the two simultaneous effects will likely occur in binary systems,
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and will occur early. Inflow driven by gravitational torques in the early stages of
protostellar disk evolution is now seen in many different calculations for the case
of low-mass stars as well as massive stars (Krumholz et al. 2007; Voroboyov and
Basu 2007).

Mayer has recently performed new SPH simulations with a density-dependent
polytropic equation of state (Bate 2001) that use a variable mass resolution tech-
nique to reach down to achieve a spatial resolution of �0.1 AU in a rotating
(non-turbulent) collapsing molecular core of a fraction of a parsec in size. These
simulations show substantial evolution of binary disks and mass inflow towards the
central star just as a result of self-gravity. At the beginning of the simulations a
rapidly rotating core collapses, becomes bar unstable and fragments into two clumps
(see also Bate and Burkert 1997) that later become a pair of pre-stellar cores sur-
rounded by a fairly large, tidally truncated disk (about 30 or 80 AU in size), as shown
in Fig. 8.12. The two disk C core systems have unequal masses; while each system
starts out with more than 2/3 of the mass being in the disk and the rest in a dense
central clump, the precursor of the star, less than 0.1 AU in size, after about two bi-
nary orbits (corresponding to �2,000 years and to the time at which we stopped the

Fig. 8.12 Color coded density map of a binary protostar+disk system resulting from the collapse
of a rotating molecular cloud core with initial density profile proportional to r�1. The box is 200
AU on a side, and the system is shown about 5 � 104 years after the collapse has been initiated
and also a couple of binary orbits after the two disks have formed from the fragmentation of a bar-
unstable, rapidly rotating protostellar core. The mass of the larger system is �0:5M

ˇ

whereas the
smaller system has a mass of only �0:15M

ˇ

. The total mass of the molecular core was 1M
ˇ

and
its size was 10,000 AU at t D 0. The simulation employed 500;000 particles in total, but because
the mass resolution in the inner 500 AU was higher than in the surrounding volume, as many as
4=5 of the particles were used only in this inner region



232 L. Mayer et al.

simulation) more than half of the disk mass has accreted onto the central clump. At
this stage disks are slightly lighter than the central clump. The gas in the protostel-
lar disks loses angular momentum from a combination of spiral instabilities in the
disks and tidal torques from the companion, and the spiral arms are also strength-
ened by the tidal perturbation of the companion. The physical driver of accretion
is just gravity in these simulations since no other mechanisms to remove angular
momentum are present except gravitational torques (both intrinsic and tidal). The
only caveat is that artificial viscosity, while required to model physical dissipation
in shocks correctly, might also enhance angular momentum transport. The accretion
rate from the disk onto the central protostar at the end of the simulation is nearly
5 � 10�5Mˇ=year, or about ten times higher than the accretion rate from the core
onto the disk for the lightest disk C core system (this system is also the one that
suffers the strongest tidal perturbation among the two systems), and about a factor
of two lower for the other, more massive system.

8.5 Conclusions

The feasibility of disk instability as a formation mechanism for giant planets is sub-
ject of active debate. The results for the specific case of binary systems must thus be
considered and interpreted in light of such more general debate. It is recognized that
the ultimate outcome of gravitational instability, whether it produces fragmentation
and bound condensations or only spiral arms and transient overdensities, depends on
the balance between heating and cooling and on how accurately gravity is resolved
at scales both large and small (Durisen et al. 2007; Boss 2007). It is then crucial to
understand how reliable is the modeling of thermodynamics and gravity employed
by different codes.

The artificial viscosity used in SPH codes (Mayer et al. 2005; Nelson 2000) acts
as a source of heating in disks. There are indications that artificial viscosity generally
tends to suppress fragmentation (Mayer et al. 2004). However, when artificial vis-
cosity is such that simulations can match fluxes observed from protostellar systems,
the resulting high level of disk heating can prevent fragmentation (Nelson 2000).
Using a gravitational softening length that is smaller than the SPH smoothing length
throughout most of the disk evolution, as in Mayer et al. (2005), favors fragmenta-
tion, as does the numerical noise associated with the particle realization of the fluid
in SPH (for example, numerical noise can introduce spurious density fluctuations
that then grow as a result of gravitational instability). Sharp disk edges promote
fragmentation, while low resolution (mass resolution in SPH, as set by the num-
ber of particles, or grid size in grid codes) seems to suppress fragmentation (Mayer
et al. 2004; Boss 2000), although Nelson (2006) show cases where the opposite hap-
pens. The dependence on resolution and different numerical techniques to model
the gravitational and hydrodynamical forces is being investigated systematically in
an on-going code comparison that involves both SPH and adaptive mesh refine-
ment (AMR) codes. Preliminary results confirm an increasing susceptibility towards
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fragmentation with increasing resolution for isothermal disks with Q� 1 (Mayer
and Gawryszczak 2008). Finally, and perhaps most importantly, short cooling times
promote fragmentation (Mayer et al. 2005), whereas long cooling times prevent it
altogether (Nelson 2000). Similarly, Boley et al. (2007b) propose a suite of tests for
the radiative physics schemes employed by different codes that should ensure that
the right amount of energy is transported from the midplane to the edge of the disk
and then radiated away at the disk boundary.

In summary, the three works discussed in this chapter yielded the following
results;

� Mayer et al. (2005) found that binary companions with semimajor axes of 58
AU prevented disk fragmentation, unless the disks had moderate masses (0.05–
0.08 Mˇ) and cooled even more rapidly than convective cooling would permit
(Boss 2002, 2003; Mayer et al. 2007). The same conclusion, with similar but not
identical initial conditions, is reached by Nelson (2000). Instead, Boss (2006)
found fragmentation and transient clump formation for semimajor axis of 50
AU, although even closer encounters (i.e., higher eccentricities) tended to work
against the formation of self-gravitating clumps.

� Both Boss (2006) and Mayer et al. (2005) found fragmentation or transient clump
formation to occur in binary systems with semimajor axis of 100 AU, Nelson
(2000) did not run calculations with such large orbital separations.

There are some differences in the design of the experiments in the three works
that need to be taken into account in order to compare them appropriately. We
note that most of the disks used by Mayer et al. (2005) were marginally unstable
by construction (Q<2), and therefore the fragmentation seen for larger semima-
jor axes might simply reflect the fact that as the separation increases the results
tend to converge to those for disks with no binary companion. This in other words
means that the fragmentation seen in such cases could have nothing to do with the
tidal perturbation of a companion. Conversely, Boss (2006) uses mostly disks that
would be stable in isolation (Q� 2 or larger), and hence the only logical outcome
of his calculations in the presence of a companion is either that the disk remains
stable or that fragmentation is enhanced (i.e. no experiment was constructed to see
whether fragmentation could be suppressed). This different logic behind the design
of the simulations in the two works complicates the comparison and calls for fu-
ture attempts by these and other authors to perform and compare exactly the same
experiment. Finally, the disks used in Nelson (2000) were not able to fragment in
isolation while many of those used by Mayer et al. (2005) were fragmenting for the
range of cooling times adopted by these authors.

A major source of the differences obtained by Nelson (2000) and Mayer
et al. (2005) relative to Boss (2006) could be the use of artificial viscosity in
the first two works based on SPH and its neglect by Boss (2006) since, as we
discussed previously, artificial viscosity has a direct effect on fragmentation (see
Section 8.2.4). The much longer cooling times in Nelson (2000) are also expected
to prevent fragmentation. Clearly, when artificial viscosity is used to heat a disk,
and this heat is unable to escape on an orbital time scale, the chances for clump
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formation by disk instability are severely reduced. As mentioned above, this is a
general issue for the disk instability model, irrespective of the presence of a binary
companion. Some of the heating associated with artificial viscosity will indeed arise
in nature as a result of turbulence and other unresolved aspects of hydrodynamical
flows. It remains for future work to determine what the proper amount of viscous
heating should be for using in simulations of realistic protoplanetary disks, and to
determine the proper boundary conditions at the surfaces of protoplanetary disk that
will allow the disk to radiate away energy at the correct rate (Boley et al. 2007a,b).

The sensitivity of fragmentation to the cooling time is readily shown in a series of
new simulations of binary disks with the algorithm for radiative transfer described
in Mayer et al. (2006). Intermediate mass disks 0:05Mˇ that were fragmenting
in binaries for separations of 58 AU and sufficiently short cooling times (Mayer
et al. 2005) develop strong spiral arms but no clumps when flux-limited diffusion
plus atmospheric cooling via blackbody radiation is used (see Fig. 8.13). This is not
surprising since this latest radiation physics model yields cooling times of order
or slightly longer than the orbital time (apparently via convection) while in Mayer
et al. (2005), these disks were fragmenting only for cooling times half or less than
half the local orbital time. Indeed the average outer disk temperatures (outside 5
AU) in this new simulation is larger than 100 K while it was 60–70 K in the cor-
responding run of Mayer et al. (2005). These new results agree superficially with
Nelson (2000), although whether the agreement holds at a deeper level of detail is
unclear at the moment.

Moreover, we recall that for intermediate semimajor axes, orbital eccentricities
might also be important. This might be one of the reasons, in addition to heating by
artificial viscosity, behind the discrepant results at small orbital separations. Indeed,

Fig. 8.13 Color coded density maps of two runs employing two disks with masses 0:05M
ˇ

mov-
ing on a binary orbit with average separation of 60 AU. The results are shown after 1:5 binary
orbits. On the left a run in which the cooling time is fixed to 0:3 orbital time is shown. On the
right a newer run is shown in which flux-limited diffusion is employed and the disk cools at the
surface as a blackbody resulting in a cooling time slightly longer than the orbital time. Clump for-
mation has occurred in the run with the short cooling time while in the other run, the two disks
have achieved higher temperatures, lower densities, and much weaker spiral structures
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while Mayer et al. (2005) adopt nearly circular orbits, Boss (2006) chooses eccen-
tric orbits. Hence in Boss (2006), for a given semimajor axis, the disks will spend
a larger fraction of the orbital time far away from each other. In such simulations,
the tidal perturbation will be more impulsive rather than continuous. In other fields
of astrophysics which deal with similar problems, such as in the study of galaxy
interactions, it is well known that impulsive or continuous tidal heating give rise to
quite different responses in a self-gravitating system, to the point of determining a
completely different structural evolution Mayer et al. (2001). What is seen in partic-
ular in the case of galaxies is that impulsive encounters can generate “cold” features
such as bars that then survive for many orbital times, but the same features are erased
as the object increases too much kinetic energy and/or thermal energy owing to a
continuous tidal perturbation such as that associated with circular or nearly circular
orbits. Similarly, one could speculate that, in encounters between disks on eccentric
orbits, transient overdensities might have a better chance to survive as the same tidal
force that triggered their formation fades away later towards the apocenter of the or-
bit. Again, simulations exploring a larger parameter space are needed to assess if
eccentricity is such an important parameter and might help to partially reconcile
the disagreement between Boss (2006) and Mayer et al. (2005). Disks perturbed by
fast-flybys of other stars or brown dwarfs also suffer significant tidal heating and do
not fragment unless the cooling time is very short (Lodato et al. 2007).

The results of Mayer et al. (2005) and Boss (2006) suggest that the formation of
gas giant planets around binary stars with semimajor axes of 100 AU or larger may
be possible by the disk instability mechanism. Note that these are also the systems
for which core-accretion is not disfavored either since spiral shocks do not heat
the gas to temperatures high enough to vaporize major dust grain species (Mayer
et al. 2005). For smaller semimajor axes, the situation is much more complex. For
the latter, Mayer et al. (2005) conclude that, while disk instability is unlikely, core-
accretion might take place once the disk is light enough, Md � 0:01Mˇ (e.g. as a
result of accretion onto the star) that only weak spiral shocks arise so that the temper-
ature is low enough for ice grains to survive. Nelson (2000) claimed that both disk
instability and core-accretion would be unlikely in such systems, drawing the same
conclusion that Mayer et al. (2005) would have reached had they not considered
binary systems composed of light, weakly self-gravitating disks (see Section 8.4.3
for possible caveats). Finally, Boss (2006) finds that these systems would fragment,
although he cannot follow the clumps for a long enough time to show that they are
long lasting. Despite the fact that disagreements exist between the different works,
it is clear for now that the tightest binary systems might become an ideal testbed
for theories of planet formation. It is thus important for observers to refine their
estimates of the semimajor axes of binary systems containing gas giant planets, in
order to learn if these systems could have been formed by disk instability. Post-
formational orbital evolution of multiple systems (e.g., decay of an unstable triple
system) might be another means to explain the observed binary systems with gas
giant companions.

The observational fact that binary stars with separations small enough for mutual
tidal interactions to be important, are orbited by gas giant planets means that
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somehow these planets can indeed form even in these systems. Given the problems
that core accretion encounters as well in binary systems (Thébault et al. 2004), disk
instability would seem to remain a possible means for forming gas giants in binary
systems.
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Chapter 9
N-Body Integrators for Planets in Binary
Star Systems

John E. Chambers

9.1 Introduction

The discovery of planets orbiting in binary star systems represents an exciting new
field of astrophysics. The stability of planetary orbits in binary systems can only
be addressed analytically in special cases, so most researchers have studied stabil-
ity using long-term N-body integrations of test particles, examining binary systems
with a range of masses and orbits (e.g. Wiegert and Holman 1997; Haghighipour
and Wiegert 1999; Haghighipour 2006). This has led to a good understanding of the
likely regions of stability and instability in binary systems. Integrators can also been
used to study the more complex problem of several finite-mass planets orbiting in
a binary system, where interactions between the planets are significant. However,
at the time of writing, this problem has been explored in less detail than the test-
particle case, and we still lack a general theory for the stability of these systems.

N-body integrators have found a second application modelling the formation of
planetary systems in and around binary stars (e.g. Quintana et al. 2002; Quintana and
Lissauer 2006; Haghighipour and Raymond 2007). Typically, these studies have par-
alleled those of planet formation around single stars, examining a particular stage
of growth such as the formation of planetesimals, oligarchic growth, or late-stage
accretion of terrestrial planets. The results of these studies are discussed extensively
in the chapters in this volume by Quintana et al. and Haghighipour et al.

Most conventional integrator algorithms can be applied to binary star systems
with little or no modification. Runge–Kutta, Bulirsch–Stoer and Everhart’s RADAU
integrators fall into this category for example (Press et al. 1992; Stoer and Bulirsch
1980; Everhart 1985). These algorithms contain no built-in information about the
system of differential equations they are solving, so they can be applied to binary
systems and single-star systems equally well.

Over the last decade and a half, symplectic integrator algorithms have become
increasingly popular and are widely used to study the dynamics of planetary and
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satellite orbits. These algorithms have two advantages over conventional integrators.
First, symplectic integrators typically have good long-term energy conversation
properties. While energy is not conserved in most problems, the energy error typi-
cally makes high frequency oscillations about zero, while exhibiting no long-term
trend beyond that generated by computer round-off error. Secondly, in problems in-
volving a dominant, primary mass, such as the Sun in the solar system, the motion of
other objects about the central body can be “built in” (Wisdom and Holman 1991).
A relatively small amount of computation is required to calculate the accelerations
due to the central body. For roughly circular orbits, a large stepsize (up to about 10%
of the shortest orbital period) can be used. In this case, the stepsize only needs to be
small enough to resolve the perturbations between the smaller bodies and to avoid
instability generated by overlapping resonances involving the stepsize (Wisdom and
Holman 1992). In the case of highly eccentric orbits, the stepsize must also be small
enough to adequately resolve periapse passages (Rauch and Holman 1999), an issue
we will return to in Section 9.5.

The generally advantageous properties of symplectic integrators mean that they
have become the tool of choice for many researchers at present, and they will be
the focus of this chapter. The rest of the chapter is organized as follows. Section 9.2
contains a review of the original symplectic mapping developed by (Wisdom and
Holman 1991). Section 9.3 shows how this algorithm has been modified for use
specifically in binary-star systems. Section 9.4 shows how symplectic integrators
can be improved by developing symplectic correctors, and describes a new correc-
tor for binary-star algorithms. Section 9.5 discusses problems that can arise when
planets come close to one or both binary stars, and what might be done to overcome
these problems. Finally Section 9.6 contains a summary.

9.2 Mixed-Variable Symplectic Integrators

The most widely used symplectic integrators applied to planetary systems are
“mixed-variable symplectic” (MVS) mappings, so called because they separate
a problem into two parts, each of which is solved using a different set of vari-
ables (typically Cartesian coordinates and orbital elements). These algorithms were
first introduced by Wisdom and Holman (1991) and described independently by
Kinoshita et al. (1991).

To understand how these integrators work, it is easiest to start by considering
Hamilton’s equations for a system of N bodies:

dxi

dt
D @H

@pi

dpi

dt
D �@H

@xi

(9.1)
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where r D .x; y; z/ and p D .px; py ; pz/ are the coordinates and momenta of
the bodies respectively, and H is the Hamiltonian of the system. Using Hamilton’s
equations, the evolution of any quantity q can be expressed as
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� @q

@pi

@H

@xi

�

D fq;H g
D Fq (9.2)

where f; g are Poisson brackets, and F is an operator that depends on the
Hamiltonian. The evolution of q can be found by solving Eq. (9.2), which gives

q.�/ D e�F q.0/ D


1C �F C �2F 2

2
C 	 	 	

�
q.0/ (9.3)

Symplectic integrators usually divide the Hamiltonian into several parts each of
which can be solved efficiently in the absence of the others. Most algorithms divide
H into parts that can be solved analytically although this is not strictly necessary.
If we separate the Hamiltonian so that H D HA C HB, with operators A and B
corresponding to the HamiltoniansHA andHB, then

q.�/ D e�.ACB/q.0/ (9.4)

where

e�.ACB/ D 1C �.A C B/C �2.A C B/2

2
C 	 	 	

D 1C �.A C B/C �2.A2 C AB C BA C B2/

2
C 	 	 	 (9.5)

In general, the operators A and B will not commute so that AB ¤ BA.
A symplectic integrator is generated by concatenating several terms of the

form exp.ak�A/ and exp.bk�B/, where kD 0; : : : ; N , and ak and bk are con-
stant coefficients. The goal is to make the resulting expression equal to Eq. (9.5)
up to some order in the stepsize � . This is most easily accomplished using the
Baker–Campbell–Hausdorff (BCH) formula which expresses the product of two ex-
ponential operators as a single new exponential operator:

eAeB D exp

�
A C B C 1

2
ŒA;B	C 1

12
ŒA;A;B	C 1

12
ŒB;B;A	C 	 	 	


(9.6)

where ŒA;B	 D AB � BA and ŒA;B;C	 D ŒA; ŒB;C		 etc. (Yoshida 1990).
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The most commonly used algorithm is the second-order leapfrog integrator, so
named because the operators A and B are applied alternately with different substep
sizes:

exp
��
2

A
�

exp.�B/ exp
��
2

A
�

D exp

�
�.A C B/C �3

12
ŒB;B;A	

� �3

24
ŒA;A;B	CO.�5/


(9.7)

This differs from the true evolution [Eq. (9.5)] by terms proportional to �3 and
higher. Over the course of a long integration, the number of steps will be inversely
proportional to � . The total error will beO.�2/, meaning that leapfrog is a 2nd-order
integrator.

Each timestep using the leapfrog algorithm consists of advancing the system cor-
responding to HA for a time �=2, then advancing HB for � , and finally advancing
HA for �=2. The integrator consists of three substeps. However, the first and last
of these both involve A, so the last substep of one timestep can be combined with
the first substep of the following step. Over the course of a long integration, each
timestep is effectively composed of only two substeps.

Wisdom and Holman (1991) split the Hamiltonian into a part HKep containing
terms corresponding to the Keplerian motion of each planet about the central star,
and a second partHInt containing direct and indirect perturbation terms due to inter-
actions between the planets. This is accomplished using Jacobi coordinates, where
the position of the innermost planet is measured with respect to the central star,
and the positions of the remaining planets are measured with respect to the cen-
tre of mass of the central star and planets with lower indices. Evolution under the
Keplerian part of the Hamiltonian can be calculated using Gauss’s f and g functions
(Danby 1988):

r.t/ D f r.0/C gv.0/

v.t/ D Pf r.0/C Pgv.0/ (9.8)

where f and g are functions of the initial and final coordinates and velocities. These
functions provide an efficient way to determine the new position on a Keplerian
orbit, given the initial coordinates and a time interval, without having to calculate
all of the orbital elements. If Jacobi coordinates are used, HInt is a function of the
coordinates only, so this part of the problem can also be solved analytically.

When applied to planetary systems, HInt � �HKep in the Wisdom–Holman map-
ping, where � is the planetary to stellar mass–ratio, which is typically small. The
error over a long integration is therefore O.��2/, and the small value of � ensures
that the Wisdom–Holman mapping performs well even though it is only a second-
order integrator.

Jacobi coordinates are the natural choice for systems like the planets in the solar
system, where the planetary orbits do not cross and there is a dominant central mass.
In systems with a single dominant mass, Jacobi coordinates typically lead to smaller
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errors than other canonical coordinate systems, such as barycentric coordinates, for
a given stepsize. Barycentric coordinates are an especially poor choice for the solar
system since the inner planets are less massive than the outer ones. As a result, the
guiding centre for the motion of the inner planets is much closer to the Sun itself
than the barycentre of the Solar System. In principle, Jacobi coordinates can also be
used in binary and multiple star systems, again provided that orbits do not approach
one another, and all the orbits have a “hierarchical” or nested arrangement. However,
� will not be small in cases where two or more bodies have comparable masses, and
this may lead to large errors in some cases.

9.3 Binary-Star Algorithms

9.3.1 Modifying the Wisdom–Holman Mapping

The integrators described in the previous section can be applied to any hierarchical
system of bodies. This means they can be used to calculate the orbital evolution
of planets in a binary star system provided that the radial ordering of the planets
doesn’t change. The Wisdom–Holman mapping can also be adapted to systems that
contain multiple hierarchies, such as two binary systems in orbit about each other,
by using a generalized version of Jacobi coordinates (Beust 2003).

Whenever planets come close to one another, the condition HInt 
 HKep is
violated and the Wisdom–Holman mapping performs poorly. In situations where
planets have eccentric orbits that cross those of their neighbours, or where close
encounters are possible, new algorithms must be developed. Duncan et al. (1998)
and Chambers (1999) have described two ways to do this. Here we will describe the
latter approach since this leads directly to a new class of symplectic integrators that
can be applied to orbits in binary systems. For reasons that will become clear, the
new method requires a new set of coordinates. Ideally, these should include three
spatial coordinates for the centre of mass of the system (as Jacobi coordinates do),
and treat all the planets equivalently, that is, make no assumptions about their radial
ordering (in contrast to Jacobi coordinates).

Canonical heliocentric coordinates (also called democratic heliocentric coordi-
nates) meet both of these requirements (Duncan et al. 1998). Here, the position of
planet i with respect to the barycentre ri D .xi ; yi ; zi / is replaced by its position
measured with respect to the central star, and the stellar coordinates r0 are replaced
with those of the centre of mass of the system. The new coordinates Ri and R0 are

R0 D m0r0 CPN
j D1mj rj

mtot

Ri D ri � r0 (9.9)

where subscript 0 refers to the star, mi is the mass of planet i , and mtot is the total
mass of the system.



244 J.E. Chambers

The canonically conjugate momenta (which correspond to barycentric velocities)
are

P0 D p0 C
NX

j D1

pj

Pi D pi � mi

mtot

0
@p0 C

NX
j D1

pj

1
A (9.10)

where pi D .pxi ; pyi ; pzi / etc.
Using these coordinates, the Hamiltonian for a system of N planets orbiting a

single star can be split into three parts:

H D HKep CHInt CHJump (9.11)

where

HKep D
NX

iD1



P 2

i

2mi

� Gm0mi

Ri

�

HInt D �
NX

iD1

X
j >i

Gmimj

Rij

HJump D 1

2m0

 
NX

iD1

Pi

!2

(9.12)

whereRi D jRi j andRij D jRj �Ri j. Note that we have dropped a term P 2
0 =2mtot

which simply acts to move the centre of mass at a constant velocity.
Several second-order symplectic integrators can be constructed using canonical

heliocentric coordinates, for example:

exp



�I

2

�
exp



�J

2

�
exp .�K/ exp



�J

2

�
exp



�I

2

�
(9.13)

where I , J and K are operators associated with HInt, HJump and HKep respectively.
Other second-order algorithms are similar except that the operators are permuted,
making sure that the arrangement is symmetrical in each case.

Advancing the system under HInt is straightforward since this part of the
Hamiltonian is a function of the coordinates only. As a result, the positions of
all planets remain constant while the velocities change due to perturbations from
the other planets. Advancing under HJump is trivial since this is a function of the
momenta only. In this case, each planet’s velocity remains constant but its spatial
coordinates jump by a small amount. This jump is the same for all planets, so it
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becomes relatively more important for objects close to the central star, a point we
will return to in Section 9.5. Advancing HKep is best done using Gauss’s f and g
functions as before, noting that Pi and Ri are canonically conjugate.

The integrator described by Eq. (9.13) performs quite well for planetary systems
in which the planets do not undergo close encounters. Typical energy errors are
intermediate between those using Jacobi coordinates and barycentric coordinates
for hierarchical systems, although Jacobi coordinates lose their advantage if the
planets have crossing orbits. Despite consisting of five substeps rather than three,
the integrator described above involves slightly less computational effort than the
Wisdom–Holman mapping since advancing under HJump is trivial, while HInt only
contains direct terms whereas indirect terms are also present when using Jacobi
coordinates.

As before, problems arise when a pair of planets has a close encounter because
HInt can become comparable in size to HKep. Chambers (1999) showed that this
difficulty can be overcome using a hybrid algorithm. Here, each term in HInt is split
between HInt and HKep so that the former always remains much smaller than the
latter. Under this new arrangement, the Hamiltonian is divided as follows:

HLarge D
NX

iD1



P 2

i

2mi

� Gm0mi

Ri

�
�

NX
iD1

X
j >i

Gmimj

Rij

Œ1 � � .Rij /	

HSmall D �
NX

iD1

X
j >i

Gmimj

Rij

� .Rij /

HJump D 1

2m0

 
NX

iD1

Pi

!2

(9.14)

where � is a partition function.
A second-order hybrid integrator has the same form as (9.13), that is:

exp



�S

2

�
exp



�J

2

�
exp .�L/ exp



�J

2

�
exp



�S

2

�
(9.15)

where L and S are operators associated with HLarge andHSmall respectively.
The partition function is chosen so that � .R/ D 1 when R is large and

� .R/ ! 0 as R ! 0. With this choice of � , it is always the case that HLarge �
HSmall, and the resulting integrator remains accurate during close encounters be-
tween planets. However, HLarge is no longer analytically soluble during a close
encounter since it now includes a three-body problem. These three-body terms
can be calculated using a conventional N -body algorithm such as Bulirsch–Stoer.
Provided this is done to an accuracy level close to machine precision, the user
shouldn’t be able to tell in practice whether the solution was derived analytically
or numerically.
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The reason for avoiding Jacobi coordinates becomes apparent when studying the
terms that are partitioned betweenHLarge andHSmall. If Jacobi coordinates are used,
Rij is a function of all the Jacobi coordinates with indices between i and j . This
means that in many cases, the orbits of several planets will have to be integrated
numerically using Bulirsch–Stoer. When using canonical heliocentric coordinates,
however,Rij is a function of Ri and Rj only.

Using Bulirsch–Stoer (or any other strategy) to evolve the system through a close
encounter will slow down an integration. However, only the pair of planets involved
in the encounter need to be integrated in this way. All the other planets are advanced
analytically under HLarge using Gauss’s functions. When there are no encounters,
the algorithm becomes identical to Eq. (9.13) and there is no loss of speed.

The algorithm given by Eq. (9.15) works well for most systems of planets or-
biting a single star, and has also been used extensively to study the formation of
planets from a disk of smaller bodies, since these bodies undergo many close en-
counters (e.g. Chambers 2001; Thebault et al. 2002; Raymond et al. 2004; Fogg and
Nelson 2005; Ford and Chiang 2007; Mandell et al. 2007). However, the algorithm
performs poorly when applied to planets orbiting in binary systems. The problem
arises because HJump now contains a momentum contribution from one of the bi-
nary stars. The stellar momentum is typically large and this leads to large changes
in position for all the planets via HJump. It is no longer true thatHJump 
 HKep, and
the error per step becomes large unless an unacceptably small timestep is chosen.

As Chambers et al. (2002) have shown, the solution to this problem is to devise
new coordinate systems for binary systems such that all large terms can be incor-
porated into a single part of the Hamiltonian. Stable planetary orbits typically fall
into one of two classes: (i) those that are tightly bound to one member of a binary,
or (ii) those that orbit both stars at a distance that is considerably larger than the
semimajor axis of the binary orbit. Each configuration will require a different set of
coordinates and we will consider the two cases separately.

9.3.2 Wide Binary Case

The Hamiltonian for a system containingN planets orbiting one member of a binary
star is

H D p2
A

2mA

C p2
B

2mB

C
NX

iD1

p2
i

2mi

� GmAmB

rAB

�GmA

NX
iD1
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riA

�GmB

NX
iD1

mi

riB
�G

NX
iD1

X
j >i

mimj

rij
; (9.16)

where the planets orbit star A while star B is a distant companion.
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Making use of the hierarchical arrangement of the binary system, we define a
new set of coordinates, called wide-binary coordinates, as follows:

RA D
 
mArA CmBrB CP

j mj rj

mtot

!
;

Ri D ri � rA;

RB D rB �
 
mArA CP

j mj rj

mA CP
j mj

!
; (9.17)

where mtot D mA CmB CP
j mj is the total mass of the system, and each of the

summations run from 1 to N . Using these coordinates, the position of each planet
is measured with respect to star A, while the position of star B is measured with
respect to the center of mass of all the other objects.

The conjugate momenta P are

PA D pA C pB C
NX

iD1

pj ;

Pi D pi �mi

 
pA CP

j pj

mA CP
j mj

!
;

PB D pB �mB
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j pj

mtot

!
; (9.18)

where the summations run from 1 to N .
In terms of the new coordinates, the Hamiltonian can be written as

H D HKep CHInt CHJump; (9.19)

where
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(9.20)
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where 
bin D .mA C P
mi /mB=mtot is the reduced mass of the binary system

(including the mass of the planets), and

S D
PN

iD1mi Ri

mA CPN
iD1mi

(9.21)

The terms in HKep consist of those due to the Keplerian motion of the binary
(adding the masses of the planets to star A) and those due to the Keplerian motion
of the planets about star A. The terms in HInt represent the interactions between
planets and also the tidal perturbations on the planets due to star B . Finally, HJump

contains indirect perturbation terms.
In the absence of close encounters, HInt 
 HKep and HJump 
 HKep. Each

part of the Hamiltonian can be advanced efficiently using analytic solutions. For
example, the x component of the acceleration of planet k underHInt is given by

dVx;k

dt
D � 1

mk

@HInt

@Xk

D �
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mA CP
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�
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jRB � Rk C Sj3 �
X
i¤k

Gmi

R3
ik

.Xk � Xi / (9.22)

where X is the x component of R, and V is the velocity. Note that the acceleration
on planet k does not involve any terms proportional to 1=mk, so test particles can
be integrated in exactly the same way as massive planets.

The x component of the acceleration on star B is given by

dVx;B

dt
D GmA

�
XB

R3
B

� XB C Sx

jRB C Sj3
�

CG

NX
iD1

mi

�
XB

R3
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� .XB � Xi C Sx/

jRB � Ri C Sj3
�

(9.23)

Close encounters between planets can be dealt with in the same way as for
systems with a single star by partitioning the planet interaction terms betweenHKep

and HInt as in Eq. (9.14).
One step of the new wide-binary algorithm consists of five substeps:

� AdvanceHInt for �=2, where � is the timestep.
� AdvanceHJump for �=2.
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� AdvanceHKep for � .
� AdvanceHJump for �=2.
� AdvanceHInt for �=2.

The first and last substeps can be combined into a single substep except at the be-
ginning of the integration or whenever output is required.

The wide-binary integrator is a second-order algorithm since the three pieces of
the Hamiltonian are applied in a symmetric order (see Yoshida 1990). Each timestep
has an errorO.��3/, where � is the ratio of the planetary mass to the stellar mass so
that � 
 1.

Figure 9.1 compares the accuracy of the wide-binary algorithm with the hybrid
symplectic integrator of Eq. (9.15) when integrating the four giant planets of the
Solar System in the presence of a binary companion. The giant planets orbit the
Sun, while a second Solar-mass star orbits the combined system moving on an or-
bit with a semimajor axis of 160 AU, an eccentricity of 0.25, and an inclination
of 0. The figure shows the energy error as a function of time for a 100,000-year
integration using a stepsize of 50 days. The upper panel shows the performance of
the hybrid integrator, while the lower panel shows the wide-binary algorithm. The
hybrid algorithm performs poorly since it treats the binary companion as the equiva-
lent of an additional planet, so thatHJump is no longer small compared toHKep. The
wide-binary algorithm, which treats the binary companion as a special body, has an
energy error about three orders of magnitude lower, as a result.

Fig. 9.1 A comparison between the energy errors (accuracies) of hybrid and wide-binary integra-
tors. The system consists of the four giant planets of the solar system orbiting the Sun, and a second
Sun-like star in an orbit with a semimajor axis of 160 AU and eccentricity of 0.25. As shown here,
the hybrid integrator has a poor performance compared to the wide-binary algorithm
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9.3.3 Close Binary Case

The Hamiltonian for a system ofN planets orbiting a close binary has the same form
as Eq. (9.16) except that now it is understood that the planets orbit both members of
the binary. The hierarchical nature of the system suggests we switch to the following
close-binary coordinates:

RA D mArA CP
j mj rj CmBrB

mtot
;

Ri D ri � .�ArA C �BrB/ ;

RB D rB � rA; (9.24)

where mtot is the total mass of all the bodies, the summations run from 1 to N , and

�A D mA=mbin

�B D mB=mbin (9.25)

where mbin D mA CmB is the mass of the binary,
Using these coordinates, the position of each planet is measured with respect to

the center of mass of the two stars, while RB is the relative coordinates of the binary
companion.

The conjugate momenta P are

PA D pA C pB C
NX

j D1

pj ;

Pi D pi �mi
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j pj
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!
;

PB D pB � �B .pA C pB/ ; (9.26)

where summation indices run from 1 to N .
The new Hamiltonian is

H D HKep CHInt CHJump; (9.27)
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where 
bin D mAmB=.mA CmB/ is the reduced mass of the binary.
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Using the close-binary coordinates, terms in HKep correspond to the Keplerian
motion of the two binary stars about their common centre of mass, and of the plan-
ets about this centre of mass. In addition, HInt contains terms due to interactions
between the planets, and perturbations on the planetary orbits caused by higher
order moments of the binary potential. As before, HJump contains indirect correc-
tion terms.

In the absence of close encounters, HInt and HJump are small compared to HKep,
and each part of the Hamiltonian can be advanced analytically. The x component of
the acceleration on planet k, when advancingHInt, is given by

dVx;k

dt
D GmbinXk

R3
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�
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(9.29)

while the corresponding acceleration on star B is given by
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where PB D 
binVB .
Close encounters between planets can be included in the same way as before by

dividing the planet interaction terms between HKep and HInt.
One could devise a second-order scheme using close-binary coordinates that is

analogous to the second-order wide-binary integrator described above. This scheme
would contain five terms arranged symmetrically. However, this scheme would have
to use a small stepsize in order to accurately integrate the orbit of the binary star.
It is more efficient to assign a separate small stepsize �=Nbin to the binary star, and
choose a larger global sizestep � to integrate the planets. (This is analogous to the
individual-timestep procedure described by Saha and Tremaine 1994.) We can do
this by splittingHKep into a partHBKep that involves terms in RB and PB and a part
HP Kep that does not. In a similar manner, we splitHInt into two new partsHBInt and
HP Int, where
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An efficient second-order close-binary scheme has the following form:

� AdvanceHP Int for �=2, where � is the timestep.
� Repeat the following Nbin times:

– AdvanceHBInt for �=.2Nbin/.
– AdvanceHBKep for �=.2Nbin/.

� AdvanceHJump for �=2.
� AdvanceHP Kep for � .
� AdvanceHJump for �=2.
� Repeat the following Nbin times:

– AdvanceHBKep for �=.2Nbin/.
– AdvanceHBInt for �=.2Nbin/.

� AdvanceHP Int for �=2.

Chambers et al. (2002) suggested making Nbin smaller than the global timestep
by a factor equal to the ratio of the binary orbital period to the period of the inner-
most planet. One could also use individual timesteps for the binary companion and
the planets in the wide-binary algorithm described earlier. However, the amount of
computer time saved would be modest since most of the effort is required to cal-
culate the direct perturbations between the planets and this would not change using
individual timesteps.

9.4 Symplectic Correctors

Wisdom et al. (1996) showed that the performance of the Wisdom–Holman mapping
can be improved at little extra cost by applying “symplectic correctors”. If exp.M/
represents a single step of an integrator, given by Eq. (9.7) for example, the addition
of a corrector modifies the step to become

eCeMe�C (9.32)

where C is chosen in order to remove the leading order error terms. Over the course
of multiple timesteps, the corrector and inverse corrector terms cancel out, so these
only need to be applied at the beginning and end of an integration and when out-
put is required. Thus, the addition of a corrector involves little extra computational
expense over a long integration.

Following Yoshida (1990), one uncorrected step of the Wisdom–Holman
mapping can be expressed as

eM D exp
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(9.33)
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where K and I are operators associated with HKep and HInt respectively, � � I=K is
the planet to star mass-ratio, and we have explicitly listed only commutator terms
where I occurs once.

We wish to devise a corrector that eliminates terms in ŒK;K; I	 and ŒK;K;K;K; I	.
In this way we can reduce the error per step from the usual O.��3/ to O.�2�3/.
Using the identity

eCeMe�C D exp
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M C ŒC;M	C 1

2
ŒC;C;M	C 1

6
ŒC;C;C;M	C 	 	 	


(9.34)

we find that a corrector of the form

eC D exp
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(9.35)

where a and b are constants, results in a corrected step
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so that the ŒK;K; I	 and ŒK;K;K;K; I	 terms can be eliminated if a D 1=12 and
b D �1=720. To be useful in practice, we need to be able to express the cor-
rector as the product of terms involving exp.K/ and exp.I/ separately. Following
Wisdom et al. (1996), correctors of the form of the Eq. (9.35) can be developed by
noting that

Y.i; k/ D ek�Kei�Ie�2k�Ke�i�Iek�K

D exp

(
2ik�2ŒK; I	C ik3�4

3
ŒK;K;K; I	C 	 	 	

)
(9.37)

where we retain only commutators in which I appears once.
Combining two such expressions, we obtain a suitable series of operators for the

corrector (9.35):

Y.i1; k1/ 	 Y.i2; k2/ D exp

�
2.i1k1 C i2k2/�

2ŒK; I	

C 1

3
.i1k

3
1 C i2k

3
2/�

4ŒK;K;K; I	C 	 	 	


(9.38)
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where to match Eq. (9.35), we require that

i1k1 C i2k2 D 1

24

i1k
3
1 C i2k

3
2 D � 1

240
(9.39)

There are many possible solutions to Eqs. (9.39), for example

i1 D �
p
10

72
k1 D 3

p
10

10

i2 D
p
10

24
k2 D

p
10

5
(9.40)

which generates the symplectic corrector included in the Mercury integrator pack-
age (Chambers 1999). Wisdom et al. (1996) provide equivalent and higher order
correctors for the alternative second-order mapping

eM D exp



�K

2

�
exp.�I/ exp



�K

2

�
: (9.41)

Symplectic correctors can also be devised for the binary-star integrators de-
scribed in Section 9.3. The problem is different in that the Hamiltonian consists
of three parts rather than two, but this only complicates things slightly provided we
want a corrector that eliminates only terms O.�/ . We start with an expression for
one step of the wide or close-binary algorithms:

eM D exp



�I

2

�
exp



�J

2

�
exp.�K/ exp



�J

2

�
exp



�I

2

�

D exp

�
�.I C J C K/C �3

12
ŒK;K; I	C �3

12
ŒK;K; J	 � �5

720
ŒK;K;K;K; I	

� �5

720
ŒK;K;K;K; J	CO.��7/CO.�2�3/


(9.42)

where I, J and K are operators associated with HInt, HJump and HKep for the wide or
close-binary integrator, and we list only commutators that contain I or J once.

We wish to eliminate the leading-order error terms involving ŒK;K; I	 and
ŒK;K; J	, as well as ŒK;K;K;K; I	 and ŒK;K;K;K; J	. This suggests we look for a
corrector of the form

eC D exp

�
h1�

2ŒK; I	C h2�
2ŒK; J	C h3�

4ŒK;K;K; I	
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Ch4�
4ŒK;K;K; J	CO.��6/CO.�2�3/


(9.43)

where h1, h2, h3 and h4 are constants, which gives a corrected step of the form

exp

(
.I C J C K/� C



1

12
� h1

�
�3ŒK;K; I	C



1

12
� h2

�
�3ŒK;K; J	

�


1

720
C h3

�
�5ŒK;K;K;K; I	 �



1

720
C h4

�
�5ŒK;K;K;K; J	

CO.��7/CO.�2�3/

)
; (9.44)

so that terms in ŒK;K; I	, ŒK;K; J	, ŒK;K;K;K; I	 and ŒK;K;K;K; J	 can all be elim-
inated if we choose h1 D h2 D 1=12 and h3 D h4 D �1=720.

Following the same procedure used to obtain the corrector for the Wisdom–
Holman mapping, we note that

eCeA=2eBeA=2e�C D exp

�
A C B C ŒC;A	C ŒC;B	C 1

2
ŒC;C;A	C 1

2
ŒC;C;B	

C 1

6
ŒC;C;C;A	C 1

6
ŒC;C;C;B	C 	 	 	


; (9.45)

where we give only commutators that contain A or B once. Hence

Z.i; j; k/ D ek�Kej�J=2ei�Iej�J=2e�2k�Ke�j�J=2e�i�Ie�j�J=2ek�K

D exp

�
2ik�2ŒK; I	C 2jk�2ŒK; J	C ik3�4

3
ŒK;K;K; I	

C jk3�4

3
ŒK;K;K; J	C 	 	 	


(9.46)

retaining only commutators that contain I or J once. Combining two such
expressions gives

Z.i1; j1; k1/ 	Z.i2; j2; k2/ D exp

�
2.i1k1 C i2k2/�

2ŒK; I	

C 2.j1k1 C j2k2/�
2ŒK; J 	

C 1

3
.i1k

3
1 C i2k

3
2/�

4ŒK;K;K; I	

C 1

3
.j1k

3
1 C j2k

3
2/�

4ŒK;K;K; J	C 	 	 	

:

(9.47)
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To provide a suitable corrector, we need to satisfy the following criteria

i1k1 C i2k2 D 1

24
j1k1 C j2k2 D 1

24

i1k
3
1 C i2k

3
2 D � 1

240
j1k

3
1 C j2k

3
2 D � 1

240
(9.48)

so clearly one possible solution is

i1 D j1 D �
p
10

72

k1 D 3
p
10

10

i2 D j2 D
p
10

24

k2 D
p
10

5
(9.49)

Figure 9.2 shows the effect of including this corrector when rerunning the in-
tegration shown in Fig. 9.1. The upper panel shows the energy error versus time

Fig. 9.2 A comparison between the energy errors (accuracies) of the wide-binary algorithm with
and without the corrector. The integrated system is similar to that in Fig 9.1. As shown here, the
corrector reduces the energy error by approximately three orders of magnitude
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when integrating the four giant planets of the solar system with a binary compan-
ion using the corrector. The lower panel shows the case without a corrector– the
same as in Fig. 9.1. The corrector reduces the energy error by roughly three orders
of magnitude, comparable to the Jupiter/Sun mass ratio. However, because the cor-
rector is only applied at the beginning of the integration and prior to each output,
this improvement in accuracy is achieved at little computational cost. The correc-
tor described above can also be used with the close- and wide-binary algorithms
when close-encounter terms are partitioned along the lines of the hybrid integrator
of (9.14), although the improvement in accuracy is generally not as high as seen in
Fig. 9.2.

9.5 Stellar Encounters

The binary algorithms described in the previous sections are designed to work in
particular circumstances. In the close-binary algorithm, the planets are assumed to
orbit the centre of mass of a binary at a distance large compared to the binary sep-
aration. If a planet comes sufficiently close to the binary stars, this assumption will
no longer be valid and the algorithm will break down. In the wide-binary algorithm,
planets are assumed to orbit one member of a binary, while receiving small per-
turbations from the other star. If the distance between a planet and its central star
ever becomes comparable to the distance to the other star, the wide-binary algo-
rithm will also break down. The accuracy of each of the algorithms depends on the
hierarchy of the system being preserved. For this reason the binary integrators are
unable to follow the trajectories of planets moving on transfer orbits, where the cen-
tre of a planet’s motion switches from one star to another or from one star to both
stars.

The wide-binary algorithm suffers from a second limitation in that a planet can-
not travel too close to its central star either. If this happens, the fixed stepsize of
the integrator will be too large to properly follow the planet’s periastron passage
and accuracy will be lost. This is a well known limitation of symplectic inte-
grators in general, including the Wisdom–Holman mapping (Rauch and Holman,
1999). Accuracy can be restored by regularizing the motion, so that the stepsize
effectively depends on a planet’s distance from the star (e.g. Preto and Tremaine,
1999), but regularization becomes highly inefficient for problems involving more
than a few bodies.

Levison and Duncan (2000) have suggested an alternative solution which in-
volves a new division of the Hamiltonian such that a planet’s indirect perturbation
terms are added to the Keplerian part of the Hamiltonian whenever these terms be-
come large. This is analogous to the procedure described earlier for maintaining
accuracy during a close encounter between two planets. We can see how this works
by considering the Hamiltonian for the single-star case described by Eq. 9.12). In
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Levison and Duncan’s scheme, the terms in HJump are divided between HJump and
HKep in such a way that the former always remains small compared to the latter:

HLarge D
NX

iD1



P 2

i

2mi

� Gm0mi

Ri

�
C 1

2m0

 
NX

iD1
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!2

�.R1; R2 : : : ; RN /

HInt D �
NX

iD1

X
j >i

Gmimj

Rij

HSmall D 1

2m0

 
NX

iD1

Pi

!2

Œ1 ��.R1; R2 : : : ; RN /	 (9.50)

Levison and Duncan (2000) advocate using a partition function of the form

� D 1 �
NY

iD1

�
1 � �.Ri /

	
(9.51)

where �.R/ is chosen so that� ! 1when any planet approaches the star and� D 0

when all the planets are far from the star. As with the hybrid integrator described by
Eq. (9.14),HLarge has to be integrated numerically whenever� ¤ 0. In addition, for
this choice of�, HSmall must also be integrated numerically. An obvious shortcom-
ing of this procedure is that an integration will proceed slowly whenever any planet
passes close to the star since all the planets have to be integrated numerically in this
case. However, if close periastron passages are relatively rare, this shortcoming is
not severe.

The scheme of Levison and Duncan (2000) can be applied to the wide-binary
algorithm to improve the accuracy whenever a planet passes close to the central
star. A similar procedure could be developed to cope with planets that stray far
from the central star in a wide binary, or come close to the stars in a close binary.
In either case, the planet’s orbit is likely to be unstable, so this state of affairs will
be short-lived, compensating for the fact that all objects will have to be integrated
numerically during this stage of the evolution.

However, this approach to dealing with stellar encounters suffers from two
other drawbacks that limit its usefulness. The fact that HSmall must be integrated
numerically in addition to HLarge can be overcome by choosing a partition func-
tion �.V / that depends on the planets’ velocities rather than their positions. Since a
planet’s velocity will typically become large whenever it approaches a star, velocity
can be used instead of position to identify a close encounter with a star.

A more serious problem arises when one considers low-mass planets or test
particles. When advancing the system under HSmall, the rate of change of the x
component of velocity of planet k is given by Hamilton’s equations:
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dVx;k

dt
D � 1

mk

@HSmall

@Xk

D 1
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Xk

Rk

�
�0.Rk/

1 � �.Rk/

NY
iD1

�
1 � �.Ri /

	
: (9.52)

Note that the righthand side of this expression is proportional to 1=mk, so the rate
of the change of the planet’s velocity will become large if the planet’s mass is small,
and will become infinite for massless test particles. This means the scheme cannot
be used to integrate test particles, and the accuracy will be severely degraded when
integrating low-mass planets.

Unfortunately, choosing a partition function that depends on velocity rather than
position does not overcome this problem. A better way to tackle this issue is to use a
set of coordinates that doesn’t give rise to momentum cross terms like those inHJump

or HSmall, so that indirect terms are a function of the coordinates only. Barycentric
coordinates have this property, but as noted earlier, symplectic integrators that use
barycentric coordinates tend to perform poorly. Jacobi coordinates will not work
since they do not have the necessary properties for treating close encounters between
planets.

Chambers (2003) described a new set of coordinates with the right properties to
apply Levison and Duncan’s scheme for integrating close encounters with a star.
These coordinates, dubbed “Yosemite coordinates” by the author (after the location
of the 2000 Division on Dynamical Astronomy meeting where they were devel-
oped), are given by

R0 D
 
m0r0 CP

j mj rj

mtot

!

Ri D .ri � r0/C ˇ

m0

X
j

mj .rj � r0/ (9.53)

for the case of planets orbiting a single star, where the subscript 0 refers to the star,
and

ˇ D 1 � p
1C 




p
1C 


� �1
2

(9.54)

where
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j D1mj
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: (9.55)
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The canonically conjugate momenta in this case are

P0 D p0 C
NX

j D1

pj

Pi D pi � mi

mtot

"
p0 C .1C ˇ C ˇ
/

P
j pj

1C ˇ


#
: (9.56)

Using these coordinates, the Hamiltonian for a system of planets orbiting a single
star is

H D HKep CHInt ; (9.57)

where
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and

S D ˇ
P

j mj Rj

m0.1C ˇ
/
: (9.59)

The second set of terms in HInt represent indirect perturbations on each planet.
These terms can be divided between HInt and HKep, in an analogous manner to the
scheme of Levison and Duncan (2000), as follows:
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; (9.60)

where � is chosen so that � ! 1 whenever any planet approaches the star and
� D 0 when all planets are far from the star.

The advantage of using Yosemite coordinates now becomes clear: each of the
partitioned indirect terms in Eq. (9.60) is proportional to mi . As a result, low-mass
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planets and test particles can be integrated to the same accuracy as massive planets
without the problems encountered when using Eq. (9.50). The same scheme can be
extended to binary systems by using new coordinate systems analogous to Yosemite
coordinates with the binary hierarchy built in, as in the wide-binary and close-binary
coordinate systems.

9.6 Conclusions

Conventional integration algorithms such as Runge–Kutta and Bulirsch–Stoer can
be applied to planetary systems orbiting binary stars with little or no modification.
However, these algorithms tend to be slow and exhibit long-term growth in energy
errors. For these reasons, symplectic integration algorithms have become the tool of
choice for many researchers. In this chapter, it was described how the symplectic
map of Wisdom and Holman (1991) can be adapted for use with planets in binary
systems, including modifications to handle close approaches between planets with
each other and with the stars themselves. A more detailed description of the deriva-
tion and testing of these new algorithms is given by Chambers et al. (2002). In
addition, it was shown that the performance of these algorithms can be improved at
little extra cost by using symplectic correctors. However, there is still scope for fu-
ture improvements. In particular, the current method for following close encounters
between a planet and a star is slow and cumbersome, and there remains no easy way
to handle planets whose orbital motion switches from one star to the other. Efficient
solutions to these problems remain to be developed.

The adaptations described in this chapter mean that symplectic algorithms can
now be applied to a wide variety of problems involving planets in binary-star sys-
tems. For example, Quintana et al. (2002, 2007) have modelled the formation of
terrestrial planets in orbit around ˛ Centauri and other binary systems using the
wide-binary algorithm described in Section 9.3.2. These authors have shown that
planet formation is similar to that around single stars provided that the binary sep-
aration exceeds a critical value, otherwise planetary accretion is strongly altered or
curtailed. Similarly, Quintana and Lissauer (2006) have shown that planet forma-
tion can proceed in protoplanetary disks that orbit both members of a close binary,
leading in some cases to planetary systems resembling the solar system. Turrini et al.
(2004) and Thebault et al. (2004) have modelled the growth of the giant planet orbit-
ing one member of the � Cephei binary system using the new algorithms, and found
that perturbations from the nearby companion would not prevent the in situ forma-
tion of the giant planet. Malmberg et al. (2007) have used the symplectic algorithms
to examine the stability of planetary orbits in binary systems as a function of bi-
nary separation and binary lifetime, for transient binaries formed in stellar clusters,
helping to constrain the circumstances under which planetary systems will survive.
The coming years will surely provide additional exciting results based on the appli-
cation of N -body integrators to planets in binary star systems.
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Chapter 10
Terrestrial Planet Formation in Binary
Star Systems

Elisa V. Quintana and Jack J. Lissauer

10.1 Introduction

More than half of all main sequence stars, and an even larger fraction of pre-main
sequence stars, reside in binary or multiple systems (Duquennoy and Mayor 1991;
Mathieu et al. 2000). The presence of planet-forming material has been indirectly
observed around one or both components of some young binaries, and (Mathieu
et al. 2000) numerical simulations of the formation of binary stars suggest that disks
form within these systems, as well (Bodenheimer et al. 2000). Terrestrial planets and
the cores of giant planets are thought to form by an accretion process within a disk of
dust and gas (Safronov 1969; Lissauer 1993), and therefore may be common in bi-
nary star systems. In this chapter, we present the results from numerical simulations
of the final stages of terrestrial planet formation around one or both stars of a binary.

Our simulations were performed using two symplectic integration algorithms
developed for terrestrial planet formation in dual-star systems (Chambers et al.
2002). These computations examine a large range of values for the stellar masses
and binary orbital parameters (semimajor axes and eccentricities) to determine
whether/where terrestrial planets can form and remain on stable orbits. Multiple
realizations (from 3–30) were performed for each binary star configuration under
study to account for the chaotic nature of these N-body systems. We statistically
compare the resulting planetary systems formed to those that formed in additional
simulations that we performed of the Sun–Jupiter–Saturn system which began with
virtually identical initial disk conditions.

We show herein that terrestrial planets similar to those in the solar system can in-
deed form in a wide variety of binary star systems, and we have begun to delineate
the range of binary star parameter-space which allow the formation of Earth-like
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planets. In Section 10.2 we describe our numerical model, including the initial con-
ditions and physical assumptions of the circumstellar/circumbinary disk. Details
of the algorithms that we helped to develop, and the corresponding performance
tests, are presented in Chambers et al. (2002) and in the chapter in this volume by
Chambers. We present a summary of the results of our simulations of planetary
growth in S-type orbits around each star in the ˛ Centauri system (Section 10.3),
in other ‘wide’ binary star systems (Section 10.4), and in P-type orbits around both
stars in close short-period binary star systems (Section 10.5). Note that the results
from all of our simulations can be scaled for different star, disk, and individual plan-
etesimal parameters with the formulae presented in Appendix C of Quintana et al.
(2006). In Section 10.6, we summarize our results and provide a rough estimate of
the fraction of solar-mass binary stars in the Galaxy that can potentially harbor Earth
analogues.

10.2 Model and Initial Conditions

Our simulations are based on the conventional model of planet formation in which
terrestrial planets form via pairwise accretion of rocky bodies from within a disk
of gas and dust that has remained around a newly formed star (Safronov 1969;
Lissauer 1993). For all of our simulations, we assume that rocky Moon- to Mars-
sized planetesimals/embryos have already accreted from within this disk.

The growth stage from km-sized planetesimals to the Moon- to Mars-sized
bodies via runaway and oligarchic growth, has been numerically simulated
by Kortenkamp and Wetherill (2000) for the Sun–Jupiter–Saturn system, by
Marzari and Scholl (2000) for the ˛ Centauri AB binary star system, and by
Thebault et al. (2004) for the � Cephei binary/giant-planet system. In each case,
the combined effects of the giant planets or stellar perturbations and gas-drag lead
to periastron alignment of the planetesimal population, thereby reducing the rela-
tive and collisional velocities, and increasing the planetesimal accretion efficiency
within �2.5 AU of the central star.

The initial conditions and physical assumptions of the rocky bodies in the cir-
cumstellar/circumbinary disk used in our binary star simulations are the same as
those used in simulations of the final stages of terrestrial planet growth around the
Sun (Chambers 2001). Our aim is to vary the binary star parameters – an enormous
phase space – and use virtually the same disk properties in order to delineate the
effects of various binary star systems on the terrestrial planet accretion. Although
this formulation is neither complete nor definitive, this disk model reproduces our
terrestrial planet system in simulations around the Sun (albeit with somewhat larger
eccentricities), and can thus be used as a reference point, despite our approxima-
tions (e.g., the lack of very small bodies and the assumption of perfectly inelastic
collisions).

Similar disk mass distributions is used for both the circumstellar and circumbi-
nary simulations. In this disk model (originally presented in Chambers 2001), half
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of the disk mass is composed of 14 rocky Mars-sized ‘embryos’ (each with a mass
of 0.0933 M˚), and the remaining is distributed equally among 140 Moon-sized
‘planetesimals’ (each with a mass of 0.00933 M˚). The total mass of the disk is
�2.6 M˚. The surface density profile of our disk model has the form a�3=2 (where a
is the semimajor axis), normalized to 8 g cm�2 at 1 AU, and follows from minimum-
mass solar nebula models (Weidenschilling 1977). The bodies are distributed be-
tween 0.36 AU and 2.05 AU, and the radius of each body is calculated assuming
a material density of 3 g cm�3. Note that the larger embryos are widely spaced,
in agreement with the oligarchic growth result of Kokubo and Ida (1998). The em-
bryos and planetesimals begin with initial eccentricities e � 0.01 and inclinations
i � 0.5ı. Specific initial orbital elements were chosen at random from specified
ranges; the same set of randomly selected values was used for all simulations.

The evolution of the accreting bodies, which are subject to gravitational forces
from both stars, gravitational interactions with other bodies, and perfectly inelastic
collisions, is followed for 200 Myr–1 Gyr, or until only one planet remains. Because
these N-body systems are chaotic in nature, we performed multiple integrations
(from 3–30) of each system with a very slight change in the initial conditions of
one body in the disk. This tactic allows us to sample the range of possible outcomes
for effectively equivalent initial conditions, and the result is a distribution of final
planetary systems.

10.3 Planet Formation in the ˛ Centauri AB Binary
Star System

We first examined the late stage of planet formation in the ˛ Centauri system. This
system is comprised of a central binary consisting of the G2 star ˛ Cen A (1.1 Mˇ)
and the K1 star ˛ Cen B (0.91 Mˇ) (Quintana et al. 2002). The stars of this sys-
tem have an orbital semimajor axis of 23.4 AU and an eccentricity of 0.52. The
M5 star ˛ Cen C (Proxima Centauri) is thought to orbit this pair, but at a very
large distance (12,000 AU). This star is neglected in our simulations. Observations
at the Anglo-Australian telescope imply that no planet orbiting either star induces
periodic velocity variations as large as 2 m/s (G. Marcy, personal communication,
2006). This upper bound, combined with dynamical stability calculations (Wiegert
and Holman 1997) implies that any planet in an S-type orbit around either com-
ponent of the ˛ Cen AB binary must have a mass less than that of Saturn or orbit
in a plane that is substantially inclined to the line of sight. Herein we present the
results of simulations of the late stages of terrestrial planet growth around ˛ Cen A
and ˛ Cen B for various initial inclinations of the circumstellar disk relative to the
binary orbital plane.

In the majority of our simulations, the circumstellar disk is centered around
˛ Cen A with ˛ Cen B perturbing the system. The initial inclination of the mid-
plane of the disk, i , was set to 0ı, 15ı, 30ı, 45ı, 60ı, or 180ı relative to the plane
containing ˛ Cen A and B. Although a stellar companion, present during the earlier
stages of planet formation, would likely force the planetesimal disk into the plane
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of the binary orbit, many binary stars may originate as unstable triple star systems
which could produce a binary system with an accretion disk at a high relative in-
clination. It is also possible that a companion may have been captured around a
single star that possesses an accretion disk. The longitude of periastron of the stellar
companion is set to either 90ı or 180ı for each run. We also performed a set of in-
tegrations with the disk centered around ˛ Cen B, with ˛ Cen A orbiting the system
in the same plane (i D 0ı) and direction. For comparison purposes, we performed a
set of runs which follow the evolution of the disk around the Sun with neither giant
planets nor a stellar companion perturbing the system.

Figure 10.1 shows the results from a simulation in which the disk is centered
around ˛ Cen A and coplanar to the binary orbital plane. Each panel shows the
eccentricity of each body in the disk as a function of semimajor axis at the specified
time, and the radius of each symbol is proportional to the radius of the body that
it represents. Within 100 Myr of the integration, five terrestrial planets that are at
least as massive as the planet Mercury have formed around ˛ Cen A, with a single
planetesimal remaining in a highly eccentric orbit. The planetesimal is ejected from
the system soon thereafter (110 Myr), and the five terrestrial planets remain on stable
orbits within 2 AU for the remainder of the 200 Myr simulation.

Fig. 10.1 The temporal evolution of planetary embryos and planetesimals in a circumstellar
disk centered around ˛ Cen A and coplanar with the binary orbital plane [simulation ACi0 3 in
Quintana et al. (2002)]. The radius of each symbol is proportional to the radius of the body that it
represents, and the eccentricities are displayed as a function of semimajor axis. By the end of the
200 Myr integration, five terrestrial planets have formed within 2 AU of ˛ Cen A, accumulating
approximately 89% of the initial disk mass
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Fig. 10.2 The temporal evolution of virtually the same circumstellar disk around ˛ Cen A as that
shown in Fig. 10.1, but in this case a single planetesimal near 1 AU is shifted by a small amount
(1 m along its orbit) prior to the integration [simulation ACi0 4 in Quintana et al. (2002)]. The
stellar parameters and all other disk initial conditions are identical to the system shown in Fig. 10.1.
The dynamics of the disk are generally the same in the earlier stages of the simulations shown here
and in Fig. 10.1: the more massive embryos orbit with low eccentricities whereas the planetesimals
are dynamically excited to much higher values. The stochastic nature of these N-body systems is
evident in the final planetary system that formed, and demonstrates the sensitive dependence of the
outcome on the initial conditions. Four terrestrial planets, comprised of approximately 88% of the
initial disk mass, remain within 1.7 AU of ˛ Cen A

The simulation shown in Fig. 10.2 begins with nearly identical initial conditions
as the system in Fig. 10.1, with the exception of a very small (1 m) shift in the ini-
tial position of one planetesimal near 1 AU. Although the early evolution of the
disk is qualitatively similar among the two systems, they diverge with a Lyapunov
time of order 102 years (Quintana et al. 2007), which ultimately leads to the for-
mation of a substantially different planetary system: four terrestrial planets form
within 1.8 AU of ˛ Cen A. Although these N-body simulations are highly stochas-
tic, there are clear trends in the final planetary systems (number, masses, orbits,
etc.) that form in simulations with the same binary star parameters (shown further
in Sections 10.4 and 10.5).

Figure 10.3 shows the results of an integration in which the disk is initially in-
clined by 15ı relative to the binary orbital plane. The bodies in this disk are more
dynamically excited than those shown in Figs. 10.1 and 10.2. In this simulation,
�25% of the initial disk mass was lost (compared with �12% that was lost in each
of the i D 0ı simulations shown in the previous figures), and three terrestrial planets
and a single planetesimal remained by the end of the integration.
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Fig. 10.3 The temporal evolution of our standard circumstellar disk centered around ˛ Cen A and
initially inclined by 15ı to the binary orbital plane [simulation ACi15 2 in Quintana et al. (2002)].
The eccentricities of the embryos and planetesimals are displayed as a function of semimajor axis,
and the radius of each symbol is proportional to the radius of each body that it represents. In this
case, three terrestrial planets formed within �1.2 AU, and a single planetesimal remained exterior
to these planets at �1.7 AU, all composed of approximately 75% of the initial disk mass. Similar
evolution plots for all of the simulations involving ˛ Cen A and B can be found in Quintana et al.
(2002), Quintana (2003, 2004), and Lissauer et al. (2004)

We performed a total of 16 simulations of terrestrial planet growth around ˛ Cen
A in which the midplane of the disk was initially inclined by 30ı or less relative
to the binary orbital plane. In these simulations, when the bodies in the disk began
in prograde orbits, 3–5 terrestrial planets formed around ˛ Cen A. When i D 180ı
relative to the binary plane, 4 or 5 planets formed. Also, 2–4 planets formed in a disk
centered around ˛ Cen B, with ˛ Cen A perturbing the system in the same plane. The
final planetary systems that formed in all of these simulations are shown in Figs. 10.8
to 10.10 of Quintana et al. (2002). The distribution of final terrestrial planet systems
in the aforementioned cases (with i � 30ı) is quite similar to that produced by
calculations of terrestrial planet growth in the Sun–Jupiter–Saturn system.

In systems with the accreting disk initially inclined at 45ı to the binary plane,
from 2–5 planets formed, despite the fact that more than half of the disk mass was
scattered into the central star. When the disk was inclined by 60ı, the stability of the
planetary embryos decreased dramatically, and almost all of the planetary embryos
and planetesimals were lost from these systems. Figures of the temporal evolution
of each of our ˛ Cen simulations, and several simulations that include the Sun with
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neither giant planets nor a stellar companion, can be found in Quintana et al. (2002)
and Quintana (2004). In contrast to planetary accretion in binary star systems, terres-
trial planet growth around a star lacking both stellar and giant planet companions is
slower and extends to larger semimajor axis for the same initial disk of embryos and
planetesimals. Simulations by other researchers which examined various disk mass
distributions around ˛ Cen A resulted in terrestrial planet systems with semimajor
axes within �1.6 AU (Barbieri et al. 2002), consistent with our results.

10.4 S-type Orbits in Other ‘Wide’ Binary Star Systems

In this section, we present the results from a survey (�120 numerical simula-
tions) on the effects of a stellar companion on the final stages of terrestrial
planet formation in S-type orbits around one component of a binary star system
(Quintana et al. 2007). We examine binary star systems with stellar mass ratios

 � MC=.M? CMC / D 1=3; 1=2, or 2/3, whereM? is the mass of the star around
which the protoplanetary disk is situated, and MC is the mass of the companion.
The majority of our simulations begin with equal-mass stars (
 D 1=2) of either
M? D MC D 0:5Mˇ (Set A), or M? D MC D 1Mˇ (Set B). Simulations were
also performed with a more massive planet-hosting star (the one the disk is centered
around),M? D 1Mˇ and MC D 0:5Mˇ (
 D 1=3, Set C), and also with a smaller
planet hosting star of M? D 0:5Mˇ and a more massive companion MC D 1Mˇ
(
 D 2=3, Set D). The binary semimajor axis, aB , and eccentricity, eB are chosen
such that the binary periastron qB � aB .1 � eB/ takes one of the three values,
qB D 5 AU, 7.5 AU, or 10 AU. Binary systems with much wider periastra would
have little effect on terrestrial planet formation, whereas systems with significantly
smaller periastra would completely destroy (all but perhaps the very innermost
part of ) our initial disk of planetesimals that extends from �0.35–2 AU. Terrestrial
planet accretion has been examined by Haghighipour and Raymond (2007) around
one star with a stellar companion that is wide enough (tens of AU) to allow a
Jupiter-like planet to remain stable, and the formation of habitable terrestrial plan-
ets was found to be feasible in some systems depending on the combined effects
from the stellar/giant planet. In the simulations presented here, the binary stars
are separated by aB D 10, 13 1

3
, 20, or 40 AU, and the eccentricities are varied

in the range 0 � eB � 0.875. The largest semimajor axis for which particles can
be stable in any of the systems that we explore is 2.6 AU (Holman and Wiegert
1999; Quintana et al. 2007); we therefore omit giant planets analogous to those in
the Solar System (which orbit beyond 5 AU) from our integrations.

For our accretion simulations, our exploration of parameter-space has two cou-
pled goals. On one hand, we want to determine the effects of the binary orbital
elements on the final terrestrial planet systems produced. On the other hand, for a
given binary configuration, we want to explore the distribution of possible resulting
planetary systems (where the results must be described in terms of a distribution
due to the sensitive dependence on the initial conditions). We have performed from
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3 to 30 integrations for each wide binary star configuration (
, aB , and eB ) consid-
ered, with small differences in the initial conditions: a single planetesimal near 0.5,
1, or 1.5 AU is shifted forward along its orbit by a small amount (from 0 to 9 m) prior
to the integration. Ideally, of course, one would perform larger numbers of integra-
tions to more fully sample the distributions of results, but computer resources limit
our sample size. We discuss trends in the characteristics of final system properties
below.

The stellar mass-ratio,
, and the periastron distance qB strongly influence where
terrestrial planets can form in ‘wide’ binary star systems. The effect of qB on
the distribution of final planetary system parameters (i.e., number, masses, etc.) is
demonstrated in Figs. 10.4 to 10.6. The semimajor axis of the outermost planet can
be used as a measure of the size of the terrestrial planet system. Figure 10.4 shows
the distribution of the semimajor axis of the outermost final planet formed in each
simulation for systems with qB D 5 AU (top panel), 7.5 AU, (middle panel), and
10 AU (lower panel). Note that twice as many integrations have been performed in

Fig. 10.4 The distribution of the semimajor axis of the outermost final planet, a0, formed for
binary star systems with qB D 5 AU (top panel), qB D 7:5 AU (middle panel), and qB D 10

AU (bottom panel). The gray bars represent simulations from Set A with M? D MC D 0:5 M
ˇ

,
whereas the dashed bars represent systems from Set B with M? D MC D 1:0 M

ˇ

. The effect of
the binary stars is evident in systems with qB � 7.5 AU. Although the semimajor axes extend to
larger values in binary systems with larger periastra, the inner edge of the distribution is roughly
determined by the inner edge of the initial disk of embryos, as in the case of a single star (i.e., the
presence of different stellar companions has a minimal effect on the inner terrestrial region)
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Fig. 10.5 Distributions of the number of final planets formed for binary star systems with qB D 5

AU (top panel), qB D 7:5 AU (middle panel), and qB D 10 AU (bottom panel). The bar types
correspond to the different sets of runs as described in Fig. 10.4. The typical number of final planets
clearly increases in systems with larger stellar periastra, and also when the stars are less massive
(assuming equal-mass stars)

Set B (shown with gray bars) than in Set A (dashed bars). Figure 10.4 shows a clear
trend: as the binary periastron increases, the distribution of semimajor axes of the
outermost planet becomes wider and its expectation value shifts to larger values.
The distributions of the total number of final planets formed are shown in Fig. 10.5
for simulations with qB D 5 AU, 7.5 AU, and 10 AU. In general, a smaller binary
periastron results in a larger percentage of mass-loss, and a smaller number of final
planets. In our ensemble of more than 100 wide binary star simulations with equal-
mass stars, from 1 to 6 planets formed with semimajor axes smaller than or equal
to 2.2 AU in binary systems with qB D 10 AU, from 1 to 5 planets formed within
1.7 AU for systems with qB D 7:5 AU, and from 1 to 3 planets formed within 0.9
AU when qB D 5 AU. In the qB D 7:5 AU set with equal mass stars of 1 Mˇ, an
average of 2.8 planets formed in our largest set of 30 integrations. The distribution
extends slightly farther out when the stars are more massive relative to the disk.

Figure 10.6 shows the distribution of final planetary masses (in units of the
Earth’s mass, M˚) formed in systems with qB D 5 AU, 7.5 AU, and 10 AU. The
median mass of the final planets doesn’t depend greatly on qB . This result suggests
that planet formation remains quite efficient in the stable regions, but that the size of
the stable region shrinks as qB gets smaller. This trend is consistent with the decline
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Fig. 10.6 Distributions of the final masses of planets formed around one star within binary star
systems with qB D 5 AU (top panel), qB D 7:5 AU (middle panel), and qB D 10 AU (bottom
panel). The bar types correspond to the different sets of runs as described in Fig. 10.4. Although
the size of the stable region shrinks as qB gets smaller, the median mass of the final planets does
not vary greatly for a given qB , suggesting that planet formation remains efficient in the stable
regions

in the number of planets seen in Fig. 10.5. When the periastron value becomes as
small as 5 AU, planets only form within 1 AU, and the mass distribution tilts to-
ward planets with masses mp < M˚, i.e., the formation of Earth-like planets is
compromised.

10.5 P-type Orbits Within Close Binary Star Systems

We also performed simulations of the late stages of terrestrial planet formation
within a circumbinary disk surrounding various ‘close’ short-period binary star sys-
tems. The combined mass of the binary stars is set equal to 1 Mˇ in all of these
simulations, with Jupiter-like and Saturn-like planets perturbing the system. This al-
lows us to compare the effects from the binary stars to those from a single 1 Mˇ star
on the same initial disk. We examine binary systems with the stellar mass-ratio 
 set
equal to either 0.2 or 0.5. Binary star semimajor axes range from aB D 0:05 AU –
0.4 AU, while eB begins at 0, 1/3, 0.5, or 0.8. We examine various combinations
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of (aB , eB ) such that the stellar apastron (the maximum separation of the stars)
QB � aB.1 C eB/ is 0.05 AU � QB � 0.4 AU. For most of the simulations, the
midplane of the circumbinary disk begins coplanar to the stellar orbit, but for one
set of binary star parameters a relative inclination of i D 30ı is investigated. The
initial circumbinary disk of embryos and planetesimals is the same as that used for
simulating accretion within our Solar System (Chambers 2001), in the ˛ Centauri
AB system (Section 10.3), and in the wide binary star systems presented above
(Section 10.4). We use a ‘close-binary’ algorithm which follows the accretion evo-
lution of each body in the disk relative to the center of mass of the binary star
system. To account for the stochastic nature of these simulations, each binary star
system under study is simulated five or six times with slightly different initial con-
ditions for the circumbinary disk. We statistically compared our results to a large
set (more than 30) of simulations of the Sun–Jupiter–Saturn system that began with
(virtually the same) initial disk mass distribution (Quintana et al. 2006).

Figure 10.7 shows the evolution of the circumbinary disk centered around two
0.5 Mˇ binary stars with aB D 0:1 AU and in a circular orbit. The initial disk is
the same as that shown in the first panel of Fig. 10.1, but the locations of the circles
show the orbital semimajor axes and eccentricities of the represented bodies relative
to center of mass of the binary stars. The perturbations on the inner edge of the disk
are apparent within the first million years, and in this case five terrestrial planets
have formed within 100 Myr, and continue on stable orbits for the remainder of the
500 Myr integration. Figures 10.8 and 10.9 show the results from two simulations
with equal (0.5 Mˇ) mass stars with larger apastron values. In Fig. 10.8 the stellar

Fig. 10.7 The temporal evolution of the circumbinary disk around binary stars with aB D 0:1

AU, eB D 0, and equal-mass stars of M
�

D 0:5 M
ˇ

[simulation CB :1 0 :5 c in Quintana et al.
(2006)]. Jupiter- and Saturn-like planets are also included. The initial disk is the same as the disk
shown in the first panel of Fig. 10.1, and the embryos and planetesimals are represented by circles
whose sizes are proportional to the physical sizes of the bodies. The locations of the circles show
the orbital semimajor axes and eccentricities of the represented bodies relative to center of mass
of the binary stars. The binary stars perturb, but do not truncate, the inner edge of the disk. The
initially dynamically cold disk is excited during the first 10 Myr, especially in the outer region
where giant planet perturbations are the greatest. Approximately 12% of the initial disk mass was
lost from this system, and by 100 Myr into the simulation, five planets on low eccentricity orbits
have formed and survived for the remainder of the simulation
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Fig. 10.8 The temporal evolution of a simulation that began with a larger stellar separation (aB D
0:2 AU) and a higher binary eccentricity (eB D 0:5 AU) than the system shown in Fig. 10.7
[simulation CB :2 :5 :5 d in Quintana et al. (2006)]. The binary system (which has an apastron of
QB D 0:3) is composed of equal-mass stars of M

�

D 0:5 M
ˇ

, and Jupiter-like and Saturn-like
planets are included. The initial disk is the same as that shown in the first panel of Fig. 10.1, and
the symbols are the same as those described in Fig. 10.7. The effects of the binary stars are strong
early in the simulation, and the inner edge of the disk is truncated at �0.7 AU. Approximately
79% of the initial disk mass was lost from this system, and after the last ejection at 115 Myr, only
one planet remained in the system at �1.6 AU

Fig. 10.9 The temporal evolution of the circumbinary disk around binary stars with aB D 0:3

AU, eB D 1=3, 
 D 0:5, and QB D 0:4 [simulation CB :3 :33 :5 d in Quintana et al. (2006)].
The effect of the stellar companion is apparent in the first panel where the inner part of the disk is
already substantially excited and truncated at �0.8 AU. Eccentricities remain high throughout the
evolution, and by 100 Myr only one planet more massive than the planet Mercury has formed in the
terrestrial planet zone, with a single planetesimal remaining just beyond 2.5 AU. In this simulation,
approximately 91% of the initial disk mass was lost, with 70% of the initial disk mass lost within
the first 50 Myr

separation is aB D 0:2 AU and eB D 0:5 (QB D 0:3), and in Fig. 10.9 the stars are
separated by aB D 0:3 AU and have an eccentricity of eB D 1=3 (QB D 0:4). In
both simulations, more than 70% of the initial disk mass was lost from the system
within the first 50 Myr, and each simulation resulted in a single planet more massive
than the planet Mercury in our Solar System.
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Fig. 10.10 Distributions of the semimajor axis of the innermost final planet, ai , formed in binary
star systems with QB � 0.1 AU (top panel), 0.1 < QB � 0.2 AU (middle panel), and QB 	
0.3 AU (bottom panel). The gray bars represent simulations in which the binary stars began on
circular (eB D 0) orbits, and the dashed bars represent systems with 1/3 	 eB 	 0.8. The binary
stars truncate the inner edge of the initial planetesimal/embryo disk in all simulations with QB 	
0.3 AU. Terrestrial planets (more massive than the planet Mercury) were able to form within 1 AU
from the binary stars’ center of mass in most simulations with QB � 0.2 AU, and in simulations
with aB D 0:2 AU, eB D 0:5, and 
 D 0:2 (QB D 0:3), as well as in some simulations with
aB D 0:3 AU and eB D 0 (QB D 0:3)

Figures 10.10 to 10.12 show distributions of the semimajor axis of the innermost
planet, the number of final planets, and the final masses of the planets, respectively,
that formed around binary stars with QB � 0.1 AU (top panels), 0.1 AU < QB �
0.2 AU (middle planets), and QB � 0.3 AU (lower panels), respectively. Simu-
lations with binary stars on initially circular orbits are shown with gray bars, and
binary stars with higher eccentricities ranging from 1/3 to 0.8 are shown with dashed
bars. At least one planet (more massive than the planet Mercury) formed in all of the
simulations, although fewer and more diverse systems formed around binary stars
with larger apastron values. Earth-mass planets within 1 AU formed in most simu-
lations in which QB � 0.2 AU, and also in simulations with QB D 0:3 AU where
(aB , eB ) D (0.3, 0) and (0.2, 0.5) with 
 D 0:2 in the case of the latter. Planets did
not form within 1 AU, however, in systems with QB D 0:3 AU and (aB , eB ) D
(0.2, 0.5) when the binary stars had equal masses (
 D 0:5). Note that all of our
results are consistent with the circumbinary orbital stability criteria of Holman and
Wiegert (1999).
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Fig. 10.11 Distributions of the number of final planets formed around close binary star systems
with QB � 0.1 AU (top panel), 0.1 < QB � 0.2 AU (middle panel), and QB 	 0.3 AU (bottom
panel). The bar types correspond to the different sets of runs as described in Fig. 10.10. Fewer
planets tend to form around binary star systems with larger apastron values, as expected. Further-
more, in the binary systems with higher values of QB , fewer planets tend to form around binaries
with eB > 0 than around binary stars on circular orbits (eB D 0)

In summary, close binary stars with maximum separations QB � 0.2 AU and
small eB had little effect on the accreting bodies, and in most of these simulations
terrestrial planets formed over essentially the entire range of the initial disk mass
distribution (and even beyond 2 AU in many cases). The stellar perturbations cause
orbits to precess, thereby moving secular resonances out of the region equivalent to
the solar system’s inner asteroid belt, allowing terrestrial planets to form from our
initially compact disk and remain in stable orbits as far as 2.98 AU from the center
of mass of the binary stars. The effects of the stellar perturbations on the inner edge
of the planetesimal disk became evident in systems with eB D 0 andQB > 0:2 AU,
and in most of the simulations with eB > 0. Terrestrial-mass planets can still form
around binary stars with high eccentricity values, but the planetary systems tend to
be sparser and more diverse. Binary stars with QB & 0:3 AU perturb the accreting
disk such that the formation of Earth-like planets near 1 AU is unlikely. Despite
these constraints, at least one terrestrial planet formed in each of our simulations,
and those that formed around binary stars with QB � 0.2 AU were statistically
consistent (in mass, final number, and orbital characteristics) to final planet systems
that formed in our large set of Sun–Jupiter–Saturn simulations.
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Fig. 10.12 Distributions of the final masses of planets formed around close binary star systems
with QB � 0.1 AU (top panel), 0.1 < QB � 0.2 AU (middle panel), and QB 	 0.3 AU (bottom
panel). The bar types correspond to the different sets of runs as described in Fig. 10.10. Although
the inner edge of the disk is truncated around binary stars with larger values of QB , the median
mass of the final planets that form does not vary greatly for a given QB , showing that (similar
to the results of our wide binary calculations) planet formation remains efficient in the regions of
stability

10.6 Conclusions

Our exploration of binary star parameter-space provides rough constraints on where
and what types of terrestrial planets may form within binary star systems. Note
that statistics of the final planetary systems, and also their long term dynamical
stability, for nearly all of the individual simulations that we performed are presented
in Quintana et al. (2002); Quintana (2003, 2004); Lissauer et al. (2004); Quintana
et al. (2006); Quintana et al. (2007). We find that the presence of a binary companion
of order 10 AU away acts to limit the number of terrestrial planets and the spatial
extent of the terrestrial planet region around one member of a binary star system, as
shown by Figs. 10.4 to 10.6. To leading order, the periastron value qB is the most
important parameter in determining binary effects on planetary outcomes in wide
binary star systems (more predictive than aB or eB alone), whereasQB is the most
influential parameter for accretion within circumbinary disks. For a given binary
periastron qB , fewer planets tend to form in wide binary systems with larger values
of (aB , eB ), as shown in Fig. 10.5.



280 E.V. Quintana and J.J. Lissauer

Binary companions also limit the extent of the terrestrial planet region in nascent
planetary systems orbiting one member of the stellar pair. As shown in Figs. 10.4
to 10.6, wider binaries allow for larger systems of terrestrial planets. Although the
binary periastron is the most important variable in determining the extent of the final
system of terrestrial planets (as measured by the semimajor axis of the outermost
planet), for a given periastron, the sizes of the terrestrial planet systems show a
wide distribution. In these simulations, the initial disk of planetesimals extends out
to 2 AU, so we do not expect terrestrial planets to form much beyond this radius.
For binary periastron qB D 10 AU, the semimajor axis of the outermost planet
typically lies near 2 AU, i.e., the system explores the entire available parameter-
space for planet formation. Since these results were obtained with equal-mass stars
(including those with M D 1:0 Mˇ), we conclude that the constraint qB & 10 AU
is sufficient for binaries to allow the formation of terrestrial planet systems like that
in our solar system. With smaller binary periastron values, the resulting extent of
the terrestrial planet region is diminished. When the binary periastron decreases to
5 AU, the typical planetary system extends only out to �0.75 AU and no system
has a planet with semimajor axis beyond 0.9 AU (but note that we did not perform
simulations with qB D 5 AU and small eB).

While the number of forming planets and their range of orbits is restricted by
binary companions, the masses and eccentricities of those planets are much less
affected (at least during the late stages of planetary growth, the only portion of plan-
etary accumulation that our simulations address). The distribution of planet masses
is nearly independent of binary periastron (see Fig. 10.6), although the wider bina-
ries allow for a few slightly more massive terrestrial planets to form. Finally, we
note that the timescales required for terrestrial planet formation in these systems
lie in the range of approximately 20 to 200 Myr, consistent with previous findings
(Chambers 2001; Quintana 2004), and are generally shorter in binary star systems
with smaller qB (see Fig. 10.13).

Whitmire et al. (1998) analyzed the effects of perturbations by a binary compan-
ion on planetesimals during the earlier stages of planetary growth. Assuming that
collisions at velocities larger than 100 m/s disrupt planetesimals, they found that if
two solar-mass stars have a periastron smaller than 16 AU, then planetary growth at
1 AU is inhibited. This criterion is more limiting than the results of our simulations
suggest, but note that the model by Whitmire et al. (1998) does not include gas.
Perturbations by a gaseous disk can align planetesimal orbits, reducing collision ve-
locities and thereby allowing growth to proceed and produce bodies of the sizes that
we use as initial conditions over a larger range of semimajor axis (Kortenkamp and
Wetherill 2000).

This work has important implications regarding the question of what fraction
of stars might harbor terrestrial planetary systems. The majority of solar-type
stars live in binary systems, and as shown in this chapter, binary companions
can disrupt both the formation of terrestrial planets and their long-term prospects
for stability. Approximately half of the known binary systems are wide enough
(in this context, having sufficiently large values of periastron) so that Earth-
like planets can remain stable over the entire 4.6 Gyr age of our solar system
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Fig. 10.13 The elapsed simulation time of the last major event in each wide binary star simulation
(with equal mass stars of 0.5 M

ˇ

), where the event is either the final ejection of a planet that has
grown more massive than the planet Mercury, or the final collision among two planets that are each
as massive as Mercury. This final ejection/collision time (in Myr) is shown for the three values of
binary periastron qB that we investigated: qB D 5; 7:5, and 10 AU. The simulations with binary
eccentricity eB D 0 are shown with blue asterisk symbols, simulations with eB D 0:25 are shown
with green C symbols, integrations performed with eB D 0:5 are shown with red x symbols,
and simulations with the largest eccentricities eB > 0:5 are shown with blue circle symbols. The
timescales required for terrestrial planet accretion around one member of a binary star system
typically decrease in systems with smaller qB , and (for a given qB ) are generally shorter in binary
systems with larger values of eB

(David et al. 2003; Fatuzzo et al. 2006). For the system to be stable out to the
distance of Mars’s orbit, the binary periastron must be greater than about 7 AU, and
about half of the observed binaries have such periastra. Our work on the formation
of terrestrial planets shows similar trends. When the periastron of the binary is larger
than about 10 AU, even for the case of equal-mass stars, terrestrial planets can form
over essentially the entire range of orbits allowed for single stars with a Jupiter-
mass planet at 5.2 AU (out to the edge of the initial planetesimal disk at 2 AU).
When periastron is smaller than 10 AU, however, the distributions of planetary
orbital parameters are strongly affected by the presence of the binary companion.
Specifically, the number of terrestrial planets and the spatial extent of the terrestrial
planet region both decrease with decreasing binary periastron. When the periastron
becomes as small as 5 AU, planets form only within 1 AU, thus the formation of
Earth-like planets near 1 AU is inhibited. Terrestrial planet formation has also been
numerically studied around solar-type binary star systems with larger periastra than
the binary systems presented in this chapter (aB > 20 AU) (Haghighipour 2006;
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Haghighipour and Raymond 2007), which allow the stability of Jupiter-like planets
near 5 AU. These binary star/giant planets systems can be effective in perturbing
and delivering volatiles to the inner terrestrial region (Haghighipour and Raymond
2007).

Given the enormous range of orbital parameter-space sampled by known binary
systems, from contact binaries to separations of nearly a parsec, the range of stel-
lar orbits where terrestrial planet formation is affected is only a little narrower than
the range where the stability of Earth-like planets is compromised. As a result, ap-
proximately 40–50% of binaries are wide enough to allow both the formation and
the long-term stability of Earth-like planets in S-type orbits encircling one of the
stars. Furthermore, approximately 10% of main sequence binaries are close enough
to allow the formation and long-term stability of terrestrial planets in P-type cir-
cumbinary orbits (David et al. 2003; Quintana et al. 2006). Given that the galaxy
contains more than 100 billion star systems, and that roughly half remain viable
for the formation and maintenance of Earth-like planets, a large number of systems
remain habitable based on the dynamic considerations of this research.
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Chapter 11
Planetary Dynamics and Habitable Planet
Formation in Binary Star Systems

Nader Haghighipour, Rudolf Dvorak, and Elke Pilat-Lohinger

11.1 Introduction

How our planet was formed, how life came about, and whether life exists elsewhere
in the universe are among some of the long-standing questions in human history. The
latter, which has been the main drive behind many decades of searching for plan-
ets outside the solar system, is one of the most outstanding problems in planetary
science and astrobiology. Although no Earth-like planet has yet been found, the suc-
cess of observational techniques in identifying now more than 350 extrasolar planets
has greatly contributed to addressing this question, and has extended the concept of
habitability to billions of miles beyond the boundaries of our solar system. It is now
certain that our planetary system is not unique and many terrestrial-size planets may
exist throughout the universe.

The orbital and physical diversity of the currently known extrasolar planets play
a crucial role in their habitability. In general, whether a planet can be habitable de-
pends on its physical and dynamical properties, and the luminosity of its host star.
The notion of habitability is normally defined based on the life as we know it, and
uses the physical and orbital characteristics of Earth as an example of a habitable
planet. In other words, a planet is habitable if it is Earth-like so it can develop and
sustain Earthly life. This definition of habitability requires that a potentially habit-
able planet to maintain liquid water on its surface and in its atmosphere. The planet’s
capability in maintaining water is determined by its size and orbital motion, the lu-
minosity of the central star, and the distribution of water in the circumstellar material
from which the planet was formed.

How extrasolar habitable planets are formed is a widely addressed question that
is still unresolved. While models of planetary accretion in the inner solar system
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present pathways (although in some cases incomplete) toward the formation of
planets such as Earth and Venus, the orbital diversity of extrasolar planets present
strong challenges to the applicability of these models to other planetary envi-
ronments. For instance, systems with close-in giant planets may require massive
protoplanetary disks to ensure that while planetesimals and protoplanets are scat-
tered as giant planets migrate, terrestrial bodies can form and be stable. Systems
with multiple planets also present a great challenge to terrestrial planet formation
since the orbital architectures of such systems may limit the regions of the stability
of smaller objects.

In a system with two stars, the situation is even more complicated. The in-
teraction between one star and the protoplanetary disk around the other may
inhibit planet formation by truncating the disk and removing circumstellar material
(Artymowicz and Lubow 1994). This interaction may also prevent the growth of
km-size planetesimals to larger objects by increasing the relative velocities of these
bodies and causing their collisions to result in fragmentation. Despite such difficul-
ties, planets have, however, been detected in binary star systems (see Table 11.1)
and observers have been able to identify three moderately close (<20 AU) binaries,
namely � Cephei (Hatzes et al. 2003), GL 86 (Eggenberger et al. 2001), and HD
41004 (Zucker et al. 2004), whose primary stars are hosts to Jupiter-like planets.

The detection of planets in binary star systems is not a surprise. There is much
observational evidence that indicates the most common outcome of the star forma-
tion process is a binary system (Mathieu 1994; White and Ghez 2001). Also, as
shown by Prato and Weinberger in the first chapter, there is substantial evidence for
the existence of potentially planet-forming circumstellar disks in multiple star sys-
tems (Mathieu 1994; Akeson et al. 1998; Rodriguez et al. 1998; White et al. 1999;
Silbert et al. 2000; Mathieu et al. 2000; Trilling et al. 2007). These all point to the
fact that planet formation in binaries is robust and many of these systems may har-
bor additional giant planets and/or terrestrial-size objects. This chapter is devoted to
study the latter.

Whether binaries can harbor potentially habitable planets depends on several fac-
tors including the physical properties and the orbital characteristics of the binary
system. While the former determines the location of the habitable zone (HZ), the
latter affects the dynamics of the material from which terrestrial planets are formed
(i.e., planetesimals and planetary embryos), and drives the final architecture of the
planets assembly. In order for a habitable planet to form in a binary star system,
these two factors have to work in harmony. That is, the orbital dynamics of the two
stars and their interactions with the planet-forming material have to allow terrestrial
planet formation in the habitable zone, and ensure that the orbit of a potentially hab-
itable planet will be stable for long times. We organize this chapter with the same
order in mind. We begin in Section 11.2 by presenting a general discussion on the
motion of planets in binary stars and their stability. Section 11.3, has to do with
the stability of terrestrial planets, and in Section 11.4, we discuss habitability and
the formation of potentially habitable planets in a binary-planetary system.1

1 The phrase “binary-planetary system” is used to identify binary star systems in which one of the
stars is host to a giant planet.
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Table 11.1 Planets in double stars (Raghavan et al. 2006)
Star ab (AU) ap (AU) Mp sin i.MJup/ ep

HD38529 12;042 0.129 0:78 0.29
3.68 12:7 0.36

HD40979 6;394 0.811 3:32 0.23
HD222582 4;746 1.35 5:11 0.76
HD147513 4;451 1.26 1:00 0.52
HD213240 3;909 2.03 4:5 0.45
Gl 777 A 2;846 0.128 0:057 0.1

3.92 1:502 0.36
HD89744 2;456 0.89 7:99 0.67
GJ 893.2 2;248 0.3 2:9 –
HD80606 1;203 0.439 3:41 0.927
55 Cnc 1;050 0.038 0:045 0.174

0.115 0:784 0.02
0.24 0:217 0.44
5.25 3:92 0.327

GJ 81.1 1;010 0.229 0:11 0.15
3.167 0:7 0.3

16 Cyg B 860 1.66 1:69 0.67
HD142022 794 2.8 4:4 0.57
HD178911 789 0.32 6:292 0.124
Ups And 702 0.059 0:69 0.012

0.83 1:89 0.28
2.53 3:75 0.27

HD188015 684 1.19 1:26 0.15
HD178911 640 0.32 6:29 0.124
HD75289 621 0.046 0:42 0.054
GJ 429 515 0.119 0:122 0.05
HD196050 510 2.5 3:00 0.28
HD46375 314 0.041 0:249 0.04
HD114729 282 2.08 0:82 0.31
� Ret 251 1.18 1:28 0.07
HD142 138 0.98 1:00 0.38
HD114762 132 0.3 11:02 0.25
HD195019 131 0.14 3:43 0.05
GJ 128 100 1.30 1:8 0.15
HD120136 240 0.05 4:13 0.01
� Cep 20:3 2.03 1:59 0.2
GL 86 21 0.11 4:01 0.046
HD41004 AB 23 1.7 2:64 0.5
HD196885 17:23 2.63 2:96 0.462

11.2 Planetary Motion in Binary Systems and Stability

As mentioned earlier, dynamical stability is essential to the habitability of a
planetary system. This issue is particularly important in binary star systems since
the gravitational perturbation of the stellar companion limits stable planetary orbits
around the other star to only certain regions of the phase-space. In this section, we
discuss this issue in more detail.
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Study of the stability of small bodies in binary stars has a long history in plane-
tary science. Among some of the early works are the papers by Graziani and Black
(1981), Black (1982), and Pendleton and Black (1983), where the authors studied
the stability of a planet around a star of a binary within the framework of a general
three-body system, and showed that in a binary with equal-mass stars, the orbital
stability of the planet is independent of its orbital inclination (also see paper by
Harrington (1977), and articles by Innanen et al. (1997) and Musielak et al. (2005)
for more recent works on this subject).

The notion of stability has been discussed by different authors within different
contexts. In a review article in 1984, Szebehely introduced 50 definitions for the
stability of a planetary orbit in a multi-body system (Szebehely 1984). For instance,
while Harrington (1977) considers an orbit stable if the semimajor axis and eccen-
tricity of the object do not undergo secular changes, Szebehely (1980, 1981) defines
orbital stability based on the integrals of motion and curves of zero velocity. Within
the context of habitability, an object is stable if it has the capability of maintaining
its orbital parameters (i.e., semimajor axis, eccentricity, and inclination) at all times.
In other words, an object is stable if small variations in its orbital parameters do not
progress exponentially, but instead vary sinusoidally. Instability occurs when a per-
turbative force causes drastic changes in the orbital parameters of the object so that
it leaves the gravitational field of the system, or collides with other bodies.

The stability of a planetary orbit in dual-star systems depends also on the type of
its orbit. From a dynamical point of view, three types of motion are recognized in
double-star systems (see Figs. 11.1 and 11.2, and Dvorak 1984):

1. The S-type (or the satellite-type), where the planet moves around one stellar
component

2. The P-type (or the planet-type), where the planet surrounds both stars in a distant
orbit

3. The L-type (or the libration-type), where the planet moves in the same orbit as the
secondary (i.e., locked in a 1:1 mean motion resonance), but 60ı ahead or behind2

Fig. 11.1 S-type and P-type binary-planetary systems. A and B represent the stars of the binary,
and P depicts the planet

2 An earlier classification by Szebehely (1980) divides the planetary orbits in binary systems into
three categories: inner orbit, where the planet orbits the primary star, satellite orbit, where it orbits
the secondary star, and the outer orbit, where the planet orbits the entire binary system.
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Fig. 11.2 Schematic view of the stable region around the Lagrange points L4 and L5 in the re-
stricted three body problem with the Sun and Jupiter as primary bodies

Within the framework of elliptical restricted three-body problem (ER3BP),3

many authors have studied the stability of planets in binaries for different types
of above-mentioned planetary orbits (Dvorak 1984, 1986; Rabl and Dvorak 1988;
Dvorak et al. 1989; Benest 1988a,b, 1989, 1993, 1996, 1998; Dvorak and Lohinger
1991; Lohinger and Dvorak 1993; Wiegert and Holman 1997; Holman and Wiegert
1999; Pilat-Lohinger and Dvorak 2002). However, because until 2003, no planet
had been detected in or around a double star, the applicability of the results of these
studies were only to hypothetical systems. The discovery of the first planet in a
moderately close binary by Hatzes et al. (2003) changed this trend and encouraged
many researcher to revisit this problem and explore the stability of planets in bi-
naries by considering more realistic cases (see, for instance, Innanen et al. 1997;
Pilat-Lohinger et al. 2003; Dvorak et al. 2003a,b, 2004b; Musielak et al. 2005;
Haghighipour 2006).

In this chapter, we focus on the stability and habitability of planets in S-type
orbits. As shown in Table 11.1, all the currently known planets in binary systems
(regardless of the separation of the binary) are of this kind. We present the results of
the studies of the general stability of S-type orbits and discuss their application to
real binary systems, in particular the system of � Cephei. Since the discovery of a
giant planet around the primary of this double star (Hatzes et al. 2003), many studies
have been done on the stability and habitability of this binary and the possibility of

3 In an elliptical restricted three-body problem, the planet is considered to be a massless particle
and its motion is studied in the gravitational field of two massive stars. The stars of the binary
revolve around their center of mass in an unperturbed elliptical Keplerian orbit.
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the formation of giant and Earth-like planets around its stellar components (Dvorak
et al. 2003a; Thébault et al. 2004; Haghighipour 2005; Verrier and Evans 2006;
Torres 2007). We finish this section by briefly reviewing the stability of planets in
P-type and L-type orbits.

The numerical simulations of planetary orbits presented in this section are mostly
carried out within the framework of the elliptical, restricted, three-body system,
where the planet is regarded as a massless object with no influence on the dynamics
of the binary. To determine the character of the motion of an orbit, we either use a
chaos indicator, or carry out long-term orbital integrations. As a chaos indicator, we
use the fast Lyapunov indicator (FLI) as developed by Froeschlé et al. (1997). FLI
can distinguish between regular and chaotic motions in a short time, and chaotic
orbits can be found very quickly because of the exponential growth of this vector
in the chaotic region. For most chaotic orbits only a few number of primary revo-
lutions is needed to determine the orbital behavior. In order to distinguish between
stable and chaotic motions, we define a critical value for FLI which depends on the
computation time. This method has been applied to the studies of many extrasolar
planetary systems by Pilat-Lohinger and Dvorak (2002), Dvorak et al. (2003a,b);
Pilat-Lohinger et al. (2003, 2005); Bois et al. (2003); Érdi and Pál (2003); Sandor
et al. (2006).

When carrying out long-term orbital integrations, a fast and reliable characteri-
zation of the motion can be achieved by making maps of the maximum eccentricity
of the orbit of the planet calculated for each integration of its orbit. The maximum
eccentricity maps can be used as a useful indicator of orbital stability, especially
for studies of the motion of terrestrial-size planets in the habitable zone of their
host stars. Examples of such studies can be found in the works of Dvorak et al.
(2003a, 2004b), Funk et al. (2004), Érdi et al. (2004), Asghari et al. (2004), and
Pilat-Lohinger et al. (2006).

11.2.1 Stability of S-Type Orbits

The motion of a planet in an S-type orbit is governed by the gravitational force of
its host star and the perturbative effect of the binary companion. Since the latter is
a function of the distance between the planet and the secondary star, the orbit of
the planet will be less perturbed if this distance is large. In other words, a planet in
an S-type orbit will be able to maintain its orbit for a long time if it is sufficiently
close to its parent star (Harrington 1977). By numerically integrating the motion of
a massless object in an S-type orbit, Rabl and Dvorak (1988) (hereafter RD) and
Holman and Wiegert (1999) (hereafter HW) have shown that the maximum value
of the semimajor axis of a stable S-type orbit varies with the binary mass-ratio,
semimajor axis, and eccentricity as,

ac=ab D .0:464˙ 0:006/C .�0:380˙ 0:010/
C .�0:631˙ 0:034/eb

C .0:586˙ 0:061/
eb C .0:150˙ 0:041/e2
b C .�0:198˙ 0:047/
e2

b :

(11.1)
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In this equation, ac , the critical semimajor axis, is the upper limit of the semimajor
axis of a stable S-type orbit, ab and eb are the semimajor axis and eccentricity of the
binary, and 
 D M2=.M1 CM2/, whereM1 andM2 are the masses of the primary
and secondary stars, respectively. Figure 11.3 shows the variation of ac with the
binary mass-ratio and eccentricity. As expected, S-type orbits in binaries with larger
secondary stars on high eccentricities are less stable. The ˙ signs in Eq. (11.1)
define a lower and an upper value4 for the critical semimajor axis which correspond
to a transitional region that consists of a mix of stable and unstable orbits. Such
a dynamically gray area, in which the state of a system changes from stability to
instability, is known to exist in multi-body environments, and is a characteristic of
any dynamical system. Similar studies have been done by Moriwaki and Nakagawa
(2004) and Fatuzzo et al. (2006) who obtained critical semimajor axes slightly larger
than given by Eq. (11.1).

It is necessary to mention that in simulations of RD and HW, the initial orbit
of the planet was considered to be circular. In a series of numerical integrations
(Pilat-Lohinger and Dvorak 2002) (hereafter PLD) considered non-zero values for
the initial eccentricity of the planet and by assuming the following initial conditions,
they analyzed the influence of the planet’s eccentricity on its orbital stability.
For the binary, these authors assumed

� A semimajor axis of 1 AU
� An eccentricity between 0 and 0.9 in steps of 0.1
� An initial starting point for the secondary star at either its periastron or apastron

For the planet, which moves around the primary in the same plane as the orbit of the
binary (i.e., coplanar orbits), they considered

� A semimajor axis between 0.1 and 0.9 AU
� An initial eccentricity between 0 and 0.5 in increments of 0.1 for all binary

mass-ratios
� A starting point with different angular positions (i.e., mean anomaly D 0ı or 90ı

or 180ı or 270ı)

Figure 11.4 shows a comparison of the results of the three studies by RD, HW,
and PLD, in a binary with a mass-ratio of 
 D 0:2. In this figure, the value of the
critical semimajor axis of the planet is shown for different values of its eccentricity
and the eccentricity of the binary. The boundaries of the stability zone corresponding
to HW simulations (calculated using Eq. 11.1) are shown in dotted lines. As shown
in the top panel of this figure, stability zones of low-eccentricity orbits, as obtained
by PLD, are in a good agreement with the results of HW. However, for planets with
larger orbital eccentricities, as shown in the lower panel, the size of the stability zone
decreases as the eccentricity of the planet increase. The plotted stability boundaries
for such orbits fall outside the HW stable zone and are closer to the planet-hosting

4 Orbits with semimajor axes smaller than the lower value or larger than the upper value are cer-
tainly unstable.
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Fig. 11.3 Graphs of the critical semimajor axis .ac/ of an S-type binary-planetary system, in units
of the binary semimajor axis (Holman and Wiegert 1999). The graph on the top shows ac as a
function of the binary eccentricity for an equal-mass binary. The graph on the bottom corresponds
to the variations of the critical semimajor axis of a binary with an eccentricity of 0.5 in term of the
binary’s mass-ratio. The solid and dashed line on the top panel depict the empirical formulae as
reported by Holman and Wiegert (1999) and Rabl and Dvorak (1988), respectively
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Fig. 11.4 A comparison of the results of PLD with those of HW. The upper panel shows the
results for ep D 0 (solid line with crosses) and ep D 0:1 (dashed line with stars) as obtained by
PLD. The dotted line with white squares shows the results obtained by HW. The area between the
two dashed lines defines the boundary of the stable zone according to Eq. (11.1). The lower panel
shows the results of PLD for ep ranging from 0.3 to 0.9
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Table 11.2 Stable zone (in units of the binary semimajor axis) of an S-type orbit
for different values of the mass-ratio and eccentricity of the binary. The given size
for each .
; eb/ pair is the lesser of the values obtained by HW and PLD

Mass-ratio .
/

eb 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.45 0.38 0.37 0.30 0.26 0.23 0.20 0.16 0.13
0.1 0.37 0.32 0.29 0.27 0.24 0.20 0.18 0.15 0.11
0.2 0.32 0.27 0.25 0.22 0.19 0.18 0.16 0.13 0.10
0.3 0.28 0.24 0.21 0.18 0.16 0.15 0.13 0.11 0.09
0.4 0.21 0.20 0.18 0.16 0.15 0.12 0.11 0.10 0.07
0.5 0.17 0.16 0.13 0.12 0.12 0.09 0.09 0.07 0.06
0.6 0.13 0.12 0.11 0.10 0.08 0.08 0.07 0.06 0.045
0.7 0.09 0.08 0.07 0.07 0.05 0.05 0.05 0.045 0.035
0.8 0.05 0.05 0.04 0.04 0.03 0.035 0.03 0.025 0.02

star. This can also be seen in Table 11.2, where the lesser of the values of the inner
boundary of the stable region (i.e., the semimajor axis of the last stable orbit) as
obtained by HW and PLD, has been recorded. These results indicate that the stability
criteria presented by HW are not applicable to eccentric S-type orbits.

It is necessary to mention that as oppose to RD and HW who determined the
stable zone of a planet by identifying its escaping orbits within a certain computa-
tion time, PLD used a chaos indicator to characterize the long-term behavior of the
planet’s motion. Although because of the application of FLI, the computation time
in PLD was much shorter than in RD and HW, their results are, however, valid for
much longer times. In some cases in simulations by PLD, the application of FLI re-
sulted in a slightly larger stable region compare to that of HW. This is due to the fact
that, as oppose to the latter, in which eight starting points were used, PLD used only
four starting positions. Test-computations, using a different grid for the FLI-maps,
and for computation times over 104; 105 and 106 periods of the binary were also
carried out. However, they did not change the result significantly.

Table 11.3 shows the variations of the size of the stable zone in simulations of
PLD in terms of the eccentricities of the binary and planet, and for different binary
mass-ratios. As shown here, as the eccentricity of the binary increases, the boundary
of the stable zone varies from 0.04 (for an initially eccentric motion in a binary with
an eccentricity of 0.5 and mass-ratio of 
 D 0:9) to 0.45 (for an initially circular
motion in a circular binary with 
 D 0:1). Table 11.3 also shows that the size of the
stable region does not have a strong dependence on the eccentricity of the planet.
This dependence is not, however, negligible, especially if a planet is close to the
border of the chaotic motion and moves in a highly eccentric orbit. A presentation
of the 3-D stability plots for different mass-ratios with a detailed discussion can be
found in PLD.

An interesting application of the analysis of HW and PLD is to the stability
of terrestrial planets and smaller objects. Since in the calculations of the critical
semimajor axis by these authors, a giant planet was consider to be a test particle,
given that the mass of a Jovian-type planet is approximately two orders of magni-
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Table 11.3 Stable zone
(normalized to ab) of an
S-type orbit

Stable zone

Mass-ratio .
/ eb ep D 0 ep D 0:5

0.1 0 0.45 0.36
0.5 0.18 0.13

0.2 0 0.40 0.31
0.5 0.16 0.12

0.3 0 0.37 0.28
0.5 0.14 0.11

0.4 0 0.30 0.25
0.5 0.12 0.07

0.5 0 0.27 0.22
0.5 0.12 0.07

0.6 0 0.23 0.21
0.5 0.10 0.07

0.7 0 0.20 0.18
0.5 0.09 0.07

0.8 0 0.16 0.16
0.5 0.09 0.05

0.9 0 0.13 0.12
0.5 0.06 0.04

tude larger than the mass of a terrestrial-class object, the stability criteria of HW
and PLD can be readily generalized to identify regions around the stars of a bi-
nary where terrestrial-class planets can have long-term stable orbits (Quintana et al.
2002, 2006, 2007). This results can also be used to identify regions where smaller
objects, such as asteroids, comets, and/or dust particles may reside. Although these
analyses do not include non-gravitational forces, their applications to observational
data has been successful and have identified dust bands, possibly due to the collision
among planetesimals, in several wide S-type binaries (see Figs. 1.8 and 1.9 of the
first chapter, and Trilling et al. 2007).

11.2.1.1 Application to the Binary � Cephei

Gamma Cephei is one of the most interesting double star systems that host a planet.
At a distance of approximately 11 pc from the Sun, and with a semimajor axis and an
eccentricity of 18.5 AU and 0.36, respectively, this system present a prime example
of a moderately close binary with a planet in an S-type orbit. The primary of �
Cephei, a 1.6 solar-mass K1 IV sub-giant (Fuhrmann 2004) is host to a stellar com-
panion, an M4 V star with a mass of 0.4 solar-masses (Neuhäuser et al. 2007; Torres
2007), and a Jovian-type planet with a mass of 1.7 Jupiter-mass and an eccentricity
of 0.12 at 1.95 AU (Hatzes et al. 2003).

The mass-ratio of � Cephei binary is 0.2 making this system a suitable exam-
ple for applying the stability analysis of S-type orbits as discussed in the previous
section. An overview of the size of the stable region for the giant planet of this
system is shown in Fig. 11.5 where the planet maintained its orbit for 1,000 time
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Fig. 11.5 The stable zone of an S-type orbit in a binary with mass-ratio 
 D 0:2 (e.g., � Cephei).
As shown here, the extent of the stable zone is more strongly affected by the eccentricity of the
binary than that of the planet (Pilat-Lohinger et al. 2004)

units. As shown in this figure, the zone of stability for the giant planet extends to
approximately 3.16 AU.5 Direct integration of the binary and the planet for different
values of the binary eccentricity indicate that the orbit of the planet is stable when
0:2 � eb � 0:45 (Haghighipour 2006). Samples of the results of these integrations
are shown in Fig. 11.6. Numerical integrations of the orbit of the planet for different
values of its inclination with respect to the plane of the binary .ip/ show that this
object is stable for inclinations less than 40ı. Figure 11.7 shows the semimajor axes
and orbital eccentricities of the system for eb D 0:2 and for ip D 5ı, 10ı, and 20ı.

Numerical simulations also indicated the possibility of a Kozai resonance in the
� Cephei system. Kozai resonance has been studied in binary-planetary systems
by several authors (Haghighipour 2004; Haghighipour 2005a; Verrier and Evans
2006; Takeda et al. 2006, 2008; Malmberg et al. 2007; Saleh and Rasio 2009). As
demonstrated by Kozai (1962), in a three-body system with two massive bodies and
a small object, such as an S-type binary-planetary system, the orbital eccentricity
of the planet can reach high values at large inclinations due to the exchange of

5 Test-computations for 
 D 0:3; 0:5 and 0.7, up to 100,000 time units showed the same qualitative
results.
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Fig. 11.6 Graphs of the semimajor axes (left) and eccentricities (right) of the giant planet (black)
and binary (green) of � Cephei for different values of the eccentricities of the binary (Haghighipour
2004). The mass-ratio of the binary is 0.2

Fig. 11.7 Graphs of the semimajor axes (top) and eccentricities (bottom) of the giant planet (black)
and binary (red) of � Cephei. The initial eccentricity of the binary at the beginning of numerical
integration and the value of its mass-ratio were equal to 0.20 (Haghighipour 2006)

angular momentum between the planet and the secondary star. In such cases, the
longitude of the periastron of the planet, !p , librates around a fix value. Figure 11.8
shows this for the giant planet of � Cephei. As shown here, !p librates around 90ı
(Haghighipour 2004, 2005a). The inclination of the planet of � Cephei, when in a
Kozai resonance, is related to its longitude of periastron and orbital eccentricity .ep/

as Innanen et al. (1997)

sin2!p D 0:4 csc2ip; (11.2)

and �
e2

p

�
max

D 1

6

h
1 � 5 cos.2ip/

i
: (11.3)

Equation (11.2) indicates that the Kozai resonance may occur if the orbital inclina-
tion of the small body is larger than 39.23ı. For instance, as shown by Haghighipour
(2004, 2005a), in the system of � Cephei, Kozai resonance occurs at ip D 60ı. For
the minimum value of ip, the maximum value of the planet’s orbital eccentricity is
reached and, as given by Eq. (11.3), is equal to 0.764. Figures 11.8 and 11.9 show
that ep stays below this limiting value at all times.
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Fig. 11.8 Graphs of the semimajor axis and eccentricity of the giant planet (black) and binary
(red) of � Cephei (top) and its longitude of periastron and reduced Delaunay momentum (bottom)
in a Kozai resonance (Haghighipour 2004; Haghighipour 2005a). As expected, the longitude of
the periastron of the giant planet oscillates around 90ı and its reduced Delaunay momentum is
constant

Fig. 11.9 Graphs of the eccentricity and inclination of the giant planet of � Cephei in a Kozai
Resonance (Haghighipour 2004; Haghighipour 2005a). As expected, these quantities have similar
periodicity and are 180ı out of phase

11.2.1.2 Application to Binaries Gliese 86 and HD41004

The application of the stability analysis of Section 11.2.1 to the planet of the binary
Gliese 86 indicates that the orbit of this planet is stable. This is not surprising since
with a semimajor axis of 0.11 AU, this planet is close enough to the primary star to
be immune from the perturbation of the other stellar companion.
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In the case of HD41004, the application of the stability analysis of Section 11.2.1
is not straightforward; the orbital parameters of the planet in this binary has not been
uniquely determined. The value of the semimajor axis of this planet varies between
1.31 and 1.7 AU, and its orbital eccentricity seems to be quite high (between 0.39
and 0.74) (Zucker et al. 2004). Since the eccentricity of the binary HD41004 is
unknown, to determine the stable zone of this system, simulations were carried out
for different sets of orbital parameters as a function of the binary eccentricity. The
results indicate that the stability of the planet is strongly correlated with its orbital
eccentricity and the eccentricity of the binary. Simulations show that in all cases,
in order to obtain stability, binary eccentricity has to be smaller than 0.6. For high
values of the planet’s eccentricity (e.g., 0.74), the value of the binary eccentricity
has to become even smaller (less than 0.15) to ensure that the orbit of the planet will
stay stable.

11.2.2 Stability of P-Type Orbits

Although, no circumbinary planet has yet been discovered, stability of P-type orbits
has been a subject of research for many years (Ziglin 1975; Szebehely 1981; Dvorak
1984, 1986, 1989; Kubala et al. 1993; Holman and Wiegert 1999; Broucke 2001;
Pilat-Lohinger et al. 2003; Musielak et al. 2005). In general, a planet in a P-type
orbit is stable if its distance from the binary is so large that the perturbations of the
binary stars cannot disturb its motion. Such a stable planet cannot, however, orbit
the binary too far from its center of mass since galactic perturbations and the effects
of passing stars may make the orbit of the planet unstable. As shown by Dvorak
(1984), for circular binaries, this distance is approximately twice the separation of
the binary, and for eccentric binaries (with eccentricities up to 0.7) the stable region
extends to four time the binary separation. Subsequent studies by Dvorak (1986,
1989) and Holman and Wiegert (1999) have shown that Dvorak’s 1984 results can
be formulated by introducing a critical semimajor axis below which the orbit of the
planet will be unstable;

ac=ab D .1:60˙ 0:04/C .5:10˙ 0:05/eb C .4:12˙ 0:09/


C .�2:22˙ 0:11/e2
b C .�4:27˙ 0:17/eb
C .�5:09˙ 0:11/
2

C .4:61˙ 0:36/e2
b


2 : (11.4)

Figure 11.10 shows the value of ac for different values of the binary eccentricity.
Similar to S-type orbits, the ˙ signs in Eq. (11.4) define a lower and an upper value
for the critical semimajor axis ac , and set a transitional region that consists of a mix
of stable and unstable orbits. We refer the reader to Holman and Wiegert (1999),
Pilat-Lohinger et al. (2003) and Pilat-Lohinger and Funk (2006) for more details.
Using this stability criteria in analysis of their observational data (Trilling et al.
2007) have been able to detect circumbinary dust bands, possibly resulted from the
collision of planetesimal, around several close binary stars (first chapter, Figs. 1.8
and 1.9).
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Fig. 11.10 Critical semimajor axis as a function of the binary eccentricity in a P-type system.
The squares correspond to the result of stability simulations by Holman and Wiegert (1999) and
the triangles represent those of Dvorak et al. (1989). The solid line corresponds to Eq. (11.4). As
indicated by Holman and Wiegert (1999), the figure shows that at outer regions, the stability of the
system fades away

A dynamically interesting feature of a circumbinary stable region is the appear-
ance of islands of instability. As shown by Holman and Wiegert (1999), islands
of instability may develop beyond the inner boundary of the mixed zone, which
correspond to the locations of .n W 1/ mean-motion resonances. The appearance
of these unstable regions have been reported by several authors under various cir-
cumstances (Hénon and Guyot 1970; Dvorak 1984, 1989; Rabl and Dvorak 1988).
Extensive numerical simulations would be necessary to determine how the overlap-
ping of these resonances would affect the stability of P-type binary-planetary orbits.

11.2.3 Stability of L-Type Orbits

The L-type orbit, in which an object librates around one of the binary’s Lagrangian
triangular points (Fig. 11.2), may not be entirely relevant to planetary motions
in double star systems. The reason is that such an orbital configuration requires
M2=.M1 CM2/ � 1=26, which is better fulfilled in systems consisting of a star
and a giant planet. Recent simulation by Haghighipour et al. (2008) have shown
that in systems with a close-in giant planet, L-type planetary orbits with low
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eccentricities can be stable for long times. We refer the reader to Section 11.3.2
and the paper by Pilat-Lohinger et al. (2003) for more details on the stability of
these orbits.

11.3 Terrestrial Planets in Binaries

In the previous section, a general analysis of the dynamics of a planet in a binary star
system was presented. However, within the context of habitability, the interest falls
on the motion and long-term stability of Earth-like planets. It would be interesting to
extend studies of the habitability, similar to those by Jones et al. (2001) and Menou
and Tabachnik (2003), to binary star system, in particular those in which a giant
planet already exists, and analyze the dynamics of fictitious Earth-like planets in
such complex environments. In this section, we focus on this issue.

In general, four different types of orbits are possible for a terrestrial planet in a
binary system that hosts a giant planet:

� TP-i: the terrestrial planet is inside the orbit of the giant planet.
� TP-o: the terrestrial planet is outside the orbit of the giant planet.
� TP-t: the terrestrial planet is a Trojan of the primary (or secondary) or the giant

planet.
� TP-s: the terrestrial planet is a satellite of the giant planet.

In principle, the study of the stability of these orbits requires the analysis of the
dynamics of a complicated N-body system consisting of two stars, a giant planet,
and a terrestrial-class object. Except for a few special cases, the complexities of
these systems do not allow for an analytical treatment of their dynamics, and require
extensive numerical integrations. Those special cases are:

� Binaries with semimajor axes larger then 100 AU in which the secondary star is
so far away from the primary (the planet-hosting star) that its perturbative effect
can be neglected (Norwood and Haghighipour 2002).

� Binaries in which the giant planet has an orbit with a very small eccentricity
(almost circular).

� Binaries in which, compared to the masses of the other bodies, the mass of the
terrestrial planet is negligible. In these systems, within the framework of ER3BP,
one can define curves of zero-velocity, the barriers of the motion of the fictitious
terrestrial planet, using the Jacobi constant (Dvorak and Freistetter 2003).

When numerically studying the dynamics of a terrestrial planet in a binary-
planetary system, integrations have to be carried out for a vast parameter-space.
These parameters include the semimajor axes, eccentricities, and inclinations of the
binary and the two planets, the mass-ratio of the binary, and the ratio of the mass
of the giant planet to that of its host star. The angular variables of the orbits of the
two planets also add to these parameters. Although such a large parameter-space
makes the numerical analysis of the dynamics of the system complicated, numerical
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integrations are routinely carried out to study the dynamics of terrestrial planets in
binary-planetary systems. The reason is that such numerical computations allows
for the investigation of the stability of many terrestrial planets and for a grid of their
initial conditions in one or only a few simulations. Given the small size of these
objects compared to that of a giant planet (e.g., 1/300 in case of Earth and Jupiter),
to the zeroth order of approximations, the effect of a terrestrial planet on the motion
of a giant planet can be ignored, and the terrestrial planet can be considered as a test
particle. This simplification makes it possible to study the stability of thousands of
possible orbits of a terrestrial-class body in one integration. Several studies of the
dynamical evolution of a terrestrial planet in a binary system have used this simpli-
fication and have shown that the final results are quite similar to the results of the
numerical integrations of an actual four-body system (Dvorak et al. 2004b; Érdi and
Sándor 2005).

In the rest of this section, we present the results of the studies of the dynamics of
a terrestrial planet, focusing primarily on TP-i and TP-o orbits.6 Since no extrasolar
terrestrial planet has yet been discovered, the only possible approach for a detailed
dynamical analysis of the orbit of such an object in a binary system is to consider
a specific extrasolar planetary system in a double star, and study the dynamics of a
fictitious terrestrial planet for different values of its orbital elements, and those of the
binary and its giant planets. As an example, we will consider the binary-planetary
system of � Cephei. For the orbital elements of this system, we use the values given
by Haghighipour (2006) and Neuhäuser et al. (2007).

11.3.1 Stability of TP-i and TP-o Orbits

A study of the dynamics of a full four-body system consisting of a terrestrial planet
in a TP-i or TP-o orbit in � Cephei indicates that the orbit of this planet can
only be stable in close neighborhood of the primary star and outside the influ-
ence zone7 of the giant planet (Fig. 11.11, Haghighipour 2006). Integrations also
show that, while the habitable zone of � Cephei is unstable (Dvorak et al. 2003a;
Haghighipour 2006), it is possible for an Earth-like planet to have a stable TP-i or-
bit in a region between 0.3 and 0.8 AU from the primary star, and when its orbit is
coplanar with that of the giant planet with an inclination less than 10ı. In the region
outside the orbit of the giant planet, i.e., when the terrestrial planet is in a TP-o orbit,
the perturbations from the giant planet and the secondary star affect the stability of
this object. For instance, for the values of the binary eccentricity equal to eb D 0:25,
0.35, and 0.45, the periastron of the secondary star will be as close as 13.9, 12.0,

6 The stability of TP-t and TP-s orbits has recently been studies in a few articles by Schwarz et al.
(2007a,b), Nauenberg (2002) and Domingos et al. (2006).
7 The influence zone of a planetary object with a massmp around a star with a massM is defined as
the region between 3RH �ap.1� ep/ and 3RH Cap.1C ep/, where ap and ep are the semimajor
axis and eccentricity of the planet, and RH D ap.1� ep/.mp=3M/1=3 is its Hill radius.
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Fig. 11.11 Graph of the lifetime of an Earth-size object in a circular orbit around the primary
of � Cephei. The habitable zone of the primary has been indicated by HZ. No planet was placed
in the region between the aphelion and perihelion distances of the giant planet of the system. As
shown here, only Earth-size planets close to the primary star maintain their orbits for long times
(Haghighipour 2006)

and 10.2 AU, respectively. At these distances, the secondary will have strong effects
on the stability of the orbit of a terrestrial planet with a semimajor axis between 2.5
and 5.8 AU. Simulations show that no orbit survives in this region longer than ap-
proximately 105 years. For TP-o orbits inside 2.5 AU, the perturbation of the giant
planet is the main factor in the instability of the orbit of the terrestrial planet.

To study the effect of orbital inclination on the stability of a terrestrial planet in
� Cephei, the region between the host-star and the giant planet of this system was
examined for different values of the inclination of a fictitious terrestrial-size ob-
ject, with and without the secondary star (Pilat-Lohinger et al. 2004). Figure 11.12
shows the results. While dynamical models using two massive bodies (i.e., primary
star and the giant planet) show a vast region of stability for a massless terrestrial
planet (gray area in the lower panel of Fig. 11.12), models with three massive bodies
(i.e., primary, secondary, and the giant planet), show a decrease in the stable region
(see upper panel of Fig. 11.12). They also show an arc-like chaotic path with an is-
land of stability around 1 AU, which corresponds to the 3:1 mean motion resonance
with the giant planet.

The instability of the orbit of a terrestrial planet in � Cephei system (in particular
in its habitable zone) has been studied only for prograde orbits. Recently in an ar-
ticle by Gayon and Bois (2008), the authors investigated the stability of retrograde
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Fig. 11.12 Stability maps for a fictitious terrestrial planet in the � Cephei system. Dark regions
represent chaotic zones and gray regions correspond to stability. The upper graph shows the sta-
bility of a terrestrial planet in a restricted four-body problem (R4BP) [i.e., � Cephei binary C
detected planet C fictitious (massless) planet]. The lower panel shows the results in a restricted
three-body problem (R3BP) [i.e., primary C detected planet C fictitious planet] (Pilat-Lohinger
et al. 2004)
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orbits in extrasolar planetary systems with multiple planets and showed that in sys-
tems were prograde orbits are unstable (e.g., HD 73256), retrograde orbits may
survive for long times. The stability of retrograde orbits in planetary systems has
been known for many years (Harrington 1972, 1975, 1977; Donnison and Mikulskis
1994). Such long-term stable orbits have also been observed among Jupiter’s retro-
grade irregular satellites (Jewitt and Haghighipour 2007). To investigate whether
retrograde TP-i and TP-o orbits can survive in a binary-planetary system, the mo-
tion of a massless terrestrial planet in these orbits was simulated for 1 Myr in the
binary of � Cephei. Figure 11.13 shows the results. From this figure one can see that
for semimajor axes smaller than 1.8 AU, a TP-i orbit is stable. However, at close
distances to the giant planet, this orbit suffers from strong perturbations from this
object and becomes unstable (straight long lines around 2 AU where the eccentric-
ity of terrestrial planet reaches unity). Figure 11.13 also shows that for a TP-o orbit,
a stability region exists for initial semimajor axes ranging from 2.5 to 7.2 AU, with
the minimum perturbation received at the semimajor axis of 3.2 AU. Beyond 7.2
AU, terrestrial planet becomes unstable due to the perturbation from the secondary
star. The three small peaks in the stable region of Fig. 11.13 correspond to mean-
motion resonances between the terrestrial planet and the giant planet. A comparison
between this figure and Fig. 11.11, in which the lifetime of a terrestrial planet in a

Fig. 11.13 Graph of the eccentricity of a massless terrestrial planet in a retrograde orbit in the
� Cephei system. Integrations were carried out for 1 Myr within a restricted four-body system.
The three peaks at 3.4, 5.3, and 6.1 AU correspond to 2:1, 4:1, and 5:1 mean-motion resonances
between the terrestrial and the giant planets
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Fig. 11.14 Stability diagram for a retrograde TP-i orbit for different values of the orbital incli-
nation. The binary eccentricity is 0.35. Stability in shown in blue whereas yellow corresponds to
chaotic orbits

prograde circular orbit is shown, clearly indicates that � Cephei has a large stable
region for retrograde orbits, in particular in the habitable zone of its primary star.

Figure 11.14 shows the results of the integrations of a terrestrial planet in a ret-
rograde TP-i orbit in the � Cephei system, in terms of the initial orbital inclination
of this object. The initial semimajor axis of the terrestrial planet was varied between
0.4 and 2.0 AU, and its initial orbital inclination was chosen to be between 135ı and
180ı. The eccentricity of the binary was eb D 0:35. As shown in this figure, the up-
per stability limit for a terrestrial planet in retrograde orbits is 1.8 AU corresponding
the inclinations between 165ı and 180ı, and the lower limit is 0.8 AU for an inclina-
tion of 145ı. For more inclined orbits of a fictitious terrestrial planet, this lower limit
drops to 0.4 AU. Simulations for different values of the binary eccentricity indicate
that the direct effect of the binary orbit on the stability of a terrestrial planet in a
retrograde TP-i orbit is negligible, and it only affects the eccentricity of the orbit of
the giant planet (ıeGP D 0:08; 0:1; 0:11 for eb D 0:25; 0:35; 0:45, respectively). It
is the latter that affects the orbit of the fictitious planet in a TP-i orbit.

The situation is different for a retrograde TP-o orbit. As shown in Fig. 11.15,
although the effect of the 2:1 resonance with the giant planet at 3.1–3.6 AU makes
the orbit of a retrograde terrestrial planet unstable, large stable regions, especially

I
Fig. 11.15 Stability diagram for a retrograde TP-o orbit for different values of the orbital inclina-
tion. The binary eccentricity is 0.25, 0.35, and 0.45 from top to bottom. Stability in shown in blue
whereas yellow corresponds to chaotic orbits. As shown here, instability extends to large distances
as the binary eccentricity increases
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for lower values of the binary eccentricity, exist beyond this region and for different
values of the initial inclination of the orbit of the terrestrial planet. For instance, for
eb D 0:25, the region of stability extends from 3.5 to 5.8 AU for the values of the
inclinations ranging from 145ı to 180ı. At the 2:1 mean-motion resonance also a
stable region exists for inclinations between 160ı and 180ı, when the eccentricity
of the terrestrial planet is smaller than 0.2. In the case of a binary with eb D 0:35

(Fig. 11.15, middle graph), the unstable region corresponding to the 2:1 resonance
extends to higher inclinations. For the values of the eccentricity of the binary larger
than 0.45, instability extends to almost all inclinations.

11.3.2 Stability of TP-t Orbits

An interesting case of a stable orbit is when the terrestrial planet is in a Lagrange
equilibrium point either at an angular separation of 60ı ahead of a giant planet or
behind it (Fig. 11.2). In the simplified dynamical model of the restricted (circular
and elliptic) three-body system, many investigations exist concerning the stability
of such a planet in terms of the mass-ratio of the planet-hosting star and its giant
planet (Rabe 1961), and the eccentricity of the giant planet’s orbit (Deprit and Rom
1970). Within the context of extrasolar planetary systems, stability of the orbit of a
terrestrial planet in a Lagrangian point has been studied by Laughlin and Chambers
(2002), Menou and Tabachnik (2003), Sándor and Érdi (2003), Érdi et al. (2004),
Schwarz (2005), Schwarz et al. (2007a,b), Schwarz et al. (2009). Recent simulations
by Haghighipour et al. (2008) and Capen et al. (2009) show that terrestrial planets
as Trojans of giant planets can also exist in systems where the giant planet transits
its host star. Figure 11.16 shows an example of such systems. In this figure, a solar-
type star is host to a Jupiter-size transiting planet in a 3-day circular orbit. The graph
shows the stability of an Earth-size object for different values of its semimajor axis
and orbital eccentricity. As shown here, a terrestrial planet in a 1:1 resonance with
the giant planet can maintain a stable orbit for eccentricities ranging from 0.2 to 0.5.

To study the stability of TP-t orbits in the � Cephei system, the orbit of a terres-
trial planet was integrated in a Lagrangian point of the giant planet and in a general
four-body system. Because as shown by Schwarz et al. (2007a), in order for a small
body to have a stable Trojan orbit in an elliptical, restricted, three-body system, the
orbital eccentricity of the giant planet cannot exceed 0.3, the eccentricity of the giant
planet of � Cephei was set to this value. Figure 11.17 shows the results. As shown
here, a region of stability exists for a Trojan terrestrial planet around the giant planet.
Small variations in the orbital eccentricity of the giant planet, which are due to the
perturbation of the secondary companion, cause the apparent asymmetry in the lo-
cation of the stable orbits around the two Lagrangian points. These regions contain
very stable orbits with eccentricities smaller than 0.2. The extension of semimajor
axis associated with this asymmetry is small (only 2.5%). A transition from an ec-
centricity of 0.35 for the orbits on the edge of the stable zone, to 0.5 for orbits in the
unstable region are also shown.
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Fig. 11.16 Graph of the stability of an Earth-sized planet in a system consisting of a Sun-like
star and a transiting Jupiter-mass object in a 3 days orbit. Blue shows stability whereas red corre-
sponds to chaos. An island of stability corresponding to the 1:1 mean-motion resonance is shown
(Haghighipour et al. 2008; Capen et al. 2009)

Fig. 11.17 Stability diagram for a TP-t orbit for the region around the Lagrange points L4 and L5
of the giant planet in the � Cephei system. The angular distance to the Lagrange point are shown
on the horizontal axes and the distance in AU is in the direction of the line connecting the host-star
to the Lagrange point. The dark region shows the stable region
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11.4 Habitable Planet Formation in Binaries

As seen in previous chapters, planet formation in close and moderately close binary
star systems is an active topic of research. Whether models of giant and terrestrial
planet formation around single stars can be extended to binary systems depends
strongly on the orbital elements of the binary, its mass-ratio, and the types of its
stars. While the detection of systems such as L1551 (Fig. 11.18) implies that planet
formation in binaries may proceed in the same fashion as around single stars, sim-
ulations such as those by Heppenheimer (1978), Artymowicz and Lubow (1994),
Whitmire et al. (1998) and Pichardo et al. (2005) indicate that a stellar component
in an eccentric orbit can considerably affect planet formation by

Fig. 11.18 Interferometric observation of the binary system L1551 (Rodriguez et al. 1998). Two
compact sources are evident in the map. The separation of the binary is 45 AU and the disk around
each core extends to approximately 10 AU. The mass of each disk is approximately 0.06 solar-
masses
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Fig. 11.19 Disk truncation in and around binary systems (Artymowicz and Lubow 1994). The top
graphs show circumstellar disk in a binary with a mass-ratio of 0.3. Note the disk truncation when
the eccentricity of the binary is increased from 0 to 0.3. The bottom graphs show similar effect in
a circumbinary disk. The mass-ratio is 0.3 and the binary eccentricity is 0.1. The numbers inside
each graph represent the time in units of the binary period. The axes are in units of the binary
semimajor axis

� Increasing the relative velocities of planetesimals, which may cause their colli-
sions to result in breakage and fragmentation

� Truncating the circumprimary disk of embryos to smaller radii, which causes
the removal of material that may be used in the formation of terrestrial planets
(Fig. 11.19)

� Destabilizing the regions where the building blocks of these objects may exist

Prior to the detection of planets in binary stars, studies of planet formation in
these systems were limited to only some specific or hypothetical cases. For instance,
Heppenheimer (1974, 1978), Drobyshevski (1978), Diakov and Reznikov (1980),
Whitmire et al. (1998), Kortenkamp et al. (2001) studied planet formation in binaries
where the system consisted of Sun and Jupiter, and the focus was on the effect
of Jupiter on the formation of inner planets of our solar system. Whitmire et al.
(1998) studied planet formation in binaries, in particular those resembling some of
extrasolar planets, in which the secondary star has a mass in the brown dwarf regime.
Barbieri et al. (2002), Quintana et al. (2002), Lissauer et al. (2004) also studied
the late stage of terrestrial planet formation (i.e., growth of planetary embryos to
terrestrial-size objects) in the ˛ Centauri system.

The detection of the giant planet of � Cephei changed this trend. By providing
a real example of a planetary system in a binary star, this discovery made theorist
take a deeper look at the models of planet formation and focus their efforts on ex-
plaining how this planet was formed and whether such systems could harbor smaller
planetary objects. The results of their works, however, have made the matter quite
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complicated. For instance, while simulations as those presented in the chapter by
Quintana and Lissauer imply that the late stage of terrestrial planet formation may
proceed successfully in binary star systems and result in the formation of terrestrial-
class objects, simulations of earlier stages have not been able to model the accretion
of planetesimals to planetary embryos. On the other hand, as indicated by Marzari
and co-authors in the seventh chapter, despite the destructive role of the binary com-
panion, i.e., increasing the relative velocities of planetesimals, which causes their
collisions to result in erosion, growth of these objects to larger sizes may still be
efficient as the effect of the binary companion can be counterbalanced by dissipa-
tive forces such as gas-drag and dynamical friction. As shown by these authors, for
planetesimals of comparable sizes, the combined effect of gas-drag and the gravi-
tational force of the secondary star may result in the alignment of the periastra of
small objects and increase the efficiency of their accretion by reducing their relative
velocities (Marzari et al. 1997; Marzari and Scholl 2000). However, the efficiency
of this mechanism depends on the size of the planetesimals,8 the eccentricity of
the planetesimals disk, and the orbital elements of the binary system. As shown by
Paardekooper et al. (2008), depending on the perturbation of the secondary star, the
eccentricity of the disk may reach a limiting value below which the encounter veloc-
ities of planetesimals are within a factor 2 of their corresponding values in a circular
disk, and above that, the encounter velocities become so high that planetesimal ac-
cretion is inhibited. The application of these simulations to the ˛ Centauri system
has shown that the growth of planetesimals to planetary embryos may be impossible
within 0.5 AU of the primary star of this system (Thébault et al. 2008). However,
simulations by Thébault et al. (2009) and Marzari et al. (2009) indicate that this pro-
cess can be efficient around ˛ Centauri B, and planetary embryos can form within
the terrestrial/habitable region of this star. Similar results have been obtained by
Xie and Zhou (2008, 2009) when numerically integrating a slightly inclined disk
of planetesimals around the primary of � Cephei. As shown by these authors, the
gas-drag causes the sorting of inclined planetesimals according to their sizes, and
increases the efficiency of their accretion by decreasing their relative velocities.
For larger values of planetesimals inclinations, accretion is more efficient in wide
(e.g., >70 AU) binaries (Marzari et al. 2009).

As one can notice, a common starting point in all these simulations is after km-
sized object or larger bodies have already formed. The reason is that among the four
stages of planet formation, that is,

� Coagulation of dust particles and their growth to centimeter-sized objects
� Growth of centimeter-sized particles to kilometer-sized bodies (planetesimals)
� Formation of Moon- to Mars-sized protoplanets (also known as planetary

embryos) through the collision and accretion of planetesimals
� Collisional Growth of planetary embryos to terrestrial-sized objects

8 For colliding bodies with different sizes, depending on the size distribution of small objects, and
the radius of each individual planetesimal, the process of the alignment of periastra may instead
increase the relative velocities of the two objects, and cause their collisions to become eroding
(Thébault et al. 2006).
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the last two can be more readily studied in a system of double stars. At these
stages, the dominant force in driving the dynamics of objects is their mutual in-
teractions through their gravitational forces, and the simulations can be done using
N-body integrations. In tenth chapter of this volume, Quintana and Lissauer have
presented the results of a series of such simulations, and investigated terrestrial
planet formation in binary systems such as ˛ Centauri. Given that the late stage
of terrestrial planet formation is a slow process, which may take a few hundred mil-
lion years, it is possible that during the first few million years of this process, giant
planets are also formed at large distances from the planet-hosting star. Similar to
terrestrial planet formation in our solar system, these objects will play a vital role
in the formation, distribution, and water-content of terrestrial-class objects in binary
systems. Within the context of habitable planet formation, this implies that the for-
mation of terrestrial planets has to be simulated while the effects of the secondary
and the giant planet(s) of the system are also taken into account.

11.4.1 Habitable Zone

Life, as we know it, requires liquid water. A potentially habitable planet has to be
able to maintain liquid water on its surface and in its atmosphere. The capability of
a planet in maintaining water depends on many factors such as its size, interior dy-
namics, atmospheric circulation, and orbital parameters (semimajor axis and orbital
eccentricity). It also depends on the brightness of the central star at the location of
the planet. These properties, although at the surface unrelated, have strong intrinsic
correlations, and combined with the luminosity of the star, determine the system’s
habitable zone. For instance, planet’s interior dynamics and atmospheric circulation
generate a CO2 cycle, which subsequently results in greenhouse effect. The latter
helps the planet to maintain a uniform temperature. This process can, however, be
disrupted if the planet is too close or too far from the central star. In other words,
the distance of the planet from the central star must be such that the amount of the
radiation received by the planet allow liquid water to exist on its surface and in its
atmosphere. The orbital elements of the planet, on the other hand, have to ensure
that this object will maintain a stable orbit at all times.

The width of a habitable zone and the location of its inner and outer boundaries
vary with the luminosity of the central star and the planet’s atmospheric circulation
models (Menou and Tabachnik 2003; Jones et al. 2005, 2006). Conservatively, the
inner edge of a habitable zone can be considered as the distance closer than which
water on the surface of the planet evaporates due to a runaway greenhouse effect.
In the same manner, the outer edge of the habitable zone is placed at a distance
where, in the absence of CO2 clouds, runaway glaciation will freeze the water and
creates permanent ice on the surface of the planet. Using these definitions of the
inner and outer boundaries of a habitable zone, Kasting et al. (1993) have shown
that a conservative range for the habitable zone of the Sun would be between 0.95
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Fig. 11.20 Habitable zone (Kasting et al. 1993)

and 1.15 AU from this star (Fig. 11.20). As noted by Jones et al. (2005), however, the
outer edge of this region may extend to farther distances (Forget and Pierrehumbert
1997; Williams and Kasting 1997; Mischna et al. 2000) close to 4 AU.

Since the notion of habitability is based on life on Earth, one can calculate the
boundaries of the habitable zone of a star by comparing its luminosity with that of
the Sun. For a star with a surface temperature T and radius R, the luminosity L and
its brightness F.r/ at a distance r are given by

F.r/ D 1

4
L.R; T /r�2 D �T 4R2r�2 ; (11.5)

where � is the Boltzmann constant. Using Eq. (11.5) and the fact that Earth is in the
habitable zone of the Sun, the radial distances of the inner and outer edges of the
habitable zone of a star can be obtained from

r D


T

TS

�2 

R

RS

�
rE : (11.6)

In this equation, TS and RS are the surface temperature and radius of the Sun, re-
spectively, and rE represents the distance of Earth from the Sun (i.e., the inner and
outer edges of Sun’s habitable zone). Using Eq. (11.6), the habitable zone of a star
can be defined as a region where an Earth-like planet receives the same amount of
radiation as Earth receives from the Sun, so that it can develop and maintain similar
habitable conditions as those on Earth.
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11.4.2 Formation of Habitable Planets in S-Type Binaries

As mentioned earlier, a potentially habitable planet has to have a stable orbit in the
habitable zone of its host star. Simulations of the stability of an Earth-size planet
in the � Cephei system (Fig. 11.11) indicate that in an S-type binary, the region of
the stability of this object is close to the primary, where the terrestrial planet is safe
from the perturbations of the giant planet and the secondary star. This implies that
in order for the primary to host a habitable planet, its habitable zone has to also fall
within those distances where the orbit of an Earth-like planet is stable. Within this
framework, Haghighipour and Raymond (2007) considered a binary star with a giant
planet in an S-type orbit and simulated the late stage of the formation of Earth-like
planets in the habitable zone of its primary star. In their simulations, these authors
assumed that

� The primary star is Sun-like with a habitable zone extending from 0.9 AU to 1.5
AU (Kasting et al. 1993).

� A Jupiter-mass planet has already formed in a circular orbit at 5 AU from the
primary star.

� The collisional growth of planetesimals has been efficient and has formed a disk
of planetary embryos (e.g., via oligarchic growth; Kokubo and Ida 1998).

� The water-mass fraction of embryos is similar to the current distribution of water
in primitive asteroids of the asteroid belt (Abe et al. 2000). That is, embryos
inside 2 AU are dry, the ones between 2 and 2.5 AU contain 1% water, and those
beyond 2.5 AU have a water-mass fraction of 5% (Raymond et al. 2004, 2005a,b;
Raymond 2006a,b).

� The initial iron content for each embryo is obtained by interpolating between the
values of the iron contents of the terrestrial planets (Lodders and Fegley 1998;
Raymond et al. 2005a,b), with a dummy value of 40% in place of Mercury be-
cause of its anomalously high iron content.

The model of Haghighipour and Raymond (2007) also includes a circumprimary
disk of 115 Moon-to Mars-sized bodies, with masses ranging from 0.01 to 0.1 Earth-
masses. These objects were randomly distributed between 0.5 and 4 AU by 3 to 6
mutual Hill radii. The masses of embryos were increased with their semimajor axes
.a/ and the number of their mutual Hill radii .�/ as a3=4�3=2 (Raymond et al.
2004). The surface density of the disk was assumed to vary as r�1:5, where r is the
radial distance from the primary star, and was normalized to a density of 8.2 g/cm2

at 1 AU. Figure 11.21 shows the graph of one of such disks where the total mass is
approximately four Earth-masses.

The late stage of terrestrial planet formation (Wetherill 1996) was simulated by
numerically integrating the orbits of the planetary embryos for different values of
the mass (0.5, 1.0, 1.5 solar-masses), semimajor axis (20, 30, 40 AU), and orbital
eccentricity (0, 0.2, 0.4) of the secondary star. The collisions among planetary em-
bryos (which are the consequence of the increase of their eccentricities due to their
interactions with the secondary star (Charnoz et al. 2001) and the giant planet) were
considered to be perfectly inelastic, with no debris generated, and no changes in the
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Fig. 11.21 Radial distribution of original protoplanetary objects (Haghighipour and Raymond
2007)

morphology and structures of the impacting bodies. Similar to the current models of
the formation of terrestrial planets in our solar system, Haghighipour and Raymond
(2007) adopted the model of Morbidelli et al. (2000) in which water-rich bodies
originating in the solar system’s asteroid belt were the primary source of Earth’s
water.9 The delivery of water to a terrestrial planet was then facilitated by allowing
transfer of water from one embryo to another during their collision. Figure 11.22
shows the results of several of this simulations for a binary with a mass-ratio of 0.5.
The inner planets of the solar system are also shown for a comparison. As shown
here, several Earth-size planets, some with substantial amount of water, are formed
in the habitable zone of the primary star.

An interesting result shown in Fig. 11.22 is the relation between the orbital eccen-
tricity of the stellar companion and the water content of the final bodies. As shown
here, in systems where the secondary star has larger orbital eccentricity, the amount
of water in final planets is smaller. This can be seen more clearly in Fig. 11.23,
where the final assembly and water contents of planets are shown for a circular and
an eccentric binary. As shown here, for identical initial distributions of planetary
embryos (i.e., simulations on the same rows), the total water content of the system
on the left, where the secondary star is in a circular orbit, is higher than that of the
system on the right, where the orbit of the secondary is eccentric. This can be at-

9 It is important to emphasize that the delivery of water to the inner part of the solar system might
not have been entirely due to the radial mixing of planetary embryos. Smaller objects such as
planetesimals in the outer region of the asteroid belt, and comets originating in the outer solar
system, might have also contributed Raymond et al. (2007).
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Fig. 11.22 Results of the simulations of habitable planet formation in a binary-planetary system
with 
 D 0:5, for different values of the eccentricity .eb/ and semimajor axis .ab/ of the stellar
companion. The inner planets of the solar system are shown for a comparison. As seen from this
figure, several Earth-like planets with substantial amount of water are formed in the habitable zone
of the star (Haghighipour and Raymond 2007)

tributed to the fact that in an eccentric binary, because of the close approach of the
secondary star to the disk of planetary embryos, most of the water-carrying objects
at the outer regions of the disk leave the system prior to the formation of terrestrial
planets (Artymowicz and Lubow 1994; David et al. 2003). Simulations indicate that
on average 90% of embryos in these systems were ejected during the integration
(i.e., their semimajor axes exceeded 100 AU) and among them, 60% collided with
other protoplanetary bodies prior to their ejection from the system. A small frac-
tion of embryos .�5%) also collided with the primary or secondary star, or with the
Jupiter-like planet of the system (Haghighipour and Raymond 2007).

In a binary-planetary system, the destabilizing effect of the secondary star is en-
hanced by the presence of the giant planet. Similar to our solar system, in these
binaries, the Jovian-type planet perturbs the motion of embryos and enhances their
radial mixing and the rate of their collisions by transferring angular momentum
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Fig. 11.23 The left column shows the results of three simulations for different distribution of
planetary embryos in a binary with equal-mass Sun-like stars. The orbit of the secondary star is
circular with a radius of 30 AU. The right column shows the results of simulations for the same
binary stars and similar distributions of planetary embryos where the secondary is in an orbit with
a semimajor axis of 40 AU and eccentricity of 0.2 (Haghighipour and Raymond 2007)

from the secondary star to these objects (Chambers and Cassen 2002; Levison and
Agnor 2003; Raymond et al. 2004; Raymond 2006a). Figure 11.24 shows this in
more details. The binary systems in these simulations have mass-ratios of 0.5, and
their secondary stars are at 30 AU. The binary eccentricity in these systems is equal
to 0, 0.2 and 0.4, from top to bottom. As shown here, as the eccentricity of the binary
increases, the interaction of the secondary star with the giant planet of the system
becomes stronger (see the final eccentricity of the giant planet), which causes closer
approaches of this object to the disk of planetary embryos and enhancing collisions
and mixing among these bodies. The eccentricities of embryos, at distances close
to the outer edge of the protoplanetary disk, rise to higher values until these bodies
are ejected from the system. In binaries with smaller perihelia, the process of trans-
ferring angular momentum by means of the giant planet is stronger and the ejection
of protoplanets occurs at earlier times. As a result, the total water budget of such
systems is small. A comparison between Figs. 11.24 and 11.25, where simulations
were carried out for a binary without a giant planet, illustrates the significance of
the intermediate effect of the giant planet in a better way. As shown by Fig. 11.25,
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Fig. 11.24 Variation of water contents of the final planets with the eccentricity of the stellar com-
panion. In these simulations, the primary star has a mass of 0.5 solar-masses, the semimajor axis of
the binary is 30 AU, and its eccentricity is equal to 0,0.2, and 0.4, from top to bottom (Haghighipour
and Raymond 2007)
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Fig. 11.25 Habitable planet formation in binary systems with no Jupiter-like planet. The stars of
each binary are Sun-like and their separations are 30 AU. The orbital eccentricity of the secondary
star is 0, 0.2, and 0.4, for the systems on the left, middle, and right, respectively. Note that compared
with previous simulations, the time of integration has to increase to 200 Myr in order to form
comparable terrestrial-class planets (Haghighipour and Raymond 2007)

it is still possible to form terrestrial-class planets, with significant amount of water,
in the habitable zone of the primary star. However, because of the lack of the trans-
fer of angular momentum through the Jovian-type planet, the radial mixing of these
objects is slower and terrestrial planet formation takes longer.

Another interesting result depicted by Fig. 11.25 is the decrease in the number
of the final terrestrial planets and increase in their sizes and accumulative water
contents with increasing the eccentricity of the secondary star. As shown here, from
left panel to the right, as the binary eccentricity increases, the close approach of
the secondary star to the protoplanetary disk increases the rate of the interaction of
these objects and enhances their collisions and radial mixing. As a result, more of the
water-carrying embryos participate in the formation of the final terrestrial planets. It
is important to emphasize that this process is efficient only in moderately eccentric
binaries. In binary systems with high eccentricities (small perihelia), embryos may
be ejected from the system (David et al. 2003), and terrestrial planet formation may
become inefficient.

The results of the simulations without a giant planet imply a trend between the
location of the outer terrestrial planet and the perihelion of the binary. In Fig. 11.26
this has been shown for a set of different simulations. The top panel in this figure
represents the semimajor axis of the outermost terrestrial planet, aout, as a function
of the binary eccentricity, eb. The bottom panel shows the ratio of this quantity to
the perihelion distance of the binary, qb . As shown here, terrestrial planet formation
in binaries without a giant planet seems to favor the region interior to approximately
0.19 times the binary perihelion distance. This has also been noted by Quintana et al.
(2007) (see their Fig. 9) in their simulations of terrestrial planet formation in close
binary star systems. Given that the location of the inner edge of the habitable zone
is at 0.9 AU, this trend implies that a binary perihelion distance of approximately
0.9/0.19 D 4.7 AU or larger may be necessary to allow habitable planet formation.
According to these results, habitable planet formation may not succeed in bina-
ries with Sun-like primaries that have stellar companions with perihelion distances
smaller than �5 AU. This, of course, is not a stringent condition, and is neither sur-
prising since a moderately close binary with a perihelion distance of �5 AU would
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Fig. 11.26 Top panel: Semimajor axis of the outermost terrestrial planet. Bottom panel: The ratio
of the semimajor axis of this object to the perihelion distance of the binary. The secondary star is
solar mass (Haghighipour and Raymond 2007)

be quite eccentric, and as indicated by Holman and Wiegert (1999) the orbit of a
terrestrial-class object in the region around 1 AU from the primary of such a system
will be unstable [see Eq. (11.1)].10

In binary systems where a giant planet exist, Fig. 11.26 indicates that terres-
trial planets form closer-in. The ratio aout=qb in these systems varies between
approximately 0.06 and 0.13, depending on the orbital separation of the two stars.
The accretion process in such systems is more complicated since the giant planet’s
eccentricity and its ability to transfer angular momentum are largely regulated by
the binary companion.

As shown by Haghighipour and Raymond (2007), despite the stochasticity of the
simulations, and the large size of the parameter-space, many simulations resulted in
the formation of Earth-like planet, with substantial amount of water, in the habit-
able zone of the primary star. Figures 11.27 and 11.28 show the result. The orbital
elements of the final objects are given in Table 11.4. It is necessary to mention that
because in these simulations, all collisions have been considered to be perfectly

10 It is, also, important to note that, because the stellar luminosity, and therefore the location of
the habitable zone, are sensitive to stellar mass (Kasting et al. 1993; Raymond et al. 2007), the
minimum binary separation necessary to ensure habitable planet formation will vary significantly
with the mass of the primary star.
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Fig. 11.27 Variation of number and water content of Earth-like objects with the perihelion of the
secondary star. The mass of the secondary star in all simulations is 1 solar-mass (Haghighipour
and Raymond 2007)

(A)

(B)

(C)

Fig. 11.28 Variation of number and water content of Earth-like objects with the mass-ratio of the
binary (Haghighipour and Raymond 2007)
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Table 11.4 Sun’s habitable
zone: 0.9–1.50 AU

Simulation mp .M˚

/ ap (AU) ep Water fraction

9-A 0.95 1.28 0.03 0.00421
9-B 0.75 1.11 0.06 0.00415
9-C 1.17 1.16 0.03 0.00164
9-D 0.86 1.33 0.09 0.01070
9-E 0.95 1.50 0.08 0.00868
10-A 0.74 1.07 0.06 0.00349
10-B 0.99 1.26 0.12 0.00366
10-C 1.23 1.30 0.09 0.00103

Fig. 11.29 Habitable planet formation in the .eb; ab/ space of an equal-mass binary-planetary
system. Circles correspond to binaries in which habitable planets are formed. Triangles represent
systems in which the giant planet is unstable. The number associated with each circle represents
the average eccentricity of the giant planet of the system during the simulation (Haghighipour and
Raymond 2007)

inelastic (i.e., the water contents of the resulted planets would be equal to the sum
of the water contents of the impacting bodies, and the loss of water due to the impact
and the motion of the ground of an impacted body (Genda and Abe 2005; Canup
and Pierazzo 2006) has been ignored), the numbers given in Table 11.4 set an upper
limit for the water budget of final planets. The total water budget of these objects
may in fact be 5–10 times smaller than those reported here (Raymond et al. 2004).

A study of the systems of Figs. 11.27 and 11.28 indicates that these binaries have
relatively large perihelia. Figure 11.29 shows this for simulations in a binary with
a mass-ratio of 0.5 in terms of the semimajor axis and eccentricity of the stellar
companion. The circles in this figure represent those systems in which the giant
planet maintained a stable orbit and also simulations resulted in the formation of
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habitable bodies. The number associated with each circle corresponds to the aver-
age eccentricity of the giant planet during the simulation. The triangles correspond
to systems in which the giant planet became unstable. Given that at the beginning
of each simulation, the orbit of the giant planet was circular, a non-zero value for its
average eccentricity is indicative of its interaction with the secondary star. The fact
that Earth-like objects were formed in systems where the average eccentricity of
the giant planet is small implies that this interaction has been weak. In other words,
binaries with moderate to large perihelia and with giant planets on low eccentricity
orbits are most favorable for habitable planet formation. Similar to the formation of
habitable planets around single stars, where giant planets, in general, play destruc-
tive roles, a strong interaction between the secondary star and the giant planet in
a binary-planetary system (i.e., a small binary perihelion) increases the orbital ec-
centricity of this object, and results in the removal of the terrestrial planet-forming
materials from the system. For more details we refer the reader to Haghighipour and
Raymond (2007).
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Thébault, P., Marzari, F. & Scholl, H.: MNRAS, 388, 1528 (2008)
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