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Preface

INTAS has been an international association for the promotion of collaboration

between scientists from the European Union, Island, Norway, and Switzerland

(INTAS countries) and scientists from the new independent countries of the former

Soviet Union (NUS countries). The program was founded in 1993, existed until 31

December 2006 and is since 01 January 2007 in liquidation. Its goal was the

furthering of multilateral partnerships between research units, universities, and

industries in the NUS and the INTAS member countries. In the year 2003, on the

suggestion of Dr. V. Vlasenko, the writer initiated a research project on “Strongly

nonlinear internal waves in lakes: generation, transformation and meromixis”

(Ref. Nr. INTAS 033-51-3728) with the following partners:

INTAS
Prof. K. Hutter, PhD, Department of Mechanics, Darmstadt University of

Technology, Darmstadt, Germany

Dr. V. Vlasenko, Institute of Marine Studies, Plymouth University, Plymouth,

United Kingdom

Prof. Dr. E. Pelinovsky, Institute of Applied Physics, Laboratory of Hydrophysics,

Russia, Academy of Sciences, Nizhni Novgorod, Russia

Prof. Dr. N. Filatov, Northern Water Problems Institute, Karelian Scientific Centre,

Russian Academy of Sciences, Petrozavodsk, Russia

Prof. Dr. V. Maderich, Institute of Mathematical Machines and System Modeling,

Ukrainian Academy of Sciences, Kiev, Ukraine

Prof. Dr. V. Nikishov, Institute of Hydrodynamics, Department of Vortex Motion,

Ukrainian Academy of Sciences, Kiev, Ukraine

The joint proposal was granted with commencement on 01 March 2004 and it

lasted until 28 February 2007. The writer was research and management coordina-

tor; annual reports were submitted.

The final report, listing the administrative and scientific activities, submitted to

the INTAS authorities quickly passed their scrutiny; however, it was nevertheless

decided to collect the achieved results in a book and to extend and complement the
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results obtained at that time with additional findings obtained during the 4 years

after termination of the INTAS project. Publication in the Springer Verlag series

“Advances in Geophysical and Environmental Mechanics and Mathematics” was

arranged. The writer served as Editor of the book, now entitled “Nonlinear Internal

Waves in Lakes” for brevity. The contributions of the six partners mentioned above

were collected into four chapters. Unfortunately, even though a full chapter on the

theories of weakly nonlinear waves was planned, Professor E. Pelinovsky, a world-

renowned expert in this topic, withdrew his early participation. The remaining

chapters contain elements of it, and the referenced literature makes an attempt of

partial compensation. Strongly nonlinear waves are adequately covered in Chap.4.

Writing of the individual chapters was primarily done by the four remaining groups;

all chapters were thoroughly reviewed and criticized professionally and linguisti-

cally, sometimes with several iterations. We hope the text is now acceptable.

Internal waves and oscillations (seiches) in lakes are important ingredients of

lake hydrodynamics. A large and detailed treatise on “Physics of Lakes” has

recently been published by Hutter et al. [1, 2]. Its second volume with the subtitle

“Lakes as Oscillators” deals with linear wave motions in homogeneous and strati-

fied waters, but only little regarding nonlinear waves is treated in these books. The

present book on “Nonlinear Internal Waves in Lakes” can well serve as a comple-

mentary book of this treatise on topics which were put aside in [1, 2].

Indeed, internal wave dynamics in lakes (and oceans) is an important physical

component of geophysical fluid mechanics of ‘quiescent’ water bodies of the globe.

The formation of internal waves requires seasonal stratification of the water bodies

and generation by (primarily) wind forces. Because they propagate in basins of

variable depth, a generated wave field often experiences transformation from large

basin-wide scales to smaller scales. As long as this fission is hydrodynamically

stable, nothing dramatic will happen. However, if vertical density gradients and

shearing of the horizontal currents in the metalimnion combine to a Richardson

number sufficiently small (< ¼), the light epilimnion water mixes with the water of

the hypolimnion, giving rise to vertical diffusion of substances into lower depths.

This meromixis is chiefly responsible for the ventilation of the deeper waters and

the homogenization of the water through the lake depth. These processes are mainly

formed because of the physical conditions, but they play biologically an important

role in the trophicational state of the lake.

l Chapter 1 on Internal waves in lakes: Generation, transformation, meromixis –
an attempt of a historical perspective gives a brief overview of the subjects

treated in Chaps.2–4. Since brief abstracts are provided at the beginning of each

chapter, we restrict ourselves here to state only slightly more than the headings.
l Chapter 2 is an almanac of Field studies of nonlinear internal waves in lakes on

the Globe. An up-to-date collection of nonlinear internal dynamics is given from

a viewpoint of field observation.
l Chapter 3 presents exclusively Laboratory modeling of transformation of large-

amplitude internal waves by topographic obstructions. Clearly defined driving

mechanisms are used as input so that responses are well identifiable.
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l Chapter 4 presents Numerical simulations of the non-hydrostatic transformation
of basin-scale internal gravity waves and wave-enhanced meromixis in lakes. It
rounds off the process from generation over transformation to meromixis and

provides an explanation of the latter.

As coordinating author and editor of this volume of AGEM2, the writer thanks

all authors of the individual chapters for their patience in co-operating in the

process of various iterations of the drafted manuscript. He believes that a respect-

able book has been generated; let us hope that sales will corroborate this.

It is our wish to thank Springer Verlag in general and Dr. Chris Bendall and Mrs.

Agata Oelschläger, in particular, for their efforts to cope with us and to do

everything possible in the production stage of this book, which made this last

iteration easy.

Finally, the authors acknowledge the support of their home institutions and

extend their thanks to the INTAS authorities during the 3 years (2004–2007) of

support through INTAS Grant 3-51-3728.

For all authors,

Zurich, Switzerland K. Hutter
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Chapter 1

Internal Waves in Lakes: Generation,

Transformation, Meromixis – An Attempt

at a Historical Perspective

K. Hutter

Abstract We review experimental and theoretical studies of linear and nonlinear

internal fluid waves and argue that their discovery is based on a systematic

development of thermometry from the early reversing thermometers to the moored

thermistor chains. The latter (paired with electric conductivity measurements)

allowed development of isotherm (isopycnal) time series and made the observation

of large amplitude internal waves possible. Such measurements (particularly in the

laboratory) made identification of solitary waves possible and gave rise to the

emergence of very active studies of the mathematical description of the motion of

internal waves in terms of propagating time-dependent interface motions of density

interfaces or isopycnal surfaces. As long as the waves remain stable, i.e., do not

break, they can mathematically be described for two-layer fluids by the Korteweg-

de Vries equation and its generalization. When the waves break, the turbulent

analogs of the Navier–Stokes equations must be used with appropriate closure

conditions to adequately capture their transformation and flux of matter to depth,

which is commonly known as meromixis.

1.1 Thermometry

The following analysis begins with the study of thermometry. Its study and success

of instrument development turned out to be the crucial element disclosing the

internal dynamics of the ocean and of lakes.

“Bearing in mind that changes in the distribution of water temperature delineate

the seasonal cycle of warming and cooling in lakes and also that temperature is a

relatively conservative label of water movements on time scales of days or less, the

K. Hutter (*)

c/o Laboratory of Hydraulics, Hydrology and Glaciology, Gloriastr. 37-39, ETH, CH-8092

Zurich, Switzerland

e-mail: hutter@vaw.baug.ethz.ch

K. Hutter (ed.), Nonlinear Internal Waves in Lakes,
Advances in Geophysical and Environmental Mechanics and Mathematics,

DOI 10.1007/978-3-642-23438-5_1, # Springer-Verlag Berlin Heidelberg 2012
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history of internal waves may be said to begin with attempts to measure the sub-

surface distribution of temperature, for example with heavily insulated

thermometers in 1799 (Saussure 1799). The subsequent story of thermometry in

limnology and oceanography (McConnell 1982) provides examples of the profound

influence, which advances in instrument design exerted on progress. Maximum and

minimum thermometers provided the first demonstration of a thermocline (Bèche,

de la 1819). . . Other early observations of lake stratification were reviewed by

Geistbeck (1885); and the thermocline was first so named by Birge (1897). . .
Negretti’s and Zarembra’s reversing thermometer (McConnell 1982) was probably

the first used in a lake by Forel (1895). . . With care in calibration and use, the

modern standard instrument measures in situ temperature with an error of less than

�0.01�C. For measurement near the bottom of deep lakes, Strom (1939) had a

special thermometer constructed by Richter and Wiese (Berlin) with a range from

+2�C to +5�C divided in 0.01�C intervals and with a claimed error of less than 1/5

division” (Mortimer 1984).

Mortimer continues: “If such accuracy were needed today, it would be more

conveniently achieved by electrical resistance thermometry. This method (along

with the thermocline technique) also has a long history (Mortimer 1963). . . Elec-
trical resistance thermometry, introduced by Siemens to oceanography (McConnell

1982), was first applied in a lake by Warren and Whipple in 1895. The advent of

thermistors after the Second World War considerably simplified the technique of

electrical resistance thermometry, although platinum wire coils remained in use

where the highest precision was required. First described for lake use, in 1950

(Mortimer and Moore 1953; Platt and Shoup 1950), the thermistor probes are now

standard equipment. The first thermistor “chain”, a powerful tool for continuous

simultaneous recording of temperature at selected fixed depths, was developed by

the writer [Mortimer, ed.] (Mortimer 1952a, 1952b; Mortimer 1955) to record

temperatures in Windermere in 1950 and in Loch Ness 2 years later. The earliest

device for continuous recording (but at a single depth) was Wedderburn’s ingenious

underwater thermograph (Wedderburn and Young 1915), later borrowed from the

Royal Scottish Museum (Mortimer 1952a) . . . to record internal seiches in

Windermere.

Much more extensive and detailed surveys in lakes, yielding quasi-synoptic

pictures of temperature distribution, became possible with the invention of temper-

ature/depth profilers deployed from moving vessels, the bathythermograph

(Spilhaus and Mortimer 1977) and depth undulating probes and towed thermistor

chains (Boyce and Mortimer 1977). In fact, the first detailed three-dimensional

study of the seasonal cycle of warming and cooling (stratification/destratification)

was made by Church (1942, 1945). With a bathythermograph in 1942 from Lake

Michigan railroad ferries”.

This much for Mortimer’s text (Mortimer 1984) on thermometry! Today, syn-

optic field studies are conducted, in which thermistor chains encompass the

metalimnion region, and current meters at epilimnion and (several) hypolinion

depths are deployed for some weeks to months, e.g., (Hollan 1974), (Horn 1981),

(Hutter 1983), (Hutter et al. 1983), (Stocker and Salvadè 1986), (Roget 1992),
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(Roget et al. 1997), (Appt et al. 2004), and (Mortimer 1979). They yield thermo-

metric time series data in whole basin dynamic studies but are logistically practi-

cally only possible in small lakes of at most several tens of kilometers of horizontal

extent. In large lakes (e.g., the Great Lakes in America or Lakes Ladoga and Onego

and the Caspian Sea), distances between moored instruments are too large for

effective synoptic maintenance. In these cases, detailed thermometry is generally

local, reserved to bays or selected shore regions. Moreover, often economic

constraints limit the scope of whole-view synoptic campaigns.

1.2 Internal Oscillatory Responses

The study of rhythmic periodic fluctuations in lake level preceded corresponding

studies of temperature oscillations and corresponding vertical thermocline motions.

In fact, measurement and theoretical understanding of the former was needed for a

proper understanding of internal wave dynamics. As Mortimer says, “the first

detailed set of observations of lake level oscillations (Duillier,1 on Lake Geneva,

1730, introducing the word ‘seiche’) and their occurrence in many lakes (Vaucher

1833) were. . .preceded by systematic observations and conjectures by a Jesuit

missionary (André, Father Louis, 1671) in 1671, describing the large but irregular

‘tides’ at the head of Green Bay (a gulf which opens onto Lake Michigan) and

attributing them to a combination of lunar tidal influence and to the influence of the

main lake. Three centuries elapsed before those conjectures were confirmed by

spectral analysis and numerical modeling (Heaps 1961; 1975; Heaps et al. 1982)”.

Regarding theory, fluid mechanics helped to gain a more complete understand-

ing of the measured seiche oscillations. Forel’s lifetime study of Léman seiches and

temperatures (Forel 1895) and their interpretation with Merian’s equation (Merian

1885) for the rectangular basin, followed by Chrystal’s (Chrystal 1905) channel

equation applied to basins of simple elongated geometry, and Defant’s (Defant

1918) simple one-dimensional finite difference procedure, which allowed compu-

tation of seiche periods and structures, provided first interpretations, which later

were widely applied, e.g., (Marcelli 1948; Caloi 1954; Maurer et al. 1996; Servais

1975; Tison and Tison Jr 1969).

The effect upon seiches of the rotation of the Earth due to the Coriolis force was

first theoretically treated by Taylor (1920) in a rectangular basin and by Jeffreys

(1923) and Goldstein (1929) in an elliptical basin of constant depth. The influence

of the Coriolis effect on seiche oscillations was theoretically analyzed by Proudman

(1928) and then first applied for the Baltic Sea by Neumann (1941), for Lake

Michigan by F. Defant (the son of A. Defant) (1953), using his father’s method

(Defant 1918), for the ocean and their basins by Platzman (1970; 1975; 1984), for

1Duillier F (1730) Remarques sur l’histoire du lac de Genève. In: Spo Histoire de Genève 2: p 463.
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Lake Erie by Platzman in (1963) and by Platzman and Rao in (1964b), the

world ocean by (Platzman 1984), and later almost routinely by many others, e.g.,

(Mortimer and Fee 1976; Platzman 1972; Raggio and Hutter 1982a; b; c; Rao and

Schwab 1976; Rao et al. 1976; Lemmin and Mortimer 1986; Lemmin et al. 2005;

Antenucci et al. 2000; Antenucci and Imberger 2001a,b).

Of significance for internal seiche dynamics in constant depth containers, which

are layered in a light epilimnion and heavy hypolimnion, is Charney’s (Charney

1955) equivalent depth description, later generalized by Lighthill to N layers

(Lighthill 1969). According to this description, the seiche eigenvalue problem of

the N-layer fluid with free surface and non-mixing interfaces can be reduced to N
independent (virtual) single-layer models for a formally homogeneous fluid with

their own equivalent depths. In this restricted sense of the equivalence of the fluid

basins to which the equivalence is applied, must be bounded by vertical walls which

extend over all layers. The barotropic and baroclinic quasi-static oscillations are

then equivalent mathematical problems. In this context, the role played by the

Earth’s rotation is expressed by the external and internal equivalent depths hext=int,
phase speeds cext=int, and external and internal Rossby radii of deformation Rext=int,

given by

hext ¼ H ¼ H1 þ H2; hint ¼ H1H2

H
¼ H1H2

H1 þ H2

;

cext ¼
ffiffiffiffiffiffiffiffiffiffi
g hext

p
; cint ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr
r

ghint

s
;

Rext ¼ cext
f

¼
ffiffiffiffiffiffiffiffiffiffi
g hext

p
f

; Rint ¼ cint
f

¼ 1

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr
r

ghint

s
;

in which H is the water depth and H1 and H2 are the layer depths. For the two-layer

baroclinic wave, Rint is a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr=rð Þhint=hext

p
smaller than for the

corresponding barotropic case. This difference gives rise to a subtle definition of

the notion whether a lake is to be considered “large” or “small” (see Chap. 2), the

distinction depending on whether processes are barotropic and baroclinic,

respectively.

The equivalent depth description for constant depth-layered fluids has widely

been used also for real lakes of variable depth with reasonable success, as

demonstrated by results with the two- and three-layer models and the corresponding

equivalent depth models, (B€auerle 1981; 1985; 1994; Heaps et al. 1982; Stocker

et al. 1987; H€uttemann and Hutter 2001; Hutter 1983; Hutter et al. 1983; 2011;

Kanari 1975; Mortimer 1952a,b; Mortimer 1974; Roget 1992; Roget et al. 1997;

Saggio and Imberger 1998; 2001; Schwab 1977). The restriction of the equivalent

depth model to the innermost region, which is fully occupied by all layers is a severe

disadvantage for lakes with shallow slopes. In these cases, two- and three-layer
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models have occasionally been employed, in which the near-shore regions with only

two or a single layer are included in the computational domain (Hutter et al. 2011;

Roget 1992; Roget et al. 1997; Salvadè et al. 1988). For continuous stratification, a

more detailed division of the metalimnion into several layers may, in this case, still

be advantageous. The computational procedure is then best done by applying full

three-dimensional software accounting for such layering; see Chap. 4 of this book.

The above model hierarchy is based on linear equations of lake hydrodynamics;

nevertheless, results, deduced from the models allow a fair to good reproduction of

observed data, provided that the driving mechanisms are moderate, such that, e.g.,

large amplitude excursions of the thermocline do not reach the free surface and thus do

not destroy a given stratification; or that fluid instabilities do not lead to mixing and

thus do not transform a given stratification to a different one and thus change the

conditions under which a theoretical linear model is valid. By contrast, complex

evolutionarymodelsmust necessarily be based on nonlinear formulations that, beyond

the short time-scale processes, allow changes in seasonal stratification to be captured.

To deepen the description of the physical processes in this regime, note that

stratification in lakes, i.e., the formation of a more or less distinct density interface

that is commonly identified with the thermocline is a consequence of the seasonally

changing and storm-episodic interaction of mechanical (wind-driven) and radiative

(sun-driven) fluxes: “The mechanical flux generates currents and (most impor-

tantly) shears which promote turbulence (Schmidt 1917), while the positive (or

negative) radiative fluxes create (or destroy) vertical density gradients and their

associated buoyancy forces, which suppress turbulence (Richardson 1925).

The ever-shifting balance between promotion and suppression, expressed as the

Richardson number (Richardson 1925), determines the short-term (storm episodic)

and long-term (seasonal) response of lakes to the forcing actions of wind and sun”,

(Mortimer 1984). Mortimer draws attention to review articles (Hutchinson 1957;

Mortimer 1956; Mortimer 1974; Ruttner 1952) and mentions that reference

(Mortimer 1956) “is a historical account of the pioneering work of Birge and

Juday, including their study of the penetration of radiation into lakes (Birge and

Juday 1929), see also (Sauberer and Ruttner 1941) and of work of the wind in

transporting heat downward (Birge 1916)”.

More specifically, consider a linearly stratified fluid layer in two-dimensional

space and let (x, z) be Cartesian coordinates (x horizontal, z vertical against gravity).
Let (�dr/dz) > 0 be the constant vertical density gradient; moreover, assume the

layer to be subject to a steady horizontal velocity field U(z) with vertical gradient

dU/dz ¼ constant. With these quantities and the acceleration due to gravity, g, two
squared frequencies can be formed, namely

N2 ¼ g � dr
dz

� �
r

; ðbuoyancy frequencyÞ;

S2 ¼ dU

dz

� �2

; ð’shear’ frequencyÞ:
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Their ratio

Ri ¼ N2

S2

defines the Richardson number. Miles (1961) in his seminal paper “On the stability

of heterogeneous shear flows” proved by a linear instability analysis for a

Boussinesq fluid that perturbations (u, v, r0) to (U, 0, r) decay exponentially if

Ri > ¼, but grow exponentially if Ri < ¼. When dr/dz and dU/dz are not constant
but vary smoothly, then Ri ¼ ¼ is taken by physical oceanographers and

limnologists as the local critical Richardson number characterizing the transition

from stable to unstable flow on a local scale. More correctly, there is a value of Ri in
the vicinity of ¼ below which a shear flow in a heterogeneous fluid becomes

unstable.

It transpires that in the regime Ri > ¼ propagating or standing waves in lakes or

the ocean maintain to stably exist when conditions of linearity are no longer

fulfilled. This is the regime of weakly nonlinear waves and theoretical accounts of

it are given by Ablowitz and Segur (1981), Lamb (1980), and Mysak (1984),

Helfrich and Melville (2006) and others. When Ri < ¼, or for nonlinear waves in

the vicinity of this value, the waves become unstable, leading to mixing and,

consequently, transformation of the wave forms and the propagation properties.

These mixing processes are typical as results of strongly nonlinear waves; they

contribute to the thermocline destruction and the rapid transport of species

(nutrients, phosphate, oxygen, etc.) into the hypolimnion. This mechanism is

referred to as meromixis.
To understand the properties of the nonlinear equations, (Hutter 1986), it is

helpful to address the rudiments of the theory of long shallow-water finite-ampli-

tude surface waves. In their derivation, two nondimensional parameters arise:

e ¼ a

H
; m ¼ H

l

� �2

;

where a and l are, respectively, the wave amplitude and a horizontal length scale,H
is the undisturbed water depth, e measures nonlinear wave steepening, and m linear

phase dispersion, while the Ursell number

U ¼ 3e
m

gives the relative significance of the two effects. Generally, e and m are small and of

the same weight, and waves traveling in the positive x-direction are governed by the
Korteweg-de Vries equation (1894; 1895):

zt þ c0zx þ c1 zzx þ c2 zxxx ¼ 0;
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c0 ¼
ffiffiffiffiffiffi
gH

p
; c1 ¼ 3c0

2H
; c2 ¼ 1

6
c0H

2:

In his historical account on the K–dV equation, Miles (1981) states that “Boussinesq

(1871b; 1872; 1877) obtained two implicit equivalents of the K–dV equation . . . but
missed the simpler and more important (as it proved to be) form of Korteweg and de

Vries (1895). Kruskal (1978) and Miura (1976) discuss its mathematical properties.

For strongly nonlinear waves, c1 is large and c2 small; the wave solutions steepen

ahead of their crests and a hydraulic jump or shock wave is formed. For weak

nonlinear waves, c1 is small, but c2 large; then wave dispersion is significant.

The solitary wave solution of the K–dV equation is given by

z ¼ a sec h2
x� ct

L
;

c ¼ c0 þ 1

3
ac1 ¼ c0 1� a

2H
;

� �

L ¼
ffiffiffiffiffiffiffiffiffi
12c2
ac1

r
¼

ffiffiffiffiffiffiffiffi
4H3

3a

r
;

which represents a symmetric hump of permanent form, Fig. 1.1. For a sufficiently

smooth and localized initial wave form z(x, 0), the asymptotic solution for t ! 1will

consist of a group of solitons, trailed by a linear wave train. The leading soliton always

has the largest amplitude and travels fastest, the second soliton has the second largest

amplitude and so on, and the soliton group tends to spread, Fig 1.2. The number of

solitons that emerges from any initial profile can be obtained from a Schr€odinger
equation in which the potential well is given by the initial profile; see Gardiner (1967)

and Osborne and Burch (1980). Asymptotic soliton groups develop from initial wave

humps; initial troughs develop into oscillatory wave trains.

H

–L 0

a

c

x
ζ (x, t)

+L
Fig. 1.1 Surface solitary

wave with amplitude a
moving to the right with

phase speed c in water of

depth H. (The amplitude a is

exaggerated relative to H)

1 Internal Waves in Lakes: Generation, Transformation, Meromixis 7



Nonlinear internal water waves lead to similar descriptions: Keulegan (1953)

and Long (1956) gave an account of long solitary waves in a two-layer fluid;

Benjamin (1966; 1967), Davis and Acrivos (1967), Ono (1975), Joseph (1977),

Kubota et al. (1978), Grimshaw (1978; 1979; 1981a; b; c; 1983), and others studied

the continuously stratified fluid in which the wavelength l, the total depth H, and a

stratification scale height h (the thickness of the metalimnion) are crucial

parameters. Three limiting cases are distinguished:

1. Shallow-water theory: l/H >>1, h/H<O(1),

2. Deep-water theory: l/H ! 0, l/h >> 1,

3. Finite-depth theory l/h >>1, h/H << 1, (i.e. l ~ H)

and all can be derived from a generalized evolution equation due to Whitham

(1967):

@z
@t

þ c1z
@z
@x

þ @

@x

ð1
�1

zðx0; tÞ 1

2p

ð1
�1

cðkÞeikðx�x0Þdk
	 


dx0 ¼ 0;

where z measures the internal wave displacement field (e.g., z ¼ R
wdt, where w is

the vertical velocity component, or z is the interfacial displacement at a density

discontinuity) and c(k) is the linear phase speed. Shallow-water internal waves

(Benjamin 1966; 1967) have cðkÞ ¼ c0ð1� Bk2Þ and are thus governed by the

K–dV equation. For a continuously stratified fluid, a countable infinite number of

eigenspeeds exists, which corresponds to the different vertical baroclinic modes; in

each of these cases, c0, c1 and c2 take on their respective values. In a two-layer fluid,
they are

SOLITONS

TAIL

a

b

x

x

ζ (x, 0)

ζ (x, t)

Fig. 1.2 A sufficiently

localized initial wave profile

z(x, 0), shown in (a) evolves

into (b), a group of solitons

and a dispersive wave train

8 K. Hutter



c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
ðH1H2Þ

H

r
;

c1 ¼ �3c0
H2 � H1

H1H2

;

c2 ¼ c0
H1H2

6
;

where g0 ¼ gðr2 � r1Þ=r1Þ is the reduced gravity and H1;H2 are the epi- and

hypolimnion depths, respectively. Evidently, for H1 ¼ H2; c1 ¼ 0; ; hence, the

nonlinear term vanishes in this case. When H2 >H1, then c1 < 0 and the solitary

wave solution is a depression wave (Fig 1.3); alternatively, when H2 <H1,the wave

travels as a hump. Explicitly, the solution reads

z ¼ �a sec h2
x� ct

L
;

H1u1 ¼ �H2u2 ¼ c0a sec h
2 x� ct

L
;

c ¼ c0 � 1

3
ac1;

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 12c2

ac1

r

and implies that with c1<0, the phase is enhanced by nonlinearities.

ca

u2

H2

RIP

u1

ρ1

ρ2

H1

H

Fig. 1.3 Internal solitary wave in a two-layer fluid with H1 < H2. Arrows indicate current pattern

within the internal wave. This gives rise to the surface rip which leads the wave. When H1>H2,

the solitary wave is a wave of elevation rather than a wave of depression
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Long internal waves in deep water are governed by the Benjamin-Davis-Ono

equation; it can be deduced fromWhitham’s equation by substituting the dispersion

law c ¼ c0(1 – g║g║). For the special case of a two-layer fluid with a deep lower

layer, the solitary wave solution reads (Benjamin 1967)****

z ¼ aL2

ðx� ctÞ2 þ L2
;

c ¼ c0 þ 1

4
ac1; L ¼ �4a

c2
c1

> 0;

c0 ¼
ffiffiffiffiffiffiffiffiffi
g0H1

p
; c1 ¼ �3

c0
H1

; c2 ¼ � c0r1H1

2r2
:

The finite depth equation for intermediate wavelengths is treated by Joseph

(1977) and Koop and Butler (1981). All these cases apply under the limiting

situation of a quiescent fluid. Additional complexities are mean shear (Lee and

Bearsley 1974; Maxworthy 1979; Tung et al. 1981), slowly varying topography
(Grimshaw 1981a; b; c), changes in topography in the direction of propagation
(Farmer 1978; Farmer and Carmack 1981; Farmer and Smith 1978; Grimshaw

1978), attenuation due to energy dissipation (Grimshaw 1981a; Koop and Butler

1981), radiation damping (Grimshaw 1979; Maslowe and Redekopp 1980), fission
(Djordjevic and Redekopp 1978), and second order effects (Gear and Grimshaw

1983; Grimshaw 1981c; Segur and Hammak 1982). In this list, effects of the

rotation of the Earth and the transverse tilting of the thermocline in a nonlinear

internal surge are still ignored.

1.3 Observations of Nonlinear Internal Waves

Nonlinear internal solitary waves in nature have been observed in the ocean,

primarily in the continental shelf regions and in fjords and straits, in the atmo-

sphere, and in lakes (Mysak 1984). Prominent examples are internal waves in the

Andaman Sea (Osborne and Burch 1980), in the Strait of Georgia (Gargett 1976),

and in Knight Inlet (Farmer and Carmack 1981; Farmer and Smith 1978). Labora-

tory experiments have been conducted, among others, by (Davis and Acrivos 1967)

(Church 1945), Benjamin (1967), Maxworthy (1979; 1980), Kao and Pao (1980),

Koop and Butler (1981), and Segur and Hammak (1982).

Our own experimental work, done in the laboratory of the Department of

Mechanics of Darmstadt University of Technology, concerned weak and strong

nonlinear waves of a two-layer fluid in a rectangular channel with constant or

variable basal topography. It resulted in MSc and PhD dissertations (H€uttemann

1997; Maurer 1993; Schuster 1991; Wessels unpublished), summarized in Diebels
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et al. (1994), Maurer et al. (1996), H€uttemann and Hutter (2001), Vlasenko et al.

(2005a; 2003), Vlasenko and Hutter 2001; 2002a; b), and (Wessels and Hutter

1996), describing the fission of an internal soliton when approaching an obstruction.

Substantial, painstaking extensions of these types of experiments are presented in

detail by Gorogedtka et al. in Chap. 3 of this book. Interpretations of some of these

– not in terms of nonlinear wave equations (e.g., the K–deV equation) but by

solutions of the (turbulent) Navier–Stokes (Reynolds) equations – are given by

Vlasenko and Hutter (2002a; b), Vlasenko et al. (2005a; 2003), Stashchuk et al.

(2005a; 2005b), and by Maderich et al. in Chap. 4 of this book. Among others, a

collection of observational studies of nonlinear internal waves in lakes worldwide is

given in Table 1.1.

As an example, we quote from Mysak (1984). “What is observed in many long

lakes is that following a strong gust of along shore winds, the thermocline at one

end of the lake is depressed and an internal surge is formed. Initially, the surge

steepens owing to nonlinear effects, but as it propagates down the lake it evolves

with a train of shorter period waves which often tend to have the appearance of a

group of solitons or solitary waves [. . .]. In very long lakes (e.g., Babine Lake) the

waves tend to disappear at the far end because of dissipation or dispersion.

However, in some of the shorter lakes, the surges are seen to travel back and

forth along the lake several times.”

Table 1.1 Collection of lakes on Earth, where experimental campaigns on internal waves have

been conducted

Lake name References

Babin Farmer (1978), Farmer and Carmack (1981), Farmer and Smith (1978)

Baikal Granin (1984), Verbolev et al. (1984), Shimaraev et al. (1994), Chensky et al.

(1998), and Lovcov et al. (1998)

Baldegg Lemmin (1987) and Boegman et al. (2005)

Banyoles Roget (1992) and Roget et al. (1997)

Biwa Boegman et al. (2003) and Shimizu et al. (2007), Shimizu and Imberger (2008)

Chapla Filonov and Thereshchenko (1999)

Constance Chubarenko et al. (2003) and Appt et al. (2004)

Geneva Thorpe et al. (1996) and Thorpe and Lemmin (1999)

Kinneret Imberger (1998), Saggio and Imberger (1998; 2001), Antenucci and Imberger

(2001a), Boegman et al. (2003), Gomes-Giraldo et al. (2008)

Ladoga Filatov et al. 1981 (1981), Filatov (1983, 1990), Filatov (1991), Kochkov (1989),

Rukhovets and Filatov (2009)

Loch Ness Thorpe (1974, 1977)

Lugano Hutter (1983, 1986, 1991)

Michigan Mortimer (2004)

Onego Filatov et al. (1990), Rukovets and Filatov (2009), Hutter et al. (2007)

Ontario Mortimer (2006)

Seneka Huntkins and Fliegel (1973)

Zurich Horn (1981), Mortimer and Horn (1982), and Horn et al. (1986)
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Figure 1.4 shows such a situation for Lake Zurich for an episode 11.-14.04.1978.

Following the very strong eastward blowing wind, the thermocline became tilted,

downward at the southeastern end and upward at the western end. When the wind

stopped, the thermocline relaxed and began to oscillate with a 44-h fundamental

seiche period. However, as the thermocline was depressed downward at the south-

eastern end, its encounter with the shallow bathymetry produced a large surge

marked A in Fig. 1.4 (as an upwelling of the isotherm-depth-time series for mooring

(4) and a downwelling for mooring (11)). This surge then traveled to the other end

of the lake (~24 km) in about 1 day, seen in Fig. 1.4 as downstrokes ABCD at (11),

(9), (6), and (4) and return propagation EFGH at (4), (6), (9), and (10). The surge

seems to be locked to the gravest seiche mode, repeatedly newly generated at the

western end by the downstroke of the thermocline in its gravest seiche mode; for

more see (Horn et al. 1986; Mortimer and Horn 1982).

Field observations also suggest that the rate of decay from basin-scale internal

waves to small-scale internal waves is due to several identifiable mechanisms,

namely (1) nonlinear steepening and ensuing disintegration of long internal

waves or solitons; (2) shear instabilities caused by energy transfer from the mean

flow or basin-scale seiches to the small-scale motion; (3) shoaling at and reflection

from slopes; (4) effects of localized constrictions stimulating the development of

wave instability; and (5) interaction with topography (Horn et al. 2001; Vlasenko

and Hutter 2002b). The laboratory experiments in Chap. 3 deal with the propagation

and interaction of internal waves with underwater obstacles, slopes, and the effect

of localized constrictions of channels with rectangular cross-sections. Table 1.2

summarizes the studied configurations of obstructing elements in an otherwise

rectangular flume with constant depth; see also Fig. 1.5.

In the experiments discussed in Chap. 3, the upper-layer depth was consistently

smaller than the lower layer depth; so, solitons approach submerged bodies as

interface depressions. Depending on the value of the ratio h�=H2 of the obstruction

height to the lower-layer depth, a soliton encounter with the obstacle is recognized

as follows:

1. When h�=H2 << 1 as a transformation of the approaching solitary wave to a

transmitted signal (often with undulating tail) and no visible reflected wave and

no recognizable turbulent eddies due to the encounter.

2. When h�=H2 < 1 as an interaction of the wave with the obstacle in which the

soliton is transformed and split into a transmitted and a reflected signal. Because

of the often observed formation of a pair of turbulent eddies in front of the

obstacle, energy is dissipated in this fission into a smaller scale transmitted

signal and a reflected solitary wave which together are not energy conserving.

3. When h�=H2 b 1 (h* is very close to H2), the interactions of the approaching

wave with the obstacle give rise to wave instabilities, high turbulence andmixing
with low-energy signal transmitted, some reduced reflected wave signal and

large turbulent activity into smaller scale motion. This is the regime where

nonlinear two-layer modeling ceases to reliably reproduce the true interactions,

and nonhydrostatic turbulent modeling is becoming necessary.

The detailed description of these interaction regimes is given in Chaps. 3 and 4.

12 K. Hutter



8

10

12

14

16

14

12

16

16

10

12

14
10

12

14

12

14

10

8

10

12

14

16

14

12

16

16

10

12

14
10

12

14

12

14

10

0 6 12 180 6 12 18 0 6 12 18 0 6 12 18 0

0 6 12 180 6 12 18 0 6 12 18 0 6 12 18 0

4

6

9

10

11

11

10

9

6

4

11.09.1978 12.09.1978 13.09.1978 14.09.1978

HOURS  GM
T

PEAK-155: (m2s–2)

uH

u10

vH

HOURLY  MEANS vvH vH = 3.2 m2s–2__u10

uH HOURLY MEANS  
10 MIN.  MEANS  uu

u
u10 = 8.9 m2s–2
uH = 8.8 m2s–2

COMPONENTS OF (WIND SPEED)2 AT   6

11.09.1978 12.09.1978 13.09.1978 14.09.1978

u
2
+v

2

u
2
+v

2

u
2
+v

2

√
√
√

Hydrodynamic Modelling of Lakes

uH

u10

vH

__

(m2s–2)(m2s–2)
80

60

40

20

0

–20

80

60

40

20

0

–20

A

H

4 F

E

4

5

6 6

C

5

6

4

6
9

10 11

5 km

G

B

A
HOURS  GMT

I--

(m)

J

(m) D
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Analytical description of nonlinear wave motion in stratified fluids (e.g.,

expressed by the K–dV equation) follows a judicious balance between nonlinear

advection (responsible for nonhydrostatic wave steepening) and linear dispersion

Table 1.2 Types of encounters of an internal soliton (trough) with topographic obstructions in a

two-layer system (see also Fig. 1.5)

Form of obstacle Remarks/References

– Triangular or trapezoidal obstructionwith

h� < h2 and H1 < H2

– Geometry, see Fig. 1.4a

– Soliton as an interface depression

Guo et al. (2004), H€uttemann and Hutter (2001)

Maurer et al. (1996), Wessels and Hutter

(1996), Sveen et al. (2002)

Sveen et al. (2002)

– thin plate or cuboid obstructionwith

h� < H2; H1 < H2– Obstruction

length L with L � 0 or L > h*
– Geometry, see Fig. 1.5b

– Approaching soliton as interface depression

This book, Chap. 3 for experiments,

Chapter 4 for numerical modeling and

comparison with experiments

– Cylindrical lateral obstruction of Gaussian

form covering both layers

– Geometry, see Fig. 1.5c

– H1 < H2 for a solitary depressing wave

This book, Chap. 3 for experiments

– Reflection of an internal wave at a slope or a

slope–shelf combination

– Slope angle 0� <b< 90�

– Shelf angle 0� < a << 90�

– Geometry, see Fig. 1.5d

This book, Chap. 3 for experiments; Chaps. 1

and 4 for numerical modeling

Vlasenko and Hutter (2002a, b)

Vlasenko et al. (2005a, b))

Thorpe (1997)

a

c d

b

Fig. 1.5 Sketches of obstructions in a two-layer fluid in a rectangular duct: (a) Underwater

triangle or trapezoid, side view; (b) plate or cube, side view; (c) Gaussian cylinders covering

both layers, top view; (d) slope or slope shelf combination, side view
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(responsible for smoothing). When nonlinear advection is small, hydrostatic

conditions prevail and the shallow water approximation applies; however, when

advection is dominant, nonlinear steepening develops and instabilities may ensue.

This is the case, e.g., in all those situations when bathymetric variations or under-

water obstructions cause wave breaking and form turbulent eddies, which may

break long basin-scale waves and split them into a whole spectrum of small-scale

internal processes. It is obvious that this post-critical motion must be modeled by

nonhydrostatic multi-layered numerical models, which account for the internal

mixing of matter from near-surface layers down to large depths (known as

meromixis).

A large number of numerical software exists which integrates the turbulent

Navier–Stokes equations. In Chap. 4, some are briefly reviewed, and Maderich

et al. present their own formulation on the basis of large eddy closure schemes and

precursors of their software, (Kanarska and Maderich 2003; 2004; Kanarska et al.

2007; Maderich et al. 2008; 2009; 2010); they apply it to some of the experiments,

discussed in Chap. 3.
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Genève

Benjamin, TB (1966) Internal waves of finite amplitude and permanent form. J Fluid Mech 25:

241–270

Benjamin, TB (1967) Internal waves of permanent form in fluids of great depth. J Fluid Mech 29:

559–592

Birge EA (1897) Plankton studies on Lake Mandota: II, The crustacea of the plankton from July

1894 to December 1896. Trans WisconsinAcad Sci Arts Lett, II, p 274

1 Internal Waves in Lakes: Generation, Transformation, Meromixis 15



Birge EA (1916) The work of the wind in warming a lake. Trans Wis Acad Sci Arts Lett18: 341,

429, 495, 508

Birge EA and Juday C (1929) Transmission of solar radiation by the waters of inland lakes. Trans

Wis Acad Sci Arts Lett24: p 509

Boegman L, Imberger J, Ivey GN, Antenucci JP (2003) High-frequency internal waves in large

stratified lakes. Limnol Oceanogr 48:895–919

Boegman L, Ivey GN, Imberger J (2005) The degeneration of internal waves in lakes with sloping

topography. Limnol Oceanogr 50:1620–1637
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Boussinesq J (1872) Théorie des ondes et des ramous qui se propagent le long d’un canal

rectangulaire horizontal, en communicant au liquide continue dans ce canal des vitesses

sensiblement pareilles de la surface au fond. J Math Pure Appl 17(2): 55–108
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Chapter 2

Field Studies of Non-Linear Internal Waves

in Lakes on the Globe

N. Filatov, A. Terzevik, R. Zdorovennov, V. Vlasenko, N. Stashchuk,

and K. Hutter

Abstract This chapter is devoted to the experimental techniques commonly

applied in field studies of nonlinear internal waves in lakes of the world. It consists

of four sections. The first attempts an overview of internal waves in many lakes on

the globe and provides a summarising sketch of common measuring techniques and

methods of graphical representation of collected results. The second takes a closer

view on experimental methods of field observation, most being invasive, but we

equally also address the modern remote-sensing techniques, which open promising,

perhaps still challenging, procedures allowing a closer look at internal wave

phenomena. More substantially, the specific features of the patterns of manifesta-

tion, i.e., generation and dissipation of nonlinear internal waves in lakes of different

size and shape under various sets of environmental conditions, are considered. It is

shown that planning experiments on nonlinear internal waves in large lakes are a far

more challenging task than for smaller lakes since the range of thermodynamic

processes and phenomena is much more complex, and so is the set of hydro-

meteorological conditions (forcing) in stratified lakes. The third section focuses

on internal wave dynamics of Lake Onego and its internal wave response during the

summers of 2004/2005 and presents an exploitation of the data during the two

summer field campaigns in the context of internal wave processes. The field

experiments performed with the intention to investigate the generation and dissipa-

tion of nonlinear internal waves in Lake Onego are described in detail. These data

are in the fourth section compared with models of nonlinear waves, which rounds

out this chapter on internal waves in Lake Onego.
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2.1 Overview of Internal Wave Investigations in Lakes

on the Globe

2.1.1 Introduction

The history of investigations of internal waves in lakes dates back to more than

100 years. The first publications about field observations of internal waves in Loch

Ness were provided byWatson (1904) andWedderburn (1907). Early investigations

of internal waves using long time series of measurements with moored thermistor

chains were performed by Mortimer (1952) in Lake Windermere. He described the

response to episodic wind forcing on internal seiches and showed that the main

effect of the wind forcing in a stratified lake is to generate large, basin-scale, low-

frequency internal seiches and, for large lakes where the Earth’s rotation is impor-

tant, to generate internal Kelvin and Poincaré waves. Several general overviews of

hydrodynamics of lakes, including internal waves, are given by Mortimer (1974),

Csanady (1977), Simons and Schertzer (1987), Imberger and Hamblin (1982),

Hutter (1993, 1984), Filatov (1991), Imberger (1998) and W€uest and Lorke

(2003). A recent account on internal waves in Lake Michgan with a wealth of data

analysis is given by Mortimer in his book “Lake Michigan in Motion” (2004).

Despite the long history of research into internal waves in lakes, nonlinear

internal waves are far less studied than larger-scale internal waves. The energy

influx to the lake’s depth is supplied by wind acting on the free surface. It drives the

surface water and generates internal waves in the form of basin-scale standing

waves (Mortimer 1952; Mortimer and Horn 1982) or propagating nonlinear waves

(Farmer 1978). Experimental studies that yield descriptions of the patterns of

manifestation, i.e., generation and dissipation of nonlinear internal waves, are

more detailed in small lakes than in large and deep ones. Figure 2.1 demonstrates

lakes on the globe where nonlinear internal waves were investigated and which are

mentioned in this book.

Fig. 2.1 Lakes on the globe where nonlinear internal waves were investigated and which are

mentioned in this book:1 – Babine, 2 – Ontario, 3 – Michigan, 4 – Seneca, 5 – Loch Ness, 6 –

Geneva (Léman), 7 – Zurich, 8 – Lugano, 9 – Baldegg, 10 – Constance-Bodensee, 11 – Ladoga, 12

– Onego, 13 – Sevan, 14 – Kinneret, 15 – Baikal, 16 – Biwa, 17 – Chapala, 18 – Mono
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The reason why basin-wide linear internal waves have been studied more than

nonlinear localised internal waves is that in lakes – such as the North American

Great Lakes: Ontario, Erie, Huron, Michigan, Superior; the largest European lakes:

Ladoga and Onego, and Lake Baikal – the contribution of large-scale internal

(Kelvin and Poincaré) waves covering the entire lake or some of its parts, and

related water circulations are greater than those of relatively high-frequency

nonlinear internal waves.

Furthermore, planning experiments on nonlinear internal waves in large lakes

are a far more challenging task than for smaller lakes since the range of thermody-

namic processes and phenomena is much more complex, and so is the set of hydro-

meteorological conditions (forcing) in stratified lakes.

This chapter considers specific features of the manifestation of nonlinear internal

waves in lakes of different sizes and shapes, under various sets of environmental

conditions. Classifications of the lakes are, however, quite diverse. Since we

mentioned classifications such as “great”, “large”, and “small”, let us first classify

lakes by size, as related to the characteristics of internal waves. A recent paper

written by specialists in limnology (Noges et al. 2008) argued that “. . .there exists
no agreed definition of a lake being large”. The authors “. . .did not present any
numerical values but listed three main criteria that distinguish large lakes from
smaller ones. But, for practical purposes, the Water Framework Directive
considers a lake surface area of 10 km2 as the boundary between medium-size
and large lakes, and lakes with surface areas 100 km2 and more as very large”.
These definitions are unacceptable in terms of the manifestation of thermodynamic

processes and events in lakes. Patterns of generation, dissipation and interaction of

these events depend on the spatial size, depth and stratification of lakes. The main

parameters for placing a lake into one class or another are dictated by physical

processes and can be typified by dimensional analysis. For waves on the rotating

Earth, they are given by the following characteristic numbers:

1. The Rossby radius of deformation RR

RR ¼ c

f
;

where c is the phase speed of barotropic or baroclinic waves, and f is the Coriolis
parameter.

2. The buoyancy or Brunt–V€ais€al€a frequency N (rad s�1)

N2ðzÞ ¼ g
@rðzÞ
r0@z

;

where [N] ¼ [rad s�1], r0 is a reference density [kg m
�3] and r is the local density

[kg m�3]. Together with the size and form of a lake, N is a very important parameter

for internal waves in lakes.
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3. Another important parameter for internal waves is the Burger number Si. It is
defined as the ratio of the internal (baroclinic) Rossby radius of deformation RR

to a length scale L that characterises the basin dimension:

Si ¼
ffiffiffiffiffiffiffiffi
gDi

p
Lf

¼ ci
Lf

;

where i stands for “internal”, D is the depth and L represents the basin radius for a

circular basin and the major axis as half-length for an ellipse, and for a real lake, is a

typical horizontal half length of the lake. In Table 2.1, values are shown for the

Burger number of different lakes with different sizes.

The Rossby radius of deformation and length (size) scales of lakes in near-shore

hydrodynamics determine whether a basin is “large” or “small” for a particular

wave category. For example, Lake Michigan is “fairly small” for barotropic Rossby

and Kelvin waves, but “very large” for internal Kelvin and Poincaré type waves

(Mortimer 2004). In the latter case, RR < L. Thus, we shall classify lakes

depending on manifestations of the baroclinic motions in them – very large or

great and deep ones, such as the American Great Lakes, Lake Baikal, and the largest

Lakes of Europe (Ladoga and Onego). In these lakes, the baroclinic Rossby radius

of deformation RR, during summer stratification, is a few kilometres, i.e., much

smaller than the lake’s horizontal extent (RR << L), and the epilimnion thickness

(h1) is much smaller than the hypolimnion thickness h2, h1 << h2. As regards

geophysical hydrodynamics, examples of large and deep lakes are Lakes Biwa

(Japan), Kinneret (Israel), Constance and Geneva (Alpine, Europe), whose average

width is greater than the baroclinic Rossby radius of deformation (RR < L). Effects

Table 2.1 Burger numbers (ci/Lf) for several lakes. Lake Mono can be considered circular; Lakes

Kinneret, Biwa, Michigan and Ladoga, Ontario and Onego are near ellipses with aspect ratios 2/3,

1/2, 1/3, and 1/4, respectively; Lake Babine is very long. L represents the basin radius for a circular

basin and the major axis half-length for an ellipse (partly based on Table. 3 of Antenucci and

Imberger 2001)

Lake Latitude c (ms�1) L (m) f (rad s�1) Si Source

Mono (N.America) 38�010 N 0.74 4,000 7.81E-5 2.07 MacIntyre et al.

(1999)

Babine (N.America) 54�450N 0.19 3,000 1.19E-04 0.53 Farmer (1978)

Kinneret (Middle East) 32�500N 0.33 7,500 8.95E-5 0.56 Antennucci et al.,

(2000)

Biwa (Asia) 35�200N 0.45 15,000 8.17E-5 0.37 Saggio and

Imberge (1998)

Upper Lake Constance

(Europe)

47�390N 0.35 35,000 1.08E-04 0.09 Appt et al. (2004)

Ontario (N.America) 43�420N 0.5 120,000 1.95E-4 0.04 Csanady (1973)

Michigan (N.America) 44�000N 0.48 160,000 1.95E-4 0.03 Csanady (1973)

Ladoga (Europe) 61�000N 0.5 120,000 1.27E-04 0.03 Filatov (1991)

Onego (Europe) 61�300N 0.5 80,000 1.28E-04 0.05 Filatov (1991)
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of the Earth’s rotation on water hydrodynamics in such lakes are significant.

Finally, the group of relatively small and, as a rule narrow, deep stratified lakes,

where nonlinear internal waves were investigated, includes those lakes whose width

is comparable to, or smaller than, the baroclinic Rossby radius of deformation

(RR � L), and the length of these lakes may be several kilometres to several dozens

of kilometres. Examples are Lakes Seneca and Babine (North America), Loch Ness,

Lake Baldegg, Zurich and Lugano in Europe. Typical scales of the spectral energy

density S(o) of internal waves in lakes of different size are demonstrated in Fig. 2.2.

These spectra were received from data on isotherm displacements and currents

in lakes of different shapes and sizes, like Lakes Ontario, Erie, Ladoga, Onego,

Balkhash, Sevan, Krasnoe (Murthy and Filatov 1983; Filatov 1991), and also from

published information on internal wave spectra in other world lakes (e.g., Horn

et al. 2002; Appt et al. 2004; Mortimer 2004).

For great and large stratified lakes with baroclinic Rossby radii of deformation RR

much smaller than the lake’s horizontal extent (RR << L), effects of the Earth’s

rotation on water hydrodynamics in such lakes are significant. The spectra of

internal waves have maxima at low frequencies (Fig. 2.2a) which correspond to

large-scale lake-wide Kelvin waves. Their amplitudes in great lakes are one to two

Fig. 2.2 Sketch of typical spectra of internal waves (isotherm displacement) dependent upon the

size of lakes on the globe (1) Great and Large stratified lakes with baroclinic Rossby radii of

deformation RR much smaller than the lake’s horizontal extent RR << L; effects of the Earth’s

rotation on water hydrodynamics in such lakes are significant. (2) Large Lakes with RR < L. In
these lakes, effects of the Earth’s rotation on water hydrodynamics are still significant; (3)

Relatively small lakes, as a rule, narrow, deep stratified lakes, for those lakes whose width is

comparable to, or smaller than, the baroclinic Rossby radius of deformation (RR � L), and the

length of these lakes may be several kilometres to several dozens of kilometres. f is the local

inertial frequency, N is the Brunt-V€ais€al€a frequency (Filatov 1991)
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orders of magnitude larger than in medium-size lakes (RR < L) where effects of the
Earth’s rotation on water hydrodynamics are still significant (Fig. 2.2b). In relatively

small lakes, as a rule, narrow, deep and stratified, the width is comparable to, or

smaller than, the baroclinic Rossby radius of deformation (RR � L), and the length
of these lakes may be several kilometres to several dozens of kilometres. At low

frequencies, the maxima can be observed (Fig. 2.2c) and correspond to internal

seiches. In such lakes, maxima of oscillations within a range from f (local inertial
frequency) to N (the Brunt-V€ais€al€a frequency) are absent, internal wave amplitudes

are significantly smaller – two orders of magnitude compared to those of great lakes.

The first publications about solitary waves and internal surges were related to

lakes of relatively small size: Loch Ness (Thorpe 1977), Lake Seneca (Hunkins and

Fliegel 1973) and Babine Lake (Farmer 1978).

A clear presentation (or explanation) of nonlinear internalwaves in lakeswasmade

byHutter 1993; Hutter et al. 1998 andMortimer 2004. These authors showed that after

a storm, internal waves in lakes may take the form of an internal surge or packets of

internal solitons, generated by the nonlinear steepening of basin-scale finite-amplitude

waves (Hutter 1993; Thorpe et al. 1972; Farmer 1978). When, in a two-layered

system, the thickness h1 of the upper layer is less than h2, the thickness of the lower
layer, the model response to strong forcing is usually a wave or surge of depression

(rarely elevation) of the interface, accompanied by a much smaller elevation hump on

the free surface. Sketches of an internal surge and an initial solitarywave of depression

on the interface between two fluid layers of respective thicknesses h1 and h2 (h1 < h2)
and densities r1 and r2 are shown in Fig. 2.3a, b, respectively, in which arrows

indicate current directions in a wave moving to the right.

These solitons are much shorter in length than the wind-induced large-scale

thermocline displacements (Vlasenko and Hutter 2002). ‘When the wave amplitude

is large compared with the upper layer thickness, the wave form deviates from the

small-amplitude linear sinusoidal form. It steepens and acquires higher-frequency

components as the wave travels and as the forcing increases’ (Mortimer 2004).

These are illustrated in numerical experiments (Hutter 1993; Hutter et al. 1998).

When the amplitude of the propagating waves is comparable with the epilimnion

thickness, nonlinear dispersion plays a key role. In other cases, when the internal wave

Fig. 2.3 Sketch of internal surge (a) and solitons (b). (from Hutter et al. 1998)
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propagates from the deep part of a basin to a shallow boundary, a breaking event can

arise.When, in a two-layered system, the thickness h1 of the upper layer is less than h2,
the thickness of the lower layer, themodel response to strong forcing is usually a wave

or surge of depression (rarely elevation) of the interface, accompanied by a much

smaller elevation hump on the free surface (Hutter et al. 1998). Hutter (1993) has

shown that internal solitons usually evolve from waves of depression, i.e., when

h1 < h2. Therefore, the largest and fastest-travelling solitons emerge at the head of

their group, creating a distinct front. If the upper-layer currents induced by the internal

solitons are sufficiently large, they interact with wind-generated waves on the surface

to form “tide rips” (Fig. 2.3b). These can sometimes be seen in satellite images as

parallel bands of differing reflectance (e.g., Brandt et al. 1997).

In-situ measurements in lakes show that the internal wave field has a continuous

spectrum ranging from low-frequency basin-scale to maximum buoyancy-frequency

waves. The range of thermohydro-dynamic processes and phenomena in lakes is far

more complex than in laboratory tanks, and planning of field campaigns for the study

of nonlinear internal waves is therefore more difficult.

Below, we consider some examples of nonlinear internal wave manifestations in

various lakes around the world. Let us begin with describing observations and

results of analysis of nonlinear internal waves in fairly narrow lakes where the

internal Rossby radius of deformation is larger than the lake width. Nonlinear

internal waves were first studied most comprehensively in such narrow lakes.

2.1.2 Examples of Nonlinear Internal Waves on Relatively
Small Lakes

Loch Ness (Europe). Mortimer (1975) was the first who discovered an internal

surge in Loch Ness. This is a very long, deep and narrow lake (Fig. 2.4a). The width

of Loch Ness is a few kilometres and the effects of the rotation of the Earth are weak

here, RR � L. Loch Ness is small from a point of view of hydrodynamics. In 1955,

Mortimer moored three thermistor chains in this lake. He described the internal

surge, which returned after reflecting at the end of the lake and pointed out that

“. . .the surge amplitude is noticeably greater on the basin side lying to the right of

the direction of surge progression, a consequence of the rotation of the Earth”.

Thorpe et al. (1972) demonstrated “. . .that the internal surge in Loch Ness has the

character of an internal undular bore, analogous to a tidal bore, propagating at a

speed of about 35 cm s�1 with a steep leading front followed by a train of internal

undulations” (Fig. 2.4b). The surges are generated by strong winds and these can

occur throughout the ice-free season, but are most frequent and intense in autumn.

The amplitude of a depression wave formed at the lake-head by a wind stress nearly

Heaviside-type in time; it is inversely proportional to the phase speed and the initial

slope of the wave is inversely proportional to the square of the phase speed.

2 Field Studies of Non-Linear Internal Waves in Lakes on the Globe 29



The observations demonstrated that the internal surge contains a packet of spatially

coherent large-amplitude internal solitary waves which are followed by an oscillatory

tail of irregular wavelength (Fig. 2.4). High-frequency solitary waves are expected to

break on sloping topography at the basin perimeter leading to enhanced dissipation.

The surges in Loch Ness travelled in both directions, forth and back, along the

lake with decreasing amplitude.

Lake Babine (North America). Farmer (1978) describes observations of large-

amplitude, internal waves in Lake Babine (North America) which is 177 km long,

deep and very narrow. Themaximum depth of the southern basin is 235 m, the central

basin depth is about 100m, but extensive shoaling occurs. Thewidth of LakeBabine is

only a few kilometres and the effects of the rotation of the Earth are weak, RR � L.
From a point of view of lake hydrodynamics, this is a relatively small lake. At least 20

large-amplitude asymmetrical waves were observed in Babine Lake from June to

October 1978 (Farmer 1978). Figure 2.5 displays water-temperature–time series from

five stations showing the passage of an internal surge in Lake Babine from 5 to 7 July.

Farmer explains the generation of nonlinear waves in a narrow lake as follows: “For

long deep stratified lakes it is typical, that, following a strong gust of alongshorewinds,

the thermocline at one end of the lake is depressed and an internal surge is formed. On

the first stage, the surge steepens owing to nonlinear effects, but as it propagates down

the lake it evolves with a train of shorter period waves which often tend to have the

appearance of a group of solitons or solitary waves”.

At the first stage, the surge begins as a small depression wave on an otherwise

tranquil thermocline, and then the leading edge of the wave steepens and the

amplitude increases. The phase speed of the waves on Lake Babine, estimated

Fig. 2.4 Loch Ness bathymetry (a) and a sample of internal surge in the Lake (b) (assembled

figure from Thorpe et al. 1972 and Mortimer 1975)
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from observations, is 0.19 m s�1 and the wavelength is about 456 m. Consequently,

the breaking distances in Lake Babine were about 25–32 km, implying that inter-

action between nonlinear effects and dispersion would begin between two stations.

Strong steepening occurred without evidence of solitary waves and was observed at

the final stage of the wave motion (Farmer 1978).

Finally, contrary to the surges in Loch Ness, where internal surges travelled in

both directions several times along the lake with decreasing amplitude, in Lake

Babine and Lake Seneca (both in North America), the surge travelled only in one

direction (Hunkins and Fliegel 1973; Farmer 1978).

Lake Baldegg (Europe). Lake Baldegg is small (RR � L), several km long, deep

(max depth 65 m), and its surface area is about 5.2 km2 (Lemmin 1987). The regular
lake shape makes Lake Baldegg an excellent place for field study of internal waves

(Fig.2.6a).

Fig. 2.5 Lake Babine top view (a) and water-temperature–time series from five stations (marked

by numbers); indicated by the connecting line is also the passage of an internal surge on 5–7 July.

Direction of the passage of the front is from STN1 to STN 7 (b) (assembled from Farmer 1978)
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Analysis of long records of temperature/depth distributions determined at 10- or

20-min intervals at several stations and extending over three stratification seasons

provides a detailed picture of the characteristics, dynamics, and seasonal variation

activity of the internal waves in Lake Baldegg (Lemmin 1987). Reflected internal

surges were observed about ten times during the field campaign and arise after wind

pulses with speeds more than 4–5 m s�1, blowing more than 3–4 h along the axis of

the lake. Internal gravity waves may become unstable and break, thereby

dissipating some of their energy if their amplitudes become too high. As a result,

nonlinear features, such as asymmetry of the wave shapes and steep-fronted internal

surges, are formed (Fig. 2.6b). Solitary wave packets were not observed by

Lemmin’s experiment, because the 20 min sampling period of the observations is

too large for the time scales of these waves.

Boegman et al. (2005) compared the results obtained by mathematical modelling

with Lemmin’s field observations on Lake Baldegg for the estimation of the

temporal distribution of the energy between the components of the internal wave

modes. According to the numerical experiments, the distribution of the available

Fig. 2.6 (a) Lake Baldegg bathymetry. Points of observations of water temperature are shown by

numbers 180, 181, 182; b) Wind speed squared (1) and wind direction (2); Isotherm-depth

fluctuations (3) at stations 180 (I), 181 (II), and 182 (III), November 1978, small triangles mark

an average period of 16 h (first basin mode) dominant at stations 180 and 182 and a period near 8 h

dominant at station 181 (assembled from Lemmin 1987)
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potential energy among internal seiches, surges and solitary waves is 70, 20 and

10%, respectively (Boegman et al. 2005).

Other Lakes. As was found by Stevens et al. (1996), on the basis of almost three

years of field measurements in narrow but long stratified Lake Kootenay (British

Columbia, Canada), more than 80% of the potential energy of basin-scale internal

waves is lost, i.e., broken into smaller-scale internal waves and eventually

dissipated into heat during only one inertial wave period.

Let us mention some other papers about nonlinear internal waves in other small

lakes. Filonov and Thereshchenko (1999) reported observations of internal solitons in

LakeChapla,Mexico. The size of the lake is 75 � 25 km2,with average depth 6m, and

maximumdepth 11m. From the point of view of hydrodynamics, LakeChapla is small

as RR � L, and the Earth rotation effects are weak. Internal waves were registered in

1996 on the buoy station with thermistors. The internal thermal front near a buoy

station was accompanied by intensive internal waves of bore and soliton type in the

form of Кorteweg–de Vries (K–dV) with amplitudes about 1 m. Didenkulova and

Pelinovsky (2006) report on phenomena similar to tsunamis in some Russian lakes.

The results of observations demonstrated that in relatively small (or narrow)

lakes, e.g., Baldegg, Seneca, Babine and Loch Ness, the basin-scale internal wave

field may be composed of a standing seiche, a progressive nonlinear surge and a

dispersive solitary wave.

2.1.3 Examples of Nonlinear Internal Waves
in Medium- and Large-Size Lakes

Lake Zurich (Europe). Lake Zurich (Fig. 2.7a), a narrow basin relative to its

length, is divided into three regions: a deep part (max. depth 136 m) in the western

half of the “lower” basin and a shallow part (~20 m) in its eastern end, plus a

dynamically separated “Obersee” (“upper” lake); the average depth of the “lower”

lake is 51 m, its area 67 km2, and its length about 30 km (Mortimer and Horn 1982).

Because the internal Rossby radius of deformation approximately equals the basin

width during the August–September interval, the influence of the rotation of the

Earth on the motions considered here is not expected to be large and sometimes

absent (Hutter 1984). A seiche-linked steep-fronted surge was described for Lake

Zurich by Mortimer and Horn (1982) and Horn et al. (1986). In their works, a large

volume of data from measurements of currents (31 current metres) and water

temperature (120 temperature sensors) at 12 deployed moorings was analysed.

Data analysis of the field observations demonstrated that the temperature and

current records show that the subsequent response is a combination of several

internal standing wave modes (Fig. 2.7b). Results of a multi-layered circulation

model, driven by observed winds, are shown in Fig. 2.7b (2–4) by dotted lines.

According to spectral analyses of temperature–time series, the principal energy
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maximum corresponds to the first seiche mode with a period near 44 h. Isotherm

depth amplitudes of the responses may become large and nonlinear features may

appear as steep-fronted internal surges during 12–13 September 1978 (Mortimer

and Horn 1982).

Mortimer and Horn (1982) concluded that the surges are generated at the basin

ends only by down-strokes of the thermocline and only if the down-stroke is

sufficiently large to cause the internal wave to interact strongly with the bottom

topography. The lake’s internal response was principally dependent on the timing,

strength, and duration of the wind impulse, relative to, and interacting with, internal

seiche motions already in progress.

Lake Constance (Europe). Lake Constance is an example of a long stratified lake

with somewhat complex topography. The lake consists of two dynamically isolated

basins, the “upper” and the “lower” Lake Constance (Fig.2.8a). Two sub-basins

Fig. 2.7 (a) Lake Zurich bathymetry with points of observations of internal waves (shown by

black triangles); (b) data of internal wave experiment: (1) wind speed components u (solid line)

and v (dotted line) at mooring 6; Observed (solid lines) and modelled (dotted lines) 8
�
C , 10

�
C and

14
�
C variations of isotherms at moorings 4 (2), 6 (3), 11 (4) 8–15 September 1978 (assembled from

Mortimer and Horn 1982)

34 N. Filatov et al.



form the upper lake: the larger sub-basin is the main basin with a maximum water

depth of 252 m and a mean depth of 101 m; the smaller sub-basin, called Lake
€Uberlingen, has a maximum water depth of 147 m and a mean depth of 84 m

(B€auerle et al. 1998). The mean width of the main basin is 9.3 km, while Lake
€Uberlingen has a mean width of 2.3 km. Basin-scale internal waves in Upper Lake

Constance are significantly affected by the rotation of the Earth, as indicated by the

Burger number Si, i.e., the ratio of the internal Rossby radius RR to a horizontal

length scale LS (Antenucci and Imberger 2001). Defining LS as half of the respec-

tive mean, sub-basin width yields Si ¼ 0.6 for the main basin and Si ¼ 2.4 for Lake
€Uberlingen. The basin-scale internal wave response is therefore modified by the

rotation of the Earth into Kelvin-type waves, Poincaré-type waves, and topographic

waves. The typical thermocline displacement is around 5–10 m in the larger part of

the lake and about 10–12 m in Lake €Uberlingen.
The evolution of internal surges in Upper Lake Constance was observed after

strong upwelling. Field campaigns with observations of internal surges were

organised by Boehrer (2000); Antenucci and Imberger (2001) and Appt et al.

(2004). The study of Appt et al. (2004) is an example for the possible extent to

which numerical methods after validation and field measurements may be com-

bined in order to gain a more coherent understanding of the behaviour of internal

waves in large stratified lakes. In the above-mentioned papers, results of extensive

field experiments, obtained with modern equipment, were analysed. In the field

campaign described by Appt (2004), each station of observation was equipped with

a single-cable thermistor chain of 100 m length, as well as with a wind anemometer

and a wind direction sensor located at 2.4 m above water. Each thermistor chain

consisted of 51 thermistors with an accuracy of 0.018�C and a resolution of

0.0018�C. The thermistors were placed at 0.75-m intervals in the upper 30 m and

at increasing intervals of 1.00–15.00 m below. According to available data in the

western part of Lake €Uberlingen, an internal surge was generated by upwelling. The

Fig. 2.8 (a) Lake Constance bathymetry and (b) schematic evolution of an internal surge in the

Lake (assembled from Appt et al. 2004)
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reflection of the surge from the northwestern boundary induced a vertical mode-two

response, leading to an intrusion in the metalimnion that caused a three-layer

velocity structure in the smaller sub-basin. Schematic evolution of an internal

surge (Fig. 2.8b) is demonstrated by Appt et al. (2004).

Upwelling in the lake continued after cessation of the wind. As the surge

approached the narrower and shallower western end of the main basin, its leading

edge steepened. This agrees with the behaviour of surges in Babine Lake (Farmer

1978), where a decrease in cross section increased the wave amplitude, while

nonlinear effects associated with their finite amplitude steepened their leading

edge. The internal surge and its reflection in Lake Constance caused a two-step

thermocline that can be easily identified in temperature profiles. It is, thus, a

suitable indicator for the nonlinearity of the lake response (Boehrer 2000).

Lake Geneva (Europe). Lake Geneva is the largest lake in Western Europe,

situated at approximately 47�N in the pre-alpine region at the border between

Switzerland and France (Mortimer 1974). It consists of a 310-m-deep main basin,

called the “Grand Lac” (Big Lake), and a smaller western part, about 25 km long

and 4 km wide, called the Petit Lac (Little Lake) (Fig. 2.9a).

For most dynamical processes, the two sub-basins are, however, not decoupled.

At the end of the summer season, an internal Rossby radius of approximately 4 km

can be estimated. From the point of view of hydrodynamics, the Big Lake (Grand

Lac) is a large lake, whereas the Little Lake (Petit Lac) is a small lake. Mortimer

(1953, 1974) detected the surface “signature” of a cyclonically progressing internal

wave in Lake Geneva. He provided a data analysis of summer records (July–August

1941–1944) of water-temperature time series in the lake. An observed period of

75 h of the presumed first internal seiche mode in Lac Leman was derived from a

Fig. 2.9 (a) Lake Geneva bathymetry. (b) Water-temperature records in Lake Geneva in August

1997 deployed on the sloping subsurface side of Lake Geneva southeast of Big Lake (assembled

from Thorpe and Lemmin 1999)
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number of water-temperature data at 15-m depth. Mortimer also demonstrated the

cyclonic progression of the internal wave (Mortimer 1963).

The coupling of the analysis of different types of field data (mostly temperature

and isotherm depth and current time series) with numerical modelling proved to be

a powerful approach to the understanding of the phenomena observed in Lake

Geneva. The hydrodynamic studies conducted by Mortimer (1974), B€auerle (1985),
Thorpe et al. (1996), Thorpe and Lemmin (1999), and Lemmin et al. (2005) present

a consistent picture of the lake, dominated by the presence of several modes of

wind-forced long internal waves modified by the rotation of the Earth and by a

broad spectrum of short internal waves, including solitons. Thorpe et al. (1996)

described high-frequency internal waves in Lake Geneva. They discussed the

generation of high-frequency waves in Lake Geneva after the passage of a large

thermocline depression along the slope of the lake. The observed large thermocline

depression was consistent with the arrival of a first mode baroclinic Kelvin wave at

the sampling sites. Fig. 2.9b (taken from Thorpe and Lemmin 1999) demonstrates

“a temperature rise of about 4�C occurring in 35 min. . . The abrupt temperature

increase is characteristic of internal surges or non-linear Kelvin waves travelling

cyclonically around the lake which appears to be the dominant response to changes

in wind forcing”.

Three possible mechanisms were proposed as sources of the observed trains of

high-frequency waves:

– A soliton packet following an internal thermocline jump

– A jump generating local disturbances as it propagates over irregular and rough

boundary topography

– A jump produced in a region of high shear and low Richardson number, resulting

in a moving disturbance radiating internal waves

Thorpe (1992) also showed that currents along the slope flowing over rough

topography can generate internal waves, but the present energy peaks were always

associated with undular jumps. A possible mechanism of generation of nonlinear

internal waves in the lake is flow interaction with boundaries. Frontal steepness of

internal seiches has been observed after strong wind pulses. As time passes, the

observed fronts in Lake Geneva evolve into regular seiches. Thorpe et al. (1996)

suggest several ways in which Kelvin and short-internal waves may be linked and

energy transferred from internal seiches to short internal waves. Observations

suggest that high-frequency internal waves may be radiated into the lake interior

from the sloping sides of the lake as internal surges travel cyclonically around it

(Thorpe et al., 1992).

The slope in the spectra of internal waves in Lake Geneva closely corresponds to

the o�2-power law within the frequency band between f and N (Thorpe et al. 1996).

Lake Kinneret (Asia, Middle East). Lake Kinneret (the Sea of Galilee) is located

in Israel, has a size (22 � 15) km2 and is oriented north–south with a maximum

depth of 42 m and a surface area of 167 km2. The lake shape is compact-regular

(Fig. 2.10). The internal Rossby radius is typically half the basin width. From the
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point of view of hydrodynamics, Lake Kinneret is a large lake (RR < L). The lake is
stratified from late February through late December (Serruya 1975).

The demonstration of the existence of nonlinear internal waves in the lake was

carried out in several papers by Imberger (1998); Antenucci and Imberger (2001);

Boegman et al. (2003); Saggio and Imberger (1998, 2001) and Gomez-Giraldo et al.

(2008). These authors described the sampling procedures and techniques of the

identification of internal waves. The thermistor chain data were supplemented by

microstructure data collected by using a portable flux profiler (PFP) equipped with

temperature sensors (0.001�C resolution) and an orthogonal two-component laser

Doppler velocimeter (0.001 m s�1 resolution). Profiling vertically through the

water column at a speed of 0.1 m s�1 and a sampling frequency of 100 Hz, the

PFP resolved the water-column structure with vertical scales as small as 1 mm.

Antenucci et al. (2001) suggest that “waves of high-frequency in lakes do not

necessarily derive their energy from basin-scale internal waves through some form of

energy cascade but from wind-induced shear in the surface layer. The coherent nature

of high-frequency waves over the whole water column suggests that mixing due to

basin-scale internal waves or intrusions, which are typically vertically localised,

cannot be responsible for the generation of these waves”. The observations suggest

a steepeningmechanism similar to that observed in long narrow lakes (Antenucci et al.

2001). Data analysis showed that in Lake Kinneret “. . . the leading edge of each

Kelvin wave trough [. . .] steepened; each wave changed from a sinusoidal shape to

one exhibiting a gradual rise in isotherm depth followed by an abrupt descent after the

passage of the wave crest” (Boegman et al. 2003). The nonlinear steepening might be

Fig. 2.10 (a) Lake Kinneret bathymetry and (b) data of observations of wind (1) and isotherm

displacement (2) at point T3 in the field campaign (1998). (assembled from Antenucci et al. 2000)
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influenced by the nonuniform bathymetry/topography of Lake Kinneret. It remains,

however, unclear whether these high-frequency waves are generated through nonlin-

ear steepening of the basin-scale internal waves (Horn et al. 2001) or boundary

interaction, as suggested by Saggio and Imberge (1998). The 2-min sampling interval

did not reveal internal solitary waves or other high-frequencywaves in the lake. These

authors analyse larger-resolution data with a 15-s sampling interval for Lake Biwa

(Boegman et al. 2003).

According to estimations, internal solitary waves are not sinusoidal in character.

It is suggested that localised shoaling of solitary and higher mode internal waves

might result in significant energy flux from the basin-scale wave field to dissipation

and mixing within the bottom boundary layer (BBL).

Lake Biwa (Asia). Lake Biwa is the largest stratified lake in Japan (Kumagai et al.

1998). It is 64 km long, with a maximum width of 20 km and a minimum width of

only 1.4 km. The main basin has a maximum depth of 104 m and a typical internal

Rossby radius of about 5 km. In this case, both sub-basins are large lakes (Fig. 2.11a).

Saggio and Imberge (1998), Boegman et al. (2003) andShimizu et al. (2007) used the

results of the Lake Biwa Transport Experiment (BITEX) 1992–1993. The experiments

include records of water temperature by thermistor chainswith a 15-s sampling interval.

Fig. 2.11 (a) Lake Biwa bathymetry; BN 50 is a station of observation; (b) time series of

observations: (1) wind speed, (2) isotherm depths for a 4-d observation period; (3) magnified

view of shaded region in panel 2 showing isotherms (assembled from Boegman et al. 2003)
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The high-resolution field experiments in Lake Biwa show “that the basin-scale

waves play an important role in distributing and attenuating the energy of the

wind impulses. The Kelvin and Poincaré waves are quickly increased in their

potential energy after each typhoon, but then relax over a few days during which

time their energy is cascaded to smaller scales and distributed throughout the lake.

Attenuation of the internal wave energy occurs because of the interaction of the

waves with boundaries” (Saggio and Imberger 1998).

Shimizu et al. (2007) investigated the horizontal structure and excitation of

basin-scale internal waves and gyres in Lake Biwa using long-term data of

observations and results of modelling. These authors showed that “these internal

waves were damped within a few days, and the dynamics during calm periods were

dominated by the gyres, illustrating the importance of internal waves on mixing and

gyres on long-term horizontal transport”.

Clear examples of the generation of high-frequency waves in Lake Biwa by the

interaction between long waves and topography is given in a paper by Boegman

et al. (2003). The rising of the thermocline observed during the afternoon and night

of 4–5 September coincided with the passage of a mode-one Kelvin wave with a

period of ~2 days as seen in the time series of isotherm displacement (Fig. 2.11b).

Evidences of nonlinear waves after the passage of the typhoon in Lake Biwa are

demonstrated by Boegman et al (2003). “The basin-scale waves are strongly

energised by the wind, and the high-frequency waves are made up of trains of

nonlinear waves, probably generated by the interaction of long waves with the

bathymetry as described by Thorpe et al. (2001) or by nonlinear steepening of

basin-scale waves (Horn et al. 1999). It is not clearly understood how these waves

are generated and how high-frequency waves are generated through nonlinear

steepening of basin-scale internal waves (Horn et al. 2001) or boundary interaction

as suggested by Saggio and Imberger (1998)”.

Frequency analysis of the temperature time series suggests that the slope of the

internal wave spectrum in the broad range is probably the result of the composition

of groups of waves with high intermittence. The internal waves play an important

role in the energy cascade from large to small scales, providing an important link in

the understanding of flux paths in stratified lakes (Saggio, Imberger 1998). All

spectra of internal waves in Lake Biwa exhibit the ranges described above and keep

the same (o�2)–slope.

“The agreement of the shape of internal wave spectra in the ocean (Garrett 1975)

and in a lake is an important result considering the large difference in scales

between these two environments and the difference in the constraints offered by

the boundaries in lakes. The shape and level of the observed internal wave spectrum

in Lake Biwa appears to be due to a rapid redistribution of energy among the groups

of waves by nonlinear interactions, resulting in the rapid relaxation of the distorted

spectra toward a universal form” (Saggio, Imberger 1998). However, the reasons

that the groups of waves which compound this regime are generated are not clearly

understood (Imberger 1998). A possible explanation is that the interaction of low-

frequency waves with the boundaries generates packets of waves of high

frequencies.
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2.1.4 Examples of Nonlinear Internal Waves in Great Lakes:
Lakes Michigan and Ontario, Baikal, Ladoga and Onego

Lakes Michigan and Ontario (North America). Mortimer (2004) described

internal beat pulsations and surges in the North American Great Lakes Michigan

and Ontario. One of the focuses in Mortimer’s work was the cross-basin Poincaré

internal waves with internal seiche modes and whole basin shore trapped internal

Kelvin waves. Seiche-linked internal surges were also observed in Lake Ontario

during high-resolution, cross-basin temperature surveys (Mortimer 2006)

(Fig. 2.12).

Mortimer (2006) showed that “[. . .] the surges did not propagate along but across the
basin, away from a region of strong down-welling along the southern shore, i.e.

the shore lying to the right of the wind direction during the storm, which produced the

down-welling and initially set the internal seiche and surges in motion”. The large-

amplitude Poincaré waves and their precursor down-welling events generate surges

similar to those seen in smaller lakes. Periodic release and radiation of internal surges

from a down-welled front were described earlier by Mortimer (1979). A sample of

internal surges in Lake Ontario was also shown by Mortimer (2006, Fig. 2.13).

Lake Baikal (Asia). Lake Baikal is 636 km long, has a maximum width of

79.5 km and a minimum width of 25 km, its maximum depth is 1,642 m, and the

average depth is 758 m (Fig.2.14a).

The first references to the existence of internal waves in Lake Baikal were

reported in papers by Shostakovich and Rossolimo in the 1930s (cited in Verbolov

1984) and Shimaraev et al. (1994). Focussed observations of internal gravity waves

on Lake Baikal started in 1980 (Verbolov 1984). Granin (1984) also first mentioned

the existence of nonlinear internal waves in Lake Baikal. Evidence of internal

surges and packets of short internal waves which have a train character were

measured for Lake Baikal at offshore and near-shore zones. Figure 2.14b

demonstrates a train of solitons in the thermocline raised after the passage of the

internal surge at the point of observation situated 1.5 km off shore of the north-west

deep part of the lake. The amplitudes of these high-frequency waves reach several

metres.

Fig. 2.12 Lake Ontario

bathymetry. Transect B

(Braddock) and P (Presqu’ile)

of investigations of internal

waves and points of

observations (from Mortimer

2006)
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Spectra of water temperature fluctuations were calculated and compared with the

model developed by Garrett and Munk (1975) for the ocean. Seasonal variations of

spectra of internal waves (Fig. 2.15) were also calculated for Lake Baikal

(Shimaraev et al. 1994). The approximation of these spectra by the Garrett and

Munk model (1975) discloses an o�2 trend, shown in Fig. 2.15.

Another evidence of nonlinear internal waves in Lake Baikal was revealed by

Chensky et al. (1998). In this paper, results of mathematical modelling of the

coastal-trapped waves in the southern area of Lake Baikal are described. The

Fig. 2.13 (a) Water temperature fluctuations (at 10-, 15- and 30-m depth) at Station 9 in Lake

Ontario (Fig. 2.12) from 27 August to 12 October 1972, responses to wind impulses and

(b) migration of an internal surge (shown hatched), the individual isotherm depth traces measured

across BP transects, points 10–19 (see on Fig. 2.12), stacked with vertical separation to simulate a

time scale (assembled from Mortimer 2006)
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authors applied the K–dV model for weakly nonlinear internal Kelvin waves.

However, the results of the experimental investigations of the nonlinear internal

waves during winter seem to be oblique (see Chensky et al. 1998 and Lovcov et al.

1998). The authors supposed that the internal Rossby radius for winter stratification

is about 3 km, the same as during the summer. Doubts are cast upon this presump-

tion, because in this period the water in Lake Baikal is nearly homogeneous.

Fig. 2.14 (a) Lake Baikal bathymetry. Points of observation of internal waves shown by

triangles: (1) in 1.5 km from the shore of the north-west deep part of the lake on 17.07.1980,

(2) Seasonal observations of internal waves; (b) Isotherm depth fluctuations at the thermocline

depth at point 1 of Lake Baikal demonstrated non-linear waves (assembled from Granin 1984, with

permission of the author)

Fig. 2.15 Seasonal

variations of internal wave

spectra (water temperature in

the thermocline) for Lake

Baikal (point 2 on Fig. 2.14):

1 – Garret-Munk model

(1975), 2 – March, 3 – June,

4 – July, 5 – August , 6 –

September , 7 – October ,

8 – November; (assembled

from Shimaraev et al. 1994,

with permission)
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We could not find any better substantiated descriptions of field observations in the

papers of these authors.

Lake Ladozhskoe [Ladoga] (Europe). Lake Ladoga is the greatest dimictic lake

in Europe situated in Karelia, the north-western part of Russia. The surface area

of Lake Ladoga is 17,891 km2 and its volume is 908 km3. The lake ranks among

the top 15 of the world’s freshwater lakes and is comparable in surface area with

Lake Ontario. The latitude of the centre of the lake is about 61�N. The mean

depth of the lake is 52 m; the maximum depth is approximately 230 m. The

horizontal extent of the lake is much larger than the internal Rossby radius of

deformation which equals ~4 km in summer. In the book “Ladoga and Onego –

Great European Lakes: Data Analysis and Modeling” (Ed. L.Rukhovets and N.

Filatov, 2009) these lakes are called the Great European Lakes. For surface

seiches, the external Rossby radius is somewhat larger than a typical horizontal

length (RR(ext) > L), but the baroclinic Rossby radius is very small when com-

pared with the horizontal dimension of the lake (RR(int) << L). Figure 2.16 shows

Lake Ladoga with its bathymetry and the locations of points where internal waves

were observed (Dj, j ¼ 1,.. 5).

During the LADEX physical experiment conducted in 1980–1984, a large set of

hydro-physical and meteorological data was collected (Filatov et al. 1981; Filatov

1991). Field measurements of currents and water temperature were performed in

the bays of the northwest part and at several locations in the offshore zones. In the

stratified Jakkimvarsky Bay, three buoy stations for measurements of currents and

water temperatures at several depths were deployed for three months for several

years (points D1, D2, D3, in Fig. 2.16). High-frequency oscillations of currents were
registered every few seconds from a 6-m tower using hot wire anemometers with

temperature-compensated V-wire probes, and high-frequency oscillations of water

temperature were measured by thermistors. In the offshore zones, currents and

water temperature measurements were carried out at several depths from 5 to 70 m

for a period of 3 months with a time step of 5 min (points D4, D5 in Fig. 2.16).

A broad spectrum of internal waves, currents and mixing processes was discovered,

which is reported by Filatov (1991).

The spectral structure of the currents for Lake Ladoga (Filatov et al. 1981) shows

a 4-day modulation of inertial oscillations and a 15-day modulation of synoptic

fluctuation of currents [see the double-frequency spectrum (a linear invariant of the

symmetric part of the spectral tensor) in Figure 2.17].

The maxima in the spectra (Fig. 2.17b) correspond to synoptical oscillations of

currents, with time scales approximately 2–4 days, inertial oscillations with a

period of 13.5 h and high-frequency internal waves. Spectral analysis indicated

the presence of internal Kelvin and Poincaré waves with phase shifts between the

low-frequency oscillations (period about 4 days) and the inertial oscillations, which

indicate the possibility of nonlinear interactions between spectral constituents;

energy flows from one spectral band to another and high-frequency internal

waves near the Brunt–V€ais€al€a frequency. Nonstationary (time–frequency) spectra

of the internal waves (isotherm displacement) in the metalimnion of Lake Ladoga
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were calculated by Filatov (1983) and in the doctoral dissertation of Kochkov

(1989), see Fig. 2.18a. The approximation of the spectra of isotherm-depth-time

series of internal waves for Lake Ladoga by the Garrett and Munk model is shown

in Fig. 2.18b. The agreement of the shapes of the internal wave spectra in the ocean

(Garrett and Munk 1975) and in Lake Ladoga is an important result taking into

account the large difference in scales between these two environments and the

difference in the constraints offered by the boundaries of lakes (Filatov et al. 1981;

Kochkov 1989).

The case of an internal surge in the offshore zone of Lake Ladoga (Fig. 2.19a)

with an amplitude of about 10 m was observed in August, 1977 (Filatov, et al.

1981). This internal bore on the thermocline was generated by atmospheric pressure

gradients after the passage of an atmospheric front (Fig. 2.19b). The wind speed at

the time was about 11–12 m s�1.

Fig. 2.16 Lake Ladoga bathymetry and locations of points of observation indicated by Dj,
j ¼ 1,. . .,5
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Lake Onezhskoe [Onego] (Europe). Lake Onezhskoe (Onego) has an average

surface area of 9,943 km2, a volume of 290 km3, an overall length of 290 km and is,

on average, 30-m deep with a maximum depth of 120 m. Lake Onego is the second

largest lake in Europe after Lake Ladoga (Fig. 2.20). This is a very large, relatively

deep lake with an internal Rossby radius of deformation of 3–5 km, which is almost

two orders of magnitude smaller than a typical width of the lake.
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Fig. 2.17 (a) Power spectra of currents in the metalimnion of Lake Ladoga for the broad time

scale from few seconds to several hundred hours and (b) double-frequency spectra (linear invariant

of the symmetric part of the spectral tensor of currents) of horizontal currents at the 10-m depth of

the offshore station on Lake Ladoga. O (in rad/day) corresponds to fluctuations of horizontal

currents with frequency o (rad/h). The inertial oscillations have variability with frequency 0.3 and

1.1 rad/day. The 4- and 15-day modulations of inertial oscillations and the 15-day modulation of

synoptic fluctuation of currents are shown (from Filatov et al. 1981)
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The earlier most intensive investigations of the hydrodynamics of Lake Onego

were provided during the “experiment Onego” in 1986–1990; it revealed

registrations of long-term time series of currents and water temperature data and

remote-sensing observations (Boyarinov et al. 1994; Filatov et al. 1990; Filatov

1991; Beletsky et al. 1994). In the cited sources, a wide spectrum of internal waves

has been studied, except nonlinear internal waves. Basin wide barotropic (external)

Fig. 2.18 (a) Nonstationary (time–frequency) water-temperature spectra of internal waves in the

offshore zone of Lake Ladoga and (b) spectra of isotherm-depth-time series of internal waves

before storm (1), after storm (2), from ensemble averages (3) and compared with the Garrett-Munk

model (1975, GM75) in Lake Ladoga, July–August 1984 (from Filatov 1983; Kochkov 1989)

Fig. 2.19 (a) Internal surge

(of the water temperature) in

the offshore zone of Lake

Ladoga (in Fig. 2.18, D4) was
observed with an amplitude of

about 10 m in August, 1977

after a relatively strong wind

(b) with speed Va ~12 m s�1

had blown, Filatov et al.

(1981)
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gravity oscillations in Lake Onego were studied using long-term water level and

current metre observations (Rudnev et al. 1995).

Special field campaigns on internal waves in Lake Onego were organised in

2004–2005 within the INTAS project No 03-51-3728 “Strongly non-linear waves in

lakes: generation, transformation and meromixis”. Particular attention was paid to

the processes of degeneration of internal waves, their successive interaction with

lake boundaries, transformation and disintegration during their shoaling near the

lake boundaries and bottom slope, to interactions of nonlinear waves with the

background stratification as well as wave breaking with the generation of spots of

mixed water (Hutter et al. 2007). Internal surges and solitary waves were observed

during this experiment. The data analysis of these experiments will be presented in

Sects. 2.3 and 2.4.

Fig. 2.20 Lake Onezhskoe (Onego) bathymetry. 1, 2 – Polygons of observation of internal waves

in 2004–2005; 3, 4 – observations of internal waves in 1977 and 1987; 5 – “Onego experiment”

1986–1990 (Filatov et al. 1990)
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2.1.5 Some Remarks on the Overview of Nonlinear Internal
Wave Investigations in Lakes

Data analysis of numerous field experiments of internal waves for large and small

lakes has shown that the resulting internal wave spectrum exhibits a continuous

shape between the local inertial, f, and buoyancy, N, frequencies with an average

slope of about o�2, where o is the frequency. Garrett and Munk (1975) proposed a

universal model for the frequency–wave number spectrum of internal waves.

However, the reasons why the internal wave spectrum is nearly universal in lakes

are not clearly understood.

Field observations in stratified lakes of different size of the globe revealed

nonlinear internal waves: i.e., surges and solitons. Wind generates internal waves

in lakes in the form of basin-scale waves (Mortimer 1952; Mortimer and Horn

1982; Hutter 1993) or propagating nonlinear waves (Thorpe et al. 1972). After a

storm or strong winds, internal waves in lakes may take the form of an internal

surge or packets of internal solitons, generated by the nonlinear steepening of a

basin-scale finite-amplitude wave (Thorpe et al. 1972; Farmer 1978; Mortimer

1975; Hutter 1993). Since these solitons are much shorter in length than the

wind-induced initial large-scale thermocline displacements, their generation results

in a transfer of energy within the internal wave field from large to smaller scales:

– In small narrow stratified lakes, like Loch Ness, Lakes Baldegg, Seneca, Babine,

where the effects of the Earth’s rotation can be neglected, it is suggested that the

basin-scale internal wave field may be decomposed into a standing seiche and a

progressive nonlinear surge (bore) and solitary waves. In some lakes, for example,

in Loch Ness and Lake Baldegg, nonlinear surges are repeated several times by

reflection after their generation, and in other narrow lakes, for example, in Lakes

Babine and Seneca, the nonlinear surge survived only through its initial forward

path after its generation;

– In large lakes, where the effects of the rotation of the Earth are important, broad

spectra of Kelvin- and Poincaré-type waves arise, paired with nonlinear internal

waves. These seiches, Poincaré waves, and Kelvin waves appear to generate

groups of waves at higher frequencies by interaction with the lake bathymetry or

by nonlinear processes in the thermocline. The main action of the wind in the

internal wave field is to energise low-frequency basin-scale waves.

Nonlinear internal waves in lakes are generated by nonlinear steepening and

shoaling. The available data of observations on large lakes of the globe, however,

are yet to provide answers to several important questions. For instance, what does

occur if a solitary wave packet is impinging upon a sloping topography at the lake

boundary? How is the energy contained within a solitary wave packet distributed in a

single wave-sloping? How rapidly do these nonlinear waves dissipate their energy

within the lake interior? What is the critical angle of the boundary slope where

internal waves can shoal and will break? All waves that are generated in lakes must

encounter inevitably variable bottom topography and interact with it simply because
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lakes are closed basins (Vlasenko and Hutter 2002). The distribution and the flux of

energy between basin-scale standing waves, internal surges and solitary waves,

remains with few exceptions (Imberger 1998; Horn et al. 2001), poorly investigated.

It is evident that the degeneration process of nonlinear internal waves remains a

challenge to be captured by field-scale hydrodynamic models (Boegman et al. 2005).

Thorpe (1974) and Horn et al. (2000) noted that it needs “. . .a significant amount

of integrated field, laboratory and numerical work to parameterise the interactions

of non-hydrostatic internal waves, basin-scale internal waves and the turbulent

benthic boundary layer where primarily mixing occurs”.

2.2 Overview of Methods of Field Observations and Data

Analysis of Internal Waves

2.2.1 Touch Probing Measuring Techniques

The principal parameters for internal wave measurements in lakes are water-

temperature (density-) profiles and time series of observations of currents and

water temperature. First investigations of internal waves using moored thermistor

chains were performed by Mortimer (1953) in Windermere. Nowadays, many

electronic high precision thermistors with loggers have been developed. The

thermistors in thermistor chains are usually distributed with spacings from a few

centimetres to a metre in the thermocline region and larger spacing in the epilim-

nion and toward the bottom where the stratification is generally weak. The depths of

the isotherm location (DIL), or simply the isotherm depths (ID), are calculated from

data registered by interpolation of temperature observations on depths measured by

thermistors in the chains and by CTD (conductivity, temperature, density) profilers.

Another way to measure IDs is to record internal waves by termistor strings or

distributed probes (Konjaev and Sabinin 1992), or by towed thermo-probes and

free-falling advanced microstructure probes as developed, e.g., at the Northern

Water Problems Institute (Glinsky 1998). Vertical profiles of currents, measured

by a shipboard broadband Acoustic Doppler Current Profiler (ADCP and ADP) or

deployed to the bottom, and towed ADCP and moored current metres RCM

(Recorder of Current Meters – Aanderaa company, Norway).

Planning field experiments of nonlinear internal waves in large stratified lakes is

a far more challenging task than in small lakes since the range of thermodynamic

processes and phenomena is much more complex, and so is the set of hydrometeo-

rological conditions (forcing).

Modern instruments, such as (1) the free-falling microstructure profilers

equipped with velocity, temperature and conductivity sensors, (2) the bottom

devices with the ADCP (or ADP) recording devices for measuring the near-bottom

currents, (3) the high-resolution thermistor chains, and (4) the towed profiling of in-

situ probes, were used for investigations of internal waves and are now available for
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modern investigations. Nowadays, one uses thermistor chains and portable flux

profilers (PFPs) which are equipped with precision high-resolution temperature

sensors (of a resolution of about 0.001�C) and orthogonal two- or three-component

laser Doppler velocimeters or acoustic Doppler current profilers (Boegman et al.

2003). Modern data for internal waves can be obtained by using moored self-

contained temperature loggers. On the one hand, the time step of measurements

(readings) depends both on the task of investigation and on the time scales of the

internal waves. The time step for measuring high-frequency internal pulses is only a

few seconds. On the other hand, for basin-scale internal waves, the time scale of

measurements is on the order of a few minutes to many hours in campaigns of

several months’ duration. Thermistors have an accuracy of 0.002
�
C and should

have a response-time constant of less than 3 s. Thermistors are usually calibrated by

the manufacturer before and after deployment. Data records for each thermistor are

aligned by time, and the rate of change of the temperature between two fixed

thermistor depths is used to solve for the depth of a desired temperature, thus

constructing isotherm-depth-time series.

Observational studies which yield descriptions of the patterns of manifestation,

generation and dissipation of nonlinear internal waves are generally more detailed

in small than in large and deep lakes. To study the generation, interaction, and

dissipation of internal waves in small narrow lakes like Loch Ness, Babine Lake,

and Lake Seneca, several thermistor chains were deployed (Thorpe et al. 1972;

Farmer 1978). As it was shown by the authors (see Fig. 2.21), to study nonlinear

internal waves in relatively narrow lakes, the deployment of several thermistor

chains along the main lake axis is sufficient.

Fig. 2.21 Positions of

thermistor chains (A–D)

along approximately the

thalweg of Loch Ness (from

Thorpe et al. 1972)
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In larger lakes, where the effect of the Coriolis force becomes significant, the

thermistor chains and current measurement devices are usually deployed along and

across the basin (Antenucci and Imberger 2001; Saggio and Imberger 2001;

Mortimer 2006).

Depth-reaching studies of internal wave dynamics which are based on water-level

records were demonstrated by Mortimer (1963) and Lemmin et al. (2005). The water

level recorders, easily installed andmaintained, can be operated during thewhole year.

In the paper, season-long water level records at 12 stations around Lake Geneva

measured by the Swiss Federal Water Service along the shore in 1950 were analysed

regarding the evidence of internal seiches, modified by the Coriolis force. To this end,

the surface-elevation-time series were smoothed to eliminate the barotropic oscilla-

tion. The authors noted and used the fact that the thermocline oscillations were

accompanied by oscillations at the lake-surface level, which are out-of-phase with,

and typically about 100 times smaller in amplitude than, the oscillations of

thermocline isotherms.

In the large Lakes Kinneret, Biwa, and Geneva, several extensive campaigns for

investigations of internal waves were conducted. In these experiments, thermistor

chains were deployed approximately perpendicular to the shore (Fig. 2.22a). Such

deployment of measuring equipment allows description of a wide spectrum of

internal waves – from basin-scale Kelvin and Poincaré to high-frequency waves,

to reveal mechanisms of generation of nonlinear internal waves, such as surges and

solitons. The physical parameters of the nonlinear internal waves (wave numbers,

amplitudes, speed, and direction of propagation) were determined through direct

Fig. 2.22 (a) Locations of the thermistor chains (T1–T5) deployed across Lake Kinneret for

investigations of a broad spectrum of internal waves and (b) scheme of setting thermistor chains

for investigations of characteristics of high frequency internal waves in Lake Kinneret. (from

Gomez-Giraldo et al. 2008)
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measurements by three or more noncollinear thermistor chains. Direct observation

gives an average crest-to-crest period. For analysis of high-frequency internal

waves, an array of five closely spaced, high-temporal resolution thermistor chains

was deployed in the form of a small and large triangle in Lake Kinneret (Fig. 2.22b)

(Gomez-Giraldo et al. 2008).

The horizontal distances between the thermistor chains in the Lake-Kinneret

experiment are equal to 9 m for the small triangle and 200 m for the larger triangle;

the spacing was determined from wavelength estimates before the experiment

(Boegman et al. 2003). Another kind of thermistor-chain positions was applied in

Lake Biwa in the form of a cross and a line.

To register the vertical thermal structure during a probable shoaling of nonlinear

internal waves in a bay of large Lake Onego, the thermistor chains was installed

along a line (approximately perpendicular to the shore) with depths from 11.3 to

32.0 m in the northern part of the lake (Bolshoe Onego Bay, Fig. 2.23):

The sampling interval of the water temperature and currents depends on the

possible time scales of the investigated internal waves. For high-frequency internal

waves (solitons), the sampling interval of the measurements should lie in the range

of few seconds to few minutes. The methodology, based on data from commonly

available equipment, has proved to be a successful means to provide information

that is essential for the calibration and verification of mathematical models of the

internal water movement in the lake.

The set of equipment for the complex study includes deployed buoy stations for

registrations of currents and water temperature; this equipment was used in Lake

Onego during the INTAS experiment 2004–2005 (Hutter et al. 2007). These are

AANDERAA current metres and water-temperature devices (ADP, CTD, TR, TL,

ACIT) and a meteo-station installed on the board of the research vessel. Figure 2.24

demonstrates the measurement systems used on board of the research vessel of the

Northern Water Problems Institute “R/V Ecolog”.

To investigate the development of internal waves in the Great American Lakes,

the researchers measured not only water temperature and currents with the use of

autonomous buoy stations deployed along and perpendicular to the shore, but also

Fig. 2.23 Distribution of equipment for investigations of shoaling of nonlinear internal waves in

Lake Onego during the INTAS experiment 2004 (see more about experiment 2004 in Sect. 2.3).

Here, TR stands for temperature recorder, TL – thermochain, RCM –current metre AANDERAA,

ACIT-Autonomous current and temperature device, Soviet analogue of RCM
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performed registrations along lake cross-sections. Such approaches, used on Lakes

Ontario and Michigan, are described in Mortimer (2006). To “instantly” register the

water-temperature profile in studying the propagation of an internal surge along the

cross-section in Lake Ontario, a towed temperature profiler was used (Fig. 2.25).

An analogous profiler batfish was developed at NWPI by Aleksander Glinsky and

used in the field experiment “Onego” on Lake Onego (Filatov et al. 1990).

2.2.2 Remote-Sensing Techniques

In the last four decades, the combination of in situ field and remote-sensing
observations has demonstrated that nonlinear internal solitary-like waves and

surges are general features of the coastal oceans and of lakes (Apel et al. 1975;

Kondratyev and Filatov 1999).

Fig. 2.24 Scheme of research instrumentation on board of “R/V Ecolog” in internal wave

experiments 2004–2005: (1) Buoyant body with current metres RCM Aanderaa (Norway), (2)

thermistor chains, (3) acoustic Doppler profiler (ADP) for current measurements, (4) profiler of

Conductivity, Temperature, Depth (CTD), (5) free falling CTD, (6) Meteostation mEMSet on the

boat

Fig. 2.25 Towed profiler of

hydrophysical parameters:

T temperature, P pressure,

S commutating swivel, A
winch axle, C conductor

cable, beam with sheaves, W
winch, R recorder (Mortimer

2006)
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Internal waves can be observed with the use of high-resolution satellite images,

e.g., SAR data (synthesis aperture radar satellite) and SPOT (French satellite with

optical imaging “Satellite Pour 1’Observation de la Terre”, with resolution 2.5, 5

and 10 m) and of lower-resolution satellite images, e.g., SeaWiFS and MODIS

(Moderate Resolution-Imaging-Spectra radiometer). High-resolution satellite SAR

images allow the estimation of a depression internal wave packet observed as a

bright band, followed immediately by a dark band. In SPOT and MODIS, images

with 1 km resolution have been measured in the optical bands. In these, internal

waves become visible at the sun glint area, because the sun glint radiance associates

with sea-surface roughness variations due to internal waves. Other possibilities to

estimate internal wave parameters are colour image data from low-resolution

radiometer from the SeaWiFS satellite using chlorophyll measurements (chl).
A visible ocean colour sensor can observe the variation in the subsurface layer.

SeaWiFS images indicate the variation of chl when an internal wave passes

through. The technique of estimation of internal wave parameters is based on a

well-known fact that large-amplitude nonlinear internal waves may significantly

affect the distribution of the near-surface phytoplankton (Queguiner and

Legendre 1986).

In some large lakes, complex studies of physical processes, including internal

waves, were conducted by means of remote-sensing and sub-satellite hydrophysical

measurements. Satellite data obtained from the USA National Space Agency

(NASA) by the satellites “Aqua” and “NOAA”, and from the European Space

Agency (ESA), by the satellite “Envisat”, were applied to analyse the spring

thermal bar and internal waves in Lakes Ladoga and Onego (Malm and Jonsson

1994; Kondratyev and Filatov 1999). In Bogucki et al. (2005), SAR images were

used for the analysis of nonlinear internal waves, in particular internal solitary

waves (ISWs). A more effective band for internal wave observations is SAR

imaging, which uses a modification of the surface gravity wave field, namely the

coherent surface-strain rate induced by ISWs which travel along the wave guide of

the thermocline. The pattern of short gravity waves can be detected by the radar

backscatter system via Bragg scattering. Results of the analysis of RADARSAT

sea-surface space images with manifestation of internal solitons in the New York

Bight (Fig. 2.26) have been presented by Bondur et al. (2006).

The internal waves are visible as alternating light and dark bands. Figure 2.26

indicates the locations of several separate wave groups, visible in the SAR image.

The number of wave packets, wave-packet distances, wavelengths and group

velocity are determined by satellite image processing (Bondur et al. 2006).

Amplitudes and energy fluxes of the internal wave in the area of wave generation

have been estimated by two different methods; image processing, direct observa-

tion, and simulation yielded close agreement of the parameter values.

Target-oriented multi-level experiments using air and space facilities, realised on

lakes Onego and Ladoga, were organised in the late 1980s (Kondratyev and Filatov

1999; Filatov et al. 1990; Karetnikov and Naumenko 1993). Observations within the

“Onego” experiment, which had started in 1986 (Filatov et al. 1990), were carried out

using buoy stations with thermistor chains and current metres; equipment on research
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vessels was similar to those shown in Fig. 2.24; stationary hydro-meteorological

standard stations of observations were employed; a research laboratory on board an

aircraft AN-28 (Polar Institute of Fishery and Oceanography – PIFO,Murmansk) was

equipped by infrared radiometer, side looking radar, LIDAR (Light Identification,

Detection and Ranging). Data were collected with aircraft-mounted lasers capable of

recording concentration of chl a; and low-resolution (1,000 m) satellite data from

“NOAA”, “Meteor”, medium and high-resolution data from Soviet satellites

“Resourse-01” (several optical bands), “Kosmos-F1” (panchromatic data), “Almaz”

(Soviet satellite with synthesis aperture radar data) were employed. The

measurements with medium- and high-resolution data with resolution 170–45 m in

the ranges 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–1.1 mm from these satellites, as well as

results of a multi-spectral scanner were used. Aircraft, research vessel and satellite

observations were synchronised and allowed to synoptically study the physical

processes and phenomena (Fig. 2.27).

All available information was used to reveal the nature of the characteristics in

Lake Ladoga’s and Lake Onego’s water dynamics, including eddies and internal

waves in the offshore and near-shore zones, as demonstrated by the satellite images.

These data revealed considerable “patchiness” of the images pointing at

corresponding variability of the phenomena occurring at the lake surface. Satellite

Fig. 2.26 Manifestation of solitons in the New York Bight by satellite radar image of

RADARSAT. The size of the wave groups in km is shown on the figure (from Bondur et al. 2006)
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data from the Soviet satellite “Almaz” with SAR demonstrated surface-revealed

streaks perpendicular to the shore of Lake Ladoga (Fig. 2.28). These streaks in lakes

arise due to the appearance of internal gravity-wave packets on the surface.With these

observation techniques, internal waves are best manifest on the lake surface with the

thermocline located rather close to the surface, where the upper thermocline-

metalimnion boundary is found at the 5–15 m depth. In this case, the currents, evoked

by internal waves, are particularly strong in the epilimnion. Since internal waves are

not directly visible, they can only be detected by their surface signature and by direct

measurements of in situ hydrophysical parameters. Where the density interface is

sufficiently shallow to permit the internal wave crests to interact with the sea surface,

the waves can be detected by the resulting increased roughness of the lake surface.

Surface roughness is best seen by the use of Synthetic Aperture Radar (SAR) imagery.

Internal waves appear on the surface in the form of low-frequency surface signals with

the periodicity of internal waves. SAR images of Lake Ladoga received from the

satellite “Almaz” show manifestations of internal waves on the surface with

wavelengths of a few hundred metres to kilometres (Kondratyev and Filatov 1999;

Naumenko et al. 1992, Fig. 2.28)

This figure is a good example of internal wave manifestation with a group of

tightly packed solitons; basin scale internal waves are shown in this image.

A survey, conducted by a side-looking radar from the satellite “ENVISAT”

(radiometer ASAR – An Advanced Synthetic Aperture Radar) satellite, which was

synchronised with ship-borne observations from R/V Ecolog, indicated that,

according to the shade and texture of the surface layer, Lake Onego was divided

Fig. 2.27 Sketch of the

multi-layered Lake Onego

physical experiment during

1986–1990 using several

satellites, aircraft laboratory,

buoy stations with thermistor

chains and current metres (1),

research vessels (2), points of

water temperature

observations (3). (from

Filatov 1991 and Kondratyev

and Filatov 1999)
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into two parts with patches of dozens to hundreds of metres exhibiting manifesta-

tion of solitary waves (see Sect. 2.3. Fig. 2.40).

Another remote-sensing technique, applied for internal wave investigations in

lakes and oceans, is acoustic echo-sounding. Farmer and Smith (1980) used echo-

sounding observations from the boat to observe physical processes in natural

waters. In the Lake Ladoga experiment (Filatov 1983), internal-wave observations

were undertaken, combined with touch probing measuring techniques (thermistor

chains, CTD, current measurement) with echo-sounders from the research vessel

“Talan” of the Institute of Limnology of the Russian Academy of Sciences. Four

acoustic surveys in Lake Ladoga by a dual-beam 400-kHz echo-sounder were

performed. Figure 2.29a displays an image of the evolution of the flow (hydro-

acoustic transect) which allows estimation of the thermocline fluctuations by

internal waves (internal standing wave and surge) and vertical distribution of the

water temperature and speed of sound in the water, as measured from the anchored

board of the research vessel “Talan” in Lake Ladoga (Filatov 1983).

Such waves can be distinguished by the use of the phytoplankton distribution

registered by echo-sounding. The upper mixed layer thickness was about 12 m with

a local depth of 30 m. Fig. 2.29 illustrates the presence of fluctuations at the

Fig. 2.28 Satellite “Almaz” SAR image of Lake Ladoga in summer 1995. In part of the Lake,

manifestations of internal waves and other mesoscale structures are shown
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thermocline with a period of four hours, corresponding to that of the internal seiches

in the Jakkimvarsky Bay of Lake Ladoga (see Fig. 2.16). The amplitudes of these

internal waves were about 3–6 m. High-frequency nonlinear internal waves can also

be seen in Fig. 2.29a; they are shown by the white curved line (1) (which

demonstrates the capacity of this echo sounding approach). Another example of

observations of internal waves and mixing is given in Moum et al. (2003). The

acoustic backscatter records in the lake disclose Kelvin–Helmholtz billows growing

from instabilities on the forward face of a solitary wave (Fig. 2.30).

There also exist several other methods of internal wave observations. For

example, Michallet and Ivey (1999) applied ultrasonic probes and data processing

to study interfacial solitary waves in layered waters.

Fig. 2.29 (a) Acoustic image demonstrating the evolution of the flow in the near-shore zone of

Lake Ladoga in August 1977 (station D1 on Fig. 2.11). The onsetting internal standing wave is

shown by the white curved line indicated by (1); (b) Vertical distribution of the water temperature

(2) and sound speed (3). Data obtained by Acoustic dual-beam 400-kHz echo-sounder from the

anchored board of the research vessel
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2.2.3 Data Analysis of Time Series of Observations
of Internal Waves

The general data analyses of time series of observations of water temperatures

(often in the form of IDs) and currents use standard statistical procedures applied in

limnology and oceanography (Gonella 1972; Mooers 1976; LeBlond and Mysak

1978; Mortimer 1979; Konjaev and Sabinin 1992; Kondratyev and Filatov 1999;

Rozhkov et al. 1983). The set of methods include auto- and cross-correlations and

spectral analysis of time-series records and hydrophysical scalar and vector fields.

The power spectral densities of internal waves are calculated by the use of the

techniques of spectral analysis, which are obtained with the well-known method of

Bendat and Piersol (1971), e.g., FFT (fast Fourier transforms) or MEM (maximum

entropy method). These methods, applied to time series of scalar fields (water

temperature records, water level fluctuations or IDs) and orthogonal components

(projections in velocity vectors on to Cartesian axes) of 2-D vectors of currents, are

well described in the literature (Rozhkov et al. 1983). However, as shown by three-

dimensional progressive vector diagrams of currents (Fig. 2.31), measured by

ADCP devices, the trajectories of water movements are more informative, even

though also more complicated than 2-D progressive vector diagrams of U and V

components of the currents are constructed.

The most general statistical model for the current–time series is their represen-

tation in the form of nonstationary nonhomogeneous vectorial stochastic functions

with values in 3-D Euclidean space. For a joint data analysis of scalars (water

Fig. 2.30 Acoustic backscatter records showing Kelvin–Helmholtz billows growing from

instabilities on the forward face of a solitary wave and billows (shown by the white curved line)

(from Moum et al. 2003)
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temperature, isotherm depths) with vector processes (currents), special approaches

should be applied (Rozhkov et al. 1983; Filatov 1991; Murthy and Filatov 1981).

At present, since a uniform, generally accepted technique of analysis of time

series is still lacking, data processing for currents is performed on the basis of the

representation of a velocity vector in terms of its projection in a two-dimensional

(2D) Cartesian coordinate system (component method); complex-valued methods

(Mooers 1976) in which the 2D vectors are represented as complex numbers with

their real and imaginary parts being equal to the projections of the velocity vector to

the Cartesian axis are also used as is the method of rotary-components (Gonella

1972). Rotary spectra display the frequency distribution of kinetic energy

partitioned into clockwise- and anticlockwise-turning currents of the U and V

components of the vector time series.

By comparative analyses of these methods, it can be shown that, due to the

difference of the mathematical models of the current vector (and, therefore, because

of the operations over these models), the probability characteristics of the currents

calculated by the different methods are not equivalent to one another; sometimes,

the different methods may cause illusive representations of the current variations.

The most arguable approach to the processing of data of current measurements and

this analysis is given by the vector-algebraic method worked out by Rozhkov et al.

(1990). This method was applied for auto- and cross-data analysis of currents

(vector valued) and water temperature (scalar valued) for the large Lakes Ladoga,

Onego, Sevan and Nesijarvi (Filatov 1991).

Fig. 2.31 3-D progressive-vector diagram of currents measured by ADCP (three components of

current: U, V and W) (solid line) and mean water transport vector (dotted line). (from Bondur and

Fialtov 2003)
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The principal probability characteristics of the current velocities are the expec-

tation vector V, the correlation tensor, defined as the expectation of the tensor

product of vectors, and the spectral density tensors determined through Fourier

transforms of the correlation function. The theory of the method was developed by

Rozhkov et al. (1983) and was first applied for Lake Ladoga by Filatov (1983). The

spectra SV oð Þ characterise the distribution by the frequency of oscillations of the

current velocities and give a quantitative measure of the intensity of such

oscillations and their orientation in the accepted system of coordinates and changes

in time,

SVðoÞ ¼ 1

2p

ð1
�1

e�iotKVðtÞdt;

where

SVðoÞ ¼ SV1V1
SV1V2

SV2V1
SV2V2

� �
;

and

SV1V2
ðoÞ ¼ CV1V2

ðoÞ þ iQV1V2
ðoÞ;

SV2V1
ðoÞ ¼ CV2V1

ðoÞ þ iQV2V1
ðoÞ;

CV1V2
ðoÞ ¼ CV2V1

ðoÞ QV1V2
ðoÞ ¼ �QV2V1

ðoÞ:

The above-mentioned probability characteristics are invariants and do not depend

on the choice of the system of coordinates.

The properties of the correlation, KV tð Þ, and the spectral tensor-functions SV oð Þ
and, thus, the process properties V(t) may be optimally disclosed through the set of

invariant scalar functions, namely: J1(o) is the invariant spectrum of currents,

l 1; 2 oð Þ are the axes of the ellipse, and a oð Þ is the angle (from North) to the

principal axis of the current ellipse (see Fig. 2.33) .

The correlation function and spectral density estimates in a stationary approxi-

mation are calculated by averaging function values of time series of pertinent

variables along the whole realisation length, and in nonstationary approximations

by performing gliding averaging of separate parts of the realisation. For processes

with strong nonstationarity, a spectral density estimation is produced by means of

gliding auto-regression transforms.

These methods of time series analysis of vectors (currents) and scalars (IDs) were

used for Lake Ladoga (Filatov 1983) and in the internal wave experiment for Lake

Onego of the INTAS field study experiment in the summers of 2004–2005 (Hutter

et al. 2007). Spectral analysis data of ID and currents (six tensor characteristics) in

Lake Onego allow us to establish the dominant period in the currents of the internal
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wave near the local inertial frequency (o ~ 0.5 rad h�1) in the offshore zone at

stations D4 and D5 (Fig. 2.37). Small diurnal (o ~ 0.26 rad h�1) long-period macro-

scale internal Kelvin waves (o < 0.1 rad h�1) and high-frequency fluctuations were

also detected (Fig. 2.32). Tensor-data analysis of the currents allowed identification

of the current ellipses; at the upper level, they exhibit a greater anisotropy when

compared with those observed at depths below 30 m. The rotation indicator shows

that in the low-frequency range, the rotation was clockwise (not demonstrated in

Figure 2.33). This is typical for internal inertial oscillations of currents. The rotation

of the current vectors with a semi-diurnal period is explained by the tendency of the

direction of the main current to follow the steep depth gradient. The sizes and aspect

ratios of the current ellipses provide a characterisation of the current.

Figure 2.33 shows the current ellipse at the thermocline, indicating a strong

anisotropy. The main direction of the currents during the period of observation is

195
�
. Spectral analysis using the frequency–time approach and wavelet transforms

have been conducted for data of internal waves in e.g., Lakes Kinneret (Antenucci

et al. 2000), Onego (Hutter et al. 2007), Ladoga (Filatov et al., 1991), Michigan and

Ontario (Mortimer 2006). Sampled data on the water temperature and IDs allow

evaluation of the density spectrum of internal gravity–inertial waves in the period

ranges from the local inertial band (o � f) to short-term intervals of a few minutes,

typical for the local Brunt–V€ais€al€a frequency. The spectrum of the internal waves

(ID) has a dominant maximum at the local inertial frequency (o ~ 0.5 rad h�1), and

minor maxima in the high frequency range caused by short-period internal waves

near N, where harmonics exist corresponding to the group of internal waves having

random phases and amplitudes. On the basis of ID-data, a frequency-temporal

spectrum S(o, t) can be constructed by calculating the spectra of internal waves

for several time spans belonging to the observation period of nonstationary spectra

of internal waves for different time intervals.

Fig. 2.32 Characteristics of

the tensor spectral density of

currents in the metalimnion of

Lake Onego, 2004, point D5,
horizont 15 m in the

thermocline: J1(o) – linear

invariant (or spectra) (a),

l1(o) – major axis of ellipse

of currents (b), l2(o) – minor

axis of current ellipse (c)
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Figure 2.34 shows a sample of wavelet analysis of the 12�C- isotherm

depth–time series at a particular position in the Lake Onego-INTAS experiment

2005. It reveals the presence of the maxima at frequencies which correspond to the

synoptical period (internal Kelvin wave through the whole period of

measurements), the diurnal period to the inertial oscillations.

No evidence of an internal surge or of solitons is evident in this wavelet

(Fig.2.34). The amplitude of the Kelvin wave (d8 in the figure) is twice as large

as that of internal Poincaré waves with period 13.5 h (d5 in the figure). Finally, we

mention that Saggio and Imberger (1998) applied the wavelet analysis to

investigations of internal waves in Lakes Biwa and Kinneret.

The nonstationary continuous wavelet time–frequency spectrum of internal

waves for the 12�C–isotherm (station D5, Lake Onego, 2005) is shown in

Fig. 2.35. Its spectra demonstrate an increasing value of the energy of the internal

wave oscillations on the frequencies of internal Kelvin and Poincaré waves during

the period of the stratification development.

It is interesting to note that various authors (Thorpe & Jiang, 1998; Imberger

1998; MacIntyre et al. 1999; Stevens 1999) found that the energy spectrum of

internal waves exhibits high accuracy within the frequency band between f and N,
as observed in the ocean (Garrett and Munk 1975). The agreement of the shape of

the internal wave spectra in the ocean and in lakes is an important result, consider-

ing the large difference in scales between these two environments and the differ-

ence in the constraint offered by the boundaries of lakes. These characteristics also

seem to be independent of the size of the lake, having been observed in other lakes

Fig. 2.33 Ellipse of currents

in the metalimnion of Lake

Onego, 2004, at station 5, at a

depth of 15 m. (a) the major

axis of the ellipse is l1(o) and
(b) the minor axis is l2(o)
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too: Geneva (Thorpe et al. 1996), Kinneret (Imberger 1998) and Ladoga, Onego and

Sevan and Krasnoe (medium- and small-size lakes in Europe) (Filatov 1991,

Fig. 2.36). However, the mechanisms which create and distribute the energy

throughout this universal power spectrum of Garrett and Munk (1975) according

to o�2, are seemingly independent of the size and location of the aquatic system,

but are not yet understood.

It is evident nowadays that coupling of the analysis of different types of

measurements of field data with remote-sensing observations and numerical

modelling has proven to be a powerful approach to better comprehend the internal

wave characteristics observed in lakes.

It is worth noticing that the choice of methods in studying nonlinear internal

waves strictly depends on the formulated hypotheses, typical lake size, extent of

stratification and wave parameters in a range from basin scale to high frequency,

and weather conditions.

Fig. 2.34 Discrete wavelet decomposition at 9 levels (discrete Meyer wavelet) for the

12�C–isotherm depth variations at station D4 (Lake Onego, 2005). a9 – trend, d9 – 216 h, d8 –

108 h (Kelvin waves), d7 – 54 h, d6 – 27 h, d5 – 13.5 h (Poincaré), d4 – 6.75 h, d3 – 3.4 h, d2 –

1.7 h, d1– 0.85 h

2 Field Studies of Non-Linear Internal Waves in Lakes on the Globe 65



Fig. 2.35 Nonstationary continuous wavelet time–frequency spectrum of internal waves.

(12�C–isotherm, station 5, INTAS experiment on Lake Onego 2005)

Fig. 2.36 Ensemble averages of spectra of internal waves (IDs in the middle of the metalimnion)

in Lakes Ladoga, Sevan and Krasnoe. “GM-75” is the o�2 law of Garett and Munk (1975)
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2.3 Lake Onego Field Campaigns 2004/2005: An Investigation

of Nonlinear Internal Waves

The Lake Onego experiment 2004–2005 was devoted to studies of nonlinear

internal waves. It was a first special complex experiment performed in a large (or

great, see Rukhovets and Filatov 2009) lake by means of field observations, remote-

sensing data analysis from satellites, and mathematical and laboratory physical

modelling (Hutter et al. 2007).

Particular attention was devoted to the processes of degeneration of basin-scale

baroclinic movements into short-period internal waves, their successive interaction

with lake boundaries, the transformation and disintegration of internal waves during

their shoaling near lake boundaries and bottom slope, the interactions of nonlinear

waves with the background stratification as well as breaking with the generation of

spots of mixed water. In the framework of the INTAS project “Strongly nonlinear

waves in lakes: generation, transformation and meromixis” (Hutter et al. 2007),

internal wave processes were studied theoretically in conjunction with the use of

experimental data obtained during the summer campaigns in Lake Onego in

2004–2005 and previous observations of internal waves (1977–1987 and

1986–1992) in gulfs of Lake Onego under complex hydrometeorological

conditions. A fully nonlinear nonhydrostatic numerical model (Hutter et al. 2007;

Vlasenko et al. 2005) was applied. It was important to analyse the climatology of

the processes under study and to gain better knowledge about the development of its

specific features related to the weather conditions, depth distribution, and angles of

the slope of the shore of the lake.

2.3.1 Field Measurements

Two field campaigns were performed in the framework of the INTAS project in

Lake Onego, Karelia, Russia in the periods 18–28 July 2004 and 13–24 July 2005.

To register the vertical thermal structure during a probable shoaling of nonlinear

internal waves, the following equipment was installed along a line roughly follow-

ing the direction of steepest descent of the bathymetry and with depths from 10 to

32 m in the Bolshoe Onego Bay (see Fig. 2.37, Table 2.2 and Fig. 2.24): thermistor

chains with 5–10 min sampling intervals were installed at stations 1, 3 and 5;

currents were measured by RCM current metres with time intervals of 10 and 5 min,

respectively, at stations 4 and 5 and by acoustic doppler profiler ADP with 1 min

sampling interval; a free falling CTD profiler was used for every 20-min tempera-

ture-profile-measurement at station 4.

To evaluate the development of internal waves in Lake Onego, the observational

data received at the same polygon in 1977 and in the narrow bay Lizhemskaya Guba

in the Bay Bolshoe (Big) Onego in 1987 were also used. Figure 2.38 demonstrates

locations of equipment deployment in 1977 (a) and 1987 (b).
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The depth distribution at the measurement sites and locations of measurement

devices are shown in Fig. 2.37 and Table 2.2. Instrumentation for exploration of

the water dynamics on board of ‘R/V “Ecolog” is shown in pictures in Sect. 2.2

(see Fig. 2.24).

Meteorological data during experiments were collected from the meteorological

network of the Russian “Roshydromet” stationed around the lake and on board of

R/V “Ecolog” of the Northern Water Problems Institute (NWPI) by the meteoro-

logical station mEMSet 99 with wind sensors, air temperature and humidity sensor

EMS 33, and infrared (IR) radiometer. Hourly registrations were performed from

the board of the anchored vessel “Ecolog” (station 4): wind speed [m s�1]; wind

direction [degrees]; wave height, Beaufort number; wave height direction

[degrees]; total cloudiness [points1]; air temperature [�C (dry-bulb)]; air tempera-

ture [�C (wet-bulb); air pressure [mm Hg]; surface water temperature [�C]; water

Fig. 2.37 Locations of the polygons of field campaign in the Bolshoe (Big) Onego Bay, Lake

Onego in 2004–2005 (1). Locations of the points of observations during 18–28 July 2004 (a) and

13–24. July 2005 (b). Positions of hydrophysical stations with respect to the shore and to the entry

of the bay, vertical profiles (sections) of observations in 2004 (c) and in 2005 (d)

1 In Russia estimates of total cloudiness is in fractions from 1 to 10. Ten points are equal to 100%

of cloudiness.
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Table 2.2 Description of equipment used in the measurements performed in 2004/2005

CTD-90M Sea and Sun Technology (Germany)

Sensors Range Accuracy Resolution

Pressure 50 bar �0.1% FS 0.002% FS

Temperature, �C �2. . .+35 �0.005 0.001

Conductivity, mS/cm 0. . .6 �0.005 0.0001

Free-falling profiler (NWPI, Russia)

Sensors Range Accuracy Resolution

Temperature, �C �2 � 30 �0.2 0.01

TR-2 Aanderaa (Norway)

Sensors Range Accuracy Resolution

Temperature, �C �2.46 � +21.48 �0.15 0.02

Temperature recorder SBE 39 (USA)

Sensors Range Accuracy Resolution

Temperature, �C �5 to 35 �0.002 0.0001

Automatic current and temperature recorder ACTR (Russia)

Sensors Range Accuracy

Temperature, �C �2 � 38 �0.03

Current velocity, cm s�1 3–200 �5%

Direction, degrees 0–360 �5%

ADP SonTek (USA)

Sensors Range Accuracy Resolution

Current speed, cm s�1 �10 �0.5 0.1

Current direction, deg. 0–360 �1 0.1

RCM-4 Aanderaa (Norway)

Sensors Range Accuracy Resolution

Temperature, �C �0.34 � 32.17 �0.15 0.03

Conductivity, mS m s�1 0 � 70 2% 0.1%

Current velocity, cm s�1 1.5 � 200 �1.5 2%

Direction, degrees 0 � 360 �3 3

Meteorological station mEMSet 99 (Czech Republic)

Sensors

Wind sensor Met One 034B Starting threshold 0.28 m s�1

Speed accuracy 0.1 m s�1

Direction accuracy �4�

Air temperature and humidity sensor EMS 33 Operation range

• Relative humidity 0–100%

• Temperature �40 � +60�C
Accuracy

• Temperature �0.3�C
• Relative humidity �2%

Pyranometer M-80 m (Russia)

Sensitivity Direct 0.0130 mV for 1 W m�2

Reflect 0.0112 mV for 1 W m�2
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transparency [m]. Weather conditions during the period of field measurements were

close to calm with substantial cloudiness. Measured wind and current velocities are

expressed in terms of u- and v-components at Station 4, 18–28.07. 2004 shown in

Fig. 2.39.

Average wind velocity during the 2004 experiment was about 3 m s�1, with a

maximum up to 5–9 m s�1 (Fig. 2.39a). Average current speed at the depth of 5 m

during the experiment in the year 2004 was about 5–8 cm s�1 with a maximum up

to 35 cm s�1 (Fig. 2.39b).

The initial state of the thermal structure can be characterised as summer stratifi-

cation. The upper mixed layer was 5 m thick, and its temperature was about 18�C.
The water temperature in the bottom layers (~30 m) was close to 5–6�C.

To register the changes in the vertical thermal structure during a possible

passage of nonlinear internal waves over the changing depth of the bottom, the

equipment was employed along the profile with depths from 11 to 32�m in the

Bolshoe Onego Bay (Fig. 2.37c, d). To perform the measurements of the currents

and water temperature, the devices described below were used in the first

experiment.

Fig. 2.38 Locations of the points of observation in the Bolshoe Onego Bay, Lake Onego 1977

(a), where RCM is an AANDERRA current metre position, TR is a temperature recorder of

AANDERRA, Meteo is a meteostation; and (b) indicates positions of observation points in

Lizhemskaya Guba (Gulf), Bolshoe Onego Bay, 1987b
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2.3.2 Data Analysis

Data Analysis of Lake Onego INTAS Experiments 2004–2005.

Experiments 2004
Target-oriented satellite imagery was also used. During the field campaigns, satellite

infrared (IR) and satellite aperture radar (SAR) images were received from NOAA

(Fig. 2.40) and ENVISAT ASAR (Fig. 2.41). All available information from NOAA

(surface temperature) for the period 13–24 July, 2004 and the ENVISATASAR image

taken on 26.07.04 (Dr. D.Akimov fromNIERSC – private communication)were used

to reveal the nature of the distinctive features in the Lake Onego-water dynamics,

including eddies, upwelling zones and internal waves.

Figure 2.40 displays the distribution of the average surface water temperature (after

transformations of brightness values) with manifestation of upwelling along the

Fig. 2.39 Measured wind (a) and current (b) velocities (depth 5 m) expressed in terms of u (1)-

and v (2)-components of the vector at Station 4, Lake Onego, 18–28.07.2004
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east and west costs of the lake (black arrows indicate surface water with tempera-

ture around 16�C). Unfortunately, a low resolution of the NOAA satellite in the

infrared band – only 1 km – did not allow resolving more detailed dynamics of the

thermal structure in the area of the polygon. A survey by a side-looking radar from

the satellite “ENVISAT” (radiometer ASAR – Advanced Synthetic Aperture

Radar) synchronised with shipborne observations from R/V “Ecolog”, indicated

the presence of patches in Lake Onego, sized from dozens to hundreds of metres

with the manifestation of stripes conditioned by internal waves with typical size

from hundred metres to one kilometre.

These data revealed considerable “patchiness” of the phenomena occurring at

the lake surface. Satellite data from “ENVISAT ASAR” satellite demonstrate

streaks on the surface and coastal upwellings (Fig. 2.41). These streaks on the

lake surface revealed internal gravity waves which appear as wave packets on the

surface. Internal waves are best seen on the lake surface if the thermocline is located

rather close to the surface when the upper thermocline–metalimnion boundary is

found at the 5–15 m depth. The SAR image of Lake Onego shows the manifestation

of several upwelling zones and internal waves on the surface with wavelengths of a

few hundred metres (inserts 1 and 2 in Fig. 2.41).

Long internal shore-hugging Kelvin waves with periods of several days and

Poincaré-wave modes occupying the whole lake with a time scale near the local

inertial period of 13.5 h were observed. In the offshore regions, low-frequency

oscillations with periods from days to weeks are usually caused by large-scale low-

frequency oscillations of currents and temperatures. These waves are likely

Fig. 2.40 Average surface

water brightness temperature

from NOAA satellite

13–24.07.2004 The location

of the INTAS polygon is

shown by the marked square.

Black arrows show

upwelling zones
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generated by wind and can persist long after the cessation of the initial wind

impulse. Internal Poincaré waves occur in the lake distant from shore, exceeding

the internal Rossby radius of deformation (3–5 km). During the INTAS experiment

2004–2005, their signals are seen at stations 4 and 5 (Fig. 2.37c–d). The wind-

induced coastal upwellings and the broad counter-current in the deep part of the

lake are among the main water circulation responses due to the wind. After the

Fig. 2.41 “ENVISAT” ASAR image taken on 26.07.04. on Lake Onego. Insets in the frame show

solitary wave manifestation by conspicuous lines. Internal waves in Bolshoe Onego, in INTAS

polygon are shown in (1) by white lines and in the central part of the lake (2) by black lines
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cessation of the wind, upwelling relaxation begins. The irregular lake morphome-

try, however, prevents long internal Kelvin-wave propagation around the lake.

According to observations and modeling (Filatov 1991; Beletsky et al. 1994), the

upwelling front moved along the eastern coast to the north, in the direction which

generally coincides with the propagation direction of the Kelvin waves which were

periodically released from the front; internal surges, however, migrated across the

basin through fields of inertially rotating response currents.

The initial state of the thermal structure of the lake can be characterised as

summer stratification (Fig. 2.42) under an average wind velocity of about 3 m s�1.

Weather conditions during the experiment were close to calm.

The upper mixed layer was about 5-m thick, and its temperature was about 18�C
in the beginning of the experiment 21.07.2004 (Fig. 2.42). The water temperature in

the bottom layers (~30 m) was close to 5�C. The thermocline was initially quite

fuzzy-edged (the water temperature at 22 m depth was 14�C). The thermo- and

hydrodynamical processes registered during the experiment in the Bolshoe Onego

Bay can be described in terms of the time series presented in Fig. 2.43.

The evolution of the temperature at the 10-m depth reveals a very weak water

activity prior to 20/21 July. On 21–22 July 2004, a sharp change of the water

temperature took place in the thermocline after the passage of the strong wind with

speeds about 9 m s�1 (see Fig. 2.39a). This sharp change of the water temperature

was similar to the passage of the internal surge (Fig. 2.43). The thermocline was

raised, and the 10 m-water temperature changed from 16 to 6�C. We may suspect

that the basin-scale Kelvin wave was transformed into an internal surge due to

steepening, and its further passage led to the development of high-frequency

solitons because of shoaling. The temperature gradients got stronger, being about

Fig. 2.42 Vertical temperature profiles at station 4. (a): profile 21.07, 10:00 presents the situation

before the passage of the upwelling, 22.07, 10:00, during upwelling, 24.07, 10:00 and after

upwelling. (b): all profiles taken on 25 July, in the evening during 2 h 41 min. (Experiment

INTAS 2004)
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2�C/m from 24 to 27 July 2004. Simultaneously, the upper mixed layer depth

gradually grew. For the period from the middle of 22 July to 28 July, the depth of

the 16�C-isotherm dropped from ~5 to ~21 m.

The daily heating effect at station 3 can be noticed only within the upper layer of

4–5 m (Fig. 2.44).

The temperature maximum in the upper layer, at 2.5 m, is related to the daily

heating and was recorded in the evening hours; this is in good accordance with the

existing knowledge of the daily dynamics of the water temperature during calm

weather. Because of the daily heating, a small temperature jump, about a few tenth

of a degree, was developed within the 2.5–4.5 m layer. At the same time, after

Fig. 2.43 Development of the water temperature with time: (a) St. 2, 18 July 2004, 23:07:00–28

July 2004, 14:33:43; (b) St. 3,18 July 2004, 12:25–28 July 2004, 14:20; (c) St. 5, 18 July 2004,

14:35–28 July 2004, 15:05. Black arrows mark a time period of the basin scale internal Kelvin

wave in Lake Onego
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the upwelling event, strong variations of the water temperature (up to 6–8�C at the

12.5 m depth) were recorded with a period close to 1 day (Figs. 2.43 and 2.44). They

can be seen within the whole water column. Such fluctuations were observed in

previous studies of Lake Onego and were linked with the presence of one of the

main lake seiches. Taking into account that these fluctuations reached their maxima

mostly during the first half of the day, we assume that they have a wave nature.

However, since these temperature fluctuations are present at depth, they are

unlikely to be influenced by solar heating which bears witness in favour of our

(wave) assumption. The average solar heating in 10 days resulted in the 2�C
increase of the water temperature at the 2.5 m depth (station 3), with a nearly linear

trend. The vertical temperature profiles (Fig. 2.44) demonstrate the presence of

elements typical for the thin vertical structure, i.e., area with a sharp increase/

decrease of the temperature gradients and so-called steps, see, e.g., patterns

between spots 4 and 5, 6 and 7, 7 and 9 (Fig. 2.45).

An important parameter in analysing the thin vertical structure is the

Brunt–V€ais€ala frequency (BVF). Using the data of vertical profiles at station 4

and the density formula proposed by Chen and Millero (1986), the density values

and corresponding BVFs were calculated (see Fig. 2.46).

Figure 2.46 shows that a band of high frequencies is located at depths close to the

lower boundary of the density jump and has a complicated wave-like shape. In time,

it represents a sequence of intermittent spots. Sometimes, spots with low values

appear (see, e.g., the area between profiles 372 and 380). The corresponding

vertical temperature profiles (Fig. 2.44) demonstrate the presence of steps and

Fig. 2.44 Temporal evolution of the vertical thermal structure during the period of observation at

station 3. The profiles taken from 23.07.04 9:20 to 17:40 were rejected as defective because of the

CTD profiler power source malfunction
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decreasing gradients. Presumably, spots with low values of Brunt–V€ais€ala
frequencies correspond to increasing mixing.

The most efficient approach in studying the effect of nonlinear internal waves by

observational data is the analysis of temporal–spatial dynamics of isotherm

displacements (IDs). To this end, data on water temperature at station 3 (experiment

during 2004) were expressed in terms of isotherm-displacement–time series

(Fig. 2.47).

Fig. 2.45 Development of the vertical thermal structure in time (station 3, experiment 2004). The

profiles from 23.07.04 9:20 to 17:40 are left blank because of the CTD profiler power source

malfunction

Fig. 2.46 Two-dimensional development of the Brunt–V€ais€ala frequency in time, from

21.07.2004, 06:00 (profile 43) to 26.07.2004, 23:59 (station 4). The gap 23.07.04 9:20 to 17:40

shows the time interval where data are likely defective because of a CTD profiler power source

malfunction
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As evident, the episode of the measurements can be divided into two parts, one

from the beginning of the field experiment to the middle of 22 July, and the other

from 22 July to the end of the measurements on 28 July. The first part is

characterised by a nearly monotonic decrease of the upper mixed layer depth

(upwelling), and the second by its increase (downwelling). Notice that the latter

is modulated by a wave-like phenomenon, with periods of fluctuations from several

hours to one day. A sudden decrease of IDs 14–18�C took place early on 22 July

2004. The main reason for the event was the transformation of the basin-scale

Kelvin wave into an internal surge due to steepening. The amplitude of the internal

surge was about 10 m. The amplitude of the response became large, nonlinear

features appeared as steep-fronted internal surges with periods close to 24 h. Its

further passage led to the development of high-frequency solitons because of

shoaling (Fig.2.47).

Power spectra of isotherm-displacement–time series and currents (not

demonstrated here) were calculated with the use of FFT, the maximum entropy

method (MEM) and by tensor analysis (Bendat and Piersol 1971; Rozhkov et al.

1983; Rogkov and Trapeznikov 1990). Calculations were performed after

subtracting the mean and removing the linear trend for three cases, the whole series

and its two parts corresponding to the period before and after the passage of the

upwelling (Fig. 2.48). before the event (upwelling, passage of basin scale internal

waves) for the period 19.07.2004, 13:20 – 21.07.2004, 23:40; 2) after the event for

22.07. 2004, 8:05 – 24.07. 2004, 18:20

It is also worth mentioning that the power spectra of the 16�C isotherm displace-

ment for the period after upwelling and the passage of basin-scale internal waves

shows an increase of energy at frequencies close to those of nonlinear internal

waves (Fig. 2.48). For the data set of the 16�C isotherm-depth–time series (at

station 3), the spectra for the episodes 19.07.2004, 13:20 – 21.07.2004, 23:40

Fig. 2.47 Isotherm-displacement variations at station 3; INTAS experiment in July 2004
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(before the passage of the wave) and 22.07.2004, 8:05 – 24.07.2004, 18:20 (after

the passage of the wave) were calculated. As seen, after the passage of the

upwelling, an energy increase occurs close to the periods of inertial waves

(13–14 h), free gravity waves (2–3 h) and of nonlinear internal waves.

Within the frequency band between f and N, the energy spectrum of internal

waves presented in Fig. 2.48 closely follows a power law with exponent –2, as

observed in some lakes and in the ocean (Garrett and Munk 1975). Strong wind

causes the development of Kelvin and Poincaré waves in Lake Onego, scales of

which are comparable with the basin size. Interaction of these long waves with the

bottom topography is accompanied by nonlinear effects and leads to the appearance

of trains of short-period internal waves. The curves in Fig. 2.48 represent this

fission process, which is likely evidence of the energy cascading from basin-scale

baroclinic motions to short period waves and mixing.

According to Saggio and Imberger (1998), the increase of spectral energy within

the frequency band at 10�2–10�3 Hz in the spectrum of internal waves calculated for

the fluctuations of the isotherm-displacement–time series before and after the strong

wind can be explained by the energy transfer from the long-wave range to that of short-

period nonlinear waves due to dissipation and breakdown along the inclined bottom.

For data analysis of the nonlinear internal waves (isotherm displacement – ID

variations), the continuous wavelet transform (CWT) was applied to decompose a

Fig. 2.48 Power spectra

(16�C isotherm displacement

at station 3): 1) before the

event (upwelling, passage of

basin scale internal waves) for

the period 19.07.2004,

13:20 – 21.07.2004, 23:40;

2) after the event for 22.07.

2004, 8:05 – 24.07. 2004,

18:20
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signal into wavelets, small oscillations that are highly localised in time. Whereas

the Fourier transform decomposes a signal into harmonics, effectively losing all

time-localisation information, the CWT-basis functions are scaled and shifted

versions of the time-localised mother wavelet. The CWT is used to construct a

time–frequency representation of a signal that offers very good time and frequency

localisations. This is an excellent tool for mapping the changing properties of

nonstationary signals which look like solitons and surges. When a signal is judged

as nonstationary, the CWT of isotherm–depth variations can be used to identify

stationary sections of the data stream.

To better distinguish the distribution of the energy along certain frequencies

within the power spectrum in time, the wavelet analysis (discrete transformation

and continuous wavelet time–frequency spectrum) was applied (Fig. 2.49).

Figure. 2.49 shows a sample of wavelet analysis of the 16�C isotherm-

depth–time series at a particular position in the Lake Onego INTAS experiment
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Fig. 2.49 Wavelet decomposition (discrete Meyer wavelet) for the 16�C isotherm-displacement

variations at station 3 (Lake Onego, 2004). (a9 – trend, d9 – 236 h, d8 – 118 h, d7 – 59 h, d6 – 29.5 h,

d5 – 14.75 h, d4 – 7.4 h, d3 – 3.7 h, d2 – 1.85 h, d1 – 0.92 h
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2004; it reveals the presence of large scale internal waves which correspond to

internal Kelvin wave. These are the waves d9 and d8 in Fig. 2.49. Inertial

oscillations are also shown (d5). High frequency oscillations arise after the event-

passage of the basin scale waves. After this event at 22.07.2004, an internal surge

and solitons arise. The amplitude of the Kelvin waves (d8 on the figure) is larger

than that of the internal Poincaré waves (d5). It is worth mentioning also that the

power spectra of the isotherm displacements for the period after upwelling show an

increase of their amplitude at frequencies close to periods of nonlinear internal

waves (Fig. 2.49, d1–d4).

Experiment-2005
Figures 2.50–2.53 demonstrate some results of the measurements performed in

the INTAS experiment of 2005. In Fig. 2.50, the variability of the wind during the

2005 experiment is shown.

Data from registrations of meteorological parameters show the presence of

diurnal and synoptical variations of air temperature, humidity and wind velocity.

The latter were likely of breeze nature. Maximum wind velocities reached

8–11 m s�1 with average values of about 3–4 m s�1.

At the beginning of the field measurements, the vertical thermal structure was

close to a pattern that is typical of periods without wind mixing; this is indicated by

the strongly stratified upper part of the water column. The remainder is

characterised by a slow decrease of the water temperature (Fig. 2.51 showing a

Fig. 2.50 Wind observations: wind speed (a) and direction (b), measured at station 4 during the

field campaign 14–23 July, 2005
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profile registered on 14 July). In a day, the upper mixed layer was formed;

afterwards its thickness varied quite strongly.

Figure 2.52a demonstrates the variability of the water temperature at station 2,

whilst panel (b) displays the 14�C isotherm-displacement–time series calculated

from the thermistor chain data for the same period.

The variability of the water temperature from the epilimnion to the hypolimnion

at station 4 for the 2005 experiment is shown in Fig. 2.53. Using data of the vertical

profile at station 4 and the density formula proposed by Chen and Millero (1986),

the density values and corresponding Brunt–V€ais€ala frequencies were calculated.

The results are shown in Fig. 2.54. Compared to those deduced from the data of

2004 (Fig. 2.46), the depth corresponding to the highest BVF-values was smaller,

and its variability in time was not well pronounced.

The isotherm displacements (IDs) were calculated from data registered by the

thermistor chains and by the CTD profiler (see Figs. 2.52 and 2.53). During the period

of measurements, they oscillated (Fig. 2.53), with the most pronounced period close to

one day; all of them show a strong trend to deepening, from 6.5 to 23.5 m, with a rate of

2 m d�1, in the period from 13 to 22 July; thereafter follows a sharp depth decrease (to

14m) in one day. Presumably, the beginning of an event ofKelvinwaveswas registered,

the development of which was, unfortunately, not covered by the measurements.

Wavelet analysis of the isotherm-displacement–time series of the 11.5�C-iso-
therm (data of INTAS experiment 2005) reveals the presence of frequency maxima

which likely correspond to an internal Kelvin-wave, the diurnal period, inertial

oscillations and seiche fluctuations with periods from 2 to 3.5 h (see Fig. 2.36).

Most of them correspond to the descending parts of the 11.5�C isotherm displace-

ment, except the last event (22.07 10:45 – 23.07 09:00), when the isotherm

displacement had gradually decreased. Nonstationary continuous wavelet

Fig. 2.51 Vertical temperature profiles in Lake Onego measured at station 4, 14.07, 22.07 and

23.07. 2005
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Fig. 2.53 Development of the water temperature (IDs) with time at Station 4, 14 July 2005,

09:00–23 July 2005, 09:00; the top abscissa axis shows the number of profiles (each corresponding

to a time slice, of which 96 correspond to one day)

Fig. 2.52 (a) Development of the water temperature in time at Station 2, 13 July 2005, 19:50–23

July 2005, 09:50 for 10 thermistors per chain; (b) 14�C isotherm-displacement–time series

calculated from the thermistor chain data for the same period
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time–frequency spectra of the internal waves (Fig. 2.36) showed that the locations

of high BVF values varied in a wave-like manner, and the vertical temperature

profiles demonstrate the appearance of step-like patterns (Fig. 2.3.17).

The energy of internal waves increases with time, especially for large scale

internal Kelvin waves during the deepening of the metalimnion during the episode

19–22.07.2005 at station 5 (12�C-isotherm displacement). No clear evidence of

nonlinear internal surge-like waves during the internal wave experiment 2005 in

Lake Onego was found.

2.3.2.1 Internal Wave Experiments 1977 and 1987 in Lake Onego

Experiment 1977. Other internal wave experiments were conducted in Lake Onego

in 1977 and 1987. The principal aim of the experiment in 1977 was to describe the

seasonal evolution of internal waves in a large stratified lake. The observational

data were registered in the summer of 1977 during a five-month campaign from 27

May to 11 October in the south-western part of the Bolshoe Onego Bay,

Osetrovskaya Banka [bank], at a depth of 30 m. The temporal evolution of the

vertical thermal structure during the period from 27 May to 11 October 1977 is

based on thermistor chain registrations and is displayed in Fig. 2.55.

In late September 1977, the vertical distribution of the water temperature was

nearly uniform (Fig. 2.55). The horizontal current variability (u and v components)

is shown in Fig. 2.56. The maximum velocities – up to 40 cm s�1 – were registered

at depths from 1 to 15 m.

The 11.5�C isotherm-depth–time series was calculated and is shown in Fig. 2.57.

As can be seen, the most dramatic event occurred in mid-July, when the isotherm-

depth–time series abruptly changed within one day: it first dropped from 9 to 11 m,

and subsequently rose to less than 2 m in depth and then fell again to more than 9 m.

This event was followed by an oscillatory downwelling lasting until 20 July, which

Fig. 2.54 2-D time development of the Brunt–V€ais€ala frequency at Station 4, 14 July 2005,

09:00–23 July 2005, 09:00
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turns into an upwelling of approximately 6 days duration. The 11.5�C isotherm

displacement on 09.07.–30.07.1977 demonstrates this internal surge development

in Bolshoe Onego very well (Fig. 2.57).

The spectral analysis of this ID-time series allows identification of significant

peaks of energy with frequencies corresponding to the inertial frequency, reminiscent

of macro-scale whole-lake–internal Kelvin waves (Fig. 2.58). The wavelet analysis

demonstrates that the energy peaks at frequencies close to the inertial frequency

which corresponds to an episode of an abrupt isotherm displacement change.

The spectral analysis and continuous time–frequency wavelets demonstrate the

presence of energy peaks at frequencies close to the local inertial frequency (Poincaré

waves). As the increase of the energy at frequencies corresponding to Poincaré waves

correlates with that corresponding to nonlinear internal waves, we may assume that

Poincaré waves are related to the development of nonlinear internal waves.

Experiment 1987. Other complex studies of an internal wave experiment were

organised in the summer of 1987 during the experiment “Fjord” (Boyarinov et al.

1994). It took place in a narrow bay in the northern part of the Bolshoe Onego Bay,

Lizhemskaya Guba [bay], where the influence of the Coriolis parameter of the

formation of water movements is weak because the internal Rossby radius is larger

than the breadth of the bay (Fig.2.38b). The observational data were recorded from

19 August to 11 September 1987.

Figure 2.59 presents the variability of currents measured at several levels in

Lizhemskaya bay.

Fig. 2.55 Temporal evolution of the vertical thermal structure (temperature from 3 to 23 m) at the

Osetrovskaya Banka of Bolshoe Onego during the period from 27 May to 11 October 1977 (data

from thermistor chain registrations). The depth of the location is 30 m. The interval “a” identifies

the water temperature variations from 09.07 to 30.07.1977 when an internal surge occurred
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The currents in the water column of Lizhemskaya bay had an oscillating

character with a decrease of the average velocity from surface to bottom that is

typical for internal seiche-like movements. Let us examine the water temperature

changes during the period of observation.

Thermistor chains and one current meter were deployed at four stations (see

Fig. 2.38b). The temporal variations of the water temperature and horizontal current

are shown in Fig. 2.60. As can be seen, at least one event – the passage of a long

internal wave with a period of about 10 days – occurred during the measurement

period. The isotherm displacements at Station 1 are shown in Fig. 2.61. As seen in

Fig. 2.60, from 9 September 1987, it led to a sharp increase of the isotherm-

Fig. 2.56 Current components (u – solid lines and v – dotted lines) registered at the base station in
the 1977 experiment in Bolshoe Onego (a) – 5 m, (b) – 10 m, (c) – 15 m, (d) – 25 m depths)
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displacement–time series. The vertical structure of the water temperature experi-

enced certain changes, including an appearance of a step-like pattern along the

thermocline. This is reminiscent of an internal surge on the thermocline, like that

observed in Babine Lake.

Fig. 2.57 11.5�C isotherm-depth variations at station TR (Lake Onego, 1977, see fig. 2.38)

Fig. 2.58 Continuous time–frequency wavelet of the 11.5�C- isotherm displacement, Station TR,

Lake Onego, July, 1977
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As can be seen from observational data received during the experiment 25 –

29.08.1987, at least one event – a long nonlinear internal wave passage (surge) with

amplitude about 30 m and high frequency solitons – occurred during the measure-

ment period. It is demonstrated by the 9 and 10�C isotherm-displacement–time

series (Fig. 2.61).

The wavelet analysis (not demonstrated here) reveals an increase of energy

around the frequencies corresponding to the diurnal and short periods, starting

gradually on 5 September 1987 to the end of the measurement period.

2.3.3 Summary of the Lake Onego Experiments

• Basin-scale internal (Kelvin and Poincaré) waves and nonlinear internal waves

(surge or bore and solitons) and their interactions with the bottom topography

(shoaling) were studied using observational data obtained during the field

campaigns in Lake Onego in 2004–2005, and of historical long time records of

water temperature, currents and wind speed registered in 1977 and 1987 in

different parts of Lake Onego.

• The degeneration of basin-scale baroclinic internal waves into short-period

internal waves, their successive interaction with lake boundaries, as well as

their breaking with the generation of spots of mixed water have been studied

with the aid of observational data obtained during thementioned field campaigns.

• The performed analysis includes a phenomenological description of available

observational data, and estimates of principal frequencies/periods dominating

the nonstationary frequency spectra of the internal waves (see also results in

Sect. 2.2).

Fig. 2.59 Variability of the water currents at different depths in Lizhemskaya bay, Lake Onego,

St. 3, 20.08 – 13.09.1987
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• The observational data collected during earlier studies (1977 and 1987) in Lake

Onego, were used for the analysis of parameters of nonlinear internal waves

exhibited in the offshore zone of Bolshoe Onego, where effects of the rotation of

the Earth is important (experiment 1977) and in a narrow deep bay (experiment

“Fjord” 1987), where effects of the rotation of the Earth is weak.

• Particular attention was paid to the processes of transformation and disintegra-

tion of internal waves during their shoaling near the lake boundaries. It was

demonstrated that strong nonlinear wave–topography interaction can affect the

background stratification.

• The development of internal waves may deepen the upper mixed layer and lead

to strong mixing processes.

Fig. 2.60 Development of the water temperature in Lizhemskaya bay, Bolshoe Onego Bay, Lake

Onego in the August–September 1987 “Fjord” experiment
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2.4 Comparison of Field Observations and Modelling

of Nonlinear Internal Waves in Lake Onego2

2.4.1 Introduction

The degeneration of basin-scale baroclinic seiches into short-period internal waves,

their successive interaction with lake boundaries, as well as breaking with the

generation of spots of mixed water are studied theoretically on the basis of a fully

nonlinear nonhydrostatic numerical model and with the use of experimental data

obtained during the summer campaign in Lake Onego in 2004. Particular attention

was paid to the processes of transformation and disintegration of internal waves

during their shoaling near lake boundaries.

It is demonstrated that strong nonlinear wave–topography interaction can affect

the background stratification. After storms, internal waves in lakes may take the

form of an internal surge or packets of internal solitons, generated by the nonlinear

steepening of a basin-scale finite-amplitude wave (Thorpe 1977; Farmer 1978;

Wiegand and Carmack 1986). Since these solitons are much shorter in length

than the wind-induced initial large-scale thermocline displacements, their genera-

tion results in a transfer of energy within the internal wave field from large to small

scales. As a confirmation of such an energy sink, field observations show that wind

forced basin-scale waves decay at a rate far greater than can be accounted for

simply by internal dissipation (Imberger 1994; Stevens et al. 1996).

Fig. 2.61 9�C and 10�C isotherm-displacement variability calculated from vertical profiling data

at Station 1, 24 August-11 September 1987 in Lizhemskaya Guba, Bolshoe Onego Bay (Fig. 2.38)

2 In this section we partly use text and figures fromVlasenko V., Filatov N., PetrovM., Terzhevik A.,

Zdorovennov R., Stashchuk N. 2005.
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Additional evidence of this pathway for energy from large to small scales was

reported by Horn et al. (2001). In this paper, the authors concluded that one of the

more probable scenarios of basin-scale wave disintegration in long narrow lakes is

its nonlinear steepening and fission into a series of solitary waves. These waves

must further inevitably encounter lake boundaries where they are eventually

destroyed (Vlasenko and Hutter 2002). During the breaking event, the water

stratification is changed at the place of wave breaking. In the present study, we

apply the mathematical model to examine the effect of the bottom topography and

nonlinearity on energy cascading from basin-scale internal waves to short-period

internal waves and farther to turbulence and mixing. The model is applied to the

conditions of Lake Onego where, during the summer campaign in 2004, some

experimental data on the baroclinic response of the lake to wind forcing were

collected.

2.4.2 Data of Field Measurements in Lake Onego

The field observations performed in Lake Onego during 18–28 July 2004 were

applied for comparison with results of modelling. To register the vertical thermal

structure during a probable shoaling of nonlinear internal waves, the following

equipment was installed along the line with depths from 10 to 32 m in the Bolshoe

Onego Bay (Fig. 2.62). Thermistor chains with 5 min sampling interval were

installed at stations 1, 2, 3 and 5; currents were measured by current metres with

Fig. 2.62 (a) Position of the observational site on the main axis of Lake Onego (A–B) and

(b) bottom profile in the experimental site shown by the dotted line, the ideal bottom profile shown

by the solid line (not in scale). Numbers 1–5 are stations of observations in July 2004 (Fig. 2.37a);

Distance AB is 5.0 km, Depth BC is 50 m; a is the angle of inclination of the bottom slope
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time intervals of 10 and 5 min at stations 4 and 5, respectively; a free falling CTD

profiler was used for every 20 min temperature profile measurements at station 4.

As is seen from Fig. 2.62a, the bottom profile in the experimental site is not

monotonous. It includes several sections with greater and lesser inclinations with

angles in the interval 0.8–2�.
The initial state of the thermal structure can be characterised as summer stratifi-

cation. The upper mixed layer was 5 m thick, and its temperature was about 18�C.
The water temperature in the bottom layers (~30 m) was close to 5–6�C (Fig. 2.42).

Dynamical processes registered during the experiment in the Bolshoe Onego

Bay can be described in terms of the time series of the water temperature presented

in Fig. 2.63.

Experiment INTAS 2004. Evolution of the temperature at the depth of 10 m

reveals a very weak water activity during the time span 18–20 July. However

subsequently, on 21 and 22 July, a sudden decrease of temperature took place,

which could be the consequence of the near-shore upwelling developed in the

north-west part of Lake Onego. Cold water remained near the free surface for

about one day, and after that the thermocline slowly returned back to its undisturbed

position (from the analysis of the thermistor-chain data not presented here). This

descending was accompanied by vertical oscillations of the metalimnion with

periods from several hours to one day. More high-frequency oscillations with

periods of 10–20 min can also be identified in the time series of the thermistor

chains (see, for instance, positions 1–5 in Fig. 2.63).

Fig. 2.63 Water temperature, at the 10 m depth, from 18.07.2004 23:15 to 28.07.2004 10:45

(sampling interval 5 min) at station 1 (a), 2 (b), 3 (c), 5 (d). Vertical oscillations of water

temperature are shown by numbers 1–5
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Our comparative analysis of the whole data set, obtained by all devices during

the experiment, allows one to assume the following probable scenario of the

registered event. The initial elevation of the pycnocline (up to 15 m) registered in

the Bolshoe Onego Bay on 21–22 July was the manifestation of the local upwelling

caused by either a basin-scale baroclinic seiche, or any other type of short

baroclinic wave motion (we have no data to prove or reject the idea). The long-

period disturbance was followed by shorter-period baroclinic oscillations with time

scales from several hours to one day. These oscillations, in turn, were accompanied

by even additional short-period disturbances with time-scales in the range between

10 and 20 min. The curves in Fig. 2.63 represent this fission process, which can

provide evidence of the energy cascading from basin-scale baroclinic motions to

short period waves and mixing. To check this hypothesis, a numerical model was

developed and applied to the conditions of Lake Onego.

2.4.3 Model

We will restrict our analysis of internal waves to a two-dimensional case, bearing in

mind that we do not describe the detailed structure, but mechanisms and tendencies.

With such a stipulation, the two-dimensional system of the Reynolds equations in

the Boussinesq approximation, written in Cartesian (x,z) coordinates in which the x
and y-axes lie on the undisturbed free surface and the z-axis points upwards

(opposite to the direction of gravity), takes the form

ot þ Jðo;cÞ ¼ grx=ra þ ðahcxzÞxz þ ðahcxxÞxx þ ðavczzÞzz þ ðavcxzÞxz;
rt þ Jðr;cÞ ¼ ðkhrxÞx þ ðkvrzÞz;

�

Here cðu ¼ cz;w ¼ �cxÞ is the stream function, where u, w are the horizontal

and vertical velocity components, and o ¼ cxx þ czz is the vorticity; ra is the

water density; kv and kh are the coefficients of vertical and horizontal turbulent

diffusion, av and ah are the coefficients of vertical and horizontal turbulent viscos-

ity; Jða; bÞ ¼ axbz � azbx is the Jacobian operator.

Richardson number dependences were used for parameterisation of the

coefficients of vertical turbulent exchange av and kv. For the coefficients of hori-

zontal turbulent exchange ah and kh, the gradient dependent parameterisation by

Stacey and Zedel (1986) was used.

We are only interested in baroclinic motions, and thus use the ‘rigid lid’

conditions at z ¼ 0. The bottom line z ¼ �H(x), is a streamline at which the “no-

slip” condition and zero mass flux across the boundary is used, viz. cn ¼ cx ¼ cz

¼ 0, where n is the unit normal vector to the bottom. Vorticity, at the boundaries

was calculated from a previous temporal layer. The problem is solved numerically

with the use of the alternative direction implicit method [more details on the

numerical procedure are presented in Vlasenko et al. (2005)].
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2.4.4 Results of Modelling

Two series of numerical experiments were performed to model the internal wave

dynamics in Lake Onego. The first series was carried out for the whole model

domain with a relatively coarse resolution (horizontal step 20 m, and 50 vertical

steps). Such accuracy is not sufficient for the study of the wave-topography

interaction in the shallow near-shore zone, but it is acceptable for modelling the

disintegration of basin-scale oscillations into series of short-period waves. The

second problem – shoaling of internal waves in a shallow-water zone on the final

stage of the evolution, was studied on a fine-resolution grid with x ¼ 2 m, and 150

vertical steps. Both problems are considered below.

Nonlinear Disintegration of a Baroclinic Seiche. The water stratification was

taken close to that presented in Fig. 2.63. A smoothed profile of the bottom

topography along the lake’s longest axis (Fig. 2.62) was taken from the bathymetric

map. It is assumed that the wave motions are generated by the initially tilted

interface. The vertical deflection of the density jump from its initially undisturbed

position at both sides of the lake comprises 5 m. This value is assumed to be typical

of Lake Onego. As can be inferred from the analysis of the model results, the

initially tilted interface, once being released, slowly returns to the undisturbed

horizontal position. It is almost horizontal by day 5 (see Fig. 2.64).
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Fig. 2.64 Model predicted nonlinear evolution of basin-scale internal wave. Formation of a

baroclinic bore is clearly seen after 7 days of the model time
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However, the topography of the interface is not symmetrical with respect to the

basin centre. Due to the nonlinear steepening, a progressive baroclinic bore at the

right-hand side of the basin occurs. By day 7, this bore is fully developed (see

Fig. 2.64c). In the course of propagation, the undulating bore gradually transforms

into a series of short-period internal waves as illustrated in Fig. 2.65. At the final

stage of its evolution, the baroclinic bore is disintegrated into a series of solitary

waves propagating towards the shore. The maximum amplitude of the leading wave

in the present case is approximately 7 m.

The results from other numerical runs with initial interface inclinations which

are ‘realistic’ for Lake Onego have shown that amplitudes of internal solitary waves

(ISWs) can lie in the range between 5 and 15 m. As a result, one can assume that the

baroclinic response of the Bolshoe Onego Bay observed in the experiment was

probably caused by one or several such incoming waves propagating from the deep

part to the shore. Their interaction with the shallow water zone is considered below.

Shoaling of Internal Waves. Numerical experiments on shoaling of solitary

internal waves in the area of the Bolshoe Onego Bay were performed for several

incoming waves with amplitudes varying in the range between 5 and 15 m. From

the viewpoint of internal wave shoaling, the experimental site turned out to be very

interesting, because it includes the “turning point” where incoming solitary waves

can change their polarity and transform from a wave of depression into a wave of

elevation. In terms of the weakly nonlinear theory, this takes place when the density

jump is located just in the middle between the free surface and the bottom, so that

the coefficient of the quadratic nonlinearity in the Korteveg–de Vries equation goes

trough zero. Analysing Fig. 2.63, one may conclude that the turning point is located

somewhere between Stations 1 and 5 (Fig.2.62b). The process of wave decomposi-

tion near the “turning point” can also take the form of dispersive disintegration of

incoming waves into a secondary wave train.

Finally, the most striking scenario of wave evolution over an inclined bottom is

wave breaking, in case its amplitude becomes comparable with the total water

depth. The breaking event leads to the formation of a turbulent pulsating jet and

spots of mixed water. It was found from the analysis of the model results, that all

these scenarios are very probable for the area under study. Figure 2.66 represents

the shoaling of an ISW over the inclined bottom with an inclination angle of 1.3�.
This value is close to the average values taken from the bathymetric map. In the

deep part of the basin with a depth of 70 m, the amplitude of the ISW was 10 m

(Fig. 2.66a). In the first stage of evolution over the inclined bottom, the incoming

ISW becomes asymmetric (Fig. 2.66b) and further gradually transforms into a

Fig. 2.65 Internal wave train

produced in the course of the

evolution of the baroclinic

seiche. Isolines of density

differences are plotted
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packet of short-period internal waves (Figs. 2.66c, d). Wave breaking does not take

place at this stage because the steepening of the rear face of the wave over the

slowly varying bottom (Fig. 2.66b) is compensated by the permanent leakage of

wave energy into the dispersive wave tail (Fig. 2.66c). However, several leading

waves are eventually destroyed when this balance is violated by the stronger

nonlinearity in the more shallow part of the basin (see Fig. 2.66e). The breaking

occurs between Stations 4 and 5, so that the resulting reconstruction of the vertical

water stratification must be observed in the experiment, if the breaking events

really took place. As seen from Fig. 2.63, the slope of the bottom profile in the

experimental site is not monotonous. It includes several sections with inclinations

different from those in the discussion of the above experiment. To check the

sensitivity of the model results to the bottom inclination, several additional runs

were performed.

Figure 2.67 illustrates the breaking regime of the wave evolution. It occurs when

the inclination angle equals 2.3�. The initial stage of the breaking event is not

shown in Fig. 2.67; it is similar to those described in Vlasenko and Hutter (2002).

Fig. 2.66 Model predicted evolution of an internal solitary wave with an initial amplitude of 10 m

over an inclined bottom. Inclination angle equals 1.3�, time scale T ¼ 75 s
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An important result from this run is that wave breaking is able to dramatically

change the background stratification.

Quite a different scenario of wave evolution is expected for relatively gently

sloping bottom profiles with inclination angles less than 1�. The dispersive fission
of the incoming ISW into a series of short-period internal waves is the basic

mechanism controlling the evolution. An example of the “dispersive” disintegration

is shown in Figure 2.68. The cumulative effect of nonlinear steepening in the

present case is not as fast as the dispersive disintegration.

The above results concern the evolution of a relatively large wave. Similar

effects of breaking and dispersive fission also took place for all other considered

waves, although for small-amplitude ISWs, they are not so pronounced. Figure 2.69

displays the evolution of a 5 m amplitude ISW propagating over the bottom

topography with inclination angle of 1.3�. Dispersive disintegration, which is

predominant at the first stage (upper panel), is changed into breaking and formation

of a horizontal intrusion (middle panel).

Note that the breaking process is not as pronounced as it is for large-amplitude

waves. Instead of a turbulent pulsating jet, an upstream propagating wave of

elevation (or “bolus” is produced in the breaking area just as in the experimental

work of Helfrich and Melville (2006)).

Fig. 2.67 Density field showing the result of internal wave breaking over relatively steep bottom

topography (inclination angle equals 2.3�; Initial amplitude equals 10 m, T ¼ 75 s) (from

Vlasenko and Hutter 2002)

Fig. 2.68 Density field showing the result of dispersive disintegration of an ISW with initial

amplitude of 10 m over the gently sloping topography with inclination angle 0.6� (from Vlasenko

and Hutter 2002)
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2.4.5 Discussion and Conclusions

The results presented in this section indicate several possible scenarios for a wave

energy sink from large-scale motions to smaller scales and further to turbulence. At the

first stage of evolution, the basin-scale baroclinic seiche gradually transforms into a

series of solitary internal waves. This fission occurs due to the nonlinear steepening and

dispersive disintegration of the propagating baroclinic bore. The second important

stage of the energy cascading is wave-topography interaction when propagating inter-

nal waves interact with lake boundaries. Depending on the wave amplitude, stratifica-

tion and bottom profile, the process of wave–topography interaction can take a form of

strong overturning and breaking, as is shown in Figures 2.67 and 2.68, or “soft”

dispersive disintegration, as presented in Fig. 2.69. For wave breaking (even local, as

in Fig.2.69) the background stratification can change dramatically during a quite short

time span. It is very likely, that such a reconstruction of the vertical stratification was

observed inLakeOnego during the summer 2004 campaign. Fig. 2.42b represents some

changes of the temperature profile within 2 h. Vertical steps of an almost homogeneous

fluid can be treated as areas of enhanced vertical mixing caused by internal wave

breaking. Figure 2.42b also reveals high frequency wave activity on 25 July 2004.

We highlighted only one possible scenario of wave evolution in the lake and

tried to identify the parameters controlling the wave process. Of course, such a

scenario is somewhat conventional, and the real manifestation of internal wave

dynamics can be more complicated (see experimental data on Lake Onego in

Figs. 2.43 and 2.63). It can incorporate three-dimensional effects such as refraction,

generation of Kelvin waves, influence of variable lake width or wave–wave inter-

action. Their influence on wave dynamics should also be studied. However, we do

believe that the results obtained above can help to understand the basic features of

energy transfer from large- to small-scale motions in lakes.

Fig. 2.69 Evolution of a 5 m amplitude solitary internal wave over bottom topography. Inclina-

tion angle equals 1.3�, time scale T ¼ 144 s. (from Vlasenko and Hutter 2002)
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Chapter 3

Laboratory Modeling on Transformation

of Large-Amplitude Internal Waves

by Topographic Obstructions

N. Gorogedtska, V. Nikishov, and K. Hutter

Abstract In this chapter, the results of laboratory investigations of the generation

and propagation of large-amplitude solitary internal waves in two-layer systems

with complex topography are presented. The influence of the shape and size of

underwater obstacles and localized constrictions of the channel on the transforma-

tion, reflection, and fission of solitary waves is studied. Interaction of solitary wave

with different types of slopes is analyzed.

3.1 Generation and Propagation of Internal Solitary Waves

in Laboratory Tanks

3.1.1 Introduction

During the last 40–50 years, considerable attention has been devoted to the experi-

mental study of internal solitary waves. Of specific interest are experimental

investigations under controlled conditions; for these, the required parameters of

the medium and the generated waves can be optimally set. Such conditions can be

realized when the experiments are conducted in laboratory tanks. Data obtained in

laboratory experiments possess a high degree of reliability, and they permit to focus

on the different features of the dynamical processes, here concerning the propaga-

tion of internal solitary waves. The investigated results allow us to both extend

our knowledge and understand the character of the nonlinear wave propagation

in a stratified medium.

In recent years, numerical methods have been widely used when studying the

generation and propagation of internal solitary waves in a stratified medium in
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general, and in lakes in particular. Increasingly, generated results are represented in

the form of numerical models, which allow comprehensive descriptions of the

studied processes. The models highly depend on the simplified assumptions used

to simulate the complicated dynamical processes as they arise in lakes. They can be

tested or complemented by field data for particular applications. However, the

presence of uncontrolled natural perturbations in the latter brings in difficulties of

the interpretation of the final results. An important role of data of laboratory

experiments is therefore to provide detailed quantitative and qualitative information

that is often inaccessible under natural conditions when performing field

observations. Qualitative improvement of the numerical models and corroboration

of their validity are achieved by verification using data of the laboratory

measurements obtained under well-defined circumstances. Integration of numerical

models and laboratory experiments are fruitful approaches to improve the

predictions of specific features of the dynamical processes of energy transformation

in lakes.

Characterization of solitary internal waves and problems of their generation

under laboratory conditions were investigated in many experimental studies.

First, works should be mentioned in which the characteristics of solitary internal

waves are studied, and comparison with known dependences, obtained on the basis

of corresponding theoretical models, must be accomplished. Many experimental

studies are devoted to carry out research on the interaction of solitary internal waves

with topographic features, e.g., with an inclined coast, a bottom construction, and so

forth. The results of these studies are compared with those of theoretical analyses,

but dominant attention is focused on studying the processes of the interaction of

waves with topographic features.

The prevailing stratification in water areas such as seas and lakes is vertical.

In freshwater lakes, it is primarily the temperature distribution that is responsi-

ble for the stratification; its variation with depth is caused by summer heating.

As a rule, the summer stratification in lakes is stable: the upper layer density is

smaller than that in lower layers. Realistic density distributions can be

approximated in such situations by two-layer configurations with constant den-

sity in each layer. Fortunately, much attention in experimental works is paid to

studying the propagation of solitary waves at the interface of two (miscible or

immiscible) liquids of different densities. This is so because in seas and lakes the

stratifications are similar; analysis of deduced results in these layered fluids

provides insight into the properties of internal waves and the processes of

transport of mass and energy in such stratified systems. Experimental findings

may be compared with analytical results. Furthermore, interest in studying wave

propagation is also associated with the relative simplicity of the creation of the

two-layer stratification.

In the present section, we shall consider works of a general plan in which

questions of the generation of internal solitary waves are studied; wave propaga-

tion over flat bottom along the interface of two liquids is investigated; compari-

son with results of theoretical works is carried out with the purpose to describe

the characteristics of waves on the basis of the inferred dependences. Studies in
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which laboratory modeling of processes of the interaction of internal solitary

waves with topographic features is dealt with will be the focus in subsequent

sections.

3.1.2 Dissipation Not in Focus

Experimental investigations of internal solitary waves propagating in a basin along

the interface of two liquids with different densities have been carried out by Kao

et al. (1985). The basin was 9.1 m long, 0.6 m deep, and 0.36 m wide. The fluids in

the two layers are freshwater and saltwater, respectively. Features of the wave

generation are considered in detail with the help of the “step pool method”.
Schematically, the essence of this method is represented in Fig. 3.1.

A watertight movable gate is positioned near the upstream wall of the basin.

There is a small gap between the lower part of the gate and the bottom. If, after an

initial filling of the entire tank with identical levels of the free and interface

surfaces, additional freshwater is added from above into the part behind the gate,

a lowering of the halocline level by the value hþwill be created in the separated

part; this lowering is paralleled by a corresponding very small rise of the free

surface (see Fig. 3.1). An analogous situation occurs in communicating vessels

filled by fluids with different densities. Estimation shows that the difference

between the levels of the free surface is about 1 mm when the salinity in the

lower layer is 15 ppt and hþ ¼ 10 cm. Evidently, this value is small and comparable

with a curvature radius of the meniscus arising near the plate. Waves that propagate

in different directions along the free surface are generated by the lifting of the gate.

They are caused by a small difference of the levels of the free surfaces and the

perturbations of the free surface induced by the displacement of the plate. Then, the

levels of the free surfaces on both sides of the location of the gate become

equilibrated. However, the density (pressure) distribution with depth in the main

part differs from that in the separated part of the basin. Heavier fluid located in the

main part of the basin moves into the separated part under the action of a horizontal

pressure gradient. Simultaneously, lighter (fresh) fluid travels into the main part of

the basin. Subsequent displacement of lighter fluid results in the formation of

a solitary wave. The process is accompanied by the generation of local vortices

Fig. 3.1 Experimental setup,

showing a movable gate at the

right end of a wave tank

(“step pool method”)
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induced by the removal of the gate. It is noted that the formation of solitary waves is

also accompanied by different degrees of initial breaking, which restricts genera-

tion of waves with maximum amplitude. Furthermore, the distance lþ between the

end wall and the gate is adjusted in order to minimize the production of trailing

waves.

In our own work, preliminary experiments were conducted to fathom the range

of the parameters hþj j1=2 and lþ, at which single-hump solitary waves could be

generated. It was found that a train of such waves could be generated for large

values of these parameters.

We carefully filled the basin with the freshwater and saltwater. Ideal, sharp

interfaces could not be produced. Our filling procedure with subsequent suction of

mixed fluid resulted in a rather small thickness of an intermediate layer

(0.5–1.3 cm). The form of the density profile can be adequately described by the

expression

rðzÞ ¼ r0ð1� k tanh azÞ; (3.1)

r0 ¼ ðr1 þ r2Þ=2; k ¼ ðr 2 � r1Þ=2r0;

where r 1 and r 2 are the densities of the liquids of the upper and lower layers,

respectively, z is the vertical coordinate, and a�1is half the thickness of the

intermediate layer (pycnocline).

The intermediate layer position varied in the experiments of Kao et al. (1985)

from 0.95 to 7.6 cm below the free surface. Their solitary waves have negative

polarity corresponding to a wave of depression in this case because the thickness of

the upper layer has always been less than that of the lower layer. Different methods

of measurements have been used: visualization of currents by dyeing the layers

and subsequent photographing; velocity measurement by employing a thermo-

anemometer; use of a special electric conduction probe, connected to a servomech-

anism which could trace the given electric conductivity, i.e., identify the position

of the isopycnals; and use of the method of hydrogen bubbles, allowing one to

measure an instant pattern of the flow field.

The first eigenmode and proper number c for the corresponding eigenvalue

problem of the vertical velocity component of the baroclinic wave (a Sturm–

Louiville eigenvalue problem) had been calculated numerically, and then the

coefficients of the K-dV equation have been estimated. Comparison of the experi-

mental data with the inferred parameters of the waves corresponding to the K-dV

theory has shown good conformity of the experimental and theoretical results. In

particular, the profile of the solitary waves is well described by the K-dV theory for

different values of the ratio h 1 =H, where h 1is the thickness of the upper layer and

H is the overall thickness. Other characteristics of the solitary waves also correlate

well with the K-dV theory. This concerns the wave velocity and its amplitude, that

is, the amplitude–wavelength relation describing the balance of the dispersive and
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nonlinear effects. Differences with the K-dV theory were observed only for

strongly nonlinear solitary waves for which the K-dV theory is inapplicable.

Experiments in which the characteristics of internal solitary waves were studied

in basins filled with the two-layer system have been conducted by Grue et al.

(1999). A basin measuring 0.5 m wide and either 6.2 m or 12.3 m long was used.

In one run, a tank length of 21.4 m was also used. The thickness of the diffuse

interface layer did not exceed 2 cm. Solitary waves were generated following

the step pool method by Kao et al. (1985). The velocity field induced by the

waves, the propagation velocities, and the shapes of the waves were measured in

the experiments with the help of different techniques (particle tracking velocimetry

and image analysis). The amplitudes of the generated waves changed from small to

almost maximal (just before wave breaking). Analyses of theoretical models have

also been carried out by the authors, including fully nonlinear models and K-dV

models. Fully nonlinear problems in which the Laplace equation was solved for

each layer with corresponding nonlinear kinematic and dynamic conditions at the

interface, that is, for irrotational flows, were considered by Grue et al. (1999) and

Grue (2005). The solution is obtained by using Cauchy’s integral theorem and

employing complex analysis. It was shown that the results of the calculations using

the fully nonlinear model corresponded well with the experimental data. We

emphasize that such coincidence of the results occurred even for washed-out

pycnoclines. Vorticity rolls on the back edge of the waves were observed in

experiments for waves with large amplitudes. They arose owing to Kelvin–

Helmholtz instabilities that developed behind the maximum displacement. The

form of the leading front was generally well described by the theory. Development

of instabilities resulted in mixing and asymmetric shapes of the waves. In those

cases, the pycnoclines were washed out. Estimates showed that the local

Richardson number in the intermediate layer, close to the wave crest, was below

0.25. It indicates the existence of flow instabilities in accordance with the Miles and

Howard theorem (Turner 1973; Drazin and Reid 2004).

Grue et al. (1999) found that the K-dV theory describes waves with amplitudes

smaller than a fourth of the thinner layer thickness well. This theory is practically

useful for all basin fillings when the amplitude of the waves is small. This conclu-

sion agrees with those obtained earlier by Kao et al. (1985). Grue et al. (1999)

emphasize that the model holds even when two layers differ strongly in thickness

from one another, in particular, e.g., for h 1=h 2 ¼ 0:01, where h 2 is the thickness of

the lower layer. The authors revealed that waves of moderate and large amplitudes

are described by the fully nonlinear theory, developed by them, and the results are

in good agreement with the data of their laboratory measurements.

Koop and Butler (1981), using a “paddle” as wave generator, carried out

experiments in a basin made of Plexiglass, with sizes 600� 45� 60 cm: The

liquids of different density that were used in the experiments were immiscible

(Freon TF and distilled water). Configurations of the basin filling, which

corresponded to the cases of “shallow” and “deep” water, were investigated to

study the depth influence on the characteristics of propagating waves. Solitary

waves were generated by moving a special paddle. Measurements of the amplitudes
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of the propagating waves were taken by distributed capacity gauges. There are

appreciable distortions of the interface with the use of such a wave generator, and

the propagation velocity of the perturbations is much smaller than that of a solitary

wave and eventually the solitary wave comes off “tail”. It allows one to study the

characteristics of solitary waves in isolation but requires rather long basins.

One of the important characteristics of solitary waves is the wavelength l. Koop
and Butler (1981) introduced two definitions of wavelength. The first, l 0 : 5,

represents the distance from the point corresponding to the wave crest, to the

point corresponding to the half-amplitude. The second definition of the wavelength

is expressed by the following integral formula:

Lw ¼ 1

a

ð1
0

�ðx� ctÞdðx� ctÞ; (3.2)

where c is the wave velocity, � is the interface displacement, x is the coordinate

along the direction of the wave, and a is the amplitude. This definition of the

wavelength is connected with the “mass” of the wave. As the authors remark, the

second definition corresponds better to the description of a wave as mass is an

invariant of the wave movement. Attention in the work was focused on the study of

the forms of the solitary waves and amplitude–wavelength parity relation a=h ¼
Oðh2=l2Þ expressing a balance between effects of nonlinearity and dispersion

which is relevant to the K-dV model.

Koop and Butler (1981) derived a “second-order K-dV equation” in which terms

of second order in the expressions describing nonlinear and dispersive effects are

accounted for. Similar equations have also been derived by Lee and Beardsley

(1974) and Gear and Grimshaw (1983). Corrections of the theoretical profile of the

wave were made, and the ratio between wave amplitude and wavelength was

improved. Profiles of the solitary wave have been measured, and it is shown that

they correspond to the theoretical “sech2”-profile when waves are rather weak (ratio

of wave amplitude a to the bottom layer thickness a =h 2 <0:1). Characteristics of
stronger waves were in good agreement with the results obtained on the basis of an

improved K-dV theory. It should be noted that in the case of “deep” water, when the

parameters of the experiments correspond to the limits l =H ! 0, l=h2 � 1,

the Benjamin–Ono model (Benjamin, 1967, Ono, 1975) is a poor description of

the measured data as is the Joseph–Kubota–Ko–Dobbs model, developed for the

case of finite depth: l=h2 � 1, h2=H � 1 (Joseph 1977, Kubota et al. 1978).

Comprehensive descriptions of the K-dV and related models such as the

Benjamin–Ono (BO) and Joseph–Kubota–Ko–Dobbs (JKKD) models are given

by Ablowitz and Segur (1981).

Later, a second-order correction to the finite-depth theory JKKD was derived to

identify the range of validity of the entire expansion due to Segur and Hammack

(1982). It was shown that the experimental results of Koop and Butler (1981) are

well reproduced by this improved theory. The authors also carried out experiments

to study the forms of the solitary waves to check their description within the

110 N. Gorogedtska et al.



framework of the K-dV and JKKD models of the first- and second-order expansion.

The experimental wave tank was 30 m long, 60 cm deep, and 39.4 cm wide. The

stratified liquid used in the experiments consisted of a layer of freshwater above a

brine-water layer. The thickness of the intermediate layer was from 1 to 2 cm.

Waves were generated by vertical movement of a piston, located close to the

bottom near the upstream wall of the basin. It was found that for a two-layer system

the solitary wave velocity was smaller than the K-dV theory predicts, and some-

times it was even below the phase velocity c0 of the linear long-wave theory. This
discrepancy is caused by the finite thickness of the intermediate layer between the

liquids, when waves with comparatively small amplitudes were studied.

Experiments on the characteristics of solitary internal waves propagating in a

two-layer system were also carried out by Walker et al. (2003). Experiments were

conducted in a 6-m-long, 0.4-m-wide, and 0.6-m-deep basin. Stratification was

created by filling the basin with freshwater; then, saltwater was supplied to the basin

from below through an inlet port. Waves were generated by employing a D-shaped

paddle of neutral buoyancy. The paddle was placed between the layers. Its nose was

of streamline form to reduce the generation of separated vortices, which may trigger

turbulent mixing. The density distribution was measured with the help of a micro-

probe, which consisted of four wires. A series of gauges intended to register the

form and speed of the passing wave was installed in the basin. These gauges

measured the resistance of the liquid volume between two vertical metal strips

located at a distance of 10 mm from each other. To measure a velocity profile within

the passing wave, the “particle image velocimetry” method was used. The range of

changing the ratio of depths was 0:125 <h 1=h 2 < 0:5, the nonlinearity parameter,

a =h 1, was changed within the limits 0:2 <a =h 1 <0:7, and the thickness of the

intermediate layer was from 1.2 cm to 8.0 cm.

Attention in the work was devoted to a comparison of the measured internal

solitary waves with calculated values obtained by using theoretical models (two-

layer K-dV, continuously stratified K-dV, and fully nonlinear theory (Evans and

Ford 1996)). Basically, the study was concerned with consideration of the maxi-

mum horizontal velocity u in the wave trough. Comparison between these models

and the data revealed that the K-dV theory can be used with a sufficient degree of

accuracy at small values of a =h 1 (<0.4). At larger values of a =h 1 (>0.4), the

calculations following the K-dV theory give values which strongly differ from

the experimental data. It should be noted that the same limit of applicability of the

K-dV theory was also found by Grue et al. (1999). On the whole, theoretical

calculations overestimate velocities in comparison with the experimental data; in

particular, for intensive waves this overestimation is as large as 65%.

Vertical uplift of a plate and suction through a perforated plate: An experimen-

tal investigation of the characteristics of internal solitary waves and comparison of

the experimental data with theoretical results was also made by Bukreev and

Gavrilov (1983). Experiments were carried out in a plexiglass basin; the basin

was 220 cm long, 17 cm wide, and 15 cm high. It was filled with two immiscible

liquids: water and kerosene. The authors used two methods to generate the internal

solitary waves. In the first method, the solitary wave at the interface was generated
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by a plate which was displaced by a prescribed distance in the vertical direction (see

Fig. 3.2a). An internal solitary wave of depression was also generated by short-time

suction of saltwater through a perforated tube located at a given depth in the second

method (see Fig. 3.2b). In other words, the waves were generated by short-time

action of a sink which was uniformly distributed across the channel width.

A solitary wave of elevation was generated by using these sources. The waves

were recorded by electric conduction gauges. Measurements showed that the wave

profile is in reasonable agreement with the theoretical results based on the K-dV

theory. For waves with rather large amplitudes, appreciable deviations from the

theoretical profile arise. A widening of the profile of the solitary wave occurs when

the amplitude becomes larger; this effect was, however, not systematically studied.

Other cases of discrepancies between experimental data and theoretical estimations

also occurred. In particular, it was found for wave amplitudes in the interval

0:04 < a=h 2 < 0:6 that the speeds of the solitary waves were usually smaller than

those predicted by the K-dV theory. On the other hand, experimental data were in

good agreement with those of the theory developed by Keulegan (1953). Solitary

waves of positive and negative polarities were studied. Results are similar for both

kinds.

Studies on the velocity fields near the bottom surface, caused by the passage of

a solitary internal wave of depression in a two-layer fluid, were performed by Carr

and Davies (2006). Experiments were made in a 6.4-m-long, 0.4-m-wide, and 0.6-

m-deep basin. The waves were generated by using the “step pool method” of Kao

et al. (1985) and are based on the results obtained by Kao et al. (1985) and Grue

et al. (1999); the movable gate was positioned 0.27 m and 0.6 m distant from the

face wall of the basin. Particle image velocimetry (PIV) and laser Doppler ane-

mometry (LDA) methods were used to visualize the velocity distribution. The

distributions of the horizontal and vertical velocity components and the cross-

stream component of the vorticity were examined, depending on the change of

the wave amplitude, a, the thickness ratio of the upper and lower layers b ¼ h 1=h 2,

and the thickness of the lower layer. The results revealed that an unsteady near-wall

flow of jet-like shape arose directly near the bottom at the instance when the

intensive nonlinear internal wave of depression passed the considered position.

The near-wall flow velocity was rather small in comparison with the maximum

speed of the liquid caused by the passing solitary wave, and the direction of this

flow coincided with that of the wave motion, i.e., it was opposite to the direction of

the flow velocity in the lower layer of the fluid. The near-wall flow formation was

Fig. 3.2 Schematic view of

the solitary wave generation

by using two different

methods: (a) by suddenly

lifting a plate and (b) by

sucking saltwater into a

perforated tube located in the

saltwater
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connected with the appearance of a negative pressure gradient at the instance of the

passage of the wave and the development of the boundary layer instability.

The propagation and reflection of internal solitary waves of depression from an

inclined slope were simulated by Bourgault and Kelley (2007). They used a

nonhydrostatic numerical model that integrates the laterally averaged Boussinesq–

Navier–Stokes equations. The authors were able to both resolve a narrow area near

the bottom and show precisely the existence of the separation of the boundary layer

caused by the negative pressure gradient at the tailing edge of the solitary wave.

They proposed to take into account the energy loss of the moving wave under the

formation of the separation flow by introducing the corresponding form factor in the

common drag coefficient.

Of interest is also the work of Michallet and Barthelemy (1998), in which the

authors presented results of an experimental investigation of long waves

propagating at an interface of two immiscible liquids of different densities.

Experiments were carried out in a 3-m-long, 15-cm-high, and 10-cm-wide small

flume. Waves were generated by using a gate-type wave maker, similar to that used

in the step pool method of Kao et al. (1985). It was mentioned that a smooth and

slow rise of the gate is preferable to a fast removal, since it minimizes barotropic

perturbations. Parameters of solitary internal waves were measured using six

ultrasonic probes installed along the central line of the basin. Experiments and

nonlinear theories were compared in terms of wave profiles, phase velocities, and,

mainly, frequency–amplitude relations. The authors emphasize that using the

frequency, o k, is preferred for comparison with the experiments, since the data

consist of recordings of the interface displacement at one location against time. The

frequency o kis determined by the ratio

ok ¼ 2aÐ1
�1 �ðt; x0Þdt

¼ ck
l
; (3.3)

where � ðt; x 0 Þis the displacement of the interface in time, c k is the phase speed,

and l is the characteristic length of the solitary wave.

For solitary internal waves with large amplitudes, comparison of experimental

data with computed results was accomplished by Michallet and Barthelemy (1998).

The so-called K-dV–mK-dV theory proposed in the works by Funakoshi (1985) and

Funakoshi and Oikawa (1986) was used (see also Gardner’s equation or the

extended K-dV equation by Ostrovsky and Stepanyants 2005). The K-dV theory

and modified K-dV theory were combined by also accounting the terms with cubic

nonlinearity. Waves of which the amplitudes are in the range 0<a<�h were consid-

ered. Here, �h ¼ h2 � hc is the distance between the interface and the critical level,

hc, and represents the limiting amplitude of the waves. It was assumed that the

amplitude had an order of magnitude O(�hÞ, which was small in comparison with the

general depth of the basin. Formulas describing key parameters of the solitary

internal waves were described in the work. The free surface can be replaced by

a rigid lid when the difference between the densities of the layers is small. For this
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case, an expression describing the interface displacement caused by solitary waves

was proposed.

Comparison of wave profiles, phase speeds, and frequency–amplitude ratios,

obtained as a result of the executed experiments with theoretical relations, has

shown that they strictly correspond to the K-dV theory for small amplitudes but

practically apply for all relations of the layer thicknesses. The characteristics of the

solitary waves with large amplitudes asymptotically tend to be predictable with the

K-dV–mK-dV theory. Notice that the characteristics of the internal solitary waves

were also studied in other works devoted to the investigations of wave interaction

with topographic features of the bottom, slopes, ridges, etc. Results of these works

will be discussed later.

There are also other methods of the generation of internal solitary waves that

differ from the above-mentioned ones. A brief description of these methods for the

generation of internal solitary waves is presented now.

Two-piston wave generator. A wave generator that consisted of two pistons,

separated by a horizontal thin plate at the interface level, was constructed by

Schuster (1992) and, later, used by Maurer (1993), Wessels (1993), and H€uttemann

(1997). The corresponding results were discussed in detail and compared with the

nonlinear theory by Diebels et al. (1994); Maurer et al. (1986); and Wessel and

Hutter (1996). The soliton-like displacement of the interface, studied in these

works, had negligible barotropicity; this wave was achieved by moving the pistons

of the wave generator in opposite directions in such a manner that the displaced

volumes were the same, and by using a linear ramp function in time to control the

piston movement. The experiments were made in a 10-m-long wave tank with

quadratic cross section and side length 0.33 m.

A ‘flap-type’ wave maker was used by Helfrich and Melville (1986) to generate

long nonlinear internal waves propagating along the interface in a two-fluid system

in a wave tank 24 m long, 0.6 m high, and 0.38 m wide. Waves were generated by

up-and-down oscillations of a small airfoil placed at the interface between the two

fluids. A similar method was also used by Wallace and Wilkinson (1988) to

generate internal waves in a two-layer system. The experiments were performed

in an 18-m-long, 0.6-m-wide, and 0.75-m-deep tank. A periodic wave train was

generated; it steepened and developed into a solitary-like wave before its final

overturning on the slope. The internal waves were generated by a horizontal paddle

which oscillated about its forward edge attached to a pivoting support. A bulbous

nose of the forward edge prevented overturning and mixing in the halocline

adjacent to the paddle. The structure of the internal waves during the shoaling

and run-up phases was determined by means of conductivity probes and by differ-

ent flow-visualization techniques. Notice, the mirror installed along the longitudi-

nal axis of the tank at a given angle relative to the horizon was used to observe the

pattern of the studied processes of the wave interaction with the slope simulta-

neously from above and from the side.

An analogous approach was realized by Umeyama (2002) to generate progres-

sive internal waves propagating along the interface between freshwater and saltwa-

ter in a wave tank 6 m long, 0.15 m wide, and 0.35 m deep. A series of electronic
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signals was produced by an arbitrary waveform synthesizer to control the motion of

the internal waves. The author also used an oil-pressure-type wave-generating

pump when the experiments were made in a wave tank of smaller size. Here,

fluid is periodically ejected in the tank with a given frequency.

The “tilting tube” method was used by Horn et al. (2000, 2001) and Boegman

et al. (2005) to study the degeneration of basin-scale interface gravity waves in

enclosed basins, to quantify the temporal energy flux associated with the degenera-

tion. The method is principally different from the above-mentioned ones. There are

no moving gadgets within the wave tank. The laboratory experiments were carried

out in a fully enclosed clear acrylic tank that was 600 cm long, 29 cm deep, and

30 cm wide. The tank could rotate about a horizontal axis approximately through its

center so that the interface could be initially tilted. The tank was filled with a two-

layer stratification: freshwater was in the upper layer and saline water in the lower

layer. The tank was then tilted by a small angle to its initial horizontal position. The

experiment begins when the tank is suddenly returned to the horizontal position,

and baroclinic pressure gradients drive the flow in different directions above and

below the pycnocline. The modeling of the development of a two-fluid system with

tilted thermocline that arises in lakes after wind load cessation can be performed by

using this method. At a large initial tilt, the initial basin-scale wave steepens into an

internal surge, which subsequently evolves into a packet of solitons.

Mechanisms of breaking progressive internal waves were studied by Troy and

Koseff (2005). Experiments were carried out in a 4.88-m-long, 0.61-m-high, and

0.3-m-wide wave tank. A two-layer profile of stratification was created by filling

the tank with freshwater up to a given depth, and then injecting the heavier (salt)

water below the fresh layer. Selective withdrawal was made before the experiments

were started to make the intermediate layer thinner. This enabled the authors to

maintain the thickness of the intermediate layer smaller than 1 cm. Progressive

interfacial waves were generated by vertically oscillating a half-cylinder (“plunger-
type” wave maker) placed at the density interface. It was asserted that the wave

maker did not create surface waves or unwanted interfacial mixing. A personal

computer was used to control the displacement of the half-cylinder that allowed

generation of arbitrary waveforms, including sinusoids, and polychromatic wave

trains with a nearly uniform spectrum (in the assigned spectrum window) at the

upstream-most wave gauge location.

3.1.3 Influence of Dissipation

Another important problem considered in experimental investigations of internal

waves is the influence of dissipation on the decay rate of waves. It is known that

dissipation is present in all experimental investigations connected to the movement

of liquids. In some cases, its influence is not too large; however, frequently it is one

of the principal causes of the difference between experimental and theoretical

results.
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The influence of the viscosity on the propagation of internal waves was

investigated by Koop and Butler (1981). The authors modified the known model

(Keulegan 1948) for the estimation of the influence of viscosity on the damping of

surface waves, and applied it to internal waves propagating in a two-layer environ-

ment. In the theory, it was assumed that energy dissipation occurred in the viscous

boundary layer, formed at rigid boundaries and at the interface. The effect of

dissipation resulted in a general reduction of the solitary wave amplitude. In their

work, a dependence of the change of the wave amplitude a on the distance ðx� x 0Þ
was obtained as

aðxÞ ¼ a0ðxÞ 1þ Ka
1=4
0

ðx� x0Þ
h1

� ��4

; (3.4)

where the coefficient K is determined by the thickness of the layers, h 1and h 2, the

basin width B, acceleration of gravity g, the kinematic viscosity n, and a relative

difference of the densities D ¼ 1� r 1=r 2.

Experiments showed that the effects of viscous dissipation resulted in a reduc-

tion of the wave amplitude during its propagation. An amplitude reduction by 50%

till the moment when the wave reached the end of the basin was observed.

Measurements were continued after wave reflection from the face walls of the

basin. It was found that the amplitude of the solitary wave was only 30% of that of

the incident wave when the reflected wave had passed 3.5 m from the face wall and

returned to the initial position of the measurement. It is concluded that the large

attenuation is apparently connected with the fact that the bottom layer thickness in

the experiments was small; hence, the influence of the viscosity was appreciable.

Besides, immiscible liquids were used in the work. For this reason, the interface

between the liquids was sharp, which resulted in an enhancement of the viscosity

effects. However, the accuracy of the amplitude of the wave when it passed through

the perturbed region, caused by the previous passage of the wave, was not

considered.

Experimental data were compared with results of numerical modeling of the

generalized K-dV equation; it possesses additional terms allowing for the viscosity

influence. The experimental data of the measured wave form, obtained by using the

gauge installed at only 20 cm from the wave generator, were used as initial

conditions in the numerical modeling. Comparison of the calculated results with

the data of the experiments has shown satisfactory correspondence. The conclusion

was made that the influence of the viscosity on the attenuation amplitude, as well as

on the solitary wave energy, was important.

The authors also considered the problem of the influence of the viscosity on the

length of a solitary wave since the characteristics of a solitary wave should

correspond to their amplitude–wavelength ratio. The influence of the viscosity on

this ratio should be studied. Propagating solitary waves are characterized by the

dynamic balance between nonlinear and dispersive effects, and such a ratio can be

represented as al2=H3 ¼ const:Obviously, the influence of the viscosity results in a
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gradual decrease of the amplitude. Eventually, viscous effects become comparable

with the nonlinear ones. From this point of view, the viscosity should appear in the

above-mentioned ratio. With the aid of numerical calculation, the authors showed

that when a=h2 < 0:2, the influence of the viscosity diminished and resulted in

a deviation of the characteristics of the solitary wave from its usual behavior, i.e.,

for rather weak waves, the deviation of the viscous from the inviscid theory is fairly

insignificant.

A theoretical analysis of the influence of the viscosity on the attenuation of the

amplitude of the solitary wave was conducted by Leone et al. (1982). The authors

obtained a dependence describing a decrease of the amplitude a of an internal wave
on the distance. The analysis was carried out on the basis of a series of simplifying

assumptions: inviscid flow corresponds to the flow caused by the Korteveg–deVries

soliton, moving with constant speed c; all lines of the current are flat and horizontal
when viscous effects are taken into account; only a viscous shift of the velocity is

taken into account at the interface; and viscous effects close to the free surface are

neglected. The analytical form of the factor K in equation (3.4) is rather compli-

cated even at specified simplified assumptions. In a limiting case of weak stratifi-

cation when D ¼ 1� r1=r2 � 1, the expression for this factor takes a simple form,

namely

K ¼ 1

12h2ð1þ bÞ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 b� 1j j
c20h

2
1h2

s
bþ 2h2ð1þ bÞ

B
þ ð1þ bÞ2

2b

" #
; (3.5)

where b ¼ h1=h2, and c0 ¼ g0 ðh1h2Þ=ðh1 þ h2Þð Þð Þ is the phase speed.
The authors remark that the expression for the factor K (Koop and Butler 1981),

in which the approximate boundary condition on the interface was used, was

incorrect and resulted in an overestimation of attenuation. They examined the

validity of the obtained expression by comparison of their prediction with experi-

mental data of the work of Segur and Hammack (1982). Appreciable differences

between the theory and experiment emerged: in particular, calculations

overestimated the attenuation of the internal wave when it moved from the genera-

tor toward the channel end and underestimated it, when it moved after reflection

from the end face toward the generator. The authors explained that the difference

was caused by the presence of “parasitic” wave movements. When using the above

method, surface waves are generated simultaneously with internal waves. The

surface wave speed is higher than that of the internal wave. It so happens that the

first passing of the internal wave occurred on the background of the remaining

perturbations near the free surface caused by the surface wave. So, the velocity shift

at the surface was less when the internal wave moved to the end face and, hence,

dissipation decreased. On the other hand, after reflection from the end face of the

basin the internal wave moved on the background of the residual currents directed

against its movement. It resulted in an appreciable increase of shear and dissipation.

The authors considered these features of propagation of solitary waves to be due to
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the limited length of the basin and introduced empirical corrections into their

estimated relations describing the dissipation.

It is noticed that friction at the walls is also an important factor causing wave

energy loss. This conclusion was confirmed by Troy and Koseff (2006). They

theoretically and experimentally studied viscous damping of progressive waves

propagating at an interface of two liquids of various densities. It was assumed that

the motion caused by the waves was potential flow. Friction at the interfaces, at the

bottom, and at the lateral walls was considered. It was shown that energy dissipa-

tion near the lateral walls was the dominating mechanism of wave damping.

Friction at the bottom was poorly expressed because the interface was rather far

from the bottom. It was remarked that to reduce the contribution of friction at the

lateral walls below a level which is determined by the influence of the shearing

caused by the wave on the interface, it is necessary to have a basin width at least

three times as large as the overall thickness of the liquid layer in the experiments.

Attenuation of solitary internal waves under the effect of viscosity was also

investigated by Gavrilov (1988). Experiments were carried out both for the free

surface case and for the case of a cover (rigid lid conditions) for waves of elevation

and depression. The author showed that calculations corresponded sufficiently well

with the experimental data. Additional friction was taken into account when the

rigid lid condition was used. It was also shown that calculations based on similar

dependences (Koop and Butler 1981) correspond less with the experimental data.

One should also mention the work of Bukreev and Gavrilov (1983) in which

attenuation of solitary waves propagating along an interface of two immiscible

liquids was studied. It was found that the amplitude of the waves decreased

approximately ‘ times at a distance s = l ¼ 100, where s is the covered distance,

l is the length of a rectangle with a height, equal to the wave amplitude a, and the

area is equal to the wave area. The given dependence corresponds to a reflection of

a wave from the face walls of the basin.

Data on viscous damping of solitary waves are especially important when

studying their interaction with an inclined slope and when finding the coefficient

of reflection because the recording equipment is installed at a certain distance from

the slope. It was shown when studying the propagation of solitary waves of

depression (Kao et al. 1985) that attenuation of waves in a liquid of constant

depth made 4:3% m�1at a distance of 3–6 m from the gate, and gradually increased

to 6:2%m�1at long distances from the gate and ratio of depths h1=H ¼ 1=14. This
coefficient decreased with the growth of h1=H. It was found that the attenuation was

somewhat smaller than when inferred from theoretical calculations (Leone et al.

1982).

Rather appreciable attenuation of solitary waves was revealed by Michallet and

Bartholemy (1998). The wave amplitude decreased by 3% when the wave was

passing a distance of 30 cm. This attenuation had an order of magnitude close to

that found experimentally by Koop and Butler (1981). Such a level of attenuation

was connected, apparently, to the small size of the basin cross section, i.e., with

appreciable influence of friction at the walls and the bottom of the basin. Besides,
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the growth of the velocity shear on the interface of immiscible liquids also leads to

attenuation.

A slightly smaller attenuation was recorded by Sveen et al. (2002). In a basin

with cross section 0:4m� 0:6m, it made about 4.8% at a distance of 1 m; in a basin

with cross section 0:5m� 1:0m, it was 1.3% by amplitude.

3.1.4 Summary

On the basis of the above review, it is possible to draw the following inferences:

1. Internal waves play a significant role in the processes of transport of mass and

energy in stratified seas and lakes. A popular approximation of the density

distribution is a two-layer configuration with an upper layer of a light fluid and

a heavier fluid in a lower layer. The density jump interface is at the location of

the thermocline. Such a two-layer configuration has modeled internal waves in

real lakes rather successfully.

2. There are a number of methods of generation of internal waves propagating

along an interface between two liquids of different density. Waves are typically

generated by vertically oscillating a wave maker placed at the interface. Two

basic types of such wave makers are primarily used in laboratory experiments.

The first type is a “flap” wave maker. Waves are generated by oscillations of an

airfoil around its tip that is hinged to a rod. The other rod end is attached to the

front wall of the basin. The second type is a “plunger” wave maker, in which

a submerged body, also placed at the density interface, oscillates up and down.

An internal solitary wave is generated by a single displacement of a generating

element (up or down) a given distance. This causes a localized vertical displace-

ment of the interface, and its further development results in the formation of an

internal solitary wave. Such an interface displacement can also be produced by

the movement of a piston. A two-piston system can be used to generate internal

solitary waves. In these methods, it is rather important not to generate a flow

separation under the effect of the initiation of the wave motion. In fact, the

motion of the moving elements ought to be such that formation of vortical

structures and subsequent turbulence of the fluid, which result in undesirable

perturbations, are avoided.

A localized interface rise and consequential wave generation can also be

generated by releasing fluid trapped behind a gate with its subsequent elevation.
In this (step pool) method, it is necessary to determine precisely the depth and

length of the interface level in the separated part of the basin to guarantee

generation of a single solitary wave, but it does not avoid the occurrence of

dispersive wave tails. It is important to provide a smooth elevation of the gate

with the purpose to avoid mixing of fluids.

3. An important problem is concerned with the creation of a distinct boundary

between layers in order to compare the recorded data with theoretical results.

3 Laboratory Modeling on Transformation of Large-Amplitude Internal Waves 119



The basin should be filled with liquids as carefully as possible to achieve small

thickness of the intermediate transition layer. This allows one to use rather

simple dependences obtained for a two-layer liquid, to describe the

characteristics of waves, instead of solving more complicated Sturm–Liouville

problems for cases of continuous stratification.

4. In the majority of the executed works, the structure of the density field was

measured with the help of electric conductivity gauges. The works did, however,
not concentrate on such important questions as the operating frequency of the

gauge. It is known that a double electric layer of dissolved ions is formed near

the gauge electrodes. This layer can significantly influence the accuracy of the

measurements; therefore, it is necessary to raise the gauge-work frequency for

normally operating the equipment, thus allowing considerable diminishing of

the effect of electric double layers.

5. In most works the measurement of the wave characteristics is carried out by

distributed electric conductivity gauges, which have strongly nonlinear perfor-

mance data. It is necessary to take special measures to achieve linearization of

their operating characteristics.

6. Modern methods to measure velocity (PIV, PTV, planar laser-induced fluores-
cence, etc.) are promising techniques to determine the velocity distribution

inside internal solitary waves that result in the best understanding of the pro-

cesses of wave propagation.

7. Comparison of experimental data with theoretical dependencies demonstrates

that the characteristics of internal solitary waves (speed of propagation, structure

of the wave, and amplitude–wavelength or frequency–amplitude ratios) of small

amplitude can be successfully described by the K–dV theory. Fully nonlinear

theories are to be used to describe the waves with larger amplitudes. The

extended K–dV theory can also be used for such description.

3.2 Transmission, Reflection, and Fission of Internal Waves

by Underwater Obstacles

3.2.1 Transformation and Breaking of Waves by Obstacles
of Different Height

Internal solitary waves propagating in a stratified fluid over a flat horizontal bottom

have been extensively studied in recent years. A state-of-the-art report was given in

the last section. A quick summary of the pertinent literature is as follows: The

relatively dense coverage of the subject is motivated by its practical importance.

There are many publications devoted to the theme. Characteristics of solitary

internal waves were studied experimentally by Koop and Butler (1981); Segur

and Hammack (1982); Bukreev and Gavrilov (1983); Kao et al. (1985); Michallet

and Barthelemy (1997, 1998); Grue et al. (1999); Walker et al. (2003); and Carr and
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Davies (2006). The current state of the art in experimental studies of internal waves

and comparison with theoretical models are reviewed by Ostrovsky and

Stepanyants (2005). It was established that the K–dV theory provided a valid

description of the behavior of solitary internal waves for small-amplitude motions.

When the amplitude increases, a more complicated theory should be used to

describe the internal wave characteristics. For large-amplitude waves in a two-

layer system, there is an alternative approximation that combines the K–dV and

modified K–dV equations (this is the so-called K–dV–mK–dV equation or

Gardner’s equation). It includes quadratic and cubic nonlinear terms and exhibits

solitary wave solutions. A fully nonlinear theory was recently developed. The

results, obtained by using this theory, correspond to data of laboratory experiments.

In this section, we consider the propagation of internal solitary waves in a two-

layer fluid of nonuniform depth. The shoaling, breaking, and run-up of such waves

on a uniform slope were studied comprehensively by Kao et al. (1985); Helfrich and

Melville (1986); Helfrich (1992); Michallet and Ivey (1999); Chen et al. (2007a,

2007b) and others. Only a few experimental investigations deal with the interaction

of internal solitary waves with isolated, two-dimensional topography.

Laboratory investigations were made on fission of an internal wave in a two-

layer fluid by a triangular obstruction, its “stability”, that is, form preservation, of

the transmitted wave, as well as the energy annihilated or dissipated by the vortex

due to the obstruction were studied (Wessel and Hutter 1996). Experiments were

carried out in a basin 10 m long, 0.33 m wide, and 0.33 m deep, filled by two layers

of liquids of different density: freshwater and saltwater. Internal solitary waves of

elevation were generated by two pistons which move horizontally in opposite

directions; a thin separating plate is put between the two pistons of the liquids.

The size of the pistons and speeds of their movement were selected so as to equalize

the volumes moved by each piston. Measurements of the wave structure were

performed by six distributed electric conductivity gauges. The obstacle had the

form of a truncated triangle (the triangular obstruction is flat-topped (10 mm)).

Experiments were also made with an obstacle of different form: a combination of

a slope and a plateau. It was seen that the solitary wave impinging on an obstacle

often fissions into reflected and transmitted waves. The authors introduced

a parameter of blocking which represents the ratio between the obstacle height, h,
and the bottom layer thickness, h2:B ¼ h=h2 and called it the “degree of blocking”.
It was revealed that for large sizes of the parameter of blocking (for example,

B ¼ 1:2), a transmitted wave is not formed. In the opposite case, at small values of

B (for example, B � 0:6), the wave passes above the obstacle, and no reflected

waves are observed. Interesting results were obtained when studying the interaction

of an internal solitary wave with an extended ridge. It has been shown in this case

that a steepening of the leading face occurs while the wave is adjusting to the

extended ridge. It is accompanied by a growth of the wave amplitude. At the same

time, the back front extends considerably, and a cavity, which serves as the

inducing reason of the beginning of generation of the oscillating tail, is formed

on it. This cavity disappears later above the plateau and above the back slope of the

ridge. Then, the form of the moving structure significantly changes in comparison
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with the form of the incident wave: the forward front becomes very steep, its

amplitude is large, and a long tail arises. It is remarked in the work that a change

in amplitude of the wave during its motion and interaction with the bottom features

is frequently used as a quantitative estimation of the wave attenuation. In this case,

the dispersion effects can cause an expansion or narrowing of the wave and

substantial change of wave form during the wave interaction with topographic

features. To explain the wave attenuation, it is reasonable to use other wave

characteristics, in particular its potential energy (Bogucki and Garrett 1993):

E ¼ 1

2
ðr2 � r1Þg

ðx2
x1

�2ðx; tÞdx: (3.6)

For solitary waves of small amplitude, the potential energy is practically equal to

the kinetic energy (Bogucki and Garrett 1993); for other wave forms, the energies

are proportional to each other. It is shown in the work that the potential wave energy

and its amplitude decay with distance, following an exponential law (Maurer 1993;

Maurer et al. 1996).

It was found that an increase of the degree of blocking, B, results in a transfor-

mation of a solitary wave into a dispersive wave train. This process in essence is

a consequence of wave breaking and formation of vortical structures above the

obstacle. A certain part of the wave energy is dissipated. It is shown that a vortex

is formed on the leeward side of the ridge. This process is accompanied by the

formation of a narrow near-wall jet on the leeward side of the ridge. This jet

penetrates more or less deeply into the bottom layer; as a consequence, lighter

water is entrained from the upper layer. The vortex intensity grows when the degree

of blocking increases. It is obvious that the formation of vortical structures, which

break down as a result of the development of instability and consequential fluid

turbulence, is an effective mechanism of wave energy dissipation that cannot be

described within the framework of the existing theoretical models of nonlinear

internal waves with large amplitude.

In subsequent works (H€uttemann 1997; H€uttemann and Hutter 2001; Vlasenko

and Hutter 2001), attention was focused on studying the influence of the finite

thickness of the intermediate layer on the character of the interaction of a solitary

wave with an obstacle. Finiteness of the thickness of this interface is caused by

natural processes of diffusion, which occur between the salty and fresh liquids. It is

shown in these papers that finite thickness of the intermediate layer causes existence

of baroclinic modes of higher order. The experimental equipment was adapted to

the generation of a single solitary wave which corresponded to the baroclinic mode

of a wave of a perfect two-layer system. During interaction with the ridge, this wave

was split into a pair of reflected and transmitted waves having the form of solitary

waves with finite amplitude and representing the first higher order wave mode of

the two-layer system. Besides, during the interaction the second wave mode was

generated because of the influence of the finite thickness of the intermediate layer.
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Interaction of solitary internal waves of depression with an underwater obstruc-

tion has also been investigated experimentally (Sveen et al. 2002). Experiments

were carried out in basins with the sizes: [25 � 0.5 � 1.0 m] and

[6.4 � 0.4 � 0.6]. A number of experiments were carried out in channels of

15.3 m and 21.5 m length. The container was filled with two layers of (fresh and

salty) liquids. The solitary internal waves were generated using the step pool

method (Kao et al. 1985). Four kinds of ridges were used. They had different

heights and inclinations. Particle tracking and particle image methods were used

to measure the velocity field. The density was measured with the help of a

conductivity meter and a fluid density gage. When studying the interaction of an

internal solitary wave with a relatively wide ridge, it was found that a steepening of

the back front of the wave takes place; this steepened part will eventually practi-

cally be perpendicular to the slope of the ridge. Then, the wave is transformed into

a leading wave of depression and a subsequent wave of elevation. Such behavior is

similar to the process of transformation of an internal solitary wave of depression

over an inclined coast when the region above the point of return is considered. It has

been noticed that the interface on the back front of the wave thickens and its

boundaries are washed out. This proves that mixing of fluids takes place. In the

presence of a narrow ridge, wave breaking occurs rather quickly in form of an

overturn of liquid. In the beginning of the overturn process, a large jet of liquid

moves downward, and vortical structures are formed in the space between the jet

and the initial interface.

In studies of the formation of vortical structures, it was noticed that the vortices

appear on the windward side of the ridge, and the place of their appearance and

development is determined by the wave amplitude. Vortices are formed as

a consequence of separation of the flow caused by the influence of a negative

gradient of pressure connected with the passage of the wave. The separation starts

as a splash-like flow directed upward which transforms into a flow containing one

or more vortices. For moderate interaction between the wave and the ridge, the

formed vortical structures move upward and dissipate near the top of the ridge.

At strong interaction, vortex generation and break down were more pronounced. In

the beginning, a vortex is formed due to the instability of the near-wall flow and its

separation. Subsequently, it moves up and along the ridge and is combined with

another vortex of higher intensity in the region located higher on the slope. The

second vortex appears later than the first. As a result, the flow, separating at the

ridge, occupies a large region. Moreover, the vortices cause the appearance of

a smaller-scale flow and mixing of the liquids.

It is appropriate here to mention the work of Carr and Davies (2006) in which the

separation of near-wall flow was studied for the motion of a solitary internal wave

over a flat bottom. Analysis of the characteristics of the transmitted waves showed

that they consist of a leading solitary wave-like pulse and a train of waves of smaller

amplitude. For weak interaction, the form of the leading part is close to that of the

solitary wave. When moderate interaction is considered, the overall form of the

initial pulse is wider than that of the incident wave, and the tail is not separated from

the wave train. The leading part of the wave form is close to the theoretical profile
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of the solitary wave. At strong interaction, the form of the front of the pulse is close

to the theoretical profile, but fluctuations in the tail look like a train of waves with

large amplitude.

In the following work (Guo et al. 2004), experiments were carried out in a small

basin (Sveen et al., 2002) with the same measuring equipment. The analysis of

strong interaction of internal solitary waves with a ridge was carried out when the

upper layer was stratified. It was shown that the velocity in the bottom layer

considerably grows because of the decrease of the cross section due to the presence

of the ridge. The back front of the wave steepens during the translation of the wave

over the ridge, and a vortex is generated in this region. The separation of the near-

wall current generates a vortex of opposite direction of the rotation. This conclusion

is confirmed by the analysis of the profile of the vorticity distribution represented in

the work. An intensive jet appears between the two vortices, which results in an

amplification of wash-out layers. It is an established fact that these vortices are of

almost the same intensity. Measurements of the change of the density field were

made which confirmed that the strong interaction of an internal solitary wave with

an obstacle results in strong mixing of the liquids.

In our own studies, we allow for the interaction of internal solitary waves with

underwater features as a possible mechanism for the transformation of wave energy

in lakes from larger to smaller scales. Our experimental research deals with the

propagation and interaction of waves with underwater obstacles of rectangular

form. They are a natural continuation of the above-mentioned works devoted to

studying the interaction of internal solitary waves with smoother topographic

obstructions. It is evident that the degree of wave interaction with a rectangular

obstacle is stronger than with a triangular one. Our principal attention was drawn to

studying strongly nonlinear internal solitary waves of large amplitude. Apart from

this, more complicated conditions of experiments are useful from a viewpoint of

examination of extreme situations of wave interaction with obstacles. In addition,

situations are also essential in verification attempts of numerical models to calculate

the scattering of internal solitary waves by topographic features, when the fix point

of separation is on the obstacle.

Experimental Setup. Experiments were made in a basin 7 m long, 0.33 m wide,

and 1.5 m high. The walls of the basin and its bottom were made of plexiglass. The

basin was located in a basement room whose temperature was practically constant

during the experiments, although seasonal changes of the temperature occurred

there. An auxiliary tank of large size was filled with water before the experiments.

After adjustment of the water temperature to that of the room, the wave basin was

filled with saltwater (of salinity equal to 15 ppt) to a given depth. Subsequently,

freshwater was added using the special arrangement given in Fig. 3.3 to create

a two-layer system. The freshwater entered the reservoir from an inlet tube. The

reservoir was installed on a wooden board floating on the water. There are two

compartments at the ends of the board. The freshwater moved into these

compartments from the reservoir through four to eight flexible tubes to achieve

uniform inflow over the width of the compartments. The external walls of the
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compartments were made from fibrous material, and the freshwater moved slowly

through this material that served as an energy dissipator to reduce the mixing of the

liquids. The upper surface of the board was maintained at the level of the free

surface (or somewhat lower), and the basin was filled very gradually by freshwater,

especially in the beginning of the process. When the distance between the lower

surface of the board and the upper boundary of the saltwater became sufficiently

large, the filling rate could be increased. After termination of the filling operation,

the intermediate layer was selectively withdrawn using a special vertical tube with

dilated end that was placed at the boundary between the saltwater and freshwater.

This allowed the thickness of the intermediate layer to decrease.

Solitary waves were generated following the modified step pool method by Kao

et al. (1985). A sketch of the generator is presented in Fig. 3.4; its operation was

described already in Sect. 3.1. Here, some peculiarities of the wave generation,

which are connected with the modification of the construction, are considered. The

gate was lifted and the lighter fluid contained in the separated compartment of the

basin began to move forward to the main part of the basin. Very soon, a solitary

wave was formed. Its motion was accompanied by local vortices, which were

induced by the removal of the gate. It was noted already by Kao et al. (1985) that

the solitary waves were also accompanied by different degrees of initial pulse

breaking, which restricted the wave maximum. Another imperfection of such

Fig. 3.3 Arrangement for filling the basin by freshwater: (a) – side view; (b) – top view

Fig. 3.4 Modified “generator” of internal solitary waves
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a scheme of wave generation concerns also the movement of the heavier fluid in the

opposite direction after gate removal, its reflection from the end wall, and conse-

quential transfer of perturbations to the main part of the basin. These peculiarities of

this wave maker are especially important when processes of wave reflection from

topographic features are studied. It was suggested by Michallet and Ivey (1999) to

use a slightly tilted gate (at 30� to the vertical) in order to improve the performance

of wave generation. The interface incline after removal of the gate is better adjusted

to the shape of the solitary wave. The angle of the gate incline was chosen by trial

and error. A series of experiments were made with this modification in a basin of

smaller size to choose the optimal angle ’ of the gate and the length lþ of the foot

point of the gate from the end of the basin. It was found that a decrease of the angle

’ (below 48�, see Fig. 3.4) results in an intensification of undesirable perturbations

caused by the lengthening of the gate displacement path.

The observed internal solitary wave of depression was formed after lifting the

gate, but simultaneously a wave of elevation connected with the motion of the

heavier liquid was also formed – it propagated into the opposite direction and was

reflected from the end wall. To avoid its motion into the main part of the basin, the

gate was re-positioned to the initial state (before start), and the perturbations of

the reflected wave of elevation were cut off. This is made at the instant when

the leading front of the wave of elevation reaches the position of the gate. Such

a procedure allows generation of solitary waves with very weak tailing pertur-

bations. With this method, internal solitary waves of different amplitudes could be

generated. The amplitude was controlled by varying the freshwater depth hþ in the

separated part of the basin. Note that the wooden board floating on the water and

used for filling the separated part of the basin with freshwater was not removed

and served to damp perturbations of the free surface during the wave-generation

process.

The density profile was measured using a conductivity micro-probe with

a sensor diameter of 0.8 mm. The probe was calibrated using a series of test

reservoirs with prescribed salinity. The function describing the calibration curve

was nonlinear. Regressive curves were used to obtain the formulas and calculate the

density profiles. They were described as high-degree polynomials used for the

approximation of separated overlapping segments of the curves. A typical salinity

distribution is presented in Fig. 3.5.

Data of the profile measurement before run 1 are designed by squares and those

of the measurement before run 2 are shown as triangles. The solid curves corres-

ponding to these data are described by the expression

S ¼ S0:5 1� tanh
ðz� zcÞ

d

� �
; (3.7)

where the interface thickness is equal to 2d. In the illustrated cases, the parameter

zc is equal to 27.3 cm and d ¼ 0:43 cm for run 1 and zc ¼ 27:1 cm and d ¼ 0:48 cm
for run 2.
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We can see that the interface thickness increases somewhat after run 1 and the

interface center shifts downward. Only two experiments were made with the same

waters, and then the basin was re-filled. This was necessary because of the wash-out

of the boundary between the layers, and because after some runs the use of the

assumption of a two-layer system became doubtful.

Description of Results. The results of the experimental investigations dealing

with the propagation of internal solitary waves (ISW) of depression in a two-

layer fluid system are now presented. Attention was focused to the study of the

interaction of ISW with obstacles of different sizes placed on the channel bottom.

The obstacles were rectangular. A series of experiments was made with horizontal

obstacles of size Lob ¼ 52:5 cm; Lob ¼ 17 cm and a thin plate. Heights of the

obstacles (Hob) were changed for each Lob to study the influence of the blocking

effect on the interaction of waves with the obstacle. The scheme of the basin and

equipment employed is presented in Fig. 3.6. Here, the length of the obstacle,

designated as number 1, is Lob and the height is Hob, while h1 and h2 are the

thicknesses of the upper and lower layers, respectively; the overall depth of the

filling is H ¼ h1 þ h2. The arrow shows the direction of wave propagation.

Measurements of the interfacial displacement caused by the moving solitary

waves were conducted by distributed capacity gauges (G1, G2) that were

completely submerged in the water. The gauges consist of two parallel thin electri-

cally isolated wires. The capacity of this wire system depends upon the distance

between the wires, the salinity (of the electrically conductive medium) of the lower

Fig. 3.5 Profiles of salinity

before run 1 and run 2

Fig. 3.6 The scheme

of basin and equipment
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layer fluid, and the depth of submergence of the two wires into the lower layer.

Therefore, variations in the vertical position of the interface will cause variations of

the gauge capacity. The system for collection and processing of the experimental

data allows executing fast polling of sensors, transforming signals into numerical

form due with the analog–digital converter (ADC), and rapid analysis performance

of the process using a PC. These gauges were calibrated using a reservoir with

freshwater and a small reservoir with saltwater being placed in it. The calibration

reservoir was electrically connected with the wave basin. Note that different from

the electric conductivity gauges which have a nonlinear operating character, the

regime of operation of the capacity gauges is close to linear.

An example of the interface displacement time series recorded by the capacity

gauges, which was positioned ahead of the topographic obstructions, is presented in

Fig. 3.7. The abscissa measures time, and the ordinate axis vertical displacement

caused by the propagating waves. The distance from the gauge to the leading edge of

the obstacle (Hob ¼ 22 cm;Lob ¼ 52:5 cm)was equal to 196 cm, and the overall depth

was 30 cm. The salinity profile is described by equation (3.7) with the parameters zc ¼
26:5 cm and d ¼ 0:75 cm. Therefore, the thickness of the lower layer is h2 ¼ 26:5 cm.

The registration at the gauge is clearly recording the incident solitary wave and the

wave which is reflected from the topographic feature and propagated upstream.

The electric conduction probes, P1 and P2, were used to determine the moment

of the passage of the solitary internal waves from which the wave speed can be

estimated. The boundary between the layers (or at the upper layer) was dyed to

visualize the processes of wave interaction with the obstacle. Digital cameras

(video and photo) were used to record the visible information.

Theoretical Considerations. It is known that the K–dV theory adequately des-

cribes the characteristics of solitary waves with small amplitude (Koop and Butler

1981, Kao et al. 1985 and others). An interface displacement � ðx; tÞ obeying the

K–dV equation possesses a solitary wave solution of the form

Fig. 3.7 Time series of the

displacement at a fixed

position of the interface

caused by the incident and

reflected (r.w.) internal waves

(experiment 0902)
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�ðx; tÞ ¼ a sech2
x� c�t

l

� �
; (3.8)

where a; c�; l are the amplitude, phase velocity, and wavelength, respectively. The

solitary wave is predicted to travel without a change of form at constant speed c�. In
a two-layer system, the speed c� is described by the following expression (Bogucki
and Garrett 1993):

c� ¼ c0 1þ 1

2

aðh2 � h1Þ
h1h2

� �
; (3.9)

where c0 is the speed of the infinitesimal wave,

c0 ¼ g0
h1h2
H

� �1=2

: (3.10)

Two definitions of the disturbance wavelength are used. The first definition,

denoted by l0 : 5, simply represents the half-amplitude point and is defined by

�ðx� ctÞ=a ¼ 1=2, whence x� ct ¼ l0:5. The second definition,

LW ¼ 1

a

ð1
�1

�ðxÞdx ffi c

a

ðt1
t0

�ðtÞdt . . . ; (3.11)

is also used (Koop and Butler, 1981; Michallet and Ivey 1999).

When the nonlinear coefficient in the K–dV equation becomes small (for

example, if the interface is located near a critical level), higher-order nonlinear

terms must be taken into account in the evolution equation. In this case, the model

equation resembles the K–dV equation with an extra cubic nonlinear term (for

example, Michallet and Barthelemy 1998). It was demonstrated that the equation

can be successfully applied to the description of strongly nonlinear internal solitary

waves. We will consider the frequency–amplitude characteristic that is directly

defined with the wave profile �ðx0; tÞ (Michallet and Barthelemy (1997, 1998)).

It is preferable to use the dependence of the characteristic frequency ok that is

defined with �ðx0; tÞ as

ok ¼ aÐ1
0

�ðtÞdt ¼
ck
l
; (3.12)

which directly follows from (3.11).

An important wave characteristic that describes the energy transformation in the

process of wave interaction with the underwater obstacle is the wave energy. The

total energy of the wave is estimated as (Bogucki and Garrett 1993, Helfrich 1992)
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E ¼ gDr
ðl
0

�2ðxÞdx ¼ cgDr
ðl
0

�2ðtÞdt: (3.13)

The influence of the obstacle height on the scattering of the incident ISW has

been studied. A parameter determining the degree of interaction of the internal

solitary wave of depression with the obstacle (blocking parameter) is the ratio

kint ¼ a=ðh2 � HobÞ.
It was proposed by Wessel and Hutter (1996) to consider the blocking parameter

in the form: B ¼ Hob=h2. Here, h2 is the thickness of the lower layer and Hob is the

obstacle height. The primary parameter determining the degree of interaction

between the internal solitary wave and the topographic feature is the ratio between

the wave amplitude and the distance from the interface to the obstacle top

(Vlasenko and Hutter 2002a, b). In other words, it is the interaction parameter

kint ¼ a=ðh2 � HobÞ. A similar parameter was also considered by Helfrich and

Melville (1986) and Helfrich (1992). In these works, the propagation of nonlinear

internal waves over a slope was studied. It was found that waves move onto the

shelf with no instability, when a=d�S < 0:3, where d�S is the depth of the lower

layer on the shelf, that is, the distance between the crest of the wave depression and

the bottom, and the waves break when kint > 0:4.
Analysis of the performed experiments concerning the interaction of internal

solitary waves with underwater obstacles shows that three scenarios of wave

interaction with topographic features can be distinguished. They can be classified

according to the value of the parameter kint. In this section, attention will be

concentrated on an obstacle in the form of a thin vertical plate of finite length.

Scenario 1. Transformation. This scenario is characterized by a comparatively

weak influence of the bottom obstacle on the propagation and spatial structure of

internal solitary waves. The distance from the interface to the top of the obstacle,

hi ¼ H � h1, is appreciably larger than the wave amplitude. In this case, the wave is

adjusted to the change of the local ambient conditions, and it is accordingly

transformed. In experiment 2802, the interaction is studied between the internal

solitary wave with amplitude a ¼ 3:6 cm and the extended obstacle

(Hob ¼ 16 cm; Lob ¼ 52:5 cm), whose effect on the wave is considerably stronger

when compared with the thinness of the obstacle. The salinity profile (before run 1)

is presented in Fig. 3.8. This profile is described by equation (3.7) with the

parameters zc ¼ 29 cm and d ¼ 0:62 cm. Therefore, the thickness of the lower

layer is h2 ¼ 29 cm and hi ¼ h2 � Hob ¼ 13 cm. The primary parameter determin-

ing the degree of interaction between the internal solitary wave and the topographic

features is the ratio between the distance from the interface to the obstacle top and

the wave amplitude (Vlasenko and Hutter, 2002a). In the considered case, this ratio

was equal to 0.27, i.e., the interaction was weak. In Fig. 3.9, a series of photos is

presented which show the transformation of the internal solitary wave. Only little

changes of the back face of the wave are observed when the wave moves (from the

right) and passes over the obstacle. The back face of the wave is undisturbed when the

wave is ahead of the obstacle (frame 2), and it is only weakly deformed when the
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wave moves above the obstacle (frame 4). This is so even though the obstacle is

elongated and its influence increases along its length. The distortions of the back face

are caused by the intensification of the inverse flow under the effect of the obstacle

and the development of a Kelvin–Helmholtz instability. The influence of the obstacle

is reduced if its length is decreased. Moreover, the amplitude of the transmitted wave

decreases slightly as compared with the amplitude of the incident wave.

Scenario 2. Interaction. As the coefficient of interaction kint increases, the sce-

nario of interaction of the solitary internal wave with the topographic feature is

changed. We consider the character of the change of this process with a successive

increase of the coefficient kint. Attention will be focused on the obstacle which is

a thin vertical plate.

In experiment 0104, a wave of moderate intensity was created. Its amplitude was

a ¼ 3:5 cm. The salinity profile before run 1 is presented in Fig. 3.10. The

parameters of the experiments are listed in Table 3.1. The coefficient of interaction

is equal to kint ¼ a=ðh2 � HobÞ ¼ 0:39, that is, close to the upper boundary of the

regime of wave transformation; nevertheless, the character of the interaction is

substantially changed.

With the water of the upper layer being dyed, we could see the change of the

wave shape in the process of its interaction with the plate. In Fig. 3.11, a series of

photographs showing the transformation of the internal solitary wave is illustrated.

Fig. 3.9 Transformation of an internal solitary wave on an extended obstacle (Hob ¼ 16cm;

Lob ¼ 52:5cm, experiment 2802). The arrow indicates the direction of the wave motion

Fig. 3.8 Salinity profile for

experiment 2802
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To appreciate the rate of change of the shape of the wave during its passage across

the obstacle, consecutive frames are numbered from 1 to 10 and times (in sec) at

which they were shot are listed in the figure caption. The plate is seen as a thin

vertical line on each frame above the number of the frame.

Changes of the shape of the wave that moves from the right and passes across the

obstacle are appreciable. At first, shoaling of the leading face occurs (frame 2),

which is immediately followed by a shoaling of the back face (frame 3). Sharpening

of the wave occurs when the top of the wave is positioned above the plate (frames 4
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Fig. 3.10 Profile of salinity

in experiment 0104

Table 3.1 Parameters of the experiments with the thin plate

No.exp. H, [cm] z c, [cm] d, [cm] h 2, [cm] Hob, [cm] a, [cm] kint.

0104 30.5 27.9 0.4 27.9 19 3.5 0.39

3003 30.5 27.7 0.7 27.7 19 5.1 0.59

2203 30.5 27.8 0.5 27.8 22 5.8 1.0

Fig. 3.11 Interaction of internal solitary waves with a thin plate shown in the middle of the frames

when kint ¼ 0:39 (experiment 0104). Frames are consecutively numbered with times when they

were shot in parentheses as follows: 1 (3.8 s), 2 (5,4 s), 3 (6.8 s), 4 (7.4 s), 5 (7.8 s), 6 (8.8 s),

7 (9.8 s), 8 (10.8 s), 9 (11.4 s), and 10 (17.2 s). (Camera was switched on at time t ¼ 0 s.) The

arrow indicates the direction of wave motion
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and 5). As the wave continues to move and the wave crest passes the position above

the plate end, a sharp peak is formed. Its location relative to the plate remains

unchanged with time (frames 3–7). Then the wave leaves the obstacle but the

interface level stays locally above the initial level; however, as time proceeds, it

again restores its initial value (after approximately 6 s). Most likely, the appearance

of the sharp peak is connected with the formation of a vortex at the edge of the plate.

To corroborate this inference, recall that in this pure baroclinic motion the volume

transports in the upper and lower layers have the same magnitude, explicitly

(Bogucki and Garrett 1993),

�u 1ðxÞ ðh 1 þ � ðxÞ Þ ¼ �u 2ðxÞ ðh 2 � � ðxÞ Þ;

in which �u 1ðxÞ and �u 2ðxÞ are the averaged upper and lower horizontal velocities.

Thus, the cross-sectional area in the lower layer above the obstacle is reduced. This

leads to a considerable growth of the velocity near the top of the obstacle (plate).

Due to the separation of the flow (separation with fix point at the top of the

obstacle), a vortex is formed. Its origin is flow instability in the region with negative

pressure gradient. On the other hand, an instability, caused by the retardation of the

wave motion under the influence of the obstacle, occurs at the back face of the wave

and a vortex of opposite rotation is formed. The combined effect of these vortical

structures of opposite rotation results in the appearance of a sharp peak. The vortical

structures are not visible at small intensity of the interaction between the wave and

the obstacle. Note also that the experimental studies of wave propagation over

a ridge showed that the geometry at the top of the ridge plays an important role in

the generation of turbulence (Wessel and Hutter (1996)). If the top is made round,

turbulence weakens and wave loss decreases.

A series of relatively small vortices could be seen on the back face of the wave;

these vortices form owing to the instability of the flow in that region. These vortical

structures are analogous to vortices that were found by Wessel and Hutter (1996)

and Grue et al. (1999). In the considered situation, the formation of vortices is a

characteristic feature of the interaction of internal solitary waves with an obstacle

when the process of interaction follows scenario 2. Thus, we can verify that the

generation and development of vortices are a result of the obstacle effect, which

leads to wave instability and flow separation at the obstacle.

It should be noted that the reflected wave was not observed. This was confirmed

by analysis of the data obtained by gauge G 1. The arrangement of gauges and

probes relative to the obstacle is presented in Fig. 3.6. The amplitude of the

transmitted wave was equal to 2.9 cm. The shapes of the incident and transmitted

waves were also obtained. They are displayed in Fig. 3.12 normalized to unit

maximum amplitude. Panel (a) shows the incident wave and panel (b) shows the

transmitted wave. Here, the theoretical profile corresponds to the K–dV theory

(3.8), represented by the smooth solid curves. It is seen that the profile of the

incident wave differs somewhat from the profile described by (3.8). Considering

that the profile of the nonlinear incident wave was more blunt than the theoretical

profile and a small plateau was formed near the crest of the wave (the crest was
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somewhat flattened), the value of the normalizing factor along the abscissa was

estimated as the distance from the point where the data begin to differ from the

value corresponding to the maximum amplitude down to the half-amplitude point.

Note that the form of the soliton described by Gardner’s equation had a similar

plateau (Ostrovsky and Stepanyants 2005). This latter procedure was taken when

the plateau was observed near the crest of the wave. Such a plateau was not

observed for the transmitted wave; so, the normalizing factor was determined in

the usual way. It can be seen that the profile of the transmitted wave is close to the

theoretical profile.

The influence of the viscosity on the decay rate of the energy of the ISW should

be determined to distinguish its contribution in the overall decay rate of the waves

and to estimate separately the effect of the obstacle. The effect of viscosity was

discussed in Sect. 3.1. A number of experiments were carried out to study the

dissipation of internal solitary waves in the basin. For this series, gauges located

along the basin were used. Detailed results of the experiments will be presented in

Sect. 3.4. Here, we quote only the final result. The analysis showed that the energy

of the wave decays according to the relation

E =E 0 ¼ 10�bX; (3.14)

where b ¼ 0:021 and X ¼ x h 2 H 2
�� 	

.

The energy of the incident wave is estimated using data of gaugeG 1 and formula

(3.13). Then, the energy loss connected with the viscosity effect is found according

to formula (3.14) when the wave moves over the distance from gauge G 1 to the

obstacle (see Fig. 3.6). Taking into account the energy loss, we can determine the

energy of the wave when it is directly in front of the obstacle. A similar procedure is

made to estimate the energy of the transmitted wave, namely the energy of the wave

is estimated by using data of gauge G 2, thereby accounting for the energy loss

caused by viscosity. The ratio between the energy of the transmitted wave and that

of the wave which is incident on the obstacle is equal to 0.94. In other words, the

Fig. 3.12 Profiles of the incident (a) and transmitted (b) internal solitary waves (experiment

0104)
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energy loss acquired by the wave in passing the obstacle is approximately 6%. Such

a loss of wave energy for weak wave interaction with the obstacle is small.

In experiment 3003, the overall depth is 30.5 cm. The salinity profile is depicted

in Fig. 3.13. It is described by (3.7) with the parameters as listed in Table 3.1.

The pattern of the interaction of the internal solitary wave with the underwater

obstacle (thin plate) can be inferred from the photo sequence in Fig. 3.14. Consec-

utive frames from 1 to 10 and times (in seconds) at which they were shot are listed

in the figure caption. Scrutiny of the patterns shows that three stages of the scenario

can be distinguished.

Stage 1. This stage extends from the beginning when the ISW is far from the

obstacle to the instant when a deformation of the leading face can be observed

(frames 1, 2).

Stage 2. Further steepening of the leading face of the wave and sharpening of the
wave profile occur. First, the wave amplitude increases (frame 3), then steepening
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Fig. 3.13 Salinity profile in

the water for experiment 3003

(before run 1)

Fig. 3.14 Interaction of an internal solitary wave with a thin plate when kint ¼ 0:59 (experiment

3003). Frames are consecutively numbered and times when they were shot are given as follows:

1 (3.7 s), 2 (5.2 s), 3 (6.5 s), 4 (6.9 s), 5 (7.6 s), 6 (8.4 s), 7 (9.1 s), 8 (9.9 s), 9 (11.9 s), and 10 (12.8 s).

(Camera was switched on at t ¼ 0 s.) The arrow indicates the direction of the wave motion
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of the back face sets in, followed by additional sharpening of the wave profile

(frame 4), and, then, the wave crest begins to take on a shape of a sharp, slightly

elongated peak (frame 5). On frame 6, we see that the peak is transformed into

a thin jet oriented at a small angle to the vertical. The jet is caused by the formation

of a vortex pair in front of the plate. The counter-flow velocity increases in the layer

between the interface and the obstacle top. The flow separates at the sharp edge of

the obstacle from it and a vortex sheet is formed. Subsequently, the sheet rolls up

into a vortex in the vicinity of the leading edge of the obstacle. On the other hand,

the counter flow intensifies and causes a growing instability at the back face of the

wave and generates an additional vortex of opposite rotation. This can be seen on

frame 6. Under the influence of the vortex pair, the thin jet of light water is injected

into the heavy fluid.

Stage 3. The jet continues to move under the influence of the initial impulse but

the flow becomes unstable in the central part of the jet as it is separated into two

parts. Under the effect of the buoyancy forces, the main part quickly rises (frames 7,

8). This process is accompanied by elevation of the interface and the beginning of

the formation of the reflected wave (frames 9, 10). A series of vortical structures,

which in the transmitted wave are responsible for the appearance of a dispersive

trail, can now be observed on the interface.

The weak haze, visible in front of the plate close to the interface (see frame 8),

manifests that mixing of the fluids takes place. It is caused by turbulence of the

flow. The leading part of the jet continues its movement under the influence of the

vortex located near the sharp edge of the obstruction. Apparently, it keeps its

identity at a long distance. The trajectory of its motion can be seen on frames

7–9. Note, however, that the location of the discussed sharp peak of the interface is

practically the same as we can see in Fig. 3.11 when the coefficient of interaction

was k i n t ¼ 0:39.
The reflected and transmitted waves were observed by analyzing data obtained

by gauges G 1and G 2. The amplitude of the transmitted wave was equal to 3.4 cm,

while the amplitude of the reflected wave was equal to 0.8 cm, and the shapes of the

reflected and transmitted waves were obtained. They are displayed in Fig. 3.15 in

normalized form [panel (a) corresponds to the incident wave, panel (b) to the

transmitted wave, and panel (c) to the reflected wave]. Here, the theoretical profile

corresponding to the K–dV theory (3.8) is the smooth sech2-profile, whereas the

rugged curves are taken from the measurements. The profile for the incident wave

differs from that described by (3.8), but that of the transmitted wave is very close to

the theoretical profile. The profile of the reflected wave is also close to the theoreti-

cal profile but appreciable pulsations of the data are observed. Note that the

normalizing factor for the incident wave along the abscissa was taken as discussed

for the data of experiment 0104 (see above).

The energy of the incident wave was measured by gauge G 1(see Fig. 3.6), and

then, the energy loss caused by the influence of the viscosity was calculated using

formula (3.14) when the wave had moved the distance between gauge G 1 and the

obstacle. Thus, the energy of the wave which is incident on the obstacle was found.

The ratio between the energy of the transmitted wave and that which is incident on
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the obstacle is approximately 52%. This ratio is a measure of the energy loss caused

by the influence of the obstacle. An analogous procedure was followed to estimate

the ratio between the energy of the reflected wave and that of the incident wave,

E ref=E inc. It was equal to 4%, which is very small. We can say that a moderate

interaction between the wave and obstacle (coefficient of interaction k i n t ¼ 0:59)
results in an appreciable reflection. Moreover, about half of the initial energy

decays due to turbulence above the plate and subsequent mixing of the fluids.

Thus, the larger value of the coefficient k i n t that is characterized by the extent of

the interaction of internal solitary waves with an underwater obstacle leads to

a significant change of the flow pattern. A jet directed downward is formed; light

fluid entrained by the jet is transported into the lower layer with the heavier fluid

and due to jet instability the fluids are mixed. Under the effect of buoyancy forces,

the lighter fluid elevates and a reflected wave is generated.

Scenario 3. Wave Blockage. This scenario is characterized by the expression

k i n t r1:0.
In experiment 2203, the overall depth was 30.5 cm. The salinity profile is given

in Fig. 3.16. It is described by equation (3.7) with the parameters presented in

Table 3.1. The amplitude of the incident wave is 5.8 cm; so, the parameter of

interaction kint ¼ a=ðh2 � HobÞ ffi 1.

The evolution of the pattern of the interaction of the solitary internal wave with

the underwater obstacle (thin plate) is displayed in the photographs reproduced in

Fig. 3.17. Consecutive frames are numbered from 1 to 10 and times (in seconds) at

which they were shot are listed in the figure caption. Analysis of the patterns shows

that again three stages can be distinguished.

Stage 1. This persists as long as the incident ISW does not suffer a deformation

of its leading face that is induced by the effect of the plate.

Stage 2. Here, steepening of the leading face of the wave and sharpening of the

wave profile occur. The wave crest is initially flat but as the wave approaches

the plate a peak arises close to the plate (frame 2). The sharpening continues

to develop and the peak transforms into a thin vertical downward jet. From this
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Fig. 3.15 Profiles of incident, transmitted, and reflected waves taken from measurements of

experiment 3003 and the K–dV theory
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jet, some dyed freshwater is transported a large distance downward along the plate.

This differs from the scenario “interaction”. The instability of the back face of the

wave begins to develop when the jet hits the plate (frames 3, 4). The action of the

buoyancy forces stops the jet from moving further down – it breaks. The breaking

process leads to mixing of freshwater entrained by the jet with surrounding saltwa-

ter. This can be seen in frames 5 and 6 where the region of mixed fluid is observed

as haze. In contrast to the previous scenario, the region of mixed fluid is wider and

its boundary reaches the upstream lateral surface of the plate. The reason for such

a behavior is connected with the appearance of the high intensity of the attached

vortex, more intense than the vortex in the case of moderate kint.
Stage 3. Once the jet is stopped, the lighter fluid rises under the action of the

buoyancy forces and local elevation and deformation of the interface take place.
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Fig. 3.16 Salinity

distribution (experiment

2203, before run 1)

Fig. 3.17 Interaction of an internal solitary wave with a thin plate when kint ffi 1:0 (experiment

2203). Frames are consecutively numbered and times when they were shot are shown in

parentheses as follows: 1 (2.3 s), 2 (4.1 s), 3 (5.2 s), 4 (6.3 s), 5 (7.2 s), 6 (8.2 s), 7 (9.3 s),

8 (10.2 s), 9 (11.4 s), and 10 (15.6 s). (Camera was switched on at t ¼ 0 s.) The arrow indicates the

direction of the wave motion
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A mushroom-like structure can be observed (frames 7, 8). Then, the reflected wave

is formed which quickly propagates away from the obstacle. The interface has

a broken form that is caused by the newly arising vortical structures. When that

occurs, the mixed fluid with intermediate density between the freshwater and

saltwater moves slowly upward from the deeper horizons. A foggy cloud remains

above and slightly in front and immediately above the top of the plate. Finally, an

elongated perturbation moves across and above the obstacle; however, its ampli-

tude is small. The main part of the energy is concentrated in the reflected wave;

however, a substantial part of the energy also transfers to the dissipation region

owing to the intense turbulence and mixing. Moreover, a thin region between the

plate and the jet remains during the entire process of interaction.

It should also be noted that a transmitted wave was not measurable but reflected

waves were observed. This was confirmed by analysis of data obtained by gauges

G 1 and G 2. The amplitude of the reflected wave was equal to 2.5 cm. The shapes of

the incident and reflected waves are shown in Fig. 3.18 in the usual scaled form

[panel (a) displays the incident wave, panel (b) the reflected wave]; they are well

reproduced. Their profiles were calculated with normalizing factors as quoted

before; they correspond well with the theoretical sech2-profile of the K–dV theory

(3.8). Nevertheless, the profile of the measured incident wave differs from that

described by (3.8): it possesses a larger area and is uniformly somewhat larger than

the sech2-profile. The profile of the reflected wave is close to the theoretical profile.

The ratio between the energy of the reflected wave and that of the incident wave

was estimated using formula (3.14). The ratio is Eref=Einc ¼ 0:23; that is, the main

part of the energy of the internal solitary wave is spent on the generation of

the vortex system and subsequent dissipation when the strong interaction with the

underwater obstacle (thin plate) takes place. A reflected wave is generated in this

process and its energy is 23% of the energy of the incident wave.

In summary, we may state that the influence of the obstacle height on the

scattering of an incident solitary wave was studied in this section when the obstacle

is a thin vertical plate. The analysis of the patterns of the flows induced by the

interaction of internal solitary waves with the plate and estimated characteristics

of the incident, transmitted, and reflected waves has shown that three scenarios of

Fig. 3.18 Profiles of incident and reflected waves for experiment 2203
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interaction can be distinguished. The primary parameter determining the degree of

interaction is the ratio between the wave amplitude and the distance from the

interface to the top of the obstacle kint ¼ a=ðh2 � HobÞ.
The scenario “transformation” is defined by the inequality kint < 0:3 and

corresponds to weak interaction between the wave and the obstacle (Helfrich and

Melville 1986; Helfrich 1992; Vlasenko and Hutter 2002b). Only a small change of

the leading and back faces of the wave is observed when it passes across the

obstacle, incidentally even when the obstacle is elongated and its influence

increases. The amplitude of the transmitted wave is slightly decreased as compared

with that of the incident wave, and a reflected wave does not occur.

The scenario “interaction” is characterized by the interval relation 0:4< kint < 1.

A distinguished feature of this regime is the formation of a vortex pair due to the

increase of the topographic effect caused by the obstacle. The vortex pair is

responsible for the generation of a downward jet at a small angle with the vertical.

Lighter fluid from the upper layer is entrained by the jet and is transported

downward. Due to the development of a local instability, the jet is decomposed in

two parts (1) the main part diffuses upward, and after stopping, causes the reflected

wave and (2) the leading part separates from the main part and continues its motion

under the influence of the vortex attached to the top of the obstacle, and is gradually

mixed with a heavier fluid. Depending on the coefficient of interaction, part of the

initial energy of the incident wave is transferred into energies of the transmitted and

reflected waves, but the energy loss to dissipation (formation of vortical structures

and mixing) is appreciable.

The third scenario “blockage” is defined by the expression kint 
 1. When the

wave amplitude is close to, or larger than, a critical value determined by kint ffi 1,

a sharp wave steepening is observed. A peak arising near the wave crest caused by

the generation of a vortex pair transforms into a vertical jet. It is stronger than the

vortex pair in the previous case and it penetrates to a larger depth. Lighter fluid from

the upper layer is entrained by a jet. Buoyancy forces acting on the jet lead to jet

instability, induced turbulence, and mixing of fluid. In contrast to the “interaction”
scenario, the region of mixed fluid is much larger, and it reaches the plate. Then,

fluid moves upward but this process is quicker than the fluid elevation in the

previous case. A reflected wave of appreciable intensity is generated in this eleva-

tion process but the main part of the energy of the incident wave is spent on the

generation of vortical structures, mixing, and dissipation. Transmitted waves did

not arise in the regime “blockage”. Note that in the experiments performed by

Sveen et al. (2002), the coefficient of interaction was kint<0:6 and the interaction of
the solitary internal wave of depression was moderate. The process of interaction

followed scenario 2 and a series of vortices arising due to flow instability was

observed. In the experiments by Guo et al. (2004), the coefficient of interaction

reached the value kint ¼ 0:86. The process of the development of interaction

was close to scenario 3, and generated vortices were more intensive than in the

previous work.
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3.2.2 Influence of the Obstacle Length on Internal
Solitary Waves

Increasing the length of the obstacle Lob leads to a change of the process of

interaction of internal solitary waves with the submerged obstacle. These changes

have basically quantitative character. Basic distinctions are primarily observed for

scenarios 2 and 3 when the movement of the freshwater over the obstacle is retarded

in comparison to that of the thin obstacle. This process is still slower when the

obstacle is long and its length is compared with the wavelength Lw. When the thin

plate was used, the blockage was not high, and transmitted and reflected solitary

waves could be generated. Analysis of the data in the various cases shows that

the extent of interaction between a solitary internal wave and an extended obstacle

is determined by the coefficient kint ¼ a=ðh2 � HobÞ. As for thin obstacles,

three scenarios of interaction can be distinguished. First, we consider an obstacle

of length Lob ¼ 17 cm and then Lob ¼ 52:5 cm. Obstacle models were made of

a plastic material and their form was rectangular. Note that the wavelength Lwwas
estimated following expression (3.11), and the values of Lwwere in the interval

from 30 to 45 cm. Main attention will be focused on scenarios 2 and 3. The

differences to the case of using a thin plate are concerned with some quantitative

changes, and there are no appreciable radical changes of the interaction processes.

Scenario 2. Interaction. To begin with, consider experiment 1503 in which the

interaction was characterized by a moderately large coefficient kint. The parameters

of the experiments are presented in Table 3.2.

The amplitude of the incident wave was 2.05 cm; so, the parameter of the

interaction is kint ¼ a=ðh2 � HobÞ ¼ 0:43. The value of the parameter kint is close
to the value in experiment 0104 when it was equal to 0.39. The pattern of the

interaction of the solitary internal wave with the extended underwater obstacle is

displayed in Fig. 3.19. Scrutiny of the pattern shows that again three stages of the

scenario can be distinguished. To appreciate the evolution of the change in shape of

the wave when it passes over the extended obstacle, the correspondence of the

number of frames and times of observations is shown in the caption to Fig. 3.19.

Comparison with the results of experiment 0104 (see Fig. 3.11) shows that the process

of wave interaction with the obstacle is appreciably retarded. We can see that a little

peak is formed on the interface close to the leading edge of the obstacle as in

experiment 0104. A small increase of the coefficient kint and obstacle length led to a

change in the flow pattern. The generation of a thin jet is observed (frames 4, 5); it is

caused by a vortex pair, which consists of a vortex arising at the back face of the wave

due to flow instability and another, attached, vortex that is formed close to the edge of

Table 3.2 Parameters of the experiments with the extended obstacle (Lob ¼ 17cm)

No. exp. H, [cm] z c, [cm] d, [cm] h 2, [cm] Hob, [cm] L ob, [cm] a, [cm] kint.

1503 30 26.8 0.8 26.8 22 17 2.05 0.43

1703 30.5 27.4 0.5 27.4 19 17 5.8 0.69

0403 33 29.4 0.55 29.4 22 17 6.5 0.88
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the obstacle (near the upstream side). They rotate in opposite directions. The

dimensions of the jet are not large and neither is its intensity. This proves that the

arising vortex pair is not strong because the extent of the interaction of the internal

solitary wave with the obstacle is moderate. In contrast to experiment 0104, the

interface form becomes rugged, andmany bulges and troughs can be observed (frames

8, 9). Their formation is connectedwith the processes of jet generation, development of

jet instability, and fluid turbulence. Reflected and transmitted waves were generated in

the process of interaction of the wavewith the extended obstacle. The energies of these

waves were estimated using formula (3.13), and the energy dissipation due to viscosity

was estimated with expression (3.14). The ratios Eref=Einc ¼ 0:16 and Etran=Einc ¼
0:33 were obtained. It is evident that an appreciable part of the energy is dissipated.

An increase of the coefficient kint leads to an intensification of the process of

interaction of the internal solitary wave with the obstacle. The conclusion,

formulated in the previous section, also applies here when the interaction of

the more intensive internal solitary wave with the elongated obstacle is considered.

The parameters of such an experiment, here 1703, are presented in Table 3.2. The

amplitude of the incident wave was 5.8 cm and, so, the parameter of interaction is

kint ¼ a=ðh2 � HobÞ ¼ 0:69.
The value of the parameter kint in experiment 1703 is close to the value in

experiment 3003 (see Fig. 3.14) in which it was equal to 0.59. The changes of the

patterns of interaction of solitary internal waves with a long underwater obstacle

can be seen in Fig. 3.20. Here, consecutive frames are numbered from 1 to 10 and

times (in seconds) at which they were shot are listed in the figure caption. The

pattern again suggests that three stages of the scenario can be distinguished.

Comparison with the data obtained in experiment 3003, in which a thin plate was

used as an obstacle, shows that the processes of interaction are analogous. We see

again the formation of a thin jet caused by a vortex pair (frame 5). This jet is

decomposed in two parts (frame 6). The jet head continues its movement downward

at some angle to the vertical. Its intensity decreases, and it is entrained in the

circular motion by the vortex attached to the upwind sharp edge of the obstacle

(frame 7). The other remainder of the jet loses stability, and turbulent mixing takes

Fig. 3.19 Sequence of photographs showing various stages of the interaction of an internal

solitary wave with the obstacle (experiment 1503). Frames are consecutively numbered with

times when they were shot as follows: 1(3.8 s), 2 (5,1 s), 3 (5.5 s), 4 (7.4 s), 5 (8.0 s), 6 (9.2 s),

7 (11.0 s), 8 (12.2 s), 9 (14.2 s), and 10 (20.0 s). (Camera was switched on at t ¼ 0 s.) The arrow
indicates the direction of the wave motion
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place. Then, the mixed fluid moves upward under the effect of the buoyancy forces.

This motion deforms the interface (frame 8) and a reflected wave is generated. We

can see the intermittent structure of the interface and hazy regions caused by

turbulence and mixing of the fluids. As a whole, the process of interaction of the

internal solitary wave with an extended obstacle is similar to that of the interaction

with a thin plate. Differences are observed in quantitative characteristics (the jet is

stronger; the process of passage of the wave over the obstacle is slower).

The energies of the reflected waves were estimated using formula (3.13). The

energy dissipation due to the viscosity effect was taken into account by using

expression (3.14); the ratio Eref=Einc ¼ 0:09 was obtained. If we compare this

ratio with the analogous value obtained in experiment 3003 (Eref=Einc ¼ 0:04),
we can see that the greater part of energy of the incident wave is spent on the

generation of the reflected wave. This proves that an extended obstacle leads to

a more effective blocking of the flow over the obstacle, and a larger part of energy

of the incident wave is spent on the generation of the reflected wave.

Scenario 3. Wave Blockage. This scenario is characterized by the expression

kint 
 1:0.
In this experiment, Nr 0403, the interaction is characterized by a large value of

the coefficient kint. The parameters of the experiments are presented in Table 3.2.

The amplitude of the incident wave was 6.5 cm; so, the parameter of interaction is

kint ¼ a=ðh2 � HobÞ � 0:88 (close to 1.0). The evolution of the shape of the internal
solitary wave in the process of its interaction with the extended underwater obstacle

is reproduced in Fig. 3.21. Here, consecutive frames are numbered from 1 to 10 and

times (in sec) at which they were shot are listed in the figure caption.

Again, three stages of the scenario can be distinguished. The flow pattern

displayed in Fig. 3.21 is similar to that presented on Fig. 3.17 for experiment 2203.

As in Fig. 3.17, the instability onset, the formation of the strong jet, and the generation

of the turbulence and mixing of the fluids can be identified in Fig. 3.21. The character

of the differences to the two former cases is quantitative. However, there are some

notable peculiarities. First, we can see the location of the vortices composing the

Fig. 3.20 Sequence of photographs, showing various stages of the interaction of an internal

solitary wave with the obstacle (experiment 1703). Frames are consecutively numbered with

times when they were shot as follows: 1(2.5 s), 2 (4.4 s), 3 (5.1 s), 4 (5.8 s), 5 (6.7 s), 6 (7.1 s),

7 (8.4 s), 8 (10.2 s), 9 (12.6 s), and 10 (15.8 s). (Camera was switched on at t ¼ 0 s.) The arrow
indicates the direction of the wave motion

3 Laboratory Modeling on Transformation of Large-Amplitude Internal Waves 143



vortex pair. After cessation of the downward movement of the jet and the commence-

ment of its lifting under the buoyancy effect, the vortices survive. They continue the

rotation and the generation of the jet. The latter appears as a thin streak of dyed fluid

over the upstream side of the obstacle (frames 7, 8). Salt fluid is above and beneath the

streak. Evidently, the first vortex is above the obstacle edge and the other at the lower

boundary of the interface. The interface bulge in front of the obstacle (frames 7, 8)

cannot penetrate downstreambecause blocking of flow takes place. Second, if the jet is

strong, it can penetrate to large depths in the heavy fluid. Under such conditions, its

movement into the opposite direction (upwards) is very quick. In other words, the

greater the penetration depth of the jet is, the larger will be the jet velocity when it

moves upward. This leads to a conspicuous thinning of the upper layer (frame 9) and

the generation of a comparatively strong reflected wave.

The energy of the reflected wave is estimated by using formula (3.13). The wave

energy dissipation due to the viscosity effect is taken into account by using

expression (3.14). The ratio Eref=Einc ¼ 0:16 was obtained. If we compare these

results with the results obtained in experiment 1703 in which the extended obstacle

was also used, it is seen that an increase of the interaction coefficient results in

an amplification of the reflected wave. The obstacle elongation also leads to an

amplification. This can be concluded from a comparison of experiments 3003 and

1703 whose values of the coefficient kint were close to one another.

As remarked above, a series of experiments was conducted when the obstacle

length increases to more than the characteristic length of the internal solitary waves.

The length of the obstacle was equal to 52.5 cm. Attention will also be focused on

scenarios 2 and 3. We begin with scenario 2.

Scenario 2. Interaction. The results of experiment 0203 in which the interaction

is characterized by a moderate value of the coefficient kint are considered here. The
parameters of the experiments are presented in Table 3.3.

The pattern of the interaction of a solitary internal wave with the extended

underwater obstacle is shown in the 10 frames of Fig. 3.22. Frames are numbered

Fig. 3.21 Sequence of photographs showing the process of wave blockage by an extended

obstacle (experiment 0403). Frames are consecutively numbered with times when they were

shot as follows: 1 (4.2 s), 2 (5.3 s), 3 (6.2 s), 4 (6.9 s), 5 (8.2 s), 6 (9.1 s), 7 (11.7 s), 8 (12.6 s),

9 (15.7 s), and 10 (24.7 s). (Camera was switched on at t ¼ 0 s). The arrow indicates the direction

of the wave motion
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with times when they were shot (see caption to the figure). As before, three stages of

the scenario can be distinguished.

The main difference between this and the case, when a thin plate was used as

obstacle (see Fig. 3.14), lies in the fact that the arising jet is directed at some angle

with respect to the horizon (frames 5–7). An increase of the obstacle length results in

the formation of flow in the lower layer above the obstacle top; it is directed

upstream. The pattern of the flow separation is similar to that over a backward step

when an extended separation zone prevails. This causes the inclination of the jet.We

can see that lighter fluid from the upper layer entrained by the jet is not translated to

large depth because the attached vortex is not strong. So, the mechanism of the

generation of the reflected wave is not “switched on” and a reflected internal solitary

wave is not formed. Another characteristic feature of the flow pattern that is

connected with the large length of the obstacle is the appearance of a bulge on the

interface (frame 9). The jet still exists and the bulge is caused by the generation of

another vortex pair due to flow instability. These results confirm the already-

formulated conclusion about the influence of the obstacle length on the process of

interaction of the internal solitary wave with the extended obstacle, namely, the

greater the obstacle length is, the larger will be its blocking effect. The influence of

an increase of the length manifests itself in the fact that the topographic effect of the

obstacle becomes more pronounced, and the dissipative losses of the energy rise.

Scenario 3. Wave Blockage. A larger value of the coefficient kint was reached in

experiment 2412. The parameters of the experiment are presented in Table 3.3. The

Table 3.3 Parameters of the experiments with the extended obstacle (Lob ¼ 52:5cm)

No. exp. H, [cm] z c, [cm] d, [cm] h 2, [cm] Hob, [cm] Lob, [cm] a, [cm] k i n t .

0203 33 29.7 0.55 29.7 16 52.5 6.7 0.49

2412 32.5 30.7 0.57 30.7 22 52.5 7.3 0.84

0604 30.5 27.6 0.55 27.6 22 52.5 5.9 1.05

Fig. 3.22 Sequence of photographs showing the process of wave interaction with an extended

obstacle (experiment 0203). Frames are consecutively numbered with times when they were shot

as follows: 1 (8.9 s), 2 (10.6 s), 3 (11.2 s), 4 (11.8 s), 5 (13.0 s), 6 (13.8 s), 7 (14.7 s), 8 (15.6 s),

9 (16.7 s), and 10 (19.4 s). (Camera was switched on at t ¼ 0 s.) The arrow indicates the direction

of the wave motion
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amplitude of the incident wave was 7.3 cm; so, the parameter of interaction is

kint ¼ 0:84, that is, it is taken to be close to 1.0. Fig. 3.23 shows ten snapshots of the
wave when passing the long obstacle in consecutive order as before with corres-

ponding times when they were shot (see caption to figure). It is significant that the

lower layer was dyed. This allows one to consider some peculiarities of the pattern

of the flow.

Evidently, shoaling and sharpening of the leading face occur and a sharp peak

appears on the interface before the upstream side of the obstacle (frame 2). This peak

further develops and a thin vertical jet is generated as before (frames 3, 4). On frame

5, one can observe the development of a jet instability. After cessation of the motion

of the jet, lighter fluid rises (frame 6) and a mushroom-like structure is formed on the

interface (frame 7, 8). The left part of the structure moves downstream over the

obstacle and, due to flow instability above the obstacle, a series of bulges and troughs

arises (frames 9, 10). Their origin is likely connected with the development of

Kelvin–Helmholtz instabilities. These perturbations move slowly downstream.

They are responsible for the formation of the wave train. Notice that fission and

disintegration of internal solitary waves can be described by the K–dV equation as

these waves propagate to regions of decreasing depth on the shelf zone (Djordjevic

and Redekopp 1978). The right part of the mushroom-like structure quickly moves

upstream. The formation of a baroclinic bore can be seen which moves more rapidly

than the lower layers of the fluid. The fluid in the bore is heavier than the surrounding

fluid. Then the bore is broken, heavier fluid falls down and is mixed with the

surrounding fluid (frame 9). We conclude from this analysis of the frames that a

transmitted wave cannot be generated in such a situation. Indeed, the gauge records

only a wave train. However, the reflected wave must be seen.

The estimation of the ratio between the energy of the incident wave and reflected

wave is Eref=Einc ¼ 0:27. Hence, an appreciable part of energy of the incident wave
is spent on the generation of the reflected wave. Of the entire signal, only a wave

train passes over the extended obstacle. The wave energy contained in the train is

not high. We conclude this from consideration of the shape of the train. In Fig. 3.24,

Fig. 3.23 Sequence of photographs showing the process of wave blockage of internal solitary

wave by an extended obstacle [The right end of the obstacle is seen on the very left of each frame.]

(experiment 2412). (Note the different dyeing of the layers.) Frames are consecutively numbered

with times when they were shot as follows: 1 (11.5 s), 2 (12.6 s), 3 (13.0 s), 4 (13.9 s), 5 (14.8 s), 6

(16.4 s), 7 (18.5 s), 8 (20.5 s), 9 (19.3 s), and 10 (23.3 s). (Camera was switched on at t ¼ 0 s.)

Wave motion is from right to left (see arrow)
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as an example, the interface displacements caused by the incident internal solitary

wave (panel a) and by the dispersive train of the wave (panel b) behind the obstacle

are presented. The parameters of experiment 0604 are presented in Table 3.3.

We see that the wave amplitude in the train is fairly small; so, the wave energy

is even smaller and negligible. It should be noticed that dissipation in the process of

interaction of a strong internal solitary wave with an extended obstacle, whose

length is of the same order as the wavelength, is significant.

As a conclusion, we state that:

1. The process of interaction of an internal solitary wave with an extended obstacle

is similar to the process of its interaction with a thin plate. Differences are in the

quantitative characteristics.

2. It is shown that for an extended obstacle, blocking the flow over the obstacle is

more effective, and an appreciable part of energy of the incident wave is spent on

the generation of a reflected wave.

3. At moderate coefficients of interaction, the main distinction from the case, when

a thin plate was used as an obstacle, lies in the fact that the arising jet is directed

at some angle with respect to the horizontal; it does not penetrate to a large

depth; so, the lighter fluid from the upper layer is not displaced into larger

depths. The mechanism of generation of a reflected wave is not “switched on”

and a weak reflected internal solitary wave is formed. Another characteristic

feature of the flow pattern connected with the large length of the obstacle is the

appearance of the bulge on the interface. We can see that a jet still exists and

a bulge, caused by the generation of another vortex pair forming above the

obstacle due to the instability of the flow, continues to develop because the

obstacle length is large.

4. At high coefficient of interaction, after cessation of the motion of the jet, a lighter

fluid moves upward and a mushroom-like structure is formed on the interface.

The downstream part of the structure moves over the obstacle and, due to the
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Fig. 3.24 (a) Displacement of the interface caused by the incident wave and (b) dispersive train

behind the extended obstacle (experiment 0604)
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instability of the flow above the obstacle, a series of bulges and troughs arises.

These perturbations slowly move downstream, which cause the formation of the

dispersive wave train. The other part of the mushroom-like structure quickly

moves upstream. This is likely the cause for the formation of a baroclinic bore

that moves more rapidly than the lower layers of the fluid. The fluid in the bore is

heavier than the surrounding fluid. The bore breaks when the heavier fluid falls

down and mixes with the surrounding fluid. We conclude that a transmitted wave

cannot be generated in such a situation. Indeed, the gauge records only a train of

waves. However, the reflected wave is evident.

5. Dissipation in the process of interaction of a strong internal solitary wave with an

extended obstacle is much larger than for an interaction with a narrow obstacle.

3.3 Internal Wave Transformation Caused by Lateral

Constrictions

The spectrum of the internal wave field in lakes is continuous ranging from low-

frequency basin scale to the buoyancy frequency (W€uest and Lorke 2003). Field

observations show that the rate of decay of basin-scale internal waves is appreciably

greater than that by internal dissipation (Horn et al. 2001). The nonlinear energy

transfer from the basin-scale internal waves to the short-period motions is an

important mechanism to enhance mixing and dissipation. The overturning and

breaking of internal waves in the process of their interaction with lake boundaries

and topographic features are the major mechanisms. Sills play a dominant role in

enhancing the vertical exchange and dissipation of wave energy in multibasin lakes.

Other mechanisms resulting in an increase of mixing and dissipation are concerned

with the intensification of currents and the growth of shear stresses in constrictions.

Besides, large-scale displacements of the water masses in the constrictions intensify

the local diapycnal mixing due to the increased internal shear and bottom friction

(Kocsis et al. 1998). Evidently, transformation, shoaling, and breaking of internal

waves can be caused by constrictions. Breaking internal waves, which propagate

through a constriction, were studied by Troy and Koseff (2005). The planar laser-

induced fluorescence technique was used to produce calibrated images of the wave-

breaking process. Experiments were made in a channel with a weakly constricted

section. The width decreased from 30 cm to 11 cm over a distance of 1.3 m. It was

demonstrated that the waves break due to the strongly modified shear stress

distribution and associated instability originating from the high-shear regions of

wave crests and troughs. The shear instability closely resembled Kelvin–Helmholtz

instability, with a row of billows rolling up into well-known structures (“cat’s eye”)

and disintegrating the wave that passed. Note that the influence of sills on a two-

layer flow differs from the effect of constrictions, since a submerged sill is only in

direct contact with the lower layer, and its influence on the upper layer is indirect.

Alternatively, the constriction is in direct contact with both layers. The two-layer
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fluid flow through constrictions was analyzed by Wood and Simpson (1984) and

Armi (1986). Hydraulic analyses of Boussinesq and non-Boussinesq types in two-

layer flows were conducted by Lawrence (1990). Nevertheless, the interaction of

nonlinear internal waves in basins with constrictions has so far not been adequately

studied.

From simple continuity arguments written in the reference frame moving with

the internal solitary wave, we obtain

c h 1 ¼ c� u 1ðxÞð Þ h 1 þ �ðxÞð Þ; (3.15)

c h 2 ¼ cþ u 2ðxÞð Þ h 2 � �ðxÞð Þ: (3.16)

Here, h 1 and h 2 are the thicknesses of the upper and lower layers, respectively,

� ðx Þ is the displacement of the interface (wave profile), u 1 ðxÞand u 2 ðxÞ are the

velocities in the upper and lower layers, and c is the speed of the internal solitary

wave. It was assumed that the inequality a=L �<< 1 is obeyed, where L �is the wave
half-length (see Bogucki and Garrett 1993). Equations (3.15) and (3.16) can be also

written in the form

c � ðxÞ ¼ u 1 ð x Þ h 1 þ � ð x Þð Þ ; (3.17)

c � ðxÞ ¼ u 2 ð x Þ h 2 � � ð x Þð Þ; (3.18)

or

c a ¼ u 1 ð h 1 þ a Þ; (3.19)

c a ¼ u 2 ð h 2 � a Þ; (3.20)

if we consider the cross section coinciding with the wave crest having amplitude a.
Consider the Froude number Fr ¼ u=

ffiffiffiffiffiffi
gH

p
. It represents the parameter determining

the existence of subcritical and supercritical flow regimes. Traditionally, it is equal

to the ratio of the velocity to the speed of infinitesimally small disturbances. It was

proposed by Wood and Simpson (1984) and Armi (1986) to consider the composite

Froude number for two-layer flows, G2 ¼ Fr21 þ Fr22, in order to determine the

critical regime. Here, Fr2i ¼ u2i =ð g0 h iÞ for each layer where h i is the thickness of

layer i. Moreover, g0 ¼ ðDr=rÞg, and ffiffiffiffiffiffiffiffiffi
g0 h i

p
is the speeds of long internal waves.

Scrutiny of equations (3.15) and (3.16) shows that they are invalid when u 1 > c
or u 2j j > c; so, in these cases, a solitary wave does not exist. In a given situation, it
is reasonable to consider the speed of the solitary wave as a characteristic parameter

instead of the velocity of infinitesimally small disturbances. So, we also introduce

the analogs for the Froude numbers Fr�1 ¼ u1=c, Fr�2 ¼ u2=c. It is shown by

Bogucki and Garrett (1993) that the phase speed of an infinitely long, infinitesi-

mally small wave in a two-layer system is
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c 0 ¼ g0
h1 h2
h1 þ h2

� �1 = 2

: (3.21)

Evidently, if h2 >> h1, this becomes g0 h1ð Þ1 = 2. If we consider finite amplitude

waves, then we can take this speed instead of c 0 as characteristic parameter. So, we

then consider the Froude number Fr�i ¼ ui=c, where c is the wave speed which

accounts for the nonlinearity effects. For example, for shallow water and weakly

nonlinear waves

c ¼ c0 1þ 1

2

aðh2 � h1Þ
h2h1

� �
; (3.22)

whereas Ostrovsky and Grue (2003) proposed

c2 ¼ g0ðh1 þ aÞðh2 � aÞ
H

(3.23)

for the calculation of the speed of strongly nonlinear waves, provided the density

difference, Dr � r1, is small.

Comparison of (3.23) with (3.21) shows that this formula differs from the linear

long-wave model speed only by the fact that the actual depths at the wave peak

ðh1 þ aÞ and ðh2 � aÞ are taken instead of the nonperturbed depths h 1 and h 2.

It was found that results obtained by using (3.23) are in complete agreement with

observations of strongly nonlinear waves.

From (3.19) and (3.20), we deduce

Fr�1 ¼
u1
c
¼ a

h1 þ a
; Fr�2 ¼

u2
c
¼ a

h2 � a
: (3.24)

Thus, the analog of the composite Froude number Ga is

G2
a ¼ Fr�1

� 	2 þ Fr�2
� 	2 ¼ u1

c


 �2

þ u2
c


 �2

¼ a

h1 þ a

� �2

þ a

h2 � a

� �2

: (3.25)

If the composite Froude number is larger than unity, waves cannot propagate in

such systems and the considered flow cannot exist.

We can also estimate the energy contained in internal solitary waves. According

to Bogucki and Garrett (1993) and Michallet and Ivey (1999), the total energy of

a long wave is estimated as

E ¼ gDr
ðl
0

�2ðxÞdx ¼ cgDr
ðt1
t0

�2ðtÞdt:
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Here, l is the wavelength and t 1 and t 2 are the times of the passage of the front and

end of the wave at fixed position x. Hence, E � CgDra2l, where C is a constant.

Let Lc be the length of the constriction and assume that its extension is not large; so,

we take it to be justified to neglect the dissipation at such a short distance. Then, the

energy is conserved, implying that

a2lB ¼ a20l0B0: (3.26)

Here, a; l;B and a0; l0;B0 are amplitude, wavelength, and channel width at

the constriction and at a reference cross section distant from the constriction.

When the width decreases, the wave amplitude increases, and the energy per unit

length (this is the energy density) increases, but the total energy is not changed.

Approximately, E ffi CgDra2l, where C is a constant. For example, for the K–dV

theory, C ¼ 4=3. If we suppose that the energy flux is uniform across the flow in the

horizontal direction, then, the total energy of the internal solitary wave in the basin

is given by E ffi CgDra2l � B and the energy density (per unit length) is e ffi
CgDra2B. Analysis of the experimental data shows that the wavelength is changed

in the constriction but these wavelength changes are not large. So, a rough estima-

tion shows that the change of the wave amplitude in the constriction is basically

defined by the variation of the basin width.

Experimental investigations of the interaction of strongly nonlinear internal

waves with constrictions of sinusoidal shape were carried out. The methodologies

described in Sect. 3.2 were used for the creation of the two-layer salt stratification,

the generation of internal solitary waves, the measurement of the parameters of

waves by gauges, and for processing the experimental data. The boundary between

the layers (or the upper layer) was dyed. Use of a digital camera allowed estimation

of the parameters of internal solitary waves (measurement of the amplitude) and,

subsequently, comparison with data obtained by the gauges.

Experiments were carried out with two types of constrictions of the sinusoidal

shape which is described by the formula

f ðxÞ ¼ Bc

2
1þ sin

2px
Lc

� p
2

� �� �
:

Here, Bc is the minimum horizontal dimension of the constriction transverse to the

wave propagation and Lc is the constriction length. Such a shape was used in order

to ensure smooth coupling with the lateral wall of the channel. The first model

(panel a in Fig. 3.25) has Lc ¼ 120 cm and Bc ¼ 19:5 cm which is close to the half-

width of the channel, B0 ¼ 40 cm. The second model (panel b in Fig. 3.25) has Lc ¼
97 cm and Bc ¼ 32 cm.

The basin geometry and equipment employed are presented in Fig. 3.26 (side

view a and top view b). Locations of the gauges are shown schematically. The

distances between them can be varied. Sometimes gauges are located in the cross

section of the constriction. In a number of cases, two gauges were at the same long-
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axis position but shifted in the lateral direction. In the experiment 2610, the model

shown in Fig. 3.25a was used. The parameters of the experiments are listed in

Table 3.4.

The arrangement of the gauge locations relative to the constriction is displayed

in Fig. 3.27. Here, gauges G 0;G 1;G 3;G4 are positioned along the mid-axis of

the basin. Distances are as shown in the figure caption. Gauge 2 was located in the

middle of the distance between the lateral wall and the top of the constriction,

shifted by 1 cm downstream. The double arrow indicates the direction of wave

Fig. 3.25 Models of constrictions: (a) moderate thickness, (b) model of large thickness

Fig. 3.26 Principal sketch of the channel flume for the two-layer wave experiments, (a) view from

the side and (b) from the top. G 1;G 2;G 3 show double wire capacity gauges with distances

l 1; l 2; l 3 as indicated. Cylindrical sinusoidal constriction with length Lc and breadth Bc is as

indicated. The double arrow shows the direction of wave propagation

Table 3.4 Parameters of the experiments with the first model of the constriction

No. exp. H, [cm] z c, [cm] d, [cm] h 2, [cm] a, [cm]

2610 30 27.2 0.54 27.2 6.2

0211 30 27.8 0.45 27.8 5.3

0411 30 27.9 0.3 27.9 8.2

Fig. 3.27 Top view of the

wave channel with

placements of gauges

G 0;G 1;G 2;G 3;G4 in the

basin with relative distances

equal to l0 ¼ 92cm,

l1 ¼ 31 cm, l3 ¼ 29cm, and

l4 ¼ 103 cm (experiment

2610).
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propagation. The measured amplitudes of the solitary wave, recorded by the

gauges, are listed in Table 3.5.

It is evident from these registrations that the wave amplitude experiences

appreciable changes. Gauge G 3 is located immediately before the constriction

and, obviously, an influence of the wave profile can already be recognized. The

flow is delayed at this place which is exemplified by the growth of the wave

amplitude from gauge G 4 to gauge G 3. This proves that the flow is blocked. In

the central part of the constriction, the flow accelerates and the amplitude decreases.

Gauge G 1, as gauge G 3, is located at the half-slope position in the region of flow

widening and the wave amplitude has further decreased. The wave energy is

distributed over a larger width. Unfortunately, determination of the wave speed in

this inhomogeneous regime has not been possible; we had to limit measurements to

the recording of wave amplitudes. Estimation of the analog of the composite Froude

number shows that Ga ¼ 0:57. Hence, a certain flow blocking occurs but no

reflected wave was discernable that would have been recorded by gauges, neither

by gauge G 3 nor by gauge G 4. Note that we estimate the value of the composite

Froude number by using information about the wave amplitude before the constric-

tion. To consider the regime within the constriction, it is reasonable to use the wave

amplitude within the constriction, for example, the value measured by gauge G 3

located on the axis of the basin. Then, the composite Froude number becomes

Ga ¼ 0:85. In Fig. 3.28, a series of photographs showing the wave transformation is

displayed. The corresponding times when the shots were taken are listed in the

figure caption. It can be seen that there is no shoaling of the leading face of the

wave. When the back face of the wave enters the constriction, it steepens (frames 3,

4). Moreover, when the wave is close to the throat of the constriction its crest is

flattened and a tendency to wave splitting can be observed on frames 3 and 4. Once

the wave has passed the constriction, the upper layer becomes thinner. This thinning

is concerned with the uneven passing of the wave through the constriction. The

photos show that the back face of the wave steepens a little. This is likely the result

of the appearance of flow instability.

In experiment 0211, an internal solitary wave of smaller intensity was generated.

The parameters of the experiments are collected in Table 3.4. Antecedent experi-

ence has shown that the reconstruction of the flow field is observed when the wave

enters and passes through the constriction. To capture the main features of this

process, the locations of the gauges were changed. The arrangement of the gauge

locations relative to the constriction is presented in Fig. 3.29. Here, gauges G 0 and

G 4 are on the axis of the basin. Gauge G 1is located at the middle of the distance

Table 3.5 Amplitudes measured by gauges in experiments with the first model of constriction

No. exp. Amplitude [cm]

Gauge 0 1 2 3 4

2610 3.4 5.1 6.4 7.3 6.2

0211 3.5 3.9 5.3 7.9 5.3

0411 4.2 8.0 8.1 >10.0 8.2
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between the lateral wall and the maximum of the constriction, shifted by 2 cm

downstream. Gauges G 2 and G 3 are located at some distance from the maximum

constriction and shifted from the basin axis to measure the change of the interface

displacement across the basin. Distances between gauges and the cross section of

the constriction peak and boundaries are listed in the figure caption.

The measured amplitudes of the solitary waves recorded by the gauges are listed

in Table 3.5. Evidently, the wave amplitudes measured by the various gauges

differ substantially from one another. The table shows that the amplitude of the

wave passing the constriction (gauge G 2) is the same as that of the incident wave

measured by gauge G 4. This coincides with results of experiment 2610. On the

other hand, the wave amplitude measured before the constriction (gauge G 3) is

substantially greater than that of the incident wave (gauges G 2 and G 3 are located

close to the cross section where the constriction has half its maximum value). This

proves that the flow is blocked. So, the flow field reconstruction occurs when the

Fig. 3.29 Top view of the wave channel with placements of gauges G 0;G 1;G 2;G 3;G4 with

relative distances equal to l0 ¼ 61 cm, l2 ¼ 5 cm, l3 ¼ 26 cm, and l4 ¼ 100 cm. The double arrow
indicates the direction of wave propagation (experiment 0211)

Fig. 3.28 (Experiment 2610). Six consecutive side video snapshots (from 1 to 6) of the interaction

of an internal solitary wave with a constriction at moderate composite Froude number. The arrow
indicates the direction of the wave propagation. The shots have been taken as follows:

Frame 1 2 3 4 5 6

Time of shot (sec) 61 64 67 68 70 76

Time difference (sec) 3 3 1 2 6
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internal solitary wave goes through the constriction. This manifests itself as a

change of the wave amplitude in the crosswise direction before the constriction.

Comparison with the results of experiment 2610 demonstrates that the wave

amplitude grows with the removal of the gauge from the central axis. Incidentally,

in experiment 2610, the amplitude of the incident wave was larger and that at the

central axis was equal to 7.3 cm. In experiment 0211, the incident wave was weaker

but the wave amplitude measured by gauge G 3 located close to the constriction

was nevertheless as large as 7.9 cm. Note that gauge G 4 did not record the reflected

wave; so, in this regime the reflected wave is not generated. This is confirmed by the

photographs of Fig. 3.30. Indeed, no steepening of the back face of the wave is

discernable. Moreover, the thickness of the upper layer is not changed after the wave

passes the constriction when compared with experiment 2610 in which thinning of

the upper layer in the region occurred somewhat downstream of the maximum

constriction (Fig. 3.28, frame 6). The composite Froude number for this regime is

equal to 0.55. This is only a little smaller than Ga ¼ 0:57 at which a small trace of

instability at the steepening of the back face of the wave was observed. To consider

the regime within the constriction, as in experiment 2610, the wave amplitude

within the constriction on the axis of the basin is estimated by using the data of

gauges G 2 and G 3 under the assumption that the distribution of the amplitude in the

cross section varies linearly. With a � 6:6 cm, we obtain Ga ¼ 0:65:
The increase of the amplitude of the incident internal solitary wave leads to

appreciable changes in the pattern of the wave passing through the constriction.

In experiment 0411, the amplitude of the incident wave was equal to 8.2 cm. The

parameters of the experiments are shown in Table 3.4. The distribution of the

gauges was the same as in experiment 0211, as shown in Fig. 3.29. The measured

amplitudes of the solitary wave recorded by the gauges are listed in Table 3.5. As in

the previous experiment with the same distribution of the gauges, it can be seen

that the amplitude of the wave measured by the gauges is considerably changed.

As the data of Table 3.5 show, the amplitude of the wave, measured by gauge G 2 in

the constriction, is close to the amplitude of the incident wave measured by gauge

G 4. This is analogous to the results obtained in experiment 2610. On the other hand,

the amplitude of the wave, measured ahead of the constriction (gauge G 3), is

considerably greater than that of the incident wave. An intensive growth of the

amplitude measured by gaugeG 3 leads to the conclusion that considerable blocking

of the flow must take place. The flow field is radically changed when the internal

Fig. 3.30 Four consecutive snapshots (from 1 to 4) of the interaction of an internal solitary wave

with constriction at moderate composite Froude number (experiment 0211). The arrow indicates

the direction of the wave motion
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solitary wave goes through the constriction. A comparison with the results of

experiment 0211 demonstrates that the wave amplitude conspicuously grows with

the shift of the gauge away from the central axis. The growth was so large that the

amplitude was no longer indicated by the gauge; it was estimated from the digital

photographs and approximately equal to 11.5 cm. We see again that the interface in

the cross section before the constriction is tilted relative to the basin axis. An analog

to the composite Froude number was estimated with value Ga ¼ 0:8. If we estimate

the composite Froude number within the constriction, that is, in the cross section

where gauges 2 and 3 are located, and use the average amplitude, then Ga ¼ 0:97.
This means that the flow is critical somewhere in the considered cross section and

the wave characteristics should radically change when it passes through the con-

striction. This is confirmed by the analysis of the series of photographs, displayed in

Fig. 3.31, which also states details when shots were taken in the figure caption.

It can be seen that shoaling of the leading face of the wave occurs when the wave

crest is close to the maximum constriction (frame 3). Fission of the solitary wave

into two parts occurs. It is caused by the growth of the velocities in the upper and

lower layers and the development of a Kelvin–Helmholtz instability. A vortex with

horizontal axis is formed at the interface (frame 4). Then, the first part of the wave

continues to move but the motion of the remainder is considerably retarded, its top

slowly moves upward, and is then slightly translated downstream. A new vortex

with horizontal axis is formed on the back face of the second part (frame 5). As

a consequence, the interface takes a rugged form (frame 6) caused by the formation

of turbulent vortices or boluses. A similar system of boluses was observed in

Helfrich’s (1992) experiments which were devoted to studying internal solitary

waves breaking on a uniform slope. There, it was demonstrated that shoaling of

a single solitary wave resulted in wave breaking on a slope due to developing

instabilities and production of multiple turbulent boluses that propagated upward the

slope. An important role of boluses is in transporting sub-pycnocline water upslope

past the pycnocline–bottom intersection (Bourgault et al. 2005). It can be seen that due

to the boluses sub-pycnocline water transport takes place in the given experiments.

Fig. 3.31 (Experiment 0411). Eight consecutive side view snapshots (from 1 to 8) of the

interaction of an internal solitary wave with a constriction at the critical composite Froude number.

The arrow indicates the direction of the wave motion. The shots have been taken as follows:

Frame 1 2 3 4 5 6 7 8

Time of shot (sec) 6 9 11 12 13 14 15 23

Time difference (sec) 3 2 1 1 1 1 8
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Note that thinning of the upper layer is observed as a consequence of the existence of a

supercritical regime of the flow. Thus, instabilities develop and result in breaking of

this solitary wave. Fission into two parts occurs, the first (smaller) part continues its

motion in the downstream direction while the remainder is trapped and degenerates.

Increase of the amplitude of the internal solitary waves results in the develop-

ment of flow instability when the wave passes through the constriction. The

criterion defining the flow regime is the analog of the composite Froude number.

As indicated earlier, conservation of energy of the solitary wave can be expressed

by the relationship a2lBc ¼ a20l0B0. For this to hold true it is assumed that if the

length of the constriction is not large, dissipation can be neglected. When the width

is varied, the amplitude and energy per unit length, that is, the energy density

e ffi CgDra2B, are varied too but the total energy is not changed. Scrutiny of the

experimental data shows that the wavelength changes in the constriction: changes

in the length of waves are comparatively small, especially when compared with the

change of the amplitude to the second power. On the other hand, determination of

the wavelength is a rather sophisticated problem if the wave propagates under

unsteady conditions. Nevertheless, to improve the estimation, the relationship

between the wave amplitude and length based on a balance between steepening

and dispersion effects (Bogucki and Garrett 1993), obtained for long waves,

aðL�Þ2 ffi const, can be used. So, the character of the amplitude variation with

a change in the width of the channel can roughly be described by the formula

a ¼ a0

ð1� rÞ2=3
; (3.27)

where r is the ratio between the remaining opening width at the position of

maximum narrowing of the channel, ðB 0 � BcÞ, and the reference width of the

basin B 0, r ¼ ðB 0 � BcÞ =B 0. This is analogous to the degree of blocking intro-

duced earlier by Wessel and Hutter (1996). We can approximately estimate the

change of the Froude number with the variation of the width of the channel by

substituting expression (3.27) into (3.25).

As is evident from the above, a critical value of the analog of the composite

Froude number can be achieved not only by the growth of the amplitude of the

internal solitary wave but by variations of the basin constriction as well. This leads

to a critical regime for waves of moderate amplitude. In experiment 1312, the

amplitude of the incident wave is equal to 3.9 cm. The parameters of the experi-

ments are presented in Table 3.6. The chosen arrangement of the locations of the

gauges relative to the constriction is sketched in Fig. 3.32. The measured ampli-

tudes of the solitary waves recorded by the gauges are listed in Table 3.7.

A principal distinction of this experiment from the previous ones is to use

the second model of the constriction (Fig. 3.25b). The length is somewhat shorter

than in the first model but the transverse size is substantially larger. The gap

between the maximum of the constriction and the lateral wall of the basin is 8 cm.

Note that in experiment 0211, the amplitude of the wave was equal to 5.3 cm, that
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is, appreciably greater than in this experiment. However, in experiment 0211, we

did not observe visible changes in the form of the wave during its passing through

the constriction; by contrast here, appreciable changes of the form of the wave can

be observed (see Fig. 3.33). We see that the solitary wave is fissioned into two parts

(frames 3–5). At the end of the process, the upper layer is thinned (frame 6). The

Fig. 3.32 Top view of the

arrangement of the

placements of the gauges with

distance l0 ¼ 92:5 cm,

l1 ¼ 24:5 cm, l2 ¼ 57 cm, and

l3 ¼ 100 cm in experiment

1312 with large constriction.

The double arrow indicates

direction of wave propagation

Table 3.6 Parameters of the experiments when the second constriction is applied

No. exp. H, [cm] z c, [cm] d, [cm] h 2, [cm] a, [cm]

1312 30 28.4 0.3 28.4 3.9

0712 30 27.8 0.4 27.8 8.0

0501 30 26.9 0.55 26.9 7.0

Table 3.7 Amplitudes measured by gauges in experiments when the second constriction model is

applied

No. exp. Amplitude [cm]

Gauge 0 1 2 3

1312 1.1 3.0 3.8 3.9

0712 2.6 3.8 6.3 8.0

0501 2.7 3.2 6.7 6.95

Fig. 3.33 (Experiment 1312). Six consecutive side view shots (from 1 to 6) of the interaction of

the internal solitary wave with large constriction at high composite Froude number. The arrow
indicates the direction of the wave propagation. The shots have been taken as follows:

Frame 1 2 3 4 5 6

Time of shot (sec) 5 7 9 10 11 21

Time difference (sec) 2 2 1 1 10
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estimation of the composite Froude number at the section, where gauge G 3 is

located, shows that the flow is stable (Ga ¼ 0:74). Using formula (3.27), an estimate

for the amplitude change can be found. The estimation of the composite Froude

number in the zone of maximum constriction yields Ga>1, that is, the flow is

unstable in the constriction. This is evident from Fig. 3.33 where wave fission can

clearly be identified.

A series of additional experiments confirms that an increase of the amplitude of

the internal solitary wave leads to an increased development of instability, yielding

fission of the wave into two parts, and subsequent thinning of the upper layer. The

reconstruction of the flow field is more pronounced when the amplitude of the

internal solitary wave is large. In experiment 0712, the wave amplitude was 8.0 cm.

The same model of the constriction as in Fig. 3.25b was used. The parameters of the

experiments are presented in Table 3.6. The arrangement of the gauge locations

relative to the constriction is sketched in Fig. 3.34. Gauge G2 was located 10 cm

downstream from the largest constriction in the middle of the section. Measured

amplitudes of solitary waves are presented in Table 3.7.

The displacement time series of the interface recorded by gauges G 3; G 2; G 1

are displayed in Fig. 3.35a–c, respectively. GaugeG 3 is located at the upstream end

of the constriction. After the passage of the conspicuous incident wave through this

section, the motion of the interface displacement is reduced to a state of only 3 cm.

This can be seen in Fig. 3.35a, when the reading of gauge G 3 shows only weak

oscillations during approximately 7 s. This occurs close to the time of the passage of

Fig. 3.34 Top view of

a scheme of placement

of gauges with distances

l0 ¼ 87 cm, l1 ¼ 31 cm,

and l3 ¼ 51 cm in experiment

0712. The double arrow
indicates the direction

of wave propagation

Fig. 3.35 Displacements of interfaces recorded by gauges: (a) – gauge G 3, (b) – gauge G 2, (c) –

gauge G 1 (experiment 0712)
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a solitary wave recorded by the gauge. It was shown earlier that at this moment the

wave amplitude before the constriction (somewhat downstream of the location of

gaugeG 3) suddenly increased because the flow became unstable in the constriction.

Actually, the analog of the composite Froude number corresponding to the section

where gauge G 3 is located is 0.77. The estimation of Ga close to the largest

constriction yields Ga > 1. The development of the instability leads to the genera-

tion of the wave train recorded by gauge G 2 as oscillations of the interface after the

solitary wave had passed the position of maximum constriction (see Fig. 3.35b).

Then, the wave amplitude decreases (down to 3.8 cm, see Fig. 3.35c) in the section

in which gauge G 1 is located because the wave propagates into the diffuser part of

the constriction.

A reflected wave is generated when the amplitude of the solitary wave is large.

The peak recorded by gauge G 3 at t ¼ 50:5s corresponds to this wave (see

Fig. 3.35a). Note that the second peak (see Fig. 3.35a) at t ¼ 58:7s is caused by

the transmitted wave, which was reflected from the downstream wall of the channel

and passed back through the constriction. The large amplitude, recorded by gauge

G 2 at t ¼ 54:5, corresponds to the collision of the solitary wave which passed

through the constriction and is reflected from the downstream wall of the tank with

the wave signal that reflected from the constriction and then reflected from the

upstream wall of the tank. The small elevation of the displacement time series

above the line z ¼ 0 and beyond t ¼ 54.5 s in Fig. 3.35b is connected with the

thinning of the upper layer as discussed above. It should be noted that the flow

pattern is appreciably more complicated than that discussed earlier. This is so

because of the three-dimensionality of the flow patterns, and pointwise measure-

ments cannot reproduce all the flow structures. These results of the measurements

of the interface displacements at the gauges are confirmed by inspection of the

photographs displayed in Fig. 3.36.

It can be seen that a flow instability is the triggering mechanism of the fission of

the solitary wave into two parts (frame 2). After this splitting, the leading part

Fig. 3.36 (Experiment 0712). Eight consecutive snapshots of photographs (from 1 to 8)

demonstrating the fission of an internal solitary wave. The arrow indicates the direction of the

wave propagation. The shots have been taken as follows:

Frame 1 2 3 4 5 6 7 8

Time of shot (sec) 58 60 61 62.5 64 66 72 75

Time difference (sec) 2 1 1.5 1.5 2 6 3
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continues to propagate downstream, while the remainder (the larger part) is trapped

(frame 3). In the region of wave fission, a series of vortices with horizontal axes are

generated. This is due to the development of a Kelvin–Helmholtz instability.

The remainder of the wave does not move downstream as a movement to higher

elevation (frame 4). The process of fission continues and the stagnant remaining

part is broken up again; consequently, a new series of bulges (or boluses Helfrich

(1992)) can be seen on frames 4 and 5. These boluses move downstream. Thinning

of the upper layer sets in after the passage of boluses through the throat. This is

recorded by gauge G 2 (see Fig. 3.35). As time proceeds, new perturbations pass

through the constriction. They are also recorded by gauge G 2 as a wave train.

The three-dimensional character of the process of the internal solitary-wave

passage through the constriction is especially evident when analyzing the surface

flow pattern in the extending diffuser part of the constriction. Experiment 0501 was

carried out to study features of surface flow in this region. The parameters of the

experiments are presented in Table 3.6. A sketch of the gauge locations relative

to the constriction is shown in Fig. 3.32 (experiment 1312), but the distances

between the gauges and cross section of the largest width of constriction are now

l0 ¼ 170 cm, l1 ¼ 96 cm, l2 ¼ 57 cm, and l3 ¼ 76 cm. The measured amplitudes of

the interface displacements recorded by the gauges are listed in Table 3.7 and their

time series are displayed in panels (a) to (c) of Fig. 3.37.

After the passage of the incident wave a conspicuous reduction of the motion is

recorded at gauge G 3; it is similar to experiment 0712. At this instance, an increase

of the wave amplitude takes place close to the constriction (at some distance from

gauge G 3). The reason is a flow instability that occurs in the constriction. Indeed,

the composite Froude number for the section where gauge G 3 is located is 0.6.

The estimate for G a close to the maximum constriction yields Ga>1. The wave

amplitude decreases considerably when the wave propagates in the diffuser part of

the constriction. A reflected wave is generated when fission of the solitary wave

occurs, and its rear part slowly rises. The beginning of its formation can be seen in

Fig. 3.37b where an extended zone of small displacement of the interface is

observed. In the course of time, this depression zone propagates upstream, and

a reflected wave, which is later recorded by gauge G 3 (see Fig. 3.37a), is formed.

Fig. 3.37 Displacement of interface recorded in experiment 0501: (a) gauge 3, (b) gauge 2, and

(c) gauge 1
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The flow was visualized by dyeing the upper layer. Small plastic particles were

placed on the free surface in the diffuser part of the constriction. To observe the

behavior, these particles were used as markers; a mirror was installed above the free

surface at an angle of 45� with respect to the horizontal. This allows observation

of the interface displacement and the motion of the markers simultaneously. Thus,

we can obtain the information about the motion from the top and the side. The

photographs of the divergent part of the constriction are shown in Fig. 3.38.

In the lower part of the photographs, the interface displacements are recorded.

In the upper part, the positions of the markers are seen. The direction of the motion

is indicated by black and white arrows. It can be seen that at the beginning (frame 1

corresponds to t ¼ 35:3s after the camera has been turned on) the motion in

the upper layer is directed downstream at a certain angle relative to the axis of

the basin. It is typical for the flow in a diffuser. In the lower part, we can see the

propagation of the wave train caused by breaking the solitary wave. In the course of

time (frame 2, t ¼ 39:7s), reverse flow is formed near the curved wall in the surface

layer (black arrows in Fig. 3.38). It is caused by the onset of flow instability in the

region with negative pressure gradient. A vortex with vertical axis is formed

in the diffuser part of the constriction. Its boundary is shown by black and white

arrows. It can be seen that thinning of the upper layer sets in at this moment.

Then, the vortex intensity grows (frame 3, t ¼ 105:2s). At the same time, the

wave train is translated downstream and the upper layer becomes thinner at a larger

distance. Then, new smaller vortices are generated which gradually decay. How-

ever, the flow near the curved wall persists at all time until the reflected wave takes

over in this region in spite of the fact that the motion of the dyed fluid displayed in

the lower part of the frame is directed downstream. Analysis of the character of

the flow caused by the passing and breaking of the internal solitary waves through

the high constriction confirms that the flow is of three-dimensional character.

In summary, we may state that the transformation and breaking of internal

solitary waves were studied for the cases when the characteristic constriction length

Fig. 3.38 (Experiment 0501). Surface flow caused by the interaction of the internal solitary wave

with the constriction in the diffuser part of the constriction. The top row shows snapshots from

above, the white and black arrows indicate the direction of the flow on the top free surface, and the

bottom row series shows the associated shots from the side. The top layer is dyed. The shots are

taken at t ¼ 35:5 s (1), t ¼ 39:7 s (2), and t ¼ 105:2 s (3)
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was close to the wavelength. It is shown that the interaction of solitary internal

waves with a constriction is determined by the wave amplitude and the value of the

minimum gap of the channel generated by the constriction. The formation of

a vortex or vortices with horizontal axis on the back face of the wave is observed

when the wave moves through the constriction. It is shown that a critical regime is

characterized by a sharp wave steepening, an amplitude growth in the narrow part

and subsequent breaking, and the formation of a vortex on the back face of the

wave. At strong interaction, fission of an internal solitary wave into two waves

occurs: the leading part progresses through the constriction, but the last part is

trapped and forms a reflected wave and the ‘tail’ of the leading part. A system of

turbulent boluses can be formed. They move downstream and are responsible for

the transport of sub-pycnocline water.

The motion of internal solitary waves in the passage through the constriction

is of three-dimensional character. This is exhibited by the formation of a system of

vortices with vertical axes that arise in the diffuser part of the constriction. The

motion of the vortices is seen for quite some time after the passage of the waves,

and their appearance is the effective mechanism of energy dissipation. These

vortices cause motions in the upper layer, as dye translation by vortices is seen

on the photographs. Another important feature of the process of the passage of

solitary waves through a constriction is the distribution of the amplitude irregularity

in the cross section in front of the constriction. In other words, a reconstruction of

the flow takes place. This is the main reason for the transformation of the flow near

the constriction, fission of strongly nonlinear internal waves, and trapping of the

rear part. The influence of the constriction on the internal solitary wave passage

through the constriction results in a substantial transformation of the flow that

may develop instabilities and strong dissipation. A large constriction causes wave

breaking. It is demonstrated that the flow regime is determined by the fact that the

composite Froude number depends on the wave amplitude and the value of the

constriction when an internal solitary wave passes through the constriction.

3.4 Laboratory Study of the Dynamics of Internal Waves

on a Slope

3.4.1 Reflection and Breaking of Internal Solitary Waves
from Uniform Slopes at Different Angles

The major source of energy responsible for the appearance of fields of waves and

currents in lakes is connected with wind effects on the free surface. This energy

influx is responsible for the setup of surface water and the generation of internal

waves in the form of basin-scale standing waves or propagating nonlinear waves.

Field observations indicate that the decay rate of wind-forced basin-scale waves is

larger than it may simply be estimated by internal dissipation (Stevens and
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Imberger 1996; Horn et al. 2001). Other mechanisms governing the energy transfer

from basin-scale waves to either smaller waves or turbulent scales must therefore be

considered to provide an explanation for such a high value of decay rates. Among

possible mechanisms that are responsible for the above-mentioned energy transfer,

the following can be distinguished: (1) nonlinear steepening and disintegration of

long internal waves into packets of short-period waves and solitons; (2) shear

instability caused by the energy transfer from the mean flow to the small-scale

motions; (3) shoaling and reflection from slopes; (4) effects of localized

constrictions stimulating the development of wave instability; and (5) interaction

with topography (Horn et al. 2001; Vlasenko and Hutter 2002b). Traveling short-

period internal waves and solitons are relevant for small-scale processes, but their

energy content is minor compared to that of the large-scale waves. However, this

energy reservoir is an important intermediary between the energetic large-scale

motions and small dissipative pulsations.

Important mechanisms of energy transformation in lakes from short-period

(internal waves) to small-period motions are concerned with the shoaling of

waves and their transformation, overturning, and breaking over sloping boundaries.

These processes lead to the generation of turbulence and water mixing. Laboratory

experiments were performed (Kao et al. 1985) to study the propagation of internal

solitary waves of depression on a slope and shelf geometry. Authors considered

breaking of internal waves, especially when interacting with a slope. It was found

that the onset of wave breaking was governed by shear instability, which was

initiated when the local Richardson number became less than ¼. Existence of a

strong shear layer causes the development of instability of Kelvin–Helmholtz type

and further wave breaking. The geometrical configuration of the bottom contributes

considerably to this process owing to the intensification of the reverse flow in the

lower layer to satisfy mass conservation during the wave propagation up the slope.

Notice that the influence of the topography on the interaction of an internal wave

with an obstacle described earlier causes shear intensification in the lower layer,

leading to the formation of vortices. It was shown that before breaking the shape of

the wave is deformed so that its leading front becomes milder and roughly parallel

to the slope. In the process of wave adjustment to the slope, the back front of the

wave steepens considerably with large-scale breaking and possible overturning in

the lee of the wave. The propagation of long, weakly nonlinear interfacial waves in

a two-layer fluid of slowly varying depth was theoretically studied by Helfrich et al.

(1984). The cubic nonlinearity was included in the governing equation in order to

investigate the wave behavior in the vicinity of a “turning point” that is approxi-

mately determined by equality of the layer thicknesses. It was found that more than

one wave of reverse polarity may emerge as the incident wave passes through

the mentioned “turning point”. Theoretical and experimental investigations of the

evolution of weakly nonlinear solitary waves in a two-layer fluid over bottom

topography were carried out by Helfrich and Melville (1986). It was demonstrated

that the incident wave amplitude and stratification influenced the development of

the observed weak shearing; moreover, strong breaking instabilities were

demonstrated. The regions of instabilities, which depend on the wavelength and
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the ratio between the wave amplitude and the depth of the lower layer on the shelf,

are identifiable if the difference between the densities of the upper and lower layers

is given. Zones of strong overturning and second-mode wave generation, shearing,

and stability are distinguished. To investigate the evolution of the incident waves,

the K–dV equation was solved numerically and asymptotic solutions were deter-

mined. Particular attention was focused to a situation when a turning point (point of

equal layer depths) is encountered on the slope.

Run-up of internal waves on a gentle slope was experimentally studied by

Wallace and Wilkinson (1988). The waves were generated continuously at the

interface of two miscible layers of different densities. As each wave in the periodic

train propagated onto the slope, it steepened and developed into a solitary-like wave

before finally overturning. The surrounding fluid was entrained into the wave at

its overturning, and the resulting gravitational instability produced considerable

turbulence and mixing. The broken wave took the form of a discrete bolus that

propagated up the slope. It was noticed that the pattern of the overturning process

was similar to the pattern that was previously considered experimentally (Kao et al.

1985; Helfrich and Melville 1986) in spite of some differences of the run-up phase

of the waves on the slope. Principal attention was devoted to the determination of

the bulk parameters of the dense fluid, which characterize the nature of the bolus,

and ascertain the dependence of these parameters on the characteristics of the

incident wave. A numerical simulation of the process of interaction of internal

solitary waves of depression with the slope-shelf topography was conducted by

Vlasenko and Hutter (2002b). The Reynolds-averaged equations, parametrized

with vertical diffusivities, were solved. The solutions provide a detailed analysis

of the evolution of the flow field during the process of interaction of strongly

nonlinear waves with the bottom topography. It was demonstrated that at the

beginning of the process, wave adjustment of the chosen initial wave profile takes

place: generally, the leading front of the wave becomes more gently sloping, and

the back front becomes steeper. Such behavior of the wave is concerned with the

fact that the velocity of the trough is smaller than the velocity of the crest in shallow

water when a wave depression is considered. The cumulative effect of the nonline-

arity causes a steepening and eventually overturning of the back front of the wave

over the slope. The authors found that just before breaking the horizontal orbital

velocity at the site of instability exceeds the phase speed of the internal solitary

wave. The results clearly show that the breaking is primarily due to kinematic

overturning of the back front of the wave.

Laboratory experiments were made by Helfrich (1992) to observe the interaction

of an internal solitary wave of depression with a uniform slope. The fission of the

incident solitary wave into several solitary-like waves of elevation (boluses) and

their development on the slope were considered. It was demonstrated that the

shoaling of an internal solitary wave results in wave breaking and production of

multiple turbulent surges (or boluses) that propagate up the slope. Significant

mixing occurs everywhere inshore of the breaking zone. A breaking criterion is

proposed. Amplitudes of waves were up to 3.5 cm. Only one configuration of the

layer thickness ratio was considered. The author estimated that for the considered
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series of slopes (0.034; 0.050; 0.067) the energy of the reflected wave is less than

25% of the energy of the incident wave.

Theoretical investigations, including comparison with field observations of the

run-up of interfacial solitary waves, were performed by Bourgault et al. (2005).

These authors interpreted the sharp fluctuations of the density on the background

of the slowly varying density field, which were recorded by CTD (conductivity–

temperature–depth) profilers, to be caused by internal solitary wave breaking and

run-up on a uniform slope. Similar patterns of the density field were also observed

in experiments by Helfrich (1992) when the slow variation of the density was

accompanied by a sequence of isolated bursts of increased density. These variations

of the density were generated during breaking and subsequent run-up of internal

solitary waves on the slope and directly connected with the boluses translating up

the slope. It was observed that the boluses exhibit the shape of internal solitary

waves of elevation, but other bolus-like structures exhibit more irregular-shaped

structures (Bourgault et al. 2005). An important role of the boluses is in transporting

the sub-pycnocline water in the upslope direction past the intersection between the

pycnocline and the bottom. An important feature of the process of interaction

of internal solitary waves with the slope, considered in the paper, is the formation

of an intrusive layer extending from the mixing zone back into the water column

(Vlasenko and Hutter 2002b).

The shoaling and breaking of an internal solitary wave of depression on

a uniform slope were studied experimentally by Michallet and Ivey (1999). Various

bottom slopes, ratios of layer thicknesses, and density differences between the

layers were investigated. The mechanism that led to wave breaking was examined

with flow visualization and particle image velocimetry. It was shown that at an

early stage because of the interaction of the internal solitary wave with a slope, the

leading front becomes parallel to the slope, while the back front is steepening. The

flow associated with the incoming wave is characterized by shear: it is directed up

the slope in the upper layer and down in the lower layer. Then, behind the wave,

close to the inclined boundary, some velocities are directed upward. These

velocities, which are caused by the separation of the lower-layer flow from the

boundary, are likely induced by an adverse pressure gradient. As the wave shoals,

the vertical velocity increases, the back front of the wave becomes unstable, and the

vortex reaches its maximum size and a bolus is formed. The slope reflectance

relative to the incident internal solitary waves was also studied. It was found that

the ratio between the length of the solitary wave, Lw, and the characteristic length of
the slope, LS, determines the amount of energy reflected from the slope. For small

ratios LW=LS, the reflection coefficient (relative to the energy of the waves)

increases linearly with the growth of the ratio. Beyond LW=LS � 0:5, the rate of

increase begins to slow down and the reflection coefficient asymptotically

approaches the limiting value 1.0. The authors suggested that strong reflection of

an incident wave from the slope at LW=LS > 0:5 is due to the small timescale of

interaction between the wave and the slope. It was found that the mixing efficiency

of the breaking event has its peaks at a maximum of 25% when LW=LS ¼ 0:5, and
its value decreases on either side of this peak value. It is also noteworthy that all
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estimates of energy of internal solitary waves were made by taking into account the

energy loss caused by the effect of viscosity. For this purpose, a special series of

experiments was designed to obtain a graphical relationship of the nondimensional

wave energy against nondimensional distance.

Numerical simulations of the process of reflection of internal solitary waves

from a slope and comparison of the results with experimental data by Michallet and

Ivey (1999) were performed by Bourgault and Kelley (2007). A two-dimensional

numerical model was used. It was proposed to use the Iribarren slope parameter

(Boegman et al. 2005) instead of the ratio LW=LS to analyze the processes of wave

reflection from the slope. The Iribarren slope parameter is the ratio between the

slope of the inclined boundary and the wave amplitude divided by the wavelength.

Viscous dissipation was taken into account (Bourgault and Kelley 2007). It was

concluded that the underestimation of the reflectance from a uniform slope for

normally incident interfacial waves occurred in the experiments (Michallet and

Ivey 1999), although the theoretical model did not take into account the three-

dimensional character of the turbulence generated by wave breaking.

Experimental investigations of the propagation of internal waves and their

reflection from a smooth uniform slope were conducted by Chen et al. (2007a, b).

They showed that the K–dV theory is suitable for internal solitary waves with small

to moderate amplitudes. Alternatively, for waves of larger amplitude, the EK–dV

equation corresponded more adequately to the obtained data. For a uniform slope,

the amplitude-based and energy-based coefficients of reflection of internal solitary

waves were obtained. It was shown that at sufficiently small and moderate slopes,

the reflection coefficients increase linearly with the growth of the bottom inclina-

tion, and, at larger slopes, the coefficients approach a constant value asymptotically.

Wave attenuation caused by viscosity effects during the propagation along the

channel was taken into account by estimations of the amplitude and energy of the

incident and reflected waves. The reflected wave amplitude calculated from exper-

imental data agrees with those reported by other authors. Experiments with inverse

slopes were also made. A mirror-image model is hypothesized to provide a generic

description of the physical consequences leading to wave breaking and mixing on

a wide range of uniform slopes.

Mention should also be made of experimental studies regarding the interaction

of internal waves with a slope. Features of the process of reflection of internal

waves from a slope were studied experimentally by Cacchione and W€unch (1974),

Ivey and Nokes (1989), and Dauxious et al. (2004). Particular interest was focused

on the case of near-critical reflection of internal waves when the inclination of the

group velocity vector is close to the topographic slope. In this case, the reflected

waves are trapped along the slope and their energy is concentrated into a narrow

zone over the slope. It was found that interfacial mixing is a result of wave breaking

for long-period waves and energy dissipation through viscous losses in the bottom

boundary layer along the slope for shorter-period waves. Interfacial mixing

increases considerably when the slope approaches the critical angle. The mixing

rate caused by internal wave breaking was estimated. Experimental investigations

of the run-up of internal waves and mixing of fluids on a uniform slope were made
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(Umeyama and Shintani 2004). The image-processing technique was used to

illustrate the run-up of the internal waves and the mixing of the freshwater and

saltwater. It was shown that the entrainment of the upper-layer water into the lower-

layer water by boluses played a major role during the run-up of the internal waves.

It was concluded that the interaction of the internal waves with the slope can lead

to instability and wave breaking, which results in strong mixing close to the

boundaries. Such mechanisms of energy transfer from large to small (or dissipative)

scales play a certain role in lake dynamics along with more energetic processes of

the interaction of large internal solitary waves with bottom topography.

After this brief introduction into previous work of internal waves on a sloping

bottom, let us now give an account of our own attempts in this regard. A series of

experiments to study the process of interaction of strongly nonlinear internal

solitary waves with uniform slopes (gentle and steep) were carried out. The same

methodologies were used as those developed for the investigations described above

for the creation of a two-layer salt stratification, generation of internal solitary

waves, measurement of wave parameters by gauges, and processing of the experi-

mental data. The boundary between the layers (or the upper layer) was dyed. The

use of a digital camera allows estimation of the parameters of the internal solitary

waves, and these can be compared with data obtained by the gauges. Experiments

were carried out with two types of slopes of different angles relative to the

horizontal, b1 ¼ 12:5� and b1 ¼ 60� (gentle and steep slopes). The slope model

was installed at the end of the basin. In experiment 0404 (run 1), a gentle slope

(b1 ¼ 12:5�) was installed. The slope length, LS, was equal to 135.5 cm. A sketch

of the locations of the gauges relative to the slope is presented in Fig. 3.39. The

gauges G 0, G 1, G 2, G 3, and G 4 are positioned at the axis of the basin. Distances

from the end wall of the basin and between the gauges are as shown in the figure

caption. The arrow indicates the direction of wave propagation.

The overall depth was equal to 30 cm, and the salinity profile before run 1 was

described by equation (3.7) with d ¼ 0:55 cm. The thickness of the lower layer was

h2 ¼ 27:55 cm. Amplitudes of the incident waves and reflected waves (with identi-

fier “r”) are listed in Table 3.8. The displacement time series of the interface,

recorded by the gauges G 4, G 2,G 0, are displayed in Fig. 3.40a–c, respectively.

Fig. 3.39 Sketch of the side

view of the placement of

gauges with distances

l0 ¼ 82:5 cm, l1 ¼ 59:5 cm,

l 2 ¼ 55:5, l3 ¼ 40 cm, and

l4 ¼ 49:5 cm in experiments

with slopes (experiment 0404,

run 1)

Table 3.8 Amplitudes measured by the gauges in experiment 0404, run 1

Gauge 4 3 2 1 0 4r 2r

Amplitude 4.5 cm 4.4 cm 4.3 cm 4.3 cm 4.0 cm 1.6 cm 1.3 cm
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The speeds of the incident and reflected waves were obtained using the data of

recordings at different gauges. We see that the amplitude of the incident wave

decays weakly with the traveled distance. From Fig. 3.40c we infer that the

formation of the reflected wave (r.w.) takes about 6 s (time interval from 62 to

68 s). Otherwise, the reading at gauge G 0 is practically constant with small

oscillations only. This gauge is located above the slope (distance from the end

wall of basin is 0.6 LS); all processes of wave steepening and wave breaking over

the slope were recorded here. The peak of the reflected wave arises at gauge G 2

(Fig. 3.40b) at t ¼ 88s and at gauge G 4 at t ¼ 101s (Fig. 3.40a). The form of the

leading front of the reflected wave is similar to that of a solitary wave.

When the incident wave is stronger, formation of the reflected wave is equally

more conspicuous. In experiment 0604 (run 1), the amplitude of the incident wave

was equal to 5.6 cm. The locations of the gauges relative to the slope were the same

as in experiment 0404 as displayed in Fig. 3.39, and the gaugesG 0,G 1,G 2,G 3, and

G 4 are positioned at the axis of the basin, but distances from the end wall of the

basin and between gauges were different as follows: l0 ¼ 72 cm, l1 ¼ 51 cm,

l2 ¼ 52:5 cm, l3 ¼ 57:5 cm, and l4 ¼ 54:5cm. The overall depth was equal to

30 cm, and the salinity profile was described by (3.7) with d ¼ 0:57 cm. The

thickness of the lower layer was h2 ¼ 27:1 cm. Amplitudes of the incident waves

and the reflected wave (with identifier ‘r’) are listed in Table 3.9.

The displacement time series of the interface recorded by gauges G 4,G 2, and G 0

are shown in Fig. 3.41a–c. It can again be seen that the amplitudes of the incident

waves decay slightly with the traveled distance. The reflected wave (r.w.)

propagates backward from gauge G 0 over gauge G 2 to gauge G 4 and is

characterized by the formation of a clean signal from gauge G 0 to gauge G 4.

Then this wave (r.w.) is reflected from the wall of the basin, and this re-reflected

wave (r.r.w.) is shown as a yet small signal that is again seen in panels (a) and (b) of

Fig, 3.41, but not in panel (c) since it is outside the plotted range.

Fig. 3.40 Time series of the displacements of the interface caused by incident and reflected

internal solitary waves: (a) gauge G 4, (b) gauge G 2, (c) gauge G 0(experiment 0404, run 1)

Table 3.9 Amplitudes measured by gauges in experiment 0604

Gauge 4 3 2 1 0 4r

Amplitude 5.9 cm 5.75 cm 5.7 cm 5.6 cm 5.0 cm 2.3 cm
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Gauge G 0 is located approximately at the half-length of the slope LS (0.53%),

that is, closer to the end wall than gauge G 0 in experiment 0404. In contrast to

experiment 0404, where the reflected wave is seen as a sufficiently long displace-

ment of the interface (see Fig. 3.40c), in experiment 0604, the signal oscillates with

sharp peaks (see Fig. 3.41c). Apparently, this is caused by steepening, wave

breaking, and the formation of boluses which can run up on the slope, and mixing

processes.

Subsequently, the displacement signal moves in the opposite direction and a

reflected wave is gradually formed. This formation is nearly complete in Fig. 3.41b.

Its perfection continues as it leaves the slope region. This wave, at least its leading

front, has been formed in the region where gauge G 4 is installed (Fig. 41a), and its

energy can be estimated. Moreover, in Fig. 41a the wave is displayed, which is re-

reflected (r.r.w) from the upstream end (at the inclined gate) of the basin. The form

of this re-reflected wave is close to the solitary wave shape, and its amplitude is

nearly the same as that recorded by gauge G 4 at the first wave passage.

A series of experiments was performed when the gentle uniform slope

(b 1 ¼ 12:5�) was installed. Solitary waves of different intensities were generated

in the experiments.

Some evolutionary stages of the process of interaction of the solitary wave with

the gentle uniformly sloping bottom can be seen in series of photographs

reproduced in Fig. 3.42 and obtained in experiment 1104 (run 1), where only the

interface was dyed. The exact times and temporal differences between the

photographs are listed in the figure caption and the parameters of the stratification

and the solitary waves for six experiments are summarized in Table 3.10. It can be

seen that when the leading face of the wave reaches gauge G 0 that is located at the

half-length of the slope, the back face steepens (frame 2). Note that recordings of

gauge G 0 are similar to those presented in Fig. 3.41c; that is, it takes some time

until the perturbations pass the gauge, where sharp changes of the recordings may

be observed. The wave adjusts to the slope form: the leading front becomes milder

and its inclination tends to coincide with that of the slope. The back front steepening

gradually increases, and, at a certain stage of the evolution, the back face of the

wave transforms into a baroclinic bore (frame 3), which is destroyed upward along

Fig. 3.41 Displacement time series of the interface caused by incident and reflected internal

solitary waves at gauges G 4, G 2, and G 0(experiment 0604, run 1)
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Fig. 3.42 (Experiment 1104, run1). A series of photographs demonstrating the run-up of an

internal solitary wave on a gentle slope. The arrow indicates the direction of the propagation of

the wave. The frames are numbered in consecutive order and times when they were shot are

as follows:

Frame 1 2 3 4 5 6

Time of shot (sec) 69.9 75.0 78.5 80.1 83.3 85.2

Time difference (sec) 5.1 3.5 1.6 3.2 1.9

Table 3.10 Summary of parameters of incident and reflected waves (uniform slope, b 1 ¼ 12:50)

No.

exp.

No.

run

Parameters [cm] Type of

wave

No.

gauge

Distance

[cm]

Amplitude

a, [cm]

c,
[cm/

s]

0404 run1 H ¼ 30; h 1 ¼ 2:45; d ¼ 0:55 Inc. 4 277 4.5 7.6

Inc. 2 197.5 4.3 7.6

Refl. 4 277 1.6 6.8

Refl. 2 197.5 1.3 6.8

run2 H ¼ 30; h 1 ¼ 2:6; d ¼ 0:6 Inc. 4 277 4.1 7.4

Inc. 2 197.5 4.0 7.4

Refl. 4 277 1.16 6.6

Refl. 2 197.5 1.24 6.6

0604 run1 H ¼ 30; h 1 ¼ 2:9; d ¼ 0:57 Inc. 4 287.5 5.9 8.43

Inc. 2 175.5 5.7 8.43

Refl. 4 287.5 1.7 7.0

Refl. 2 175.5 1.55 7.0

run2 H ¼ 30; h 1 ¼ 3:1; d ¼ 0:67 Inc. 4 287.5 5.5 8.13

Inc. 2 175.5 5.3 8.13

Refl. 4 287.5 1.6 -

Refl. 2 175.5 1.6 -

1104 run1 H ¼ 30; h1 ¼ 3:2; d ¼ 0:52 Inc. 4 256 5.4 8.4

Inc. 2 148 5.2 8.4

Refl. 4 256 1.9 7.8

Refl. 2 148 1.9 7.8

run2 H ¼ 30; h 1 ¼ 3:3; d ¼ 0:6 Inc. 4 256 4.35 7.9

Inc. 2 148 4.1 7.9

Refl. 4 256 1.4 7.1

Refl. 2 148 1.6 7.1
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the slope (frame 4). Heavier fluid penetrates into the light fluid and falls down on

the wave trough. Due to the development of the breaking process, the flow becomes

turbulent, and fluids are mixed. On the photographs, the wash-out of the dyed

interface and its thickening (frames 5, 6) can be clearly seen. Then, this compara-

tively lighter water rises and formation of the reflected wave begins. A substantial

part of the initial energy of the solitary wave is spent on the turbulization and

mixing of fluids. An intrusive layer is formed above the slope (frames 5, 6) which

gradually extends backward into the upstream region.

Close inspection of the experimental data shows that the speeds of the incident

waves were lower than those described by the K–dV theory, and the wave profile

is wider than the K–dV profile. This problem was encountered already earlier.

The reason for the discrepancy lies in the fact that the K–dV theory adequately

describes solitary waves with comparatively small amplitudes. When the amplitude

increases, the application of the EK–dV theory or fully nonlinear theory should be

employed. The frequency–amplitude relationship was analyzed by Michallet and

Barthelemy (1998). The experimental data, recording the interface displacements in

time at a given point, are used to test this. So, it is reasonable to use the integral

scale of the frequency as the principal characteristic of the waves (or the character-

istic frequency). It is determined by the relation

ok ¼ 2aÐ1
�1

�ðt; x0Þdt
¼ ck

l
; (3.28)

where � ðt; x 0 Þ is the interface displacement as a function of time, ck is the phase
velocity, and l is the characteristic length (Koop and Butler 1981).

Next, consider the conception of critical depth hc. If the interface position in

a layered fluid coincides with hc, then the K–dV theory predicts that solitary waves

do not exist. This is concerned with the fact that the nonlinear terms in the K–dV

equation disappear. This configuration is called “turning point”. In a two-layered

system, this critical level is approximately equal to half of the overall depth. In the

general case, the value hc is determined by the following equation due to Kakutani

and Yamazaki (1978):

h2cðH � hcÞ
ðH0 � hcÞ3

¼ r2
r1

; (3.29)

where H0 ¼ H � c20=g, and

c20 ¼
gH

2
1� 1þ 4h1ðh1 � HÞðr2 � r1Þ

rH2

� �1=2
" #

; (3.30)
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or approximately (Michallet and Barthelemy 1997)

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðr2 � r1Þh1h2
r1h2 þ r2h1

s
: (3.31)

When the difference of the densities is small (Bogucki and Garrett 1993)

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0
h1h2
H

r
; g0 ¼ r2 � r1

r2
: (3.32)

If the free surface is replaced by a rigid lid (this is permissible only for small density

differences), we obtain H ¼ H0, and equation (3.29) can be shown to take the form

(Michallet and Barthelemy 1998)

h2c
ðH � hcÞ2

¼ r2
r1

: (3.33)

For strongly nonlinear solitary waves, Michallet and Barthelemy (1998) com-

pared experimental data with results of numerical calculations following the

K–dV–mK–dV theory developed earlier by Funakoshi (1985) and Funakoshi and

Oikawa (1986) (see also Gardner’s equation or extended K–dV equation

(Ostrovsky and Stepanyants 2005)). The K–dV and modified K–dV theories are

combined in a new theory through incorporation in the equation of cubic nonlinear

terms. The theory is designed to consider waves of which the amplitudes are in the

interval from 0 to �h, where �h ¼ h 2 � h c is the distance between the interface and

critical level; thus, �h is an upper bound of the amplitude of the internal solitary

waves. The main assumption lies in the fact that the amplitude and �h are of the same

order of magnitude and small in comparison with the overall depth. When the free

surface is replaced by a rigid lid, then the displacement of the interface caused by

the solitary wave can, according to Michallet and Barthelemy (1997), be written as

�ðx; tÞ ¼ a
sech2½kðx� CmtÞ

1� m tanh 2½kðx� CmtÞ ; (3.34)

where the expressions for k, m, and Cm are

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

H

hcðH � hcÞ �
ð�aÞ � ðaþ 2�hÞ
ðH � hcÞ3 þ h3c

s
; (3.35)

m ¼ �a

aþ 2 �h
; (3.36)

Cm ¼ c 0 1þ ðaþ �h Þ2
2 hc ð hc � H Þ

" #
: (3.37)
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The sign of �h determines the polarity of the solitary wave, i.e., a � 0 if �h 
 0 and

a 
 0 if �h � 0.

The expression to compute the frequency ok that is equivalent to equation (3.28)

for large-amplitude waves, can be written as

ok ¼ 2aÐ1
�1

�ðt; x0Þdt
¼ Cmk

ffiffiffi
m

p
arctanh

ffiffiffi
m

p : (3.38)

It was shown that the frequency–amplitude characteristics of large internal solitary

waves tend to be predicted asymptotically by the K–dV–mK–dV theory (Michallet

and Barthelemy 1998).

A comparison of the data of our experiments with the frequency–amplitude

relations (3.38) is accomplished in Fig. 3.43. The two graphs in panels (a) and (b)

show values for o k as functions of a=H for moderate and large amplitudes. In panel

(a), the results correspond to moderate amplitudes (3:0� 4:5 cm) of internal soli-

tary waves. Curves 1 and 2 fit the K–dV theory for h1 ¼ 2:45 cm and h1 ¼ 3:3 cm,

respectively. The relationship described by formula (3.38) is presented as curves

3 (h1 ¼ 3:3cm) and 4 (h1 ¼ 2:45 cm). Full circles correspond to the incident waves

and crosses to the reflected waves. It is seen that the characteristics of strongly

nonlinear internal solitary waves studied in the experiments agree well with the

mK–dV theory. A still better agreement with the mK–dV theory is achieved for

even stronger waves for which the amplitudes are in the interval 5.0–5.9 cm. These

data are presented in Fig. 3.43b again as full circles for the incident waves

and crosses for the reflected waves. Here, curves 1 and 2 fit the K–dV theory for

Fig. 3.43 Frequency–amplitude relations for incident and reflected internal solitary waves:

(a) moderate amplitudes, (b) large amplitudes. Curves labeled “1” and “2” are obtained with the

K–dV theory and curves “3” and “4” with the mK–dV theory as explained in the main text
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h1 ¼ 2:9 cm and h1 ¼ 3:4 cm, respectively. Curves 3 (h1 ¼ 3:4 cm) and 4 (h1 ¼
2:9 cm) are described by the mK–dV theory.

Experiments 2606 and 2906 with the second model (b1 ¼ 60�) were carried out

to study the reflection of internal solitary waves from a steep slope. The slope length

LS was equal to 17.3 cm. A sketch of the gauge locations relative to the slope is

presented in Fig. 3.39. Here, gauges G 0, G 1, G 2, G 3, and G 4 are at the axis of the

basin. In experiment 2906, distances from the end wall of the basin and between the

gauges are equal to l0 ¼ 10cm, l1 ¼ 41:5 cm, l2 ¼ 55:5 cm, l3 ¼ 19:5 cm, and

l4 ¼ 54:5 cm. The overall depth is 30 cm and the salinity profile before the run is

described by equation (3.7) with d ¼ 0:55 cm. The thickness of the lower layer

before run 1 is h2 ¼ 27:0 cm and the amplitudes of the incident and reflected waves

(with identifier ‘r’) are listed in Table 3.11.

In this experiment, the initial forward-moving wave travels from right to left,

encountering gauge G 4 (1) first, gauge G 2 (1) second and gauge G 0 (1) last (for

numbers in parentheses, see Fig. 3.44). After reflection gauge G 0 is encountered

first, gaugeG 2 and gaugeG 4 follow consecutively afterward. Then, the wave signal

is reflected at the wave generator and seen at gauge G 4 (3) followed by gauge G 2

(3) and gauge G 0 (3). After yet another reflection gauge G 0 (4) is encountered first

followed by gauge G 2 (4) and gauge G 4 (4). The displacement time series of the

interface recorded by gauges G 4, G 2, and G 0 are displayed in Fig. 3.44a–c.

Evidently, the reflection of strongly nonlinear internal solitary waves from

a steep slope is considerably more efficient than that from a gentle slope and the

shapes of the reflected waves are clearly identified. We also see the reflection of

a solitary wave from the opposite end of the basin, i.e., from the inclined gate of the

wave generator. Information from photographs (experiment 2906) in Fig. 3.45

is consistent with the gauge data.

Table 3.11 Amplitudes measured by gauges in experiment 2906

Gauge 4 3 2 1 3r 4r

Amplitude 4.6 cm 4.5 cm 4.5 cm 4.35 cm 3.7 cm 3.5 cm

Fig. 3.44 (Experiment 2906). Displacements of the interface caused by incident and reflected

internal solitary waves. The following identifications are made: “1” corresponds to the first

forward-moving signal. “2” is the first reflection and backward-moving wave, “3” is the re-reflected

signal moving forward, while “4” is reflected again at the steep plane and moves backward
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The processes of the formation of a reflected wave from steep and gentle slopes

differ from each other. For a gentle slope, the level of the wave trough is practically

unchanged. At the beginning, the wave is adjusted to the sloping surface and its

leading front and trough are adjusted to the same inclination as the slope. However,

a steepening of the back face of the wave occurs. Then, a baroclinic bore is formed. It

runs up on the slope and is destroyed, and fluids are mixed. The elevation of lighter

fluid causes formation of a reflected wave. Because of all these intermediary

mechanisms, the energy of the reflected wave is not very high and the time of the

interaction process following this scenario is long. Similar processes are realized for

waves with different amplitudes if the slope is gentle. On the other hand, the reflection

process is more effective when the incident wave encounters a steep slope. When a

wave collides with a steep slope, its trough quickly dives to an even larger depth.

In Fig. 3.45, the depth of the trough submersion is approximately two amplitudes

of the wave far from the steep slope. The wavelength is radically decreased. A rapid

transformation of the kinetic energy in potential energy occurs in this process. Due

to the buoyancy effect, the submerged fluid moves upward and the reflected wave is

formed. The stored potential energy transforms into kinetic energy of the reflected

wave. When the reflected wave leaves the given region, a thinning of the upper

Fig. 3.45 (Experiment 2906). Photographs of interaction of an internal solitary wave with steep

slope. The arrow indicates the direction of the propagation of the wave. The frames are con-

secutively numbered and times when they were shot are as follows:

Frame 1 2 3 4 5

Time of shot (sec) 61.1 67.6 70.1 73.1 80.1

Time difference (sec) 6.6 2.5 2.0 7.0
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layer can be seen that is restored later. The characteristic time of the interaction

process is short. Note that dissipation is not large in the process of reflection as is

evidenced from Fig. 3.45 where the regions of mixed fluid are very small. Evi-

dently, different mechanisms of reflection of strongly nonlinear internal solitary

waves from gentle and steep slopes determine the ratio between the reflection

coefficient and the slope value.

Before studying the energetic characteristics of the wave reflection from a slope,

we consider the loss of energy of the internal solitary waves caused by dissipation.

The main reasons for energy decrease have been elucidated earlier in another

section. The integral estimation of energy loss of solitary waves moving in the

basin can be made by using experimental information obtained from gauges located

along the basin.

The energy dissipation of internal solitary waves of depression propagating at

a constant depth in a channel was estimated byMichallet and Ivey (1999). The authors

consider the change of the ratio between the instantaneous energy Eand the initial

wave energyE 0 as a function of the normalized traveled distance x h 2=H
2. Data were

obtained for the case when waves were free to reflect from each end of the basin. The

data analysis shows that they can be approximated by the following relationship:

E

E 0

¼ 10 �b x; (3.39)

where b is constant. An optimal fit of the data from an experimental investigation

by Michallet and Ivey (1999) is b ¼ 0:023. Our own determination of the energy

loss by solitary waves when they propagate along the basin led to a similar result,

namely, b ¼ 0:021 (somewhat less). The results are given in Fig. 3.46.

The use of relation (3.39), describing the dependence of the energy loss of the

wave on the distance x, enables us to estimate the coefficient of reflection of internal

solitary waves from a slope. Amplitude-based reflection coefficients Ra ¼ ar=ai on
a uniform slope versus the slope angle, b, are displayed in panel a) of Fig. 3.47 as

circles. Here, a r and a i are the amplitudes of the reflected and incident waves,

Fig. 3.46 Decay of the

energy of internal solitary

waves with distance when

traveling along a channel of

constant depth. The filled
squares are taken from our

own experiments
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respectively. The dashed curve is the curve which generalizes the experimental data

by Chen et al. (2007b). The dependence of the energy-based reflection coefficient

RE on the characteristic length ratio Lw=LS is presented in panel (b) of Fig. 3.47.

Here, RE ¼ Er=Ei, where Er and Ei are the energies of the reflected and incident

waves, and Lwis the characteristic wavelength, while LS is the slope length. The

dashed curve represents the combined experimental data by Michallet and Ivey

(1999) and Chen et al. (2007a, b).

It can be seen that data points are situated somewhat below the curve. Alter-

natively, the curve can be divided into two main parts which correspond to a gentle

slope and a steep slope. There is an intermediate part between the two. As noted

above, there are two main mechanisms of wave reflection from slopes. The topo-

graphic effect is weak for a gentle slope and energy reflection takes place due to

instability of the back of the wave, its steepening, breaking, and subsequent gene-

ration of turbulence causing fluid mixing. Then, the lighter fluid moves upward and

wave reflection occurs. The mechanism is characterized by considerable mixing of

light and heavy fluids; so, the process is governed by high-energy dissipation and

a small reflection coefficient. It is realized at gentle slopes. On the other hand, the

topographic effect is strong for steep slopes. The wave amplitude highly increases

near the slope. When its growth is stopped, rapid elevation of the lighter water sets

in and an intensive reflected wave is generated. The reflection process on a steep

slope is fast as compared with the case of a gentle slope, and dissipation is weak.

Note that the ratio of the slope S to the wave slope a=l is commonly used to

classify the breaking of surface waves. This ratio can be expressed as the offshore

form of the Iribarren number (Boegman et al. 2005)

x ¼ S

ða=lÞ1=2
: (3.40)

a b

Fig. 3.47 Reflection coefficient of ISW from slopes: (a) amplitude-based coefficient versus slope,

(b) energy-based coefficient versus ratio lengths of wave and slope. Circles correspond to

a uniform slope; symbols (squares, crosses, and triangles) refer to experimental results discussed

in Sect. 3.4.2
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Substituting the characteristic wavelength Lw instead of the wavelength, the

Iribarren number can be used to study the reflection of internal solitary waves from

slopes (Bourgault and Kelley (2007)). The Iribarren number x was estimated for

experiments with uniform slopes. It was found that this number ranges from 0.58 to

0.72 for a gentle slope (model 1) and varies between 3.2 and3.4 for a steep slope (model

2). The ratio of the slope steepness to the wave steepness is determined by the Iribarren

number that can be used as a parameter which characterizes the regimes of reflection.

In our own experiments, strongly internal solitary waves were generated and the

wave steepness did not vary in a wide interval. When the Iribarren number is less

than 1, the increase of the reflection coefficient differs little from a linear law (the first

regime, panel b) of Fig. 3.47). The changes of the reflection coefficient are small for

a large value of the Iribarren number (> 3). In panel (b) of Fig. 3.47, this regime

corresponds to reflections from a steep slope (the second regime). It may be called the

saturation regime. A situationwithweak solitarywaves certainly calls for further study.

As conclusion, we state that there are two principal mechanisms of wave

reflection from slopes. They can be distinguished as gentle and steep slopes. This

leads to different dependences of reflection coefficients on the topographic para-

meters. The topographic effect is weak for a gentle slope and the reflection of

energy takes place due to instability on the back of the wave, its steepening,

breaking, and subsequent generation of turbulence. Then, lighter fluid rises under

the action of buoyancy forces with the subsequent onset of the reflected wave. The

mechanism is characterized by considerable mixing of light and heavy fluids.

The reflection coefficients grow with amplification of topographical effects. The

distinctive properties of this process are high-energy dissipation and small reflec-

tion coefficients. It is realized at gentle slopes. On the other hand, the topographic

effect is strong for steep slopes. The amplitude of the wave highly increases near the

slope. When the growth stops, rapid elevation of lighter water sets in under

the influence of buoyancy forces and an intensive reflected wave is generated.

The reflection process at steep slope is fast. Processes leading to energy dissipation

have no time to develop; so, the energy loss to dissipation is small. The reflection

coefficients are only slightly changed with the amplification of the topographic

effects. The mechanism of the generation of the reflected wave is governed by the

transformation of kinetic energy of the incident wave into potential energy

associated with the submergence of light fluid into heavier fluid, and, similarly,

the inverse process of potential energy transformation into kinetic energy of the

reflected waves! Thus, the process of reflection of internal solitary waves from

a steep slope is characterized by small dissipation and high reflection.

3.4.2 Influence of Slope Nonuniformity on the Reflection
and Breaking of Waves

A series of experiments was performed to study the reflection of strongly nonlinear

internal solitary waves at nonuniform slopes. It is known that slopes in lakes, as a
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rule, are nonuniform. The coastal zone depth grows slightly with an increase of the

distance from a shoreline. Then, the depth sharply increases and the slope angle

becomes large. This feature must be taken into account when considering the

interaction of internal waves with a slope. The peculiarities of the topography can

appreciably influence the character of the wave reflection. Moreover, the develop-

ment of the instability and breaking of waves, the occurrence of turbulent mixing,

and the amount of energy loss by the incident wave can depend on the slope

nonuniformity. Its influence is especially important when the level of thermocline

in a lake is not far from the depth where the topography sharply changes.

Three models of slopes were studied in the experiments. The models consisted of

a small smooth “insert” 1 (a ¼ 12:46�) in the upper part of the slope and the main

part 2 with different angles (b ¼ 25:2�; 60�; 90�). The end edge of the “insert” was
submerged to h� ¼ 5:2 cm from the free surface in all experiments. Note that the

depth of the interface was approximately h1 ffi 3 cm in the experiments. The shape

of the model with nonuniform slope is schematically sketched in Fig. 3.48.

In experiments 1505 and 1705, the first model of the nonuniform slope was

studied (b ¼ 25:2�). Table 3.12 lists the parameters of the incident and reflected

waves including amplitudes recorded by the gauges: overall thickness H; thickness
of the upper layer h 1; value of d characterizing the thickness of the intermediate

layer; and calculated speed of waves. Estimates of the amplitude-based reflection

coefficient Ra ¼ a r=a i on the nonuniform slope versus the slope angle b are

presented in panel a) of Fig. 3.47 as hollow squares.

We see that the difference between the experimental data corresponding to the

uniform slope and the current results is small. The reflection coefficient is an

integral parameter; so, certain features of the process of the formation of wave

reflection are not well represented by this value, for example, the thickening of the

intermediate layer due to mixing of fluids. Estimates of energy-based reflection

coefficients RE ¼ Er=Ei versus Lw=LS are presented in panel (b) of Fig. 3.47 as

hollow squares. The results differ slightly from those obtained from uniform slope

experiments as in panel a). It should be noted that it is not evident what value should

be used as slope length in the case of nonuniform slope. In panel (b) of Fig. 3.47, the

overall length of the slope is used. A similar problem appears when considering

Fig. 3.48 Shape of the model of nonuniform slope. The boundary slope consists of two elements,

1 and 2, with slope angles a and b, respectively. h �, the 1st element depth is larger than h 1, the

depth of the two-layer interface: h � ¼ 5.2 cm, h 1 ffi 3 cm, a ¼ 12:460, and b ¼ 25:20, 600, 900
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the dependence of the reflection coefficient on the slope angle. The angle, b, of the
main part of the slope is used as abscissa in panel (a) of Fig. 3.47.

A series of photographs of the process of reflection of an internal solitary wave

from a nonuniform slope are shown in Fig. 3.49 and times when shots were taken

are listed in the figure caption (experiment 1705). It can be seen that the leading

face of the wave is already adjusted in frame 1 to the form of the “insert”, but the

form of the remainder is practically unchanged (frame 1). At this time slice, the

flow is still in a transient stage. The leading face continues to run on the upper slope,

but the heavier fluid moves down rapidly on the main slope and the back face of the

wave is considerably steepened (frame 2). A vortex is formed in the region of the

steepened back front, and heavier fluid moving down the slope entrains lighter

(dyed) fluid in the motion. Under these effects, a tongue-like near-wall flow is

formed (frame 3). In the region with negative pressure gradient, this flow becomes

unstable and separation occurs.

A second vortex of opposite rotation is generated. Similar vortices arising at

separation of an inverse flow in the region with negative pressure gradient were

discussed in other sections. Under the influence of the vortex pair, a jet is formed

(frame 4). Then, the upper vortex shifts toward left, and lighter fluid remains under

the effect of the second vortex. We see that the fluid moves along streamlines

corresponding to the motion caused by the vortex (frames 5, 6). Then, the flow

becomes unstable and fluids are mixed locally. In frame 7, a hazy region underneath

the wave appears, which is caused by these processes (frame 7). Immediately

afterward, lighter (dyed) fluid begins to move upward under the buoyancy effect,

and formation of the reflected wave sets in (frame 8). In short, the appearance of

a vortex pair results in the formation of a jet and subsequent mixing of fluids.

Table 3.12 Summary of parameters of incident and reflected waves (nonuniform slope,

a ¼ 12:46�, b ¼ 25:2�Þ in experiments 1505 and 1705

No.

exp.

No.

run

Parameters

[cm]

Type of

wave

No.

gauge

Distance

[cm]

Amplitude

a, [cm]

c,
[cm/s]

1505 run 1 H ¼ 30

h 1 ¼ 3:0
d ¼ 0:4

Inc. 4 203.0 4.2 7.7

Inc. 2 128.5 4.1 7.8

Refl. 4 203.0 2.6 7.4

Refl. 2 128.5 2.9 7.4

run 2 H ¼ 30

h 1 ¼ 3:2
d ¼ 0:48

Inc. 4 203.0 3.5 7.6

Inc. 2 128.5 3.4 7.6

Refl. 4 203.0 2.2 7.2

Refl. 2 128.5 2.1 7.2

1705 run 1 H ¼ 30

h 1 ¼ 3:2.
d ¼ 0:43

Inc. 4 201.5 5.3 8.6

Inc. 3 149.0 5.1 8.5

Refl. 4 201.5 3.04 7.3

Refl. 3 149.0 3.06 7.3

run 2 H ¼ 30

h 1 ¼ 3:4
d ¼ 0:56

Inc. 4 201.5 5.0 8.5

Inc. 3 149.0 4.9 8.5

Refl. 4 201.5 3.0 7.8

Refl. 3 149.0 2.9 7.8
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An increase of the angle of the main slope, b, leads to the generation of more

intensive reflected waves. This is evident from the analysis of the results presented

in Fig. 3.47 (displayed as crosses). The reflection coefficients are estimated here by

processing data of experiments 1406 and 2006 in which the second slope model

(b ¼ 60�) was studied (see Fig. 3.48).

The parameters of the incident and reflected waves are listed in Table 3.13. They

indicate the amplitudes recorded by the gauges; overall thickness H; thickness of

upper layer h 1; value of d characterizing the thickness of the intermediate layer;

and calculated speeds of the waves.

Scrutiny of the results shows that the estimated reflection coefficient is consis-

tent with the results obtained earlier. Some features of the process of interaction of

the internal solitary wave with the steep slope with “insert” are displayed in

Fig. 3.50. The first conclusion is that the speed of the process of solitary wave

interaction with the steep slope is higher than for the gentle slope. In frame 1,

a weakly dyed zone close to the edge of the “insert” was washed out at the creation

of the two-layer system; it is displaced under the flow effect as a tracer. After the

approach of the incident wave onto the slope, the wave trough dives rapidly (frame

2). A fast flow directed down the slope arises. Dyed particles (frame 1) entrained by

the flow move in the same direction (frames 2 and 3). Once this process is stopped,

the form of the lower part becomes more filled (frame 4), likely due to the increased

potential of flow instability and the formation of vortical structures that are

Fig. 3.49 (Experiment 1705). Photographs of the interaction of internal solitary waves with

nonuniform slope. The arrow shows the direction of the propagation of the wave. The frames

were consecutively numbered and times when the shots were taken are:

Frame 1 2 3 4 5 6 7 8 9

Time of shot (sec) 65.8 67.8 68.5 69 69.8 70.2 71.2 72.5 80.5

Time difference (sec) 2.0 0.7 0.5 0.8 0.4 1.0 1.3 8.0
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substantially weaker than for the gentle slope. As this lower wave part rises, the

reflected wave is generated (frame 5). This process ends with a restored upper layer

(frame 6). An upper layer thinning is not observed. The reason is the presence of the

“insert” that functions as an additional sink of wave energy.

A further increase of the slope angle does not only result in a change of the

pattern of the flow but reflection coefficients are changed as well. In experiments

Table 3.13 Summary parameters of incident and reflected waves (nonuniform slope, a ¼ 12:46�,
b ¼ 60�Þ
No.

exp.

No.

run

Parameters

[cm]

Type of

wave

No.

gauge

Distance

[cm]

Amplitude

a, [cm]

c,
[cm/s]

1406 run 1 H ¼ 29:5
h 1 ¼ 3:5
d ¼ 0:45

Inc. 4 201.5 5.2 8.5

Inc. 2 132.0 5.2 8.6

Refl. 4 201.5 3.75 8.05

Refl. 2 132.0 3.8 8.05

run 2 H ¼ 30

h 1 ¼ 3:7
d ¼ 0:57

Inc. 4 201.5 4.3 7.9

Inc. 2 132.0 4.2 8.0

Refl. 4 201.5 2.8 7.9

Refl. 2 132.0 3.2 7.9

2006 run 1 H ¼ 30

h 1 ¼ 3:1
d ¼ 0:52

Inc. 4 203.5 3.3 7.7

Inc. 2 134.0 3.2 7.8

Refl. 4 203.5 2.16 7.2

Refl. 2 134.0 2.5 7.2

run 2 H ¼ 30

h 1 ¼ 3:3
d ¼ 0:58

Inc. 4 203.5 2.9 7.4

Inc. 2 134.0 2.8 7.5

Refl. 4 203.5 2.8 7.5

Refl. 2 134.0 2.7 -

Fig. 3.50 (Experiment 1406). Sequence of six photographs of the interaction of an internal

solitary wave with nonuniform slope. The arrow shows the direction of the propagation of the

wave. The frames were consecutively numbered and times when the shots were taken are:

Frame 1 2 3 4 5 6

Time of shot (sec) 60.0 64.3 65.5 67.0 70.0 78.8

Time difference (sec) 4.3 1.2 1.5 3.0 8.8
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0407 and 0507, the third slope model was studied (b ¼ 90�, see Fig. 3.48). The

parameters of the incident and reflected waves are listed in Table 3.14. They include

the amplitudes recorded by the gauges; overall thickness H; thickness of upper layer
h 1; value of d characterizing the thickness of the intermediate layer; and calculated

speeds of the waves. Estimated amplitude-based and energy-based coefficients of

reflection,Ra ¼ a r=a i andRE ¼ Er=Ei, are displayed in Fig. 3.47 as hollow triangles.

As can be seen, the values of the coefficients are substantially smaller than the data

obtained for uniform slope. Here, once more the question arises about which value of

the slope angle that must be plotted on the abscissa. In panel (a) and panel (b) of

Fig 3.47, the angle of the main part of the slope, b, and the characteristic length ratio,
Lw=LS, where LS is the slope length, are plotted on the abscissas, respectively.

In Fig. 3.51, a series of photographs is presented. The flow pattern is similar to

the pattern discussed above when the reflection of the solitary waves from the steep

slope (b ¼ 60�) was considered. The important feature of the pattern in this case is

to generate vortical structures that are formed near the sharp edge of the “insert”.

The downward motion of the wave crest is stopped (frame 2), and then it begins

to elevate.

Table 3.14 Summary of parameters of incident and reflected waves (non-uniform slope,

a ¼ 12:46�, b ¼ 90�Þ
No.

exp.

No.

run

Parameters

[cm]

Type of

wave

No.

gauge

Distance

[cm]

Amplitude

a, [cm]

c,
[cm/s]

0407 run 1 H ¼ 30

h 1 ¼ 2:5
d ¼ 0:39

Inc. 4 214.0 4.35 7.2

Inc. 2 140.0 4.2 7.4

Refl. 4 214.0 2.3 6.8

Refl. 2 140.0 2.7 6.8

run 2 H ¼ 30

h 1 ¼ 2:7
d ¼ 0:42

Inc. 4 214.0 3.7 7.2

Inc. 2 140.0 3.6 7.0

Refl. 4 214.0 2.0 6.5

Refl. 2 140.0 2.4 6.5

0507 run 1 H ¼ 30

h 1 ¼ 2:7
d ¼ 0:43

Inc. 4 204.5 5.05 8.0

Inc. 3 150.5 4.9 7.9

Refl. 4 204.5 3.05 7.2

Refl. 3 150.5 2.9 7.2

run 2 H ¼ 30

h 1 ¼ 2:9
d ¼ 0:48

Inc. 4 204.5 4.5 7.7

Inc. 2 143.5 4.4 7.7

Refl. 4 204.5 2.55 6.9

Refl. 2 143.5 2.7 6.9

0307 run 1 H ¼ 30

h 1 ¼ 2:9
d ¼ 0:59

Inc. 4 210.0 5.8 8.3

Inc. 2 140.0 5.6 8.2

Refl. 4 210.0 3.6 7.2

Refl. 2 140.0 3.7 7.1

run 2 H ¼ 30

h 1 ¼ 3:0
d ¼ 0:66

Inc. 4 210.0 4.4 7.5

Inc. 2 140.0 4.2 7.4

Refl. 4 210.0 2.7 6.9

Refl. 2 140.0 3.0 7.0
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Part of the energy flux is directed into the “insert” where it is dissipated. When

fluid rises, the flow is separated at the sharp edge and an attached vortex is

generated. Its influence can be seen in frame 4 where a strong local elevation of

the interface takes place. The vortex causes a local deformation of the interface and

subsequent turbulization and mixing of the fluids due to the development of a flow

instability. Results of its influence are displayed in frame 5 where deformation of

the upper layer close to the ‘insert’ edge occurs. As a result, the interface form is

intermittently meandering, and its boundary is washed out (frame 6), which is

a consequence of the formation and breakdown of vortical structures. An apprecia-

ble part of the incident wave energy is spent on irregular deformation of the

interface and generation of turbulence through the destruction of the arising vortical

structures, and on mixing of the fluids. This results in a decrease of the reflected

wave energy. Such a conclusion is confirmed by estimates of reflection coefficients

that are calculated by processing of data recorded by the gauges. These coefficients

are smaller than those concerned with uniform slopes (see Fig. 3.47). It can be

concluded that the “insert” is an effective dissipater of energy of incident waves.

In summary, we may state:

1. Interaction of strongly nonlinear internal solitary waves was considered with

a nonuniform slope containing a more gentle “insert” as compared with the main

part of the slope. This “wedge” was located in the upper region of the slope. It

was shown that the influence of the “insert” is small at a gentle main slope but its

effect is high at a steep main slope.

Fig. 3.51 (Experiment 0307). Sequence of photographs of the interaction of an internal solitary

wave with nonuniform slope. The arrow shows the direction of the propagation of the wave. The

frames were consecutively numbered and times when the shots were taken are:

Frame 1 2 3 4 5 6

Time of shot (sec) 68.0 70.9 74.9 77.3 78.0 79.7

Time difference (sec) 1.9 4.0 2.4 0.7 1.7
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2. Nonuniformity of the slope as a gentle “insert” affects the reflection coefficient

only weakly. If the main slope is sufficiently steep (b � 90�), its effect increases
substantially. Due to the formation of vortical structures close to the edge

between ‘insert’ and main slope, the interface is appreciably deformed, and

flow instability leads to turbulization and mixing of fluids. As a result, the

reflection coefficient decreases.

3.5 Conclusions

Field observations show that the rate of decay of basin-scale internal waves due to

the formation of small-scale waves is appreciably greater than that by internal

dissipation (Horn et al. 2001). The nonlinear energy transfer from basin-scale

internal waves to short-period motions is an important mechanism to enhance

mixing and dissipation. Among possible mechanisms which are responsible for

the above-mentioned energy transfer, the following subprocesses can be distin-

guished: (1) nonlinear steepening and disintegration of long internal waves into

packets of short-period waves and solitons; (2) shear instability caused by energy

transfer from the mean flow to the small-scale motions; (3) shoaling and reflection

from slopes; (4) effects of localized constrictions stimulating the development of

wave instability; and (5) interaction with topography (Horn et al. 2001; Vlasenko

and Hutter 2002b).

Experimental investigations have been conducted under controlled conditions

when the required parameters of the medium and generated waves which can be

produced are of specific interest. They can be realized when experiments in

laboratory tanks are conducted. Data obtained in laboratory experiments possess

a high degree of reliability and permit considering the different features of the

dynamical processes concerning the propagation of the internal solitary waves.

The investigated results allow extending our knowledge and understanding the

character of the nonlinear wave propagation in the stratified medium.

Our experimental focus deals with the propagation and interaction of internal

waves with underwater obstacles, slopes, and the effect of localized constrictions of

the channel. The underwater obstacles are considered to be of rectangular form. The

study is a natural continuation of works devoted to the interaction of internal

solitary waves with topographic features such as triangles (Wessel and Hutter,

1996, H€uttemann and Hutter, 2001, Vlasenko and Hutter, 2001, Maurer et al.,

1996, Sveen et al., 2002, Guo et al. 2004). It has become evident that the degree

of wave interaction with a rectangular obstacle is stronger than with a triangular

obstruction. The principal attention of our experiments was also focused on

strongly nonlinear internal solitary waves. Such more complicated experimental

conditions are not only useful from a viewpoint of examination of extreme situa-

tions of wave interaction with obstacles, but also essential in verification attempts

of numerical models to calculate the scattering of internal solitary waves by

topographic features, when the point of separation is on the obstacle.

186 N. Gorogedtska et al.



The analysis of the patterns of the flows induced by the interaction of internal

solitary waves with the underwater obstacle as a plate and estimated characteristics

of the incident, transmitted, and reflected waves has shown that three scenarios of

interaction can be distinguished. The primary parameter determining the degree of

interaction is the ratio between the wave amplitude and the distance from the

interface to the top of the obstacle kint ¼ a=ðh2 � HobÞ. The scenario transforma-
tion is defined by the inequality kint < 0:3. The scenario interaction is characterized
by the interval relation 0:4< kint < 1. A distinguished feature of this regime is the

formation of a vortex pair due to the increase of the topographic effect caused by the

obstacle. This vortex pair is responsible for the generation of a downward jet at

a small angle with the vertical direction. Lighter fluid from the upper layer is

entrained by the jet and is transported downward. The third scenario blockage is

defined by the inequality kint 
 1. A peak arising near the wave crest caused by the

generation of a vortex pair transforms into a vertical jet. It is stronger than the

vortex pair in the previous case, and it penetrates to larger depth.

Analysis of experimental data showed that the process of interaction of an

internal solitary wave with an extended obstacle is similar to the process of its

interaction with a thin plate. Differences are in the quantitative characteristics.

It is shown that for a large obstacle, blockage of the flow by the obstacle is more

effective, and an appreciable part of the energy of the incident wave is spent for the

generation of a reflected wave. At moderate coefficients of interaction, the major

difference to the case, when a thin plate was used as obstacle, lies in the fact that the

arising jet is directed more horizontally; so, it does not penetrate to large depth,

and, consequently, the lighter fluid from the upper layer is not much displaced to

lower levels.

Other mechanisms resulting in an increase of mixing and dissipation are

connected with the intensification of currents and the growth of shear stresses

in constrictions. Besides, large-scale displacements of the water masses in the

constrictions intensify the local diapycnal mixing due to the increased internal

shear and bottom friction. Evidently, transformation, shoaling, and breaking of

internal waves can be caused by constrictions. The transformation and the breaking

of internal solitary waves were studied for the cases when the characteristic length

of the constriction was close to the wavelength. It is shown that the interaction of

solitary internal waves with a constriction is determined by the wave amplitude and

the value of the minimum gap of the channel generated by the constriction.

A formation of a vortex (or vortices) with horizontal axis on the back face of the

wave is observed when the wave moves through the constriction. It is shown that

the critical regime is characterized by a sharp wave steepening, an amplitude

growth in the narrow part and subsequent breaking, and the formation of a vortex

on the back face of the wave. At strong interaction, fission of the internal solitary

wave into two occurs: the leading part progresses through the constriction but the

last part is trapped and forms a reflected wave plus a tail of the leading part. Here,

a system of turbulent boluses can be formed. They move downstream and are

responsible for the transport of sub-pycnocline water.
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The motion of internal solitary waves in the passage through the constriction is

of three-dimensional character. This structure is exhibited by the formation of

a system of vortices with vertical axes which arise in the diffuser part of the

constriction. The motion of the vortices is seen for quite some time after the passage

of the waves, and their appearance is the effective mechanism of energy dissipation.

These vortices cause motions in the upper layer, as is evidenced on the photographs

of dye translation due to vortices. Another important feature of the process of the

passage of solitary waves through a constriction is the distribution of the amplitude

irregularity in the cross section in front of the constriction.

Important mechanisms of energy transformation in lakes from short-period

(internal waves) to small-period motions are concerned with the shoaling of

waves and their transformation, overturning, and breaking over sloping boundaries.

These processes lead to the generation of turbulence and water mixing. Analysis of

the results of the performed experiments and data obtained by other authors showed

that there are two principal mechanisms of wave reflections from slopes. They can

be distinguished by gentle and steep slopes. This leads to different dependences of

reflection coefficients on the topographic parameters. The topographic effect is

weak for a gentle slope and the reflection of energy takes place due to instability on

the back of the wave, its steepening, breaking, and subsequent generation of

turbulence. Then lighter fluid rises under the action of buoyancy forces with

subsequent onset of the reflected wave. The mechanism is characterized by consid-

erable mixing of light and heavy fluids. The reflection coefficients grow with

amplification of the topographic effects. The distinctive properties of this process

are high-energy dissipation and small reflection coefficients, which are realized at

gentle slopes. On the other hand, the topographic effect is strong for steep slopes.

The amplitude of the wave highly increases near the slope. When the growth stops,

rapid elevation of lighter water sets in under the influence of buoyancy forces and

an intensive reflected wave is generated. This reflection process at steep slopes is

fast. Processes leading to energy dissipation have no time to develop; so, the energy

loss to dissipation is small. The reflection coefficients are slightly changed with

the amplification of the topographic effects. The mechanism of generation of the

reflected wave is concerned with the transformation of kinetic energy of the

incident wave into potential energy associated with the submergence of light fluid

in heavier fluid, and the inverse process of potential energy transformation

into kinetic energy of the reflected waves. Thus, the process of reflection of inter-

nal solitary waves from a steep slope is characterized by small dissipation and

high reflection.

The interaction of strongly nonlinear internal solitary waves was considered with

a nonuniform slope consisting of a steep slope at lower depth and shallower sloping

element – called “insert” – close to the shore. It was shown that the influence of the

insert is small at a gentle main slope but its effect is high at a steep main slope. If the

main slope is sufficiently steep (b � 90�), the effect of the insert increases substan-
tially. Due to the formation of vortical structures close to the edge between insert

and main slope the interface is appreciably deformed; flow instability leads to

turbulization and mixing of fluids. As a result, the reflection coefficient decreases.
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An important role of data of laboratory experiments is also to provide detailed

quantitative and qualitative information that is often inaccessible under natural

conditions when performing field observations. Qualitative improvement of the

numerical models and corroboration of their validity are achieved by verification

using the data of the laboratory measurements obtained under well-defined

circumstances. Integration of numerical models and laboratory experiments are

fruitful approaches to improve the predictions of specific features of the dynamical

processes of energy transformation in lakes.
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Chapter 4

Numerical Simulations of the Nonhydrostatic

Transformation of Basin-Scale Internal Gravity

Waves and Wave-Enhanced Meromixis in Lakes

V. Maderich, I. Brovchenko, K. Terletska, and K. Hutter

Abstract The processes of the transformation of basin-scale internal waves are

simulated by a numerical three-dimensional nonhydrostatic model that is applied to

a sequence of idealized problems, namely the transformation and degeneration of

basin-scale internal waves in a rectangular basin, in a basin with a sloping bottom,

in a basin with a sill and a cross-section constriction, and finally in a small,

elongated lake. The results of the simulations are compared with laboratory

experiments and with field observations, when they are available.

4.1 Introduction

4.1.1 Physical Processes Controlling the Transfer of Energy
Within an Internal Wave Field from Large to Small Scales

In stratified media, internal waves provide an important mechanism for energy

transfer. In a stably stratified lake, wind is one of the principal sources of mechani-

cal energy, which is spent on turbulent mixing in the epilimnion, generation of

barotropic and baroclinic circulation and generation of basin-scale surface and

internal waves. Wind-induced currents in the epilimnion create the tilt of the

thermocline (metalimnion). The corresponding established potential energy is a

source for basin-scale internal waves. The Coriolis force somewhat complicates the

behavior of the system, and it is significant in long-wave dynamics if the lateral

dimension of the lake is larger than the internal Rossby radius LR ¼ cIW=f , where
cIW is the phase velocity of long internal waves and f is the Coriolis parameter.

Topographic Rossby waves (Stocker and Hutter 1987) and Kelvin and Poincaré-
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type waves are excited in these lakes (Hutter 1983). When the lateral dimension of

the lake is smaller than LR, the dominant response of the tilting of the thermocline is

a basin-scale gravitational standing internal wave (internal seiche). Field studies

indicate, however, that large-scale internal waves transform into an internal surge

that may disintegrate into a sequence of solitary waves via nonlinear steepening and

interaction with the bottom topography (Hunkins and Fliegel 1973; Thorpe 1977;

Farmer 1978; Filatov 2012, Chap. 2 this volume). The ensuing wave evolution then

leads to the formation of a continuous spectrum of waves, ranging from basin-scale

waves to waves with frequencies approaching the maximum buoyancy frequency.

Shear instability (Thorpe 1977), wave reflection (Thorpe 1997), and shoaling on the

bottom slope then cause turbulent mixing in the lake interior and benthic boundary

layer and result in an enhanced dissipation of the large-scale motion (Wuest and

Lorke 2003). In turn, turbulent mixing (meromixis) then alters the background

stratification and the transport of momentum, heat, and matter in the lake. Whereas

large-scale circulation in a lake is hydrostatic, small-scale processes describing

the formation of the internal wave spectrum are fundamentally nonhydrostatic. To

understand the mechanisms of the energy transfer between different scales, it is

necessary to parametrize the internal wave-enhanced meromixis. The use of ana-

lytical methods to describe such processes is restricted to cases of small and

moderate amplitude motions. However, internal seiching is often governed by

large amplitude phenomena. In this chapter, the processes of the transformation

of basin-scale internal waves are simulated by a numerical three-dimensional

nonhydrostatic model. In Sect. 4.2 we describe the modified model (Kanarska

and Maderich 2003) used in the simulations. Classification of the degeneration

regimes of basin-scale internal gravity waves in a lake is considered in Sect. 4.3. In

this section, the numerical model is applied to a sequence of idealized problems: the

transformation and degeneration of basin-scale internal waves in a rectangular

basin, in a basin with sloping boundary, in a basin with a sill and narrowing

cross-section and finally in a small elongated lake. Most of these problems are of

laboratory scale; this allows to compare results of the simulations with well-

controlled laboratory experiments to verify a numerical model and to separate the

effects of interest (see also Berntsen et al. 2006). The simulations were also

compared with observations when they are available.

4.1.2 Nonhydrostatic Modeling

In the past few decades, great progress has been made in developing methods for

the solution of the unsteady three-dimensional Navier–Stokes (NS) equations for

incompressible fluids, starting from seminal papers by Harlow and Welch (1965)

and Chorin (1968). These methods (see the review by Fletcher (1991)) were

implemented in computational fluid dynamics (CFD) codes developed mainly for

industrial applications. However, many motions in the ocean and lakes are

characterized by important peculiarities (1) the aspect ratio of the fluid containers,
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i.e., the ratio of the vertical to the horizontal scales is small; (2) motions are free

surface flows; and (3) flows are stratified. Therefore, the pressure distribution is

close to hydrostatic and this hydrostatic component can be easily calculated as a

function of the atmospheric pressure, free surface elevation, depth, and density. In

stably stratified basins, fast surface waves and slow internal waves coexist. A

straightforward numerical solution scheme for the NS equations to determine the

unsteady three-dimensional fields of velocity, pressure, and scalars (e.g., tempera-

ture) and a two-dimensional field of free surface elevation is computationally much

too expensive for these flows. Therefore, in almost all models (except the models of

surface wave breaking), the free surface position is calculated from the depth-

integrated continuity equation instead of the sophisticated marker-and-cell (MAC)

method (Harlow and Welch 1965) or the volume-of-fluid (VOF) method (Hirt and

Nichols 1981). The family of the so-called “projection methods” of solution of the

NS equations was developed following Chorin (1968). In the original work, the

solution of the problem was split into two steps. In the first step, the provisional

velocity field is advanced in time using the momentum equation without taking the

pressure gradients into account. The full pressure field and final divergence-free

velocity are found in the second (projection) step. To improve the efficiency of this

method in the nonhydrostatic models, the pressure is decomposed into hydrostatic

and nonhydrostatic parts (Mahadevan et al. 1996a, b; Marshall et al. 1997a, b;

Casulli and Stelling 1998). In the first step, the hydrostatic pressure gradients are

retained in the momentum equations, neglecting the contribution of the

nonhydrostatic pressure. The surface elevation and provisional velocity field are

obtained simultaneously by an implicit time-stepping method. At the second step,

the provisional velocity is corrected by including the nonhydrostatic pressure terms

in such a fashion that the resulting velocity field is nondivergent. Further

improvements include nonhydrostatic corrections of the surface elevation (Casulli

1999; Casulli and Zanolli 2002) and using the “pressure correction” method by

Jankowski (1999), Fringer et al. (2006), and Kanarska et al. (2007) in which, at the

first step, the nonhydrostatic pressure from the previous time step is also retained,

whereas at the second step, a pressure correction is computed. The major

characteristics of the nonhydrostatic baroclinic models with pressure decomposi-

tion are given in Table 4.1.

Most of the developed approaches are not compatible with a large class of

hydrostatic models that use mode-splitting and terrain-following coordinates

(e.g., POM: Blumberg and Mellor 1987; BOM: Berntsen 2000; ROMS:

Shchepetkin and McWilliams 2005; and THREETOX: Maderich et al. 2008). In

these models, the vertically integrated equations of continuity and momentum

(external mode) are separated from the equations for the vertical structure of the

flow (internal mode). The two-dimensional equations for the external mode

variables are solved explicitly, using a short external time step, whereas three-

dimensional velocity and scalar fields are computed semi-implicitly with a larger

internal step. Most of these models use terrain-following or hybrid vertical

coordinates, which allow accurate description of the complicated bottom relief of

coastal seas or lakes. Only recently, a few nonhydrostatic algorithms with mode
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splitting were developed for POM (Kanarska and Maderich 2003), BOM

(Heggelund et al. 2004), and ROMS (Kanarska et al. 2007) to convert these codes

into nonhydrostatic models or to embed nonhydrostatic submodels into large-scale

hydrostatic models. In this chapter, a modified model of Kanarska and Maderich

(2003) is described and used for modeling internal waves in lakes.

4.2 Description of the Nonhydrostatic Model

4.2.1 Model Equations

Stably stratified flows in lakes include large-scale currents, internal waves, and

turbulence. In general, three approaches can be used to describe these flows (Pope,

2000): (1) Direct numerical simulation (DNS), when the Navier–Stokes equations

supplemented by transport equations for temperature are solved; (2) Reynolds

averaged Navier–Stokes (RANS) equations supplemented by a closure model of

turbulence are solved; and (3) Large-eddy simulation (LES) in which large eddies

in resolved scales are computed, whereas small-scale turbulence in small non-

resolved scales is parametrized. The aim of this study is to gain more insight into

the energy transfer between processes of different scales in the lake; so, the LES

approach was chosen as compromise between computationally expensive DNS and

complicated RANS models. In the used LES model, the turbulent transports of

mass, momentum, and a scalar are parametrized in terms of resolved-scale flow.

The 3D equations of continuity, momentum, and scalar transport in the Boussinesq

approximation for resolved-scale variables are

Table 4.1 Nonhydrostatic free-surface baroclinic models using pressure decomposition

Reference Vertical

coordinate

Horizontal

coordinate

Mode

splitting

Hydrostatic

part

Mahadevan et al. (1996a,b) Mixed s/z Orthogonal

curvilinear

No

Marshall et al. (1997a, b) z Orthogonal

curvilinear

No

Casulli and Stelling (1998) z Cartesian No

Jankowski (1999) s Unstructured No TELEMAC

Casulli and Zanolli (2002) z Unstructured No

Kanarska and Maderich

(2003)

s Orthogonal

curvilinear

Yes POM

Wadzuk and Hodges

(2004)

z Cartesian No ELCOM

Heggelund et al. (2004) s Cartesian Yes BOM

Fringer et al. (2006) z Unstructured No

Kanarska et al. (2007) s Orthogonal

curvilinear

Yes ROMS
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@Ua

@xa
¼ 0; (4.1)

@Ua

@t
þ Ub

@Ua

@xb
� eabgfbUg ¼ � 1

r0

@P

@xa
� @tab

@xb
þ n

@

@xb

@Ua

@xb
þ @Ub

@xa

� �

� ga
r
r0

; (4.2)

@f
@t

þ Ua
@f
@xa

¼ � @ca

@xa
þ wf

@2f
@xa@xa

: (4.3)

Here t denotes time, Ua ¼ ðU;V;WÞ, P, and f are the resolved-scale velocity,

pressure, and scalar (potential temperature T and salinity S) in Cartesian coordinates
xa ¼ ðx; y; zÞ, with z directed vertically upward; r is density; r0 is undisturbed

density; fa ¼ ð0; 0; f Þ is the Coriolis parameter, eabg is the permutation symbol,

ga ¼ 0; 0; gð Þ, g is the gravitational acceleration; tab is the tensor of the subgrid-

scale turbulent stress and ca is a vector of subgrid-scale turbulent flux of the scalar;

and n and wf are kinematic viscosity and diffusivity, respectively. System (4.1)–(4.3)

is closed by the equation of state for the density r of water r ¼ r(S,T,P), according to
Mellor (1991). Note, that in (4.2) the acceleration due to the Coriolis force is taken in

the “traditional approximation” and f ¼ 2Oz, where Oz is the vertical component of

the angular velocity of the rotation of the Earth.

The tensor of turbulent subgrid-scale stresses (SGS), tab and flux of scalar, ca
are parametrized in terms of the resolved scale variables (U and f) using the eddy

viscosity model of SGS:

tab ¼ �KM
@Ua

@xb
þ @Ub

@xa

� �
þ 2

3
ksdab; (4.4)

ca ¼ �KH
@f
@xa

; (4.5)

where dab is the Kronecker symbol, KM the eddy viscosity, KH the eddy diffusivity,

and Prt ¼ KM=KHthe turbulent Prandtl number. The subgrid-scale kinetic energy

ks ¼ ð1=2Þtaa is included in the resolved scale pressure P. The eddy viscosity KM is

calculated using the Smagorinsky (1963) model, modified for stratified flows (e.g.,

Siegel and Domaradzki 1994). In this model, KM is parametrized as

KM ¼ ðCsdÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S02ð1� Rit=RicrÞ

q
; (4.6)

where Rit ¼ N02=S02 is the Richardson number:
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S02 ¼ 1

2

@Ua

@xb
þ @Ub

@xa

� �2

; N02 ¼ � g

r0Prt

@~r
@z

:

The critical value of the Richardson number Ricr ¼ 0:25 (Miles, 1961), Cs is the

Smagorinsky constant, and d ¼ minðl; lDÞ, where lD is the scale of the subgrid

turbulence. In the finite-difference representation, lD is usually the nominal grid

spacing:

lD ¼ dx � dy � dzð Þ1=3; (4.7a)

whereas l is the distance to the solid boundary or to the free surface. Here, dx and dy
are horizontal mesh sizes and dz is the vertical mesh size. However, when the

horizontal scales of processes are much larger than the vertical ones, another

representation of lD can be used, namely,

lD ¼ 3 � dx � dy � dz
dx � dyþ dy � dzþ dz � dx : (4.7b)

When dx � dy � dz, then lD � dx and when dx � dy � dz, then lD � dz. The
vertical gradient of the potential density ~r is defined by

@~r
@z

¼ @r
@z

� 1

c2s

@P

@z

where cs is the speed of sound. The value KM ¼ 0 is chosen when RitrRicr. Finally,
the turbulent Prandtl number is given by Prt ¼ 1.

The kinematic boundary condition at the free surface z ¼ � is

W ¼ @�

@t
þ U

@�

@x
þ V

@�

@y
; (4.8)

and the pressure equals P ¼ Pa, where Pa is the atmospheric pressure. The fluxes of

momentum and scalar (heat and salinity) are approximately prescribed as

KM
@ðU;VÞ

@z
¼ ðt0x; t0yÞ

r0
; KH

@ðfÞ
@z

¼ Ff; (4.9)

where t0x and t0y are the components of the surface wind stress vector; Ff are

surface heat and freshwater fluxes. Note that (4.9) assumes

@W=@xj j; @W=@yj jð Þ � @U=@zj j; @V=@zj jð Þ, which expresses the shallowness

property. At solid boundaries, the no-slip and no-flux boundary conditions are

used. At an open boundary, a set of open boundary conditions can be used (Mellor

2004).
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Integrating the continuity equation (4.1) over depth from the bottom,

z ¼ �Hðx; yÞ, to the free-surface, z ¼ �, and applying the kinematic condition

(4.8) and the no-slip condition on the bottom yields the equation

@�

@t
þ @

@x

Z �

�H

Udz0 þ @

@y

Z �

�H

Vdz0 ¼ 0; (4.10)

that will be used to determine the elevation of the free surface.

The pressure P can be decomposed into the sum of atmospheric Pa, hydrostatic

Ph, and nonhydrostatic Q components as P ¼ Pa þ Ph þ Q. The hydrostatic pres-

sure component is determined from the vertical momentum equation by neglecting

the convective, the Coriolis, and the viscosity terms as

Ph x; y; z; tð Þ ¼ gr0� x; y; tð Þ þ g

Z 0

z

r x; y; z0; tð Þdz0 (4.11)

We assume that at the free surface, z ¼ �, the nonhydrostatic component of the

pressure equals to zero ðQ ¼ 0Þ. This does not mean, however, that effects of

nonhydrostatic pressure disappear at the surface because they persist in the momen-

tum equations and therefore in (4.10) that govern the free surface evolution.

4.2.2 Model Equations in Generalized Vertical Coordinates

The nonhydrostatic numerical algorithm was implemented using a horizontal

curvilinear orthogonal coordinate system (Mellor 2004) and general vertical

coordinates (Mellor et al. 2002). Transformation from the Cartesian coordinates

into general vertical coordinates allows flexible and accurate description of the

bottom topography. For the sake of simplicity, Cartesian horizontal coordinates are

considered.

Transformation from the Cartesian coordinate system (x,y,z,t) to the s-coordinate
system (x*, y*, k, t*) is

x ¼ x�; y ¼ y�; t ¼ t�

zk ¼ � x�; y�; t�ð Þ þ s x�; y�; k; t�ð Þ (4.12)

where k is a vertical variable. The top numerical level at k ¼ 1 follows the water

surface (s ¼ 0 at k ¼ 1) and the lowest numerical level k ¼ kb follows the bottom
surface (s ¼ �ðH þ �Þ at k ¼ kb). The transformation includes as limiting cases the

standard sigma system: s ¼ sðkÞðHðx; yÞ þ �ðx; y; tÞÞ and quasi-z-level system:

s ¼ sðkÞðHmax þ �ðx; y; tÞÞ, where Hmax is the maximum depth (Fig. 4.1). In the

quasi-z-level system, s is still a function of time and the z-levels change in time

according to changes of the free surface elevation. The quasi z-level system is most
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appropriate for steep bottom topography with underwater structures, whereas the

sigma system is best for smooth topography.

It is well known that terrain-following ocean models have difficulties in

simulating baroclinic flows over steep topography because of the pressure gradient

errors. Two parameters describe the steepness of the bottom topography (Ezer et al.

2002): “slope parameter” sH ¼ dHj j=2H and “hydrostatic consistency parameter”

rH ¼ sdH=ðHdsÞ, where dHand ds are grid cell variations ofH and s. When sH � 1

and rH � 1, then the sigma-system can be applied but elsewhere quasi-z-level
system should be used. With (4.12), the transformation of the governing equations

(4.1)–(4.3) from the Cartesian coordinates into the s-vertical coordinate system

(Kanarska and Maderich 2003) is as follows (asterisks are now omitted):

@Usk
@x

þ @Vsk
@y

þ @UA1

@k
þ @VA2

@k
þ @W

@k
¼ 0; (4.13)

Fig. 4.1 Vertical coordinate system: (a) quasi-z levels and (b) sigma levels
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@Usk
@t

þ @U2sk
@x

þ @UVsk
@y

þ @Uo
@k

� fVsk

¼ �gsk
@�

@x
� g

sk
r0

Z1

k

sk
@r
@x

þ A1

@r
@k0

� �
dk0 � @skQ

@x
þ @QA1

@k

� �

þ @

@k

ðKM þ nÞ
sk

@U

@k

� �
þ DifðUÞ;

(4.14)

@Vsk
@t

þ @UVsk
@x

þ @V2sk
@y

þ @Vo
@k

þ fUsk

¼ �gsk
@�

@y
� g

sk
r0

ð1

k

sk
@r
@y

þ A2

@r
@k0

� �
dk0 � @skQ

@y
þ @QA2

@k

� �

þ @

@k

KM þ nð Þ
sk

@V

@k

� �
þ DifðVÞ;

(4.15)

@Wsk
@t

þ @WUsk
@x

þ @WVsk
@y

þ @Wo
@k

¼ � @Q

@k
þ @

@k

KM

sk

@W

@k

� �
þ DifðWÞ; (4.16)

where, sk ¼ ds is the distance between levels and

A1 ¼ � @s

@x
þ @�

@x

� �
; A2 ¼ � @s

@y
þ @�

@y

� �
; A3 ¼ � @s

@t
þ @�

@t

� �
:

The transformed vertical velocity o is given by

o ¼ W þ A1U þ A2V þ A3: (4.17)

The equation for the scalar f (4.3) is written as

@fsk
@t

þ @Ufsk
@x

þ @Vfsk
@y

þ @Wf
@k

¼ @

@k

ðKH þ wfÞ
sk

@f
@k

� �
þ DifðfÞ: (4.18)

while the terms of the horizontal diffusion of momentum and scalar are

DifðUÞ ¼ @t̂xx
@x

þ @

@k

A1

sk
t̂xx þ @t̂xy

@y
þ @

@k

A2

sk
t̂xy;

DifðVÞ ¼ @t̂yy
@y

þ @

@k

A2

sk
t̂yy þ @t̂xy

@x
þ @

@k

A1

sk
t̂xy;
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DifðWÞ ¼ @t̂zx
@x

þ @

@k

A2

sk
t̂zx þ @t̂zy

@y
þ @

@k

A1

sk
t̂zy;

DifðfÞ ¼ @q̂x
@x

þ @

@k

A1

sk
q̂x þ

@q̂y
@y

þ @

@k

A2

sk
q̂y;

where

t̂xx ¼ 2KM sk
@U

@x
þ @

@k
A1U

� �
;

t̂xy ¼ t̂yx ¼ KM sk
@U

@y
þ @

@k
A2U þ sk

@V

@x
þ @

@k
A1V

� �
;

t̂yy ¼ 2K
M

sk
@V

@y
þ @

@k
A2V

� �
;

t̂xz ¼ 2KM sk
@W

@x
þ @

@k
A1W

� �
; q̂x ¼ KH sk

@f
@x

þ @

@k
A1f

� �
;

t̂yz ¼ 2KM sk
@W

@y
þ @

@k
A2W

� �
; q̂y ¼ KH sk

@f
@y

þ @

@k
A2f

� �
:

Note that the metric of the coordinate system x; y; k; t [with asterisks x�; y�; t� in

(4.12)] is not orthogonal, and the unknown velocity components (U;V;W) are not

those of the original Cartesian system.

Apart from topographic Rossby waves, the above equations describe fast exter-

nal gravity waves and slow internal gravity waves. In many circulation models

(e.g., POM, BOM, ROMS, and THREETOX), the vertically integrated equations

of motion and continuity (external mode) are separated from the equations for

the vertical structure (internal mode). The 2D equations for the external mode

are solved then explicitly, using a short external time step DtE to satisfy the

Courant–Friedrichs–Lewy condition for fast barotropic long waves. The 3D

equations for the internal mode are solved semi-implicitly with a larger internal

step DtI. This approach was recently implemented in nonhydrostatic algorithms

(Kanarska and Maderich 2003; Heggelund et al. 2004; Kanarska et al. 2007). The

vertically averaged barotropic velocities and nonhydrostatic pressure are given by

�U 	
ð1
kb

Udk; �V 	
ð1
kb

Vdk; �Q 	
ð1
kb

Qdk;

in which integration is from the basal to the free surface. With these, the equations

for the surface elevation (4.10) can be written as

@�

@t
þ @Usk

@x
þ @Vsk

@y
¼ 0: (4.19)
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The depth-averaged horizontal momentum equations take the forms

@ �Usk
@t

þ @ �U
2
sk

@x
þ @ �U �Vsk

@y
� f �Vsk þ gsk

@�

@x

¼ �t0x þ tbx þ Dif ð �UÞ � g
sk
r0

ð1
kb

ð1
k

sk
@r
@x

þ A1

@r
@k0

� �
dk0dk

� sk
@ �Q

@x
þ A1

@ �Q

@k

� �
þ Gx; (4.20)

@Vsk
@t

þ @ �U �Vsk
@x

þ @ �V
2
sk

@y
þ f �Usk þ gsk

@�

@y

¼ �t0y þ tby þ Difð �VÞ � g
sk
r0

ð1
kb

ð1
k

sk
@r
@y

þ A2

@r
@k0

� �
dk0dk

� sk
@ �Q

@y
þ A2

@ �Q

@k

� �
þ Gy; (4.21)

whereGx;Gy are the so-called dispersion terms (Blumberg andMellor 1987), which

are the result of the integration over depth of the advective and diffusive terms; and

tbx; tby are the bottom shear stresses, that can be determined from the internal mode

solution. The terms Difð �UÞ and Difð �VÞ are depth-averaged horizontal viscosity. For
depth-independent kinematic viscosity, Difð Þ ¼ Difð Þ.

4.2.3 Numerical Algorithm

The model equations are solved on an Arakawa-C grid with the scalars located at

the center of the cell, while the velocity components are defined at the center of the

cell faces. The numerical solution of the governing equations is based on the

modified algorithm by Kanarska and Maderich (2003), with the following four-

stage procedure: (1) calculation of the free surface level and the depth-integrated

velocity field; (2) calculation of the provisional hydrostatic components of velocity;

(3) calculation of the nonhydrostatic components of the velocity and pressure fields;

and (4) calculation of scalar fields. The procedure of the solution of the model

equations on the time interval [n� 1; nþ 1] with external time step DtE and

internal time step DtI ¼ MDtE is summarized as follows:

First Stage. Following the POM algorithm (Blumberg and Mellor 1987), the 2D

equations for the external mode are solved explicitly with a short external time step

DtE ¼ DtI=M to determine the free surface elevation and depth-averaged velocities:
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�mþ1 � �m�1

2DtE
þ @ �Uskð Þm

@x
þ @ �Vskð Þm

@y
¼ 0; (4.22)

�Uskð Þmþ1 � �Uskð Þm�1

2DtE
þ
@ �U

2
sk

� �m
@x

þ @ �U �Vskð Þm
@y

� Dif �U
m�1

� �

þ gsk
@�m

@x
� f �Vskð Þm

¼ � sk
@ �Q

n

@x
þ A1

@ �Q
n

@k

� �
� gsk

n

r0

ð1
kb

ð1
k

sk
n @r

n

@x
þ A1

@rn

@k0

� �
dk0dk

þ Gn
x �

tðxÞ

r0
þ tnbx;

(4.23)

�Vskð Þmþ1 � �Vskð Þm�1

2DtE
þ @ �V �Uskð Þm

@x
þ
@ �V

2
sk

� �m
@y

� Dif �V
m�1

� �

þ gsk
@�m

@y
þ f �Uskð Þm

¼ � sk
@ �Q

n

@y
þ A2

@ �Q
n

@k

� �
� gsk

n

r0

ð1
kb

ð1
k

sk
n @r

n

@y
þ A2

@rn

@k0

� �
dk0dk

þ Gn
y �

tðyÞ

r0
þ tnby:

(4.24)

The index m ¼ 1; . . . ;M marks the external time stepping, while the index n
refers to the internal time stepping. The Courant–Friedrichs–Levy (CFL) computa-

tional stability condition limits the external mode time step DtE. All terms on the

right-hand side of (4.22)–(4.24) are evaluated at the internal time step and kept

constant during the external time steps. The advective and horizontal diffusion

terms in the external mode are calculated by vertical integration of the

corresponding internal terms. To retain the nonhydrostatic dynamics in the free

surface field, (1) the terms involving the nonhydrostatic pressure are retained in

equations (4.23)–(4.24) following Kanarska et al. (2007) and (2) the initial 2D

velocity fields on each external stage are determined by direct integration of the

general nonhydrostatic 3D velocity fields of the previous internal step. According to

the POM algorithm, the obtainedM fields of the free surface elevation are averaged

at the interval [n; nþ 1]. This averaged value � is used in the internal mode

equations at the following stage. Thus, two modes are directly coupled at each

internal step.

Second Stage. The 3D equations for the internal mode are solved by the

projection method at the second and third stages. At first, the momentum equations

without the nonhydrostatic component of the pressure (Q ¼ 0Þ are solved semi-

explicitly with a large internal time step DtI to determine the provisional velocities

U;V;Wð Þ. In semi-discrete form, they are
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~Usk
	 
nþ1 � Uskð Þn�1
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þ f Vskð Þn; (4.25)

~Vsk
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2DtI
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@k
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sk
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k

sk
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n
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KM þ nð Þ
sknþ1
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" #
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� f Uskð Þn; (4.26)

~Wsk
	 
nþ1 � Wskð Þn�1

2DtI
þ @ UWskð Þn

@x
þ @ VWskð Þn

@y
þ @ Woskð Þn

@k

¼ @

@k

KM þ nð Þ
sknþ1

@ ~W
nþ1

@k

" #
þ Dif Wn�1

	 

: (4.27)

At this stage, all boundary conditions for the velocity field are satisfied. As evident

from (4.25)–(4.27), the vertical viscosity terms are treated implicitly. When these

equations are discretized, the three-diagonal matrices are solved by the direct

method.

Third Stage. At this step, the solution for the provisional velocity field is

corrected with the gradient of the nonhydrostatic pressureQ to satisfy the continuity

equation. In semi-discrete form, the momentum equations are

Uskð Þnþ1 � ~Usk
	 
nþ1

2DtI
¼ � @ skQð Þnþ1

@x
þ @ QA1ð Þnþ1

@k

 !
; (4.28)

Vskð Þnþ1 � ~Vsk
	 
nþ1

2DtI
¼ � @ skQð Þnþ1

@y
þ @ QA2ð Þnþ1

@k

 !
; (4.29)

Wskð Þnþ1 � ~Wsk
	 
nþ1

2DtI
¼ � @Qnþ1

@k
(4.30)

and the continuity equation is
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@ Uskð Þnþ1

@x
þ @ Vskð Þnþ1
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þ @ UA1ð Þnþ1

@k
þ @ VA2ð Þnþ1

@k
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@k
¼ 0: (4.31)

Substitution of the expressions for the velocities into (4.31) results in the Poisson

equation for the nonhydrostatic pressure component Q as follows:
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@Q

@k

� �
þ @

@k

A1
2

sk

@Q

@k

� �
þ @

@k

A2
2

sk

@Q

@k

� ��nþ1

¼ 1

2DtI

@ ~Usk
	 

@x

þ @ ~Vsk
	 

@y

þ @ ~UA1

	 

@k

þ @ ~VA2

	 

@k

þ @ ~W

@k

#nþ1
2
4 :

(4.32)

The discretization of the Poisson equation for Q in the s-coordinate system leads

to a linear system of equations with a diagonal band matrix of width equal to 151 for

the nonhydrostatic pressure Qi;j;k:

a1Qiþ1;j;k þ a2Qi�1;j;k þ a3Qiþ1;j;kþ1 þ a4Qi�1;j;kþ1 þ a5Qi;jþ1;k þ a6Qi;j�1;k

þ a7Qi;jþ1;kþ1 þ a8Qi;j�1;kþ1 þ a9Qiþ1;j;k�1 þ a10Qi�1;j;k�1 þ a11Qi;jþ1;k�1

þ a12Qi;j�1;k�1 þ a13Qi;j;kþ1 þ a14Qi;j;k�1 þ a15Qi;j;k ¼ RQ;

(4.33)

where

a1 ¼
dzijk skð Þiþ1=2;j

dxijdxxij
; a2 ¼

dzijk skð Þi�1=2;j

dxijdxxi�1;j
;

a3 ¼ � dzijk
dxij

Aiþ1;j;k
1

dziþ1;j
þ Ai;j;kþ1

1

dzi;j

 !
; a4 ¼ dzijk

dxij

Ai�1;j;k
1

dzi�1;j
þ Ai;j;kþ1

1

dzi;j

 !
;

a5 ¼
dzijk skð Þi;j�1=2

dyijdyyij
; a6 ¼

dzijk skð Þi;j�1=2

dyijdyyi;j�1

;

a7 ¼ � dzijk
dyij

Ai;jþ1;k
2

dzi;jþ1

þ Ai;j;kþ1
2

dzi;j

 !
; a8 ¼ dzijk

dyij

Ai;j�1;k
2

dzi;j�1

þ Ai;j;kþ1
2

dzi;j

 !
;

a9 ¼ dzijk
dxij

Aiþ1;j;k
1

dziþ1;j
þ Ai;j;k�1

1

dzi;j

 !
; a10 ¼ � dzijk

dxij

Ai�1;j;k
1

dzi�1;j
þ Ai;j;k�1

1

dzi;j

 !
;

1 For brevity, this will be called a “15-diagonal” matrix.
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a11 ¼ dzijk
dyij

Ai;jþ1;k
2

dzi;jþ1

þ Ai;j;k�1
2

dzi;j

 !
; a12 ¼ � dzijk

dyij

Ai;j�1;k
2

dzi;j�1

þ Ai;j;k�1
2

dzi;j

 !
;

a13 ¼ � 1þ A1
i;j;kþ1=2

	 
2 þ A2
i;j;kþ1=2

	 
2
skð Þij � dzzij;k

;

a14 ¼ � 1þ A1
i;j;k�1=2

	 
2 þ A2
i;j;k�1=2

	 
2
skð Þij � dzzij;k�1

;

a15 ¼ � dzijk skð Þiþ1=2;j

dxijdxxij
� dzijk skð Þi�1=2;j

dxijdxxi�1;j
� dzijk skð Þi;jþ1=2

dyijdyyij
� dzijk skð Þi;j�1=2

dyijdyyi;j�1

� 1

skð Þij
1þ A1

i;j;k�1=2
	 
2 þ A2

i;j;k�1=2
	 
2

dzzijk�1

 
þ 1þ A1

i;j;kþ1=2
	 
2 þ A2

i;j;kþ1=2
	 
2

dzzijk

!
;

RQ ¼ 1

2DtI

~Uiþ1;j;k skð Þiþ1 2;j= � ~Ui;j;k skð Þi�1 2;j=

dxi;j

"
þ

~Viþ1;j;k skð Þiþ1 2;j= � ~Vi;j;k skð Þi�1 2;j=

dyi;j

þ ~Ui;j;k�1A
i;j;k�1
1 � ~Ui;j;kþ1A

i;j;kþ1
1

� �

þ ~Vi;j;k�1A
i;j;k�1
2 � ~Vi;j;kþ1A

i;j;kþ1
2

� �
þ ~Wi;j;k � ~Wi;j;kþ1

	 
inþ1

;

where

dxxi;j ¼ dxi;j þ dxiþ1;j

2
; dyyi;j ¼ dyi;j þ dyi;jþ1

2
;

dzi;j;k ¼ zi;j;k � zi;j;kþ1; dzzi;j;k ¼ zzi;j;k � zzi;j;kþ1:

The generalized coordinate system is not orthogonal and it results in the appear-

ance of cross-terms in (4.33), whereas in the z-system, which is orthogonal, the

corresponding matrix is 7-diagonal (see Fig. 4.2). The linear system (4.33) is solved

by us using the bi-conjugate gradient method with incomplete LU decomposition

pre-conditioning (Seager 1988). Heggelund et al. (2004) used an iterative approach

when the simpler system of linear equations with a 7-diagonal matrix was solved at

each iteration step, whereas the cross-terms were calculated explicitly. Berntsen

and Furnes (2005) proposed modeling the nonhydrostatic pressure directly in the

s-coordinates to simplify the system of linear equations. For a set of numerical

experiments, Bergh and Berntsen (2009a, b) and Keilegavlen and Berntsen (2009)

showed that the difference with using the full system (4.33) and its simplified

counterpart leads to the minor errors.

In quasi-z-system coordinates, it is acceptable to use a simplified form of

equation (4.33) with a corresponding seven-diagonal matrix in which the
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coefficients a3, a4, a7, a8, a9, a10, a11, and a12 are set equal to zero due to their

smallness. The possibility of such a simplification in the general case should be

studied for given parameters of the generalized vertical coordinate.

The condition of zero normal flow is imposed at the solid boundaries. It results in

a Neumann-type boundary condition for the nonhydrostatic pressure component Q
(Fletcher 1991). At the free surface and at open boundaries Q ¼ 0. However, it

does not mean that the dynamics in the vicinity of the free surface is close to

hydrostatic because free surface dynamics is nonhydrostatic (see discussion in first

stage description). An alternative boundary condition of Neumann-type is consid-

ered by Bergh and Berntsen (2009b). It was shown that the difference between

solutions using the Dirichlet and the Neumann boundary conditions was significant

for coarse vertical resolution. Once the nonhydrostatic pressure is computed, the

corresponding velocity field Unþ1;Vnþ1;Wnþ1ð Þ is determined from (4.28)–(4.30).

Fourth Stage. The scalar fields (temperature and salinity) are computed using a

semi-implicit numerical scheme. In semi-discrete form, the scalar transport equation is

fiskð Þnþ1 � fiskð Þn�1

2Dti
þ @ Ufiskð Þn

@x
þ @ Vfiskð Þn

@y
þ @ Wfiskð Þn

@k

¼ @

@k

KH þ wf
	 


sk

@fi
nþ1

@k

" #
þ Dif �fi

n�1
� �

(4.34)

The advective terms in the equations for the scalar function are approximated by

total variation diminishing (TVD) schemes (Van Leer 1979). Implicit treatment of

the vertical diffusion terms is used. The three-diagonal matrix obtained after spatial

discretization is solved by the direct method.

Fig. 4.2 Spatial scheme of finite-difference representation of the Poisson equation for the

nonhydrostatic component of the pressure in generalized vertical coordinates. Black balls corre-
spond to nodes used in the z-system of coordinates
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4.3 Regimes of Degeneration of Basin-Scale Internal

Gravity Waves

4.3.1 Linearized Ideal Fluid Problem

Consider an idealized two-layer model of an elongated stratified lake. The rectan-

gular basin of length L, breadth B (B � L), and depth H (H � L) is filled with two

layers of undisturbed thicknesses h1and h2, with densities r1 and r2>r1. These
layers are divided by an interface layer with thickness dr. The motions in the basin

can be caused by an initial tilt of the interface �i, with amplitude �i0, and by a tilt of
the free surface, with amplitude �0 (Fig. 4.3). In the absence of rotation, the initially
tilted interface and free surface cause long surface and internal waves that form

standing surface and internal wave patterns.

The simple ideal fluid problem for the two-layer stratification ðdr 	 0Þ in a

narrow basin of constant depth and width can be formulated for small interface and

surface disturbances in the hydrostatic and Boussinesq approximations (e.g., Gill

1982). The seiching along the basin ðV 	 0Þ is described by a system of equations

for continuity and momentum in layers as

@ð� � �iÞ
@t

þ h1
@U1

@x
¼ 0; (4.35)

@U1

@t
þ g

@�

@x
¼ 0; (4.36)

@�i
@t

þ h2
@U2

@x
¼ 0; (4.37)

@U2

@t
þ g

@�

@x
þ g0

@�i
@x

¼ 0; (4.38)

Fig. 4.3 Schematics of a two-layer basin
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where U1 and U2 are velocities in the upper and lower layers and the reduced

gravity is g0 ¼ gðr2 � r1Þ=r2 � gðr2 � r1Þ=r0.
Combining (4.35), (4.37), and (4.36), (4.38) yields equations for the barotropic

mode

@�

@t
þ H

@ �U

@x
¼ 0; (4.39)

@ �U

@t
þ gH

@�

@x
þ g0h1

@�i
@x

¼ 0; (4.40)

in which the depth-independent barotropic component of the velocity is
�U ¼ ðh1U1 þ h2U2Þ=H. The last term in (4.40) can be dropped, because in the

Boussinesq approximation g0 � g and (4.39)–(4.40) reduce to the wave equation

for �

@2�

@t2
¼ c20

@2�

@x2
; (4.41)

where c0 ¼
ffiffiffiffiffiffi
gH

p
is a speed of linear long surface waves. The solution of (4.41)

with boundary conditions of no flux ( �U ¼ 0) on the walls at x ¼ 0; Lf g describes

long standing waves (surface seiche) with period TðmÞ ¼ 2L=mc0; m ¼ 1; 2; 3; :::.
The equations describing the baroclinic mode are derived for DU ¼ U2 � U1. With

the rigid lid approximation ð� � �iÞ, these equations are

� @�i
@t

þ h1h2
H

@DU
@x

¼ 0; (4.42)

@DU
@t

þ g0
@�i
@x

¼ 0; (4.43)

and reduce to the equation for the interface elevation

@2�i
@t2

¼ c20i
@2�i
@x2

; (4.44)

where

c0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0h1h2=H

p
(4.45)

is the linear speed of long interface internal waves. The boundary conditions of

no-flux ðU1 ¼ U2 ¼ 0Þ on the walls at x ¼ 0; Lf g can be rewritten using (4.43) as

@�i
@x

¼ 0: (4.46)
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The solution of (4.44) with boundary conditions (4.46) describes long internal

standing waves (internal seiche) with period TðmÞ ¼ 2L=mc0i; m ¼ 1; 2; 3; . . . . In
particular, the analytical solution can be obtained (Boegman et al. 2005a, b) for an

initial motionless linearly tilted interface and no motion as

at

�iðx; 0Þ ¼
2

L
x� 1

� �
�i0;

@�iðx; 0Þ
@t

¼ 0: (4.47)

This solution is the Fourier cosine series ðn ¼ 1; 3; 5; :::Þ

�i ¼ �
X1
n¼1

8�0i

ðnpÞ2 cos
np
L
x

� �
cos

c0inp
L

t
� �

: (4.48)

The linear solution shows that, in the spatial–temporal evolution of the interface,

the basin-scale baroclinic disturbances dominate. However, the linear solution

of the problem cannot describe the formation of internal bores and their subsequent

decomposition into the packets of internal solitary waves, which are observed in

lakes.

4.3.2 Nonlinear Models of Internal Waves

The detailed overviews of nonlinear models of the internal waves are given by

Ostrovsky and Stepanyants (1989, 2005) and Helfrich and Melville (2006). The

unidirectional propagation of internal solitary waves (ISW) of weak and moderate

amplitude can be described by the extended Korteweg–de Vries (eK–dV or

Gardner) equation (e.g., Grimshaw et al. 2002). In the rigid lid approximation

and in a basin of constant depth, it is given by

@�

@t
þ ðc0i þ a� þ a1�2Þ @�

@x
þ b

@3�

@x3
¼ 0; (4.49)

where the nonlinear a and a1 and dispersive b coefficients are parameters in the

Boussinesq approximation (Dr=r0<<1) given by

a ¼ 3c0i
2

h1 � h2
h1h2

; b ¼ c0ih1h2
6

; (4.50)

and a1 is the cubic nonlinear coefficient

a1 ¼ � 3c0i
8h21h

2
2

ðh21 þ h22 þ 6h1h2Þ; (4.51)
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which is always negative for interfacial waves (Kakutani and Yamasaki 1978).

When, a1 ¼ 0 Eq. (4.49) is reduced to the K–dV equation with the steady-state

solitary wave solution

�ðx; tÞ ¼ a sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a

4

h1 � h2ð Þ
h21h

2
2

s
x� ðc0i þ aa=3Þtð Þ

" #
: (4.52)

The amplitude a is positive (elevation wave) if h1�h2 > 0 (a > 0) and negative

(depression wave) if (h1�h2) < 0 (a < 0). If h1�h2 ¼ 0, the interfacial solitons do

not exist.

The steady-state solitary wave solution of the Gardner equation also can be

found explicitly (see e.g., Grimshaw et al. 2008),

�ðx; tÞ ¼ 6bg2

a½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6a1bg2=a2

p
coshðgðx� bg2tÞÞ
 ; (4.53)

where g is a parameter characterizing the inverse width of the soliton. The soliton

amplitude is

a ¼ 6bg2=að1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6a1bg2=a2

p
Þ;

and its sign coincides with the sign of the coefficient of quadratic nonlinearity a.
The soliton amplitude varies from small values, when the Gardner soliton (4.53)

coincides with the K–dV soliton (4.52), to the limiting value

alim ¼ �4h1h2
h2 � h1

h21 þ h22 þ 6h1h2
; (4.54)

when the soliton has a “table-top” shape.

The theory for long waves with large nonlinearity in a two-layered basin also

predicts a steady-state solitary wave solution (Miyata 1985; Choi and Camassa

1999). This solitary wave is called the Miyata–Choi–Camassa (MCC) solitary

wave. In the Boussinesq approximation, it can be calculated from the nonlinear

ordinary differential equation

d�

dX

� �2

¼ 3gDr
c20ir0ðh21 � h22Þ
� �

� �2ð� � b1Þð� � b2Þ
ð� � b�Þ ; (4.55)

where X ¼ x� ct,

b� ¼ h1h2
h2 � h1

; c ¼ c0i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh1 � aÞðh2 þ aÞ

h1h2

s
:
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Here, c0i is the speed of the linear interface wave (4.45). The parameters b1 and b2
are the roots of the quadratic algebraic equation

b2 þ q1bþ q2 ¼ 0;

q1 ¼ � c2

g
� h1 þ h2; q2 ¼ h1h2

c2

c20i
� 1

� �
:

Equation (4.55) can be solved, and the wave form �ðxÞ is obtained implicitly by an

integral x ¼ X̂ð�Þ.
The solution (4.55) and solutions of the Euler equations for steady solitary waves

(Grue et al. 1999) predict that in the Boussinesq approximation these waves exist

for amplitudes less than the maximum value

Alim ¼ h1 � h2
2

: (4.56)

However, these solutions for solitary waves of large amplitude suffer from the

Kelvin–Helmholtz (KH) instability caused by a jump in the tangential velocity

across the interface (Camassa et al. 2006; Fructus et al. 2009).

4.3.3 Energy Equations

In this section, we consider the equations of energy transformations. In the

Boussinesq approximation, the equation of state is linearized and instead of (4.3),

a single equation for the density evolution emerges:

@r
@t

þ Ua
@r
@xa

¼ Diffusion terms: (4.57)

Multiplying the momentum equation (4.2) with Ua and (4.57) with gz and,

subsequently, summing these resulting equations yields the evolution equation for

the density of the total mechanical energy E as

@E

@t
þ @fE
@xa

¼ Diffusionþ Dissipation: (4.58)

Here, E is the sum, E ¼ EK þ EP, of the kinetic energy, EK ¼ r0U
2
a=2, and the

potential energy, EP ¼ rgz, per unit of volume, respectively. The flux of energy fE is

fE ¼ UaðPþ EK þ EPÞ (4.59)
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where P is pressure. The right-hand side of equation (4.58) represents diffusion of

energy and viscous dissipation (Venayagamoorthy and Fringer 2005; Lamb and

Nguyen 2009).

The potential energy of finite volume of fluid PE can be subdivided into the

available potential energy (APE), which is available for transformation into turbu-

lent kinetic energy, and the background potential energy (BPE), defined as the

minimum potential energy attainable through adiabatic redistribution of the density

in a given volume of fluid (Shepherd 1993; Winters et al. 1995). The APE of finite

volume V is the difference between the potential energy and BPE

APE ¼ PE� BPE ¼ g

ð
V

zrdV0 � g

ð
V

z�rrðz; tÞdV0; (4.60)

where �rrðz; tÞ is a background monotonic reference density profile. The horizon-

tally uniform background density is obtained by sorting the density field within the

flow volume V(Winters et al. 1995). The potential energy of the sorted density field

is the BPE. For example, for the two-layer stratification with constant density

difference between the layer densities in a narrow basin of constant depth and

width, the APE of seiching along the basin is

APE ¼ gBDr
2

ðL

0

�2ðx; tÞdx: (4.61)

The available potential energy density EA is defined as

EA ¼ g

ðz�

z

ð�rðz0; tÞ � rÞdz0; (4.62)

where the reference profile �rðz; tÞ is invertible with inverse z�ð�r; tÞ. The

corresponding hydrostatic pressure is �Pðz; tÞ. The value of EA is the work done to

move a fluid parcel from height z� to height z against buoyancy forces in the fluid

with reference profile �rðz; tÞ (Lamb 2007). In the closed system, �rðz; tÞ can be

obtained by sorting, and �r ¼ �rr. In an open system, like a propagating solitary

wave, the undisturbed far-field density distribution also can be used as reference

profile (Lamb and Nguyen 2009). The sum of EK and EA is called the pseudo-

energy density EPSE (Shepherd 1993). Equation (4.58) can be rewritten in terms of

the pseudo-energy as

@EPSE

@t
þ @fEa

@xa
¼ g

ðz�
z

@�rðz0; tÞ
@t

dz0 þ Diffusionþ Dissipation: (4.63)
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The flux of energy is rewritten as

fEa ¼ Uaðpþ EK þ EAÞ; (4.64)

where p ¼ P� �Pðz; tÞ. Integrating (4.64) over the depth yields, in the rigid lid

approximation,

Fa ¼ PWFa þ KEFa þ APEFa; (4.65)

where

PWFa ¼
ð0
�H

Uapdz; (4.66)

is the rate of work done by the pressure perturbations, while the quantities

KEFa ¼
ð0
�H

UaEKdz; (4.67)

APEFa ¼
ð0
�H

UaEAdz (4.68)

are the fluxes of the kinetic and available potential energies. Integrating (4.63) over

the volume V spanning the entire depth yields

d

dt
PSE ¼ FðnÞ

Sj þ
ð
V

g

ðz�
z

@�rðz0; tÞ
@t

dz0 þ Diffusionþ Dissipation

� �
dV0; (4.69)

where PSE ¼ APEþ KE;

KE ¼
ð
V

EKdV
0; (4.70)

FðnÞ is the total flux of the pseudo-energy normal to the horizontal boundary S of the

volume.

4.3.4 Classification of the Degeneration Regimes of Basin-Scale
Internal Gravity Waves in a Lake

Depending on the amplitude of the initial disturbance and the depth of the layers,

there is a wide spectrum of possible flow regimes in a basin, which essentially differ

from the solutions of the linear problem. Similar to Sect. 4.3.1, consider a rectan-

gular basin filled with two layers of fluid divided by an interfacial layer
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(see Fig. 4.3). Following Horn et al. (2001), we determine the characteristic time

scales of the main processes, and then the main regimes, which are characterized by

particular dominating mechanisms.

The period of the gravest mode Ti ¼ T1
i is the first characteristic time scale. The

maximum values of the layer velocities at the center of the basin occur when t ¼
Ti=4; 3Ti=4; 5Ti=4; . . . Before the flow reverses at t ¼ Ti=4, the layer velocities at
the center of the tank are (Horn et al. 2001)

Û1 ¼ g0
h2
H

2�i0
L

t; Û2 ¼ �g0
h1
H

2�i0
L

t: (4.71)

The interfacial shear DUi is also periodic and has a maximum at the same time as

the velocities, i.e., DU ¼ Û1 � Û2 ¼ 2g0�i0t=L. The local Richardson number in the

interface layer is

Ri ¼ g0dr
DUð Þ2 : (4.72)

In steady shear flow, the Kelvin–Helmholtz instability develops at Ri< 1=4; else,
the flow is stable. The critical shear corresponding to Ri ¼ 1=4 is

DU ¼ 2 g0dr
	 
1=2

: (4.73)

The second characteristic time TKH can be estimated from (4.72), using (4.71) with

t ¼ TKH and (4.73). This yields

TKH ¼ L

�i0

Dr
g0

� �1=2

: (4.74)

The flow will remain stable if TKH > Ti=4.
Two kinds of nonlinear effects can be essential for a finite value of the tilted

interface. In the first case, the nonlinear steepening is developed because the phase

velocity of long waves depends on the disturbed thickness of the layer (Whitham

1974). Balancing the unsteady and nonlinear terms in (4.49) at a1 ¼ 0 leads to the

steepening time scale (Horn et al. 2001)

Ts � L

a�i0
: (4.75)

The time scale for dispersion effects can be estimated by balancing the unsteady

and dispersion terms in (4.49) as Tdisp ¼ L3=b: Nonlinear steepening dominates

over dispersion when Ts=Tdisp � 1. For small interface shifts

�0i �
1

9

h21h
2
2

ðh1 � h2ÞL2 ;

dispersion effects prevent development of fronts.
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Another nonlinear mechanism of wave transformation manifests itself as forma-

tion of internal bores when flows in layers achieve a supercritical state. The critical

composite Froude number is

Fr2 ¼ Û2
1=g

0h1 þ Û2
2=g

0h2 ¼ 1; (4.76)

where Û1 and Û2 are given by (4.71). The flow may be supercritical (Fr>1) in the

center of the basin where the velocities are largest. An internal bore links the

supercritical region with the downstream (relative to the fast-flowing thin layer)

subcritical region. The characteristic time of the formation of an internal bore Tb
was estimated by substituting (4.71) in (4.76) (Horn et al. 2001),

Tb ¼ Tih1h2
4�i0

H

h31 þ h32

� �1=2
: (4.78)

The dissipative time scale Td is the e-folding time scale for the amplitude decay

of the initial internal standing wave,

Td ¼ Ti=gd; (4.79)

where gd is the decay modulus such that 2gd ¼ dE=E, whereas E is the seiche

energy (Keulegan 1959). Horn et al. (2001) estimated the dissipation for waves in

the laboratory basin, taking into account bottom, upper lid, and sidewall friction as

well as friction in the interface layer. The resulting relation is

gd ¼
pdbAb

2V
þ nHTi
2drh1h2

; (4.80)

where db ¼ nTi=pð Þ1=2 is the thickness of the laminar boundary layer, n is the

kinematic viscosity, Ab is the total area of the solid boundaries, and V is the total

volume.

The relation between the time scales (Ti; TKH; Ts; Tb, and Td) determines char-

acteristic regimes of degeneration of basin-scale waves. Equating time scales, Horn

et al. (2001) calculated regime boundaries in terms of �i0=h1 and h1=H for given

characteristics of the basin ðL; g0; drÞ. The regime boundaries for the basin-scale

seiche are shown in Fig. 4.4 following Horn et al. (2001), with the difference that

the diagram includes also regimes with 0:5b h1=Hb 1 to distinguish the difference

between the wave transformation near the bottom and near the free surface

(Kanarska and Maderich 2004). The solid curve ðTd ¼ TsÞ in Fig. 4.4 separates

regime I of damped linear waves ðTd < TsÞ from regime II of solitary wave genera-

tion ðTd > TsÞ. The supercritical regime III is formed at Tb < Ti=4. The curves

TKH ¼ Ti=4 and Tb ¼ Ti=4 separate regime IV of Kelvin–Helmholtz billows. The

curves Tb ¼ Ti=4 and TKH ¼ Ti=4 separate regime V, when flows are supercritical

and the Richardson number falls below the value 1/4 (regime of supercritical flows
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and Kelvin–Helmholtz billows). Note that ratios �i0=h1 > 1 and h1=H< 0:5 corre-

spond to an initial distribution of the density when the interface crosses the bottom,

whereas ratios �i0=h1 > 1 and h1=H> 0:5 correspond to an initial distribution of the
density when the interface crosses the upper boundary of the basin. In both cases,

the flows form gravitational currents, so regime V can be named also “the regime of

gravity currents” (Kanarska and Maderich 2004). In the limit �i0=h1 ! 1, this

regime is “lock exchange flow”.

Laboratory experiments and observations in some lakes (Horn et al. 2001)

generally support this classification. However, the scaling presented above was

derived for basins of simple form based on assumptions on weak nonlinearity and

two-layer stratification. In the following sections, the regimes of degeneration of

basin-scale internal waves will be considered numerically using the nonhydrostatic

model described in the previous section.

4.4 Numerical Simulation of Degeneration of Basin-Scale

Internal Gravity Waves

4.4.1 Degeneration of Basin-Scale Internal Waves
in Rectangular Basins

First, we consider the case of degeneration of basin-scale internal waves in a

rectangular basin using data of the laboratory experiments by Horn et al. (2001)

and results of numerical simulations. Several numerical studies have been carried

out to simulate these experiments (Kanarska and Maderich 2004; Wadzuk and

Fig. 4.4 Regime diagram. Roman numbers identify regimes. Solid lines show regime boundaries,

where the dashed line (connecting the ordinate points 1 on either side) separates regimes with

gravitational currents. The circles and triangles show laboratory experiments by Horn et al.

(2001), while numbered boxes identify numerical runs given in Tables 4.2 and 4.4
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Hodges 2004; Staschuk et al. 2005; Kanarska et al. 2007; Bergh and Berntsen

2009b). Here, these studies are complemented by using the model described in

Sect. 4.2. The experiments performed by Horn et al. (2001) were carried out in a

fully enclosed tank with length L ¼ 600 cm, height H ¼ 29 cm, and width

B ¼ 30 cm. The tank was filled with water exhibiting a two-layer salt stratification.

The density difference between the layers was Dr ¼ 20 kg m�3. The thickness of

the interface, dr, was approximately 1–2 cm. The tank could be rotated about a

horizontal axis to tilt the initial position of the interface. Prior to the experiment, it

was inclined to a prescribed angle. At the beginning of the experiment, the tank was

quickly rotated into the horizontal position. The inclined interface produced

seiching.

The parameters of the numerical runs are given in Table 4.2. The initial

conditions of these runs are identified also by boxes in Fig. 4.4. They were carried

out with molecular values of viscosity KM ¼ 10�6m2s�1 and diffusivity of salt

KH ¼ 10�9 m2s�1. The no-slip boundary condition at the bottom was used and at

the free surface, the shear stresses were set to zero. Runs 1–6 and 8–9 were carried

out in the “quasi-two-dimensional mode” in a narrow tank of width B ¼ 9 cm with

free-slip conditions on the sidewall and resolution 1; 000� 80� 5, while run 7 was

carried out with a resolution 800� 80� 25 and the no-slip condition on the

sidewalls to verify the two-dimensional character of the flows.

The position of the interface calculated from the linear analytic solution (4.48)

and density snapshots from Run 1 (hydrostatic model) at the same time are shown in

Fig. 4.5. Figures 4.5 and 4.6 show the distribution of the density snapshots of the

interface position at the same dimensionless times t=Ts in the corresponding

laboratory experiment and the nonhydrostatic Run 2. As seen in Fig. 4.5b, the

nonlinearity in the hydrostatic model causes a steepening basin-scale wave and bore

formation contrary to the linear hydrostatic solution (Fig. 4.5a). However, the

hydrostatic approximation cannot predict disintegration of the bore on a sequence

of solitary waves observed in the experiment (Horn et al. 2001), as seen in Fig. 4.5a.

As shown in Fig. 4.5, the initial tilt of the interface produced as a consequence of a

basin-scale wave, the formation of an internal surge and fission of a surge on a

sequence of internal solitary waves (ISWs). These processes correspond to Regime

II (Horn et al. 2001). The studied solitary wave generation in the experiment was

Table 4.2 Parameters of numerical experiments

Run h2=H �i0=h2 h1=H �i0=h1 Regime Resolution (x � y � z)

1 0.3 0.9 – – Hydrostatic 2; 000� 300� 5

2 0.3 0.9 – – II 2; 000� 300� 5

3 0.5 1 0.5 1 IV–V 2; 000� 300� 5

4 0.12 1.5 – – III 2; 000� 300� 5

5 – – 0.12 1.5 III 2; 000� 300� 5

6 0.45 1.22 – – V 2; 000� 300� 5

7 0.5 1 0.5 1 IV–V 800� 80� 25

8 – – 0.3 0.9 II 2; 000� 300� 5

9 – – 0.3 0.9 II 2; 000� 300� 5
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Fig. 4.7 Measured (Horn et al. 2001) and computed-by-model temporal variations of depth of the

interface in the center of the tank in Run#2

Fig. 4.5 Time series of the interface according to the linear hydrostatic solution (a) and simula-

tion of nonlinear hydrostatic case (b) for parameters of Run#1

Fig. 4.6 Time series of photographs of the experiment of Horn et al. (2001) (a) versus simulation.

# J. Fluid Mech Cambridge University Press, reproduced with permission. (b) for parameters

of Run#2
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quite well simulated in the nonhydrostatic Run 2. The model predicts amplitude and

number of generated ISWs (Fig. 4.6). The amplitude of the leading ISW a was

smaller than the upper level depth h1ða=h1 � 0:3Þ.
Therefore, the evolution and propagation of an ISW packet can be described by

the nonlinear Korteweg–de Vries (K–dV) equation. However, this evolution takes

place in a time–space-varying stratification and is subject to currents caused by

basin-scale seiching. An extended K–dV equation with time–space variable

coefficients was derived by Horn et al. (2000) and compared with their experiment

(Horn et al. 2001). It was shown that energy could be transferred either to or from

the evolving wave packet, depending on the relative phases of the evolving waves

and the background variation. The experiment in Fig. 4.6a as well as simulations in

Fig. 4.6b for T=TS ¼ 0:5; 0:75; 1 show a pycnocline broadening following an

internal surge and solitons (see also Kanarska and Maderich 2004; Staschuk et al.

2005; Kanarska et al. 2007). The same effect is also visible in the hydrostatic model

(Fig. 4.5b). It was concluded by Staschuk et al. (2005) that this broadening was

caused by strong interaction of the nonlinear wave with the wall.

The power spectral density (PSD) of the spatial variations of the interface for

Run 1 and Run 2 is shown in Fig. 4.8. Figure 4.8b shows a shift of spectra to shorter

wavelengths (l=2L ¼ 0:1� 0:2) with time that corresponds to the transfer of

energy from basin-scale waves to the solitary waves.

The frequency analysis of the temporal interface variation was carried out at the

center of the tank to exclude large-scale standing odd modes. The continuous

wavelet transformation with the Morlet basis function (Torrence and Compo,

1998) was used. Figure 4.9 shows that the major part of the energy consists of

nonlinear traveling waves with periods in the range T=Ti ¼ 0:25� 1. They were

disintegrated on the chain of short-period ðT=Ti � 1=16Þ solitary waves. These

findings agree with the frequency spectral analysis at the center of the laboratory

tank by Boegman et al. (2005b).

Figure 4.10 shows the computed density distribution of Run 3 in comparison

with the laboratory experiment. The parameters of this run correspond to the

boundary between regime IV (KH billows of Fig. 4.4) and V (supercritical flow

and KH billows). In this run initially, the interface coincides with the tank diagonal

line and the undisturbed depths of the upper and lower layers are equal, a condition

which prevents formation of ISW. Two almost symmetrical bores are formed and

the flows between them are accelerated up to the KH instability and the appearance

of billows and consequent mixing. Figure 4.11 shows the evolution of the interface

in the 3D case for Run 7. In the early stages of the instability, the growing

disturbances are two-dimensional, whereas in the next stages the structure of the

KH billows is three-dimensional.

Two cases that correspond to regime III (supercritical flow) are shown in

Fig. 4.12. The first is initially a shallow layer near the bottom, whereas the second

case is the same shallow layer cropping on the surface. In both cases initially, a

gravitational current was formed, and then a high-amplitude solibore appeared

which disintegrated into a chain of ISW. However, bottom friction in Run 4 is

important and it resulted in a slow-down of the flow and relatively early formation
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of ISW. Therefore, care should be observed when extending results of laboratory

experiments with rigid lid to free surface flows in lakes.

Figure 4.13 shows results for Run 6 corresponding to regime V (supercritical

flow and KH instability). This regime corresponds to a higher initial slope and some

asymmetry of the undisturbed upper- and lower-layer thicknesses that resulted in

the development of instability and KH billows with intense mixing and solibore.

Fig. 4.8 Power spectral density of the spatial variations of the interface at different times in

Run#1 (a) and Run#2 (b)
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Wind acting on the surface of a lake causes both external and internal seiches.

Both types of standing waves do not interact in the linear approximation at g0 � g.
Compare now the interface time series for Run 8 without initial free surface tilt

caused by external force and Run 9 with linear tilt of the free surface

�0 ¼ 0:05 � �0i. As seen in Fig. 4.14, temporal variations of the interface in the

basin of constant depth depend only weakly on the barotropic seiche.

Fig. 4.10 Photograph of the experiment of Horn et al. (2001) (a) versus simulation. # J. Fluid

Mech Cambridge University Press, reproduced with permission. (b) for parameters of Run#3

Fig. 4.11 The computed evolution of interface for Run#7

Fig. 4.9 Continuous wavelet transform of the computed depth of the interface at the center of the

tank for Run#2 using the Morlet basis function
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Fig. 4.12 The simulated density field for parameters of Run #4 (a) and Run#5 (b)

Fig. 4.14 The computed temporal variations of depth of the interface in the center of the tank in

Run#7 and Run#8

Fig. 4.13 Simulated density field for parameters of Run#6
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4.4.2 Modeling of Breaking of Internal Solitary Waves on a Slope

It was pointed out in the Introduction that energy is supplied to a lake by wind at

basin scales and then it is transferred to the small-scale motions. Horn et al. (2001)

categorized regimes corresponding to different pathways of energy transfer. Their

laboratory experiments and numerical simulations by Kanarska and Maderich

(2004), Wadzuk and Hodges (2004), Staschuk et al. (2005), and Kanarska et al.

(2007) as well as modeling results described in the previous paragraphs confirm this

classification. However, the classification includes only mixing processes related to

shear instability of flows and with bore or solibore formation, whereas in a lake an

important process of mixing is also internal wave shoaling on the bottom slope.

Internal wave breaking results in kinetic energy dissipation and mixing in the

metalimnion on the perimeter of the lake.

ISW depressions dominate a typical lake situation when the metalimnion is

closer to the surface ðh1 � h2 < 0Þ; however, during winter, due to convection,

the pycnocline can be closer to the bottom ðh1 � h2 > 0Þ, supporting ISW

elevations. The breaking process of an ISW depression over slopes was intensively

studied experimentally and theoretically in the context of ocean and lake boundary

mixing. Field observations show a variety of processes of ISW transformation in the

shallow water column, including fission of ISW depression and transition into ISW

elevation on a slope (Zhao et al. 2003; Orr and Mignerey 2003; Moum et al. 2003;

Klymak and Moum 2003; Bourgault et al. 2007b; Shroyer et al. 2008). The

laboratory experiments performed by Helfrich (1992) and Michallet and Ivey

(1999) also showed that at small slope angles the incident wave depression was

changed into a wave elevation, forming a turbulent surge or ‘bolus’. A set of

experiments was carried out by Chen et al (2007a, b) for a full range of slopes

and ISWs of both depressions and elevations. Breaking over slopes was numeri-

cally studied by Vlasenko and Hutter (2002c), Bourgault and Kelley (2007), and

Lamb and Nguyen (2009). The experiments on seiching in a rectangular basin

(Horn et al. 2001) were extended by Boegman et al. (2005a, b) for the case of basin-

scale wave degeneration in a rectangular basin with one sloping side. It was shown

that initially, an ISW packet was formed from an initial basin-scale wave, and these

waves of depressions were shoaled as waves of elevations. However, theoretical

studies of dynamics and energetics of internal seiching are still not known.

In this section, breaking of large-amplitude ISWs of depression at the whole

range of bottom slopes is simulated and compared with laboratory experiments,

including some that are presented in Chap. 3. We compare results of simulations of

ISW breaking on a slope with experiments by Michallet and Ivey (1999) and

Gorodetska et al. (2012) to validate the model and to obtain a full set of data

necessary for the calculation of energetics of breaking. Additional runs were carried

out to analyze new aspects of ISW shoaling. Except for details, the set-up of many

laboratory experiments is similar. It is sketched schematically in Fig. 4.14. The

brine stratification is in two layers, separated by a thin intermediate layer. The

waves are generated by a gravitational spreading (collapse) of a mixed volume of

water with density of the upper layer at the end of the flume (“step pool” technique
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(Kao et al. 1985)). The sign of the difference of the position of the interface �0i
between this volume and the remainder of the flume determines what kind of wave

(depression or elevation) will be generated.

The collapse generates a leading ISW traveling along the flume and shoaling on

the sloping bottom at the opposite side of the flume causing mixing and a reflected

wave. In the simulations, we mimic this approach to generate an ISW of very large

amplitude (Fig. 4.15). The ISW is described by the wave amplitude a and charac-

teristic length LW of the ISW that is defined, following Koop and Butler (1981), as

LW ¼ 1

a

ð1
�1

�idx; (4.81)

The experiments on ISWs of depression can be characterized by five nondimen-

sional parameters (1) normalized density difference ðr2 � r1Þ=r2; (2) thickness
ratio between layers h2=h1; (3) nonlinearity parameter a=Lw; and (4) ratio of height
to length of sloping side H=Ls.The nonlinearity parameter a=Lw and the ratio of the

height to the length of the sloping side H=Ls, as suggested by Boegman et al.

(2005a, b), can be combined in one parameter, the so-called Iribarren number

x ¼ ðH=LsÞ=ða=LwÞ1=2: (4.82)

Numerical values of these parameters of the experiments and simulations are

given in Table 4.3.

Fig. 4.15 Schematic diagram of the experiments (Michallet and Ivey 1999; Gorodetska et al.

2012) for ISW propagation and reflection from a slope

Table 4.3 Parameters of runs with breaking of ISW on slope

Experiment Run h2 h1= H Ls= Dr r0= a h1= a Lw= x Resolution (x � y � z)

Michallet and

Ivey (1999)

MI 2 (3D) 4.56 1 0.04 1.07 0.103 1 800 � 100 � 32

MI 2 (2D) 4.56 1 0.04 1.07 0.11 1 800 � 100 � 5

MI 8(3D) 4.88 0.169 0.04 1.06 0.106 0.52 800 � 100 � 32

MI 8(2D) 4.88 0.169 0.04 1.1 0.11 0.5 800 � 100 � 5

MI 12(3D) 4.25 0.214 0.012 1.19 0.105 0.66 800 � 100 � 32

MI 12(2D) 4.25 0.214 0.012 1.22 0.108 0.65 800 � 100 � 5

MI 15(3D) 3.35 0.214 0.047 0.74 0.07 0.8 800 � 100 � 32

MI 15(2D) 3.35 0.214 0.047 0.78 0.08 0.76 800 � 100 � 5

Gorodetska

et al. (2012)

1104 8 0.22 0.01 1.63 0.134 0.6 1,100�350�5

2906 9 1.73 0.01 1.5 0.155 4.4 1,100 � 350 � 5

A1 4.1 0.04 0.022 1.4 0.08 0.143 1,200 � 500 � 5

A2 4.1 0.15 0.022 1.4 0.08 0.53 1,200 � 500 � 5

A3 4.1 0.04 0.022 0.95 0.08 0.139 1,200 � 500 � 5
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Most simulations were carried out in the “quasi-two-dimensional mode” with

free-slip conditions on the sidewalls and free surface, whereas no-slip boundary

conditions were used at the bottom. Some experiments in Table 4.3 were performed

in three dimensions to estimate the effect of sidewalls on the wave transformations.

All runs were done using molecular values of the viscosity and salt diffusivity.

Consider the formation of large amplitude ISWs in the well-documented labora-

tory experiments of Grue et al. (1999). These experiments were carried out in a tank

of length L ¼ 21.4 m, width B ¼ 0.5 m, and total depth of the water H ¼ 0.77 m.

The brine stratification was established in two layers with thicknesses of the upper

and bottom layers h1 ¼ 0:15m and h2 ¼ 0:62m, respectively. The density differ-

ence was 0.023 kg m�3 and the interface thickness was 0.02 m. We emulated

experiment C of Grue et al. (1999), where a wave of almost maximum amplitude

Alim was created. The formation of ISWs was simulated in the quasi-two-dimen-

sional mode with resolution of 1,200 � 500 � 5 in a computational tank of length

25 m. When the ISWs approached the end of the tank, they were moved to the

beginning of a new tank of the same length, so the total distance traveled by the

wave can be much larger in the “computational tank” than in the real tank.

Figure 4.16 shows the process of ISW formation. It can be separated into three

stages. In the first stage, the head of the gravity current is formed with intensive

mixing in the rear part (Fig. 4.16a). In the second stage, the head of the gravitational

current transforms into a strongly nonlinear wave, which cannot transport the

matter contrary to the gravitational current (Fig.4.16b, c). The profile of the

interface in Fig. 4.16b and the vertical profile of the velocity at the maximum

displacement of the wave in Fig. 4.17b in the simulation and in experiment C (Grue

et al. 1999) agree well with one another. However, both simulation and experiment

show that this signal is not a solitary wave, as suggested by Grue et al. (1999). The

leading part of the wave profile is stable, and it can be described by the MCC

solution (see Sect. 4.3.2) with amplitude a ¼ 0:225m that is close to the maximum

value Alim ¼ 0:235m. However, the rear part of the wave is transformed into a

secondary wave of smaller amplitude (Fig. 4.16c), which is not revealed by Grue

et al. (1999) because this process is relatively slow. The strong shear results in a

K–H instability, which arises at the maximum displacement of the wave (Fig. 4.16b

and c). The corresponding Richardson number,

Ri ¼ � g

r0

@r
@z

@U

@z

� �2
,

; (4.83)

is also given in Fig. 4.17b. The minimum Richardson number is 0.08, which is so

much less than the critical value 0.25 that linear stability of parallel stratified flow is

guaranteed (Miles 1961; Howard 1961; Miles and Howard 1964). The computed

value of the interfacial Richardson number, Rid ¼ g0dr=ðDUÞ2 (4.72) is Rid ¼ 0:09,
also much less than the critical value 0.24. Here, dr is the thickness of the interface
layer with assumed linear distribution of the density, and DU is the shift of the

horizontal velocity on the interface. The value of dr was estimated from the

profile of the density in Fig. 4.17a as dr ¼ 0:025m. The characteristic scale of
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Fig. 4.16 Formation of ISW depression by collapse mechanism, as shown by interface �i
evolution. The dashed line corresponds to the MCC solitary wave. Boxes in (b) represent experi-
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the Kelvin–Helmholtz billows lKH in Fig. 4.16b is about 20 cm. The ratio of the

unstable billow scale to the interface thickness lKH=dr ¼ 8 agrees well with the

theoretical estimate lKH=dr ¼ 7:5 from stability analysis and results of laboratory

experiments with interfacial solitary waves of large amplitude (Fructus et al. 2009),

where the ratio lKH=dr ¼ 7:9. However, nonuniformity of flows in the solitary

wave makes use of the Richardson number as an indicator of instability and for

analysis of stability of parallel stratified flows insufficient. Figure 4.18 shows

potentially unstable regions or “pockets” (Fructus et al. 2009) with Ri < 0.25 in

the process of solitary wave formation (Fig. 4.16b) and in the steady solitary wave

(Fig. 4.16d). The horizontal length Lx of pockets with Ri < 0.25 is a helpful

Fig. 4.17 Computed density profile (a) and vertical profile of velocity and Richardson number (b)

at the maximal displacement of the wave at x ¼ 10.5 m. Boxes represent experiment C (Grue et al.

1999)

Fig. 4.18 The normalized horizontal velocity U=c0 and potentially unstable region (Ri < 0.25)

shown as shaded area in (a) unstable wave (see Fig. 4.16b) and in (b) stable wave (see Fig. 4.16d).

The scythes approximately mark the locations of the troughs in Fig. 4.16b,d
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predictor of K–H instability (Fructus et al. 2009) because this length characterizes

the horizontal extent where unstable motion can grow. The empirical relation

Lx=l0:5 ¼ 0:86; (4.84)

separates potentially stable ðLx=l0:5 < 0:86Þ and unstable pockets. Here, l0:5 is the
wavelength defined as the width of the solitary wave at the level of the half-

amplitudes aj j (see Fig. 4.16b). The computed values are Lx=l0:5 ¼ 0:9 and 0:78
for pockets in Fig. 4.16b, d, respectively. They confirm the visual observation of the

wave state: unstable in Fig. 4.16b and stable in Fig. 4.16d. As a result of mixing, the

wave amplitude decreases due to the loss of mass caused by the Kelvin–Helmholtz

instability, and the interfacial Richardson number grows to 0.11 in Fig. 4.16c. At

the third stage, the wave amplitude and shear decrease and the wave is stabilized

(Fig. 4.16d). The amplitude of the stable wave is a ¼ 0:21m and the interfacial

Richardson number is 0.14. This wave is described well by the MCC solution

(4.55), and it slowly decays by the viscous effects.

Consider now breaking of the ISW depression of large amplitude on the slope.

The kinematics and dynamics of the breaking depend on the slope, stratification,

wave amplitude, and the wavelength. At first, consider the effect of moderate and

large slope. Two experiments of Gorodetska et al. (2012) (Runs 1104 and 2906 in

Table 4.3) were simulated. The set-up of these experiments is described in detail in

Chap. 3 of this book. The parameters of the corresponding runs are given in

Table 4.3.

Figures 4.19 and 4.20 show a sequence of snapshots of experiment 1104 and

sections of the computed salinity and vorticity at different stages of shoaling of the

ISWs in Run 1104 for moderate slope ðH=Ls ¼ 0:22Þ and a=h1 ¼ 1:63. The first

frames (t ¼ 0; 5 s) show that the incoming wave is deformed since the rear front is

steepened. The next frame (t ¼ 10 s) shows that the mass of the water in the wave

depression retards near the coast and water from the lower layer pushes the rear

front with compensating flow at the lower part of the upper layer: this process is

clearly visible in the vorticity distribution. The overturning in the rear part of the

wave causes mixing and “bolus” formation (t ¼ 10 s). The “bolus” (Helfrich 1992)

Fig. 4.19 Photographs of the wave breaking of ISW at the moderate slope in the laboratory

experiment 1104 (Gorodetska et al. 2012)
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is a vortex pair formed by the momentum pulse in the rear of a breaking wave. It

entrains water from both layers and propagates to the coast as wave elevation

(t ¼ 12–28 s). This process is qualitatively the same as in experiment (MI 8)

(Michallet and Ivey 1999). It was numerically studied in detail by Vlasenko and

Hutter (2002c).

Figures 4.21 and 4.22 show a sequence of snapshots from experiment 2906 and

of sections of salinity in Run 2906 for a large slope ðH=Ls ¼ 1:73Þ and large

amplitude of the ISW ða=h1 ¼ 1:5Þ. In this case, the bolus did not form. However,

similar to a reflection of an ISW from a vertical wall (Fig. 4.6), some mixing results

in a broadening of the interface layer. The measured (Gorodetska et al. 2011) and

computed temporal variations of the depth of the interface at the position of gauge

G2 agree well (Fig. 4.23).

The breaking of an ISW on a gently sloping bottom needs more detailed

consideration. Vlasenko and Hutter (2002c) showed that for a stratified lower

layer, the transformation of an ISW was governed not only by nonlinear effects

that dominated at the mild slope and resulted in overturning, but also by dispersion

effects. Over the gently sloping bottom, a secondary wave tail is formed due to

dispersion. According to Vlasenko et al. (2005), three possible scenarios of the

behavior of large-amplitude ISWs are possible when at some point along the

inclined bottom, the critical amplitude Alim (4.56) is approached. If the inclination

Fig. 4.20 Wave breaking and run-up of ISW depression in Run 1104: (a) salinity field, (b)

vorticity
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of the slope is moderate (like in Run 1104) and the wave overturns, then the first

scenario is realized. The second scenario is an adiabatic transformation when the

ISW amplitude is close to the local value of Alim. The ISW adjusts to the almost

critical wave shape following the depth variation. The third scenario is the above-

mentioned nonadiabatic “dispersive” evolution when the wave radiates a dispersive

wave tail.

However, our numerical experiments demonstrated the possibility of one more

nonadiabatic scenario of breaking of large amplitude ISW on a gentle slope. We

considered the transformation processes in greater detail and carried out three

additional runs (A1–A3), given in Table 4.3. The numerical flume parameters are

close to those in the experiments by Grue et al. (1999).

In Run A1, the ISW of large amplitude ða=h1 ¼ 1:4Þ was exactly as generated

in experiment C of Grue et al. (1999), shown in Fig. 4.16. The slope is small

ðH=Ls ¼ 0:04Þ. The wave transformation is shown in Fig. 4.24. In this case, when

the ISW approaches the critical amplitude the KH instability arises at the trough of

the wave. KH billows merge to large-scale vortices, which efficiently mix the

interface and diminish the wave amplitude. The wave moves on to the shore without

overturning and with formation of a weak bolus. In this case, shear instability is the

dominating mechanism of the wave transformation.

In Run A2, the ISW approaching the slope is the same as in Run A1 but bottom

slope is larger ðH=Ls ¼ 0:15Þ. Figure 4.25 shows that the wave evolution follows an
intermediate scenario between the case of moderate slope (Run 1104) and gentle

slope (Run A1). As in Run A1 the KH instability appears, but at shallow water the

overturning mechanism is dominant as in Run 1104 and the wave is transformed

into a sequence of wave elevations with strong mixing in the lower layer. Consider

Fig. 4.21 Photographs of wave breaking of the ISW at the steep slope in experiment 2906

(Gorodetska et al. 2012, Chap. 3, this volume)

232 V. Maderich et al.



Fig. 4.22 Wave breaking and run-up of ISW depression in Run 2906: (a) salinity field (b)

vorticity

Fig. 4.23 The measured (Gorodetska et al. 2012, Chap. 3, this volume) and computed temporal

variations of depth of the interface in the position of gauge G2 in Run 2906
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now Run A3 where the slope is gentle ðH=Ls ¼ 0:04Þ as in Run A1 but the ISW

amplitude ða=h1 ¼ 0:95Þ is less than in Run A1. Figure 4.26 shows that the ISW

evolved without shear instability and without wave overturning. Behind the wave

depression, a wave hump arises which surges onto the shallow water. We can

conclude that at gentle slopes, large-amplitude ISWs transform according to the

fourth nonadiabatic scenario in which at first shear instability dominates, and then

the wave changes the polarity without overturning. Field observations in the South

China Sea (Orr and Mignerey 2003) confirm the existence of such a scenario of

ISW breaking (compare Figs. 4.24 and 4.27). In all cases, the sign of the vorticity

was changed in the approaching waves, which are transformed from wave depres-

sion to wave elevation.

Let us next consider an energy transformation in the breaking of an ISW on the

slope. For comparison of the energetics of breaking in 2D simulations and in field

observations with the laboratory experiments, it is important to estimate effects of

energy loss due to wall friction in laboratory tanks. A number of theoretical and

experimental studies (Leone et al. 1982; Maurer et al. 1996; Michallet and Ivey,

1999) were carried out to study this effect. They showed that the energy decays

exponentially with distance traveled by the ISWs. Bourgault and Kelley (2007)

parametrized side-wall effects in their 2D model using a quadratic friction law

and adjusting the drag coefficient CD to the measurement data of Michallet and

Fig. 4.24 Wave breaking and run-up of ISW depression in Run A1: (a) salinity field (b) vorticity.

The arrow shows the direction of wave propagation
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Fig. 4.25 Wave breaking and run-up of ISW depression in Run A2: (a) salinity field (b) vorticity.

The arrow shows direction of wave propagation

Fig. 4.26 Wave breaking and run-up of ISW depression in Run A3: (a) salinity field (b) vorticity
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Ivey (1999). Then they compared simulated reflectance characteristics with those of

Michallet and Ivey (1999) and Helfrich (1992) and concluded that side-wall friction

in the laboratory experiments was an important factor in the energy transformation

for ISW shoaling.

Here we check this suggestion using fully 3D simulations. At first, we compare

2D and 3D simulations with the observed decay of ISWs in the laboratory tank of

Michallet and Ivey (1999) without slope (Table 4.3, Exp MI2). In Fig. 4.28, the

simulated pseudo-energy PSE, normalized with its initial value is plotted against

the traveled distance weighted by the layer thickness ratio. To compare results with

Michallet and Ivey (1999), the pseudo-energy was calculated using the weakly

nonlinear estimate (Bogucki and Garrett, 1993; Lamb, 1994) for a two-layer fluid

PSE ¼ APEþ KE � gDrB
ðL

0

�2i dx; (4.85)

where the available potential energy APE is equal to the kinetic energy KE.

The straight line in Fig. 4.28 fits experiment MI2 (Michallet and Ivey 1999). As

seen from the figure, the simulations correctly describe the PSE decay. Our 2D

simulation agrees well with results of the 2D modeling (Bourgault and Kelley

2007). We conclude that the 3D model correctly describes ISW dynamics in the

laboratory flume and shows dominance of side-wall friction over interface and

bottom friction in the energy dissipation in the laboratory flume of constant width

and depth.

Fig. 4.27 Wave breaking and runup of ISW-depression in Run A3: (a) salinity field (b) vorticity
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Consider now the budget of the energy of ISW breaking at the slope. The

pseudo-energy of the incoming ISW, PSEi, is transformed into wave energy

reflected from the slope, PSEr; this energy is dissipated in the bottom boundary

layer, in the sidewall boundary layers (in the laboratory experiments), in the

interface layer, and in breaking events, and it is transferred to the potential energy

by mixing caused by wave breaking. The pseudo-energy E of waves passing

through a given cross section of a computational flume at the time interval t2 � t1
is given by

PSE ¼
ðt¼t2

t¼t1

ðy¼B

y¼0

Fxdy
0dt0; (4.86)

where Fx ¼ F1 is the flux (4.65). For weakly nonlinear ISWs in a two-layer fluid,

Fx � PWFx, and the PSE is approximately (Helfrich 1992)

PSE � c0igDrB
ðt2
t1

�2i dt: (4.87)

With the assumption that APEF and KEF in (4.65) are approximately equal, the

following simplified relation is obtained (Helfrich 1992; Bourgault and Kelley

2007):

Fx ¼
ð0
�H

Upþ rðU2 þW2Þ� �
dz �

ð0
�H

Upþ rU2
� �

dz: (4.88)

Figure 4.29a shows the dependence of the reflectivity of ISWs on the Iribarren

number for laboratory experiments (Michallet and Ivey 1999) and numerical

Fig. 4.28 Computed versus

measured (Michallet and

Ivey, 1999) decay of pseudo-

energy. Solid line fits the

experiments of Michallet and

Ivey (1999). 1:2D simulation,

2: 3D simulation, and 3: 2D

simulation by Bourgault and

Kelley (2007)
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modeling (Bourgault and Kelley 2007). Note that Michallet and Ivey (1999)

calculated the pseudo-energy of waves using the weakly nonlinear relation (4.85),

whereas Bourgault and Kelley (2007) used for the flux of the pseudo-energy

approximation, (4.86). The reflection coefficient R ¼ PSEr=PSEi depends on the

Iribarren number x (4.82). The solid curves in the figure show an exponential fit

(Bourgault and Kelley 2007),

R ¼ 1� expð�x=x0Þ; (4.89)

where x0 ¼ 0:78 0:02. As seen in this figure, the 2D simulations show a trend

similar to the experiment, but they overestimate the reflectance when compared

with the experiment. It can be explained by (1) an effect of sidewalls in the

laboratory experiment and (2) a difference in the methods of estimation of the

pseudo-energy. Consider both possibilities. Figure 4.29b shows results of

computations of reflection coefficients using 3D (1) and 2D (2) models and using

the full relation (4.65) for PSE. In this figure, the computed reflection coefficients

using 3D (3) and 2D (4) models and using relations (4.88) for the flux of the pseudo-

energy are given. Lastly, in the figure the computed reflection coefficients are

shown using 3D (5) and 2D (6) models and using relations (4.87) for PSE.

At first, compare results obtained by using 3D and 2D models. There are no large

differences between the 2D and 3D case; at least, the difference is much less than

that between the laboratory experiment and the computations in (a). Compare next

the results of computations of the reflection coefficient using relation (4.88) for the

flux of the pseudo-energy and using relations (4.87) for PSE. As panel (b) suggests,

the difference between these cases is almost the same as in panel (a) for 2D as well

as for 3D simulations. We conclude that the discrepancy in panel (a) between

computations and laboratory experiment can be explained by the difference

between methods of calculation of the pseudo-energy rather than friction on the

sidewalls of the laboratory flume. Compare now the computed reflection coefficient

using the full relations (4.65) with approximate relations (4.88) and (4.87). As seen

in panel (b), relation (4.88) overestimates the reflection coefficient. This result

agrees with conclusions of Lamb and Nguyen (2009) that are based on 2D

modeling. At the same time, relation (4.88) underestimates the reflectivity when

compared with the full relation (4.65). The three conclusions are evident from an

intercomparison of modeling and experiment (1) The friction on the sidewalls does

not strongly effect the experimental data on wave breaking in the laboratory flumes,

contrary to long-time ISWs traveling along the flumes (see Fig. 4.28); (2) the

approximate relation (4.87) for the flux of the pseudo-energy overestimates the

reflection coefficient, whereas relation (4.88) somewhat underestimates it; and (3)

the laboratory experiment data can be used for field comparison without wall

corrections because the main part of the dissipation is related with the fiction and

mixing on the slope area.

Figure 4.30 shows the dependence of the reflectance coefficient on the Iribarren

number plotted on the basis of 2D simulations, given in Table 4.3 (except Run

MI2), with the use of the full relation (4.65) for the pseudo-energy. As seen in the
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figure, the simulated dependence agrees well with the experiment. Note that curve

(4.89) overestimates the reflectivity at large slope. As experiments in Sect. 4.3.4

show, even reflection of ISWs from a vertical wall results in some mixing in the

interface layer.

Compare results of modeling using LES model (4.6) with observations of an ISW

train impacting the beach. The simulation reproduces conditions of a field experiment

(Bourgault et al. 2007) on the flank of Ile-aux-Lievres Island in the St. Lawrence

Estuary on 26August 2004 (Fig. 4.31). The dashed line in Fig. 4.31a shows an average

transect wheremeasurements were collected, black squares markmoorings (A, B, and

C), and the triangles mark thermistor and CT chains. The open arrow indicates the

direction of the leading ISW and the solid and dashed black arrows show directions of

the surface current and the current at depth 13 m, respectively. Panel (b) in this figure

shows the measured density profile and associated squared buoyancy.

The model was used in the 2D configuration along the wave direction in

Fig. 4.31a. Like numerical experiments given in Bourgault et al. (2007), the profile

of density was used in accordance with Fig. 4.31b. The initial ISW was generated in

such way to agree with observed parameters of the wave: length Lw ¼ 62 m and

amplitude a ¼ 6.5 m. The ratio a=h1 � 0:8, the slope s is approximately 0.05, and

the corresponding Iribarren number is ,x ¼ 0:16 which is close to the parameters of

Run A3 in Table 4.3. The echogram of the wave transformation is shown in

Fig. 4.32, whereas results of simulation are presented in Fig. 4.33. In the process

of transformation, the rear part of the wave becomes steeper (t ¼ 360 s). Then,

wave elevation is formed (t ¼ 500 s). This wave propagates to shore as decaying

Fig. 4.29 Reflection coefficient R versus Iribarren number. (a) Comparison of 2D simulations

(Bourgault and Kelley 2007) with laboratory experiments (Michallet and Ivey 1999); (b) Compar-

ison of reflection coefficients using 3D (1) and 2D (2) modeling and full relations (4.65) for PSE

with computations using 3D (3) and 2D (4) modeling and relation (4.86) and with computations

using 3D (5) and 2D (6) modeling and relations (4.85) and with laboratory experiments (Michallet

and Ivey 1999), where relation (4.85) was used
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“bolus” (t ¼ 680–1,100 s). Like Run A3 in Fig. 4.34, the leading wave depression

was transformed into wave elevation without breaking. The next secondary wave

was transformed with mixing (t ¼ 680 s). The secondary bolus dissipated moving

onshore (t ¼ 880–1,400 s). The process of wave transformation is again repeated

when the next wave approaches the shore. Unlike many laboratory experiments and

Fig. 4.30 Reflection

coefficient R versus Iribarren
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(Bourgault et al. 2007)
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Fig. 4.32 Echogram showing the wave impacting the flank of Ile-aux-Lievres Island (Bourgault

et al. 2007)

Fig. 4.33 The simulated density cross sections corresponding to Fig. 4.31
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observations, the first wave elevation is formed without wave overturning (cf.

Fig. 4.19) and without shear instability (cf. Fig. 4.33). It can be explained by the

small bottom slope (s ¼ 0.05) and moderate wave steepness that allowed smooth

transformation of the wave depression into wave elevation (cf. Fig. 4.33). Compar-

ing this simulation of a large-scale event using LES parametrization with DNS

simulation in Run A3 confirms that details of the dissipation mechanism do not play

an important role in the wave breaking on the sloping bottom and that results of

laboratory experiments can be used to interpret field observations.

4.4.3 Degeneration of Basin-Scale Internal Waves in Basins
with Bottom Slopes

As discussed in previous sections, in lakes the source for progressive high-

frequency ISWs is often a nonlinear internal surge that forms in the process of

seiching. The sloping topography of lakes results in internal wave shoaling. Here,

we consider degeneration of internal waves in a laboratory-scale basin with sloping

bottom at one of the basin ends. These numerical simulations reproduce some of the

laboratory experiments of Boegman et al. (2005a). These experiments were

conducted in a rectangular tank (the same as discussed in previous sections). A

uniform slope was created at one end of the tank. The tank was filled with a two-

layer salinity stratification. The density difference between the layers was

Dr ¼ 20 kg m�3. The tank was covered by a lid, which allows inclining into the

required interfacial tilt. Rapid rotation of the tank to its original horizontal position

results in an initial inclination of interface and subsequent seiching. The parameters

of the simulated experiments are given in Table 4.4. Initial conditions can be

characterized as either upwelling on the slope (Run 10) or downwelling on the

slope (Run 12). The initial configuration of the experiments is shown in Fig. 4.34.

According to the classification given in Sect. 4.3.4, Run 10 corresponds to Regime

Fig. 4.34 Initial conditions

in the experiments of

Boegman et al. (2005a, b). (a)

Upwelling on the slope (Run

10). (b) Downwelling on the

slope (Run 12)

Table 4.4 Parameters of the numerical experiments on the degeneration of basin-scale internal

waves in basins with bottom slopes

Run\Experiment h1=H �0i=h1 Regime Slope Resolution (x � y � z)

10\BO 6 0.29 �0.90 II 0.15 1,100 � 350 � 5

11\BO 6A 0.29 �0.90 II 1 1,100 � 350 � 5

12\BO 18 0.50 þ0.82 IV 0.15 1,100 � 350 � 5
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II (solitary wave generation) whereas Run 12 corresponds to Regime IV (KH

billows); it can be compared with Run 3 in Table 4.2. Run 11, with parameters of

Run 10, was performed in a rectangular tank to clarify the effects of sloping bottom.

Consider the processes of high-frequency wave formation and shoaling in Run

10 (upwelling at slope). Figure 4.35 shows a sequence of positions of the interface

between layers. At first a bore is formed (t ¼ 30 s), which is transformed into a

chain of ISWs propagating to the end of tank with slope (t ¼ 70 s). These waves are

reflected, as in the case of the rectangular tank (cf. Fig. 4.5), and shoaled on the

slope. The presence of bottom slope in Run 10 essentially changes the evolution of

the ISW chain. Breaking of the sequence of solitary waves results in mixing and

energy dissipation. The amplitude of the reflected waves is half of the incident wave

amplitude. The temporal variations of the depth of the interface in the center of the

tank for Run 11 and in Run 10 and corresponding continuous wavelet transforms

are given in Figs. 4.36 and 4.37, respectively. The formation and evolution of a

solitary wave chain in a rectangular tank (Fig. 4.36) are similar to Run 2 (Fig. 4.6).

A time–frequencies wavelet analysis in Fig. 4.36b shows that at t=T>1, the high-

frequency ISW chain persists for a long time and is decaying under viscosity

effects. However, the sloping bottom effectively damps the short waves, as seen

in Fig. 4.37b.

The kinematics of breaking in Run 10 at the given slope 0.15 is similar in the

laboratory and numerical experiments (Runs 1104 and A2) considered above in

detail. The ratio of the amplitude of the leading solitary wave to the thickness of the

upper layer a=h1 � 2 at t ¼ 120 s, and it is described well by the MCC model.

Figure 4.38 shows that in both experiment and simulation, a rear part of incident

wave is steepened; this results in the wave overturning and formation of boluses.

Fig. 4.35 Computed variations of depth of the interface in Run 10

4 Numerical Simulations of the Nonhydrostatic Transformation of Basin-Scale 243



The overturning mechanism is dominating; however, some effects of shear insta-

bility are also visible at t ¼ 130 s (cf. Fig. 4.35).

Consider the case of downwelling at slope (Run 12). Figure 4.39 shows the

sequence of positions of interface between layers. This run is close to Run 3 from

Table 4.2. However, the presence of slope results in differences between them even

in initial stages of seiching. Instead of formation of two bores in Run 3, only one

bore arose in Run 12 (t ¼ 30 s). This bore was transformed into a solibore

(t ¼ 40–60 s). Like Run 3 (see Fig. 4.10), strong shear across the interface caused

instability and formation of KH billows (t ¼ 30–40 s). These billows are well

Fig. 4.36 Computed temporal variations of depth of the interface in the center of the tank in Run

11 (a). Continuous wavelet transform of the computed depth of the interface at the center of the

tank for Run 11 using Morlet basis function (b)

Fig. 4.37 Computed temporal variations of depth of the interface in the center of the tank in Run

10 (a). Continuous wavelet transform of the computed depth of the interface at the center of the

tank for Run 10 using Morlet basis function (b)
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visible in the field of salinity and vorticity in Fig. 4.40, and they enhanced mixing

between the layers. A moving bore destroys KH structure in the interface layer.

The kinematics of wave breaking on the slope in Run 12 differs from that in Run

10. The ratio of the amplitude of the leading wave in the solibore to the thickness of

the upper layer a=h1 � 2 at t ¼ 60 s. Figure 4.41 shows that steepening of the rear

part of the leading wave is accompanied by shear instability (t ¼ 65 s). A sequence

of frames with wave breaking from simulation and laboratory experiment is given

in Fig. 4.39. Both simulations and laboratory experiments showed that a shear

instability mechanism dominates in wave breaking, whereas overturning was not

observed as bolus formation. This mechanism is similar to that observed in Run A2.

The results of modeling showed that two mechanisms (overturning and shear

instability) determine the nature of ISW depression and solibore depression

Fig. 4.38 Comparison of wave sequence breaking at the slope 3/20 with laboratory experiment

(Boegman et al. 2005a, b). (a) – Calculations (Run 10), (b) – Laboratory experiment 6. (# 2005 by

the Association for the Sciences of Limnology and Oceanography, Inc, reproduced with permission)

Fig. 4.39 Comparison of sequence of wave breaking at the slope 3/20 in simulations and

laboratory experiment (Boegman et al. 2005a, b). (a) – Calculations (Run 12). (b) – Laboratory

experiment 18. (# 2005 by the Association for the Sciences of Limnology and Oceanography, Inc,

reproduced with permission)
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breaking. By analogy with surface waves, Boegman et al. (2005a) classified internal

wave breakers according to the Iribarren number x as spilling breakers, plunging

breakers, collapsing breakers, and as Kelvin–Helmholtz breakers. Boegman et al.

(2005a) suggests that Fig. 4.38 (Run 10) is an example of plunging breaker,

whereas Fig. 4.39 presents an example of a KH breaker. Note that there is not a

full analogy between internal and surface waves because air has a density thousand

times smaller than that of water, whereas the density difference between layers of

water is of the order 10�2 and therefore, the dynamics of flows in both layers is

important for internal waves contrary to the surface wave counterpart. So, ISW

breaking can be classified as “overturning” breakers and “KH breakers.”

The computed energy transformations in Run 12 are given in Figs. 4.42–4.43.

The evolution of kinetic energy (KE) and potential energy (PE) of the tank in

Fig. 4.39 shows that shoaling of the wave chain at t ¼ 60–75 s results in the fast

suppression of the kinetic and potential energy. Figure 4.43 shows the evolution of

Fig. 4.40 Salinity (a) and vorticity (b) distributions at t ¼30 s in Run 12

Fig. 4.41 The computed variations of depth of the interface in Run 12
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pseudo-energy PSE (sum of kinetic energy and available potential energy (APE))

and of background potential energy (BPE) calculated by adiabatic sorting of density

field within volume (see Sect. 4.3.3 for details). This figure also shows that fast

transfer of energy into the BPE took place at 60–80 s when the wave train was

shoaled at the slope and mixing results in irreversible thickening of the pycnocline.

Because of strong damping of the wave energy (Fig. 4.42), the next shoaling events

at 120 s and 170 s are relatively weak in the energy transformation (Fig. 4.43). The

thickening of pycnocline is shown in Fig. 4.44. Note that another process that

results in thickening of pycnocline is a nonadiabatic background diffusion of

temperature or salinity.

4.4.4 Modeling of Interaction of Internal Waves with Bottom
Obstacles

Only a few field observations on ISW behavior over bottom obstacles are described

in the literature (Sabinin 1992; Kocsis et al. 1998). The interaction of ISW elevation

Fig. 4.42 Evolution of kinetic and available potential energy in Run 12

Fig. 4.43 Evolution of the pseudo-energy PSE and background energy BPE in Run 12
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with a triangular obstacle in a laboratory tank with two-layer stratification was

studied by Wessels and Hutter (1996). Further, H€uttemann and Hutter (2001) in

laboratory experiments and Vlasenko and Hutter (2002a, b) in numerical exercises

found that the presence of the interface layer of finite thickness results in the

generation of higher order baroclinic modes. The interaction of an ISW depression

in a two-layer fluid using a triangular obstacle with rounded tip was investigated in

the laboratory by Sveen et al. (2002) and Guo et al. (2004), whereas Brovchenko

et al. (2007) modeled such interaction with rectangular obstacles both experimen-

tally and numerically. Chen (2007b) conducted experiments and studied the trans-

formation and breaking of both ISW depressions and elevations over obstacles in

the form of triangles and semicircles of different heights. ISW breaking in a

laboratory model of a double-ridge and double-ridge and shelf was studied by

Chen et al. (2008) and Cheng et al. (2009), respectively. These studies were

motivated by interest in large ISW behavior in the South China Sea (e.g., Orr and

Mignerey 2003). Breaking of periodic progressive two-layer interfacial waves at a

ridge was also investigated through laboratory experiments by Hult et al. (2009).

In this section, the processes of ISW transformation by rectangular obstacles will

be our initial concern. In the next section, we consider the nonlinear impact of a sill

on flow structure and mixing in the seiching. We compare results of simulations of

ISW transformation and breaking over a rectangular obstacle with the laboratory

experiments of Gorodetska et al. (2012, Chap. 3, this volume). The set-up of these

experiments is represented schematically in Fig. 4.45. The stratification, established

with brine, is two layers with thin intermediate transition layer. The ISWs were

generated by collapse of a mixed volume at one end of tank (like the method

described in Sect. 4.4.2). The height, Hobst and length, Lobst of the obstacle and the
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wave amplitude a were varied in these experiments. More experimental details are

given in Sect. 3.2 of Chap. 3.

The simulations were carried out in the quasi-two-dimensional mode with free-

slip conditions on the sidewalls and the free surface, whereas no-slip boundary

conditions were used at the bottom and end walls. All runs were done using

molecular values of the viscosity and salt diffusivity. The parameters of the

numerical experiments are given in Table 4.5.

These runs were carried out for different heights, Hobst and lengths, Lobst of the
rectangular obstacles and amplitudes of ISW a at the same background brine stratifi-

cation, with upper- and bottom-layer salinities Sup ¼ 0 and Sbot ¼ 15, respectively, at

a constant temperature of 20�C. As in the laboratory experiment, the obstacle was

placed 2 m from the end wall of the computational tank with a total length of 7 m.

Exceptions were Run 0104a and Runs 1703a–c, where the obstacle was placed 5 m

from the end wall of the computational tank with a total length of 10m. This was done

to study wave transformation after the obstacle. The obstacle was varied in

computations from a plate of thickness 1.4 cm to a step of 5 m length. The resolution

was 1; 000� 500� 5 for a 7-m tank and 1; 000� 500� 5 for a 10-m tank.

The experiments can be characterized by several nondimensional parameters:

(1) Thickness ratio between layers h1=h2; (2) nonlinearity parameter aj j=Lw;
(3) ratio of the obstacle length to wavelength Lo=Lw; and (4) The blocking parame-

ter m ¼ aj j=ðh2 � HobstÞ. The last parameter was suggested by Wessels and

Fig. 4.45 Schematic diagram of experiments (Chen 2007; Nikishov and Gorodetska 2011) for

ISW transformation by an obstacle

Table 4.5 Summary of computational runs in modeling ISW interaction with obstacle

Run Hobst cm Lobst cm h1 cm h2 cm aj j cm Lw cm aj j=Lw Lw=Lobst m

2203 22 Plate 2.7 27.8 6.5 39 0.17 28 1.1

3003 19 Plate 2.8 27.7 5.6 33 0.17 23 0.64

0104 19 Plate 2.6 27.9 3.6 30 0.12 21.5 0.4

0104a 19 17 2.6 27.9 3.6 30 0.12 1.8 0.4

0104b 19 52.5 2.6 27.9 3.5 30 0.16 0.6 0.4

1503 22 17 3.2 26.8 2.1 30 0.07 1.8 0.43

1703 19 17 3.1 27.4 4.9 39 0.15 2.3 0.7

1703a 19 Plate 3.1 27.4 4.9 39 0.15 28 0.7

1703b 19 52.5 3.1 27.4 4.9 39 0.15 0.75 0.7

1703c 19 78 3.1 27.4 4.9 39 0.15 0.5 0.7

1703d 19 500 3.1 27.4 4.9 39 0.15 0.5 0.7

0403 22 17 3.6 29.4 6.2 42 0.15 2.5 0.84

0203 16 52.5 3.3 29.7 6.7 42 0.16 0.8 0.49
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Hutter (1996) in a somewhat different form. The parameter m ¼ 1 for small

obstacles and for ISWs of small amplitude, whereas m ¼ 1 when the interface in

the ISW “touches” the obstacle.

Consider the effects of the degree of blocking on the wave transmission and

reflection for the obstacle “plate”. Figure 4.46 shows the ISW transformation

visualized in laboratory experiment 0104 and the computed velocity and vorticity

for the same times in Run 0104. This experiment is characterized by a moderate

degree of blocking ðm ¼ 0:4Þ. As seen in the figure, the interaction process may be

divided into several stages. In the first stage (b), the front of the incident wave is

deformed by flow forming in the lower layer, which detaches from the plate. In the

next stage, a strong eddy in the lower layer is formed in front of the plate (c).

Fig. 4.46 The upper plates show the upper-layer evolution in the process of ISW transformation

visualized in laboratory experiment 0104 and the lower plates show computed velocity and

vorticity for the same times in Run 0104. The thick black line shows the computed interface

position. The arrow shows direction of wave propagation

250 V. Maderich et al.



The interface is strongly deformed but entrainment of wave trough into the lower

layer and mixing are weak. Then, this vortex and a much weaker vortex of

baroclinic nature follow returning in equilibrium interface.

Figure 4.47 shows the transformation of the visualized upper layer in laboratory

experiment 3003 and computed velocity and vorticity for the same times in Run

3003. This experiment is characterized by a stronger degree of blocking ðm ¼ 0:64Þ.
The interaction process is initially similar to the previous one. At the first stage (b),

the front of the incident wave is strongly deformed by flow forming in the lower

layer. This flow detached and formed a strong vortex. In the second stage (c), this

jet-like flow entrains the wave trough into the bottom layer. Then at the third stage,

Fig. 4.47 The upper plates show the upper-layer evolution in the process of ISW transformation

visualized in laboratory experiment 0303 and the lower plates show computed velocity and

vorticity for the same times in Run 3003. The thick black line shows the computed interface

position. The arrows show direction of wave propagation in the experiment
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this eddy is reflected from the bottom step and together with weaker baroclinic

vortex, causes intensive mixing of stratified water in the neighborhood of the step.

The transformation of the ISW in experiment 2203 for a large value of the degree

of blocking ðm ¼ 1:1Þ is qualitatively similar to the previous experiment, but wave

reflection is large and mixing in the jet formed in front of the plate is much higher.

This case can be named “blocking” case. Whereas in the case of weak interaction

ðm ¼ 0:4Þ, the jet angle relative to the horizontal is 15�, for the blocking case ðm ¼
1:0Þ this angle is around 80�.

The behavior of ISWs in the frontal part of a long obstacle is similar to the

interaction with thin plate. Figure 4.48 shows ISW transformation in experiment

0203 in the case of a moderate value of the blocking parameter ðm ¼ 0:49Þ. The
novel feature is detachment of the bottom boundary layer over the front wall that

feeds the big frontal vortex.

The flow regimes can be characterized by the composite Froude number:

Fr2 ¼ U2
1

g0ðh1 � �Þ þ
U2

2

g0ðh2ðxÞ þ �Þ ; (4.90)

where g0 ¼ gDr=r0 and h2ðxÞis the thickness of the lower layer. The maximum

values of the Froude number Fr2maxat the front of the obstacles of different height

and length are given in Fig. 4.49. The values of Fr2
max
grow with an increase in the

degree of blocking parameter. Note that the flow is supercritical at m> 0:6. It results
in entrainment of upper-layer water through the interface into the lower layer and

breaking of the interface and mixing, which agrees with experiments. In Run 0104

ðm ¼ 0:4Þ, the value of Frmax is 0.6, whereas in Run 3003 ðm ¼ 0:64Þ, this value is
1.1. So, we can classify the interaction as weak when Frmax < 1 and strong when

Frmax > 1.

Consider now a large-scale process of wave transformation. Several additional

runs (0104a–b, 1703a–c) were carried out in the computational tank of length 10 m

to simulate the wave evolution. Figure 4.50 shows the evolution of ISWs of the

same amplitude over the obstacle of the same height but of different lengths: (a)

plate (Run 1703a), (b) Lob ¼ 52 cm (Run 1703b), and (c) Lob ¼ 500 cm (Run

1703c). An incident solitary wave of large amplitude is well described by the MCC

model. As noted above, the processes in the frontal zone of the obstacle are similar

in the three cases. As seen in the figure, the leading reflected waves have almost the

same amplitude. The main effect of the obstacle length is the different transforma-

tion of the transmitted wave. Figure 4.51 shows the profiles of the interface in the

transmitted wave. The leading wave is also described by the MCC solution. The

amplitudes of ISWs in the cases of the plate and the obstacle were almost the same,

but for the obstacle with a length of approximately the length of the incident wave, a

second solitary wave was formed whereas behind the thin plate, it is of very small

amplitude. The transmitted wave over the step is propagated as a solitary wave with

a high-frequency tail. These results qualitatively agree with the analytical theory of

the solitary wave fission at the semi-infinite step and the simulation results

(Grimshaw et al. 2008; Maderich et al. 2009, 2010).
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The pseudo-energy PSE of waves passing through a given cross section of a

computational flume at the time interval t2 � t1 is calculated using (4.86). The

fluxes of the incident wave and that reflected by the obstacle are computed in the

cross section xr, and the flux of the transmitted wave is computed in the cross-

Fig. 4.48 The upper plates show the upper-layer evolution in the process of ISW transformation

visualized in laboratory experiment 0203 and the lower plates show computed velocity and

vorticity for the same times in Run 0203. The thick black line shows the computed interface

position. The arrows in the upper panels show direction of wave propagation in the experiment
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Fig. 4.49 The maximum Froude number Frmaxat the front of the obstacle versus degree of

blocking parameter m

Fig. 4.50 Visualized numerical simulations of the upper layer for different lengths of the obstacle

(a) plate (Run 1703a), (b) Lob ¼ 52.5 cm (Run 1703b), and (c) Lob ¼ 500 cm (Run 1703d). Waves

propagate from right to left
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section xl. The pseudo-energy of incident ðPSEinÞ, reflected ðPSErefÞ, and transmit-

ted ðPSEtrÞ waves are calculated from relation (4.86):

PSEint ¼ �
ðt¼t2

t¼t1

ðy¼B

y¼0

Fxðxr; y; tÞdy0dt0;

PSEtr ¼ �
ðt¼t2

t¼t1

ðy¼B

y¼0

Fxðxl; y; tÞdy0dt0;

PSEref ¼
ðt¼t2

t¼t1

ðy¼B

y¼0

Fxðxr; y; tÞdy0dt0: (4.91)

The relative difference of the transmitted and reflected energy dE and the

relative energy loss due to dissipation and mixing dEloss are estimated from the

relations

dE ¼ PSEin � PSEtr

PSEin

; (4.92)

dEloss ¼ PSEin � PSEtr � PSEref

PSEin

: (4.93)

Figure 4.52 shows the relative difference of transmitted and reflected energy dE
plotted using computed data and laboratory experiments by Chen (2007) and

Wessels and Hutter (1996). As seen in the figure, the difference of the transmitted

and reflected energy falls with increase of the blocking parameter and for m>0:8,
reflection dominates. The energy loss dEloss in Fig. 4.53 grows with an increase of

the interaction parameter to some critical value at m � 0:7� 0:8and then decreases.
The maximum energy loss is around 50%. It agrees with the estimated energy loss

at the step (Maderich et al. 2010) where dEloss ¼ 0:48 at m ¼ 0:73. Another effect

Fig. 4.51 The profile of interface in the leading ISW for 1-plate (Run 1703a), 2-long obstacle

(Run 1703b), and 3-step (Run 1703d)
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was revealed by Maderich et al. (2010) for ISW transforming at the step at a

moderate value of m ¼ 0:44. In that case, transformation of the transmitted wave

after the step is accompanied by shear instability and the formation of

Kelvin–Helmholtz billows like the adjustment of large-amplitude interfacial soli-

tary waves to a stable state and transformation over the very mild slope studied in

Sect. 4.3.

Note that energy transformation in experiments (Wessels and Hutter 1996; Chen

2007) was calculated using the simplified linear formula (4.87). The good

Fig. 4.52 The relative

difference of transmitted and

reflected energy dE

Fig. 4.53 The relative loss of

energy dEloss over obstacle
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agreement between experiments and calculations with obstacles of different forms

in Fig. 4.52 demonstrates that wave reflection depends mainly on the blocking

rather than on the form of the obstacle. Similar to the wave dissipation on a slope,

the energy loss calculated by (4.87) is less than when calculated with (4.86).

4.4.5 Degeneration of Basin-Scale Internal Waves in Basin
with Bottom Sill

The glacially formed alpine lakes and fjords can consist of several basins separated

from one another by sills and narrows. An example is Lake Constance where a sill

(minimum depth around 100 m) in the Mainau Island area separates two deep

basins: Obersee (maximum depth 252 m) and €Uberlinger See (maximum depth

184 m). The Mainau sill area (1% of the lake area) contributes 40% of the basin-

scale diffusivity and dissipation rate of turbulent energy (Kocsis et al. 1998). The

sill changes the structure of the internal modes and the largest scale mode shows

strong currents above the sill (M€unnich 1996). The enhanced mixing over the sill

can be attributed to wind and density currents, basin-scale internal seiche pumping

(Van Senden and Imboden 1989), and transformation and disintegration of nonlin-

ear internal waves (Vlasenko and Hutter 2002b).

In this section, we focus on the dynamics of degeneration of large-scale waves in

the basin with a sill, whereas effects of narrows and combinations of narrows and

sills will be considered in the next section. Similar to the previous sections, the

laboratory scale computational tank with two-layer salt stratification was used. The

tank has length L ¼ 6 m and height Hm ¼ 0.29 m (Horn et al. 2001), with a sill

placed in the center.

The sill is assumed of the Gaussian form

H ¼ Hm � Hsill � e�
ðx�xsÞ2
Lsill ; (4.94)

where Hm ¼ 0:29m, Hsill ¼ 0:14m, xs ¼ 3m, and Lsill ¼ 0:5m. The initial salinity

distribution corresponds to Run 8 of Sect. 4.4.1, where nondimensional parameters

are h2=Hm ¼ 0:7 and �i0=h2 ¼ 0:39. The simulations were carried out in the quasi-

two-dimensional mode using molecular values of viscosity and salt diffusivity.

Resolution was 1; 300� 500� 5 nodes.

Run 8 considered in Sect. 4.4.1 is in the regime of solitary wave generation

(Regime II). However, the presence of the sill essentially affects the wave forma-

tion process and dissipation of the wave chain. The evolution of the salinity in this

case is shown in Fig. 4.54. The initial tilt of the interface (Fig. 4.54a) produces, as in

Run 8, two-way flow that results in a surge formation on the right side of the basin

(Fig. 4.54b). The surge transforms into a chain of solitary waves (Fig. 4.54c).
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Meanwhile, the two-way flow over the sill initially accelerates and becomes

supercritical, as seen in Fig. 4.54. The theory of two-layer hydraulics predicts for

steady flow in channel that the maximal exchange flow through a sill exists when

flow is critical (composite Froude number Fr2 ¼ 1) at two control points: one is on

the top of the sill and the other is at the exit of the channel (Armi and Farmer, 1986).

The flow is subcritical ðFr2<1Þ between these two control points. However, in the

case of unsteady exchange flows these conditions are not satisfied: a zone of

supercritical flow arises at the lee side of the heavy fluid flow.

In more detail, flows over the sill are shown in Fig. 4.55. As seen in the sequence

of snapshots of salinity and vorticity in this figure, this flow is unstable. The shear

instability results in the appearance of KH billows (t ¼ 27 s) and subsequent

mixing (t ¼ 35 s). Eventually, when exchange flow is weakened the KH billows

shift to the right.

The next important event is formation of a chain of ISW depressions, which

interact with the sill (Fig. 4.56). When waves approach the sill they are steepened,

change polarity, and break. However, the breaking mechanism essentially differs

from convective breaking (Fig. 4.38) and shear-induced breaking (Fig. 4.39)

because waves interact with the sill on the background of the two-way exchange

flow. The shear flow prevents front breaking of the wave elevation approaching the

crest of the sill whereas in the lee wave crest, shear instability is enhanced resulting

in “backward” instability. The backward instability was examined by Hult et al.

(2009) in a laboratory study of breaking of periodic progressive two-layer interfa-

cial waves at a Gaussian ridge. In these experiments, backward instability is only

one of three types of instability: backward breaking, forward plunging breaking,

and forward Kelvin–Helmholtz breaking. In our numerical simulation, only the first

type was observed.

Fig. 4.54 The simulated salinity field in the case of tank with the sill Wave propagation is from

right to left
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The presence of a sill essentially changes the processes of the energy exchange

between potential and kinetic energy (Fig. 4.57). This is so because the sill is

blocking free seiching in the basin, which results in strong dissipation of supercriti-

cal flows over the sill and because the train of solitary waves breaks at the sill.

Together, these effects result in the enhancement of mixing and growth of back-

ground energy (Fig. 4.58), whereas the available potential energy decays faster than

in the case of seiching in the basin with slope (Fig. 4.43).

Fig. 4.56 Wave-breaking

regime in the salinity field

Fig. 4.55 Supercritical flow regime over the sill. Left panels show salinity field and right panels

show vorticity
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Fig. 4.57 Evolution of kinetic KE and available potential energy APE in the basin with the sill

Fig. 4.58 Evolution of the total pseudo-energy PSE and background energy BPE in the basin with

the sill

Fig. 4.59 The composite Froude number variations along the basin with the sill
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4.4.6 Degeneration of Basin-Scale Internal Waves in Basins
with a Narrow

The aim of this section is to study the dynamics of the degeneration of large-scale

waves in the basin with a narrow and combination of a narrow and a sill. Only a few

laboratory experiments were carried out to study the internal wave behavior in the

lateral constriction. Troy and Koseff (2005) studied stability of progressive, peri-

odic, lowest-mode internal waves traveling through a constriction. The wave

amplitude in the constriction increases and the Kelvin–Helmholtz shear instability

develops in the high-shear wave crest and trough regions. The laboratory experi-

ment on propagation of ISWs through a narrow (Nikishov and Gorodetska 2011)

showed also instability of the wave in the constriction. However, neither laboratory

nor theoretical studies are known to date on the effect of narrows on seiching in

the lake.

The laboratory scale computational tank with two-layer salt stratification was used

in simulations. The tank has length L ¼ 6 m and height Hm ¼ 0.29 m (as in the

experiment by Horn et al. (2001)) and width B ¼ 0.5 m with a narrows placed in the

center of the tank (Fig. 4.60). The narrow is of symmetric form. It is also of Gaussian

form,

B ¼ Bm � 2Bnarrow � e�ðx�xsÞ2
Lnarrow ; (4.95)

where Bm ¼ 0:5m, 2Bnarrow ¼ 0:28m, xs ¼ 3m, and Lnarrow ¼ 0:5m. The initial

salinity distribution corresponds to Run 8 from Sect. 4.4.1, where nondimensional

parameters are h2=Hm ¼ 0:7 and �i0=h2 ¼ 0:39. The simulations were carried out

in the three-dimensional mode using molecular values of viscosity and salt diffu-

sivity. The resolution of the grid was 600� 200� 23 nodes.

At first, consider the effect of a narrow in the basin of constant depth. As pointed

out in the previous section, the run considered in Sect. 4.4.1 (Run 8) is the regime of

solitary wave generation (Regime II). The evolution of the simulated salinity field

in the central part of the tank with narrow is shown in Fig. 4.61. Initial tilt of the

interface (Fig. 4.61a) produces two-way flow that accelerates and become super-

critical in the narrow, as seen in Fig. 4.62. Shear instability results, first, in the

Fig. 4.60 Top view of the computational basin with narrow
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appearance of the KH billows in the constriction and upstream of the dense water

current (t ¼ 20 s). Next, KH billows spread on both sides of the constriction.

According to the theory of two-layer hydraulics, a steady exchange flow through

a contraction in the channel is maximal when the flow is critical in the narrowest

section of the contraction (Farmer and Armi 1986). However, as seen in Fig. 4.62,

the zone of supercritical flow arises at the upwind side of the heavy fluid flow. The

shear instability in the narrow results in the development of KH billows (Fig. 4.61).

Meanwhile, tilt results in surge formation at the right side of basin (Fig. 4.61). The

surge transforms into an undulating bore that propagates to the left side. However,

strong dissipation and mixing in the narrows damp both large-scale seiche

oscillations and formation of chain of solitary waves.

Consider the effect of a combination of narrow and sill. The form of the narrow

is described by (4.95) and the form of the sill is given by (4.94). The resolution was

also 600� 23� 200 nodes. The evolution of the simulated salinity field in the

central part of the tank with narrow and sill is shown in Fig. 4.63. The initial tilt of

the interface produces two-way flow that accelerates and become supercritical in

the narrow/sill, as seen in Fig. 4.64. The instability arises at the crest of the sill that

coincides with the maximum constriction of the narrow. A strong mixing exists in

the lee side of the combination of sill and constriction at t ¼ 20� 70s.

Armi and Riemenschneider (2008) in the frame of the theory of two-layer

hydraulics found that steady exchange flow through a co-located sill and contrac-

tion in a channel is maximal when flow is critical at the crest/narrows and when the

other control point is the virtual control on the dense side of the topographic control.

As seen in Fig. 4.64, the critical point is placed initially (t ¼ 20 s) at the lee side of

the co-located sill and contraction, and supercritical flow is downstream of it. With

Fig. 4.61 The simulated salinity field in the central part of the tank with narrow
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time, the supercritical zone shifts upstream (t ¼ 40 s) and exchange flow decreases

at t ¼ 70 s. The evolution of the composite Froude number in the case of a

contraction/sill is similar to the sill case in Fig. 4.59. The differences with the

hydraulic theory for the pure sill, pure contraction, and contraction/sill can be

attributed to the unsteady character of the exchange flow when capacities of

reservoirs of light and dense waters are limited and time varied, resulting in the

submaximal exchange.

The chain of ISW is formed at the right side of the basin and when they approach

the sill/constriction, they steepen and break. The strong mixing and dissipation

result in the “absorption” of waves by the obstacle contrary to the case of pure

contraction when strongly deformed waves transmit through the narrows.

Fig. 4.62 The composite Froude number variations along the basin with narrow
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4.4.7 Degeneration of Basin-Scale Internal Waves in a Small
Elongated Lake

In the previous sections, we have considered a set of idealized problems in basins of

laboratory scale: the transformation and degeneration of basin-scale internal waves

in a rectangular basin, in a basin with sloping boundary, and in a basin with a sill

and narrowing cross-section. Here, the transformation of large-scale waves in a

small elongated lake with more realistic topography is studied where the above-

mentioned effects are combined. The lake is of length 5 km, width 1 km, and

maximal depth 30 m (Fig. 4.65). The bathymetry includes a relatively deep, proper,

and shallow shelf. Examples of small- and medium-sized lakes are given by Filatov

(2012, this vol.). The depth distribution is described by the formula

H x; yð Þ ¼ 0:25Hmax sin a1p x� xsð Þ � p
2

� �
þ sin b1p y� ysð Þ � p

2

� �� �2

for
x� xsð Þ2
xs2

þ x� ysð Þ2
ys2

< 1;

(4.96)

where Hmax ¼ 30m, xs ¼ 2; 500m,ys ¼ 500m, a1 ¼ 0:0003m�1, and

b1 ¼ 0:001m�1. The undisturbed temperature profile is described as

Fig. 4.63 The simulated salinity field in the central part of the tank with narrow and sill
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Fig. 4.64 The composite Froude number variations along the basin with narrow and sill

Fig. 4.65 The lake bathymetry
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TðzÞ ¼ Tup þ Tbot
2

þ Tup � Tbot
2

tan h
z� h1
dh

� �
; (4.97)

where Tup ¼ 25�C, Tbot ¼ 15�C, h1 ¼ 4:5m, and dh ¼ 2:5m. This profile is shown

in Fig. 4.66 and corresponds to the lake temperature in the moderate latitudes.

Initially, the thermocline in the lake was inclined along the lake with tilt

�oi h1 ¼ 1:7= , where �i0 is the maximal deviation from the undisturbed value of

the depth of the isosurface of the maximal vertical gradient of the temperature. The

corresponding cross-section of the temperature along the lake is shown in Fig. 4.67.

Three runs were carried out to separate the effects of 3D geometry of the lake and

the nonhydrostatic effects: 3D nonhydrostatic run (Run 3DNH), 3D hydrostatic run

(Run 3DH), and 2D nonhydrostatic run (Run 2DNH). In all runs, the eddy viscosity

and the diffusivity were calculated using the eddy viscosity model of SGS

(4.4)–(4.5) with the nonisotropic length scale lD (4.7b). Resolution in 3D and 2D

modes is 500� 100� 60 and 500� 100� 5 nodes, respectively. The s-system
was used to describe the bottom topography smoothly.

Figure 4.68 shows the sequence of the vertical cross-sections of temperature

along the lake for three runs (3DNH, 3DH, and 2DNH,). The parameters of these

runs (�oi h1 ¼ 1:7= and h1 Hmax ¼ 0:15= ) are close to the supercritical regime III,

which was discussed in Sect. 4.3.4. In this regime, the internal bore is formed when

flows in the layers achieve a supercritical state. The bottom topography, three-

dimensional shape of the lake, and continuous stratification essentially affect this

Fig. 4.66 The undisturbed temperature profile

266 V. Maderich et al.



regime. Like the simulations in the rectangular laboratory basin (Figs. 4.12b),

nonlinearity results in bore formation at time t ¼ 3.5 h. In the 2D case, this bore

evolves into the solibore with a sequence of solitary waves (t ¼ 4.5 h). Bore

formation and evolution is accompanied by strong mixing and thickening of the

lake thermocline. The three-dimensional shape of the lake results in the new effects.

The interaction of basin-scale motions with the “spoon-like” end of lake in the 3D

case results in formation of a large-amplitude bore earlier than in the 2D case (see

Fig. 4.68b). Mixing is more intensive than in 2D case.

In the process of bore evolution, solitary waves appeared in the nonhydrostatic

case (see Fig. 4.68b, c). Note that a “soliton-like” structure appeared also in the

hydrostatic run with characteristics similar to the nonhydrostatic case. However, they

are not true solitary waves because these waves arose due to nonlinear steepening

balanced by numerical dispersion and therefore, wave characteristics depend on the

numerical scheme and the grid resolution (Daily and Imberger 2003; Wadzuk and

Hodges 2004). Bore formation and evolution in the 3D case also are accompanied by

the generation of second mode waves in the rear part of moving solibores. This effect

also occurs in the hydrostatic case, but waves are not presented here.

The spatial structure of the basin-scale wave transformation is also of interest. The

time evolution of the isotherm 20�C and the elevation are shown in Fig. 4.69, whereas

the near-bottom velocity field at t ¼ 3.5 h is given in Fig. 4.70. As seen in Fig. 4.70,

the “spoon-like” bottom topography at the ends of the lake results in the focusing of

flow and formation of jet along the lake axis (see Fig. 4.69 at t ¼ 4.5 h. This jet has

maximum velocity around 0.8 m s�1, whereas the bore propagates with velocity

around 0.3 m s�1. This flow can result also in the erosion of the bottom in the zone of

high bottom velocity. This supercritical jet is visible for subsequent times as super-

critical flow causing the internal wave wake. This wake is also visible at the surface

of lake as distortions of the elevations. Then, the waves radiated by the jet propagate

in front of the solibore to the opposite end of the lake, where the solibore shoals.

We hypothesize that in some cases, this wave wake behind the source of

disturbance is visible in the elongated lakes, and this physical phenomenon could

be interpreted as a wake of a moving large animal. The legend of the Loch Ness

Fig. 4.67 The initial vertical cross section of temperature along the lake
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Fig. 4.68 (continued)
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Fig. 4.68 The temperature cross-section along the lake at t ¼ 3.5 h (a), t ¼ 4.5 h (b), and t ¼ 7 h (c)

Fig. 4.69 The isosurface of temperature T ¼ 20�C (a) and elevation (b) in the lake
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monster can be based on such observations by local population. The Loch Ness is a

long and deep lake (see Sect. 2.1.2 of this book) with length around 35 km, width

1.2 km, and maximal depth 250 m with strong summer stratification. The internal

surges in the Loch Ness are well-known phenomenon (Thorpe et al. 1972; Thorpe

1974, 1977). They are generated by wind, and they have the character of an internal

undular bore with a steep leading front followed by a train of internal undulations

(compare Fig. 4.69 with Fig. 2.4). The size and geometry of Loch Ness differs from

those considered in this section; therefore, it is necessary to extend modeling for

conditions of this lake to verify if simulated phenomenon of the cumulative jet can

be reproduced for the Loch Ness and for other elongated deep lakes.

4.5 Conclusions

The processes of the transformation of basin-scale internal waves in lakes were

simulated by a numerical three-dimensional nonhydrostatic model. A detailed

description of the model and numerical algorithm was given. The model is a

modified nonhydrostatic extension of the free-surface primitive POM model

(Kanarska and Maderich 2003). It was applied to a sequence of idealized problems

of the transformation and degeneration of basin-scale internal waves in a basin of

laboratory scale. The simulation results were compared with laboratory

experiments (Horn et al. 2001) carried out in a rectangular basin. Numerical

modeling confirmed classification of regimes proposed by Horn et al. (2001) and

extended laboratory studies on the whole diapason of possible regimes.

The breaking mechanisms of internal solitary wave depressions were studied

numerically. The analysis of laboratory experiments and numerical experiments

showed that breaking of large-amplitude waves over a gently sloping bottom could

follow different scenarios. Three scenarios were described by Vlasenko et al.

(2005). According to the first scenario at a moderate slope, an overturning mecha-

nism of wave dominates with formation of boluses. The second scenario is an

adiabatic transformation when the ISW amplitude is close to the local limiting

value of solitary waves. The third scenario is a nonadiabatic dispersive evolution.

Fig. 4.70 The near-bottom velocity field at T ¼ 3.5 h
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Our experiments suggest a new scenario of breaking of large-amplitude internal

waves at mild slopes, when shear instability is the dominating mechanism of the

wave transformation and waves dissipate without overturning and with the forma-

tion only weak wave elevation. The simulation of basin-scale wave evolution in a

basin with a sloping bottom and the laboratory experiments of Boegman et al.

(2005a) showed that this mechanism was realized also in the shoaling of a chain of

solitary waves. Intercomparison of 2D and 3D simulations and laboratory

experiments showed that laboratory experiment data could be used for estimations

of energy transformation caused by wave breaking on the bottom slope without

corrections due to side-wall effects.

Modeling of internal wave depressions of large-amplitude transformation on the

obstacles demonstrated the primary importance of the ratio of the wave amplitude

to the thickness of the lower layer over the obstacle (blocking parameter m). When

m � 1the interaction is weak, whereas at m � 1 interaction is strong and it results in

entrainment of a wave trough in the lower layer and in the mixing. The difference of

the transmitted and reflected energy falls with an increase of the blocking parameter

and for m>0:8, reflection dominates. The energy loss dEloss grows with the increase

of the interaction parameter to some critical value at m � 0:7� 0:8and
then decreases. The maximum energy loss is around 50%. The main effect of the

obstacle length is a different transformation of the transmitted wave. The

amplitudes of ISWs in the case of a plate and an elongated obstacle were almost

the same but, in the case of an obstacle with a length of approximately the length of

the incident wave, a second solitary wave was formed, whereas after the thin plate it

is of very small amplitude. The transmitted wave over the step is propagated as a

solitary wave with a high-frequency tail.

The modeling of the dynamics of the degeneration of large-scale waves in a

basin with a sill showed that the presence of the sill essentially affects the wave

transformation process and dissipation of the wave chain. At the sill, two-way flow

initially accelerates and become supercritical. Then, the chain of the ISW depres-

sion interacts with the sill. The breaking mechanism (“backward instability”)

differs considerably from convective breaking and shear-induced breaking because

waves interact with the sill in the background of the two-way exchange flow. The

processes of the wave transformation in the basin with narrows and a combination

sill/constriction are qualitatively similar. The two-way exchange flow in all consid-

ered cases was submaximal.

The presence of sill, narrows, and combinations of sill/constriction essentially

change the processes of the energy transformation because sills and narrows block

free seiching in the basin and result in strong dissipation of supercritical flows over

the sill and narrow and because the train of solitary waves breaks at the sill and

narrow. Together, these effects result in the enhancement of mixing, whereas

kinetic and available potential energies decay faster than in the case of seiching

in the basin without sills and narrows.

Most simulations in this chapter were carried out for 2D geometry that allowed

studying the thin structure of the waves and instability processes in detail. However,

the geometry of real lakes can essentially impact the regimes of the nonlinear
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degeneration of large-scale internal waves. The 3D simulations of the seiching of

the small, elongated lake showed a new effect of focusing flow by “spoon-like”

topography at the end of the lake and generation of a supercritical jet in front of the

surge propagating as a solibore. These 3D geometrical peculiarities need further,

more detailed, study for real lakes, using nonhydrostatic models. For medium-sized

lakes, the rotation effects also must be included.
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