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Preface

This volume contains the proceedings of the VII Hotine-Marussi Symposium on
Mathematical Geodesy, which was held from 6 to 10 July 2009. The symposium
took place at the Faculty of Engineering of the Sapienza University of Rome, Italy,
in the ancient chiostro of the Basilica of S. Pietro in Vincoli, famously known for its
statue of Moses by Michelangelo.

The traditional name mathematical geodesy for the series of Hotine-Marussi
Symposia may not fully do justice to the symposium’s broad scope of theoretical
geodesy in general. However, the name for the series has been used since 1965, i.e.,
the days of Antonio Marussi, which is a good reason to adhere to it. The venue of the
Hotine-Marussi Symposia has traditionally been in Italy. The choice for Rome, if a
reason is needed at all, was partially made because 2009 was the International Year of
Astronomy. Two important astronomical events were commemorated: the publication
of Kepler’s Astronomia Nova in 1609, in which he published his first two laws of
planetary motion, as well as the very first astronomical use of a telescope by Galileo
and his discovery of Jupiter’s moons. Besides one of the founding fathers of geodesy,
the unit of Gal being named after him, he was one of the cofounders and an early
member of the Accademia Nazionale dei Lincei in Rome. It was a pleasure, therefore,
that a special session was organized by Fernando Sansò at the Villa Farnesina, located
at the Academy. The special session was dedicated to the memory of Antonio Marussi
(1908–1984), who was the driving force behind the series of Hotine (later Hotine-
Marussi) Symposia.

Since 2006 the series is under the responsibility of the InterCommission Commit-
tee on Theory (ICCT), a cross-commission entity within the International Association
of Geodesy (IAG). The overall goal of the Hotine-Marussi Symposia has always
been the advancement of theoretical geodesy. This goal is aligned with the objectives
of the ICCT, which has the developments in geodetic modeling and data processing
in the light of recent advances of geodetic observing systems as well as the exchange
between geodesy and neighboring Earth sciences as its central themes. Indeed,
the current proceedings are testimony to the width and vibrancy of theoretical
geodesy.

The symposium attracted 132 participants who contributed 75 papers (51 oral and
24 poster), organized in eight regular sessions plus the session at the Accademia
Nazionale dei Lincei. To a large extent, the sessions’ topics were modeled on the
study group structure of the ICCT. The chairs of the ICCT study groups, who
constituted the Symposium’s Scientific Committee, were at the same time responsible
for organizing the sessions:
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1. Geodetic sensor systems and sensor networks
S. Verhagen

2. Estimation and filtering theory, inverse problems
H. Kutterer, J. Kusche

3. Time series analysis and prediction of multi-dimensional signals in geodesy
W. Kosek, M. Schmidt

4. Geodetic boundary value problems and cm-geoid computational methods
Y.M. Wang, P. Novák

5. Satellite gravity theory
T. Mayer-Gürr, N. Sneeuw

6. Earth oriented space techniques and their benefit for Earth system studies
F. Seitz, R. Gross

7. Theory, implementation and quality assessment of geodetic reference frames
Dermanis, Z. Altamimi

8. Temporal variations of deformation and gravity
G. Spada, M. Crespi, D. Wolf

We want to express our gratitude to all those who have contributed to the success
of the VII Hotine-Marussi Symposium. The aforementioned study group chairs (Sci-
entific Committee) put much effort in organizing attractive sessions and convening
them. They also organized the peer review process. We equally owe thanks to all
reviewers. Although much of the review process itself remains anonymous, the
complete list of the reviewers is printed in this volume as a token of our appreciation
of their dedication.

Financial and promotional support was given by a number of agencies and
institutions. Special thanks go to Federazione delle Associazioni Scientifiche per
le Informazioni Territoriali e Ambientali (ASITA), Agenzia Spaziale Italiana (ASI),
the European Space Agency (ESA), and the Faculty of Engineering of the Sapienza
University of Rome.

But most of all we like to thank Mattia Crespi and his team (Gabriele Colosimo,
Augusto Mazzoni, Francesca Fratarcangeli, and Francesca Pieralice) who hosted the
symposium. It is well known that the quality of a Local Organizing Committee
(LOC) is decisive to a successful scientific meeting. Beyond responsibility for
website, registration, technical support, and all kinds of other arrangements, the LOC
organized a great social event to the St. Nilus’ Abbey, the archeological area of
Monte Tuscolo and the Villa Grazioli in Frascati. Through their able organization
and improvisation skills, Mattia Crespi and his team have done more than their share
in bringing the VII Hotine-Marussi Symposium to success.

Stuttgart Nico Sneeuw
Pavel Novák

Mattia Crespi
Fernando Sansò



Fifty Years of Hotine-Marussi Symposia

In 1959, Antonio Marussi, in cooperation with the Italian Geodetic Commission,
started a series of symposia in Venice. The first three of these covered the entire
theoretical definition of 3D Geodesy, as delineated in discussions with renowned
contemporary scientists:
• 1959, Venice, 16–18 July, 1st Symposium on Three Dimensional Geodesy,

published in Bollettino di Geodesia e Scienze Affini, XVIII, N ˚ 3, 1959
• 1962, Cortina d’Ampezzo, 29 May-1 June, 2nd Symposium on Three Dimensional

Geodesy, published in Bollettino di Geodesia e Scienze Affini, XXI, N ˚ 3,1962
• 1965, Turin, 21–22 April, 3rd Symposium on Mathematical Geodesy, published

by Commissione Geodetica Italiana, 1966
From the very beginning, Martin Hotine provided essential inspiration to these
symposia. After his death in 1968, the following symposia bear his name:
• 1969, Trieste, 28–30 May, 1st Hotine Symposium (4th Symposium on Mathemat-

ical Geodesy), published by Commissione Geodetica Italiana, 1970
• 1972, Florence, 25–26 October, 2nd Hotine Symposium (5th Symposium on

Mathematical Geodesy), published by Commissione Geodetica Italiana, 1973
• 1975, Siena, 2–5 April, 3rd Hotine Symposium (6th Symposium on Mathematical

Geodesy), published by Commissione Geodetica Italiana, 1975
• 1978, Assisi, 8–10 June, 4th Hotine Symposium (7th Symposium on Mathematical

Geodesy), published by Commissione Geodetica Italiana, 1978
• 1981, Como, 7–9 September, 5th Hotine Symposium (8th Symposium on Mathe-

matical Geodesy), published by Commissione Geodetica Italiana, 1981
After Marussi’s death, in 1984, the symposia were finally named the Hotine-Marussi
Symposia:
• 1985, Rome, 3–6 June, I Hotine-Marussi Symposium (Mathematical Geodesy)
• 1989, Pisa, June, II Hotine-Marussi Symposium (Mathematical Geodesy)
• 1994, L’Aquila, 29 May-3 June, III Hotine-Marussi Symposium (Mathematical

Geodesy, Geodetic Theory Today), published by Springer, IAG 114
• 1998, Trento, 14–17 September, IV Hotine-Marussi Symposium (Mathematical

Geodesy), published by Springer, IAG 122
• 2003, Matera, 17–21 June, V Hotine-Marussi Symposium (Mathematical

Geodesy), published by Springer, IAG 127
• 2006, Wuhan, 29 May-2 June, VI Hotine-Marussi Symposium (Theoretical and

Computational Geodesy, 1st time under ICCT), published by Springer, IAG 132
• 2009, Rome, 6–10 June, VII Hotine-Marussi Symposium (Mathematical

Geodesy), published by Springer, IAG
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Torsten Mayer-Gürr, Enrico Kurtenbach, and Annette Eicker

Part VII Earth Oriented Space Techniques and their Benefit for Earth
System Studies

44 Multi-Sensor Monitoring of Low-Degree Gravitational Changes . . . . . 293
J.L. Chen and C.R. Wilson

45 Using Swarm for Gravity Field Recovery: First Simulation
Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Xinxing Wang and Reiner Rummel

46 Consistent Modeling of the Geodetic Precession
in Earth Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
E. Gerlach, S. Klioner, and M. Soffel

47 Possibilities and Limits for Estimating a Dynamic and a Geometric
Reference Frame Origin by the Integrated Approach Applied
to the CHAMP–GRACE–GPS Constellation . . . . . . . . . . . . . . . . . . . . . . 313
Daniel König and Rolf König

48 Source Parameters of the September 10, 2008 Qeshm Earthquake
in Iran Inferred from the Bayesian Inversion of Envisat and ALOS
InSAR Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Pegah Faegh-Lashgary, Mahdi Motagh, Mohammad-Ali Sharifi,
and Mohammad-Reza Saradjian



Contents xv

Part VIII Theory, Implementation and Quality Assessment of Geodetic
Reference Frames

49 The Choice of Reference System in ITRF Formulation . . . . . . . . . . . . . 329
Zuheir Altamimi and Athanasios Dermanis

50 Some Pitfalls to be Avoided in Combining Simultaneous GNSS
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
L. Biagi and F. Sansò
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Part I

Session at the Accademia Nazionale dei Lincei



1Welcome to the Participants to the VIIı
Hotine-Marussi Symposium

M. Caputo

Good morning. I am Michele Caputo. The president
of our Accademia prof. G. Conso could not come to
the meeting. He asked me to present his greetings, to
welcome you on his behalf and wish a good visit of the
Accademia.

Our Academia was founded in by the young
Federico Cesi, 18 years old, in the year 1603. The
name of the Accademia comes from the lynx, the
elegant feline, which was supposed to have excellent
eyes and see well at incommensurable distances.
Galilei observed the planets from the highest portion
of the garden outside this building. He had joined the
Accademia in 1625.

Few of you may know of the Pizzetti–Somigliana
theory, but all know of the International Gravity For-
mula. It was all born and developed within the walls of
this building.

In fact following the path indicate by Pizzetti in
a series of papers published between 1894 and 1913,
Somigliana (1929) developed the general theory of the
gravity field of a rotating ellipsoid of revolution. At
the same time Silva (1928, 1930) estimated the values
to adopt for the parameters appearing in the formula
from the average values obtained using the observed
gravity on the surface of the Earth.

M. Caputo (�)
Department of Physics, University of Rome La Sapienza,
Piazzale A. Moro 2, 00185, Roma, Italy

Department of Geology and Geophysics, Texas A&M
University, College Station, 77843, Texas
e-mail: mic.caput@tiscali.it

Finally Cassinis (1930) presented the series expan-
sion of the original closed form formula at the 1930
IUGG Assembly in Stockholm which adopted the
formula to be used for the normal values of gravity on
the surface of the international ellipsoid of revolution.
This ellipsoid had been adopted by the International
Association of Geodesy in the 1923 assembly. 57
years later the closed form formula of the Pizzetti–
Somigliana theory was extended to space, for whatever
it may be useful, introducing the then available satellite
data (Caputo and Benavidez 1987).

It was almost all discussed within the walls of the
Accademia dei Lincei and published in its proceedings
Now all theoretical geodesists who are familiar with
the gravity field of the Earth know that Somigliana,
Pizzetti and Cassinis were members of the Accademia
where they often met and discussed of theoretical
Geodesy. One more notable member of the Accademia
was Antonio Marussi who was one of the most com-
plete professionals of geodesy I knew in my life; he
knew the use of the data resulting from the observa-
tions made with the Stark Kammerer theodolite and
how to make sophisticated maps, at the time when the
Brunswiga Addiermachine desk mechanical computer
was the most advanced instrument to make multipli-
cations and divisions; Marussi had the expertise of
making accurate measurements as well as that to use
differential geometry to model what is called intrinsic
geodesy. And finally he made the extraordinary pen-
dulums. We are here to honour him, as well as his
colleague Hotine.

Thank you for coming to Accademia dei Lincei.
I wish a good day of work.
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Cassinis G, Dore P, Ballarin S (1937) Tavole fondamentali per
la riduzione dei valori osservati della gravità. Commissione
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R.C. Accademia Lincei 7(5):12

Silva G (1930) Sulla formula della gravità normale.
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2The Marussi Legacy: The Anholonomity
Problem, Geodetic Examples

E.W. Grafarend

Antonio Marussi died 16th April 1984 in Trieste, nearly exactly 25 years ago. He is the founder of
the Geodetic Anholonomity Problem or the problem of integrability of geodetic observational
functionals. My talk will try to open your eyes by simple examples.

Top 1: Gravitostatics
Geodetic heights, better height differences are not
integrable. For instance, every geodesist knows “dH”,
the infinitesimal change of geodetic heights. In my
courses in Physics I learned the notion d̄H . In
terms of Planck notation d̄H is not integrable. But
the Gauss potential – C.F. Gauss introduced the
notion of potential – is integrable. We all know the
transformation

dW D ��d̄H;

where we use the input “geometric height differential”
(anholonomic) versus the physical height difference
in terms of output of the potential differential (holo-
nomic). The factor of integrability is the modulus of
gravity, also called an element of the Frobenius matrix.
A. Marussi recognized first this key problem and gen-
eralized it into three- and four-dimensional Geodesy,
into space-time geodesy. Notable, the potential W
consists of two quantities: the gravitational potentialU
and the centrifugal potential V . In contrast the Euler
rotational force and the Coriolis rotational force are
not integrable.

Geodetic height systems referring to the Gauss-
Listing Geoid are founded on “potential heights”. To
my strong belief, the anholonomity problem estab-
lished Geodesy as a Science!

Integrability or anholonomity problems are treated
nowadays by Cartan calculus, also called exterior
calculus or the calculus of differential forms, a
calculus introduced in the twentieth century by Elie
Cartan, a famous French scientist. F.R. Helmert knew
already about the subject, Heinz Draheim of Karlsruhe

University wrote an early paper about Cartan calculus
and surface geometry. I learned it in Thermodynamics
from the Carnot circle or Carnot loop in my Physics
Courses.

Top 2: Gravitodynamics
I only mention the papers by E. Doukakis, his Ph.D.
Thesis, to include space-time concepts on anholono-
mity problems, namely integrability, both in the space
and in the time domain. There is no time to discuss this
in more detail.

Top 3: Space-Time Geodesy
A. Marussi is the real founder of space-time
Geodesy: He influenced Hotine (1969) to write his
famous textbook with more than 5,000 formulae. He
influenced also J. Zund (1988-1994) to write many
beautiful papers on Differential Geodesy and the leg
calculus. In addition he published A. Marussi’s works
in a remarkable Springer Edition. J. Zund’s book
on Differential Geodesy is another masterpiece of
depth and wide range. (J. Zund, Differential Geodesy,
Springer Verlag, Berlin 1994). At this point, another
mathematician has to be mentioned who also applied
Cartan calculus to the holonomity problem: Nathaniel
(Nick) Grossmann from UCLA. He wrote remarkable
papers on the geodetic anholonomity problem. He is a
trained mathematician on Cartan or exterior calculus.
See our reference list at the end.

Top 4: Refraction and Diffraction
There are excellent papers in Physics on this subject
written in exterior calculus. For instance, I recall a
paper by P. Defrise et al from Belgium.

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
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Top 5: Continuum Mechanics
Traditionally, plasticity problems and nonlinear stress-
strain relations are treated by Cartan calculus and
exterior differential forms.

Top 6: Deformation Analysis
There is a special geometric property within Cartan
calculus. When we transform within Gauss surface
geometry a Riemann metric to orthogonal axes,
we arrive at a picture of a circle: the orthonormal
axes produce a Cartan reference system which is
anholonomic. For deformation analysis, it is possible
to transform a left metric into a right metric, namely
from a left circle into a right ellipse or vice versa. This
is the extended Cartan system when transforming two
Riemann manifolds.

Top 7: Map Projections
The Tissot ellipse is the proper tool when we transform
a left Riemann metric to a right Riemann metric.
It is the extended Cartan reference system from a
circle (left) to an ellipse (right). Reference has to
be made to C. Boucher, A. Dermanis, E. Livieratos
and many others. For more details, we refer to our
book “Map Projections” (Springer Verlag, 750 pages,
Berlin-Heidelberg 2006).

Top 8: Rotational motion by Cartan calculus
and Omega quantities
E. Cartan introduced his new concept by referring to
the Euler kinematical equation. You have to introduce
the transformation from rotational velocities “Omega”
to Euler angles: ! D M.d˛; dˇ; d�/. “Omega” is the
rotational vector which is mapped to Euler angles. !
is not integrable, .d˛; dˇ; d�/ are integrable.

Top 9: Relativity
Hehl (1996) referred to more than 100 authors to
establish Einstein-Cartan geometry with spin degrees-
of-freedom. One part of the connection symbols
are anti-symmetric characterizing Cartan torsion
related to my M.Sc. Thesis in Theoretical Physics.
We refer also to the correspondence between Elie
Cartan and Albert Einstein, published by Springer
Verlag.

What has happened meanwhile?
First, Cartan geometry was generalized to Clifford

algebra and Clifford analysis in order to account for

symmetric differential forms or symmetric matrices
and antisymmetric differential forms or antisymmet-
ric matrices. Nowadays we summarize to multilinear
algebra and multilinear analysis. There are special
conferences every year devoted to Clifford algebra
and Clifford analysis. As a reference see my review
“Tensor Algebra, Linear Algebra, Multilinear Alge-
bra” (344 References), Stuttgart 2004. The famous
papers by W.K. Clifford were published in 1878 and
1882.

Second, Henry Cartan, son of Elie Cartan, also
professor at the Sorbonne, established with 50 French
mathematicians the topic of Structure Mathematics. In
a collective series they wrote more than 20 books, first
in French, then in many other languages under the
pseudonym “Nicholas Bourbuki”. Basically they found
out that there are only three basic structures based on
advanced set theory and being in interference with each
other:
– Order structure
– Topological structure
– Algebraic structure
Now it is time for my examples.

Example 1. Misclosure within a local triangular net-
work and a threedimensional Euclidean space

By Figs. 2.1–2.4 and Tables 2.1–2.6 we present
a triangular network within a threedimensional
Euclidean space. Our target is the computation of the
misclosures caused by three local vertical/horizontal
directions at the points fP˛; Pˇ; P�g which differ from
the geometric vertical/horizontal directions. These

Fig. 2.1 Triangular network fP˛; Pˇ; P� jOg, placement vec-
tors at the origin O, local verticals E3.P˛/, E3.Pˇ/, E3.P� /,
�˛ , �ˇ , �� local gravity vectors
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Fig. 2.2 Commutative diagrams: moving horizon reference
systems E� versus fixed equatorial reference systems F ı

Fig. 2.3 Holonomity condition in terms of relative coordinates
in a fixed reference system, fixed to the reference point P˛

verticals/horizontals are not parallel to each other
causing the anholonomity problem or the misclosures.
Of course, we assume parallelism in the Euclidean
sense (Euclid’s axiom number five).

Our two computations are based first on a holo-
nomic reference system at the point P˛ which is not
operational and second on a realistic anholonomic
reference system attached to the points fP˛; Pˇ; P�g,
separately. We use a local network of an extension of
25 m versus 500 m.

Fig. 2.4 Anholonomity in a moving frame at points fP˛; Pˇ; P�g
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Table 2.1 25 meter local network Relative to the origin O attached to the mass centre
of our planet we calculate relative Cartesian coordi-
nates in a “fixed equatorial reference system” trans-
formed to a “moving horizontal reference system” as
illustrated by Figs. 2.1 and 2.2. The basic holonomity
condition is presented in Fig. 2.3, the detailed com-
putation in Fig. 2.4 related to realistic anholonomity.
Our results are given in Tables 2.1–2.3 for the 25 m
triangular network and in Tables 2.4–2.6 for the 500 m
triangular network: They document a misclosure in the
millimeter range for our 25 m network and in the 30 cm
range for our 500 m network.

For more details let us refer to the contribution by
E. Grafarend (1987): The influence of local verticals
in local geodetic networks, Zeitschrift für Vermes-
sungswesenv 112 (1987) 413–424.

Table 2.2 25 meter local network, detailed computation

Table 2.3 25 meter local network, misclosures
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Table 2.4 500 meter local network

Table 2.5 500 meter local network, detailed computation

Example 2. How to establish an orthonormal frame
in Gauss surface geometry? Is the orthonormal frame
anholonomic?

Table 2.7 Gauss surface geometry, Cartan surface geometry,
orthonormal frame of reference, example of the sphere

Here we concentrate to the question of how to establish
an orthonormal frame fc1; c2; c3g, for instance for the
sphere if we refer to Gauss surface geometry. Is the
attached orthonormal frame a coordinate base or not?
Is the orthonormal frame anholonomic?

Based on an orthogonal reference frame fg1; g2; g3g
with references on spherical longitude and spheri-
cal latitude called fu; vg we compute an orthonormal
reference frame fc1; c2; c3g, called Cartan frame of
reference in Table 2.7. In Table 2.8 we introduce the
displacement dx on the surface of the sphere, both in an
Gaussean frame of reference and in the Cartan frame
of reference. We ask the key question: Are the matrix
components f�1; �2g integrable? Table 2.8 is a very
short introduction to “exterior calculus” or the Cartan
derivative. The 3-index symbol is introduced and cal-
culated for our example of the sphere. Naturally, the
Cartan derivative is not integrable (Table 2.9)!

Table 2.6 500 meter local network, misclosures
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Table 2.8 Displacement vector of the surface of the sphere,
Gaussean frame of reference versus Cartan frame of reference,
integrability

Example 3. Discussion between A. Marussi and
C. Mineo and the development of Differential Geodesy

Let us refer to the discussion of A. Marussi
(1952): Intrinsic geodesy, The Ohio State Research

Foundation, Project No. 485, Columbus/Ohio/USA
1952, C. Mineo (1955): Intrinsic geodesy and general
properties of cartographic representations, Rend. Acc.
Naz. Lincei, Cl. di Sc. Fis., Mat. e Nat., Serie 18,
fasc. 6 and A. Marussi (1955): A reply to a note
by C. Mineo, see C. Mineo 19, fasc. 5 in order to
document these discussions in the past to accept
“Differential Geodesy” as a subject of science.

The subject of Marussian Geodesy was established
in my paper E. Grafarend (1978): Marussian Geodesy,
pages 209–247, Boll. di Geodesia e Scienze Affini,
No. 23, April-Septembre 1978. Refer, in addition,
to our contribution “Elie Cartan and Geodesy” by
F. Bocchio, E. Grafarend, N. Grossmann, J.G. Leclerc
and A. Marussi (1978): Elie Cartan and Geodesy. Boll.
di Geodesia e Scienze Affini, No. 4, August-October
1978, presenting five papers given at sixth symposium
of mathematical geodesy (third Hotine Symposium)
held at Siena/Italy, April 2–5, 1975.

Example 4. Projective heights in geometry and gravity
space, the work of Antoni Marussi

Satellite positioning in terms of Cartesian coordi-
nates .X; Y;Z/2T2 �E3 establishing a triplet of

Table 2.9 1-differential forms, exterior calculus, Cartan derivative
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Table 2.10 Projective heights in gravity space, geodesics
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Cartesian coordinates for quantifying the position of
a topographic point requires a complete redefinition
of geodetic projective heights in geometry and gravity
space, namely with respect to a deformable Earth
body. Such a redefinition has been presented in two
steps:
(i) Projective heights are based upon projective lines

which are
(i1) geodesics (straight lines) in a Euclidean

geometric space, or
(i2) geodesics (plumblines/orthogonal trajectories

with respect to a family of equipotential sur-
faces) in gravity space in a conformally flat
manifold, the Marussi manifold with the mod-
ulus of gravity as the factor of conformality.

(ii) Projective heights are based upon a minimal dis-
tance mapping along those geodesics between a
topographic point .X; Y;Z/2T2 �E3 and a ref-
erence surface:
(ii1) For projective heights in geometry space

such as standard reference surfaces (two-
dimensional Riemann manifolds) are the
plane P

2, the sphere S
2 or the ellipsoid of

revolution E
2
a;b ,

(ii2) for projective heights in gravity space the
standard reference surface is identifies by the
reference equipotential surface, the Geoid at
some reference epoch t0 2 R.

Here we review by Table 2.10 the variational calcu-
lus or the standard optimization routine to generate
a minimal distance mapping between points on the
topography and the reference surface, in particular
the corresponding algorithm. We have referred to the
problem of holonomity of orthometric heights, nor-
mal orthometric heights (“slightly anholonomic”) for
a “star-shaped gravity space” and of steric levelling
heights (“pressure heights”) in our contribution by
E. Grafarend, R. Syffus and R.J. You (dedicated to the
memory of Antonio Marussi) in “Allgemeine Vermes-
sungsnachrichten (1995) 382–403”.

Last, not least, I thank Joseph Zund for all previous
discussions on anholonomity. We recommend to the
reader to study his masterly written book J. Zund
(1994): Foundations of Differential Geodesy, Springer
Verlag, Berlin-Heidelberg-New York 1994 in which
Local Differential Geodesy and Global Geodesy in
the Large are elegantly described. We advice the
reader also to study his The work of Antonio Marussi,
Academia Nazionale dei Lincei, Atti dei Convegni

Lincei, Report 91, Roma 1991, pages 9–20. Here
the mathematical background as well as the geodetic
background of A. Marussi based on interviews with
Mrs. Dolores Marussi de Finetti, Ian Reilly and his
own research are presented.
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north? Bulletin Géodésique 50:79–80

Fischer I (1977) Mean sea level and the marine geoid - an
analysis of concepts. Mar Geodes 1:37–58

Goenner H, Grafarend EW, You RJ (1994) Newton mechanics as
geodesic flow on Maupertuis’ manifold; the local isometric
embedding into flat spaces. Manuscripta Geodaetica 19:
339–345

Grafarend E, Syffus R, You RJ (1995) Projective heights
in geometry and gravity space. Allgemeine Vermes-
sungsnachrichten, 382–403

Grafarend EW (1971) The object of anholonomity and a gen-
eralized Riemannian geometry for geodesy. Bollettino di
Geofisica Teorica ed Applicata, 13:241–253

Grafarend EW (1973a) Gravity gradients and threedimensional
net adjustment without ellipsoidal reference, The Ohio State
University, Report No. 202, Columbus

Grafarend EW (1973b) Le theoreme de conservation de la
courbure et la torsion or attempts at a unified theory of
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Rummel R (eds.) Theory of Satellite geodesy and gravity
field determination. Lecture Notes in Earth Sciences, vol 25.
Springer, Berlin, pp 447–458

Hotine M (1957a) Metrical properties of the earth’s gravitational
field, report to I.A.G. Toronto Assembly D 33–64 of Hotine
(1991)

Hotine M (1957b) Geodesic coordinate systems, report to Venice
Symosium D 65–89 of Hotine (1991)

Hotine M (1959) A primer on non-classical geodesy, report to
Venice Symposium D 91–130 of Hotine (1991)



14 E.W. Grafarend

Hotine M (1965) Trends in mathematical geodesy. Bollettino di
Geodesia e Scienze Affini, anno XXIV, 607–622 D 5–21 of
Hotine (1991)

Hotine M (1966a) Geodetic applications of conformal transfor-
mations. Bulletin Géodésique 80:123–140
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14:411–439

Marussi A (1951a) Les principes de la géodésie intrinsèque.
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3The Shielding of Gravitation: An Old
Unresolved Puzzle

M. Caputo

Abstract

In the memory of Marussi and its memorable pendulums, made for the
observations of Earth tides but used for the unexpected observations of the free
modes of the Earth and the also unplanned attempt to observe the absorption of
gravitation. Since we are concerned with geodesy, I will recall the result which,
perhaps, is one of the most important observations obtained with the pendulums:
that concerning the absorption of gravitation. I will give no new results.

1 Introduction

Nicolas Fatio de Duiller presented his theory for
explaining gravitation at the Royal Society in 1690
(Launteren 2002), it had many opposites and later
some support from Newton himself. Among the
supporters was Le Sage (Edwards 2002a, b) who
somewhat resumed the theory, discussed it with many
scientists of its epoch such as Huigens and Leibniz
and expanded and publicized it. It had also notable
opponents as Eulero, Maxwell and Poincaré. It is
presently known as Le Sage theory (Le Sage 1784).

Looking into the matter concerning this theory one
sadly notes that, as in the past centuries when mathe-
matical duels were held in churches, how bitter was the
fight for priority in finding theories and mathematical
discoveries. Especially when the theory was apparently
new. It is notable that in the past the opponents of
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the new theories often expressed irrelevant personal
opinions without scientific support also because of
the limited knowledge of physics at that time. The
opposition to Marconi is a good example of this type
of arguing. Neither Marconi nor the opponents had
any knowledge of the ionosphere essential for the
propagation of radio-waves in many circumstances.

Le Sage (1784) theory states that a flow of par-
ticles called gravitons with isotropic distribution of
directions permeates the universe. It hits the planets
and, in the case of a system formed by 2 planets,
they shade one another from the particles which in
turn generate a push of each of the bodies towards the
other. The field generated by this force is of the type of
the inverse square law as shown by Le Sage himself
(Le Sage 1784). In the case of 3 bodies, when they
are aligned the central body is shaded on both sides
in the direction of the other two and is less subject
to gravitation as indicated in Fig. 3.1 in the case of
a particular relative position. This is the shielding of
gravity in Le Sage’s (1784) theory.

The Le Sage (1784) theory arrives to the true basis
of the problem: which is the physical mechanism of
gravitation? Rather than Newton’s “Hypothesis non
fingo”, that is “It all happens as if” of Newton or

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 3, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 Imaginative successive relative positions of 3 celestial
bodies: Sun (S), Moon (M) and Earth (E) and Le Sage flux

the generic assumptions of others such as Majorana
(1919, 1920).

In Majorana’s theory the bodies emit an energy flux
of some kind which produces gravitational effects on
other bodies and produces self-shielding for which the
gravitational mass is different from the inertial one.
As in Le Sage’s theory the flux it attenuated when
passing through solid or fluid matter.

Majorana made many sophisticated experiment in
Bologna and thought to have seen a shielding affect
(Caputo 1962) which however was not confirmed
in subsequent more sophisticated experiments. For
a recent review of this matter see Duif (2004) or
Edwards (2002a, b). Obviously all theories are valid
with the limitations of our measuring instrument and
philosophy.

According to the simple Majorana theory the
screening of the moon would cause a decrease of
gravitation at the site where the occultation of the
Sun occurs. According to the Le Sage (1784) theory
the Earth, at the time of occultation of the Sun, because
of the position of the Sun behind the Moon, at the
time of total eclipse would not feel a smaller effect
of gravitation from the Moon and feel an acceleration
towards the Moon.

According to Majorana the shielding of gravity
would happen according to the formula

g D g0

hZ

0

exp.���.l//dl

where ¡ is the density of the shielding layer, œ the
absorption coefficient and g and g0 the resulting and
the incoming gravity respectively.

This difference of perspective effects did not make
much difference in the search of an anomaly in the
data at the time of the 1960 solar eclipse. In fact
the anomaly in the data was generally searched without
making any assumption of the theoretical model of
gravitation. In most cases the search concerned only an
unspecified anomaly to be detected with correlations
between the data and perspective model signals. The
existence of a correlation and its sign would only be a
constraint on the discussion of the perspective model
of gravitation.

The aspects of the two theories trying to model
gravitation and their shielding consequences attracted
the interest of many scientists especially in geodesy
astronomy and geophysics because in these fields was
available the appropriate instrumentation for observ-
ing the shielding phenomenon and with appropriate
approaches one would have a proof of the theory under
scrutiny.

This presentation concentrates on the observations
made with the horizontal pendulums in the Grotta
Gigante in Trieste during the Solar eclipse of 1960; a
brief discussion on the observations made in Florence
with a La Coste gravimeter during the same eclipse
will follow.

Other work done in the field of gravitation
absorption made by other researchers, in spite of their
t relevance, mostly in the field of Astronomy, should
be considered; we are not pretending to write a review
of the work done in this field. We wish to celebrate
Marussi’s pendulums. For an excellent review of the
work done in the field of gravitation absorption see
Edwards (2002a, b), for more references see Caputo
(1962, 1977, 2006).

2 The Grotta Gigante in Trieste,
the Great Pendulums and the
Observations Made During
the Solar Eclipse of 1960

1. In the theory of gravitation absorption it is sug-
gested that a gravitational ray l of intensity g0
be weakened after crossing a layer of material
with density ı according to the law suggested by
Bottlinger (1912)
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g D g0 exp

0
@��

Z

l

ıdl

1
A (3.1)

where œ is the so called absorption coefficient.
The experiment made so far allow to assume that
œ<10–14 g�1 cm�2; for layer thickness and density
sufficiently small we may then write

g D g0

0
@1� �

Z

l

ıdl

1
A (3.2)

A straight forward method to verify the reality of
the phenomenon or to estimate œ is to measure the
weakening of a gravitational ray caused by the crossing
of a layer of known density and thickness. The first
physicists who investigated this phenomenon and esti-
mate œ followed this path.

In 1897 Austin and Thwing set some screens of
different density between the fixed and the mobile
masses of a Cavendish balance; however the did not
succeed to observe the absorption within a limit of the
accuracy of the experiment which was 2% of the acting
force.

In the first years of the following century, experi-
ments with the same method were repeated without
positive results by Kleiner (1905), by Cremieux (1906)
and by Erisman (1908). Erisman (1908) reached the
precision of 0.08% of the acting forces. Lager (1904)
used a regular balance to weigh a spherical silver ball
weighting 1.5 g, alternatively surrounded or not by a
spherical lead layer, however he did not observe any
weight variation larger than 0.01% of the acting forces.

Obviously the phenomenon interested also the ast-
ronomers; in 1911 some irregularities of the motion
of the Moon, for which no causes could be found,
were object of a prize emitted by the University of
München. The prize was assigned in 1912 to Bottlinger
(1912), who showed that the phenomenon of grav-
ity absorption could explain the those irregularities.
During Moon eclipses because of the absorption the
Moon would be subject to an impulsive force due to
the gravity absorption.; Bottlinger (1912) showed the
these forces would cause a periodic variation of the
mean longitude with a period of about 19 years; assum-
ing that œD 3 10–15 the estimated variation would be
in agreement with the observed ones. In the same year
appeared also a paper by De Sitter who reached the
same conclusions of Bottlinger.

Today it is believed that the findings of Bottlinger
(1912) and De Sitter be invalidated by the poor
knowledge of the time in the epoch of Bottlinger and
DeSitter since then the knowledge of the time was
related to the Earth rotation which suffers of periodic
and a-periodic irregularities which may interfere with
the supposed irregularities of the Moon motion.

In 1919 Majorana began a series of studies and
laboratory experiments whose results are presented
in a set of 18 notes appeared in the Proceedings of
Accademia Nazionale dei Lincei from 1919 to 1922.
First he made some theoretical studies where he sug-
gested that the substances composing the Sun appear
to us as masked in the gravitational effects by the
exterior layers, that is due to the supposed effect of the
gravitation absorption; in reality the mass of the Sun
would appear to us as smaller than shows the classical
theory. He showed that if we assume that the Sun is
homogeneous.

With a density of 2 g cm�3 (respectively 20 g cm�3/,
the value sof the absorption coefficient œ assumes the
value 1.11 10–11 (respectively 2.90 10–11).

Subsequently Majorana began a series of laboratory
experiments performed with very refined techniques
seeking to observe the variation of weight of a 1.3 kg
led sphere when it was screened from the effect of
Earth’s gravitational field with other masses. As screen
he used a 114 kg Mercury cylinder, then a 9.8 kg Led
cube which surrounded completely the sphere.

From the results of these experiments Majorana
was induced to state that the absorption effect existed.
The experiments made with the Mercury cylinder
led to conclude that to the value œD 7 10–12, while
the experiments made with the Led cube gave
œD 2 10–12.

Following the publication of the first results of
Majorana’s experiments, Russel (1921) showed that
because of the gravity absorption the inertial mass of
the planets could not be proportional to their gravita-
tional mass and that consequently their motion should
differ notably from what observed in reality. According
to Russel this conditions the value of œ to be smaller
than the values given by Majorana by a factor 10–4;
he further suggested that the phenomenon observed by
Majorana was not due to absorption but possibly to a
relativistic effect.

Many years went by before the research on this
matter would be resumed. In 1954 Brein (1954), using
an idea of Tomaschek (1937), tried to observe the
gravitation absorption during a Solar eclipse which
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occurred in Central Europe and the same was done
by Tomaschek (1955) himself in the Shetland Islands.
In that circumstance the Moon would have served
as a screen relative to the Sun and relative apparent
increase of gravity would have been observed. The
experiment was made with a high sensitivity recording
gravimeter, but few perturbations of difficult inter-
pretation occurred and made results uncertain. How-
ever Brein (1957) from the results of the experiment
inferred for œ the limit œ < 3 10–15 which is not in
disagreement with the results of Bottlinger (1912).
2. The total Sun eclipse of February 15th 1961 was

another circumstance to attempt a verification of
the phenomenon. Experiments were made in Sofia
and Kiev with Askania recording gravimeters by
Venedikov (1961) and Dobrokhotov et al. (1961)
and in Berchtesgaden with horizontal pendulums by
Sigl and Eberhard (1961).
The results of these observations were presented

at the IV Symposium on Earth Tides in Bruxelles in
1961; no evident effect of absorption was reported
moreover no limits for the coefficient were given.
The same type of observations in the circumstance of
the 1961 Solar eclipse of 1961, with the suggestion
of Marussi were made also with the great horizontal
pendulums installed since 1958 in the Grotta Gigante
near Trieste for the study of the tides of the Earth’s
crust (Marussi 1960a, b).

The circumstance was exceptional since the totality
was in near proximity of the station since the minimum
distance of the two bodies at totality was only 5800;
moreover the height of the Sun at totality was 13ı 300
and the effect on the horizontal pendulums was very
near the maximum one could hope. In order to observe
the phenomenon the sensitivity of the pendulums was
taken from 463 s to 657 s for the EW component and
form 500 s to 580 s for the NS component. The longer
period of oscillation implies in the recordings a ratio of
2.185 mm/msec and 1.702 mm/msec respectively. The
speed of the recording photographic film was taken
to 3.8 cm/h. Since the reading resolution is 0.1 mm,
follows that the reading have an uncertainty of about
5 10–5 arcsec.

The recordings of Earth’s tides during February
15th were favoured by excellent environmental and
meteorological conditions: the barometric pressure,
which could cause very small inclinations around the
Dinaric axis, had no appreciable variations nor were
recorded disturbances due to the flow of Karst waters.

The analogue recordings of Earth’s tides during
February 15th for both components EW and NS were
digitised with readings every 12 min. The values were
then fit to a set of sinusoids with various phased in
order to eliminate the effect of Earth tides.

These time series were examined in a time interval
of 12 h centred at totality of the eclipse and further
filtered in order to eliminate the seiches of the Adriatic
sea (Caloi 1938; Polli 1958, 1961).

The resulting residual time series were analysed
with the �2 test which gave confidence levels of 78%
and 85% for the two components. Since this result was
not considered sufficiently significant the time series
were filtered again to smoothing the data. The resulting
curves CNS, CEW are shown in the Fig. 3.1. The
deviations with respect to these curves have a level of
randomness of 83% and 99% respectively, which we
considered acceptable.
3. We compared the curves CNS, CEW with those

which presumably would represent an absorption
effects.
The variations on the horizontal components of

the Lunisolar attraction due to gravity absorption in the
case of Majprana’s model during the successive phase
of the eclipse have been computed for the particular
case which we are considering with a process of
graphics integration which ensure a precision of 2%;
to this purpose we considered the Moon homogeneous
with for density 3.34 while the density of the Sun we
adopted the values, as function of the distance from
its centre, given in the tables of Landolt and Börnstein
(1952).

With g D 980:63 gal at the Grotta Gigante the com-
ponents of the deflection of the vertical (expressed in
milliseconds of arc) which represent North-South and
the East-west components CNS, CEW are reproduces
in the Fig. 3.2 for œ D 3 10–15 (curve c), œ D 10–15
(curve b), œ D 0:5 10–15 (curve a). The comparison
of the theoretical curves with the experimental ones
suggests the following considerations: no effect is seen
in the NS component, while in the EW component the
flattening of the oscillation towards East, which occurs
at the time of the maximum of the eclipse,, could
be due to the presence of the supposed gravitational
absorption with a value of œ < 0:6 10–15.

Taking into account that this component should
have a greater reliability because of the possible effect
of absorption, which on this component should be
1.9 times larger than in the other, and also because
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Fig. 3.2 Final filtered data of the CEW (top) and CNS components (bottom) of the Earth tide station in the Grotta Gigante during
the 1960 solar eclipse

the confidence level with which have been eliminated
the accidental departures is larger than for the other
component, we will assume the limit for œ which
results from it that is œ < 0:6 10–15. We note that this
limit is 1/5 of that so far admitted and lower than the
forecast of Russel (1921).

3 The Observations Made in Florence
with a La Coste Gravimeter During
the 1960 Solar Eclipse

Concerning the method in which the Moon is used as
a screen it is of interest the experimental limit set for œ
by Slichter et al. (1965) with observations, taken with
a La Coste tidal gravimeters during the solar eclipse of
February 15th 1961 is œ D 8:3 10–16.

The method using the Earth as a screen was intro-
duced by Harrison (1963) who used. tidal gravimeters
observation and found œ < 10–15. A better result is
that of Unnikrishnan et al. (2002) with œ < 2 10–17
who used the same method and analyzed 11,000 min
of data taken by Wang et al. (2000) with a gravimeter
during the 1997 total eclipse in China.

4 The Work in Astronomy

Finally studying the fluctuations of the Moon motion
Crawley et al. (1974) found œ < 6:3 10–15. However
the most stringent limit on gravitation absorption, is

that of Eckhardt (1920) who, in a brief note, reported
that using the Laser ranging to the Moon data of
Williams et al. (1976), gave what is now the best upper
limit � < 2 10–21.

Conclusion

Geodesy is gone long way since the glorious time of
Pizzetti, Somigliana, Cassinis and Silva. It is now
deeply involved in the survival of our planet, in
essential social responsibilities and evolved towards
developments unexpected a couple of decades ago,
as it happens in many fields of science, and has
shown its vitality in most countries. Geodesy has
new very important tools and, as usual, the sup-
port of its contemporary mathematics which has
developed new very efficient methods of analysis
and modelling. Some experiments made with the
classical instruments of geodesy could be repeated
using the new more accurate instrumentation now
available, also few of the results obtained in the
studies of gravitation absorption could be reviewed
and refined in view of the new mathematical tools
presently in use.
Time has entered geodesy since long but we should
take this more seriously since all moves in the
Earth’s system. We have a reference system and we
may monitor all the movements almost in real time.
The archive of these movements in the same refer-
ence system is available, as is the catalogue of stars
in the Galaxy and outside it, as is the catalogues of
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earthquakes of the world in almost real time. This
archive may allow to model the rheology of the
Earth’s crust, which is becoming more and more
important in the studies of the seismicity of the
Earth. Geodesy has some responsibility in this field
which I tried carry for some time and which could
possibly explain some rather mysterious phenom-
ena such as the apparently chaotic time distributions
of earthquakes in the seismic regions or the inef-
ficient stress field at the base of peak mountains,
apparently due to the skin effect in anelastic media
which diminishes the surface maximum shear stress
(Caputo 1995).
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Le Sage GL. Lucrèce Newtonien, Memoire de l’Academie
Royale des Sciences et Belles Lettres de Berlin 1–28, 1784

Majorana Q (1919) Sulla gravitazione. Accad. Nazionale
Lincei, Rendiconti Classe Scienze Fis. Mat. Naturali 2,
Papers: I, 165–174; II, 221–223; III, 313–317; IV, 416–427;
V, 480–489

Majorana Q (1957a) Ipotetiche conseguenze dell’assorbimento
della gravitazione. Rend Accad Naz Lincei Cl Sc Fis Mat
Nat 1:397–402

Majorana Q (1957b) Sull’ipotesi dell’assorbimento della grav-
itazione. Rend Accad Naz Lincei Cl Sc Fis Mat Nat
1:392–397

Marussi A (1960a) The University of Trieste station for the
study of the tides of the vertical in the Grotta Gigante, III
Intern. Sump. On Earth Tides, Ist. Topografia e Geodesia
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4Marussi and the First Formulation of Physical
Geodesy as a Fixed-Boundary-Value Problem

F. Sansò and F. Sacerdote

Abstract

The famous work of A. Marussi on the geometry of the Earth’s gravity field is
known as intrinsic geodesy. This was aiming at describing all the relevant geodetic
quantities in terms of the so called intrinsic coordinates .ƒ;ˆ;W / and of their
reciprocal relation.

This has been done in a masterly way including all the interesting variables
related to the curvatures of equipotential surfaces, which were in a sense the focus
of this attention.

However, hidden in Marussi’s equations, is the first formulation of the geodetic
boundary-value problem in terms of a fixed-boundary problem. This requires a
proper understanding of the nature of such equations, as explained in the paper.

Keywords

Intrinsic geodesy � Geodetic boundary-value problems � Gravity field geometry

1 Introduction

Antonio Marussi was mainly interested in the
geometric structure of the gravity field. In his early
pioneering work he introduced “intrinsic” coordinates
(i.e. based uniquely on observable quantities, the
astronomic longitude and latitude) on the level surfaces
of the gravity potential; furthermore, using the fact that
the gravity vector, i.e. the direction of the normal to
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level surfaces and the intensity of the variation of the
gravity potential in space, is itself an observable, he
set up an instrument to move from individual level
surfaces into three-dimensional space, introducing as
third coordinate the potential itself (Marussi 1951;
Marussi 1985). Yet, no mention was made, at that
time, of the dynamics of the gravity field, described
by Poisson and Laplace equations. Only in a much
later paper (Marussi 1975) it was introduced in
the form of a first-order differential equation for
the gravity modulus, together with a system of
differential equations describing the geometry of the
field, involving the gravity modulus too.

A first attempt to formulate a boundary-value prob-
lem for the gravity potential in the framework of
intrinsic coordinates was made by Sansò (1981), who
obtained an oblique-derivative problem for a suitably
defined auxiliary potential.
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In the present paper a new formulation of the
boundary-value problem is given, with a Dirichlet
boundary condition, directly deduced from Marussi’s
equations.

2 Equations for the Gravity Field
in Intrinsic Coordinates

The starting point of Marussi’s theory is the intro-
duction of a general coordinate system fxi g. Corre-
spondingly a triad of tangent vectors along coordinate
lines, 	i D @P

@xi
; i D 1; 2; 3 is defined. Such vectors

are generally neither mutually orthogonal nor normal-
ized. Specifically Marussi introduced the coordinates
ˆ;ƒ;W , where ˆ;ƒ are the astronomical latitude
and longitude, W is the gravity potential. In order to
investigate the spatial variation of the vectors 	i , an
orthonormal local triad ik; k D 1; 2; 3, where i1 points
toward north, i2 toward east, i3 up, is defined, and the
variation of the quantities

D D �	1 � i1; D0 D �1
2
.	1 � i2 cosˆC 	2 � i1/;

D00 D �	2 � i2 cosˆ (4.1)

is investigated. Note that these quantities are essen-
tially related to the components of the coordinate
vectors on the equipotential surfaces. Using the inte-

grability conditions @	i
@xj

D @	j

@xi
, the equations

@D

@W
�
�
1C @2

@ˆ2

�
1

g
D 0

@D0

@W
�
�

tanˆ
@

@�
C @2

@ˆ@ƒ

�
1

g
D 0 (4.2)

@D00
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�
�

cos2 ˆ� sinˆ cosˆ
@

@ˆ
C @2

@ƒ2

�
1

g
D 0

(g D gravity modulus)
(together with others that are not reported here, as
they will not be used in the sequel) are obtained.
These equations describe the geometric structure of the
equipotential surfaces and their variations in terms of
the reciprocal of the gravity modulus and its derivatives
along the equipotential surfaces themselves.

The dynamic equation is derived from Poisson
equation r2W D 2!2 � 4
G� (where � is the mass

density and ! is the angular velocity), using the
intrinsic form of the Laplacian:

r2W D 1p
det fgijg

@

@xi

�p
det fgijggijW jj

�
(4.3)

.gij D metric tensor/

Its expression is
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(4.4)

where � D DD00 � D02; H D �D00CD cos2 ˆ
�

. It is
remarkable that this equation too involves the geomet-
ric quantities D,D0, D00 and the inverse of the gravity
modulus.

3 Formulation and Linearization
of the Boundary-value Problem

In order to formulate a boundary-value problem it is
convenient to reduce this system of equations to one
single equation in the unknown v D 1

g
. This result can

be obtained in a simple way in a perturbative approach,
carrying out a linearization with the spherical solution
as starting point.

The dynamic equation is considered outside masses
(� D 0) and without centrifugal term (! D 0).

From the expression of the spherical solution:
W0 D �

r
I g0 D �

r2
D W 2

�
one obtains

v0 D �

W 2
(4.5)

Furthermore, it follows from (4.1) or (4.2) that

D0 D � �

W
I D0

0 D 0I D00
0 D �� cos2 ˆ

W

) H0 D 2W

�
(4.6)
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Now equation (4.4) is linearized with respect to the
increments of the quantities

v D �

W 2
C ıv

D D � �

W
C ıD

D0 D ıD0 (4.7)

D00 D �� cos2 ˆ

W
C ıD00

FromW D �

r
C 0.r�3/; g D �

r2
C 0.r�4/ one obtains

g D W 2

�
C 0.W 4/ D W 2

�

�
1C 0.W 2/

�

) v D �

W 2

�
1C 0.W 2/

� D �

W 2
C 0.1/ (4.8)

Consequently ı	 turns out to be a bounded quantity.
Furthermore, the last term in the dynamic equa-

tion (4.4),
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is of second order.
Consequently, taking only first order terms, (4.4)

is reduced to

� @v

@W
D Hv2; i.e.

� @

@W
.v0 C ıv/ D H0v

2
0 C ıH � v20 C 2H0v0ıv (4.9)

where it can be easily seen that the expression for ıH is

ıH D W 2

�2 cos2 ˆ

�
ıD00 C cos2 ˆıD
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(4.10)

Consequently
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that finally leads to
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Applying a further derivation with respect to W one
obtains
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This is a single equation in the unknown ıv, which is
assumed to be known on the boundaryW D W.ˆ;ƒ/

if the starting point is the vector Molodensky problem
(g and W known on the unknown Earth’s surface), so
that this formulation leads to a Dirichlet problem.

4 Expansion into Spherical
Harmonics in Cartesian-Marussi
Coordinates

Equation (4.11) can be easily treated introducing the
so-called Cartesian Marussi coordinates j :

1 D W cosˆ cosƒ

2 D W cosˆ sinƒ (4.13)

3 D W sinˆ

indeed, it can be simply written as

W 2r2
 ıv C 4W

@

@W
ıv C 6ıv D 0: (4.14)

Assuming a solution of the form

ıv D
X
n;m

ıvnmW
�nYnm.ˆ;ƒ/; (4.15)

it leads to the characteristic equation

�n.�n C 1/� n.nC 1/C 4�n C 6 D 0

whose solution is �n D
��2C n

�3 � n
.

Only the upper solution can be accepted, as ıv must
be bounded at the origin.
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The first term, with nD 0, has the form ıv0
W 2 , and

represents a small correction to the coefficient of the
spherical solution used as starting point (corresponding
to a mass variation).

The second term, with nD 1, has the formP
m

ıv1m
1
W
Y1m.ˆ;ƒ/, and corresponds to the variation

of the spherical solution v D r2

�
due to a displacement

of the center of mass.
Indeed, in spherical approximation,

ı
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g
D � 1
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g
g

� Wır D r4

�2
r
r

�
�
� �
r3
.I � 3Pr /

�
ır

D �2 r
�

r
r

� ır;

where W is the matrix of the second derivatives of W .
The components of (r=r) are exactly proportional to
the first order harmonics.

The first two terms can be assumed to vanish if the
mass and the center of mass of the perturbed solution
are coincident with those of the approximate solution.

5 Determination of the Boundary
Surface

The position of the boundary points in the ordinary
space can be recovered by means of the introduction
of an auxiliary potential, the same already used by
Sansò (1981): ' D xi i .

Taking into account that

gi D @W
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D @W
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) @xi

@k
gi D @W
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D k

W
;

and that, consequently
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;

it is possible to obtain
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g

from which, finally
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� j
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(4.16)

In order to recover the auxiliary potential ', one
can start from (4.16), expressed in vector form,


g
D r' � x and take its scalar product by  , obtaining

W 2
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D W
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� '. Consequently

v D 1
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Subtracting the spherical solution v0 D �

W 2 ) '0 D
�� one obtains simply ıv D @

@W
.
ı'

W
/.

The required result can be obtained by integration:

ı' D W

WZ

0

ıv.�; �/d�.� D .ˆ;ƒ// (4.18)

6 Concluding Remarks

The present short note shows that some kind of formu-
lation of the basic boundary-value problem of physical
geodesy, with Dirichlet boundary condition, can be
obtained using intrinsic coordinates, starting from the
developments introduced by A. Marussi in order to
investigate the geometric properties of the gravity field.
Obviously this formulation is exceedingly simplified,
as it uses as starting point for linearization the spherical
solution. A further step might be carried out starting
from an approximate solution with ellipsoidal symme-
try, whose geometric properties were investigated by
A. Marussi himself in his 1975 lectures. These devel-
opments throw in some sense a bridge between the
studies on geometric properties, in which A. Marussi
obtained his most relevant scientific results, according
to the tradition of the Italian mathematical school
in differential geometry, and the more recent investi-
gations on physical geodesy, which have assumed a
prominent role in last decades. In addition, one has to
be aware that, in order to get sensible results, one has
to exclude the rotational potential fromW . As a matter
of fact, this remark leads back to the argument that the
actual gravity potential cannot be a one-to-one overall
coordinate through the outer space if the centrifugal
potential is left in it.
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5The Future of Single-Frequency Integer
Ambiguity Resolution

Sandra Verhagen, Peter J.G. Teunissen, and Dennis Odijk

Abstract

The coming decade will bring a proliferation of Global Navigation Satellite
Systems (GNSSs) that are likely to enable a much wider range of demanding
applications compared to the current GPS-only situation. One such important
area of application is single-frequency real-time kinematic (RTK) positioning.
Presently, however, such systems lack real-time performance. In this contribu-
tion we analyze the ambiguity resolution performance of the single-frequency
RTK model for different next generation GNSS configurations and positioning
scenarios. For this purpose, a closed form expression of the single-frequency
Ambiguity Dilution of Precision (ADOP) is derived. This form gives a clear
insight into how and to what extent the various factors of the underlying model
contribute to the overall performance. Analytical and simulation results will be
presented for different measurement scenarios. The results indicate that low-cost,
single-frequency GalileoCGPS RTK will become a serious competitor to its more
expensive dual-frequency cousin.
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1 Introduction

Global Navigation Satellite System (GNSS) ambiguity
resolution (AR) is the process of resolving the
unknown cycle ambiguities of the carrier phase data
as integers. It is the key to high-precision GNSS
parameter estimation. In order for AR to be successful,
the probability of correct integer estimation needs to
be sufficiently close to one. Whether or not this is
the case depends on the strength of the underlying
GNSS model and therefore on the number and type of
signals observed, the number of satellites tracked,
the relative receiver-satellite geometry, the length

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 5, © Springer-Verlag Berlin Heidelberg 2012

33

A.A.Verhagen@TUDelft.nl


34 S. Verhagen et al.

of the observational time window, the measurement
precision, the dynamics of the positioning application
and the need of having to include additional parameters
like troposphere and/or ionosphere delays.

The coming decade will bring a proliferation of
GNSSs (modernized GPS, Glonass, Galileo, Com-
pass) that are likely to enable a much wider range
of demanding applications compared to the current
GPS-only situation due to the availability of many
more satellites and signals. This contribution con-
siders the application area of single-frequency real-
time kinematic (RTK) positioning. Presently, low-cost
single-frequency RTK systems lack real-time perfor-
mance due to the weaknesses of the single-frequency
GPS-only model, see e.g. Milbert (2005); Odijk et al.
(2007); Takasu and Yasuda (2008). If low-cost single-
frequency RTK would become feasible, a whole range
of exciting applications awaits in e.g. the fast-evolving
field of mobile Location Based Services, precision
agriculture, surveying and mapping, e.g. Wirola et al.
(2006); Denham et al. (2006); Saeki and Hori (2006);
Millner et al. (2005).

In this contribution we analyze the ambiguity
resolution performance of the single-frequency
RTK model for different next generation GNSS
configurations and for different positioning scenarios.
For this purpose, first a closed form expression of
the single-frequency Ambiguity Dilution of Precision
(ADOP) is derived in Sect. 2. A performance analysis
based on the ADOPs as well as empirical success
rates is presented in Sect. 3. These results allow us to
identify the circumstances that make successful single-
frequency AR possible, as will be shown in the final
Sect. 4.

2 Ambiguity Resolution

The key to rapid and high-precision GNSS positioning
is the use of carrier-phase observations, which have
mm-level precision while code observations only have
a precision at the dm-level. In order to exploit the very
precise carrier-phase measurements, first the unknown
integer number of cycles of the observed carrier phase
has to be resolved. The linearized double-difference
GNSS model can be written as:

y D Bb C Aa C e; b 2 R
v; a 2 Z

n (5.1)

where y is the vector with double-differenced
code and phase observables; b is the v-vector with
unknown real-valued parameters, such as the baseline
increments, ionosphere and troposphere parameters; a
is the n-vector with the unknown integer ambiguities;
e is the noise vector. The matrices B and A link
the unknown parameters to the observables. It
is generally assumed that y follows the normal
distribution, with zero-mean noise and the associated
variance matrix Qyy capturing the measurement
precision.

Solving model (5.1) in a least-squares sense
provides the so-called float solution, where the integer
constraint on the carrier-phase ambiguities, i.e. a2Z

n,
is not considered. This is done in a second step, the
ambiguity resolution (AR) step, based on the float
ambiguities Oa and associated variance matrix Q Oa Oa.
The integer least-squares (ILS) estimator is proven
to be optimal in the sense that it maximizes the
probability of correct integer estimation, Teunissen
(1999). A well-known and efficient implementation of
the ILS-principle is the LAMBDA method, Teunissen
(1995). After resolving the integer ambiguities La, the
final step is to adjust the float solution of b conditioned
on the fixed integer solution. This provides the fixed
baseline solution Lb.

Correct integer estimation is essential to guaran-
tee that Lb will have cm-level precision. Hence, the
probability of correct integer estimation, called success
rate, is a valuable measure to assess the positioning
performance. Unfortunately, no analytical expression
is available to compute the ILS success rate exactly.
Several approximations were proposed in the past,
see Verhagen (2005). In this contribution empirical
success rates based on Monte Carlo simulations will
be used.

In Teunissen (1997) the Ambiguity Dilution of Pre-
cision (ADOP) was introduced as an AR performance
measure. It is defined as:

ADOP D p
jQ Oa Oaj

1
n (5.2)

The ADOP measure has the unit of cycles, and it is
invariant to the decorrelating Z-transformation of the
LAMBDA method. It is equal to the geometric mean
of the standard deviations of the ambiguities if these
would be completely decorrelated. Hence, the ADOP
approximates the average precision of the transformed
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ambiguities. The ADOP can also be used to get an
approximation of the ILS success rate:

P. La D a/ � PADOP D
�
2˚.

1

2ADOP
/ � 1

�n
(5.3)

Figure 5.1 shows the relation between ADOP and
PADOP for different values of n. From this figure it can
be concluded that for successful ambiguity resolution
the ADOP should be smaller than 0.15 cycles.

It is possible to derive closed-form expressions for
ADOP. In Odijk and Teunissen (2008) this was done
for a hierarchy of multi-frequency single-baseline
GNSS models. The closed-form expressions give a
clear insight into how and to what extent the various
factors of the underlying GNSS model contribute to
the overall AR performance, see Odijk and Teunissen
(2007). The closed-form expression for the ADOP
of the single-frequency model corresponding to a
moving receiver covering a short time span (no
change in satellite geometry) can be derived as
(see table 8 in Odijk and Teunissen (2008), use
j D 1):

ADOP D
h��
�

i
Œ2sf �

1
2

	Pm
sD1 wsQm
sD1 ws


 1
2.m�1/

�
	
1C � � �

1C �


 1
2
	
1C� � .2� C 1/2

1C �.1C �/


 v
2.m�1/

(5.4)

with:

�� undifferenced phase standard deviation [m]
�p undifferenced code standard deviation [m]
�� undifferenced standard deviation of ionosphere

observables [m]
� carrier wavelength [m]
sf variance scale factor
m number of satellites
ws elevation dependent weights, s D 1; : : : ; m

� D �2p

�2�
and � D �2�

�2p

The ionosphere-weighted model, see e.g. Odijk (2002),
is used where a priori information on the ionosphere
delays is used in the form of ionosphere observables
with standard deviation �� depending on the baseline
length. If the baseline is sufficiently short, the double
difference ionosphere observables will become zero,
and �� is set to zero.

In (5.4) sf is a scale factor, if sf < 1 this can
be either due to enhanced measurement precision, or
due to an increased number of epochs k. In the first
case it is assumed that the variance of code and phase
observations is improved with the same factor sf .
In the second case the scale factor would be equal to:

sf D 1C ˇ

k � .k � 2/ˇ (5.5)

where ˇ.0�ˇ<1) describes the correlation parame-
ter of a first-order autoregressive time process. Hence,
ˇD 0 means that time correlation is absent and
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number of epochs k for various time correlations ˇ
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sf D 1
k

, while ˇD 1 would mean that the observations
are fully correlated between the epochs and sf D 1.
Figure 5.2 shows the relation between the variance
scale factor sf and the number of epochs k for various
time correlations ˇ.

3 Performance Analysis

An analysis of the ambiguity resolution performance is
made based on the following assumptions:

�� D 2mm, �p D 20 cm
�� D 0; 4; 8mm
� D 25:48 cm (L5 frequency)

ws D .1C 10 exp.�es=10//� 1
2

v D 3 (no troposphere parameters estimated)

with es the elevation of satellite s in degrees. A mask
angle of 10ı is used.

The three values of �� are assumed to correspond to
baseline lengths of <5, 10 and 20 km, respectively.

The future Galileo constellation is considered, as
well as the combined GPSCGalileo constelation,
where for GPS the nominal constellation of 24
satellites is used. A time span equal to the repeat
orbit period of Galileo, approximately 10 days, is
considered. Two different geographical locations are
considered, both at longitude 3ıE and latitudes 45ıN
and 75ıN, respectively. The mid-latitude location
is selected because on average the least number of
satellites are visible while at the higher latitude of
75ıN the opposite is true. Figure 5.3 shows the
number of visible satellites and the skyplots for
the two locations with the satellite tracks of both
GPS and Galileo. Note that at higher latitudes the
satellite geometry will generally be better as well,
since satellites from all azimuths will be visible. The
standard deviations of the code and phase observations
are relatively conservative compared to the expected
thermal noise characteristics of the future GNSS
signals as presented in Simsky et al. (2006). Here
we choose somewhat higher standard deviations to
account for multipath and other residual effects, as
well as to simulate the performance with low-grade
receivers.

Figure 5.4 presents the mean ADOP as function
of the number of satellites m with sf D 1 (i.e. the
mean for each m is calculated over all instances that
m satellites are visible during the 10-day period). The
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average values of the two locations are shown, since it
turned out that the impact of the satellite geometry on
the ADOP – third term in (5.4) – is averaged out and
thus the results are nearly identical for the two different
locations.

From Fig. 5.1 it was concluded that an ADOP of
0.15 cycles was required for successful ambiguity
resolution. Using this rule-of-thumb, it follows from
Fig. 5.4 that 8 or more satellites are required with very



5 The Future of Single-Frequency Integer Ambiguity Resolution 37

Table 5.1 Scale factor sf needed to obtain a success rate above
0.99 more than 99% of the time. The number between brackets
is the corresponding number of epochs if ˇ D 0

Galileo GPSCGalileo

Baseline 45ıN 75ıN 45ıN 75ıN
<5 km 0.07 (15) 1 (1) 1 (1) 1 (1)
10 km 0.02 (60) 0.11 (9) 1 (1) 1 (1)
15 km 0.01 (70) 0.06 (16) 0.2 (5) 1 (1)

short baselines, more than 11 satellites with baselines
of 10 km, and more than 14 satellites with baselines of
15 km. With longer baselines, single-epoch ambiguity
resolution is generally not feasible. From Figs. 5.3 and
5.4 combined, it follows then that with very short base-
lines (<5 km) single-epoch, single-frequency RTK is
possible with Galileo-only most of the time. However,
for baselines up to 15 km this is only possible with
GPSCGalileo.

Next, the AR performance is analyzed based on
empirical success rates using Monte Carlo simulations,
see e.g. Verhagen (2005). Table 5.1 presents the scale
factor needed to obtain a success rate above 0.99 more
than 99% of the time. The corresponding number of
epochs if ˇ D 0 is derived from Fig. 5.2, from which
also follows that in the presence of time correlation
more epochs are needed.

For baselines of 20 km and longer, single-frequency
RTK is not feasible for large periods of time, and
therefore the corresponding results are not shown in
Table 5.1. Without time correlation and with 100
epochs of data, a success rate above 0.99 can be
obtained during less than 75% of the time. However,
for baselines shorter than 10 km instantaneous ambigu-
ity resolution is possible with GPSCGalileo. At mid-
latitudes the time to fix the ambiguities will often be
longer with a baseline of 15 km, but is still rather
short. With Galileo-only the time to fix depends very
much on the satellite geometry and thus the location
on Earth, but generally the time to fix will be more
than 10 epochs with short baselines, and more than 50
epochs with baselines longer than 10 km.

4 Concluding Remarks

Single frequency RTK with the current GPS or
future Galileo alone is only feasible with very short
baselines (<5 km), and even then at some locations
instantaneous ambiguity resolution will only be

feasible for 65% of the time. At mid-latitudes more
than 15 epochs of data are needed to guarantee a
success rate above 0.99.

A dual-constellation GNSS will enhance the ambi-
guity resolution performance of single frequency RTK
dramatically. Instantaneous success rates above 0.99
are obtained with baselines up to 15 km.
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6Integer Ambiguity Resolution with Nonlinear
Geometrical Constraints

G. Giorgi, P.J.G. Teunissen, S. Verhagen, and P.J. Buist

Abstract

Integer ambiguity resolution is the key to obtain very accurate positioning
solutions out of the GNSS observations. The Integer Least Squares (ILS) principle,
a derivation of the least-squares principle applied to a linear system of equations in
which some of the unknowns are subject to an integer constraint, was demonstrated
to be optimal among the class of admissible integer estimators. In this contribution
it is shown how to embed into the functional model a set of nonlinear geometrical
constraints, which arise when considering a set of antennae mounted on a rigid
platform. A method to solve for the new model is presented and tested: it is shown
that the strengthened underlying model leads to an improved capacity of fixing the
correct integer ambiguities.

Keywords

Constrained methods • GNSS • Integer ambiguity resolution

1 Introduction

The GNSS (Global Navigation Satellite System)
observations are obtained tracking a number of
satellites: both the code and carrier phase data are
used to estimate the antennae positions. Because only
the fractional part of the phase carrier observations
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can be measured, an ambiguity must be resolved for
each incoming signal in order to fully exploit the
capabilities of the GNSS positioning: by resolving the
ambiguities one is able to achieve higher accuracies
than using only the code data. The set of GNSS
observations is usually cast into a (overdetermined)
system of linearized equations, and the theory of Inte-
ger Least-Squares (ILS) (Teunissen 1993) is applied to
solve for the linearized model in a least-squares sense,
with a subset of the unknowns being integer-valued,
namely the phase carrier ambiguities. An efficient
implementation of the ILS was proposed in Teunissen
(1994): the LAMBDA (Least-squares AMBiguity
Decorrelation Adjustment) method is currently widely
used for its high efficiency. For those applications
where a subset of the real-valued unknowns is subject
to geometrical constraints, one faces a substantial
complication for the solution of the constrained ILS
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problem. A modification of the LAMBDA method
was recently proposed in Teunissen (2006), Teunissen
(2008), Teunissen (2010), Park and Teunissen (2003),
Buist (2007), Park and Teunissen (2008), Giorgi et al.
(2008) and Giorgi and Buist (2008) to solve for single-
baseline constrained problems. We investigate in this
contribution how to resolve for the integer ambiguities
when a set of two or more antennae are mounted on
the same rigid platform, with their relative positions
known and constant. The problem was originally
addressed in Teunissen (2007): the peculiar set of
geometrical constraints posed on the baselines vectors
is tackled by introducing a suitable parameterization of
the baseline coordinates, and a modified cost function
to be minimized in an ILS sense is introduced. It is
shown here how to efficiently proceed for the search
of the integer minimizer of the modified objective
function, and a numerical evaluation of the capabilities
of the constrained ILS is given: the single-frequency,
single-epoch success rate is investigated.

2 Modeling of the GNSS Observables

Assuming two antennae tracking the same nC1 GNSS
satellites, the set of single frequency, linearized double
difference (DD) GNSS observations for the baseline at
a given epoch is described via a Gauss-Markov model
(Teunissen and Kleusberg 1998)

E.y/ D Az CGb z 2 Z
nI b 2 R

p

D.y/ D Qy (6.1)

where E.�/ is the expectation operator, y is the vector
of code and carrier phase observables (order 2n),
z contains the n integer-valued ambiguities and b is
the vector of remaining p real-valued unknowns. Here,
we restrict ourselves to short baseline applications,
assuming the three baseline coordinates as the only
real-valued unknowns (p D 3).A andG are the design
matrices which link the observables with the vectors of
unknowns: A contains the carrier wavelengths, while
G is the matrix of line-of-sight vectors.
D.�/ is the dispersion operator: a Gaussian-

distributed error is assumed on the vectors of
observables, characterized by the variance-covariance
(v-c) matrix Qy .

We consider in this work a set of m C 1 antennae
tracking the same nC1 GNSS satellites: we cast the set
of GNSS DD observations collected at the differentm
independent baselines into a unique frame, thus formu-
lating a multivariate model (Teunissen 2007) as

E.Y / D AZ CGB Z 2 Z
n�mIB 2 R

3�m

D.vec.Y // D QY (6.2)

where Y is the 2n by m matrix whose columns are
the code and phase observations from each baseline,
Z is the matrix containing the nm integer-valued
ambiguities and B is the matrix of remaining 3m real-
valued unknowns, i.e. the matrix whose columns are
the coordinates of each baseline. The relative distances
between the antennae are assumed to be short, so
that the deviations between the different line-of-sight
vectors as seen from each antenna can be disregarded
and the same matrix of line-of-sight vectorsG is used.
The vec operator is here introduced in order to define
the v-c matrix of the observables: it stacks the columns
of the 2n by m matrix Y into a vector of order 2nm.
The dispersion of the vector vec.Y / is characterized
by the v-c matrix QY .

We study in this contribution how to embed a set
of nonlinear geometrical constraints posed on the 3m
real-valued entries of B . We assume that the antennae
are firmly mounted on the same rigid platform, and
their relative distances are completely known. This
results in two types of constraints to be considered:
the baseline lengths and their relative orientation are
known and constant. The hypothesis of constant length
constrains the extremity of each baseline vector to
lie on the surface of a sphere of radius equal to the
baseline length; this reduces the number of indepen-
dent baseline coordinates from 3m to 2m. Due to the
invariance of the antennae relative positions, the set
of admissible baseline coordinates is described by a
rigid rotation, and the real-valued unknowns to be
determined are drastically reduced to three (two in the
case of single-baseline) by virtue of the Euler’s rotation
theorem (Goldstein 1980). A suitable parameterization
for the baseline coordinates is necessary to efficiently
describe the characteristics of the baseline-constrained
problem. To this purpose we introduce a frame of body
axis (u1u2u3) defined by the antennae placement. The
first body axis is aligned with the first baseline, the
second body axis is perpendicular to the first, lying
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in the plane formed by the first two baselines, and
the third body axis is directed so that u1u2u3 form a
right-handed orthogonal frame. The relation between
the baseline coordinates expressed in the body frame
u1u2u3 (F ) and a reference frame x1x2x3 (B) under
the hypothesis of rigid rotations is

B D R � F (6.3)

where the rotation matrix R, which describes the
relative orientation of the two systems, defines a linear
transformation R

3�m ! R
3�m. Due to the invari-

ance of both the baselines lengths and their relative
positions, the relation BTB DF TF holds true; mul-
tiplying both the terms of (6.3) for BT , we obtain
BTB D F TRTRF : hence the matrix R has to be
orthogonal (RTR D I ). In order to avoid loss of gen-
erality when only two or three antennae are available,
we define the rotation matrix as (Teunissen 2007)

m � 3 W RF D �
r1; r2; r3

�
2
4f11 f21 f31 � � � fm1
0 f22 f32 � � � fm2
0 0 f33 � � � fm3

3
5

m D 2 W RF D �
r1; r2

� 	f11 f21
0 f22




m D 1 W RF D �
r1
� �
f11
�

(6.4)

with ri the i -th column ofR and fij (scalar) the entries
of F . We introduce for notational convenience the
parameter q, to indicate the second dimension of R:
q D m form < 3 and q D 3 for m � 3.

By the use of the rotation matrix, the problem
of estimating the 3m baseline coordinates turns into
the problem of estimating the 3q� 3m entries of an
orthogonal matrix R, of which only three (two for
a single baseline) are independent. The multivariate
constrained model is then formulated as (Teunissen
2007):

E.Y / D AZ CGRF Z 2 Z
n�mIR 2 O

3�q

D.vec.Y // D QY D Pm ˝Qy (6.5)

where R describes the orientation of the body frame
with respect to the frame wherein the GNSS measure-
ments are obtained. The unknowns to be resolved are
the nm integer-valued ambiguities and the three (or
two in case of single-baseline) real-valued independent

entries of R, which must belong to the class of 3
by q orthogonal matrices O

3�q . We assume that the
different baseline observations are described by the
same v-c matrix Qy , and the dispersion of the matrix
of observables Y is obtained via a Kronecker product
betweenQy and them bym matrix Pm, which defines
the correlation between the baselines.

3 Constrained Integer Least-Squares

The Integer Least-Squares estimator for the solution
of the system (6.1) was demonstrated to be opti-
mal among the class of admissible integer estimators
(Teunissen 1999). A closed-form solution of the ILS
is not known: hence, a least-squares minimization
implies an exhaustive search over a set of integer
candidates. The LAMBDA method is a well-known
and efficient implementation of the ILS, introduced in
Teunissen (1993) and Teunissen (1995). The nonlinear
constraints posed on the baseline coordinates strongly
affects the resolution technique to be adopted, and a
new formulation of the LAMBDA method is presented
here. To express the model (6.5) in a vectorial form, we
again make use of the vec operator:

E .vec.Y // D �
.Im ˝ A/ .F T ˝G/

��vec.Z/
vec.R/

�

Z 2 Z
n�mIR 2 O

3�q

D.vec.Y // D Pm ˝Qy (6.6)

We want to solve the system (6.6) in a least-squares
sense, therefore minimizing the squared norm of the
residuals with respect to the integer-valued matrix Z.
The squared norm and its sum-of-squares decomposi-
tion reads (Teunissen 2007):

vec.Y /� .Im ˝A/vec.Z/� .F T ˝G/vec.R/
2
P˝Qy

D vec. OE/2
Pm˝Qy

C
vec

�
Z � OZ

�2
Q

OZ

C
vec

� OR.Z/� R
�2

Q
OR.Z/

(6.7)

where
�2

Q
D .�/TQ�1.�/ is the weighted squared

norm and OZ and OR are the float solutions of the
unknowns, i.e. the least-squares solution of (6.6)
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obtained without imposing any constraint on Z or
R. OE is the matrix of least-squares residuals, while
OR.Z/ is the float estimator of R given the ambiguity

matrix Z known. Q OZ is the v-c matrix of the float
solution vec. OZ/, while the v-c matrix Q OR.Z/ defines

the dispersion of vec. OR.Z//. Due to the constraints
posed on Z and B , the last two terms of (6.7) cannot
in general be made zero for any value of Z; thus the
minimization problem must be taken with respect to
both the integer matrixZ and the orthogonal matrixR:

LZ D arg min
Z2Zn�m

C.Z/

C.Z/ D vec.Z � OZ/2
Q

OZ

C vec. OR.Z/� LR.Z//2
Q

OR.Z/

(6.8)

with

vec. LR.Z// D arg min
R2O3�q

vec. OR.Z/� R/
2
Q

OR.Z/

(6.9)

The evaluation of the cost function C.Z/ involves
the computation of two correlated terms: the first
is the distance between Z and the float solution OZ,
weighted by the v-c matrix Q OZ , and the second is
the distance between the conditional solution OR.Z/
and the minimizer of the constrained nonlinear least-
squares problem (6.9).

The solution of the minimization problem (6.8)
provides the fixed matrix of integer ambiguities LZ
by taking advantage of the geometrical constraints
expressed by the orthogonality of LR.Z/. Solving the
problem (6.9) for Z D LZ then gives the least squares
estimation of the attitude of the body axis LR. LZ/, i.e.
the orientation of the set of m baselines with respect
the frame of axes wherein the GNSS observation are
taken. Since no analytical solution for the integer
minimizer of (6.8) is known, a direct search method
must be employed. The integer matrix which provides
the smallest value for C.Z/ is exhaustively searched
inside the set of integer candidates defined as

�
�
�2
� D fZ 2 Z

n�m j C.Z/ � �2g (6.10)

where � is a scalar chosen as to limit the search
space �.�2/. The shape of set �.�2/ is driven by the
matrices Q OZ and Q OR.Z/ in (6.8): if Q OR.Z/ ! 0, the
set would be ellipsoidal, as follows from the relation

vec.Z � OZ/2
Q

OZ

� �2. The tight relation between

the two terms of (6.8) complicates the evaluation of
the shape of the search space forQ OR.Z/ ¤ 0.

We now focus on the three steps involved in the
computation of the minimizer of (6.8): the derivation
of the float solution, the search for the integer mini-
mizer and the computation of the constrained nonlinear
least-squares problem (6.9).

3.1 The Float Estimators

The float estimators OZ and OR are the least-squares
solution of the system (6.6) when disregarding the
integerness of the ambiguities and the orthogonality
of R. These are obtained by solving the set of normal
equations

N

 
vec. OZ/
vec. OR/

!
D
"
P�1
m ˝ ATQ�1

y

FP�1
m ˝GTQ�1

y

#
vec.Y /

N D
"
P�1
m ˝ ATQ�1

y A P�1
m F T ˝ ATQ�1

y G

FP�1
m ˝GTQ�1

y A FP
�1
m F T ˝GTQ�1

y G

#

(6.11)

The inversion of the normal matrix N provides the v-c
matrices of the float solutions vec. OZ/ and vec. OR/:

	
Q OZ Q OZ OR

Q OR OZ Q OR



D N�1 (6.12)

If we assume the matrix of ambiguities known, OR.Z/
and the associated v-c matrix are obtained as

vec. OR.Z// D vec. OR/�Q OR OZQ
�1
OZ vec. OZ �Z/

Q OR.Z/ D Q OR �Q OR OZQ
�1
OZ Q OZ OR (6.13)

Thus, the knowledge of the fixed matrix of ambiguities
improves the precision of OR.Z/: the dispersion is
reduced according to (6.13).

3.2 The Search for the Integer
Ambiguities

As stated above, the minimization problem (6.8) can
in principle be solved with an extensive search in the
search space �

�
�2
�
: this is a non-trivial task if one
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aims to have an efficient and fast search. The choice for
the scalar � in (6.10) is critical: it must be large enough
to guarantee the non-emptiness of �.�2/, but not too
large to avoid onerous computational burdens due to
the large number of integer candidates for which the
solution of (6.9) must be evaluated. Setting the value
of � by picking up an integer matrixZ

0

and computing

�2 D C.Z
0

/ (6.14)

generally leads to unacceptable large values for �, for
which the computational burden is too heavy. This
is due to the fact that the matrix Q OR.Z/ is driven be
the more precise phase measurements, and the second
term of (6.8) largely amplifies the values of � for
any non-correct value of Z. An alternative approach
to the extensive search in �.�2/ is to make use of
approximating functions that are easier to evaluate than
C.Z/, and a modification of the LAMBDA method is
here proposed. In analogy with the bounding functions
introduced for the single-baseline (m D 1) case in
Teunissen (2006), we note that the expression (6.9)
can be bounded via the smallest (�m) and largest (�M )
eigenvalues of the matrix Q�1

OR.Z/:

C1.Z/ � C.Z/ � C2.Z/

C1.Z/ D vec.Z � OZ/2
Q

OZ

C �m

qX
iD1

�Ori .Z/
 � 1

�2

C2.Z/ D vec.Z � OZ/2
Q

OZ

C�M

qX
iD1

�Ori .Z/
C1�2

(6.15)

where Ori .Z/ is the i -th column of OR.Z/ and the
inequalities are derived from the rules of the scalar
product between vectors. A clever strategy to quicken
the search is to make use of these two bounds, and
two efficient search strategies for the constrained
ILS minimization have been developed (Buist 2007;
Giorgi et al. 2008; Giorgi and Buist 2008): the
methods were coined the Expansion approach and
the Search and Shrink approach, respectively. The
Expansion approach works by initially enumerating
all the integer matrices contained in a small set of
admissible candidates

�exp

�
�20
� D fZ 2 Z

n�m j C1.Z/ � �20g 	 �
�
�20
�

(6.16)

where the scalar �0 is initially chosen small enough
and iteratively increased until, at step s, the set
�exp

�
�2s
�

turns out to be non-empty: as the evaluation
of C1.Z/ only involves the computation of two
squared norms, the enumeration proceeds rather
quickly. For each of the enumerated integer matrices
in �exp

�
�2s
�
, the problem (6.9) is solved and the

set �
�
�2s
�

is evaluated: if it is empty, the scalar
�s is increased to �sC1 > �s and the enumeration
in �exp

�
�2sC1

�
repeated, otherwise the minimizer of

C.Z/ is picked up.
A second strategy developed is a Search and Shrink

approach: a second set is defined as

�SaS

�
�20
� D fZ 2 Z

n�m j C2.Z/ � �20g 
 �
�
�20
�

(6.17)

where �0 is chosen large enough to guarantee the
non-emptiness of �SaS .�

2
0/. The search proceeds by

iteratively shrinking the set, by means of searching for
an integer matrix ZsC1 in �SaS

�
�2s
�

which provides a
smaller value for �2sC1 D C2.ZsC1/ < C2.Zs/ D �2s ,
until the minimizer of C2.Z/ is found. The minimizer
of C.Z/, which may differ from the one of C2.Z/, is
then extensively searched inside the shrunken set

�
�
�2
� D fZ 2 Z

n�m j C.Z/ � �2g 	 �SaS

�
�2
�

(6.18)

where �2 D C2.Z/, being Z the minimizer of C2.Z/.
The two search strategies provide an efficient alternate
way of performing the search for the integer minimizer
of (6.8), overtaking both the issues of fixing the initial
size of the search space and speeding up the search
avoiding the computation of (6.9) a large number of
times.

3.3 Solving the Nonlinear Least-Squares
Problem

The evaluation of the function C.Z/ at a given point
Z implies the solution of the nonlinear constrained
least squares problem (6.9). Geometrically, it consists
to find the closest point between a given data vector
vec. OR.Z// and a curved manifold of dimension q C 1

embedded in the 3q-dimensional space, where the
metric is defined by the v-c matrix Q OR.Z/. The man-
ifold, which reflects the nonlinearity of the problem, is
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defined by the constraints equationsRTRD I . Making
use of one of the representations that can be employed
for the three-dimensional rotations needed to coalesce
two orthogonal frames, such as the Gibbs vector, the
Direct Cosine Matrix, the Quaternions or the Euler
angles (Battin 1987), the vector vec. OR.Z/�R/ can be
rewritten as a set of 3q-nonlinear functions of a vector
of independent unknowns � , for which the orthogonal
constraint on R.�/ is implicitly fulfilled. The non-
linear least-squares problem can then be solved by an
iterative technique such as the Gauss-Newton method.

4 Simulation Results

The proposed constrained ILS method was tested
with simulated data: the simulation inputs are
summarized in Table 6.1. Each of the 24 scenarios
was processed with the unconstrained LAMBDA,
disregarding the geometrical constraints, and the
Constrained LAMBDA method, taking into account
the orthogonality on R. The latter was applied on both
a single baseline case and a two-baselines case: this
to demonstrate the improvement when the number of
geometrical constraints increases. Table 6.2 reports
for the different methods the single-frequency, single-
epoch success rate, which is defined as the ratio of
correctly fixed matrix of ambiguities over the set of
105 samples simulated. The improvement in success
rate was dramatic: especially for the weaker scenarios
(lower number of satellite / higher noise levels) the
difference between the methods was rather large,
e.g. the weakest simulated dataset, with five available
satellites and high noise values, showed an increment
from a low 3% to 72% for the single baseline case,
up to 99.6% for the two-baselines case. As expected,
the strengthening of the underlying model due to the

Table 6.1 Simulation set up

Frequency L1

Number of Satellite (PRNs) Corresponding PDOP
5 / 6 / 7 / 8 4.19 / 2.14 / 1.92 / 1.81
Undifferenced code noise 30 - 15 - 5
�p Œcm�

Undifferenced phase noise 3 - 1
�� Œmm�

Baselines fi .x1; x2; x3/ f1 D Œ1; 0; 0� m
f2 D Œ�0:35; 1:97; 0� m

Samples simulated 105

Table 6.2 Simulation results: single-frequency, single-epoch
success rates for the unconstrained and constrained LAMBDA
methods. Success rates higher than 99.9% are stressed

�� Œmm� 3 1
�p Œcm� 30 15 5 30 15 5
N Single-baseline success rate, unconstrained

LAMBDA
Single-baseline success rate, Constrained LAMBDA
Two-baselines success rate, Constrained LAMBDA

5 3.30 19.05 86.67 5.99 26.89 95.37
72.43 88.86 99.63 96.54 99.94 100
99.60 99.94 100 100 100 100

6 24.83 66.71 96.89 49.13 86.67 99.99
95.75 99.18 99.90 99.99 100 100
99.99 100 100 100 100 100

7 50.24 79.69 99.53 74.17 93.27 100
99.34 99.97 100 100 100 100
100 100 100 100 100 100

8 86.17 94.48 99.99 99.97 99.99 100
99.80 99.99 100 100 100 100
100 100 100 100 100 100

embedded geometrical constraints substantially affects
the capacity of fixing the correct integer ambiguity
matrix: only two baselines were indeed sufficient to
obtain single-frequency, single-epoch success rates
higher than 99% on all the data sets processed,
obtaining a 100% success rate on 20 out of 24 data
sets simulated.

Conclusion

The problem of resolving the integer ambiguities
which affect the GNSS carrier phase observations
is the key to precise relative positioning. The
LAMBDA method, which mechanizes the ILS
principle, is used to efficiently and reliably fix the
ambiguities. When the geometry of the antennae
placement is known and constant, nonlinear
constraints can be included in the theory, for
the purpose of strengthening the model and
improving the capacity of fixing the correct integer
ambiguities. We proposed in this contribution a
model for the GNSS observations which embeds
the whole set of nonlinear geometrical constraints
arising when considering frame of antennae of
invariant relative positions. The cost function to
be minimized in a ILS sense has been modified: in
order to solve the minimization problem respecting
both the integer and orthogonality constraints, a
modification of the LAMBDA method is proposed
and the integer matrix of ambiguities is searched
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via one of the two iterative search approaches
depicted. Both the Expansion and the Search and
Shrink algorithms can be applied to perform the
search, resulting in a faster and more efficient
approach than the extensive search. We tested
the proposed method on different simulated data
sets, investigating the influence of the number of
available satellite and the noise levels on the code
and phase observations: the difference when using
the unconstrained LAMBDA and the Constrained
LAMBDA is dramatic, with a large improvement in
the capacity of resolving the correct integer matrix,
especially for the scenarios characterized by lower
number of available satellites/higher noise levels.
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Abstract

This contribution focuses on geodetic sensor systems and sensor networks for
positioning and applications. The key problems in this area will be addressed
together with an overview of applications. Global Navigation Satellite Systems
(GNSS) and other geodetic techniques play a central role in many applications
like engineering, mapping and remote sensing. These techniques include precise
positioning, but also research into non-positioning applications like atmospheric
sounding using continuously operating GNSS networks. An important research
area is multi-sensor system theory and applications to airborne and land-based
platforms, indoor and pedestrian navigation, as well as environmental monitoring.
The primary sensors of interest are GNSS and inertial navigation systems. Fur-
thermore, Interferometric Synthetic Aperture Radar (InSAR) is recognized as one
of the most important state-of-the-art geodetic technologies used for generation of
Digital Elevation Models and accurately measuring ground deformations.
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1 Introduction

Global Navigation Satellite Systems (GNSS) play a
central role in many applications like engineering,
mapping and remote sensing. These techniques include
precise positioning, as well as applications of reference
frame densification and geodynamics, to address the
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demands of precise, real-time positioning of moving
platforms. Recognising the role of continuously oper-
ating GPS reference station network, research into
non-positioning applications of such geodetic infras-
tructure is also pursued, such as atmospheric sounding.
Thereby, other geodetic techniques should be consid-
ered as well.

An important research area is multi-sensor system
theory and applications, with a special emphasis on
integrated guidance, navigation, positioning and ori-
entation of airborne and land-based platforms. The
primary sensors of interest are GNSS and inertial nav-
igation systems; however, the important role of other
techniques used for indoor and pedestrian navigation,
and environmental monitoring is also recognized.

Furthermore, Interferometric Synthetic Aperture
Radar (InSAR) is recognized as one of the most
important state-of-the-art geodetic technologies with
applications like generation of Digital Elevation Mod-
els and accurately measuring ground deformations.

This contribution gives an overview of state-of-the-
art technology and research issues for GNSS, multi-
sensor systems and InSAR, respectively.

2 GNSS

2.1 High-Precision GNSS

Recent research and development activities in the field
of high-precision GNSS have been in great extent
driven for improved system performance with sig-
nals from multiple constellations and increased system
cost-effectiveness and availability of high-precision
GNSS. Some research subjects important to high preci-
sion GNSS applications are addressed in the following.

2.1.1 Augmentation with Multiple GNSS
Signals

There are significantly increased efforts toward
augmenting GPS-based systems with multiple GNSS
signals. This comes with demands to further improve
the positioning accuracy and reliability and increase
continuous precise positioning availability in less
desired observing environments such as urban canopy
where significant signal blockages would make GPS-
alone positioning very difficult (Cai and Gao 2009).
Data processing technologies to support multiple
GNSS signals from modernized GPS, GLONASS
and Galileo systems are highly demanded. Benefits

to system’s robustness are particularly of interest
to practical applications. This requires efforts to
develop new signal combination strategies, modeling
techniques and quality control measures (Feng and
Rizos 2009; Fernandez-Plazaola et al. 2008).

2.1.2 Integration of PPP and Network-RTK
While Network RTK continues to receive increased
adoption as more and more network infrastructures are
being deployed and PPP is recognized as an attractive
alternate to many high-precision applications, there
are increased interests to integrate the two for com-
bined advantages. Integration of PPP with Network
RTK techniques may lead to improved position accu-
racy and reliability, operational flexibility and effi-
ciency, particularly reduction in convergence time and
network reference station density (Wubbena et al.
2005; Dixon 2006; Feng et al. 2007). State space
corrections to support both Network RTK and PPP and
their seamless integration should be investigated.

2.1.3 PPP for Single-Frequency Receivers
PPP was initially designed based on the use of dual-
frequency GNSS receivers since dual-frequency obser-
vations are necessary in order to remove the effect
of ionospheric refraction which is the biggest error
source after the application of precise orbit and clock
corrections. Increased research and development activ-
ities have been found in recent years towards single-
frequency PPP. This is largely driven by the fact
that the majority of GNSS applications are based
on low-cost single-frequency receivers. Such efforts
have already brought significant progress in method-
ology and product development of single-frequency
precise point positioning based on precise correction
data from the International GNSS Service (IGS) as
well as Satellite-based Augmentation Systems (SBAS)
(Chen and Gao 2008; Zhang and Lee 2008; Van Bree
et al. 2009). Further, there is a great potential to
significantly improve positioning accuracy with cheap
GNSS chipsets. Technologies to process biased and
noisy GNSS observations will be highly demanded and
should be investigated.

2.1.4 Quality Control for High-Precision
GNSS

Quality control is not new but becomes increasingly
important for modern high-precision GNSS systems.
This is particularly true for real-time systems such
as Network RTK, PPP and other real-time systems
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(Aponte et al. 2009). Quality measures should be
developed to assess differential GNSS correction data
and position solutions. Advanced techniques to ensure
high reliability of on-the-fly ambiguity resolution are
still a significant challenge for current high-precision
RTK systems. This becomes even more critical
when signals from multiple GNSS constellations are
combined.

2.1.5 Availability of Precise Correction Data
Precise orbit, clock and further ionospheric correction
data are essential for PPP and they will also contribute
to RTK systems. Precise orbit and clock products
have improved significantly in recent years and they
are freely available over the Internet from organiza-
tions such as IGS. IGS real-time products are expected
to be available in the near future. Further, ionospheric
correction data is critical for single-frequency PPP and
is highly demanded by the industry for product devel-
opment. Increased availability of precise correction
data will accelerate the development of real-time PPP
products and reduce the time to market of new high-
precision GNSS technologies.

2.2 Atmosphere Modelling

2.2.1 Ionosphere
The past years have seen an increasing effort in the
collection of experimental data for monitoring of TEC
and ionospheric scintillation studies. This effort has
resulted in the deployment of dedicated networks of
ground GNSS and scintillation receivers, at high and
mid latitudes. There is also effort by means of satellite
missions. For example, in situ measurements from
GRACE K-Band ranging and CHAMP planar Lang-
muir probe (PLP) have been used for the validation
of the International Reference Ionosphere (IRI); and
occultation data used in combination with GNSS and
satellite altimetry aiming at a combined global VTEC
model (e.g. Todorova et al. 2008; Mayer and Jakowski
2009).

There has been effort put on enhancements in the
spatial and temporal representation of TEC/VTEC,
globally, regionally or locally. Another issue is
that near- and real-time applications require the
dissemination of predicted values of TEC. This brings
to mind the SBAS, based on continental networks
but regional or local systems may also support these
applications.

Investigation into multi GNSS constellation and
higher order (e.g., 3rd) determination TEC seem to
be gaining momentum. Higher order ionospheric delay
terms, which have been mostly disregarded in the dual-
frequency world, can be taken into account in a multi-
frequency reality, see e.g. (Hoque and Jakowski 2008;
Hernández-Pajares et al. 2007).

2.2.2 Troposphere
The increasing use of Numerical Weather Models
(NWM) has helped enhancing the prediction of neutral
atmospheric models (Boehm et al. 2006). It has also
become a source of neutral atmospheric delay that
can be directly applied in GNSS processing, including
PPP. If from one side NWMs contain a more realistic
temporal representation of the delay than prediction
models, from the other side the extraction of this
information requires ray-tracing through the neutral
atmosphere, a time consuming task if done properly.
Fast and accurate algorithms are of fundamental neces-
sity (Hobiger et al. 2008).

There has been an increasing emphasis of neutral-
atmosphere delay monitoring by ground GNSS and
satellite missions, with radio occultation consolidating
itself as a solid technique (Wickert et al. 2009).

There is a continuing effort towards enhancements
in the spatial and temporal representation of the
neutral-atmosphere including its azimuthal asymme-
try. Several models incorporating gradients, spherical
harmonics, tomography, have been further tested
including information from NWMs (Ghoddousi-Fard
et al. 2009; Rohm and Bosy 2009).

2.3 GNSS Reflectometry

Reflected signals are normally a nuisance in case of
precise positioning applications, since only the direct
signals should be used for ranging. Recently, how-
ever, the GNSS reflected signals have given birth to
new applications for various environmental remote
sensing applications in atmosphere, ocean, land and
cryosphere, e.g. (Jin and Komjathy 2010).

Surface multipath delay from the GNSS signal
reflecting from the sea and land surface, could be
used as a new tool in ocean, coastal, wetlands, Crater
Lake, landslide, soil moisture, snow and ice remote
sensing (e.g. Kamjathy et al., 2004). Together with
information on the receiving antenna position and the
medium, associating with the surface properties of



50 S. Verhagen et al.

the reflecting surface, the delay measurement can be
used to determine such factors as wave height, wind
speed, wind direction, and even sea ice conditions.
Martin-Neira (1993) first proposed and described a
bistatic ocean altimetry system utilizing the signal of
GPS. Recently, a number of applications have been
implemented using GPS signals reflected from the
ocean surface, such as determining wave height, wind
speed and wind direction of ocean surface, ocean eddy,
and sea surface conditions.

Key topics of current research are:
• Extension of developments of current GPS reflected

signal sensor techniques and their applications.
• Improvement of existing estimation algorithms and

data processing for GPS reflected signals.
• Coordinated data collection campaigns and com-

parison with terrestrial and satellite remote-sensor
observations.

• Investigation of multi-remote sensor integration and
applications.

3 Multi-sensor Systems

3.1 Navigation and Mapping

Multi-sensor system theory and applications is an
important research area as well. Here, we will put a
special emphasis on integrated guidance, navigation,
positioning and orientation of airborne and land-based
platforms. The primary sensors of interest are GNSS
and inertial navigation systems; however the important
role of other techniques used for indoor and pedestrian
navigation environmental monitoring is also recog-
nized.

Key topics for further research in this field can be
identified as:
• Technical advances in navigation sensors and algo-

rithms, including autonomous vehicle navigation,
based on:
– GPS, pseudolites, INS, wheel sensors, ultrasonic

and magnetic sensors
– Cellular networks and their hybrid with GPS

• Technical advances in mapping sensors (CCD
cameras, laser range finders, laser scanners, radar
devices)

• Standardization of definitions and measurements of
sensor related parameters

• Performance of stand alone and integrated naviga-
tion systems

• Non-linear estimation and information fusion
methods

• Innovation in:
– Algorithms, calibration, synchronization
– Real-time processing and geo-referencing
– Automated information extraction

3.2 Geotechnical and Structural
Engineering

Nowadays extended multi-sensor deformation mea-
surement systems consisting of terrestrial geodetic
and geotechnical measurement as well as hydrological
and meteorological instrumentation completed by the
InSAR technique are mainly employed for multi-scale
monitoring of landslide prone areas. Thereby InSAR is
used for large-scale detection of landslide prone areas
as well as for deformation measurements of the inves-
tigated landslide area. Such a complete measurement
system is very suitable for the investigation of the
kinematic behaviour of landslides and together with
other (e.g. hydrological, meteorological, etc.) param-
eters for the study of the dynamics of landslides. The
observation data is usually collected in GIS (see e.g.
Lakakis et al. 2009; Mentes 2008) and used to develop
Spatial Decision Support Systems (SDSS) and Early
warning systems.

In the last years, Artificial Intelligence (AI) has
become an essential technique for solving complex
problems in Engineering Geodesy. AI is an extremely
broad field – the topics range from the understanding
of the nature of intelligence to the understanding of
knowledge representation and deduction processes,
eventually resulting in the construction of computer
programs which act intelligently. Especially the latter
topic plays a central role in applications (Reiterer and
Egly 2008). Current applications using AI methodolo-
gies in engineering geodesy are: geodetic data analysis,
deformation analysis, navigation, deformation network
adjustment, and optimization of complex measurement
procedures.

4 InSAR

Synthetic Aperture Radar (SAR) and Light Detec-
tion And Ranging (LiDAR) systems are very useful
for geodetic applications, such as monitoring local
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area ground surface deformations due to volcanic and
seismic activities, and ground subsidence associated
with city development, mining activities, ground liq-
uid withdrawal, and land reclamation.

InSAR is a very active field of research in the
geo-detic research communities. The current research
issues include the development of more effective meth-
ods/algorithms for InSAR solutions, the quality control
and assurance of InSAR measurements, the study and
mitigation of biases in InSAR measurements such
as the atmospheric effects, integration of InSAR and
other geodetic technologies such as GPS, and new and
innovative applications of the technology in geodetic
studies.
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Second-order term in GPS: implementation and impact on
geodetic estimates. J Geophys Res 112, B08417 (a correction
appeared in Vol. 113, B06407)

Hobiger T , Ichikawa R, Kondo T, Koyama Y (2008) Fast and
accurate ray-tracing algorithms for real-time space geodetic
applications using numerical weather models. J Geophys Res
113(D203027):1–14

Hoque MM, Jakowski N (2008) Estimate of higher or-der
ionospheric errors in GNSS positioning. Radio Science 43,
RS5008, doi: 10.1029/2007RS003817

Jin SG, Komjathy A (2010) GNSS Reflectometry and Remote
Sensing: New roles and Progresses, Adv Space Res 44

Lakakis K, Charalampakis M, Savaidis P (2009) A landslide
definition by an integrated monitoring system. In: Fifth
International Conference on Construction in the 21st Century
(CITC-V), Collaboration and Integration in Engineering,
Management and Technology. May 20–22, Istanbul Turkey.
pp 1–8

Martin-Neira M (1993) A Passive Reflectometry and Interfer-
ometry System (PARIS): Application to Ocean Altimetry.
ESA Journal 17(4):331–355

Mayer C, Jakowski N (2009) Enhanced E-layer ionization in the
auroral zones observed by radio occultation measurements
onboard CHAMP and Formosat-3/COSMIC. Ann Geophys
27:1207–1212

Mentes G (2008) Investigation of different possible agencies
causing landslides on the High Loess Bank of the River
Danube at Dunafldvr, Hungary. In: Proceedings of the Mea-
suring the Changes, 13th FIG International Symposium on
Deformation Measurements and Analysis, 4th IAG Sym-
posium on Geodesy for Geotechnical and Structural Engi-
neering, LNEC, Lisbon, Portugal, CD, May 12–15, pp 1–10

Reiterer A, Egly U (eds) (2008) Application of artificial intelli-
gence in engineering geodesy. In: Proceedings of the First
Worksop on AIEG 2008, 116 p, http://info.tuwien.ac.at/
ingeo/Downloads/AIEG2008 Pro-ceedings.pdf

Rohm W, Bosy J (2009) Local tomography troposphere model
over mountains areas. Atmos Res 93:777–785

Todorova S, Hobiger T, Schuh H (2008) Using the Global
Navigation Satellite System and satellite altimetry for com-
bined Global Ionosphere Maps. Adv Space Res 42:727–736,
doi:10.1016/j.asr.2007.08.024

Van Bree RJP, Tiberius CCJM, Hauschild A (2009) Real time
satellite clock corrections in precise point positioning. In:
Proceedings of ION GNSS 2008, Savannah, Georgia, USA,
September 22–24, 2009

Wickert J, Schmidt T, Michalak G, Heise S, Arras C, Beyerle
G, Falck C, König R, Pingel D, Rothacher M (2009)
GPS Radio Occultation with CHAMP, GRACE-A, SAC-C,
TerraSAR-X, and FORMOSAT-3/COSMIC: Brief Review of
Results from GFZ. In: Steiner AK, Pirscher B, Foelsche U,
Kirchengast G (eds) New Horizons in Occultation Research.
Springer, Berlin, pp 3–15, doi 10.1007/978-3-642-00321-9

Wubbena G, Schmitz M, Bagg A (2005) PPP-RTK: Precise
Point Positioning using state-space representation in RTK
networks. In: Proceedings of ION GNSS 2005, 13–16
September, Long Beach, California, pp 2584–2594

Zhang Y, Lee S (2008) Nexteq RT30 L1 GPS receiver for auto-
nomous precise positioning. In: Proceedings of ION GNSS
2008, Savannah, Georgia, USA, September 16–19, 2008

http://enterprise.lr.tudelft.nl/iag/iag comm4.htm.
http://enterprise.lr.tudelft.nl/iag/iag comm4.htm.
http://info.tuwien.ac.at/ingeo/Downloads/AIEG2008_Pro-ceedings.pdf
http://info.tuwien.ac.at/ingeo/Downloads/AIEG2008_Pro-ceedings.pdf


8Contribution of a Kinematic Station to the GNSS
Network Solution for Real Time

T. Cosso and D. Sguerso

Abstract

GNSS networks for real time compute differential corrections using undifferenced
equations to model observations biases. Actually there are a lot of NRTK service
on the mainland, but it is very difficult to have a similar service offshore. The
main goal of the present work is to analyse the possibility to insert in the network
design that it could be also installed on a kinematic support. In the present
work the feasibility of a network solution for real time with one kinematic
station is analysed. For this aim it was investigated what kind of contribution the
correlations, could provide in the estimation of the GNSS observations biases.
Some simulations have been carried out and finally an experimental campaign has
been performed and analysed by an innovative ad-hoc developed software.

Keywords

GNSS • NRTK • Undifferenced equations • Correlations • Kinematic solutions

1 Introduction

In the last years the concept of Network Real Time
Kinematic (NRTK) positioning services grew up from
local to national scale. A rover receiver can obtain a
good position in real time, with phase or code obser-
vations, by receiving differential correction estimated
from a network of permanent stations.

This kind of solution can be obtained on the main-
land, but if we are interested in RTK positioning
offshore it is very difficult to reach good precision due
to the very long distances from the GNSS network.

T. Cosso (�) � D. Sguerso
DICAT, Dip. di Ingegneria delle Costruzioni, dell’Ambiente e
del territorio, Via Montallegro 1, 16145 Genova, Italy
e-mail: tiziano.cosso@unige.it; domenico.sguerso@unige.it

In the present work we want verify if it is possible
to have a permanent station off-shore; because of the
absence of static and stable supports for the stations,
we suppose to create a permanent station installed on a
kinematic structure with a multi-antenna system. Such
system is that it would be useful to evaluate the attitude
of the kinematic support as an important information
to model its movements. As a consequence we have to
verify the possibilities to use a kinematic multi-station
as a vertex of the network to estimate its position,
attitude and atmospheric parameters; in the meanwhile
we have to verify if such multi-station has a positive
or negative influence in the estimation of parameters
related to the other stations. In the NRTK solution the
main parametrized biases are estimated by an undif-
ferenced approach: the system to solve is composed by
one undifferenced equation for each observation. Thus,
the estimated biases in correspondence of multi-station
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allows to generate differential corrections offshore
Some network simulations were performed, to evaluate
the contribution of the correlations introduced by the
multi-antenna system in the network solution with
undifferenced equations. The obtained results have
been verified by an ad-hoc developed software applied
to real data.

The present work has to be considered as a fea-
sibility analysis to extend the Network Real Time
Service offshore. For this reason some simplificative
hypothesis have been done, so to use combined iono-
free code observation.

2 Network Simulations

Some network simulations were performed to analyse
the of contribution that the kinematic multi-station
brings in NRTK solution, through the contribution of
the correlations introduced by common parameters,
such as satellite clocks. Thus, we have to compare the
estimations commons parameters in different network
configurations.

Four simple configurations were analysed:
A-configuration: three permanent stations with

mutual distances about 30 km.
B-configuration: A configuration plus an additional

static permanent station.
C-configuration: three stations of A configuration

plus a kinematic multi-station, composed by three
jointed antennas-receivers systems, instead of the
fourth single static station of B configuration.

C/bis-configuration: like C configuration, but with
the kinematic multi-station composed by three joint
antennas and only one receiver (hence one clock
receiver).

In each configuration the parameters are estimated
for single epochs; hence the movement of the multi-
station is reproduces as sequence of instantaneous
positions.

2.1 Hypothesis

As mentioned the present work deals with a pre-
liminary analysis, so it will be presented here just
a solution based upon code undifferenced observa-
tions, combined as a IONO-FREE to avoid at this
stage, problems connected with ionosphere estima-
tion. We know that these aren’t usual condition for a

network solution for real time, but we consider that we
could obtain important directions about the behaviour
of the network solution in this particular condition.
In other words we assume to understand, also with
these simplifications, the contribution of the kinematic
multi-station to the entire network.

The observation equation for code measurements
may be written as follows:

P
j
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..xi�xj /2C.yi�yj /2C.zi�zj /2/C cti

� ctjCEj
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where, for each receiver i and satellite j :
E
j
i ephemerides error I ji ionosphere

T
j
i troposphere TGD group delay
M

j
i multipath effect "ji other errors

To simplify the simulation, the following hypothesis
are imposed:
– We use ultra-rapid ephemerides, thus we assume

that Ej
i could be neglected, because it is much

lower than intrinsic precision of code observation.
– Ionosphere effects are neglected considering iono-

free code observables.
– The multipath Mj

i effects, the group delay cTGD,
the effects related to the electronic behaviour of
antennas and receivers and other noises sources "ji
are neglected.

Troposphere effects T ji may be modelled using a map-
ping function mj

i depending on the elevation of each
satellite, that multiplies a tropospheric zenith delay
TZDi depending on the receiver.

The equation so simplified is here reported:

P
j
IF.i/ D

p
.xs � xr/2 C .ys � yr/2 C .zs � zr /2

C cti � ctj Cm
j
i TZDi (8.2)

The degrees of freedom of the spatial network are fixed
by the precise ephemerides, but (8.2) is invariant for a
temporal translation of the time scales of satellites and
receivers, thus the two contributions ti and tj could not
be estimated separately; for this reason the clock of one
receiver or one satellite has to be fixed.

In the present work, the coordinates of one station
were considered known to get a well-conditioned solu-
tion; then the clock and the troposphere parameters of
the same receiver were fixed.
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Table 8.1 Comparisons of the network simulations between A,
B and C configuration

A B C C/bis
Square root of the max value in the main diagonal
6.30 3.80 3.60 4.00
Determinant
52:5 � 10�5 2:7� 10�5 0:8� 10�5 0:9 � 10�5

Square root of the max eigenvalue
10.80 6.00 5.50 6.20
Square root of the min and max eigenvalue ratio
0.01 0.018 0.019 0.017

2.2 N�1 Comparisons

To evaluate the different behaviour of the four config-
urations, rows and columns concerning just the com-
mon parameters about to the three static permanent
stations, were extracted from the N�1, inverse of the
normal matrix. The comparisons between the extracted
matrices of the A, B, C and C/bis configurations were
performed using these different criteria:
• Square root of the maximum value in the main

diagonal
• Determinant
• Square root of the maximum eigenvalues
• Square root of the minimum and maximum eigen-

value ratio
The results are reported in Table 8.1.

Notice that the B configuration has all the values
better than the A one; in particular the determinant
decreases of one order and either the square root of the
maximum value in the main diagonal and the square
root of the maximum eigenvalue are halved.

The difference between A and B configurations
is due to the covariances generated by the param-
eters related to the satellites; in particular, being
ephemerides considered as known, the satellite clocks
brings an important contribution in the solution. In
fact, if the system is solved by fixing all the parameters
related to the satellites, the covariances in the normal
matrix would equal to 0 and so, no difference exists
in the estimation of the parameters between A and B
configurations.

Comparing B and C configurations, the increased
correlations due to the multi-station make the “C”
determinant one order lower than the “B” one, even
if the square roots of the maximum eigenvalues
are quite similar. Hence, the hyper-volume of the
error hyper-ellipsoid is significantly reduced in the C

configuration. To analyse more carefully the extracted
N�1, the main diagonal of the B and C configuration
has been compared. The differences of the values in
the main diagonal are included between 0 and 1.2; in
general it can be asserted that:

�
N�1
B

�
ii � �

N�1
C

�
ii > 0

and so the C configuration, with variances lower than
the B one, could be considered the better solution.

It is important to notice that, in all the three
configurations, the square root of the higher values in
the main diagonal varies from 4 to 6, and correspond
to the height and the clock of the receivers, although
DOP indexes are good (PDOPD2,0; VDOPD1,6;
TDOPD1,1). Instead, the square root of the other
values in main diagonal generally varies from 1 to 2.

The square root of the minimum and maximum
eigenvalue ratio are quite similar and very far from
unit.

A last test denominated C/bis has been carried
out considering a unique clock for the multi-station,
assuming to use three antennas with only one receiver.
Comparing the “C” and “C/bis” values reported in the
table, it is interesting to notice that, although the last
solution has to estimate two unknown parameters less,
with the same number of equations, the “C” solution
gives better results. In fact, the strong correlation
between the receiver’s clocks of the multi-station, due
to the pseudo-observations equations that introduce
geometrical bond between the antennas, brings an
important contribution. In this case, it seems that a
greater number of unknowns is more useful than a
higher redundancy, if such parameters create strong
correlations.

3 New Software for Network Solution
with a Kinematic Multi-station

Verified the positive contribution of the kinematic
multi-station, an experimental campaign was set up to
reproduce the behaviour of that multi-station. The test
data-set was composed by observations coming from
five Permanent Stations of the Polytechnic of Turin and
a multi-station realized in Genoa in cooperation with
Department of Naval Engineering of the University of
Genoa; Fig. 8.1 shows the multi-station composed by
three antennas collocated on a particular dynamic steel
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Fig. 8.1 Structure of the kinematic multi-antenna used in the
experimental campaign

structure. The whole system acquires GNSS data every
1 s. The reciprocal distances between the Permanent
Station is of the order of 40 km.

At present, commercial software used in the man-
agement of the GNSS networks to produce real time
services, does not allow to use dynamic receivers as
permanent stations; so, to reach our aim, a software
able to generate a network solution using the observa-
tions of also the multi-station, was written in MATLAB
language.

Actually this prototypal software reads in input L1
and L2 code observations and ultra rapid ephemerides,
preprocessed with Bernese software, involved in the
elaborations sequentially, like if they arrive second by
second in a real time mode. A Kalman Filter solution
applied to the iono-free combination is implemented,
to estimates epoch by epoch biases of each permanent
stations, like in a real time kinematic procedure. The
so obtained biases may be used as input informations
to create differential corrections.

The same hypothesis of the simulation were con-
sidered, so the parameters estimated are coordinates,
satellite and receiver clocks and tropospheric delay
(total zenith delay).

The goodness of the solutions is evaluated by com-
paring the Permanent Stations coordinates in mono-
graph with the ones obtained epochs by epochs with
the prototypal software, either in planimetry and in
altimetry.

In the Fig. 8.2 are represented planimetry and
altimetry of one static permanent station included in
the network solution; the continuous and the dash line
represents the values calculated using the prototypal
software and the reference values respectively.

altimetry
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Fig. 8.2 Planimetry and altimetry of one station belonging to
the network, calculated with the prototypal software imple-
mented

The behaviour of the other stations is quite similar,
so the previous graph could be considered represen-
tative of the entire network. Thee planimetric shift is
about 20 cm, while altimetric one is about 2 m; this
values can be considered satisfying considering that
just code iono-free observations are used. Moreover,
note the very short instability period, correspondent to
the first three or four epochs.

4 Conclusion and Future
Developments

In the present work has been investigated the oppor-
tunity to extend the NRTK service offshore; through
a kinematic multi-station, verifying its contribution
to the estimation of parameter related to the whole
network. The network simulation of different config-
urations, using undifferenced equations for iono-free
code observations, showed that a kinematic multi-
station brings a positive contribution in the estimation
of the entire network’s parameters also if its attitude
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has to be estimated. It was underlined, although that it
was a preliminary analysis with a lot of simplifying
hypothesis, but we have point out the importance
to introduce strongly correlated unknown parameters,
also if it decreases the redundancy.

Thus an experimental campaign has been planned
and carried out to create a dataset with real observa-
tions. Because commercial software cannot elaborate
such dataset, a prototypal software able to create a GPS
network solution for real time applications using as
input data also a kinematic multi-station, was written
in MATLAB language.

Good results have been provided; the coordinates
of a permanent station have been estimated with a
precision of about 20 cm in planimetry and 2 m in
altimetry, if a multi-station is included in the network.
Note that such results are satisfying because iono-free
code observations are used. Moreover, the precision
could be probably improved modelling better some
effects neglected in the present version.

Hence, the test campaign results confirmed that
the multi-station gives an important contribution to
the GNSS network, maybe permitting longer distances
between the permanent stations.

In the near future, some uploading and improve-
ment of the software are expected. First of all, it will
be necessary to implement the prototypal software in
a compilable informatics language, and to complete it
with the preprocessing data treatments.

Then, it will be uploaded so to generate a network
solution with carriers measurements, where obviously
the main difficulty will be the ambiguities resolu-
tion. Other improvements are needed, like to consider
in the equations the PCV (Phase Centre Variation)
parameters, the orientation of satellites, group delay,
the ionospheric models and different kind of mapping
functions of the tropospheric zenith delay. Also it

could be useful to insert spatial models of the biases,
evaluated for instance with other larger networks, so to
make the solutions stronger; moreover, interpolations
models will be implemented to obtain differential cor-
rections from the punctual biases estimations.

Finally, at this moment the software simulates a real
time solution by reading raw data in a post processing
phase; hence, all the procedures to read in real time
mode the input data to generate a “true” RTK network
solution, has to be implemented.
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9Approximation of Terrain Heights by Means
of Multi-resolution Bilinear Splines

M.A. Brovelli and G. Zamboni

Abstract

The paper deals with the approximation of fields sampled at points irregularly
distributed in a plane. Different algorithms both deterministic and stochastic
have been developed in the last years and, among them, those based on spline
functions. The interest of the authors with respect to this method is due to its
suitability in reproducing fields as the ground surface topography to obtain the
corresponding digital elevation models. The observations are modeled by the
sum of a combination of spline functions and a white noise; a least squares
adjustment approach is then used to estimate the unknown coefficients. One of
the greatest drawbacks is the request of having almost regularly sampled data to
avoid severe rank deficiency problems. In cases showing strong inhomogeneity in
spatial distribution, the coarsest resolution must be used, missing details where
denser data are sampled to better describe the higher variability. To overcome
this limit multi-resolution splines, without any particular orthogonality constraint,
can be introduced. In the paper a multi-resolution least squares interpolator and a
significant applicative example are presented. The main advantage of the proposed
method consists in its ability to synthesize, within a certain accuracy, the behavior
and shape of the field by means of a smaller number of coefficients compared with
the count of starting observations.

Keywords

Field • Digital terrain model • Least squares interpolation • Multi-resolution

1 Introduction

Observing the world and trying to model the related
phenomena, usually a classification between objects
and fields is made (O’Sullivan and Unwin 2003).

M.A. Brovelli (�) � G. Zamboni
Politecnico di Milano, DIIAR, Como Campus via Valleggio 11,
22100 Como, Italy
e-mail: maria.brovelli@polimi.it

Objects are characterized by almost exact boundaries
(e.g. buildings); fields on the opposite describe
widespread phenomena continuously varying across
the space. The latter definition can be simply translated
formally saying that if t is a generic data location in a
d -dimensional Euclidean space and h.t0/ at t0 spatial
location is a random quantity, the field is described by
some function h.t/, t 2 Rd .

The definition is quite general and it can be applied
to a huge variety of phenomena, from the topographic
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surface of the Earth (field of orthometric heights) to
environmental variables.

Even if we suppose that fields are continuous
in space, when using point-wise measurements we
are obliged to sample them at a discrete point set.
From these scattered observations we want finally to
re-create a continuous piece of information, i.e. the
continuous behavior of the field itself.

The problem is well known and can be dealt with
applying exact or approximate interpolation. With the
exact methods the interpolating surface passes exactly
through all points whose values are known. But if data
are affected by errors, it could be better to use, for
instance, methods based on a least squares approach,
which lead to filters and therefore reduce the effects of
errors on the resulting surface. The latter case is named
approximate interpolation or approximation.

A great number of both interpolation and approxi-
mation methods have been developed from the easiest
and poorest “nearest neighboring” to the powerful but
more complicate kriging. In the family of deterministic
methods, the interpolation by means of spline func-
tions (Moritz and Suenkel 1978; Unser 1999) has met
with relatively good success probably due to its ease
of use (few parameters to set and few conditions to be
satisfied by the data) and at the same time its flexibility.

The paper concentrates on multi-resolution splines
function approximation, which is particularly suitable
for inhomogeneous spatially distributed data. Scattered
exact or approximate data interpolation is a task not
yet completely solved in an efficient way. Specifically
our aim was to find a method allowing us to create
the field, within a certain level of accuracy, starting
from a small number of stored coefficients instead
of restarting every time from the original observa-
tions. Such a solution could be of interest every time
we need to store or transfer (think for instance the
recently conceived web features and coverage ser-
vices as proposed by the Open Geospatial Consortium:
OGC 2005 and OGC 2008) information about fields
consisting of very large amounts of observations. The
algorithm was at the beginning studied and used by
the authors for vector map warping based on auto-
matically detected homologous pairs (Brovelli and
Zamboni 2004). Here we concentrate on applications
to digital terrain modelling.

Of course there is a wealth of methods serving the
same purpose where the need to follow as exactly as
possible observations is balanced against the wish to
reduce noise influence. Typically methods stressing the

closeness to data are less compressing with respect to
methods putting more weight on the model (Hastie
et al. 2001).

As an example we have compared our least
squares approach with an approach proposed by Lee
et al. (1997) where a large lattice of splines is built with
a number of knots significantly higher than the number
of data in order to obtain an accuracy better than a
certain threshold. The mentioned method combines
only local data and, as compared to ours, is much
faster, though much less compressing (as an example
in case of the TR1 dataset in paragraph 5 the same
accuracy is reached with more than 250,000 splines
instead of the 5,616 used in our approach).

The paper is organized as follows. Section 2 pro-
vides a short overview of interpolation by means of
spline functions; Sect. 3 presents the main drawback
related to such an interpolator, i.e. the problem of
avoiding local rank deficiency in case of inhomo-
geneous spatial distribution. Section 4 illustrates the
multi-resolution approach suitable for dealing with the
previously mentioned problem. In Sect. 5 we present
examples of application related to height field. Finally,
conclusions and some remarks are shown.

2 Interpolation by Means of Spline
Functions

The spline function interpolator here presented is
a deterministic method based on a least squares
approach. It is a global method, i.e. each observation
contributes to the whole interpolating surface, but at
the same time it shows a relatively short range of
diffusion of the local information.

We suppose that the h field has been sampled at n
locations t1, t2, . . . , tn and we model these observations
ho.t/ by means of a suitable combination of spline
functions (deterministic model) and residuals 	i seen
as noises (stochastic model).

In a two-dimensional space each observation is
described by:

h0.ti / D
N1�1X
lD0

N2�1X
kD0

�lk'�.ti ��� lk/C 	i (9.1)

where:
– N1 and N2, which represent the total number of

knots of the splines in x and y directions, depend on
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the observation domain and on the chosen resolu-
tion; global rank deficiency is avoided by assuming
more observations than spline coefficients;

– � is the grid spacing;
– � lk D Œl k�T D knot indexes (l , k) of the grid;
– �lk is the coefficient of the spline at the knot � lk;
– '�.t/ is the two dimensional spline function.

3 Inhomogeneous Spatial
Distribution and Local Rank
Deficiency

A simple interpolation with a regular lattice of splines
is prone to local rank deficiency when the spatial
distribution of the data is not homogeneous.

In Fig. 9.1a a one-dimensional sample of 30 obser-
vations is shown; using high resolution, the leftmost
splines can not be determined because their coeffi-
cients never appear in the observation equations.

The trivial way to avoid local rank deficiency is
to decrease the spline resolution but this decreases
the interpolation details, specifically where the origi-
nal field h.t/, showing higher variability, was higher
sampled: the resulting coarse approximation curve is
shown in Fig. 9.1b (continuous line).

An alternative is to add a further condition in the
target function of the least-squares problem to express
the “regularity” (for instance the continuity in the
first derivative of the surface) of the estimated model
(Brovelli et al. 2001). But in this solution, known as
spline approximation with Tychonoff regularization,
the numbers of unknowns (and therefore the dimen-
sion of the matrix to be inverted in the least squares
approach) is not efficiently calibrated with the local
density of observations. The local rank deficiency is
avoided but the procedure, due to its blindness, leads
to an increase in the computation time of the estimate

Fig. 9.1 Examples of one-dimensional spline approximation:
data (a) and approximating curve (b)

just for adding few details. A more suitable solution
has to consider the locations where more observations
are available.

4 Multi-resolution Approach

The main idea is to combine splines with different
widths in order to guarantee in every region of the field
the resolution adequate to data density, exploiting all
available information implicitly stored in the sample.

Different “levels” of splines, corresponding to dif-
ferent halving steps, are considered. A new level cor-
responds with halving the width of the support of the
previous level spline. Taking into account the global
field domain [tmin,tmax], the levels and corresponding
ordered subintervals are shown in Table 9.1:

Each observation can be described as a linear com-
bination of spline functions of decreasing (halving) �
width:

h.ti / D
M�1X
hD0

Nh�1X
kD0

�hk � '
�
2h.ti � tmin/

�
� k

�
C 	i

(9.2)
where:
– M is the number of levels;
– Nh is the number of splines at level h .Nh D
2hC1 C 1/;

– �hk is the spline coefficient at h level;
– ' is the one-dimensional spline function;
– � D .tmax � tmin/=2.
To appreciate the advantage of this approach the multi-
resolution spline interpolator is shown in Fig. 9.2.
Constraints must be introduced on �hk coefficients in
order to avoid local rank deficiency. A general solution
of this problem is till now under study and then, to be
cautious, for the moment we have decided to adopt the
following criterion: a generic kth spline function at h
level

'�h.t � ki�h � tmin/ where�h D �

2h
(9.3)

Table 9.1 Levels of splines and corresponding knots

Level Knots of the splines

1 tmin, tmin C�, tmax

2 tmin, tmin C�=2, tmin C�, tmin C 3�=2, tmax

3 tmin, tmin C�=4, tmin C�=2, tmin C 3�=4, tmin C�,
tmin C 5�=4, tmin C 3�=2, tmin C 7�=4, tmax

4 . . .
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Fig. 9.2 Results of multi-resolution spline approximation with
4 (a) and 5 (b) levels

is active (i.e. �hk ¤ 0) if:
– we have at least f .f > 0/ observations for each�h

half-support of the spline;
– it does not exist a spline at lower level having the

same application point.
The bi-dimensional formulation can be directly
obtained generalizing the mono-dimensional case.

We suppose that h.t/ D h.t1,t2/ can be modeled as:

h.t/ D
M�1X
hD0

"
N1h�1X
lD0

N2h�1X
kD0

�hlk'�h
�
t ��h� lk � tmin

�#

(9.4)

where:

– �h D
"
�1h 0

0 �2h

#
�1h D x grid resolutionI
�2h D y grid resolutionI

– '�h.t/ D '�1h.t1/ � '�2h.t2/
– M D number of different resolutions used in the

model;
– � lk D Œl k�T D knot indexes (l; k) of the grid;
– �hlk D coefficient of the h resolution spline at the

grid knot � lk;
– N1h D number of x grid knots at the h resolution;
– N2h D number of y grid knots at the h resolution.
To avoid local rank deficiency, we generalize the same
criterion seen in 1D: at least f observations for each
quarter of spline support are needed.

5 Some Tests

To evaluate the performance of the multi-resolution
interpolator, we sample data from a LiDAR (Light
Detection And Ranging) digital terrain model (DTM);
it is a promontory overlooking the lake of Como in
Northern Italy. The horizontal spacing of the grid
is 2m � 2m and the fundamental vertical accuracy
(Rood 2004) is of about 20 cm.

A TIN (Triangulated Irregular Network) is extracted
from the grid in such a way that the maximum allow-
able difference in height between the grid and the TIN
surface is less than a certain fixed tolerance.

By fixing the tolerance equal to 5 m, 2 m and 1 m,
we create respectively the training datasets TR5, TR2
and TR1 containing scattered data. By fixing the tol-
erance equal to 20 cm (and removing TR5, TR2 and
TR1), we create the test dataset TE (used for cross-
validation). The original dataset is shown in Fig. 9.3.
In Table 9.2 the statistics of the datasets are reported.

The application of the multi-resolution approximate
interpolation leads to results summarised in Table 9.3.
Moreover, as an example, in Fig. 9.4 the multi-
resolution grid for TR5 is represented.

The analysis of results leads to the conclusion that
in case of the first test (TR5, i.e., points extracted with
a threshold of 5 m) we can reproduce completely the

Fig. 9.3 The original dataset (2m � 2m DTM)

Table 9.2 Statistics of the DTM, training sets and testing set

DTM TR5 TR2 TR1 TE
Count 422610 3274 9256 21656 81869
Min (m) 197,44 197,44 197,44 197,44 197,47
Max (m) 332,27 332,27 332,27 332,27 332,23
Mean (m) 225,27 214,33 225,75 230,81 235,59
St. Dev. (m) 27,80 28,58 30,85 30,36 27,83

Table 9.3 Main statistics for the TR5, TR2 and TR1 test

Processing Mean RMSE (m) Spline
time (ms) error (m) count (#)

TR5 782 0,00 3,39 349
TE 6875 �0,38 4,85 349
TR2 20265 0,00 1,82 1767
TE 44860 0,04 2,20 1767
TR1 314063 0,00 1,07 5616
TE 166109 0,01 1,41 5616
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Fig. 9.4 Multi-resolution grid obtained for TR5

field within the same accuracy simply by using 349
spline functions. The time required both for compu-
tation of the unknowns and approximation on the large
dataset (TE) is globally less than 7 s. In other cases
we cannot stay within the thresholds, but in the former
we are not so far from them. Obviously the number
of spline functions increases and consequently also the
time required for computations. The worst case with
respect to the processing time is, as expected, the one
corresponding to TR1. Another weak point is the value
we got for the RMSE of the testing dataset (TE): it
is too high and can not be accepted. Therefore we
investigated the reasons for such unacceptable result
and we individuated two possibilities; one is related to
the morphology of the area: it is a varying and complex
area, where the coast close to a vertical cliff in the
north-easternmost part and a little plateau surrounded
by steep slopes in the middle of the promontory give
the largest errors. The exclusion of those points (0.6%
of the total) leads to an RMSE equal to 1.19 m. The
other reason deals with the sampling method which
is not optimized with respect to our interpolator: data
decimation, as mentioned, was simply done using a
TIN algorithm.

Conclusion

A multi-level spline based method to efficiently
approximate fields is proposed. The method is

applied on terrain heights to derive the corre-
sponding digital terrain model. The problems at
the moment unsolved are:
– The theoretical estimation of local rank defi-

ciency must be studied: we used f D 1 or f D 2

but it could be too conservative;
– The sampling method for the training sets must

be better selected: data decimation was done
using a TIN algorithm but an optimized sampling
(with respect to our method) must be introduced.

Finally, to evaluate the performances of the interpo-
lator, more comparisons with other methods have to
be investigated.
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10Flexible Dataset Combination and Modelling
by Domain Decomposition Approaches

I. Panet, Y. Kuroishi, and M. Holschneider

Abstract

For geodetic and geophysical purposes, such as geoid determination or the study
of the Earth’s structure, heterogeneous gravity datasets of various origins need to
be combined over an area of interest, in order to derive a local gravity model at
the highest possible resolution. The quality of the obtained gravity model strongly
depends on the use of appropriate noise models for the different datasets in the
combination process. In addition to random errors, those datasets are indeed often
affected by systematic biases and correlated errors.

Here we show how wavelets can be used to realize such combination in a
flexible and economic way, and how the use of domain decomposition approaches
allows to recalibrate the noise models in different wavebands and for different
areas. We represent the gravity potential as a linear combination of Poisson
multipole wavelets (Holschneider et al. 2003). We compute the wavelet model of
the gravity field by regularized least-squares adjustment of the datasets. To solve
the normal system, we apply the Schwarz iterative algorithms, based on a domain
decomposition of the models space. Hierarchical scale subdomains are defined as
subsets of wavelets at different scales, and for each scale, block subdomains are
defined based on spatial splittings of the area. In the computation process, the data
weights can be refined for each subdomain, allowing to take into account the effect
of correlated noises in a simple way. Similarly, the weight of the regularization can
be recalibrated for each subdomain, introducing non-stationarity in the a priori
assumption of smoothness of the gravity field.
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We show and discuss examples of application of this method for regional gravity
field modelling over a test area in Japan.

Keywords

Regional gravity modeling • Wavelets • Domain decomposition methods

1 Introduction

The knowledge of the geoid is essential for various
geodetic and geophysical applications. For instance,
it allows the conversion between GPS-derived and
levelled heights. It is also the reference surface for
ocean dynamics. The geoid can be computed from an
accurate gravity model merging all gravity datasets
available over the studied area. With the satellite grav-
ity missions GRACE and GOCE, our knowledge of
the long and medium wavelengths of the gravity field
is or will be greatly improved (Tapley et al. 2004;
Drinkwater et al. 2007). The gravity models derived
from those missions need to be locally refined using
high resolution surface gravity datasets, to obtain the
local high resolution models that will be used for
geoid modeling. Such refinements also allow to under-
line possible biases of the surface gravimetry and
to improve the local gravity models, provided that a
proper combination with the satellite models is car-
ried out, with an appropriate relative weighting of
the datasets. Featherstone et al. (1998) provide an
overview of methods developed to realize such combi-
nation, using the Stokes integration. Different weight-
ing schemes have been proposed by various authors,
see for instance Kern et al. (2003). Local functional
representations of the gravity field can also be used
(see Tenzer and Klees 2008, for an overview). They
can be related to least-squares collocation in reproduc-
ing kernel spaces (Sansò and Tscherning 2003).

Here we show that wavelet representations of the
gravity field can be very useful for that purpose.
Because of their localization properties, the wavelets
indeed allow a flexible combination of various
datasets. We first explain how to compute a local
wavelet model of the gravity field combining different
datasets by an iterative domain decomposition
approach. Then, we provide an example of application
over Japan, an area where significant variations of the
gravity field occur in a wide range of spatial scales.

2 Discrete Wavelet Frames

The gravity potential is modeled as a linear combi-
nation of wavelets. Wavelets are functions well local-
ized both in space and frequency, which makes them
interesting to combine data with different spatial and
spectral characteristics. To model a geopotential, har-
monic wavelets are well-suited (Freeden et al. 1998,
Schmidt et al. 2005). We chose to use axisymmetric
Poisson multipole wavelets, introduced by Holschnei-
der et al. (2003). Because they can be identified with
equivalent non-central multipolar sources at various
depths, they are well-suited to model the gravity poten-
tial at a regional scale. A wavelet is described by
its scale parameter (defining its width), its position
parameter (defining its center in space), and its order
(defining the multipoles, as explained in Holschneider
et al. 2003). Here we use order three Poisson wavelets,
which provide a good compromise between spatial and
spectral localization.

A wavelet family is built by an appropriate
discretization of the scale and position parameters,
as explained in Chambodut et al. (2005), Panet
et al. (2004, 2006). First, a sequence of scales is chosen
in order to ensure a regular coverage of the spectrum.
This leads to a dyadic sequence of scales. Then, for
each scale, a set of positions on the mean Earth sphere
is chosen, in order to ensure a regular coverage of the
sphere. The number of positions increases as the scale
decreases, because the dimension of harmonics spaces
to be generated by the wavelets increases. The wavelets
are thus located at the vertices of spherical meshes that
are denser and denser as the scale decreases.

The wavelet family thus obtained forms a frame
(Holschneider et al. 2003). It provides a complete
and stable representation of the modeled field, that
may also be redundant. The redundancy is evalu-
ated by comparing the number of wavelets, approxi-
mated with band-limited functions, with the dimension
of harmonic spaces to be generated (Holschneider
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Table 10.1 Description of the wavelet frame used in gravity
modelling over Japan.

Scale (km) Number of wavelets Area covered

300 380 25=49ıN, 129=153ıE
150 1406 25=49ıN, 129=153ıE
75 2,401 29=45ıN, 133=149ıE
38 9,604 29=45ıN, 133=149ıE
20 38,220 29=45ıN, 133=149ıE

et al. 2003). The wavelet family used in this study
(see Table 10.1) is over-complete with a redundancy
estimated to 1.4 at 10 km resolution.

Here, we build a wavelet family suitable for local
gravity field modeling by refinement of a global geopo-
tential model derived from GRACE data with a surface
gravity dataset. We need to combine two datasets:
the high resolution surface gravity one, and a dataset
created at the ground level from the geopotential model
up to degree 120, extending two degrees outside the
surface data. We then select the wavelets as follows.
First, the largest wavelet scale is limited by the size of
the area covered with data. Scales larger than half of
the width of the area indeed cannot be reliably con-
strained by local datasets. Second, wavelet positions,
for each scale, are selected in the area covered by data.
Potential data are modeled by large scale wavelets, and
smaller scales are added to model the surface data. This
leads to the wavelet set detailed in Table 10.1. Note
that, although the central frequency of the smallest
scale wavelets is 20 km, the spectrum is well covered
down to 10 to 15 km resolution.

3 Domain Decomposition Methods

The coefficients of the wavelet representation of the
gravity potential are computed by least-squares fit of
the datasets. Each data type can be related to the poten-
tial by a functional relation, leading to the observation
equations for each dataset i , with i D 1; : : : ; I . We
obtain the following model:

bi D Ai � x C "i

Here, bi is the measurement vector, Ai the design
matrix relating the observations to the wavelet coef-
ficients of the geopotential, and x the coefficients to
be determined. The vector "i contains the data errors

(comprising white noise and correlated errors), with
covariance matrix W �1

i . This matrix is not considered
perfectly known a priori, and we will parameterize it
with variance factors estimated in the computational
process (see below). We then derive the normal system
for each dataset: Ni � x D fi , where Ni DAti �Wi � Ai
is the normal matrix, and fi DAti � Wi � bi is the
associated right hand side. Summing the normals for
all datasets, and adding a regularization term �K leads
to the system to solve:

.N C �K/ � x D f (10.1)

with N D P
i Ni and f D P

i fi . The regularization
may be needed if the data distribution leads to an ill-
posed problem, and also to stabilize the inversion if the
wavelet family is too redundant.

To solve this problem and introduce flexibility, we
apply iterative domain decomposition methods (see for
instance Chan and Mathew (1994) and Xu (1992)).
Here we briefly recall the principle of such approaches.
The least-squares computation of a wavelet model can
be viewed as a projection of the data vectors on the
space H DL2.

P
/ spanned by the wavelets, whereP

stands for the Earth mean sphere. In the domain
decomposition approaches, also named Schwarz algo-
rithms, we split H into smaller subspaces named sub-
domains fHk; kD 1; : : : ; pg, that may be overlapping
or not, so that we have H D˙

p

kD1Hk . In order for
the computation to converge fastly, it is interesting to
choose not too correlated subdomains, and we natu-
rally define subdomains spanned by the wavelets at
a given scale (hereafter referred to as: scale subdo-
mains). If the scale subdomains still comprise too
many wavelets, which is the case at the smaller scales,
we split them into smaller subdomains spanned by sub-
sets of wavelets at the given scale. These are referred
to as: blocks subdomains. They correspond to a spatial
splitting of the area into blocks. To each scale level cor-
responds a block splitting, with only one block for the
larger scales and an increasing number of blocks as the
scale decreases. Here we used a simple definition of
the blocks, limited by meridians and parallels, but one
may consider general shapes, for instance following
the physical characteristics of the area. We defined
overlapping blocks subdomains, with the size of the
overlap area depending on the scale level, in order to
speed up the convergency of the computations. On the
other hand, our scale subdomains are non-overlapping.
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Finally, to each subdomain corresponds a subset of
the total wavelet coefficient vector x that is to be
computed.

Once the subdomains have been defined, the
Schwarz algorithms consist in the following steps:
(1) project the data vector and the normal systems
on each subdomain, (2) compute the local wavelet
coefficients by least-squares fit of the datasets for
each wavelet subdomain, (3) gather these subsets of
coefficients and update the global solution vector x,
dropping the coefficients of wavelets located in the
overlap areas and reweighting the coefficients, (4)
update the right-hand side and iterate the computation.
The coefficient weights are defined as the inverse of the
number of overlapping blocks to which they belong.
The Schwarz algorithms exist in two versions: the
sequential one, where the subdomain solutions are
computed sequentially, and the parallel one, where
they are computed at the same time. In the case of
multi-resolution representations based on wavelets, it
is interesting to apply a hybrid algorithm, combining
sequential Schwarz iterations on the scales subdomains
with parallel iterations on the blocks. To design
the iteration path over the scales, we followed the
iteration sequences of multi-level iterative methods
called multigrids. Multigrid methods (Wesseling 1991;
Kusche 2001) are based on the resolution of successive
projections of the normal system on coarse or fine
grids, applying multi-level Schwarz iterations between
subdomains corresponding to the grids. They are
similar to a multi-scale resolution using wavelets,
the wavelet coefficients at a given scale defining the
details to add to a coarser grid approximation in order
to obtain the finer grid approximation of the signal. We
thus applied standard grid iterations schemes (from
coarser to finer grids and vice versa) to design the
wavelets scales iteration schemes (from larger to finer
scales and vice versa). Figure 10.1 summarizes the
approach.

In such iterative approach, it is possible to reweight
the datasets and the regularization subdomain per sub-
domain. Following ideas by Ditmar et al. (2007) devel-
oped in the case of a Fourier analysis of data errors, we
model the datasets systematic errors as a linear combi-
nation of wavelets, and add a white noise component.
To model the systematic errors, we assume here that
there exists a discrete orthonormal wavelet basis B
sampled at the data points (it may be different from
the Poisson wavelets frame). This requires a regular

Fig. 10.1 The Schwarz iterative algorithm. Each layer corre-
spond to a scale subdomain, and the solid lines define the spatial
blocks. The gray arrows show the iterations over the scales.

enough data sampling. Then, the covariance matrices
of the errorsW �1

i may be written as:

W �1
i D F t

i �D�1
i � Fi ; (10.2)

where Fi and Di are square matrices of size equal to
the number of data in the dataset i . Fi is an orthogonal
matrix containing the basis B wavelets sampled at the
data points, and we have: F t

i � Fi D I . The weight
matrixWi thus verifies:

Wi D F t
i �Di � Fi : (10.3)

If the datasets errors can be considered locally
stationary (without any abrupt variations) over the
subdomains, then the projections of Di over these
subdomains can be approximated with a white noise of
constant subdomain-dependent variance �k , leading
to a block-diagonal structure of Di . Inserting (10.3)
into (10.1), and assuming a good enough decorrelation
between the Poisson wavelets and the discrete wavelets
of basis B for different scales and blocks, leads to a
rescaling of the subdomains normals by a factor �k .
In other words, the subdomains normals highlight
different components of matrix Wi , and the scaling
factors �k are roughly estimated using variance
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components analysis (Koch 1986; Kusche 2003) of
a discrete wavelet transform of the residuals. The
regularization may be reweighted in this way too.
However, for the convergence of the iterations, a low
condition number of the normal system is needed.
This may require to increase the regularization weight.
Thus, we chose to follow an iterated regularization
approach (Engl, 1987), where an initially strong
regularization is progressively removed by iterating,
the number of iterations finally controlling the amount
of regularization.

4 Application Over Japan

We validated the method on synthetic tests consider-
ing white and colored noise models, and then apply
it to gravity field modeling over Japan, refining a
GRACE-derived global geopotential model (EIGEN-
GL04S by Biancale et al. 2005) with a local gravity
model by Kuroishi and Keller (2005). We generated
5448 potential values at the Earth’s surface from the
EIGEN-GL04S model up to degree and order 120. The
cumulative error is estimated to 0:8m2=s2 in rms. The
local gravity model is a 3 by 3 min Fayes anomaly
grid at the Earth’s surface (103,041 data), merging
altimetry-derived, marine and land gravity anomalies
(Fig. 10.2). The altimetry-derived gravity anomalies
are the KMS2002 ones (Andersen and Knudsen 1998).
In order to avoid aliasing from the highest frequencies
of the gravity data, we removed the highest frequencies
from the local model by applying a 10 km resolution
moving average filter, corresponding to the wavelet
model resolution. From both datasets, we removed the
lower frequencies modeled by the lower degree com-
ponents of the EIGEN-GL04S model, and the residuals
are modeled using wavelets. This allows us to con-
struct a hybrid spherical harmonics/wavelets model,
refining locally the global EIGEN-GL04S model using
wavelets. For the parametrization of the computation,
we use 5 scales subdomains. For the scales 300 km
and 150 km, there is only one block. For the scales
75 km, 38 km and 20 km, we split the area into 4,
16 and 36 blocks, respectively. We apply a few iter-
ation cycles over the scale subdomains, and a few
hundreds iterations over the blocks. We do not iterate
our estimations of the datasets reweightings using
variance components estimates, but carry out only

Fig. 10.2 Surface gravity model by Kuroishi and Keller (2005).

one weight estimation at the end of the computa-
tion of the wavelet model. Indeed, as the potential
data are perfectly harmonic, iterated variance compo-
nents estimates tend to lead to a perfect fit of these
data.

The results of a first computation, tightly con-
strained to the potential data for the large scale
wavelets, and with a progressive increase of the
weight of the surface data as the scale decreases,
highlighted discrepancies between the two datasets,
that we attributed to large scale systematic errors
in the surface gravity model. Applying a low-pass
filter to the residuals to the gravity anomaly data, we
defined a corrector model and subtracted it from the
surface gravity data. Applying the wavelet method
on the corrected datasets allows to progressively
improve the resulting wavelet model, and refine our
corrector model. The final corrector thus obtained is
represented on Fig. 10.3. It is consistent with results
from Kuroishi (2009), underlining similar biases in
the surface gravity model from a comparison with the
GGM02C/EGM96 geopotential model. The residuals
of the final wavelet model to the potential and gravity
anomaly data are represented on Fig. 10.4, and the final
wavelet model on Fig. 10.5. The RMSs of residuals
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Fig. 10.3 The final corrector model to the surface gravity
anomaly model, derived by low-pass filtering of the residuals
of the wavelet model to the gravity anomaly data.

are 0:80m2=s2 for the potential data, and 0.50 mGals
at 15 km resolution for the corrected anomaly data.
This is consistent with our a priori knowledge on
the data quality. We also note that these residuals
do not show any significant bias. The resolution
of the wavelet model may be slightly coarser than
that of the surface gravity model, which is why
we observe very small scale patterns in the gravity
anomaly residuals map. Small edge effects may also be
present.

Conclusion

We developed an iterative method for regional
gravity field modeling by combination of different
datasets. It is based on a multi-resolution repre-
sentation of the gravity potential using Poisson
multipole wavelets. We define scale and blocks
subdomains, and carry out the computation of the
wavelet model subdomain per subdomain. This
allows to introduce a flexible reweighting of the
datasets in different wavebands and in different
areas. Applying this approach to the example of
gravity field modeling over Japan, a challenging
area with important gravity undulations, allows

Fig. 10.4 Geographic distribution of residuals in the final com-
bination. Top panel: potential residuals to degree 120. Bot-
tom panel: residuals of corrected gravity anomalies at 15 km
resolution.

to derive a hybrid spherical harmonics/wavelet
model at about 15 km resolution, refining a global
geopotential model with a local high resolution
gravity model. Finally, the method can be used
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Fig. 10.5 Surface Fayes gravity anomalies computed from the
final wavelet model obtained in the present study.

to regional modeling of the forthcoming GOCE
level 2 gradient data, in combination with surface
gravimetry.
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11Optimal Hypothesis Testing in Case
of Regulatory Thresholds

I. Neumann and H. Kutterer

Abstract

In this study hypothesis testing is treated, when neither the probability density
function (pdf) of the test statistic under the null hypothesis nor the pdf of the test
statistic under the alternative hypothesis are known. First, the classical procedure
in case of random variability is reviewed. Then, the testing procedure is extended
to the case when the uncertainty of the measurements comprises both random
and systematic errors. Both types of uncertainty are treated in a comprehensive
way using fuzzy-random variables (FRVs) which represent a combination of
probability and fuzzy theory. The classical case of random errors (absence of
systematic errors) is a special case of FRVs. The underlying theory of the
procedure is outlined in particular. The approach allows the consideration of fuzzy
regions of acceptance and rejection. The final (optimal) test decision is based on
the utility theory which selects the test decision with the largest expected utility as
the most beneficial one. An example illustrates the theoretical concept.

Keywords

Hypothesis testing • Decision making • Utility theory • Imprecise data • Fuzzy
data analysis • Regulatory thresholds

1 Motivation

In hypothesis testing three important cases are of
interest: In case (1) both the probability density func-
tions (pdf) of the test statistics under the null and
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alternative hypothesis are known. A second case (2)
is when the null hypothesis is much more probable
and therefore the pdf of the alternative hypothesis is
not (exactly) known. In case (3) neither the pdf of the
test statistic under the null hypothesis nor the pdf of
the test statistic under the alternative hypothesis are
known. Whereas in case (1) no regions of acceptance
or rejection are needed for the test decision (Luce and
Raiffa 1989), in the cases (2) and (3) acceptance and
rejection regions have to be defined. In case (3) there
is no statistically founded method to define the region
of acceptance. However, it can be constructed, e.g.,
based on expert knowledge what leads to regulatory
thresholds. The test decision in case (2) and (3) is
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obtained by comparing a measured value with the
region of acceptance and rejection.

In reality, the total uncertainty budget usually
comprises at least two types of uncertainty: random
variability which reflects uncontrollable effects during
observation and data processing, and imprecision
which is, e.g., due to remaining systematic errors
between data and model. When uncertainty is present
in the measurements, the test decision is not (always)
clear. The general theory of decision making provides
the required procedures for an optimal test decision.
The most beneficial one (with the largest expected
utility) is selected.

In this study, case (3) of hypothesis testing is
of main interest. The classical procedure in case
of random variability will be extended to imprecise
data.

2 Uncertainty Modeling

In this paper two different aspects of uncertainty
modeling are of interest. The first one concerns
linguistic uncertainty and the second one measurement
uncertainty.

Linguistic uncertainty can be modeled with the
aid of fuzzy theory (Zadeh 1965). Here, LR-fuzzy
intervals according to Dubois and Prade (1980) are
used. An LR-fuzzy interval is a special case of a
one-dimensional fuzzy set QA which is described by a
membership function m QA.x/:

QA WD ˚
.x;m QA.x//jx 2 R

�
with m QA W R ! Œ0; 1�:

(11.1)

The core of a fuzzy set is the classical set of elements
of QA with membership degree equal to 1.

An LR-fuzzy interval is then defined as a fuzzy
set over R with a non-empty core. Its membership
function is constructed by monotonously decreasing
(left and right) reference functions L and R. For L and
R the range of values is [0, 1]. For a graphical sketch
see Fig. 11.1. LR-fuzzy intervals can be represented
by QX D .xm; r; cl; cr/LR. The midpoint is denoted by
xm. The radius of the interval representing the core is
r. Together with the deterministic spreads cl and cr it
serves as a measure of linguistic uncertainty. Linguistic
uncertainty plays a key role in the definition of the
regions of acceptance and rejection, see Sect. 3. Strate-
gies to construct fuzzy numbers or fuzzy intervals

Fig. 11.1 LR-fuzzy interval with different reference functions

based on expert knowledge are given in Nguyen and
Kreinovich (1996) and Neumann (2009).

Based on m QA.x/ set-theoretical operations can be
consistently extended to fuzzy sets: the intersection
can be defined as m QA\QB D min.m QA;mQB/ and the
complement as m QAc D 1 � m QA.

The combination of random variability and impre-
cision in measurement uncertainty is based on the
theory of fuzzy-random variables (FRV), see, e.g.,
Kwakernaak (1978).

FRVs serve as basic quantities; they are an exten-
sion of the classical probability theory. For this reason,
all statistical methods have to be extended to imprecise
data and all statistical quantities are imprecise by
definition.

Random variability is introduced through the mid-
point of an LR-fuzzy interval which is modeled as
a random variable and hence treated by methods of
stochastics. In order to model both types of uncertainty
in a comprehensive way, random variability is super-
posed by imprecision which is due to non-stochastic
errors of the measurements and the physical model
with respect to reality.

In general, this yields an LR-fuzzy-random interval
QX D .Xm;Xr; cl; cr/LR with a stochastic midpoint Xm;
the underline indicates a random variable. Actually, QX
is a special case of a fuzzy-random variable (Möller
and Beer 2004). In contrast to the general case only
the expectation value is considered as superposed by
fuzziness but not the variance. Without imprecision the
pure stochastic case is obtained .Xr D cl D cr D 0/,
see Dubois and Prade (1980) for examples. In case
of normal distributed values for the random part, the
standard deviation �x is the carrier of the stochastic
uncertainty, and the radius Xr and spreads cl and cr are
the carrier of imprecision.

A geometric interpretation of a FRV with cl D
cr D 0 is given in Fig. 11.2. The lower and upper bound
of the core define the variation range of the random
midpoint.
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Fig. 11.2 FRV for cl D cr D 0 with the variation range of the
random uncertainty component inside the core element

3 The Pure Stochastic Case

In the pure stochastic case of hypothesis testing in
case of regulatory thresholds, the uncertainty of the test
statistic T is described by a pdf: T � ¡T.x/.

In the pure stochastic case, the regions of accep-
tance A and rejection R are defined through the inter-
vals ŒA� D ŒAl;Au� and ŒR� D ŒRl;Ru�, respectively.
The probabilities p0.T/ and p1.T/ that the test value T
belongs to A or R can be computed by:

p0.T/ D
Z

A
¡T.x/dx and p1.T/ D 1 �

Z
A
¡T.x/dx:

(11.2)

Due to the linguistic imprecision or fuzziness of the
formulated hypotheses such as “The allowed length
of a machine axis is approximately. . . ” the regions of
acceptance and rejection may be fuzzy. This leads to
the definition of regions of transition between strict
acceptance and rejection of a given hypothesis.

The fuzzy region of acceptance QA is then defined
with an LR-fuzzy interval by:

QA WD ˚
.x;m QA.x// jx 2 R

�
; (11.3)

The imprecise region of rejection QR is the fuzzy-
theoretical complement of QA:

mQR.x/ D 1 � m QA.x/ 8x 2 R: (11.4)

The membership function m QA.x/ is introduced in equa-
tion (11.2) to obtain the probability p0.T/ that the test
value T belongs to QA, e.g., Klir (2006):

p0.T/ D
Z
R

m QA.x/¡T.x/dx: (11.5)

Fig. 11.3 Computation of the probability p0.T/ that the test
value T belongs to the imprecise region of QA.

The probability p1.T/ that T belongs to QR is:

p1.T/ D 1 � p0.T/ D
Z
R

mQR.x/¡T.x/dx: (11.6)

A graphical representation of the computed probability
in (11.5) is given in Fig. 11.3.

In hypothesis testing four situations are possible in
the final test decision. The main idea behind utility
theory is to judge each possible decision with a utility
value:
– U0;0: utility for a correct choice of the null hypoth-

esis.
– U1;0: utility for an incorrect choice of the alternative

hypothesis (type I error).
– U1;1: utility for a correct choice of the alternative

hypothesis.
– U0;1: utility for an incorrect choice of the null

hypothesis (type II error).
In the next step, the expected total utility K0 and K1 for
the null and alternative hypothesis is computed:

K0 D p0.T/U00 C p1.T/U01

D p0.T/.U00 � U01/C U01

K1 D p0.T/U10 C p1.T/U11

D p0.T/.U10 � U11/C U11 (11.7)

Finally, the test decision is based on the selection of
the most beneficial hypothesis:

p0.T/U00Cp1.T/U01 � p0.T/U10Cp1.T/U11: (11.8)

This equation can be rearranged:

p0.T/ � p0;crit D U11 � U01

U00 � U01 � U10 C U11
: (11.9)
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The null hypothesis is selected, if the probability p0.T/
is larger or equal than the critical probability p0;crit. The
presented test strategy is based on the general theory of
decision making with two possible alternatives (Luce
and Raiffa 1989).

4 The Extension to Imprecise Data

It is obvious that in the scenario described in Sect. 3
there is a strict (and unique) test decision. Neverthe-
less, in practical test situations imprecision of the data
often superposes (and hence mitigates) this procedure
(imprecise case). For this reason, the test decision is
extended to the fuzzy-random-variables (FRVs) pre-
sented in Sect. 2.

The described procedure allows the treatment of
multidimensional test statistics. The extension princi-
ple (Zadeh 1965) is used and the multidimensional
case is mapped to a one-dimensional test statistic
(Kutterer and Neumann 2007).

Due to the lack of space in this paper, imprecision
is treated in terms of intervals. Hence, according to
Fig. 11.2, the test statistic is a fuzzy-random variable
Œ QT �, with cl D cr D 0 and Tm � ¡Tm

.x/ in the
imprecise case. The situation with imprecise regions
of acceptance and rejection is illustrated in Fig. 11.4.

When imprecision is considered in addition to the
stochastic uncertainty component and when applying
the calculation rules of FRVs, then the probability
Œp0. QT/�D Œpl

0.
QT/; pu

0.
QT/� that the test value Œ QT� belongs

to the region of acceptance QA is, see (Neumann 2009):

pl
0.

QT / D min
Tm2Œ QT �

Z
R

m QA.x/¡Tm
.x/dx;

pu
0.

QT / D max
Tm2Œ QT �

Z
R

m QA.x/¡Tm
.x/dx: (11.10)

Fig. 11.4 The computation of the range of values for the
probability Œp0. QT /� that the test value Œ QT � belongs to QA

Consequently, the probability that Œ QT � belongs to the
region of rejection QR is obtained by:

pl
1.

QT / D min
Tm2Œ QT �

Z
R

mQR.x/¡Tm
.x/dx;

pu
1.

QT / D max
Tm2Œ QT �

Z
R

mQR.x/¡Tm
.x/dx: (11.11)

The expected total utility ŒK0;QT� D ŒK1

0;QT;K
u
0;QT� for the

null hypothesis is computed by (see (11.7)):

Kl
0;QT D min

p02Œp0�
.p0. QT /U00 C Œ1 � p0. QT /�U01/;

Ku
0;QT D max

p02Œp0�
.p0. QT /U00 C Œ1 � p0. QT /�U01/: (11.12)

In case of unimodal distributions we obtain:

Kl
0;QT D p10. QT /.U00 � U01/C U01;

Ku
0;QT D pu

0.
QT /.U00 � U01/C U01: (11.13)

Applying the same idea to obtain the expected total
utility ŒK1;QT� D ŒK1

1;QT;K
u
1;QT� for the alternative hypoth-

esis leads for unimodal distributions to:

Kl
1;QT D pu

0.
QT /.U10 � U11/C U11;

Ku
1;QT D p10. QT /.U10 � U11/C U11: (11.14)

The final test decision requires the comparison of two
interval valued utilities. In 1951, Hurwicz developed
a method, which allows the mapping of an interval
into a single equivalent value. The so-called Hurwicz
criterion (Hurwicz 1951) is a linear combination of the
optimistic and pessimistic outcome of a decision:

›Ku
0;QT C .1� ›/Kl

0;QT � ›Ku
1;QT C .1� ›/Kl

1;QT; (11.15)

with › 2 Œ0; 1�. The parameter › represents the user
preferences with › D 1 as most optimistic outcome
and › D 0 as most pessimistic outcome. Reformulating
(11.15) leads to the unique decision criterion:

›

� �
>

�
¥crit 2 R)

(
Œ QT � belongs to QA
Œ QT � belongs to QR with

¥crit D pu
0. QT /.U10 � U11/� pl

0. QT /.U00 � U01/C U11 � U01

.pu
0. QT /� pl

0. QT //.U00 � U01 C U10 � U11/
:

(11.16)
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The selection of › depends on a particular applica-
tion. In order to keep as many data as possible for
further processing a conservative strategy is typically
preferred in outlier testing; then › D 1 is a proper
choice. If, however, the result of the test is safety
relevant, › has to be small; best it is equal to 0.

5 Application Example

In practice, there are various possibilities for the appli-
cation of the presented strategy. In the following, the
survey of the length of a machine axis is of particular
interest. The length is observed with two different
instruments (Leica TCA 1101 and TCA 2003). The
uncertainties of the length of the machine axis are
computed based on the measurement uncertainties of
the instruments. The results of an imprecise analysis
according to (Neumann 2009) are given in Table 11.1.
The random uncertainty component is Gaussian.

The region of acceptance is defined through linear
reference functions L and R. The transition region
starts at 9,997 mm and reaches the membership degree
of 1 at 9,998 mm. At the value of 10,002 mm the
membership degree decreases linearly to zero until
10,003 mm. The midpoint Tm of the test value is
9,999.2 mm. The radius of the test value depends on
the particular instrument and is depicted in the right
column of Table 11.1. The spread parameters cl and
cr are zero. The midpoint of the test value lies inside
the core element of QA. Due to the lower uncertainty
of the TCA 2003, the probability Œp0. QT /� that the test
value Œ QT � belongs to QA is larger than for the TCA 1101
[see (10) and (11)] (Table 11.2).

Table 11.1 Uncertainties of the length of the machine axis

Distance Standard deviation Interval radius
(mm) Tr (mm)

TCA 1101 2.1 1.1
TCA 2003 0.9 0.8

Table 11.2 The probabilities Œp0. QT /� and Œp1. QT /�
Probabilities TCA 2003 TCA 1101

p10. QT / 0.8350 0.5956

pu
0. QT / 0.9905 0.7577

p11. QT / 0.0095 0.2423

pu
1. QT / 0.1650 0.4044

Table 11.3 Expected utilities for the two hypotheses

Utilities TCA 2003 TCA 1101

Kl
0;QT

�3,320.26e �5,234.89e

Ku
0;QT

�2,075.78e �3,938.75e

Kl
1;QT

�3,000.00e �3,000.00e

Ku
1;QT

�3,000.00e �3,000.00e

The utility value U0;0 for a correct choice of H0 is
defined through the cost (2;000e) for the installation of
the machine axis. The two utility values U1;0 and U1;1

lead to a mechanical finishing of the machine axis and
therefore to costs of 3;000e. The worst case scenario
is a type II error, when the length of the machine
axis is not correct but it is classified as belonging
to the region of acceptance. The costs for U0;1 are
10;000e.

The expected utilities for the two hypotheses are
computed with (11.13) and (11.14). The results are
given in Table 11.3.

The null hypothesis for the TCA 1101 is rejected
in any case. The final test decision for the TCA 2003
depends on the particular situation. The test value is
classified as belonging to the region of acceptance,
when ¥crit from (11.16) is larger than 0.257.

6 Conclusions and Outlook

An optimal tests decision requires the consideration of
both measurement uncertainties and the consequences
of test decisions. In this paper, a strategy is shown
which allows handling data which are both randomly
varying and imprecise. At present, the final test deci-
sion in case of fuzzy-random intervals needs a final
expert statement, if the present situation is safety-
relevant or not.

However, the presented methods allow improved
statements about the influence of uncertainties and
consequences in e.g., the significance of measure-
ment results and in the sensitivity of measurement
setups.

There is some more work needed concerning the
adaptation of the theoretical methods to practical
applications. It is certainly worthwhile to extend
the methods to the fuzzy-random case with arbitrary
membership functions (based on expert opinions about
imprecision). The methods must also be extended to
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test situations, where the pdf of the null and alternative
hypothesis is known.
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12Sequential Monte Carlo Filtering
for Nonlinear GNSS Trajectories
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Abstract

The Kalman filter is supposed to be the optimal analytical closed-form solution
for the Bayesian space-state estimation problem, if the state-space system is linear
and the system noises are additive Gaussian. Unfortunately, except in the above
mentioned cases, there is no closed-form solution to the filtering problem. So
it is necessary to adopt alternative techniques in order to solve the Bayesian
filtering problem. Sequential Monte Carlo (SMC) filtering – or commonly known
as particle filter – is a well known approach that allows to reach this goal
numerically, and works properly with nonlinear, non-Gaussian state estimation.
However, computational difficulties could occur concerning the sufficient number
of particles to be drawn. We present in this paper a more efficient approach, which
is based on the combination of SMC filter and the extended Kalman filter. We
identified the resulting filter as extended Kalman particle filter (EKPF). This filter
is applied to a method for the direct geo-referencing of 3D terrestrial laser scans.

Keywords

Nonlinear state estimation • Bayesian Filtering • Sequential Monte Carlo
Filtering • GNSS

1 Introduction

Linear filtering theory according to Kalman and Bucy
(1960) is optimal only if the system, which consists
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of measurement and transition equations, is linear
and the error process is Gaussian. Unfortunately, the
modeling of reality sometimes differs from these
optimal assumptions and nonlinear, non-Gaussian,
and non-stationary state estimation should be taken
into account. Thus over the years a multitude of
approximate nonlinear filters has been proposed; see
e.g., Doucet et al. (2001), and Simon (2006). A well
known analytical approximation to handle a nonlinear
system is to linearize the measurement and the system
equations using Taylor series expansions; see e.g.,
Simon (2006).

However, as pointed out in Doucet et al. (2001) this
type of nonlinear filter which includes the first-order
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and the higher-order extended Kalman filter (EKF), is
prone to diverge if the system equations are highly
nonlinear. This gives us the motivation to use other
filter techniques such as the sequential Monte Carlo
(SMC) approach in order to take the nonlinearities into
account. The SMC filter (also known as particle filter
(PF)) is a suboptimal filter for implementing the recur-
sive Bayesian filter by Monte Carlo (MC) techniques;
see e.g., Doucet et al. (2001) and Ristic et al. (2004).
The main idea behind the SMC filter is to approximate
the posterior power density function (PDF) of the state
parameters by a set of random samples, which can be
generated from a known PDF. By means of the drawn
particles the mean as well as the variance-covariance
information of the state vector are estimated.

In order to obtain an equivalent representation of
the posterior PDF a large number of particles should
be drawn. Unfortunately, the high computational cost
due to the large number of required particles restricts
the use of SMC in many applications. In this paper,
two filtering techniques are discussed: first, the generic
PF, and, second a filtering technique, which can sig-
nificantly improve the performance of PF, and which
reduces the computational cost of the algorithm.

2 Nonlinear State Estimation

2.1 The Mathematical Model

Before describing the different filter algorithms, we
briefly introduce the notation and the terminology
used throughout this paper. To define the problem of
nonlinear filtering, let us consider the state vector xk 2
Rnx , where nx is the dimension of the state vector, and
k is the time index. The evolution of the state vector xk
is described by the dynamic model:

xkC1 D f .xk;uk;wk/ (12.1)

where f is a known, in general nonlinear function
of xk , uk the vector of known (deterministic) input,
and wk is the process noise vector, which is caused
by mismodeling effects and other disturbances in the
motion model. The main aim of filtering is to estimate
the optimal state vector xkC1 from the observations
ykC1 2 Rny and xk where ny is the dimension of the
measurement model:

ykC1 D h.xkC1; vkC1/: (12.2)

In (12.2) h is a known, in general nonlinear function,
and vkC1 is the measurement noise vector, which obeys
a known PDF and is mutually independent with the
system noise wk .

2.2 The Bayes Filter

From a Bayesian perspective, the filtering problem is
to estimate the state xkC1 recursively given the data
y1WkC1 up to time kC 1. Thus, it is required to evaluate
the joint posterior PDF given the hole data. That is:

p.xkC1j y1WkC1/ D p.ykC1j xkC1/ � p.xkC1j y1Wk/
p.ykC1j y1Wk/

(12.3)

where the posterior PDF at time k, p.xkj y1Wk/, is first
projected forward in time in order to calculate the
prior PDF at time k C 1. This is done by using the
probabilistic process model (cf. Simon 2006, pp. 464):

p.xkC1j y1Wk/ D
Z
p.xkC1j xk/ � p.xkj y1Wk/dxk:

(12.4)

The probabilistic model of the state evolution
p.xkC1j xk/ is defined by the system described in
(12.1) and the known PDF of the noise vector wk . The
term p.ykC1j y1Wk/ in (12.3) is a normalizing factor.
Figure 12.1 illustrates the kth recursive step of sequen-
tial Bayesian filtering, along with inputs and outputs.

Simultaneously with the recursion given jointly by
(12.3) and (12.4), we can estimate the current state
via a maximum a posteriori (MAP) approach (see, for
instance, Koch (2007)):

OxkC1 D max
xkC1

p.xkC1j y1WkC1/: (12.5)

Note, that a closed-form solution for the filtering prob-
lem presented in (12.3) and (12.5) only exists if the
system equations presented in (12.1) and (12.2) are
linear, and both the system noise and the observation
noise are Gaussian. When these conditions are ful-
filled, we obtain the known Kalman filter, which is a
special sequential Bayesian filter where the posterior
density p.xkC1j y1WkC1/ also becomes Gaussian, refer
to (Arulampalam et al. 2002).
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Fig. 12.1 Recursive computation in sequential Bayesian filter-
ing. Each epoch k has two computation steps: the prediction step
and the filtering step. These steps are sequential. The prediction
unit takes in the motion model density and the posterior density

of previous time step k and outputs predicted posterior density
p.xkC1jy1Wk/. Next the Bayesian filtering unit takes in this
predicted posterior density and the likelihood density to estimate
the posterior density p.xkC1jy1WkC1/ for the current time step

2.3 The Generic Particle Filter

In this section, we describe how to approximate the
optimal Bayesian solution (see Sect. 2.2) if an ana-
lytical solution is unsolvable. The PF is a suboptimal
solution to approximate the Bayesian estimator given
in (12.3) numerically by means of SMC techniques.

The main idea of SMC is based on particle rep-
resentation of a PDF. The SMC technique is used to
determine the components of the state vector in the
nonlinear filtering system given by (12.1) and (12.2).
The resulting MC algorithm is known as sequential
importance sampling (SIS). This method approximates
the posterior PDF by a set of M weighted samples of
this density without making any explicit assumption
about its form and can thus be used in general non-
linear, non-Gaussian systems.

Let the particle set
n
x.i/0Wk;w

.i/

k

oM
iD1 denote a

random measure that characterizes the posterior

PDF p.x0Wkjy1Wk/, where
n
x.i/0Wk; i D 1; : : : ;M

o
is a

set of realization points with associated weightsn
w.i/k ; i D 1; : : : ;M

o
, and fxj ; 0 D 1; : : : ; kg is the set

of all states up to epoch k. One can then approximate
the posterior density in epoch k as:

p.x0Wkjy1Wk/ �
MX
iD1

w.i/k ı
�

x0Wk � x.i/0Wk
�

(12.6)

where ı represents the Kronecker Delta function, and
the associated weights w.i/k sum up to unity. The

weights w.i/k in (12.6) are chosen using the principle
of importance sampling, cf. Doucet et al. (2001). After
a lengthly derivation, which will not be given here due
to lack of space, the weights are computed recursively

based on the weight update equation (refer to Ristic
et al. 2004, pp. 37–39):

w.i/kC1 D w.i/k

p
�

ykC1jx.i/kC1
�
p
�

x.i/kC1jx.i/k
�



�

x.i/kC1jx.i/1Wk; y1Wk
� (12.7)

where 
.:/ is a known PDF from which it is easy to

draw samples, p
�

ykC1jx.i/kC1
�

the evaluated likelihood

PDF for each particle and p
�

x.i/kC1jx.i/k
�

is simply the

PDF of the state at epoch k C 1 given a specific state
at previous epoch k for every particle x.i/k . The weight
update equation (12.7) yields a sequential update of the
importance weights, given an appropriate choice of the
proposal distribution 
.:/. Doucet et al. (2001) show
that the selection of the proposal PDF is one of the
most critical issues in the SIS algorithm.

The SIS algorithm starts with M initialization val-

ues of the state vector
�

x.i/0
�

with i 2 1; : : : ;M , which

can be randomly generated from the initial PDF 
.x0/.
These particles are then propagated at each epoch k D
1; 2; : : : ; n in forward by substitution in the dynamic
equation (12.1). In order to distinguish between this
drawn particles (they were indicated in (12.7) as x.i/k )
and the resampled particles in the following step, we
rename the resulting particles as x.i/k;�. As the current
observations yk become available, we compute the

conditional likelihood of each particle: p
�

ykjx.i/k;�
�

.

The evaluation of the likelihood is based on the known
PDF of the measurement noise and on the nonlin-
ear measurement equation. On the basis of (12.7)
we recursively compute the relative weights. Before
we evaluate the current state obtained by (12.5) and
move to the next time step, the particles are resampeld.
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In other words, we randomly generate new particles
x.i/k;C based on the relative weights. Particles with rel-
atively small weights are eliminated. Otherwise, parti-
cles with large weights are duplicated. This resampling
is used to avoid the problem of degeneracy of drawn
particles.

2.4 The Extended Kalman Particle Filter

In this section, an implementation issue to improve
the performance of PF presented in Sect. 2.3 is intro-
duced. A shortcoming of the PF algorithm is the
computational cost caused by the increase of the gen-
erated particles. A large number of samples should
be drawn in order to achieve the convergence of the
algorithm, and to estimate the desired state vectors
and its covariance matrix. In Ristic et al. (2004) and
Simon (2006), several implementation issues are con-
sidered for improving the PF algorithm, including
degeneracy, the selection of the importance density,
and particle filters with an improved sample diversity.
Due to lack of space we only discuss the developed
approach for enhancement of convergence based on
combination with the well known Kalman filter such
as the extended Kalman filter (EKF). The novelty of
the proposed EKPF algorithm is the update of each
particle at every time step k using the EKF, when a
new measurement yk arrives. In other words, we are
running an extra EKF step for i th particle x.i/kC1;� at the
epoch k C 1:

P.i/
kC1;� D F.i/

k
P.i/
k;CF.i/T

k
C Qk

K.i/

kC1 D P.i/
kC1;�H.i/T

kC1
�

H.i/

kC1P
.i/

kC1;�HT
kC1;i C RkC1

��1

x.i/
kC1;C D x.i/

kC1;� C K.i/
kC1

h
ykC1 � h.x.i/

kC1;�/
i

P.i/
kC1;C D

�
I � K.i/

kC1H
.i/

kC1
�

P.i/
kC1;�: (12.8)

K.i/

kC1 represents the Kalman gain of the i th parti-

cle, and P.i/kC1 is the appropriate estimation of the
state covariance matrix. Qk and RkC1 are the covari-
ance matrices of the process noise vector wk and
the observation noise vector vkC1, respectively. We
distinguish in (12.8) between the prior P.i/kC1;� and

the posterior P.i/kC1;C. The transition and design matri-

ces F.i/k and H.i/

kC1 in (12.8) are defined as: F.i/k D
@f

@x

ˇ̌
ˇ
xDx.i /k;C

and H.i/

kC1 D @h
@x

ˇ̌
xDx.i /kC1;�

, respectively.

The Taylor series are evaluated for the transition matrix
F for the particle from the previous epoch x.i/k;C and for

the predicted particle from the current epoch x.i/kC1;� for
the matrix H. Please note that the functions f .:/ and
h.:/ are both time invariant. The key idea behind this
approach is the substitution of the possibly nonlinear
model given by (12.1) and (12.2) with a linearized
model to reduce the variance of the drawn particles in
order to get short computing times without increasing
the number of samples.

The generated prior particles x.i/k;� would be trans-

formed to a new set of particles x.i/k;C using the EKF
step given by (12.8). Based on the transformed parti-
cles x.i/k;C and their P.i/kC1;C we generate and propagate
a new set of particles using the Gaussian PDF:

x.i/kC1 � p
�

x.i/kC1jx.i/k ; ykC1
�

� N
�

x.i/kC1;C;P
.i/

kC1;C
�

(12.9)

where � in (12.9) means that the particles are drawn
from a specific PDF. The remaining computational
steps of the EKPF are similar to the generic PF.

3 Numerical Study and Results

In this section an application of the algorithms pre-
sented in Sects. 2.3 and 2.4 is shown and the results
are discussed. The main goal of the numerical investi-
gation is to derive position and orientation parameters
for the transformation of a local sensor-defined coor-
dinate system (denoted by upper index L) to an global
earth centered, earth fixed coordinate system (denoted
by upper index G). This is a typical task within
the direct geo-referencing procedure of 3D terrestrial
laser scans. For this purpose, an adapted sensor-driven
method based on a multi-sensor system (MSS) has
been developed at the Geodetic Institute of the Leibniz
Universität Hannover (GIH). The MSS is established
by a sensor fusion of a phase-based terrestrial laser
scanner (TLS) and additional navigation sensors to
observe the parameters.

The above mentioned transformation parameters
include the position of the MSS, which is equal to the
translation vector and a rotation matrix, which contains
the orientation of the three axes of the MSS – roll,
pitch and yaw angle, known from aeronautics. The
mathematical modeling of the MSS in form of a EKF
approach is presented in Paffenholz et al. (2009).



12 Sequential Monte Carlo Filtering for Nonlinear GNSS Trajectories 85

This approach uses the constant rotation of the
TLS about its local vertical axis (zL) in combination
with kinematic GNSS measurements to estimate four
of the six degrees of freedom of the transformation
– the position vector as well as the orientation in
the horizontal plane. Therefore, one GNSS antenna
is mounted eccentrically on the TLS. In order to
optimize the direct geo-referencing strategy the MSS
is enhanced with additional navigation sensors to esti-
mate the residual spatial rotation angles about the xL-
and yL-axis.

In this MSS application the trajectory can be
described by a circle in 3D space. This parameter-
ization is due to the circular motion of the antenna
reference point (ARP) caused by the constant rotation
of the TLS about the zL-axis, as already mentioned.
The orientation change of the ARP within two time
steps is given by the circular arc segment s divided by
the radius rk .

The state vector is expressed by the components:

xGk D �
XG
k ˛

G
S;k ˇ

L
S;k �

L
S;k

�T
(12.10)

where XG
k is the global position of the ARP at the

epoch k, ˛GS;k describes the azimuthal orientation of
the MSS, ˇLS;k the inclination in scan direction and �LS;k
is perpendicular to the scan direction. The space state
model leads to:

xkC1 D

2
666664

XG
k C RG

L.�; '/ � RaP
SN

�
˛GS; k

�
��XL

k

˛GS;k C sk
rk

ˇLS;k

�LS;k

3
777775

C wk:

(12.11)

The term �XL
k in (12.11) is given by:

�XL
k D

2
66664

rk � cos
�
�LS;k

�
� sin

�
sk
rk

�

rk � cos
�
�LS;k

�
� cos

�
sk
rk

�

sk � sin
�
ˇLS;k

�

3
77775 ��XGNSS

SN;k

(12.12)

where�XGNSS
SN;k represents the eccentric position of the

GNSS antenna. �XL
k in (12.11) is responsible for the

high-nonlinearity in the space state model. It should be
pointed out, that in Paffenholz et al. (2009) additional

Fig. 12.2 Filtering results of EKF and the EKPF; top: the
residuals obtained within a linear regression of the orientation
˛GS ; middle and bottom: The filtered inclinations ˇLS and �LS . The
EKPF approach shows a significant improvement of the filter
effect for the filtered inclination whereas the filtered results of
the estimated azimuth are comparable

adaptive parameters are considered in the space state
model. However, the consideration of such adaptive
parameters in the EKPF algorithm (refer to Sect. 2.4)
needs a significant modification, which will be shown
in future works.

The measurement model is characterized by the
position of the GNSS antenna XG

k , and the measure-
ments of the inclination sensor ˇLS;k and �LS;k . That
yields:

ykC1 D

2
664

XG
kC1

ˇLS;kC1
�LS;kC1

3
775 D HkC1 � xGkC1 C vkC1: (12.13)

As start value for the EKPF approach (see Sect. 2.4)
we randomly drawn 500 particles from N .x0;P0/
with x0 D 0 and P0 the initial covariance matrix which
has been chosen equally to the noise covariance matrix
in Paffenholz et al. (2009).

Figure 12.2 presents a subsample of the estimated
state parameters by classical EKF algorithm (black
circles) and EKPF approach (gray points). The upper
part of this figure shows the residuals obtained within
a linear regression of the orientation ˛GS . Due to the
constant rotation of the TLS about its vertical axis,
we expect a linear relationship between ˛GS and time.
Therefore, the residuals are quality indicators. The
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residuals are in both algorithms comparable, and lead
to a metric uncertainty of about 1.5 cm for the azimuth
calculation at a distance up to 35 m. The middle and
lower part of Fig. 12.2 show a comparison between
the filtered inclinations ˇLS and �LS , respectively. Here
again, the EKPF effect is noticeable for the filtered
inclinations, mainly in case of higher noise level.

Conclusion

In this paper, the newly developed filtering
approach EKPF was introduced. It is based on a
combination of the SMC technique and an EKF
step. The EKPF approach has been applied to
derive transformation parameters for the direct geo-
referencing of 3D terrestrial laser scans. The results
show an improvement of the filter effect. They
were compared to the classical EKF approach. The
main benefit of the developed approach is the better
performance in case of high-nonlinear space state
equations. A second important result, which could
be not shown in the above example due to lack of

space, is the significant decrease of the number of
the generated particles compared to the generic PF.
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13Uncertainty Assessment of Some
Data-Adaptive M-Estimators

Jan Martin Brockmann and Boris Kargoll

Abstract

In this paper, we review a data-adaptive class of robust estimators consisting of
convex combinations of the loss functions with respect to the L1- and Huber’s
M-estimator as proposed by Dodge and Jureckova (2000). The great advantage
of this approach in comparison to the traditional procedure of applying a single
estimator is that the optimal weight factor, representing the data-dependent
minimum-variance estimator within that class, may be estimated from the data
itself. Depending on the data characteristics, one could obtain pure L2, L1
and Huber’s estimator, as well as any convex combination between these three.
We demonstrate the computational and statistical efficiency of this approach by
providing an iteratively reweighted least squares algorithm and Monte Carlo
uncertainties of the weight factor.

1 Introduction

The general context of this paper is given by a sta-
tistical analysis of data structured in terms of a lin-
ear model with independent and homoscedastic error
terms, which are assumed to be possibly affected
by outliers. Here we adopt the notion that outliers
may be viewed as either deterministic, as it would
be the case for gross measurement/recording errors
or neglected external effects, or as random, due to
inherent variability (cf. Barnett and Lewis 1994, p. 42).
The statistical methods presented in this paper aim
at accommodating for outliers of the latter type; out-

J.M. Brockmann (�) � B. Kargoll
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of Theoretical Geodesy, University of Bonn, D-53115 Bonn,
Nussallee 17, Germany
e-mail: brockmann@geod.uni-bonn.de,
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lier/discordancy tests will not be discussed (see e.g.
Kargoll 2005). More specifically, we will assume that
the outliers can be explained by the fact that the totality
of data to be analyzed do not follow the Gaussian dis-
tribution, but some form of outlier distribution. Partic-
ular observations which appear as discordant with the
others, when looked at through the “Gaussian lense”,
could then be explained reasonably well in terms of an
outlier distribution with thicker tails. We will therefore
assume that there exists a particular outlier distribution,
which may either be an entirely non-Gaussian type or
a contaminated Gaussian distribution, under which all
of the given observations appear as concordant. We
will focus attention on one particular type of outlier
distribution, the family of convex mixtures of the
Gaussian and Laplacian distribution.

Recent contributions to the field of mathematical
geodesy, addressing the outlier problem, were often
focussed on L1-norm (e.g. Marshall 2002; Junhuan
2005) and M-estimators (e.g. Chang and Guo 2005)
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individually, whereas this paper aims at demonstrating
a way of combining estimators such as L1-norm,
L2-norm, and Huber’s M-estimator according to the
approach elaborated in Dodge and Jureckova (2000).
We will extend their investigations by evaluating the
appropriateness of such combined estimators under
the aforementioned two types of outlier distributions
in terms of the accuracy and precision with which
the weighting factor within the convex combination
of estimators and the variance of unit weight can be
estimated from the observations. In this context we use
the notion of a data-adaptive estimator, meaning that
the specific form of estimator is estimated from the
data itself (cf. Hogg 1974).

2 Theory

2.1 General Model Assumptions

We will restrict attention to a linear model

`i D Aix C ei ; .i D 1; : : : ; n/ (13.1)

where `i denotes the i th observation, Ai the i th row of
the n�m design matrix A (assumed to be of full rank),
x the unknown parameter vector, and ei independent
and homoscedastic errors with some unknown scalable
density function

fs.e/ D 1

s
f1

�e
s

�
; e 2 R (13.2)

with s > 0, satisfying the technical assumptions
(1) 0 < fs.0/ < 1, (2) 0 < �2 D R

e2fs.e/de < 1,
(3) fs.e/ D fs.�e/ and (4) f1.0/ D 1.

Assumption (4) will be of great importance as it
allows one to express the true density fs in terms of
some standardized basis density f1 and a scale factor s,
which will be seen to render the theoretical solution to
the estimation problem concerning x feasible.

2.2 Some Specific Outlier Distributions

In this paper, we will focus attention on the family of
Gaussian/Laplacian mixture distributions. If we define
the scale factor s.�/D p

2
�2, then the mixture of
Gaussian and Laplacian densities may be expressed

-3-2-10123
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Fig. 13.1 Example for the family of mixture densities, defined
by (13.3), for a fixed ıD 0:5. The highlighted line (sD 1) refers
to the basis density of that family

as (similarly to the definition provided by Dodge and
Jureckova 2000, p. 38)

fs.�/.e/ D .1 � ı/
1p
2
�2

exp

�
�1
2

e2

�2

�

C ı
1p
2
�2

exp

� �2p
2
�2

jej
�

(13.3)

with weighting factor 0� ı� 1 and � >0 (Fig. 13.1).
Note that (13.3) becomes a pure Gaussian distribu-
tion with standard deviation � for ıD 0 and a pure
Laplacian distribution (with scale bD p

2
�2=2) for
the choice ıD 1. It should be noted that, due to the
interdependence of � and b, the Gaussian and Lapla-
cian parts cannot be scaled independently. If we set
� D 1=

p
2
 then we see immediately that s.�/D 1

and consequently fs.0/Df1.0/D 1; thus we obtain

f1.e/D .1� ı/ exp
��
e2� C ı exp.�2jej/; (13.4)

which may be used to generate any of the mixture
densities (13.3) via (13.2).

We currently investigate the family of rescaled t-
distribution as a further potentially useful class of
outlier distributions in this context, which we will not
explore in the present paper.

2.3 Properties of the Data-Adaptive
M-Estimator

To obtain estimates appropriate under such data distri-
butions, Dodge and Jureckova (2000, p. 6) proposed
minimization of
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nX
iD1

�k;�

�
`i � Aix

s

�
(13.5)

using the convex combination of the loss functions
with respect to Huber’s M-estimator (cf. Huber 1981)
and the L1-norm (cf. Koch 1999, p. 262) estimator, in
terms of the weighting parameter � 2 Œ0; 1�, i.e.

�k;�.e/ D .1 � �/
(
e2 if jej � k

2kjej � k2 if jej > k

)
C �jej:

(13.6)

The psi-function, defined as  k;� D �0
k;� follows to be

 k;�.e/ D .1 � �/

(
2e if jej � k

2ksign.e/ if jej > k

)

C �sign.e/: (13.7)

As we intend to compute the estimates via the
method of iteratively reweighted least squares (IRLS),
described in a subsequent section, it will be useful to
note that the weight function, defined by wk;�.e/ D
 k;�.e/=e, reads

wk;�.e/ D .1 � �/
(
2 if jej � k

2 k
jej if jej > k

)
C �

1

jej :
(13.8)

According to Dodge and Jureckova (2000, p. 81),
this M-estimator eX of the unknown true values 
asymptotically follows the Gaussian distribution

eX a� N
�
; �2 ;f .A

TA/�1
�
; (13.9)

where the variance factor �2 ;f generally depends on
the psi-function through the values of � and k, on the
true data density through the scale factor s and the
basis density f1. For studentized M-estimators, this
variance factor is defined as (Dodge and Jureckova
2000, p. 40)

�2 ;f D
R
 2k;�

�
e
s

�
fs.e/de�R

fs.se/
d k;�.e/

de
de
�2 (13.10)

It is easily shown that substitution of (13.2) and
(13.7) leads to the expression (similarly to Dodge
and Jureckova 2000, p. 78)

�2 ;f D s2

4

.1 � �/2�21 C 2�.1� �/#1 C �2

..1 � �/�1 C �/2
;

(13.11)

with quantities

�1 WD
kZ

�k
f1.e/de D F1.k/ � F1.�k/; (13.12)

#1 WD
1Z

�1
j k;1.e/jf1.e/de;

D 2

kZ

�k
jejf1.e/de C 4k Œ1 � F1.k/� ; (13.13)

�21 WD
1Z

�1
 2k;1.e/f1.e/de;

D 4

kZ

�k
e2f1.e/deC 8k2 Œ1 � F1.k/� ; (13.14)

characterizing the data distribution, with respect to
Huber’s M-estimator  k;1 and the true basis density f1
and the corresponding distribution function F1. It will
be convenient to use the quadratic approximation in �
(Dodge and Jureckova 2000, p. 79)

�2 ;f � s2

4

�
.1 � �/2 �

2
1

�21
C 2�.1 � �/#1

�1
C �2

�

(13.15)

instead as we wish to find the optimal value for
� 2 Œ0; 1� which minimizes the variance (a convex or
concave function depending on the values for �1; #1
and �1). Minimizing (13.15) as a function of � then
yields

�opt D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0 if �21 � #1�1 and �21 < �
2
1

�21 � #1�1

�21 � 2#1�1 C �21
if #1�1 � �21 and #1�1 < �21

1 if �21 < #1�1 and �21 < �
2
1

:

(13.16)

We will now demonstrate how �opt and the correspond-
ing minimum variance �2 ;f are estimated from given

data by substituting empirical quantities (Os; O�1; O#1; and
O�21) for their theoretical counterparts.
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3 Algorithms and Estimation
Procedure

3.1 Estimation of the Scale s

Evaluating (13.2) for eD 0 and using the fourth techni-
cal assumption we see that fs.0/ D 1=s or sD 1=fs.0/.
The estimation of the scale parameter is thus reduced
essentially to the estimation of fs.0/, which we per-
formed via the well known kernel density estimation
(KDE) method (see e.g. Peracchi 2001, p. 447ff). A
different, however far more complex, approach based
on regression quantiles has been proposed by Dodge
and Jureckova (2000, p. 151).

As a starting point for the scale estimation we
compute the residuals Ovi D Ai OxL1 � `i using the scale
invariant robust L1-norm estimates. Then the kernel
density estimate at a point e0 is given by

Ofs.e0/ D 1

n

nX
iD1

1

b
K

�
e0 � Ovi
b

�
(13.17)

where we used a Gaussian kernel for K.�/ with band-

width b D 1:48 � median .jOvj/ � 4
3n

� 1
5 (cf. Bowman and

Azzalini 1997, p. 31). Equation (13.17) now allows one
to estimate the scale parameter through the relation

Os D Ofs.0/�1: (13.18)

Other kernels and similar bandwidths could be used
without affecting the results much.

3.2 Estimation of �1; #1 and�2
1

As �1 represents the probability mass under f1 between
�k and k according to (13.12), we arrive at a corres-
ponding empirical measure by determining the fraction
of the standardized residuals within that range,1

O�1 D 1

n

nX
iD1

I

�ˇ̌
ˇ̌ Ovi

Os
ˇ̌
ˇ̌ � k

�
: (13.19)

Similarly, the integrals in (13.13) and (13.14) may be
approximated by

1I.�/ denotes the indicator function, which returns 1 if the
statement in the argument is true and 0 otherwise.

O#1 D 2

n �m

nX
iD1

ˇ̌
ˇ̌ Ovi

Os
ˇ̌
ˇ̌ I
�ˇ̌
ˇ̌ Ovi

Os
ˇ̌
ˇ̌ � k

�
C 2k.1 � O�1/;

(13.20)

O�21 D 4

n �m

nX
iD1

Ov2i
Os2 I

�ˇ̌
ˇ̌ Ovi

Os
ˇ̌
ˇ̌ � k

�
C 4k2.1 � O�1/:

(13.21)

Dodge and Jureckova (2000, p. 80) demonstrate that
these estimators converge in probability to their theore-
tical values. Now these estimates can be substituted
into (13.16) and (13.15) to obtain first the empirical
weighting factor O�opt and subsequently the variance
factor O�2.

3.3 Estimation of the Parameters x

Algorithm 1 demonstrates how the estimates for the
parameters x are computed via iteratively reweighted
least squares (IRLS) regarding the data-adaptive
M-estimator defined by the loss function (13.6) and
the corresponding weight function (13.8). Table 13.1
shows the parameter settings for which the various
estimators (L1, L2, HUBER, L2 CL1, HUBER CL1)
can be obtained with this algorithm.

Algorithm 1: Adaptive IRLS M-estimation

Data: AŒn�m� : : : design matrix, `̀̀Œn�1� : : : observations

Result: Ox.imax /
Œm�1� � � � final solution

estimate L1-norm solution OxL1 using .A; `̀̀/1
Ov.0/ D AOxL1 � `̀̀2
estimate Os // cf. eq. 13.17 and 13.183

compute O�1; O#1; O�21 // cf. eq. 13.19, 13.20 and 13.214

compute O�opt // cf. eq. 13.165
compute O�2 // cf. eq. 13.156
// IRLS iterations7
for i D 1 to imax do8

P.i/.j; j / D w
�

Ov.i/j =Os; O�; k
�

// cf. eq. 13.89

Ox.i/ D �
AT P.i/A

�
�1

AT P.i/`̀̀10
Ov.i/ D AOx.i/ � `̀̀11

end12 ḃ̇̇.i/eX D O�2 �AT A
�

�1
// cf. eq. 13.913

return Ox.imax /; ḃ̇̇.i/eX14

Table 13.1 Parameter configurations for different estimators
using algorithm 1

k � s

L1 arbitrary 1 1
L2 ! 1 0 1
HUBER 1:2 : : : 1:8 0 1
L2 C L1 ! 1 estimated estimated
HUBER+L1 1:2 : : : 1:8 estimated estimated
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4 Numerical Simulations

As far as both the small-sample and the large-sample
properties of the presented data-adaptive M-estimator
are concerned, the estimation of the scale parameter s,
the weighting parameter � and the variance factor �2 ;f
is of special interest. In this contribution we will
concentrate on the estimation of the mixture parameter
and of its accuracy as well as its empirical distribution,
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Fig. 13.2 Mean values and standard deviations for the
�-estimation for different sample sizes

the behaviour of which depends on the number of
observations n. For this purpose we performed Monte
Carlo simulations to determine a reasonable sample
size n, for which a reliable estimate for � is obtained.
These simulations were performed using a Fourier
series as functional model, which we found suitable to
simulate different configurations in terms of numbers
of parameters and numbers of observations. The
synthetic observations computed from true Fourier
coefficients were disturbed by adding white noise
generated from the Gauss/Laplace mixture distribution
(with ıD 0:5 and sD 2:5066 in (13.3)) using the
Acceptance-Rejection method for random number
generation (cf. Koch 2007, p. 196). These simulations
were carried out using different numbers of observa-
tions (i.e. 50 : : : 100;000), a Fourier series of degree
two, and two estimators (L2 C L1, Huber+L1). We
used a maximum number of 1;000 iteration steps and a
termination criteria of

ˇ̌
x.i/ � x.i�1/

ˇ̌
< 10�8. Then we

determined the mean value and the standard deviation
of the estimated O�opt from 100;000 Monte Carlo
samples. The estimation of � is influenced by the scale
estimation; to separate the effects, we used the true
scale s instead of the estimated scale as in algorithm 1.

The results of the simulations are summarized in
Figs. 13.2 and 13.3. It is seen that for sample sizes as

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
λ

histogram¯

f(
λ
)

N(λ̂,  σ )̂
λ
λ N(λ̂,  σ )̂

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
λ

histogram

f(
λ
)

N(λ̂,  σˆ)

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
λ

histogram

f(
λ
)

N(λ̂,  σˆ)

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
λ

histogram

f(
λ
)

λ
λ

λ
λ

λ
λ

Fig. 13.3 Histogram of �-estimates with sample size 50 (left
column) and 1;000 (right column) for the L1 C L2 combination
(upper row) and the L1CHUBER combination (lower row). The

grey line shows a normal distribution with the estimated mean
and standard deviation. The black line shows the true value for
� (not available for L1CHUBER combination)
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low as n D 50, bias, standard deviation and the range
of � estimates are generally very large. For n D 1;000

both the bias and the standard deviation are already
relatively low and the histogram of the �-estimates
roughly reflects a Gaussian distribution (Fig. 13.3).
For very large n (n>50;000) the bias and standard
deviation are seen to vanish.

5 Summary and Outlook

We demonstrated the theoretical idea, an algorithm and
some empirical small- and large-sample properties of
an estimator for the mixture parameter with respect
to the Gauss/Laplace mixture distribution in the con-
text of data-adaptive M-estimation, in particular for
L2 C L1 and HuberCL1 combination. We intend to
extend these investigations to various estimators for
the scale parameter s (e.g. based on simple KDE) and
for the variance/covariance matrix of the estimated
parameters.
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14Uniqueness and Nonuniqueness of the GNSS
Carrier-Phase Compass Readings

P.J.G. Teunissen

Abstract

In this contribution we analyse the possible nonuniqueness in the least-squares
solution of the GNSS carrier-phase compass model. It is shown that this lack of
uniqueness may manifest itself in the fixed baseline estimator and therefore in the
GNSS compass readings. We present the conditions under which nonuniqueness
occurs and give explicit expressions for these nonunique least-squares solutions.

Keywords

GNSS-compass • Ambiguity resolution • Attitude nonuniqueness

1 Introduction

Global Navigation Satellite System (GNSS) attitude
determination is a field with a wide variety of
challenging (terrestrial, air and space) applications,
see e.g. Cohen (1992), Lu (1995), Tu et al. (1996),
Montgomery et al. (1997), Park and Teunissen (2003),
Simsky et al. (2005), Kuylen et al. (2006), Teunissen
(2006), Hide and Pinchin (2007).

In the present contribution we consider the deter-
mination of heading and elevation (or yaw and pitch)
and therefore restrict ourselves to the two-antenna,
single baseline case. GNSS carrier phase data and
integer ambiguity resolution are needed in order to
determine the compass parameters with the highest
possible precision. Short baseline, epoch-by-epoch,
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Delft Institute of Earth Observation and Space Systems, Delft
University of Technology, The Netherlands

Department of Spatial Sciences, Curtin University of
Technology, Perth, Australia
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successful ambiguity resolution is however only pos-
sible if two or more frequencies are used, but not in the
single-frequency case. In the single-frequency case,
the underlying model is too weak to ensure a suffi-
ciently high probability of correct integer estimation.
Hence, for the single-frequency case, the correspond-
ing GNSS model needs to be strengthened and this
can be done by considering the length of the (small)
baseline to be known. This model is referred to as the
GNSS compass model and it differs from the standard
GNSS single baseline model in that the known length
of the baseline is added as a (weighted) constraint.

The inclusion of the baseline length constraint
strengthens the model, thereby increasing the ambi-
guity success rates significantly, but at the same
time it also complicates the least-squares estimation
process. This is particularly true for short to very-
short GNSS baselines (less than 1 m), as a reduction in
baseline length increases the nonlinearity of the curved
manifold. Related to the high-nonlinearity is another
potential complication, namely the occurrence of
singularities in the solution process. We will show that
non-uniqueness in the attitude solutions may indeed

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 14, © Springer-Verlag Berlin Heidelberg 2012
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occur and we will characterize them for different
measurement scenarios. Singularities of different types
may occur and we will identify them in relation
to various data subspaces. The theoretical analysis
presented also improves our understanding of the near-
singular situations. Due to a lack of space, the theorems
are presented without an extensive proof. These will
be published elsewhere.

2 The GNSS Compass Model

In principle all GNSS baseline models can be cast
in the following frame of linear(ized) observation
equations,

E.y/ D AaC Bb; D.y/ D Qyy; a 2 Z
p; b 2 R

n

(14.1)

where y is the given GNSS data vector of order m,
and a and b are the unknown parameter vectors of
order p and n respectively. E.:/ and D.:/ denote the
expectation and dispersion operator, and A and B are
the given design matrices that link the data vector to
the unknown parameters. Matrix A contains the carrier
wavelengths and the geometry matrix B contains the
receiver-satellite unit line-of-sight vectors. The vari-
ance matrix of y is given by the positive definite matrix
Qyy . The data vector y will usually consist of the
‘observed minus computed’ single- or multi-frequency
double-difference (DD) phase and/or pseudorange
(code) observations accumulated over all observation
epochs. The entries of vector a are then the DD carrier
phase ambiguities, expressed in units of cycles rather
than range. They are known to be integers, a 2 Z

p .
The entries of the vector b will consist of the remaining
unknown parameters, such as baseline components
(coordinates) and possibly atmospheric delay param-
eters (troposphere, ionosphere). They are known to be
real-valued, b 2 R

n. Vectors a and b are referred to as
the ambiguity vector and baseline vector, respectively.

Since we consider the GNSS-Compass application
in the present contribution, we restrict attention to the
case of satellite tracking with two near-by antennas.
The short distance between the two antennas implies
that we may neglect the (differential) atmospheric
delays. Thus b consists then only of the three
coordinates of the between baseline vector of the two
antennas.

If we may assume that the two antennas are firmly
attached to the body of the moving platform, the length

of the baseline vector may be determined a priori. In
that case we can strengthen the GNSS model (14.1) by
including the additional observation equation

E.l/ D kbk; D.l/ D �2l (14.2)

The required compass information (e.g. heading and
pitch) follows from the baseline solution of the GNSS
compass model (14.1) and (14.2). To obtain the most
precise compass information, use needs to be made of
the very precise carrier phase data. The inclusion of
the carrier phase data into the model accounts for the
presence of the unknown integer ambiguity vector a
in (14.1).

3 The Least Squares Compass
Solution

The least-squares (LS) objective function of the GNSS
compass model (14.1) and (14.2) is given asH.a; b/ D
ky � Aa � Bbk2Qyy

C ��2
l .l � kbk/2, with a 2 Z

p ,

b 2 R
n, and k:k2Qyy

D .:/TQ�1
yy .:/. The LS parameter

solution is therefore given by the minimizers

La D arg min
a2ZpŒmin

b2Rn H.a; b/�

Lb D arg min
b2Rn H. La; b/ (14.3)

This can be worked out further if we let Oa, with
variance matrixQ Oa Oa, denote the LS ambiguity solution
of (14.1) without the integer constraint a 2 Z

n, and
let Ob.a/, with variance matrix Q Ob.a/ Ob.a/, denote the
conditional LS baseline solution of (14.1) assuming a
known. Then the LS solution (14.3) can be shown to
work out as

La D arg min
a2Zp

�
k Oa � ak2Q

OaOa
C min

b2Rn G.a; b/
�

Lb D arg min
b2Rn G. La; b/ (14.4)

whereG.a; b/ D k Ob.a/� bk2Q
Ob.a/Ob.a/

C ��2
l .l � kbk/2.

Note that (14.4) reduces to the LS parameter
solution of the GNSS-baseline model (14.1) in case
�2l D 1. Then minb2Rn G.a; b/D 0 and arg minb2Rn
G.a; b/D Ob.a/, from which it follows that the
minimizers of H.a; b/ are given as

La D arg min
a2Zn k Oa � ak2Q

OaOa
and Lb D Ob. La/ (14.5)
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This is the commonly used solution for real-time
kinematic (RTK) GNSS baseline processing, see e.g.
Strang and Borre (1997), Teunissen and Kleusberg
(1998), Misra and Enge (2001), Hofmann-Wellenhoff
and Lichtenegger (2001), Leick (2003).

The computational complexity of (14.5) resides in
the computation of the integer least-squares (ILS) solu-
tion La. Its computation is based on an integer search
inside an ellipsoidal search space, which can be effi-
ciently executed by means of the standard LAMBDA
method, see Teunissen (1994) and Teunissen (1995).
The computation of LbD Ob. La/, the so-called fixed base-
line, is straightforward once La is known.

In our present case, we have �2l ¤ 1. This increases
the computational complexity considerably. First, the
computation of the fixed baseline vector is more com-
plicated; compare (14.4) with (14.5). Second, the com-
putation of La is now based on an integer search in a
non-ellipsoidal search space. An efficient method for
this search has been developed, see Teunissen (2006),
Buist (2007), Park and Teunissen (2007), Giorgi et al.
(2008).

4 Nonuniqueness of Compass
Solution

Note that the minimization problem minb2Rn G.a; b/
of (14.4), is part of the ambiguity objective function.
Thus for every evaluation of the ambiguity objec-
tive function, this minimization problem needs to be
solved. A proper understanding of this minimization
problem is therefore essential for the GNSS-compass
ambiguity resolution problem. To simplify notation,
we define

F.b/ D kb0 � bk2Q C ��2
l .l � kbk/2 (14.6)

Then, forQDQ Ob.a/ Ob.a/, we have minb G.a; b/D minb

F.b/ if b0 D Ob.a/, and LbD arg minb F.b/ if b0 D Ob. La/,
see (14.3) and (14.4). Since all the properties of the
fixed baseline estimator can be derived from F.b/, we
use from now on the simplified notation of (14.6).

The minimization of (14.6) is a nonlinear least-
squares problem of which the manifold is highly
curved if Q is large and l is small. This is the typical
case for the GNSS compass, where the baseline is very
short and the single-epoch solution is determined by
the relative poor code data.

The problem of minimizing F.b/ can be described
in geometric terms as the problem of finding a point
of contact between the b0-centred ellipsoid kb0 �
bk2Q D constant and the origin-centred sphere kbk2 D
constant. These points of contact are easily determined
in case Q is a scaled unit matrix, but not so in the
general case.

We have the following theorem.

Theorem 1. Let Mb D Q�1 C ��2
l .1 � l=kbk/ In.

ThenF. Ob/ � F.b/ for all b 2 R
n if and only ifM Ob Ob D

Q�1b0 andM Ob � 0.

This theorem formulates necessary and sufficiency
conditions for Ob to be a global minimizer of F.b/.
It also provides the conditions for having nonunique
minimizers. Note that Mb DM Ob for any b¤ Ob that has

the same length as Ob, kbk D k Obk. Thus for nonunique
minimizers to exist, it is necessary that M Ob is
singular.

It can be shown that Mb is singular if and only if
kbk D l=.1C�2l �1/, where �1 is the smallest eigen-
value of Q�1. Nonunique minimizers, if they exist, lie
therefore all on the sphere with radius �1.

5 When do the Nonunique Solutions
Exist?

Before we can determine the nonunique solutions, we
first need to know whether they exist. The consis-
tency requirement of the system of equations, Mbb D
Q�1b0 and kbk D �1, results in two conditions that the
data vector b0 has to satisfy. The first condition is that
b0 must lie in the range space of matrix QMb, b0 2
R.QMb/. The second condition comes into play when
the first condition is satisfied. This second condition
puts restrictions on the length of b0. Not every b0 that
makesMbb D Q�1b0 consistent, will namely produce
a solution that satisfies kbk D �1.

We start with the first condition. Let the orthogonal
matrix of eigenvectors of Q�1 be partitioned as U D
.U1; U2/, with U1 containing all eigenvectors having
�1 as eigenvalue. Then the null space and range space
of QMb are spanned by the columns of U1 and U2,
respectively. Hence, the first consistency condition can
be formulated as

UT
1 b0 D 0 or b0 2 R.U2/ (14.7)
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If this condition is satisfied, then Mbb D Q�1b0 is
solvable and its solutions can be expressed as

b D bp C U1ˇ1 (14.8)

where bp D .QMb/
Cb0 is a particular solution, with

.QMb/
C the pseudo inverse ofQMb , and where U1ˇ1

is the homogeneous solution, with ˇ1 still undeter-
mined.

Since b of (14.8) has to satisfy kbk D �1, the as yet
undetermined ˇ1 cannot take on values freely, but has
to satisfy

kˇ1k2 D �21 � k.QMb/
Cb0k2 � 0 (14.9)

This shows that b0 may not have an arbitrary length.
Hence, the nonnegativity condition of (14.9) is the
second consistency condition that b0 has to satisfy.

If we take the two conditions, (14.7) and (14.9),
together, we may summarize our result as follows.

Theorem 2a. The function F.b/ (cf. (14.6)) has
nonunique minimizers if and only if

b0 2 C D fx 2 R
n j kxk2˙ � �21 ; x 2 R.U2/g

(14.10)

where ˙�1 D U1U
T
1 C .QMb/

CT .QMb/
C.

Thus we now know, if the data vector b0 lies in the
intersection ofR.U2/ and the origin-centred ellipsoidal
region kxk2˙ � �21 , that we will have more than one
minimizer of F.b/.

6 The Nonunique Solutions
Determined

It is now not difficult anymore to determine the
nonunique solutions. We already know that the
nonunique minimizers, if they exist, lie all on
the sphere with radius �1, denoted as S�1 . This
combined with the general solution of Mbb D Q�1b0
(cf. (14.8)), gives the following result.

Theorem 2b. The nonunique minimizers of F.b/

(cf. (14.6)), if they exist, are given by the solution set

S D fbp CR.U1/g \ S�1 (14.11)

where bp D .QMb/
Cb0.

The consistency set C and solution set S can both
be given a clear geometric interpretation. The set
C describes the two consistency conditions (14.7)
and (14.9). Geometrically this set describes the
intersection of an origin-centred ellipsoidal region with
the linear manifold R.U2/. Since R.U1/ and R.U2/
are each others orthogonal complement, we have
dimR.U2/Dn� dimR.U1/. Thus if dimR.U1/Dn,
then dimR.U2/D 0 and CD f0g, and if dimR.U1/ D
n � 1, then dimR.U2/ D 1 and C reduces to an origin
centred interval.

The solution set S is the intersection of the linear
manifold bp C R.U1/ with the sphere S�1 . It consists
of two points if the linear manifold is a straight line
(dimR.U1/D 1) and it forms a circle if the linear
manifold is a plane (dimR.U1/D 2). Since the dimen-
sion of the linear manifold is equal to the number
of times the eigenvalues of Q�1 are equal to �1,
we have 1� dimR.U1/�n. If dimR.U1/Dn, then
bp CR.U1/DR

n and SDS�1 . This is the special case
when all eigenvalues of Q�1 are equal (i.e. Q is a
scaled unit matrix).

As an illustration, we now show for the cases n D
1; 2; 3 how the sets C and S may look like.

Case n D 1: If n D 1, then U1 D 1, U2 D 0, and
Q D ��1

1 . Therefore C D f0g and S D S�1 D fb 2 Rj
b D ˙�1g. SinceF.b/ D ��2

l .1C�2l �1/.b2�2�1jbjC
l�1/ for b0 D 0, it is readily verified that ˙�1 are
indeed its two minimizers (see Fig. 14.1).

Case n D 2: We now have two cases: (a) U1 D I2,
U2 D 0 and (b) U1 D u1, U2 D u2. In case (a) we
have C D f0g and S D S�1 . In case (b), C is an origin-
centred interval of length 2�1.1 � �1=�2/ along the u2
direction and S consists of the two intersection points
of the line b D bp C u1˛ with the circle S�1 (see
Fig. 14.2). Note, if b0 lies on the edge of C and thus
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Fig. 14.1 The function F.b/ D �1.b0 � b/2 C ��2
l .l � jbj/2

for b0 D 0 (left) and b0 ¤ 0 (right)
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b0
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b = bp + u1a
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Fig. 14.2 The case n D 2 with U1 D u1, U2 D u2: Shown are
the circle S�1 with axes u1 and u2 , the interval C, the two solution
points of S, the line b D bp C u1˛ and the ellipse kb0 � bk2Q D
constant

kb0k D �1.1 � �1=�2/, that kbpk D �1 and the two
intersection points coincide in one point.

Case n D 3: We have the three cases: (a) U1 D I3,
U2 D 0, (b) U1 D .u1; u2/, U2 D u3, and (c) U1 D
u1, U2 D .u2; u3/. In case (a) we have C D f0g and
S D S�1 . In case (b), C is an origin-centred interval of
length 2�1.1 � �1=�3/ along the u3 direction and the
solution space S is the circle with centre bp and radiusq
�21 � kbpk2 that follows from intersecting the plane

b D bp C u1˛1 C u2˛2 with the sphere S�1 . In case
(c), C is an origin-centred ellipse in the U2-plane with
principal axes �1.1 � �1=�2/u2 and �1.1 � �1=�3/u3.
The solution space S is then the two point intersection
of the line b D bp C u1˛ with the sphere S�1 .

The latter case (n D 3 (c)) is the one that is most
likely to occur with GNSS, since the eigenvalues of
the variance matrix Q D Q Ob.a/ Ob.a/ will usually all be
different.
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15The Effect of Reordering Strategies
on Rounding Errors in Large, Sparse
Equation Systems

A. Ernst and W.-D. Schuh

Abstract

The effect of reordering strategies on the rounding errors is considered for the
factorization and solution of sparse symmetric systems. On the one hand, a
reduction of rounding errors can be expected, because the number of floating
point operations decreases. On the other hand, the clustering of neighboring
parameters and therefore the fixing of the sequence of parameter elimination
may result in numerical instabilities. These effects are demonstrated for sparse
covariance matrices in Wiener filtering. In particular Cholesky factorization and
profile reordering in conjunction with envelope storage schemes are examined.

1 Introduction

In this work we investigate the hypothesis that reorder-
ing the sequence of unknown parameters of a sparse
equation system has no negative effect on the rounding
errors. In principle the sequence of the elimination of
unknowns is subject to an appropriate pivoting strategy
to deal with numerical instabilities. Strongly correlated
parameters are separated by reordering the sequence
of parameter elimination. In contrast to the pivoting
strategy the reordering scheme for sparse systems aims
at a clustering of neighbored data points. This yields a
small profile and only few fill-ins during the solution
process (Ernst 2009). From the numerical point of view
reordering counteracts pivoting. As a typical and also
most critical application we have a look at Wiener
filtering and other prediction processes where large
covariance matrices are generated. Compactly sup-

A. Ernst � W.-D. Schuh (�)
Institut für Geodäsie und Geoinformation der Universität Bonn,
D-53115 Bonn, Nussallee 17, Germany
e-mail: Schuh@uni-bonn.de

ported covariance functions in 2D (Sansò and Schuh
1987) and 3D (Gaspari and Cohn 1999; Gaspari et al.
2006; Moreaux 2008) allow for a sparse representation
of the covariance information considering the positive
definiteness. Naturally, we exploit the sparse structure
of the covariance matrices as much as possible by an
efficient reordering algorithm (e.g. reversed Cuthill-
McKee (Gibbs et al. 1976) or banker’s algorithm
(Snay 1976)) and an appropriate storage schema (Ernst
2009). As outlined in Schuh (1991) the numerical sta-
bility of covariance matrices in prediction procedures
is basically influenced by the shape of the covariance
function, the variance of the uncorrelated noise and the
data distribution. Especially neighboring data points
cause numerical problems. To study the numerical
behaviour in detail a specific rounding error analysis
is necessary. Whereas norm-based perturbation bounds
(Stewart 1973) are focused on the global assessment
of algorithmic processes and ignore the sparsity of a
system, a stochastic approach (Meissl 1980) allows for
an individual handling.

The paper is organized as follows. Section 2 defines
some fundamental terms concerning rounding error

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 15, © Springer-Verlag Berlin Heidelberg 2012
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analysis. Section 3 presents norm-based rounding error
analysis applied to Cholesky’s algorithm and intro-
duces the stochastic approach for a precise round-
ing error analysis and an algorithmic procedure to
overcome the recursive variance propagation within
Cholesky factorization. Section 4 gives an example.
The paper finishes with conclusions.

2 Rounding Error Analysis

For an efficient solution on a computer each floating
point number d is represented by its machine rep-
resentation d . Today the widely-used IEEE standard
754 defines the representation, rounding algorithms,
mathematical operations and exception handling for
floating point arithmetics (IEEE 2008). A floating
point number d in binary coded 64-bit (double preci-
sion) representation consists of

d D .�1/s �m � bq; (15.1)

where s denotes a binary digit for the sign of the
number, m the mantissa with � D 53 binary digits, b
the basis 2, and q the exponent with 10 binary digits
and a given bias. The relative error

ˇ̌
ˇ̌
ˇ
d � d

d

ˇ̌
ˇ̌
ˇ � "m; (15.2)

defines the unit roundoff or machine epsilon "m. This
quantity depends on the number of digits of the man-
tissa � and the rounding procedure. True rounding
(rounding to nearest) yields "m D 2�� . A mapping
error occurs also during each arithmetic operation.
The computer evaluates the computed function f .d/
instead of the mathematical function f .d/.

A rounding error analysis provides information
about the perturbance measured by the size of
jf .d/� f .d/j, the difference between the mathe-
matically rigorous result f .d/ and the function f .d/
evaluated with machine numbers. Expanding this norm
by plus minus f .d/ we get the inequality

jf .d/� f .d/j � jf .d/ � f .d/j C jf .d/� f .d/j:
(15.3)

The first absolute term on the right-hand side of
inequality (15.3) characterizes the stability of the
problem closely connected with the condition of the
problem, whereas the second term contains informa-

tion about the stability of the algorithm, where beside
the condition also the order and number of operations
in the algorithm has to be taken into account (Dahmen
and Reusken 2008).

3 Rounding Error Analysis Applied
to Cholesky’s Algorithm

Without restricting the generality we focus our inves-
tigation on the Cholesky solution of an n-dimensional
equation system Nx D y, where the positive definite,
symmetric matrix N is factorized by N D RTR into a
unique upper triangular matrix R with positive diag-
onal elements. For a given right hand side y the
unknown parameter vector x is computed by the solu-
tion of two triangular systems. In the forward substitu-
tion step RT z D y the auxiliary vector z is determined
and after this the unknown parameter vector x results
from the backward substitution step Rx D z.

In general the effect of rounding errors in a trian-
gular factorization process can be measured indirectly
by an estimation of the coefficients of the disturbed
system .N C�N/x D y, which are given by

j�nij j � .c1nC 2c2n
2 C c22n

3"m/ max
i;j

jnij j g "m

(15.4)

where c1 and c2 are constants of the order unity and g
denotes the growth factor, which is defined by half of
the magnitude of the largest number occurring during
the whole computation divided by the largest absolute
value in N (Stewart 1973, Theorem 5.3, p. 155). Apply-
ing the propagation of relative errors in linear equation
systems

k�xk
kxk � kNkkN�1k

�k�Nk
kNk C k�yk

kyk
�

(15.5)

(cf. Kreyszig 1993, p. 998) the disturbances in �N of
(15.4) can be propagated to the relative disturbances of
the solution vector. Introducing the norm kNk by the
infinity norm kNk D n max

i;j
jnij j and substitute (15.4)

in (15.5) yields

kx � xk
kxk � kNkkN�1k.c1 C 2c2nC c22n

2"m/ g "m:

(15.6)

In contrast to LU factorization strategies, the growth
factor of Cholesky decomposition is not affected by
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Table 15.1 Stochastical description for rounding errors of
arithmetical operations. � denotes the smallest integer power
satisfying the inequality

Operation " E f"g �f"g D cp
12

"m

Summation ".a/ 0 c D 2� > max.jaj; jbj; ja C bj/
Subtraction ".s/ 0 c D 2� > max.jaj; jbj; ja � bj/
Multiplication ".m/ 0 c D 2� > ja � bj
Division ".d/ 0 c D 2� > ja=bj
Square root ".sq/ 0 c D 2� > jpaj

the pivoting strategy and is bounded by g � 1. The
influence of rounding errors is dominated by the linear
term 2c2n. This term is mainly caused by the accu-
mulation of the scalar products, and can be reduced
by a higher precision in the computation of the scalar
product (Stewart 1973, p. 156). However, also sparsity
reduces the number of operations and may have a
positive influence on the rounding errors.

To allow for an individual analysis Meissl (1980)
introduced a stochastic approach to estimate the round-
ing error for very large networks in particular for
the adjustment of the US ground-control network.
The rounding error " is considered a random variable
and defined by its expectation Ef"g and variance
�2f"g. Table 15.1 contains the expectation and vari-
ance for the arithmetic operations used in the Cholesky
algorithm. The expectation depends on the rounding
algorithm. In the IEEE 754 definitions true round-
ing is implemented, so in this case no bias occurs.
The variances �2f"g of the individual operations are
given in the last column of Table 15.1. The vari-
ance depends on the factor c, which is an opera-
tion dependent number, and on the machine epsilon
"m. The factor 1p

12
is defined by the variance of a

uniformly distributed random variable. The factor c
characterizes the maximum number of digits that are
lost during the operation and depends for the addi-
tion/subtraction on the maximum of the input values
as well as on the result of the operation. Within the
other operations of multiplication, division and square
root the factor c depends only on the magnitude of the
result.

In contrast to Meissl’s approach where a rough esti-
mation of the number of operations and the magnitude
of the quantities is used to propagate the rounding
error for the large system, we consider each individual

computing step. All functional dependencies during
the Cholesky decomposition are taken into account and
we perform a rigorous variance propagation for the
whole solution process. The rounding errors in each
operation are modeled individually by the size of the
actual operators,

f .a; b/ D f .a C "a; b C "b/C "f .a;b/: (15.7)

Here "a and "b denotes the perturbance of the coeffi-
cients and "f .a;b/ the rounding error during the opera-
tion. Applying linear perturbation theory we get

f .a; b/ D f .a; b/C c1"a C c2"b C "f .a;b/ : (15.8)

Collecting the "-quantities in the variable "f .a;b/ yields

f .a; b/ D f .a; b/C "f .a;b/ : (15.9)

The Cholesky factorization is a recursive evaluation
process. All elements rij , ri i , zi and xi depend on
previous evaluated elements and all these elements are
correlated. To show the principle approach we pick out
a special operation, the computation of

rij D
 
nij �

i�1X
kD1

rki rkj

!
=ri i ; i D 1 : : : j; j D 1 : : : n

(15.10)

(Meissl 1980, eq. 3.31). For the evaluation the dis-
turbed values rij and nij (ref. (15.9)) as well as the
basic rounding errors ".m/, ".s/ and ".d/ caused by the
arithmetic operations have to be taken into account,

rij D
nij �

i�1P
kD1

��
rki rkj C "

.m/

k

�
C "

.s/

k

�

ri i
C ".d/ :

(15.11)

Applying linear perturbation theory the individual
basic errors can be summarized by ""rij

""rij D 1

ri i

i�1X
kD1

�
"
.m/

k C "
.s/

k

�
C ".d/: (15.12)

It should be mentioned that the order of the computing
steps is important because the rounding errors are not
commutative as they depend on the size of the result.
Taken into account also the disturbances of the input
quantities we get
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Fig. 15.1 Structure of the implicit error formulation of the
complete solution process with Cholesky’s algorithm. The filled
parts depict dense matrix structures, the fat lines represent
diagonal matrix entries, and the white parts contain just zeros

rij C "rij D
�
nij C "nij

� �
i�1P
kD1
�
rki C "rki

��
rkj C "rkj

�

ri i C "rii

C ""rij : (15.13)

By expanding this equation and disregarding second
order terms of " we get a linearized construction for
the evaluated Cholesky-element rij ,

rij C "rij D rij C 1

ri i
"nij �

i�1X
kD1

�
rkj

ri i
"rki C rki

ri i
"rkj

�

� 1

2ri i
"rii C ""rij : (15.14)

We end up with an implicit formulation of "rij , which
depends on the already computed quantities "nij , "rki ,
"rkj and ""rij . The same approach is also applied to
the quantities of the forward and backward substitution
step, "zi and "xi .

The structure of the complete implicit equation
system is shown in Fig. 15.1. The system shows the
functional dependencies of the rounding errors as they
are formulated in (15.14). The system is ordered col-
umn wise by the errors of the derived quantities ("rij ,
"zi , "xi ) followed by the input errors ("nij , "yi ) and the
individually processed errors of the operations (""rij ,
""zi

, ""xi ) defined by (15.12). Out of these implicit
equations an explicit formulation for the unknown
rounding errors is needed. Therefore, the system is fac-
torized by the Gauss–Jordan algorithm, which solves
for the dependencies of the Cholesky quantities (see
Fig. 15.2).

To compute the rounding error covariance matrix
of the unknown parameters x the bordered block

Fig. 15.2 Structure of the explicit rounding error formulation
after reduction by the Gauss–Jordan algorithm. Dependencies
shifted to the right blocks of the known rounding errors

in Fig. 15.2 is needed. This block is the functional
matrix F"x in the variance propagation ˙ f"xg D
F"x˙ f"basicg FT"x .˙ f"basicg contains the uncorrelated
basic rounding errors that arise during the solution,
e.g ""rij of (15.12) and the a priori error information
of the normal equation system. The result is a full
covariance matrix˙ f"xg where the variances describe
the stochastic rounding errors of the solution of
the equation system. The covariances also contain
information concerning the correlations between the
single rounding errors.

4 Simulations

The algorithm outlined in Sect. 3 is tested with a
Wiener–Kolmogorov filtering of Bouguer anomalies
derived at irregular positions. Figure 15.3 shows
the spatial data distribution with the residuals and
identified outliers. The measurements are reduced
by a polynomial of second order to ensure sta-
tionarity. The residual signal s is predicted by
s D˙ fs; �lg˙ f�lg�1 �l; where �l denotes the
vector with the trend reduced measurements and
˙ f�lg the covariances. The matrix is deduced from
the analytic covariance function, where the empirical
covariances are approximated by a Bessel function
combined with a compactly supported function (Sansò
and Schuh 1987; Moreaux 2008). This leads to a
sparse matrix˙ f�lg. The matrix˙ fs; �lg defines the
covariances between the data points and the prediction
points.

We focus our attention on the inversion process
w D˙ f�lg�1 �l. This is equivalent to the solution of
the linear equation system ˙ f�lg w D�l. The matrix
˙ f�lg is reordered with three different numbering
schemes. The first scheme is the natural form given
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Fig. 15.3 Wiener–Kolmogorov prediction of Austrian Bouguer
anomalies (data set Ruess 1986, intern communication). Red
bars display the residuals. Red dotted bars display identified
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Fig. 15.4 Profiles of test system after Cholesky factorization
with different reordering strategies

by the ordering of the data. The second scheme is
produced by a reordering with the banker’s algorithm
(Snay 1976). The third system is generated by a ran-
domized ordering. The three profiles are shown in
Fig. 15.4.

To analyze the different rounding errors dependent
on the condition of the system we vary the condition
of the system by arbitrary choices of the uncorre-
lated noise in the data points, which is defined by
the difference between the empirical and the analytic
covariance function at the distance zero. The noise
is added on the main diagonal of ˙ f�lg and stabi-
lizes the system. These systems are tested with the
developed algorithm and the covariance matrix of the
rounding errors of the solution vector w is computed.
Results from the simulation are shown in Fig. 15.5.
The maximum rounding errors are plotted for the
different numbering schemes and systems. The errors
have almost the same size for the same condition
number. They do not differ significantly because of the
reordering strategy. The reordering with the banker’s
algorithm influences the rounding errors positively
at higher condition numbers. There the randomized
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Fig. 15.5 Results of the simulation for various condition num-
bers with the three numbering schemes and Stewart’s rounding
error approximation with c1 and c2 of the order unity fixed
with 1

ordering produces the highest rounding errors. But in
general the size of the rounding errors is essentially
influenced by the condition number. A clustering of
numerical instabilities cannot be observed. For well
conditioned systems the algorithm gives a more opti-
mistic approximation of the rounding errors than the
formula by Stewart up to the factor 100. For bad
conditioned systems both approximations show similar
results, but for instable systems Stewart’s approxima-
tion is smaller than the stochastic errors by a factor
of five but this depends basically on the choice of
the constants c1 and c2 in (15.6). For the stochastic
approach besides the absolute rounding errors also
individual values including the correlations between
the rounding errors can be analyzed. It can be observed
that the correlations depend very strongly on the size of
the rounding errors. The larger they are the higher they
are correlated.

5 Conclusion and Discussion

We investigated the hypothesis that reordering induces
a clustering of instabilities. The stochastic approach
allows for an individual analysis of rounding errors in
evaluation processes. As demonstrated here also com-
plex recursive algorithms can be handled and rigor-
ously computed. With respect to our hypothesis it can
be stated that the clustering of numerical instabilities
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caused by reordering strategy has no negative impact
on rounding errors.
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R, Sansò F (eds) Determination of the Geoid – Present
and Future, IAG Proceedings, vol 106. Springer, Heidelberg,
432–441

Snay R (1976) Reducing the profile of sparse symmetric matri-
ces. NOAA Technical Memorandum, NOS NGS-4

Stewart G (1973) Introduction to matrix computations.
Academic press, New York, San Fancisco, London



16Performance Analysis of Isotropic Spherical
Harmonic Spectral Windows

B. Devaraju and N. Sneeuw

Abstract

Spatial smoothing or spectral filtering using spherical harmonic spectral windows
is performed, for example, to reduce noise, or to bring two datasets to the same
resolution. Despite a number of spectral windows available, no framework exists
to analyse their performance in the spatial domain before a choice can be made. In
view of this, a set of parameters is devised to analyse the performance of isotropic
spectral windows in the spatial domain. Using these parameters five isotropic
spectral windows – Gauss, von Hann, Pellinen, box-car and Butterworth – are
analysed in terms of their efficacy in reducing the resolution of a given dataset.
The analysis shows that the parameters designed in this contribution provide a
new perspective to the qualitative and quantitative analysis of isotropic spectral
windows. Further, the analysis points out Butterworth (order 2) and von Hann
windows as the appropriate windows for reducing resolution of datasets.

Keywords

Isotropy • Performance analysis • Spectral windows • Smoothing • Filtering

1 Spatial Smoothing

Smoothing the gravity field on the sphere using
isotropic filter windows was formalised for physical
geodesy by Jekeli (1981) in order to reduce the res-
olution of the dataset. There he adapted the windows
that were already in use in Fourier spectral analysis
of one-dimensional (1-D) data to the sphere. The
interest in such filter windows resurfaced with the
advent of GRACE time-variable gravity field data due

B. Devaraju (�) � N. Sneeuw
Institute of Geodesy, University of Stuttgart,
Geschwister-Scholl-Str. 24D, D-70174, Stuttgart, Germany
e-mail: devaraju@gis.uni-stuttgart.de

to the need for suppressing noisy higher frequencies in
the GRACE dataset (Wahr et al. 1998). In due course,
a variety of methods were proposed to smooth the
noisy GRACE data, for example, Han et al. (2005);
Swenson & Wahr (2006); Kusche (2007); Klees et al.
(2008). An attempt was made by Kusche (2007) to
derive performance measures for the inter-comparison
of these filter kernels. However, a unifying framework
to analyse the performance of these filters in both the
spatial and spectral domains does not exist. In this
contribution, performance measures will be derived
and applied to determine the appropriate isotropic
spectral window for resolution reduction of a given
gravity field. The performance measures are to a larger
extent an adaptation of the measures devised by Harris
(1978) for windows in 1-D Fourier spectral analysis.

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 16, © Springer-Verlag Berlin Heidelberg 2012
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In the rest of this document, the terms smoothing oper-
ator/window and filter will be used inter-changeably.

2 Isotropic Windows

The weights of isotropic windows on the sphere
depend only on the spherical distance between the
points, which implies that they are independent of the
location and direction. They are the simplest class of
windows defined on the sphere. Table 16.1 shows a
few well-known isotropic windows used in physical
geodesy. Following is the harmonic transform pair for
an isotropic window.

W. / D
LX
lD0

2l C 1

2
wlPl .cos / (16.1a)

wl D

Z

0

W. /Pl .cos / sin d (16.1b)

where

W. / � Isotropic function on the unit sphere

Pl.cos / � Legendre polynomial of degree l

 � Spherical distance

wl � Legendre polynomial coefficients

Table 16.1 Some well-known isotropic windows. All spatial
cross-sections shown here are reconstructed/constructed using
(16.1a)

Filter Definition

Gauss W. / D b
e�b.1�cos /

1� e�2b
; b D ln.2/

1� cos 0

von Hann W. / D
(

1
2

�
1C cos 
 

 0

�
, 0 �  �  0

0,  0 �  � 


Pellinen W. / D
(
1 , 0 �  �  0

0 ,  0 �  � 


Box-car wl D
(
1 , l D 0; : : : ; lc

0 , l > lc

Butterworth wl D 1r
1C

�
l
lc

�2k , k D 1; 2; 3; : : :

Gauss von Hann Pellinen Box-car Butterworth

Spatial

Spectral

Smoothing a field f .�; �/ on the sphere with
an isotropic window is a convolution in the spatial
domain, and a multiplication in the spectral domain.

f 0.�; �/ D f .�; �/ �W. / (16.2a)

D
1X
lD0

wl

lX
mD�l

flmYlm.�; �/ (16.2b)

where � , � are the co-latitude and longitude, Ylm.�; �/
is the surface spherical harmonic of degree l and order
m, and flm is its coefficient.

3 Performance Measures

The performance measures that are designed here use
the energy associated with the filter kernel as the basis.
In Fig. 16.1, the definitions of different terms that will
be used in the rest of this contribution are illustrated.
The magnitude of the filter weights and the energy of
the filter will all be measured in units of decibel (dB).

W 0. / [dB] D 20 log10

�
W. /

W.0/

�
(16.3)

Processing loss (˛L) A certain amount of the signal
is lost when a field is filtered. Processing loss computes
the amount of signal lost due to filtering.

˛L D 1 �

’
˝

f 02.�; �/d˝
’
˝

f 2.�; �/d˝
D 1 �

P
l;m

w2l f
2
lm

P
l;m

f 2
lm

(16.4a)

D 1 � ˛ (16.4b)
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Fig. 16.1 Anatomy of an isotropic filter kernel
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˛SNR D SNR.f 0.˝//

SNR.f .˝//
; where SNR D Signal power

Noise power
(16.4c)

where ˛ is the damping factor (Kusche 2007). If the
isotropic windows are used for reducing noise, then
(16.4c) provides better information than (16.4b) as it
includes the smoothing applied to the noise as well.

Main-lobe half-width ( M) Main-lobe half-width
is the point of first zero-crossing of the isotropic
window. This definition is applicable only for filters,
whose spatial filter weights oscillate around zero. In
order to determine the main-lobe width of filters whose
weights decay to zero and do not cross it, a few other
definitions are required.

1. Spatial variance of normalized energy of the spatial
filter kernel For non-zero-crossing windows, the
main-lobe half-width is calculated via the second
moments of the energy function. In order to deter-
mine the second moments, the energy function is
treated as a probability density function by normal-
izing it as done by Kusche (2007).

 2M D

Z

0

 2
W 2. /


R
0

W 2. / sin d 
sin d (16.5)

2. Half-width of fraction of the peak The half-width
from kernel location at which the function attains a
certain fraction of its peak value.

W. M/ D 1

n
W.0/ (16.6)

3. Half-width at fraction of total energy The half-
width at which the filter has accumulated a desired
fraction of total energy contained in the function.

 MZ

0

W 2. / sin d D 1

n


Z

0

W 2. / sin d 

(16.7)

Highest side-lobe level It is defined as the peak of
the highest side-lobe. This is an important quantity
both for noise reduction and resolution reduction as
it determines the single largest unwanted contribution
from outside the main-lobe. For non-zero-crossing
windows, it is the magnitude at main-lobe half-width.

Side-lobe roll-off ratio (%s) It is defined as the ratio
between peak window weights of the first and last
side-lobe (cf. Fig. 16.1). This ratio determines how
fast the oscillations around the main-lobe subside, i.e.,
approach zero. For non-zero-crossing windows, it is
the ratio between window weights at the main-lobe
width and at the end of the window.

Spatial leakage (�) Spatial leakage is the fraction
of energy contributed to the total energy by the side-
lobes. Thus, the total energy contained in the filter is
the sum of leakage and main-lobe energy concentra-
tion (ˇ).

 D


R
 M

W 2. / sin d 


R
0

W 2. / sin d 
(16.8a)

D 1 �

 MR
0

W 2. / sin d 


R
0

W 2. / sin d 
D 1 � ˇ (16.8b)

4 Performance Analysis

The main idea of applying windows in the spectral
domain is to reduce the resolution or smooth noise in
the dataset. The windows must decay slowly towards
zero so that they can be transformed from the spectrum
to the space without any artefacts. The artefacts, which
are inevitable in the case of discontinuous and rapidly
decaying windows, mainly occur as oscillating weights
in the transformed window (in space). Therefore, the
region under these oscillating weights, called the side-
lobes, can be considered unwanted contribution. This
implies that the side-lobe levels must be smaller to
ensure that the smoothed signal represented at a point
in space is mostly represented by the main-lobe.

An ideal filter window applied in the spectral
domain for reducing the resolution should have the
corresponding main-lobe width without any side-
lobes, and should have minimum processing loss. This
implies that in the less-ideal cases, as in Fig. 16.2,
the filters should have desired main-lobe width, less
leakage, lower side-lobe levels, minimum processing
loss and faster side-lobe roll-off. Of these, highest side-
lobe level and processing loss provide an overview of
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Fig. 16.3 Scatter plot of the highest side-lobe level and process-
ing loss. The filters shown in Fig. 16.2 are compared for seven
different smoothing radii: 200, 300, 400, 500, 750, 1,000, and
2,000 km. These are arranged from left to right for each curve of
the filter. Good filters for a given smoothing radii will be in the
lower left corner of the plot

how much leakage can happen and how much energy
will be lost due to the filter, respectively. Figure 16.3
is constructed based on these observations.

Filter kernel comparison Gauss, von Hann, Pelli-
nen, box-car (Shannon window), and Butterworth. All
the filters have been transformed into spatial kernels
from their spectral coefficients, which means in the
case of Gauss, von Hann, and Pellinen filters, the ker-
nels are reconstructions. The spectral windows were
all expanded upto degree 360 for seven different radii.
Since the five filter kernels are defined in completely
different ways (cf. Table 16.1), the following proce-
dure was adopted for comparison.

The smoothing radii for Gauss filter is defined
such that the filter weights drop to half at the pre-
scribed smoothing radius. Similarly, the von Hann
filter weights reduce to half at half the prescribed
smoothing radius, which means that Gauss 500 km
and von Hann 1,000 km filters will have the same
filter weight at 500 km from the kernel location. This
provides a basis for comparing Gauss and von Hann
filters. The definition of von Hann filter shows that
the prescribed smoothing radius is also a cut-off radius
(cf. Table 16.1) and hence, it can be compared directly
with a Pellinen filter of the same cut-off radius. Since
Box-car and Butterworth filters are based on cut-off
degrees, they can be conveniently converted to spa-
tial scales by using half-wavelength rule

�
�
2

� 20;000
l

�
.

Excluding the Gauss filter, the main-lobe width values
obtained from the analysis, shown in Table 16.2, is a
proof to this procedure. The main-lobe half-width of
Gauss filter is the cut-off radius of the comparable von
Hann filter.

In Fig. 16.2, the magnitudes of filter weights are
shown in decibels for a 1,000 km smoothing radius.
The reason for plotting the filter weights in decibels is
that the filter structure is far more clearer than the usual
cross-section plots. Figure 16.3 shows the scatter plot
between highest side-lobe level and processing loss.
Kaula’s rule

�
�2l D 160�10�12

l3

�
was used for calculating

processing loss as the calculation requires spherical
harmonic coefficients of the field. Table 16.2 provides
values for the rest of the performance measures. The
ideal filter for a given smoothing radius will be in the
lower left corner of Fig. 16.3 as it will have a very low
side-lobe level and a minimal processing loss.

Butterworth filters of order 2 and von Hann filters
come close to satisfying the good filter criteria. While
Butterworth filters lose less during filtering, they have
more leakage than von Hann filters due to their side-
lobe levels (cf. Table 16.2). The von Hann filter has
a narrow main-lobe width with a very low side-lobe
level, in addition to the fact that leakage is nearly
non-existent. However, they lose a moderate part of
the energy during filtering. It is clear from Fig. 16.3
that von Hann filters have the lowest side-lobe levels,
and have processing loss slightly less than Pellinen &
Gauss but much more than Butterworth & Box-car
filters.

Pellinen filters outperform the box-car filters. They
have less leakage, lower side-lobe levels, and narrower
main-lobes compared to the box-car filter. However,
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Table 16.2 Main-lobe width ( M), spatial leakage (), and
side-lobe roll off ratio (�s) are provided for the isotropic filters
compared here.  M is the first zero-crossing of the filter weights

Filter  M [km]  [%] �s [dB]
Gauss (at W. / D 0:5)
100 km 200 0.39 �106.16
250 km 500 0.39 �147.63
500 km 1,000 0.39 �169.12
von Hann
200 km 200.37 0.01 �30.86
500 km 498.53 0.00 �32.70
1,000 km 990.05 0.00 �84.04
Pellinen
200 km 235.44 0.50 �27.96
500 km 533.80 0.15 �26.48
1,000 km 1,033.94 0.08 �23.88
Box-car (lc)
100 242.05 16.22 �22.52
40 596.12 16.21 �14.70
20 1,163.78 16.18 �8.94
Butterworth (lc)
k D 2

100 193.96 0.33 �22.10
40 522.78 0.10 �19.43
20 1,062.39 0.10 �18.34
k D 5

100 212.60 2.55 �63.39
40 528.39 2.59 �87.49
20 1,044.56 2.65 �105.90
k D 10

100 225.22 6.96 �122.17
40 559.05 7.00 �170.86
20 1,105.27 7.08 �88.98

the performance of the reconstructed Pellinen filter
is highly dependent on the number of terms used to
reconstruct it.

Butterworth filters of order 2 have relatively lower
side-lobe levels, relatively less leakage, and a minimal
processing loss, which make them attractive for res-
olution reduction. The lower order Butterworth filters
decay slowly, and so the cut-off degree must be far less
than the maximum degree of expansion. If the cut-off
degree is closer to the maximum degree of expansion,
then there will be truncation effects and that can lead
to change in filter characteristics.

Gauss filters are different from other filters
compared here as by definition they do not reach
zero and therefore, will not have a side-lobe. The
side-lobes (not shown here) are an artefact of the
truncation of the harmonic expansion in the spectral
domain. Since they are comparable to von Hann filters,
their main-lobe width can be taken to be twice their

prescribed smoothing radius as mentioned previously.
It is interesting to note that the leakage remains
constant even with a change in the smoothing radius.
Other than the steep side-lobe roll-off, there is not
much of note about this filter.

Box-car filter performs the worst due to very high
side-lobe levels, enormous leakage, and wider than
expected main-lobe width. Inspite of having the least
processing loss, Box-car filters have a lot of undesir-
able characteristics, especially their leakage.

5 Summary and Conclusions

A set of measures were developed to analyse the
performance of isotropic spectral windows: processing
loss, main-lobe half-width, spatial leakage, highest
side-lobe level, and side-lobe roll-off ratio. Using these
parameters five different filters of varying smoothing
radii were analysed for their efficacy in reducing the
resolution of a given field.

The performance measures provide deeper insights
into the characteristics of the filters, which makes
it easier to choose a filter and its smoothing radii
depending on the needs of the problem in hand. This
was shown for the case of resolution reduction, where
the measures point to Butterworth filters of order 2 (if
lower processing loss is desired), and von Hann filters
(if lower leakage is desired).
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17Uniqueness Theorems for Inverse
Gravimetric Problems

D. Sampietro and F. Sansò

Abstract

The inverse gravimetric problem, namely the determination of the internal density
distribution of a body from the exterior gravity field, is known to have a very
large indeterminacy while it is well identified and described in functional terms.
However, when density models are strongly reduced to simple classes, or func-
tional subspaces, the uniqueness property of the inversion is retrieved. Uniqueness
theorems are proved for three simple cases in Cartesian approximation:
 The recovery of the interface between two layers of known density
 The recovery of a laterally varying density distribution, in a two layers model,
given the geometry of the problem (topography and depth of compensation)
 The recovery of the distribution of the vertical gradient of density, in a two
layers model, given the geometry of the problem (topography and depth of
compensation) and the density distribution at sea level.

Keywords

Inverse gravimetric problems • Earth’s density anomalies • Uniqueness theorems

1 Introduction

The inverse gravimetric problem consists in recovering
the Earth’s density distribution from observations of
functionals of the gravitational potential. This prob-
lem, is based on the inversion of Newton’s gravita-
tional potential:

V.P / D G

Z Z Z
B

�.Q/

rQ.P /
dv.Q/ (17.1)

D. Sampietro (�) � F. Sansò
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Via Valleggo 11, 22100 Como, Italy
e-mail: daniele.sampietro@polimi.it

and of its derivatives, which are expressed in term
of Fredholm integral equations of the first kind (see
for example Lavrent et al. 1986). In literature vari-
ous publications have studied this inverse gravimet-
ric problem (see, for instance, Nettleton 1939, 1940;
Ballani and Stromeyer 1982, 1990; Vanı́ček and Chris-
tou 1994; Michel 1999; Tarantola 2005; and the refer-
ences therein). Considering (17.1) it turns out that each
of Hadamard’s criteria for a well-posed problem is
violated (see for example Michel 2005), in particular if
the problem is solvable, then the space of all solutions
corresponding to a fixed potential V.P / is infinite-
dimensional. In specific the densities that do not pro-
duce an external field, are those that are orthogonal to
all (square integrable) harmonic function in B.
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Symposia 137, DOI 10.1007/978-3-642-22078-4 17, © Springer-Verlag Berlin Heidelberg 2012

111

daniele.sampietro@polimi.it


112 D. Sampietro and F. Sansò

The non-uniqueness can be treated, for instance, by
considering hypotheses on the shape of the density
discontinuity. In fact, in principle, one can think that
it is better to use a rough geophysical hypothesis
and to find a unique solution, rather than accepting
a solution that can be very far from reality because
it corresponds to a purely mathematical criterion (see
Sansò et al. 1986). In this work the uniqueness of
the solution for three different inverse gravimetric
problems under the assumptions of a two layer body
in Cartesian approximation is proved. Note that for
some geophysical problems such as the study of the
Moho topography or the study of mountains roots these
approaches are frequently used (see e.g.Gangui 1998
or Lessel 1998).

We underline here that in this work “Cartesian
approximation” means that we consider a Cartesian
reference frame in which the Z axis is oriented as the
prevailing direction of the plumb line in the area.

2 Considered Inverse Problems

The determination of the structure (density and depth
of discontinuity) of a two layer body, based on the
inversion of Newton’s gravitational potential, is an
ill-posed problem. Nevertheless under some assump-
tions the uniqueness of the solution can be retrieved.
In this work three cases (fixed geometry, fixed density
distribution and vertical gradient), with different initial
hypothesis, are considered. To fix the ideas we think
of the two layer case as referring, in Cartesian approx-
imation, to the Earth crust and mantle. In this context
the three cases can be seen as the estimation of the hor-
izontal density gradient in the Earth crust, the estima-
tion of the Moho depth and the estimation of the crust
density gradient in the vertical direction respectively.

In the first case (fixed geometry) the uniqueness of
the solution is proved for an inverse problem in which
we want to estimate the density distribution from
gravimetric observations knowing the geometry of the
problem (i.e. the topography and the surface of the
discontinuity between crust and mantle). Vice-versa in
the second case we suppose to know the value of the
density in the two layers and the topography and we
want to estimate the depth of compensation. In the last
case the uniqueness is proved for the estimation of the
vertical gradient of the density from gravity observa-
tions, given the geometry and the density distribution

Fig. 17.1 Geometry and the notation used

at a known altitude. The three cases can be summarized
as follow (refer to Fig. 17.1 for the notation):
• Fixed geometry:

– H.Ÿ/ is the given topography
– �c.Ÿ/ is the unknown crust density as function of

the planar coordinates only
– �D.Ÿ/ is the known geometry of the surface

between crust and mantle
• Fixed density distribution:

– H.Ÿ/ is the given topography
– �c.Ÿ/ is the given crust density
– �D.Ÿ/ is the unknown depth of compensation

• Vertical gradient:
– H.Ÿ/ is the given topography
– �c.Ÿ/D�0.Ÿ/C.h�H/�0.Ÿ/ is the linearized, in

the vertical direction, crust density
– �0.Ÿ/ is the known density at the upper level
– �0.Ÿ/ is the unknown density vertical gradient
– �D.Ÿ/ is the known depth of compensation.

In all the cases, the mantle density, is considered as a
known constant. The geometry and the notation used
in the three cases are described in Fig. 17.1.

To prove the uniqueness of the solution for our
inverse problems we consider two bodies, B1 and B2
respectively, with the same external surface S and
generating the same external (i.e. in h > H ) gravity
field. We restrict here to the case that the perturbing
body B has a finite extension, as shown in Fig. 17.1.

Moreover we assume that:
• Both the bodies are constituted by two layers: man-

tle and crust
• D1 and D2 are the regular surfaces between mantle

and crust for the two bodies
• ¡m, is the mantle density for both the bodies

while ¡c1 ¡c2 are the crust densities for B1 and
B2 respectively

• �m > �c1 and �m > �c2
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• V1 D V2 D V where V1 is the potential outside S
due to B1 and V2 is the potential outside S due to
B2.

Naturally this condition guarantees that the potentials
V1 and V2 do coincide in fh � H g. Let us observe that
the solution of the second problem, with some little
variations, has already been given in literature (Barza-
ghi and Sansò 1988, Biagi 1997, Sampietro 2009) and
it is presented here only for the sake of completeness
and comparison with the solution of the other two
cases.

3 Uniqueness Theorems

We want to prove that if we take into account the previ-
ous hypotheses the corresponding inverse gravimetric
problems admit a unique solution.
1. To demonstrate the thesis for problem 1 consider

a third body B , which density is, ı� D �c1–�c2
obtained as the difference between B1 and B2 (see
Fig. 17.2). Obviously, since V1 D V2 on S including
the whole Ÿ plane, B generates a zero-potential
everywhere outside the body:

V.ı�/ D 0 outsideB: (17.2)

Note that in principle we know that V D 0 only
on the upper surface (Fig. 17.2), but due to the

Fig. 17.2 The Body B in the three cases considered

hypothesis of finite extension of B and thanks to the
unique continuation property holding for harmonic
functions, we can claim that V D 0 everywhere
outside B (Moritz 1980).

Consider now the classical inner product
<�; �> in L2, since, for (17.1) and (17.2), for
P<ı�; 1

rQ.P /
> D 0 outside B and since the set

fı�; 1
rQ.P /

g is dense in the subspace of functions
harmonic in B (one of the many formulations of
Krarup’s theorem, see Krarup 1975; Sansò 1982)
it holds <•¡; u>D 0 8u 2L2.B/, i.e. belongs
to the orthogonal complement of the space
of square-integrable functions harmonic in B .
A detailed proof of this theorem (theorem of zero-
potential distributions) is given in Sansò 1980.

Let’s consider now a generic square integrable
function u, harmonic in B, since ı� belongs
to the orthogonal complement of the space of
square-integrable functions harmonic in B (see
Sansò 1980) we have that:

Z
B

h
ı �
�
Ÿ; h

�i
u dB D 08u; �u D 0 inB:

(17.3)

Take an arbitrary set A on the plane Ÿ, contained
on the projection of B on this plane (see Fig. 17.1)
and define a typical test function ˚A.Ÿ/ smooth
and positive in A but null outside A. Now let v be
harmonic in B and such that:

(
v.Ÿ;H/ D ˚A.Ÿ/

v.Ÿ;�D/ D 0
(17.4)

furthermore define

u D @v

@h
: (17.5)

It is easy to see that v is a smooth function, so that
v 2 L2.B/. If we think at the fixed geometry model,
we have thatD1./ D D2./ D D./ and that since
both �c1 and �c2 do not depend from h also ı� will
not depend from h (i.e. ı� D ı�.//. Substituting
(17.5) into integral (17.3) we get:

Z
S

dŸ

Z H

�D

h
ı�.Ÿ/

i @v

@h
dh D 0: (17.6)
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Solving the integral in the vertical direction we
obtain:
Z
S

h
ı�.Ÿ/

i
Œv.H/ � v.�D/� d.Ÿ/ D 0: (17.7)

Taking into account a small two-dimensional set A,
in which we know that ı� does not change its sign
and considering the properties of v described into
(17.4), we have:

Z
A

ı�.Ÿ/˚A.Ÿ/dŸ D 0: (17.8)

This implies ı�.Ÿ/ D 0 in A and, since the previous
equivalence must hold for every set A and for every
function v; it must be ı�.Ÿ/ D 0 i.e. �c1.Ÿ/ D
�c2.Ÿ/.

2. In the case of a fixed, laterally varying density
model we assume �c1.Ÿ/ D �c2.Ÿ/ D �.Ÿ/ while
D1 and D2 can be different. Going back to (17.3)
and considering the new assumptions we can write:

( R
S
dŸ
R �D1

�D2 .�m � �/ @v
@h

dh D 0 if D2 > D1R
S
dŸ
R �D2

�D1 .� � �m/
@v
@h

dh D 0 if D1 > D2

:

(17.9)

The only solution of the previous system is
D1.Ÿ/ D D2.Ÿ/. In fact if we suppose to take
the set A where for exampleD2 > D1 we obtain:

Z
A

.�m � �2/˚A .Ÿ/dŸ D 0 (17.10)

that is not possible since this integral, for the prop-
erties of the function ˚A and because �m > �2, is
always positive.

3. Consider now the last case (vertical density gradi-
ent). This means that by hypothesis the following
density model holds:

�c.Ÿ/ D �0.Ÿ/C .h�H/�0.Ÿ/ (17.11)

where �0.Ÿ/ is the density on the external surface
S , which is assumed to be known, while �0.Ÿ/, the
vertical gradient, is unknown. Equation (17.3) still
holds and by hypothesis we can write:

ı�c.Ÿ/ D .h �H/ı�0 (17.12)

where ı�0 D �0
1.Ÿ/� �0

2.Ÿ/.

Furthermore in this case we use again the same
function v as defined in (17.5) but we put u D @2v

@h2
.

Substituting (17.12) into (17.3) we obtain:

Z
S

dŸ

Z H

�D
�
.h �H/ı�0� @2v

@h2
dh D 0 (17.13)

solving the integral in the vertical direction we get:

Z
S

dŸı�0
	

v.�D/ � v.H/� .D CH/
@v

@h

ˇ̌
ˇ̌
�D




D 0: (17.14)

Again, considering the properties of the function v,
integral (17.14) becomes:

Z
A

dŸı�0
	
� .D CH/

@v

@h

ˇ̌
ˇ̌
�D

� v .H/



D 0:

(17.15)

In integral (17.15) the integrand in square brackets
is always negative since v.Ÿ;H/ D ˚A.Ÿ/ � 0, and
@v
@h

j�D is positive, or better non-negative, because
of standard maximum properties of harmonic func-
tions. Therefore it must be ı�0.Ÿ/ D 0 i.e. �0

1.Ÿ/ D
�0
2.Ÿ/.

Conclusion

The general theorem of zero-potential distributions
proves that in a two layer model and under simple
assumptions (known topography, constant density
or known depth of compensation) the inverse gravi-
tational problem admits a unique solution.
The uniqueness of the solution is proved also when
the linear, vertical gradient density distribution is
unknown.
Once the uniqueness of the solution is guaranteed,
we are entitled to apply to the corresponding inverse
problem a regularization method (like Tikhonov
regularization) and we know from litterature (e.g.
Schock 2005) that in this way we can approximate
the true solution, dominating the inherent instabili-
ties. This is the reason why, in inverse problem like
this, it is so important to address specifically the
question of the uniqueness of the solution, at least
for simplified models.
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18Towards a Multi-Scale Representation
of Multi-Dimensional Signals

Michael Schmidt

Abstract

For analyzing and representing a one-dimensional signal wavelet methods are
used for a long time. The basic feature of wavelet analysis is the localization
property, i.e. it is – depending on the chosen wavelet – possible to study a signal
just in a finite interval. Nowadays a large number of satellite missions allows to
monitor various geophysical phenomena. Since often regional phenomena have
to be studied, multi-dimensional wavelet methods come into question. In this
paper the basic principles of a multi-scale representation of multi-dimensional
signals using B-spline wavelets are presented. Finally the procedure is applied
to an example of ionosphere research.

Keywords

Series expansions • B-spline functions • Wavelet functions • Multi-scale repre-
sentation

1 Introduction

Today a large number of satellite missions allows the
monitoring of various geophysical phenomena, e.g.
for studying climate change. Frequently, scientists are
interested in regional processes such as post-glacial
rebound or the equatorial anomaly in ionosphere
research. For a long time wavelets have been
considered as a candidate for regional representations
due to their localization feature and their flexible
filtering characteristics; see, e.g., Freeden (1999)
or Schmidt et al. (2007a). Modern spaceborne
observation techniques provide huge data sets. For

M. Schmidt (�)
Deutsches Geodätisches Forschungsinstitut (DGFI), D-80539
München, Alfons-Goppel-Str. 11, Germany
e-mail: schmidt@dgfi.badw.de

the evaluation and interpretation of such kind of data
representations are required which are characterized
by both effective numerical algorithms and an efficient
data handling. The multi-scale representation (MSR) –
also known as multi-resolution representation – splits
an input signal into a certain number of detail signals
by successive low-pass filtering (Schmidt et al. 2007a).
Hence, each detail signal is a band-pass filtered
version of the input signal, related to a specific
frequency band, i.e. resolution level. Numerically
this decomposition process is realized by the highly
effective pyramid algorithm. In case of a two-
dimensional (2-D) MSR for further efficiency reasons
so-called tensor product scaling and wavelet functions
can be introduced. Schmidt (2001) formulated a 2-D
MSR generated by orthogonal wavelet functions
such as the Haar function using mathematically the
Kronecker product. Since in many geodetic and

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 18, © Springer-Verlag Berlin Heidelberg 2012
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geophysical applications spatio-temporal signals are
studied, the 2-D MSR based on tensor products is
generalized in this paper to the multi-dimensional
(M-D) case. B-spline representations of M-D signals
are widely used, e.g. in reverse engineering for fitting
surfaces to given measurements (Koch 2009). Because
of their mathematical properties (e.g. compactness,
smoothness) B-splines are taken here to generate the
M-D MSR. In summary this paper can be seen as a
guide for applying a MSR based on tensor product
B-spline wavelet functions to M-D problems.

In the following section the fundamentals of the 1-D
MSR based on B-splines are outlined. The results are
generalized in the third section to the M-D case. As
an example the derived procedure is finally applied
to the vertical total electron content within the iono-
sphere.

2 1-D Multi-Scale B-Spline
Representation

As level-j scaling functions �j Ik.x/ of a 1-D MSR
with x 2 R the normalized quadratic B-splines
N2
j Ik.x/ with k D 0; : : : ; Kj � 1 are introduced,

i.e. �j Ik.x/ D N2
j Ik.x/. Kj means the total number

of scaling functions of the resolution level (scale)
j 2 N0. Assuming that a sequence of non-decreasing
values t

j
0 ; : : : ; t

j
KjC2, called knots, is given, the

normalized quadratic B-spline is defined via the
recursion formula

Nm
j Ik.x/ D x � t

j

k

t
j

kCm � t
j

k

Nm�1
j;k .x/

C t
j

kCmC1 � x
t
j

kCmC1 � t
j

kC1
Nm�1
j;kC1.x/ (18.1)

with m D 1; 2 and initial values N0
j Ik.x/ D 1 for t jk �

x < t
j

kC1 andN0
j Ik.x/ D 0 else; see, e.g. Stollnitz et al.

(1995) or Schmidt (2007). Note, in (18.1) a factor is
set to zero if the corresponding denominator is equal
to zero.

A B-spline is compactly supported, i.e. its values
are different from zero only in a finite interval on
the real axis, mathematically written as suppN2

j Ik D

Œt
j

k ; t
j

kC3/. Since the B-splines shall be used for
regional modeling, so-called endpoint-interpolating
normalized quadratic B-splines (ENQ B-splines)
defined on the unit interval I D Œ0; 1�, i.e. x 2 I

are introduced. For that purpose the first three knots
are set to the value zero and the last three knots to the
value one. Hence, the knot sequence is given as

0 D t
j
0 D t

j
1 D t

j
2 < � � � < tjKj D t

j
KjC1 D t

j
KjC2 D 1

(18.2)

with t
j

k D .k � 2/ hj , hj D 1=.Kj � 2/ and
Kj D 2j C 2. Figures of ENQ B-splines can be
found, e.g. in the publications of Schmidt (2007) and
Zeilhofer (2008).

The Kj scaling functions �j Ik.x/ D N2
j Ik.x/ con-

stitute a basis of the so-called scaling space Vj . The
MSR requires that there exists a sequence of nested
subspaces Vj with j 2 N0, such that V0 � V1 � � � � �
Vj�1 � Vj � VjC1 � � � � � L2.I/ holds. Hence, it
follows that the scaling functions �j�1Il .x/ with l D
0; : : : ; Kj�1�1 and �j�1Il 2 Vj�1 can be expressed by
a linear combination of the scaling functions �j Ik.x/
with k D 0; : : : ; Kj � 1 and �j Ik 2 Vj , i.e. the two-
scale relation

�j�1Il .x/ D
2lX

kD2l�.Kj�1/
pj Ik�j I2l�k.x/; (18.3)

also known as the refinement relation holds. By defin-
ing the Kj�1 � 1 scaling vector

���j�1.x/ D �
�j�1I0.x/; : : : ; �j�1IKj�1�1.x/

�T
(18.4)

of resolution level j � 1 and the Kj � 1 scaling vector

���j .x/ D �
�j I0.x/; : : : ; �j IKj�1.x/

�T
(18.5)

of resolution level j the two-scale relation (18.3) can
be rewritten as the matrix equation

���Tj�1.x/ D ���Tj .x/Pj : (18.6)

The entries pj Ik of the Kj � Kj�1 matrix Pj of the
refinement process are given as
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Pj D 1

4

2
66666666666666666666666664

4 0 0 0 � � � 0 0 0
2 2 0 0 � � � 0 0 0
0 3 1 0 � � � 0 0 0
0 1 3 0 � � � 0 0 0
0 0 3 1 � � � 0 0 0
0 0 1 3 � � � 0 0 0
0 0 0 3 � � � 0 0 0
0 0 0 1 � � � 0 0 0

. . . . . . .
0 0 0 0 � � � 1 0 0
0 0 0 0 � � � 3 0 0
0 0 0 0 � � � 3 1 0
0 0 0 0 � � � 1 3 0
0 0 0 0 � � � 0 2 2
0 0 0 0 � � � 0 0 4

3
77777777777777777777777775

;

see, e.g. Stollnitz et al. (1995) or Lyche and Schumaker
(2001).

Next the so-called detail space Wj�1 defined as the
orthogonal complement of the scaling space Vj�1
in the scaling space Vj , i.e. Vj D Vj�1 ˚ Wj�1
is introduced. Furthermore, it is assumed that the
so-called wavelet functions  j�1Il .x/ with l D
0; : : : ; Lj�1 � 1 and Lj�1 D Kj � Kj�1 are base
functions of Wj�1. Since the relations Wj�1 � Vj ,
 j�1Il 2 Wj�1 and �j Ik 2 Vj hold, the series
expansion

 j�1Il .x/ D
2lX

kD2l�.Kj�1/
qj Ik�j I2l�k.x/ (18.7)

is formulated analogously to (18.3) as the second two-
scale relation; but this time l D 0; : : : ; Lj�1�1 holds.
With the Lj�1 � 1 vector

   j�1.x/ D �
 j�1I0.x/; : : : ;  j�1ILj�1�1.x/

�T
(18.8)

of level j � 1 (18.7) can be rewritten as

   T
j�1.x/ D ���Tj .x/Qj ; (18.9)

wherein the Kj � Lj�1 matrix Qj with elements
qj Ik can be determined from the given matrix Pj as
will be shown in the following. Since, as mentioned
before, the wavelets  j�1Il .x/ are assumed to be
orthogonal to the scaling functions �j�1Ik.x/, the inner
product

Z 1

0

 j�1Il .x/�j�1Ik.x/dx D ˝
 j�1Il ; �j�1Ik

˛
L2.I/

D 0 (18.10)

vanishes for l D 0; : : : ; Lj�1 � 1 and k D
0; : : : ; Kj�1 � 1. Wavelet functions which fulfill this
condition are called pre-wavelets or semi-orthogonal
wavelets. Substituting (18.3) and (18.7) into (18.10)
yields

P
m

P
n qj Impj In

˝
�j I2l�m; �j I2k�n

˛
L2.I/

D 0:

Writing this equation for each .l; k/-combination
gives

QT
j GjPj D 0; (18.11)

wherein 0 is the Lj�1 � Kj�1 zero matrix. Since
the Kj � Kj matrix Gj with elements

˝
�j I2l�m;

�j I2k�n
˛
L2.I/

is positive definite, the Cholesky

factorization can be applied and yields Gj D LjLTj ,
wherein Lj is an Kj � Kj lower triangular matrix
(Koch 1999). Substituting the Cholesky factorization
into (18.11) gives

ePTj eQj D 0T : (18.12)

Thus, the columns of the Kj � Lj�1 matrix

eQj D LTj Qj (18.13)

are a basis of the null space of the given matrixePTj D PTj Lj . If eQj is calculated from (18.12)
(see, e.g. Koch 1999), the desired matrix Qj is
obtained from (18.13) and can be introduced into
the two-scale relation (18.9). However, with the
columns of eQj , i.e. with the basis of the null space
of ePTj , the matrix Qj is not unique. Examples for
Qj are presented by Stollnitz et al. (1995) and
Lyche and Schumaker (2001); see also Zeilhofer
(2008).

Next, the decomposition equation will be derived,
which is required for the MSR. Since the relations �j 2
Vj , �j�1 2 Vj�1 and  j�1 2 Wj�1 hold, it follows
from Vj D Vj�1 ˚Wj�1

���Tj .x/ D ���Tj�1.x/Pj C   T
j�1.x/Qj ; (18.14)

wherein Pj and Qj are Kj�1 � Kj and Lj�1 � Kj

initially unknown coefficient matrices, respectively.
Inserting (18.6) and (18.9) into (18.14) yields���Tj .x/ D
���Tj .x/PjPj C ���Tj .x/QjQj and therefore
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I D PjPj C QjQj D �
PjQj

� 	 Pj
Qj



: (18.15)

Since the Kj � Kj matrix
�

PjQj

�
is due to (18.12)

and (18.13) of full rank, i.e. rank
�

PjQj

� D Kj , it
follows from (18.15)

	
Pj
Qj



D �

PjQj

��1
: (18.16)

Now, both the two-scale relations (18.6) and (18.9)
as well as the decomposition equation (18.14) will
be used to construct the MSR. It can be achieved
in two steps, namely the decomposition of the signal
into level-dependent coefficients (analysis) and the
(re)construction by means of the detail signals (syn-
thesis).

Assuming that a signal fJ .x/ with fJ 2 VJ is
given, the decomposition

fJ .x/ D fj 0.x/C
J�1X
jDj 0

gj .x/ (18.17)

can be formulated (see Schmidt 2007), wherein fj 0.x/

with fj 0 2 Vj 0 and j 0 2 f0; : : : ; J � 1g is defined
as

fj 0.x/ D
Kj 0 �1X
kD0

dj 0Ik�j 0Ik.x/ D ���Tj 0.x/dj 0 (18.18)

and means a low-pass filtered, i.e. smoothed version
of fJ .x/. TheKj 0 � 1 scaling coefficient vector dj 0 of
level j 0 reads

dj 0 D �
dj 0I0; : : : ; dj 0IKj 0 �1

�T
: (18.19)

The detail signals

gj .x/ D
Lj�1X
kD0

cj Ik j Ik.x/ D    T
j .x/cj (18.20)

with gj 2 Wj and j D j 0; : : : ; J � 1 are band-
pass filtered versions of fJ .x/. The Lj � 1 wavelet
coefficient vector cj of level j is defined as

cj D �
cj I0; : : : ; cj ILj�1

�T
: (18.21)

Hence, the decomposition (18.17) is the MSR of the
signal fJ .x/. For the M-D case, which will be outlined
in the next section, (18.17) is rewritten with j 0 D J�I
as

fJ .x/ D fj 0.x/C
IX
iD1

gJ�i .x/: (18.22)

It can be seen from (18.20) that the lower the level j
is chosen the smaller is the numberLj of addends, i.e.
the number of wavelet coefficients cj Ik is decreasing
with the level value. This is due to the fact that coarse
structures, i.e low-frequency signals, are describable
by just a few coefficients, whereas fine structures
or high frequency signals require a large number of
coefficients. In addition the probably most important
feature of the MSR presented here is the dependency
of the coefficient vectors (18.19) and (18.21) on each
other. For the computation of the level–.j�1/ vectors
dj�1 and cj�1 from the level-j vector dj the signal
fj .x/ is expressed as fj .x/ D fj�1.x/ C gj�1.x/
according to (18.17). It follows with (18.18) and
(18.20)

���Tj .x/dj D ���Tj�1.x/dj�1 C   T
j�1.x/cj�1: (18.23)

Substituting the decomposition equation (18.14)
for ���Tj .x/ on the left-hand side of (18.23) yields

���Tj�1.x/Pjdj C    T
j�1.x/Qjdj . The comparison of

this result with the right-hand side of (18.23) gives the
desired relations

dj�1 D Pjdj and cj�1 D Qjdj (18.24)

for j D j 0 C 1; : : : ; J , which connect the scal-
ing and wavelet coefficient vectors recursively. To be
more specific, the Kj elements of the level-j scaling
coefficient vector dj are transformed into the Kj�1
elements of the level-.j � 1/ scaling coefficient vector
dj�1 and the Lj�1 components of the level-.j � 1/

wavelet coefficient vector cj�1 with Kj D Kj�1 C
Lj�1. Hereby the transformation matrices Pj and Qj ,
computed from (18.16), provide the downsampling
from level j to level j � 1. Hence, (18.24) are rewrit-
ten as 	

dj�1
cj�1



D
	

Pj
Qj



dj : (18.25)

Solving this equation for dj gives under the
consideration of (18.16) the inverse relation



18 Towards a Multi-Scale Representation of Multi-Dimensional Signals 123

dj D Pjdj�1 C Qj cj�1: (18.26)

Thus, the level-j scaling coefficient vector dj is
computed from the level-.j � 1/ scaling and wavelet
coefficient vectors dj�1 and cj�1 by means of the
transformation matrices Pj and Qj .

Now the procedure of decomposition and recon-
struction of a signal can be explained as follows. The
initialization step is started with the expansion (18.18)
for altogether P observations y.xp/ DW yp with p D
1; : : : ; P . Note, that the value J has to be chosen such
that KJ D 2J C 2 < P holds. With the measurement
error e.xp/ DW ep the left-hand side of (18.18) with
j 0 D J is replaced by fJ .xp/ D y.xp/ C e.xp/ D
yp C ep . Thus, the observation equation reads

yp C ep D
KJ�1X
kD0

dJ Ik�J Ik.xp/ D ���TJ .xp/dJ ; (18.27)

wherein the KJ � 1 vector dJ of the level-J scaling
coefficients dJ Ik is unknown. Introducing the P � 1

vectors y D .yp/ and e D .ep/ of the observations
and the measurement errors, the P � KJ coefficient
matrix XJ D �

���J .x1/; : : : ;���J .xP /
�T

and the P � P
covariance matrix D.y/ of the observations, the linear
model

y C e D XJdJ with D.y/ D �2yP�1
y (18.28)

is established. Herein �2y and Py are denoted as the
variance factor and the weight matrix, respectively.
Since the model (18.28) means a Gauss–Markov
model, the least-squares estimator under the assump-
tion rank XJ D KJ is given as

bdJ D .XT
J Py XJ /

�1XT
J Py y; (18.29)

see, e.g. Koch (1999). The corresponding covariance
matrix reads D.bdJ / D �2y.X

T
J Py XJ /

�1. An unbiased
estimator of the variance factor �2y is given as b�2y D
beT Pybe
P�KJ , wherein be D XJ

bdJ � y means the residual
vector, i.e. the least-squares estimation of the error
vector. Thus, the estimated covariance matrix bD.bdJ /
of the estimation (18.29) follows as

bD.bdJ / D b�2y.XT
J Py XJ /

�1:

Within the pyramid steps the estimatorsbdj�1 D Pjbdj
andbcj�1 D Qj

bdj are computed from (18.24) recur-
sively. Applying the law of error propagation to these
relations yields the estimated covariance matrices

bD.bdj�1/ D PjbD.bdj /PTj and

bD.bcj�1/ D Qj
bD.bdj /QT

j :

A hypothesis testing can be used to check the
elements bcj�1Il with l D 0; : : : ; Lj�1 � 1 on signifi-
cance; see Koch (1999). Other data compression
techniques are, e.g. discussed by Ogden (1997).
Either with the estimation bcj�1 or with a corre-
sponding compressed version the estimated detail
signals bgj�1.x/D   T

j�1.x/bcj�1 with variances
bV .bgj�1.x//D   T

j�1.x/bD.bcj�1/   J�1.x/ are calcu-
lable from (18.20).

In the next section the previous results are general-
ized to the M-D case. A detailed treatise of the M-D
MSR is given by Zeilhofer (2008).

3 Multi-Dimensional B-Spline MSR

First the M-D vector x D �
x1; : : : ; xM

�T
with x 2 I

M

and I
M D NM

mD1 I of coordinates xm 2 I with m D
1; : : : ;M is introduced. Assuming that a M-D signal
fJ1;:::;JM .x/ D fJJJ .x/ with fJJJ 2 VJJJ D VJ1;:::;JM and
VJJJ � L2.IM/ is given, (18.18) can be generalized to

fJJJ .x/ D
KJ1�1X
k1D0

: : :

KJM �1X
kMD0

dJJJ Ik1;:::;kM �JJJ Ik1;:::;kM .x/

D
X
kkk

dJJJ Ikkk�JJJ Ikkk.x/ D ���TJJJ .x/dJJJ ; (18.30)

wherein �JJJ Ikkk.x/ is a M-D scaling function of
resolution levels J1; : : : ; JM w.r.t. the coordinates
x1; : : : ; xM . In the tensor product approach �JJJ Ikkk.x/
is replaced by the product of M 1-D scaling functions
�JmIkm.xm/ with m D 1; : : : ;M , i.e.

�JJJ Ikkk.x/ D
MY
mD1

�JmIkm.xm/: (18.31)
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Note, that for the M-D B-spline representation the
functions �JmIkm.xm/ are defined as ENQ B-splines.
According to

���JJJ .x/ D ���JM .xM /˝: : :˝���J2.x2/˝���J1.x1/; (18.32)

theKJJJ .D QM
mD1 KJm/�1 vector���JJJ .x/ can be written

as the Kronecker product sum (“˝”; see, e.g. Koch
1999) of the M vectors ���Jm.xm/ as introduced in
(18.5) with j D Jm. The KJJJ � 1 scaling coefficient
vector dJJJ reads

dJJJ D �
dJJJ I0;:::;0; : : : ; dJJJ IKJ1�1;:::;KJM �1

�T
: (18.33)

As generalization of the 1-D MSR (18.22) the M-D
MSR of the signal fJJJ .x/ is defined as

fJJJ .x/ D fjjj 0.x/C
IX
iD1

�X
�D1

g�JJJ�iii .x/ (18.34)

with � D 2M � 1 and the two M � 1 vectors jjj 0 D�
j 0
1 D J1 � I; : : : ; j 0

M D JM � I �T, iii D �
i; : : : ; i

�T
.

The level-jjj 0 smoothed version fjjj 0.x/ and the level-
.JJJ � iii/ detail signal g�JJJ�iii .x/ are defined as

fjjj 0.x/ D
X
kkk

djjj 0Ikkk�jjj 0Ikkk.x/ D ���Tjjj 0.x/djjj 0 ;

g�JJJ�iii .x/ D
X
kkk

c�JJJ�iii Ikkk 
�
JJJ�iii Ikkk.x/ D .   �

JJJ�iii .x//T c�JJJ�iii :

The altogether� level-.JJJ � iii/ tensor product wavelet
functions  �

JJJ�iii Ikkk.x/ with � D 1; : : : ; � are given as

 1JJJ�iii Ikkk.x/ D �J1�i Ik1.x1/�J2�i Ik2.x2/ : : :
: : : �JM�1�i IkM�1 .xM�1/ JM�i IkM .xM /;

 2JJJ�iii Ikkk.x/ D �J1�i Ik1.x1/�J2�i Ik2.x2/ : : :
: : :  JM�1�i IkM�1 .xM�1/�JM�i IkM .xM /;

� � �
 MJJJ�iii Ikkk.x/ D  J1�i Ik1.x1/�J2�i Ik2.x2/ : : :

: : : �JM�1�i IkM�1 .xM�1/�JM�i IkM .xM /;

 MC1
JJJ�iii Ikkk.x/ D �J1�i Ik1.x1/�J2�i Ik2.x2/ : : :

: : :  JM�1�i IkM�1 .xM�1/ JM�i IkM .xM /;

� � �

 �JJJ�iii Ikkk.x/ D  J1�i Ik1.x1/ J2�i Ik2.x2/ : : :
: : :  JM�1�i IkM�1 .xM�1/ JM�i IkM .xM /:

The decomposition equations between the scaling
coefficient vectors djjj , dj�1j�1j�1 and the wavelet coefficient
vectors c�j�1j�1j�1 with � D 1; : : : ; � are derived to

dj�1j�1j�1 D .PjM ˝ PjM�1 ˝ : : :˝ Pj1/djjj ;

c1j�1j�1j�1 D .QjM ˝ PjM�1 ˝ : : :˝ Pj1/djjj ;

c2j�1j�1j�1 D .PjM ˝ QjM�1
˝ : : :˝ Pj1/djjj ;

� � �
cMj�1j�1j�1 D .PjM ˝ PjM�1 ˝ : : :˝ Qj1/djjj ;

cMC1
j�1j�1j�1 D .QjM ˝ QjM�1

˝ : : :˝ Pj1/djjj ;

� � �
c�j�1j�1j�1 D .QjM ˝ QjM�1

˝ : : :˝ Qj1/djjj (18.35)

are obtained as the generalization of the 1-D relations
(18.24); the Kjm�1 � Kjm and Ljm�1 � Kjm matrices
Pjm and Qjm were already introduced in (18.16).

Let y.xp/ D yp be a M-D observation with p D
1; : : : ; P and e.xp/ D ep the corresponding mea-
surement error, the observation equation follows from
(18.30) and reads

yp C ep D
X
kkk

dJJJ Ikkk�JJJ Ikkk.xp/ D ���TJJJ .xp/dJJJ ; (18.36)

herein the vector dJJJ as defined in (18.33) has to be
determined within the initialization step of the M-D
MSR; see also Schmidt et al. (2007b). Introducing
the covariance matrix D.y/ of the P � 1 observation
vector y, the linear adjustment model is established.
Consequently, the results presented before for the 1-D
case are also valid for the M-D problem. In the pyramid
steps of the MSR the relations (18.35) have to be used.
Note, if the input data is given on a regular grid, too, the
lofting method can be applied for solving (18.36) with
much less computational complexity; see Koch (2009).

4 Example

With M D 2 the 2-D multi-scale B-spline approach is
outlined in this example; J1 D J2 D J is set for the
highest resolution levels w.r.t. the coordinates x1 D x
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(geographical normalized longitude) and x2 D y (geo-
graphical normalized latitude) with x D Œx; y�T 2 I

2.
Consequently, the representation (18.30) of the 2-D
signal fJJJ .x/ D fJ .x; y/ with fJ 2 VJJJ reduces with
(18.31) to

fJ .x; y/ D
KJ�1X
k1D0

KJ�1X
k2D0

dJ Ik1;k2�J Ik1 .x/�J Ik2.y/

(18.37)

with KJ1 D KJ2 D KJ D 2J C 2 as defined before.
The KJ � 1 vector dJJJ introduced in (18.33) can be
rewritten as

dJJJ D vecDJ ; (18.38)

herein ‘vec’ means the vec-operator (Koch 1999). The
KJ � KJ scaling coefficient matrix DJ is defined
as

DJ D

2
664

dJ I0;0 dJ I0;1 : : : dJ I0;KJ�1
dJ I1;0 dJ I1;1 : : : dJ I1;KJ�1

. . . . . . . . . . . . . . . . .
dJ IKJ�1;0 dJ IKJ�1;1 : : : dJ IKJ�1;KJ�1

3
775 :

(18.39)

With the Kronecker product representation (18.32),
(18.37) reads fJ .x; y/ D .���TJ .y/ ˝ ���TJ .x// vecDJ ;
considering further the computation rules for the
Kronecker product (Koch 1999) the matrix equa-
tion

fJ .x; y/ D ���TJ .x/DJ���J .y/ (18.40)

is obtained. With j 0
1 D j 0

2 D j 0 it follows from
(18.34)

fJ .x; y/ D fj 0.x; y/C
IX
iD1

3X
�D1

g�J�i .x; y/; (18.41)

wherein the signals fjjj 0.x; y/ D fj 0.x; y/ and
g�J�iJ�iJ�i .x; y/ D g�J�i .x; y/ are computable via the
relations

fj 0.x; y/ D ���Tj 0.x/Dj 0���j 0.y/;

g1J�i .x; y/ D ���TJ�i .x/C1
J�i   J�i .y/;

g2J�i .x; y/ D    T
J�i .x/C2

J�i���J�i .y/;

g3J�i .x; y/ D    T
J�i .x/C3

J�i   J�i .y/; (18.42)

Fig. 18.1 (a) Reference model IRI.x; y/ of VTEC at July 21,
2006 at 5:00 p.m. UT; (b) estimated VTEC correction modelbf 4.x; y/ at the same time; (c) the sum of the two other panels,

i.e. the estimated VTEC model IRI.x; y/Cbf 4.x; y/; all data
in TECU. The colorbar of panel b is the same as in Fig. 18.2

the vectors    J�i .x/ and    J�i .y/ were already intro-
duced in (18.8). Furthermore in (18.42) the KJ�i �
LJ�i matrix C1

J�i , the LJ�i � KJ�i matrix C2
J�i

and the LJ�i � LJ�i matrix C3
J�i defined via the

relations c�J�iJ�iJ�i D vecC�
J�i with � D 1; 2; 3 anal-

ogously to (18.38) are used. The corresponding 2-D
downsampling equations are following from (18.35)
and read

"
Dj�1 C1

j�1
C2
j�1 C3

j�1

#
D
"

Pj

Qj

#
Dj

h
P
T

j Q
T

j

i
(18.43)

for j D j 0; : : : ; J � 1.
For numerical demonstration of the 2-D MSR ter-

restrial GNSS data, radio occultation data from the
COSMIC/FORMOSAT-3 mission and radar altimetry
data from the Jason-1 and Envisat missions are eval-
uated to derive a correction model of the vertical
total electron content (VTEC) w.r.t. the International
Reference Ionosphere (IRI) over South and Central
America; for more details see Dettmering et al. (2011).
Figure 18.1 shows in panel b the signal bf J .x; y/ at
level J D 4, i.e. the estimated level-4 VTEC correc-
tion model to IRI (shown in panel a) calculated from
the scaling coefficient matrix bD4, which is the result
from the least-squares adjustment of the input data
mentioned before. Since we choseK4 D 24 C 2 D 18,
the 18�18matrixbD4 contains 324 scaling coefficientsbd4Ik1;k2 with k1; k2 D 0; : : : ; 17; see Table 18.1.

Figure 18.2 displays the MSR of the estimated
level-4 VTEC correction model (panel a, corresponds
to panel b in Fig. 18.1). The low-pass filtered
(smoothed) signals bf 3.x; y/, bf 2.x; y/, and bf 1.x; y/

(panels b–d) are calculated according to the first
equation of (18.42). The panels e–g visualize the sums
bg4�i .x; y/ D P3

�D1bg�4�i .x; y/ with i D 1; 2; 3.
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Table 18.1 Numbers Kj and Lj of the scaling and wavelet coefficient matrices Dj and C�
j

Level Kj Lj Dj C1
j C2

j C3
j Total

j Kj �Kj Kj �Lj Lj �Kj Lj �Lj #

4 18 – 324 – – – 324

3 10 8 100 80 80 64 324

2 6 4 36 24 24 16 100

1 4 2 16 8 8 4 36

0 3 1 9 3 3 1 16

The last column means the total number of coefficients in level j

Fig. 18.2 (b)–(d) Estimated low-pass filtered signalsbf 3.x; y/,bf 2.x; y/,bf 1.x; y/ of the level-4 VTEC correction model (panel
a, corresponds to Fig. 18.1b; (e)–(g) estimated band-pass filtered
detail signalsbg3.x; y/,bg2.x; y/,bg1.x; y/; all data in TECU.

The signals bg�4�i .x; y/ with � D 1; 2; 3 are all
computed via the last three equations in (18.42). It
is clearly visible that the lower the level value is
set the coarser are the extracted structures. Table
18.1 displays the sizes of the scaling and wavelet
coefficient matrices for the levels j D 0; 1; 2; 3; 4

computed from the decomposition scheme (18.43).
According to the principle of the MSR the sum of
the three detail signals bg4�i .x; y/, i D 1; 2; 3 and
the smoothed signal bf 1.x; y/ yields the estimated
VTEC correction model bf 4.x; y/. The application of
data compression techniques is discussed by Schmidt
(2007) and Zeilhofer (2008).

5 Summary and Outlook

In this paper it was demonstrated how a MSR based
on ENQ B-spline wavelets and tensor products can be
applied to M-D signals. Since the derived approach is

based on Euclidean theory, it is restricted to regional
or local areas. The basic feature of the MSR is the
decomposition of a signal into band-pass filtered detail
signals; as already standard in digital image processing
the reconstruction step should include efficient data
compression techniques. This way just the signifi-
cant information of the signal is stored. Furthermore,
Kalman filtering can be applied efficiently to the MSR.
In ionosphere research the presented procedure can,
e.g. be applied to model the 4-D electron density
(Zeilhofer et al. 2009). The author will present these
issues in an upcoming paper.
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19Analysing Time Series of GNSS Residuals
by Means of AR(I)MA Processes

X. Luo, M. Mayer, and B. Heck

Abstract

The classical least-squares (LS) algorithm is widely applied in processing data
from Global Navigation Satellite Systems (GNSS). However, some limiting
factors impacting the accuracy measures of unknown parameters such as temporal
correlations of observational data are neglected in most GNSS processing software
products. In order to study the temporal correlation characteristics of GNSS
observations, this paper introduces autoregressive (integrated) moving average
(AR(I)MA) processes to analyse residual time series resulting from the LS
evaluation. Based on a representative data base the influences of various factors,
like baseline length, multipath effects, observation weighting, atmospheric condi-
tions on ARIMA identification are investigated. Additionally, different temporal
correlation models, for example first-order AR processes, ARMA processes, and
empirically determined analytical autocorrelation functions are compared with
respect to model appropriateness and efficiency.

Keywords

GNSS • Stochastic model • Temporal correlations • Time series analysis •
AR(I)MA processes

1 Introduction

Accompanying the modernisation and completion
of Global Navigation Satellite Systems (GNSS), the
requirements on positioning accuracy and reliability
increase in a wide range of geodetic applications, for
example highly sensitive deformation monitoring. To
meet the rising demands on accurate positions as well
as realistic quality measures, improvements not only

X. Luo (�) � M. Mayer � B. Heck
Geodetic Institute, Karlsruhe Institute of Technology (KIT),
D-76131 Karlsruhe, Englerstr. 7, Germany
e-mail: luo@kit.edu

in hardware but also in mathematical modelling within
GNSS data processing are necessary. The mathemati-
cal models consist of the functional and the stochastic
model. In contrast to the intensively investigated
functional model, the stochastic model formulating
the observations’ statistical properties is still under
development. One essential deficiency of the stochastic
model is caused by neglecting temporal correlations of
GNSS observations, which leads to over-optimistic
accuracy estimates. The temporal correlations
originating from turbulent irregularities in the Earth’s
lower atmosphere (Wheelon 2001) are affected, for
instance, by multipath effects and receiver-dependent
signal processing techniques (Tiberius et al. 1999).
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Up to now, different approaches for modelling
temporal correlations of GNSS observations have been
proposed. Tiberius and Kenselaar (2003) applied vari-
ance component estimation to construct an appropriate
variance-covariance model (VCM) for GNSS data pro-
cessing. Furthermore, Howind (2005) used an empir-
ically determined analytical autocorrelation function
(ACF) and found significant variations of up to 2 cm
in estimated site coordinates, in particular for long
baselines. Based on the atmospheric turbulence theory
Schön and Brunner (2008) suggested a fully-populated
VCM which enables the understanding of physical
processes correlating and decorrelating GNSS phase
observations. Applying this advanced VCM, more
realistic formal coordinate variances can be obtained
despite highly redundant observation data. Although
being different in modelling theories, all the aforemen-
tioned approaches aim at realistic quality measures
of the unknown parameters, such as site coordinates,
ambiguities, and site-specific troposphere parameters.

This paper presents an innovative procedure for
modelling temporal correlations of GNSS observations
using AR(I)MA processes. Section 2 gives a brief
introduction to AR(I)MA processes and ARMA
modelling. In Sect. 3 the impacts of different factors
on model identification are empirically investigated
based on representative data. Section 4 outlines an
advanced approach for modelling trends of GNSS
residuals. Finally, Sect. 5 compares three temporal
correlation models concerning model appropriateness
and efficiency.

2 AR(I)MA Processes

As an important parametric family of stationary time
series, ARMA processes play a key role in mod-
elling time series data. In the context of geodesy, Li
et al. (2000) employed ARMA processes to analyse
crustal deformations in central Japan. Wang et al.
(2002) investigated the noise characteristics of GNSS
carrier phase measurements using first-order autore-
gressive (AR(1)) processes. In connection with the
determination of the Earth’s gravity field, Klees et al.
(2003) exploited ARMA representation of coloured
observation noise in large LS problems to achieve a
faster solution of a Toeplitz system of linear equations.
In the following text, AR(I)MA processes and the
associated procedures for parameter estimation are
briefly described.

The time series fYt g is an ARMA(p, q) process if
fYt g is stationary and if for each time index t ,

Yt �
pX
iD1

�iYt�i D Zt C
qX

jD1
�jZt�j ; (19.1)

where fZt g is referred to as a white noise (WN)
process of random variables, each with zero-mean and
variance �2 (see, e.g., Brockwell and Davis 2002). The
integer numbers p and q denote the ARMA orders.
The terms ��� D .�1; : : : ; �p/

T and ��� D .�1; : : : ; �q/
T

are the model coefficients. In particular, fYt g is an
autoregressive process of order p (AR(p)) if �j D 0

for j D 1; : : : ; q, and a moving average process of
order q (MA(q)) if �i D 0 for i D 1; : : : ; p.
The corresponding pth- and qth-degree characteristic
polynomials are

�.z/ D 1 � �1z � � � � � �pzp; (19.2)

�.z/ D 1C �1z C � � � C �qz
q: (19.3)

A unique stationary solution fYtg of (19.1) exists only
if �.z/ ¤ 0 for all jzj D 1. An ARMA(p, q) process
is causal (invertible) if �.z/ ¤ 0 (�.z/ ¤ 0) for all
jzj � 1.

ARMA modelling aims at the determination of
an appropriate ARMA(p, q) model to represent
an observed stationary time series. It involves a
number of interrelated problems, such as order
selection, parameter estimation, etc. Using the
software ITSM2000-V.7.1 provided by Brockwell and
Davis (2002), ARMA modelling is performed in three
steps.

In the first step the given data are transformed into
continuous and stationary time series. There are two
general approaches to handle the trends. One is to
model the trend, then to subtract it from the data. The
other is to eliminate the trend by differencing. If a
differenced time series with the order of differencing d
is an ARMA(p, q) process, the original undifferenced
time series is denoted as an ARIMA(p, d , q) process.
The stationarity of detrended data can be verified using
variance homogeneity tests (e.g., Teusch 2006), sign
tests for trend (e.g., Hartung et al. 2005), and unit root
tests (e.g., Said and Dickey 1984).

The second step deals with model identification
and parameter estimation. The order selection is
carried out based on the so-called AICC (Akaike
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Information Criterion with small sample Correction)
statistic

AICC D �2 lnL.���;���; �2/C2 .p C q C 1/n

n � p � q � 2 (19.4)

proposed by Hurvich and Tsai (1989), where L

denotes the Gaussian likelihood function and n the
sample size. All ARMA (p, q) models with p and
q in the specified limits are considered and the pair
(p, q) holding the smallest AICC value is selected.
Besides the AICC criterion there are other criteria
for order selection, like FPE and BIC statistics
(see, e.g., Brockwell and Davis 2002). Following
the model identification, the initial values of ���, ��� ,
and �2 can be computed, for example using the
Hannen–Rissanen algorithm (Hannen and Rissanen
1982). The final parameters are maximum likelihood
estimators, whereas a non-linear optimisation of the
initial approximation is undertaken numerically to
maximise the Gaussian likelihood function.

In the last step the model validity is judged by
analysing the sample ACF of residuals which represent
the discrepancies between the given data and the fitted
model, as well as by employing statistical hypothesis
tests for residual randomness.

3 ARIMA Identification

In order to investigate the influences of different fac-
tors impacting GNSS positioning quality on model
identification, 21-day 1-Hz GPS phase observations
from the SAPOS R�(Satellite Positioning Service of the
German State Survey) network are processed with the
Bernese GPS Software 5.0 (Dach et al. 2007) in post-
processing mode considering multipath impact, base-
line length, observation weighting model, and atmo-
spheric conditions based on meteorological surface
data provided by the German Meteorological Service
(DWD). Table 19.1 gives selected important parameter
settings of the GNSS data processing.

A total set of 285 studentised double difference
residual (SDDR) time series of identical length (3,600
values) and relating to sidereal time are obtained.
The use of SDDR rather than LS residuals is due to
the more homogeneous variances of SDDR without
attenuation of temporal correlations (Howind 2005).
Considering the results of the unit root tests indicat-

Table 19.1 Parameter settings of the GNSS data processing

Observations 1-Hz GPS phase double differences
Processing interval DOY2007: 161–181, UT: 15–18 h

Observation weighting ELV: sin2 e, SNR: f .SNR/
e: satellite elevation angle
SNR: signal-to-noise ratio

Elevation cut-off 3ı

Satellite orbits Precise IGS products
Earth rotation parameters Precise IGS products
Ionospheric model Precise CODE products
Tropospheric model Nielldry (a priori model)
Mapping function Niellwet (Niell 1996)
Troposphere parameters 15 min (time window)
Ambiguity resolution SIGMA strategy (L5, L3)
Antenna correction Individual absolute calibration

Table 19.2 Analysed factors impacting ARIMA identification

Factor Comparison between #SDDR

Multipath impact HEDA (MP: strong, 54.1 km) 60
(MP) TAAF (MP: weak, 53.7 km) 62

Baseline length RATA (MP: weak, 203.7 km) 56
(BL) SIBI (MP: weak, 42.5 km) 63

Observation ELV: Dach et al. (2007) 285
weighting (WGT) SNR: Luo et al. (2008) 285

Relative humidity Wet days (mean: 75.8%) 55
(RH) Dry days (mean: 46.0%) 55

Wind velocity Windy days (mean: 5 m/s) 51
(WV) Calm days (mean: 2 m/s) 50

ing difference-stationary behaviour and regarding the
specific irregular data properties, the SDDR time series
are primarily modelled by means of ARIMA(p, 1, q)
processes. Applying first-order differencing, the appar-
ent trends are sufficiently eliminated and the achieved
stationarity is proved by the tests for stationarity men-
tioned in Sect. 2. Table 19.2 provides an overview of
the considered impacting factors and the correspond-
ing numbers of the used SDDR time series.

The influences of these factors on model identi-
fication are investigated based on the corresponding
empirical cumulative distribution functions of the
sum of the selected order parameters p and q.
Figure 19.1 visualises the quantile differences of
p C q under different aspects. Compared to other
analysed factors, multipath impact illustrates the most
significant effect on order selection. The ˛-quantile
values of p C q rise with increased multipath, and
fall with stronger wind. Thus, under strong multipath
conditions, higher ARMA orders are necessary for
sufficient data characterisation.
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Fig. 19.1 Influences of different factors on model identification

Utilising ARIMA processes, trends are effectively
eliminated by differencing. However, the temporal
correlation characteristics existing in the original
SDDR can not be retrieved from the differenced
series. The use of ARMA processes to model
undifferenced data requires appropriate strategies for
trend modelling.

4 Modelling Trends of GNSS
Residuals

Benefiting from the repetition of GPS satellite geome-
try and assuming invariable observation environments,
a conventional approach for modelling residual trends
of GNSS observations is to calculate the epoch-wise
arithmetic means of the residual time series relating
to sidereal time and being available on different days
(e.g., Howind 2005; Ragheb et al. 2007). However, due
to variable atmospheric conditions the performance of
the conventional trend modelling degrades if a large
number of sidereal days are involved in calculating the
epoch-wise mean values.

Within this study an improved iterative procedure
for modelling GNSS residual trends has been devel-
oped. At each iteration, the three (empirically deter-
mined) most similar SDDR time series holding the
highest correlation coefficients are chosen to calculate
the epoch-wise mean values which are then subtracted
from the selected data. Subsequently, a second degree
polynomial fitting is carried out in order to correct the
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Fig. 19.2 Comparison of sample ACFs with respect to the
applied approaches for modelling residual trends (SDDR:
SIBI0917)

remaining long-periodic effects. At the end of each
iteration, the processed series are removed from the
residual data base.

Applying this improved trend modelling procedure,
the computed epoch-wise mean values are generally
more appropriate to reflect the data characteristics. As
a result, the detrended SDDR exhibit smaller variation
ranges and more homogenous variances. Comparing
the sample ACFs of a representative example dis-
played in Fig. 19.2, the conventional approach leads
to merely insignificant improvements in correlation
structure, while using the advanced one, the corre-
sponding sample ACFs illustrate a considerably faster
decay and a clearly smaller variation range. These
enhancements emphasise that appropriate trend mod-
elling is mandatory for analysing temporal correlations
of GNSS observations based on residual sample ACFs.

5 Comparing Temporal Correlation
Models

Following the advanced trend modelling, the detrended
SDDR time series are analysed using AR(1) processes,
ARMA(p, q) processes, and an empirically derived
analytical ACF suggested by Howind (2005). The
model ACF of an AR(1) process (Yt � �Yt�1 D Zt
with j�j < 1) has the form

ACFAR(1).h/ D �h .h � 0/; (19.5)
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Fig. 19.3 Comparison of different temporal correlation models
under strong multipath conditions (SDDR: HEDA2922177)

and it decreases exponentially with increasing epoch
distance h (lag). The model ACF of an ARMA(p, q)
process can be obtained, for example by solving a
set of homogenous linear difference equations after
successfully determining the unknown model parame-
ters within ARMA modelling (see, e.g., Brockwell and
Davis 2002, Chap. 3.2). The analytical ACF consists
of an exponential function and a cosine oscillation
component

ACFLS.h/ D C � exp

�
� h

ND1

�
cos

�
2
 � h
ND1 � T

�

(19.6)

for h � 1, where ND1 denotes the smallest lag value
at which the sample ACF falls below zero. ND1 pro-
viding valuable information about correlation length is
determined numerically a priori, while the parameters
C (scaling factor) and T (oscillation period) are esti-
mated using LS regression on sample ACF values.

The temporal correlation models are compared
based on the associated ACFs. Under normal observa-
tion conditions, both ARMA processes and the applied
analytical ACF are capable of modelling the temporal
correlation behaviour of GNSS observations. In the
presence of strong multipath effects, as exemplarily
visualised in Fig. 19.3, ARMA models show large
deviations mainly at high lag values because of their
short-memory nature, while the estimated analytical
ACFs differ from the sample ACFs also within the low-
valued lag areas as a result of the global minimisation
using LS regression. Under both circumstances, AR(1)

processes are obviously insufficient to reflect the
observations’ temporal correlation characteristics due
to the extremely rapid decay of the corresponding
model ACFs. Moreover, considering the arithmetic
mean of ND1 of approx. 250 s in this case study,
residual time series of between 600 and 1,000 s appear
to be efficient for temporal correlation analysis.

6 Conclusions and Outlook

In this paper autoregressive (integrated) moving aver-
age (AR(I)MA) processes are investigated to analyse
time series of GNSS residuals with the final purpose
to propose a reliable and practicable temporal corre-
lation model for GNSS data processing. Based on a
representative data base the investigation results show
that multipath effects and wind velocity considerably
affect ARIMA identification. Applying an improved
approach for modelling residual trends, the determined
mean correlation length of GPS observations amounts
to approx. 250 s. Furthermore, first-order autoregres-
sive processes are clearly insufficient to characterise
the temporal correlation behaviour of GNSS observa-
tions, while both ARMA processes and the employed
analytical ACF turn out to be applicable under normal
observation conditions. Compared to estimating ana-
lytical ACFs, fitting ARMA processes is more time-
consuming and computational-intensive.

The future work will concentrate on the verification
of the impact of atmospheric conditions on ARIMA
identification. Additionally, other criteria for model
identification, for example applied by Klees et al.
(2003), will be utilised. Finally, the performance of
the advanced procedure for modelling trends of GNSS
residuals has to be assessed.
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20Discontinuity Detection and Removal
from Data Time Series

M. Roggero

Abstract

The aim of time series analysis is to distinguish between stochastic and deter-
ministic signals, which are generated by different sources and mixed in the data
time series. Before analyzing long term linear trend and periodic effects, it is
necessary to detect and remove time series discontinuities, often undocumented.
Discontinuities can occur in the case of hardware change, data model change or
even signal source and environmental variations.

A data time series can be interpreted as a stochastic process plus a step function
that represents the time series discontinuities or jumps. Modeling the process as
a discrete-time linear system, it can be described by a finite state vector evolving
with known dynamics, and by constant biases. The constant biases are described
by a matrix of zeroes and ones, but generally the number and the position of jumps
are unknown, and it cannot be defined univocally.

Since it is not possible to build a bias model a priori, the null hypothesis H0

with no jump can be tested against a certain number of alternative hypothesesHA,
with a jump in a given epoch. An alternative hypothesis can be formulated for each
observation epoch. The adequacy of the model can be verified using the ratio test,
which is known to have the �2 distribution. After detecting the jumps, they can be
estimated and removed. Simulated and real data examples will be given.

Keywords

Time series • Least mean squares • DIA

1 Introduction

The analysis of observations time series is applied in
many problems of space geodesy. The same definition
of a geodetic reference frame also includes the tempo-

M. Roggero (�)
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e-mail: marco.roggero@polito.it

ral coordinates, and its realization involves the use of
observations time series. Moreover, time series analy-
sis is an important aid in the analysis of deformations,
in the case of landslides, of crustal deformations or
geodynamic continental drift. Time series analysis can
finally provide a direct estimation of the observation
accuracies (repeatability).

GNSS coordinates time series are complex pro-
cesses generated by the sum of different effects that
can be modeled by a functional plus a stochastic
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model. Generally the functional model is interpreted
as the sum of a long term linear trend, a step func-
tion and cyclical components, as in (Perfetti 2006)
and (Ostini et al. 2008). The stochastic model is a
cyclo-stationary stochastic process, whose statistical
properties vary periodically. Colored noise, non con-
stant observation noise (heteroskedasticity) and data
gaps must be taken into account. Discontinuities and
data gaps must be localized, estimated and removed,
before fitting one or more linear models to remove the
trend and analyzing the time series in the frequency
domain.

All behavior which is a result of abrupt changes in
coordinates are identified as “discontinuities of degree
zero”, level shifts, or simply jumps. Jumps can be
caused by antenna or hardware change, site effects or
also earthquakes.

The changes in velocity described by multi linear
models, and usually caused by earthquakes, are identi-
fied as “discontinuity of degree one”.

A full time series analysis can be roughly divided
into five steps:
1. Detection and removal of the level shifts (disconti-

nuities of degree zero)
2. Detection of the velocity changes (discontinuities of

degree one)
3. Fitting of one or more linear models to remove the

trend
4. Analysis in the frequency domain and removal of

the cyclical components
5. Noise analysis
The presented approach focuses on step 1 and is
intended to detect, estimate and remove the level shifts,
performing iteratively the so called detection, identi-
fication and adaptation procedure (DIA), presented in
(Teunissen 1998), as applied in (Perfetti 2006). How-
ever, instead of assuming an a priori functional model,
the station motion is represented as a discrete-time
Markov process. The state vector can be designed in
3D, taking into account coordinate cross correlations,
and it is estimated by least squares, constraining the
system dynamic as in (Albertella et al. 2005) and
(Roggero 2006). This approach also makes it possible
to consider documented and undocumented jumps, to
predict the station coordinates in data gaps (2.4), and
to correctly represent the pre-seismic and the post-
seismic deformations or other non-linear behaviors, as
will be shown in 3.2.

2 Algorithms

2.1 Constrain Dynamics in Least Squares

Let us consider a discrete time linear system described
by a state vector x and by a constant bias vector b;
the system evolves with known dynamic through the
epochs t (2 t Œ1; n�) with system noise 	 (with variance-
covariance matrix Rvv/ and observation noise " (with
variance-covariance matrix R""/:

8̂
<̂
ˆ̂:

xtC1 D TtC1xt C BtC1bt C vtC1
ytC1 D HtC1xtC1 C CtC1btC1 C "tC1
btC1 D bt

(20.1)

where b is a bias vector linked to the system dynamic
and to the observations by the matrices B and C .
The transition matrix T describes the equations of
the motion and H is the matrix of the coefficients
that links the unknown parameters x to the observa-
tions y. The system (20.1) usually leads to a quite
large normal matrix to be inverted, taking advantage
of its sparse structure. The structure of the system
(20.1) is described in detail in (Roggero 2006). Note
that partitioning the normal matrix and using the Schur
domain decomposition, the bias vector can be esti-
mated independently by the whole state vector, as
already shown in (Roggero 2006).

In coordinate time series analysis, both the state
vector x and the observations vector y contain coor-
dinates and have the same number of elements. The
observed coordinates y are derived by GNSS obser-
vations, e.g. resulting from a network compensation,
while the estimated coordinates x take into account
a functional and a stochastic model of the system
dynamics.

The special case of coordinate time series with
jumps can be described by a constant velocity model
in T , and by the unknown matrices B and C with
B D C .

ptC1 D pt C vt � ıt
vtC1 D vt

T D
	
1 ıt

1



(20.2)

where p and v are positions and velocities. The posi-
tions of the jumps are represented by the matrices
B and C , whose elements are 0 or 1, as shown in
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Fig. 20.1 The bias matrix C : C observed coordinates y, ı esti-
mated coordinates x. The observed coordinates are synthetic
(observation noise � D 5mm, power of the test ˛ D 5%)

Fig. 20.1. The number of rows is equal to the number
of observation epochs, while the number of columns is
equal to the unknown number of jumps to be estimated.
These matrices can be known a priori in the case of
documented jumps, or determined by means of the
algorithm described in 2.2 for undocumented jumps.

The matrix B has the function of removing the
effect of the estimated biases on the estimated parame-
ters x, and can therefore alternatively be assumed equal
to zero (the level shifts are not removed), or equal to C
(adaptation, the level shifts are removed).

2.2 Jump Detection and Estimation

Assuming that the observation vector y is normally
distributed and has variance-covariance matrixQy , we
can make the null hypothesis H0, in the absence of
discontinuities and a number of alternative hypothe-
ses HA in presence of discontinuities. Under these
assumptions the deterministic �.y/ and the stochastic
˙.y/ models take the form:

H0 W
�
�.y/ D Hx

˙.y/ D Qy

I HA W
�
�.y/ D Hx C Cb

˙.y/ D Qy

(20.3)

The estimate of these two cases will also provide the
respective variances of unit weight O�0.0/ and O�0.A/.
The variance O�0.0/ can be used as an a priori value
�0.0/ in the case A. We can make an alternative
hypothesis for each observation epoch, if we wish to
localize the discontinuities with full time resolution,

Fig. 20.2 Series of 100 synthetic height coordinates of a per-
manent GNSS station, with �h D 0:005m. A discontinuity of
0.015 m is located at day 50. Legend: C observed coordinates
y, ı estimated coordinates x. (a) Null hypothesis H0, no
discontinuities; estimated coordinates are smoothed. (b) Ratio
test: the upper limit is exceeded in two contiguous cases; the
discontinuity is located at the maximum between the two. (c)
Alternative hypothesis HA, estimation in the presence of the
identified discontinuity

and verify the adequacy of the model by means of a
test on the variable ratio, that has a �2 distribution:

�2� ˛
2

�

n � r <
O�20 .A/
�20 .0/

<

�2�
1� ˛

2

�

n � r (20.4)

If the ratio exceeds one of the two thresholds
(Fig. 20.2b), the initial hypothesis (Fig. 20.2a) must
be discarded, and the alternative hypothesis of the
presence of a jump in the considered observation epoch
accepted (Fig. 20.2c). This test shall be carried out for
each observation epoch, and requires the estimation
of as many alternative models. Terminated this phase
of testing, the final alternative model will include all
the detected jumps and the documented discontinuities
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known a priori, so it is possible to populate the matrices
B and C . Finally the unknown x and the bias vector b
representing jump amplitudes can be estimated.

2.3 Performance Testing

The proposed algorithm was tested on synthetic time
series of 100 observation epochs. The time series were
generated by a step function plus white noise, with
the step position located at epoch 50. The a priori
observation � was assumed equal to 4 mm, and tests
for jump values between 1� and 5� were performed.
The test significance level is ˛ D 5%. The test was
repeated 100 times for each jump value, computing the
mean jump epoch tj and the respective RMS. The % of
correct estimatiowith respect to the a priori model are
given in Fig. 20.3.

2.4 Algorithm Remarks

Data gaps are usually present in GNSS coordinate time
series. The proposed algorithm basically estimates a
number x of unknown equal to the number y of avail-
able observations. However, this causes discontinuities
in the system dynamics in the presence of data gaps.
The solution consists of predicting the system dynamic
in the data gap, estimating a number of unknown x
equal to the number of possible observations y:

y D t.n/ � t.1/C 1 (20.5)

where t.1/ and t.n/ are the epochs of the first and
last observations. The matrix B must be modified to
be coherent (Fig. 20.4).
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Fig. 20.3 Performance test: C correct estimations, � false
jumps, ı jump estimation errors. False jumps are detected for
normalized jump values lower than 2.5

6
x 10–3

4

2

0

–2

–4

–6
1250 1300 1350

1 week 4 weeks

1400 1450 1500 1550

6
x 10–3

4

2

0

–2

–4

–6
1250 1300 1350 1400 1450 1500 1550

Fig. 20.4 Effect of estimating the system dynamics in the data
gaps. C observed coordinates y, ı estimated coordinates x

Fig. 20.5 Decorrelation of the horizontal components. The map
coordinates (E , N/ and the inertial ones (I1 , I2) are represented

In GNSS coordinate time series can also be use-
ful to uncorrelate horizontal components by principal
component analysis. It is necessary to transform the
horizontal coordinates in the principal system instead
of in the cartographic system as shown in Fig. 20.5, and
to estimate the jumps of the components I1 and I2 in
the time domain.
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Finally, the effect of uncertainties in the stochastic
model must be underlined. For GNSS coordinate time
series it is quite well known, but the noise stochas-
tic properties varies with time and are different for
different stations, depending on hardware, antenna
and site effects. Autocorrelation violates the ordinary
least squares assumption that the error terms are time
uncorrelated. While it does not bias the least square
parameter estimates, the standard errors tend to be
underestimated, when the autocorrelations of the errors
at low lags are positive.

3 Real Data Examples

3.1 Analysis of IGS Time Series

Different IGS permanent stations coordinate time
series have been analyzed to test the algorithm.
The case of Wroclaw station (WROC) can be taken
as an example. 5 years of weekly solutions were
used, in which there is a documented jump in week
1400, corresponding to the IGb00-IGS05 transition.
The documented jump can be included in the null
hypothesis. Moreover, two undocumented jumps were
detected in the North component. The first one also
was detected in the East component, the last one in
height component as shown in Table 20.1.

Removing the jumps and the linear trend from the
East and North component, the periodic effects became
clearly visible (see Fig. 20.6).

3.2 L’Aquila Earthquake Time Series

The 2009 L’Aquila earthquake occurred in the region
of Abruzzo, in central Italy, in 2009 (Fig. 20.7). The
main shock occurred on 6 April, and was rated 5.8 on
the Richter scale; its epicenter was near L’Aquila, the
capital of the Abruzzo, which together with surround-
ing villages suffered most damage. There were several

Table 20.1 Detected jumps and estimated level shifts

Week Jump (m)

E 1,389 �0.003
N 1,389 �0.016
N 1,400 0.006
N 1,426 0.015
h 1,426 0.014

Fig. 20.6 WROC station cleaned time series. The vertical lines
mark the position of detected and removed jumps. The linear
trend has been removed from E and N components

Fig. 20.7 Abruzzo earthquake: up component in the Paganica
station (PAGA). Are evidenced the pre-seismic and the post-
seismic velocities. The co-seismic deformation is about 7 cm
down, while the post-seismic deformation is about 5 cm in 22
days. C observed coordinates y, ı estimated coordinates x

thousand foreshocks and aftershocks from December
2008 to July 2009, more than thirty of which had a
Richter magnitude of over 3.5.

Conclusion

The time series analysis allows the identification
of undocumented anomalies, which if not removed
may lead to incorrect interpretations and, therefore,
would compromise the proper estimation of the
estimated station velocities. Also in the case of
documented discontinuities, the magnitude of the
jump remains not always easily deductible and must
be estimated.

The sampling of the time series is usually non
uniform due to data gaps, so that it is not pos-
sible to perform the frequency analysis using the
FFT. Operating on the estimated positions x, it is
possible. However, in case of non uniform data
sampling other algorithms can be suitable, such
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as FAMOUS – Frequency Analysis Mapping On
Unusual Sampling (Mignard 2003).

The L’Aquila earthquake GNSS time series were
estimated by Eng. Stefano Caldera, whom I thank
for giving me the results.
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21G-MoDe Detection of Small and Rapid
Movements by a Single GPS Carrier Phase
Receiver
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Abstract

This paper presents a new method to detect small and rapid movements in real-time
with a single L1-GPS receiver. The method is based on the prediction of single
differences between satellites by appropriate Filter methods. The movements’
detection is based, on the one hand, on displacements computed with multiple
prediction lengths, and on the other hand, on the time series of displacements
computed with the previous epochs. The accuracy of this method is demonstrated
by real 10-[Hz] observations with two L1-receivers. One antenna remained
completely static, while characteristic movements were applied on the other.
This allow us to compare on the one hand the displacements of the displaced
antenna estimated by G-MoDe with standard differential kinematic processing
and on the other hand the resolution and the noise behavior of G-MoDe applied
on the data of the static antenna. The results indicate that, in good conditions,
horizontal movements and of short duration and oscillatory movements above
5 mm amplitude are significantly detected (95%).

Keywords

Displacement Detection • GNSS Signal Processing • Kalman Filter • L1 Carrier
Phase Receiver • Real-Time algorithm

1 Introduction

The advent of GPS in the 1980s was a revolution in
many domains, notably in geodesy. In this field, the
majority of coordinates’ determinations are based on
carrier phase measurements. Because of systematic
errors and ambiguities contained in phase measure-
ment, it is necessary to observe the same satellites with

S. Guillaume (�) � Prof. Dr. A. Geiger � F. Forrer
Institute of Geodesy and Photogrammetry, CH-8093 Zurich,
Schafmattstrasse 34, Switzerland
e-mail: alain.geiger@geod.baug.ethz.ch

two or more receivers simultaneously. After suitable
treatments, this method makes it possible to determine
the vector between antennas very accurately. Precision
ranges from millimeter in static mode, to centimeter
in the kinematic mode (Hugentobler et al. 2007; Leick
2004). An other technique that uses a single receiver
(to determine absolute positions with a precision of
a few millimeters in static mode and a few centime-
ters in the kinematic one) is known as Precise Point
Positioning (PPP) (Shen et al. 2002).

The phenomena we want to investigate are
dominated by rapid deformations on the order of a
few millimeters. A data processing in static mode
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is very accurate and powerful for long duration
and continuous deformations but unsuccessful for
small and quick displacements which can occur at
any moment. In fact, it is necessary to measure the
same points during a few hours to obtain highly
accurate and reliable positions [mm] in static mode.
A solution would be to work in kinematic mode to
obtain positions at a high sampling rate. However, the
gain in the sampling rate leads to the loss of precision.
In addition, the noise of the obtained time series is
in the range of the centimeter and remains highly
coloured. Therefore, this method is not adequate for
high accurate applications.

In this paper, an alternative method is presented
(G-MoDe c�, GNSS-Movement Detection). It is based
on the filtering of the carrier phase observations of a
single receiver. The main goal is to detect and mea-
sure the rapid movements of a few millimeters. The
presented algorithm allows to analyse at these small
displacements in real time and at a high sampling rate.
It avoids complicated processing like ambiguity res-
olution and additional parameter estimation for error
modelling: like precise satellites orbits, tropospheric
and ionospheric models, phase center offset variation,
multipath effects, clock errors etc. The basic principle
is to assume that all effects which affect the carrier
phase observations vary continuously; therefore, they
are short time predictable. Movements of the antenna
engender signals in phase measurements which can
be detected and used to reconstruct the real displace-
ments.

2 Basic Principle

Our goal is not to determine the coordinates of the
receiver but their displacements. Basically, GPS is
based on differences of range measurements between
satellites and receiver antenna and by assuming that
satellites and receiver positions are known, the theo-
retical distance to each satellite should be equal to the
measured range provided all error sources are negligi-
ble. If the receiver is displaced, the difference between
the theoretical and the measured range to every satellite
will equal the orthogonal projection of the displace-
ment’s vector onto the receiver-satellite direction.

Regrettably, we cannot measure the geometrical
range and calculate the position of satellites accu-
rately enough to easily determine the displacements.

Nevertheless, the basic principle that the ranges are
modified by the orthogonal projection of the displace-
ment will be used for the detection of movement.

Carrier phase measurements show a time-dependent
variation which is mainly due to the satellites’ move-
ments along their orbits. It is obvious that numerous
effects will also impact the measurements, e.g. change
of the slant path delay. However, at the sub-second res-
olution these time varying effects may be considered to
be slow. If on the contrary rapid displacements have to
be detected, see Fig. 21.1, an appropriate filter model
could help to discover the movement.

In fact, if a displacement occurs between two
epochs in the direction of the satellite-receiver
direction, the corresponding time series contains

Fig. 21.1 Effect of a rapid displacement on a carrier phase time
series. At the time when a displacement occurs, a discontinuity
in the time series can be determined with appropriate carrier
phase prediction techniques

Fig. 21.2 A displacement of the antenna produces a range
anomaly equal to the orthogonal projection of the displacement
on the receiver-satellite direction. In this case, only the ranges on
satellite 1 and 3 are influenced by the displacement. The range of
the satellite 2 is invariant because its direction is perpendicular
to the displacement
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a discontinuity – or a jump – identical to the
displacement that should be detectable with a certain
accuracy, see Fig. 21.2. Then, if we do that for
all visible satellites, the distinction between noise
and real displacement can be improved and the 3D
displacement vector determined.

3 From the Carrier Phase to the
Displacement Vector

After this short introduction on the basic principle,
this section explains how it is possible, with real data,
to compute the displacement vector from the carrier
phase observations measured with a single receiver.
As explained in Chap. 2, the goal is to be able to
track and to predict carrier phase measurements. That
is only possible if it is enough regular and deter-
ministic for the required prediction time span. How-
ever, analysing the zero-differences more carefully, it
is seen that these conditions are not present at the
accuracy level required. In fact, the receiver clock
error has a dramatic effect on the regularity of the
time series, it engenders jumps which are quasi unpre-
dictable. For this reason, the tracking is done on car-
rier phase differences between two different satellites,
thus, the receiver clock error is completely elimi-
nated.

3.1 Single Difference Tracking

The simplified fundamental carrier phase zero-
difference observation equation for L1 is:

˚i .t/C "i .t/ D �i .t/ � �N i C cŒıT .t/ � ıt i .t/�

Cd itrop.t/C d iiono.t/C :::„ ƒ‚ …
d idiv.t/

(21.1)

and the effect of a displacement d added:

˚i.t/C "i .t/ D �d.t/ � ei.t/C �i .t/ � �N i

C cŒıT .t/ � ıt i .t/�C d idiv.t/

(21.2)

and forming the single difference between the satellites
i and j :

O˚ij .t/C O"ij .t/ D �d.t/ � Œei.t/ � ej.t/�

C O�ij .t/ � �ON ij � cOıt ij .t/C Od ijdiv.t/„ ƒ‚ …
Dfk.t/

(21.3)

where:

i; j D satellite i respectively j

t D GPS time [s]

˚ D carrier phase received [m]

� D wavelength of L1 [m]

� D range between the receiver and a satellite [m]

N D carrier ambiguity [cycles (integer)]

c D speed of light in vacuum [ m
sec

]

ıT D receiver clock bias [s]

ıt D satellite clock bias [s]

dtrop D tropospheric delay [m]

diono D ionospheric effect [m]

d D displacement vector [m]

e D receiver to satellite unit vector [-]

" D carrier phase random noise [m]

O:ij D :i � :j , single difference between

satellites i and j

fk D displacement-free single difference k

carrier phase function [m].

Without displacement, the function fk.t/ is equal to the
observed single difference O˚ij .t/. If we are able to
track and to predict this function for the next epochs,
it might become possible to detect and to determine
a possible movement of the receiver. The quality of
determination of fk.t/ is therefore, crucial for success-
ful prediction of unbiased single differences.

Many kind of function approximation algorithms
with specific capabilities are known, but some nec-
essary conditions restrict the choice of them signifi-
cantly. The algorithm must run real-time and should
automatically adapt itself to the varying non-stationary



144 S. Guillaume et al.

properties of the tracked signal. In our application, we
applied the Kalman Filter (Gelb 1988):
( Px.t/D F.t/x.t/C w.t/ where W w.t/�N.0;Q.t//

z.t/D H.t/x.t/C v.t/ where W v.t/�N.0;R.t//
(21.4)

The first equation describes the dynamic behavior

of the state vector x.t/D �
fk; Pfk; Rfk; «fk;

�T
to be

estimated. The second equation links the observations

z.t/D �
O˚ij ; �O P̊ ij �T with x.t/ where P̊ is the

observed Doppler converted in [ m
sec

]. With the matrices
F(t) and H(t):

F.t/ D

0
BB@
0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1
CCA I H.t/ D

�
1 0 0 0

0 1 0 0

�

The stochastic model for the observations repre-
sented by the matrix R.t/ is a diagonal matrix with
2 [mm] and 30 [mm

sec
] standard deviation for the sin-

gle difference and the Doppler measurements, respec-
tively.

The system noise characterised by the covariance
matrix Q.t/ is estimated empirically for each single
difference k in the initialization process of the filter.
To obtain this covariance matrix, a collocational model
is adjusted over an initialization time (�30 [s]), see
Fig. 21.3, thus, estimating fk.t/ in an optimal way
and whitening the residual noise. Then, at each ini-
tialization epoch, the state vector is computed on the
one hand by numerical derivation of the collocated
function and on the other hand by the step by step
resolution of the dynamic system (21.4). Finally, Q.t/
can be estimated with these two states series.

If D D .ıx1 ��ıx; ıx2 ��ıx; : : : ıxn ��ıx/T is the
matrix which groups the n state vector residuals ıxi
(�ıx is the mean of ıxi ) of each initialization epoch i ,
Q.t/ can be empirically computed by:

Q D 1

n � 1 � DTD (21.5)

3.2 Estimation of the Displacement

After the initialization and the system identification
process, all available single differences are tracked and
it is assumed that all fk.t/ are known. From (21.3) we

Fig. 21.3 Collocation of a single difference time series of 30 [s]
(carrier phase observations acquired at 10 [Hz]). The covariance
function is adapted to obtain a white residual noise. Only
the signal and the noise components are shown (upper). The
autocorrelation function proves that the residual noise is close
to a white noise process (lower)

have:

O˚ij .t/C O"ij .t/ D �d.t/ � Œei.t/ � ej.t/�C fk.t/

(21.6)
and can be rewritten:

O˚ij .t/ � fk.t/„ ƒ‚ …
lk

C O"ij .t/„ ƒ‚ …
vk

D �Œei.t/ � ej.t/�
T

„ ƒ‚ …
Ak

� d.t/„ƒ‚…
x

(21.7)

With all available single differences, the unknown
displacement can be estimated :

Ox D .ATQ�1
l l A/�1ATQ�1

ll l (21.8)

The covariance matrix �20Qll is computed by taking
into account the correlation due to forming the single
differences. A displacement is significantly detected
if both the global test (F-Test) of the estimation and
the non-zero displacement hypothesis test (congru-
ence test) at a chosen confidence level are successful
(Welsch et al. 2000).

4 Test on Real Measurements

To illustrate the algorithm and assess the real accuracy
of this method, we have applied the algorithm to
observations carried out by two Leica 500 receivers
(2 [m] baseline) at an data acquisition rate of 10 [Hz]
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Fig. 21.4 East, North and Height components of the displace-
ment estimated with G-MoDe algorithm in real-time on the static
receiver. The a priori 3� confidence intervals are drawn in red on
the time series

Fig. 21.5 Time series of the east component of the displace-
ments computed with standard kinematic differential processing
and G-MoDe algorithm

during 25 [min]. The first was static and different kind
of displacement where applied on the second one. This
allow us to compare on the one hand the displacements
of the displaced antenna estimated by G-MoDe with
standard differential kinematic processing and on the
other hand the resolution and the noise behavior of
G-MoDe applied on the data of the static antenna.

In the Fig. 21.4 it is shown the East, North and
Height components of displacements calculated by the
filtering and extraction algorithm of the static receiver
which give an idea of the accuracy of the filtering. The
displacements are computed with a prediction length
of one time step. Only L1 carrier phase observations
measured on nine satellites are used. The empirical
standard deviations are 0.8, 1.3 and 2.1 [mm] for the
east, north, and high components respectively.

In the upper Fig. 21.5 the time series of the east
component of a standard kinematic processing is
shown. The black line represents the movement which
were applied. In the first part, rapid displacement in the
order of 5–20 [mm] were produced. In the second part,
oscillating movement with frequencies from 0.5 to
2.0 [Hz] with amplitudes of 5–20 [mm] were applied.

In the lower Fig. 21.5 the time series of the east
component of G-MoDe processing is shown. All rapid
and oscillating displacement are well detected.

Conclusion

A new method to detect small and rapid movements
in real-time with a single L1-GPS carrier phase
receiver has been presented. In good conditions,
quick movements above 5 [mm] in the horizontal
and 10 [mm] in height can be significantly (95%)
detected instantaneously. There are multiple advan-
tages of this technique, compared to the conven-
tional differential processing:
First, it is based on one stand-alone single receiver.
No reference station is needed. The processing can
be carried out at the measurement site without the
need of communication with other stations. In addi-
tion, the precision is not dependent on any baseline
length.
Secondly, it is not necessary to use complicated
models for satellite ephemeris, tropospheric correc-
tion etc. The presented method reduces the noise to
an almost white spectrum. Finally, low-cost single-
frequency receivers which are able to measure the
carrier phase with an acquisition rate equal or higher
to 10 [Hz] can be used.
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Abstract

Discontinuity detection is of great relevance at different stages of the processing
and analysis of geodetic time-series of data. This paper is essentially a review of
two possible methods. The first method follows a stochastic approach and exploits
the Bayesian theory to compute the posterior distributions of the discontinuity
parameters. The epoch and the amplitude of the discontinuity are then selected as
maximum a posteriori (MAP). The second method follows a variational approach
based on the Mumford and Shah functional to segment the time-series and
to detect the discontinuities. Whereas the original formulation was developed
in a continuous form, discrete approaches are also available presenting some
interesting connections with robust regressions. Both the methods have been
applied to identify the occurrence of cycle-slips in GNSS phase measurements.
Simulated and real data have been processed to compare the performance and to
evaluate pros and cons of the two approaches. Results clearly show that both the
methods can successfully identify cycle-slips.
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1 Introduction

The occurrence of discontinuities in geodetic data
is very common, discontinuity detection is a well
known problem and a key task in many applica-
tions. Sometimes, one wants to detect and then
remove discontinuities in signals so that subsequent
analyses or models can be correctly applied on a
discontinuity-free signal. Sometimes, one is mainly
interested in the discontinuities themselves and in the
event epochs. Jumps in coordinates time-series are
unwanted events when working on the realization of
Reference Systems (Perfetti 2006; Altamimi et al.
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2007), likewise, cycle-slips have to be detected
and possibly corrected when dealing with GNSS
phase measurements (Lichtenegger and Hofmann-
Wellenhof 1989; Teunissen and Kleusberg 1998;
Gao and Li 1999). Again, discontinuities are of
great interest in the analysis of velocity fields and
coordinate time-series in geophysical applications
(Albertella et al. 2007; Dermanis and Kotsakis
2007; Serpelloni et al. 2005), just to mention some
examples.

This paper describes two techniques suitable for
discontinuity detection. The first method exploits the
Bayesian theory to detect jumps in a time-series of
data modeled by a smooth regression (de Lacy et al.
2008). Epoch and amplitude of the jumps are described
by means of probability distributions. The second
method is based on the minimum problem proposed
by Mumford and Shah (1989) to solve the signal
segmentation problem. Segmentation can be consid-
ered here as the partitioning of the data into disjoint
and homogeneous regions by smoothing the data and
simultaneously locating the region boundaries without
smoothing them out. The boundaries of the homoge-
neous regions are the points where the data present
discontinuities.

The main theoretical elements of the two methods
are just introduced herein for a matter of space limi-
tation. The treatment of the mathematical subjects is
not exhaustive and the description of the methods is
introductory and short as well. Regarding the Mumford
and Shah model, the primary aim is to show the com-
plex and long way connecting the original formulation
and its practical implementation by means of known
results.

The two methods have been implemented numer-
ically and used to detect cycle-slips in GNSS phase
measurements. The Bayesian method was developed
and applied in a previous work by de Lacy et al. (2008)
to face this specific problem. Being the effectiveness
of theory-based Bayesian models widely proved (see
e.g., Koch 2007), the results of the Bayesian method
are here used as a reference to assess the perfor-
mance of the Mumford and Shah model. In partic-
ular, to evaluate and compare the different features
of the two methods, tests on simulated and real data
have been performed obtaining good and consistent
results.

2 The Bayesian Method

When a time-series of data is expected to be smooth
in time, a polynomial regression can be used to model
the data. If a single discontinuity occurs at epoch � ,
one can write the following observation equation:

y
0

D Ax C kh� C 	; (22.1)

where y
0

is the vector of observations; the base func-
tions of the regression are the elements of the design
matrix A; x is the vector of the unknown regression
parameters; � is the discontinuity epoch; k is the
discontinuity amplitude; h� is the Heaviside func-
tion; 	 is the observation noise vector. The obser-
vations, the unknown parameters, the discontinuity
epoch, the discontinuity amplitude and the variance
of the observation noise are all considered as a priori
stochastically independent random variables. For each
parameter, a probability distribution (prior) is intro-
duced and the Bayesian theorem is applied to compute
the joint posterior distribution of the parameters as:

p.x; �; k; �20 j y
0
/D p.y

0
j x; �; k; �20 / �p.x; �; k; �20 /

p.y
0
/

:

(22.2)

In the Bayesian approach, the priors can be used to
force some specific constraints on the parameters. The
constraints are derived from the a priori knowledge
about the parameters features, e.g., cycle-slips in some
GNSS data combinations take only integer values,
hence an integer condition can be enforced on the prior
of the amplitude parameter. In the model presented by
de Lacy et al. (2008) non-informative priors (Box and
Tiao 1992) were used.

The discontinuity is detected by first computing
the marginal posterior distribution of the discontinuity
epoch p.� j y

0
/ and then selecting the epoch � with

the maximum a posteriori probability (MAP). The
estimate of the discontinuity amplitude is obtained
from the conditional posterior distribution p.k j �; y

0
/

exploiting again the MAP principle.
In the model (22.1) only one discontinuity has

been considered. To handle correctly the general case
with more than one discontinuity, the conditional pos-
terior distribution of the observation noise variance
p.�20 j �; y

0
/ is used in a test on the model accuracy
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to divide the original data set into intervals containing
at most one discontinuity.

3 The Mumford and Shah Method

Mumford and Shah (1989) proposed one of the most
known models in image segmentation. The model
seeks a smooth approximation u of the data g, at the
same time the model detects and preserves from the
smoothing the discontinuities of g. In two dimensions
the Mumford and Shah functional is:

MS.u; K/ D
Z
˝nK

h
.u � g/2 C � jruj2

i
dx

C ˛H 1.K/; (22.3)

where ˝ is a bounded set in R
2; K � ˝ is a compact

set representing the contours reconstructed from the
discontinuities of g and ˝ is the closure of ˝ . The
function u 2 W 1;2.˝nK/ is a smooth approxima-
tion of the data g outside K and W 1;2 is a Sobolev
space; H 1 is the 1-dimensional Hausdorff measure;
˛ and � are positive constants. In three dimensions
analogous models are widely adopted in Mathematical
Physics, e.g. fracture mechanics, plasticity, static the-
ory of liquid crystals. In one dimension, the counting
measure #.K/ replaces the H 1.K/ measure, and u0
replaces ru.

The first term in (22.3) measures the distance
between the solution u and the data g, the second
term measures the variations of u, and the third term
handles the discontinuities of g. The problem is to find
a pair .u; K/ that minimizes the functional (22.3) so
that the solution u is forced to be close to the data g,
strong variations of u are penalized, and the measure
of the discontinuity set K is kept as small as possible
in order to avoid over-segmented solutions.

The third term in (22.3) misses some good mathe-
matical properties that would ensure the existence of
the minimum. To overcome this difficulty, De Giorgi
proposed a weak formulation of (22.3) in the space
of special functions of bounded variation SBV.˝/
(see Ambrosio et al. 2000). The relaxed functional in
SBV.˝/ proposed by De Giorgi is:

MSw.u/ D
Z
˝

h
.u � g/2 C � jruj2

i
dx

C ˛H 1.Su/: (22.4)

This functional depends only on the function u: the set
K has been replaced by the set Su of the discontinuities
of u. In SBV.˝/, the measure of Su is negligible
(roughly speaking) and hence the integral terms in
(22.4) are now defined over the entire domain ˝ .
De Giorgi et al. (1989) proved the existence of mini-
mizers of (22.4) using the direct methods of the Calcu-
lus of Variations and then showed that minimizers of
(22.4) provide also minimizers for the Mumford and
Shah functional (22.3).

The Mumford and Shah problem belongs to a class
of variational problems known as free discontinuity
problems. Energy terms of different dimension com-
pete in this kind of minimum problem, as in (22.4).
The lower dimension energy, e.g., the third term in
(22.4), is concentrated on a set that can be recovered
by the discontinuity set of a suitable function, as
done in (22.4). This unknown discontinuity set has
an important role and it is not fixed a priori, i.e.,
it is free.

Finding a suitable numerical method to compute
a minimizing pair of (22.4) is not trivial because the
numerical treatment of H 1.Su/ is very difficult. The
first and most used result is due to Ambrosio and
Tortorelli (1992), they proved the variational approx-
imation of the functional (22.4) with a new sequence
of functionals which are numerically more tractable.
The Ambrosio and Tortorelli functionals are:

AT".u; z/ D
Z
˝

h
.u � g/2 C �z2 jruj2

i
dx

C ˛

Z
˝

	
" jrzj2 C .1� z/2

"



dx; (22.5)

where z 2 W 1;2, 0 � z � 1, and u 2 W 1;2.˝/. The
variational approximation was proved exploiting the
theory of the � -Convergence (De Giorgi and Franzoni
1975) and an important result by Modica and Mortola
(1977) who proved that H 1.Su/ can be approximated
by the third integral in (22.5). In (22.5) " is the
� -Convergence parameter, and the approximation
holds when "! 0. The functionals (22.5) present only
integral terms defined on the entire domain ˝ . The
auxiliary function z, that mimics the characteristic
function of u, is introduced to control strong variations
of u. From the practical point of view, a standard
finite element method can be used to approximate
numerically the functionals (22.5). A finite difference
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discretization of the Euler equation associated to
(22.5) is also possible. Different types of variational
approximations exist (see Braides 1998). We mention
only a discrete approximation proposed by Chambolle
(1995), that is:

C.uh/ D h2
X
i;j

�
uhi;j � ghi;j

�

C �

2
4h2X

i;j

Wh

 
uhiC1;j � uhi;j

h

!

C h2
X
i;j

Wh

 
uhi;jC1 � uhi;j

h

!3
5; (22.6)

where h is the mesh size and Wh.t/D min.t2; ˛=h/,
this function is very similar to the “weight” function
used in robust regressions.

Blake and Zisserman (1987) proposed an extension
of the functional (22.3) where the smoothness of u
is controlled by a second order term, e.g., the second
derivative of u in 1-D, and where also the set Su0 of
the discontinuity points of the first derivative of u is
explicitly handled. The weak formulation of the Blake
and Zisserman functional in one dimension is:

BZw.u/ D
Z
˝

�
.u � g/2 C �z2.u00/2

�
dx

C ˛#.Su/C ˇ#.Su0/: (22.7)

Some variational approximation is still needed to
implement the functional (22.7) numerically.

4 Cycle-Slips Detection on Linear
Combinations of Undifferenced
GPS Observations

The geometry-free linear combination of phase obser-
vations from a single satellite to a single receiver
depends only on the ionospheric effect, on the initial
integer ambiguities and on the electronic biases. This
combination presents a noise ranging from 3 to 4 mm.
The wavelengths of the two GPS carriers L1 and L2 are
two orders of magnitude larger than the noise of their
combinationL1�L2. This means that even cycle-slips
with amplitude of one cycle, occurring in one of the

two carriers, can be easily identified. This is not the
case for some couples of simultaneous cycle-slips on
the two carriers with the amplitude of the combination
smaller than the L1 � L2 noise level. Anyway, these
cycle-slips that cannot be detected in the L1 � L2

combination have an amplitude that is always 2 or 3
times larger than the P1 � L1 noise, ranging from 20
to 30 cm (see de Lacy et al. 2008).

The performance of the variational method has been
assessed on the basis of the results by de Lacy et al.
(2008) where the Bayesian method was compared with
the BERNESE 5.0 scientific software. The comparison
has been performed on a simulated time-series of data
with known cycle-slips and on real data with simulated
cycle-slips. The data are those used by de Lacy et al.
(2008). The simulated data set is composed of 500
observations with a noise variance of �20 D 1. A first
jump of amplitude kD 3�0 is present at epoch � D 200,
a second jump of amplitude kD 5�0 is present at epoch
� D 300 (see de Lacy et al. 2008).

Figures 22.1 and 22.2 show the detection of the first
jump by the Bayesian method: the interpolation and
the posteriors of the parameters � and k are plotted.
The conditional posterior distribution of the disconti-
nuity amplitude k has been obtained by enforcing an
integer condition on the prior of k. The variational
segmentation u of the data and the auxiliary function
z that “sees” the discontinuities of u are shown in
Fig. 22.3. An estimate of the discontinuity amplitudes
can be computed as the difference between the values
the approximating function u presents before and after
the discontinuity epoch (k200 D 2:7, k300 D 5:8). The
variational method has been also applied to a subset of

Fig. 22.1 Bayesian method: the most likely interpolation (black
dots) of the data (gray dots) and the marginal posterior of the
discontinuity epoch � given the data (gray bars)
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Fig. 22.2 Bayesian method: the conditional posterior of the
amplitude k given the data and the estimate of the discontinuity
epoch

Fig. 22.3 Variational method: the segmentation u (black dots)
of the data (gray dots) and the auxiliary function z (gray filled)

the real 30 s GPS data with simulated jumps studied in
de Lacy et al. (2008), all the jumps have been correctly
detected.

Conclusion

The use of the Mumford and Shah variational model
has produced good results, consistent with the ref-
erence results of the Bayesian method developed
and applied by de Lacy et al. (2008) to study the
general problem of detecting discontinuities on a
smooth signal. Here the Bayesian and the varia-
tional models have been successfully applied to
detect cycle-slips, but they could be also used to
detect discontinuities in other geodetic applications
or in Geophysics.

With the Bayesian approach, significant constraints
can be enforced in the priors of the parameters
in order to make the discontinuity detection more
effective and to achieve results consistent with the
a priori knowledge of the features of the unknown
parameters. On the other hand, the test on the con-
ditional posterior distribution of the noise variance
depends on the knowledge of an a priori value of the
noise level which may not always be available.
The Mumford and Shah model has an intrinsic
“multi-scale” nature, the ratio between the param-
eters ˛ and � is somehow related to the size of
the smaller discontinuity that the model can detect
and the noise variance of the signal, for details see
(Blake and Zisserman 1987). Despite this underly-
ing connection, the choice of proper ratios is far
from being an easy task, even when an a priori
estimate of the noise level is known.
To exploit the best of the two methods, a sequential
application is under investigation. The variational
method could be used in a first step with “high
sensitive” parameters to detect possible jumps, i.e.,
real jumps and noise compatible variations. On a
second step, the Bayesian model could be used to
detect and hence select just the real jumps, and to
estimate the corresponding amplitudes.
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23Prediction Analysis of UT1-UTC Time Series
by Combination of the Least-Squares
and Multivariate Autoregressive Method

Tomasz Niedzielski and Wiesław Kosek

Abstract

The objective of this paper is to extensively discuss the theory behind the
multivariate autoregressive prediction technique used elsewhere for forecast-
ing Universal Time (UT1-UTC) and to characterise its performance depending
on input geodetic and geophysical data. This method uses the bivariate time
series comprising length-of-day and the axial component of atmospheric angular
momentum data and needs to be combined with a least-squares extrapolation of
a polynomial-harmonic model. Two daily length-of-day time series, i.e. EOPC04
and EOPC04 05 spanning the time interval from 04.01.1962 to 02.05.2007, are
utilised. These time series are corrected for tidal effects following the IERS
Conventions model. The data on the axial component of atmospheric angular
momentum are processed to gain the 1-day sampling interval and cover the time
span listed above. The superior performance of the multivariate autoregressive
prediction in comparison to autoregressive forecasting is noticed, in particular
during El Niño and La Niña events. However, the accuracy of the multivariate
predictions depends on a particular solution of input length-of-day time series.
Indeed, for EOPC04-based analysis the multivariate autoregressive predictions are
more accurate than for EOPC04 05-based one. This finding can be interpreted as
the meaningful influence of smoothing on forecasting performance.
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1 Introduction

Universal Time (UT1-UTC) quantitatively describes
the Earth’s rotation rate and is one of five Earth
Orientation Parameters (EOPs). EOPs are intrinsic
to practically perform the time-varying transforma-
tion between the International Celestial Reference
Frame (ICRF) and the International Terrestrial
Reference Frame (ITRF). The knowledge about this
transformation and its accuracy is crucial for tracking
and navigation of objects in space.

The importance of forecasting UT1-UTC as well as
its derivative length-of-day (LOD or �) is stressed by
many authors (e.g. Schuh et al. 2002; Johnson et al.
2005; Niedzielski and Kosek 2008). The short-term
predictions of EOPs are essential to enhance the time-
keeping, communication, and navigation in space. The
long-term UT1-UTC forecasts, however, can be used
for monitoring and prediction of El Niño/Southern
Oscillation (ENSO). Indeed, UT1-UTC and LOD data
comprise El Niño and La Niña signals (e.g. Rosen et al.
1984; Gross et al. 1996; Abarca del Rio et al. 2000)
and hence their prediction can serve well a purpose of
ENSO diagnosis (Niedzielski and Kosek 2008; Zhao
and Han 2008).

There are several methods suitable for forecasting
UT1-UTC and LOD time series. They are usually
based on empirical data processing. Probably one of
the simplest methods to forecast UT1-UTC and LOD is
extrapolation of a polynomial-harmonic least-squares
model. The UT1-UTC and LOD time series can also be
forecasted using the autoregressive technique (Kosek
1992). To determine the predictions of Earth’s rota-
tion rate, Kosek et al. (1998) utilised the autocovari-
ance technique and Gross et al. (1998) applied the
Kalman filter. Schuh et al. (2002), Kalarus and Kosek
(2004) as well as Kosek et al. (2005) showed that
artificial neural networks can be successfully applied
to forecast LOD time series. Akyilmaz and Kutterer
(2004) found that the fuzzy inference system serves
well a purpose of LOD prediction. Following the
concept by Freedman et al. (1994), Johnson et al.
(2005) utilized the axial component (�3) of atmo-
spheric angular momentum (AAM) to support very
accurate forecasting technique for UT1-UTC. More
recently, Niedzielski and Kosek (2008) applied a mul-
tivariate autoregressive model comprising LOD and

AAM �3 time series and gained the improvement of
UT1-UTC predictions during ENSO events.

This paper presents a detailed theory behind the
multivariate autoregressive technique and extends
the previous study by Niedzielski and Kosek
(2008). The impact of different input LOD data
on the accuracy of multivariate autoregressive
predictions is discussed. Two LOD solutions,
EOPC04 and EOPC04 05 spanning the time interval
from 04.01.1962 to 02.05.2007, are selected. The
differences between the results are interpreted in terms
of data smoothing.

2 Multivariate Autoregressive Model

Following Niedzielski and Kosek (2008), three
prediction methods are applied: extrapolation of
the least-squares polynomial-harmonic model (LS),
combination of LS with autoregressive forecasting
(AR) denoted by LSCAR, and combination of LS
with multivariate autoregressive forecasting (MAR)
referred to as LS+MAR. For the sake of brevity,
LS and LSCAR methods are not presented here but
an extensive presentation of MAR method is given
instead. The theory on MAR technique is presented
following the paper by Neumaier and Schneider
(2001). The application of LS and AR estimations
for modelling UT1-UTC and LOD is presented by
Niedzielski and Kosek (2008).

2.1 Modelling

The m-variate time series X.m; n/ comprising n vec-
tors is given by (before subtracting LS model):

X.m; n/ D
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ˆ̂̂̂
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; : : : ;

2
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n

X
.2/
n

:::

X
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n

3
777775

9>>>>>=
>>>>>;
:

(23.1)

A residual time series Y.m; n/ can be obtained as a
difference between the data and the LS model (for each
component) and may be denoted by:
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Y.m; n/ D
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(23.2)

A multivariate autoregressive process of order p
(MAR(p)), Yt , is stationary and the following condi-
tion holds:

Yt D w C
pX
iD1

AiYt�i C Et ; (23.3)

where Yt is a random vector of residuals indexed by
discrete time t , Ai , i D 1; : : : ; p are autoregressive
coefficient matrices, w is an intercept term, Et is a
white noise vector with mean zero and a covariance
matrix C. Selection of an order p can be done by
the Schwarz Bayesian Criterion (SBC) defined as
(Schwarz 1978; Neumaier and Schneider 2001):

SBC.p/ D lp

m
�
�
1 � np

N

�
logN; (23.4)

where lp D log detŒ.N � np/ OC�, np D mp C 1, N
is a number of state vectors, m is a dimension of the
model, and OC is a covariance matrix estimate of the
noise vector. Optimal p is an integer, for which SBC
attains a minimum value. Estimation of A1; : : : ;Ap , w,
and C is performed for a fixed p using a least-squares
procedure. A MAR(p) model can also be denoted as:

Yt D B

2
66664

1

Yt�1
:::

Yt�p

3
77775C Et ; (23.5)

where B D Œw A1 : : : Ap� is matrix of parameters to
be estimated. An estimate of B can be obtained by:

OB D WU�1; (23.6)

where

W D
NX
iD1
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and

U D
NX
iD1
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In order to estimate OB one may apply the Cholesky
factorization as:

OB D .R�1
11 R12/

T ; (23.9)

where R11 and R12 can be obtained from:

"
U WT

W V

#
D
"

RT
11R11 RT

11R12

RT
12R11 RT

12R12 C RT
22R22

#
;

(23.10)

where V D PN
iD1 YiYT

i . An estimate of C can be
determined using the following expression:

OC D 1

N � np RT
22R22: (23.11)

2.2 Prediction

A 1-step prediction of a MAR(p) model is given by:

P1YsC1 D Ow C
pX
iD1

OAiYsC1�i ; (23.12)

where P1YsC1 is the prediction vector for time s C 1

determined at time s; OAi , i D 1; : : : ; p, are already
estimated autoregressive matrices. The 1-step predic-
tion vector is thus defined as:

P1YsC1 D

2
664
P1Y

.1/
sC1
:::

P1Y
.m/
sC1

3
775; (23.13)

where P1Y
.j /
sC1 is the 1-step prediction for j -th

component of a multivariate time series Y.m; s/.
A k-step prediction, PkYsCk , is determined in a
stepwise way. First, P1YsC1 is computed. Second,
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P1YsC1 is attached to the time series Y.m; s/ in the
following way:

eY.m; s C 1/ D
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A 2-step prediction, P2YsC2, is based on the com-
putation of the 1-step prediction of the time serieseY.m; s C 1/. A k-step prediction, PkYsCk , can be
computed by repeating this procedure k times.

2.3 Prediction Accuracy

Root mean square error (RMSE) of the 1-step predic-
tion can be obtained using the equation:

RMSE D
vuut 1

d

dX
hD1

�
P1X

.j /

sCh � X
.j /

sCh
�2
; (23.15)

where X
.j /

sCh is j -th component of a vector XsCh;
P1X

.j /

sCh is the 1-step prediction of j -th component of a
multivariate time series X.m; sCh�1/; d is a number
of 1-step predictions; 1 � d � n�s. RMSE for k-step
predictions is computed in a similar way.

3 Data

For the purpose of the study, three time series are
selected. They span the time interval from 04.01.1962
to 02.05.2007.

Two of them are different� solutions (EOPC04 and
EOPC04 05) used here to carry out the comparative
study highlighted in the Introduction. The daily time
series � are retrieved from EOPC04 and EOPC04 05
data sets. In both cases, � data are corrected for tidal
effects using the IERS Conventions tidal model ı�
(McCarthy and Petit 2004). The non-tidal length-of-
day signal can thus be denoted as .� � ı�/EOPC04

and .� � ı�/EOPC04 05, respectively for EOPC04
and EOPC04 05 solutions. The difference between
these time series is depicted in Fig. 23.1. The
characterisation of .� � ı�/EOPC04 05 data is provided
by Niedzielski et al. (2009).

Fig. 23.1 The difference between .� � ı�/EOPC04 and
.�� ı�/EOPC04 05 time series

The third data set is AAM �3 time series, the sum of
wind (motion) and pressure (mass) terms corrected for
inverse barometer effect (Kalnay et al. 1996). The data
were interpolated to get the 1-day sampling interval.

4 Predictions of UT1-UTC

The analysis indicates that the performance of
LSCMAR technique in forecasting LOD and UT1-
UTC time series is better than the performance of
LS and LSCAR methods. This is particularly well
seen during El Niño and La Niña events (Niedzielski
and Kosek 2008). One should note that the superior
performance may be partially driven either by selecting
model orders with dissimilar statistics or by calibrating
models with different techniques. Figure 23.2 shows
that RMSE values of long-term predictions are the
lowest for LSCMAR approach based on LOD input
data from EOPC04. The corresponding predictions
determined using LOD from EOPC04 05 are less
accurate, however, they are still better than those
calculated by LS or LSCAR techniques.

It is difficult to address the issue of potential
causes of the above-mentioned discrepancy between
accuracies of predictions derived using two EOPC
solutions. The probable explanation may be related to
smoothing as it is usually easier to successfully predict
filtered data. It is interesting, however, that the similar
difference cannot be observed in the case of LSCAR
predictions based on EOPC04 and EOPC04 05 data.
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Fig. 23.2 RMSE of predictions based on the LSCMAR
method for different input data

Conclusion

In this paper, LSCMAR technique for UT1-
UTC forecasting is discussed and shown to be an
efficient method in comparison to LS and LSCAR
approaches. For long-term predictions, which are
crucial for ENSO investigations, the superior
performance is provided by LSCMAR method
based on the input data from EOPC04 solution. If
EOPC04 input data are replaced with EOPC04 05,
the EOPC04-based computation still remains to be
the most accurate amongst the predictions under
study. The potential explanation may be linked to
smoothing.
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24Next Generation GNSS Single Receiver Cycle
Slip Reliability

P.J.G. Teunissen and P.F. de Bakker

Abstract

In this contribution we study the multi-frequency, carrier-phase slip detection
capabilities of a single receiver. Our analysis is based on an analytical expression
that we present for the multi-frequency minimal detectable carrier phase cycle slip.

Keywords

GNSS Cycle Slips • Minimal Detectable Bias (MDB) • Multi-Frequency
Receivers

1 Introduction

In this contribution we will study the Global
Navigation Satellite System (GNSS) reliability of
multi-frequency single-receiver, single-satellite code-
and carrier phase time series. Examples of such studies
for the single-baseline GNSS models can be found
in Teunissen (1998), De Jong (2000), De Jong and
Teunissen (2000). There are several advantages to
single-receiver, single-satellite data validation. First,
it can be executed in real-time inside the receiver and
thus enables early quality control on the raw data.
Second, the geometry-free single-satellite approach
has the advantage that no satellite positions need to be
known beforehand and thus no complete navigation
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messages need to be read and used. Moreover, this
approach also makes the method very flexible for
processing data from any (future) GNSS in a simple
way, like e.g. (modernized) GPS (USA), Galileo (EU),
Glonass (Russia), and Compass (China).

Our study of the single-receiver, single-satellite
reliability will be analytical and supported with numer-
ical results. As reliability measure we focus on the
Minimal Detectable Biases (MDBs). The MDB is a
measure for the size of model errors that can be
detected with a certain power and a certain probability
of false alarm. The MDB can be determined from
the functional and stochastic model and is therefore a
useful tool to assess how well certain model errors can
be detected. We formulate alternative hypotheses for
model errors like outliers in de code data on different
frequencies, cycle slips in the carrier phase data on
different frequencies, potential loss of lock, and iono-
spheric disturbances. The closed form formulas that
will be presented are applicable to any GNSS with an
arbitrary number of frequencies and include also the
ionosphere-weighted case. Due to lack of space, we
only work out the single- and multi-frequency MDBs
for cycle slips. However, the same approach can be
followed for the other type of model errors as well.
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We emphasize the results for (modernized) GPS and
Galileo.

2 The Multi-frequency
Single-Receiver Geometry-Free
Model

Null Hypothesis: The carrier phase and pseudo range
observation equations of a single receiver that tracks
a single satellite on frequency fj (j D 1; : : : ; n) at
time instant t (t D 1; : : : ; k), see e.g., Teunissen and
Kleusberg (1998), Misra and Enge (2001), Hofmann-
Wellenhoff and Lichtenegger (2001), Leick (2003), are
given as

�j .t/ D ��.t/ � �jI .t/C b�j C n�j .t/

pj .t/ D ��.t/C �jI .t/C bpj C npj .t/
(24.1)

where �j .t/ and pj .t/ denote the observed carrier
phase and pseudo range, respectively, with correspond-
ing zero mean noise terms n�j .t/ and npj .t/. The
unknown parameters are ��.t/, I .t/, b�j and bpj . The
lumped parameter ��.t/ D �.t/C cıtr .t/� cıts.t/C
T .t/ is formed from the receiver-satellite range �.t/,
the receiver and satellite clock errors, cıtr .t/ and
cıts.t/, respectively, and the tropospheric delay T .t/.
The parameter I .t/ denotes the ionospheric delay
expressed in units of range with respect to the first
frequency. Thus for the fj -frequency pseudo range
observable its coefficient is given as �j Df 2

1 =f
2
j . The

parameters b�j and bpj are the phase bias and the
instrumental code delay, respectively. The phase bias
is the sum of the initial phase, the phase ambiguity and
the instrumental phase delay.

Both b�j and bpj are assumed to be time-invariant.
This is allowed for relatively short time spans, in which
the instrumental delays remain sufficiently constant.
The time-invariance of b�j and bpj implies that only
time-differences of ��.t/ and I .t/ are estimable. We
may therefore just as well formulate the observation
equations in time-differenced form. Then the parame-
ters b�j and bpj get eliminated and we obtain

�j .t; s/ D ��.t; s/ � �jI .t; s/C n�j .t; s/

pj .t; s/ D ��.t; s/C �jI .t; s/C npj .t; s/
(24.2)

where �j .t; s/ D �j .t/��j .s/, with a similar notation
for the time-difference of the other variates.

Would we have a priori information available about
the ionospheric delays, we could model this through
the use of additional observation equations. In our
case, we do not assume information about the absolute
ionospheric delays, but rather on the relative, time-
differenced, ionospheric delays. We therefore have the
additional (pseudo) observation equation

Io.t; s/ D I .t; s/C nI .t; s/ (24.3)

with the (pseudo) ionospheric observable Io.t; s/. The
sample value of Io.t; s/ is usually taken to be zero.

If we define �.t/ D .�1.t/; : : : ; �n.t//
T , p.t/ D

.p1.t/; : : : ; pn.t//
T , y.t/ D .�.t/T ; p.t/T ;Io.t//

T ,
g.t/ D .��.t/;I .t//T , � D .�1; : : : ; �n/

T , y.t; s/ D
y.t/ � y.s/ and g.t; s/ D g.t/ � g.s/, then the
expectation E.:/ of the 2nC1 observation equations of
(24.2) and (24.3) can be written in the compact vector-
matrix form

E .y.t; s// D Gg.t; s/ (24.4)

where

G D

2
64
en ��
en C�
0 1

3
75 (24.5)

This two-epoch model can be extended to an arbitrary
number of epochs. Let y D .y.1/T ; : : : ; y.k/T /T and
g D .g.1/T ; : : : ; g.k/T /T , and let Dk be a full rank
k � .k � 1/ matrix of which the columns span the
orthogonal complement of ek , DT

k ek D 0 (recall that
ek is a k-vector of 1’s). Then�y D .DT

k ˝I2nC1/y and
�g D .DT

k ˝ I2/g are the time-differenced vectors of
the observables and parameters, respectively, and the
k-epoch version of (24.4) can be written as

H0 W E .�y/ D .Ik�1 ˝G/�g (24.6)

where ˝ denotes the Kronecker product. Model (24.6),
or its two-epoch variant (24.4), will be referred to as
our null hypothesis H0.

Alternative Hypotheses: The data collected by a
single GNSS receiver can be corrupted by many
different errors. The errors that we consider are the
ones that can be modelled as a shift in the mean of



24 Next Generation GNSS Single Receiver Cycle Slip Reliability 161

the data vector, E.�y j Ha/ D E.�y j H0/ C shift.
Modelling errors of this kind are outliers in the
pseudo range data, cycle slips in the carrier phase
data, ionospheric disturbances and loss-of-lock.
To accomodate these model biases, the alternative
hypotheses are formulated as

Ha W E.�y/ D .Ik�1 ˝G/�g C .DT
k sl ˝H/b

(24.7)
where

H
.2nC1/�q D

8̂
ˆ̂<
ˆ̂̂:

.In; 0; 0/
T .phase loss of lock/

.ıTj ; 0; 0/
T .carrier phase/

.0; ıTj ; 0/
T .pseudo range/

.0; 0; 1/T .ionosphere/

(24.8)

and

sl
k�1

D
(
.
1

0; : : : ; 0;
1

1; 0; : : : ;
k

0/T .spike/

.0; : : : ; 0; 1; 1; : : : ; 1/T .slip/
(24.9)

The n-vector ıj denotes the unit vector having a 1 as
its j th entry.

Stochastic model: With the time-invariant variance
matrices of the undifferenced carrier phase and (code)
pseudo range observables �.t/ and p.t/ denoted as
Q�� and Qpp, respectively, the dispersion of the two-
epoch model (24.4) is assumed to be given as

D .y.t; s// D blockdiag.2Q��; 2Qpp; �
2
�I /

(24.10)
where the scalar �2�I denotes the variance of the time-
differenced ionospheric delay.

If we assume that the time series of the absolute
ionospheric delays can be modelled as a first-order
autoregressive stochastic process (�2Iˇ

jt�sj, with
0�ˇ� 1), the variance of the time-differenced
ionospheric delay works out as

�2�I D 2�2I .1 � ˇjt�sj/ (24.11)

For two successive epochs we have 2�2I .1�ˇ/, while
for larger time-differences the variance will tend to the
white-noise value 2�2I if ˇ < 1. Thus �2I and ˇ can
be used to model the level and smoothness of the noise
in the ionospheric delays.

For the measurement precision of the multi-
frequency GNSS signals, we assume Q�� D �2�I2n

Table 24.1 Standard deviations of undifferenced GPS and
Galileo observables (Simsky et al., 2006)

L1 L2 L5 E1 E5a E5b E5 E6
Code (cm) 15 15 3.9 6.1 3.9 3.7 0.9 4.4
Phase (mm) 1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2
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Fig. 24.1 The exponential 1C10 exp.�E=10/ and the cosecant
function 1=sin.E/

and Qpp D �2pI2n, where we used the values as given
by De Wilde et al. (2006), see also De Bakker
et al. (2009). These zenith-referenced values are
summarized in Table 24.1. To obtain the standard
deviations for an arbitrary elevation, these values still
need to be multiplied with an elevation dependent
function. In practice one often uses an exponential or
cosecant function, see Fig. 24.1. For these functions,
the function values are between 3 and 4 at 15ı elevation
and approach the minimum of 1 at 90ı elevation.

3 Testing and Reliability

In order to test H0 against Ha, we make use of the
uniformly most powerful invariant (UMPI) test, see
e.g., Arnold (1981), Koch (1999), Teunissen (2006).
The UMPI test rejects the null hypothesis H0 in favour
of the alternative hypothesis Ha, if

Tq D ObTQ�1
Ob Ob

Ob > �2˛.q; 0/ (24.12)

where Ob, with variance matrixQ Ob Ob , is the least-squares
estimator of b under Ha, and �2˛.q; 0/ is the ˛-level
critical value. The UMPI-test statistic Tq is distributed
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as Tq
H0� �2.q; 0/ and Tq

Ha� �2.q; �/, respectively,
where � D bTQ�1

Ob Ob b is the noncentrality parameter.
The power of the test, denoted as � , is defined as

the probability of correctly rejecting H0, thus � D
PŒTq > �2˛.q; 0/ j Ha�. It depends on q (the dimension
of b, a.k.a. degrees of freedom of test), ˛ (level of sig-
nificance), and through the noncentrality parameter �,
on b (the bias vector). Once q, ˛ and b are given, the
power can be computed.

One can however also follow the inverse route. That
is, given the power � , the level of significance ˛ and
the dimension q, the noncentrality parameter can be
computed, symbolically denoted as �0 D �.˛; q; �/.
With �0 given, one can invert the equation �0 D
bTQ�1

Ob Ob b and obtain

MDB D
s

�0

dTQ�1
Ob Ob d

d .d D unit vector/ (24.13)

This is Baarda’s (1968) celebrated Minimal Detectable
Bias (MDB) vector. The length of the MDB vector
is the smallest size of bias vector that can be found
with probability � in the direction d with test (24.12).
By letting d vary over the unit sphere in R

q one
obtains the whole range of MDBs that can be detected
with probability � with test (24.12). The MDB can be
computed once �0 andQ Ob Ob are known. The value of �0
depends on q, ˛ and � . For later use, we have shown
the dependence in Fig. 24.2 of

p
�0 on � for different

values of q and ˛.
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Fig. 24.2 Square root of noncentrality parameter �0 as function
of power � for degrees of freedom q D 1; 2; 3; 4 and levels of
significance ˛ D 0:01; 0:001

We now present an analytical expression for the
MDB of the single-receiver carrier-phase slip. First we
consider the single-frequency receiver, then the multi-
frequency GNSS receiver.

4 Single Frequency Receiver
MDB-Slip

The two-epoch, single-frequency receiver MDB for a
carrier-phase slip can be shown to read as

MDB�j D
q
2.�2�j C �2pj C 4�2j �

2
I /�0 (24.14)

where �I D �I

p
1 � ˇjt�sj. This expression clearly

shows how the detectability is affected by the measure-
ment precision (��j ; �pj ) , the signal frequency (�j ),
and the time-smoothness of the ionosphere (�I ).

In Fig. 24.3 we show the single-frequency phase-
slip MDB�j s for GPS and Galileo as function of �I .
For Fig. 24.3 we used the frequencies of Tables 24.2
and 24.3, and the standard deviations of Table 24.1.
The figure clearly shows the effects of (code) measure-
ment precision and frequency. For small values of �I ,
the effect of (code) measurement precision dominates,
while for larger values, the frequency effect starts to
be felt.
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Fig. 24.3 Single-frequency phase-slip MDBs as functie of
�I D �I

p
1� ˇjt�sj. The MDBs are shown for the GPS

frequencies L1, L2, and L5, and the Galileo frequencies E1, E5,
E5a, E5b, E6 (NB: k D 2, ˛ D 0:001, � D 0:80 and I .t / is
defined w.r.t. L1 frequency)
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Table 24.2 GPS frequencies and wave lengths

L1 L2 L5
Frequency (MHz) 1575:42 1227:60 1176:45

Wave length (cm) 19:0 24:4 25:5

Table 24.3 Galileo frequencies and wave lengths

E1 E5a E5b E5 E6
Freq (MHz) 1575:420 1176:450 1207:140 1191:795 1278:750
� (cm) 19:0 25:5 24:8 25:2 23:4

Since all MDBs, except the E5-MDB, are larger
than 20 cm, one can not expect a single-frequency
receiver to perform well on these frequencies as fas
as cycle slip detection is concerned. Even for those
that have their MDB around their wave length – like
L5, E5a and E5b – one should keep in mind that these
values will become larger for lower elevations.

Cycle slip detection on the E5 frequency does
however have a good chance of performing well.
The zenith-referenced E5-MDB is about 8 cm for
�I D 3mm. Since this value will have to be multiplied
by about 3 to get the 20ı elevation MDB, the result
still stays below the E5 wave length of 25.2 cm.

For the other frequencies, single-frequency cycle
slip detection will be difficult when using the single-
receiver, single-satellite geometry-free model.

5 Multi Frequency Receiver
MDB-Slips

The two-epoch, multi-frequency carrier phase slip
MDB can be shown to read as

MDB�j D ��

vuut
 

2

1 � 1
n�

!
�0 (24.15)

where

1

n�
D 1

n

1

1C "

0
B@1C .�j � 1�"

1C"
N�/2

1
n

Pn
iD1 �

2
i �

�
1�"
1C"

�2 N�2 C �2�=�
2
I

n.1C"/

1
CA

(24.16)

with the phase-code variance ratio " D �2�=�
2
p and the

average N� D 1
n

Pn
jD1 �j .
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Fig. 24.4 Multi-frequency phase-slip MDBs as functie of
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p
1� ˇjt�sj. The MDBs are shown for dual- and

triple-frequency GPS, and for dual- triple- and quadruple-
frequency Galileo. (NB: k D 2, ˛ D 0:001, � D 0:80 and
I .t / is defined w.r.t. L1 frequency)

The dual-, triple- and quadruple-frequency MDB
phase-slips for GPS and Galileo are shown in Fig. 24.4.
The quadruple-frequency Galileo-case performs best,
while the dual-frequency GPS-case performs poorest.
In all cases however, the MDBs are below the 1-cycle
level, even below the 5 cm if �I � 1 cm. Thus single-
receiver, multi-frequency cycle slip detection will be
possible for such ionospheric conditions. For the more
extreme case that �I is several cm, GPS dual-frequency
(e.g. L1L2;L1L5) cycle slip detection will become
problematic for lower elevations.
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25A Constrained Quadratic Programming
Technique for Data-Adaptive Design
of Decorrelation Filters

Lutz Roese-Koerner, Ina Krasbutter, and Wolf-Dieter Schuh

Abstract

Signals from sensors with high sampling rates are often highly correlated. For the
decorrelation of such data, which is often applied for the efficient estimation of
parametric data models, discrete filters have proven to be both highly flexible and
numerically efficient. Standard filter techniques are, however, often not suitable
for eliminating strong local fluctuations or trends present in the noise spectral
density. Therefore we propose a constrained least-squares filter design method.
The spectral features to be filtered out are specified through inequality constraints
regarding the noise spectral density. To solve for the optimal filter parameters
under such inequality constraints, we review and apply the Active Set Method,
a quadratic programming technique. Results are validated by statistical tests.
The proposed filter design algorithm is applied to GOCE gradiometer signals
to analyze its numerical behaviour and efficiency for a realistic and complex
application.

Keywords

Active Set Method • Adjustment with inequality constraints • Decorrelation •
Filter

1 Introduction

The most popular method for estimating parameters
is ordinary least-squares adjustment, which could
easily be extended to handle equality constraints
(Koch 1999, pp. 170–177). However, in order to deal
with inequality constraints, a transformation into a
quadratic program (Gill et al. 1981, pp 177–186), a
linear complementarity problem (Cottle et al. 1992)

L. Roese-Koerner (�) � I. Krasbutter � W.-D. Schuh
Department of Theoretical Geodesy, University of Bonn,
Nussallee 17, D-53115 Bonn, Germany
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or a least distance program (Lawson and Hanson
1974, pp 158–173) is needed. Roese-Koerner (2009)
provides a detailed discussion on these methods.

All these problems could be solved by methods of
convex optimization (optimization of a convex objec-
tive function subject to constraints, which form a
convex set). This paper is focused on the Active Set
Method (Gill et al. 1981, pp 199–203) – a very stable
quadratic programming approach, which is more mem-
ory efficient than e.g. Dantzig’s Simplex Algorithm for
Quadratic Programs (Dantzig 1998, pp 490–498).

Introducing inequality constraints is helpful in
many applications, for example in the design of
geodetic networks, to reshape error ellipses (Koch
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1982) or to introduce geometric constraints (Wölle
1988). Koch (2006) used inequality constraints in
the context of semantic integration of GIS data.
Applications can be found also in signal processing,
as constraints allow for flexible filter design (Fritsch
1985; Schaffrin 1981).

In the following, we focus on the design of decorre-
lation filters. As the spectral density of residuals often
contains strong local fluctuations or trends, which need
special treatment, design of decorrelation filters in the
spectral domain is considered. Therefore, we use con-
straints yielding flexible filter design and an optimal
decorrelation. The capability of this approach is shown
by decorrelating two different time series. The first
one consists of randomly generated colored noise, the
second, more sophisticated one, of residuals obtained
from adjusted GOCE (Gravity field and steady-state
Ocean Circulation Explorer) satellite gravity gradiom-
etry (SGG) data (ESA 1999).

2 Adjustment with Inequality
Constraints

The usual way of estimating the parameter vector x of
an overdetermined linear model

Ax D ` C v; (25.1)

with .n�m/ design matrix A, observation vector ` and
residual vector v, is to minimize the (weighted) sum of
squared residuals

˚ .v/ D vT˙�1v; (25.2)

where ˙ is the data covariance matrix. This leads to
the well-known least-squares adjustment. As it is often
reasonable to restrict the parameters to an interval
(e.g. positivity, resource limits, budgets), the objective
function (25.2) may have to be minimized with respect
to p linear inequality constraints

bj;1x1C: : :Cbj;mxm � bj , BT x � b; (25.3)

with constant matrix B, vector b and j D 1 : : : p.
Greater-than-or-equal constraints can be transformed
into less-than-or-equal constraints by multiplying the
whole equation by minus one. Due to the fact that

this problem could not be solved with ordinary least-
squares adjustment, we reformulate it as a quadratic
program (QP). Once the problem is transformed
thusly, there are algorithms capable of dealing with
the inequality constraints.

2.1 Quadratic Program

A quadratic program consists of a quadratic objective
function, which is to be minimized with respect to
linear (inequality) constraints:

constraints: BT x � b

parameters: x 2 IRm

objective function: �1xTCx C �2cT x . . . Min.

C is a constant, symmetric and positive definite matrix,
c a constant vector, and �1 and �2 are given scalars.

In order to transform the minimization problem
(25.2) subject to (25.3) into a quadratic program, solely
the objective function has to be reformulated:

˚.x/ D vT˙�1v

D .Ax � `/T˙�1.Ax � `/
D xTAT˙�1Ax � 2 xTAT˙�1` C `T˙�1`

D �1xTCx C �2cT x : : :Min. (25.4)

by using the substitutions

C D 2AT˙�1A; c D � 2AT˙�1`; �1 D 1

2
; �2 D 1

and neglecting the constant term `T˙�1`, which is
irrelevant to the minimization problem. As a method
for solving quadratic programs, we will focus on the
Active Set Method (Gill et al. 1981, pp 199–203) for
the above mentioned reasons (stability and memory
efficiency).

2.2 Active Set Method

The idea behind this iterative algorithm is to start
from an (arbitrary) feasible point – i.e. a point that
satisfies all inequality constraints (25.3) – and follow
the boundary of the feasible set until the minimal
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Fig. 25.1 Flowchart of the Active Set Algorithm

objective value is reached. After choosing an initial
point x.0/ – e.g. with the “Big-M-Method” (Dantzig
and Thapa 2003, pp 115–116) – a search direction
p.0/ and an appropriate step length q.0/ are com-
puted (superscript numbers denote the iteration steps).
Figure 25.1 presents a brief overview of the algorithm.
The first step in calculating the search direction is to
solve the unconstrained minimization problem (25.2):

Ox D �
AT˙�1A

��1
AT˙�1` D �C�1c: (25.5)

The vector p�.0/ pointing from the initial point x.0/ to
the minimum Ox of the unconstrained problem is given
by their difference

p�.0/ D Ox � x.0/: (25.6)

Next, the so-called Newton direction p�.0/ is projected
onto the boundary of the feasible set, i.e. onto the
active constraints (cf. Fig. 25.2). A constraint is called
“active” if the inequality is exactly satisfied

bj;1x
.i/
1 C bj;2x

.i/
2 C : : :C bj;mx

.i/
m D bj : (25.7)

At iteration i all active constraints from B and b are
summarized in the active set matrix W.i/ and the vector
w.i/:

W.i/T x.i/ D w.i/:

Due to the metric, which is defined by the uncon-
strained least-squares objective function, W.i/ must be
rescaled. This can be done by multiplying W.i/ from
the left with C�1

W
.i/ D C�1W.i/; with C�1 D .2AT˙�1A/�1

(Roese-Koerner 2009, p 22). Now the search direction
p� can be projected into the left null space of the matrix

W
.i/

of active constraints

p D< ˘ C
S?.W/

;p� >C

D ˘ C
S?.W/

Cp�

D .C�1 � W.W
T

CW/�1WT
/Cp�

(iteration indices neglected).˘ C
S?.W/

denotes the pro-
jection matrix under the metric C (Koch 1999, pp 64–
66). Thereby, no active constraint is violated by a step
in direction p.i/. However, this is not true for inactive
constraints. Hence the maximum step length q.i/max has
to be computed as the distance to the next inactive
constraint along direction p.i/. Here, two scenarios are
possible (cf. Fig. 25.1).

If q.i/max � 1, we set q.i/ D q
.i/
max . After updating the

parameters

x.iC1/ D x.i/ C q.i/p.i/; (25.8)

a new constraint will become active and a new iteration
is computed, starting with the determination of a new
search direction according to (25.6). Otherwise, if
qmax > 1, it is possible to take a step of optimal length
(cf. Fig. 25.2) without violating any constraints, and
q.i/ D 1 is chosen. After computing the update step

Fig. 25.2 Search direction p and step length qmax of the Active
Set Algorithm. In Fig. 25.2a p� denotes the vector to the
unconstrained minimum (gray point), the gray lines symbolize
constraints (x1 � 3; x2 	 2; x1 C x2 	 2) and the feasible
set is shaded. The active (i.e. exactly satisfied) constraint is
highlighted. In Fig. 25.2b the optimal step length q D 1 is
illustrated, which could not be chosen, because it violates an
inactive constraint
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(25.8), the objective function (25.4) is extended to the
Lagrange function

˚� .x;k/ D 1

2
xTCx C cT x C kT .BT x � b/; (25.9)

as described in Wölle (1988). He proved, that the solu-
tion is optimal if and only if all Lagrange multipliers
k.iC1/ related to active constraints are positive and

that p�.iC1/ is in the column space of W
.iC1/

and can
therefore be expressed as the linear combination

p�.iC1/ D W
.iC1/

k.iC1/; (25.10)

with the Lagrange multipliers as weighting factors.
Hence k.iC1/ could be computed by solving (25.10). If
all Lagrange multipliers linked with active constraints
are positive, the optimal solution is found. Otherwise
all constraints with negative Lagrange multipliers are
deactivated (Gill et al. 1981, p 170), i.e. removed from
the active set W, and the algorithm is started again.

3 Applications in Filter Design

With constrained quadratic programming techniques
more flexibility is gained in many applications. Fritsch
(1985) and Schaffrin (1981), for instance, applied
Lemke’s algorithm to design filters in the frequency
domain using the transfer function. Thereby, one can
control the spectral behavior of the filters by using
inequality constraints. In the following we will use the
power spectral density (PSD) to estimate decorrelation
filters.

3.1 Design of Simple Decorrelation
Filters

The aim is to decorrelate data with colored noise
characteristics by a decorrelation filter to obtain white
noise. An algebraically simple approach is to estimate
the coefficients of a non-recursive filter, such as of a
symmetric moving-average filter:

yi D
NX

kD�N
ˇkui�k; with ˇ�k D ˇk; (25.11)

where ˇk are the unknown filter coefficients, N is
the order of the filter, u the input and y the output
sequence. The filter coefficients may then be estimated
by constrained least-squares adjustment using the PSD
of the residuals as observations `. The representation
of the filter equation (25.11) in the frequency domain
is the square of its transfer function (Schuh 2003)

S.ˇ; !/ D.ˇ0 C 2ˇ1 cos .!/C : : :C 2ˇk cos .k!//2;

with angular frequency !. In a numerical simulation
the Active Set Method is used to decorrelate a ran-
domly generated colored noise sequence, solving the
quadratic program

constraints: Q̀
j D 1

S.ˇ;!j /
� `j ; j D 1; : : : ; p

parameters: ˇ 2 IRm

obj. function:
nP
iD1

� Q̀
i � `i

�2
. . . Min.

where p inverse, adjusted observations Q̀
j have to

be greater than or equal to the original observations
`j . Figure 25.3 shows the values ` of the data
PSD (dark gray) and the inverse values of the
estimated filter Q̀ (light gray) with N D 50. The
filter illustrated in Fig. 25.3a is determined with
unconstrained least-squares adjustment. The second
filter, shown in Fig. 25.3b, has a constraint at angular
frequency !D 0:1Hz, which is badly denoised in the
unconstrained case.

As described in Krasbutter (2009), the estimated
decorrelation filters may be verified by statistical
tests. One possible choice is the test of autocorrelation
(Schlittgen and Streitberg 2001, pp 243-246). Results
of the test are illustrated in Fig. 25.4. The horizontal
gray lines are boundaries of the confidence interval
for type-I-error ˛D 0:05, i.e. for white noise, 95% of
the autocorrelation coefficients must lie within this
interval.

Using the unconstrained filter, the boundaries were
violated by 26:0% of the autocorrelation coefficients of
the adjusted observations (see Fig. 25.4). Introducing
only one constraint improves the decorrelation process
significantly; then only 5.6% of the autocorrelation
coefficients are outside the confidence interval. The
five percent limit could be reached by applying more
constraints.
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Fig. 25.3 Power spectral density of colored noise (dark gray)
and the estimated reciprocal filter (light gray). The constraint is
indicated by a black triangle.
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3.2 GOCE Decorrelation Filters

Decorrelation filters are also used for GOCE data anal-
ysis as the observations of the gravity gradiometer are
highly correlated (Schuh 1996). As described in Schuh
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Fig. 25.5 PSD of simulated GOCE residuals (zz-component,
light gray) and estimated inverse filter (dark gray). Constraints
are indicated by black triangles. The dotted vertical lines denote
the measurement bandwidth between 0:005Hz and 0:1Hz

(2003) especially symmetric moving-average filters
allow for an efficient computation of the parameters
within iterative approaches.

The PSD of simulated, highpass-filtered gradiome-
ter residuals (zz-component) and the inverse of the esti-
mated filter are presented in Fig. 25.5. The gradiome-
ter is very sensitive in the bandwidth from 0:005Hz
to 0:1Hz. Due to that fact, the signal outside the
measurement bandwidth contains less information and
should therefore be eliminated, while the signal inside
should be preserved. This goal could be reached using
inequality constraints as illustrated in Fig. 25.3.

Conclusion

Inequality-constrained least-squares problems can
easily be transformed into quadratic programs and
be solved with the Active Set Method. Concern-
ing the design of decorrelation filters, constrained
quadratic programming techniques were demon-
strated to lead to improved flexibility (cf. (3.2))
and better rewhitening (cf. (3.1)). One drawback
of quadratic programming algorithms is that they
yield no stochastic information about the estimated
parameters. One possibility to overcome this, is to
combine them with Monte Carlo methods in the
future.
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26The Geoid Today: Still a Problem
of Theory and Practice

F. Sansò, R. Barzaghi, and D. Carrion

Abstract

The whole process of the approximation of the anomalous gravity potential is
reviewed from the point of view of available geodetic data and their primary
combination to define a mathematical standard model, i.e. a suitable boundary
value problem.

The construction of global models is then outlined, showing where recent
theorems of existence, uniqueness and stability play a role. The local modelling is
also summarized, clarifying the conditions under which it has meaning. Finally,
some proposal to follow a slightly different line in global modelling are put
forward, while open problems in local modelling that need to be further studied
are highlighted.

1 Introduction

The main problem of physical geodesy is to establish a
model approximating the anomalous gravity potential
T .x/, on the Earth’s surface and in outer space, to
the extent made possible by existing data, mathemat-
ical analysis tools and numerical computational tools.
On the other hand, close to the Earth’s surface, the
linearized Bruns relation holds, relating the height
anomaly � to the anomalous potential T ,

� D T

� Q

(26.1)

with �Q the modulus of normal gravity, so that approx-
imating T on some eS (e.g. with eS the telluroid) is
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e-mail: fernando.sanso@polimi.it

the same as approximating � on eS , i.e. computing
the separation between telluroid and the actual Earth’s
surface. When S refers to the ocean, i.e. on 2/3 of
the Earth’s surface, � becomes the same as the geoid
undulation N , hence the title of this paper, where the
word geoid is used more for reasons of attractiveness
than for scientific rigor.

At present, very large improvement is verified in
all three fields: data, mathematical models, numerical
analysis, so that it is time to rethink the actual situation
as for the adequacy of our results with respect to what
we have available.

A warning is that in this discussion we shall con-
sider only a stationary picture of the Earth’s gravity,
i.e. all time variation are assumed to be perturbations
known and eliminated from our data.

The target of this paper is to highlight recent
achievements on the item and to try to formulate
in clear mathematical terms what open problems
and future challenges we believe will have to be
faced.

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 26, © Springer-Verlag Berlin Heidelberg 2012
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2 The Data

In this review, we consider as geodetic data, for the
purposes of physical geodesy, the following data
sets:
• Spatial observations: Satellite tracking (ST) Satel-

lite to satellite tracking (SST) Satellite accelerom-
etry (SAC)/gradiometry (SGG), Satellite altimetry
(SA), Radar imaging of continenatal areas (SAR)

• Ground observations (gravimetry, relative and abso-
lute, pointwise heights, digital elevation models
(DEM))

• Ocean observations (marine gravity, marine posi-
tioning, bathymetry).
Of course, there are many more observations that

could be ascribed to the geodetic family. In particular,
we want to mention aerial gravimetry and gradiometry.
Yet this is so close to the surface, be it ground or
ocean, that by a small downward continuation we take
it as gG or gO . Also the deflection of the vertical
are traditional geodetic observations, but overall they
constitute a small data set. So we better take them as
a validation tool, rather than a primary information for
the determination of T . In order to have an idea of the
usability of the various data sets, we try to give a rough
indication of their resolution and accuracy. As for the
first three data sets, since they are used to construct a
model of the low-degree spherical harmonic represen-
tation of T , fT`m; ` D 2 � L; jmj � `g, we simply
give the maximum degreeL which is on the same time
an indication of resolution (roughly this is � 180ı

L
in

degrees on the Earth’s sphere) and of accuracy, since
at degree L typically commission and omission error
balance each other.

We have ESA (1999) for ST,L � 50; for SSTCSA,
L � 100; for SSTCSACSGG, L � 200.

Moreover we have Andersen and Knudsen (1998)
for SA a resolution of �1 km and an accuracy of
�2 cm; for SAR a standard resolution is 100 m and the
accuracy �10 m Farr et al. (2007).

We notice that the resolution of SA is more than
enough since the (stationary) surface of the ocean is
naturally smooth. As for the SAR data, the resolution
of the surface is enough even in rough areas and the
accuracy too, given that a �H � 10 m can produce an
error up to 2 mGal in gravity corrections (at 2� level),
which is also an accuracy frequently met in the gravity
material (see below).

• For gG we have a resolution which is quite variable
from area to area Briais et al. (2008); here we men-
tion only that it is enough to support the creation
of a uniform 50 � 50 grid FA gravity anomalies
at the ellipsoid level, though the data are really
poor in mountainous areas or on continents like
Africa.
This means around 9 � 106 data, which is an order

of magnitude compatible with the real number in the
original data set. As for its accuracy it is also quite
varied, ranging from 0.1 mGal to 5 mGal, for data
derived from aerial gravimetry,
• For the pointwise height, its resolution is by defi-

nition the same as that of gG , while its accuracy is
generally in the range of 1 decimeter

• For DEMs Berry (1999), this can easily reach a
resolution of 10 m and an accuracy of 1 m, but this
data set is available only on part of the continental
area, so we consider it as a tool for an improved
approximation of T at a local level,

• As for gO we have an accuracy ranging from 1 to
10 mGal Wessel and Watts (1988). This data set is
ancillary to the creation of a marine gravity data set
based on SA and oceanographic information,

• For the pointwise marine positioning we have an
accuracy typical of GNSS, in navigation mode,
namely in the decimetric range,

• For bathymetry Berry (1999), we can say that the
global data set has a resolution of 10 � 10 and
an accuracy in the range between one and several
hundreds meters, at least, far from coastal areas.
Such a resolution and accuracy is sufficient for
geodetic purposes, since its corresponding gravity
signal is smoothed when propagated from sea floor
to sea surface.
This is the picture of the situation that we could

summarize by saying that we have global and local
geodetic data sets, which include:
• Globally, the vector T of harmonic coefficients (up

to some degree L) with their covariance matrix; a
data set fgGg and fhGg on ground and a data set
fhOg on ocean, accompanied by an oceanographic
estimate of dynamic height fhDg, the set fbg of
bathymetry,

• Locally, a set of values fgGg with higher resolution
than the global, a DEM fhGg with higher resolution
than the global; or a set of marine gravity values
fg0g and a locally improved bathymetry fbg.
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What is typical of geodesy is that such data sets are
primarily combined in order to formulate the problem
of determining T in a more treatable form.

3 The Combination of Data Sets

This phase of modelling the problem of the determina-
tion of T is critical because on our approach depends
the type of problem we will have to solve in the end.

We recall in this section the approach that has been
used in the past and still is used today, for global as
well as for local modelling. We send to a final para-
graph the discussion of a possible alternative approach.

The global modelling is done of several steps that
we summarize, warning the reader that here we do
not take into account the problem of the unification of
the height datum. Also the line presented below might
not be universal, but it covers the appraoch used for
EGM08 Pavlis (1997).

GLOBAL-STEP 1: Rummel (1993) let W D U be
the value of the gravity potential on the geoid as well
as the normal gravity value on the ellipsoid. Then we
have (usingO as an index to mean on the ocean)

WO �W Š ��.h0 �N/ D ��hD (26.2)

WO �W D UO C TO � U D ��h0 C TO (26.3)

The combination of (26.2), (26.3) gives

TO D �.h0 � hD/; (26.4)

meaning that we can assume to know T on the ocean,
from SA, marine positioning and the model of fhDg.

GLOBAL-STEP 2: from gG;P and HP we compute,
with several approximations, Albertella and Sansò
(1997), WG;P so that the normal height h�

P is also
available and we can compute the free air anomaly
�gP D gG;P � �.h�

P /.
Note that once HP was known from leveling but

nowadays it is much simpler to determine hP from
GNSS observations. This would allow the computa-
tion, at P , of the gravity disturbance ıg D gG � � .

On the contrary, to compute �g from hP , a first
guess geoid eN has to be used to give HP D hP � eN .

GLOBAL-STEP 3: the two data sets fTOg and f�gP g
are block averaged and then merged with fT g by
least squares to produce a new intermediate model

up to a maximum degree L, say L D 100. This
step is a great contribution of the Ohio State Uni-
versity School Rapp (1997) and it has been accom-
plished once in preparation of the OSU91 gravity
model, up to L D 360. Once it was done, its result
has been cast into the above model and it has not been
necessary to repeat it, for the generation of the new
EGM08, up to degree 2160.

GLOBAL-STEP 4: with the help of the intermediate
model one can reduce the data set fTOg to another one
with a much shorter correlation length. This opens the
way to the so-called inverse Stokes theory Barzaghi
et al. (1993), namely the prediction of f�gP g on the
ocean from (reduced) fTOg

GLOBAL-STEP 5: the ground gravity data set f�gP g
is manipulated to produce averaged block values
f�gP g at surface altitude. This is done very much
in the same way as it will be described for the local
modelling.

GLOBAL-STEP 6: the data set f�gP g is downward
continued to the ellipsoid, by using Molodensky’s
theory in the version of Pellinen, Pellinen (1962).

GLOBAL-STEP 7: a final boundary value problem
is solved for a regular grid of �g that now covers the
whole ellipsoid (both land and sea).

This is done for instance by least squares Pavlis
(1997), what is feasible even to very high degrees like
LD 2160, because the corresponding normal system
becomes block diagonal, due to the regularity of the
grid on the ellipsoid.

Despite the difficulty of step 4 and step 6, involv-
ing the solution of improperly posed problems, and
a certain ambiguity in step 5, where the knowledge
of the surface, with respect to which the local ter-
rain correction is done, gets lost, the final result of
the whole procedure is spectacular, as the testing
of the EGM08 model has proved, Newton’s Bulletin
(2009).

As for the local modelling of the geoid, many (but
not all) current approaches can be described as follows:

LOCAL-STEP 1: prepare a local data set f�gP g
which has to include more data (higher resolution) than
those used for global modelling and subtract the cor-
responding �gMP computed from a global model; this
has the effect of shortening very much the correlation
length of the gravity anomaly,

LOCAL-STEP 2: prepare the local DEM, which has
to be finer than the global one and implement a residual
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terrain correction Forsberg (1997) to�gP ; this implies
the definition of some smooth reference DEM and it
has a non-univocal but clear impact in smoothing the
gravity anomaly data,

LOCAL-STEP 3: switch from the residual �g to
the residual T by one of the local solution methods;
one commonly applied theory is that of least squares
collocation Moritz (1980), but Stokes formula with
FFT is too, Schwarz et al. (1990),

LOCAL-STEP 4: restore the contributions of the
global model and of the residual terrain correction,
adding them to the residual T computed in step 3. It has
to be underlined here that the global and local steps
outlined in the paper are so to say along the concepts
of Molodensky’s theory. There are other approaches
where the downward continuation is preceded by a full
removal of the intermediate masses. In this respect we
would like to mention Martinec (1998), Heck (2003),
Sjöberg (2000). This line of thought we call Helmert’s
line. Although the authors are less confident in this
approach, because of the uncertainty of the density of
removed masses, it has to be acknowledged that it is
capable of producing very good results on a practical
ground, as proved e.g. in the Alvernia test promoted by
IGeS in 2008 (http://www.iges.polimi.it/).

In this way the local modelling is by now widely
applied with different strategies and has allowed the
production of many high resolution “local patches of
geoid” with accuracies ranging from 1 to 5 cm, IGeS
(1995). It is interesting though to observe that such
geoid results, in most cases require a calibration on a
number of known geoid undulations, like those derived
from GPS-leveling, beyond the usual adjustment for
the vertical datum; otherwise there was often in the
solution a long wavelength error with an amplitude
in the range of 10 cm, pointing at a certain degree of
ambiguity or incompatibility in gluing local to global
models which however has been damped in the most
recent global model (e.g. EGM08).

Moreover, the appearance of the EGM08 model,
with its very high resolution, has put into question
the possibility of a local improvement. Of course
in principle the addition of new local data should
always allow for a better prediction, specially of the
gradients of T , so the present situation is just that
the local modelling has to be reviewed carefully try-
ing to push further the methods for a better local
solution.

4 Global Models and the Analysis
of Geodetic BVP’s

We like to see a global model, of the form

T.M/ D
�
GM

R

� MX
`D2

X̀
mD�`

T`m

�
�
SR

r

�`C1
Y`m.�/ (26.5)

� D .#; �/;

Y`m D normalized spherical harmonics

as an approximation of the true anomalous poten-
tial of the gravity field. As explained in �3, after a
number of manipulation of the data, in principle the
determination of T is reduced to the classical scalar
linearized Molodensky BVP, namely to find T such
that

8̂
ˆ̂<
ˆ̂̂:

�T D 0 in e̋.@e̋ D eS/
e� � rT C � 0

�
T D �g on eS.telluroid/

T D O
�
1
r3

�
for r ! 1

(26.6)

where

e� .P / D �.P /

�.P /
Š �	.P / (26.7)

� 0 D @�

@h
: (26.8)

The conditions for the existence, uniqueness and
stability of solutions of (26.6) has been an intriguing
problem keeping a few geodesists busy for some years.
One of the most recent result is Sansò and Venuti
(2008) and it can be stated as:

Proposition 1. Assume harmonic coefficients of T are
known and fixed up to a degreeLD 25; assume further
the telluroid QS � fr DeR.�/g has maximum inclination
I with respect to the radial direction er ,

jI j � 60ı; (26.9)

http://www.iges.polimi.it/
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then for every �g 2 L2.�/, i.e. such that

kR�gk2
L2.�/

D 1

4


Z
�g.�/2R3.�/d� < C1; (26.10)

there is one and only one function T harmonic in ˝
and constants a`m such that

a� � rT C � 0

�
T

ˇ̌
ˇ̌
ˇeS

D �g.�/C
LX
`D0

X̀
mD�`

a`mZ`m

ˇ̌
ˇ̌
ˇeS

(26.11)

and in addition
ˇ̌
ˇ̌
ˇT �

LX
`D0

X̀
mD�`

T`m

�
R

r

�`C1
Y`m.�/

ˇ̌
ˇ̌
ˇ

D O

�
1

rLC2

�
n ! 1: (26.12)

The functions fZ`m.r; �/g in (26.11) are auxiliary
functions implicitly defined by the relations

1

4


Z
Z`m.eR.�/; �/Yjk.�/

	
R

eR.�/

jC1

d�

D ı j̀ ımk

�
R

R

�`C1
; (26.13)

with R any fixed radius such that R > supeR.�/.
The function T so found has a gradient in

L2.�/, namely it belongs to the space HH1.eS/ and
furthermore there is a constant c such that

1

4


Z
jrT j2R.�/3d�

< c
1

4


Z
�g2R3.�/d�: (26.14)

This gives us (almost) all what we need to know
about a reasonable theoretical solution of the BVP.
Next, however, we would need to know whether the
basis of spherical harmonics, i.e.

(
S`m.r; �/ D

�
R

r

�`C1
Y`m.�/

)
;

is good or not to perform an approximation procedure.

This is true if fS`mg happens to be a basis of the
solution spaceHH1. Since the traces on S of T 2HH1

are functions belonging to the classical Sobolev space
H1;2.eS/ and vice versa (at least under regularity
conditions on eS ), implying that T 2Hs;2.˝/ with
sD 3=2 (cf. Sacerdote and Sansò (2008)), we may
conclude that fS`mg is a basis in HH1 because this
is true for every exterior Sobolev space, as claimed
by the Runge – Krarup theorem, Krarup (2006).
What Proposition 1 says is that, under the mentioned
conditions, we expect that

lim
M!1 k T � T.M/ kHH1D 0; (26.15)

i.e. T.M/ is an approximation in the sense ofHH1 to T .
This is true if we have a data set �g given over the

whole boundary eS , without errors. Since the norm in
the data side isL2.eS/ we can even say that the solution
is stable with respect to “small” errors in L2.eS/.

Two comments are in order at this point:

Remark 4.1. Although (26.15) says that there is no
limit in principle in the application of global models’
theory as for the maximum degree M , or better no
other limit than the one imposed by the finiteness
of real data, this does not mean that the numerical
approach followed until now will be in future the most
convenient. In fact, though the numerical solution for
a gridded data set on the ellipsoid could be pushed
even beyond the present degree 2160, all the previous
manipulation, and in particular the downward contin-
uation, becomes questionable for very high degrees.
In any case, if not for theoretical reasons at least for
numerical convenience when we will try to go directly
to the actual boundary or a surface close by, like the
telluroid, we shall have to consider the use of a multi-
resolution basis, as described e.g. in Freeden et al.
(1998), Keller (2004). True it is that the remove-restore
method mediated by local solutions is a kind of a naı̈ve
multi-resolution approach developed by the geodetic
community, as it aims at removing separately the con-
tributions of signals with different spectral signature.

Remark 4.2. Although the relation (26.15) implies
that the individual sequence fT`mg.M/, i.e. the
coefficient of degree `, order m for the model with
maximum degreeM , admits a limit, for `;m fixed,

lim
M!1T

.M/

`m D T`m (26.16)
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and the coefficients T`m so found are the true
coefficients of T providing a harmonic series
converging outside a Brillouin radius R

R � max
�

eR.�/; (26.17)

this does not mean that the potential T can be
represented by this series down to the level of eS .
Counter examples are well known in literature Moritz
(1980).

5 Local Models and Local BVP’s

The title of this section is purposely paradoxical. There
are no local BVP’s for the Laplace operator, or more
generally for elliptic problems. At least not properly
posed local problems. So we think that one should
stay within the geodetic tradition and accept that there
can be only a local refinement of the approximation of
T . This indeed calls immediately for the use of some
local basis function. In fact the plane use of spherical
harmonics tends to spread the local behavior every-
where on the sphere, very much like to what happens
in 1D, if we want to use a Fourier’s basis on a small
interval to approximate a function on the whole Œ0; 2
�
interval.

So local splines of the kind already considered
in literature, e.g. in Freeden et al. (1998), Albertella
et al. (1999) have to be applied. However, one
thing has to be clearly stated on a logical ground:
already the idea of performing a local improvement
of the approximation of the gravity field requires
that the spatial correlation between the gravity signal
without and within the local area, should never
be strong, otherwise a local improvement of the
interpolation would correspond to a global worsening
of the approximation. This explains why statistics
has entered so naturally into gravity approximation
theory. At the same time, the assumption above is
realistic only if gross features effects are previously
subtracted from the data, i.e. a step of removing a
global model has first been applied. This, together
with the residual terrain correction removal, usually
leaves a smooth, homogenous gravity signal at
least for patches of the surface with a diameter
of several degrees. When this happens, the theory
of homogeneous, isotropic random fields can be
used, resulting in a choice of the local spline given

by the local covariance function. This approach,
known as LSC, Tscherning (1997), can be viewed
as a process of choosing the base function for a
local approximation by means of a covariance, that
automatically incorporates statistical features of the
signal. Today the large step forward performed in
global modelling with a spatial resolution of �10 km
and an overall accuracy of �30 cm is strongly pushing
the research for a more fitting local approximation
method, resolving knots left unsolved by LSC
theory.

Indeed we already mentioned other methods
applied for the local modelling, providing excellent
results too on a numerical ground Schwarz et al.
(1990), Sideris (1995), Martinec (1998), Sjöberg
(2000).

6 Open Issues and Proposals

In this section we try to summarize our opinions
on issues open to discussion suggesting some
proposals.
(A) Global modelling:
A1 The downward continuation from the surface to

the ellipsoid. This is an improperly posed prob-
lem, stabilized implicitly by the computation pro-
cedure, though we do not have a clear theoretical
control on it. The proposal here could be to
define previously an approximate surface eS not
too far from the actual Earth’s surface S , but
smooth enough to form meaningful area averages
of gravity anomalies. This has the advantage that
a precise residual terrain correction procedure can
be set up and no ambiguity is met in the phase of
restoring, and on the same time data need to be
moved, in computing block averages, only for a
very short distance, reducing instability effects.
Naturally this requires the study of appropriate
numerical methods, for instance a suitable ver-
sion of Galerkin’s method, an important field of
current research, Holota and Nesvadba (2008),

A2 The formulation of the geodetic BVP should be
reviewed. Ideal would be the implementation of
the original altimetry gravimetry problem, where
on eS we give directly block averages of T on
the ocean and some kind of gravity anomaly on
land. Nevertheless as a first step we propose that
the linear Molodensky problem for the free air
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gravity anomaly �g be substituted by the fixed
boundary BVP with the gravity disturbance ıg as
a datum. We believe that the present knowledge
of the geometry of S is sufficient to support this
formulation, which on the other hand has much
better stability properties than Molodensky’s for-
mulation.

The analogous of Proposition 1 for the fixed
BVP: assume that ıg is square integrable on eS
and that the inclination of eS on er is less than
89ı:6, then there is one and only one solution of
the fixed BVP, with a gradient square integrable
on eS .

(B) Local modelling by LSC
B1 Local solutions, in particular LSC, should be

studied, adapted to the ellipsoidal geometry.
When this problem will be solved we will be able
to glue local to a global solution without changing
the harmonicity domain, as it is still done
today.

B2 We have to study a reasonable probabilistic model
for LSC, including a consistent definition of local
covariance functions as particular realizations of
a unique non-homogeneous covariance model.
Again, the solution of this problem will allow
patching local solutions without discontinuities.

Last, but not least, the authors think that, since there
are at least two approaches to local geoid modelling
(Molodensky and Helmert) providing many times solu-
tions of equivalent accuracy, it would be nice to have
a clear study showing their almost equivalence, under
suitable conditions, on a theoretical ground.
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27Omission Error, Data Requirements,
and the Fractal Dimension of the Geoid

Christopher Jekeli

Abstract

The newest global geopotential model, EGM08, yields significantly improved
height anomaly (and geoid undulation) estimates, but not yet at the level of 1 cm
accuracy. Achieving this goal requires higher resolution gravimetric data (among
other advancements, both theoretical and numerical). To determine the necessary
data resolution, a statistical approach using the power spectral density (psd) of
the height anomaly may be used to relate resolution to standard deviation in
omission error. Kaula’s rule was the first such relationship based on a power-
law approximation to the psd. It is shown that the Earth’s topography, whose
fractal nature implies a power-law attenuation of its psd, and which in many cases
is linearly correlated with the gravity anomaly on the basis of Airy’s isostatic
assumption, can be used to design approximations to the psd of the local height
anomaly, thus leading to estimates of the data resolution required to support the
1 cm accuracy level.

Keywords

Omission error • Geoid undulation • Power spectral density • Fractal dimension

1 Introduction

The last decade has witnessed a significant improve-
ment in global geopotential models, not only the most
obvious, being the model(s) derived from the Gravity
Recovery and Climate Experiment (GRACE) satellite
mission launched in March 2002, but also the Earth
Gravitational Model 2008 (EGM08, Pavlis et al. 2008)
developed from a much expanded and enhanced set
of terrestrial measurements, including land and marine
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Division of Geodeticl Science, School of Earth Sciences, Ohio
State University, 125 South Oval Mall, Columbus, OH, USA
e-mail: jekeli.1@osu.edu

gravimetry, satellite altimetry of the oceans, airborne
gravimetry over the Arctic and other regions of the
world, and topographic data from the Shuttle Radar
Topographic Mission (SRTM). While GRACE has
yielded orders of magnitude in increased accuracy at
lower resolution, the compilation of world-wide high
resolution data has produced what may be considered
the new standard of high-degree spherical harmonic
combination geopotential models. With spherical har-
monics complete to degree and order 2160 EGM08
represents a model having 10 km resolution or better
(5 arcmin) anywhere in the world, leading one to ask
whether or how much more gravity data are needed
to produce a corresponding geoid model to a given
accuracy.
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The answer to this question depends on the rela-
tionship between the accuracy and data resolution. In
this connection, one might also ask, what is the next
goal for a global spherical harmonic expansion of the
geopotential. How high in harmonic degree and order
should the next model be developed to satisfy geodetic
needs? Finally, what do these global models tell us
about the Earth’s gravity field? What can they tell us
about the local or regional field? These are questions
that the paper attempts to address, not exhaustively, but
tentatively, although specific conclusions are obtained.

We start with the definition of the disturbing poten-
tial, T , which is the difference between the actual grav-
ity potential of the Earth,W , and the gravity potential,
U , of the normal ellipsoid that rotates with the Earth,
has its mass,M (including that of the atmosphere) and
whose center is at Earth’s center of mass, as well as at
the origin of the coordinate system. Then, the spherical
harmonic expansion of T in terms of spherical polar
coordinates, .r; �; �/, is:

T .r; �; �/ D GM

a

1X
nD2

nX
mD�n

�a
r

�nC1
Cnm NYnm.�; �/;

(27.1)

where G is Newton’s gravitational constant, a is
the radius of the bounding (Brillouin) sphere (often
approximated by the semi-major axis of the mean-
Earth normal ellipsoid), the Cnm are the (unit-less)
Stokes coefficients, and the NYnm.�; �/ are surface
spherical harmonics defined by

NYnm.�; �/ D NPn;jmj.cos �/

�
cosm�; m � 0

sin jmj�; m < 0
(27.2)

The functions, NPn;jmj, are associated Legendre func-
tions, fully normalized so that

1

4


Z Z

�

. NYnm.�; �//
2d� D 1 for alln;m; (27.3)

where � represents the unit sphere. The series con-
verges outside the Brillouin sphere and corresponding
partial (truncated) series of T are valid approximations
only in free space, that is, where T is harmonic (satis-
fying Laplace’s equation); however, see also Sect. 3.

For an arbitrary point, x, on the Earth’s surface, we
approximate the height anomaly as (Bruns’s equation)

�.x/ D 1

�.x0/
T .x/; (27.4)

where � is normal gravity evaluated at the telluroid
point, x0, defined according to the Molodensky map-
ping (Heck 1997). If x is on the geoid, then the height
anomaly is also known at the geoid undulation, N .
Most analyses of the geopotential are performed in
terms of the geoid undulation (or, height anomaly)
through the proportionality given by (27.4). Some care
is required for precise work when using spherical
harmonic expansions of T at points on the geoid that
are below the Earth’s surface, where the truncated
series technically is not valid.

2 Degree Variances and Power
Spectral Density

A particular spherical harmonic model of the geopo-
tential is given by (27.1) truncated at degree, nmax.
Each model has two types of error, the commission
error committed by using inaccurate data to determine
the coefficients (and that, in turn, leads to errors in
derived quantities, like the geoid undulation), and the
omission error due to the finite maximum degree and
order of the model, which defines its maximum resolu-
tion. If "Cnm denotes the error in model coefficients,
then the variance of the error per degree (the error
degree variance) is

�2n."Cnm/ D
nX

mD�n
"C 2

nm; 2 � n � nmax; (27.5)

provided the errors for different orders within a degree
are independent, which can happen only if the data
that are used to determine the coefficients have errors
uncorrelated with respect to longitude (Colombo 1981;
Lemoine et al. 1998). Similarly, the degree variances of
the field coefficients, themselves, are defined as:

�2n.Cnm/ D
nX

mD�n
C 2

nm; n � 2; (27.6)

and this may be understood as a statistical variance
under the usual stochastic interpretation of the geopo-
tential field (Moritz 1980).

Our focus is on the omission error, given by

"TomissionD�GM

a

1X
nDnmaxC1

nX
mD�n

�a
r

�nC1
Cnm NYnm.�; �/:

(27.7)
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It represents an operational limit in the achievable
accuracy of the model – no matter how accurate the
coefficients of the model are, the accuracy of the model
in its totality is limited by its maximum degree, which
ultimately is equivalent (or, at least analogous) to the
maximum data resolution. We assume that the omis-
sion and commission errors are independent, although
this is not strictly true since aliasing errors in the model
spectrum result if the data have resolution higher than
dictated by nmax (see Jekeli 1996). On the other hand,
because of the orthogonality of spherical harmonics,
the harmonics in the omission error are statistically
independent, and the variance of the total (unit-less)
omission error for some fixed r is given by

�2omission.T / D
�

GM

a

�2 1X
nDnmaxC1

�a
r

�2nC2
�2n.Cnm/:

(27.8)

The height anomaly degree variance on the sphere
of radius, a, is defined according to its functional
relationship to the disturbing potential. From (27.1),
(27.4), and (27.6), we have

�2n.�/ D a2�2n.Cnm/; (27.9)

where the approximation, � � GM=a2, was used. The
corresponding omission error variance is the sum of
these degree variances with degrees greater than nmax.
Approximating the geoid by a sphere of radius, R D
6371 km, and neglecting the harmonicity error (evalu-
ating T at points where it is not harmonic), we have

�2n.N / � R2
� a
R

�2nC2
�2n.Cnm/: (27.10)

As seen in the next section, the amplification factor,
.a=R/2nC2 will lead to problems at the very high
degrees. Thus, it is preferable to consider an alternative
representation at local scales.

Instead of a spherical harmonic series, the local
(planar) spectrum of the field may be described by
a discrete Fourier series, if based on discrete data
regularly spaced on the plane. Typical data are the
gravity anomaly, �g, related in planar approximation
to the disturbing potential according to

�g � �@T
@z
; (27.11)

where z is vertical distance, positive upwards. Given a
set of discrete values of the gravity anomaly, �g`1;`2 ,

in a region, their discrete Fourier transform is given by

Gk1;k2 D �x1�x2

N1�1X
`1D0

N2�1X
`2D0

�g`1;`2e
�i2
.k1`1Ck2`2/;

kp D 0; : : : ; Np � 1; p D 1; 2; (27.12)

where the Cartesian coordinates of the �g-values in
the plane are x1 D `1�x1, x2 D `2�x2; and the
corresponding cyclical frequencies are

.f1/k1 D k1 �N1=2

N1�x1
; .f2/k2 D k2 �N2=2

N2�x2
:

(27.13)

The psd of the gravity anomaly can be estimated by
averaging the corresponding periodogram (the square
of the spectrum) over all directions of the frequencies:

˚�g.fk/ D 1

Mk

X
fk


q
.f1/

2
k1

C.f2/2k2

1

�x1�x2
jGk1;k2 j2;

(27.14)

where Mk is the number of frequencies,q
.f1/

2
k1

C.f2/2k2 , that satisfy the summation criterion

in (27.14).
Using (27.4) for the geoid undulation, the rela-

tionship between its spectrum, Uk1;k2 , and that of the
gravity anomaly is

Gk1;k2 D
�
2


q
.f1/

2
k1

C .f2/
2
k2

�
� Uk1;k2 ; (27.15)

where the parenthetical factor accounts for the vertical
derivative (27.11). From (27.14), the psd of the geoid
undulation is then

˚N .fk/ D 1

.2
fk/
2 �2

˚�g .fk/ : (27.16)

At the planar level of approximation, we need not dis-
tinguish between the geoid undulation and the height
anomaly (on the Earth’s surface), and the same psd
holds for both.

It can be shown (Jekeli 2003) that the psd and
degree variances (for any quantity) are related accord-
ing to

˚.fn/ D 2
R2

n
�2n ; (27.17)

where fsubn D n=.2 � 
 �R/.
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3 Global PSD Models

Kaula promoted and developed the idea of a stochas-
tic interpretation of the spherical spectrum of the
gravitational field; and, an often-used rule-of-thumb
(Kaula 1966, p.98), bearing his name, provides a
rough, global estimate of the standard deviation of the
geoid undulation omission error. His model for the
degree variances of the geoid undulation is

�2n.N / D R2 .2nC 1/
10�10

n4
Œm2�: (27.18)

Summing this as in (27.8) yields

�omission.N / D R�10�5
vuut 1X

nDnmaxC1

2nC 1

n4
� 64

nmax
Œm�:

(27.19)

Hence, for nmax D 360, �omission.N /jnmaxD360 D 18 cm.
Many other researchers, notably Rapp (1979), have
devised refinements of this model based on improved
global geopotential models.

Figure 27.1 shows the power spectral density (using
(27.9) and (27.6)) of the height anomaly according
to the EGM96 (Lemoine et al. 1998) and EGM08
models, as well as Kaula’s rule. Here, we note that
coefficients of the EGMs refer to a sphere of radius,
a D 6378136:46m, which is close to the Brillouin
sphere and thus tends to understate the power at the
very high frequencies (degrees) on the Earth’s surface.

It has been suggested that the Earth’s gravitational
potential, like its topography and that of other planets,
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Fig. 27.1 PSDs of the height anomaly according to various
models

behaves like a fractal (e.g., Turcotte 1987). That is,
their psd’s obey power laws, essentially of the form:

˚.f / D bf �˛; f � f0; (27.20)

with constants, ˛, b, where ˛ is related to the dimen-
sion of the fractal. Indeed, Kaula’s rule, (27.18), is
such a power law (compare (27.17) and (27.18) with
(27.20)). Fitting this model to the high frequencies of
the EGM08 psd, one obtains

˚�.f / D bf �˛

D 1:611 � 10�19f �5:306Œm2=.cy=m/2�;

f has units Œcy=m� (27.21)

and integration over frequencies (fmax < f < 1/

with fmax D nmax=.2
R/ yields the following corre-
sponding standard deviation for the omission error (for
the height anomaly):

�omission.�/ D 2043

n1:653max
Œm�: (27.22)

For example, if nmax D 360, then this model pre-
dicts a standard deviation of omission error equal to
�omission.�/jnmaxD360 D 12cm.

This estimate refers to height anomalies on the
Brillouin sphere; whereas, one typically would like the
omission error at the Earth’s surface (or, for the geoid
undulation, on the geoid). Using (27.10) for the degree
variances of the geoid undulation (or, also the height
anomaly at the surface), we notice an unnatural upward
turn from a power-law attenuation at very high fre-
quencies, f � 3 � 10�5 cy=m, or degrees, n � 1200

(see Fig. 27.1). One may conclude that the evaluation
of EGM08 near the Earth’s surface, even if still in free
space, could be in error by several centimeters, espe-
cially at the higher latitudes, just due to the apparent
beginnings of the divergence of the series below the
Brillouin sphere. For example, consider a more natural
power-law extension of EGM08 at R D 6371 km (not
shown, but similar to Kaula’s rule):

˚N .f / D 4:044 � 10�12f �3:898Œm2=.cy=m/2�:
(27.23)

The difference between the cumulative degree vari-
ances of EGM08 from degree 1,200 to 2,160 and the
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integral of this power law over the same range of
frequencies is

R2
2160X

nD1200

� a
R

�2nC2
�2n .Cnm/�2


5:4�10�5Z

3�10�5

f ˚N .f / df

D 4:6 � 10�3m2 (27.24)

which is about 6.8 cm in terms of standard deviation.

4 Local PSD Models

A model such as (27.22) gives a global average of the
omission error. As demonstrated above, it is not partic-
ularly useful for local or regional analyses. Therefore,
locally one may consider the planar psd of the gravity
anomaly and derive a similar power-law model. Three
areas in the USA, shown in Fig. 27.2, were evaluated in
this manner. Areas 1 and 2 represent relatively smooth
topography (and gravity), while Area 3 is rougher due
to the Rocky Mountains. The corresponding psd’s of
the gravity anomaly are shown in Fig. 27.3. Corre-
sponding power-law models of the form of (27.20)
are shown in Fig. 27.4 for the derived height anomaly
psd’s (27.16) in Areas 1 and 3; and Table 27.1 lists the
associated parameters, .b; ˛/, as well as the formulas
for the standard deviations of the omission errors and
the implied required data resolutions for a precision
(omission error, only) of 0.7 cm in the geoid undulation
(or height anomaly).

3 2
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33333333333333333 22222222222222222222222

1111111111111111111111111111111

Fig. 27.2 Areas analyzed for the psd’s of the gravity anomaly
and the topography
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5 PSDs of Topography

In practice, the region of interest likely does not have
a sufficiently dense grid of gravity anomalies from
which to infer the power law that is needed to deter-
mine the required data resolution. In this case, one
may appeal to the known correlation between free-
air gravity anomalies and topographic heights. Using
Helmert condensation layers for the topography and
its isostatic compensation according to Airy’s model,
Jekeli et al. (2009) derived this relationship in terms
of Fourier transforms on the plane (see also Fors-
berg 1985):

F.�g/ D 2
G�F. NH/ �1 � e�2
!D� ; (27.25)
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Table 27.1 Power law parameters and corresponding omission
error standard deviations and required data resolution to achieve
0.7 cm precision in the height anomaly (geoid anomaly). The

power law parameters refer to the height anomaly psd with units
of [m2=.cy=m/2]

Power law Omiss. error st. dev Implied required res.

Global: b D 1:611 � 10�19, ˛ D 5:306 .�N /omission D 2043

n1:653max

Œm� nmax D 2024; 5:3 arcmin

Smooth Area 1: b D 2:802� 10�20, ˛ D 5:434 .�N /omission D 2567

n1:717max

Œm� nmax D 1740; 6:2 arcmin

Rough Area 3: b D 1:753 � 10�17, ˛ D 5:073 .�N /omission D 2883

n1:537max

Œm� nmax D 4500; 2:4 arcmin
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Fig. 27.5 PSDs of topography in various regions (see Fig. 27.2)
using data of various resolutions. DTM2006 is a global model

where D is the depth of isostatic compensation (e.g.,
D D 30 km/; where the heights are given by

NH .Q/ D

8̂
<
:̂
H.Q/; Q 2 land

�
�
1 � �w

�

�
B.Q/; Q 2 ocean

(27.26)

with H the orthometric height and B the (positive)
bathymetric depth, � the density of the crust and �w the
density of sea water; and where ! D p

�2 C 	2 and
�, 	 are spatial frequencies in the cardinal directions
of the plane.

Figure 27.5 shows the psd’s of the topography for
various regions in the USA, all demonstrating essen-
tially a power-law attenuation with frequency. Each of
these local psd’s is determined from the Fourier spec-
trum of the topography using the periodogram method,
with a subsequent azimuthal averaging to yield an
isotropic model (as in (27.14)). The global model
(DTM2006) was obtained from the degree variances of
a spherical harmonic expansion of heights and ocean
depths (Pavlis et al. 2008).
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Fig. 27.6 PSDs of the gravity anomaly and the topographic
height, scaled to an equivalent height anomaly (geoid undula-
tion) psd using (27.16) and (27.25)

The power-law attenuation of these psd’s agrees
with the known fractal nature of the topography
(Mandelbrot 1983). Indeed, the fractal dimension, d ,
of a topographic profile is related to its psd attenuation,
˛0, according to (Turcotte 1987):

2d D 5 � ˛0: (27.27)

Accounting for the two-dimensionality of the isotropic
psd’s in Fig. 27.6 requires an extra factor of frequency
(as can be inferred from the units of the psd); therefore,
with ˛ D ˛0 C 1, their attenuation exponent is related
to the fractal dimension, d , according to

2d D 6 � ˛: (27.28)

From Fig. 27.6, we find ˛ � 2:9, implying that d �
1:55, in reasonable agreement with Turcotte’s d D 1:5.

In the areas of Fig. 27.2, we find strong corre-
lation at the higher frequencies between the grav-
ity anomaly and the topography according to (27.25)
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(see Fig. 27.6). Thus, the gravity anomaly also has
similar fractal characteristics, which could even be
conferred onto the geoid (at the high frequencies). The
fractal dimension of the gravity anomaly profile, there-
fore, is also d D 1:55; while, for the geoid undulation,
where ˛ � 5:3 (Table 27.1), we have d D 0:35.
Whether this qualifies the geoid (profile) as a frac-
tal may be debated, considering Mandelbrot’s (1983)
definition that a fractal dimension should exceed its
topological dimension (equal to 1 for the profile).

In any case, Fig. 27.6 shows that it is appropriate
to deduce a power-law model for the gravity anomaly
and the geoid undulation (height anomaly) psd from
topographic data for the purpose of quantifying the
omission error and determining corresponding data
resolution requirements.

6 Summary Discussion

One of the first tasks in attempting to improve regional
geoid (or, quasi-geoid) models is to determine the
required gravimetric data resolution for a particular
goal in accuracy. Such information then determines
the characteristics of the gravity surveys (e.g., the
track spacing of an airborne mission) and depends on
the roughness of the geopotential field. An old idea,
introduced by Kaula, has been refined here whereby
a model of the power spectral density of the height
anomaly is used to infer the standard deviation of the
omission error due to the lack of sufficient resolution
in the data. It is shown that a global model, such as
EGM08, can yield quite erroneous psd estimates at
high frequency near the Earth’s surface.

Instead, a proper estimate of the psd at high res-
olution requires a local or regional approach. In this
respect, topographic data can serve as an appropriate
proxy, in place of gravimetric data, under the usual
isostatic assumption (Airy’s model). For some regions
in USA with distinctive gravitational characteristics, it
is verified that the topography psd in each case follows
a power-law attenuation in agreement with its known
fractal dimension. This power-law model transfers
to the psd’s of the gravity anomaly and the height
anomaly (or geoid undulation) and provides a simple
way to estimate the standard deviation of the omission
error and consequently the needed data resolution for
a particular accuracy level of the height anomaly in a

particular region. It is noted that where the correlation
between the gravity anomaly and the topography is not
strong (e.g., in tectonic rift and subsidence regions),
the gravity anomaly psd may need to be obtained by
other means.
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FFT. Bull Géodés 59(4):342–360

Heck B (1997) Formulation and linearization of boundary value
problems: From observables to a mathematical model. In:
Sanso F, Rummel R (eds) Geodetic boundary value problems
in view of the one centimeter geoid, Springer, Berlin

Jekeli C (1996) Spherical harmonic analysis, aliasing, and filter-
ing. J Geodes 70(4):214–223

Jekeli C (2003) Statistical analysis of moving-base gravimetry
and gravity gradiometry. Report No.466, Laboratory for
space geodesy and remote sensing research, geodetic sci-
ence, Ohio State University, Columbus, Ohio, 2003

Jekeli C, Yang HJ, Kwon JH (2009) Using gravity and
topography-implied anomalies to assess data requirements
for precise geoid computation. J Geodes. doi:10.1007/
s00190–009–0337-y

Kaula WM (1966) Theory of Satellite Geodesy. Blaisdell,
Waltham

Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK,
Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH,
Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR
(1998) The development of the joint NASA GSFC and the
National Imagery and Mapping Agency (NIMA) geopoten-
tial model EGM96. NASA Technical Paper NASA/TP-1998–
206861, Goddard Space Flight Center, Greenbelt, Maryland,
1998

Mandelbrot B (1983) The Fractal Geometry of Nature. Freeman,
San Francisco.

Moritz H (1980) Advanced Physical Geodesy. Abacus, Tun-
bridge Wells, Kent

Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An earth
gravitational model to degree 2,160: EGM2008. Presented at
the General Assembly of the European Geosciences Union,
Vienna, Austria, 13–18 April 2008

Rapp RH (1979) Potential coefficient and anomaly degree vari-
ance modeling revisited. Report no.293, geodetic science,
Ohio State University, Columbus, Ohio, 1979

Turcotte DL (1987) A fractal interpretation of topography and
geoid spectra on the Earth, Moon, Venus, and Mars. J Geo-
phys Res 92(B4):E597–E601



28Method of Successive Approximations in
Solving Geodetic Boundary Value Problems:
Analysis and Numerical Experiments
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Abstract

After an introductory note reviewing the role and the treatment of boundary
problems in physical geodesy, the explanation rests on the concept of the weak
solution. The focus is on the linear gravimetric boundary value problem. In this
case, however, an oblique derivative in the boundary condition and the need for a
numerical integration over the whole and complicated surface of the Earth make
the numerical implementation of the concept rather demanding. The intention is
to reduce the complexity by means of successive approximations and step by step
to take into account effects caused by the obliqueness of the derivative and by the
departure of the boundary from a more regular surface. The possibility to use a
sphere or an ellipsoid of revolution as an approximation surface is discussed with
the aim to simplify the bilinear form that defines the problem under consideration
and to justify the use of an approximation of Galerkin’s matrix. The discussion is
added of extensive numerical simulations and tests using the ETOPO5 boundary
for the surface of the Earth and gravity data derived from the EGM96 model of the
Earth’s gravity field.
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1 Introduction

In refined studies on gravity potential and figure of
the Earth terrestrial gravity data play an essential role.
Mathematically, one has to deal with boundary value
problems. The concept has an important position in
physical geodesy.

In our considerations W and U will stand for the
gravity and the normal (standard) potential of the
Earth. Hence T D W � U is the disturbing potential,
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g D gradW , � D gradU , g D jgj is the measured
gravity and � D j�j is the normal gravity. Clearly, j � j
means the magnitude of the respective vector.

In practice the determination of T from terrestrial
data usually rests on the solution of Molodensky’s
problem. Nevertheless, in this paper we will follow
a somewhat different concept. Recently, one often
speaks about the so-called gravimetric boundary value
problem. The interest is primarily driven by consid-
erable advances in determining the geometry of the
Earth’s surface through methods of satellite geodesy.
In a linear setting the problem is to find T such
that

�T D 0 in ˝ (28.1)

and

hs; gradT i D @T=@s D �ıg on @˝ (28.2)

where s D �.1=�/ gradU , ıg D g � � is the
gravity disturbance, h:; :i means the inner product of
two vectors in Euclidean three-dimensional space R3,
˝ is the exterior of the Earth, @˝ is the boundary
of ˝ and T is assumed regular at infinity. In par-
ticular T .x/ D O.jxj�1/ as x ! 1, where O
means Landau’s symbol, jxj D .˙3

iD1x2i /1=2 and xi ,
i D 1; 2; 3, are rectangular Cartesian co-ordinates.
Note that ıg represents the input data corrected for
the gravitational interaction with the Moon, the Sun
and the planets, for the precession and nutation and
so on.

In solving boundary value problems of physical
geodesy the integral equation method is often applied.
The approach is usually combined with the method of a
small parameter, which leads to a series representation
of the solution and in principle gives a way how to
solve the problem for boundaries of a more complex
geometry.

Another approach, which in a mathematical
sense yields the classical solution, is Green’s
function method. Green’s function can easily be
constructed for solution domains of elementary shape.
In more general cases additional tools have to be
applied, e.g. a transformation of coordinates as in
Holota (1991). The solution then leads to successive
approximations.

Both the method can be applied to the linear gravi-
metric boundary value problem too. Nevertheless, we
will follow another concept, which is frequently used

in many branches of technique and physics for its
flexibility. It rests on the notion of the weak solution
and the paper ties to results in Nesvadba et al. (2007)
and Holota and Nesvadba (2008).

We will look for a measurable function satisfying
an integral identity connected with the boundary-value
problem in question. As regards function spaces, we
will work with Sobolev’s weighted space W .1/

2 .˝/

endowed with inner product

.u; v/1 �
Z

˝

uv

jxj2 dx C
3X
iD1

Z

˝

@u

@xi

@v

@xi
dx (28.3)

Also the boundary @˝ of the domain ˝ is supposed
to have a certain degree of regularity. Putting ˝ 0 D
R3�˝[@˝ , we will assume that˝ 0 is a domain with
Lipschitz’ boundary.

Example 1. (Neumann’s problem). Put

A.u; v/ D
3X
iD1

Z

˝

@u

@xi

@v

@xi
dx (28.4)

on the Cartesian product W .1/
2 .˝/ � W

.1/
2 .˝/ and

consider an integral identity

A.u; v/ D
Z

@˝

vf dS (28.5)

where f 2L2.@˝/ and L2.@˝/ denotes a space of
square integrable functions on @˝ . In case that (28.5)
holds for all v 2 W

.1/
2 .˝/ the well-known point

is that the identity defines the function u uniquely,
as an element of W .1/

2 .˝/. The claim rests on the
Lax–Milgram theorem, see Nečas (1967) and Rekto-
rys (1977) or Bers et al. (1964). Note that the formu-
lation has also a classical interpretation. Under some
regularity assumptions one can apply Green’s identity
and show that u has to be a solution of Neumann’s
(exterior) problem, i.e.,

�u D 0 in ˝ and
@u

@n
D �f on @˝

(28.6)
where � means Laplace’s operator and @=@n denotes
the derivative in the direction of the unit normal n of
@˝ , see also Holota (2004).
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2 An Oblique Derivative Problem

In order to formulate the linear gravimetric boundary
value problem in terms of an integral identity similar
to (28.5) we have to give the bilinear form A.u; v/ a
more complex structure. In particular we have to put
A.u; v/ D A0.u; v/� A00.u; v/ where

A0.u; v/ D
Z

˝

hgrad u; grad vidx (28.7)

A00.u; v/ D
Z

˝

hgrad v; a � grad uidx

C
Z

˝

vhcurl a; grad uidx (28.8)

and a D .a1; a2; a3/ is a vector field such that ai and
also jxj.curl a/i , i D 1; 2; 3, are Lebesgue measurable
functions defined and bounded almost everywhere on
˝ , see Holota (1997, 1999, 2000, 2001a,b, 2004,
2005).

Moreover, we have to assume that on the boundary
@˝ the vector � D s=hs;ni and the field a are coupled
so that � D n C a � n. Note also that the tie to the
classical formulation of the problem [(28.1) and
(28.2)] requires that f D � �.@U=@n/�1ıgD
hs;ni�1ıg.

Clearly, the form A00.u; v/ represents the oblique
derivative in the boundary condition. It has been shown
in Holota (2000) that the problem may be solved by
means of successive approximations, i.e. we may use a
sequence of functions Œum�1mD0 defined by

A0.umC1; v/ D
Z

@˝

vf dS C A00.um; v/ (28.9)

which is assumed to hold for all v 2 W .1/
2 .˝/ andm D

0; 1; : : : ;1. Conformably to Holota (2000) Œum�1mD0
is a Cauchy sequence in W

.1/
2 .˝/ and in the norm

given by jj:jj1 D .�; �/1=21 it converges to a function

u, which belongs to W .1/
2 .˝/ and is also the solution

of our weakly formulated problem. Nevertheless, we
will integrate this iteration process with the treatment
of another small effect in the next sections.

3 Modification of the Bilinear Form
A0.u; v/

Our aim is to follow the concept of direct methods,
i.e. to express our problem in terms of a system
of linear equations. This also means to compute
the entries of the respective Galerkin matrix. They
in principle represent values of the bilinear form
A.u; v/ for u and v equal to members of the chosen
function basis. However, the computation may be
rather demanding in practice, since the boundary
@˝ of the domain ˝ will not be of an elementary
figure.

It is also worth mentioning that the weak solution
is not defined too efficiently in our particular case.
W

.1/
2 .˝/ is too large. Indeed, the solution, we are

looking for, is a harmonic (and therefore an analytic)
function, whereas functions from W

.1/
2 .˝/ and thus

also the base functions have not such a high degree of
regularity in general. Inspecting the problem, we can
see that it does not mean a principal obstacle. We may
consider just a space H.1/

2 .˝/ of those functions from

W
.1/
2 .˝/ which are harmonic in ˝ and reformulate

the problem, i.e. to look for T 2 H
.1/
2 .˝/ such

that

A.T; v/ D
Z

@˝

vf dS (28.10)

holds for all v 2H.1/
2 .˝/, cf. Holota (1999, 2000,

2001a,b, 2004, 2005). In addition, for reasons that will
be clear in the sequel, we also rearrange the identity
(28.10) in the following way

A0.T; v/ D
Z

@˝

vf dS C A00.T; v/ (28.11)

It will be our starting point for an iteration solu-
tion.

Recall now, that the analyticity of functions
from H

.1/
2 .˝/ gives us a possibility to apply

Runge’s property of Laplace’s equation [see e.g. Bers
et al. (1964) and Krarup (1969) ] and to extend all
the functions considered to a domain ˝�, that has a
“simpler boundary” and contains the original domain
˝ , i.e., ˝ 
 ˝�. This is of practical importance.
Indeed, we can modify the bilinear form A0.u; v/
slightly. In particular we put
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A�.u; v/ D
Z

˝�

hgrad u; grad vidx (28.12)

for all u; v 2 H.1/
2 .˝�/ and our problem will be to find

T 2 H.1/
2 .˝�/ such that

A�.T; v/ D
Z

@˝

vf dS C A00.T; v/C F.T; v/ (28.13)

holds for all v 2 H.1/
2 .˝�/, whereas

F.T; v/ D A�.T; v/� A0.T; v/

D
Z

D

hgradT; grad vidx (28.14)

andD D ˝��˝ . Recall in this connection that (under
our assumptions concerning the regularity of @˝) we
also have that the restriction to ˝ of the family func-
tions of H.1/

2 .˝�/ is dense in H.1/
2 .˝/, so that a basis

in H.1/
2 .˝�/, restricted to ˝ is a basis of H.1/

2 .˝/.

4 Successive Approximations

Our aim is now to solve the integral identity (28.13) by
means of successive approximations. We will consider
a sequence of functions ŒTk�1kD0 defined by

A�.TkC1; v/ D
Z

@˝

vf dS C A00.Tk; v/C F.Tk; v/

(28.15)

valid for all v 2 H.˝�/ and k D 1; : : : ;1. For this
purpose we first deduce from (28.15) that

A�.TkC2 � TkC1; v/ D A00.TkC1 � Tk; v/

CF.TkC1 � Tk; v/ (28.16)

holds for all v 2 H.˝�/ and note that on the right
hand side A00.TkC1 � Tk; v/ and F.TkC1 � Tk; v/, for
TkC1 � Tk fixed, are bounded linear functionals of the
variable v. Indeed, denoting by jjA00jj the norm of A00,
we can find in Holota (2000) that

jjA00jj � C jjTkC1 � TkjjH.1/
2 .˝/

(28.17)

where C is a constant. Clearly, this also yields that

jjA00jj � C jjTkC1 � TkjjH.1/
2 .˝�/

(28.18)

since ˝ 
 ˝�.
Similarly, denoting by jjF jj the norm of F we can

easily deduce that

jjF jj � jjTkC1 � TkjjH.1/
2 .˝�/

(28.19)

Moreover, one can even show that there exists a con-
stant � < 1 such that

jjF jj � �jjTkC1 � TkjjH.1/
2 .˝�/

(28.20)

The proof has been given in Holota (2005) for func-
tions of equally limited spectrum, but it can be easily
generalized for harmonic functions, i.e. forH.1/

2 .˝�/.
Return now to the bilinear form A�.u; v/ and

assume that ˝ 0 D R3 � N̋ � is a star-shaped
domain with respect to the origin (and has Lipschitz’
boundary). Under this assumption

jjvjj2
W
.1/
2 .˝�/

� ˛

Z

˝�

jgrad vj2dx (28.21)

for all v 2 W
.1/
2 .˝�/ with ˛ D 5. The proof can be

found in Holota (1997). Hence

A�.u; u/ � 1

˛
jjujj2

H
.1/
2 .˝�/

(28.22)

holds for all u 2 H.1/
2 .˝�/, i.e., A�.u; v/ is an elliptic

bilinear form. In addition, one can easily verify that

A�.u; v/ � jjujj
H
.1/
2 .˝�/

jjvjj
H
.1/
2 .˝�/

(28.23)

The properties of A�.u; v/ and the boundedness of the
functionals on the right hand side of (28.16) make it
now possible to apply Lax–Milgram’s theorem, see
Nečas (1967), Rektorys (1974) or Bers et al. (1964).
It allows us to deduce that

jjTkC2 � TkC1jjH.1/
2 .˝�/

� ˛.jjA00jj C jjF jj/
� cjjTkC1 � TkjjH.1/

2 .˝�/

(28.24)
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where c D ˛.C C �/. Hence for any integer p > 0

jjTkCp � TkC1jjH.1/
2 .˝�/

� ckC1

1 � c
jjT1 � T0jjH.1/

2 .˝�/

(28.25)
which yields jjTkCp�TkC1jjH.1/

2 .˝�/
! 0 for k ! 1,

provided that c < 1. Under this assumption ŒTk�1kD0
is a Cauchy sequence in H.1/

2 .˝�/ and converges to a

function T 2 H.1/
2 .˝�/.

Obviously, the problem, which needs discussion, is
the magnitude of the parameters ˛, C and � in combi-
nation with the condition c D ˛.C C �/ < 1. Indeed,
the analysis above rests but only on “a priory” esti-
mates. As known, they usually are rather pessimistic
and here also associated with certain restrictions on the
shape of the domain ˝ . For these reasons numerical
tests, we will add in the sequel, will have a better
instructive value.

5 Interpretation in Terms of Bases

Prior to numerical computations we rearrange the
identity (28.15) slightly, using the fact that Tk and v
are function from H

.1/
2 .˝�/, thus sufficiently regular

in the closure of the domain ˝ , i.e. in N̋ D ˝ [ @˝ .
Referring to Holota (1997, 2000), we can write that

A00.Tk; v/ D
Z

@˝

vh� � n; gradTkidS (28.26)

Moreover, recalling (28.14), we easily obtain

A�.TkC1 � Tk; v/ D
Z

@˝

vŒf C h� ; gradTki�dS

(28.27)
since

A0.Tk; v/ D
Z

˝

hgradTk;grad vidx

D �
Z

@˝

vhn; gradTkidS (28.28)

Alternatively, identity (28.27) can be also written as

A�.TkC1 � Tk; v/ D
Z

@˝

v
1

hs;ni Œıg C hs; gradTki�dS

(28.29)

The meaning of the right hand side is obvious. Consid-
ering the structure of the boundary condition for T , we
can see that, successively, the term hs; gradTki gener-
ates the opposite of the measured gravity disturbance
ıg, provided that ŒTk�1kD0 is a convergent series.

Finally, the identity (28.29), valid for all v 2
H.˝�/ and k D 1; : : : ;1, can be taken as a natural
starting point of a numerical solution. Indeed, one can
approximate Tk by means of a linear combination

T
.n/

k D
nX
iD1

c
.n/

i;k vi (28.30)

where vi are members of a function basis ofH.1/
2 .˝�/

that generate an n�dimensional subspace Hn.˝
�/ D

spanfvi ; i D 1; : : : ; ng and c.n/i;k are scalar coefficients,

c
.n/

i;k D c
.n/
i;0 C

kX
jD1

.�c
.n/
i;j / (28.31)

with increments�c.n/i;j

�c
.n/
i;j D c

.n/
i;j � c.n/i;j�1 (28.32)

that can be successively obtained for j D 1; : : : ; k

from the following system of linear equations

nX
iD1

�c
.n/
i;jC1A

�.vi ; vm/

D
Z

@˝

vm
1

hs;ni ŒıgChs; gradT .n/j i�dS (28.33)

wherem D 1; : : : ; n.

6 Approximation by a Sphere: Test

The exterior of the ETOPO5 surface was used for
the domain ˝ . The real gravity potential W was
simulated by means of the Earth’s gravity field
model EGM96, see Lemoine et al. (1998). The input
gravity disturbances ıg on the ETOPO5 boundary,
see Fig. 28.1, were referred to the normal gravity
potential U with parameters given by the GRS80, see
Moritz (2000).

For the numerical integration on the right hand
side of (28.33) vertices of an icosahedron were
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Fig. 28.1 Simulated gravity
disturbances ıg

Fig. 28.2 Icosahedron refinement

projected onto the ETOPO5 boundary surface.
The triangles obtained in this way were used for
generating hierarchical triangulation of the boundary,
see Fig.28.2.

In the integration Romberg’s method was exploited
together with Richardson’s extrapolation, which
increases the accuracy and provides feedback in the
control of the integration error.

For ˝� the exterior of a sphere of radius R was
taken. In this case one can easily compute the repro-
ducing kernel K.x; y/ of the space H.1/

2 .˝�/. Indeed,
referring to Holota (2004), for jxj � R and jyj > R (or
jxj > R and jyj � R/ we have

K.x; y/ D 1

4
R

1X
nD0

2nC 1

nC 1
znC1Pn.cos / (28.34)

where z D R2=jxjjyj and  is the angle between y
and x. Moreover, we find the closed form

K.x; y/ D 1

4
R

�
2z

L
� ln

LC z � cos 

1 � cos 

�
; (28.35)

where L D .1 � 2z cos C z2/1=2, cf. Tschern-
ing (1975) and Neyman (1979). Recall in particular
that the reproducing kernel K.x; y/ generates a
function basis

vi .x/ D K.x; yi /; i D 1; 2; : : : ; n; : : : ; (28.36)

in the space H.1/
2 .˝�/, see Sansò (1986) and that the

functions given by (28.36) have some advantages.
In (28.33) they yield the entries of matrix ŒA��
in a straightforward way. Indeed, A�.vi ; vm/ D
K.yi ; ym/.

Note finally that in our experiment the parking grid
of the points yi , i D 1; 2; : : : ; n, was given by vertices
of the 6th level of the icosahedron refinement (see
Fig. 28.2), so that the dimension n of the approxi-
mation space Hn.˝

�/ equals 40962. The radius R
agreed with to the minor axis of the GRS80 reference
ellipsoid and the height of the point yi was ca. 93 km.
The structure of the matrix A�.vi ; vj / is shown in
Fig. 28.3.

Return now to the disturbing potential T D W �U .
Its values simulated on the ETOPO5 boundary surface
can be seen from Fig. 28.4. In the sequel the potential
T is used as an “exact” solution and is confronted with
the outcome of the individual iteration steps expressed
by (28.29)–(28.33).

In the first iteration step T
.n/
0 D 0 was taken

for an initial approximation. Subsequently T .n/1 was
obtained in the approximation space H40962.˝

�/ . The
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Fig. 28.3 Structure of the
matrix ŒA�� for n D 40962

Fig. 28.4 Disturbing potential T on the ETOPO5 boundary surface

deviations of T .40962/1 from T are illustrated in Fig. 28.5
and globally may be characterized by the following
triad of values � min : W �51GPU, max.: 89GPU,
rms: 6:1GPU (GPU – geopotential unit, 1GPU �
1m2s�2, roughly corresponding to 10 cm of geoidal
height).

Subsequently, a few initial iteration steps indicated a
slight improvement. In particular deviations of T .40962/3

from T , as illustrated in Fig. 28.6, may be added of

the following global characteristics � min.: �49GPU,
max.: 62GPU, rms: 3:7GPU. However, a continuation
of the iteration procedure step by step demonstrated
divergence, especially in polar regions. The result
indicates that in general a sphere is too far from the
boundary of the domain ˝ , i.e. too elementary to be
taken in quality of the domain ˝�. This motivated the
following experiment, which is discussed in the next
paragraph.
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Fig. 28.5 Deviations of the
1st iteration T .40962/1 from T

Fig. 28.6 Deviations of the
3rd iteration T .40962/3 from T

7 Approximation by an Ellipsoid:
Test and Concluding Remarks

Considering the conclusions above we have reasons
to assume that, possibly, the exterior of an ellipsoid
of revolution, if used in quality of ˝�, could lead to
better results. This, however, is associated with more
complicated formulas for the computation of entries
in the matrix ŒA��. Unfortunately, they in general do
not offer closed form expressions, but only series, in
contrast to (28.35).

For simplicity reasons the function basis of the
approximation space Hn.˝

�/ has been generated by
the reciprocal distance, i.e.,

vi .x/ D 1

jx � yi j
; i D 1; 2; : : : ; n (28.37)

and for the computation of the entries formulas derived
in Holota (2001a, b) have been used. Subsequently, we
took n D 163842 as the dimension of the approxima-
tion space Hn.˝

�/, which resulted from the 7th level
of the icosahedron refinement.
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Fig. 28.7 Deviations of the
1st iteration T .163842/1 from T

Fig. 28.8 Deviations of the
4th iteration T .163842/4 from T

The purpose of this experiment primarily was to
check whether the applied formulas represent the
entries of the matrix ŒA�� properly. In the experiment,
therefore,˝ means but only the exterior of an ellipsoid
of revolution with parameters given by the GRS80. As
to ˝�, here also the outer space of @˝ was taken, i.e.
˝� D ˝ . The points yi were situated on an ellipsoid
level at the depth of ca. 60 km. The gravity potential
W was simulated by means of the EGM96 again
since the number of parameters of this model is better
balanced with the dimension of the approximation
space H163842.˝

�/ than in the case of the EGM08,

which is much finer. Finally, T D W � U has been
used in quality of an “exact” solution.

In the first iteration step T .n/0 D 0 was taken for
an initial approximation, as in Sect. 6. By analogy
T
.n/
1 was obtained in H163842.˝

�/. The deviations

of T .163842/1 from T are illustrated in Fig. 28.7 and
globally may be characterized by the following values
� min.: �7:4GPU , max.: 6:4GPU , rms: 2:1GPU .
Stress that these results actually offer a quality test
showing the accuracy of the numerical representation
of the matrix ŒA��. It is clear that the representation is
not quite accurate.
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Nevertheless several subsequent iteration steps that
followed our scheme given by (28.29)–(28.33), though
with an approximate ŒA�� (in the sense as above),
led quickly to a considerable improvement. Deviations
of T .163842/4 from T , as illustrated in Fig. 28.8, are
substantially smaller. Globally they may be character-
ized by the following values � min.: �7:1GPU , max.:
6:6GPU , rms: 0:32GPU .

The experiment has been also repeated, even for @˝
given by the ETOPO5 boundary (and @˝� being the
ellipsoid of revolution as above). The results were very
close to those already obtained (for @˝ being an ellip-
soid of revolution) and clearly indicate convergence of
the procedure. We take them as a strong stimulus and a
reliable springboard for further investigations, analyses
and numerical tests in solving the discussed topic. Our
intentions are also supported by Sansò and Sacerdote
(2008).
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29On the Comparison of Radial Base Functions
and Single Layer Density Representations
in Local Gravity Field Modelling from Simulated
Satellite Observations

M. Weigelt, W. Keller, and M. Antoni

Abstract

The recovery of local (time-variable) gravity features from satellite-to-satellite
tracking missions is one of the current challenges in Geodesy. Often, a global
spherical harmonic analysis is used and the area of interest is selected later on.
However, this approach has deficiencies since leakage and incomplete recovery of
signal are common side effects. In order to make better use of the signal content,
a gravity recovery using localizing base functions can be employed. In this paper,
two different techniques are compared in a case study using simulated potential
observations at satellite level – namely position-optimized radial base functions
and a single layer representation using a piecewise continuous density. The first
one is the more common approach. Several variants exist which mainly differ
in the choice of the position of the base function and the regularization method.
Here, the position of each base is subject to an adjustment process. On the other
hand, the chosen radial base functions are developed as a series of Legendre
functions which still have a global support although they decay rapidly. The more
rigorous approach is to use base functions with a strictly finite support. One
possible choice is a single layer representation whereas the density is discretized
by basic shapes like triangles, rectangles, or higher order elements. Each type
of shape has its own number of nodes. The higher the number of nodes of a
particular element, the more complicated becomes the solution strategy but at the
same time the regularity of the solution increases. Here, triangles are used for the
comparison. As a result, the radial base functions in the employed variant allow
a modeling with a minimum number of parameters but do not achieve the same
level of approximation as the discretized single layer representation. The latter do
so at the cost of a higher number of parameters and regularization. This case study
offers an interesting comparison of a near localizing with a strictly localizing base
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function. However, results can currently not be generalized as other variants of the
radial base functions might perform better. Also, the extension to a GRACE-type
observable is desirable.

Keywords

Regional gravity field recovery • Radial base function • Single layer
representation

1 Introduction

This research aims at the recovery of local gravity
signal from satellite data as provided by the CHAl-
lenging Minisatellite Payload (CHAMP) or the Gravity
Recovery And Climate Experiment (GRACE). The
common procedure is to derive spherical harmonic
coefficients, which have a global support and need an
infinite amount of coefficients in order to represent a
space-limited function. As the development is trun-
cated at a maximum degree, a spatially restricted signal
cannot be fully represented by a spherical harmonic
series, e.g. Barthelmes (1986) and Simons et al.
(2006). Figure 29.1 shows an example of residual
signal which has not been recovered by the spherical
harmonic analysis using satellite-only data. For an arc
crossing the Himalayan mountains in August 2003,
the K-band range rate observation has been compared
to numerically integrated velocity differences using
GGM02S (Tapley et al. 2005) up to degree and order
110 which is the recommended maximum degree. The
procedure has been repeated with GGM02C, complete
to degree 150, which contains besides the GRACE
observations also terrestrial observations. Since the
GGM02S residuals are obviously correlated with the
topography, gravity signal is still left in the K-band
range rate observations. Note that the global sup-
port is not the only but one of the reasons for the
discrepancies.

As an alternative to the spherical harmonic solu-
tion, localizing base functions can be used. Here, the
approximation quality of so-called position-optimized
radial base functions (RBF) and a single layer repre-
sentation using triangular elements is tested in a case
study. It is shown that position-optimized radial base
functions enable a reasonable approximation with a
minimum number of base functions, whereas the single
layer representation achieves better approximations at
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Fig. 29.1 Top: K-band observation vs. integrated velocity dif-
ferences using GGM02S (gray) and GGM02C (black) for an
arc crossing the Himalayan mountains in August 2003. Bottom:
Topographic profile along the arc

the cost of a higher number of parameters and regular-
ization.

Section 2 outlines the processing scheme of the
position-optimized radial base functions. Section 3
introduces the single layer representation and a
simulation study is presented in Sect. 4, in which the
two different approaches are applied to recover two
simulated gravity signals from potential observations
along a satellite orbit.

2 Position-Optimized Radial Base
Functions

Radial base functions have been applied to satellite-
to-satellite tracking data and terrestrial observations
before. Eicker (2008) placed point masses on a reg-
ular grid and estimated local gravity solutions from
CHAMP and GRACE. The approach remains linear as
only a scale factor needs to be estimated, cf. (29.1),
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but regularization is necessary in order to counteract
overparametrization. Barthelmes (1986) established
the basis for an optimization of the position of point
masses, which enables a minimization of their number
at the cost of solving a non-linear problem. Antoni
et al. (2007) considered the center of each base as
well as the shape factor as unknown which are adjusted
together with the scale factor. In order to solve the non-
linear problem, an iterative procedure is established
which is referred to as position-optimized radial base
functions in the following. Wittwer (2009) combines
both strategies by starting on a coarse grid which is
subsequently refined by adding additional base func-
tions at the location of the largest residuals. The depth
of the base function is then subject to an adjustment
using the closest observations. A data-adaptive strategy
is introduced by Klees et al. (2008) which selects the
optimal depth of the spherical radial base functions by
applying a generalized cross validation.

Here, the procedure of Antoni et al. (2007) is
applied. The radial base functions form a set of localiz-
ing functions which are isotropic, i.e. symmetric to the
center point of the base function. The basic equation is
given as

V D GM

R

BX
bD1

�b

NX
nD1

�
R

r

�nC1
�b .n/ Pn .cos b/;

(29.1)
where GM is the geocentric gravitational constant, R
the mean Earth radius, B the number of base functions
in use, N the maximum degree of development, �b
the scale factor and �b the shape parameter, which is
degree dependent and defines the shape of the local
base function. The Legendre polynomials Pn have
as argument the cosine of the spherical distance  b
between the position of each base function and any
point of interest .�; #; r/, where � is the longitude, #
the co-latitude and r the radius. The base functions are
centered at the position .�b; #b; rb/.

Figure 29.2 shows the algorithm in order to estimate
the unknown parameters .�b; �b; �b; #b/ of the radial
base functions. The radius rb is fixed to the mean Earth
radius. The pre-processed signal may or may not be
reduced using long-wavelength data, e.g. from a global
model, which might be necessary in order to calculate
local gravity solutions. Initial shape parameters are
selected and initial positions need to be derived from
the data. Since in the linear combination of radial base

Fig. 29.2 Workflow for the iterative search and optimization of
the radial base function parameters

functions each coefficient can be positive or negative,
each base function can produce a local maximum or
minimum in the data. Therefore, local extrema are
chosen as the initial guess for the positions of the base
functions. They are used for a first (linear) adjustment
in order to get initial values for the scale factors. All
initial values are then improved by using a nonlinear
least-squares solver, which is based on the Levenberg–
Marquardt algorithm (Marquardt 1963). The function
to be minimized is the sum of the squares of the
simulated potential observations and the potential val-
ues produced by the radial base functions. Boundary
conditions ensure that the parameters remain in prede-
fined intervals. The procedure is repeatedly applied till
the algorithm does not add new base functions. More
details about the procedure can be found in Antoni
et al. (2007) and Weigelt et al. (2008).

3 Single Layer Representation
with a Finite Number of Surface
Elements

An alternative approach is to consider strictly space-
limited functions. The potential is modeled by a single
layer, which results in the necessity to evaluate a
surface integral. The surface is decomposed into a
finite numberN of surface elements˝i . The unknown
parameters are the surface mass density � which are
approximated by piecewise polynomials defined on
rectangular or triangular elements. For the simulation
study here, triangular elements are used and the single
layer density is approximated by a linear polynomial
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on each triangular element. The basic equation is then
given as

V .x/ D G

4
 �R
NX
iD1

3X
kD1

�i;k

Z

˝i

˚i .y/
kx � ykdy; (29.2)

where �i;k is the density value in the k-th vertex of the
triangle ˝i and x and y denote the coordinates of the
point of interest and the location within the boundary
element, respectively. ˚i is the shape function with
the property that ˚i.yj /D ıi;j , whereas yj is the
j -th vertex of ˝i . The integral in (29.2) becomes a
double integral over the triangle, which is planar in
the latitude–longitude domain. Triangles offer a high
flexibility in the placement of the vertices and thus in
the discretization of the single layer density but the
choice is far from being trivial. One possible choice
is to search, by analogy to the procedure of the radial
base functions, for extrema in small subset of the
data, e.g. 1ı square elements, and place the vertices
there.

The idea of using a single layer representation with
a finite number of (rectangular) boundary elements in
satellite geodesy is not new. Rowlands et al. (2005)
and Lemoine et al. (2007) use the so-called MASCON-
approach to derive monthly time-variations of the
gravity signal in selected basins from GRACE data.
The surface mass densities are derived by numerically
combining the partial derivatives of the K-band
range observations towards the spherical harmonic
coefficients with the partial derivatives of the spherical
harmonics with respect to the surface mass densities.
However, the single layer representation is expanded
in spherical harmonics although it is possible to use
elements with a distinct spatial support directly. The
primary selection criteria are the order of the elements,
the analytical and numerical evaluation of the integral
in (29.2) and the necessity to apply regularization.

4 Simulation Study

The approximation quality of the two approaches is
compared by applying the algorithms to potential
observations with two different properties. In the first
case (A, Fig. 29.3, left), the signal is formed by a
single point mass at a depth of 125 km resulting in an
isotropic signal structure. A more complex signal is
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Fig. 29.3 Simulated gravity signal at the Earth’s surface: in
Case A, a single point mass is used in order to create a simple
signal structure; in Case B, 4,225 point masses form a complex
signal
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Fig. 29.4 Case A: difference between recovered signal and
reference: radial base functions on the left, single layer repre-
sentation using triangles on the right

created by placing 4,225 point masses at a depth of
120–130 km, shown in Fig. 29.3, right.

For every source field, noise-free potential obser-
vations are generated along a Keplerian orbit with a
height of 385 km for a period of 30 days and a 5 s
sampling resulting in 3,204 data points in the area of
interest. These are analyzed using the two algorithms
and the results are validated in the spatial domain
against a reference solution generated from the source
field directly.

Figure 29.4 shows the results for the case of a
single point mass. The single layer solutions inhibits
slightly more artifacts but looking at the statistics in
Table 29.1 reveals that both approaches achieve similar
approximations. The important point is that the radial
base functions achieve this quality with only 13 base
functions and without regularization whereas in case
of the single layer representation 416 base functions
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Table 29.1 Statistics of the comparison for the two cases: the
signal is given in absolute values in the denoted units; the
difference � is given as relative quantity with respect to
the signal

Mean RMS Max Min
.m2=s2/ .m2=s2/ .m2=s2/ .m2=s2/ Corr

Case A:
Signal 11:4858 13:6770 63:7761 5:1237 –
�RBF 0:0018% 0:40% 0:6% 23:3% 99:99%

�Triangle 0:0016% 0:80% 2:1% 36:3% 99.98 %
Case B:
Signal 18:5060 20:7034 1:6596 44:0252 –
�RBF 0:5522% 17:98% 56:2% 1156:3% 92:02%

�Triangle 0:0050% 1:06% 2:1% 52:8% 99:97%
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Fig. 29.5 Case B: difference between recovered signal and
reference: radial base functions on the left, single layer repre-
sentation using triangles on the right

(triangles) are used and regularization in form of a
truncated singular value decomposition needs to be
applied.

In case of the complex signal structure (Case B,
Fig. 29.5) the single-layer representation outperforms
the radial base functions simply due to the higher num-
ber of parameters but again at the cost of regulariza-
tion. The algorithm of the radial base functions placed
only 20 base functions and achieved a relative RMS-
error of less than 20%. It also shows large maximum
and minimum differences which are explainable by the
low number of base functions. Obviously and with this
low number, distinct features are easier to model than
complex signals. Note that the radial base functions
are able to achieve better approximation levels by
introducing more base functions but regularization will
become necessary, as well. On the other hand, the
single layer representation seems to be a very flexible
tool for the modeling of any type of structure in the

data. It needs to be investigated if overparametrization
can be minimized (or even avoided) by choosing a
proper discretization of the single layer density.

Conclusion

The results shown here are currently very prelim-
inary as the test scenario uses noise-free data, is
restricted to potential observations and only two
variants of the approaches are investigated. Never-
theless, it can already be concluded that radial base
functions are able to achieve very good approxima-
tions with a minimum number of base functions,
e.g. only 20 in case of the complex signal structure.
For better level of approximations, either more base
functions, e.g. on a grid, or other methods like the
single layer representation need to be applied which
will quickly lead to overparametrization. For a more
complete picture of the performance of the two
approaches, the tests need to be extended to other
type of observables, e.g. the K-Band range rate of
GRACE and or terrestrial observations, and to dif-
ferent variants of piecewise polynomial single layer
representations as well as of radial base function
representations.
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30Finite Elements Solutions of Boundary Value
Problems Relevant to Geodesy

Z. Fašková, R. Čunderlı́k, and K. Mikula

Abstract

The paper is aimed at a solution to the boundary value problem (BVP) with the
Dirichlet and the Neumann boundary conditions by the finite element method
(FEM). The computational domain for global gravity field modeling is 3D space
above the Earth bounded by the Earth’s surface and upper spherical boundary. For
local gravity field modeling on continental scale we choose only part of the Earth’s
surface and create four additional side boundaries. On the Earth’s surface, the
gravity disturbances generated from DNSC08 altimetry-derived data or EGM2008
geopotential model are considered. The disturbing potential on the upper spherical
and side boundaries is generated from satellite model ITG-Grace. The derivation
of FEM for this problem including the main discretization ideas is presented.
Global quasigeoidal experiments and local refinements are performed. Later, solu-
tions gained with linear and quadratic elements are compared and the influence of
Dirichlet BC on the side boundaries on the local solution is studied. All numerical
results are tested with potential generated from EGM2008 geopotential model.

Keywords

Boundary value problem with the Dirichlet and the Neumann boundary condi-
tions • Finite element method • Global and local gravity field modeling

1 Introduction

Study of gravity field modeling is one of the most
important theoretical and practical tasks of recent
geodesy. Nowadays, the common approaches to the
global gravity field modeling are using spherical

Z. Fašková (�) � R. Čunderlı́k � K. Mikula
Faculty of Civil Engineering,
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mikula@math.sk

harmonics and precise local modeling by FFT-based
methods, see Sideris (1986), and geodetic collocation,
see Tscherning (1978). From numerical methods,
boundary element method (BEM) has been used
by various groups, see Klees (1992), Klees et al.
(2001) and Čunderlı́k et al. (2008). In case of the
finite element method (FEM), the pioneering work
has been done by Meissl (1981) and Shaofeng
and Dingbo (1991). In spite of above-mentioned
approaches, where the solution is sought on Earth’s
surface or its approximation, we present numerical
solution computed in 3D computational domain
above the Earth. We formulate BVP consisting of
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Laplace equation outside the Earth accompanied by
the Neumann as well as the Dirichlet BC. FEM leads
to the solution of sparse symmetric linear systems
which give the disturbing potential solution in every
discrete node of the 3D computational domain.

2 Formulation of the BVP
with the Dirichlet
and the Neumann BC

To formulate our BVP, we consider the linearized fixed
gravimetric BVP (cf. Koch and Pope 1972; Holota
1997, 2005; Čunderlı́k et al. 2008).

��T .x/ D 0; x 2 R3 �˝; (30.1)

hrT .x/; s.x/i D �ıg.x/; x 2 @˝; (30.2)

T .x/ ! 0 as jxj ! 1; (30.3)

where T .x/ is the disturbing potential defined as a
difference between the real and normal gravity poten-
tial at any point x under the assumptions discussed
in Holota (1997), ıg.x/ is the gravity disturbance and
s.x/ D rU.x/=jrU.x/j. It is very important.

In spite of the BVP (30.1)–(30.3) dealing with
the infinite domain, in our approach we construct
an artificial boundary �2 � @˝ away from the
approximate Earth surface Fig. 30.1. Moreover in
continental experiments we restrict our computations
only to a partial domain ˝ depicted in Fig. 30.1
as well. The surface gravity disturbances in (30.2)
represents the oblique derivative BC (neglecting
the deflection of the vertical). In order to get the
Neumann BC we project the oblique derivative BC

R2

R1

Γ1 : 1, 2, 3, 4
Γ2 : 5, 6, 7, 8
Γ3 : 1, 2, 6, 5
Γ4 : 2, 3, 7, 6
Γ5 : 3, 4, 8, 7
Γ6 : 4, 1, 5, 8
Ω  : 1, 2, 3, 4, 5, 6, 7, 8

Φ

5

8

4

1
2

3

6

7

Λ

Fig. 30.1 Illustration of the computational domain

into the boundary �1, i.e., @T .x/
@n�1

is approximatelly

equal to �ıg.x/ � cos�.x/, where �.x/ is the angle
† .Ns.x/; Nn�1.x//, see Čunderlı́k et al. (2008). On the
upper spherical boundary �2 D fxI jxj DRg and side
boundaries �3;:::;6 � @˝ the Dirichlet BC is prescribed.

Then our BVP is defined as follows:

��T .x/ D 0; x 2 ˝; (30.4)

@T .x/
@n�1

D �ıg�.x/ D �ıg.x/ � cos�.x/ (30.5)

T .x/ D TSAT .x/; x 2 �i ; i D 2; : : : ; 6; (30.6)

where TSAT represents the disturbing potential gener-
ated from a satellite geopotential model and �.x/ is
angle † .Ns.x/; Nn�1.x//; x 2�1. It is worth to notice that
the Neumann problem (30.4)–(30.5) is in certain sense
an approximation of the geodetic BVP because most
of the Earth is flat (e.g. ocean) and there the normal to
the ellipsoid is close to the normal of the surface; and
also because many actual solution methods for BVP
operate first a reduction to the ellipsoid.

3 Solution of the BVP by FEM

To derive the variational formulation of (30.4)–(30.6),
we define the Sobolev space of test functions V that
is the space of functions from W

.1/
2 .˝/ which are

equal to 0 on �i ; i D 2; : : : ; 6, in the sense of traces.
We multiply the differential equation (30.4) by v 2 V

and get
Z

˝

rT � rv dxdyd z �
Z

@˝

rT � n v d� D 0; 8v 2 V:

(30.7)

Let the extension of Dirichlet BC given by TSAT into
the domain ˝ be in W .1/

2 .˝/ and let ıg� 2 L2.�1/.
Then we define the weak formulation of our BVP
(30.4)–(30.6) as follows: we look for a function T ,
such that T � TSAT 2 V and
Z

˝

rT � rv dxdyd z C
Z

�1

ıg� v d� D 0; 8v 2 V:

(30.8)

Due to Brenner and Scott (2002) or Rektorys (1974),
the solution of this problem always exists and is
unique.
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Table 30.1 Errors for the example of potential generated by unit sphere gained by comparing numerical solutions and exact
solutions on subsequently refined grids

Exp. A B C
E ku � ukL2.˝/ EOC ku � ukL2.˝/ EOC ku � ukL2.˝/ EOC

23 0.006750 – 0.000378 – 0.005511 –
43 0.001053 2.68 0.000023 4.01 0.001018 2.43
83 0.000187 2.49 0.000001 3.40 0.000180 2.42
163 0.000036 2.37 – – 0.000040 2.29

Since the FEM assumes discretization of the
domain by subdomains called the finite elements,
let choose finite dimensional subspace Vh that is
corresponding to the finite element grid. In order
to complete the discretization, we must select a
basis of Vh, i.e., we choose the piecewise linear
function vi 2V that is uniquely determined by value
1 at xi and zero at every xj , i ¤ j . If we write
T n.x; y; z/D Pn

jD1 tj vj .x; y; z/, plug it into the
weak formulation (30.8) and consider test function
w D vi we get

nX
jD1

tj �.vi ; vj / D qi i D 1; : : : ; n; (30.9)

where qi D � R
�1

ıg�vi d� . Then let the column vectors

.t1; : : : ; tn/ and .q1; : : : ; qn/ be denoted by t and q
and let KD ŒKij � be matrix whose entries are Kij D
�.vi ; vj /. We may rephrase (30.9) as

Kt D q; (30.10)

which represents the linear system of equations for
unknowns t. The matrix K is called the stiffness
matrix. More details can be found in Fašková et al.
(2009).

4 Numerical Experiments

In the following section we present various numerical
experiments by the FEM software – ANSYS.

The first experiments are theoretical only to
illustrate the order of accuracy of FEM. We suppose
potential u.�;˚;R/ generated by a homogeneous
sphere with radius RD 1 Œm� and we solve this
problem in a space between RD 1 Œm� and RD 2 Œm�.
Since we know the exact solution, u.�;˚;R/D 1=R,

we can compute the Dirichlet and Neumann BC.
In all following experiments, the Neumann BC on
the bottom boundary is applied. In Experiment A, on
upper spherical and on side boundaries the Dirichlet
BC is considered and linear elements are used. In
experiment B, the same BC as in experiment A are
considered, only quadratic elements are used. Finally,
in the experiment C on the upper spherical boundary
the Neumann and on the side boundaries the Dirichlet
BC are considered. One can see that FEM with linear
elements is second order accurate in L2-norm and
more than third order accurate with quadratic elements,
Table 30.1.

The following numerical experiments deal with the
global gravity field modelling. We have performed
computations with very coarse grid – 3D 4-nodes
elements 3ı � 3ı based. As the input BC we use
the DNSC08 gravity anomaly dataset, see Andersen
et al. (2008), and we transform them into the surface
gravity disturbances using EGM2008. As the Dirichlet
BC on �i ; i D 2; : : : ; 6 we use the disturbing potential
generated from the ITG-GRACE03S satellite geopo-
tential model, see Mayer–Gúrr (2007), up to degree
180. We consider the space above the sphere of radius
R1 D 6371 Œkm�, where the Neumann BC (30.5) is
given, up to the sphere with radius R2 D 6871 Œkm�,
where the Dirichlet BC (30.6) is considered. Results
with the meshed domain are depicted in Fig. 30.2.

Since the further successive refinement yields
to large memory requirements, we restrict our
quasigeoidal modelling to area of Europe. The
computational domain is again the space between
two spheres, R1 D 6371 Œkm� and R2 D 6871 Œkm�,
spherical coordinates can be found in Table 30.2. Now
the domains are meshed with 8-nodes linear elements
and in one case with 20-nodes quadratic elements.
Statistics of residuals between the local quasigeoidal
solutions and EGM2008 can be found in Table 30.3.
It is evident from experiment 1 and 2 that finer grid
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Fig. 30.2 Meshed computational domain and disturbing poten-
tial solution

Table 30.2 Geometry of computational domains and mesh
statistics

Experiment 1 2 3 4

Sp. latitude 20, 70 20, 70 5, 25 5, 25
Sp. longitude 0, 50 0, 50 35, 55 35, 55

Resol. (deg) 0:2�0:2 0:08 �
0:08

0:04�
0:04

0:08 �
0:08

Type of el. linear linear linear quadratic
No. of nodes 693,011 6,270,016 5,271,021 5,218,541
No. of elem. 625,000 5,859,375 5,000,000 1,250,000

Table 30.3 Statistics of residuals between the local quasi-
geoidal solutions and EGM2008

Experiment 1 2 3 4

No. of nodes on �1 63,001 391,876 251,001 18,801
Min. residuum �2.056 �1.252 �0.619 �0.479
Mean residuum �0.027 0.058 �0.024 �0.023
Max. residuum 1.496 0.793 0.458 0.385
St. deviation 0.175 0.078 0.071 0.054

brings improving of results. One can see that using of
quadratic elements in comparison with linear element
also improve the solution, in spite of the fact that
number of nodes in linear element’s case is larger,
experiment 3, 4 in Tables 30.2 and 30.3.

Fig. 30.3 Vertical profiles across the computational domain,
N46:00

Figure 30.3 depicts the profiles across the FEM
solution with linear and quadratic elements, EGM2008
and ITG-GRACE03S to illustrate an influence of the
prescribed Dirichlet BC on the FEM solution. It is
evident from the profiles and from the second plot in
Fig. 30.4 too that a striping effect as well as eventual
bias of the satellite geopotential model affects the FEM
solution only in very close zones to the side bound-
aries. They have practically no impact on the central
zones. One can see again that using quadratic elements
improve the final solution especially in mountainous
area, Fig. 30.3, third plot of Fig. 30.4.

Conclusion

The goal of this paper was to present the finite ele-
ment method which looks for the numerical solution
in 3D domains above the Earth’s surface. We formu-
lated the BVP in the 3D domain and we considered
the Neumann as well as Dirichlet BCs on different
parts of its boundary. On the Earth’s surface we
use the gravity disturbances generated from the
DNSC08 altimetry-derived data or the EGM2008
geopotential model. For local quasigeoidal mod-
eling we created additional four side boundaries
where we considered, together with artificial upper
boundary, the Dirichlet BC generated from ITG-
GRACE03S satellite model. Our solutions were
compared with EGM2008. We showed that for local
quasigeoidal modeling is not necessary to integrate
over the whole Earth’s surface only over the domain
above the area of interest. We also presented that the
Dirichlet BC from satellite geopotential models fix
the FEM solution but their eventual bias and striping
effect do not influence the FEM solution in the
central zones. It is also worth noting that using of
quadratic elements give better results in mountain-
ous areas though number of nodes is smaller than in
the same case with linear elements. We also showed
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Fig. 30.4 Final quasigeoidal solution in middle part of Europe,
residuals between FEM solution and EGM2008 and residuals
between FEM solutions with quadratic and linear elements

that the further refinement of the discretization is
straightforward and brings improving of the results.
At the end we want to mention that the airborne
gravimetry data can be applied as the Neumann

BC on the upper boundary. All these results are
promising for further investigation.
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31On Combination of Heterogeneous
Gravitational Observables for Earth’s Gravity
Field Modelling

Pavel Novák

Abstract

The Earth’s gravitational field is described in geodesy by the geopotential, a scalar
function of position and time. Although it is not directly observable, its functionals
such as first- and second-order directional derivatives can be measured by ground,
airborne or spaceborne sensors. In geodesy, these observables are usually used for
recovery of the geopotential at some known simple reference surface. Since no
observation technique providing gravitational data is fully ideal, ground, airborne
and spaceborne data collected with different accuracies, spectral contents, tempo-
ral and spatial distributions must be combined. An observation model for recovery
of the geopotential is based on the Abel–Poisson equation modified to various
gravitational observables. Integral kernels weight spatially contributions of partic-
ular observables as functions of their position. Models for different observables are
combined exploring stochastic and design characteristics of actual observations.

Keywords

Geopotential • Gravity • Data combination • Abel–Poisson integral • Earth’s
gravitational field

1 Introduction

Traditional gravitational data collected in geodesy
(ground gravity, deflections of the vertical, orbit per-
turbations, sea surface topography) have recently been
extended for airborne and spaceborne gravitational
and gradiometric data. Different combination methods
have been proposed. One can combine observations,
products derived from observations (global and local

P. Novák (�)
University of West Bohemia, CZ-306 14 Pilsen, Univerzitnı́ 22,
PlzeLn, Pilsen, Czech Republic
e-mail: panovak@kma.zcu.cz

gravitational models) or products with observations
(global gravitational models and local gravity data).
The data combination method is discussed in this text.

Heterogeneous data can be used for derivation of
a local, regional or global gravitational model. All
types of recently available gravitational observables
can be inverted into the geopotential by using a surface
integral equation that represents a particular solution of
the Dirichlet boundary-value problem (Kellogg 1929).
Modifying this integral, a mathematical model for
various data can be formulated with the geopotential
derived in terms of its perturbations from the refer-
ence potential at the surface of the reference ellipsoid
that generates this potential (Vanı́ček and Krakiwsky
1986).
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Symposia 137, DOI 10.1007/978-3-642-22078-4 31, © Springer-Verlag Berlin Heidelberg 2012
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The model represents a generalized version of
Green’s integral equations used in geodesy (Stokes,
Hotine, Vening-Meinezs) that represent special forms
of this integral equation. These integrals solve for
the disturbing potential or its functionals from data
distributed at some simple reference surface. For the
model discussed in this article, input gravitational
data are distributed on and outside the Earth’s surface,
locally or globally. The model allows for combined
processing of heterogeneous gravitational data.

2 Field Equations

In order to proceed with mathematical formulations,
three closed surfaces dividing the 3-D Euclidian space
˝ are defined: Earth’s surface (hypsometry and sea
level) @˝t , the geoid @˝g and the reference ellipsoid
@˝e . Assuming geocentric Cartesian coordinates, the
(static) geopotential V satisfies at any point x with zero
mass density the Laplace differential equation

r2V .x/ D 0 (31.1)

Moreover, the geopotential is also regular at infinity

V.x/ D O
� jxj�1 � (31.2)

with the Landau symbol O describing its inverse dis-
tance attenuation.

The Dirichlet boundary-value problem allows for
evaluation of the geopotential in the mass-free space
outside the Lipschitz boundary @˝ (smooth, closed
and simply connected surface) on which the geopoten-
tial is continuously known

V.y/ D f .y/; y 2 @˝.c/ (31.3)

The algebraic vector c includes parameters of the
boundary surface; for example, major and minor semi-
axes a; b for the reference ellipsoid @˝e , numerical
coefficients in a harmonic series representation of the
geoid @˝g or the topographical surface @˝t . The
boundary @˝ must completely contain all gravitating
masses in order to satisfy the Laplace differential
equation outside the boundary. For the point x outside
the boundary @˝ with an infinitesimal measure d� ,
this solution is the Abel–Poisson surface integral, e.g.,
(Kellogg 1929),

V.x/ D 1

j@˝j
“
@˝

f .y/K .x; y/ d�.y/ (31.4)

The integration is performed over the solid geocentric
angle$ D h 0; 
 i�h 0; 2
/; the infinitesimal measure
d� and the unitless integration kernel K will be
functions of the curvilinear coordinates f1; 2g defined
in the boundary and corresponding surface parameters
c since y D y.c; 1; 2/. The Dirichlet problem always
has a unique solution for sufficiently smooth @˝ and
Hölder-continuousf , e.g., (Krantz 1999). The integral
kernel K (Green’s function) can be derived for the
reference ellipsoid @˝e.a; b; '; �/ adopted as the close
approximation of the geoid. In this case curvilinear
coordinates f'; �g represent the ellipsoidal latitude and
longitude.

Since there are gravitating masses outside the refer-
ence ellipsoid (topography, atmosphere), the Laplace
equation for the geopotential is not satisfied every-
where outside the reference ellipsoid. The gravitational
potential ıV of external masses must be accounted for

V h.x/ D V.x/� ıV .x/ W r2V h.x/ D 0 (31.5)

The potential ıV can be computed by forward model-
ing (MacMillan 1958). Due to our limited knowledge
of their geometry and mass density distribution, it can
be computed only approximately, thus, the Laplace
differential equation cannot rigorously be satisfied.

Only small perturbations of the reduced geopoten-
tial V h from the reference gravitational potentialU are
solved in geodesy

T h.x/ D V h.x/� U.x/ W r2T h.x/ D 0 (31.6)

taking the advantage of the geodetic reference system
(Moritz 1984) that approximates the Earth and its grav-
itational field. Solving for small values of the reduced
harmonic disturbing potential T h has also numerical
advantages.

Using the reduced disturbing potential T h harmonic
everywhere outside the reference ellipsoid, the formu-
lation of the Abel–Poisson integral in (31.4) reads

T h.x/ D 1

j@˝ej
“
$

T h.ye/K .x; ye/d�.ye/ (31.7)

The geocentric vector ye refers to the surface of the
reference ellipsoid. The sought geopotential V at the
reference ellipsoid reads

V.ye/ D T h.ye/C ıV .ye/C U.ye/ (31.8)

that can be deduced directly from 31.5 and 31.6.
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3 Observables and Observation
Equations

In the following, we shall assume that first- and
second-order directional derivatives of the geopotential
V are measured. These gravitational observables
represent entries of the gravitational vector

g.x/ D rV.x/ (31.9)

and the gradiometric (Marussi) tensor

G.x/ D r ˝ rV.x/ (31.10)

The symbol ‘˝’ stands for the Kronecker product of
two vectors. Not all quantities in (31.9) and (31.10) are
measurable with the same accuracy. Their availability
and accuracy depend on the used instrumentation and
particular observation technique.

The symbol D is used herein to symbolize any of
the measurable functionals, i.e., a general gravitational
observable is denoted as DV . Gravitational observ-
ables reduced for the gravitational effect of masses
outside the reference ellipsoid are defined through
(31.5) and (31.6) by applying the operator D

DxT
h.x/ D DxV.x/� DxıV .x/� DxU.x/ (31.11)

The direct effect DıV , e.g., (Novák and Grafarend
2005), fulfills two functions: reduced observations (1)
correspond to the potential harmonic everywhere out-
side the reference ellipsoid, and (2) are smoothed out.
The former condition is required for the application of
the integral solution, the latter one then simplifies its
numerical evaluation. The effect of the reference field
DU can be computed using the geodetic reference
system and Somigliana–Pizzetti theory, e.g., (Torge
2001).

Applying in (31.7) the operator D at the observation
point x yields the observation equation for the general
reduced gravitational observable

DxT
h.x/

D 1

j@˝ej
“
$

T h.ye/DxK .x; ye/d�.ye/ (31.12)

Since the integration domain $ is compact and func-
tions K and DK are continuous in both variables,

Table 31.1 Operator D for various observables

Observable Operator D

Scalar gravimetry huDu

Vector gravimetry r
3-D gradiometry r ˝ r
1-D gradiometry hr ˝ r �x j �xi
Inter-satellite gravimetry h�x j ıri

the swap of differentiation and integration is legal.
On the right-hand side of (31.12) one solves for the
reduced geopotential T h at the reference ellipsoid @˝e

that must be corrected for the indirect effect and the
reference potential U . The indirect effect ıV defined
as the gravitational potential of the external masses
can be very large and its isostatic compensation is
usually applied. Forms of the operator D for various
observables are in Table 31.1 (derivative D, scale
coefficient h).

4 Alternative Formulation
of the Problem

In the previous section, we assumed that the unknown
parameter is represented by the gravitational potential.
However, one could look for a relation between the
measured quantities as described above and the shape
of the equipotential surface of the Earth’s gravitational
field with a stipulated value of the geopotential, namely
V0. Can we link the disturbing potential T to geometric
perturbations of the particular equipotential surface
(geoid) relatively to the reference ellipsoid (by defini-
tion the potential V0 at the geoid corresponds to the
potential U at the reference ellipsoid)?

We can write the Abel–Poisson integral of (31.4) for
the geoid @˝g in the form

V.x/ D 1

j@˝gj
“

$

V.yg/K .x; yg/d�.yg/ (31.13)

Recognizing that V.yg/ D V0, then

V.x/ D V0

j@˝gj
“
$

K .x; yg/ d�.yg/ (31.14)

This equation links the potential V with the value
of potential at the geoid V0 and its geometry @˝g

described by the geocentric vectors yg . Let us assume
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that the external geopotential is known as well as
the value V0; the unknown (sought) parameters are
the vectors yg describing the geometry of the geoid
in the geocentric coordinate frame. In (31.13), the
measure of the geoid, its infinitesimal form d� and
the integration kernel K are unknown. Obviously, the
model cannot be applied rigorously. The measure of
the geoid is unknown but its approximate value would
merely represent a scaling error in the solution.

Taking the average radius of the ellipsoid,
deviations of the geoid from the ellipsoid are at the
order of 10�6. The geoid is usually solved in terms
of its deviations �y from the reference ellipsoid,
i.e., yg D ye C �y. Then for the scaling constant
� D V0 j@˝ej�1

V .x/ D �

“
$

K .x; ye C�y/d�.ye C�y/ (31.15)

Assuming the truncated Taylor expansion

K .x; ye C�y/d�.ye C�y/

� K .x; ye/d�.ye/C�yT rye ŒK .x; y/d�.y/�

(31.16)

and reducing both sides of (31.15) for the reference
potential U yields

T .x/ D �

“
$

�yTrye ŒK .x; y/d�.y/� (31.17)

or symbolically

T .x/ D �yM .x; ye/ (31.18)

This equation represents an approximate linear relation
between the difference T of the actual gravitational
potential from the reference gravitational potential at
any point x outside the geoid and the global 3-D
geometric deviations �y of the geoid from the given
reference ellipsoid generating the reference gravita-
tional potential.

5 Model Combination

Discretizing the domain of the integral equation, the
observation model has a form of a standard linear
model explicit in the vector of observations l, i.e.,

l D A b. The observation vector may combine various
types of the gravitational observables DV reduced for
the effect of the reference gravitational field DU and
the direct effect DıV . Observed and reduced data refer
to the observation points x on or outside the Earth’s
surface, i.e., no prior continuation or re-sampling of
data are required. The vector of the unknown param-
eters b represents surface area means of the reduced
disturbing potential T h at the surface of the reference
ellipsoid. Entries of the design matrix A can be evalu-
ated as the kernel values multiplied by scaling param-
eters and discrete measures into which the surface of
the reference ellipsoid was discretized.

Samples of the kernel functions (spatial weights
for different gravitational observables) for a particu-
lar location (latitude 0 arcdeg, eastern longitude 90
arcdeg, height 5,000 m) are shown in Figs. 31.1–31.3
drawn in GMT (Wessel and Smith 1991). Figures 31.1
and 31.2 show angular components of the vector rK

Fig. 31.1 Latitudinal derivative of the function K (m�1�1e5)

Fig. 31.2 Longitudinal derivative of the function K
(m�1 � 1e5)
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Fig. 31.3 Mixed lat/lon derivative of the function K
(m�2 � 1e9)

and Fig. 31.3 depicts one entry of r ˝ rK , namely
the mixed angular derivatives; all values are limited to
degree 30. For this degree of expansion, their values
in distant zones stretching to the anti-pole of the com-
putation point are significant and cannot be neglected.
Values in figures were scaled, see their captions.

Data characteristics affecting the application of the
mathematical model are the observation noise, spectral
content, spatial and temporal sampling. Concerning the
signal-to-noise ratio, the most precise information is
still coming from ground gravity surveys: point gravity
values can routinely be measured with the accuracy up
to ˙20 �Gal (Torge 2001).

Redundant ground gravity observations also allow
for adjustment of gravimetric networks that may result
in estimation of complete stochastic parameters of
adjusted gravity. Ground gravity data is also affected
by used instrumentation (drift) and uncertainties in
3-D positions of gravity stations.

Airborne data are limited geographically, although
larger airborne surveys have been performed recently.
The accuracy of airborne data is significantly worse
compared to ground gravity data. Moreover, the spec-
tral content of the airborne data is limited due to the
high-frequency observation noise caused by airplane
dynamics that is a priori removed from measured data.
The routine accuracy of airborne data is at the level of
˙2 mGal for 5 km resolution (Forsberg et al. 2000).

Spaceborne data have global coverage except for
the polar gaps. They suffer from the effect of changing
geometry of the orbit in time: the so-called orbital
resonance may affect their application. The spaceborne
signal is also attenuated by the distance of the satellite

from the gravitating masses and they are used only for
recovery of a low-frequency component of the gravita-
tional field. Most recent gradiometric data resolve the
gravitational field at the level of ˙1 mGal for 100 km
resolution (Drinkwater et al. 2003).

The combined model can be assembled as follows

Ob D �
ATPlA

��1
ATPll;COb D �

AT PlA
��1

(31.19)

While the weight matrix Pl D C�1
l describes stochastic

properties of data (weight problem), the design matrix
A reflects both their spatial distribution and spectral
content (design problem). The weight matrix is based
on estimated stochastic properties of various data types
(data adjustment and validation). The design matrix is
assembled by using band-limited spectral representa-
tion of kernel functions (data spectral properties).

Conclusion

Gravitational observables are considered as entries
of the gravitational vector and/or the gradiometric
tensor. The solution for the unknown geopotential
in terms of discrete values at the international ref-
erence ellipsoid is formulated by using a single
integral equation. No further approximation but
discretization of its surface (integration domain) is
required for the solution.
The solution of the model is based on the inverse
integral inversion accompanied by one a priori and
one a posteriori step. Both steps involve forward
modeling and theory of the gravitational field of
the biaxial ellipsoid. The reference ellipsoid serves
as the boundary for the boundary-value problem
as well as the reference for the external masses.
The integral equations are used for formulation of
linear relationships between available observables
and geometric properties of the geoid defined in
terms of its geometric deviations from the adopted
reference ellipsoid.
Currently available gravitational data have limited
spectral properties as well as various sampling
and accuracy deficiencies. Their different spectral
content can be accounted for by using respective
spectral representations of the integration kernels
since they allow for adjusting the model to spectral
characteristics of particular gravitational data.
Moreover, the model allows for the weighted
data combination if stochastic properties of the
gravitational data can a priori be estimated.
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32The Convergence Problem of Collocation
Solutions in the Framework of the Stochastic
Interpretation

Fernando Sansò and Giovanna Venuti

Abstract

The convergence of the collocation solution to the true gravity field is a problem
defined long ago; some results were derived, in particular by T. Krarup, already in
1981. The problem is taken up again in the context of the stochastic interpretation
of collocation theory and some new results are derived, showing that, when the
potential T can be really continued down to a Bjerhammar sphere, reasonable
convergence results hold true.

Keywords

collocation theory • convergence

1 Introduction

The convergence of the collocation solution bT to the
true anomalous potential T .P / is, according to Krarup
(Krarup 1981), one of the most important problems of
physical geodesy. Basically, the point is the following.
We claim that the collocation solution, namely certain
anomalous potential “predicted” from a discrete set
of observations, is an “approximation” of the true
potential. However, although this statement has an
elementary meaning in the stochastic interpretation,
where the variance of the prediction error is available,
a careful analysis is needed when we want to give
a precise interpretation to the word “approximation”
from the functional point of view. In other words, when
the observations become more and more numerous and

F. Sansó � G. Venuti (�)
DIIAR, Politecnico di Milano, P.zza Leonardo da Vinci 32,
Milan, Italy
e-mail: fernando.sanso@polimi.it; giovanna.venuti@polimi.it

dense close to the boundary, can we prove that our
predicted potential bT approximates the true potential
T .P / in some functional sense, i.e. with respect to
a suitable norm? The problem has been defined long
ago (Sansò and Tscherning 1980), and a first satisfac-
tory solution has been worked out by Krarup himself
(Krarup 1991, 2006). In this formulation, a suitable set
of observation points fPi I i D 1; : : : ; N g is given on
the earth surface S (or on the telluroid), e.g. pointwise
gravity disturbances (Moritz 1980), such that

ıg0.Pi / D ıg.Pi /C 	i D �@T
@h
.Pi /C 	i (32.1)

with f	ig a sequence of white noise satisfying

Ef	ig D 0; �2	i � �20 : (32.2)

Here, the choice of ıg as observable is only to make
the reasoning simpler; it could be substituted for dif-
ferent boundary values, for instance free air gravity
anomalies.
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A deterministic collocation solution, according to
Krarup (1969), is a function bT 2 HK , belonging to the
Hilbert space of functions harmonic down to a Bjer-
hammar sphere of radius R with reproducing kernel

K.P;Q/ D
1X
nD0

nX
mD�n

knSnm.P /Snm.Q/ (32.3)

where Snm are the solid spherical harmonics, related to
fully normalized surface spherical harmonics Ynm as

Snm.P / D
�
R

r

�nC1
Ynm.�P /; kn � 0;

cf. (Sansò 1986), such that the hybrid norm functional

F.bT / D
X�

ıg0.Pi /� Œ� @T
@h
.Pi /�

�2
�2	i

C �kbT k2HK
(32.4)

is minimized. The solution is

bT �.P / D
X
ik

�
� @

@hQi

K.P;Qi /

�

�
�
� @

@hQi

@

@hQk

K.Qi ;Qk/C ��2	i ıik

��1
ıg0.Pk/:

(32.5)

The problem here is to prove whether and howbT !T .P / when N ! 1. Krarup’s proof was that,
by taking a suitable sequence �N ! 0, we can havebT ! T . This happens in the sense of a “regular”
Hilbert space H of functions harmonic outside the
earth surface S , as it should be, cf. (Krarup 1981). The
theorem is quite interesting although the question of
the specific value of �N to be chosen for each N is
indeed open and annoying.

In this paper, we shall look into the stochastic inter-
pretation of collocation with the purpose of arriving
at a different result of convergence. On one side, this
result is less general, because we require the original
function T .P / to be harmonic outside the Bjerhammar
sphere, what is mandatory for the stochastic interpre-
tation; though, on the other side, it does not depend
anymore on a parameter like �.

2 A Preliminary Lemma

Lemma 1. Let us assume u.t/ to be a centered ran-
dom field on some set A, such that it is Lipschitz
continuous in mean quadratic sense, cf. (Gikhman and
Skorokhod 2004) and (Miranda 1970), i.e.

0 � EfŒu.t/ � u.t 0/�2g D 2�.t; t 0/

D C0 � C.t; t 0/ � ˛jt � t 0jI (32.6)

assume that fti g is a sequence which, for N ! 1,
becomes a set dense in A in a sense to be better
specified later; assume that u.t/ is observed at ti with
noises 	i satisfying (32.2)

Yi D u.ti /C 	i I (32.7)

assume further that, for any t 2 A fixed,

Ou.t/ D
X

C.t; ti /fC.ti ; tk/C �2i ıikg�1Yi (32.8)

is the usual Wiener-Kolmogorov predictor and that

E 2
N .t/ D C.t; t/C

�
X

C.t; ti /fC.ti ; tk/C �2i ıikg�1C.t; tk/

(32.9)

is the corresponding prediction error; then,

lim
N!1 E 2

N .t/ D 0 (32.10)

Proof. Consider the linear estimator

Qu.t/ D 1

Nt;r

NX
iD1

�.t; ti ; r/Yi (32.11)

where

�.t; ti ; r/ D
(
1 jt � ti j � r

0 otherwise;
(32.12)

Nt;r D
NX
iD1

�.t; ti ; r/: (32.13)
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Since (32.8) is the best linear estimator of u.t/, we
have indeed

E 2
N .t/ D EfŒu.t/ � Ou�2g

� QE 2
N .t/ D EfŒu.t/ � Qu�2g: (32.14)

On the other hand, since Yi D u.ti /C 	i , we have

u.t/ � Qu D 1

Nt;r

NX
iD1
Œu.t/ � u.ti /��.t; ti ; r/

C 1

Nt;r

NX
iD1

�.t; ti ; r/	i : (32.15)

Therefore, the error propagation gives

QE 2
N .t/ D 1

N 2
t;r

X
ik

�.t; ti ; r/�.t; tk ; r/

�EfŒu.t/� u.ti /�Œu.t/ � u.tk/�g

C 1

N 2
t;r

X
i

�.t; ti ; r/�
2
i : (32.16)

With the help of the inequality ab � 1
2
a2 C 1

2
b2, and

recalling (32.2) and (32.6), from (32.16) we derive

QE 2
N .t/ � 1

Nt;r

X
i

�.t; ti ; r/�.t; ti /C �20
2Nt;r

� ˛

2Nt;r

X
i

�.t; ti ; r/jt � ti j C �20
Nt;r

� ˛r C �20
Nt;r

: (32.17)

With such a relation we are able now to specify the
hypothesis on the sequence ftig; we assume that it is
possible to find a sequence rN such that

lim
N!1 rN D 0; lim

N!1Nt;rN D C1: (32.18)

As an example, if fti g tends to cover uniformly A, we
shall have

Nt;rN � const Nr2I

then, it is sufficient, for instance, to choose

rN D 1

N
1
4

;

to get both relations (32.18) verified. Therefore from
(32.17) we have QE 2

N .t/ ! 0 and, because of (32.14),
(32.10) is proved. ut
We conclude the paragraph noting that not only
E 2
N .t/ ! 0 for each fixed t but, since according to

(32.9)

E 2
N .t/ � C.t; t/; (32.19)

it is enough to assume that C.t; t/ is bounded every-
where to have

E 2
N .t/ � const (32.20)

uniformly in N .

3 The Convergence of the Collocation
Solution

We assume T .P / to be a harmonic random function in
the exterior ˝B of a Bjerhammar sphere B , with zero
mean and covariance

C.P;Q/ D EfT .P /T .Q/g
D
X
nm

cn

2nC 1
Snm.P /Snm.Q/: (32.21)

The positive constants cn are called full power degree
variances and we assume that

C1X
nD0

cn < C0: (32.22)

It is easy to see that, under (32.22), the function
C.P;Q/ is continuous everywhere in˝ and harmonic
in this set, so that

jC.P;Q/j � C0; 8P;Q 2 ˝: (32.23)

Since harmonic functions have derivatives of any order
which are continuous in the domain of harmonicity, we
can claim that similarly to (32.23)

jEfıg.P /ıg.Q/gj D jCıgıg.P;Q/j � G0;

8P;Q 2 ˝; (32.24)

with G0 a suitable constant. Now, let a regular,
bounded surface S be given, totally embedded in ˝B ,
and a sequence fPi g on S , at which ıg.Pi / is observed,
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in agreement with (32.1). The harmonicity of C.P;Q/
is certainly enough to guarantee that (32.6) is satisfied,
on S and outside cf. (Sansò and Venuti 2005), so that
Lemma 1 applies and we have

lim
N!1 E 2

N;ıg.P / D 0 8P 2 S: (32.25)

In addition, according to the remark at the end of �2,
we have

E 2
N;ıg.P / � G0; (32.26)

so that, by the dominated convergence theorem of
Lebesgue (Riesz and Nagy 1965), we can state that

lim
N!1

Z
S

E 2
N;ıg.P /dS D

Z
S

lim
N!1 E 2

N;ıg.P /dS D 0:

(32.27)

On the other hand, by dint of Fubini’s theorem (Riesz
and Nagy 1965) the

R
S and the average operation in

(32.27), which is as well an integral operator, can be
exchanged, so that we can claim

lim
N!1E

�Z
S

Œıg � ı OgN �2dS
�

D lim
N!1

Z
S

E 2
N;ıg.P /dS D 0: (32.28)

In this way, using a standard theorem of stochastic
calculus (Gikhman and Skorokhod 2004), we come to
prove Theorem 1.

Theorem 1. Under the stated hypotheses on the ran-
dom field T .P / and on its covariance function (32.21),
(32.22), on the surface S and on the sequence fPi g,
there is a subsequence fNkg such that

kıg.P / � ı OgNk .P /kL2.S/ ! 0 (32.29)

almost surely, i.e., with probability P D 1.

It is enough now to recall a recent result given in
(Sansò and Venuti 2008) to be able to establish the
convergence of the collocation solution in the form of
another theorem:

Theorem 2. Under the assumption of Theorem 1 and
further assuming that S is a regular star-shaped sur-
face S � fr D R.�/g, such that its normal is never
inclined more than 89o with respect to the radial unit

vector er , then, along the same sequence fNkg defined
in Theorem 1, one has

krT .P / � rbT Nk .P /kL2.S/ ! 0 (32.30)

almost surely.

4 Discussion of the Result

The fact that we can prove a result of convergence only
with probability P D 1 should not bother the reader,
since this is fully acceptable in the framework of a
stochastic theory. The theorems presented here, for
the case that on S we observe the gravity disturbance
ıg.P /, can be strongly generalized, as it will be done
in a separate work. The strongest limitation of the
present theory is indeed the assumption that T .P / is
from beginning harmonic down to some Bjerhammar
sphere; on the other hand, without such an assumption
the covariance structure (32.21), (32.22) looses its
meaning and we would not be anymore in the realm
of what we call least squares collocation theory.
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33On the Omission Errors Due to Limited
Grid Size in Geoid Computations

Yan Ming Wang

Abstract

Based on the assumption that the ultra-high frequencies of the gravity field are
produced by the topography variations, we compute the omission errors by using
3 arc-second elevation data from the Shuttle Radar Topography Mission (SRTM).
It is shown that the maximum omission errors to the geoid are in the range of
dm, cm and sub-cm level for grid sizes of 500, 200 and 100 over the contiguous
United States (CONUS), respectively. The results suggest that a 1 arc-minute grid
size is sufficient for the 1-cm geoid, even for areas with very rough topography.
The results also show that the omission errors to gravity are significant even for
100 grid size, at which the smoothed-out gravity still reaches tens of mGals. The
omission errors to gravity at a 500 grid size peaks above 100 mGals, demonstrating
the importance of correction of residual terrain to gravity observations in data
gridding or block mean value computations.

The results are also compared with those based on Kaula’s rule. While the
omission errors based on Kaula’s rule are ˙0:5 and ˙3:0 cm for 100 and 500 grid
size, respectively, the RMS values of the omission error in this paper are ˙0:1
and ˙1:1 cm. The differences suggest Kaula’s rule may overestimate the power of
the gravity field at the ultra-high frequency band, which renders the convergence
studies of the spherical harmonic series based on Kaula’s rule questionable.

Keywords

Geoid • Omission error • RTM effect

1 Introduction

The geoid is a continuous equipotential surface con-
taining all frequencies of the Earth’s gravity field.
Numerically, the geoid can only be computed at a
limited grid size, so that high frequencies of the gravity

Y.M. Wang (�)
National Geodetic Survey, Silver Spring, MD 20910, USA
e-mail: YAN.WANG@NOAA.GOV

field beyond the grid size are lost. The omission error
is defined as the power of those lost high frequencies.

The omission error may be studied by using a series
of spherical harmonics. Theoretically, the gravity field
can be expressed as an infinite harmonic series. In
practice, the series has to be limited to certain degree
and order. For instance, the maximum degree of the
EGM08 (Pavlis et al. 2008) is 2,160 which corresponds
to a resolution of 500. To reach 300 resolution, the
maximum degree of the spherical harmonic expansion
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should be 216,000, but that may become impractical
for numerical computation. Since such a high degree
and order of harmonic expansion is not available,
Kaula’s rule (Jekeli (2009)) may be used to character-
ize the gravity field at ultra-high frequencies. If Kaula’s
rule is valid at this bandwidth, a reasonable assessment
of the power can be obtained in the statistical sense.
Based on Kaula’s rule, the omission errors are ˙3:0,
and ˙0:5 cm for a spatial resolution 500 and 100, respec-
tively.

Another way to study the omission error is to use
numerical integration. Very dense coverage of gravity
data in a local area is needed. However, very dense
gravity coverage in an area, e.g., a gravity observation
every 100 m in a 100 km � 100 km region, is rare.
Nonetheless, 100 m or an even finer resolution digital
elevation data are available regionally. In fact, the
anomalous gravity field is produced by the topography
and mass anomalies inside the Earth. It is known that
the gravity field with wavelengths shorter than 100 km
is mostly due to the topography. In this paper, we
study the omission error of 500 and finer grid sizes,
so it is a plausible assessment that the power of a
gravity field in a frequency band corresponding to
500 to 300 grid size is the only due to the topography
variation. By removing the elevation at a certain res-
olution – the residual topography, traditionally called
the residual terrain model (Forsberg (1984)) – may be
the only main source of the ultra-high frequencies of
the gravity field. Based on this assertion, we investigate
the omission error by using the digital elevation of
the SRTM in a 300 (�90m) grid size. The motivation
is simple: for the residual terrain is the main source
of the ultra-high frequency of the gravity field, we
can compute its effect on gravity and the geoid at
different grid sizes. The following question will be
answered: at what resolution does the gravity field
have power less than 1 cm in geoid? In other words,
what is the maximum grid size with the omission error
to the geoid under 1 cm pointwise? In addition, what
are the contributions of the residual terrain to gravity
observed on the Earth’s surface at different grid sizes?

2 Mathematical Formulation

The potential of the residual terrain at a pointP can be
computed by Newton’s integral:

Vt .rP ; xP / D G

Z Z

�

Z rS

rC

�

l
r2drd� (33.1)

where G is Newton’s gravitational constant; � is the
mass density; rP and xP are the radial distance and the
surface variables of computation pointP , respectively;
rS is the radial distance of an arbitrary point on the
Earth’s surface S ; rC is the radial distance of an
arbitrary point on a smoothed reference surface, and
l is the distance between computation point P and
current point:

l D
q
r2 � 2rrP cos C r2P (33.2)

For a constant density of the residual terrain, the 3-D
integral in (33.1) can be reduced into a surface inte-
gral (Martinec 1998; Sjöberg and Nahavandchi 1999;
Heck (2003)):

Vt .rP ; xP / D G�

Z Z

�

k.rS ; rC ;  /d� (33.3)

with

k.rS ; rC ;  / D 3rP cos 

2
.lSP � lCP/ (33.4)

C 1

2
.rS lSP�rC lCP/C 1

2
.�1C 3

� cos2  /r2P ln
rS � rP cos C lSP

rC � rP cos C lCP

(33.5)

where lSP and lCP are the distances between point P
and points on the Earth’s surface S and the reference
surface C :

lSP D
q
r2S � 2rSrP cos C r2P (33.6)

lCP D
q
r2C � 2rC rP cos C r2P (33.7)

The above equations are valid for points inside and
outside of the topography. Since the contribution of
the residual terrain to the geoid is in dm level in this
study, the ellipsoidal effect is in sub-mm level and can
be neglected. For the computation points located on
the geoid, we can simply set rP D R in the kernel
function.
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The gravity of the residual terrain is the negative
vertical derivatives of the potential Vt (ibid.):

gt .rP ; xP / D � @Vt
@rP

D G�

Z Z

�

k0.rS ; rC ;  /d�

(33.8)
where

k0 D �rS rP .1 � 6 cos2  /C .3r2P C r2S / cos 

lSP

CrC rP .1 � 6 cos2  /C .3r2P C r2C / cos 

lCP

�.�1C 3 cos2  /rP ln
rS � rP cos C lSP

rC � rP cos C lCP

(33.9)

The reference surface is a smoothed Earth’s surface. In
an ideal case, this surface should only contain a lower
band of frequencies of the topography. If the Earth’s
topography is expanded into an infinite spherical har-
monic series, the reference surface should contain the
spherical harmonics only to a certain degree and order.
The residual terrain then contains all higher frequen-
cies of the topography. There are some numerical
difficulties to expand the topography into a spherical
harmonic series to an ultra high degree and order, e.g.,
100,000. A common practice to compute a reference
surface is the use of the moving average. It is well
known that the moving average is a low-pass filter,
so the higher frequencies are effectively removed from
the topography. The residual terrain contains only the
frequencies smoothed out by the moving average.

In practice, the block-mean values are used. The
block-mean values are the same as the moving aver-
aged values, but with additional operation of data
sampling. The omission error defined in this paper is
the error due to use of the block mean values at a
certain grid size.

3 Numerical Computations

We used the SRTM-DTED1 (300) DEM for North and
Central America and the Caribbean (10ı � ' � 60ı;
190ı � � � 308ı). This DEM comes in 2,384
1ı � 1ı300 � 300 grids for ' � 50ı and 300 � 600 grids for
50ı � ' � 60ı. It contains 13,992,031 gaps assigned

an elevation value of –1, including large gaps of more
than 1ı � 1ı in Northern Florida and South Carolina
and smaller continuous gaps in eastern Connecticut
and Iowa. The majority of the rest of the gaps are
concentrated along the Rocky Mountains, most notably
in British Columbia and Mexico.

We also used the SRTM30/GTOPO30 global 3000 �
3000 DEM, which comes in 33 raster tiles – 27 of
size 40ı � 50ı, and six 30ı � 60ı tiles. The latter
was mainly used to interpolate and fill the 300 gaps in
SRTM-DTED1.

The resulting tiles to the north of latitude 50ı N
were then interpolated into 300 � 300 grids, and all
resulting tiles were mosaiced to produce the 300 � 300
SRTM window 10ı � ' � 60ı; 190ı � � � 308ı.

To show the omission errors of various topographic
features, we chose a latitude band at latitude 41:4042ı.
The profile of the elevation is drawn in the following
figure.

Based on the roughness of the topography, we
split the profile into three areas: rough area (Rocky
Mountains, 236ı � � � 256ı), flat area (Middle West,
236ı < � � 280ı), and old mountains (Appalachian
Mountains, 280ı < � � 290ı). The RMS values of
the residual terrain for each area are shown in the
following table.

Table 33.1 shows that RMS values of residual height
are below 100 m; the RMS and extreme values increase
with increasing grid size.

The contribution of residual terrains to geoid (omis-
sion error) is computed based on (33.3) and (33.5)
on 300 grid spacing (Fig. 33.1). The computation is
undertaken in the spherical coordinate system and 1ı
integration area is chosen at which the computation
errors are below 0.1 mm. The statistics of the omission
errors are given in the following table (Table 33.2).

In the Rocky Mountains, the omission error of
˙1:7 cm seems not significant, even at 50 resolution.
The error is reduced below ˙1 cm at 20 grid size, even

Table 33.1 Statistics of the residual height in meters (block-
mean values removed). No. of samples: 63,306

Grid Rocky Middle Appalachian Total Range
size mount west

10 45.8 7.5 36.9 32.4 �342=531
20 65.5 9.0 45.4 44.8 �488=749
50 121.7 13.7 58.6 79.3 �696=1;490
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Fig. 33.1 Elevation profile along the longitude band in 300

spacing

Table 33.2 RMS values and ranges of omission errors on geoid
in cm. No. of samples: 63,306

Grid Rocky Middle Appalachian Total Range
size mount west

10 ˙0.1 ˙0.0 ˙0.1 ˙0.1 �0:8=0:9
20 ˙0.9 ˙0.1 ˙0.2 ˙0.5 �1:2=8:6
50 ˙1.7 ˙0.3 ˙0.8 ˙1.1 �4:3=11:4

in the roughest mountainous area. At 10 grid size, the
RMS value of omission error is ˙1mm for the Rocky
Mountains, ˙0mm for the Middle West, and ˙1mm
for the Appalachian Mountains.

Pointwise, the omission error ranges from �4:3 cm
to 11.4 cm in a 500 grid size. The maximum error is not
reduced significant in a 20 grid size. However, the omis-
sion error is less than 1 cm pointwise in a 100 grid size.

The omission errors to the geoid are plotted in the
following figure (Fig. 33.2).

For a 500 grid size, the omission error oscillates
approximately ˙5 cm in high mountain (the Rocky
Mountains) regions, but swings around 0.5 cm in flat
areas. It fluctuates around 3 cm in the Appalachian
Mountains region. For a 200 grid size, the omission error
has meaningful values in the high mountains, other
areas are generally insignificant. For a 100 grid size, the
omission error seems insignificant everywhere.

Based on Kaula’s rule (e.g., Jekeli 2009), the
omission error is ˙0:5 cm, while the contribution of
the residual terrain is ˙0:1 cm for the 100 grid size.
Kaula’s rule gives ˙3:0 cm�3 times the contribution
of the residual terrain for the 500 grid size. The over-
estimation of by Kaula’s rule at the high frequencies is
also shown in Jekeli (2009).

It is also important to estimate the impact of limited
grid sizes to the gravity. Equations (33.8) and (33.9)
are evaluated along the longitude band on 300 grid spac-
ing. The computation is undertaken in the spherical
coordinate system and 1ı integration area is chosen

Fig. 33.2 Omission errors of the geoid at different grid sizes (from top to bottom 100, 200 and 500)
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Table 33.3 RMS values and ranges of omission error in
gravity, units are in mGal. No. of samples: 63,306

Grid Rocky Middle Appalachian Total Range
size mount west

10 ˙2.1 ˙0.1 ˙1.5 ˙1.4 �5:4=23:6
20 ˙3.7 ˙0.2 ˙2.1 ˙2.4 �11:1=40:8
50 ˙8.6 ˙0.4 ˙3.3 ˙5.5 �8:2=114:5

where the computation errors are below 0.1 mGal. The
statistics are given in the following table.

Table 33.3 shows that the gravity of residual terrain
is significant at every grid size. Even at 100, the RMS
value of gravity of residual terrain is ˙1:4mGal. The
maximum gravity reaches 23.6 mGal in high moun-
tains. For a 500 grid size, the gravity of residual terrain
peak is at 114.5 mGal in the Rocky Mountains, and its
RMS value is as large as ˙5:5mGal. The results are
somewhat unexpected, since we have seen the omis-
sion errors to the geoid is insignificant for most cases,
and only have some meaningful magnitude in high
mountain regions. The large contrast between the geoid
and gravity is the evidence that the geoid is dominated
by long wavelengths of the gravity field, while the
gravity has large power in the high frequency band.
To see the gravity changes with respect to location,
the gravity of residual terrain (omission error to the
gravity) is plotted in the following figure (Fig. 33.3).

As expected, all large gravity occurs in mountain-
ous regions. In flat areas, the gravity of residual terrain
is negligible.

4 Conclusions and Discussions

To estimate the omission errors to the geoid and
gravity, we assume that the ultra- high frequencies
of the gravity field are produced by the topographic
variations. If this assumption is realistic, we can draw
following conclusions:
1. The omission errors to the geoid can reach dm

in high, rough mountains at the 500 grid size. As
expected, the roughness is the determining factor,
for it represents the high frequencies of the topog-
raphy. For the 1 cm geoid, the 500 grid size is not
suitable for mountainous regions.

2. The results show that omission error to the geoid is
less than 1 cm pointwise everywhere in CONUS,
if the 10 grid size is used. This conclusion is
based the assumption that high frequencies of the
gravity field are produced by the residual terrain
only.

3. The gravity due to the residual terrain is significant
(larger than 1 mGal) even at a 100 grid size. The
results suggest that the RTM gravity may be useful

Fig. 33.3 Omission errors to the gravity (from top to bottom 100, 200 and 500) in mGal



226 Y.M. Wang

for removing the high frequencies from gravity
observations before gridding or block mean value
computations.

4. The omission errors to the geoid in this paper are
smaller than those based on Kaula’s rule. For a
100 grid size, the omission error is merely ˙0:1 cm
verses ˙0:5 cm, and ˙1:1 cm verses ˙3:0 cm for a
500 grid size. The reason for the differences is that
Kaula’s rule overestimates the power of the gravity
field at ultra-high frequencies, which renders the
studies of convergence of the spherical harmonic
series based on Kaula’s rule questionable.

A constant density .2:67 g=cm3/ of the topographic
masses is used in this paper. The actual density may
vary 10% of the mean density adopted in this paper.
From the results showed in the paper, the density
variation is not significant enough to alter the above
conclusions.
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34An Oblique Derivative in the Direct BEM
Formulation of the Fixed Gravimetric BVP

R. Čunderlı́k, K. Mikula, and R. Špir

Abstract

The fixed gravimetric boundary-value problem (FGBVP) represents an exterior
oblique derivative problem for the Laplace equation. The boundary element
method and the collocation with linear basis functions are used to get a numerical
solution of FGBVP in which the oblique derivative is treated by its decomposition
into normal and tangential components to the Earth’s surface. The tangential
components are expressed through the gradients of the linear basis functions.

This new numerical approach to the solution of FGBVP is applied to global
gravity field modelling. Input surface gravity disturbances as the oblique deriva-
tive boundary conditions are generated from the DNSC08 gravity field model.
The obtained numerical solution with the resolution of 0:1ı is compared with
the EGM2008 geopotential model at collocation points. A contribution of the
tangential components to the solution is presented and discussed.

Keywords

Fixed gravimetric BVP • Oblique derivative problem • Direct BEM formula-
tion • Collocation with linear basis functions

1 Introduction

The precise 3D positioning by GNSS has brought
new opportunities for gravity field modelling. Today
more attention is focused on the fixed gravimetric
boundary-value problem (FGBVP). It represents an
exterior oblique derivative problem for the Laplace
equation, cf. e.g. Koch and Pope (1972), Bjerhammar
and Svensson (1983) or Grafarend (1989). In order to
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Radlinkého 11, 813 68 Bratislava, Slovakia
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solve such problem we use a direct formulation of the
boundary element method (BEM) and the collocation
with linear basis functions. In our previous approach
we treated the oblique derivative problem by a projec-
tion of the oblique derivative onto the normal to the
Earth’s surface (Čunderlı́k et al. 2008). Such approach
neglects a contribution of the tangential components.
In this paper we follow a strategy based on a decom-
position of the oblique derivative into normal and tan-
gential components, cf. e.g. Balaš et al. (1989). Hence,
we formulate the boundary integral equation (BIE)
for the oblique derivative problem. Another approach
based on an iterative treatment of the oblique derivative
using the Galerkin method is described in (Nesvadba
et al. 2007).
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Our objective in this paper is to derive the direct
BEM formulation for FGBVP taking into account the
oblique derivative and to implement it into the numer-
ical scheme based on the collocation with linear basis
functions. We focus on the evaluation of the tangential
components that are expressed through the gradient of
the linear basis functions. In the numerical experiments
we apply our numerical approach to the global gravity
field modelling. The obtained numerical solution with
the resolution 0:1ı is compared with our previous
high-resolution results (Čunderlı́k and Mikula 2010).
It allows us to estimate a contribution of the tangential
components that were neglected before.

2 Direct BEM Formulation for FGBVP

The linearized FGBVP represents an exterior oblique
derivative problem for the Laplace equation, cf. (Koch
and Pope 1972), (Bjerhammar and Svensson 1983) or
(Grafarend 1989)

�T .x/ D 0; x 2 R3 ��; (34.1)

hrT .x/; s.x/i D �ıg.x/; x 2 �; (34.2)

T D O.jxj�1/ as x ! 1: (34.3)

where T is the disturbing potential at any point x,
ıg is the surface gravity disturbance, the domain ˝
represents the body of the Earth with its boundary �
(the Earth’s surface), h; i is the inner product of two
vectors and

s.x/ D �rU.x/=jrU.x/j; x 2 �; (34.4)

where U is the normal gravity potential. Equation
(34.2) represents an oblique derivative boundary con-
dition (BC) as the normal to the Earth’s surface � does
not coincide with the vector s defined by (34.4).

Let us apply the direct BEM formulation to
(34.1)–(34.3). The main objective is to replace the
Laplace equation (34.1) that governs the solution in
the exterior domainR3–˝ by an equation that reduces
the solution to a problem on the boundary � (see
e.g. (Brebbia et al. 1984) or (Schatz et al. 1990)).
Such integral equations can be derived using Green’s
third identity or the method of weighted residual.
It represents the boundary integral equation (BIE)
(a detailed derivation is discussed in Čunderlı́k
et al. 2008)

1

2
T .x/C

Z

�

T .y/
@G

@n�
.x; y/dyS

D
Z

�

@T

@n�
.y/G.x; y/ dyS; x 2 �; (34.5)

where dS is the area element, n� is the unit outward
normal vector to the boundary � (the Earth’s surface)
and the kernel function G is the fundamental solution
of the Laplace equation,

G.x; y/ D .4
jx � yj/�1; x; y 2 R3: (34.6)

The term @T=@n� in BIE (34.5) represents the nor-
mal derivative, while FGBVP includes the oblique
derivative BC in (34.2). In order to derive BIE for
the oblique derivative problem we follow the idea
described in (Balaš et al. 1989). At first we decom-
pose the vector rT into the normal and tangential
components

rT D hrT;n� i n� ChrT;�i�ChrT;	i 	; (34.7)

where � and 	 are the unit tangential vectors. The
unit vectors n� , � and 	 represent a local orthonormal
triad. Then the oblique derivative term in (34.2) can be
written in the form

hrT; si D hhrT;n� i n� ; si C hhrT;�i �; si
C hhrT;	i	; si : (34.8)

After expressing hrT;n� i from (34.8) and inserting
into (34.5), we get BIE for our oblique derivative
problem

1

2
T .x/C

Z

�

T .y/
@G

@n�
.x; y/dyS

C
Z

�

hhrT;�i�; si
hn
 ; si .y/G.x; y/dyS

C
Z

�

hhrT;	i	; si
hn
 ; si .y/G.x; y/dyS

D
Z

�

hrT; si
hn
 ; si .y/G.x; y/dyS; x 2 �:

(34.9)
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Here a contribution of the tangential components is
expressed through the gradients of the unknown dis-
turbing potential. The term hrT , si on the right-hand
side of BIE (34.9) represents the oblique derivative BC
defined in (34.2) and thus can be replaced by negative
values of the input surface gravity disturbances. Then
BIE (34.9) represents the direct BEM formulation for
FGBVP defined by (34.1)–(34.3).

2.1 Collocation with Linear Basis
Function and Tangential
Components

As a numerical scheme for solving BIE (34.9) we use
the collocation with linear basis functions. It means
we consider a piecewise linear representation of the
boundary functions T and ıg on planar triangles that
approximate the Earth’s surface. Due to the limited
extent of this paper, for more details we refer to
(Čunderlı́k et al. 2008). Here we only focus on an
evaluation of tangential components that are neglected
in the aforementioned reference.

Considering BIE (34.9), a contribution of the tan-
gential components is expressed through the gradients
of the unknown disturbing potential. In case of the used
collocation they can be expressed through the gradients
of the linear basis functions

rT .x/ �
3X

kD1
Tkr k.x/; x 2 ��j ; (34.10)

where Tk are unknown values of the disturbing poten-
tial at collocation points that represent vertices of the
triangle ��j and  k are the linear basis functions
at these points. Since the gradient of the linear basis
function r j is constant on the whole triangle��j , it
can be expressed in the following way using the Green
theorem

r j D 1

m
�
��j

�
Z

��j

r j d��

D 1

m
�
��j

�
Z

@�j

 j N�d@�; (34.11)

wherem.��j / is the area of the triangle��j and N� is
the normal vector to its sides @� . Considering a fact

that the j th linear basis function equals to 1 at the
j th collocation point and to 0 at others vertices of the
triangle ��j , i.e. at mth and kth collocation points,
(34.11) can be simplify into the form

r j D 1

2m
�
��j

� �ljm N�jm C ljk N�jk
�
; (34.12)

where ljm and ljk are the lengths of the sides of the
triangle intersecting at the j th collocation point and
N�jm and N�jk are the normal vectors to these sides.

In such a way we get the discrete form of BIE (34.9)
that subsequently yields a linear system of equations.
For more details how to compute the integral operators
see (Čunderlı́k et al. 2008).

3 Numerical Experiments

Numerical experiments deal with the global gravity
field modelling. At first we approximate the Earth’s
surface by a triangulated surface. Vertices of this
triangulation represent the collocation points. Their
horizontal positions are generated by the algorithm
developed in (Čunderlı́k et al. 2002). A mesh size of
the triangular elements is 0:1ı in latitude. It represents
4,860,002 collocation points regularly distributed over
the whole Earth’s surface. Vertical positions of the
collocation points are interpolated from the DNSC08
mean sea surface (Andersen et al. 2008) at oceans,
and SRTM30PLUS-V5.0 global topography model
(Becker et al. 2009) on lands.

The input surface gravity disturbances as the
oblique derivative BC are generated from the DNSC08
gravity field model (Andersen et al. 2008). In order
to reduce large memory requirements we eliminate
far zones contributions using the ITG-GRACE03S
satellite geopotential model (Mayer-Gürr 2007) up
to 180ı and the iterative procedure described in
(Čunderlı́k and Mikula 2010).

Final large-scale computations were accomplished
on parallel computers with 128 GB of the distributed
memory using standard MPI (Message Passing Inter-
face) subroutines for the code parallelization (Aoyama
and Nakano 1999). As a linear solver we use the
nonstationary iterative methods BiConjugate Gradi-
ent Stabilized (BiCGSTAB) method (Barrett et al.
1994), which is suitable for dense and nonsymetric
matrices.
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Fig. 34.1 Residuals between
the numerical solution by
BEM and EGM2008
evaluated at collocation points
(1GPU D 10m2 s�2)

The obtained numerical solution with the resolution
of 0:1ı is compared with the EGM2008 geopotential
model (Pavlis et al. 2008) up to degree 2,160.
Residuals at the collocation points are depicted in
Fig. 34.1. Basic statistical characteristics of such
residuals are presented in Table 34.1. A comparison
with our previous high-resolution results where the
oblique derivatives are projected into the normal
derivatives (Čunderlı́k and Mikula 2010) shows a
contribution of the tangential components (Fig. 34.2,
Table 34.2).

Table 34.1 Statistical characteristic of residuals between the
numerical solution by BEM and EGM2008 at collocation points

AREA TOTAL OCEANS LANDS

Mean 0.062GPU 0.056GPU 0.075GPU
Std. 0.106GPU 0.078GPU 0.154GPU
Min �1.468GPU �0.372GPU �1.468GPU
Max 4.393GPU 0.397GPU 4.393GPU

Table 34.2 Contribution of the tangential components of the
oblique derivative (1GPU D 10m2s�2/

Area Total Oceans Lands

Mean 0.065GPU 0.057GPU 0.086GPU
Std. 0.035GPU 0.024GPU 0.049GPU
Min �0.091GPU 0.024GPU �0.091GPU
Max 0.717GPU 0.313GPU 0.717GPU

4 Discussion and Conclusions

A decomposition of the oblique derivative into the
normal and tangential components allows us to for-
mulate the direct BEM formulation for FGBVP. The
derived integral relation in (34.9) represents BIE for
the oblique derivative problem. An evaluation of the
tangential components through the gradients of the lin-
ear basis functions in case of the collocation is an effi-
cient approach. The presented numerical experiments
show that a contribution of the tangential components
can not be neglected, especially in the mountainous
areas of the high deflections of verticals (Fig. 34.2).
It is evident from Table 34.2 and Fig. 34.2 that their
contribution is almost everywhere positive and glob-
ally increases the numerical solution. The maximum
values up to 0.7GPU (�0:7m) are in Himalayas and
Andes. Their contribution influences surroundings in
far distances (Fig. 34.2).

The obtained gravity field model represents the
numerical solution of the linearized FGBVP with the
resolution of 0:1ı. Its comparison with EGM2008
(spherical harmonics up to degree 2,160) shows
better agreement at oceans (Fig. 34.1) where the
standard deviation of residuals at collocation points
is 0.078 GPU (Table 34.1). Here negative residuals
in area of the global minimum (south of India) and
positive residuals in area of the global maximum
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Fig. 34.2 Contribution of the
tangential components of the
oblique derivative
(1GPU D 10m2 s�2)

(Oceania) ranging up to ˙0:3GPU indicates a small
discrepancy. The highest residuals up to 4 GPU are in
Himalayas and Andes that significantly influence the
standard deviations of residuals on lands (0.15 GPU).
Such high values and an evident correlation with the
topography motivate for a further investigation of our
approach.
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Čunderlı́k R, Mikula K, Mojzeš M (2002) 3D BEM application
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35Generalizing the Harmonic Reduction
Procedure in Residual Topographic Modeling

Ove Christian Omang, Carl Christian Tscherning, and Rene Forsberg

Abstract

In gravity field modeling measurements are usually located on or above the
terrain. However, when using the residual topographic modeling (RTM) method,
measurements may end up inside the masses after adding the mean topography.
These values do not correspond to values evaluated using a harmonic function.
A so-called harmonic correction has been applied to gravity anomalies to solve
this problem. However, for height anomalies no correction has been applied.
To generalize the correction to e.g. height anomalies we interprete that the vertical
gravity gradient inside the masses multiplied by height equals the correction.
In principle the procedure is applicable to all gravity field functionals. We have
tested this generalization of the procedure which consist in determining equivalent
quantities in points Q on the mean surface if this surface is in free air. The
procedure has as data the reduced values in P inside the masses but considered
as being located at the mean surface. Numerical tests with height anomaly data
from New Mexico and Norway as control data show that for gravity anomalies the
general procedure is better than using the original harmonic correction procedure.

Keywords

Residual topographic modeling • Generalized harmonic reduction • Harmonic
correction
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1 Introduction

When using RTM for gravity field modeling (Forsberg
and Tscherning 1981; Forsberg 1984), measurements
may be located inside the masses added using a mean
topography. They do therefore not anymore correspond
to values evaluated using a harmonic function. For
gravity anomaly data a so-called harmonic correction,
�4
G� � �h (Forsberg 1984), is applied, while no
correction has been applied on for example height
anomalies. G is the gravitational constant, � the mass
density and �h the difference between the altitude of
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P

Q

Δh

Fig. 35.1 The dashed curve shows the mean surface, the solid
curve the actual topography

the point (Q) on the mean surface and the observation
point (P), see Fig. 35.1. However, the correction is
equal to the vertical gravity gradient inside the masses
multiplied by �h, if the horizontal gravity gradients
are equal to zero. This interpretation makes it possible
to generalize the correction to e.g. height anomalies.

We have implemented and tested an alternative
procedure which is applicable to all types of gravity
field observables. The basic idea is to continue the
observations to the reference surface used in RTM, an
idea which was already discussed in Elhabiby et al.
(2009). However in order to continue the observation
the vertical gradient has to be known. In fact the
harmonic correction is such a vertical gravity gradient,
if the horizontal gradients are considered equal to
zero. This is due to Poisson’s equation, Torge (2001),
eq. (3.31). From this we may compute the harmonic
correction for height-anomalies, �c , using that the
difference between the anomalous potential (T ) in P
and Q is equal to the integral of the gravity disturbance
inside the masses from P to Q. Hence

�c D �4
G��h2
�

(35.1)

where � is normal gravity.
Further development of this procedure requires that

we are able to compute the gravity gradients inside the
(homogeneous) mass, however, in this paper we have
assumed that the horizontal gravity gradients are equal
to zero.

We have tested the procedure by predicting height
anomalies from gravity anomalies in the New Mexico
White Sands test area and in an area in Western
Norway with very deep fjords (Dahl and Forsberg
1999).

2 Generalized Harmonic Correction

The gravity potential of the Earth, W , may be split in
two parts, W DU C T . Here U is an Earth Gravity
Model (EGM) which includes the centrifugal potential,

so that T becomes a harmonic function outside the
masses. The EGM includes the contribution from the
topography from wavelengths corresponding nearly
to the maximal degree and order of the EGM, i.e.
360 for EGM96 (Lemoine et al. 1998) and 2,160 for
EGM08 (Pavlis et al. 2008). Consequently point mea-
surements (and sometimes airborne measurements)
may be located inside the masses we have artifi-
cially placed outside the reference ellipsoid. For grav-
ity anomalies, a so-called harmonic correction was
introduced by Forsberg (1984) in order to solve this
problem. We will here use the alternative procedure
described above which for gravity anomalies turns out
to give nearly the same result (when height anomalies
are predicted) as when the harmonic correction is
applied.

The basic equation is, with P an arbitrary point out-
side the real masses, T the anomalous potential, with
subscript rtm for the contribution from the residual
topography and res the remaining part:

T .P / D Trtm.P /C Tres.P / (35.2)

If the point P is inside the artificial masses, the gen-
eralized method is to use the observation at Q, see
Fig. 35.1. For T and all other gravity functionals this
means:

T .Q/ D Trtm.P /C Tres.Q/ (35.3)

where a harmonic correction had been applied in P.
The harmonic correction has the function that it
moves/continues the quantity from P to Q inside the
masses, disregarding horizontal gradients. In order
to determine an estimate of Tres.Q/ we use a Taylor
expansion:

QTres.Q/ D Tres.P /C @T

@h
jP ��h (35.4)

Where we compute the vertical derivative using Least
Squares Collocation (LSC) implemented in the GRAV-
SOFT (Forsberg and Tscherning 2008) program GEO-
COL (Tscherning 1974).

The above equations may be written down for
different functionals,L, such as the gravity disturbance
ıg, the gravity anomaly �g or the height anomaly �.
Equation 35.4 rewritten for gravity anomalies
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� Qgres.Q/ D �gfa.P / ��gegm.P /

��grtm.P / � Tzz ��h; (35.5)

and for height anomaly

Q�res.Q/ D �.P /��egm.P /��rtm.P /�@T
@r

��h; (35.6)

where subscript fa is free-air anomaly, egm is the
gravity/height anomaly signal from the EGM96, rtm
is the terrain effect including the harmonic correction,
Tzz is the vertical gravity gradient, Tzz ��h and @T

@r
��h

is the first term of the Taylor expansion when moving
from P to Q.

Note that data which are outside the mean surface
are not at all changed in this procedure.

3 Computational Procedure

The GRAVSOFT program TC, used to compute the
RTM effects, has been modified so that it optionally
will produce a file where the height data-column in the
output data-record contains the mean-surface height
of the point Q if the point is inside the masses. This
delivers a file with L.Tres.P // � L.Tres.Q// values
associated with the point Q.

The values are then subtracted from the data (from
which the effect of a global model already has been
removed) and we obtain residual values. The effect of
the new harmonic correction of height anomalies is
for the Norwegian data seen as a further smoothing of
the residual height anomalies from 0.44 to 0.34 m, see
Table 35.4. With these data the vertical derivative may
be computed using LSC (Moritz 1980).

4 Numerical Tests

We have selected our two test areas, New Mexico
and Sognefjord, based on availability of control data,
gravity data, and roughness of the topography.

4.1 New Mexico

The first test area is located in New Mexico, USA,
covering an area from the Mexico border (El Paso) in
south to Albuquerque in north, and stretching about
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35˚

mGal
1751501251007550250−25−50−75

254˚252˚
35˚

34˚

33˚

32˚

252˚ 254˚

Fig. 35.2 Distribution of the 2,920 free-air gravity anomalies in
the New Mexico test area

3:0ı east–west. The New Mexico test area is located
in an area starting at 1,000 m above sea level and has
mountain areas ranging up to 3,350 m.

Within the geographical area 31:7ı to 34:8ı N,
252:2ı to 254:8ı E a total of 2,920 free-air gravity
anomaly measurements were selected, see Fig. 35.2 for
distribution and Table 35.1 for statistics. 1,979 points
were inside the masses and their values were changed
from line 3 to 4 in Table 35.1, while 941 points were
unaffected.

As control data we have selected 20 height
anomaly points (GPS/leveling) in New Mexico.
Since the US height system uses orthometric height
the GPS/leveling points were transformed to height
anomaly data using the quasigeoid minus geoid

Table 35.1 Statistics of 2,920 gravity points in New Mexico
test area. All values in mGal

Mean Std. dev Min Max
�gfa 9:182 30:405 �58:700 162:500

��gegm �2:932 21:283 �74:792 126:430

��grtm 0:282 13:153 �41:020 45:739

�Tzz ��h 0:308 13:035 �40:697 45:739



236 O.C.D. Omang et al.

252˚

252˚

254˚

254˚

32˚ 32˚

33˚ 33˚

34˚ 34˚

35˚ 35˚

−25.5−25.0−24.5−24.0−23.5−23.0−22.5−22.0−21.5−21.0−20.5−20.0

m

Fig. 35.3 Distribution of the control data in the New Mexico
test area

Table 35.2 Statistics of the 20 control points in New Mexico
test area. All values in meter

Mean Std. dev Min Max
�gps �24:268 1:083 �25:059 �20:917
��egm 0:040 0:159 �0:330 0:305

��hc 0:167 0:135 �0:107 0:396

��Q@T
@r ��h

0:166 0:122 �0:075 0:367

�gps-�egm-�tcwohc �0:897 0:159 �1:268 �0:632

separation formula (see e.g. Dahl and Forsberg
(1999)). The data distribution is illustrated in Fig. 35.3
and statistics are given in Table 35.2. They are
distributed in height from 1,130 to 1,662 m above
sea level. Eighteen GPS/leveling points were inside
the masses and their values where affected by the new
procedure, while two points were unaffected.

4.2 Sognefjord

The Sognefjord test area was mainly selected due to its
topography. The topography ranges from sea level to
2468.73 m.

Fig. 35.4 Distribution of the free-air gravity anomalies in the
Sognefjord test area

Table 35.3 Statistics of 2,877 gravity points. All values in
mGal

Mean Std. dev Min Max
�gfa 29:926 53:978 �113:750 205:580

��gegm �1:176 46:547 �169:219 131:595

��grtm 1:070 12:060 �36:120 45:000

�Tzz ��h 1:147 11:823 �35:075 42:250

In the Sognefjord test area we have selected
land only gravity data within the region 59.5ı to
62.5ı N, 4.5ı to 10.0ı E. A total of 2,877 free-air
gravity anomaly measurements were selected, see
Fig. 35.4 for distribution and Table 35.3 for statistics.
1,369 points were inside the masses and their values
were changed from line 3 to 4 in Table 35.3, while
1,508 points were unaffected, by the generalized
procedure.

As control data we have selected 131 height
anomaly data (GPS/leveling) around the Sognefjord.
The data distribution is illustrated in Fig. 35.5 and
statistics are given in Table 35.4. They are distributed
in height from 1 to 1424.7 m above sea level. 116
GPS/leveling points were inside the masses and their
values were altered by the generalized procedure,
while 15 points were unaffected.
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Fig. 35.5 Illustrates the difference between height anomalies
estimated from gravity data and control data in Sognefjord. It
refers point Q, see line 3 in Table 35.5. This figure also illustrates
the distribution of the GPS/leveling data in the Sognefjord test
area

Table 35.4 Statistics of the 131 control points in Sognefjord
test area. All values in meter

Mean Std. dev Min Max
�gps 46:270 0:416 45:372 47:604

��egm 0:841 0:445 0:019 1:841

��hc 0:796 0:347 0:163 1:370

��Q@T
@r ��h

0:736 0:296 0:200 1:254

�gps-�egm-�tcwohc 0:857 0:387 0:155 1:441

5 Results and Conclusions

The generalized method gives an improved smoothing
of the gravity and height anomaly data compared to the
original harmonic correction method. In Tables 35.1
and 35.3 the gravity anomalies in line 4 are slightly
smoother than line 3, which represents the original
method. The original harmonic correction of the con-
trol data is given in line 5 of Tables 35.2 and 35.4
while the other lines indicates the new procedure. As
the tables indicate the new method give smoother data
than the original harmonic correction method.

A significant improvement is obtained when includ-
ing harmonic correction for the height anomalies, com-
pare line 1 and 2 in Table 35.5. An improvement of
fit of 2.6 cm and 0.4 cm in the Sognefjord and New
Mexico area, respectively.

By moving the point from P to Q in the Sognefjord
test area improves the fit even further to 15.7 cm, see
line 3 in Table 35.5 and Fig. 35.5, while in the New
Mexico test area the result is slightly worse than using
harmonic correction in point P, but better than not

Table 35.5 Statistics of height anomalies estimated from
gravity data compared with GPS/leveling control points. Sub-
script hc is harmonic correction, while nohc is no harmonic
correction. All values in meter

�g �GPS Mean Std. dev Max Min
Sognefjord

Phc Pnohc 0:287 0:197 0:702 �0:140
Phc Phc 0:226 0:171 0:714 �0:120
Q Q 0:175 0:157 0:712 �0:124

New Mexico
Phc Pnohc �0:891 0:052 �0:780 �0:974
Phc Phc 0:172 0:048 0:276 0:111

Q Q 0:171 0:050 0:282 0:109

using. This may be due to the relatively low number
of control points and their poor distribution or that we
already are at the error level of the data set.

The numerical tests with height anomaly data from
New Mexico, USA and Sognefjord, Norway as control
data shows that for gravity anomalies the general
procedure gives better to similar results compared to
using the original harmonic correction procedure.
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36Error Propagation in Geodetic Networks
Studied by FEMLAB

Kai Borre

Abstract

Geodetic networks can be described by discrete models. The observations may
be height differences, distances, and directions. Geodesists always make more
observations than necessary and estimate the solution by using the principle of
least squares. Contemporary networks often contain several thousand points. This
leads to so large matrix problems that one starts thinking of using continous net-
work models. They result in one or more differential equations with corresponding
boundary conditions.

The Green’s function works like the covariance matrix in the discrete case.
If we can find the Green’s function we also can study error propagation through
large networks. Exactly this idea is exploited for error propagation studies in large
geodetic networks.

To solve the boundary value problems we have used the FEMLAB software.
It is a powerful tool for this type of problems. The M-file was created by
Daniel Bertilsson. Modifying the code is so simple that a student can do it. We
demonstrate some results obtained this way.

1 Introduction

Plane geodetic networks can be described by graphs
the nodes of which are points with known or unknown
coordinates. The observations describe the edges of
the graph and at the same time serve as a means for
estimating the coordinates of the unknown nodes. We
always make more observations than necessary and
then use the method of least squares for at least two
reasons, (1) a unique solution of the problem, and

K. Borre (�)
Danish GPS Center, Aalborg University, Fredrik Bajers Vej 7C,
DK-9220 Aalborg, Denmark
e-mail: borre@gps.aau.dk

(2) estimation of the a posteriori covariance matrix of
the parameters.

The mathematical abstract of the method is the fol-
lowing: The least-squares problem of a single triangle
is set up. Next, the original observations are trans-
formed into pseudo-observations. In leveling they rep-
resent the slope of terrain in the direction of the coor-
dinate axes and the closing error of this triangle. In the
case of distance and azimuth networks, they are linear
functions of the elements of the metric tensor. Hence-
forth we compute the weighted square sum of residu-
als. The kernel of this symmetric form is analogous to
what in elasticity theory is called the stiffness matrix.

Now we look at the network consisting of such
elementary triangles as a whole. Here the crucial point
appears, namely, how to prolong the discrete scalar

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
Symposia 137, DOI 10.1007/978-3-642-22078-4 36, © Springer-Verlag Berlin Heidelberg 2012
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and vector fields to continuous functions. We solve
this problem by following simple principles from the
method of finite elements. The weighted square sum of
the residuals can now be extended to an approximating
Riemann–Stieltjes sum over the entire network. The
search for a minimum of this sum leads to a variational
problem, the solution of which is a boundary value
problem of the Neumann type.

This boundary value problem is the continuous
analogue to the normal equations. The inverse of the
partial differential operator (including the boundary
conditions) is an integral operator, the kernel of which
is Green’s function of the operator concerned. Green’s
function acts in an analogous way with the usual
covariance matrix of the original discrete least-squares
problem.

So the method yields Green’s function that is
an approximate substitute for an n-dimensional
covariance matrix. Instead of trying to grasp an
n-dimensional covariance matrix, we are furnished
with a single covariance function that depends on
certain characteristic parameters for the network.
Such a simplification of course has its costs. We lose
information about local phenomena of the network,
but we obtain a problem that can be studied and solved
analytically.

2 Continuous Model

This section jumps from matrix equations to differen-
tial equations. The following text follows ideas from
Strang (2007).

Instead of a finite number of heights along a straight
leveling line, the physical system covers an interval
like 0 � x � L. The pseudo-observation e D du=dx,
viz. slope of terrain, and weights c.x/ vary from one
point to the next. Therefore height differences between
individual nodes must be replaced by derivatives.

To take this step we copy the main idea of calculus.
The slope of a curve comes from the average slope over
increasingly small intervals:

�
u.x C�x/ � u.x/

�
=�x

approaches the slope du=dx. Height differences are
replaced by the slope of terrain.

The equilibrium of our small piece requires the
difference in weighted errors at its two ends to balance
the external error:

�
c
du

dx

�
xC�x �

�
c
du

dx

�
x

D d

dx

�
cb
�
:

The observed minus the computed observational value
is denoted by b. Dividing by �x, we approach the
differential equation of equilibrium

� d

dx

�
c
du

dx

�
D � d

dx

�
cb
�
: (36.1)

This is the matrix equation ATCAx D ATCb in the
continuum limit.

You can already see the analogies between the
discrete case and the continuous case. We list them in
Table 36.1 and then discuss them individually.

Clearly the basic framework is not changed. The
simplest step comes from C . Multiplication by a
diagonal matrix, which is yi D ci ei in the discrete
case, becomes multiplication by a function, w.x/ D
c.x/e.x/. Similarly A and its transpose reflect the
geometry

A D d

dx
and AT D � d

dx
: (36.2)

Differential equations come with boundary conditions.
We can specify u to a certain value, especially zero.
Such a condition is called a Dirichlet boundary
condition or a fixed boundary condition. Alternatively,
we can specify the derivative of u to a certain
value, again especially zero. Then we speak of a
Neumann boundary condition or a free boundary
condition. We must specify boundary conditions at
both ends. In this paper we only consider the Neumann
condition.

Table 36.1 Analogies between the discrete and continuous
realm

Discrete Continuous

Nodal unknown x Displacement u
Error e D b� Ax Pseudo-observation e D du=dx
Weighted error y D Ce Weight � pseudo-observation

w D ce

Node law ATy D 0 Equilibrium �dw=dx D b

Incidence matrix A Differential operator d=dx
Weight matrix C Multiplication by c.x/
Transposed matrix AT Transposed operator �d=dx
Normal equation Differential equation

ATCAx D ATCb � d
dx

�
c du
dx

�
D � d

dx
.cb/

Fixed node Displacement boundary condition
u.0/ D 0

Error-free condition Weighted error boundary condition
w.L/ D 0
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So far we focused on leveling networks that have
one unknown per node. However, there are other net-
work types that include two or more unknowns per
node. In networks where we measure distances and
azimuths we always have the basic unknowns .u; v/
that describe the displacements of the node.

Due to inadequate modeling of the atmospheric
refraction index used for reduction of the electrooptic
distance measurements, we are facing situations where
all distance measurements taken at a certain node have
a change of scale ˛ in common. So we add a small
correction term to the observation taken; subsequently
we call them relative observations.

The most common way of providing direction infor-
mation is to perform direction measurements by means
of a theodolite. The horizontal reading circle of the
instrument has a gradation of 360ı or more commonly
400 grades. However the direction of the zero mark
makes an arbitrary angle with the north direction in
the individual setup of the theodolite. There are sim-
ple methods for estimating an approximate value of
the azimuth of the zero direction. This approximate
value needs a small angular correction ˇ (radians). The
parameter ˇ is common to all directions measured at a
specific node.

We summarize the possible four observation types:

Absolute Relative

Distance 1 2
Direction 3 4

In our opinion it is a matter of taste or philosophy
which model to use. The most often used observation
types are 1 and 4. However, there are specific national
traditions. In the Netherlands types 2 and 4 are pre-
ferred.

Given the observation type a quadratic form of
weighted square sum can be formed. The minimum
of this form leads to the equation of equilibrium. The
weight is denoted ci where i can be any number from
1 to 4.

In order to obtain explicit solutions of our problem
we restrict the graph to consists of equilateral triangles
and the weights to be constants and common to all
edges. This leads to what is called a homogeneous and
isotropic network.

We may have contributions from all observation
types. For reasons of simplification we introduce the
parameters A, B , a, and b:

A D 3.c1 C c2/C .c3 C c4/

B D .c1 C c2/C 3.c3 C c4/

a D 4c2

b D 4c4:

(36.3)

The factors 1; 3; 4 originate from the triangular
mesh.

3 Geodetic Network Boundary Value
Problem

Adding contributions from all observation types,
we arrive at the following set of partial differential
equations O�SOw DF for the homogeneous,
isotropic case:

�

2
66666666664

A@xx C B@yy .A� B/@xy

.A� B/@xy B@xx CA@yy

a@x �b@y

a@y b@x

a@x a@y

�b@y b@x

a
�
l2

3
�C 2

�
0

0 b
�
l2

3
�C 2

�

3
77777777775

�

2
66666666664

u

v

˛

ˇ

3
77777777775

D

2
66666666664

Fu

Fv

F˛

Fˇ

3
77777777775
: (36.4)

The forces Fu; Fv; F˛; Fˇ depend on the observations
and may be found by adding the vectors O�Sg for all
four observation types.

Next we derive the boundary conditions for our
actual problem. Without giving details we quote the
result
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2
6666664

An1@xCBn2@y
A�B
2

�
n1@yCn2@x

�
A�B
2

�
n1@yCn2@x

�
Bn1@xCAn2@y

an1 an2

�bn2 bn1

an1 �bn2
an2 bn1

l2

3
a
�
n1@x C n2@y

�
0

0 l2

3
b
�
n1@x C n2@y

�

3
77775

2
6664

u

v

˛

ˇ

3
7775 D

2
6664

fu

fv

f˛

fˇ

3
7775:

(36.5)

There are good reasons for expecting that the boundary
forces fu; fv; f˛; fˇ vanish if the boundary is shifted
a half side length away from the physical boundary
of the network. However, we have not been able to
establish a rigorous proof for this conjecture.

We now introduce complex variables and let z and �
denote points inside the given region˝ and z0 denotes
a point on the boundary !. The general problem is the
following:

�u.z/ D f .z/ in ˝

@u.z0/

@nz0

D g.z0/ on !:

(36.6)

For our particular problem we try to construct an
approximate Neumann function. To this end we write
instead of f .z/ the delta function ı.z; �/. However, this
does not lead to an admissible u; we have to subtract
the average value of the delta function, which is simply
1=j˝j. Thus we must try to solve

��N.z; �/ D ı.z; �/� 1
j˝j in ˝

@N.z0; �/

@nz0

D 0 on !:

(36.7)

Hence we let the geodetic PDEs have right side ı �
1=j˝j and zero boundary values. This corresponds
to propagation of random errors. Alternatively, if we
define the functions Fu; Fv; F˛; Fˇ different from zero,
we are studying the propagation of systematic errors.

Finally we have to specify the shape of the boundary
! of the region ˝ in which we want to solve the
problem, and assign weights c1, c2, c3, and c4. One
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Fig. 36.1 Solution of the geodetic boundary value problem for
a square region ˝: Displacement field w D .u; v/ (top) and the
scalar ˛ (middle) and ˇ fields (bottom) for weights c2 D 10 and
c1 D c3 D c4 D 0:000 001

or more of these weights can be zero, but at least
one must be positive. For given weights ci , we can
immediately compute A, B , a, and b according to
(36.3).
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Fig. 36.2 Solution of the geodetic boundary value problem for
a square region ˝: Displacement field w D .u; v/ (top) and the
scalar ˛ (middle) and ˇ fields (bottom) for weights c1 D c2 D 1

and c3 D c4 D 10

4 MATLAB Code

It is a great pleasure to present to all readers an efficient
M -file that solves our boundary value problem. It
is written by Daniel Bertilsson and we are grateful

that he so generously has made it available to us.
It is called geonet. The computational power comes
from the FEMLAB software that is distributed by
Comsol.

% GEONET
% This script solves the system of PDEs for geodetic networks (4.23)
% with homogeneous boundary conditions (4.29).
% The components of the right side of (4.23) are all taken to be
% delta – 1/(area of region).
% The right side of (4.29) is 0.
% The solution components (u, v) are plotted as vector field arrows.
% The components alpha and beta are plotted as graphs, also colored
% according to function value (figures 2 and 3, respectively).
%
% The script uses functions from the finite element software
% FEMLAB that is distributed by COMSOL.

% The following parameters define the problem:
c1 = 1e – 6;
c2 = 10;
c3 = 1e – 6;
c4 = 1e – 6;
l = 0.1;
% The solution will have oscillations of wavelength comparable to l.
% Thus, if you take a smaller l, you need to refine the mesh in order
% to resolve the oscillations. This is done by changing the value hmax
% below to a smaller value.
geo = ’rectangle’; % Geometry type. Can be ’ellipse’ or ’rectangle’
cx = 0.2; cy = 0; % Coordinates of the center of the ellipse/rectangle
lx = 1; ly = 1; % Width and height of the ellipse/rectangle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define variables
clear fem;
fem.dim = ’u’ ’v’ ’alpha’ ’beta’ ;
fem.variables = ’A’ 3 * (c1 + c2) + c3 + c4 ...

’B’ c1 + c2 + 3 * (c3 + c4) ...
’a’ 4 * c2 ’b’ 4 * c4 ’K’ lˆ2/3 ;

% Define geometry
switch geo
case ’rectangle’
fem.geom = rect2(cx – lx/2, cx + lx/2, cy – ly/2, cy + ly/2);
area = lx * ly;
case ’ellipse’
fem.geom = ellip2(cx, cy, lx/2, ly/2);
area = pi * lx * ly/4;

end
fem.geom = geomcsg( fem.geom, , point2(0,0) );
% Create mesh
hmax = 0.02; % Maximum side for the triangles in the mesh
hmax˙orig = 0.0001; % Local hmax around the origin
lr = get(fem.geom, ’lr’);
nr˙orig = find(isfinite(lr1)); % Point number in the mesh for the origin
fem.mesh = meshinit(fem, ’hmax’, hmax, [nr˙orig; hmax˙orig]);
% Natural boundary conditions are default, so we don’t need to spec-
ify them.
% Define coefficients in the PDE
fem.equ.c = ’A’ ’B’...

0 ’(A – B)/2’; ’(A – B)/2’ 0 ’B’ ’A’...
0 0 ’K * a’...
0 0 0 ’K * b’ ;

fem.equ.al = 0 ...
0 0 ...
’a’ 0 0 ’a’ 0 ...
0 ’ – b’ ’b’ 0 0 0 ;

fem.equ.a = 0 0 ’ – 2 * a’ ’ – 2 * b’ ;
f = – 1/area;
fem.equ.f = f f f f ;
% The delta functions on the right – hand side are specified directly in the
% right – hand side vector L occurring in the FEM discretization
% of the problem.
np = size(fem.mesh.p, 2); % Number of points in mesh
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fem.mat.L = zeros(4 * np, 1);
fem.mat.L(nr˙orig) = 1; % The delta function gives a contribution at
fem.mat.L(nr˙orig + np) = 1; % the origin, for all four components
fem.mat.L(nr˙orig + 2 * np) = 1;
fem.mat.L(nr˙orig + 3 * np) = 1;
% Solve problem
fem.sol = femlin(fem);
% Plot the four components of the solution
figure
postplot(fem, ’arrowdata’, ’u’,’v’, ’arrowxspacing’, 30, ’arrowyspacing’, 30);
figure
postplot(fem, ’tridata’, ’alpha’, ’triz’, ’alpha’, ’trimap’, ’jet(4096)’);
figure
postplot(fem, ’tridata’, ’beta’, ’triz’, ’beta’, ’trimap’, ’jet(4096)’);

Figures 36.1 and 36.2 show solutions of the bound-
ary value problem given by (36.4) and (36.5). We use
various weights ci and a square region˝ .

We add some comments on the figures. The
solutions oscillate with a wavelength comparable to
the meshwidth l . Note that the ˛ and ˇ fields have
large variances when they are poorly determined.
Figure 36.1 demonstrates a network with relative
distance measurements. The rotation of the network
is poorly determined since a distance network with

Neumann type boundary conditions is undetermined
in its orientation. The condition

“

˝

�
@yu � @xv

�
d˝ D 0 (36.8)

removes this indeterminacy. In Fig. 36.2 distance
observations are given weight 1 and direction
observations are given weight 10. They “fight” to
contribute optimally to the displacement field. The
scale and rotation fields are small; that is, these
quantities are well determined.
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37Smoothing the Gradiometric Observations
Using Different Topographic–Isostatic
Models: A Regional Case Study
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Abstract

In terrestrial and airborne gravity field determination the formulae for the gravita-
tional potential and its first order derivatives have been used, while the second
order derivatives are related to the analysis of upcoming satellite gravity gra-
diometry missions of GOCE type. Especially there, the reduction of topographic
and isostatic effects is important to produce a smooth gravity field suitable for
downward continuation.

In this paper various isostatic models, namely the models of Airy–Heiskanen
(A–H) and Pratt–Hayford (P–H), the combination of the Airy–Heiskanen model
(land area) and the Pratt–Hayford model (ocean area), the first (H1) conden-
sation model of Helmert as well as a crust density model are analyzed for
a GOCE-like satellite orbit in two selected regions: Japan and central part of
Europe.

The different topographic–isostatic effects are compared with respect to the
degree of smoothing of the measured satellite gradiometric data. The results of this
paper can serve as a base for further investigations of the suitability of particular
reduction models for downward continuation.
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Satellite gravity gradiometry • isostatic models (Airy–Heiskanen • Pratt–
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1 Introduction

As GOCE (Gravity Field and Steady-State Ocean
C irculation Explorer) has been successfully launched
in March 17, 2009, the preparation of effective uti-
lization of GOCE data for all variety of scientific
purposes is essential. While the majority of appli-
cations are focused on global approach, this paper
attempts to emphasis some possibilities of regional
applications.
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One important aspect is the determination of the
effect of topographic and isostatic masses on the
particular components of the gravity gradient tensor. If
this effect is significant, it will be possible to smooth
the GOCE data before processing and ensure e.g. a
better stability for downward continuation of the data
(see Janák and Wild-Pfeiffer 2010).

2 Test Regions

Eastern Asia as the first test region (Region A) is
surrounded by parallels 15ı and 56ı and by meridians
116ı and 157ı (the area is 41ı � 41ı). Approximately
56% of the surface of Region A is covered by ocean.
A relief of the Earth’s surface in Region A is shown in
Fig. 37.1.

Europe as the second test region (Region B) is
surrounded by parallels 30ı and 71ı and by meridians
�10ı and 31ı (the area is 41ı � 41ı). With respect to
Region A, Region B is shifted towards the pole and
it is predominantly covered by continent. A relief of
the Earth’s surface in Region B is plotted in Fig. 37.2.
The statistics of elevation for both regions is shown in
Table 37.1.

Fig. 37.1 Region A represented by ETOPO2v2c with the reso-
lution of 100

Fig. 37.2 Region B represented by ETOPO2v2c with the reso-
lution of 100

Table 37.1 Statistical parameters of 100 mean elevations gen-
erated from ETOPO2v2c model

Parameter Region A Region B

Min. (m) �9,371 �4,978
Max. (m) 2,627 2,934
Mean (m) �2,334 �346
Range (m) 11,998 7,912
Std. (m) 2,987 1,235
Dry land (%) 44 56
Ocean (%) 56 44

3 Modelling of the
Topographic–Isostatic Effects

The topographic–isostatic effects for both regions have
been computed in altitude of 260 km (approximate
GOCE flight level) using global numerical integration.
The integration domain is subdivided into three parts:
the vicinity of the computation point, the external
domain and the poles, see Figs. 37.3 and 37.4.

As the integration is performed in spherical
geographical coordinates, the integration elements are
bounded by meridians and parallels while meridians
are convergent towards the poles. Therefore the polar
regions are integrated separately according to the
integration scheme presented in Fig. 37.4.
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Fig. 37.3 Subdivision of the spherical integration domain in
the vicinity of the computation point vertically projected onto
a reference sphere

Fig. 37.4 Subdivision of the spherical integration domain
around the North Pole (The surrounding of the South Pole obeys
the same scheme)

The aim of the numerical experiment is the quan-
tification of the degree of smoothing of the disturbing
gravity tensor components in GOCE flight level after
applying a topographic–isostatic model.

Modelling the topographic–isostatic effects accord-
ing to Airy–Heiskanen (A–H), Pratt–Hayford (P–H),
the combined model, the first Helmert condensation

Fig. 37.5 Schematic explanation of the Airy–Heiskanen model

Fig. 37.6 Schematic explanation of the Pratt–Hayford model

model (H1) and a crust model, the following parame-
ters have been used: radius of the reference sphereR D
6;371;009m, standard column height T D 25 km,
mean ocean water density �w D 1;030 kg m�3, mean
Earth crust density �0 D 2;670 kg m�3 and density
of the upper part of the mantle �m D 3;270 kg m�3,
standard column depth D D 100 km and depth of the
condensation layer d D 21 km, see Figs. 37.5–37.7
and Wild-Pfeiffer and Heck (2008).

The combined model consists of a mixture of the
A–H model over the continents and the P-H model
over the oceans. The second condensation model
of Helmert has not been considered because from
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Fig. 37.7 Schematic explanation of Helmert’s first condensa-
tion model

previous research it is evident that it does not smooth
the disturbing gravity tensor components see Janák
and Wild-Pfeiffer (2010).

The last topographic–isostatic model has been com-
puted using the crust density model CRUST2.0, see
Bassin et al. (2000), for the Eastern Asia test region
and using the new European Moho depth model, see
Grad et al. (2009), for the Europe test region. In
principle, these models are similar to the A–H model,
although the lower boundary surface of the Earth’s
crust, the Moho discontinuity, is not computed but
directly taken from the crust model.

4 Results

As the real GOCE measurements are not yet available
for users, a set of simulated GOCE data have been
computed from EGM08 global model (see Pavlis

et al. 2008) up to degree 360. The degree of smoothing
of the disturbing gravity tensor components has
been quantified by comparison of the standard
deviation and range before and after applying a
particular topographic–isostatic reduction. The relative
improvements for particular components in Region A
in terms of range and standard deviation are shown in
Table 37.2.

In Fig. 37.8, one particular component T'' using
the A–H topographic–isostatic compensation model
is shown. It is apparent that the application of the
topographic–isostatic reduction has a significant
smoothing effect. Based on Table 37.2 it can be
recognized that the range of undulation is reduced
by 23% after applying this reduction.

The best relative smoothing in Table 37.2 is 34.6%
and belongs to the range of Trr component. The effects
based on the CRUST2.0 model do not provide any
smoothing.

The relief in the European test region is less broken
than in the Eastern Asia test region and the per-
cental representation of the ocean is smaller. Table 37.3
shows the relative improvements for particular com-
ponents in Region B in terms of range and standard
deviation. In Fig. 37.9 one particular component T''
using the P–H topographic–isostatic model is shown.

In Fig. 37.9, analogously to Fig. 37.8, the gravity
gradients are significantly smoothed by application
of the topographic–isostatic reduction. Based on the
information of Table 37.3 it can be recognized that the
range of undulation is reduced by almost 38%, which
is also the best relative smoothing in Table 37.3. The
use of the new European Moho depth model does not
provide any smoothing.

Table 37.2 Percental smoothing of the disturbing gravity tensor components over the Eastern Asia test region. The best percental
smoothing in terms of range and standard deviation for every component is indicated in bold. Dash means no smoothing

Model Crit. T'' T'� T'r T�� T�r Trr

A–H Range 23:2 24.3 18.4 21.7 26:3 25.3
Std. 19.1 15.8 18.7 20:2 12.6 18.8

P–H Range 20.7 31.1 18.6 28:3 25.6 33.7
Std. 9.8 15.8 10.8 18.0 11.4 14.8

A–H/P–H Range 20.8 31:1 18.5 27.8 25.6 34:6
Std. 11.4 17:0 12.6 18.1 12.3 15.5

H1 Range 18.4 22.6 18:7 21.7 23.0 24.5
Std. 19:1 16.6 19:0 19.5 12:9 19:1

CRUST 2.0 Range – – – – – –
Std. – – – – – –
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Table 37.3 Percental smoothing of the disturbing gravity tensor components over the Europe test region. The best percental
smoothing in terms of range and standard deviation for every component is indicated in bold. Dash means no smoothing

Model Crit. T'' T'� T'r T�� T�r Trr

A–H Range 21.9 8.3 19.7 3.8 7.6 13.8
Std. 19.0 12:6 16.6 4:6 8:5 12:3

P–H Range 37:6 17.6 33:2 5.3 2.1 24:4
Std. 23:5 11.0 19:2 - 2.3 11.7

A–H/P–H Range 34.1 19:2 31.9 8:4 4.8 24.4
Std. 22.0 10.6 18.3 - 3.3 11.4

H1 Range 20.0 9.6 19.1 5.8 8:9 14.0
Std. 17.7 11.8 15.6 4.5 8.2 11.6

New Moho Range – – – – – –
Std. – – – – – –

Fig. 37.8 Top: disturbing gravity tensor component T'' gen-
erated from EGM08 global model in Region A; Middle:
topographic–isostatic effect computed from the Airy–Heiskanen
model; Bottom: T'' component corrected for the topographic–
isostatic effect. Units in z-axis are Eötvös units (EU)

Conclusion

Using the topographic–isostatic reductions of Airy–
Heiskanen, Pratt–Hayford, the combined model
or the first Helmert condensation model, it is
possible to smooth the simulated gradiometric data

Fig. 37.9 Top: disturbing gravity tensor component T'' gen-
erated from EGM08 global model in Region B; Middle:
topographic–isostatic effect computed from the Pratt–Hayford
model; Bottom: T'' component corrected for topographic–
isostatic effect. Units in z-axis are Eötvös units (EU)

based on EGM08 model. The relative degree of
smoothing represented by comparison of standard
deviations is about 20%, while the relative degree
of smoothing represented by comparison of
ranges can reach more than 30%. Although the
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percentage of smoothing is significant, a large
part of the disturbing gravity gradient signal
still remains uncompensated. The reason may
be the insufficiently modelled density and the
uncompensated signal from deeper mass structures.
The choice of the best topographic–isostatic model
depends on the region of interest and also on the
particular component of gravity tensor.
The topographic–isostatic models based on exist-
ing Moho depth models (CRUST2.0 or the new
European Moho depth model) provide very large
topographic–isostatic effects and their application
on the disturbing gravity tensor does not improve
the smoothness of the data.
The comparison of the Moho depth model based
on the A–H model with the CRUST2.0 and the
new European Moho depth model shows that
the A–H model generates a much shallower and
smoother Moho boundary. As a consequence, the
A–H topographic–isostatic effect is smaller.
The behaviour of smoothed gravity gradiometry
data in the downward continuation process will be
the object of further research.
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38New Expressions of the Gravitational
Potential and Its Derivatives for the Prism

Maria Grazia D’Urso

Abstract

We present novel expressions for the gravitational potential and its first derivative
induced by a prism, having a constant mass density, at an observation point
coincident with a prism vertex. They are obtained as a special case of more
general formulas which can be derived for an arbitrary homogeneous polyhedron.
Remarkably, the expressions presented in the paper entail a reduced computational
burden with respect to alternative ones reported in the specialized literature.

Keywords

Newtonian gravitational field • First-order gradient • Right rectangular paral-
lelepiped • Prism

1 Introduction

The computation of the gravitational effects due to
given mass distributions is a basic issue in applied
geophysics and geodesy (Tsoulis 1999). Thus,
analytical formulas for the gravity field of the most
common model bodies, e.g. a prism, a cylinder, a cone,
etc. have been contributed in the past (Kellogg 1929;
MacMillan 1930).

In particular, the prism plays an important role
mostly in studies on local gravity field modelling when
the so called flat-Earth approximation is sufficient
(Nagy 1966; Banerjee and DasGupta 1977; Nagy et al.
2000).

However, analytical expressions for the prism
exhibit singularities when the computation of the

M.G. D’Urso (�)
Di.M.S.A.T. - Università di Cassino, 03043 Cassino (FR),
via G. Di Biasio 43, Cassino, Italy
e-mail: durso@unicas.it

potential is carried out at corners (Tsoulis 2000);
more generally such a situation does occur also for
polyhedral bodies (Petrović 1996).

Aim of this paper is to briefly illustrate the basic
ideas of a novel approach for expressing, exclusively
by line integrals, the gravitational potential and its
derivatives for an arbitrary homogeneous polyhedron.
The formulas, obtained by a suitable application of the
Gauss theorem, highlight from the very beginning
the potential sources of singularities and clearly indi-
cate how to correctly take them into account. In this
way there is no need to derive ad-hoc formulas (Tsoulis
2000) or include a-posteriori corrections as shown,
e.g., in (Tsoulis and Petrović 2001).

Specialization of the derived expressions to the case
of a prism and to an observation point P coinci-
dent with a prism vertex yields final formulas which
require a reduced number of algebraic operations with
respect to others formulas reported in the literature
(Tsoulis 2000). Due to space limitations, the case of
P lying along an edge or on a face of the prism,
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as well as the computation of the second-order gradient
of the potential, will be reported in a forthcoming
paper.

2 Gravitational Potential of a Prism

Let us consider a right rectangular parallelepiped
(prism) ˝ having a distribution of mass of constant
density ı. The gravitational potential U induced at P is
defined by the well-known Newton integral

U.P / D Gı

Z

˝

1

.r � r/1=2
dV (38.1)

where G is the gravitational constant and r the vector
connecting an arbitrary point of ˝ with P .

We are interested to compute the potential U , as
well as its first derivative, irrispective of the position of
P; however, due to space limitations, we shall confine
ourselves to the case in which P coincides with one of
the vertices of the prism.

Accordingly, we shall consider a three-dimensional
(3D) cartesian reference frame x, y, z having origin
at P and axes parallel to the edges of the prism; we
further introduce a 2D frame 1 and �1 in the plane of
the first face, ABCD, of the prism. The lenghts of the
edges parallel to x, y, z will be denoted by a, b and c
respectively, see e.g. Fig. 38.1.

Our goal is to compute the potential (38.1) by
expressing the volume integral as a sum of quantities
pertaining to the vertices of each face of the prism. The
result is obtained by first transforming the 3D integral
into the sum of 2D integrals extended to each face of

Fig. 38.1 The prism and the 2D reference frame for the first
face

the prism and, then, express each of the 2D integrals
as a sum of 1D integrals extended to each edge of the
generic face.

However, in the application of Gauss theorem, spe-
cial attention has to be paid to possible singularities
of the scalar field appearing in (38.1). Actually, the
potential diverges if P 2 ˝ , i.e. if r D o. To formally
handle this case we invoke the results (Tang 2006)

div
r

.r � r/3=2
D div Œh.r/� D 0 if r 6D o (38.2)

where div stands for the divergence operator and

Z

˝

'.r/div Œh.r/�dV D
�

0 if o 62 ˝
m.o/'.o/ if o 2 ˝

(38.3)

m representing the measure, expressed in radians,
of the solid angle of the intersection between ˝

and a spherical neighbourhood of the singularity
point o. Stated equivalently, the divergence of the
field h.r/ represents the Dirac delta function � at the
origin.

Invoking the differential identity (Tang 2006)

div.'u/ D grad' � u C ' div u; (38.4)

where grad denotes the gradient operator and u is an
arbitrary C1 vector field, it turns out to be
Z

˝

div
r

.r � r/1=2
dV D

Z

˝

div Œ.r � r/h.r/� dV

D
Z

˝

grad.r � r/ � h.r/dV C
Z

˝

.r � r/ div Œh.r/�dV

D 2

Z

˝

dV

.r � r/1=2
C
Z

˝

.r � r/�.o/dV (38.5)

where we have exploited the result grad.r � r/ D 2r.
Due to the peculiar properties of the Dirac delta

function the last integral on the right-hand side is
always zero, whether or not o belongs to ˝ . Actually,
in the former case '.r/ D r � r vanishes at the origin
while, in the latter one, the divergence of the field is
zero on account of (38.2).

Thus, the potential U can be expressed, whatever
is the position of P with respect to the domain ˝ , by
means of the formula
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U.P / D Gı

Z

˝

1

.r � r/1=2
dV D Gı

2

Z

˝

div
r

.r � r/1=2
dV

(38.6)

which represents, upon application of Gauss theorem,
the basic tool for the actual computation of the gravi-
tational potential.

In fact, denoting by Fr.˝/ the boundary of ˝ , that
is the collection of its six faces Fi , and by n the unit
vector, pointing outwards, at a generic point of Fr.˝/
one has

U.P / D Gı

2

Z

F r.˝/

r � np
r � r

dA D Gı

2

6X
iD1

Z

Fi

ri � nip
ri � ri

dAi

(38.7)

To express the previous 2D integrals in terms of
line integrals, we need a further application of Gauss
theorem, now in the plane of each face. To this end
we consider the orthogonal projection of the point
P on the i-th face, say it Pi , and assume this point
as the origin of a local 2D reference frame, see e.g.
Fig. 38.1.

Denoting by ¡¡¡i D .i ; �i / the position vector of
each point of the i -th face with respect to Pi and
observing that the product di D ri � ni is constant over
each face, the previous expression can be equivalently
written as

U.P / D Gı

2

6X
iD1

di

Z

Fi

dAi

.ri � ri /1=2

D Gı

2

3X
iD1

di

Z

Fi

dAi

.¡¡¡i � ¡¡¡i C d2i /
1=2

(38.8)

where the sum has been limited to the faces which do
not contain P so that di 6D 0.

From now on, 2D vector fields will be denoted by
Greek bold symbols to distinguish them from the 3D
ones. Furthermore, to shorten the formulas reported
in the sequel, we shall adopt the more compact
notation

f .¡¡¡; k/ D .¡¡¡ � ¡¡¡C k2/1=2I g.¡¡¡/ D ¡¡¡=.¡¡¡ � ¡¡¡/ (38.9)

where k is an arbitrary scalar.

The last integral in (38.8) can be further simplified
by applying once more the differential identity (38.4)
to a generic 2D field ¡¡¡ as follows

divŒf .¡¡¡; k/ g.¡¡¡/� D gradŒf .¡¡¡; k/� � g.¡¡¡/

C f .¡¡¡; k/ divŒg.¡¡¡/� (38.10)

Being divŒg.¡¡¡/�D 0 when ¡¡¡¤ o, the vector field g
plays in the 2D case the same role as r=.r � r/3=2 in the
3D one. Observing further that gradf D¡¡¡=f .¡¡¡; k/

and denoting by F an arbitrary 2D domain,
one has

Z

F

dA

f .¡¡¡; k/
D
Z

F

	
div

	
f .¡¡¡; k/¡¡¡

¡¡¡ � ¡¡¡



�f .¡¡¡; k/divŒg.¡¡¡/�


dA

(38.11)

Since divŒ¡¡¡=.¡¡¡ � ¡¡¡/� represents the 2D Dirac delta,
the last integral above becomes

Z

F

.¡¡¡ � ¡¡¡C k2/1=2div Œg.¡¡¡/�dA D k˛ (38.12)

where ˛ is the angular measure, expressed in radians,
of the intersection between the boundary of F and a
circular neighbourhood of the point ¡¡¡ D o.

The previous formulas can be usefully employed for
computing the last integral in (38.8). Actually, making
use of Gauss theorem and denoting in turn by F1,
F2 and F3 the faces of the prism orthogonal to the
axes x, y and z and not containing P , it turns out
to be

U.P / D Gı

2

3X
iD1

di

8̂
<
:̂
Z

F r.Fi /

f .¡¡¡i ; di /.¡¡¡i � 			j /
¡¡¡i � ¡¡¡i dsi

� di



2

9>=
>; (38.13)

where d1 D a, d2 D b, d3 D c and 			j is the 2D
normal to the j-th side of the face Fi contained in the
plane of the face.

Being the product ¡¡¡i � 			j constant over the j-th side
of F r.Fi / the previous formula can also be written as
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Fig. 38.2 2D reference frame for the first face of the prism

U.P / D Gı

2

3X
iD1

di

8̂
<
:̂

4X
jD1

ˇij

Z

lij

f .¡¡¡i ; di /

¡¡¡i � ¡¡¡i dsij � di 

2

9>=
>;

D Gı

2

3X
iD1

di

n
Ii � di




2

o
(38.14)

where ˇij D ¡¡¡i �			j and sij is the abscissa along edge j,
denoted by lij , of the face Fi .

To be specific and take the algebraic manipulations
to the lesser extent, we shall detail only the calculation
of I1 since the other two integrals can be obtained from
the latter straightforwardly. Numbering the vertices of
face 1 as in Fig. 38.2, one gets

I1 D
3X

jD2
ˇ1j

Z

lij

Œ¡¡¡1.s1j / � ¡¡¡1.s1j /C a2�1=2

¡¡¡1.s1j / � ¡¡¡1.s1j / ds1j

(38.15)

since ˇ11 and ˇ14 are both zero.
Setting �1j D s1j = l1j , where �1j 2 Œ0; 1�, it turns

out to be:

¡¡¡1.s1j / D ¡¡¡j C �j .¡¡¡jC1 � ¡¡¡j / (38.16)

where, to avoid prolification of symbols, the suffix .�/1
used to denote the first face has been omitted on the
right-hand side. Thus, ¡¡¡j and ¡¡¡jC1 have been used to
denote the position vectors of the end vertices of the
j -th edge of the face 1 in place of the more correct
symbols ¡¡¡1j and ¡¡¡1;jC1. The same holds true for �j .

According to (38.16) one has:

¡¡¡1.s1j / � ¡¡¡1.s1j / D ¡¡¡j � ¡¡¡j C 2�j ¡¡¡j � .¡¡¡jC1 � ¡¡¡j /
C �2j .¡¡¡jC1 � ¡¡¡j / � .¡¡¡jC1 � ¡¡¡j /

(38.17)

so that

¡¡¡1.s12/ � ¡¡¡1.s12/ D b2 C c2 �22 (38.18)

and

¡¡¡1.s13/ � ¡¡¡1.s13/ D c2 C b2 .�3 � 1/2 (38.19)

for edges 2 and 3 respectively. Being also ˇ12 D b and
ˇ13 D c it turns out to be

I1 D bc

2
64

1Z

0

q
a2 C b2 C c2�22

b2 C c2�22
d�2

C
1Z

0

p
a2 C c2 C b2.�3 � 1/2
c2 C b2.�3 � 1/2

d�3

3
5

(38.20)

Being further

Z p
e C gx

f C gx
D
s
e � f

fg
arctan

s
e � f

f

r
g

e C gx2
x

C
ln
h
2
�p

gx Cp
e C gx2

�i
p
g

(38.21)

where x can stand both for � and �� 1, one finally has

I1 D A1 C A2 C L1 C L2 (38.22)

where it has been set

A1 D a arctan
ac

b
p
a2 C b2 C c2

(38.23)

A2 D a arctan
ab

c
p
a2 C b2 C c2

(38.24)

L1 D b ln

p
a2 C b2 C c2 C cp

a2 C b2
(38.25)

L2 D c ln

p
a2 C c2p

a2 C b2 C c2 � b (38.26)

The previous expressions do not suffer from any
singularity except for the trivial case b D 0 or c D 0.
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By adopting the same procedure detailed above, the
integrals I2 and I3 can be obtained as well. However,
due to the simmetry of the problem at hand, I2 can
be obtained by setting in the expression of I1 the
ordered triple fb; c; ag in place of fa; b; cg. The same
substitution can be carried out to derive I3 starting
from the expression of I2.

Upon algebraic manipulations by means of the stan-
dard addition formula of the logarithms, the resulting
expression for U.P / reads

U.P / D Gı

2

(
3X
iD1
.Uiatn C Uilog/� 


2
h

)
(38.27)

where h D a2 C b2 C c2,

U1atn D �
a2 C b2

�
arctan

ab

c
p
a2 C b2 C c2

(38.28)

and

U1log D ab ln

p
a2 C b2 C c2 C cp
a2 C b2 C c2 � c (38.29)

Setting in the expressions of U1atn and U1log
the ordered triple fb; c; ag in place of fa; b; cg, the
additional terms U2atn and U2log can be respectively
obtained. A further permutation of the triple fb; c; ag
to fc; a; bg needs to be invoked to get U3atn and U3log
in turn from U2atn and U2log .

It is worth noting that formula (38.27) exhibits the
same computational complexity of formula (32) in
(Tsoulis 2000).

3 First-Order Derivative of the
Potential of a Prism

The gravitation vector, i.e. the gradient of the potential
at P , is obtained by considering the following identity

gradU.P / D Gı

Z

˝

grad
1

.r � r/1=2
dV

D Gı

Z

F r.˝/

n
.r � r/1=2

dA (38.30)

where use has been made of Gauss theorem. Being n
constant on each face one has, on account of (38.8)

gradU.P / D Gı

6X
iD1

ni

Z

Fi

dAi

.ri � ri /1=2

D Gı

6X
iD1

ni

Z

Fi

dAi

.¡¡¡i � ¡¡¡i C d2i /
1=2

(38.31)

where ni is the unit normal vector to the i -th face. Due
to the particular shape of the prism only two faces do
actually contribute to each component of the gradient.
For instance, only faces 1 and 4, orthogonal to the x
axis, contribute to the first component of the gradient
ŒgradU.P /�x since n1 D f1; 0; 0g and n4 D f�1; 0; 0g.

Accordingly, formula (38.31) specializes to

ŒgradU.P /�x D Gı

2
4
Z

F1

dA1

.¡¡¡1 � ¡¡¡1 C a2/1=2

�
Z

F4

dA4

.¡¡¡4 � ¡¡¡4/1=2

3
5 (38.32)

The two integrals above can be computed by means
of formula (38.11) as specialized in the braces appear-
ing in formula (38.13); specifically, the first integral
becomes

Z

F1

dA1

.¡¡¡1 � ¡¡¡1 C a2/1=2
D I1 � a




2
(38.33)

where I1 is provided by (38.22). The second integral
in (38.32), concerning the face F4 passing through the
origin, is obtained setting a D 0 in the right-hand side
of (38.33). Thus, the final expression is

ŒgradU.P /�x D Gı

�
A1 C A2 C L1 C L2 � a


2

� b ln

p
b2 C c2 C c

b

� c ln
cp

b2 C c2 � b
�

(38.34)

which is always non-singular apart from the trivial
cases bD 0 and cD 0. Notice that the numerical eval-
uation of I1 can be usefully employed for the compu-
tation both of U.P / and ŒgradU.P /�x .
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The standard addition formula of the logarithms and
the generalized one for the inverse tangent function
proved in (D’Urso and Russo 2002) yield the more
compact expression

ŒgradU.P /�x D Gı

(
a arctan

�bc
a
p
a2 C b2 C c2

C b ln
b.

p
a2 C b2 C c2 C c/p

a2 C b2.
p
b2 C c2 C c/

C c ln

p
a2 C c2.

p
b2 C c2 � b/

c.
p
a2 C b2 C c2 � b/

)

(38.35)

which requires less numerical computations with
respect to formula (29) in (Tsoulis 2000), yet providing
the same result.

Expressions for ŒgradU.P /�y can be obtained by
replacing the ordered triple fa; b; cg with fb; c; ag in
the formula above. The expression of ŒgradU.P /�z can
be obtained from ŒgradU.P /�y in a similar way.

Conclusions

A general procedure for computing the potential
and its first-order gradient for a prism has been illus-
trated. The proposed approach addresses in a uni-
fied framework any source of singularity, indipen-
dently from the position of the observation point P

with respect to the prism, without the necessity of
ad-hoc formulations or a-posteriori corrections. In
the special case of P coincident with a prism corner,
the resulting formulas turn out to be computation-
ally more effective than the analogous ones reported
in (Tsoulis 2000).
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Tsoulis D, Petrović S (2001) On the singularities of the
gravity field of a homogeneous polyhedral body. Geophys
66:535–539



Part VI

Satellite Gravity Theory



39Comparison of Kinematic Orbit Analysis
Methods for Gravity Field Recovery

T. Reubelt, N. Sneeuw, and E.W. Grafarend

Abstract

Gravity recovery from kinematic orbits is possible at three levels: (1) coordinates
(integral of Fredholm type, i.e. boundary value problem for short arcs), (2) velocity
(integrals of motion, e.g. energy balance approach) and (3) accelerations, which
are directly connected to the force function by the equation of motion (e.g.
acceleration approach). For CHAMP, these three approaches have been applied
successfully. With the advent of e.g. GOCE and SWARM, and given the uncer-
tainty of a GRACE follow-on mission, the kinematic orbit analysis methods
have gained further relevance. In this paper, the aforementioned approaches are
compared by means of simulations. Important issues as the influence of the
correlation of kinematic orbit errors and data weighting are investigated. A big
advantage of the acceleration approach is its simplicity and speed due to missing
integration. As it amplifies noise, the numerical differentiation in approaches 2 and
especially 3 are regarded as a bottleneck. However, the noise of kinematic orbits
is highly correlated, which reduces the effect of noise amplification, such that
approaches 2 and 3 are not affected. Simulations based on white and correlated
orbit noise show that both the acceleration approach and the boundary value
problem lead to promising results. However, an advantage of the acceleration
approach is that the non-diagonal elements can be neglected in data weighting
(for a conventional kinematic orbit sampling interval of 30 s) without significant
loss of accuracy, which reduces the computational effort significantly.
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1 Introduction

With the launch of the CHAMP satellite the grav-
ity field recovery entered a new era: for the first
time, the global, homogeneous and complete cov-
erage of the Earth with measurements of the same
accuracy, sensitivity, resolution and homogeneity is
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realized. This is possible due to a low orbit height
(270–450 km), near-polar orbits and especially sophis-
ticated measurement principles of the new low Earth
orbiter (LEO) missions CHAMP, GRACE and GOCE.
With CHAMP, the detection of the long-wavelengths
of the static gravitational field up to SH (spherical
harmonic) degree Lmax D 80 is enabled by means of
the high-low satellite-to-satellite tracking (hl-SST) and
the application of orbit analysis methods. In CHAMP’s
successors GRACE and GOCE the hl-SST is helpful
to improve the low frequencies in the gravity field
recovery. In future the ESA magnetic field mission
SWARM can be used for the purpose of gravity field
recovery by means of orbit analysis.

In contrast to former satellites of the pre-CHAMP
era, the measurement techniques of the new satellites
capture the free fall motion of test masses with a dense
and homogeneous coverage. This enables a more or
less in-situ gravity field recovery (Ilk et al. 2008). In
case of orbit analysis the in-situ principle becomes
feasible by the determination of precise kinematic
orbits: the free fall of a test mass with respect to the
gravity field is observed directly and densely in three
dimensions. This in-situ character allows short-arc
or even point-wise analysis. The advantage becomes
clear, if the classical approach (Reigber 1989) for orbit
analysis is regarded. Its drawbacks stemming from
the analysis of long arcs, namely large computational
efforts and summation of errors in the force function,
can be avoided.

Kinematic orbit analysis can be regarded as a two-
step-procedure (Reubelt 2009), where (1) the kine-
matic orbits are computed from the pure geometric
information of hl-SST and (2) the SH coefficients are
estimated from the analysis of the kinematic orbits.
Although kinematic orbit analysis methods have been
regarded with scepticism at the beginning of CHAMP,
they have been established now due to advanced analy-
sis methods and especially due to significant improve-
ments in kinematic orbit determination (accuracy of
1–3 cm, Švehla and Földváry 2006). This enables sim-
ilar or better accuracy in gravity field recovery com-
pared to the classical method (Reubelt 2009).

As summarized by Ilk et al. (2008) the analysis of
kinematic orbits is possible at three levels (Fig. 39.1):
(1) at the level of coordinates as integral of Fredholm
type, (2) at the level of velocity by solving the integrals
of motion and (3) at the level of accelerations, which
are directly connected to the force function by the

X

X

X

analysis level 1

analysis level 2

analysis level 3

simple
differentiation

twofold
differentiation

integral equation of
Fredholm type

integrals of motion

equation of
motion

simple
integration

twofold
integration

Fig. 39.1 The three analysis levels of kinematic orbit analysis
(after Ilk et al. 2008)

equation of motion. The velocity and acceleration can
be derived from the kinematic orbits by means of
numerical differentiation. The integrals of motion and
the integral equation of Fredholm type can be derived
(besides some possible other manipulations) by simple
or twofold integration of the equation of motion

RX.t/ D f
�
t;X.t/; PX.t/;p� (39.1)

where X(t) is the satellite’s orbit, f the specific force
acting on it, being a function of time t , position X,
velocity PX and the parameters p (of gravity field,
surface forces, . . . ).

For CHAMP, approaches based on these three lev-
els have been applied successfully in kinematic orbit
analysis. The approaches mainly established are the
boundary value problem (BVP) for short arcs (level 1),
the energy balance approach (EBA) (level 2) and
the acceleration approach (ACA) (level 3), which are
considered and compared in this paper. It should be
mentioned that further approaches can be formulated at
the different analysis levels, especially for the integrals
of motion (Ilk et al. 2008).

Since all three analysis levels (or approaches) are
based on the same equation (Fig. 39.1) it can be argued
that they should lead to identical or at least very sim-
ilar results, if appropriate methods for integration or
numerical differentiation are selected and correct error-
propagation is applied. However, as former compar-
isons show (Ditmar and van Eck van der Sluijs 2004;
Mayer-Gürr et al. 2005a), this is not the case. Although
a similar accuracy for BVP and ACA was obtained
for simulations, a decreased accuracy (factor 1.5–2)
was found for the EBA. A weakness of these for-
mer comparisons is, that these were mainly consid-
ered for white orbit noise. As newer investigations of
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kinematic orbits show, kinematic orbit noise is highly
correlated (Švehla and Földváry 2006; Reubelt 2009),
which has significant effects on the accuracy of gravity
field estimation (Reubelt 2009). Another aspect so
far not considered in detail is the influence of data
weighting. Data weighting of huge, correlated data
sets is a demanding task due to (1) a large compu-
tational/memory effort and (2) a limited knowledge
of the true measurement noise. Thus it has to be
considered if data-weighting has an impact at all.
In this paper, a comparison of the three mentioned
approaches is made considering both uncorrelated and
correlated orbit errors as well as the influence of data-
weighting.

2 Orbit Analysis Methods

2.1 Boundary Value Problem
for Short Arcs

A realisation of analysis level 1 is the solution of (39.1)
as a boundary value problem for short arcs, as it was
applied successfully by Mayer-Gürr et al. (2005b) in
CHAMP-data analysis. By a twofold integration the
equation of motion can be formulated as a BVP, which
results in the integral equation of Fredholm type

X.t/ D .Xn � X0/
t � t0
tn � t0 C X0 � 1

tn � t0

�
tnZ

t0

K.t; t 0/f
�
t 0;X.t/; PX.t/;p� dt 0 (39.2)

where the satellite’s position X at time t is described
via the arc’s boundary values (X0 D X.t0/, Xn D X.tn//
and an integral of the specific force function f which is
composed of tidal and surface forces and the gravity
field parameters pgrav (K.t; t 0) is the integral kernel).
The integral can be solved numerically, e.g. by shifting
polynomials with short length (8, 10 points), and a
linear relation between the kinematic orbit points and
the searched-for SH coefficients can be established.
Typical orbit lengths used for integration are 30–90
minutes in order to avoid accumulation of errors in the
force function. The BVP can be regarded as the most
direct method since the kinematic orbit is used directly
as observation. The minimum set of estimates are the
SH coefficients and the boundary values.

2.2 Energy Balance Method

The EBA is based on the idea of energy conservation
and can be derived from the equation of motion by
multiplication with PX and integration over t . The EBA
can be formulated in the space-fixed system as

Ekin.t/�V.X.t/;pgrav/�R.t/�
tZ

t0

fdist.t/ � PX.t/dt DE0

(39.3)
where Ekin D j PX.t/j2=2 is the kinetic energy per unit
mass, V is the gravitational potential,R.t/ D !.X PY �
Y PX/ is the rotational potential and E0 is the energy
constant (the “Hamiltonian”). The loss/gain of energy
due to tides and surface forces is considered by means
of the integral over the generated disturbing specific
forces fdist. In order to apply the EBA, the energy
constant and the energy drift caused by accelerometer
offsets have to be determined in a pre-step. While the
former can be estimated by comparison to existing SH-
models, the latter can be determined also by crossover-
analysis. The SH coefficients can be estimated from
the “pseudo-observation” potential V , which can be
determined from the kinetic energy Ekin by (39.3).
The needed velocity PX is derived from the kinematic
orbit X.t/ by means of numerical differentiation. The
EBA was applied successfully by several researchers
for CHAMP (e.g. Weigelt 2007).

2.3 Acceleration Approach

By application of the acceleration approach the equa-
tion of motion (1) can be directly evaluated. Detailed
descriptions and investigations can be found in Reubelt
et al. 2003) and Reubelt (2009). Here the ACA is out-
lined briefly: At first, the satellite’s acceleration vector
RX is determined by means of numerical differentiation
from the kinematic orbit X in the space fixed system.
After reduction of disturbing accelerations caused by
tides and surface forces the acceleration RXgrav caused
by the terrestrial gravitational field is obtained. This
can be balanced now by the equation of motion with a
SH model of the gravitational attraction vector 
 grav D
gradV.X.t/, pgrav/, and so the SH coefficients can be
determined. This means that the searched-for SH coef-
ficients are estimated from the “pseudo-observations”
RXgrav. The ACA offers in contrast to the BVP and
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the EBA a simple method with a short computation
time (no integration) and an easy implementation. As
a drawback, the numerical differentiation is regarded
which amplifies noise. Nevertheless, promising results
have been obtained from CHAMP by application of the
ACA with a similar accuracy as from other approaches
(Reubelt 2009; Ditmar et al. 2006).

3 Numerical Differentiation

As a major disadvantage of the EBA and especially
the ACA the numerical differentiation is regarded,
which has the undesirable property of amplifying noise
with !2k (!k OD angular frequency). However the effect
of numerical differentiation depends on the type of
noise in the original data. In contrast to white noise,
which is the same on every frequency !k , most of
the noise is conserved in the low frequencies and
decreases at high frequencies !k for a correlated noise
scenario. If numerical differentiation is applied, the
total noise of the correlated noise scenario remains
smaller than for white noise scenario. This is demon-
strated in Fig. 39.2 for the comparison between white
kinematic orbit noise (standard deviation �X D 2 cm,
correlation �i;j D 0 between two orbit points (Xi ,Xj ),
sampling time �t D 30 s) and correlated kinematic
orbit noise (�X D 2 cm, �i;j D 0:93ji�j j, �t D 30 s).
While the absolute noise level of the kinematic orbit
for both cases is the same, the noise level of the deter-
mined accelerations differs significantly. The applied

correlations lead to accelerations, whose noise level is
decreased by a factor 5 compared to the white noise
case (1:5 � 10�5 m=s2 vs. 8 � 10�5m=s2/. The numer-
ical differentiation method applied (9-point-Gregory-
Newton-interpolation, e.g. Reubelt et al. 2003) can be
expressed in terms of coordinate differences (base-
lines) �Xi D XiC1–Xi . This also explains the low
noise increase by numerical differentiation for corre-
lated errors. Since the behaviour of correlated kine-
matic orbit noise is much smoother, the baseline errors
(0.75 cm vs. 2.8 cm) and thus the acceleration errors
are much lower.

This means, that numerical differentiation must
not be considered as a drawback for the ACA
and EBA if the kinematic orbit noise is (highly)
correlated. Indeed, it is correlated as investiga-
tions of the variance-covariance-matrices (VCM)
of kinematic orbits show. Here, the correlation
length is about 25 min, and the correlation of
adjacent orbit point errors (sampling time �t D 30 s)
is about 0.93 (Švehla and Földváry 2006). Moreover,
as comparisons between kinematic and reduced-
dynamic orbits show, the differences between them
for coordinates/baselines/accelerations are 2 cm=
0:65 cm=1:2 � 10�5 m=s2 (Reubelt et al. 2006), which
confirms the correlation scenario of Fig. 39.2. Here,
the reduced-dynamic orbit serves as smooth reference
for evaluation.

In total this means, that numerical differentiation
may not reduce the accuracy of the ACA and EBA if
the orbit noise is highly correlated.
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Fig. 39.2 Noise amplification by numerical differentiation for white (left) and highly correlated (right) orbit errors
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4 Stochastic Properties
and Weighting

Data weighting in satellite gravimetry is a difficult
task. On the one hand, the real stochastic properties
of the exploited data sets are not known, which means
that an adequate data-weighting is not guaranteed.
On the other hand, the data sets are normally
correlated, which means that their VCM’s are fully
or at least largely occupied. For the huge data
sets collected by satellites, the handling (storage,
inversion, . . . ) of such huge VCM’s becomes very
demanding or even impossible. Within the scope
of the new missions methods for handling large
correlated data sets have been developed (e.g. Ditmar
et al. 2007). But their application still is very time-
consuming and is mainly possible for simplified
or generalized cases. Thus it has to be considered
if the non-diagonal elements (the covariances) in
the VCM have a big impact in data-weighting. If
the gain of accuracy is marginal, they might be
neglected for the advantage of better computational
performance.

Figure 39.3 shows the covariance-functions for
the pseudo-observations of the three investigated
approaches for white and correlated orbit errors (and a
sampling time �t D 30 s). Since the kinematic orbit is
used directly as observation in the BVA, this means an
uncorrelated VCM (a unit matrix) for white orbit noise
and a highly correlated VCM with a large correlation
length for correlated orbit errors. Therefore (1) the
correlations in data-weighting should not be neglected
in the BVP (except for white orbit noise) and (2) the
correlations of orbit errors should be known exactly
for an adequate data-weighting due to the direct
dependence.

In contrast, the covariance functions of the kinetic
energy and the accelerations (pseudo-observations of
the EBA and ACA) (1) are always correlated, but with
a small correlation length (<2 data points) and (2)
their shape is almost independent from the correlation
of the orbit errors. This means, that due to (2) the
correlations of the orbit errors do not have to be known
exactly for an adequate data-weighting and due to (1)
the question arises, if the correlations in the weight
matrix for the EBA and ACA have a big impact at all.
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Fig. 39.4 Errors of the different kinematic orbit analysis methods in terms of degree-RMS-curves; (a) for white orbit noise, (b) for
correlated orbit noise

This seems to be an advantage of the ACA and EBA in
contrast to the BVP.

5 Results

The different approaches were tested for both cases,
white and correlated orbit noise, and weighted and
unweighted gravity field solutions have been estimated
by means of least squares adjustment. The results are
based on a simulated 1-month orbit with a height of
hD 400 km based on EGM96 with maximum degree
Lmax D 70 and sampled with�t D 30 s. The individual
arc length used for analysis was 1.5 h within the BVP
and 3 h within the EBA/ACA. The results are displayed
in Fig. 39.4a) for white orbit noise and in Fig. 39.4b)
for correlated orbit noise.

There are basically two curves visible: the grey
curves for the EBA and the overlaid dark/light grey
curves of the ACA/BVP. Obviously, the EBA leads
to results worse by a factor of 1.5–2, which might be
caused by the reduced redundancy of the scalar energy
which reflects only forces acting in flight direction.
However this drawback of the EBA can be avoided if
the integrals of motion are solved by means of alter-
native energy balance relations where all directions are
considered, e.g. energy balance in the coordinate direc-
tions (Löcher and Ilk 2007). The ACA and the BVP
lead for both types of orbit noise to a similar accuracy,
if the weighted BVP is considered in the correlated
noise case. For ACA and the EBA, the consideration
of the correlations in data weighting (the weighted
solutions) has almost no influence on the accuracy

compared to the unweighted solutions, as concluded in
Sect. 4. Only for the white noise case, data weighting
has a positive effect for the very low degrees (l < 7) for
the ACA. In contrast, data weighting within the BVP
is important for correlated orbit errors (Fig. 39.4b), as
deduced in Sect. 4.

In Sect. 3 it was argued that the approaches based on
numerical differentiation (ACA, EBA) might benefit
from correlated orbit errors. However, as shown in
Fig. 39.4, also the BVP benefits from correlated orbit
noise in the same way. While the error-degree-RMS
curve intersects the signal-degree-RMS at l � 47 for
white orbit noise, this point is shifted to l � 58 for
correlated orbit noise.

In Fig. 39.4b an ACA-solution for an orbit height of
250 km is displayed, which represents a GOCE orbit.
Due to an enhanced sensitivity, the SH coefficients
at high degrees can be determined with improved
accuracy and the error-degree-RMS is well below
the signal-degree-RMS until Lmax D 70. Thus, from
GOCE orbit analysis a better resolution and accuracy
can be reached than from CHAMP or GRACE orbit
analysis.

Conclusion

Based on the previous results, the accelera-
tion approach is suggested for the gravity recovery
from kinematic orbits. It leads together with the
BVP to the best results, it is an efficient and fast
method and easy to implement. Furthermore, the
correlations of the variance-covariance matrix can
be neglected in data weighting without significant
loss of accuracy for a conventional kinematic orbit
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sampling of�t D 30 s. This means that (1) the large
computational effort involved with data weighting
can be avoided and (2) the stochastic properties
(i.e. the correlations) of the observation noise do
not have to be known for the data inversion. The
method is not only proposed for CHAMP, but also
for combination with the other measurement types
in GRACE and GOCE as well as for other GPS-
tracked LEOs, e.g. SWARM.
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Löcher A, Ilk KH (2007) A validation procedure for satellite
orbits and force function models based on a new balance
equation approach. In: Tregoning P, Rizos C (eds) Dynamic
planet – monitoring and understanding a dynamic planet with
geodetic and oceanographic tools, IAG Symposium, Cairns,
Australia, 22–26 August, 2005, IAG Symposia, vol 130,
pp 280–287
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40Inclination Functions: Orthogonality
and Other Properties

Nico Sneeuw

Abstract

The two complementary properties of orthogonality and completeness are well
known for spherical harmonics. The addition theorem is an expression of the
latter. Since inclination functions are related to spherical harmonics it can be
expected that orthogonality and completeness properties exist for them as well.
The Wagner-Gooding identities are identified as versions of the addition theorem
for inclination functions. Orthogonality of inclination functions is derived here.
Due to their complementarity, it is advised to use these properties together when
testing algorithms for the numerical calculation of, e.g., Legendre and inclination
functions.

Keywords

Addition theorem • Completeness • Inclination functions • Orthogonality

1 Introduction

The properties of orthogonality and completeness
for given function systems are complementary. For
instance orthogonality of spherical harmonics is a
pre-requisite for spectral analysis. Completeness on
the other hand, as expressed by the addition theorem,
guarantees that any square-integrable function on the
sphere can be synthesized by the given set of base
functions.

Due to their complementary nature both properties
could and should be used together when validating

N. Sneeuw (�)
Institute of Geodesy, University of Stuttgart, Stuttgart, Germany
e-mail: sneeuw@gis.uni-stuttgart.de

algorithms for function computation. For spherical har-
monics, and more particularly for Legendre-functions
the two properties are briefly recapitulated from
literature in Sect. 2.

The main objective of this contribution is to con-
sider orthogonality and completeness for inclination
functions Flmk.I /. It is emphasized here that neither
the algorithms for Flmk.I /- or Plm.cos �/-calculation,
nor their validation itself is object of this manuscript.
Surely, since inclination functions are derived from
spherical harmonics, both properties should exist.
Indeed, the so-called Wagner-Gooding identities are
identified as addition theorems in disguise in Sect. 3.
Orthogonality of inclination functions, has not been
discussed in literature. Therefore, the orthogonality
property of Flmk.I / will be derived in Sect. 4. This
allows the complementary validation of algorithms for
inclination function computation.
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2 Spherical Harmonics Ylm.� /

Starting point of the following considerations are the
two complementary properties of fully normalized,
complex-valued spherical harmonics Ylm.�/:

Orthogonality:

1

4


ZZ

�

Ylm.�/Y
�
l 0m0.�/d� D ıl l 0ımm0: (40.1)

Addition theorem:

1

2l C 1

lX
mD�l

Ylm.�/Y
�

lm.�
0/ D Pl.cos /; (40.2)

in which Ylm.�/ D Ylm.�; �/ D Plm.cos �/ exp .im�/
with � and � the spherical co-latitude and latitude,
respectively. Moreover, Y �

lm.�/ refers to the complex
conjugated spherical harmonic, i.e. Plm.cos �/
exp .�im�/. As a further remark on notation: it is
assumed throughout this work that all functions Plm

and Flmk are fully normalized. The more conventional
overbar is not used. One exception to this notation
is made for the Legendre polynomial Pl in (40.2),
and equations that derive from it, which is a non-
normalized function in this context.

The link between the addition theorem and com-
pleteness of the function system is realized by the
infinite sum over the degree l , leading to the Dirac
function:

1X
lD0

lX
mD�l

Ylm.�/Y
�

lm.�
0/ D ı. /:

2.1 TestingPlm-Algorithms 1:
Orthogonality

The property (40.1) is reduced now to an orthogonality
of associated Legendre functions:

1

2


Z

0

Plm.cos �/Pl 0m.cos �/ sin �d� D 2.2� ım;0/ıl l 0 :

(40.3)

Through Gauss-Legendre quadrature, e.g. Stroud and
Secrest (1966), we obtain the discretized version

NX
iD1

Plm.cos �i /Pl 0m.cos �i /wi D 2.2� ım;0/ıl l 0 :

(40.4)

If the right hand side is integrated in the quadrature
weights wi , the equivalent matrix version reads:

P TWP D I; (40.5)

in which the matrix P is defined for constant order m
and variable degree l and co-latitude � :

P D

0
BBBBBBB@

Pmm.cos �1/ PmC1;m.cos �1/ � � � PLm.cos �1/

Pmm.cos �2/ PmC1;m.cos �2/ � � � PLm.cos �2/

:::
:::

: : :
:::

Pmm.cos �N / PmC1;m.cos �N / � � � PLm.cos �N /

1
CCCCCCCA
:

As a demonstration, Fig. 40.1 displays the result of
applying (40.4) for validating a typical two-point
recursion for Plm-with constant orderm and increasing
degree l .

Plm D Wlm
�
cos �Pl�1;m �W �1

l�1;mPl�2;m
�

(40.6)

with Wlm D
q

.2lC1/.2l�1/
.lCm/.l�m/ . For brevity, the starting

values have been omitted here.
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Fig. 40.1 Testing Legendre function algorithms through ortho-
gonality. Displayed is log."lm/ with "lm D diag.P TWP/� 1
up till maximum degree L D 3;600



40 Inclination Functions: Orthogonality and Other Properties 269

It shows that this particular recursion breaks
down for double-precision arithmetic beyond degree
l D 2000, although (near-)zonals and (near-)sectorials
behave well up till the tested maximum degree
L D 3600. Again, it is not the purpose of this paper
to discuss the algorithms themselves, e.g. the need for
scaling in this particular recursion.

2.2 TestingPlm-Algorithms 2: Addition
Theorem

Also the addition theorem (40.2) is reduced now to
its variant for associated Legendre functions by letting
� D �0:

1

2l C 1

lX
mD0

Plm.cos �/Plm.cos � 0/ D Pl.cos /;

(40.7)

again with the caveat that the right hand side denotes an
unnormalized Legendre polynomial. Particularly for
� D � 0 and, hence,  D 0 a useful version arises:

1

2l C 1

lX
mD0

P 2
lm.cos �/ D Pl.1/ D 1; (40.8)

which is visualized in Fig. 40.2.
But also for � ¤ � 0 a useful test of (40.7) is

demonstrated in Fig. 40.3.
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3 Inclination Functions Flmk.I/

Inclination functions Flmk.I / arise naturally when a
spherical harmonic Ylm.�/ is expressed in a new coor-
dinate system, which has been rotated through three
Euler angles. The spherical harmonic is transformed
through representation coefficients Dlmk.˛; ˇ; �/, e.g.
Edmonds (1957):

Ylm.�/ D
lX

kD�l
Dlmk.˛; ˇ; �/Ylk.�

0/; (40.9)

with: Dlmk.˛; ˇ; �/ D eim˛dlmk.ˇ/e
ik� : (40.10)

When rotating into the orbital coordinate system, in
which the orbital plane is the new equator � 0 D 


2
and

the new x-axis continuously points toward the satellite,
we have:

Ylm.u; I;�/ D
lX

kD�l
i k�mei.kuCm�/dlmk.I /Ylk.0; 0/;

(40.11)

in which the orbital elements u, I and � are defined
(see also Fig. 40.4):

u D ! C 	 D argument of latitude

� D ˝ � GAST D longitude of ascending node
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Fig. 40.4 Orbit configuration. (Note: � means GAST here)

Sneeuw (1992) defines complex-valued normalized
inclination functions Flmk.I / as:

Flmk.I / D ik�mdlmk.I /Plk.0/: (40.12)

Except for normalization and for being complex-
valued, the notation here deviates from the conven-
tional Kaula inclination functions Flmp.I /, which uses
the non-negative index p. In contrast Flmk.I / uses
k D l �2p which may be negative and runs in steps of
two, due to the term Plk.0/ which is zero for l�k odd.
For further details of rotating spherical harmonics and
of the definition of inclination functions it is referred
to Sneeuw (1992).

3.1 TestingFlmk-Algorithms 1: Addition
Theorem

Two invariances of inclination functions are given in
Gooding and Wagner (2008). The restricted relation

lX
mD0

F 2
lmk.I /C F 2

lm;�k.I / D .1C ık;0/P
2
lk.0/;

(40.13)

also known as Wagner’s conjecture, Wagner (1983),
was proved by Sneeuw (1992) by:
• Using the symmetry Fl;m;�k D .�1/kFl;�m;k .
• Employing the definition (40.12).
• Considering that the coefficients dlmk.I / are an

orthonormal matrix representation.
Thus, we obtain

Pl
mD�l F 2

lmk.I / D P2
lk.0/, indeed.

The general invariance
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Fig. 40.5 Wagner-Gooding invariance: residual of (40.14)

lX
kD�l

lX
mD0

F 2
lmk.I / D 2l C 1 (40.14)

can then be derived by further summation over k. It
basically reflects the addition theorem (40.8). Sneeuw
(1991) used the restricted invariance successfully for
testing inclination function algorithms. The use of the
general invariance for testing inclination functions is
demonstrated in Fig. 40.5, where the residuals of the
invariance are given for inclinations in the domain
Œ0ıI 180ı� and for degrees l up to 100.

4 Orthogonality ofFlmk.I/

Orthogonality of inclination functions has, to the
author’s knowledge, so far not been discussed in
literature. The property of orthogonality does not
refer here to the fact that the dlmk-symbols in (40.10)
and (40.12) are an orthonormal matrix representation.
Instead, the aim here is a relation of the type:

Z

I

Flmk.I /Fl 0m0k0.I /
‹D ı:::;

in which the right hand side would be an expression
with Kronecker ı-symbols.

Starting point for finding such a relation is
the orthogonality of SO(3) representation symbols
Dlmk.˝/ D Dlmk.˛; ˇ; �/, e.g. Edmonds (1957):
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1

8
2

•

˝

Dlmk.˝/D
�
l 0m0k0.˝/d˝ D ıl l 0ımm0ıkk0

2l C 1

) 1

8
2

•

˝

ei.m�m0/˛ei.k�k0/�dlmk.ˇ/d
�
l 0m0k0.ˇ/d˝

D 1

2l C 1
ıl l 0ımm0ıkk0;

with

•

˝

: : : d˝ D
2
Z

0


Z

0

2
Z

0

: : : sinˇd˛dˇd�:

The orthogonality of the trigonometric functions leads
to ımm0ıkk0 , implying that we can at most hope to
find an orthogonality of inclination functions of equal
orders mDm0 and kD k0. We first extract the orthog-
onality of representation coefficients dlmk:

1

2


Z

0

dlmk.ˇ/dl 0mk.ˇ/ sinˇdˇ D .�1/k�mıl l 0
2l C 1

:

(40.15)

Applying definition (40.12) yields the sought for
relation:

1

2


Z

0

Flmk.I /Fl 0mk.I / sin IdI D 1

2l C 1
P 2
lk.0/ıl l 0 :

(40.16)

4.1 TestingFlmk-Algorithms 2:
Orthogonality

The relation (40.16) can now be used to test algorithms
for inclination function computation. Or, vice versa,
we can now numerically test the orthogonality itself.
In analogy to the discretization (40.4) we also apply
Gauss-Legendre quadrature to numerically evaluate
(40.16):

NX
iD1

Flmk.Ii /Fl 0mk.Ii /wi D 1

2l C 1
P 2
lk.0/ıl l 0 :

the right hand side can be accomodated into the
Gauss-Legendre weights, such that we arrive at the
matrix equivalent F TWF D I , in which the matrix F

is defined for constant orders m and k and variable
degree l and inclination I :

F D

0
BBBBBB@

Fmmk.I1/ FmC2;m;k.I1/ � � � FLmk.I1/

Fmmk.I2/ FmC2;m;k.I2/ � � � FLmk.I2/

:::
:::

: : :
:::

Fmmk.IN / FmC2;m;k.IN / � � � FLmk.IN /

1
CCCCCCA
:

Figure 40.6 indeed suggests a unit matrix as result. The
off-diagonal entries are numerically zero. The question
whether this is – up to rounding errors – a unit matrix
is answered by Fig. 40.7, which show the diagonal
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entries minus 1. Both figures successfully demonstrate
the validity of the orthogonality relation (40.16).

Conclusion

The properties of completeness and orthogonality –
two fundamental properties of function systems –
are suggested here for testing algorithms for
calculating such function systems. They are
complementary properties and, hence, should
be used in tandem. One property may have
more diagnostic capability in the spectral domain
.l;m; k/, whereas the other may identify strengths
and weaknesses in the spatial domain .�; I /.
This principle is followed here for Legendre
functions Plm.cos �/ and for inclination functions
Flmk.I /. The completeness property for Legendre
functions is represented by the addition theorem.
For inclination functions the Wagner-Gooding
invariances play such a role. The orthogonality
property for inclination functions, not known in
literature so far, was derived here.
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41Properties and Applications of EOF-Based
Filtering of GRACE Solutions

Siavash Iran Pour and Nico Sneeuw

Abstract

Several filter strategies have been proposed in the past to deal with noise in the
GRACE gravity field solutions, particularly with the North-South stripes. These
strategies have led to several families of filters, roughly characterized by the
properties stochastic vs. deterministic and isotropic vs. anisotropic. One type of
filter that has been shown to be very effective is based on Empirical Orthogonal
Functions (EOF) analysis in combination with white-noise testing of the resulting
time series in the spectral domain (Wouters and Schrama: Geophys. Res. Lett. 34,
2007 doi: 10.1029/2007GL032098). In this paper, we recast the EOF procedure
into a filter equation, i.e. the filter transfer is described explicitly. This allows us to
emphasize the characteristics of the EOF-based filter. Moreover, our formulation
provides an easy means to propagate the GRACE fields into degree variances and
spatial covariance functions.

Keywords

EOF filtering • GRACE • Gravity field

1 Introduction

The twin “Gravity Recovery and Climate Experiment”
(GRACE) satellites observe the time varying gravity
which is the sum of all mass variations in the Earth
System. However, the main problem in the GRACE
solutions of Stokes coefficients is the increasing noise
at higher degrees in the spherical harmonics (SH) coef-
ficients (Swenson and Wahr 2006).The noises appear

S.I. Pour (�) � N. Sneeuw
Institute of Geodesy, University of Stuttgart, 70174 Stuttgart,
Geschwister-Scholl-Str. 24D, Germany
e-mail: siavash@gis.uni-stuttgart.de;
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as unphysical North-South striping patterns in the spa-
tial domain maps (for example in the Equivalent Water
Height (EWH) maps) which have a strong correlation
between the even and odd degree coefficients. The
stripes can be largely suppressed by weighting the
SH coefficients by a Gaussian smoothing function, but
since the errors have a non-isotropic character, while
the function is isotropic, a large smoothing radius
is required for removing the stripes which by itself
causes a significant loss of information in the GRACE
solutions (Chen et al. 2007).

One approach to remove those stripes is using
Empirical Orthogonal Functions (EOF). In the EOF
approach, the data matrix is decomposed into three
matrices:DDU˙V T, whereU and V are orthonormal
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matrices containing the eigenvectors of DTD and
DDT, respectively. ˙ is a diagonal matrix which has
the singular values corresponding to the eigenvectors
(Preisendorfer 1988). The individual modes of
the decomposed data matrix (the columns of the
eigenvector matrices) are tested for the white noise.
The cumulative power spectra of each mode is
compared to the cumulative power spectrum of ideal
white noise through the Kolmogorov-Smirnov Test
(KS test) and the data matrix is reconstructed by using
only the eigenvectors and the singular values of the
non-white noise modes.

In this contribution, we present the EOF-KS test
filtering approach in the spectral domain where EOF
filtering is done on the SH coefficients. The filter
transfer is described explicitly which allows us to
emphasize the EOF-based filter characteristics.

2 Mathematical Model

In our approach, we substitute the EOF decomposition
plus KS-test filtering by its equivalent formula D0 D
UL˙V T, where L is a diagonal matrix with zero
diagonal elements when the modes pass the KS test
(noises) and one when they do not (signals). However,
since U TU D I (identity matrix), the formula can be
rewritten as:

D0 D ULU TU˙V T (41.1)

Therefore, we can define the filtered data matrixD0 as:

D0 D ULU TD D FuD (41.2)

where we call Fu “Left Filter Operator” which:

Fu D ULU T (41.3)

In a similar way, we can define “Right Filter Oper-
ator” Fv D VLV T which can be used for our data
filtering purpose as: D0 D DFv. Through this model,
the filtered degree RMS can be also calculated by error
propagation law as:

QD0 D FuQDF
T

u (41.4)

3 EOF Analysis in the Spectral
Domain

3.1 Analysis

In the spectral analysis approach, the data are the
SH coefficients estimated up to a degree and order
120 in the period of 10/2002 to 05/2008. First, the
missing months are interpolated, that is of course
not necessary for the EOF analysis but for the con-
struction of PSD in the white noise recognition step
which requires continues data sets, then the monthly
data are smoothed by different Gaussian smoothing
filter radii and sorted in an order-wise way to remove
the correlation between the spherical harmonics as a
function of degree (Swenson and Wahr 2006). This
means that we keep the order of each data matrix
fixed. Then, the EOF analysis is separately done on
Clm and Slm coefficients matrices as the data matri-
ces. As an example, the following matrix shows the
time series of the Clm coefficients for the specific
order ofm.

Cm D

0
BBBB@

Cmm.t1/ Cmm.t2/ � � � Cmm.tn/

CmC1;m.t1/ CmC1;m.t2/ � � � CmC1;m.tn/
:::

:::
: : :

:::

Clm.t1/ Clm.t2/ � � � Clm.tn/

1
CCCCA

3.2 Testing

The analysis provides the modes which are tested for
the white noise through the KS test for significance
level of 5% (Wouters and Schrama 2007). Figure 41.1
shows those modes which are kept for the reconstruc-
tion step for the different orders Clm and Slm, also the
signal percentage of each order retained after EOF-KS
test filtering.

3.3 Filtering

The filter operator Fu is built based on our testing
approach explained before. As examples, the operators
for two different orders (for Clm) m D 0 and m D 10
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Fig. 41.1 The Clm and Slm modes (a) and the energy (b) pass
the KS test after performing 300 km Gaussian filter, ˛ D 5%

for the 300 km Gaussian smoothing filter are shown in
Fig. 41.2. The figures show more significant values for
the lower degrees, however some patterns can be seen
in the middle.

3.4 Reconstruction

After the reconstruction, the order-wise matrices are
again transferred to the monthly data matrices. Then,
the reconstructed data are compared to each other
for the different smoothing radii. Figure 41.3 shows
the EWH anomaly for May 2008 for two different
Gaussian smoothing radii, with and without EOF and
white noise analysis.

For each Stokes coefficient (Klm) the variance is
calculated by the following formula:

0 0.05 0.1 0.15 0.2

Fig. 41.2 The EOF filter operator Fu for two different orders
(for Clm ) m D 0 (a) and m D 10 (b) after performing the
Gaussian smoothing filter 300 km

VarŒKlm� D
"
1

N

NX
iD1
.Klm.ti /

2

# 1
2

(41.5)

where N is the number of months in the study.
The variance in each spherical harmonic before and

after performing EOF-KS test filter operator for the
studied period of this contribution are presented in
Fig. 41.4.
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Fig. 41.3 EWH anomaly maps for May 2008, smoothed by (a)
only Gaussian filter 300 km radius, (b) Gaussian filter 300 km
radius in addition to EOF-KS test filter, (c) only Gaussian filter
500 km radius, (d) Gaussian filter 500 km radius in addition to
EOF-KS test filter

4 Discussion

The reconstructed EWH maps provided by the spectral
domain analysis of the GRACE data show a strong
capability of EOF analysis for de-striping the patterns
which is due to the ability of performing EOF analysis

806040200
order m

–20–40–60–80
80

60

40

de
gr

ee
 I

20

0
a

–80 –60 –40 –20 0 20 40 60 80

order m

80

60

40

de
gr

ee
 I

20

0
b

–32 –31 –30 –29 –28 –27 –26 –25

Fig. 41.4 Variance in the spherical harmonics (a) before and
(b) after performing EOF-KS test filter operator. Both cases were
smoothed by the 300 km Gaussian smoothing filter in advance

for individual orders (Iran Pour et al. 2009). Also
examples in the spectral domain show that the EOF
analysis with white noise test but with smaller smooth-
ing Gaussian filters result in maps comparable to those
which are just smoothed by the Gaussian smoothing
filters but with larger radii. The KS test is used as a tool
for white noise recognition for the modes provided by
EOF analysis which are performed through the filter-
ing operators. It can be seen (Fig. 41.1 as an example)
that some of the last modes of some orders pass the
test (recognized as signals). This can be explained by
the non-white noise property of the modes, although it
is important to mention that those last modes have very
small singular values and therefore their contributions
to the data reconstruction are also very small. However,
the test is claimed for the white noise recognition,
while the modes could represent other types of noises
which were not studied in this work.

It can also be seen that the EOF analysis with
the white noise test smooths the patterns which may
diminish the effects of some geophysical phenomena.
This means that more investigations are needed for the
testing strategies and the noise recognition methods in
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the future. Also, the properties of spatial covariance
functions provided by the mathematical model of this
contribution will be the subject to the further research.
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42Numerical Investigation of Different Gravity
Models in Orbit Propagation of Two Short
CHAMP and GRACE-A Arcs

D. Tsoulis and T.D. Papanikolaou

Abstract

Dynamic orbit determination is based on the solution of the equation of motion and
the accurate modeling of all forces acting on the satellite. The present contribution
aims at investigating the role of a geopotential model which is used to evaluate the
Earth’s gravitational component in the procedure of dynamic orbit determination.
For this reason we focus on the results obtained from the use of different
available Earth gravity models in orbit propagation of current Low Earth Orbiters
(LEOs). The obtained short arcs are compared with the corresponding Rapid
Science Orbit (RSO) datasets. For the contribution of the dynamic component
the gravity models JGM-3, EGM96, EIGEN-CHAMP03S, EIGEN-GRACE02S,
EIGEN-CG03C, EIGEN-GL04C, EIGEN-GL04S1, EGM2008 and EIGEN-5C
are used, while for the RSO information data from the CHAMP (CHAllenging
Mini-satellite Payload) and GRACE (Gravity Recovery And Climate Experiment)
satellites are applied. Orbit propagation is based on numerical integration of the
equation of motion according to the 7th order Runge–Kutta–Nyström method.
Differences between the two orbit types attempt to indicate the band-limited
behaviour of the Earth’s gravity model.

Keywords

Orbit propagation • Earth’s gravity models • Runge–Kutta numerical integration

1 Introduction

Dynamic orbit determination is a fundamental tool in
satellite orbit analysis. The accuracy of the dynamic
approach depends strongly on the modeling errors of
the forces acting on the satellite. Among all forces
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acting on a satellite orbiting the Earth, the major
contribution is given by the Earth’s static gravity field.

The mathematical relation between gravity field and
satellite motion has been the topic of extensive inves-
tigations by many authors. First satellite gravity mod-
els were determined using almost exclusively Kaula’s
linear perturbation theory (Kaula 1966) and satellite
observations of that time i.e. Doppler and optical
observations, while during the last decade numerous
new gravity models emerged from the analysis of
CHAMP and GRACE data applying the concept of
GPS high-low Satellite-to-Satellite Tracking (hl-SST).
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One of the available tools in estimating the accuracy
of a gravity model is through satellite orbit fits (Foerste
et al. 2008; Tapley et al. 2005). Orbit analysis provides
an initial measure regarding the gravity model’s eval-
uation. The present contribution aims at quantifying
numerically the dependency between a geopotential
model and the corresponding orbit. As we focus on
the role of the used geopotential model, all other
gravitational and non-gravitational effects are ignored
assuming that this does not affect in a major sense the
comparison between the orbit differences. We apply
orbit propagation to short arcs based only on a known
Earth’s gravity model and using as LEOs the CHAMP
and GRACE-A satellites. The extrapolated orbits
are compared with the corresponding Rapid Science
Orbits, which in the case of CHAMP are characterized
by an accuracy level of 12 cm (Michalak et al. 2003).
Although orbits of better quality are available RSO’s
accuracy is considered satisfactory for the present
investigation. Orbit comparison indicates the deviation
of each extrapolated orbit arc as a function of the used
gravity model. Here, we focus on the relative differ-
ences between the extrapolated orbits depending on
a variable spherical harmonic coefficients range. The
RSO is used in this sense as a common reference orbit.

2 Theoretical Background

The basic mathematical description of a satellite orbit
is given by Newton’s second law

mRr D F; (42.1)

where Rr denotes the acceleration vector, m the
satellite’s mass and F the sum of all forces acting
on the satellite. The Earth’s gravitational attraction
expresses the major contributor in F, its magnitude
exceeding that of all the other forces by several
orders of magnitude (Beutler 2005). Equation (42.1)
describes the motion of a satellite’s center of mass
in an inertial reference system while Earth gravity
models refer to a certain geocentric terrestrial reference
system.

Equation (42.1) is a second-order differential equa-
tion and its solution requires analytical or numerical
integration methods. Here, we apply an efficient
numerical method that belongs to the family of Runge–
Kutta–Nyström methods. This class of algorithms is
especially designed for the direct integration of second

order differential equations and for that reason is
preferable for orbit computations. There are also other
favourite methods in LEOs analysis, e.g., multistep
and collocation methods (Montenbruck and Gill 2000;
Beutler 2005). Here a 7th order Runge–Kutta–Nyström
method, RKN7(6)-8, has been applied as proposed by
Dormand and Prince (1978).

Differences between orbits may refer either to the
geocentric reference frame or the orbital frame. The
choice of the latter is more suitable for the study
of modern methodologies e.g. satellite altimetry, SST
tracking or satellite gradiometry. The transformation
between the inertial reference frame and the orbital
frame is required to express finally the differences in
the radial, transverse (along-track) and normal (cross-
track) components. The required mathematical scheme
can be found in Rosborough (1986), while a more
rigorous transformation is presented in Casotto (1993)
which has been applied here.

3 Data Processing

In order to initialize the numerical integration, ini-
tial values of position and velocity components
are required at a single epoch. These values are taken
from the RSO data at an arbitrary instance. During the
numerical integration the integration interval was set
to the constant value of 30 s.

The length of the computed orbit arcs is chosen to
be 93 min which is approximately close to the revolu-
tion period of CHAMP and GRACE satellites.

Earth orientation parameters (EOP) that describe
the Earth’s rotation are available by the Earth Orien-
tation Center. EOP are used to compute the transfor-
mation matrix between the terrestrial reference frame
and the inertial reference frame. The EOP used here
were determined according to the IERS Conventions
2003 and derived from the combined solution C04. The
interpolation of EOP at the distinct computation times
was performed through polynomial (Lagrange) inter-
polation. Due to the limited interest in high accuracy
requirements during this procedure, diurnal and semi-
diurnal tidal variations that affect the EOP data were
not included in the computations.

The RSO is a dynamic orbit and the used gravity
model during the adjustment procedure is GRIM5-C1
(70 � 70) updated with 2 months of CHAMP data
(Michalak et al. 2003). The RSO data were provided by
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the ISDC (Information System and Data Center) of the
GeoForschungsZentrum (GFZ) Potsdam. They refer to
ITRF96 and are linked to the IERS Conventions 1996
while they are sampled at an interval of 30 s. The
discrepancy between the different IERS conventions
has a geometric effect on the computed orbit differ-
ences. However the magnitude of this disagreement
proves to be smaller than the accuracy of the present
orbit propagation. In order to quantify this effect we
performed computations of a single orbit arc by using
different solutions of EOP for the same date, as these
were available from IERS through 2007. The compar-
ison of these computations led to differences which
varied between 0.1 mm to a few millimeters. Thus, the
deviations caused by the aforementioned discrepancy
are assumed to be negligible in the frame of the present
analysis.

The approach that is described above has been
applied to CHAMP and GRACE-A satellites for
8.10.2007 from 00:00 to 01:33 which at that time
were at altitudes of 341 km and 467 km, respectively.
The incorporation of the different gravity models has

been carried out cumulatively, i.e. the computation
of the gravitational part for each degree has been
performed using all previous coefficients starting from
degree 2 with a degree interval equal to 1 for the
range 2<n<150 and an interval of 50 for the higher
degrees.

Orbit comparison is represented by the root
mean squares (RMS) of the differences between
the computed GRACE-A and CHAMP arcs and
the corresponding RSO data respectively. The RMS
variations are provided in the Figs. 42.1–42.4 for the
three orbital components as well as in the Tables 42.1
and 42.2 for the radial component. The performed
calculations reveal (a) a degree bandwidth (up to
nD 70) with large differences varying between tens
of meters and a few decimeters, (b) a threshold around
nD 120 for GRACE-A and nD 150 for CHAMP
above which the orbit differences appear unaltered
until the nmax of the corresponding model and (c) min-
imum magnitudes of the differences in the order of few
decimeters for specific degree values in the bandwidth
30<n<45.
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Fig. 42.1 RMS differences between CHAMP propagated orbit arcs and RSO data for satellite-only gravity models

 70  80  90 100 110 120 130 140 150

 3.6

3.65

 3.7

3.75

 3.8

degree

Along-track orbit differences

EIGEN-CHAMP03S

EIGEN-GRACE02S

EIGEN-GL04S1

 70  80  90 100 110 120 130 140 150

0.585

 0.59

0.595

  0.6

0.605

 0.61

0.615

 0.62

0.625

degree

R
M

S
 (

m
)

Radial orbit differences     
EIGEN-CHAMP03S

EIGEN-GRACE02S

EIGEN-GL04S1

 70  80  90 100 110 120 130 140 150

0.215

 0.22

0.225

 0.23

0.235

 0.24

0.245

degree

Cross-track orbit differences

EIGEN-CHAMP03S
EIGEN-GRACE02S
EIGEN-GL04S1

Fig. 42.2 RMS differences between GRACE-A propagated orbit arcs and RSO data for satellite-only gravity models



282 D. Tsoulis and T.D. Papanikolaou

20 30 40 50 60 70

0.5

  1

1.5

  2

2.5

degree

R
M

S
 (

m
)

Radial orbit differences     

JGM-3

EGM96

EGM2008

20 30 40 50 60 70

 1

 2

 3

 4

 5

 6

 7
 8
 9

10
11
12
13

degree

Along-track orbit differences

JGM-3
EGM96
EGM2008

20 30 40 50 60 70

0.5

  1

1.5

  2

2.5

degree

Cross-track orbit differences

JGM-3
EGM96
EGM2008

Fig. 42.3 RMS differences between CHAMP propagated orbit arcs and RSO data for combined gravity models
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Fig. 42.4 RMS differences between GRACE-A propagated orbit arcs and RSO data for combined gravity models

Table 42.1 RMS differences between GRACE-A propagated orbit arcs and RSO orbit for the radial component

Degree JGM-3 EGM96 EIGEN-
CHAMP03S

EIGEN-
GRACE02S

EIGEN-
CG03C

EIGEN-
GL04C

EIGEN-
GL04S1

EGM2008 EIGEN-5C

Radial RMS differences (m)
2 41:9266 41:8882 41:8935 41:8825 41:8814 41:8834 41:8834 41:8808 41:8845

10 5:2528 5:3169 5:3308 5:3369 5:3363 5:3353 5:3353 5:3360 5:3349

20 1:0960 1:0752 1:0580 1:0587 1:0589 1:0586 1:0586 1:0580 1:0586

30 0:5882 0:5796 0:5295 0:5288 0:5280 0:5284 0:5284 0:5271 0:5283

40 0:6929 0:6637 0:5628 0:5597 0:5602 0:5619 0:5619 0:5600 0:5622

50 0:7818 0:7732 0:6587 0:6392 0:6402 0:6421 0:6421 0:6410 0:6427

60 0:7622 0:7570 0:6395 0:6122 0:6148 0:6167 0:6167 0:6156 0:6172

70 0:7410 0:7400 0:6150 0:5890 0:5915 0:5933 0:5933 0:5923 0:5938

80 0:7403 0:6198 0:5956 0:5981 0:5995 0:5995 0:5983 0:6000

90 0:7404 0:6196 0:5924 0:5934 0:5954 0:5954 0:5944 0:5959

100 0:7367 0:6152 0:5883 0:5895 0:5919 0:5919 0:5907 0:5925

110 0:7363 0:6162 0:5868 0:5833 0:5911 0:5911 0:5900 0:5917

120 0:7371 0:6170 0:5874 0:5895 0:5919 0:5918 0:5907 0:5926

130 0:7370 0:6170 0:5875 0:5894 0:5917 0:5916 0:5906 0:5925

140 0:7369 0:6171 0:5876 0:5893 0:5916 0:5916 0:5905 0:5924

150 0:7369 0:5875 0:5894 0:5917 0:5916 0:5905 0:5924

200 0:7369 0:5894 0:5917 0:5905 0:5924

250 0:7369 0:5894 0:5917 0:5905 0:5924

300 0:7369 0:5894 0:5917 0:5905 0:5924

360 0:7369 0:5894 0:5917 0:5905 0:5924
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Table 42.2 RMS differences between CHAMP propagated orbit arcs and RSO orbit for the radial component

Degree JGM-3 EGM96 EIGEN-
CHAMP03S

EIGEN-
GRACE02S

EIGEN-
CG03C

EIGEN-
GL04C

EIGEN-
GL04S1

EGM2008 EIGEN-5C

Radial RMS differences (m)
2 114:0916 114:099 114:0967 114:1034 114:1049 114:103 114:103 114:1064 114:1018

10 8:3415 8:3593 8:3131 8:3151 8:3154 8:315 8:315 8:3155 8:3147

20 1:3111 1:3478 1:5463 1:5446 1:542 1:5425 1:5425 1:5408 1:5432

30 0:4729 0:7857 0:2269 0:2264 0:2286 0:2277 0:2277 0:2285 0:2277

40 1:6808 2:3628 1:8511 1:8569 1:8624 1:8606 1:8606 1:8591 1:8612

50 1:2333 2:0211 1:6374 1:6140 1:6211 1:6174 1:6174 1:6155 1:6181

60 1:7386 2:3328 2:0096 1:9870 1:9952 1:9925 1:9925 1:9896 1:9931

70 1:5093 2:2336 1:9040 1:8842 1:8936 1:8889 1:8889 1:8866 1:8889

80 2:1268 1:8259 1:7809 1:7886 1:7829 1:7829 1:7847 1:7836

90 2:0392 1:7305 1:6863 1:6983 1:6961 1:6961 1:6940 1:6963

100 2:0068 1:6663 1:6549 1:6703 1:6704 1:6704 1:6648 1:6701

110 2:0021 1:6475 1:6438 1:6664 1:6626 1:6627 1:6561 1:6612

120 2:0057 1:6513 1:6481 1:6702 1:6652 1:6636 1:6573 1:6635

130 2:0092 1:6531 1:6513 1:6732 1:6679 1:6658 1:6603 1:6661

140 2:0090 1:6522 1:6492 1:6730 1:6675 1:6670 1:6594 1:6657

150 2:0117 1:6440 1:6753 1:6698 1:6701 1:6622 1:6684

200 2:0106 1:6742 1:6687 1:6611 1:6671

250 2:0106 1:6742 1:6688 1:6611 1:6672

300 2:0106 1:6742 1:6688 1:6611 1:6672

360 2:0106 1:6742 1:6688 1:6611 1:6672

4 Concluding Remarks

The main feature of the presented computational
scheme is that it permits the evaluation of a cumulative
contribution of an available gravity model in the
process of numerical integration of a real LEO
orbit. This results to an independent assessment
tool for the performance of a given gravity model
expressed at all three orbital components (radial,
cross-track, along-track) at satellite altitude. The
incorporation of different models led to significant
numerical discrepancies for the same orbital arc.
Furthermore, a major difference between CHAMP
and GRACE-A could be pointed out in terms of the
observed threshold, above which the orbit differences
remained unaltered. It is clear, however, that significant
extensions of the present approach have to be
performed in order to enable a more detailed or even
band-limited analysis of the different gravity models.
Due to the simplification of the current forces model
the obtained results represent a rather pessimistic
measure for the quality of the different geopotential
models. Among the issues to be tackled in the frame

of our ongoing and future work we should mention
(a) the examination of more and longer orbit arcs
of different satellites scattered over larger epochs
including seasonal extremes of characteristic non-
gravitational effects such as solar radiation and (b)
the extension of the present elementary model towards
a real force model, by adding non-gravitational forces
and third-body perturbations, which would enhance
the interpretation goals of the present approach.
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43Different Representations of the Time
Variable Gravity Field to Reduce the Aliasing
Problem in GRACE Data Analysis

Torsten Mayer-Gürr, Enrico Kurtenbach, and Annette Eicker

Abstract

The projected accuracy of the GRACE satellite mission has not been reached yet.
One reason among others is the inaccurate modelling of the temporal variations in
the analysis procedure by monthly or weekly mean fields, which can be shown in a
simple simulation scenario. Two approaches to improve the temporal modeling are
presented here: on the one hand the representation in terms of continuous temporal
basis functions and on the other hand the increase of the temporal resolution to
daily gravity field solutions by the use of the Kalman filter approach.

Keywords

GRACE • Time-variable gravity field • Aliasing • Kalman filter

1 Introduction

For more than 7 years the twin satellite mission
GRACE (Tapley et al. 2004) has measured the
Earth’s gravity field and its temporal variations with
unprecedented accuracy. But the projected accuracy
(baseline accuracy) has not been reached yet, which
is on the one hand due to errors and inaccuracies
in the background models used to reduce high-
frequency temporal variations within the standard
GRACE gravity field recovery process. On the other
hand, inaccurate modelling of the temporal variations
by monthly mean fields also leads to the typical
GRACE error striping pattern, which will further
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Graz University of Technology Steyrergasse 30/III, 8010 Graz,
Austria
e-mail: mayer-guerr@tugraz.at; kurtenbach@geod.uni-bonn.de;
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be investigated in this article. The influence of an
inaccurate representation in the time domain will be
shown in Sect. 2. Hereupon two alternative approaches
to improve the temporal GRACE solutions will be
presented: on the one hand the representation by
continuous temporal basis functions and on the other
hand an increase of the temporal resolution up to daily
gravity field solutions.

2 Simulation

To investigate the effect of temporal aliasing we
simulated a GRACE scenario. ITG-Grace03s serves as
pseudo real gravity field up to degree n D 60. In this
simulation it is assumed that high frequency variations
generated by mass transports in the atmosphere and the
ocean are exactly known. Therefore, these variations
can perfectly be removed from the data by models
and are not included in the observations anymore. The
simulated observations are corrupted by white noise
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Fig. 43.1 Errors in a simulated GRACE gravity field solution
in terms of equivalent water heights up to degree n D 60. Top:
recovery of a static gravity field, Bottom: recovery of a field
inlcluding annual signal

with a standard deviation of 1�m=s for the range-
rates, 2 cm for the kinematic orbits, and 3 � 10�10 m=s2

for the accelerometer observations. In a first step
a gravity field is estimated from 1 month of data.
The same method is used as for the gravity field
solution ITG-Grace03, see (Mayer-Gürr et al. 2007)
and (Mayer-Gürr 2006). For this setting the acccuracy
expected before GRACE launch (baseline accuracy)
can be recovered and the noise in the solution is very
small. Figure 43.1 (top) shows the difference between
the recovered solution and the pseudo real field in
terms of equivalent water heights. In the next step the
same simulation is repeated, the only difference is that
some time variable gravity field signal was added to
the observations. To keep the simulation as simple
as possible only an annual signal is considered. This
signal is derived from the time variable part of the
ITG-Grace03 solution and is smoothed spatially to
avoid small features that cannot be recovered by the
GRACE mission. Figure 43.2 (top) shows the spatial

Fig. 43.2 Simulated annual signal. Top: amplitudes in terms of
equivalent water heights. Bottom: time variations in the amazon
basin

distribution of the amplitudes in terms of equivalent
water heights. The errors of the recovered solution are
shown in Fig. 43.1. The errors are significantly larger
compared to the recovery of the static solution and
show the striping pattern as it is well known from the
real GRACE solutions. We would like to point out
that only a signal changing slowly in time (i.e. the
introduced annual variations) causes these stripes and
no high frequency signal is included in the simulation.
To explain this surprising result the time variations
in the Amazon basin are investigated (see Fig. 43.2,
bottom). The simulated input signal is shown in black.
The estimated GRACE solutions in terms of monthly
mean values are displayed in red. The difference
between the true signal and the recovered solution
(blue line) can reach more than 3 cm of equivalent
water height in this region. The annual signal contains
a large amount of information which cannot be
explained by monthly mean solutions and therefore
results in aliasing errors appearing in the striping
pattern. We conclude from the result of this simulation
scenario that a parameterization of the time variable
gravity field by monthly means is not an adequate
choice.
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3 Representation by Splines
in Time Domain

The gravity field representation by a mean value over
a certain time span (e.g. monthly or weekly) can be
expressed as a linear combination of piecewise con-
stant functions,

V.�; �; r; t/ D
X
i

Vi .�; �; r/%i .t/; (43.1)

where %i is equal to one only in the specific time span:

%i.t/ D
(
1 if ti � t < tiC1
0 otherwise.

(43.2)

The position-dependency Vi .�; �; r/ can be expressed
by a series of spherical harmonics,

Vi .�; �; r/ D GM

R

1X
nD0

�
R

r

�nC1 nX
mD�n

cnmYnm.�; �/;

(43.3)

where �; �; r are the spherical coordinates;GM is the
Earth’s gravitational constant;R is the semi-major axis
of a reference ellipsoid; cnm are the spherical harmonic
coefficients; and Ynm are the fully normalized spherical
harmonics. Alternatively the potential can be repre-
sented by an expansion in terms of space-localizing
basis functions, see for example (Eicker 2008).

However, a representation in terms of mean values
is not a suitable choice as has been shown in Sect. 2.
Most of the geophysical processes causing mass
changes have a continuous character so the choice of
basis function %i.t/ with a smooth transition seems to
be more natural. In case of ITG-Grace03s (Mayer-Gürr
et al. 2007), the temporal variations are parameterized
by quadratic splines,

%i.t/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

1

2
�2i�1 if ti�1 � t < ti ;

��2i�1 C �i�1 C 1

2
if ti � t < tiC1;

1

2
�2i�1 � �i�1 C 1

2
if tiC1 � t < tiC2;

0 otherwise;
(43.4)

where � D .t � ti /=.tiC1 � ti / is the normalized time.
These quadratic splines are illustrated in Fig. 43.3.

Fig. 43.3 Schematic illustration of quadratic splines as contin-
uous temporal basis functions

The drawback of this approach is the fact that only
geophysical processes with a smooth behaviour in time
can well be approximated. For example the effect of
the Sumatra-Andaman earthquake does not belong to
this type of processes.

4 The Kalman Filter Approach

Instead of using smooth functions to approximate
continous processes one could decrease the analysed
time span to recover fast time variations as detailed
as possible (both smooth and discontinous processes).
The existing solutions are for example 10-day fields
(Lemoine et al. 2007) or even weekly fields (Flechtner
et al. 2009). In the approach presented here we carry
the idea to extremes and try to derive daily solutions.

The processing of GRACE measurements (K-band
range data, GPS and accelerometer observations) for
one day can be formulated in a Gauss Markov Model
according to

lt D Atxt C vt ; (43.5)

where lt is the vector containing the GRACE measure-
ments, xt are the unknown gravity field parameters (in
this case spherical harmonic coefficients), At is the
design matrix and vt contains the measurement noise
for each day t .

Solving the normal equation for each day individu-
ally provides dissatisfactory results due to insufficient
data coverage. In order to nevertheless reach such a
high temporal resolution, another piece of information
is needed to stabilize the solution. Assuming that the
gravity field parameters cannot change in an arbitrary



288 T. Mayer-Gürr et al.

range, the solution on the current day xt can be pre-
dicted from the previous one xt�1 according to

xt D Btxt�1 C wt : (43.6)

Here Bt describes the temporal behavior of the solu-
tions and wt stands for the process noise vector. Equa-
tions (43.5) and (43.6) together constitute a stochastic
process with the state vector xt , which can be esti-
mated, for example, within a Kalman filter approach
(Kalman 1960). This results in daily solutions which
are not completely independent but for each day only
the areas covered by GRACE observations are updated.

As a first approximation Bt can be chosen as the
identity matrix when expecting that the gravity field
coefficients remain nearly constant from one day to the
next. Whereas strictly complying with this assumption
would lead to a static field, the introduction of the
process noise vector allows variations within a certain
range. The stochastic behaviour of this zero-mean
noise vector, characterized by its covariance matrix
Qt D Cov.wt ;wt /, is accounted for in the Kalman
filter approach and can be derived empirically by the
analysis of geophysical models.

It has to be pointed out that in the GRACE esti-
mation process only this empirical covariance matrix
Qt is taken into account, but not the model results
themselves. Thus the estimated gravity field solution
will not be biased towards the applied geophysical
model. Inaccuracies in the model are therefore less
critical.

As in the GRACE analysis process short-term mass
variations such as atmospheric mass redistributions or
ocean tides are reduced in a de-aliasing step (Flechtner
et al. 2009), the residual signal is mainly dominated
by variations in continental hydrology (and, in specific
regions, ice mass variations or long-term processes
such as postglacial rebound and seismic activities), see
for example (Güntner 2008).

Following the method described in (Kurtenbach et
al. 2009) the empirical auto-covariance function of the
WaterGAP Global Hydrology Model (WGHM), given
as as daily equivalent water heights (EQWH) over the
continents on a 0:5ı � 0:5ı grid (for details see Döll
et al. 2003 and Hunger and Döll 2008), is derived.

The resulting auto-covariance function is a two-
dimensional function depending on time and on the
spatial distance. In Fig. 43.4 the temporal correlations
are displayed for different spatial distances (indicated

Fig. 43.4 Empirical covariance function of the residual
stochastic part of the signal (annual and semi-annual signal
reduced)

by different colors) on the surface of the sphere.
The deterministic part representing the annual and
semi-annual period was reduced and only the residual
stochastic part is shown. The covariance matrix of the
process noise can now be derived from the empirical
covariance function. Since for daily snapshots the
variations of the Earth’s gravity field from one day
to the next are essential, the covariance function is
evaluated at the time step �t D 1 day.

To show the applicability of the Kalman filter
approach 2 years of GRACE L1B data were processed,
i.e. the years 2006 and 2007. The process is initialized
with the static solution ITG-Grace03 and the analysis
procedure equals the one applied in the calculation
of the ITG-Grace03s time series, (Mayer-Gürr et al.
2007). Results of the Kalman solution are presented in
Fig. 43.5, where the spatial distribution of the temporal
variances of the daily solutions are displayed for
the time span 2006–2007 (top). They are compared
to the corresponding variances of the GFZ-RL04
weekly (middle) and monthly (bottom) gravity field
models. The weekly models are provided up to degree
and order 30 and the monthly models up to degree
and order 120. For further details on theses two
solutions, see Flechtner et al. (2009). Because of
the implicit filtering taking place during the Kalman
filter estimation, the unfiltered GFZ solutions had
to be filtered as well. Therefore, to both GFZ-RL04
solutions a non-isotropic decorrelation filter (DDK),
see Kusche (2007), was applied. Even though a direct
comparison of the results is difficult due to the different
filtering techniques, all three illustrations depict very
similar spatial patterns. In the large river basins the
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Fig. 43.5 Temporal variability in terms of RMS values of
different GRACE solutions. Top: daily Kalman solutions. Mid-
dle: weekly GFZ-RL04 solutions. Bottom: monthly GFZ-RL04
solutions. Both GFZ solutions filtered with non-isotropic decor-
relation filter (DDK)

daily solutions show a variability comparable to the
weekly or monthly solutions. This indicates that by
using the Kalman filter process the signal is not
damped more strongly than in case of applying the
DDK filter.

Conclusion

It could be shown that slowly changing tempo-
ral variations cannot be well approximated in the
GRACE gravity field recovery process by the stan-
dard monthly mean fields. Inadequate representa-
tion leads to aliasing errors and the typical GRACE
striping pattern. In this article two approachtes to

reduce this problem were presented. Because most
of the geophysical processes observed by GRACE
are continuous in time, it is obvious to use con-
tinuous temporal basis functions to model these
variations. To capture also discontinuous processes,
the temporal resolution was increased up to daily
gravity field solutions. Solving the normal equation
for each day individually provides unsatisfactory
results due to insufficient data coverage. Instead, to
reach such a high temporal resolution, another piece
of information in terms of temporal correlations
were introduced in the Kalman filter approach. The
first approach has successfully been used in practise
(Mayer-Gürr et al. 2007), the principal applicability
of the Kalman filter to GRACE L1B data analysis
was shown in (Kurtenbach et al. 2009).

These considerations will gain even more impor-
tance in case of future satellite missions featuring
significantly higher measurement accuracy.
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44Multi-Sensor Monitoring of Low-Degree
Gravitational Changes

J.L. Chen and C.R. Wilson

Abstract

Earth gravity change is caused by mass redistribution within the Earth sys-
tem, including air and water redistribution in the atmosphere, ocean, land, and
cryosphere, and mass variation of the solid Earth (in the core, mantle, and crust).
Gravity change can be quantified by geodetic measurements and numerical climate
models. We estimate time series of low-degree gravitational variations, �C21,
�S21, and �C20 using four different techniques, from the Gravity Recovery
and Climate Experiment (GRACE), Earth Orientation Parameters (length of
day and polar motion), advanced climate models (including atmospheric, oceanic,
and hydrologic models), and satellite laser ranging. We compare these independent
estimates at different time scales, and discuss major uncertainties for the various
techniques. Independent estimates of �C21, �S21, and �C20 are important for
validating the geodetic techniques and for improving understanding of large scale
and low frequency mass redistribution within the Earth system.

Keywords

GRACE • Low degree gravity • Earth rotation • Climate models • SLR

1 Introduction

This study examines global aspects of space geodetic
data and data-assimilating climate models by
comparing observations and estimates of gravity
field degree 2 spherical harmonic (SH) variations at
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time scales of a month and longer. Variations in all
coefficients (except degree 2, order 2) are determined
from three independent space geodetic observational
data sets (GRACE gravity mission; Earth Orientation
Parameters (EOP); Satellite laser ranging to multiple
satellites (SLR)) and from climate model predictions
of atmospheric mass redistribution, barotropic wind-
driven ocean mass redistribution, and land surface
hydrology (excluding polar regions). SLR has been
an effective technique for measuring low degree
gravitational changes, especially the lowest degree
even zonal harmonic �C20 (also called �J2 in the
literature) with time series extending over more than
three decades (e.g. Yoder et al. 1983; Rubincam 1989;
Cheng and Tapley 2004).
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Excitations of polar motion (X, Y) and length-of-
day (LOD) due to surface mass load variations are
proportional to changes in degree-2 SH (i.e., �C21,
�S21, and �C20/ (e.g., Wahr 1982; Eubanks 1993;
Gross et al. 2004a). Therefore, estimates of �C21,
�S21, and �C20 from accurately measured Earth rota-
tional changes are possible, provided that wind and
ocean current contributions can be estimated using
numerical ocean and atmospheric models. GRACE
satellite gravimetry provides another means for mea-
suring these low degree gravitational changes (Tapley
et al. 2004).

This investigation builds upon earlier studies (Chen
et al. 2004; Chen and Wilson 2003, 2008) by extending
the period of observation, and employing improved
estimates. Modern observations of mass redistribution
from the GRACE mission, and estimates of climate-
related sources from data assimilating models are only
available for the last few years, since 2002 in the
case of GRACE, so even a few additional years is
significant. Despite their short duration, GRACE and
other recent observations offer a chance to understand
causes of low frequency EOP changes in the overlap-
ping period of the last few years. In principle, this
should allow the longer EOP record to serve as a proxy
for climate change that extends many decades into the
past.

The paper begins with a summary of data sources
and data processing. Time series sampling is dictated
by GRACE data to be at approximately monthly inter-
vals. This requires filtering and decimation of other
space geodetic and climate series, available more fre-
quently. For example, the EOP series are daily, and
climate model time series provide several samples each
day. For the four estimates (GRACE, EOP, climate
models, SLR), there are 3 time series each for SH
degree 2, order 0, and order 1 (cosine and sine). These
are compared at time scales of less than 1 year (intra-
annual), 6 months and 1 year (seasonal) and at greater
than 1 year (interannual).

2 Data Processing

2.1 EOP Estimates

Earth Orientation Parameters (EOP: length of day and
polar motion) can be converted to standard excitation

functions, which in turn are related to changes in
degree 2 SH coefficients (Chen and Wilson 2003).

�C21 D �.1C k0
2/ �

r
3

5
� .C � A/

1:098R2M
� �mass1

�S21 D �.1C k0
2/ �

r
3

5
� .C � A/

1:098R2M
� �mass2

�C20 D �.1C k0
2/ � 3

2
p
5

� C

0:753R2M
� �mass3

(44.1)

Here R is Earth radius, M is Earth mass, (C, A)
are polar and equatorial moments of inertia, and k0

2

is load Love number of degree 2. �1, �2, and �3
are excitation functions of polar motion (X, Y) and
LOD, respectively. These relations between EOP exci-
tations and�C21,�S21, and�C20 require that angular
momentum effects of winds and ocean currents are
first removed from EOP variations. That is, observed
excitation functions must be corrected by subtracting
the portion not due to mass redistribution:

�massi D �observed
i � �wind

i � �current
i i D 1; 2; 3

(44.2)

Wind and current effects must be estimated from
global atmospheric and oceanic data assimilating
numerical models. As the results below demonstrate,
this can be done reasonably well, even for �3 for which
about 90% of the variance is due to the winds (Gross
et al. 2004b).

EOP time series are IERS C04 daily values,
converted to �observed

i . Then the wind contribution
is removed from each with daily NCEP reanalysis
winds from surface to 10 mbar, for 17 layers (Kalnay
et al. 1996). After this, the series are smoothed by a
11-day moving average filter (with the weighting of the
1st and last days as 0.5 and others as 1) and decimated
at 10-day intervals (the same as ocean model data), and
ocean current effects (from horizontal velocities) are
removed using an ECCO data assimilating 46 layers
ocean model (run kf066b) (Fukumori et al. 1999,
2000). More information on computing atmospheric
wind and ocean current excitations is available in Chen
and Wilson (2008). Finally, the 10-day samples are
interpolated into daily intervals, smoothed by a 31-day
moving average filter, and then decimated to monthly
values corresponding to GRACE sample times.
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2.2 GRACE and Climate Model Estimates

Several GRACE gravity field solutions are available
for study. Here we use Release 4 (RL04) series from
the University of Texas Center for Space Research
(CSR) and the German (Potsdam) GFZ series. The
CSR series covers the period April 2002 to February
2009 and the GFZ series from August 2002 to February
2009. Solutions are approximately, but not exactly at
monthly intervals.

There are three main contributions of the climate
to changes in the gravity field: mass redistribution
within the oceans; within the atmosphere; and due to
terrestrial water storage variations. The first two of
these are calculated from numerical models as part of
the GRACE processing system at 3-hour intervals and
removed from GRACE range-rate data in a step called
“dealiasing” (Bettadpur 2007). We restore atmospheric
and oceanic contributions using the GAC products
provided by the GRACE project (Bettadpur 2007).
After restoring atmospheric and oceanic contributions,
GRC (CSR or GFZ) values for �C21, �S21, and �C20
should include all climate sources, and be comparable
to other results, such as EOP and SLR estimates.

An independent estimate of terrestrial water storage
effects is obtained from the NASA Global Land
Data Assimilation System (GLDAS-NOAH), which
includes soil moisture and snow contributions, but
omits deeper storage change in groundwater, and
excludes Greenland and Antarctica (Rodell et al.
2004). We impose mass conservation by distributing
evenly over the oceans any GLDAS water surplus or
deficit over land. The resulting Atmosphere-Ocean-
Water time series, the sum of GLDAS and GRACE
dealiasing fields is called AOW.

2.3 SLR Estimates

Satellite laser ranging to multiple satellites, including
Starlett, Ajisai, Stella, and Lageos 1 and 2, provides
sufficient information about Earth’s gravitational field
changes to obtain monthly samples in all degree 2 SH
coefficients, and some higher degree coefficients. SLR
time series of�C20 are available with GRACE Release
4 (RL04) products, as described in GRACE technical
note TN-05 (Cheng and Ries 2008).

For �C21, �S21 we use a series available only
through mid-2007 (MK Cheng, personal communi-
cation), which is based on GRACE RL01 standards.

RL01 lacked an ocean pole tide correction and used
an outdated solid earth pole tide model. Therefore,
these SLR �C21 and �S21 series require a pole tide
correction, which for the oceans is the Desai model
(Desai 2002) used in GRACE RL04, and for the solid
earth pole tide, is estimated as the difference between
solid earth pole tide standards used in GRACE RL04
and RL01.

3 Time Series Comparisons

There are four independent techniques or sources
(GRC, EOP, AOW, and SLR), each providing time
series of the three components�C21,�S21, and�C20.
After a visual assessment of the time series, com-
parisons will be made over three different ranges of
periods, short (intra-annual, less than a year), seasonal,
and long period (interannual, more than a year).

Figure 44.1a,b,c shows the four time series for each
SH coefficient. Some general conclusions can
be drawn from the figure. First, all four estimates
show (for each SH coefficient) similar variances. This
indicates no major errors contaminating them, and
implies errors of comparable size among the four.
A second common feature is evident seasonal varia-
tions of similar size. Third, several of the time series
look reasonably well correlated, at least at periods
exceeding several months. Fourth, there is a suggestion
of similar long period variations in several, at periods
exceeding about one year. These observations justify
more detailed analysis, considering separately the
three time scales.

3.1 Annual Variations

Annual and semi-annual sinusoids were fit by
unweighted least squares to each SH time series.
Table 44.1 gives amplitudes and phases. Seasonal
frequency estimates are similar among all series for
each SH coefficient.

3.2 Short Period Variations

A general observation is that though of similar vari-
ance, time series do not appear well correlated for
much of the period. We remove seasonal (annual and
semiannual) signals and variations at period longer
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Fig. 44.1 Changes in dimensionless SH coefficients from the
four independent techniques. Series have been resampled to
match GRACE times as discussed in the text. Time series show
similar variance and time scales of variation, including seasonal
changes. SLR series for�C21 and�S21 both end in mid-2007, as
discussed in the text. Figure: (a) (top) �C20, (b) (middle) �C21,
(c) (bottom) �S21

than a year using unweighted least squares fit and show
the intraseasonal time series of �C21 and �S21 in
Fig. 44.2 and �C20 in Fig. 44.3. Figure 44.3a, reveals
a number of larger “events” in the GRC time series
not evident with others. These are likely due to noise.
Figure 44.3b, omitting GRC and EOP series, shows
remarkably high correlation between AOW and SLR
time series, with a correlation coefficient of 0.93 (see
Table 44.2 details). This suggests that instances of poor
correlation evident in Fig. 44.3a are likely due to errors
in GRC and EOP series. In the case of EOP, it was
already noted that the wind accounts for about 90%

Table 44.1 Amplitude and phase of annual and semiannual
�C20 variations estimated from GRACE (GRC) CSR and
GFZ RL04 solutions, Earth rotation (EOP), geophysical modes
(AOW), and SLR. The phase is defined as ¥ in sin.2 .t � t0/C
¥/, where t0 refers to 0 hour on January 1

Gravity change Annual
amplitude phase
(�10�10/ (deg)

Semiannual
amplitude phase
(�10�10/ (deg)

�C21 (GRC/CSR) 0.24 160 0.09 140
�C21 (GRC/GFZ) 0.18 153 0.06 150
�C21 (EOP) 0.22 154 0.07 138
�C21 (AOW) 0.24 118 0.06 201
�C21 (SLR) 0.19 139 0.11 168
�S21 (GRC/CSR) 0.67 109 0.15 230
�S21 (GRC/GFZ) 0.64 104 0.17 243
�S21 (EOP) 0.70 116 0.23 251
�S21 (AOW) 0.87 100 0.15 238
�S21 (SLR) 0.61 113 0.04 164
�C20 (GRC/CSR) 1.34 30 0.08 110
�C20 (GRC/GFZ) 1.56 62 0.65 114
�C20 (EOP) 1.34 58 0.75 53
�C20 (AOW) 1.37 47 0.11 169
�C20 (SLR) 1.46 43 0.25 181

of observed LOD variance and subtracting wind and
ocean current effects (via climate models) leaves the
residual �C20 very susceptible to contamination by
errors of the wind fields. In the case of GRC, various
error sources can be identified. One recognized source
is imperfections in ocean tide models, which may alias
to longer period changes in �C20. For example, errors
in the S2 tide will appear as a 161 day alias, and in K2

at 1,362 days (or 3.73 years) (Knudsen 2003), possibly
being confused with other long term variability in the
relatively short GRC series. Indeed, Fourier power
spectra of GFZ and CSR �C20 series (Fig. 44.4) show
peaks near these two periods, and the CSR peak is
larger, suggesting a greater problem relative to GFZ.
Figure 44.5 shows that after subtracting 161 and 1,362
day sinusoids, there remain large differences between
the two GRC series. The two are almost out of phase
near the end of 2007 (and in early 2008).

There is a significant increase in the correlation
coefficients between AOW and SLR �C20 in the
present study than that from Chen and Wilson (2008)
(e.g., 0.93 vs. 0.75). This increase is likely partly
due to the improved SLR data processing method
using the GRACE RL04 standards, as compared to
the RL01 standards adopted in the SLR �C20 data in
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Fig. 44.2 Interseasonal variations in�C21 and �S21 components after annual, semi-annual, and variations at periods longer than 1
year are removed using unweighted least squares fit

Chen and Wilson (2008). Another likely cause to this
improvement is the reduced end effect of the low-pass
filter used in LOD data, due to extended length of time
series (see Chen and Wilson 2008 for details), which
results in better agreement of SLR �C20 with AOW
estimates at the end of the time series (i.e., the last half
year or so).

3.3 Interannual Variations

Interannual (long period) variations are of great
interest because GRACE is able to observe a broad
spectrum of SH coefficients, which should lead to

understanding of the geographical sources of Earth
system mass redistribution at interannual periods. As
noted, this may allow EOP series (especially polar
motion or �C21 and �S21) to serve as proxies for
climate change for a number of decades into the past. A
preliminary examination, shown in Fig. 44.6 suggests
this is feasible. Interannual variations in GFZ and
CSR solutions show similar oscillations and trends,
and agree reasonably well with EOP solutions for
�C21 and �S21 including evidence of similar trends.
It is notable that there is a lack of a trend, in the
AOW series in Fig. 44.6. This is due to recognized
limitations of land surface models (GLDAS), which
will contribute almost all the variance at long periods
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Fig. 44.3 Intraseasonal (short period) variations for all four
series (a, upper) and SLR and AOW only (b, lower). Excellent
agreement shown in the lower panel suggests various errors may
contaminate EOP and GRC series. EOP estimates of �C20 are

susceptible to errors in removing about 90% of the variance due
to wind and current effects. Errors with GRACE estimates are
discussed in more detail in the text

Table 44.2 Correlation coefficients at zero lag of intrasea-
sonal �C21, �S21, and �C20 time series, among estimates
from GRACE (GRC), Earth rotation (EOP), geophysical models
(AOW), and SLR. The 99% significance level is about 0.32. This
table is an update of Table 2 of Chen and Wilson (2008)

Correlation pair �C21 �S21 �C20
GRC/EOP 0.73 0.65 0.54
GRC/AOW 0.42 0.66 0.46
GRC/SLR 0.39 0.40 0.48
EOP/AOW 0.55 0.85 0.68
EOP/SLR 0.55 0.56 0.68
AOW/SLR 0.33 0.52 0.93

to AOW. (Atmospheric and oceanic mass redistribution
are less likely to be important at these periods because
accumulation of mass is physically less likely than
in the various terrestrial water reservoirs). GLDAS
and similar models have known limitations including
omission of ground water storage and lack of polar
ice sheet effects. Both sources are strong candidates
for long period variability. In addition, trends in both
GRC and EOP time series include a contribution
from postglacial rebound, not part of the AOW
series.



44 Multi-Sensor Monitoring of Low-Degree Gravitational Changes 299

Fig. 44.4 Power spectra of the two GRACE time series, indi-
cating peaks in the vicinity of anticipated alias of S2 and K2

ocean tide model errors (with periods of 161 days and 3.73 years,
respectively, marked by dashed lines)

Fig. 44.5 The two GRACE time series after subtraction of best-
fit sinusoids at alias periods of K2 and S2 tide errors. Trends are
also removed using least squares fit

Fig. 44.6 Interannual variations in �C21 and �S21plotted with
non-seasonal residuals. AOW shows smaller trends and less
variability, but the other series (GRC/CSR, GRC/GFZ and EOP)
exhibit similar oscillations at periods of several years. While the
time series are too short to quantify the correlation, it supports

the possibility of using the GRC series to understand the mass
variations evident in the EOP (polar motion) series. For clarity,
we add offsets to the time series. SLR�C21 and�S21 time series
cover a shorter time span and are excluded here
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Conclusion

Lengthened and improved time series continue to
verify that the dominant source of gravity field
variations at low SH degree is associated with air
and water redistribution. We find reasonably good
agreement among all four techniques used to esti-
mate variations in each of the 3 SH coefficients.
There are persistent problems in GRACE series,
especially for C20. GRACE and EOP variations
in �C21, �S21 at interannual periods are similar,
suggesting GRACE will be useful in understanding
long period polar motion, both present and past. At
interannual periods the land surface model GLDAS
does not show trends in �C21, �S21 due to a
combination of model inadequacies, and unmod-
eled sources, such as polar ice and post glacial
rebound.
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45Using Swarm for Gravity Field Recovery:
First Simulation Results

Xinxing Wang and Reiner Rummel

Abstract

The CHAMP satellite, equipped with a GPS receiver and an accelerometer, has
yielded an enormous increase in accuracy of global satellite-only gravity field
models and it has proved the concept of high-low satellite to satellite tracking
(SST) for gravity field recovery. Therefore, we are interested whether the Swarm
mission, consisting of three CHAMP-like satellites, is suitable for gravity field
determination as well. This article presents the results of two simulation studies for
static and time-variable gravity field recovery. The latter may become especially
relevant after the mission end of GRACE and CHAMP.

Swarm’s potential of recovering the global gravity field is investigated by
simplified simulations. GPS baselines between the three satellites are used as
observations. Generally, the quality of static field recovery can be better than
that of CHAMP with the help of the more accurate GPS baseline measurements.
A 24-months simulation with temporal variations shows that Swarm may have the
potential of recovering the long wavelength part of hydrology signal.

Keywords

Swarm • Gravity field recovery • GPS baseline measurements • temporal varia-
tion

1 Introduction

The Swarm mission is an approved satellite mission
of ESA, which aims at the global determination of
the outer, inner and lithospheric magnetic field of the
Earth as well as the temporal evolution of the inner
and outer field. Swarm is scheduled to be launched
in 2011 and is expected to give new insights into

X. Wang (�) � R. Rummel
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Universität München, Munich, Germany
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the Earth’s interior and climate. More details about
the mission can be found e.g. in Olsen et al. (2007).
The Swarm constellation consists of two low orbiting
satellites (Swarm A and B) and a third one at higher
altitude (Swarm C). The two lower satellites will
fly initially in a circular orbit at 450 km altitude,
which is similar to the orbit altitudes of CHAMP and
GRACE, while the higher satellite will fly at 530 km.
Each of these three satellites carries onboard a GPS
receiver and an accelerometer. They make it possible
to do precise continuous 3D positioning and to sep-
arate gravitational and non-gravitational forces. Thus
it is comparable to three single CHAMP-like gravity
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solutions. Moreover, thanks to spaceborne differential
GPS, one can determine the relative position vectors
between these three satellites. These GPS baselines can
be used as observations for gravity field determina-
tion and they are expected to bring an improvement
against the single solutions, as the relative positions
can be determined with an accuracy about one order
of magnitude higher than the absolute positions of
the individual satellites. The absolute GPS position
accuracy for CHAMP is about 2–3 cm and the relative
position of GRACE -based on GPS only- has been
reported to be of mm-accuracy (Visser 2006). Based on
these performances, we believe that the same accuracy
of the relative positions can be achieved for the Swarm
mission.

In this article we try to investigate the possibility
of gravity field recovery from Swarm via simplified
simulations with the energy balance approach. Both
static and time-variable field recovery will be dis-
cussed. The energy balance approach and its utilization
in gravity field recovery has been discussed and imple-
mented in geodesy for years. Gerlach et al. (2003)
and Han (2004) have used this approach for CHAMP
and GRACE, respectively and have demonstrated its
application in practise.

In next section we will give some general aspects
about this approach, followed by a short discussion
about the stability of the Swarm constellation. In
Sect. 3, closed-loop simulations will be described
and the results will be presented in Sect. 4. A brief
conclusion will be drawn in Sect. 4.2.

2 General Aspects of Gravity Field
Recovery from Swarm

2.1 Energy Balance Approach

The energy balance approach is based on the energy
conservation law, which states that the sum of poten-
tial and kinetic energy is constant. In an Earth-fixed
reference frame the relationship is:

T .x; t/D 1

2
Px.t/2 �Z.x; t/�U.x; t/�

Z
a � dx.t/CC

(45.1)

where T .x; t/ is the disturbing potential, Px.t/ is
the velocity vector of the satellite, Z.x; t/ is the
centrifugal potential, U.x; t/ is the normal potential,
C is a unknown constant (Jacobi constant) and

R
a � dx.t/ sums up effects from all non-conservative

and time-variable forces, such as air drag, the tidal
effect of Sun and Moon or time-variable gravity
signals. In this article all non gravitational forces are
assumed to be perfectly measured by the onboard
accelerometer and are therefore not considered in the
simulation. Time-variable gravity field is considered
and treated differently for the cases of static and
temporal gravity field recovery, see Sect. 3. All
parameters in (45.1) are time series along the satellite
orbit except the constant C. If C can be determined, the
disturbing potential along the orbit can be calculated.
Details of the calculation of C can be seen in Gerlach
et al. (2003).

For the baseline measurement, the difference of
disturbing potential between the satellites (e.g. Swarm
A and B) can be formed as a function of the relative
velocity vector� PxA;B :

�TA;B D TB � TA D 1

2
� Px2A;B

C PxA �� PxA;B ��ZA;B ��UA;B ��CA;B
(45.2)

This difference serves as pseudo observation to recover
the potential coefficients of the gravity field.

2.2 Stability of the Swarm Constellation

The Swarm B satellite has a longitude shift of approxi-
mately 1:4ı relative to Swarm A, which corresponds
to roughly 160 km distance at the equator. In this
respect the Swarm A-B situation is very similar to the
GRACE constellation with two close satellites. The
distance between GRACE A and B is about 220 km.
The difference is that Swarm A-B offers cross-track
information while GRACE A-B provides the along-
track information. Because of the different initial orbit
altitudes and the slightly different inclination of Swarm
C and A/B (IC D 88ı, IA D IB D 87:4ı), the orbit plane
of C will drift away from that of A and B. Swarm C
is designed in such a way that it starts with an almost
identical orbit plane as Swarm A (B) and drifts away
from A (B) with increasing local time difference in
order to have measurements in different regions at the
same time (Kotsiaros 2009). After 4.5 years the local
time difference should be about 12 h.

In order to take advantage from the accuracy of the
GPS baseline measurement, it is mandatory to have 5
or 6 GPS satellites in common view. As the Swarm
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configuration changes over time, this condition is not
always fulfilled for the baseline A-C and B-C. One is
able to derive usable A-C and the B-C baselines during
one quarter of the mission (Gerlach and Visser 2006).
In contrast, the constellation A-B can always be used
as observation.

As we intend to use the Swarm baselines and to
benefit from the lower altitude also during the end
of the mission phase, it is important that this con-
figuration can stay stable throughout the mission. As
discussed above Swarm C will drift away from A and
B and the baseline measurements between A-C and
B-C will be difficult due to lack of sufficient common
view with the GPS satellites. Thus, the focus of the
stability study is on the Swarm A-B baseline. As is
well known, the Earth’s gravity field, in particular
the flattening of the Earth, causes strong precessional
motion superimposed by oscillations on the orbit. For
the purpose of formation keeping, at least the relative
drift between Swarm A and B should be eliminated
(Sneeuw et al. 2006). For our case, with Kepler ele-
ments be given (Olsen et al. 2007), the formation will
stay stable under a J2-perturbation if the following
constraints can be fulfilled (Sneeuw et al. 2006)

8̂
<
:̂
� P̋ AB D P̋

B � P̋
A D 0

� P!AB D P!B � P!A D 0

� PMAB D PMB � PMA D 0

(45.3)

where P̋ ; P! and PM are all functions of a, e and I.
Equation (45.3) is fulfilled in the case of Swarm A-B
because A and B are designed in such a way that they
share the same orbit height, eccentricity and inclination
throughout the mission. Under real conditions, active
orbit control manoeuvres are planed to maintain the
stability of the constellation (Olsen et al. 2007). There-
fore we assume the baseline A-B is stable throughout
the mission time and it is always possible to use this
baseline as observation for gravity field recovery.

3 Simulation Description

In this section, the simulation processes will be
described. Two simulations have been carried out,
aiming at the recovery of the static field and the
time-variable hydrology signal, denoted as simulation
1 and 2, respectively. For both simulations, the
orbit height of Swarm A/B is set to 350 km and
500 km for C, which corresponds approximately

to the constellation 3 years after launch to benefit
from lower altitude. The OMCT-ECMWF data set
in 6-hourly resolution is used for the combination of
atmosphere and ocean signal (AO). For the hydrology
signal we use the LaD model (H) in monthly solution
from January 2003 for 24 months. The latter is also
linearly interpolated into 6-hourly resolution within
January 2003 for simulation 1 to be consistent with
the AO signal. The other simulation parameters are
listed in Tables 45.1 and 45.2. In simulation 1 the
static EGM96 is superimposed with time series of
AOH signal and it is tried to remove the latter via
integration of the corresponding accelerations of the
time variations along the orbit. The recovered field will
then be compared with EGM96 to d/o 70.

In simulation 2 we try to recover the long wave-
length part of the hydrology signal. For this purpose
a 24-months simulation is done, in which the static
EGM96 field is superimposed with the LaD model
with monthly resolution. Here we assume all other
time variations can be perfectly removed, thus the
recovered monthly fields contain only the static and
hydrology signal. To reduce computational effort, we
only try to resolve to degree and order 30. Furthermore
we assume that the hydrology signal is not changing
within 1 month. Zenner (2006) has shown that this LaD
model contains mainly annual and semi-annual signal,
which justifies our assumption. Thus although this
assumption is not perfectly true, its can be regarded
as acceptable.

In both simulations the observations are contam-
inated with white noise with different noise levels,
which are listed in Table 45.3. For absolute position
and velocity we use 1 cm and 0.1 mm/s, for baseline
position and velocity 1 mm and 0.01 mm/s, respec-
tively.

Table 45.1 Simulation 1 conditions for static field recovery

Duration Sampling EGM96 d/o Time variation
1 month (01.2003) 30 s 70 AOH (6 h) d/o 70

Table 45.2 Simulation 2 conditions for hydrology recovery

Duration Sampling EGM96 d/o Time variation
24 months 30 s 30 H (monthly) d/o 30

Table 45.3 Noise level for simulations (in mm and mm/s)

Abs. p Abs. v Rel. p Rel. v
noise (¢ ) 10 0.1 1 0.01
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For both simulations, the disturbing potential is
calculated through the energy balance approach. In
case of GPS baseline measurements, the difference in
disturbing potential is computed and used as pseudo
observation. The output potential coefficients will be
computed through least squares spherical harmonic
analysis. Here we apply the “brute-force” analysis and
directly calculate the coefficients from the disturbing
potential. A comparison between the input and output
gives an error measure of the simulations.

4 Simulation Results

Let us now turn to the results of the simulations.
Simulation 1 aims at the recovery of the static field
and will be presented in 4.1. Simulation 2 investigates
the possibility of recovery of the long wavelength part
of hydrology and will be described in 4.2. A brief
conclusion will be drawn in Sect. 4.2.

4.1 Results of Simulation
with Static Field

In this part we present the results of the static gravity
field recovery simulations. Gerlach and Visser (2006)
has shown similar simulation results. Additionally to
his simulation we superimpose AOH signal to EGM96
and then remove their contribution via integration of
corresponding accelerations. The results are shown in
the degree RMS values of Fig. 45.1. From the plot
we can draw the following information: (1) among
the single satellite solutions, A and B have the same
quality and C is inferior due to the higher altitude;
(2) baseline A-B suffers from poorly determined zonal
coefficients due to its pure cross-track constellation,
but its curve appears less steep towards higher degrees
than the other curves. This indicates it may be helpful
for a better determination of higher degree coefficients;
(3) the baseline A-C offers a good result for the chosen
month despite that only about 25% observation can be
used to form this baseline. But as the orbit planes of
A/B and C change with time, the geometry of the A-C
constellation can become so bad that this baseline is
not usable for gravity determination. As the orbits drift,
the A-C baseline will be mostly usable in the Polar
Regions. It therefore suffers from an inhomogeneous
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Fig. 45.1 Degree RMS plot for static field recovery

distribution of the observations over the Earth’s sur-
face; (4) The combined solution A C .A � B/ offers
the best solution. This combination is an interest-
ing choice: it combines the good zonal coefficients
solutions from A with the better determined higher
degree coefficients from A-B. In general, it is possible
to determine the static field up to degree and order
70 with Swarm. With the baseline solution we can
expect to go to even higher degrees. The results can be
expected to be better than those of CHAMP (Gerlach
and Visser 2006).

4.2 Results of Simulation with Time
Variation

In this part the hydrology signal in monthly intervals is
added to the static field. The output field is a static field
composed of EGM96 and the input hydrology signal.
If we subtract EGM96 from the output, we expect to
get the recovered hydrology signal. The recovery result
is first presented in a degree RMS plot in Fig. 45.2.
Then we take the two coefficients C20 and C30 as
examples to investigate the possibility to recover the
long wavelength part of the signal.

In the degree RMS plot a GRACE curve is plot-
ted for comparison, which is obtained by adding a
10�3 m2=s2 potential noise to the potential difference
between leading and following satellite (Han 2004).
Here the leading satellite is Swarm A and the following
satellite is about 200 km away on the same orbit. It is
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Fig. 45.3 C20 and C30 recovery from Swarm

clear that with a GRACE-like accuracy one would
be able to determine the hydrology signal to about
degree 25. In contrast, it seems to be impossible for
Swarm to recover the signal. All the curves including
baseline solutions show an error much higher than the
hydrology signal itself. If we only focus on the very
long wavelength part, e.g. C20 and C30 (Fig. 45.3),
a recovery can be possible. All the single satellite
solutions fit the signal curve well in the simulation
period of 2 years. Both the amplitude and phase of the
recovered coefficients seem to agree with the model.
Baseline solutions are not shown here as their solutions
are orders of magnitude worse than the single solutions
and require further investigations. Compared to similar
study for CHAMP (Reigber 2007), we have three
independent solutions from Swarm. The simulation
results seem to be promising.

Conclusion

The Swarm mission consists of three CHAMP-like
satellites and it is possible to use Swarm for gravity
field recovery. Besides the absolute GPS positions
also the baselines between the satellites can be used
as observations, which could improve the quality
of recovery. Swarm can be used for static field
recovery up to degree 70 and higher, with the help
of the combination of single satellite and baseline
solution. It might also have potential for the deter-
mination of long periodic time variations in its low
spherical harmonics. While the behaviour of base-
line observations to temporal variations requires
further studies, one can at least conclude that three
CHAMP-like solutions and thus more redundancy
are feasible. In comparison to GRACE, the GPS
baseline accuracy is by far not at the level of the
K-band microwave link and accelerometers, and
therefore the quality of gravity field recovery by
Swarm is not comparable to that of GRACE in
both static and time-variable field recovery. But
considering that Swarm is by no means a gravity
mission, these results are actually satisfying and
should be considered. Swarm is expected to be
launched in 2011 and it will likely be still useful for
gravity field recovery to about 2016. In this sense
Swarm can be regarded as a welcome complemen-
tary mission to the dedicated gravity missions in the
near future.
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46Consistent Modeling of the Geodetic
Precession in Earth Rotation

E. Gerlach, S. Klioner, and M. Soffel

Abstract

A highly precise model for the motion of a rigid Earth is indispensable to reveal
the effects of non-rigidity in the rotation of the Earth from observations. To meet
the accuracy goal of modern theories of Earth rotation of 1 microarcsecond (�as) it
is clear, that for such a model also relativistic effects have to be taken into account.
The largest of these effects is the so called geodetic precession.

In this paper we will describe this effect and the standard procedure to deal
with it in modeling Earth rotation up to now. With our relativistic model of Earth
rotation (Klioner et al. 2001) we are able to give a consistent post-Newtonian
treatment of the rotational motion of a rigid Earth in the framework of General
Relativity. Using this model we show that the currently applied standard treatment
of geodetic precession is not correct. The inconsistency of the standard treatment
leads to errors in all modern theories of Earth rotation with a magnitude of up to
200 �as for a time span of one century.

Keywords

General Relativity • relativistic Earth rotation • geodetic precession/nutation •
rigidly rotating multipoles

1 Introduction

Geodetic precession/nutation is the largest relativistic
effect in Earth rotation. This effect has been dis-
covered already a few years after the formulation of
General Relativity (de Sitter 1916) and very early it
was recognized to be important for Earth rotation.
It results mainly in a slow rotation of a geocentric
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Lohrmann Observatory, Dresden University of Technology,
Dresden, Germany
e-mail: Enrico.Gerlach@tu-dresden.de;
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locally inertial reference frame with respect to remote
celestial objects roughly about the ecliptic normal. Due
to its relatively large magnitude of about 1:900 per
century, which is 3 � 10�4 of the general precession,
corresponding corrections are used in all standard
theories of precession and nutation since the IAU 1980
theory (Seidelmann 1982).

The standard way to consider geodetic precession
in Earth rotation theories up to now was the follow-
ing: firstly, using purely Newtonian equations, one
computed the orientation of the Earth in a geocen-
tric, locally inertial reference frame. To obtain the
solution with respect to the kinematically non-rotating
Geocentric Celestial Reference System (GCRS) the
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corrections for geodetic precession were then simply
added, as described for example in Bretagnon et al.
(1997, Sect. 8). These corrections can be calculated
separately, since they are completely independent of
the rotational state of the Earth, e. g. Brumberg et al.
(1991).

The purpose of this work is to demonstrate that the
standard way of applying the geodetic precession is
not correct. After stating the problem in the following
Section, we explain shortly our relativistic model of
Earth rotation used for this study in Sect. 3. In Sect. 4
we describe how the corrections for the geodetic pre-
cession can be computed, while in Sect. 5 two differ-
ent, but equivalent and correct ways to obtain a GCRS
solution are given. In the last section of this paper
we compare our solution to published ones and draw
concluding remarks.

Throughout the paper we will use the following
conventions:
– Lower case Latin indices take the values 1; 2; 3.
– Repeated indices imply the Einstein’s summation

irrespective of their positions, e. g. xiyi D x1y1 C
x2y2 C x3y3.

– "abc is the fully antisymmetric Levi-Civita symbol,
defined as "abc D .a � b/.b � c/.c � a/=2.

– Vectors are set boldface and italic: X D X i , while
matrices are set boldface and upright: P D P ij

– The choice to use index or vector notation for a
specific formula is done with regard to readability
and clarity.

2 The GCRS and Geodetic Precession

The Geocentric Celestial Reference System is offi-
cially adopted by the IAU to be used to describe
physical phenomena in the vicinity of the Earth and,
in particular, the rotational motion of the Earth. The
GCRS is connected with the Barycentric Celestial
Reference System (BCRS) by a generalized version
of the Lorentz transformation. This transformation was
chosen in such a way that the GCRS spatial coordinates
XK are kinematically non-rotating with respect to the
BCRS coordinates, i. e. no additional spatial rotation of
the coordinates is involved in the transformation from
one system to the other (Soffel et al. 2003).

Since the origin of the GCRS coincides with the
geocenter and the Earth is moving in the gravitational
field of the Solar system a local inertial frame with
spatial coordinatesXD slowly rotates in the GCRS:

Xi
D D Rij .T /X

j
K: (46.1)

Here Rij is an orthogonal matrix, the time variable
T is the Geocentric Coordinate Time TCG. Due to
this rotation the equations of motion in the GCRS
contain a Coriolis force. The locally inertial analogon
of the GCRS is called dynamically non-rotating. This
rotation between the kinematically non-rotating GCRS
and its dynamically non-rotating counterpart is called
geodetic precession. The angular velocity of geodetic
precession˝GP is given by

˝GP � 1

c2

X
A

GMA

r3EA

	�
2vA � 3

2
vE

�
� rEA



;

(46.2)

where c is the speed of light in the vacuum,G the grav-
itational constant, vA the BCRS velocity of the body
A with mass MA, vE is the velocity of the geocen-
ter, rEA the vector from body A to the geocenter
and rEA its Euclidean norm. The angular velocity˝GP

corresponds to the orthogonal matrix Rij so that the
respective kinematical Euler equations read

˝a
GP D 1

2
"abc R

db.T /
d

dT
Rdc.T /: (46.3)

This equation can be easily verified by direct substitu-
tion of the matrix elements.

3 Model of Earth Rotation

A complete and profound discussion of our relativistic
model of Earth rotation can be found in Klioner et al.
(2001, 2010). For the purposes of this work we neglect
all other relativistic effects except for the geodetic pre-
cession. In particular, we neglect relativistic torques,
relativistic time scales, and relativistic scaling of var-
ious parameters. Then, in dynamically non-rotating
coordinates XD the equations of rotational motion of
the Earth can be written as

d

dT
SD D LD; (46.4)

SD D SD.PDI A ;B;C /; (46.5)

LD D LD.PDIClm; SlmIxAD/: (46.6)

Here LD is the torque and SD the angular momen-
tum in the dynamical non-rotating frame and PD is
a time-dependent orthogonal matrix transforming the
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coordinates XD to a terrestrial reference system Y ,
where the gravitational field of the Earth is constant:

Y a D P ab
D .T /Xb

D: (46.7)

A ;B;C are the principle moments of inertia of the
Earth, Clm; Slm are the coefficients of the gravitational
field of the Earth in Y and xAD are the BCRS coordi-
nates xA of body A (Sun, Moon, etc.) rotated by the
geodetic precession:

xiAD D Rij .T / x
j
A: (46.8)

The matrix PD can be parametrized by Euler angles
',  and ! in the usual way (Bretagnon et al. 1997).
Thus, these three angles as functions of time T rep-
resent a solution of (46.4)–(46.6). Note that the only
difference between a purely Newtonian solution of
Earth rotation and (46.4)–(46.6) is that the torque
should be computed by using rotated positions xAD of
external bodies and not the normal BCRS positionsxA.
This reflects the fact that the coordinates XD rotate
with respect to the BCRS.

The corresponding equations in the kinematically
non-rotating GCRS take the form

d

dT
SK D LK C˝GP � SK; (46.9)

SK D SK.PK I A ;B;C I˝GP/; (46.10)

LK D LK.PK IClm; SlmIxA/: (46.11)

The torqueLK is defined by the same functional form
as LD , but the coordinates of external bodies are
taken directly in the BCRS. Equation (46.9) contains
an additional Coriolis torque proportional to ˝GP.
Besides this, the angular momentum SK in the GCRS
explicitly depends on the geodetic precession˝GP. For
details of these equations see Klioner et al. (2010) and
references therein.

From (46.1) and (46.7) it is clear, that the solutions
of these two sets of equations are related by

P ab
K D P ac

D Rcb: (46.12)

4 Computing the Geodetic
Precession

To determine the effect of geodetic precession one
has to compute the matrix R. This can be done by
a numerical integration of (46.2)–(46.3). It should be
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Fig. 46.1 Differences (in �as) for the analytical solution for
geodetic precession derived by Bretagnon et al. (1998) and
our numerical solution. The sign error in the SMART solution
(Bretagnon et al. 1998) for angle ' is corrected here

remarked that care has to be taken how to represent this
matrix properly. To avoid the discontinuities that can
arise when using the common Euler angles to describe
an arbitrary rotation, we decided to use quaternions to
represent this matrix. With matrix R, solution PD and
(46.12) we can calculate the differences ı', ı and ı!
between the Euler angles ',  and ! corresponding to
matrix PK and those corresponding to PD .

In the process of computing and verifying the
results we have found and corrected a sign error for the
correction induced by the geodetic precession for angle
' in Bretagnon et al. (1998). Taking this sign error
into account the differences between the analytical
solution for ı', ı and ı! derived by Brumberg
et al. (1991) and Bretagnon et al. (1998) and our
numerical solution are below 1 �as. They are shown in
Fig. 46.1. The remaining differences are explained by
the limited accuracy of the analytical treatment of this
effect by the other authors compared to our numerical
result.

5 Computing the GCRS Solution

According to the equations given in Sect. 3 there are
two ways to compute the matrix PK corresponding
to the solution of the rotational motion of the
Earth with respect to the kinematically non-rotating
GCRS:
1. One can numerically integrate (46.4)–(46.6) and

obtain the solution PD with respect to dynamically
non-rotating coordinatesXD . Then one can correct
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for geodetic precession using the matrix R and
(46.12) to rotate the solution into the GCRS.

2. One can integrate (46.9)–(46.11) and directly
obtain PK .

Obviously, the initial conditions for (46.4)–(46.6) and
(46.9)–(46.11) are again related by (46.12) taken at the
initial epoch.

We have implemented both of the above mentioned
possibilities to compute PK and verified that the dif-
ferences in ',  and ! computed in the two ways
represent only numerical noise at the level of 0.001�as
and less after 100 years of integration.

The implementation is done in an efficient way.
The numerical integration of the matrix R runs for
example simultaneously with the numerical integration
for PD . The relative running times between a purely
Newtonian integration and both ways described above
are given in Table 46.1. Further details on our numeri-
cal code and its capabilities can be found for example
in Klioner et al. (2008).

A purely Newtonian model differs from (46.4)–
(46.6) only by the positions of the solar system bod-
ies used to compute the torque on the Earth: the
Newtonian model uses the BCRS ephemeris directly,
while for (46.4)–(46.6) one has to rotate this ephemeris
according to (46.8). It is this rotation that has never
been considered before in any theory of Earth rota-
tion, which represents the main source of inconsis-
tency in the standard way of taking the geodetic pre-
cession into account. The effect of the rotation of
the ephemeris on the Euler angles ',  and ! is
shown in Fig. 46.2. One finds that the error due to this
inconsistency amounts to 200 �as after 100 years of
integration.

A summary of the interrelations between the cor-
rect solutions for the Earth rotation in dynamically
and kinematically non-rotating coordinates as well as
Newtonian and “kinematically non-rotating” solution
derived in the standard, inconsistent way is given
schematically in Fig. 46.3.

Table 46.1 Relative CPU times for various integrations

Relative CPU times

Newtonian case 1.00
Integration of PD with rotated ephemeris 1.21
Direct integration of PK 1.08
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Fig. 46.2 Differences (in �as) for the Euler angles between a
purely Newtonian solution and the correct solution in dynam-
ically non-rotating coordinates. The latter is obtained by using
ephemeris data rotated according to (46.8)

Fig. 46.3 Schematic representation of the differences in the
standard and the correct way to treat geodetic precession. “GP”
stands for geodetic precession/nutation. Each gray block repre-
sents a solution. A solid arrow means: add precomputed geodetic
precession/nutation to a solution to get a new one. A dashed
arrow means: recompute a solution with indicated change in the
torque model

6 Difference to Existing GCRS
Solutions

The difference between the Euler angles of the GCRS
solution obtained in this work and the published kine-
matically non-rotating SMART solution (Bretagnon
et al. 1998) is given in Fig. 46.4. Analysing the sources
of these differences, one can identify three compo-
nents:
– Influence of the rotation of the ephemeris shown

in Fig. 46.2 due to the incorrect treatment of the
geodetic precession.
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Fig. 46.4 Differences (in �as) between the published kinemat-
ically non-rotating SMART solution and the correct kinemati-
cally non-rotating solution derived in this study

– Sign error in the correction for geodetic precession
in '.

– Errors of the analytical SMART solution compared
to the more accurate numerical integration, as
already discussed in Bretagnon et al. (1998).

It should be remarked that the above-mentioned in-
consistency is not only restricted to the SMART solu-
tion, which we used in this study for comparison, but is
also contained in the IAU 2000A Precession-Nutation
model as described in Sect. 5.5.1 of the IERS Conven-
tions (McCarthy and Petit 2004). Therefore Fig. 46.4
allows us to conclude that the existing GCRS solutions
for rigid Earth rotation are wrong by 1000 �as in ',
200 �as in  and 100 �as in ! within 100 years from
J2000. It can be shown that these differences cannot be
eliminated by fitting the free parameters of our model,
namely the moments of inertia, the initial Euler angles
and their time derivatives.

Let us finally note that the effects of non-rigidity
in the Earth rotation and the inaccuracies of the corre-
sponding models, e. g. for the atmosphere and oceans,

are significantly larger than the effects discussed in this
work. Nevertheless to avoid a wrong geophysical inter-
pretation of the observed Earth orientation parameters,
the treatment of geodetic precession should be done
along the lines presented in this paper.
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47Possibilities and Limits for Estimating
a Dynamic and a Geometric Reference Frame
Origin by the Integrated Approach Applied
to the CHAMP–GRACE–GPS Constellation

Daniel König and Rolf König

Abstract

The integrated approach, i.e. the simultaneous processing of GPS satellites and
Low Earth Orbiters (LEOs), for satellite orbit determination and estimation of
Earth system parameters, is applied to the CHAMP–GRACE–GPS constellation
for the purpose of deriving the dynamic and geometric origin of the Earth.
The Earth system parameters comprise the low-degree gravity field coefficients
and GPS ground station positions representing the center of mass of the Earth
as well as the center of figure of the Earth. Based on simulated observations
and dedicated changes of the reference models the possibilities and limits of
solving and separating the parameters searched for are analyzed and the inherent
datum defect can be qualified. The effects of different constraints imposed on the
parameters and of various constellations of GPS satellites and LEOs are studied.

Keywords

Integrated approach • Geocenter • Datum defect • CHAMP • GRACE • GPS

1 Introduction

A geodetic Earth reference frame consists of a
geometric and a dynamic part. Whereas the geometric
frame is determined by the geometry of the Earth’s
surface, the dynamic frame is determined by the
Earth’s gravity field. Both reference frames require
scale, origin, and orientation to be defined. The fol-
lowing is devoted to the determination of the origin of
the geometric frame and that of the dynamic frame.
Accordingly, both origins are denoted as geometric
origin and dynamic origin or geocenter.

D. König (�) � R. König
GFZ German Research Centre for Geosciences, c/o DLR,
Muenchner Straße 20, 82234 Wessling, Germany
e-mail: dkoenig@gfz-potsdam.de

Theoretically, the geometric origin is defined as the
integral center of figure of the entire Earth surface
according to Dong et al. (1997), Dong et al. (2003), and
Blewitt (2003). In practice, it is approximated by a set
of coordinates of a ground station network distinctly
distributed on the Earth’s surface.

Given a spherical harmonic expansion of the Earth’s
gravity field the dynamic frame is established by the
coefficients up to degree and order two. As revealed by
their geophysical meaning, see Heiskanen and Moritz
(1967), they represent the scale, the origin, and the
orientation of the dynamic frame. The origin is the
Earth’s center of mass and its x-, y-, and z-component
are given by the coefficients C11, S11, and C10, respec-
tively. As follows from the definitions the difference
between both centers becomes clear: The dynamic
origin is determined by the distribution of the Earth’s
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masses, and variations of its position are caused by
mass motions. In contrast, variations of the geometric
origin are coming from deformations of the Earth’s
surface.

Determining both a geometric frame and a dynamic
frame is done highly efficient by precise orbit determi-
nation (POD) for GPS satellites and some GPS-tracked
Low Earth Orbiters (LEOs) as the orbits establish a
link between the geometric and the dynamic frame
through GPS observations made at ground stations
and in space. The method applied here is the inte-
grated approach as proposed by Zhu et al. (2004). This
method ensures both consistency of modeling and con-
sideration of all correlations in space and time. This is
not the case in the commonly applied approach where
the parameter estimation for the GPS satellites and the
LEOs is split into two or more steps. Furthermore,
the high-orbiting GPS satellites provide stability to the
geometric frame while the low-orbiting LEOs detect
the dynamic frame with high sensitivity.

This study tries to quantify solvability and sep-
arability of the geometric and dynamic origin with
the integrated approach by an empirical strategy. For
this, ground and space-borne GPS data are simulated
based on up-to-date a priori models acting as reference.
By changing these a priori models systematically and
introducing them into a recovery process for POD and
parameter estimation the deviations of the estimated
parameters of the geometric frame and the dynamic
frame from the reference can be analyzed. This pro-
cedure leads also to the qualification of the intrinsic
datum defect of the chosen solution.

2 The Testing Scenario

In the following the main elements of the testing
scenario are described. The satellite constellation used
consists of an outer layer of GPS satellites and an
inner layer of one to three LEOs. In case only one
LEO is used it is of CHAMP-type (Reigber et al.
1999), two LEOs are modeled as a GRACE-type
(Tapley et al. 2004) satellite pair, and three LEOs are
equivalent to a CHAMP and GRACE constellation.
The ground station network is synthetic consisting
of 60 regularly distributed stations on a 30ı � 30ı
mesh. Using such an ideal ground station network
is necessary in order to exclude disturbing effects
coming from a nonuniform distribution of the stations.

Investigating such disturbing effects would be worth-
wile but is out of the scope of this paper. As gravity
field GFZ’s EIGEN-GL04S1 (Foerste et al. 2007)
is used, the initial elements for the GPS orbits are
taken from IGS ultra-rapid orbits (IGS 2009) and
for CHAMP and GRACE from routine predictions
made by GFZ (Schmidt et al. 2003). Earth tides are
modeled according to the IERS Conventions (2003)
(McCarthy and Petit 2004), ocean tides according to
FES2004 (Lyard et al. 2006). The non-conservative
orbit perturbations are modeled according to accelera-
tions resulting from CHAMP and GRACE POD based
on real data. Fixing all a priori models, GPS observa-
tions are simulated as L3-linear combinations with a
spacing of 30 s, a measurement sigma of 0.5 m (ground
stations) and 0.3 m (LEOs) for code observations as
well as 5.0 mm (ground stations) and 3.0 mm (LEOs)
for phase observations. For the GRACE-type satellite
pair also K-band range rate (KBRR) observations are
simulated as an inter-satellite link with a spacing
of 5 s and a measurement sigma of 0.3�m=s. The
observational data is simulated for any distinct satellite
constellation. Each test covers the same period of 28
days consisting of daily solutions of 24 h length. For
both simulations and the subsequent POD and param-
eter estimation the software used is GFZ’s EPOS-
OC. Its major functions are described in Zhu et al.
(2004). The recoveries are carried out as combined
POD and parameter estimation processes following
the integrated approach using the simulated data and
modified a priori models. The Earth system parameters
solved for comprise the gravity field coefficients up
to degree and order two and the ground station coor-
dinates. Moreover, the initial elements of the satellite
orbits are estimated as well as a set of parameters as
usual in POD with real data modeling orbit pertur-
bations and measurement errors. The a priori model
changes are applied to C10, C11, S11 and to all sta-
tion coordinates by adding 6 cm to each parameter
of these parameter groups. I.e., the gravity field as
a whole and the complete ground station network
are translated in x, y, and z by this amount. 6 cm
in all three spatial directions correspond to roughly
10 cm in 3D. Such a model change does not harm the
linearity of the least-squares estimation but causes a
clear effect.

Assessment of the results is done by comparing
the estimated parameters to the unbiased model
values. In case of the gravity field coefficients this
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is simply done by calculating the difference between
the corresponding coefficients. The estimated ground
station coordinates are compared to the reference
coordinates by 7-parameter Helmert transformations
per daily solution delivering global translations in
x, y, and z (TX, TY, TZ in the following), a global
scale, and global rotations around the x-, y-, and
z-axis (RX, RY, RZ in the following). Analogously
also the orbits are compared to the reference orbits by
7-parameter Helmert transformations. Those reference
orbits are the orbits from the simulation process with
unchanged a priori models. For the purpose of intuitive
comparison, all non-metric parameters are rescaled to
metric distances on the Earth surface.

3 Results and Discussion

The test cases are arranged in four groups, the results
are presented in Tables 47.1–47.4. All parameters not
considered here are resolved very well in all test cases.
Concerning the Helmert transformations between the
orbits, results of the transformations between the GPS
orbits only are discussed as the results of the trans-
formations between the LEOs’ orbits do not differ
significantly from the GPS results. All values given in
the tables represent mean values over the 28-day period
together with their standard deviations. As a reference
for all test cases serves an initial test that is called
‘standard case’ in the following, i.e. an integrated

Table 47.1 Results: Standard case and ideal solution

Constraints sigmas Deviations from reference (mean and standard deviation (mm))
Initial Elements (mm) Geocenter C10 Station Coord. GPS orbits

TZ RZ TZ RZ

– �2:4˙ 68:5 �2:4˙ 68:6 C28:1˙ 205:7 �2:5˙ 68:7 �28:1˙ 205:7

1.0 0:0˙ 0:2 0:0˙ 0:2 0:0˙ 0:0 0:0˙ 0:2 0:0˙ 0:1

Table 47.2 Results: Different constraints

Constraints sigmas Deviations from reference (mean and standard deviation (mm))
Station Coord. (cm) Geocenter C10 Station Coord. GPS orbits

TZ RZ TZ RZ

– �2:4˙ 68:5 �2:4˙ 68:6 C28:1˙ 205:7 �2:5˙ 68:7 �28:1˙ 205:7

10 C57:8˙ 2:4 C57:9˙ 2:4 C0:4˙ 1:8 C57:8˙ 2:5 �0:4˙ 1:7

Table 47.3 Results: Additional LEOs

LEOs used KBRR used Deviations from reference (mean and standard deviation (mm))
y/n Geocenter C10 Station Coord. GPS orbits

TZ RZ TZ RZ

C n �2:4˙ 68:5 �2:4˙ 68:6 C28:1˙ 205:7 �2:5˙ 68:7 �28:1˙ 205:7

G n �3:2˙ 101:0 �3:2˙ 101:2 �77:8˙ 296:2 �3:3˙ 101:2 C77:8˙ 296:2

C C G n �5:0˙ 47:8 �5:0˙ 47:9 C24:3˙ 122:9 �5:0˙ 47:9 �24:3˙ 122:9

C C G y �8:5˙ 23:3 �8:5˙ 23:4 �9:5˙ 152:1 �7:7˙ 23:4 C9:5˙ 152:1

C CHAMP, G GRACE, C+G CHAMP+GRACE KBRR: K-band range-rate

Table 47.4 Results: Additional GPS orbit plane

Additional GPS orbit plane Deviations from reference (mean and standard deviation (mm))
y/n Geocenter C10 Station Coord. GPS orbits

TZ RZ TZ RZ

n �2:4˙ 68:5 �2:4˙ 68:6 C28:1˙ 205:7 �2:5˙ 68:7 �28:1˙ 205:7

y �11:2˙ 55:7 �11:3˙ 55:8 C21:8˙ 169:9 �11:3˙ 55:8 �21:7˙ 169:9
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Fig. 47.1 Time series of dynamic origin (circles), geometric
origin (squares), and translations of GPS orbits (crosses) for the
standard case (no constraints)

solution of the CHAMP–GPS constellation without
any a priori constraints on all parameters.

First of all it should be stated that for all test
cases presented in the following the resolved values
in the x- as well as in the y-component are very
stable and accurate: their standard deviations do not
exceed 0.3 mm, the mean values are between �0.1
and C0.1 mm. This means that both components are
extremely well solvable simultaneously. Therefore the
following discussion is focusing the z-component.

In order to give an idea of the character of the
solutions, for the standard case the time series of
the translational parameters are shown in Fig. 47.1.
The maximum difference between the time series is
0.4 mm in the x-, 0.6 mm in the y-, and 0.7 mm in the
z-component. From this and visual inspection it can
be stated that the translational parameters tend to the
same direction meaning that they represent the same
physical effect.

The first group of tests, see Table 47.1, comprises
the standard case as well as a solution where the initial
elements of all satellite orbits are constrained with a
sigma of 1.0 mm to their a priori values. Regarding
the z-component of the translational parameters the
standard case cannot resolve them as seen by the
standard deviations between 68.5 and 68.7 mm corre-
sponding to the modeled changes of 6 cm. The second
case with perfect orbits delivers a stable day by day

recovery of these parameters with standard deviations
of 0.2 mm. On the other hand, for the standard case,
the mean values of the z-translations deviate from the
reference by �2.5 to �2.4 mm only. So by sampling
over a certain time period an unbiased solution can be
gained.

The whole constellation of ground stations and
satellite orbits is rotationally unstable around the
z-axis as can be seen by regarding the RZs in the
standard case with standard deviations of 205.7 mm
and biases of C28.1 and �28.1 mm. Again with
perfect orbits the RZs could be resolved day by day
with standard deviations of 0.1 mm maximum and
no biases. Summarizing, the integrated CHAMP-GPS
constellation solution delivers highly accurate daily
x- and y-components of the geometric and dynamic
origin simultaneously, however the z-translations need
long-term sampling to become free of systematics.
With perfect orbits (however out of reality) daily
resolution of the z-translations would be possible and
the rotational defect would disappear.

In the second group of tests, see Table 47.2, the
standard case is compared to a case where 10-cm
constraints are imposed on the station coordinates.
Such constraints are in use for operational GPS pro-
cessing where they are meant to prevent any impact
of unexpected antenna changes on the overall solution.
As revealed by the standard deviations of 2.4–2.5 mm
the case of constrained station coordinates leads to
much more stable time series of the z-translations
than the standard case with standard deviations of
68.5 and 68.7 mm. On the other hand, in case of
constrained station coordinates the biases of these time
series, C57.8 to C57.9 mm, are on the level of the
artificial error of 6 cm. This is certainly due to the con-
straints of 10 cm that are relatively strong compared to
the changes of 6 cm. Regarding the RZ estimates, as
opposed to the standard case, the case of constrained
station coordinates causes the solutions to become
rotationally stationary around the z-axis as revealed
by standard deviations of 1.7 and 1.8 mm and biases
of C0.4 and �0.4 mm. So in summary putting 10-cm
a priori constraints on the station coordinates allows
to efficiently care for the rotational stability of the
solution. If the solution aims at resolving the geocenter
motion with expected amplitudes in the millimeters,
c.f. Dong et al. (1997), the 10-cm a priori constraints
would allow the recovery of daily translations with a
few millimeter accuracy.
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The third group of tests, see Table 47.3, aims at
clarifying the effect of making use of additional LEOs
or of KBRR observations. Using a GRACE satellite
pair without KBRR data leads to increased standard
deviations of 101.0–101.2 mm in the z-translations in
comparison to the standard CHAMP case. The reason
being that correlations of environmental perturbations
between both satellites are not taken into account
here. In case of combining CHAMP and GRACE
the standard deviations reduce to 47.8–47.9 mm being
also smaller than the standard case. By using KBRR
data the standard deviations improve further down to
23.3–23.4 mm. This can be expected as combining
CHAMP and GRACE means to increase the number
of observations, and using KBRR data means to intro-
duce high-quality relative measurements. Compared to
the standard case the biases increase up to approxi-
mately �8 mm, however staying well below the stan-
dard deviations.

Concerning the z-rotations the standard deviations
behave as above going through the cases. The biases
of the z-rotations stay again below significance. In
summary combining CHAMP and GRACE as well
as adding KBRR data help to improve the rotational
stability around the z-axis.

In the fourth and last test group (see Table 47.4) the
benefit of an additional near-polar GPS orbit plane of
five equally distributed satellites is investigated whose
keplerian elements are a D 26;600 km, e D 0:005,
i D 89ı, ˝ D 85ı. Compared to the standard
case the standard deviations of the translational
parameters in Z reduce slightly. Also the standard
deviations of the z-rotations reduced. The biases in
the z-translations and -rotations are not significant.
Overall, an additional near-polar GPS orbit plane
would make the z-translations and -rotations more
stable but would not allow an accurate solution in
the end.

Conclusion

Based on simulated observations and an ideal
ground station network empirical evidence is given
that it is possible to determine simultaneously
both the geometric and the dynamic reference
frame origin applying the integrated approach
to a CHAMP–GRACE–GPS constellation. Even
in the absence of any a priori constraints it is
possible to resolve simultaneously the geometric
and the dynamic x- and y-components with daily

resolution. The remaining errors in z-direction
and around the z-axis indicate that there is a
datum defect of two imminent to the chosen
configuration. Averaging over a longer period leads
to nearly unbiased z-coordinates of the origins.
A perfect estimation of all the components of
the origins would be possible in case the orbits
would become a factor of 10 more accurate
than current practice. Constraining the ground
station coordinates removes the rotational freedom
around the z-axis but leaves the z-translations
unresolved. Extending the basic constellation by
a GRACE-type satellite pair leads to improved
z-translation accuracies and z-rotation stabilities.
This improvement is largely pronounced if the K-
band range-rate data are used. An additional near-
polar GPS orbit plane would not lead to a thorough
elimination of the deficiencies in the z-translations
and -rotations.
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48Source Parameters of the September 10,
2008 Qeshm Earthquake in Iran Inferred
from the Bayesian Inversion of Envisat
and ALOS InSAR Observations

Pegah Faegh-Lashgary, Mahdi Motagh, Mohammad-Ali Sharifi,
and Mohammad-Reza Saradjian

Abstract

This paper presents InSAR observations and source parameter results for
September 10, 2008 Qeshm Island (Mw 6.1) earthquake in Iran. An ascending
ALOS interferogram and two Envisat interferograms from ascending and
descending orbits are used to derive coseismic displacement field of the
earthquake. Interferometric observations show coseismic displacement of more
than 10 cm in the northern part of the island. To obtain source parameters of
the earthquake and their associated posteriori probability distribution we use the
Bayesian approach. The inversion is done in a two-step process. First we derive,
using the Simulated Annealing (SA) method, the posterior marginal distribution of
parameters to determine their sensitivity to the observations. This step is important
as it determines which parameters can be resolved reliably by the inversion of
geodetic data and which ones need to be constrained by other sources. Following
the above procedure, we use a Genetic Algorithm (GA) to find the maximum
Bayesian probability for each parameter. We find that InSAR observations of
2008 Qeshm earthquake are consistent with an average thrust motion of 75 cm
that occurred on an �13 � 3 km fault plane with a centroid depth of �5 km,
striking 218ı and dipping north at 33ı.

1 Introduction

On September 10, 2008 an earthquake of magnitude
6.1 occurred in Qeshm island region in southern
Iran (Fig. 48.1). The Harvard centroid-moment tensor
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(CMT) solution indicates predominantly thrust fault-
ing with dip 33ı, strike 234ı and rake of 76ı (http://
www.globalcmt.org/; Event ID. 200809101100A). In
this study we use radar interferometric measurements
obtained from ALOS and Envisat satellites to assess
precisely the geometry and location of the rupture
process associated with this earthquake.

2 INSAR Data

We use Space-borne Synthetic Aperture Radar inter-
ferometry (InSAR) to measure the coseismic displace-
ment field associated with the 2008 Qeshm earthquake.
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Fig. 48.1 Study area. The beach ball shows the focal mecha-
nism of September 10, 2008 Qeshm earthquake

InSAR is a remote sensing technique that enables
to calculate the interference pattern caused by the
difference in phase between two images taken by a
space-borne synthetic aperture radar over the same
region from slightly different positions at two distinct
times. The resulting interferogram is a contour map
of the change in the distance between the ground and
the radar instrument, which can be further processed
to yield important parameters such as topography and
the ground motion (Burgmann et al. 2000; Elachi and
Jakob 2006).

Coseismic displacement from the September 10,
2008 Qeshm earthquake are measured using two
C-band Envisat interferograms from ascending and

descending orbits –hereafter called ifm1 and ifm2, and
one L-band ascending interferogram from ALOS –
hereafter called ifm3. Table 48.1 lists the data used
in this study. The ascending Envisat images were
acquired in I6 mode (incidence angle �41), while the
descending Envisat images were acquired in I2 mode
(incidence angle �23). The Envisat interferograms
are processed using the DORIS software developed at
Delft University of Technology (Kampes et al. 2003),
while the ALOS interferogram was processed using
the Sarscape software (www.sarmap.ch). The topo-
graphic contribution to interferometric phase in all
interferograms was modeled using the 90-m digital
elevation model (DEM), generated by the NASA Shut-
tle Radar Topography Mission (SRTM). The resulting
differential interferograms are then filtered using a
weighted power spectrum technique (Goldstein and

Table 48.1 Interferograms used in this study

Sensor Envisat Envisat ALOS
(ifm1) (ifm2) (ifm3)

Master 25.04.07 17.04.08 30.12.06
Slave 01.10.08 09.10.08 19.11.08
Heading angle .ı/ 350 190 344
Incidence angle .ı/ 40.7 22.4 38.73
Baseline 255.9 244 560.1

Fig. 48.2 InSAR observations of coseismic displacement
caused by September 10, 2008 Qeshm earthquake in Iran. Data
are unwrapped and rewrapped again with each color cycle

(fringe) representing 4 cm of ground motion in the line-of-sight
direction of the satellite

(www.sarmap.ch)
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Werner 1998), unwrapped using the Snaphu software
(Chen and Zebker 2001) and converted from phase
cycles to centimeters of range changes in the satellite
line-of-sight (LOS). The favorable environmental con-
ditions for radar interferometry in southern Iran, which
is dominated by dry climate and sparse vegetation,
results in very high interferometric correlation and
consequently, reliable unwrapping.

Figure 48.2 shows three coseismic interferograms
associated with the September 10, 2008 Qeshm earth-
quake. The pattern of coseismic displacement field is
remarkably similar in 3 interferograms, all showing an
uplift signal of more than 10 cm at the northern part of
the Qeshm Island.

The coseismic interferograms used in this study
cover different time spans before (master image) and
after (slave) the earthquake. Therefore, they may
encompass not only coseismic but also interseismic
and postseismic deformation. However, the analysis
of independent interferograms before and after the
earthquake shows no significant (cm-level) preseismic
or postseismic displacement in the study area (not
shown here). Therefore, the interferograms illustrated
here reflect mainly coseismic signal associated with
the 2008 Qeshm earthquake.

3 Bayesian Inversion for Fault
Parameters

We use InSAR data to determine a simple fault model
consisting of uniform slip on a rectangular fault
embedded in uniform elastic half-space (Okada 1985).
The relation between InSAR data and fault parameters
can be expressed as d D G.x/ C e where d denotes
displacement data obtained by InSAR, x is a vector
of fault parameters describing its length, width, depth,
dip, strike, horizontal coordinates of the midpoint of
its upper edge, and the amount of slip in strike and
dip directions, e is the observation error, and G is the
nonlinear Green function in the LOS direction of the
SAR satellite obtained by:

G.x/ D dv.x/ cos �inc � sin �inc

� Œde.x/ cosH � dn.x/ sinH�

where � is the look angle, H is the heading angle
of the SAR satellite, and dv; de and dn are vertical,
easting, and northing components of displacement

field, respectively, obtained from (Okada 1985). To
solve this nonlinear problem, we use the Bayesian
probabilistic approach combined with a heuristic
search approach of the Genetic Algorithm (Houck
et al. 1996) as detailed below.

The Bayes’ Rule is defined as (Tarantola 2005):

p.x j d/ D p.x/p.d j x/R
p.x/p.d j x/dx

D 1

c
p.d j x/p.x/

where p.x/ denotes a priori probability distribution
function (pdf) of unknown parameters (here fault
parameters),p.d j x/ is the goodness of fit between the
observed data and those computed from the forward
model, called the likelihood expression, and p.x j d/
is the posterior probability of unknown parameters.
The likelihood expression is computed as:

p.d j x/ D 2
� n
2 j˙d j� 1

2

� exp

	
�1
2
.d �G.x//T ˙�1

d .d �G.x//




where n is the number of data (observation points) and
˙d is the covariance matrix of observations, describing
the noise structure of the data. In this paper, we neglect
the off-diagonal components of the covariance matrix
and treat the InSAR data as independent observations
with uniform weight.

For the inversion we follow a two-step process:
First we obtain the sensitivity of individual parame-
ters to the observations by computing their associated
marginal distribution function, defined as (Moraes and
Scales 2008):

p.xi j d/ D kp.xi /
Z
p.xn j xi /p.d j xi ; xn/dxn

where xi represents a single parameter, and xn is the
vector of all parameters excluding the xi component.
The marginal pdfs1 can be determined by sampling the
posterior space using an appropriate sampling tool.
Here we use the simulated annealing algorithm with
the acceptance probability criterion of Gibbs’ dis-
tribution (Sen and Stoffa 1995) to sample posterior
marginal pdfs (For details of the SA method please see
e.g. Sen and Stoffa 1995). As the prior information,
we assume a uniform distribution for parameters with
lower and upper bounds as indicated in Table 48.2.

1Probability Density Function.
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Table 48.2 Evaluating the sensitivity of fault parameters to
InSAR datasets used in this study

Bound �f �i P%
Length (km) 1–40 1.8 11.26 84
Width (km) 1–20 1.67 5.48 69
Depth (km) 0–20 0.77 5.77 87
Dip .ı/ 13–53 7.36 11.55 36
Strike .ı/ 214–254 3.72 11.55 68
Mid-Lat .ı/ 26.6–26.95 0.007 0.1 93
Mid-Lon .ı/ 55.6–56 0.006 0.12 95

The above procedure helps determine which param-
eters can be resolved reliably by the inversion of
geodetic data and which ones need to be constrained
by other sources (e.g. seismic data). Near uniform
marginal distributions correspond to parameters with
the least sensitivity to observations while the uni-
modal functions represent the highest sensitivity to
observations.

Figure 48.3 shows the marginal distributions of
the fault parameters associated with the 2008 Qeshm
earthquake in Iran. As one can see in this figure, of
the 7 fault geometry parameters the dip angle has

the least sensitivity to the observations, evident from
its near uniform marginal pdf. To better understand
quantitatively to what extent our parameters are sen-
sitive to observations, we list in Table 48.2 the per-
centage improvement in resolving the parameters by
comparing the posterior standard deviations of them,
computed from marginal pdfs, with their a priori ones,
computed from the uniform distribution. The percent-
age improvement is defined as

P D
(
0 �f � �i
j�f ��i j
�i

� 100 �f � �i

where �f and �i are the posterior and initial standard
deviation of parameters, respectively.

As indicated in Table 48.2 most of the fault
parameters are resolved very well in the inversion,
which is indicated in their associated values of
percentage improvement. Only the dip angle has a
low percentage improvement of 36%, suggesting some
constrains need to be defined for this parameter to
narrow down the search space of the inverse problem.

Fig. 48.3 Marginal frequency of fault parameters obtained by Gibbs’ sampler. Red bars represent the mean of the distributions
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Here we assume, as the a priori information, the dip
angle has a normal distribution with the mean value of
33ı- obtained from the CMT solution, and a standard
deviation of 5ı, while for other parameters a uniform
distribution is assumed.

Following the above procedure to define the
prior information on parameters, we use a Genetic
Algorithm (GA) to find the maximum Bayesian
probability for each parameter. We start the genetic

algorithm by generating 1,000 random individuals
(source models), which are selected in a way that
each individual fulfills the condition of producing an
earthquake with magnitude between 5.9 and 6.2. In
this way we eliminate from the initial population of
GA the unrealistic source parameters, allowing GA to
better search for the most probable values of source
parameters when computing posterior probability in
each generation.

Table 48.3 Estimated parameters of the 2008 Qeshm earthquake

ifm1 ifm2 ifm3 ifm1Cifm2Cifm3
Length (km) 12:22˙ 3:37 14:46˙ 2:51 14:07˙ 3:84 13:29˙ 1:6

Width (km) 7:09˙ 2:09 1:000˙ 0:68 3:36˙ 1:41 3:24˙ 0:71

Depth (km)� 3:73˙ 0:93 4:84˙ 0:72 4:17˙ 1:06 4:12˙ 0:45

Dip .ı/ 33:04˙ 3:97 33:12˙ 2:98 32:96˙ 3:99 33:21˙ 2:87

Strike .ı/ 224:25˙ 7:72 219:92 ˙ 4:96 216:04˙ 6:86 218:41˙ 3:54

Mid-Lat .ı/ 26:88˙ 0:005 26:88˙ 0:0004 26:88˙ 0:007 26:88˙ 0:0000

Mid-Lon .ı/ 55:95˙ 0:006 55:94˙ 0:0002 55:95˙ 0:006 55:94˙ 0:0002

Strike-slip (m) �0:00˙ 0:07 �1:38˙ 0:64 �0:13˙ 0:15 �0:2˙ 0:08

Dip-slip (m) 0:38˙ 0:07 2:42˙ 0:24 0:58˙ 0:13 0:75˙ 0:05

�Depth of the upper edge of the fault plane

Fig. 48.4 Probability distribution of parameters associated with the 2008 Qeshm earthquake
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Fig. 48.5 Modeling results for the coseismic deformation of the 2008 Qeshm earthquake. The black rectangle shows the horizontal
projection of the fault plane

4 Modeling Result

Table 48.3 lists the estimated fault parameters of the
2008 Qeshm earthquake, obtained by the individual
and joint inversion of InSAR datasets used in this
study. The standard deviations in Table 48.3 were
estimated from the second moment of the posterior pdf
of parameters as derived from the Bayes’ rule. As seen
in this table, using a joint inversion of three datasets
result in smaller standard deviations for parameters.
Therefore, we consider the parameters associated with
this joint inversion as the most probable source param-
eters of the 2008 Qeshm earthquake. We find that a
33ı north-dipping fault plane is consistent with InSAR
observations. This plane, having a centroid depth of
5 km with a strike of �218ı, has a dimension of �13
by 3 km (Fig. 48.5).

Figure 48.4 shows the posteriori distribution of
parameters associated with the joint inversion of 3

InSAR datasets. Figure 48.5 shows the fit to InSAR
data from this model. Our model predicts InSAR data
quite well. The standard deviation of residuals for
ifm1, ifm2 and ifm3 are 15, 19 and 22 mm, respec-
tively. The majority of the misfit is likely caused either
by the effect of atmosphere or by the deficiency in the
elastic half-space model. The former seems to be the
dominant factor in the far-filed data.

Conclusion

The coseismic displacement field mapped by
satellite interferometry data in C and L bands is
used to constrain source parameters of Mw D 6:1

September 10, 2008 Qeshm Island earthquake in
Iran. For the inversion we developed a Bayesian
probabilistic approach combined with a heuristic
search algorithm. This allows us to overcome in a
probabilistic way the non-uniqueness of the inverse
problem and infer a meaningful posterior density
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for parameters from the a priori information used
in the inversion. Our results indicate that InSAR
observations are consistent with a shallow thrust
faulting (centroid depth �5 km) of about 75 cm
on a plane dipping northward. The dip and strike
are �33ı and 218ı, respectively on a fault plane
�13 km long and 3 km wide.
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49The Choice of Reference System in ITRF
Formulation

Zuheir Altamimi and Athanasios Dermanis

Abstract

The problem of choosing an optimal reference system for the International
Terrestrial Reference Frame (ITRF) is studied for both the rigorous solution which
is a simultaneous stacking (removal of the reference system at each data epoch
and implementation of a linear in time coordinate model) for all techniques, as
well as for the usual numerically convenient separation into a set of individual
stackings one for each technique and a final combination step for the derived
initial coordinates and velocities. Two approaches are followed, an algebraic
and a kinematic one. The algebraic approach implements the inner constraints,
which minimize the sum of squares of the unknown parameters, as well as
partial inner constraints, which minimize the sum of squares of a subset of the
unknown parameters. In the kinematical approach the optimal minimal constraints
are derived by requiring the minimization of the apparent coordinate variations:
(a) with respect to the origin by imposing constant coordinates for the network
barycenter, (b) with respect to orientation by imposing zero relative angular
momentum for the network points conceived as mass points with equal mass and
(c) with respect to the scale by imposing constant mean quadratic size (involving
the distances of stations from their barycenter).

Keywords

Reference systems • ITRF • Minimal constraints • Inner constraints

1 Introduction

The implementation of an International Terrestrial
Reference System (ITRS) by means of an International
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A. Dermanis (�)
Department of Geodesy and Surveying, Aristotle University of
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Terrestrial Reference Frame (ITRF) is based on
the utilization of time series of station coordinates
referring to different but overlapping subnetworks,
one from each particular space technique (VLBI,
SLR, GPS, DORIS). The object is to construct an
optimal set of initial coordinates x0i and velocities
vi for the stations Pi of the ITRF network which is
the union of the subnetworks of all techniques. The
adoption of the simple model of linear evolution in
time

xi .t/ D x0i C .t � t0/vi (49.1)
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(Altamimi et al. 2007, 2008) imposes a smooth
temporal variation in order to remove noise from
the input data, although systematic effects of various
geophysical origins remain in the final ITRF residual
series. With respect to the input coordinate data it is
assumed that not only each technique refers to its own
reference system but even each coordinate epoch refers
to a separate reference system. The aim of this last
rather strong assumption is the removal of systematic
coordinate variations due to the temporal instability
in the reference system definition. Thus the model for
the observed coordinates xT;i .tk/ of station Pi from
technique T at epoch tk has the form

xT;i .tk/ D fT;i .pT;k; x0i ; vi / (49.2)

where in addition to the standard ITRF unknowns x0i
and vi , additional nuisance parameters appear, namely
the transformation parameters pT;k from the ITRF
reference system to the one for each technique T and
each coordinate input epoch tk . In the most general
case these involve 3 displacement components d1, d2,
d3, 3 rotation angles �1, �2, �3, and a scale factor 1C s.

The determination of initial coordinates and veloc-
ities with simultaneous transformation of every epoch
coordinates to a common reference system is usually
referred to as “stacking” (Altamimi et al. 2007, 2008).
Thus the ITRF formulation problem is in fact a simul-
taneous stacking for all the techniques, which involves
a very large number parameters, most of which are
the parameters pT;k , which are nuisance parameters in
the ITRF formulation but they are needed for trans-
forming earth orientation parameters from each epoch
and technique to the reference system of the ITRF.
In order to cope with the computational burden of
a simultaneous stacking a two step approach is used
instead (Altamimi et al. 2007, 2008). In the first step a
stacking is performed for each technique T separately
producing initial coordinates xT;0i and velocities vT;i .
In the second “combination” step the initial velocities
from all techniques are combined to obtain the com-
mon ones of the ITRF. The model of the observations
of the form

xT;0i D fx.x0i ; vi ;qT /; vT;i D fv.x0i ; vi ;qT /
(49.3)

involves the transformation parameters qT from the
ITRF reference system to that of the one of each
technique T after its own stacking has been performed.

The observation models for the simultaneous stack-
ing or the separate stackings and the combination have
an inherent rank deficiency due to the lack of definition
of the reference system. Indeed any change in the
ITRF reference system by a particular transformation
is counterbalanced by a change of the transformation
parameters by the inverse transformation. If e.g. we
write (49.2) in the form xT D T .p/x a coordinate trans-
formation x0 D T .ıp/x with inverse x D T �1.ıp/x0
leads to the model xT D T .p0/x0 where the transforma-
tion parameters change from p to the ones p0 implied
by T .p0/ D T .p/T �1.ıp/.

Therefore the rank deficiency must be overcome by
choosing an optimal reference system among all possi-
ble ones. This is typically done in classical rigid geode-
tic networks by introducing additional constraints on
the parameters which resolve the “choice of datum”
problem. The fact that we are dealing with deformable
networks requires the choice of an optimal reference
system at each particular epoch among equivalent
reference systems with coordinates connected by trans-
formations x0.t/D T .ıp.t//x.t/with parameters ıp.t/
which are smooth functions of time. A problem that
arises in this respect is that general coordinate trans-
formations T .ıp.t// are not compatible with the lin-
ear time evolution model (49.1), since they transform
coordinates xi .t/ into coordinates x0

i .t/ which are not
linear with respect to time t .

2 Observation Equations
for Model-Preserving and Close
to Identity Transformations

In order to overcome the above problems we follow the
usual linearization procedure of replacing parameters
with their corrections to known approximate values
and neglecting of second and higher order terms.
We also assume that the coordinate transformations
involved are “close to the identity” so that only first
order terms in the small coordinate transformation
parameters d D Œd1 d2 d3�

T , ™ D Œ�1 �2 �3�
T and s are

preserved. Since R.™/ � I � Œ™�� a general coordi-
nate transformation of the form x0 D .1C s/R.™/x C d
becomes x0 D x C Œx��™ C sx C d or in terms of
corrections ıx D x � xap to approximate coordinates

ıx0.t/ D ıx.t/C Œxap��™.t/C s.t/xap C d.t/: (49.4)
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The model (49.1) with xap
i .t/ D xap

0i C .t � t0/vap
i takes

the form ıxi .t/D ıx0i C .t � t0/ıvi and application of
(49.4) to the general equation (49.2) yields the lin-
earized observation equations for the stacking problem

ıxki D ıxi0C .tk � t0/ıvi Cskxap
i0C Œxap

i0��™k Cdk Ceki
(49.5)

where the observational noise eki has also been taken
into account while ıxki � xT;i .tk/� xap

T;i .tk/. Depen-
dence on the particular technique T has been dropped,
while the subscript k denotes evaluation at epoch tk .

The observation equations for the combination
step are somewhat more involved. It can be shown
(Altamimi and Dermanis 2012) that only transforma-
tions preserving the linear model form (1) must be
used which are the ones with parameters of the form

dT .t/ D dT 0 C .t � t0/ PdT ; (49.6a)

™T .t/ D ™T 0 C .t � t0/ P™T ; (49.6b)

sT .t/ D sT 0 C .t � t0/PsT : (49.6c)

With such linear in time parameter functions the
observation equations for the combination step of
the general form (49.3) become (Altamimi and
Dermanis 2012)

ıxT 0i D ıx0i C �
xap
0i�

�
™T 0 C sT 0x

ap
0i C dT 0 C exT 0i ;

(49.7a)

ıvT i D ıvi C �
xap
0i�
� P™T C PsT xap

0i C PdT C evTi :

(49.7b)

where ıxT 0i D xT;0i �xap
0i and ıvTi D vT;i �vap

i are the
reduced observations.

3 Constraints for the Introduction
of the Optimal Reference System

For the realization of the ITRF solution by either
a simultaneous stacking with observation equations
(49.5) or a two-step approach with stacking per tech-
nique using (49.5) followed by combination using
(49.7), it remains to determine the minimal constraints
which define the optimal reference system without
affecting the optimal network shape at any epoch,
which is uniquely defined by the least squares adjust-
ment principle. There are two possible approaches:
The first is a kinematic one where the optimality

criterion is introduced directly by requiring that the
variation of the coordinates is minimized in a specific
way. The second is an algebraic one based on the inner
constraints which minimize the sum of squares of all
unknown parameters, or the partial inner constraints
where the sum of selected parameters is involved.
The kinematic constraints follow by requiring that the
network barycenter remains constant and zero without
loss of generality (definition of origin)

xB.t/ � 1

N

X
i

xi .t/ D 0; (49.8a)

that the relative kinetic energy of the network stations
(visualized as mass points of equal mass) is minimized
or equivalently that the relative angular momentum is
vanishing (definition of orientation)

hR.t/ D
X
i

Œxi .t/��dxi
dt
.t/ D 0 (49.8b)

and that the mean quadratic size S of the network
defined by

S2.t/ D
X
i

Œxi .t/�xB.t/�
T Œxi .t/ � xB.t/� (49.8c)

remains constant (definition of scale).
The above optimality criteria lead to the following

minimal constraints (Altamimi and Dermanis 2012):
For the definition of the system origin:

1

N

X
i

ıx0i D �Nxap
0 � � 1

N

X
i

xap
0i ; (49.9a)

1

N

X
i

ıvi D �Nvap � � 1

N

X
i

vap
i (49.9b)

For the definition of the system orientation:

X
i

�
xap
0i�

�
ıvi D �hap

R � �
X
i

�
xap
0i�

�
vap
i (49.10b)

For the definition of the system scale:

X
i

�
xap0i � Nxap0

�T
ıx0i D 0 (49.11a)

1

N

X
i

�
xap
0i � Nxap

0

�T
ıvi

D �Nxap
0

�T Nvap � 1

N

X
i

�
xap
0i

�T
vap
i (49.11b)
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Among the above constraints (49.9a) and (49.11a)
define origin and scale, respectively, at the original
epoch, while (49.9b), (49.10b) and (49.11b) define the
rates of origin and scale, respectively. Note that the
condition (49.8b) does not define the orientation at
the initial epoch which must be also chosen by an
additional constraint (to be borrowed from the next
algebraic approach) in order to pick up a particular
reference system orientation from an infinite num-
ber of dynamically equivalent ones satisfying (49.8b).
Usually we choose vap

i D 0 and if in addition approx-
imate initial coordinates are chosen so that Nxap

0 D 0
the constraints (49.9a), (49.9b), (49.10b), (49.11a),
(49.11b) simplify, respectively, to

X
i

ıx0i D 0; (49.12a)

X
i

ıvi D 0 (49.12b)

X
i

Œxap
0i��ıvi D 0 (49.13b)

X
i

.xap
0i /

T ıx0i D 0 (49.14a)

X
i

.xap
0i /

T ıvi D 0 (49.14b)

The algebraic approach follows the same general
lines as in the case of rigid networks (Meissl 1965,
1969; Blaha 1971; Sillard and Boucher 2001;
Dermanis 2003), with time independent coordinates.
When observable quantities y are related to coordinate-
related unknown parameters x by a linear(ized)
model y D Ax, then the design matrix A has a
rank deficiency equal to the number of coordinate
transformation parameters which change x but leave y
invariant (Grafarend and Schaffrin 1976). A coordinate
transformation with parameters p transforms the
unknown x into new ones x0 DT .p/x, which depend
on both x and p through a linear(ized) relation of the
form x0 D x C Ep. The derived matrix E determines
the additional inner constraints ET x D 0, which yield
the unknown values satisfying xT x D min. Splitting
the unknowns and the inner constraints in two sets
ET x D ET1 x1 C ET2 x2 D 0, we obtain the partial inner
constraints ET1 x1 D 0, which satisfy xT1 x1 D min.

In the stacking problem the unknowns are the
initial coordinates and velocities ai D ŒxT0i vTi �

T for
each station Pi and the transformation parame-
ters zk D ŒdTk ™

T
k sk�

T . A coordinate change with

parameters p D ŒgT0 §
T
0 � PgT P§T P��T , transforms the

unknowns into

a0
i D ai C Eai p

D ai C
"

I Œxap
0i�� xap

0i 0 0 0

0 0 0 I Œxap
0i�� xap

0i

#
p (49.15)

z0
k D zk C Ezkp

D zk C ��I �.tk � t0/I
�

p (49.16)

and the inner constraints
NP
iD1

ETai ai C
MP
kD1

ETzkzk D 0

become

NX
iD1

ıx0i �
MX
kD1

dk D 0 (49.17a)

NX
iD1

ıvi �
MX
kD1

.tk � t0/dk D 0 (49.17b)

NX
iD1

Œxap
0i��ıx0i C

MX
kD1

™k D 0 (49.18a)

NX
iD1

Œxap
0i��ıvi C

MX
kD1

.tk � t0/™k D 0 (49.18b)

NX
iD1

.xap
0i /

T ıx0i �
MX
kD1

sk D 0 (49.19a)

NX
iD1

.xap
0i /

T ıvi �
MX
kD1

.tk � t0/sk D 0: (49.19b)

The partial inner constraints where only the parameters
ıx0i , ıvi D 0 participate, are exactly the constraints
(49.12a), (49.12b), (49.13b), (49.14a), (49.14b)
plus the missing initial epoch orientation constraint
(49.13a) which becomes

NX
iD1

Œxap
0i��ıx0i D 0 (49.13a)
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In the combination problem the unknowns are
again initial coordinates and velocities ai D ŒxT0i vTi �

T

as well as the transformation parameters

zT D ŒdTT 0 ™
T
T 0sT 0

PdTT P™TT PsT �T , which under a change
of coordinate system transform according to

z0
T D zT C EzT p D zT � p (49.20)

and the inner constraints
P

i ETai ai C P
T ETzT zT D 0

with Eai from (49.15) and EzT D �I become

NX
iD1

ıx0i �
KX
TD1

dT 0 D 0 (49.21a)

NX
iD1

ıvi �
KX
TD1

PdT D 0 (49.21b)

NX
iD1

Œxap
0i��ıx0i C

KX
TD1

™T 0 D 0 (49.22a)

NX
iD1

Œxap
0i��ıvi C

KX
TD1

P™T D 0 (49.22b)

NX
iD1

.xap
0i /

T ıx0i �
KX
TD1

sT 0 D 0 (49.23a)

NX
iD1

.xap
0i /

T ıvi �
KX
TD1

PsT D 0: (49.23b)

The partial inner constraints involving only initial
coordinates and velocities are the same as in the stack-
ing problem. The partial inner constraints involving
only transformation parameters become

KX
TD1

dT 0 D 0;
KX
TD1

PdT D 0; (49.24)

KX
TD1

™T 0 D 0;
KX
TD1

P™T D 0 (49.25)

KX
TD1

sT 0 D 0;

KX
TD1

PsT D 0: (49.26)

Of the above constraints (kinematic, inner, partial
inner) only the ones related to the actual deficiencies

of the reference system must be implemented.
For example the origin and origin rate constraints
do not apply to the SLR case where the geocenter
is the known system origin. Since all techniques
have their own scale, scale or scale rate constraints
appear to be redundant. However since each technique
has a different scale due to the different time unit
realized through a different set of atomic clocks,
these constraints should be incorporated into the
combination step.

Conclusion

In comparison to inner or partial inner constraints
the kinematic minimal constraints have the advan-
tage of being independent of the approximate values
of the parameters used in the linearization of the
observation equations. They involve only station
related parameters (initial coordinates and veloc-
ities), while inner constrains involve both station
and reference system transformation parameters.
Partial inner constraints may be formulated for
either station or transformation parameters. The
ones for station parameters may coincide with the
kinematical ones (and thus share their independence
from approximate values) if care is taken so that
the used approximate values of velocities are zero
and the approximate values of the initial coordinates
have zero mean.
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50Some Pitfalls to be Avoided in Combining
Simultaneous GNSS Networks

L. Biagi and F. Sansò

Abstract

Assume that a network, in this case a network of GNSS observables, has to be
adjusted and one likes to split it into subnetworks, and adjust them separately; then
the subnetworks have to be recomposed by using the cross observations connecting
their points. Ideally, this should be done in a way such that the final solution
is the same as that provided by a rigorous joint solution of all the observations.
The problem is classical and has a rigorous solution, called Helmert blocking,
for terrestrial networks, where the observations are typically uncorrelated. For
the GNSS networks thought, where many times the phase double differences are
treated as observations, the hypothesis of linear independence is by definition
inconsistent: this gives rise to blunders in the solution that are illustrated in the
paper by numerical examples. An alternative solution is envisaged to overcome
these drawbacks.

Keywords

GPS networks adjustment; NEQ stacking

1 An Introduction to Network
Splitting

In the general Least Squares (LS; Koch 1987) model,
a vector of observations y0 and a vector of unknown
parameters x are given; the deterministic and the
stochastic models can be written as

y0 D y C �; y D Ax; Efvg D 0; Cvv D �20Q

In the following, only the not rank deficient case will
be considered: the parameters vector can be estimated

L. Biagi (�) � F. Sansò
Politecnico di Milano, DIIAR, Laboratorio di Geomatica del
Polo Territoriale di Como, via Valleggio 11, 2100 Como, Italy
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by solving the normal system

Nx D ATQ�1y0; N D ATQ�1A ) Ox D N�1ATQ�1y0
(50.1)

Two particular cases can be built from the general
model. In the pre-elimination model, the parameters
vector is split into two subvectors

y D �
A1 A2

� 	 x1
x2




The relevant normal system is given by the
"

N11 N12

NT
12 N22

#	
x1
x2



D
	

b1
b2



;

Nij D AT
i Q�1Aj ; bi D AT

i Q�1y0
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Alternatively to a joint estimate, the two subvectors can
be separately estimated, by the inversion of the two
split, smaller, systems.

xi D
�

Nii � NijN�1
jj NT

ij

��1
.bi � NijN�1

jj bj /

Pre-elimination represents an obvious choice when
only one subset of the unknowns is actually needed
but in the model is mixed with a set of disturbance
unknowns: indeed the numerical effort of its estimation
can be significantly reduced with respect to the global
estimation. In the sequential model, two vectors of
independent observations and one common parameters
vector are given

y1 D A1x; y2 D A2x;

Cy1y1 D �20Q11; Cy2y2 D �20Q22; Cy1y2 D 0

The two systems can also written as

y D Ax; y D
	

y1
y2



;

A D
	

A1

A2



; Cyy D �20

	
Q11 0
0 Q22




Two estimation approaches are equivalent: the obvious
batch solution by (50.1), or two independent solutions
computed by

Oxi D N�1
i bi ; Ni D AT

i Q�1
ii Ai ; bi D AT

i Q�1
ii yi0

and combined in

Ox D .N1 C N2/
�1.N1 Ox1 C N2 Ox2/

This is clearly equivalent to the batch solution. In the
unified model two observations vectors depend both on
individual and common parameters

y1 D �
F1 A1

� 	x1
�



; y2 D �

A2 F2
� 	 �

x2




Cyy D �20

	
Q11 0
0 Q22




A sequential estimation is straightforward: by pre-
elimination the two individual parameters vectors are
estimated

y1 ) Ox1; C Ox1 Ox1 ; y2 ) Ox2; C Ox2 Ox2 (50.2)

Moreover the two normal systems relevant to the
common parameters vector are generated

y1 ) O�1; N1; b1; y2 ) O�2; N2; b2 (50.3)

By sequential adjustment, the common parameters are
estimated

O� D .N1 C N2/
�1.N1

O�1 C N2
O�2/

Let suppose that two overlapping geodetic networks
have been independently surveyed and adjusted; then
(50.2), (50.3) is the obvious way to obtain a final
solution for all their points. In the geodetic framework,
this way to combine the adjustments of overlapping
networks is called Normal Equation (NEQ) stacking.

2 The GNSS Permanent Network
Standard Approach

The raw data of GNSS permanent networks are
typically processed by daily sessions in order to esti-
mate daily coordinates, ancillary unknowns and their
covariances. Typically an open baseline graph is built
and the relevant double differences are processed; in
the case of local networks, the international guidelines
(see for example, Kouba 2003) suggest to minimally
constrain the reference frame by fixing the barycenter
of a polyhedron of IGS (Beutler et al. 1999) fiducial
stations included in the processing. The normal system
to be inverted in the LS estimation has dimension
equal to the square of the unknowns number, and
this causes a limit to the number of stations that can
be simultaneously processed. Hardware evolves very
quickly, and the processing limits are continuously
changing: at the present, a standard Windows server
can easily estimate a batch solution for about 200
stations. Very few networks in the world exceed these
dimensions and require a distributed adjustment, as
IGS (igscb.jpl.nasa.gov) and some regional networks,
for example EPN in Europe (www.epncb.oma.be).
In any case, the distributed adjustment is a popular
choice also for smaller networks. To implement a
distributed adjustment (Davies and Blewitt 2000), at
first the network is split into overlapping subnetworks,
such that each station belongs to an assigned minimum
number of subnetworks, nmin. The subnetworks are
separately adjusted and the relevant NEQ’s are then

www.epncb.oma.be
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stacked to obtain a final network solution. For example,
EPN is split into 16 subnetworks, each one adjusted
by a Local Analysis Center. Subnetworks dimensions
range from 30 stations to 70 stations and each station
is included at least in three subnetworks. It is worth
to note that in the GPS case, the subnetworks overlap
is not strictly needed, because a consistent network
solution can be obtained also by joining separate
solutions: links and consistence are guaranteed by
the raw observations to a common GNSS constellation
and by using the same IGS products in the observations
processing. In any case, the overlap is useful because it
guarantees the cross check of the results. The standard
implementation of the distributed adjustment is based
on a daily process:
1. each subnetwork is daily processed by one process-

ing facility;
2. the resulting daily NEQ file is saved and transmitted

to a coordination center;
3. the daily NEQ’s are stacked to produce a network

solution, on a daily or weekly basis.
Note that a Processing Facility (PF) is simply a set
of procedures installed on a server to adjust a daily
session of a permanent network, while the usual name
Analysis Center (AC) is referred to a set of PF’s and
obviously of personnel.

Let us consider the example of a network of
NS stations (S1; : : : ; SNS ) to be estimated and NR
reference frame stations (R1; : : : ; RNR ): typically
NR �NS ; suppose that each PF can process about
NS=2 stations and that nmin D 2. Given the above
requirements, 4 PF’s are needed: in a typical
implementation, supposing that all reference stations
are shared between all the subnetworks, each
day:
1.1 P1 adjusts

˚
S1; : : : ; Sj 12 NS j; R1; : : : ; RNR

�
,

1.2 P2 adjusts
˚
Sj 14 NS jC1; : : : ; Sj 34 NS j; R1; : : : ; RNR

�
,

1.3 P3 adjusts
˚
Sj 12 NS jC1; : : : ; SNS ; R1; : : : ; RNR

�
;

1.4 P4 adjusts
˚
Sj 34 NS jC1; : : : ; SNS ; : : : ; Sj 14 NS j,

R1; : : : ; RNR
�
;

Finally, the four daily NEQ’s are then combined
to produce a final daily solution; jxj is an integer
rounding on the stations indexes, for example the lower
integer rounding.

As it is well known, this praxis builds artificial
independent observations, either false repeated base-
lines or false closed polygons, because the same files
are processed by more PF’s but the correlations of

the relevant NEQ’s are ignored at the stacking level.
In the following this distributed approach will be called
COnstant in time Distribution (COD).

To understand COD limits, let us analyze an
elementary example, a leveling triangle, composed
by three points P1; P2; P3 (h1; h2; h3). The observed
height differences and the relevant covariance
matrix are

y10 D dh120 D h2 � h1 C 	12

y20 D dh130 D h3 � h1 C 	13
; C D �20

"
1 1=2

1=2 1

#

Fix the reference frame, e.g. by putting Nh1 D 0:

y0 D
"
y10

y20

#
; Qyy D

"
1 1=2

1=2 1

#
; x D

"
h2

h3

#

No redundancy exists and the estimates are given
by the

Oh2 D Nh1 C dh120 D h2 C 	12; O�2 D �0

Oh3 D Nh1 C dh130 D h3 C 	13; O�3 D �0

Now, let us combine the original observations to close
the triangle, y30 D y20 � y10 D h3 � h2 C 	13 �
	12, and consider the new observations vector y0 D
Œy10 y20 y30 �

T ; its covariance matrix is given by

C D �20

2
64
1 1=2 �1=2
1=2 1 1=2

�1=2 1=2 1

3
75 D �20Q

The new observations are linearly dependent and Q is
singular: although the closed vector can’t be adjusted
by ordinary LS, let us go on ignoring the correlations,
and putting Q D I. In this case the observations vector
can be adjusted to estimate heights and variances:

Oh2 D h2 C 	12; O�2 D .2=3/�0

Oh3 D h3 C 	13; O�3 D .2=3/�0

O�2 D 0

Heights are correct but standard deviations are under-
estimated; the estimated residuals and the resulting a
posteriori variance are zero.
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3 An Alternative Approach for GNSS
Permanent Networks

An alternative approach is possible to distribute the
adjustment of a network into overlapping subnetworks.
Each day the network is split into subnetworks that
share just one station (the connecting station, RC ): in
this way, all the possible independent double differ-
ences are processed and the resulting daily baselines
graph is a connected open graph, exactly as in a
rigorous batch adjustment of the whole network. To
guarantee overlaps, the daily subnetworks configura-
tion varies in a cycle over more days: the cycle is such
that overlaps exist between subnetworks of different
days. At the end of the whole cycle, all the daily
NEQ’s are stacked and, in this way, true closures
and repetitions and cross checks for all the stations
are obtained. Consider the previous network and the
previous requirements; they can be accomplished by a
very simple cycle based on two PF’s and the odd/even
day scheme: in odd days:
D1.1 P1 adjusts

˚
S1; : : : ; Sj 12 NS j; R1; : : : ; Rj 12NR j;RC

�
,

D1.2 P2 adjusts
˚
Sj 12 NS jC1; : : : ; SNS ; Rj 12 NR j; : : : ,

RNR;RC
�
,

In even days:
D2.1 P1 adjusts

˚
S1; S3; : : : ; SNS�1; R1;R3; : : : ,

RNR�1; RC
�
,

D2.2 P2 adjusts
˚
S2; S4; : : : ; SNS ; R2;R4; : : : ,

RNR;RC
�
,

With this simple scheme, each two days four NEQ’s
are available and can be stacked in a two days final
solution; clearly even more complex schemes can be
implemented, if a greater nmin is required, or the split
in more PF’s is needed. In the following this approach
will be called VAriable in time Distribution (VAD):
with respect to COD, the approach based on a cycle
over more days imposes a significant coordination
work between the PF’s, in order to define the cycle
and the configuration of the network splitting for each
day of the cycle. On the other hand, less computational
effort is needed: each day only the connecting station
is included in all the subnetworks, and NS C NR C
NPF � 1 daily files are processed; with COD, at least
nmin.NR C NS/ files have to be processed. In any
case, despite the coordination difficulties, the approach
based on a cycle over more days allows a rigorous
combination of different overlapping subnetworks that,
at the daily scale, is equivalent to the batch adjustment

of the whole network; in the daily subnetworks stack-
ing, just the correlation due to the connecting station is
neglected.

4 A Numerical Test

In order to numerically compare the results provided
by COD and VAD, a simple network of 30 stations
has been analyzed (Fig. 50.1): it is composed of 6
IGS official Reference Frame stations and 24 stations
belonging to the new official zero order network of the
italian Istituto Geografico Militare (www.igmi.org);
two weeks of data have been processed: GPSW’s 1459
and 1462. At first a batch adjustment of the network
has been computed and the relevant results represent
the benchmark (BA); then COD and VAD approaches
have been simulated and compared with BA. All pro-
cessing have been performed by the Bernese Software
5.0 (BSW5.0, Dach et al. 2007), by following the

Fig. 50.1 COD approach: stations belonging to subnetworks 1,
2 and 3; IGS RF stations are included in all the three subnetworks

www.igmi.org
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international guidelines and the strategies summarized
in (Benciolini et al. 2008). Particularly, in BA a min-
imally constrained NEQ has been produced for each
daily data processing. In COD and VAD, daily loosely
constrained NEQ’s are computed for each subnetwork;
then, they are combined in a minimally constrained
daily NEQ: for each adjustment approach, 14 daily
NEQ’s are available, that can be stacked to produce a
final solution. In total 418 daily RINEX files have been
acquired out of the 420 expected and only four files
have been rejected due to the presence of significant
data problems. For BA, the QIF ambiguities fixing
percentages are of about 87–90%, while the RMS’s of
the daily solutions are of about 0.9–1.1 mm: on this
regards, the data general quality is completely satis-
fying. In total, 29 � 14 baselines have been adjusted,
and 3,764,630 observations have been used to estimate
90 coordinates, 11,975 tropospheric parameters and
2,470 not fixed ambiguities. To implement COD, three
PF’s have been simulated (Fig. 50.1): RF’s stations are
shared by all the three relevant subnetworks, all the
other stations are shared by two subnetworks. Each PF
processes 16 C 6 stations; in this case the apparent
total number of observations is 8,187,915, the not
fixed ambiguities are 5,294 while the coordinates and
troposphere parameters numbers are the same.

To simulate VAD, a 2-day (odd/even) cycle has been
applied, as in the above example (Fig. 50.2). In odd
days, the connecting station is GRAS while in even
days is CAGL: each other station is included in two
subnetworks. In this case 3,784,070 observations have
been used and the not fixed ambiguities are 2,248.

Note that to be consistent with the COD example of
Sect. 4, four PF’s should be simulated, each one adjust-
ing a very small subnetwork of 18 stations, but we
have preferred a more realistic splitting: in any case,
the present numerical example is consistent with the
usual implementation of the COD. The subnetworks,
both in COD and VAD, have been designed on order
to guarantee their quasi homogeneous distribution: for
this reasons, connecting stations are different for VAD
even and odd days.

Coordinates differences of the three approaches
(Table 50.1) are negligible. Daily repeatabilities
(Table 50.2) of BA and VAD are almost equal, while
COD (over) overlapping improves slightly the Up
repeatabilities (Tables 50.3 and 50.4).

Although not realistic, the final standard devia-
tions of BA are rigorously estimated; COD false

Fig. 50.2 VAD approach. Stations belonging to subnetworks 1
and 2 and connecting stations

Table 50.1 Differences of COD and VAD results with respect
to BA. Values in mm

COD VAD
X Y Z X Y Z

Mean 0.0 0.0 0.0 0.1 0.1 0.1
� 0.5 0.2 0.5 0.6 0.2 0.6
Min �1.1 �0.5 �0.8 �0.8 �0.5 �0.7
Max 1.3 0.4 1.4 1.6 0.6 1.6

Table 50.2 Repeatabilities of daily coordinates of BA, COD
and VAD. Values in mm

BA COD VAD
E N U E nN U E N U

Mean 1.1 1.1 4.1 1.1 1.1 3.8 1.1 1.1 4.1
Worst 2.2 3.1 7.5 2.1 3.1 6.3 2.3 3.4 7.2

redundancies add further underestimations. VAD
provides correct estimates: only the values of the
two connecting stations are underestimated, as their
correlations in the subnetworks are not taken into
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Table 50.3 Estimated BA standard deviations. Values in mm

BA
X Y Z

Mean 0.1 0.1 0.1
Max 0.2 0.1 0.2

Table 50.4 Ratios of estimated standard deviations of COD
and VAD with respect to BA

COD/BA VAD/BA
X Y Z X Y Z

Mean 0.7 0.7 0.7 1.0 1.0 1.0
Min 0.6 0.6 0.6 0.8 0.8 0.8
Max 0.7 0.7 0.7 1.0 1.1 1.0

account. So, the daily adjustment of not connected
subnetworks is a possible solution: along this line, one
more test has been implemented: the final coordinates
don’t change while the formal standard deviations are
almost equal to the batch solution. In any case, the
splitting of the network into not connected subnetwork
causes the loss of a baseline estimated for each day.

Conclusion

The problem of the daily adjustment of a per-
manent network has been discussed. Normally, it
should be implemented by a batch solutions, i.e.
all the observations of all the stations should be
used to estimate coordinates and other unknowns
in a joint adjustment. In some cases, the network
splitting into overlapping subnetworks, the separate
processing of each subnetwork and the final stack-
ing of the relevant NEQ’s are needed or useful.
The standard praxis foresees a constant configura-
tion of overlapping subnetworks, that are separately
processed on a daily basis and finally combined:
in this way, the correlations due to the overlaps

are ignored and false independent redundancies
are introduced; this error doesn’t affect coordinates
estimates but involves a significant underestimation
of the covariances.
An alternative approach has been discussed, based
on a variable configuration of the subnetworks:
these are connected each day just by one station,
but their configuration changes according to a
cyclic scheme over several days, in order to obtain
the desired overlap at the end of each cycle. The
approach requires a significant coordination activity
between the processing facilities but decreases the
numerical requirements of each daily processing.
The results on a test network show that it provides
accuracies estimates very similar to those obtained
by the batch adjustment.
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51Toward a Dense Italian GPS Velocity
Field: Data Analysis Strategies
and Quality Assessment

R. Devoti, E. Flammini, G. Pietrantonio, F. Riguzzi, and E. Serpelloni

Abstract

A test combination procedure of loose constrained SINEX solutions has been
set up with the aim to integrate different network solutions (clusters of GPS
site coordinates) processed by different analysis groups. Two solution types have
been combined on a daily basis, one cluster of about 60 sites processed with
the Bernese software and a second cluster of about 30 sites processed with the
Gamit software. The chosen networks consists in 15 overlapping EUREF sites on
which the combination test is figured out. In origin each solution is obtained in
a loose constrained reference frame and archived in SINEX format, the full time
series span a period of 2.5 years. If the reference frame constraints, if present, are
conveniently relaxed in the original solutions, the combination of daily solutions
can be carried out without the removal of relative rotations between reference
frames and the different contributing SINEX solutions may be merged (in a least
squares sense) into a combined consensus solution. The corresponding velocity
fields, computed for the common sites, are consistent with respect to each other
and the combined time series show a repeatability of a few millimeters in the
vertical and 1–2 millimeters in the horizontal components respectively.

Keywords

Combination of geodetic solutions • Loosely constrained solutions • GPS coor-
dinates

1 Introduction

In 2004 the Istituto Nazionale di Geofisica e Vul-
canologia (INGV) started the construction of a con-
tinuous GPS network in the Italian region (RING) to

R. Devoti (�) � E. Flammini � G. Pietrantonio � F. Riguzzi �
E. Serpelloni
Istituto Nazionale di Geofisica e Vulcanologia, sez. Centro
Nazionale Terremoti, via di Vigna Murata, 605–00143 Roma,
Italy
e-mail: roberto.devoti@ingv.it

investigate the details of the geodynamics of the area.
At present the network consists of about 130 stations
whose data are transmitted continuously to the data
acquisition center (http://ring.gm.ingv.it) that performs
the quality check and the data storage. Currently the
daily RINEX files of 36 sites are freely provided on
the web site. The same data center archives also all the
available GPS data in the Italian area in cooperation
with local governmental and private agencies thus pro-
viding over 400 RINEX files per day. The processing
of GPS observations is carried out by different analysis

N. Sneeuw et al. (eds.), VII Hotine-Marussi Symposium on Mathematical Geodesy, International Association of Geodesy
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groups at INGV using different softwares and proce-
dures. For this reason and given the large amount of
processed sites a comparison and validation procedure
based on partially overlapping networks is required.

We implement a convenient combination strategy
of geodetic solutions provided by the different anal-
ysis centers, dealing with loose constrained solutions
(Davies and Blewitt 2000).

This work represents a first step toward an inte-
grated strategy of data analysis and combination, start-
ing from loosely constrained SINEX files processed
with two different softwares, Bernese (http://www.
bernese.unibe.ch/) and Gamit (http://www-gpsg.mit.
edu/�simon/gtgk/).

2 GPS Data Analysis

2.1 Bernese Processing

The GPS data processing is performed by the Bernese
Processing Engine (BPE) ver. 5.0 (Beutler et al. 2007)
forming double difference observables. The GPS orbits
and the Earth’s orientation parameters are fixed to the
combined IGS products and an a priori error of 10 m
is assigned to all site coordinates. The pre-processing
phase, used to clean up the raw observations, is car-
ried out in a baseline by baseline mode. Independent
baselines are defined by the criterion of maximum
common observations. The elimination of gross errors,
cycle slips and the determination of new ambiguities
are computed automatically using the triple-difference
combination. The a posteriori normalized residuals of
the observations are checked for outliers, too. These
observations are marked for the final parameter adjust-
ment. The elevation-dependent phase centre correc-
tions are applied including in the processing the IGS
phase centre calibrations (absolute calibrations). The
troposphere modeling consists in an a priori dry-Niell
model fulfilled by the estimation of zenith delay cor-
rections at 1-h intervals at each site using the wet-
Niell mapping function. The ionosphere is not modeled
a priori, it is removed by applying the ionosphere-
free linear combination of L1 and L2. The ambiguity
resolution is based on the QIF baseline-wise analy-
sis. The final network solution is solved with back-
substituted ambiguities, if integer; otherwise ambigu-
ities are considered as real valued measurement biases.
Each solution is realized in an intrinsic reference frame
defined by the observations itself, differing from day to

day only for rigid network translations but keeping the
site inter-distances always well determined.

2.2 Gamit Processing

To analyze code and phase data with the GAMIT
software (Version 10.33; Herring et al. 2006), we
adopt standard procedures for the analysis of regional
networks (e.g., McClusky et al. 2000; Serpelloni
et al. 2006) applying loose constraints to the geodetic
parameters.

The GAMIT software uses double-differenced,
ionosphere-free linear combinations of the L1 and
L2 phase observations, to generate weighted least
square solutions for each daily session (Schaffrin and
Bock 1988; Dong and Bock 1989). An automatic
cleaning algorithm (Herring et al. 2006) is applied
to post-fit residuals, in order to repair cycle slips and
to remove outliers. The observation weights vary with
elevation angle and are derived individually for each
site from the scatter of post-fit residuals obtained in
a preliminary GAMIT solution. The effect of solid-
earth tides, polar motion and oceanic loading are taken
into account according to the IERS/IGS standard 2003
model (McCarthy and Petit 2004). We apply the ocean-
loading model FES2004 and use the IGS (International
GNSS Service) absolute antenna phase center table for
modeling the effective phase center of the receiver
and satellites antennas. We use orbits provided by the
Scrips Orbit Permanent Array Center (SOPAC).

Estimated parameters for each daily solution
include the 3D Cartesian coordinates for each site,
the six orbital elements for each satellite (semi-major
axis, eccentricity, inclination, longitude of ascending
node, argument of perigee, and mean anomaly),
Earth Orientation Parameters (pole position and rate
and UT1 rate), and integer phase ambiguities. We
also estimate hourly piecewise-linear atmospheric
zenith delays at each station to correct the poorly
modeled troposphere, and 3 east-west and north-south
atmospheric gradients per day, to account for azimuth
asymmetry; the associated error covariance matrix is
also computed and saved in SINEX format.

3 Combination Procedure

The strategy adopted in this work foresees the
combination of geodetic solutions without the
estimation and removal of the relative rotations

http://www.bernese.unibe.ch/
http://www.bernese.unibe.ch/
http://www-gpsg.mit.edu/~simon/gtgk/
http://www-gpsg.mit.edu/~simon/gtgk/
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between their reference frames and is based on the
assumption of solutions with large uncertainties on
the reference frame, i.e. loosely constrained solutions
(Heflin et al. 1992; Davies and Blewitt 2000). Loosely
constrained solutions can be combined regardless of
the datum definition of each contributing solution. The
solution reference frame is defined stochastically by
the input data and changes from day to day, therefore
since the datum is treated as a stochastic noise, it is
not necessary to estimate or to apply relative rigid
transformations (rotations, translations and scale)
between reference frames and this naturally leads
to a combined solution not distorted by any a priori
constraint or transformation.

Denoting with Xc.t/ and Xi.t/ the array of the
combined daily coordinates and the contributing solu-
tion coordinates at time t, respectively, the merging
of daily site coordinates is achieved by solving in a
least squares sense the following design equation. The
design matrix, Pi, being simply the reorder matrix of
the i-th contributing solution.

XC.t/ D PiXi .t/

Usually each contributing solution Xi originates from
different processing schemes and processing software
and each processing centre is responsible for assuring
the best up-to-date solution, the only forced require-
ment is that the a priori covariance does not represent
any specific inner constraint. The solutions and their
associated covariance matrices have to be computed
in the data-defined reference frame and have to be
loosely constrained in translation, rotation and scale.
Furthermore since each daily covariance matrix is
known apart from a solution-dependent variance fac-
tor, a scale factor has been also estimated together with
the combined solution. This assures that each solution
contribution to the total �2 is equally balanced, and the
estimated relative scaling factors fi fulfil the following
conditions:

RTi .fiCi /
�1Ri D RTj .fjCj /

�1Rj
1

N

X
fi D 1

where Ri D Xi � XC are the i-th solution residuals,
and N is the number of contributing solutions.

To assess the constraint treatment of the GPS solu-
tions we first compute the looseness of the daily

covariance matrix, defined as the Helmert uncertainties
of the given solution:

C# D .AT C�1A/�1

where # are the 7 parameters of the Helmert
transformation (translations, rotations and scale) andA
is the Helmert design matrix. Hence by definition the
looseness represents the uncertainty of the 7 Helmert
parameters when the solution is transformed into an
error-free reference frame and indicates how much the
reference frame in which the solution is represented
is relaxed. It turns out that the Bernese solutions have
an average looseness of 7–8 mm in translation, about
0.07 milli-arc-second (mas) in rotation and 10�10 in
scale. On the other hand, the Gamit solutions show
0.5 m in translation, 200 mas in rotations and 10�9 in
scale. The observed differences in the looseness reflect
the peculiar approaches adopted in the two processing
schemes. The Bernese approach foresees a fixed a
priori celestial reference frame (precise GPS orbits and
Earth Orientation Parameters, EOP) and relaxed a pri-
ori coordinates, whereas the Gamit processing scheme
relax both the celestial frame and the site coordinates at
the metre level. To deal with different constraints, and
hence with different covariance structures, we analyze
the rank deficiency of the solution covariance matrices.
Figure 51.1 shows the first lowest eigenvalues (aver-
aged over all the solutions) of the normal matrix .C�1/
for the Bernese and Gamit solutions respectively. Low
eigenvalues reflect the original rank deficiency of
the network solution, which has been stochastically

Fig. 51.1 Looseness of the Bernese and Gamit solutions



344 R. Devoti et al.

constrained imposing loose a priori constraints. In
general geodetic problems, the kernel of the normal
equation matrix (eigenvectors corresponding to zero
eigenvalues) is the consequence of invariance in
the observation equations, in particular each zero
eigenvalue corresponds to an invariance of the obser-
vation equation, e.g. in small regional networks three
translational degeneracies arise from the threefold
rank deficiency of the GPS observable (e.g. Biagi and
Sansò 2003). Therefore low, but non zero eigenvalues
represent the remnant rank deficiency of the network
solution that permits to define a loosely constrained
reference frame (i.e. highly uncertain rigid transforma-
tion parameters). The Bernese solutions show a clear
threefold null space, a fourth highly scattered eigen-
value that could represent a remnant scale uncertainty
whereas the Gamit solutions display a broader null
space (three very low eigenvalues and three interme-
diate values) that reflect a well relaxed translational
and rotational degeneracy. Thus we conclude that the

two solution types are not equally constrained and the
Bernese solutions would prevail in the combination
because of its smaller null-space dimension. Therefore
we apply a loosening transformation (Davies and
Blewitt 2000) to the Bernese covariance matrices in
order to remove the Helmert parameter constraints
and forcing the seven parameters to be uncertain at
the meter level. Figure 51.1 shows the effect on the
average eigenvalues of the loosening transformation,
the first seven eigenvalues are now quite reduced.

4 Discussion

A first test combination has been carried out on two
solution clusters obtained respectively by the Bernese
and Gamit processors containing 15 overlapping sites
(see Fig. 51.2) and spanning a time period of 2.5 years
(2007–2009.5). The three solutions (Bernese, Gamit
and Combined) have been then transformed into the

Fig. 51.2 Estimated velocity fields (Bernese, Gamit and Combined) with respect to the Eurasian plate, after a rigid rotation of the
Bernese and Gamit velocities on the Combined velocity field
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ITRF2005 reference system (Altamimi et al. 2007)
and a velocity field has been estimated consistently
for all three time series (Bernese ITRF core sites:
9–11; Gamit core sites 5–6; Combined core sites:
10–11). Secular trends and sporadic offsets have been
estimated in a network least squares run, in which all
the coordinates are modelled by linear trends:

X.t/ D .I.t � t0/I/
�
X.t0/

PX
�

Figure 51.2 shows the three estimated velocity fields
with respect to the Eurasian plate, after a rigid rotation
of the Bernese and Gamit velocities on the com-
bined velocity field in order to accommodate sys-
tematic differences due to the ITRF frame definition.
Although the time span is too short to give a reli-
able velocity field, the weighted mean velocity resid-
uals with respect to the combined solution are below
0.03 mm/year in each dimension, thus indicating that
the three solutions lie in the same reference frame.

Whereas the velocity differences in magnitude are
on the average 0.2 mm/year for Bernese-Combined and
0.4 mm/year for Gamit-Combined, indicating that the
Bernese solution is closer to the combined solution
than the Gamit one. In principle this could imply that
the Bernese solution is slightly overcoming the com-
bination process but also other effects could explain
this behaviour e.g. seasonal signals in the time series
that distort the secular drifts as well as the uneven
distribution of the ITRF core sites that may cause
instabilities in the reference frame realization in the
two different clusters. Since these residuals are still
within the 1-sigma level, we should extend the com-
bination in time and spatial extension in order to
get a better understanding of the ongoing systematic
errors.

The time series of residuals reveal a general broader
dispersion for the Gamit solution, especially in the
horizontal components (see e.g. Matera station in
Fig. 51.3) that, again, may be an indication of the
reference frame instability for the Gamit solution.

Fig. 51.3 Residual distributions of each solution (Bernese, Gamit and Combined) for each component with respect to the linear
model
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52A Review on Non Iterative Closed Form
Configuration Matching and Rotations
Estimation

Mattia De Agostino, Chiara Porporato, and Marco Roggero

Abstract

Orthonormal matrices, Procrustes and quaternion analysis are closed form solu-
tions of the configuration matching problem, common in geodesy as in the
datum transformation problem. Literature reports more Procrustes based geodetic
applications than Quaternions, which are more used in other application fields,
such as aerospace navigation, robotics and computer vision. The large popularity
of Procrustes in geodesy is mainly due to its capability to take into account a priori
observation weighting in a simple way.

Keywords

Rotations • Quaternions • Orthonormal matrices • Procrustes

1 Introduction

A rotation is a transformation of the Euclidean space
that rigidly moves objects leaving fixed at least one
point (the origin of Euclidean space). In geodesy rota-
tions are involved in many problems, especially for
solving the transformation between reference frames.
More in detail, a rotation is an isometry of an Euclidean
space that preserves the orientation, and it is described
by an orthogonal matrix. In a Euclidean space of two
or three dimensions each orthogonal matrix expresses
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10129 Torino, Italy
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a rotation around a point or an axis, a reflection, or a
combination of these two transformations.

As mentioned above, the representation of a rotation
expresses the orientation of an object with respect to
a reference system, or the relative orientation of two
or more reference systems. Euler’s theorem shows that
any space rotation can be decomposed into the product
of the three rotations Ri

§Rj
™R

k
¥, where i ¤ j ¤ k and

i; j; k 2 R
3, and where Ri

’ indicates a rotation of ’
radians counterclockwise around the i axis. According
to Euler’s theorem, the attitude of a rigid body can be
described by a rotation around only one axis. Further-
more, this rotation can be defined uniquely by a mini-
mum of three parameters, such as the directors cosines
matrices, that represent the most widespread method
for estimating rotations into geodetic networks.

However, for various reasons, there are several
ways to represent rotations, making use of a number
of parameters even higher than three, although also
those redundant representations have always only three
degrees of freedom.
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In particular, for three-dimensional datum trans-
formation, quaternions, orthonormal matrices and
Procrustes Algorithm, presented over the years, are
hereinafter described and compared.

Further details about the methods (in particular,
about the Procrustes Algorithm) and a detailed bibli-
ography about this argument can be found in Awange
and Grafarend (2004) and in Grafarend (2006).

2 The Quaternion-Based Approach

What Sir William Rowan Hamilton wrote on the 16th

of October 1843 on a stone of Brougham Bridge in
Dublin, is simply (Fig. 52.1):

i2 D j2 D k2 D ijk D �1 (52.1)

The combination:

Pq D q0 C iq1 C jq2 C kq3 (52.2)

where q0, q1, q2 and q3 are real numbers, defines the
generic quaternion. Quaternions satisfy all the laws of
algebra, except the multiplication commutative law. In
fact:

ij D �ij; jk D �kj; ki D �ik (52.3)

which represents a serious violation of the commuta-
tive law ab D ba. It is also apparent:

ij D k jk D i ki D j

ji D �k kj D �i ik D �j (52.4)

The fundamental values of quaternions, i , j and k, can
be handled as three mutually perpendicular clockwise
axes in a common three-dimensional Euclidean space.
Each unit quaternion, in particular, defines a rotation in
R
3 space. These rotations are given by the conjuge:

Pr0 D PqPrPq�1 D PqPrPq� (52.5)

Fig. 52.1 The Brougham Bridge in Dublin and the Hamilton
commemorative plaque

It can be verified that if Pr is purely imaginary (the
real part is equal to zero), also Pr0 is purely imaginary;
therefore it can be defined an action of the group of unit
quaternions on R

3. Each action defined in this way is
indeed a rotation, since it preserves the norm:

jPr0j D jPqPrPq�j D jPqjjPrjjPqj� D jPrj (52.6)

It is possible to show the equivalence between the
conjuge and the product of the 3x3 Rodriguez rotation
matrix and a real vector. In fact, the operation:

PqPrPq� D .QPr/Pq� D NQT.QPr/ D . NQTQ/Pr (52.7)

produces a 4 � 4 rotation matrix NQTQ, whose lower
right 3 � 3 sub-matrix is orthonormal, and it is the
rotation matrix that takes Pr to Pr0.

Given the three-dimensional rotation between two
frames Pr and Ps with a scale-change ¡:

Ps D ¡ PqPrPq� (52.8)

where PqPq� D 1, the measurement equation is:

P(i D Psi � ¡PqPri Pq� (52.9)

where (i are still purely imaginary quaternions. In
the following, we will present two methods in the
literature to solve the problem (52.9), respectively
by minimizing the residual vector P( (Sansò 1973)
or alternatively maximizing the scalar product Ps � Pr
(Horn 1987).

2.1 Residual Vector Minimization

In accordance with the least squares approach, we must
compute the minimum of the function:

ˆ.Pq; ¡/ D
X

i

P(�
i P(i (52.10)

where jPqj2 D PqPq� D 1. Differentiating ˆ with respect
to ¡ and Pq and introducing a real Lagrange multiplier
’, we obtain, after some mathematical steps:

"X
i

jPsij2 C ¡2
X

i

jPrij2 C ’

#
Pq C 2¡

X
i

Psi PqPri D 0

(52.11)
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It is possible to show that:

X
i

jPsij2 D ¡2
X

i

jPrij2 � ’ (52.12)

Using (52.12) in (52.11), through some mathematical
steps we reach the final equation:

 X
i

PriPsi

!
Pq D

 
�¡

X
i

jPrij2
!

Pq

APq D œPq (52.13)

As it is possible to see, the unknowns œ and Pq are
respectively an eigenvalue and eigenvector of a sym-
metric matrix A, that can be built directly from the
data ri and si. In particular, using the products expan-
sion rules of quaternions (and in particular the cyclic
equality PriPsi Pq D Pri Pq�Psi D PqPriPsi D PqPs�

i Pri D Psi PqPri/, we
find:

X
i

PriPsi Pq D
X

i

Psi PqPri D
X

i

.Si Pq/Pri D
X

i

RT
i .Si Pq/

D
 X

i

RT
i Si

!
Pq D

 X
i

Ai

!
Pq (52.14)

from which it is possible to derive the expressions of
Ai and A.

2.2 Scalar Product Maximization

In this second approach, we seek the quaternion Pq to
maximize the scalar product:

nX
iD1

�PqPri Pq�� � Psi D
nX

iD1
Pr0
i � Psi (52.15)

Reminding the geometric meaning of the scalar prod-
uct of vectors, we have:

Pr0
i � Psi D jPr0

ijjPsij cos ™ (52.16)

where ™ is the angle subtended. Since jPr0
ij D jPrij and jPsij

are constants, the maximization of the scalar product
is equal to minimize the parameter ™ (or maximize
cos ™/. Using the above results, we can rewrite the
scalar product as:

nX
iD1

.PqPri/ � .Psi Pq/ (52.17)

The products .PqPri/ and .Psi Pq/ can be expressed by means
of the matrices R and S, therefore:

nX
iD1

.PqPri/ � .Psi Pq/ D
nX

iD1
PqT NRT

i Si Pq

D PqT.

nX
iD1

NRT
i Si/Pq

D PqT.

nX
iD1

Åi/Pq D PqTÅPq (52.18)

It is now simple to derive the values of the sub-matrices
Åi, and consequently of the matrix Å, where Å

T
i D Åi

and Å
T D Å. Recalling that we were seeking:

Max
Pq

 
nX

iD1
Pr0
i � Psi

!
D Max

Pq
.Å/ (52.19)

It is possible to note that Å D �A.

3 The Orthonormal Matrices
Approach

Among the existing ways to represent rotation we
present one that is most often used in photogrammetry:
the orthonormal matrices. Again r is the position vector
in the original RS and s the position vector in the final
RS. The aim is to find the rotation that minimizes
the residual errors. Therefore, we have to find the
orthonormal matrix B, 3 � 3 matrix, that maximize

nX
iD1

si.Bri/ D
nX

iD1
sT

i Bri (52.20)

Being:

aTBb D TR.BTabT/ (52.21)

it is possible to write the (52.20) as:

Tr

 
BT

nX
iD1

sirT
i

!
D Tr

�
BTM

�
(52.22)
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where M D
nP

iD1
sirT

i and:

M D

2
6664

P
i

s1i r1i
P

i
s1i r2i

P
i

s1i r3iP
i

s2i r1i
P

i
s2i r2i

P
i

s2i r3iP
i

s3i r1i
P

i
s3i r2i

P
i

s3i r3i

3
7775 (52.23)

It follows that the rotation that minimize the residual
errors corresponds to the orthonormal matrix B that
maximizes Tr.BTM/.

A square matrix M could always be decomposed
into the product of an orthonormal matrix U and a pos-
itive semi-definite matrix S. When M is non singular,
the matrices U and S are univocally determined and it
allows to write

M D M

.MTM/1=2
.MTM/1=2 D US (52.24)

In this expression, U D M.MTM/1=2 is an orthonormal
matrix and S D .MTM/1=2 is the square root positive
semi-definite of the symmetric matrix MTM. It is
possible to write this matrix MTM using its eigenvalues
fœig and eigenvectors fOuig as following:

MTM D œ1 Ou1 OuT
1 C œ2 Ou2 OuT

2 C œ3 Ou3 OuT
3 (52.25)

Since MTM is positive semi-definite, its eigenvalues
are positive and their square root is real and it is
possible to write the symmetrical matrix S

S D
p
œ1 Ou1 OuT

1 C
p
œ2 Ou2 OuT

2 C
p
�3 Ou3 OuT

3 (52.26)

As the eigenvectors are orthogonal, it follows that
S2 D MTM. This expression of the S matrix is allowed
also when some eigenvectors are null. For this reason,
the result is positive semi-definite instead of positive
definite. If all the eigenvectors are positive, S becomes

S�1 D 1p
œ1

Ou1 OuT
1 C 1p

œ2
Ou2 OuT

2 C 1p
œ3

Ou3 OuT
3 (52.27)

It is useful to calculate the U matrix U D MS�1 D
M.MTM/�1=2. It is possible to note that the sign of the
determinant of U is the same of the determinant of M
matrix. In fact

det.U/ D det.MS�1/ D det.M/ det.S�1/ (52.28)

And the det.S�1/ is positive because its eigenvalues are
positive. The U matrix is a rotation when det.M/ > 0

and it represents a reflection if det.M/ < 0. It is
necessary to minimize this expression Tr.BTM/ D
det.BTUS/ that, substituting the expression (52.26)
becomes

Tr.BTUS/ D 1p
œ1

Tr.BTUOu1 OuT
1 /

C 1p
œ2

Tr.BTUOu2 OuT
2 /

C 1p
œ3

Tr
�
BTUOu3 OuT

3

�
(52.29)

For each X and Y matrices such that the XY and YX
products are square, it follows that Tr.XY/ D Tr.YX/
and:

Tr.BTUOui OuT
i / D Tr.OuT

i BTUOui/

D Tr.BOuiUOui/ D BOuiUOui (52.30)

Since fOuig is a unit vector and both U and B are ortho-
gonal transformations, it is verified that BOu1UOu1 � 1.
It follows that

Tr.BTUS/ �
p
œ1 C

p
œ2 C

p
œ3 D Tr.S/ (52.31)

And there is the maximum value of Tr.BTUS/ when
BTU D I or B D U. The sought orthonormal matrix
is the one that arises from the decomposition of M
decomposed into the product of an orthonormal matrix
and symmetric one. When M is non-singular matrix,
then

B D M.MTM/�1=2 (52.32)

The presented method is a closed-form solution
using orthonormal matrices and their eigenvalues-
eigenvector decomposition.

4 Procrustes Approach

The minimization problem known as “Procrustes” is
the technique of matching one configuration R into
another configuration S. This method has been used
in photogrammetric applications (Crosilla 2003) and
is successfully used also in 3D datum transformation
problems (Grafarend 2006).



52 A Review on Non Iterative Closed Form Configuration Matching and Rotations Estimation 351

In order to produce a measure of match an ortho-
gonal transformation matrix T is used, minimizing the
sum of squares of the residual matrix E D RT � S:

ˆ D Tr.ETE/ D min (52.33)

Expanding the product ETE, theˆ can be expressed as
function of T:

ˆ D 2Tr.TTRTS/C Tr.TTRTRT C STS/ (52.34)

which partial derivative with respect to T is:

@ˆ

@T
D 2Tr.MT/C 2Tr.TTRTR/

D Tr.MTT C RTR/ (52.35)

The condition jjRT � Sjj2 D min it is equivalent to
Tr.STRT/ D Tr.MTT/ D max. Be UDVT the singular
value decomposition of M where D D diag.¢1; ¢2; ¢3/,
then

Tr.TTUDVT/ D Tr.VTTTUD/

D Tr.ZD/ D
X

i
zii¢i �

X
i
¢i (52.36)

where Z D VTTTU, that has a maximum in Z D I.
Finally T D UVT is the optimal rotation matrix.
Further details about the procedure and the possible
applications can be found in the papers cited in bib-
liography.

5 Different Approaches Comparisons

The methods that are presented in this paper are widely
used in geodesy, photogrammetry, robotics and com-
puter graphic. Here we can underline some common
or different aspects for each approach.

The presented approaches differ in term of rota-
tion representation and optimization method, while the
optimization criteria is always least squares.

The two quaternion approach investigated are for-
mally equivalent. In fact, it was shown that the two
matrix A and Å defined respectively for the resid-
ual vector minimization approach and for the scalar
product maximization one, are related by Å D �A.
Moreover, it is find that these matrices depend only
from the data sets: Pr and Ps.

The orthonormal matrix approach has been studied
in a closed-form solution performed using orthonormal
matrices. This method requires the computation of the
square root of a symmetric matrix to solve the rotation
problem.

Finally the Procrustes approach is often used in
photogrammetry, in order to solve the orientation pro-
blem. When the weight (both in the data set and for
each 3D component) in the transformation is introduce
we are dealing with the Generalized Procrustes Anal-
ysis. The Procrustes technique can also solve the 3D
datum transformation problem. It is possible to shown
that the used orthonormal matrix T is equivalent to the
Rodriguez matrix.

The described algorithm have been implemented
in a FORTRAN90 software and numerically verified
on real data examples. The source code is available
contacting the authors.
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53Co-seismic Gravity Change ofMw 7.9
Wenchuan Earthquake and Pre-Seismic
Gravity Anomaly Detection
by Superconducting Gravimeter at Hsinchu,
Taiwan, from April to June 2008

S.C. Lan, T.T. Yu, C. Hwang, and R. Kao

Abstract

Earthquakes are caused by crustal movement that releases a huge amount of
energy and leads to deformation. The gravity near the epicenter is changed by
the deformation of rock materials. Precursors may be detected during the period
of seismogenic activity. On 12 May, 2008, a Mw 7.9 earthquake struck near
Wenchuan in China. A co-seismic gravity offset of 10:5 )Gal and a pre-seismic
gravity anomaly about 2 days before the main shock was found in gravity records
of the superconducting gravimeter (SG) at Hsinchu, Taiwan. SG records from
April to June 2008 were used in this study. During this period of time, 8 gravity
anomaly events caused by earthquakes were found. Sonograms of time-frequency
analysis show that the perturbations occurred in 1–2 major bands (0.1–0.15 Hz
and 0.2–0.3 Hz). The results of canonical correlation analysis show a significant
positive correlation between the duration of gravity perturbation before the main
shock and the magnitude of the earthquake. This study suggest that SG is a
promising instrument for the analysis of earthquake events.

Keywords

Superconducting gravimeter • Earthquake • Co-seismic gravity change • Earth-
quake precursor

1 Introduction

The first superconducting gravimeter (SG) in Taiwan
was installed in a tunnel in 18 Peaks Hill, east of

S.C. Lan � T.T. Yu (�)
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University, No.1, Ta-Hsueh Road, 701 Tainan, Taiwan
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C. Hwang � R. Kao
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University, No.1001 University Road, 300 Hsinchu, Taiwan
e-mail: cheinway@mail.nctu.edu.tw; ricky.kao@gmail.com

downtown Hsinchu. The SG (GWR Serial No.048)
was supported by the Ministry of Interior, Taiwan, the
Center of Measurements, for the purpose of launching
projects involving various scientific and governmental
missions. It has been recording data since April 2006
at a sampling rate of 1 s.

Co-seismic gravity changes were observed for the
1964 Mw 9.2 Alaska earthquake (Barnes 1966). In
recent years, high frequency sampling and highly sen-
sitive SGs have provided new opportunities for detect-
ing small co-seismic gravity changes. For the 2004
Kii Peninsula earthquake (M7.1 foreshock and M7.4
main shock), a 1)Gal co-seismic gravity change was
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detected with the SG at the Inuyama Station of Nagoya
University, central Japan (Nawa et al. 2009). On 12
May, 2008, a strong earthquake with a moment magni-
tude (Mw/ of 7.9 struck Wenchuan (31:0ıN, 103:4ıE),
east of the Tibetan plateau and northwestern Sichuan
province in China. The epicenter was shallow, with a
depth of 19 km.

Hao et al. (2008) observed a gravity disturbance
about 2 days before the Wenchuan earthquake at the
Wuhan National Field Scientific Station for Geodesy
with a LacosteET-20 gravimeter. Our review of the SG
records from April to June 2008 also found this cor-
relation. Earthquake precursors of gravity anomalies
during this period of time are analyzed in the present
study.

2 Co-seismic Gravity Changes
of Wenchuan Earthquake

The observed residual gravity values were obtained
from the raw SG gravity records which were cor-
rected for the effects of the body and ocean tides as
suggested by Hwang et al. (2009). Before the tidal
analysis, the SG data were despiked, filtered and deci-
mated to hourly records using the program TSoft (Van
Camp and Vauterin 2005). The program ETERNA
(Wenzel 1996) was used for the tidal analysis. The
NAO.99b tide model was suggested as the best fit
for the SG observations of all tidal components. The
atmospheric pressure effect (•gb, )Gal) is estimated
from (53.1).

ıgb D fa.Pa � 1013/ (53.1)

where Pa is the pressure in hPa and fa is the
gravity-atmosphere admittance. According to Hwang
et al. (2009), fa was set to �0:350)Gal h Pa�1.
Because of the large amplitudes during the first few
hours of the earthquake, the data were separated into
two parts. Part 1 starts at 1,200 UT on 8 May, 2008, and
ends at 0628 UT on 12 May, 2008, about 40 s before
the earthquake. Part 2 starts at 1,000 UT on 12 May,
2008, and ends at 1,200 UT on 17 May, 2008. The
two data parts were respectively fitted by the quadratic
function shown in (53.2) (Kim et al. 2009).

y.t/ D a C bt C ct2 (53.2)

Fig. 53.1 Wenchuan earthquake recorded at Hsinchu SG
station and the fitted functions before and after the earthquake

Then, the two parts were respectively used to extrap-
olate the expected gravity values at 06:28:40 UT on
12 May, 2008. The co-seismic gravity change was
determined using the difference between the two val-
ues. The calculated value of co-seismic gravity was an
increase of 10:5 )Gal after the Wenchuan earthquake.
Figure 53.1 shows the recorded Wenchuan earthquake
and fitted curves. The gravity offset was caused by
the deformation and movements near the fault plane
in the crust. The distance from the epicenter of the
Wenchuan earthquake to the SG station in Hsinchu,
Taiwan, is more than 1,800 km. At this distance, the
co-seismic gravity offset of 10:5 )Gal is unrealistic.
The maximum co-seismic gravity change of the 2004
Sumatra-Andaman earthquake detected by GRACE
is only about 10–15)Gal (de Linage et al. 2009).
An unavoidable estimation error was caused by the
vibrations of the pre-seismic and post-seismic gravity
anomalies. Therefore, further refinements are required.

3 Pre-seismic Gravity Anomaly
Detection

Besides the co-seismic gravity change shown in
Fig. 53.1, a gravity perturbation event started about
2 days before the Wenchuan earthquake. The
amplitude of the gravity perturbation increased before
the earthquake and gradually decreased after the
earthquake. This is consistent with the report of Hao
et al. (2008). Thus, the SG records from April to June
2008 were inspected in this study. A total of 8 gravity
perturbation events caused by earthquakes were
found. The parameters of correlated earthquakes are
summarized in Table 53.1. The fault-plane solutions
and distribution of the earthquakes are shown in
Fig. 53.2.
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Table 53.1 Summary of gravity perturbations caused by earthquake events in superconducting gravimeter records from April to
June 2008

Earthquake
event

Date
(year/M/D)

Time
(UTC)

Lat.
(ıN)

Lon.
(ıE)

Mw Depth
(km)

Linear
distance to
SG (km)

Duration of gravity
perturbation (offset
days)

Aa
max

.)Gal/

Before
(b)

After
(a)

Ratio
(a/b)

I 2008/04/09 12:46:12 �20.07 168.89 7.3 33.0 6,786 1.09 2.74 2.52 2.3
II 2008/04/18 05:58:36 26.00 128.41 5.1 28.0 757 1.00 2.47 2.48 3.5
III 2008/04/23 18:28:41 22.88 121.62 6.0 10.0 222 1.07 1.56 1.46 5.2
IVb 2008/05/05 09:41:56 22.85 121.69 3.4 19.4 227 0.28 0.65 2.34 4.4
Vc 2008/05/12 06:28:01 31.00 103.32 7.9 19.0 1,858 2.22 4.11 1.85 9.4
VI 2008/06/01 01:57:23 20.12 121.35 6.3 31.0 518 1.19 1.66 1.39 7.0
VII 2008/06/17 05:14:34 31.64 104.16 4.7 10.0 1,807 0.82 1.37 1.67 3.9
VIII 2008/06/24 17:02:35 29.00 142.45 5.0 42.0 2,162 1.22 2.77 2.26 8.3

Data source: U.S. Geological Survey Earthquake Data Base
aAmax: Max Amplitude of pre-seismic gravity anomaly. The duration from the start of pre-seismic anomaly to the earthquake time
were separated into eight sections. After excluding the sections with spike values, the Amax was estimated from the maximum half
difference value between 98 and 2 percentile gravity signals of each section
bNo published data from Taiwan Central Weather Bureau
cWenchuan Earthquake

Fig. 53.2 Fault plane solutions and distribution of earthquakes
listed in Table 53.1. Fault plane solutions are available from the
Global CMT catalog (http://www.globalcmt.org,2009)

3.1 Data Processing and Observation

SG records obtained at a 1 s sampling rate were used
in this study. The tidal signal was removed from the
raw data using Tsoft and ETERNA software pack-
ages. Then, frequencies below 0.005 Hz were filtered
to make sure that the tide did not affect the resid-
ual gravity value. Fig. 53.4 shows the records of SG
gravity after data processing and the results of time-

Fig. 53.3 Comparison of gravity perturbations and the process
of elastic rebound

frequency analysis. An increasing amplitude before the
main shock and a gradually decreasing amplitude after
the main shock were found in the gravity records as
shown in Fig. 53.3. The increasing amplitude suggests
a concentration of energy before the main shock. This
is called the seismogenic process. After the main
shock, the energy gradually stabilized. Therefore, the
amplitude of gravity perturbation decreased. This can
be well explained by the process of elastic rebound,
as shown in Fig. 53.3 (Koseluk and Bischke 1981). It
is worth noting that the durations of gravity perturba-
tion after the main shock are always approximately

(http://www.globalcmt.org, 2009)
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Fig. 53.4 Waveform and time-frequency analysis of gravity perturbation events
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Table 53.2 Canonical correlation analysis summary

Canonical variables
1 2

Canonical correlations 0.956 0.747
Tests of significance (p values) 0.042 0.196
Canonical loadings for input variables
Perturbation before earthquake (days) �0.920 0.077
Perturbation after earthquake (days) �0.715 0.452
Amplitude of gravity perturbation ()Gal) �0.507 �0.527
Canonical loadings for output variables
Moment magnitude (Mw/ �0.928 0.373
Linear distance (km) �0.129 0.992

p values of <0:05 were considered statistically significant

1.39–2.52 times longer then those before the main
shock. This finding indicates that the period of tectonic
recovery is much longer than the period of the stress
build-up on opposite sides of the fault plane before the
main shock.

3.2 Time-Frequency Analysis

Sonograms of the time-frequency analysis are shown
in Fig. 53.4. The results of time-frequency analysis
of earthquakes II-VI reveal that the major spectral
peaks are in the range of 0.1–0.15 Hz, and that a
significant amount of energy is present in the range of
0.2–0.3 Hz band during the period of gravity pertur-
bations. However, the two major bands for earthquake
VIII are 0.05–0.1 Hz and 0.15–0.25 Hz, respectively.
This difference is possibly due to the depth and loca-
tion of the epicenter. Further research is required.

3.3 Canonical Correlation Analysis

The concepts of canonical correlation analysis were
first introduced by Hotelling (1936). Canonical corre-
lation analysis is used for finding the linear combina-
tion of each of two sets of variables which have the
maximum correlation (Glahn 1968). Table 53.2 sum-
marizes the results of canonical correlation analysis. A
p value of less than 0.05 was considered statistically
significant in this study. Thus, the results of the sig-
nificance test show that only canonical variable set 1 is
statistically significant at 0.042 with a correlation coef-
ficient of 0.956. Of the three canonical loadings, the
input variables of the duration of gravity perturbation

before the earthquake and the amplitude were highly
positively correlated with the moment magnitude of
the earthquake. The duration of gravity perturbation
before the earthquake is the most effective factor. In
other words, the larger an earthquake’s magnitude, the
longer the required period of energy concentration.
This relationship, while significant, is moderate in
strength.

Conclusion

In this paper, a co-seismic gravity change of
10:5 )Gal was found for the Wenchuan earthquake
in the gravity records of SG in Hsinchu, Taiwan.
However, because of the vibrations of pre-seismic
and post-seismic gravity anomalies, this result
is probably biased and further refinements are
requied. Eight gravity perturbation events from
April to June 2008 were analyzed in this study.
The three major findings are: (1) the developmental
sequence of gravity perturbations fits the process
of elastic rebound, and the ratio of duration
after/before the earthquake events indicates that
the period of tectonic recovery is longer than the
period of the stress build-up on opposite sides
of the fault plane before the mainshock; (2) the
gravity perturbation exhibited 1–2 major bands
of spectral peaks (0.1–0.15 Hz and 0.2–0.3 Hz)
in the sonograms of time-frequency analysis; (3)
the duration of gravity perturbation before the
earthquake shows a maximum positive correlation
with the moment magnitude of the earthquake. The
evolution of earthquake processes was as expected.
This study suggests that SG can be a useful resource
for earthquake precursor analysis.
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54Optimal Cross-Validation of Different
Surveying Techniques

Maddalena Gilardoni, Fernando Sansò, and Giovanna Venuti

Abstract

When monitoring deformations by means of different sensors, one has to be sure
that the various observations do see the same variations in time of the earth surface.
As an example one can think of a deformation as seen by the SAR technique and
the deformation of the same surface as seen by GPS. To this aim a hypothesis
testing procedure has to be set up (Koch 1999). The first question is how to
compare the different data sets, which usually do not refer neither to the same
positions in space nor to the same time. The standard prediction of one set of
variables from the other, for instance, is not always the best solution. It is better to
use both observation sets to predict one and the same functional of the “random
field” describing the deformation pattern and to evaluate the difference between
the two predictions. This difference has to be small on condition that the signal
we try to estimate has a fixed amplitude in mean quadratic sense. The problem is
formally solved and a few examples are illustrated.

Keywords

Cross-validation • Optimal statistics

1 Definition of the Problem

The problem we want to discuss, described in abstract
form, is as follows: let fu.t/g, t 2 T , be a random field,
defined on some set T .T 
 Rn/, with zero mean

Efu.t/g D 0; (54.1)

and covariance function

Efu.t/u.s/g D C.t; s/ (54.2)

M. Gilardoni (�) � F. Sansò � G. Venuti
DIIAR, Politecnico di Milano, P.zza Leonardo da Vinci 32,
Milan, Italy
e-mail: maddalena.gilardoni@mail.polimi.it

and assume that there is a vector of “observations”
performed on u.t/, which are linear functionals of u.t/
with some additive noise

Y D L.u/C 	: (54.3)

For (54.3) to be meaningful, we need the compo-
nents Li .i D 1; : : : ; N / of L to be bounded linear
stochastic functionals; namely, we shall assume that,
adopting Krarup’s notation (Krarup 1969),

EfLi.u/2g DLitfLisŒC.t; s/�g DC.Li ; Li /< C1I
(54.4)

in addition we assume that

Ef	g D 0; Ef		Cg D C	 (54.5)
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whereC	 is a known covariance matrix, and finally that
u and 	 are linearly independent, implying

EfL.u/	Cg D 0: (54.6)

Note that, under the above conditions, the covari-
ance of Y is known and given by

CY D C.L;LC/C C	: (54.7)

Suppose that a similar situation is independently
duplicated; namely, there is another random field
fw.t/g, t 2T , generally not centered, and another
vector of observations

Z D K.w/C � (54.8)

with K D fKi I i D 1; : : : ;M / and

C.Ki ;Ki/ < C1; (54.9)

Ef�g D 0; Ef�; �Cg D C�; EfK.w/�Cg D 0:

(54.10)

We further assume that 	 and � are linearly indepen-
dent of one another and, both, of u.t/ and w.t/. We
would like to test the hypothesis

H0 W u D w (54.11)

i.e., that the two sets of measurements Y and Z refer
to one and the same random field. Among other things,
this implies that there is no bias between u and w. So,
the problem becomes that of finding a suitable statistic
to verify (54.11). To be simple, we will try to find a
linear function of the observables that becomes zero
in the average when (54.11) is satisfied and that is as
small as possible in variance, in a suitable sense, such
as to be very sensitive to all departures from (54.11).
To understand the possible applications of a scheme
like that, we make two examples:

Example 54.1.1. Assume you want to build a digital
elevation model (DEM) for a portion of the earth
surface and you have data collected for instance by
SAR surveying (SRTM) and photogrammetry. The
two techniques will produce elevations on grids with

different knots so that the hypothesis that there is no
bias between them is not immediately verifiable. Even
more, SAR will give a grid of mean heights, while
the photogrammetric model refers to almost point-wise
observations.

Example 54.1.2. Assume a landslide to be monitored
by SAR and GPS. The first technique observes the
on going deformation along the line of sight (LOS)
at some highly coherent points; the second observes
the deformation vector at some other points in the
same area. In this case, by projecting the GPS 3D
deformation vector along the SAR LOS, u.t/ will be
the LOS component of the deformation pattern. The
hypothesis is now that the two techniques see the same
pattern, so that one can be used to validate the other.

In the next section those problems will be formalized
through a suitable target function that will be mini-
mized. In Sect. 3, we shall develop example 54.1.2. A
short discussion will conclude the paper.

2 The Optimization Problem

As we said, under the assumptions of Sect. 1, the
sensible thing to do is to try to estimate a linear
functional M.�/ from both the observation sets and
then to take the difference of the estimates. As we
know that, by a Wiener-Kolmogorov optimal predictor,
no information can be drawn on any subspace of
functionals orthogonal to both Y and Z, instead of
defining our problem for a general M.�/, we rather
define directly the statistic

S D �CY � �CZ (54.12)

that we shall try to make as small as possible in
mean quadratic sense. Under the assumption (54.1)
and hypothesis (54.11), S has zero mean and its
variance, representing the departure from zero, is

F.�;�/ D �2.S/ D EfS2g
D �CCY �C �CCZ� � 2�CCYZ� (54.13)

where (cf. (54.7))
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CY D C.L;LC/C C	;

CZ D C.K;KC/C C�; (54.14)

CYZ D C.L;KC/:

Obviously, we cannot look for an unconstrained
minimum of the variance (54.13), because this is
indeed obtained at � D 0; � D 0. Therefore, we must
keep the couple .�; �/ on a surface far away from
zero by imposing a suitable condition. The theory gets
its simplest and most elegant form, if we choose the
following normalization condition:

G.�;�/ D Ef.�CY C �CZ/2g
D �CCY �C �CCZ�C 2�CCYZ� D 1:

(54.15)

It is interesting to remark that exactly the same equa-
tions would be obtained by imposing separately the
two variables �CY and �CZ to have a unit variance.
The minimization of the Lagrange target function

L.�; �/ D F.�;�/� �G.�; �/ (54.16)

leads to the following normal system

�
CY �CYZ

�CZY CZ

��
�

�

�
D �

�
CY CYZ
CZY CZ

��
�

�

�
:

(54.17)

This is a generalized eigenvalue problem: for each
eigenvalue �n, we have the corresponding eigenvector
Œ�C
n ; �

C
n
�C, which can be normalized with condition

(54.15). By multiplying (54.17) by Œ�C
n ; �

C
n
�, and tak-

ing into account (54.15), one gets

�n D F.�n; �n
/; (54.18)

and the original problem becomes that of finding the
minimum eigenvalue of (54.17) and the corresponding
eigenvector. This is similar to canonical analysis dis-
cussed in literature (Wackernagel 1995). We observe,
for future use, that our problem can even be dimen-
sionally reduced. Getting, for instance, � from the first
row of (54.17)

� D ˛C�1
Y CYZ � (54.19)

and substituting in the second one, it results

.CZ � ˛2CZY C
�1
Y CYZ/� D 0 (54.20)

with

˛ D 1C �

1 � � : (54.21)

Note that (54.21) implies

�.˛/ D ˛ � 1

˛ C 1
(54.22)

and that

�.�˛/ D 1

�.˛/
: (54.23)

Since F.�;�/ is positive by definition, (cf. (54.13)),
due to (54.18), � is positive too. Then, from (54.22) we
see that either ˛ > 1 or ˛ < �1, which is complying
with the fact that the values of ˛ from (54.20) come
in couples with the same modulus. Since (cf. (54.22))
˛ > 1 implies � < 1, then from (54.23) we have that
˛ < �1 implies � > 1. It follows that we have to find
the minimum positive ˛, such that ˛2 is an eigenvalue
of (54.20), and the corresponding eigenvector�. There
on, we compute � from (54.19). It is not difficult to
see that, if .˛; �; �/ is the triple corresponding to �min,
then .�˛; �;��/ is the triple corresponding to �max .

Remark 54.2.1. Let us consider a particular case, that
we shall develop in the next paragraph: this is when Z
is one dimensional. In this case, we have

CZ D �2Z D C.K;K/C �2� (54.24)

CYZ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

:::

C.Li ;K/
:::

ˇ̌
ˇ̌
ˇ̌
ˇ̌ � cZ (54.25)

and the equation for the eigenvalues is simply

�2Z � ˛2cC
ZC

�1
Y cZ D 0; (54.26)

with the two solutions:

˛ D ˙ �Z

ŒcC
ZC

�1
Y cZ�

1=2
: (54.27)
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Getting the positive root, which is the one that provides
the value �min, the corresponding eigenvector is

Œ� D ˛�C�1
Y cZ; ��; (54.28)

where � has to be fixed so as to satisfy the normal-
ization condition (54.15). Indeed, this last condition is
quite irrelevant, while the interesting thing is that by
using (54.28) one finds the sought statistic

S D �.˛cC
ZC

�1
Y Y �Z/: (54.29)

In turn, by using (54.27), this can be written as

S D ��Z

2
64 cC

ZC
�1
Y Yq

cC
ZC

�1
Y cZ

� Z

�Z

3
75 : (54.30)

The multiplicative constant in S has not a particular
meaning, in fact it is one and the same scale for both
S and its standard deviation. What is in parenthesis,
though, is quite suggestive: S is basically the best
linear predictor of Z from Y, normalized to have
variance 1, minus Z, also normalized to variance 1.
That seems a good solution to our validation problem.
It is interesting also to apply (54.30) when Y too
is one dimensional. To make it simple, we assume
even that �Y D �Z D 1 and �>0. By applying (54.30)
we find

S D �.Y �Z/:

3 A Case Study

We report here a real case of deformation monitoring
in central Italy: the Assisi landslide. The area extends
for about 1:2 km � 1:4 km. It is monitored by means
of a GPS network of 25 points (cf. Fig. 54.1) whose
position is determined every year by the University
of Perugia (Cilli et al. 2002). The difference in time
of the local cartesian coordinates give a sample of
the 3d displacement field under analysis. On the same
area, DInSAR time series of LOS deformations are
available on 55 highly coherent points (cf. Fig. 54.1);
those series come from images of the ENVISAT SAR
sensor and were processed by the CNR IREA center
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Fig. 54.1 GPS and SAR points on the monitored landslide

of Naples (Berardino et al. 2002). Note that the LOS is
considered constant over the area. Within the Italian
Space Agency project MORFEO, the Politecnico di
Milano has to perform the DInSAR data validation
by means of GPS; the optimal statistic (54.30) was
applied, by comparing the multi-dimensional SAR
data set, denser than the GPS one, with each GPS point,
that is, performing 25 different tests. The GPS data
come from the 2006 and 2007 campaigns, so that, from
the DInSAR deformations series we retrieved those
related to the same time span. The field u, defined
on t 2T �R2, observed by both GPS and SAR, apart
from the mean, is the LOS deformation field, that
we assumed to have a homogeneous and isotropic
variogram

�.js � t j/ D 1

2
EfŒu.t/ � u.s/�2g; (54.31)

which is related to the covariance function by the
following relation

�.js � t j/ D C.t; t/C C.s; s/ � 2C.s; t/: (54.32)

From SAR data we estimated the covariance function
of u, by computing first their empirical variogram (cf.
Fig. 54.2) and then exploiting relation (54.32) (Sansó
et al. 2008). Even more, the estimate of the nugget
effect gave us an estimate of the noise variance �2	 of
the SAR data, which can not be directly computed by
the SAR data analysis. We found

C.js � t j/ D 0:13 expŒ�15:31js � t j�; (54.33)
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Fig. 54.3 SAR predicted LOS deformations and GPS LOS
projected observations

while the nugget effect resulted to be negligible. The
values predicted from SAR and the GPS LOS pro-
jected observations are shown in Fig. 54.3.

The Y vector is now that of LOS SAR deformations
after their estimated mean removal, while Z is the
GPS LOS projected deformation again after the same
mean removal. The GPS LOS deformations reduced by
their average with the accordingly propagated standard
deviation and the predicted values (from the SAR data,
after the mean removal) with the prediction error stan-
dard deviations are reported in Table 54.1. In the last
column of the same table we report the corresponding
statistic S values.

Table 54.1 Residual LOS deformations predicted from SAR
(Y ) – Standard deviation of the estimated prediction error (std)
– Residual GPS LOS deformations (Z) – Standard deviation of
the residual GPS LOS deformation (�Z )

No Y std Z �Z S

cm cm cm cm
1 0:00 0.36 0:09 0.66 0:01

2 �0:08 0.31 0:57 0.54 �1:13
3 �0:15 0.27 0:79 0.33 �2.22
4 0:04 0.34 �0:36 1.31 0:43

5 �0:16 0.29 �0:21 0.52 �0:39
6 0:25 0.31 0:91 0.45 �0:16
7 0:17 0.27 0:99 0.87 �0:25
8 0:02 0.36 0:11 0.73 0:89

9 0:00 0.36 0:93 0.88 �0:63
10 0:00 0.36 0:74 1.08 0:05

11 0:34 0.29 4:17 1.22 �1:29
12 0:01 0.36 �0:61 0.88 1:41

13 0:04 0.36 0:37 0.67 0:75

14 �0:00 0.36 4:64 0.95 �3.27
15 �0:06 0.36 �0:34 0.82 �0:45
16 �0:13 0.31 1:35 0.79 �1:82
17 0:29 0.30 1:15 1.58 0:62

18 �0:01 0.34 �0:60 1.17 0:29

19 �0:17 0.32 �1:33 0.55 0:79

20 0:08 0.32 �0:79 1.01 0:92

21 0:06 0.34 2:72 1.41 �0:97
22 �0:02 0.34 0:84 1.15 �0:65
23 �0:05 0.35 0:57 0.84 �0:81
24 �0:01 0.36 �0:04 0.41 �0:35
25 �0:02 0.36 �1:54 0.71 1:06

By assuming S to be normally distributed, and by
using a significance level ˛ D 5%, as we can see in
Table 54.1, for all the points but two, the hypothesis is
accepted.

Conclusion

The conclusion about “equivalence” of SAR and
GPS is somehow obscured by the relatively large
variance of noise in GPS data. Anyway, by perform-
ing a proper noise propagation, the result is that
the two data sets must be considered compatible
but for two points, which have to be monitored
separately. As a general remark, the assumption of
zero average for u.t/ is critical. The full use of a
kriging approach, which is under implementation,
would show that basically the disagreement within
the two data sets is in the average.
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55Ocean Loading in Brittany, Northwest
France: Impact of the GPS Analysis Strategy
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Abstract

In this contribution, we analyze the impact of different GPS processing strategies
on ocean tide loading estimation. We use continuous GPS data acquired during
a 4-month campaign performed in 2004 in Brittany, Northwest France. Since the
expected geodynamical signal in the estimated positions is exceeding the typical
GPS data analysis noise, this data set can be used to compare the results obtained
with different analysis software packages. Moreover, in this specific case we need
short sub-daily solutions to study short-period signals instead of classical 24 h-
solutions. The GPS capability for measuring 3D ocean tide loading deformation
has already been assessed, but since we are looking for the finest signal as the
one induced by the shallow water constituents, it is essential to be sure that
the position time series represent a geodynamical signal and are not biased by the
data processing strategy used. To analyze the possible effect of the methodology
used on the geodynamical results, we compare different solutions computed
with different strategies (Double Differencing and Precise Point Positioning)
with various GPS analysis software packages (Bernese, GAMIT, GINS, and
GIPSY/OASIS). We show that the different solution consistency is at the level
of 1–3 mm. We also show that the data processing strategy has a mean effect of
about 10–20% of the ocean tide loading signal amplitude.
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1 Introduction

Ocean Tide Loading (OTL) induces surface displace-
ments which can reach several centimeters in the
vertical component and one-tenth to one-third of the
vertical displacements in the horizontal components
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in coastal regions. These periodic crustal deformations
are detectable by all modern space geodetic techniques
and can be well resolved from GPS data analysis (see,
e.g., Khan and Scherneck 2003; Yun et al. 2007). GPS
data can also be used to validate ocean tide models
(see, e.g., Urschl et al. 2005; Penna et al. 2008).

The purpose of this study is to assess the impact
of the GPS data analysis strategy on the OTL signal
observation. For this, we seek direct observations of
OTL Displacements (OTLD) from GPS position time
series obtained from the same data set with different
analysis software packages: Bernese, GAMIT, GINS,
and GIPSY. These comparisons are essential in order
not to misinterpret the geodetic analysis error as geo-
physical signal.

Several studies show that any mis-modelled or
un-modelled sub-daily periodic ground displacements

can propagate into spurious longer wavelength signals
in GPS position time series (see, e.g., Penna et al. 2007;
King et al. 2008). These induced aliased signals could
then result in incorrect geophysical interpretation from
GPS position time series. Moreover, recent studies
(see, e.g., Teferle et al. 2008) demonstrated from the
analysis of position time series obtained by different
analysis centers that the strategy used has a non
negligible impact on velocity estimates.

Our area of study is the continental shelf of Brittany
and Cotentin, in north-western France, a region where
the ocean tide amplitudes are known to be amongst the
highest in the world and can reach 14 m. So, the OTLD
can be as large as 15 cm in vertical and about one-
third of this deformation in the horizontal components.
This strong OTLD signal is suitable to quantify the
differences and the errors from one strategy to another.

Fig. 55.1 Location of the studied area. Triangles represent the campaign GPS stations and squares represent permanent GPS stations
belonging to the French GPS network (RGP network)
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Notice that our purpose is not to evaluate OTL models
which has been done in (Vergnolle et al. 2008) and in
(Melachroinos et al. 2008).

2 Data Set

In 2004, an ambitious multi-technique campaign was
realized (Llubes et al. 2008) to study and to char-
acterize ocean loading effects in Brittany, Northwest
France, and to validate new ocean models such as
FES2004 (Lyard et al. 2006). For this, several geodetic
techniques were used simultaneously with a monitored
area covering the whole northwest part of France:
tide gauge, GPS, Satellite Laser Ranging (SLR), tilt-
meter, absolute and relative gravimeters, and barom-
eters. In this study, we focus on the GPS part of
this campaign. In addition to the local permanent
GPS stations of the global French Permanent Network
(RGP, http://rgp.ign.fr), a set of 12 GPS stations were
installed in the studied area from March to June. They
were mainly located on the north coast where ocean
tides are huge. Few stations were installed on the south
coast and inland to observe the earth’s crust response
far away of the main load (see Fig. 55.1).

3 Data Analysis Strategies

To process the GPS data, we used different soft-
ware packages using different processing strategies.
We processed the 105 days of data obtained dur-
ing the campaign previously described. We used four
GPS data processing software packages: Bernese 5.0
(Dach et al. 2007), GAMIT 10.21 (King and Bock
2005), GINS/DYNAMO (Lemoine et al. 2007), and
GIPSY/OASIS II (Zumberge et al. 1997). For the
first three software packages, double-differenced GPS
phase measurements are used in order to resolve car-
rier phase ambiguities, whereas GIPSY/OASIS PPP
(Precise Point Positioning) strategy is used allowing to
determine absolute positioning.

All the software packages are used with common
processing parameters in order to do valuable
comparison: 10ı cut-off angle, Niell (1996) hydrostatic
and wet tropospheric mapping functions and the
Saastamoinen (1972) zenithal tropospheric delay
a priori model, and IERS conventions 2003 for

Earth Orientation Parameters and for the Earth and
polar tides (McCarthy and Petit 2004). International
GNSS Service (IGS) final orbits and satellites clocks,
Earth rotation parameters, and absolute phase center
variations are used such as recommended by IGS (Dow
et al. 2009).

For the first three software packages, the estima-
tion strategy is very similar and makes use of the
least squares approach. Station coordinates are esti-
mated using 2-hour sessions. We estimated that a
2-hour session is sufficient to sample correctly the
movements and achieve a sufficient precision on the
3D coordinates over the 105 days to obtain a good
estimation of amplitude and phase of the main OTL
components. The typical precision obtained from this
type of positioning is 3–7 mm and 10–15 mm for
the horizontal and vertical components, respectively.
To express the solution in the ITRF2000 reference
frame (Altamimi et al. 2002), the coordinates of 16
IGS stations in Europe have been heavily constrained
to their ITRF2000 values. These permanent sites are
strongly constrained in the different software strate-
gies (Addneq2 for Bernese, GlobK for GAMIT, and
Dynamo for GINS) and corrected for OTL displace-
ments by using the FES2004 model. One Zenithal
Tropospheric Delay (ZTD) per site is processed every
30 min.

The parameter estimation strategy in GIPSY is
different since a Kalman filter is used allowing the
parameters to have a stochastic behaviour: station posi-
tions and ZTD are estimated every 5 min as a random
walk process. After several tests, the rates of change
of the process noise covariance is fixed to 30 mm/h for
the station position and to 10 mm/h for ZTD which is
a standard value in the GIPSY software package (see,
e.g., Larson et al. 2001). For this type of positioning the
typical precision is 5–10 mm and 10 mm for horizontal
and vertical components, respectively.

4 Analysis Results

Using these processing strategies, GPS position time
series are obtained. For each position time series,
the larger outliers were removed and the mean and
the linear trend were subtracted from each solution.
A representative example is given in Fig. 55.2 for the
different software solutions of the vertical compo-
nent at PAIM station superimposed to the FES2004
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Fig. 55.2 Example of GPS position time series obtained from
the four different software packages for the vertical component
of station PAIM (Paimpol). In addition the FES2004 OTL
displacements are plotted for comparisons

predicted displacements. The four solutions seem to be
globally consistent and all software solutions seem to
well agree with the model.

For each component, the correlation coefficients
between each solution and the predicted FES2004
time series were computed. All the stations show
nearly the same values of correlation, except MANS
for the three coordinates for the four solutions. The
mean correlation values between each solution and
FES2004, without MANS, are of 82% for Bernese,
89% for GAMIT, 77% for GINS, and 61% for GIPSY
for the vertical component. GINS and GIPSY solu-
tions are less correlated compared to Bernese and
GAMIT solutions which are in better agreement with
the predicted signal. For the vertical component, the
cross-correlation values between each solution and the
GAMIT one amount 87% for Bernese, 80% for GINS,
and 64% for GIPSY. The general lower correlation
of the GIPSY solution can be explained by the quite
different processing strategy used in this case (PPP
instead of double differences).

The spectral analysis of each GPS position time
series was performed using the T-TIDE toolbox from
(Pawlowicz et al. 2002). This toolbox is able to esti-
mate, using least squares, the amplitude and Green-
wich phase of tidal constituents from position time
series. From this spectral analysis, we extracted the
signal of each tidal component from each position
time series. Table 55.1 shows for the M2 tide the
differences between each solution and FES2004 in

Table 55.1 Means differences (top) and their RMS (bottom)
over all the stations between FES2004 and the estimated M2
amplitude (A in mm) and Greenwich phase (� in degrees) for
the north, east, and vertical components

Mean differences to FES2004
North East Vertical
A � A � A �

(mm) (deg) (mm) (deg) (mm) (deg)
Bernese �1:1 �14:5 �0:3 �5:9 1:1 5.5
Gamit 0:6 �6:5 �0:4 �3:8 0:5 4.7
Gins �1:4 �11:5 �0:9 �6:9 �7:4 4.9
Gipsy �1:3 3:3 0:0 �17:4 �3:5 2.6

RMS to the mean differences to FES2004
North East Vertical
A � A � A �

(mm) (deg) (mm) (deg) (mm) (deg)
Bernese 0:7 6:5 0:3 3:2 1:0 2.7
Gamit 0:3 1:7 0:2 2:8 0:8 1.9
Gins 0:6 6:9 0:3 3:3 2:9 1.6
Gipsy 0:5 10:6 0:8 7:7 2:5 2.6

terms of mean and RMS to the mean value over all the
stations. For this tide, the amplitude estimation error is
lower than 1 mm for each solution and the Greenwich
phase estimation error is between 1 and 15ı. The
amplitude results show a fair good agreement between
each solution on the north and east components at the
milimeter level, with a RMS lower than 1 mm.

For the vertical component, Bernese and GAMIT
are in good agreement and exhibit the same behavior.
Nevertheless, GIPSY and GINS solutions exhibit large
discrepancies to the model (several millimeters), do not
agree with the other solutions and have larger RMS
values (about 3 mm).

For the Greenwich phase estimation, GAMIT,
Bernese and GINS solutions are in good agreement
for the east and vertical components (at a 2ı level),
with RMS of about 2�3ı. On the north component,
these three software packages agree at a 10ı level,
but Bernese and GINS exhibit larger RMS values.
Results from the GIPSY solution show discrepancies
to the FES2004 model and to other solutions, with
larger RMS (up to 11ı on the north component).
Nevertheless, these discrepancies are at the same level
as the phase estimation error for this software package.

To perform a reliable comparison between the
different solutions, we also computed the vector
length between each software package solution and
the FES2004 model. It allows to take into account
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Table 55.2 Vector length values (in mm) for the M2 tide on
the horizontal and vertical components between each software
package solution and FES2004 model at different stations

Horizontal Vertical
Ber

ne
se

GAM
IT

GIN
S

GIP
SY

Ber
ne

se
GAM

IT

GIN
S

GIP
SY

BRST 2.3 1.4 2.2 4.7 3.4 2.4 11.6 8.1
CHER 2.0 0.9 2.4 2.6 2.8 2.6 4.3 2.6
COUT 2.1 0.8 2.5 2.5 2.5 2.5 4.7 2.4
DIBE 2.8 1.7 2.6 3.5 3.7 2.7 9.9 7.2
MANS 2.4 1.2 2.4 3.3 2.3 1.4 4.5 1.6
PAIM 2.7 1.6 2.7 3.2 2.9 2.4 8.1 2.7
TREV 2.3 1.4 2.4 2.6 1.9 2.0 11.1 4.2
YGEA 2.5 1.5 2.9 3.3 2.2 2.0 7.1 2.1
Mean 2.4 1.3 2.5 3.2 2.7 2.3 7.7 3.9
RMS 0.3 0.3 0.2 0.7 0.6 0.4 3.0 2.3

simultaneously the differences in terms of amplitude
and phase. We present for the most relevant sub-
set of stations the results concerning the vertical
component for M2 (amplitude between 8 and 40 mm),
S2 (2–14 mm), N2 (2–8 mm), and for the horizontal
OTLD induced by M2 (4–8 mm in North and 6–11 mm
in East), which are the main OTLD constituents.
For the M2 tide the vector lengths are displayed in
Table 55.2 for different stations for both horizontal
and vertical components.

Focussing on M2, in planimetry, mean vector
lengths (between each solution and FES2004 model)
are 2 mm for Bernese solution, 1 mm for GAMIT,
2 mm for GINS, and 3 mm for GIPSY. These vector
lenghts (lower than 2 mm) are smaller than the
difference between all the GPS solutions and the
FES2004 model values.

For the vertical component, no general pattern can
be extracted from this, except that GINS shows a larger
mean vector length due to an amplitude underesti-
mation at each site relatively to all the other solu-
tions. Mean values are 2 mm for GAMIT, 3 mm for
Bernese, 4 mm for GISPY, and 8 mm for GINS. All
the four solutions exhibit a general agreement with
the model predictions at the level of 2–3 mm. The
different solutions agree at the level of 1–2 mm except
for GINS. Bernese and GAMIT solutions are in very
fair agreement and GINS and GIPSY solutions present
larger vector lengths for the BRST and DIBE stations.

Looking to the S2 vertical component, all the
solutions agree at the level of 2–4 mm. The GAMIT
solution is the closest to the model, nevertheless
relative to the tide amplitude it is twice less (3 mm)
in agreement than for M2. The three other solutions
present larger discrepancies relatively to the model:
6–7 mm for GINS and Bernese solutions and 10 mm
for GIPSY solution. Finally, concerning the N2 vertical
component, whose amplitude is twice smaller than the
M2 one, the agreement of the four solutions is as good
as the one obtained for M2. All the solutions agree
with each other at the level of 1 mm or even better,
depending of the considered site, and agree at the
sub-mm level with the predicted FES2004 values.

Conclusion

This study demonstrated the impact of the GPS
analysis strategy on the OTLD signal observed
in the position time series. Our results indicate
a general agreement between the different solu-
tions obtained with different processing software
packages at a few millimeter level. Nevertheless,
our analysis evidences some significant differences
between the software packages solutions (up to
10 mm) showing that the data processing strategy
can have a mean effect up to 10–20% of the ocean
tide loading signal amplitude. Our results show that
discrepancies between software solutions are below
or equal to the discrepancies relative to the model.
So, in this area, we suggest that the differences
between GPS solutions and the model correspond
to a geodynamical signal not included in FES2004,
particularly for M2 vertical component.
Further investigations are to be performed to well
understand these discrepancies. Thus, we demon-
strated that GPS data analysis strategy artifacts are
not negligible. It is also important to well under-
stand and control these aspects for further studies
combining different GNSS systems such as GPS,
GLONASS, and in the near future GALILEO.
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56Repeated Geodetic Measurements
in the Tatra Mountain

M. Mojzes, J. Papco, and M. Valko

Abstract

For detection of horizontal and vertical movements of the Earth’s surface the
repeated geodetic measurements were organized in the Tatra Mountain. Non-
permanent GPS measurements with 4–5 days observation time were provided
from 1998 to 2008 yearly. Near the 3 non-permanent stations the GPS permanent
stations and absolute gravity stations were established for better understanding and
detecting of vertical movements. The analyze of GPS permanent measurements
detected subsidence effect approximately �0:72mm/year at the sites GANO and
�0:98mm/year at the site SKPL and uplift effect C2mm/year at the site LIES.
The station LIES is located 6 km from a water dam. The repeated absolute
gravity measurements detected subsidence C0:12 )Gal=year at the station SKPL,
C0:27 )Gal=year at the station GANO and C0:85 )Gal=year at the station LIES.
The paper presents the analysis of GPS and absolute gravity measurements.

Keywords

Non permanent and permanent GPS measurements • Absolute gravity measure-
ments • Time series analysis

1 Introduction

The project CERGOP-2, A Multipurpose and Inter-
disciplinary Sensor Array for Environmental Research
in Central Europe (acronym CERGOP-2/Environment)
was primarily addressed to monitoring of crust move-
ments in the central part of Europe, covering 15% of
the continent, with the aim to determine the velocities
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of Technology in Bratislava, Radlinskeho 11, 813 68 Bratislava,
Slovak Republic
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milos.valko@stuba.sk

of selected points in seismic active areas over decades.
Investigation of the change of velocities leads to the
description of the underlying driving forces and of
energy transfers leading to earthquakes. The method-
ology basically relies on the use of GPS data for
monitoring environmental parameters in the area of
14 European countries. The reference GPS network
consists of about 60 stations (50% of them are operated
on permanent basis). In the frame of the CERGOP-
2/Environment project as Work Package 10.5, the GPS
and absolute gravity measurements in the Tatra Moun-
tain area for local deformation studies of the Earth’s
surface have been organized. The area of the Tatra
Mountain takes approximately 2; 400 km2 (60 km WE
direction and 40 km SN direction). The physical height
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of the earth surface varies between 700 m and 2 660 m
above the sea level. The GPS non permanent network
was established in 1998 and consists of 11 special
monument sites (brass module is mounted in concrete
pillars or directly to the rocks). The GPS observa-
tion Campaigns were provided every year by Slovak
University of Technology in Bratislava and Warsaw
University of Technology started from 1998 to 2009
with Trimble dual fervency receivers. The absolute
gravity measurements started in 2003 and have been
realized by the Research Institute of Geodesy Topog-
raphy and Cartography of Czech Republic (Palinkas
and Kostelecky jr.) by FG5, No. 215 instrument in
different months (September, October or November).
The comparison of non-permanent and permanent GPS
measurements and absolute gravity measurements is
presented in the paper.

2 Motivations

The repeated classical geometric leveling was used
for detection of vertical uplift or subsidence in
Nordic countries by Ekman and Mäkkinen (1996),
see Fig. 56.1 and in Central Europe by Arabadz-
ijski et al. (1986), see Fig. 56.2. The Fennoscan-
dian land uplift was also detected by the absolute

Fig. 56.1 Fennoscandian uplift observed by classical geometric
leveling methods after Ekman and Mäkkinen (1996). The iso-
clines represent rates in mm/year. Strong line represents profile

Fig. 56.2 Central Europe uplift/subsidence rates determined by
classical geometric leveling method compiled by Arabadzijski
et al. (1986). The isoclines represent rates in mm/year. Strong
line represents profile, see Fig. 56.3

gravity measurements and presented by Ekman
and Mäkkinen (1996), Wilmes (2006) and Timmen
et al. (2008).

The Fig. 56.3 presents the Fennoscandian uplift
rates and Central Europe uplift/subsidence rates along
the profile AB compiled from repeated geometric lev-
eling. The land subsidence rates in the Tatra Moun-
tain area are from �0:1mm/year to �1mm/year (see
Fig. 56.3).

For verification of land subsidence rates the geode-
tic network for GPS and absolute gravity measure-
ments have been established in the Tatra Mountain.

The gravity changes coupled with earthquakes are
of particular importance as precursor phenomena. The
epicentres of earthquake activity in the area of the Tatra
Mountain are presented on Fig. 56.4 (compiled from
the data of Geophysical Institute, Slovak Academy of
Science).

3 Physical Model

In present time the vertical temporal change of
the Earth surface is determined by repeated GPS
and absolute gravity observations. Temporal gravity
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Fig. 56.3 Uplift and subsidence profile AB in central Europe compiled from classical geometric leveling (® D 64:0ı; œ D 20:0ı

start point, ® D 46:0ı; œ D 20:0ı end point)

Fig. 56.4 Earthquake activity in the area of the Tatra Mountain. The number in circle represents the year of the earthquake and the
diameter of circle represents the magnitude of the earthquake

changes discovered by repeated observations represent
the important information of terrestrial mass displace-
ments of global, regional and local type, Torge (1989).
The gravity vector is a function of the position vector
r and the density function �.r0/

g.P / D g.G; !; r; �.r0//; (56.1)

where G is the Newtonian gravity constant, ! is the
angular velocity of Earth’s rotation, in our model it is
treated as a constant because the effect of temporal
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change of ! on gravity is maximum 0:1 )Gal. The
temporal change of gravity can be described by

Pg D @g

@r
Pr CG

•

earth

P�.r0/
.r0 � r/2

d�; (56.2)

where d� is volume element.
The observed gravity changes thus contain the com-

bined effects of elevation changes and density vari-
ations or mass shifts. With sufficiently estimate of
@g=@r and P�.r0/, it is possible to derive the vertical
movements of the Earth surface in space from the tem-
poral gravity changes. If Pr is known from GPS mea-
surements, the gravity changes represent constraints
for the determination of density changes.

The observed height and gravity changes support
modelling of the generating thermo-mechanic pro-
cesses. In postglacial uplift and recent subsidence
areas, observed variations provide indications of the
rheology (viscosity) of the upper mantle.

A linear relationship between the gravity change
and vertical movement of the Earth surface can be
assumed for limited area. The differential gravity-
height ratio change is approximated by observed
gravity changes ıg and observed physical height
changes ıH or observed ellipsoidal height changes
ıh or observed geocentric distance changes ır

Pg
PH � ıg

ıH
� ıg

ıh
� ıg

ır
: (56.3)

The ellipsoidal height change ıh is practically the
same as geocentric distance change ır . The value
of ıg=ıh can exhibit large variations but is mostly
between �0:15 )Gal=mm and �0:35 )Gal=mm,
Jachens (1978). The free-air value �0:31 )Gal=mm,
which mostly occurs locally, corresponds to a
vertical surface movement without a mass change.
For large area variations as Fennoscandian area, the
Bouguer relation �0:20 )Gal=mm is frequently found,
Mäkkinen et al. (2004), which, in addition, indicates
internal mass displacements. The values of ıg=ıH can
by very uncertain due to the small values of gravity and
heights changes and due to the present measurement
uncertainties, Torge (1989).

4 Non-permanent and Permanent
GPS Measurements

The non-permanent GPS measurements have been per-
formed every year at 11 points with special monument
for repeated setup of GPS antenna module with 0.5 mm
accuracy. The GPS campaigns have been organized
annually with 4–5 days observation time using only
Trimble dual frequency receivers. The GPS measure-
ments have been connected to the reference permanent
GPS stations: BOR1, JOZE, GOPE, GRAZ, PENC and
processed by standard scheme with Bernese software,
version 5.0. The special software for detection of
relative velocity components has been used. The rela-
tive horizontal and vertical velocities determined from
observation time interval 1998–2003 are presented on
Figs. 56.5 and 56.6.

For better determination of horizontal and verti-
cal movements near the three non-permanent GPS
stations (GANO, LOMS and LIES) the permanent
GPS stations have been established. The measurements
of permanent stations started at GANO in 2003, at
LONS in 2004 and at LIES in 2007 and have been
processed in the local analytical centre Slovak Uni-
versity of Technology in Bratislava (SUT) in frame of
the European Permanent Network (EPN). The stations
BOR1, BUCU, GOPE, GRAZ, MATE, PENC, SOFI
and WTZR have been used as reference permanent
GPS station in processing of EPN.

5 Repeated Absolute Gravity
Measurements

The repeated absolute gravity measurements at tree
gravity sites (GANO, SKPL and LIES) have been used
for determination of the vertical land uplift/subsidence.
The one day measurements (from 12 to 24 hours) have
been performed at GANO in 2003, 2005, 2006, 2007
and 2008, at SKPL in 2005, 2006, 2007 and 2008 and
at LIES in 2004, 2006, 2007 and 2008. The absolute
gravity data have been processed by Micro-g software
assuming polar motion, atmospheric and tide correc-
tions. The results of absolute gravity measurements
are presented in Table 56.1. All reference heights of
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Fig. 56.5 Relative horizontal velocities of non-permanent GPS sites, an arrow represents the horizontal velocity and an ellipse
represents the 1-sigma accuracy of the velocity

Fig. 56.6 Vertical velocities of non-permanent GPS sites, an arrow represents the vertical velocity of particular points
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absolute gravity values were transformed to the first
reference height for minimizing the vertical gradient
error.

6 Comparison of the Results

The time series of ellipsoidal heights determined by
GPS measurements and absolute gravity values on
the points GANO, SKPL and LIES are presented on
Fig. 56.7. The trends of ellipsoidal changes and the
absolute gravity changes, presented in Table 56.2 and
Fig. 56.7, are very similar at the points GANO and
SKPL but they differ slightly at the point LIES.

Table 56.2 Trends of velocities

Point Pg.)Gal � year�1/ Ph.mm � year�1/
Pg
Ph
.)Gal � mm�1/

GANO C0.272 �0.72 �0.38
SKPL C0.127 �0.98 �0.13
LIES C0.850 C2.30 0.36

Conclusion

The permanent GPS measurements in stable coor-
dinate system using the same GPS antennas per
point gives a reliable results of vertical changes of
ellipsoidal heights in millimetres level. The non-
permanent GPS measurements are influenced by

Fig. 56.7 Comparison of GPS non-permanent, permanent and absolute gravity time series at the points GANO, SKPL and LIES
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repeated GPS antenna setup and the changes of
antennas.
The repeated absolute gravity observations can
give the information on the vertical changes of the
earth surface, but the gravity signal is influenced by
atmospheric and water mass changes effects. The
determination of water mass variations especially
in the mountain areas is very complicated and
modelling of this phenomenon requires further
study. Our future investigation activities will be
oriented to modelling of water mass variation in
local, regional and global scales.
The subsidence effect determined by classical geo-
metric leveling is the same as determined by our
experiments performed using GPS method in the
Tatra Mountain.
The values of @g=@r derived empirically from the
simultaneous absolute gravity and GPS measure-
ments can by used for the testing of the geophysical
modelling. The accurate GPS and absolute grav-
ity measurements seem to be the best method for
a detailed investigation of recent Earth’s surface
movements in large areas. The repeated absolute
gravity measurements can also be used effectively
for the control of vertical systems. The conversion
factor @g=@r must be determined empirically.
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to the paper.

References

Arabadzijski D et al (1986) Karta sovremennych vertikalnych
dvizenij zemnoj kory na teritorii Bulgariji, Vengriji, NDR,
Polsi, Rumuniji, ZSSR, Cechoslovakiji. Glovnoe upravlenie
geodezii kartografiji pri Sovete Ministrov ZSSR. Moskva
1986
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57GRACE-Derived Linear and Non-linear
Secular Mass Variations Over Greenland

Oliver Baur, Michael Kuhn, and Will E. Featherstone

Abstract

In the past, GRACE (Gravity Recovery And Climate Experiment) monthly gravity
field solutions have mainly been exploited to derive secular and seasonal mass
changes on the Earth’s surface. After seven years in operational mode, the satellite
mission makes accelerated and decelerated mass variations detectable. Here we
investigate the temporal characteristics of secular trends by fitting both linear and
higher-order polynomials to the mass-change time-series. Our findings have been
derived from GRACE gravity field time-series provided by CSR, GFZ and JPL.
As a case study, we look at recent ice-mass variations over Greenland. Based
on various model selection criteria (Akaike and Bayesian information criterion,
cross-validation, hypotheses testing), our investigations show that linear regression
is unable to describe recent deglaciation. Instead, the secular trend is best
represented by a second-order polynomial, confirming accelerated deglaciation
of the Greenland ice sheets, which increased by 250% between April 2002 and
March 2009.

Keywords

Ice-mass balance • Information criteria • Satellite gravimetry • Time-series •
Trend estimation

1 Introduction

In recent years, many GRACE studies focused on
secular ice-mass variations in the Earth’s polar regions

O. Baur (�)
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Perth, WA 6845, Australia

(e.g., Chen et al. 2006; Luthcke et al. 2006; Velicogna
and Wahr 2006; Wouters et al. 2008; Baur et al.
2009). In this context, Greenland plays a dominant
role; it exhibits the strongest mass-variation signals
observed by GRACE (Baur et al. 2009). Typically,
mass variations derived within a certain sample period
are expressed as annual change rates, assuming a
linear progress over time. However, is this assump-
tion of linearity justified? To answer the question of
adequate description, this contribution compares and
contrasts linear with higher-order polynomial mass-
change models for estimation of the secular ice-mass
loss over Greenland.
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The increased lifespan (now over seven years) of
the GRACE satellite mission makes accelerated and
decelerated mass variations detectable. Velicogna and
Wahr (2006) demonstrated accelerated deglaciation
over Greenland between April 2002 to April 2004 and
May 2004 to April 2006. They derived their results by
simply fitting linear trends to the two analysis periods.
Comparing the slopes of the regression lines indicated
a 250% increase (acceleration) in the ice-loss rate.

In this contribution, apart from the comparison of
linear trends taken over different analysis periods, we
reveal accelerated melting over Greenland by means
of non-linear regression. In particular, we approximate
the mass variations (here, residuals relative to the tem-
poral mean) by higher-order polynomials. In order to
find the best amongst the candidate regression models,
we consider various selection criteria. The criteria are
subject to least-squares residuals evaluation, parameter
space complexity and significance of estimated model
parameters.

2 Data

Monthly gravity field solutions are typically released
to the public in terms of fully normalized spherical har-
monic coefficients of the Earth’s external gravitational
potential. We used release four (RL04) GRACE-only
gravity field estimates provided by CSR, GFZ and JPL.
In order to prevent aliasing effects of strong seasonal
signals from falsifying our time-series analysis, we
chose the total time span of the gravity field series to
cover an integer number of years. Table 57.1 presents
the sequences used. The sample periods were selected
according to available monthly GRACE solutions at
the time of the study.

We have followed the methodology of Wahr et al.
(1998) to derive surface mass densities from (residual)
gravity field coefficients. In this context, we applied
spatial averaging in terms of Gaussian smoothing with
a radius R D 500 km. The isotropic filter damps errors

Table 57.1 Monthly GRACE gravity field time-series used

Centre Period # Years # Sol’ns # Gaps

CSR 04/2002 – 03/2009 7 80 4
CSR 08/2002 – 07/2008 6 71 1
GFZ 08/2002 – 07/2008 6 67 5
JPL 08/2002 – 07/2008 6 70 2

in the high-degree GRACE coefficients. Scaling sur-
face mass densities by water density yields equivalent
water height (EWH) values. Finally, we transformed
EWH to mass changes.

We did not consider global isostatic adjustment
(GIA) effects on our results. The GIA impact is of
minor concern for our investigations because we are
primarily interested in the temporal progress of mass
changes rather than absolute deglaciation amounts.

3 Methods

The residual time-series (reduced by the temporal
mean) of GRACE-derived mass variations were
approximated by polynomials of different order
according to

y D ˇ0 C ˇ1x C ˇ2x
2 C : : :C ˇpx

p; (57.1)

where x indicates the individual month of data avail-
ability and y is the corresponding residual (Greenland-
averaged) ice-mass value. The polynomial coefficients
are denoted by ˇi with imax equal to the polynomial
order p. For each candidate model, the coefficients
were estimated in terms of an unweighted least-squares
(LS) fit to the data.

When incorporating different data fits, the main
issue is to find the optimum amongst the candidate
models. Actually, the term “optimum” has to be
attributed to some model selection criteria. Here we
consider (1) the Akaike information criterion (AIC),
(2) the Bayesian information criterion (BIC), (3) cross
validation (CV), and (4) hypotheses testing. The main
purpose of introducing several criteria is to investigate
whether they provide comparable results. Importantly,
such criteria allow judging models relative to one
another; they are unable to detect the superior model
in an absolute sense.

3.1 Akaike Information Criterion

The philosophy behind the AIC is to perform model
selection according to maximum log-likelihood
(Akaike 1974). The theoretical foundation bases on
Kullback-Liebler distance minimization (Burnham and
Anderson 1998). Nonetheless, sometimes the criterion
is referred to as a purely heuristic approach, seeking
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a model characterized by both a good data fit and few
parameters. In the case of LS estimation, the AIC is
defined as

AIC D n ln. O�2/C 2k; (57.2)

where O�2 D n�1Pn
iD1 Oe2i indicates the maximum

likelihood estimate of �2, Oei are the estimated LS
residuals for a particular candidate model, and n is
the number of samples (or observations). The integer
k denotes the total number of estimated parameters,
including the intercept and �2, i.e., k D p C 1 C 1

holds true.
The first term in (57.2) accounts for the criterion

of a good statistical fit, whereas the second term
incorporates the doctrine of parsimony [In this context,
parsimony is the adoption of the simplest assumption
in the interpretation of data, especially in accordance
with the rule of Ockham’s razor]. Both terms are
balanced between one another.

Absolute AIC values have no relevance; therefore,
AIC differences �AIC D AIC � min.AIC/ over all
candidate models are commonly used for interpreta-
tion. The model with the lowest AIC, �AIC-value, is
considered to be the best approximation to the data,
relative to the other models considered (in the sense of
parsimony).

An important refinement to the AIC is its adaption
to small sample sizes (e.g., Hurvich and Tsai 1989). In
this case, the corrected AIC should be used instead,

AICc D AIC C 2k.k C 1/

n � k � 1
: (57.3)

3.2 Bayesian Information Criterion

For LS applications, the BIC (occasionally also
referred to as the Schwarz criterion, SC) is defined as

BIC D n ln. O�2/C k ln.n/ (57.4)

(Schwarz 1978), where all terms are as defined above.
The BIC/SC’s structure is very similar to the AIC,

even though the deviations of the criteria underlie dif-
fering motivations. The BIC penalises complex models
more than the AIC does (for fixed n and increasing
k, the penalty term k log.n/ increases faster opposed
to the term 2k). BIC differences are computed by
�BIC D BIC � min.BIC/. Again, the model with the
lowest BIC, �BIC-value, is the best model; it should
be selected to describe the data.

3.3 Cross Validation

We implemented the special case of leave-one-out
CV (cf. Featherstone and Sproule 2006). The model
parameter estimates are based on all-but-one data
points. The leave-one-out CV estimator is used to
predict the observation that has been omitted within the
estimation process. The squared differences between
the real observations and their predictions are summed
up to define the CV functional

CV D n�1
nX
iD1

�
yi � OyCV

i

�2
; (57.5)

where OyCV
i indicates the prediction of the i -th obser-

vation (or data point) yi . The model with lowest CV
value is considered to be the best model, so it should
be selected to describe the data.

3.4 Hypotheses Testing of Polynomial
Coefficients

For each regression coefficient ˇi .i D 0; : : : ; p/

separately, hypotheses testing balances the null
hypothesis H0 W ˇi D 0 against the alternative
hypothesis H1 W ˇi ¤ 0. The test provides evidence
on the statistical significance of model parameters. As
such, the null hypothesis is rejected if the Student-
distributed test value

T D
Ǒ
i

�ˇi
� t1�˛=2; n�.pC1/ (57.6)

lies outside the confidence interval. Otherwise, H0

is accepted. This is akin to the development of
multiple regression equations (MRE) used in geodetic
coordinate transformations (e.g., NGA 2004).

Here, we chose the level of significance to be ˛ D
5% (95% confidence). Moreover, in (57.6), Ǒ

i denotes
the LS estimate of ˇi and �ˇi its standard deviation.

4 Results

Recent deglaciation of the Greenland ice sheets has
been reported by a variety of previous studies. The
major objective of this investigation is to shed some
light on the temporal dynamics of the ablation (ice-
mass loss) process. In this framework, we now address
linear versus non-linear ice-mass balance models.
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Fig. 57.1 Greenland ice-volume variations from April 2002 to
March 2009 (CSR solutions). The monthly residual values are
reduced by the temporal mean. The linear regression lines refer
to four 4-year periods, each starting one year after the previous
one. The linear ice-volume trend decreases continuously (from
�88˙ 14 km3 a�1 to �150˙ 16 km3 a�1), suggesting acceler-
ated ice-mass decline in recent years (no GIA correction applied)

In a first experiment, we analyzed CSR monthly
gravity field solutions from April 2002 to March 2009.
In particular, we LS-estimated the linear trends of 13
four-year periods. Each period has a 3-month offset
from the previous one. Figure 57.1 shows a repre-
sentative sample of four of the epochs. The slopes of
the linear regression lines increase almost continuously
(Fig. 57.2). The overall rise is about 70%. Hypotheses
testing shows the slopes of the last few epochs to
differ statistically significantly from the earlier ones,
indicating accelerated ablation. The analysis of five-
year periods yields comparable results (not displayed
here).

In a second experiment, we analysed the whole
seven-year gravity field time-series at once, rather than
splitting it into subsets as above. For this purpose, we
fitted polynomials up to fifth order to the data. In order
to detect the best amongst the models used, for each
of the polynomial fit, Table 57.2 summarizes the four
model selection criteria introduced in Sect. 3.

From Table 57.2, the linear approximation shows
the poorest results, followed by the third-order and
fifth-order polynomials. The second-order polynomial
performs best. Furthermore, hypothesis testing reveals
statistical significance for all model parameters only up
to the second-order. For any higher-order polynomial,
only the intercept is significant. Hence, the Greenland
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Fig. 57.2 Greenland ice-volume change rates from April 2002
to March 2009 (CSR solutions). Each data subset refers to
four 4-year periods. Every period has an offset of 3 months to
the previous one (i.e., the change rates provided in Fig. 57.1
correspond to the data subsets 1, 5, 9 and 13, respectively). The
error bars indicate the standard deviations of the estimates. They
were derived from the LS residuals of the polynomial fit

Table 57.2 Model selection criteria and total ice-volume
changes over the period April 2002 to March 2009 (CSR
solutions), dependent on the order of polynomial fit

Order �AIC �AICc �BIC CV Total change
(km3)

1 10.7 10.5 8.3 5100.7 �858˙ 70

2 0 0 0 4430.0 �853˙ 65

3 10.4 1.3 3.4 4488.7 �815˙ 64

4 0 0.6 4.7 4407.3 �822˙ 63

5 1.11 2.2 8.3 4465.3 �858˙ 63

GRACE data trend is best represented by a second-
order polynomial (Fig. 57.3). Note that the total ice-
volume variations are largely independent of the model
(cf. the last column in Table 57.2).

Next, we tackle the question “Does the superi-
ority of the second-order approximation opposed to
linear regression depend on the gravity field time-
series investigated?” This is what we tried to determine
in our third experiment. Here, we considered monthly
GRACE solutions from three of the “independently”
operating data centres: CSR, GFZ and JPL. To make
the results comparable, we chose a consistent six-year
analysis period (cf. Table 57.1).

The model selection criteria in Table 57.3 reveal
the predominance of the quadratic fit over the linear
model for the Greenland case. Only the BIC for the
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Fig. 57.3 Greenland ice-volume variations from April 2002 to
March 2009 (CSR solutions). The residual monthly values are
reduced by the temporal mean. Both the linear and quadratic fit
provide comparable variations over the whole period (�858 ˙
70 km3, �853 ˙ 65 km3 respectively). Model selection criteria
(Table 57.2) show the quadratic model to be superior to the linear
fit over Greenland

Table 57.3 Model selection criteria and total ice-volume
changes over the period August 2002 to July 2008, dependent
on the order of polynomial fit and monthly gravity field series

Order Center �AIC �AICc �BIC CV Total
change
(km3)

1 CSR 6.1 5.8 3.8 5252.7 �706˙ 71

2 CSR 0 0 0 4864.8 �705˙ 67

1 GFZ 8.3 8.0 6.1 5334.8 �587˙ 71

2 GFZ 0 0 0 4676.1 �574˙ 66

1 JPL 2.0 1.7 �0.3 2451.1 �255˙ 48

2 JPL 0 0 0 2387.1 �255˙ 47

JPL solutions shows a slight preference for the linear
compared to the second-order fit. All other criteria are
in favour of the quadratic model.

5 Discussion and Conclusion

Most previous studies addressing ice-mass balance
over Greenland have focussed on the estimation of
total mass-loss numbers within certain sample periods.
In contrast, here we address the temporal progress of
deglaciation. Therefore, the correction of change-rates
by disturbing effects such as signal leakage and GIA is
ignored (disturbing effects mainly scale change-rates).

In order to specify temporal characteristics ade-
quately, we suggest the adoption of suitable crite-
ria. These allow more objective judgement among
various candidate models relative to each other. The
Akaike information criterion, its modified version for
small samples, and the Bayesian information criterion
provide comparable results. Concerning a seven-year
sample period, all these criteria clearly discard the
linear approximation (� > 8); however, they attribute
substantial support to higher-order polynomial mod-
els (� < 2). In short, the second-order polynomial
performs best over Greenland. This result is also sup-
ported by hypotheses testing of the polynomial coeffi-
cients.

Similar conclusions hold for the investigation of a
six-year period based on GRACE gravity field solu-
tions provided by CSR, GFZ and JPL. Again, the
quadratic model is mostly superior to the linear fit.
As the time-series now consists of fewer samples
compared to the seven-year investigation, the criterion
differences are smaller. Actually, the largest value is
� D 8:3. Nonetheless, we want to highlight that the
model selection results are almost independent of the
GRACE gravity field time-series used.

In conclusion, we proved that the linear model is
insufficient to describe long-term Greenland secular
mass changes. Indeed, the trend is better represented
by a second-order polynomial. Within a seven-year
sample period, the ablation rate increased by 250%.
This result confirms accelerated contemporary melting
of the Greenland ice sheets, as suggested originally
by Velicogna and Wahr (2006), but now supported
by various metric criteria and using longer analysis
periods.

Extended time-series will pinpoint the validity of
present-day results for future predictions. Furthermore,
in order to substantiate these GRACE-derived change-
rate accelerations, comparison with alternative inde-
pendent data or in-situ measurements is desirable.
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58A New Continuous GPS Network to Monitor
Deformations in the Iberian Peninsula
(Topo-Iberia Project). First Study
of the Situation of the Betic System Area
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Abstract

Topo-Iberia is a project funded by the Spanish Research Council that shares
interests with Topo-Europe project. Its objective is to understand the interactions
in the Iberian Peninsula (SW Europe) between deep, shallow and atmospheric
processes, through a multidisciplinary approach linking Geology, Geophysics and
Geodesy. In order to achieve the observational goals of the project, three main
working groups have been set up: seismic, magneto-telluric and geodetic. The
first task of the GPS geodetic working group was to design the new Continuous
GPS network to complement other GPS networks which are already operating
under the supervision of different institutions. The Betic System is the most active
tectonically area in the Iberian Peninsula. As this area in under a NNW-SSE to
NW-SE compression regime, two station alignments (from NE to SW and NW
to SE) were built, including continuous GPS (CGPS) stations in Northern Africa.
Nowadays the Topo-Iberia GPS network includes twenty-six operational stations:
22 installed in different regions of Spain and 4 located in strategically chosen
places in Morocco. In this work the state of the art of the CGPS network in the
Betic System Area is presented.

Keywords

Topo-Iberia � GPS � time series � deformation

1 Introduction

Topo-Iberia is a research project that involves
researchers from 10 different groups (www.igme.
es/Internet/Tpoiberia). It reflects the willingness

M.C. de Lacy (�) � A.J. Gil � J.A. Garcı́a Armenteros �
A.M. Ruiz � M. Crespi � A. Mazzoni � Topo-Iberia GPS Team
Departamento de Ingenierı́a Cartográfica, Geodésica y
Fotogrametrı́a, Universidad de Jaén, Spain

DITS – Area di Geodesia e Geomatica, Università di Roma La
Sapienza, Italy

and interest of the Spanish scientific community
to establish an integrated framework to develop
multidisciplinary geoscientific studies in Spain. The
“micro-continent” formed by the Iberian Peninsula
and its margins constitutes a most suitable natural lab-
oratory, well identified by the international scientific
community, to develop innovative, frontier research
on its topography and 4-D evolution. The objective of
Topo-Iberia is to understand the interaction between
deep, superficial and atmospheric processes, by
integrating research on geology, geophysics, geodesy
and geotechnology. The knowledge on the relief
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changes and their causes is of great social impact
regarding climate change and evaluation of natural
resources and hazards. Three major domains of
research have been identified: the southern and
northern borders of the Iberian plate (the Betic-Rif
system and the Pyrenean-Cantabrian system) and its
central core (Meseta and Central-Iberian systems).

In this paper we are focusing on the status of the
geodetic project in the Betic Area. In particular, in
Sect. 2 a general description of Topo-Iberia is shown
by including a short review of the CGPS network.
In Sect. 3 first tests of processing CGPS data are
explained.

2 Description of Topo-Iberia Project

Topo-Europe (Cloetingh et al. 2007) has identified
up to 6 highly relevant natural laboratories on which
the future research in the European region should be
focused, one of them being the “Iberian microconti-
nent”. The scientific research of Topo-Europe is sup-
ported by a fundamental technological component, a
multidisciplinary observation platform EuroArray, that
is a multi-sensor pool of instrumentation “Terrascope”
of seismics, GPS, magnetotellurics, etc. EuroArray has
decided to promote a first thematic initiative, named
PICASSO (Program to Investigate Convective Alboran
Sea System Overturn, http://www.geophysics.dias.ie/
projects/PICASSO/) in the interaction area between
the Iberian and African plates.

Topo-Iberia is a multidimensional programme, with
interrelated and interactive components and integra-
tion of results to establish a topography and evolu-
tion model of the natural environment. Actions to
be developed include experimental studies making
use of seismic techniques, deformation measurements
by GPS measurements, magnetotellurics, gravimetric,
magnetism and paleomagnetism and satelite imaging,
etc. These actions will be carried out in three areas:
South, Centre and North. In the South: the Betic-
Rif and Atlas orogens, and the marine domains in-
between: Alboran Sea and Gulf of Cadiz (initiative
PICASSO). In the Centre: Meseta, Central system and
Iberian system, including Catalan ranges and eastern
basins. In the North: Pyrenean and Cantabrian ranges,
including Duero and Ebro basins and Cantabrian and
Galician margins. In particular, the University of Jaen
(UJA) along with the University of Barcelona (UB) and

the Real Instituto y Observatorio de la Armada (ROA)
are in charge of estimating deformations from GPS
measurements.

2.1 Continuous GPS Network

GPS can be used as a tool for the measurement
of the active deformation providing a way of
monitoring active tectonics and the detection of
relative movements when the recorded deformation is
only of cm/year, as is the case of the Iberian Peninsula.
A fundamental objective of this project involves the
determination of the present day deformation vectors
of the crust.

As the study area in under a NNW-SSE to NW-SE
compression regime, two station alignments (from NE
to SW and NW to SE) were built, including continuous
CGPS stations in Northern Africa, (Fig. 58.1). In par-
ticular, an array of new permanent stations has been
installed complementing other GPS networks already
deployed by different Institutions, EPN (EUREF Per-
manent Network) (Bruyninx 2004), IGS (International
GNSS Service) (Dow et al. 2009) and regional gov-
ernmental agencies. After an initial period of design-
ing, purchasing new equipments, monumentation and
deploying stations, nowadays the Topo-Iberia GPS
network includes twenty-six operational stations, six
of them (AREZ, PALM, PILA, NEVA, TGIL, VILA)
under the control of the University of Jaen.
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The data Analysis of the whole set of new and
existing CGPS stations is performed at three differ-
ent analysis centers: ROA, UB and UJA. Different
approaches to processing GPS data by using differ-
ent programs are being carried out: GIPSY-OASIS
(Zumberge et al. 1997) is used by ROA, GAMIT
(Herring et al. 2007) by UB and Bernese (Beutler et al.
2007) by UJA. A further analysis of the whole set
of coordinate time series should give a nice view of
relative displacements, deformations and stresses all
over the frame of interest, (Kierulf et al. 2008).

In this paper, only first results provided by Bernese
and computed at the University of Jaen are shown.

3 Status of Topo-Iberia in the Betic
Area

One of the main objectives of the project is the estab-
lishment of a common work platform, called Iber-
Array, in the form of an integrated network of research
groups and centres. This implies the development of a
multitask platform to allow to manage new multidisci-
plinary data-sets. A database, called SITOPO, is being
built with files from existing permanent stations with
good quality data. Therefore every analysis centre must
implement a GPS data management allowing to check
their quality before submitting them to SITOPO. After
that every analysis centre will compute and analyze the
corresponding time series of the CGPS stations, close
to 70 stations in total. At this moment, not all analysis
centres check GPS data downloaded from the stations.
Therefore, the UJA has checked the quality of all GPS
data used in this study.

The UJA has developed an own software written
in Visual Basic for Applications implemented in
Microsoft Excel to carry out the data manegement
automatically. RINEX files are downloaded from six
stations under the control of the University of Jaen via
Internet/GPRS; from the EPN and IGS data centres and
SITOPO via ftp. TEQC program (Estey and Meertens
1999) (http://facility.unavco.org/software) is used on
all downloaded observations to check the data quality.
Thresholds of quality parameters are fixed following
the recommendations of IGS stations (http://igscb.jpl.
nasa.gov/network/dataplots.html). These parameters
are related to the number of observations per day, the
RMS of the MP1 and MP2 linear combinations and
the observations per slip.

After that, all necessary files are prepared to
compute a daily solution with Bernese Processing
Engine. The time series analysis is carried out by
the software KINADGPS (Barzaghi et al. 2004).
KINADGPS is a program written in C language and
takes into account temporal covariances of solutions.
This fact is basic to a correct estimation of GPS-
derived coordinate and velocity precisions when GPS
permanent stations are used to infer geodynamical
interpretations. After linear detrending and outlier
removal the time series of station coordinates behave
as a second order stationary process and their
autocovariance functions depend on the time only.
When the signal variance is significant with respect
to the noise variance, the fitting with a proper model
function is carried out. The program is able to find
the most correct fitting function among eight different
autocovariance models (Barzaghi et al. 2003):
1. y D a exp.�bjxj/ exponential
2. y D a exp.�bx2/ normal
3. y D a exp.1 � cx2/ exp.�bjxj/ exp-parable
4. y D a exp.1 � cx2/ exp.�bx2/ normal-parable
5. y D a exp.�bjxj/ cos.cx/ exp-cos
6. y D a exp.�bx2/ cos.cx/ normal-cos
7. y D a exp.�bjxj/ sin.cjxj/=.cjxj/ exp-sin x/x
8. y D a exp.�bx2/ sin.cjxj/=.cjxj/ normal-sin x/x

3.1 First Tests

First tests of the stations controlled by UJA are carried
out in last months. In particular, GPS data belonging to
stations of AREZ, PALM, PILA, NEVA, TGIL, VILA
are processed with Bernese software and first time
series have been computed with available GPS data,
one-year since may 2008.

The basic observable are dual-frequency GPS car-
rier phase observations. They have been preprocessed
in a baseline by baseline mode using triple-differences.
During the final estimation, based on ionosphere-free
double differences, a 10 degrees elevation angle cut off
was used and elevation-depending weighting scheme
was applied. Receiver and satellite antennae phase
center calibrations were applied using absolute antenna
phase center corrections from the IGS05 model. The
a priori tropospheric refraction was modeled using
the Dry-Niell model (Niell 1996) and the remain-
ing wet part was estimated hourly for each station,
using the wet-Niell mapping function (Niell 1996)

http://facility.unavco.org/software
http://igscb.jpl.nasa.gov/network/dataplots.html
http://igscb.jpl.nasa.gov/network/dataplots.html
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Fig. 58.2 Time series of the North, East and Up components of
AREZ, PILA and NEVA in the IGS05 reference frame obtained
by the University of Jaen

without a priori sigmas. A horizontal gradient param-
eter is estimated for each day and station (TILTING)
without introducing a priori constraints. Phase ambi-
guities which have been fixed to their integer val-
ues in a previous step are now introduced as known
parameters.
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Fig. 58.3 Time series of the North, East and Up components of
PALM, TGIL and VILA in the IGS05 reference frame obtained
by the University of Jaen

Datum definition was carried out by five stations
ALAC, CASC, SFER, RABT, VILL constrained to
2 mm in North and East components and 4 mm in
Up component to the IGS05 (Ferland 2006) refer-
ence frame. Their IGS05 coordinates and velocities
are computed by linear interpolation from the last 52
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Table 58.1 Preliminary velocities estimated by KINADGPS

Station VEast (mm/year) VNorth (mm/year)

ALAC 18.98 ˙ 0.13 16.20 ˙ 0.15
AREZ 19.01 ˙ 0.14 17.12 ˙ 0.16
CASC 17.32 ˙ 0.14 16.61 ˙ 0.16
NEVA 18.45 ˙ 0.58 16.05 ˙ 0.67
PALM 17.06 ˙ 0.15 15.82 ˙ 0.17
PILA 19.28 ˙ 0.14 17.43 ˙ 0.17
RABT 16.25 ˙ 0.47 17.46 ˙ 0.53
SFER 15.93 ˙ 0.11 16.84 ˙ 0.12
TGIL 19.58 ˙ 0.13 16.57 ˙ 0.15
VILA 19.79 ˙ 0.48 15.69 ˙ 0.57
VILL 17.33 ˙ 0.11 16.96 ˙ 0.13

weekly IGS solutions to separate any annual periodic
effect and take account of eventual datum change,
(Benciolini et al. 2008).

First time series of daily solutions are shown
in Figs. 58.2 and 58.3. The velocities estimated by
KINADGPS are reported in Table 58.1. It is important
to underline that these values are preliminary due to
one year is a short period to estimate them in a reliable
way.

A year is a very short period to come to conclusions
but the NEVA time series clearly indicate the presence
of problems at that station. Its GPS antenna has been
changed recently to solve them. North and East com-
ponents of all time series show a trend in NE direction
in agreement with Eurasian plate movement.

Different strategies are being tested in order to
establish a final procedure. In particular a loose solu-
tion (deconstrained network in terms of coordinates
without any reference frame) was computed. At the
moment the differences between this loose solution
and the solution with a defined reference frame are
being studied (Kawar et al. 1998).

4 Summary

In this paper, the status of the CGPS network to mon-
itor deformations inside the research project “Topo-
Iberia” is presented. In particular, a first study of the
status of the situation in the Betic Area was carried out
by the University of Jaen. In this study a year of GPS
data coming from the stations controlled by the UJA
are processed and the corresponding coordinate time
series computed by the program KINADGPS. Differ-
ent strategies are being tested in order to establish a

final procedure. The other groups are computing their
first results as well. In the near future, the solutions
coming from ROA, UJA and UC will be compared to
analyze the differences and to study a methodology to
combine all of them over the Iberian Peninsula.
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59Implementation of the Complete Sea Level
Equation in a 3D Finite Elements Scheme:
A Validation Study

G. Dal Forno, P. Gasperini, and G. Spada

Abstract

We describe the implementation of the complete Sea Level Equation (SLE) in a
Finite Element (FE) self-gravitating 3D model. The procedure, originally proposed
by Wu (2004), consists of iterating the solution of the SLE starting from a non self-
gravitating model. At each iteration, the perturbation to the gravitational potential
due to the deformation at the density interfaces is determined, and the boundary
conditions for the following iteration are modified accordingly. We implemented
the computation of the additional loads corresponding to the perturbations induced
by glacial and oceanic forcings at the same iteration at which such forcings are
applied. This implies an acceleration of the convergence of the iterative process
that occurs actually in three to four iterations so that the complete procedure, for
a 6,800 elements FE grid, can be run in about two hours of computing time, on a
four-core 2.2 GHz Linux workstation. This spherical and self-gravitating FE model
can be employed to simulate the deformation of the Earth induced by any kind of
load (non necessarily of glacial origin) acting on the surface and/or internally.

1 Introduction

The modeling of the response of the Earth to surface
ice loads was usually performed in the past by the
normal-mode method (Peltier 1974) that is suitable
to deal with linear rheologies and simple spherically
symmetric geometries. Such method is not suitable
when the problem involves non-linear rheologies or
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Italy
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lateral variations of material properties. In these cases
the Finite Element (FE) method represents one of the
possible approaches. Several papers employed FE to
study the relaxation of a linear mantle with lateral
viscosity variations (Gasperini and Sabadini 1989;
Kaufmann et al. 1997, 2000; Paulson et al. 2005; Spada
et al. 2006) or a purely non-linear (Wu 1992, 1999;
Giunchi and Spada 2000; Wu and Wang 2008) or
composite (linear plus non-linear) mantle (Gasperini
et al. 1992, 2004; Dal Forno et al. 2005; Dal Forno
and Gasperini 2007). In these studies, the gravita-
tional potential perturbations due to the variations of
the loads and to the deformation of the solid Earth
has been neglected, which prohibits a reliable model-
ing of relative sea level observations. More recently,
Wu (2004) developed a mixed approach that allows
to deal with self-gravitation and the complete Sea
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Level Equation (SLE, see Farrell and Clark, 1976) by
FE codes through spherical harmonics expansion of
involved quantities.

In this work we implemented such procedure that
schedules the iteration of the solution starting from
a non-self-gravitating model with eustatic sea level,
using the commercial code ABAQUS (Simulia 2009).
The effects of gravitational potential perturbations due
to ice and water mass variations and to deformation
of density interfaces is simulated by the application
of equivalent pressure loads. The sea level variations
at each iteration are computed from potential pertur-
bations as well. The procedure is coded in a load
routine linked with ABAQUS and in a post-processing
module that extracts displacements computed by pre-
vious FE iteration and computes potential perturba-
tions and relevant differential loads for the successive
iteration. We tested our codes with the results of
program SELEN by Spada and Stocchi (2007) that
implements the complete sea level equation by solving
analytically the self-gravitating relaxation of a linear
Earth. This procedure would allow to treat the problem
consistently even in the case of non-linear or com-
posite rheologies and of lateral variations of material
properties.

2 Outline of the Iterative Procedure

The spherical harmonics (SH) coefficients of the load
associated with ice thickness and sea level variations
are computed by the pixelization technique developed
by Tegmark (1996)

�m` D �ice�

Np

NpX
iD1

I .�i ; �i / Y
m
` .�i ; �i / (59.1)

sm` D �w�

Np

NpX
iD1

S .�i ; �i / Y
m
` .�i ; �i / ; (59.2)

where � is colatitude and � is longitude, Np is the
number of pixels, �ice and �w are the ice and water
densities, � is the reference gravity field at the surface,
I .�i ; �i / and S .�i ; �i / are the ice height variation
(i. e., the difference between the height at 18 ka B.P.
and at the time increment) and the sea level change
at the i -th pixel respectively, and Y m` .�i ; �i / are the
real SHs at the i -th pixel, according to the “Geodesy”
convention of SHTOOLS package (Wieczorek 2005).

For ease of notation we do not indicate explicitly the
time dependence. All the computations are repeated at
various time increments at which load amplitudes are
updated by the FE code and the ensuing displacements
are computed.

At the first iteration, sea level change coincides with
the melted ice equivalent sea level

S .�i ; �i / D � Mice

�wAO

O .�i ; �i / ; (59.3)

where Mice is the melted ice mass, AO the area of
oceans and O .�i ; �i / the ocean function at i -th pixel

O .�i ; �i / D
(
1 if wet

0 if dry:
(59.4)

According to Wu (2004), the SH coefficients of incre-
mental potential due to the load �wS C �iceI at each
of the N C 1 spherical density interfaces with radius rp
(with p ranging from 0 to N ), are

$m
`

�
rp
� D 4
G

2`C 1

�m`
�
rp

� rp
a

�`�1
; (59.5)

where �m` D �m` C sm` and G is the Newton’s constant.
Here r0 is the Earth’s core radius and rN D a is the
Earth’s radius. Equation (59.5) is equivalent to the
terms of potential perturbation due to the load of (16a,
b, c) in Wu (2004). The SH coefficients of differential
load due to such potential perturbation is

��m`
�
rp
� D �

�pC1 � �p
�
$m
`

�
rp
�
; (59.6)

where �p is density of the p-th layer (�0 is the density
of the core and �N � 0 is air density). Then the total
load SH coefficients

tm`
�
rp
� D

(
��m`

�
rp
�

if p < N

�m` C��m`
�
rp
�

if p D N:
(59.7)

are stored to be used by ABAQUS. The load routine
reads total load coefficients and computes the actual
load at each n-th FE integration point as

T
�
rp; �n; �n

� D
LmaxX
`D2

X̀
mD�`

tm`
�
rp
�
Y m` .�n; �n/ ;

(59.8)

where Lmax is the truncation degree of the SH
expansion. The total surface load does not include
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harmonic degree 0, owing to mass conservation.
Harmonic degree 1, which accounts for displacement
of the solid Earth with respect to the center of mass of
the system, is neglected here.

After first FE iteration, the post-processor code
reads, from the output of ABAQUS, the displacements
at the nodes of all the N C 1 density interfaces of
the FE grid and computes their values U.rp; �i ; �i /
at all of the pixels, by linear interpolation. The SH
coefficients of displacements at each interface are
computed as

Um
`

�
rp
� D 1

Np

NpX
iD1

U
�
rp; �i ; �i

�
Y m` .�i ; �i / :

(59.9)

The potential perturbation due to the displacement at
each interface is

˚m
`

�
rp
� D 4
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2`C 1
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Um
` .ri / .�i � �iC1/ ri

�
ri

rp
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NX
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�
rp

ri

�`�1#
:

(59.10)

It can be shown, after some algebra, that (59.10)
coincides with the terms of potential perturbation
due to the displacement of (16a, b, c) in Wu (2004).
The perturbed sea level is computed at the i th pixel of
the Earth’s surface as

S .�i ; �i / D
(	
% .a; �i ; �i /

�
� U .a; �i ; �i /




� Mice

�wAO

� C

A
O

)
O .�i ; �i / ;

(59.11)

where the total incremental potential at the pixel is
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and

C D 4
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om`

(59.13)

is the integral of sea level variation over the oceans,
where om` are the SH coefficients of the ocean function.

The SH coefficients of updated ocean load and
incremental potential due to total load are recomputed
according to (59.2) and (59.5) respectively, while those
of the updated differential load due to potential pertur-
bations become

��m`
�
rp
� D �

�pC1 � �p
� �
$m
`

�
rp
�C ˚m

`

�
rp
��
:

(59.14)
Finally, total load SH coefficients are recomputed

according to (59.7) and stored for the next ABAQUS
iteration. Iterations are repeated until displacements
do not vary significantly with respect to the previous
iteration. To speed-up computations, SH load coeffi-
cients are computed only every ten time-increments.
The coefficients at other increments are interpolated
linearly with time. We have verified that this approx-
imation does not affect appreciably the results but
reduces of a factor of ten the post-processing time.

3 Spherical Mesh Test

As a case study, we have implemented the axisym-
metric spherical grid of Fig. 59.1. The integration vol-
ume is discretized by 10 layers across the mantle,
34 elements along colatitude and 20 repetitions along
longitude.

The axisymmetric grid, composed of 6,400 eight-
nodes and 400 six-nodes (around the polar axis) linear
flat elements, is finer within a radius of 3,000 km from
the North pole where the ice load is applied. The Earth
model, described in Table 59.1, is incompressible

Fig. 59.1 Exploded view of the spherical mesh used for repro-
ducing the SELEN outputs
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Table 59.1 Parameters of Earth model employed for the numerical test

Layer Thickness (km) Density (kg/m3) Young modulus (Pa) Viscosity (Pa s) Gravity at the top (m/s2)
Lithosphere 90 4,120 2:19� 1011 1:0 � 1030 9.7075
Upper mantle 330 4,120 2:85� 1011 5:0 � 1020 9.6725
Transition zone 250 4,220 3:30 � 1011 1:0 � 1021 9.5710
Lower mantle 2,201 4,508 6:00 � 1011 2:0� 1021 9.5052
Core 3,480 10,925 – – 10.6222

Fig. 59.2 Vertical displacement along a meridian as computed
by the spectral code SELEN and by the FE code for five
iterations computed 1 (a), 8 (b) and 18 (c) kyr after deglaciation

(i. e., Poisson ratio is 	 D 1=2) and characterized
by a linear Maxwell rheology, which allows a direct
comparison with the outcomes of SELEN (Spada and
Stocchi 2007). The lithosphere is 90-km thick. The

Fig. 59.3 Displacement differences along a meridian, at differ-
ent times after deglaciation, between SELEN and FE solutions
(after five iterations)

inviscid core is simulated by appropriate boundary
conditions according to Wu (2004). The load is
circular, with a radius of 15ı and a parabolic profile.
Load thickness at the center is 2,480 m. The water
load is applied across a complementary ocean defined
by � � 30ı, assuming fixed shorelines. The FE
analysis spans from 18 ka B.P. to present with a time
grid composed of 360 increments of 50 years. The
loads are imposed instantaneously at time t D 18 ka
B.P. Rotational feedbacks are ignored. The SH is
truncated at degree Lmax D 72, while the resolution
of pixelization is 40 that corresponds to about 64,000
pixels over every interface (Tegmark 1996). Winkler
fundations (Williams and Richardson 1991) are
applied at every density interface, modeled by a bed of
springs with strength ��� where �� is density jump
and � is gravity (see Table 59.1).

Fig. 59.2 shows that the convergence at different
times after deglaciation is quite fast and is reached
after the fourth iteration. From Fig. 59.3 we observe
that the maximum deviations do not exceed a few
meters except close to the edge of the load, where the
discrepancies are smaller than 10 m. We can argue that,
far from the load, they are related to inaccuracy of
the interpolation of displacements on large integration
elements (with size of �1; 000 km in colatitude), while
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close to the load edge they probably reflect a sort of
Gibbs effect due to load discretization over the FE grid.

Conclusion

We developed a procedure to implement the
solution of the Sea Level Equation inside a
finite-element model. Following previous schemes
(Wu 2004), we introduced the pixelization of
the spherical surface of the FE model and the
interpolation of the harmonic coefficients. The
implementation of the entire procedure on a Linux
platform took advantage of the parallelization
feature of ABAQUS that improves the computing
speed almost proportionally to the number of
available cpus. We validated our solution against
the classical pseudo-spectral method (Spada and
Stocchi 2007) by applying a circular parabolic
load. The discrepancies are less than 10 m and can
be attributed to the coarseness of our prototype
FE mesh. Differently than previous authors, we
have outlined more in detail some key-issues,
such as the implementation of self-gravitation and
the spatial discretization, which are important in
order to facilitate the reproduction of the results
obtained from this approach to GIA modeling.
In this framework, the results presented are to be
seen in the perspective of providing, in a follow up
study, a full validation of the FE approach to GIA
by benchmark comparisons with available pseudo-
spectral codes and the release of the source codes
so far developed to the GIA community.
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Nečas, J., 190, 192
Neilan, R.E., 336, 369, 388
Nelson, S., 229
Nemry, P., 93
Nerem, R.S., 381
Nesvadba, O., 178, 189, 190, 227
Nettleton, L.L., 111
Neumaier, A., 154, 155
Neumann, I., 75, 78, 79
Neumayer, K.H., 287, 288
Neumeyer, J., 356
Neyman, Yu. M., 194
Nguyen, H.T., 76
Nicolas, J., 367, 369
Niedzielski, T., 153, 154, 156
Niell, A.E., 49, 131, 369, 389
Nordtvedt, K., 308
Novák, P., 211, 213

Odijk, D., 33–35
Ogden, R.T., 123
Oja, T., 376
Okada, Y., 321
Okubo, S., 356
Olesen, A., 215
Olliver, J.G., 68
Olsen, N., 303
Olson, T.R., 182, 184, 193, 234
Omang, O.C., 233
Oncken, O., 388
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Sansò, F., 348
Santos, M., 47
Sanz, J., 49
Saradjian, M.-R., 319
Satirapod, C., 130
Savaidis, P., 50
Scales, J.A., 321
Schön, S., 130



406 Author Index

Schaer, S., 136, 368
Schaffrin, B., 166, 168, 332, 342
Schatz, A.H., 228
Scherneck, H.-G., 368
Schlittgen, R., 168
Schmidt, M., 68, 120, 122, 124–126, 136
Schmitz, M., 48, 136
Schneider, T., 154, 155
Schock, E., 114
Schrama, E.J.O., 262, 274, 381
Schreiner, M., 68, 177, 178
Schuh, H., 154
Schuh, W.-D., 99, 102, 165, 168, 169
Schumaker, L.L., 121
Schwab, C., 205
Schwarz, G., 155, 383
Schwarz, K.P., 176, 178, 205
Schwarz, P., 68
Schwegmann, W., 154
Schwintzer, P., 314
Scott, L.R., 206
Secrest, D., 268
Segall, P., 369
Seidelmann, P.K., 307, 308
Seitz, M., 125
Sen, A.K., 156
Sen, M., 321
Serpelloni, E., 148, 341, 342
Sguerso, D., 53
Shah, J., 148, 149
Shaofeng, B., 205
Sharifi, M.A., 303, 319
Shen, X., 141
Shin, S.Y., 62
Shishatskii, S.P., 111
Shum, C.K., 68, 105, 124, 126
Sideris, M.G., 176, 178, 205, 234
Sigl, R., 20
Sillard, P., 332, 369
Silva, G., 3
Simon, D., 81, 82, 84
Simon, J.L., 308–310
Simons, F., 200
Simsky, A., 36, 161
Simulia, Inc., 394
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