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Foreword

Without coherent structures atmospheres and oceans would be chaotic and unpre-
dictable on all scales of time. Most well-known structures in planetary atmospheres
and the Earth oceans are jets or fronts and vortices that are interacting with each
other on a range of scales. The transition from one state to another such as in
unbalanced or adjustment flows involves the generation of waves, as well as the
interaction of coherent structures with these waves. This book presents from a fluid
mechanics perspective the dynamics of fronts, vortices, and their interaction with
waves in geophysical flows.

It provides a basic physical background for modeling coherent structures in a
geophysical context and gives essential information on advanced topics such as
spontaneous wave emission and wave-momentum transfer in geophysical flows. The
book is targeted at graduate students, researchers, and engineers in geophysics and
environmental fluid mechanics who are interested or working in these domains of
research and is based on lectures given at the Alpine summer school entitled ‘Fronts,
Waves and Vortices.’ Each chapter is self-consistent and gives an extensive list of
relevant literature for further reading. Below the contents of the five chapters are
briefly outlined.

Chapter comprises basic theory on the dynamics of vortices in rotating and strati-
fied fluids, illustrated with illuminating laboratory experiments. The different vortex
structures and their properties, the effects of Ekman spin-down, and topography on
vortex motion are considered. Also, the breakup of monopolar vortices into multiple
vortices as well as vortex advection properties will be discussed in conjunction with
laboratory visualizations.

In Chap. 2, the understanding of the different vortex instabilities in rotating,
stratified, and – in the limit – homogenous fluids are considered in conjunction with
laboratory visualizations. These include the shear, centrifugal, elliptical, hyperbolic,
and zigzag instabilities. For each instability the responsible physical mechanisms
are considered.

In Chap. 3, oceanic vortices as known from various in situ observations and
measurements introduce the reader to applications as well as outstanding ques-
tions and their relevance to geophysical flows. Modeling results on vortices high-
light physical aspects of these geophysical structures. The dynamics of ocean deep
sea vortex lenses and surface vortices are considered in relation to their genera-
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vi Foreword

tion mechanism. Further, vortex decay and propagation, interactions as well as the
relevance of these processes to ocean processes are discussed. Different types of
model equations and the related quasi-geostrophic and shallow water modeling are
presented.

In Chap. 4 geostrophic adjustment in geophysical flows and related problems
are considered. In a hierarchy of shallow water models the problem of separation
of fast and slow variables is addressed. It is shown how the separation appears at
small Rossby numbers and how various instabilities and Lighthill radiation break
the separation at increasing Rossby numbers. Topics such as trapped modes and
symmetric instability, ‘catastrophic’ geostrophic adjustment, and frontogenesis are
presented.

In Chap. 5, nonlinear wave–vortex interactions are presented, with an empha-
sis on the two-way interactions between coherent wave trains and large-scale vor-
tices. Both dissipative and non-dissipative interactions are described from a unified
perspective based on a conservation law for wave pseudo-momentum and vortex
impulse. Examples include the generation of vortices by breaking waves on a beach
and the refraction of dispersive internal waves by three-dimensional mean flows in
the atmosphere.

Grenoble, France Jan-Bert Flór
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Chapter 1
Dynamics of Vortices in Rotating and Stratified
Fluids

G.J.F. van Heijst

The planetary background rotation and density stratification play an essential role in
the dynamics of most large-scale geophysical vortices. In this chapter we will dis-
cuss some basic dynamical aspects of rotation and stratification, while focusing on
elementary vortex structures. Rotation effects will be discussed in Sect. 1.1, atten-
tion being given to basic balances, Ekman-layer effects, topography and β-plane
effects, and vortex instability. Some laboratory experiments will be discussed in
order to illustrate the theoretical issues. Section 1.2 is devoted to vortex structures
in stratified fluids, with focus on theoretical models describing their decay. Again,
laboratory experiments will play a central part in the discussion. Finally, some gen-
eral conclusions will be drawn in Sect. 1.3. For additional aspects of the laboratory
modelling of geophysical vortices the interested reader is referred to the review
papers [14] and [16].

1.1 Vortices in Rotating Fluids

Background rotation tends to make flows two-dimensional, at least when the rota-
tion is strong enough. In this chapter we will discuss some of the basic dynamics
of rotating flows and in particular of vortex structures in such flows. After having
introduced the basic equations, the principal basic balances will be discussed, fol-
lowed by some remarks on Ekman boundary layers. Basic knowledge of these topics
is important for a better understanding of vortex structures as observed in experi-
ments with rotating fluids, in particular regarding their decay. Further items that will
be discussed are topography effects, vortex instability, and advection properties of
vortices.

G.J.F. van Heijst (B)
Deptartment of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB
Eindhoven, The Netherlands, g.j.f.v.heijst@tue.nl

van Heijst, G.J.F.: Dynamics of Vortices in Rotating and Stratified Fluids. Lect. Notes Phys. 805,
1–34 (2010)
DOI 10.1007/978-3-642-11587-5_1 c© Springer-Verlag Berlin Heidelberg 2010



2 G.J.F. van Heijst

1.1.1 Basic Equations and Balances

Flows in a rotating system can be conveniently described relative to a co-rotating
reference frame. The position and velocity of a fluid parcel in an inertial frame are
denoted by r′ = (x ′, y′, z′) and v′ = v′(r′), respectively, with the primes referring
to this particular frame and (x ′, y′, z′) being the parcel’s coordinates in a Carte-
sian frame. Relative to a frame rotating about the z′-axis, the position and velocity
vectors are r = (z, y, z) and v = v(r), respectively.
For the velocity in the inertial frame we write

dr′

dt
= dr

dt
+ � × v → v′ = v + � × r (1.1)

and for the acceleration

d2r′

dt2
= d2r

dt2
+ 2� × dr

dt
+ � × � × r (1.2)

with

2� × dr
dt

= 2� × v Coriolis acceleration (1.3)

� × � × r = −∇
(

1
2�

2r2
)

centrifugal acceleration , (1.4)

where r is the radial distance from the rotation axis, see Fig. 1.1. The equation of
motion in terms of the relative velocity v can then be written as

Fig. 1.1 Definition sketch for relative motion in a co-rotating reference frame
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Dv
Dt

+ 2� × v = − 1

ρ
∇ p − ∇�+ ν∇2v, (1.5)

with p the pressure, ρ the density, ν the kinematic viscosity, t the time, and

� ≡ �gr − 1
2�

2r2, (1.6)

with �gr the gravitational potential. By introducing the ‘reduced’ pressure
P = p − pstat, with pstat = −ρ�gr + 1

2ρ�
2r2, (1.5) can be written as

∂v
∂t

+ (v · ∇)v + 2� × v = − 1

ρ
∇ P + ν∇2v . (1.7)

Together with the continuity equation ∇ · v = 0 for incompressible fluid, this forms
the basic equation for rotating fluid flow.

By introducing a characteristic length scale L and a characteristic velocity scale
U , the physical quantities are non-dimensionalized according to

v = U ṽ , r = L r̃ , t = t̃/� , P = ρ�U L p̃

(the tilde indicates the non-dimensional quantity). The non-dimensional form of
(1.7) then becomes

∂ ṽ
∂ t̃

+ Ro
(

ṽ · ∇̃
)

ṽ + 2k × ṽ = −∇̃ p̃ + E∇̃2ṽ, (1.8)

with k ≡ �/|�| , ∇̃ the non-dimensional gradient operator, and

Ro = U

�L
Rossby number (1.9)

E = ν

�L2
Ekman number. (1.10)

These non-dimensional numbers provide information about the relative importance
of the non-linear advection term and the viscous term, respectively, with respect to
the Coriolis term 2� × v. In the following, we will drop the tildes for convenience.

1.1.1.1 Geostrophic Flow

In many geophysical flow situations both the Rossby number and the Ekman number
have very small values, i.e. Ro << 1 and E << 1. In the case of steady flow, (1.8)
then becomes

2k × v = −∇ p . (1.11)
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Fig. 1.2 Geostrophically balanced flow on the northern hemisphere

This equation describes flow that is in geostrophic balance: the Coriolis force is
balanced by the pressure gradient force (−∇ p). Note that – in dimensional form –
the Coriolis force is equal to −2ρ� × v and thus acts perpendicular to v, i.e. to the
right with respect to a moving fluid parcel (on the northern hemisphere). Apparently,
geostrophic motion follows isobars, see Fig. 1.2. For large-scale flows in the atmo-
sphere, U � 10 ms−1, L � 1000 km, and � � 10−4 s−1, which gives Ro ∼ 0.1.
Large-scale oceanic flows are characterized by similarly small Ro values, so that
inertial effects are negligibly small in these flows. Likewise, it may be shown that
the Ekman numbers of these flows take even smaller values.

By taking the curl of (1.11), we derive

(k · ∇)v = 0 → ∂v
∂z

= 0 , (1.12)

which is the celebrated Taylor–Proudman theorem. Apparently, geostrophic motion
is independent of the axial coordinate z. Taylor verified this T P theorem (derived
by Proudman in 1916) experimentally in 1923 by moving a solid obstacle slowly
through a fluid otherwise rotating as a whole. A column of stagnant fluid was
observed to be attached to the moving obstacle. This phenomenon is usually referred
to as a ‘Taylor column’. According to the T P theorem, small Ro flows of a rotating
fluid are usually organized in axially aligned columns, i.e. they are uniform in the
axial direction.
In most geophysical flow situations, the situation is somewhat more complicated,
e.g. by the presence of vertical variations in the density, ρ(z). In each horizontal
plane the flow may still be in geostrophic balance (1.11), but because of ∂ρ/∂z 	=
0 the flow is sheared in the vertical. Such a balance is usually referred to as the
‘thermal wind balance’.

1.1.1.2 Motion on a Rotating Sphere

The relative flow in the Earth’s atmosphere and oceans is most conveniently described
when using a local Cartesian coordinate system (x, y, z) fixed to the Earth, with
x, y, and z pointing eastwards, northwards, and vertically upwards, respectively.
The velocity vector has corresponding components u, v, and w, while the rotation
vector can be decomposed as

� = (�x ,�y,�z) = (0,� cos ϕ,� sinϕ) , (1.13)
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with ϕ the geographical latitude. Apparently, the term 2� × v (proportional to the
Coriolis acceleration) is then written as

2� × v =
∣∣∣∣∣∣

i j k
0 2� cosϕ 2� sinϕ
u v w

∣∣∣∣∣∣
= 2�

⎛
⎝
w cosϕ − v sinϕ

u sinϕ
−u cosϕ

⎞
⎠ . (1.14)

In the ‘thin-shell’ approach it is usually assumed that w << u, v for large-scale
flows, so that (1.14) becomes

2� × v = (− f v, f u,−2�u cos ϕ) , (1.15)

with f ≡ 2� sinϕ the so-called Coriolis parameter. It expresses the fact that
the background vorticity component in the local z-direction (so perpendicular to
the plane-of-flow) varies with latitude ϕ, being zero on the equator and reaching
extreme values at the poles. This directly implies that the magnitude of the Coriolis
force also depends on the position (ϕ) on the rotating globe. The geostrophic balance
(1.11) can thus be written (in dimensional form) as

− f v = − 1

ρ

∂p

∂x
, + f u = − 1

ρ

∂p

∂y
. (1.16)

The Coriolis parameter f (ϕ) may be expanded in a Taylor series around the
reference latitude ϕ0 (see Fig. 1.3):

f (ϕ) = f (ϕ0 + δϕ) =
= 2�

[
sinϕ0 + cosϕ0

R
Rδϕ + O(δϕ2)

]
=

= 2� sinϕ0 + 2� cosϕ0

R
y + · · · ,

(1.17)

with y = Rδϕ the local northward coordinate. For flows with limited latitudinal
extension, f (ϕ) may be approximated by taking just the first term of the expansion:

f = f0 = 2� sinϕ0 , (1.18)

Fig. 1.3 Definition sketch for the expansion of f (ϕ)
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which is constant. This is the so-called f -plane approximation. For flows with larger
latitudinal extensions, the Coriolis parameter may be approximated by

f = f0 + βy , β = 2� cosϕ0

R
. (1.19)

This linear approximation is commonly referred to as the ‘beta-plane’.
As will be shown later in this chapter, the latitudinal variation in the Coriolis accel-
eration has a number of remarkable consequences.

1.1.1.3 Basic Balances

By definition, vortex flows have curvature. In order to examine possible curva-
ture effects we consider a steady, axisymmetric vortex motion in the horizontal
plane (assuming that the vortex is columnar). For pure swirling flow the radial and
azimuthal velocity components are

vr = 0 , vθ = V (r) . (1.20)

Following Holton [15] the motion of a fluid parcel along a curved trajectory can
be conveniently described in terms of the natural coordinates n and t in the local
normal and tangential directions and by defining the local radius of curvature, R (see
Fig. 1.4). Keeping in mind that R > 0 relates to anti-clockwise motion (cyclonic, on
the NH), whereas R < 0 refers to clockwise motion. For steady inviscid flow with
circular streamlines, the equation of motion (in dimensional form) is then simply

V 2

R
+ f V = − 1

ρ

dp

dn
. (1.21)

This equation represents a balance between centrifugal, Coriolis, and pressure
gradient forces. In non-dimensional form, the Rossby number would appear in front
of the centrifugal acceleration term V 2/R. We will now examine the effect of this

Fig. 1.4 Definition sketch for the natural coordinates n and t



1 Dynamics of Vortices in Rotating and Stratified Fluids 7

curvature term by varying the value of the Rossby number

Ro∗ = [(v · ∇)v]

[2� × v] = V 2/R

f V
= V

�R
, (1.22)

which is in fact a local Rossby number.

(i) Ro∗ << 1: geostrophic balance
Equation (1.21) reduces to

f V = − 1

ρ

dp

dn
, (1.23)

which is the well-known geostrophic balance . For dp
dn < 0 it describes the

cyclonic motion around a centre of low pressure, while dp
dn > 0 corresponds

with anticyclonic flow around a high-pressure area.
(ii) Ro∗ >> 1: cyclostrophic balance

In this case the Coriolis term is negligibly small (compared to the centrifugal
term) and (1.21) becomes

V 2

R
= − 1

ρ

dp

dn
→ V = ±

(
− R

ρ

dp

dn

)1/2

. (1.24)

Apparently this balance only exists for the case dp
dn < 0, with the outward

centrifugal force being balanced by the inward pressure gradient force. The
rotation can be in either direction (the sign of V is irrelevant in the term V 2/R).
This balance is encountered, e.g. in an atmospheric tornado, with typical values
of V � 30 ms−1 at a radius R � 300 m and f � 10−1 s−1 (at moderate
latitude) giving Ro∗ � 103.
Similarly large Ro∗ values are met in a bathtub vortex, whose rotation sense is
obviously not determined by the Earth rotation.

(iii) Ro∗ = O(1): gradient flow
In this case all terms in (1.21) are equally important, and the solution for V is

v = −1

2
f R ±

[
1

4
f 2 R2 − R

ρ

dp

dn

]1/2

. (1.25)

This solution represents four different balances, which are shown schematically in
Fig. 1.5. Only the flows depicted in (a) and (b) are ‘regular’, the other two being
‘anomalous’.

Note that in order to have a non-imaginary solution, the pressure gradient is
required to have a value

∣∣∣∣
dp

dn

∣∣∣∣ <
1

2
ρ|R| f 2 . (1.26)
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Fig. 1.5 Different balances in gradient flow on the NH: (a) regular low, (b) regular high, (c) anoma-
lous low, and (d) anomalous high [after Holton, 1979]

1.1.1.4 Inertial Motion

A special balanced state may exist in the absence of any pressure gradient, i.e. when
dp
dn = 0. In that case (1.21) becomes

V 2

R
+ f V = 0 , (1.27)

which describes so-called inertial motion. Fluid parcels move with constant speed
V (the solution V = 0 is trivial and physically uninteresting) along a circular path
with radius R = −V/ f < 0, i.e. in anticyclonic direction. The centrifugal force is
then exactly balanced by the inward Coriolis force. In x, y-coordinates, the motion
can be described by

u(t) = V cos f t , v(t) = −V sin f t , with V = (u2 + v2)1/2 .

The time required for the fluid parcels to perform one circular orbit is the so-called
inertial period, which is equal to T = 2π/ f .
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1.1.2 How to Create Vortices in the Lab

A barotropic vortex can be generated in a rotating fluid in a number of different
ways. One possible way is to place a thin-walled bottomless cylinder in the rotating
fluid and then stir the fluid inside this cylinder, either cyclonically or anticycloni-
cally. After allowing irregular small-scale motions to vanish and the vortex motion
to get established (which typically takes a few rotation periods) the vortex is released
by quickly lifting the cylinder out of the fluid. The vortex structure thus created
in the otherwise rigidly rotating fluid is referred to as a ‘stirring vortex’. Because
these vortices are generated within a solid cylinder with a no-slip wall, the total
circulation – and hence the total vorticity – measured in the rotating frame is zero,
i.e. stirring vortices are isolated vortex structures:

 =
∮

c
v · dr =

∫ ∫

A
ωzd A = 0 . (1.28)

An alternative way of generating vortices is to have the fluid level in the inner
cylinder lower than outside it (see Fig. 1.6): the ‘gravitational collapse’ that takes
place after lifting the cylinder implies a radial inward motion of the fluid, which
by conservation of angular momentum results in a cyclonic swirling motion. After
any small-scale and wave-like motions have vanished, the swirling motion takes
on the appearance of a columnar vortex. In contrast to the stirring vortices, these
‘gravitational collapse vortices’ have a non-zero net vorticity and are hence not
isolated. This technique as well as the generation technique of stirring vortices has
been applied successfully by Kloosterziel and van Heijst [18] in their study of the
evolution of barotropic vortices in a rotating fluid.

A related generation method has recently been used by Cariteau and Flór [4]:
they placed a solid cylindrical bar in the fluid and after pulling it vertically upwards

Fig. 1.6 Laboratory arrangement for the creation of barotropic vortices
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the resulting radial inward motion of the fluid was quickly converted into a cyclonic
swirling flow, as in the previous case.
Another vortex generation technique is based on removing some of the rotating fluid
from the tank by syphoning through a vertical, perforated tube. Again, the suction-
induced radial motion is quickly converted into a cyclonic swirling motion – owing
to the principle of conservation of angular momentum. This generation technique
has been applied by Trieling et al. [24], who showed that – outside its core – the
‘sink vortex’ has the following azimuthal velocity distribution:

vθ (r) = γ

2πr

[
1 − exp

(
− r2

L2

)]
, (1.29)

with γ the total circulation of the vortex and L a typical radial length scale. Vortices
have also been created in a rotating fluid by translating or rotating vertical flaps
through the fluid. Alternatively, buoyancy effects may also lead to vortices in a
rotating fluid, as seen, e.g. in experiments with a melting ice cube at the free surface
(see, e.g. Whitehead et al. [29] and Cenedese [7]) or by releasing a volume of denser
or lighter fluid (see, e.g. Griffiths and Linden [12]).
In all these cases, the vortices are observed to have a columnar structure and
∂vθ
∂z = 0, as follows from the TP theorem, even for larger Ro values. Viscosity

is responsible for the occurrence of an Ekman layer at the tank bottom, in which the
vortex flow is adjusted to the no-slip condition at the solid bottom. Ekman layers
play an important role in the spin-down (or spin-up) of vortices. Kloosterziel and
van Heijst [18] have studied the decay of barotropic vortices in a rotating fluid in
detail. It was found that this type of vortex, as well as the stirring-induced vor-
tex, is characterized by the following radial distributions of vorticity and azimuthal
velocity:

ωstir(r) = ω0

(
1 − r2

R2

)
exp

(
− r2

R2

)
, (1.30a)

vstir(r) = ω0r

2
exp

(
− r2

R2

)
. (1.30b)

The velocity data in Fig. 1.7a–d have been fitted with (1.30b), which shows a
very good correspondence.
Similarly, velocity data of decaying sink-induced vortices turned out to be well fitted
(see Kloosterziel and van Heijst [18]; Fig. 1.4) by

ωsink(r) = ω0 exp

(
− r2

R2

)
, (1.31a)

vsink(r) = ω0 R2

2r

[
1 − exp

(
− r2

R2

)]
. (1.31b)

Note that for large r values (r >> R) this azimuthal velocity distribution agrees
with (1.29).
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Fig. 1.7 Evolution of collapse-induced vortices in a rotating tank (from [18])

Although vortices with a velocity profile (1.31b) were found to be stable, Carton
and McWilliams [6] have shown that those with velocity profile (1.30b) are linearly
unstable to m = 2 perturbations. It may well be, however, that the instability is not
able to develop when the decay (spin-down) associated with the Ekman-layer action
is sufficiently fast. In the viscous evolution of stable vortex structures two effects
play a simultaneous role: the spin-down due to the Ekman layer, with a timescale

TE = H

(ν�)1/2
(1.32)

and the diffusion of vorticity in radial direction, which takes place on a timescale

Td = L2

ν
, (1.33)
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with H the fluid depth and L a measure of the core size of the vortex. For typical
values ν = 10−6 m2s−1,� ∼ 1 s−1, L ∼ 10−1 m, and H = 0.2 m one finds

Td ∼ 104 s , TE ∼ 2 · 102 s . (1.34)

Apparently, in these laboratory conditions the effects of radial diffusion take place
on a very long timescale and can hence be neglected. For a more extensive dis-
cussion of the viscous evolution of barotropic vortices, the reader is referred to
[18] and [20].

1.1.3 The Ekman Layer

For steady, small-Ro flow (1.8) reduces to

2k × v = −∇ p + E∇2v , (1.35)

with the last term representing viscous effects. Although E is very small, this term
may become important when large velocity gradients are present somewhere in the
flow domain. This is the case, for example, in the Ekman boundary layer at the tank
bottom, where

E∇2 ∼ E
∂2

∂z2
∼ O(1) . (1.36)

Apparently the non-dimensional layer thickness is δE ∼ E1/2 and hence in dimen-
sional form

LδE = L E1/2 =
( ν
�

)1/2
. (1.37)

In a typical rotating tank experiment we have ν = 10−6 m2s−1 (water), � � 1 s−1,
and L � 0.3 m, so that E ∼ 10−5, and hence L E1/2 ∼ 10−3 m = 1 mm. The Ekman
layer is thus very thin.
Since the (non-dimensional) horizontal velocities in the Ekman layer are O(1), the
Ekman layer produces a horizontal volume flux of O(E1/2). In the Ekman layer
underneath an axisymmetric, columnar vortex, this transport has both an azimuthal
and a radial component. Mass conservation implies that the Ekman layer conse-
quently produces an axial O(E1/2) transport, depending on the net horizontal con-
vergence/divergence in the layer. According to this mechanism, the Ekman layer
imposes a condition on the interior flow. This so-called suction condition relates the
vertical O(E1/2) velocity to the vorticity ωI of the interior flow:

wE (z = δE ) = 1

2
E1/2(ωI − ωB) (1.38)
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with

ωI = 1

r

∂

∂r
(rvθI )− 1

r

∂vrI

∂θ
(1.39)

and ωB the relative bottom ‘vorticity’. For example, in the case of a cyclonic vortex
(ωI > 0) over a tank bottom that is at rest in the rotating frame (ωB = 0), the
suction condition yields wE (z = δE ) > 0: this corresponds with a radially inward
Ekman flux (cf. Einstein’s ‘tea leaves experiment’), resulting in Ekman blowing, see
Fig. 1.8a. In the case of an anticyclonic vortex, the suction condition gives wE =
(z = δE ) < 0, see Fig. 1.8b.
In the case of an isolated vortex, like the stirring-induced vortex with vorticity pro-
file (1.30a), the Ekman layer produces a rather complicated circulation pattern, with
vertical upward motion where ωI > 0 and vertical downward motion where ωI < 0.
This secondary O(E1/2) circulation, although weak, results in a gradual change in
the vorticity distribution ωI (r) in the vortex.
According to this mechanism, a vortex may gradually change from a stable into
an unstable state, as was observed for the case of a cyclonic, stirring-induced
barotropic vortex [17]. Although this vortex was initially stable, the Ekman-driven
O(E1/2) circulation resulted in a gradual steepening of velocity/vorticity pro-
files so that the vortex became unstable and soon transformed into a tripolar
structure.

Fig. 1.8 Ekman suction or blowing, depending on the sign of the vorticity of the interior flow
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1.1.4 Vortex Instability

Figure 1.9 shows a sequence of photographs illustrating the instability of a cyclonic
barotropic isolated vortex as observed in the laboratory experiment by Kloosterziel
and van Heijst [17]. In this experiment, the cyclonic stirring-induced vortex was
released by vertically lifting the inner cylinder, and although this release process
produced some 3D turbulence the vortex soon acquired a regular appearance, as can
be seen in the smooth distribution of the dye. Then a shear instability developed with
the negative vorticity of the outer edge of the vortex accumulating in two satellite
vortices, while the positive-vorticity case acquired an elliptical shape. The newly
formed tripolar vortex rotates steadily about its central axis and was observed to
be quite robust. This 2D shear instability resulted in a redistribution of the positive
and negative vorticities and is very similar to what Flierl [9] found in his stability
study of vortex structures with discrete vorticity levels. In a similar experiment, but

Fig. 1.9 Sequence of photographs illustrating the transformation of an unstable cyclonic vortex
(generated with the stirring method) into a tripolar vortex structure (from [17])
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now with the stirring in anticyclonic direction, the anticyclonic vortex appeared to
be highly unstable, quickly showing vigorous 3D overturning motions (after which
two-dimensionality was re-established by the background rotation, upon which the
flow became organized in two non-symmetric dipolar vortices, see Fig. 1.5 in [17]).
The 3D overturning motions in the initial anticyclonic vortex are the result of a ‘cen-
trifugal instability’. Based on energetic arguments, Rayleigh analysed the stability
of axisymmetric swirling flows, which led to his celebrated circulation theorem.
According to Rayleigh’s circulation theorem a swirling flow with azimuthal velocity
v(r) is stable to axisymmetric disturbances provided that

d

dr
(rv)2 ≥ 0 . (1.40)

This analysis has been extended by Kloosterziel and van Heijst [17] to a swirling
motion in an otherwise solidly rotating fluid (angular velocity � = 1

2 f ), leading to
the following criterion:

d

dr
(rv + 1

2
f r)2 ≥ 0 stable . (1.41)

The modified Rayleigh criterion can also be written as

(v +�r)(ω + 2�) ≥ 0 stable
< 0 unstable ,

(1.42)

implying stability if vabsωabs > 0 at all positions r in the vortex flow. Kloosterziel
and van Heijst [17] applied these criteria to the sink-induced and the stirring-induced
vortices discussed earlier, with distributions of vorticy and azimuthal velocity given
by (1.31a, b) and (1.30a, b), respectively.
It was found that cyclonic sink-induced vortices are always stable to axisymmet-
ric disturbances, while their anticyclonic counterparts become unstable for Rossby
number values Ro � 0.57, with the Rossby number Ro = V/�R based on the
maximum velocity V and the radius r = R at which this maximum occurs.
For the stirring-induced vortices it was found that the cyclonic ones are unstable for
Ro � 4.5 while the anticylonic vortices are unstable for Ro � 0.65. As a rule of
thumb, these results for isolated vortices may be summarized as follows:

• only very weak anticyclonic vortices are centrifugally stable;
• only very strong cyclonic vortices are centrifugally unstable.

1.1.5 Evolution of Stable Barotropic Vortices

Assuming planar motion v = (u, v), the x, y-components of (1.7) can, after using
(1.15), be written as
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = − 1

ρ

∂P

∂x
+ ν∇2u (1.43a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = − 1

ρ

∂P

∂y
+ ν∇2v . (1.43b)

By taking the x-derivative of (1.43b) and subtracting the y-derivative of (1.43a) one
obtains the following equation for the vorticity ω = ∂v

∂x − ∂u
∂y :

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
+
(
∂u

∂x
+ ∂v

∂y

)
(ω + f ) = ν∇2ω . (1.44)

Integration of the continuity equation over the layer depth H yields

∫ H

0
∇ · vdz ⇒

(
∂u

∂x
+ ∂v

∂y

)
H = −w(z = H)+ w(z = 0) . (1.45)

Assuming a flat, non-moving free surface one has w(z = H) = 0, while the suction
condition (1.38) imposed by the Ekman layer at the bottom yields w(z = 0) =
1
2 E1/2ω. The vorticity equation (1.44) then takes the following form:

∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= ν∇2ω − 1

2
E1/2ω(ω + f ) . (1.46)

When the Rossby number Ro = |ω|/ f is small (i.e. for very weak vortices), the
nonlinear Ekman condition is usually replaced by its linear version − 1

2 E1/2 f ω. For
moderate Ro values, as encountered in most practical cases, however, one should
keep the nonlinear condition. A remarkable feature of this nonlinear condition is
the symmetry breaking associated with the term ω(ω + f ): it appears that cyclonic
vortices (ω > 0) show a faster decay than anticyclonic vortices (ω < 0) with the
same Ro value.
The vorticity equation (1.46) can be further refined by including the weak O(E1/2)

circulation driven by the bottom Ekman layer, as also schematically indicated in
Fig. 1.8. This was done by Zavala Sansón and van Heijst [32], resulting in

∂ω

∂t
+ J (ω,�)− 1

2
E1/2∇� · ∇ω = ν∇2ω − 1

2
E1/2ω(ω + f ) , (1.47)

with J the Jacobian operator and ψ the streamfunction, defined as v = ∇ × (ψk),
with k the unit vector in the direction perpendicular to the plane of flow. These
authors have examined the effect of the individual Ekman-related terms in (1.47) by
numerically studying the time evolution of a sink-induced vortex for various cases:
with and without the O(E1/2) advection term, with and without the (non)linear
Ekman term. Not surprisingly, the best agreement with experimental observations
was obtained with the full version (1.47) of the vorticity equation.
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The action of the individual Ekman-related terms in (1.47) can also be nicely exam-
ined by studying the evolution of a barotropic dipolar vortex. In the laboratory such
a vortex is conveniently generated by dragging a thin-walled bottomless cylinder
slowly through the fluid, while gradually lifting it out. It turns out that for slow
enough translation speeds the wake behind the cylinder becomes organized in a
columnar dipolar vortex. Flow measurements have revealed that this vortex is in very
good approximation described by the Lamb–Chaplygin model (see [21]) with the
dipolar vorticity structure confined in a circular region, satisfying a linear relation-
ship with the streamfunction, i.e. ω = cψ . Zavala Sansón et al. [31] have performed

Fig. 1.10 Sequence of vorticity snapshots obtained by numerical simulation of the Lamb–
Chaplygin dipole based on (1.46), both for nonlinear Ekman term (left column) and linear Ekman
term (right column). Reproduced from Zavala Sansón et al. [31]
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numerical simulations based on the vorticity equation (1.46), both for the linear and
for the nonlinear terms. When the nonlinear term is included, the difference in decay
rates of cyclonic and anticyclonic vortices becomes clearly visible in the increasing
asymmetry of the dipolar structure: its anticyclonic half becomes relatively stronger,
thus resulting in a curved trajectory of the dipole, see Fig. 1.10.

1.1.6 Topography Effects

Consider a vortex column in a layer of fluid that is rotating with angular velocity
�. Assuming that viscous effects play a minor role on the timescale of the flow
evolution that we consider here, Helmholtz’ theorem applies:

ωabs

H
= 2�+ ω

H
= constant , (1.48)

where ωabs and ω are the absolute and relative vorticities and H the column height
(= fluid depth). This conserved quantity (2� + ω)/H is commonly referred to as
the potential vorticity. Apparently, a change in the column height H (see Fig. 1.11)
results in a change in the relative vorticity. The term 2� in (1.48) implies a symme-
try breaking, in the sense that cyclonic and anticyclonic vortices behave differently
above the same topography: a cyclonic vortex (ω > 0) moving into a shallower
area becomes weaker, while an anticyclonic vortex (ω < 0) moving into the same
shallower area becomes more intense.
In the so-called shallow-water approximation the large-scale motion in the atmo-
sphere or the ocean can be considered as organized in the form of fluid or vortex
columns that are oriented in the local vertical direction, see Fig. 1.12. For each
individual column the potential vorticity is conserved (as in the case considered
above), taking the following form:

f + ω

H
= constant, (1.49)

Fig. 1.11 Stretching or squeezing of vortex columns over topography results in changes in the
relative vorticity
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Fig. 1.12 Vortex column in a spherical shell (ocean, atmosphere) covering a rotating sphere

with f = 2� sinϕ the Coriolis parameter, as introduced in (1.15), and H the local
column height. It should be kept in mind that the vortex columns, and hence the
relative-vorticity vector, are oriented in the local vertical direction, so that their abso-
lute vorticity is (2� sinϕ + ω), the first term being the component of the planetary
vorticity in the local vertical direction.
In order to demonstrate the implications of conservation of potential vorticity (1.49)
on large-scale geophysical flows, we consider a vortex in a fluid layer with a constant
depth H0. When this vortex is shifted northwards, f increases in order to keep ( f +
ω)/H0 constant. Here we meet the same asymmetry due to the background vorticity
as in the topography case discussed above: a cyclonic vortex (ω0 > 0) moving
northwards becomes weaker, while an anticyclonic vortex (ω0 < 0) will intensify
when moving northwards. This is usually referred to as asymmetry caused by the
‘β-effect’, i.e. the gradient in the planetary vorticity.
Conservation of potential vorticity, as expressed by (1.49), can now be exploited to
model the planetary β-effect in a rotating tank by a suitably chosen bottom topogra-
phy. Changes of the Coriolis parameter f with the northward coordinate y, as in the
β-plane approximation f (y) = f0 + βy, see (1.19), can be dynamically mimicked
in the laboratory by a variation in the water depth H(y), according to

f (y)+ ω

H0
= f0 + ω

H(y)
= constant ,

GFD LAB

(1.50)

with H0 the constant fluid depth in the geophysical case (GFD) and f0 = 2� the
constant Coriolis parameter in the rotating tank experiment (LAB). In general, mov-
ing into shallower water in the rotating fluid experiment corresponds with moving
northwards in the GFD case. It can be shown (see, e.g. [13]) that for small Ro values
and weak topography effects (small amplitude: �h << H , and weak slopes ∇h)
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the β-plane approximation f (y) = f0 +βy can be simply modelled by a uniformly
sloping bottom in a rotating fluid tank. This situation is commonly referred to as
the ‘topographic β-plane’. Since the motion of a fluid column or parcel on a (topo-
graphic) β-plane implies changes in its relative vorticity, the following question a
rises: How will a vortex structure on a (topographic) β-plane behave? Let us first
consider a simple, axisymmetric (monopolar) vortex motion. Obviously, on an f -
plane ( f = f0) such changes in ω are not introduced and hence the vortex flow is
unaffected. The situation on a β-plane is essentially different, however: the relative
vorticity ω of fluid parcels in the primary vortex flow that are advected northwards
will decrease, while that of southward advected parcels will increase. As a result,
a dipolar perturbation will be imposed on the primary vortex, which will result in
a drift of the vortex structure. This drift has a westward component (i.e. with the
‘north’ or ‘shallow’ on its right), the cyclonic vortices drifting in NW direction and
the anticyclonic ones moving in SW direction. For a more detailed account on this
topographic drift, the reader is referred to Carnevale et al. [5].
The motion of a dipolar vortex on a β-plane is even more intricate. Due to its
self-propelling mechanism, a symmetric dipole on an f -plane will move along a
straight trajectory. When released on a β-plane, any northward/southward motion
of the dipolar structure implies changes in the relative vorticity, i.e. changes in
the strengths of the dipole halves: when moving with a northward component the
cyclonic part of the dipole will become weaker, while the anticyclonic part intensi-
fies. As a result, the dipole becomes asymmetric and starts to move along a curved
trajectory. Depending on the orientation angle at which the dipole is released with
respect to the east–west axis, it may perform a meandering motion towards the east
or a cycloid-like motion in the western direction. This behaviour, which was con-
firmed experimentally by Velasco Fuentes and van Heijst [27], may be modelled
in a simple way by applying a so-called modulated point-vortex model, in which
the strengths of the vortices are made functions of the northward coordinate y.
For further details on this type of modelling, the reader is referred to Zabusky and
McWilliams [30] and Velasco Fuentes et al. [28].

1.2 Vortices in Stratified Fluids

The dynamics of many large-scale geophysical flows is essentially influenced by
density stratification. In this section we will pay some attention to one specific type
of flows, viz. the dynamics of pancake-shaped monopolar vortices.

1.2.1 Basic Properties of Stratified Fluids

In order to reveal some basic properties of density stratification we carry out the
following ‘thought experiment’: in a linearly stratified fluid column we displace a
little fluid parcel vertically upwards over a distance ζ, see Fig. 1.13. How will this
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Fig. 1.13 Schematic diagram of the virtual experiment with the displaced fluid parcel

parcel move when released? In this ideal experiment it is assumed that no mixing
occurs between the displaced parcel and the ambient. By displacing the parcel over
a vertical distance ζ it is introduced in an ambient with a smaller density, the density
difference being

δρ = −dρ

dz
ζ . (1.51)

The downward restoring gravity force (per unit volume) is then

gζ
dρ

dz
, (1.52)

which – in absence of any other forces – results in a vertical acceleration d2ζ

dt2 . The
equation of motion for the displaced parcel is then

ρ
d2ζ

dt2
= g

dρ

dz
ζ (1.53)

or

d2ζ

dt2
+ N 2ζ = 0, (1.54)

with

N 2 ≡ − g

ρ

dρ

dz
. (1.55)

The quantity N is usually referred to as the ‘buoyancy frequency’. For a statically
stable stratification ( dρ

dz < 0) this frequency N is real, and the solutions of (1.54)
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take the form of harmonic oscillations. For example, for the initial condition ζ(t =
0) = ζ0 and ζ ′(t = 0) = 0 the solution is ζ(t) = ζ0 cos Nt , which describes an
undamped wave with the natural frequency N . Addition of some viscous damping
leads to a damped oscillation, with the displaced parcel finally ending at its original
level ζ = 0. Apparently, this stable stratification supports wavelike motion, but
vertical mixing is suppressed.
For an unstable stratification ( dρ

dz > 0) the buoyancy frequency is purely imaginary,

i.e. N = i N , with N real. For the same initial conditions the solution of (1.54) now
has the following form:

ζ(t) = 1

2
ζ0(e

−Nt + eNt ) . (1.56)

The latter term has an explosive character, representing strong overturning flows and
hence mixing. In what follows we concentrate on vortex flows in a stably stratified
fluid.

1.2.2 Generation of Vortices

Experimentally, vortices may be generated in a number of different ways, some of
which are schematically drawn in Fig. 1.14. Vortices are easily produced by local-
ized stirring with a rotating, bent rod or by using a spinning sphere. In both cases the
rotation of the device adds angular momentum to the fluid, which is swept outwards
by centrifugal forces. After some time the rotation of the device is stopped, upon
which it is lifted carefully out of the fluid. It usually takes a short while for the
turbulence introduced during the forcing to decay, until a laminar horizontal vortex
motion results. The shadowgraph visualizations shown in Fig. 1.15 clearly reveal
the turbulent region during the forcing by the spinning sphere and the more smooth
density structure soon after the forcing is stopped. Vortices produced in this way
(either with the spinning sphere or with the bent rod) typically have a ‘pancake’

Fig. 1.14 Forcing devices for generation of vortices in a stratified fluid (from [10])
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Fig. 1.15 Shadowgraph visualization of the flow generated by a rotating sphere (a) during the
forcing and (b) at t � 3 s after the removal of the sphere. Experimental parameters: forcing
rotation speed 675 rpm, forcing time 60 s, N = 1.11 rad/s, and sphere diameter 3.8 cm (from [11])

shape, with the vertical size of the swirling fluid region being much smaller than
its horizontal size L (Fig. 1.16). This implies large gradients of the flow in the
z-direction and hence the presence of a radial vorticity component ωr . Although
the swirling motion in these thin vortices is in good approximation planar, the sig-
nificant vertical gradients imply that the vortex motion is not 2D. Additionally, the
strong gradients in z-direction imply a significant effect of diffusion of vorticity in
that direction.
Alternatively, a vortex may be generated by tangential injection of fluid in a thin-
walled, bottomless cylinder, as also shown in Fig. 1.14. The swirling fluid volume is
released by lifting the cylinder vertically. After some adjustment, again a pancake-
like vortex is observed with features quite similar to the vortices produced with the
spinning devices.
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Fig. 1.16 Sketch of the pancake-like structure of the swirling region in the stratified fluid

1.2.3 Decay of Vortices

Flór and van Heijst [11] have measured the velocity distributions in the horizontal
symmetry plane for vortices generated by either of the forcing techniques mentioned
above. An example of the measured radial distributions of the azimuthal velocity
vθ (r) and the vertical component ωz of the vorticity is shown in Fig. 1.17. Since the
profiles are scaled by their maximum values Vmax andωmax, it becomes apparent that
the profiles are quite similar during the decay process. This remarkable behaviour
motivated Flór and van Heijst [11] to develop a diffusion model that describes vis-
cous diffusion of vorticity in the z-direction. This model was later extended by
Trieling and van Heijst [24], who considered diffusion of ωz from the midplane
z = 0 (horizontal symmetry plane) in vertical as well as in radial direction. The
basic assumptions of this extended diffusion model are the following:

• the midplane z = 0 is a symmetry plane;
• at the midplane z = 0 : ω = (0, 0, ωz);

Fig. 1.17 Radial distributions of (a) the azimuthal velocity vθ (r) and (b) the vertical vorticity
component ω measured at half-depth in a sphere-generated vortex for three different times t . The
profiles have been scaled by the maximum velocity Vmax and the maximum vorticity ωx and the
radius by the radial position Rmax of the maximum velocity (from [11])
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• near the midplane the evolution of the vertical vorticity ωz is governed by

∂ωz

∂t
+ J (ωz, ψ) = ν∇2

hωz + ν
∂2ωz

∂z2
; (1.57)

• axisymmetry implies J (ωz, ψ) = 0;
• the solution can be written as

ωz(r, z, t) = ω(r, t)�(z, t) . (1.58)

After substitution of (1.58) in (1.57) one arrives at

∂ω

∂t
= ν

r

∂

∂r

(
r
∂ω

∂r

)
, (1.59)

∂�

∂t
= ν

∂2�

∂z2
. (1.60)

Apparently, the horizontal diffusion and the vertical diffusion are separated, as they
are described by two separate equations. For an isolated vortex originally concen-
trated in one singular point, Taylor [23] derived the following solution for the hori-
zontal diffusion equation (1.59):

ω(r, t) = C

(νt)2

[
1 − r2

4νt

]
exp

(
− r2

4νt

)
. (1.61)

Since we are considering radial diffusion of a non-singular initial vorticity distribu-
tion, this solution is modified and written as

ω(r, t) = C

ν2(t + t0)2

[
1 − r2

4ν(t + t0)

]
exp

(
− r2

4ν(t + t0)

)
. (1.62)

The corresponding expression of the azimuthal velocity is

vθ (r, t) = Cr

2ν2(t + t0)2
exp

(
− r2

4ν(t + t0)

)
. (1.63)

From this solution it appears that the radius rm of the peak velocity vmax is given by

r2
m = r2

0 + 2νt , with r0 = √
2νt0 . (1.64)

After introducing the following scaling:

r̃ = r/rm , ω̃ = ω/ωm , ṽθ = vθ/ωmrm, (1.65)

the solutions (1.62) and (1.63) can be written as
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ω̃ =
[
1 − 1

2 r̃2
]

exp
(
− 1

2 r̃2
)

(1.66)

ṽθ = 1
2 r̃ exp

(
− 1

2 r̃2
)
. (1.67)

This scaled solution reveals a ‘Gaussian vortex’, although changing in time.
In order to solve (1.60) for the vertical diffusion, the following initial condition is
assumed:

�(z, 0) = �0 · δ(z) , (1.68)

with δ(z) the Dirac function. The solution of this problem is standard, yielding

�(z, t) = �0√
νt

exp

(
− z2

4νt

)
. (1.69)

The total solution of the extended diffusion model is then given by

ω̂(r, z, t) = ω(r, t)
�0√
νt

exp

(
− z2

4νt

)
, (1.70)

with ω(r, t) given by (1.62).
According to this result, the decay of the maximum value ω̂max of the vertical vor-
ticity component (at r = 0) at the halfplane z = 0 behaves like

ω̂max = C�0

ν5/2(t + t0)2
√

t
. (1.71)

An experimental verification of these results was undertaken by Trieling and van
Heijst [25]. Accurate flow measurements in the midplane z = 0 of vortices produced
by either the spinning sphere or the tangential-injection method showed a very good
agreement with the extended diffusion model, as illustrated in Fig. 1.18. The agree-
ment of the data points at three different stages of the decay process corresponds
excellently with the Gaussian-vortex model (1.66) and (1.67). Also the time evolu-
tions of other quantities like rm, ωm , and vm/rm show a very good correspondence
with the extended diffusion model. For further details, the reader is referred to [25].
In order to investigate the vertical structure of the vortices produced by the tangential-
injection method, Beckers et al. [2] performed flow measurements at different hori-
zontal levels. These measurements confirmed the z-dependence according to (1.70).
Their experiments also revealed a remarkable feature of the vertical distribution of
the density ρ, see Fig. 1.19.

Just after the tangential injection, the density profile shows more or less a two-
layer stratification within the confining cylinder, with a relatively sharp interface
between the upper and the lower layers. During the subsequent evolution of the
vortex after removing the cylinder, this sharp gradient vanishes gradually. In order
to better understand the effect of the density distribution on the vortex dynamics, we
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Fig. 1.18 Scaled profiles of (a) the azimuthal velocity and (b) the vertical vorticity of a vortex gen-
erated by the spinning sphere. The measured profiles correspond to three different times: t = 120 s
(squares), 480 s (circles), and 720 s (triangles). The lines represent the Gaussian-vortex model
(1.66)–(1.67) (from [25])

consider the equation of motion. Under the assumption of a dominating azimuthal
motion, the non-dimensional r, θ, z-components of the Navier–Stokes equation for
an axisymmetric vortex are

−v
2
θ

r
= −∂p

∂r
(1.72)

∂vθ

∂t
= 1

Re

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2
+ ∂2vθ

∂z2

)
(1.73)

0 = −∂p

∂z
− ρ

F2
(1.74)

with

Re = V L/ν Reynolds number
F = V/(L N ) Froude number

both based on typical velocity and length scales V and L , respectively. The radial
component (1.72) describes the cyclostrophic balance – see (1.24). The azimuthal
component (1.73) describes diffusion of vθ in r, z-directions, while the z-component
(1.74) represents the hydrostatic balance. Elimination of the pressure in (1.72) and
(1.74) yields

F2 2vθ
r

∂vθ

∂z
+ ∂ρ

∂r
= 0 . (1.75)



28 G.J.F. van Heijst

Fig. 1.19 Vertical density structures in the centre of the vortex produced with the tangential-
injection method. The profiles are shown (a) before the injection, (b) just after the injection, but
with the cylinder still present, (c) soon after the removal of the cylinder, and (d) at a later stage
(from [2])

This is essentially the ‘thermal wind’ balance, which relates horizontal density gra-
dients ( ∂ρ

∂r ) with vertical shear in the cyclostrophic velocity field ( ∂vθ
∂z ). Obviously,

the vortex flow field vθ implies a specific density field to have a cyclostrophically
balanced state. In order to study the role of the cyclostrophic balance, numerical
simulations based on the full Navier–Stokes equations for axisymmetric flow have
been carried out by Beckers et al. [2] for a number of different initial conditions. In
case 1 the initial state corresponds with a density perturbation but with vθ = 0, i.e.
without the swirling flow required for the cyclostrophic balance (1.72). The initial
state of case 2 corresponds with a swirling flow vθ , but without the density structure
to keep it in the cyclostrophic balance as expressed by (1.75). In both cases, a circu-
lation is set up in the r, z-plane, because either the radial density gradient force is not
balanced (case 1) or the centrifugal force is not balanced (case 2). Figure 1.20 shows
schematic drawings of the resulting circulation in the r, z-plane for both cases. A
circulation in the r, z-plane implies velocity components vr and vz , and hence an
azimuthal vorticity component ωθ , defined as
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Fig. 1.20 (a) Schematic drawing of the shape of two isopycnals corresponding with the density
perturbation introduced in case 1, with the resultant circulation sketched in (b). The resulting cir-
culation arising in case 2, in which the centrifugal force is initially not in balance with the radial
density gradient, is shown in (c) (from [2])

ωθ = ∂vr

∂z
− ∂vz

∂r
. (1.76)

The numerically calculated spatial and temporal evolutions of ωθ as well as the
density perturbation ρ̃ are shown graphically in Fig. 1.21. Soon after the density
perturbation is released, a double cell circulation pattern is visible in the ωθ plot,
accompanied by two weaker cells. The multiple cells in the later contour plots indi-
cate the occurrence of internal waves radiating away from the origin. A similar
behaviour can be observed for case 2, see Fig. 1.22. Additional simulations were
carried out for an initially balanced vortex (case 3). In this case the simulations do
not show any pronounced waves – as is to be expected for a balanced vortex. How-

Fig. 1.21 Contour plots in the r, z-plane of the azimuthal vorticity ωθ in (a) and the density per-
turbation ρ̃ in (b) as simulated numerically for case 1 (from [2])



30 G.J.F. van Heijst

Fig. 1.22 Similar as Fig. 1.21, but now for numerical simulation case 2 (from [2])

ever, due to diffusion the velocity structure changes slowly in time, thus bringing
the vortex slightly out of balance. As a result, the flow system adjusts, giving rise to
the formation of weak ωθ and changes in ρ̃. For further details, the reader is referred
to Beckers et al. [2].

1.2.4 Instability and Interactions

The pancake-shaped vortices described above may under certain conditions become
unstable. For example, the monopolar vortex can show a transition into a tripolar
structure, as described by Flór and van Heijst [11]. A more detailed experimental
and numerical study was performed by Beckers et al. [3], which revealed that the
tripole formation critically depends on the values of the Reynolds number Re, the
Froude number F , and the ‘steepness’ of the initial azimuthal velocity profile. In
addition to the tripolar vortex, which can be considered as a wavenumber m = 2
instability of the monopolar vortex, higher-order instability modes were formed in
specially designed experiments by Beckers [1]. In these experiments the vortices
were generated by the tangential-injection method, but now in the annular region
between two thin-walled cylinders, thus effectively increasing the steepness of the
vθ profile of the released vortex and promoting higher-order instability modes.
Besides, m = 3 and m = 4 instability was promoted by adding perturbations of this
wavenumber in the form of thin metal strips connecting inner and outer cylinders
under angles of 120◦ and 90◦, respectively. In the former case the monopolar vortex
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Fig. 1.23 Sequence of dye-visualization pictures showing the evolution of a pancake-shaped vor-
tex in a stratified fluid on which an m = 4 perturbation was imposed (from [1])

quickly transformed into a triangular core vortex with three counter-rotating satellite
vortices at its sides. This structure turned out to be unstable and was observed to
show a transition to a stable tripolar structure. Likewise, the m = 4 perturbation
led to the formation of a square core vortex with four satellite vortices at its sides.
Again, this vortex structure was unstable, showing a quick transformation into a
tripolar vortex, with the satellite vortices at relative large separation distances from
the core vortex, see Fig. 1.23. Details of these experiments can be found in Appendix
A of the PhD thesis of Beckers [1]. It should be noted that this type of instability
behaviour was also found in the numerical/experimental study of Kloosterziel and
Carnevale [19] on 2D vortices in a rotating fluid.
Schmidt et al. [26] investigated the interaction of monopolar, pancake-like vortices
generated close to each other, on the same horizontal level. In their experiments,
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Fig. 1.24 Sequence of dye-visualization pictures showing the evolution of two counter-rotating
pancake vortices released at small separation distance (from [26])

they created vortices by the tangential-injection method, while they systematically
changed the distance between the confining cylinders. A remarkable result was
obtained for counter-rotating vortices at the closest possible separation distance,
viz. with the cylinders touching. After vertically withdrawing the cylinders the vor-
tices showed an interesting behaviour, shown by the sequence of dye-visualization
pictures displayed in Fig. 1.24. Apparently, the two monopolar vortices finally give
rise to two dipole structures moving away from each other. The explanation for this
behaviour lies in the fact that the vortices generated with this tangential-injection
device are ‘isolated’, i.e. their net circulation is zero (because of the no-slip con-
dition at the inner cylinder wall): each vortex has a vorticity core surrounded by
a ring of oppositely signed vorticity. The dye visualization clearly shows that the
cores quickly combine into one dipolar vortex, while the shields of opposite vor-
ticity are advected forming a second, weaker dipolar vortex moving in opposite
direction.
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1.3 Concluding Remarks

In the preceding sections we have discussed some basic dynamical features of vor-
tices in rotating fluids (Sect. 1.1) and stratified fluids (Sect. 1.2). By way of illus-
tration of the theoretical issues, a number of laboratory experiments on vortices
were highlighted. Given the scope of this chapter, we had to restrict ourselves in the
discussion and the selection and presentation of the material was surely biased by the
author’s involvement in a number of studies of this type of vortices. For example,
much more can be said about vortex instability. What about the dynamics of tall
vortices in a stratified fluid? What about interactions of pancake-shaped vortices
generated at different levels in the stratified fluid column? Some of these questions
will be treated in more detail by Chomaz et al. [8] in Chapter 2 of this volume.
Other interesting phenomena can be encountered when rotation and stratification
are present simultaneously. In that case, the structure and shape of coherent vortices
are highly dependent on the ratio f/N , see, e.g. Reinaud et al. [22]. These and many
more aspects of geophysical vortex dynamics fall outside the limited scope of this
introductory text.
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Chapter 2
Stability of Quasi Two-Dimensional Vortices

J.-M. Chomaz, S. Ortiz, F. Gallaire, and P. Billant

Large-scale coherent vortices are ubiquitous features of geophysical flows. They
have been observed as well at the surface of the ocean as a result of meandering of
surface currents but also in the deep ocean where, for example, water flowing out of
the Mediterranean sea sinks to about 1000 m deep into the Atlantic ocean and forms
long-lived vortices named Meddies (Mediterranean eddies). As described by Armi
et al. [1], these vortices are shallow (or pancake): they stretch out over several kilo-
meters and are about 100 m deep. Vortices are also commonly observed in the Earth
or in other planetary atmospheres. The Jovian red spot has fascinated astronomers
since the 17th century and recent pictures from space exploration show that mostly
anticyclonic long-lived vortices seem to be the rule rather than the exception. For
the pleasure of our eyes, the association of motions induced by the vortices and
a yet quite mysterious chemistry exhibits colorful paintings never matched by the
smartest laboratory flow visualization (see Fig. 2.1). Besides this decorative role,
these vortices are believed to structure the surrounding turbulent flow. In all these
cases, the vortices are large scale in the horizontal direction and shallow in the ver-
tical. The underlying dynamics is generally believed to be two-dimensional (2D) in
first approximation. Indeed both the planetary rotation and the vertical strong strati-
fication constrain the motion to be horizontal. The motion tends to be uniform in the
vertical in the presence of rotation effects but not in the presence of stratification. In
some cases the shallowness of the fluid layer also favors the two-dimensionalization
of the vortex motion. In the present contribution, we address the following question:
Are such coherent structures really 2D? In order to do so, we discuss the stability
of such structures to three-dimensional (3D) perturbations paying particular atten-
tion to the timescale and the length scale on which they develop. Five instability
mechanisms will be discussed, all having received renewed attention in the past few
years. The shear instability and the generalized centrifugal instability apply to iso-
lated vortices. Elliptic and hyperbolic instability involve an extra straining effect due
to surrounding vortices or to mean shear. The newly discovered zigzag instability
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Fig. 2.1 Artwork by Ando Hiroshige

also originates from the straining effect due to surrounding vortices or to mean shear,
but is a “displacement mode” involving large horizontal scales yet small vertical
scales.

2.1 Instabilities of an Isolated Vortex

Let us consider a vertical columnar vortex in a fluid rotating at angular velocity� in
the presence of a stable stratification with a Brunt–Väisälä frequency N 2 = d ln ρ

dz g.
The vortex is characterized by a distribution of vertical vorticity, ζmax, which, from
now on, only depends on the radial coordinate r and has a maximum value ηmax.
The flow is then defined by two nondimensional parameters: the Rossby number
Ro = ζmax

2� and the Froude number F = ζmax
N . The vertical columnar vortex is

first assumed to be axisymmetric and isolated from external constrains. Still it may
exhibit two types of instability, the shear instability and the generalized centrifugal
instability.
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2.1.1 The Shear Instability

The vertical vorticity distribution exhibits an extremum:

dζ

dr
= 0. (2.1)

Rayleigh [44] has shown that the configuration is potentially unstable to the Kelvin–
Helmholtz instability. This criterion is similar to the inflexional velocity profile cri-
terion for planar shear flows (Rayleigh [43]). These modes are 2D and therefore
insensitive to the background rotation. They affect both cyclones and anticyclones
and only depend on the existence of a vorticity maximum or minimum at a certain
radius. As demonstrated by Carton and McWilliams [11] and Orlandi and Carnevale
[36] the smaller the shear layer thickness, the larger the azimuthal wavenumber m
that is the most unstable. Three-dimensional modes with low axial wavenumber are
also destabilized by shear but their growth rate is smaller than in the 2D limit. This
instability mechanism has been illustrated by Rabaud et al. [42] and Chomaz et al.
[13] (Fig. 2.2).

Fig. 2.2 Azimuthal Kelvin–Helmholtz instability as observed by Chomaz et al. [13]

2.1.2 The Centrifugal Instability

In another famous paper, Rayleigh [45] also derived a sufficient condition for sta-
bility, which was extended by Synge [47] to a necessary condition in the case of
axisymmetric disturbances. This instability mechanism is due to the disruption of
the balance between the centrifugal force and the radial pressure gradient. Assum-
ing that a ring of fluid of radius r1 and velocity uθ,1 is displaced at radius r2 where
the velocity equals uθ,2, (see Fig. 2.3) the angular momentum conservation implies
that it will acquire a velocity u′

θ,1 such that r1uθ,1 = r2u′
θ,1. Since the ambient
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pressure gradient at r2 exactly balances the centrifugal force associated to a velocity
uθ,2, it amounts to ∂p/∂r = ρu2

θ,2/r2. The resulting force density at r = r2 is
ρ
r2
((u′

θ,1)
2 − (uθ,2)2). Therefore, if (u′

θ,1)
2 < (uθ,2)2, the pressure gradient over-

comes the angular momentum of the ring which is forced back to its original posi-
tion, while if on contrary (u′

θ,1)
2 > (uθ,2)2, the situation is unstable. Stability is

therefore ensured if u2
θ,1r2

1 < u2
θ,2r2

2 . The infinitesimal analog of this reasoning
yields the Rayleigh instability criterion

d

dr
(uθr)

2 ≤ 0, (2.2)

or equivalently

δ = 2ζuθ /r < 0, (2.3)

where ζ indicates the axial vorticity and δ is the so-called Rayleigh discriminant.
In reality, the fundamental role of the Rayleigh discriminant was further understood
through Bayly’s [2] detailed interpretation of the centrifugal instability in the context
of so-called shortwave stability theory, initially devoted to elliptic and hyperbolic
instabilities (see Sect. 2.3 and Appendix). Bayly [2] considered non-axisymmetric
flows, with closed streamlines and outward diminishing circulation. He showed
that the negativeness of the Rayleigh discriminant on a whole closed streamline
implied the existence of a continuum of strongly localized unstable eigenmodes for
which pressure contribution plays no role. In addition, it was shown that the most
unstable mode was centered on the radius rmin where the Rayleigh discriminant
reaches its negative minimum δ(rmin) = δmin and displayed a growth rate equal to
σ = √−δmin.

On the other hand, Kloosterziel and van Heijst [21] generalized the classical
Rayleigh criterion (2.3) in a frame rotating at rate � for circular streamlines. This
centrifugal instability occurs when the fluid angular momentum decreases outward:

2r3 d
(
r2(�+ uθ /r)

)2
dr

= (�+ uθ /r) (2�+ ζ ) < 0. (2.4)

This happens as soon as the absolute vorticity ζ + 2� or the absolute angular
velocity � + uθ /r changes sign. If vortices with a relative vorticity of a single

uθ,1

uθ,2

r1 r2

Fig. 2.3 Rayleigh centrifugal instability mechanism
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sign are considered, centrifugal instability may occur only for anticyclones when
the absolute vorticity is negative at the vortex center, i.e., if Ro−1 is between −1
and 0. The instability is then localized at the radius where the generalized Rayleigh
discriminant reaches its (negative) minimum.

In a rotating frame, Sipp and Jacquin [48] further extended the generalized
Rayleigh criterion (2.4) for general closed streamlines by including rotation in the
framework of shortwave stability analysis, extending Bayly’s work. A typical exam-
ple of the distinct cyclone/anticyclone behavior is illustrated in Fig. 2.4 where a
counter-rotating vortex pair is created in a rotating tank (Fontane [19]). For this
value of the global rotation, the columnar anticyclone on the right is unstable while
the cyclone on the left is stable and remains columnar. The deformations of the anti-
cyclone are observed to be axisymmetric rollers with opposite azimuthal vorticity
rings.
The influence of stratification on centrifugal instability has been considered to fur-
ther generalize the Rayleigh criterion (2.4). In the inviscid limit, Billant and Gal-
laire [9] have shown the absence of influence of stratification on large wavenum-
bers: a range of vertical wavenumbers extending to infinity are destabilized by the
centrifugal instability with a growth rate reaching asymptotically σ = √−δmin.
They also showed that the stratification will re-stabilize small vertical wavenumbers
but leave unaffected large vertical wavenumbers. Therefore, in the inviscid strati-
fied case, axisymmetric perturbations with short axial wavelength remain the most
unstable, but when viscous effects are, however, also taken into account, the leading

Anticyclone Cyclone

Fig. 2.4 Centrifugal instability in a rotating tank. The columnar vortex on the left is an anticyclone
and is centrifugally unstable whereas the columnar vortex on the right is a stable cyclone (Fontane
[19])
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unstable mode becomes spiral for particular Froude and Reynolds number ranges
(Billant et al. [7]).

2.1.3 Competition Between Centrifugal and Shear Instability

Rayleigh’s criterion is valid for axisymmetric modes (m = 0). Recently Billant and
Gallaire [9] have extended the Rayleigh criterion to spiral modes with any azimuthal
wave number m and derived a sufficient condition for a free axisymmetric vortex
with angular velocity uθ /r to be unstable to a three-dimensional perturbation of
azimuthal wavenumber m: the real part of the growth rate

σ(r) = −imuθ /r +√−δ(r)

is positive at the complex radius r = r0 where ∂σ(r)/∂r = 0, where δ(r) =
(1/r3)∂(r2u2

θ )/∂r is the Rayleigh discriminant. The application of this new cri-
terion to various classes of vortex profiles showed that the growth rate of non-
axisymmetric disturbances decreased as m increased until a cutoff was reached.
Considering a family of unstable vortices introduced by Carton and McWilliams
[11] of velocity profile uθ = r exp(−rα), Billant and Gallaire [9] showed that the
criterion is in excellent agreement with numerical stability analyses. This approach
allows one to analyze the competition between the centrifugal instability and the
shear instability, as shown in Fig. 2.5, where it is seen that centrifugal instability
dominates azimuthal shear instability.

The addition of viscosity is expected to stabilize high vertical wavenumbers,
thereby damping the centrifugal instability while keeping almost unaffected

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8
α = 4

m

σc

σ2D

Fig. 2.5 Growth rates of the centrifugal instability for k = ∞ (dashed line) and shear instability
for k = 0 (solid line) for the Carton and McWilliams’ vortices [11] for α = 4
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two-dimensional azimuthal shear modes of low azimuthal wavenumber. This may
result in shear modes to become the most unstable.

2.2 Influence of an Axial Velocity Component

In many geophysical situations, isolated vortices present a strong axial velocity. This
is the case for small-scale vortices like tornadoes or dust devils, but also for large-
scale vortices for which planetary rotation is important, since the Taylor Proudman
theorem imposes that the flow should be independent of the vertical in the bulk of
the fluid, but it does not impose the vertical velocity to vanish. In this section, we
outline the analysis of [29] and [28] on the modifications brought to centrifugal
instability by the presence of an axial component of velocity. As will become clear
in the sequel, negative helical modes are favored by this generalized centrifugal
instability, when axial velocity is also taken into account.

Consider a vortex with azimuthal velocity component uθ and axial flow uz . For
any radius r0, the velocity fields may be expanded at leading order:

uθ (r) = u0
θ +gθ (r − r0), (2.5)

uz(r) = u0
z +gz(r − r0), (2.6)

with gθ = duθ
dr

∣∣∣
r0

and gz = duz
dr

∣∣∣
r0

. By virtue of Rayleigh’s principle (2.2), axisym-

metric centrifugal instability will prevail in absence of axial flow when

gθr0

u0
θ

< −1, (2.7)

thereby leading to the formation of counter-rotating vortex rings.
When a nonuniform axial velocity profile is present, Rayleigh’s argument based

on the exchange of rings at different radii should be extended by considering the
exchange of spirals at different radii. In that case, these spirals should obey a spe-
cific kinematic condition in order for the axial momentum to remain conserved as
discussed in [29]. Following his analysis, let us proceed to a change of frame con-
sidering a mobile frame of reference at constant but yet arbitrary velocity u in the z
direction. The flow in this frame of reference is characterized by a velocity field ũ0

z
such that

ũ0
z = u0

z − u. (2.8)

The choice of u is now made in a way that the helical streamlines have a pitch
which is independent of r in the vicinity of r0. The condition on u is therefore that
the distance traveled at velocity ũ0

z during the time 2πr0
u0
θ

required to complete an

entire revolution should be independent of a perturbation δr of the radius r :
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(ũ0
z )(2πr0)

u0
θ

= (ũ0
z + gzδr)(2π(r0 + δr))

u0
θ + gθ δr

. (2.9)

Retaining only dominant terms in δr , this defines a preferential helical pitch α for
streamlines in r0 in the co-moving reference frame:

tan(α) = ũ0
z

u0
θ

= − gzr0/u0
θ

1 − gθr0/u0
θ

. (2.10)

In this case, the stream surfaces defined by these streamlines are helical surfaces of
identical geometry defining an helical annular tube. This enables [29] to generalize
the Rayleigh mechanism by exchanging two spirals in place of rings conserving
mass and angular momentum. The underlying geometrical similarity is ensured by
the choice of the axial velocity of the co-moving frame. Neglecting the torsion, the
obtained flow is therefore similar to the one studied previously. Indeed, the normal
to the osculating plane (so-called binormal) is precessing with respect to the z-axis
with constant angle α. Ludwieg [29] then suggests to locally apply the Rayleigh
criterium introducing following reduced quantities:

• r eff
0 = r0

cos2 α
, the radius of curvature of the helix,

• u0,eff
θ =

√
(u0
θ )

2 + (ũ0
z )

2, the velocity along streamlines,

• geff
θ = gθ cosα + gz sinα, the gradient of effective azimuthal velocity.

Figure 2.6 represents an helical surface inscribed on a cylinder of radius r0 and
circular section C ′. The osculating circle C and osculating plane P containing the
tangent and normal are also shown. The application of the Rayleigh criterion yields

geff
θ r eff

0

u0,eff
θ

= r0(gθ + gz tanα)

u0
θ

< −1. (2.11)

Using the value of tanα (2.10), one is left with

gθr0

u0
θ

− (gzr0/u0
θ )

2

1 − gθr0/u0
θ

< −1, (2.12)

which was found a quarter century after by Leibovich and Stewartson [28], using a
completely different and more rigorous method.
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Fig. 2.6 Spiral centrifugal instability mechanism according to [29]

Ludwieg [29] thereby anticipated by physical arguments the asymptotic criterion
recovered rigorously by Leibovich and Stewartson [28] showing that, when (2.11)
holds, the most unstable helices have a pitch:

tan(α) = k/m = − gzr0/u0
θ

1 − gθr0/u0
θ

. (2.13)

This result was also derived independently in the shortwave asymptotics WKB
framework by Eckhoff and Storesletten [18] and Eckhoff [17]. More recently, fol-
lowing the derivation of Bayly [2], LeBlanc and Le Duc [25] have shown how to
construct highly localized modes using the WKB description.

2.3 Instabilities of a Strained Vortex

In a majority of flows, vortices are never isolated but interact one with each other.
They may also interact with a background shear imposed by zonal flow like in the
Jovian bands. At leading order, this interaction results in a 2D strain field, ε, acting
on the vortex and more generally on the vorticity field (ε and −ε are the eigenvalues
of the symmetric part of the velocity gradient tensor, the base flow being assumed
2D). The presence of this strain induces two types of small-scale instability.
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2.3.1 The Elliptic Instability

Due to the action of the strain field, the vertical columnar vortex is no more axisym-
metric but it takes a steady (or quasi-steady) elliptic shape characterized by elliptic
streamlines in the vortex core (Fig. 2.7). Following the early works of Moore and
Saffman [35], Tsai and Widnall [50], Pierrehumbert [41] Bayly [3], and Waleffe
[50] a tremendous number of studies have shown that the strain field induces a so-
called elliptic instability that acts at all scales. Readers are referred to the reviews by
Cambon [10] and Kerswell [20] for a comprehensive survey of the literature. Here,
we shall develop only the local point of view since it gives insights on the instability
mechanism and on the effect of stratification and rotation.

For a steady basic flow, with elliptical streamlines, Miyazaki [34] analyzed the
influence of a Coriolis force and a stable stratification. The shortwave perturbations
are characterized by a wave vector k and an amplitude vector a. These lagrangian
Fourier modes, called also Kelvin waves, satisfy the Euler equations under the
Boussinesq approximation (see Appendix for detailed calculation without stratifi-
cation). Following Lifschitz and Hameiri [33], the flow is unstable if there exists a
streamline on which the amplitude a is unbounded at large time.
The system evolving along closed trajectories is periodic, and stability may be tack-
led by Floquet analysis. In the particular case of small strain, Leblanc [23], follow-
ing Waleffe [50], gives a physical interpretation of elliptical instability in terms of
the parametric excitation of inertial waves in the core of the vortex. The instability
problem reduces to a Mathieu equation (2.50) (see Sect. 2.7.5), parametric excita-
tions are found to occur for

(
ζ 2

4

)
j2 = N 2 sin2 θ + (ζ + 2�)2 cos2 θ, (2.14)

where θ is the angle between the wave vector k and the spanwise unit vector and
j is an integer. Without stratification and rotation, we retrieve for j = 1, that, at

Fig. 2.7 Flow around an elliptic fixed point
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small strain, the resonant condition (2.14) is fulfilled only for an angle of π/3 as
demonstrated by Waleffe [50].

For a strain which is not small, the Floquet problem is integrated numerically.
Extending Craik’s work [15] Miyazaki [34] observed that the classical subharmonic
instability of Pierrehumbert [41] and Bayly [3] ( j = 1) is suppressed when rotation
and stratification effects are added. Other resonances are found to occur. According
to the condition (2.14), resonance does not exist when either

ζ

2
< min (N , |ζ + 2�|) or

ζ

2
> max (N , |ζ + 2�|) . (2.15)

The vortex is then stable with respect to elliptic instability if (Miyazaki [34])

F > 2 and − 2 < RO < −2/3 or F < 2 and (Ro < −2 or Ro > −2/3) .
(2.16)

The instability growth rate is (Kerswell [20])

σ = ε (3Ro + 2)2
(
F2 − 4

)

16
(
F2(Ro + 1)2 − 4Ro2

) . (2.17)

The flow is then unstable with respect to hyperbolic instability in the vicinity of
Ro = −2:

−2

(1 − 2ε/ζ )
< Ro <

−2

(1 + 2ε/ζ )
. (2.18)

We want to emphasize that a rotating stratified flow is characterized by two
timescales N−1 and �−1. If we consider the effect of a strain field on a uniform
vorticity field, two timescales are added ε−1 and ζ−1 but no length scale. This
explains why all the modes are destabilized in a similar manner, no matter how
large the wave vector is.

Indeed in the frame rotating with the vortex core (i.e., at an angular velocity
ζ/2 + �) the Coriolis force acts as a restoring force and is associated with the
propagation of inertial waves. When the fluid is stratified, the buoyancy is a sec-
ond restoring force and modifies the properties of inertial waves, these two effects
combine in the dispersion relation for propagating inertial-gravity waves. The local
approach has been compared with the global approach by Le Dizès [26] in the case
of small strain and for a Lamb–Oseen vortex.

In the frame rotating with the vortex core, the strain field rotates at the angular
speed −ζ/2 and since the elliptic deformation is a mode m = 2, the fluid in the core
of the vortex “feels” consecutive contractions and dilatations at a pulsation 2ζ/2
(i.e., twice faster than the strain field). These periodic constrains may destabilize
inertial gravity waves via a subharmonic parametric instability when their pulsations
equal half the forcing frequency. If the deformation field were tripolar instead of
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dipolar, the resonance frequency would have been 3ζ/4 but the physics would have
been the same (Le Dizès and Eloy [27], Eloy and Le Dizès [30]).
Elliptical instability in an inertial frame occurs for oblique wave vectors and thus
needs pressure contribution. When rotation is included, for anticyclonic rotation the
most unstable wave vector becomes a purely spanwise mode with θ = 0. In that
case, the contribution of pressure is not necessary and disappears from the evolution
system. Those modes are called pressureless modes (see Sect. 2.7.4).

The influence of an axial velocity component in the core of a strained vortex was
analyzed by Lacaze et al. [22]. They showed that the resonant Kelvin modes m = 1
and m = −1, which are the most unstable in the absence of axial flow, become
damped as the axial flow is increased. This was shown to be due to the appearance
of a critical layer which damps one of the resonant Kelvin modes. However, the
elliptic instability did not disappear. Other combinations of Kelvin modes m = −2
and m = 0, then m = −3, and m = −1 were shown to become progressively
unstable for increasing axial flow.

2.3.2 The Hyperbolic Instability

The hyperbolic instability is easier to understand for fluid without rotation and strat-
ification. Then, when the strain, ε, is larger than the vorticity, ζ , the streamlines
are hyperbolic as shown in Fig. 2.8 and the continuous stretching along the unsta-
ble manifold of the stagnation point of the flow induces instability. The instability

Fig. 2.8 Flow around an hyperbolic fixed point
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modes have only vertical wave vectors and therefore the modes are “pressureless”
since they are associated with zero pressure variations. This instability has been
discussed in particular by Pedley [40], Caulfield and Kerswell [12], and Leblanc and
Cambon [24]. Like for the previous case, no external length scales enter the prob-
lem and the hyperbolic instability affects the wave vectors independently of their
modulus and is associated with a unique growth rate σ (see Sect. 2.7.2), including
background rotation:

σ 2 = ε2 − (2�+ ζ/2)2 . (2.19)

The stratification plays no role in the hyperbolic instability because the wave vector
is vertical and thus the motion is purely horizontal. In the absence of background
rotation, the hyperbolic instability develops only at hyperbolic points. In contrast,
in the presence of an anticyclonic mean rotation, the hyperbolic instability can
develop at elliptical points since σ may be real while ζ/2 is larger than ε (see also
Sect. 2.7.4).

2.4 The Zigzag Instability

All the previously discussed 3D instability mechanisms, except the 2D Kelvin–
Helmholtz instability, are active at all vertical scales and preferentially at very small
scales. Their growth rate scales like the inverse of the vortex turnover time. The
last instability we would like to discuss has been introduced by Billant and Chomaz
[4]. It selects a particular vertical wave number and has been proposed as the basic
mechanism for energy transfer in strongly stratified turbulence. Thus we will first
discuss the mechanism responsible for the zigzag instability in stratified flows in the
absence of rotation. Next, rotation effects will be taken into account.

2.4.1 The Zigzag Instability in Strongly Stratified
Flow Without Rotation

When the flow is strongly stratified the buoyancy length scale LB = U/N is
assumed to be much smaller than the horizontal length scale L . In that case the
vertical deformation of an iso-density surface is at most L2

B/LV (where LV is the
vertical scale) and therefore the velocity, which in the absence of diffusion should
be tangent to the iso-density surface, is to leading order horizontal.

If we further assume, as did Riley et al. [46] and Lilly [31], that the vertical scale
LV is large compared to LB, then the vertical stretching of the potential vorticity
is negligible, since the vertical vorticity itself is (to leading order) conserved while
being advected by the 2D horizontal flow. Similarly the variation of height of a
column of fluid trapped between two iso-density surfaces separated by a distance
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LV is negligible, since the conservation of mass imposes to leading order that the
horizontal velocity field is divergence free.

The motion is therefore governed to leading order by the 2D Euler equations
independently in each layer of vertical size LV as soon as LV >> LB. To leading
order, there is no coupling in the vertical. Having made this remark, Riley et al. [46]
and Lilly [31] conjectured that the strongly stratified turbulence should be similar
to the purely 2D turbulence and they invoked the inverse energy cascade of 2D
turbulence to interpret measured velocity spectra in the atmosphere.

However, Billant and Chomaz [5] have shown that a generic instability is taking
the flow away from the assumption LV >> LB. The key idea is that there is no
coupling across the vertical if the vertical scale of motion is large compared to
the buoyancy length scale. Thus, we may apply to the vortex any small horizon-
tal translations with a distance and possibly a direction that both vary vertically
on a large scale compared to LB. This means that, in the limit where the vertical
Froude number FV = LB/LV = kLB goes to zero, infinitesimal translations in any
directions are neutral modes since they transform a solution of the leading order
equation into another solution. Now if FV = kLB is finite but small it is possible to
compute the corrections and determine if the neutral mode at kLB = 0 is the starting
point of a stable or an unstable branch (see Billant and Chomaz [6]). Such modes
are called phase modes since they are reminiscent of a broken continuous invariance
(translation, rotation, etc.).
More precisely, in the case of two vortices of opposite sign, a detailed asymptotic
analysis leads to two coupled linear evolution equations for the y position of the
center of the dipole η(z, t) and the angle of propagation φ(z, t) (see Fig. 2.9) up to
fourth order in FV:

∂η

∂t
= φ, (2.20)

∂φ

∂t
= (D + F2

h g1)F
2
V
∂2η

∂z2
+ g2 F4

V
∂4η

∂z4
, (2.21)

z x

y

φ

η

Fig. 2.9 Definition of the phase variables η and φ for the Lamb dipole, from Billant and
Chomaz [6]
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where Fh = LB/L is the horizontal Froude number and D = −3.67, g1 = −56.4,
and g2 = −16.1. These phase equations show that when FV is non-zero, the
translational invariance in the direction perpendicular to the traveling direction
of the dipole (corresponding to the phase variable η) is coupled to the rotational
invariance (corresponding to φ). Substituting perturbations of the form (η, φ) =
(η0, φ0) exp(σ t + ikz) yields the dispersion relation

σ 2 = −(D + g1 F2
h )F

2
Vk2 + g2 F4

Vk4. (2.22)

Perturbations with a sufficiently long wavelength (FV � 1) are always unstable
because the coefficients D and g1 are negative. There is, however, a stabilization at
large wavenumbers since g2 is negative. Therefore, because the similarity parameter
in (2.22) is k FV, the selected wavelength will scale like LB whereas the growth rate
will stay constant and scale like U/L . This instability therefore invalidates the initial
assumption that the vertical length scale is large compared to the buoyancy length
scale. Similar phase equations have been obtained for two co-rotating vortices [39].
In this case, the rotational invariance is coupled to an invariance derived from the
existence of a parameter describing the family of basic flows: the separation distance
b between the two vortex centers. This leads to two phase equations for the angle
of the vortex pair α(z, t) and for δb(z, t) the perturbation of the distance separating
the two vortices:

∂α

∂t
= − 2

πb3
δb + 

πb
D0 F2

V
∂2δb

∂z2
, (2.23)

∂δb

∂t
= −b

π
D0 F2

V
∂2α

∂z2
, (2.24)

where  is the vortex circulation and D0 = (7/8) ln 2 − (9/16) ln 3 is a coefficient
computed from the asymptotics. The dispersion relation is then

σ 2 = −
2

π2

(
2

b2
D0(FVk)2 + D0

2(FVk)4
)
. (2.25)

There is a zigzag instability for long wavelengths because D0 is negative. This
theoretical dispersion relation is similar to the previous one for a counter-rotating
vortex pair except that the most amplified wavenumber depends not only on FV but
also on the separation distance b. This is in very good agreement with results from
numerical stability analyses [37].

For an axisymmetric columnar vortex, the phase mode corresponds to the
azimuthal wave number m = 1, and at kLB = 0 the phase mode is associated
to a zero frequency. In stratified flows, as soon as a vortex is not isolated, this phase
mode may be destabilized by the strain due to other vortices.
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2.4.2 The Zigzag Instability in Strongly Stratified
Flow with Rotation

If the fluid is rotating, Otheguy et al. [38] have shown that the zigzag instability
continues to be active with a growth rate almost constant (Fig. 2.10). However,
the wavelength varies with the planetary rotation � and scales like |�|L/N for
small Rossby number in agreement with the quasi-geostrophic theory. The zigzag
instability then shows that quasi-geostrophic vortices cannot be too tall as previously
demonstrated by Dritschel and de la Torre Juárez [16].

Fig. 2.10 Growth rate of the zigzag instability normalized by the strain rate S = /(2πb2) plotted
against the vertical wavenumber kz scaled by the separation distance b for Fh = /(2πR2 N ) =
0.5 (R is the vortex radius), Re = /(2πν) = 8000, R/b = 0.15 and for Ro = /(2πR2�) = ∞
(+), Ro = ± 2.5 (�), Ro = ± 1.25 (◦), Ro = ± 0.25 (�). Cyclonic rotations are represented by
filled symbols whereas anticyclonic rotations are represented by open symbols. From [38]

2.5 Experiment on the Stability of a Columnar Dipole
in a Rotating and Stratified Fluid

This last section presents results of an experiment on a vortex pair in a rotating and
stratified fluid [14, 8] that illustrates many of the instabilities previously discussed
that tends to induce 3D motions.

2.5.1 Experimental Setup

As in Billant and Chomaz [4] a tall vertical dipole is created by closing a double
flap apparatus as one would close an open book (Fig. 2.11). This produces a dipole
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Fig. 2.11 Sketch of the experimental setup that was installed on the rotating table of the Centre
National de Recherches Météorologiques (Toulouse). The flaps are 1 m tall and the tank is 1.4 m
long, and 1.4 m large, 1.4 m deep [14, 8]

Control parameters:

L

U

Vorticity ζvelocity

Ro = ζ/2Ω
F = U/LN

Re = UL /v

Fζ = ζ /N

Ω

Fig. 2.12 Flow parameters for a dipole in a stratified or rotating fluid

that moves away from the flaps and, in the absence of instability, is vertical. Particle
image velocimetry (PIV) measurements provide the dipole characteristics that are
used to compute the various parameters (Fig. 2.12).

2.5.2 The State Diagram

Depending upon the value of the Rossby number Ro and Froude number Fζ ,
the different types of instabilities described in the previous sections are observed
(Fig. 2.13). Positive Rossby numbers correspond to instabilities observed on cyclonic
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Zigzag instability

Oscillatory
instability

Centrifugal
Instability

Elliptic
instability

Fζ

Anticyclone

CycloneStable

Ro¯1 I.

II.

I.

II.

III.

IV.

III.

IV.

Fig. 2.13 The state diagram where the different instabilities are observed [14, 8] (see also Sect. 2.1
for more details on centrifugal instability)

vortices, while negative Rossby numbers correspond to instabilities observed on
anticyclones. For large Rossby number, Colette et al. [14] and Billant et al. [8] have
observed the zigzag instability at small Froude number and the elliptic instability
at large Froude number on both vortices as in Billant and Chomaz [4]. As the
Rossby number is decreased, the elliptic instability develops with different wave-
lengths and growth rates on the cyclone and the anticyclone. For smaller Rossby
number, the elliptic instability continues to be observed on the cyclone but tends
to be stabilized by rotation effects beyond a given Froude number. In contrast,
the anticyclone becomes subjected to two other types of instability: a centrifugal
instability for large Froude number and an oscillatory asymmetric instability for
moderate Froude number.

2.6 Discussion: Instabilities and Turbulence

Experimental results as well as theoretical results show that when the strain field is
large enough, a quasi-two-dimensional vortex is never stable versus 3D instabilities.
Regarding the elliptic, hyperbolic, and centrifugal instabilities, if the strain is small,
only anticyclones are stable in a narrow band between max

[−1,−(1/2 + ε/ζ )−1
]
<

Ro < −2/3 if F > 2 and if F < 2, vortices are stable for Ro > −2/3. All the
instabilities which have been described have a growth rate scaling like the vorticity
magnitude or strain field induced by the other vortices. This means that these insta-
bilities are as fast as the mechanisms usually invoked for the turbulence cascade,
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such as the pairing of same sign vortices or the creation of vorticity filaments. They
should therefore modify the phenomenology of the turbulence. In particular for large
Rossby number and small Froude number, the pairing of two vortices is unstable to
the generalized zigzag instability and, while approaching each other the vortices
should form thinner and thinner layers resulting in an energy transfer to smaller
length scales and not larger scales as in the 2D turbulence. This effect of the zigzag
instability would then explain the result of Lindborg [32] who shows, processing
turbulence data collected during airplane flights and computing third-order moment
of the turbulence, that the energy cascade in the horizontal energy spectra is direct
and not reverse as it was conjectured by Lilly [31].

2.7 Appendix: Local Approach Along Trajectories

In this appendix, we investigate the instability of a 2D steady basic flow character-
ized by a velocity UB and a pressure PB in the inviscid case. The normal vector of
the flow field is denoted ez . The 3D perturbations are denoted (u, p). In a frame,
rotating at the angular frequency � = �ez , the linearized Euler equation read as

∂u
∂t

+ u.∇UB + UB∇u = − ∇ p − 2� × u, (2.26)

∇.u = 0. (2.27)

Following Lifschitz and Hameiri [33], we consider a rapidly oscillating localized
perturbation:

u = exp {iφ(x, t)/ξ} a(t)+ O(δ), (2.28)

p = exp {iφ(x, t)/ξ} (π(t)+ O(δ)), (2.29)

where ξ is a small parameter. Substitution in the linearized Euler equations leads
to a set of differential equations for the amplitude and the wave vector k = ∇φ
evolving along the trajectories of the basic flow:

dx
dt

= UB, (2.30)

dk
dt

= − LT
Bk, (2.31)

da
dt

=
(

2kkT

|k|2 − I
)

LBa +
(

kkT

|k|2 − I
)

Ca, (2.32)

with LB = ∇UB the velocity gradient tensor, the superscript T denoting the trans-
position, I the unity tensor, and C the Coriolis tensor:
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C =
⎛
⎝

0 −2� 0
2� 0 0
0 0 0

⎞
⎠ . (2.33)

The pressure has been eliminated by applying the operator:

P(k) =
(
I − kkT

|k|2
)
. (2.34)

The incompressibility equation (2.27) yields

k.a = 0. (2.35)

The stability is analyzed looking for the behavior of the velocity amplitude a. Fol-
lowing Lifschitz and Hameiri [33], the flow is unstable if there exists a trajectory on
which the amplitude a is unbounded at large time.

2.7.1 Centrifugal Instability

For flows with closed streamlines, centrifugal instability can be understood by con-
sidering spanwise perturbations, as they have been shown to be the most unsta-
ble in centrifugal instability studies (see [2] or [48] for a detailed discussion). If
k(t = 0) = k0ez, (2.31) yields k(t) = k0ez; the base flow, evolving in a plane
perpendicular to ez , does not impose tilting or stretching along z direction. The
incompressibility equation (2.35) gives az = 0.

In the plane of the steady base flow, the trajectories (streamlines in the steady
case) may be referred to as streamline function value ψ . The two vectors, UB and
∇ψ , provide an orthogonal basis. The amplitude equation in the plane perpendicular
to ez may be expressed in this new coordinate system, and following [48], (2.32)
becomes

d

dt

(
a.UB

a.∇ψ
)

=
(

0 ζ + 2�
−2( V

R +�) 2V ′/V

)(
a.UB

a.∇ψ
)
, (2.36)

with V = |UB(x)|, V ′ the lagrangian derivative d
dt V = UB .∇V and R the local

algebraic curvature radius defined by [48]

R(x, y) = V 3

∇ψ. (UB .∇UB)
. (2.37)

Note that the generalized Rayleigh discriminant, δ = 2
( V
R +�

)
(ζ + 2�), appears

in (2.36) as the opposite of the determinant of the governing matrix. Sipp and
Jacquin [48] showed that if there exists a particular streamline on which δ < 0, the
velocity amplitude, a, is unbounded at large time. However, the general proof for
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the existence of diverging solutions of (2.36) for a closed (non-circular) streamline
with δ negative requires further mathematical analyses.

2.7.2 Hyperbolic Instability

In this section, we focus again on a spanwise perturbation characterized by a
wavenumber k perpendicular to the flow field. The contribution of the pressure
disappears in that case and the instability is called pressureless. Equation (2.32)
reduces to

da
dt

= − LBa − Ca. (2.38)

We look for instability of a basic flow characterized by

LB =
⎛
⎝

0 ε − ζ
2 0

ε + ζ
2 0 0

0 0 0

⎞
⎠ , (2.39)

with ε the local strain and ζ the vorticity of the base flow. For |ε| greater than
| ζ2 | the streamlines are hyperbolic. The integration of (2.38) is straightforward. The
perturbed velocity amplitude a has an exponential behavior, exp(σ t), with σ

σ =
√
ε2 − (ζ/2 + 2�)2, (2.40)

as discussed in Sect. 2.3.2.

2.7.3 Elliptic Instability

The basic flow is defined by the constant gradient velocity tensor (2.39) but with
| ζ2 | greater than |ε|. Trajectories are found to be elliptical with an aspect ratio or
eccentricity:

E =
√
ζ
2 − ε

√
ζ
2 + ε

. (2.41)

Along those closed trajectories, (2.31) has period

T = 2π

Q
= 2π√(

ζ
2

)2 − ε2

. (2.42)
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The wave vector solution of (2.31),

k = k0 (sin(θ) cos(Q(t − t0)), E sin(θ) sin(Q(t − t0)), cos(θ)) , (2.43)

with k0 and t0 integration constants, is easily obtained (see, for example, Bayly [3]).
The wave vector describes an ellipse parallel to the (x, y) plane, with the same
eccentricity as the trajectories ellipse, but with the major and minor axes reversed.
The stability is investigated with Floquet theory, looking for the eigenvalues of the
monodromy matrix M(T ), which is a solution of

dM
dt

=
(

2kkT

|k|2 − I
)

L BM +
(

kkT

|k|2 − I
)

CM, (2.44)

with M(0) = I, (2.45)

integrated over one period T . The basic flow lies in the (x, y) plane, so that one
of the eigenvalues of the monodromy matrix is m3 = 1. The average of the trace

of the matrix
(

2kkT

|k|2 − I
)

LB +
(

kkT

|k|2 − I
)

C is zero, making the determinant of

M(T ) equal to unity. The two other eigenvalues of M(T ) are then m1m2 = 1,
with m1,2 either complex conjugate indicating stable flow, or real and inverse for
unstable flow. Generally, m1,2 are obtained by numerical integration of (2.44) and
(2.45). Note, however, that the following two cases may be tackled analytically.

2.7.4 Pressureless Instability

In the case of a pressureless instability the monodromy equation is a solution of

dM
dt

= − LBM − CM (2.46)

M(0) = I. (2.47)

The eigenvalues of the monodromy equation are

mi = exp

(
±
√
ε2 − (ζ/2 + 2�)2T

)
, with i = 1, 2. (2.48)

With rotation, the elliptical flow may be unstable to pressureless instabilities, as
discussed in Sects. 2.3.1 and 2.3.2 and in Craik [15].

2.7.5 Small Strain |ε << 1|
Following Waleffe [50], we derive from (2.32) the equation for the rescaled compo-
nent of the velocity along the z-axis denoted q:
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q = a3
|k|2

|k//|2 , (2.49)

with k// the component of the wavenumber on the (x, y) plane. For small strain,
this equation leads to a Mathieu equation with a rescaled time, t� = ζ t ,

d2q

dt�2
+ (

α + 2εbsin t�
)

q = 0, (2.50)

where

α =
(

Ro + 1

Ro

)2

cos2 θ, (2.51)

Ro = ζ
2� is the Rossby number and

b = 1

2

[(
Ro + 1

Ro

)2

sin2 θ + 1

Ro
+ 3

2

]
cos2 θ. (2.52)

Parametric resonances occur when

α = 1

4
j2, (2.53)

with j an integer, giving the formula (2.14) discussed in Sect. 2.3.1.
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Chapter 3
Oceanic Vortices

X. Carton

Oceanic vortices (also called eddies) come under a large variety of sizes, from a few
kilometers up to 300 km in diameter. Vertically, their extent can also range from a
few tens of meters up to (nearly) the whole ocean depth. They can be intensified
near the surface, near the thermocline, or near the bottom. They can be generated
by the instability or by the change of direction of ocean currents, by geostrophic
adjustment after convection, or via topographic influences (e.g., lee eddies behind
islands). But nearly all oceanic vortices share the common properties, which may
be used to define them:
Oceanic vortices are coherent structures, with a dominant horizontal motion and
closed fluid circulation in their core. The predominance of horizontal motion is due
to the importance of the Coriolis force and of the buoyancy effects in the dynamics
of vortices and to their small aspect ratio. Vortex lifetimes are usually much longer
than the timescale of their spinning motion. In general, mixing and ventilation affect
oceanic vortices on timescales much larger than the turnover time. But such mixing
processes can also have drastic consequences when they reach the vortex core: then
the vortex collapses. Since mixing is generally slow and since their flow pattern is
quasi-circular, oceanic vortices retain in their core a water mass characteristic of
their region of formation. Thus, oceanic vortices, which drift over long distances,
participate in the transport of heat, momentum, chemical tracers, and biological
species across ocean basins and contribute to the mixing of oceanic water masses.

The present review will first concentrate on oceanic observations of vortices, on
the description of their physical characteristics, and on the salient features of their
dynamics. The second part of this review will present dynamical models often used
to represent vortex motion, evolution, and interactions and recent findings on these
subjects.
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3.1 Observations of Oceanic Vortices

3.1.1 Different Types of Oceanic Vortices

First, we will present the large, surface-intensified “rings” of the major western
boundary currents which have been historically identified and studied first; then, we
will describe smaller (mesoscale) vortices, identified later on the eastern boundary
of the oceans, but of importance for the large-scale fluxes of heat and salt. Some of
these mesoscale eddies are concentrated at depth (for instance, in the thermocline)
and thus their identification and study have been more recent.

3.1.1.1 Large Rings

In general, wind-induced currents are intensified at the western boundaries of
the ocean and detach at mid-latitudes to form intense, horizontally and vertically
sheared, eastward jets, prone to barotropic and baroclinic instabilities. These insta-
bilities cause these jets to meander, the occlusion of the meanders resulting in the
formation of so-called rings or synoptic eddies. These rings, and in particular the
warm-core rings which are surface intensified, have long since been identified in the
vicinity of the Gulf Stream, of the Kuroshio, of the Agulhas Current, or of the North
Brazil Current, to name a few [140, 76]. Rings were so called because the original
current circles on itself, so that the velocity maximum is then located on a ring that
encircles and isolates a core with a trapped water mass.

Gulf Stream Rings

The Gulf Stream is the fastest current in the North Atlantic Ocean; it detaches from
the American coast at Cape Hatteras to enter the Atlantic basin as an intense, quasi-
zonal jet. Its peak velocity is on the order of 1.5 m/s, the jet width is about 80 km,
and it is intensified above the main thermocline (roughly the upper 800 m of the
ocean); below, the jet velocity is usually less than 0.1 m/s; Fig. 3.2 also shows
that the isotherms dive by 600 m across the Gulf Stream (see also [131]). As a
strongly sheared current, the Gulf Stream is unstable and forms meanders which
can grow, occlude, and detach from the jet, forming anticyclonic/cyclonic rings on
its northern/southern flanks ([166]; see Fig. 3.1). Since the Gulf Stream separates
the warm waters of the Sargasso Sea from the cold waters of the Blake Plateau (see
Fig. 3.2), cyclonic rings carry these cold waters and anticyclonic rings the warm
waters. Cold-core rings are usually wider than warm-core rings (250 versus 150 km
in diameter, [117]), and they extend down to 4000 m depth whereas warm-core rings
are concentrated above the thermocline [137]. The maximum orbital velocity of the
rings is comparable to the peak velocity of the Gulf Stream (about 1 or 1.5 m/s);
it lies at a 30–40 km distance from the vortex center and decreases exponentially
beyond [116]. In warm-core rings, intense velocities are still found at mid-depth, as
in the Gulf Stream itself (e.g., 0.5 m/s at 500 m depth, [131]).
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Fig. 3.1 Sea surface temperature in the North Atlantic Ocean in June 1984 showing the Gulf
Stream separating the colder waters (in green and blue) of the North Mid-Atlantic Bight and
Georges Bank, north, from the warmer waters (in red) of the Sargasso Sea south. Note the long
meanders on the jet and the separated rings (image from the Coastal Carolina University web site,
http://kingfish.coastal.edu/marine/gulfstream, courtesy Craig Gilman, CCU)

Fig. 3.2 Vertical section of temperature across the Gulf Stream and one of its cold-core rings
showing the cold waters of the North Mid-Atlantic Bight and Georges Bank (in blue) and the
warm waters of the Sargasso Sea south (in pink; image from the Coastal Carolina University web
site, http://kingfish.coastal.edu/marine/gulfstream, courtesy Craig Gilman, CCU)
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About 10–15 rings (both parities added) are generated every year; a few are
rapidly re-absorbed by the Gulf Stream, while others may live much longer: warm-
core rings undergo a destructive influence of topography north of the jet, combined
with atmospheric ventilation, so that their lifetime does not generally exceed a few
months. On the contrary, cold-core rings can drift across the Sargasso Sea for up to
3 years. Some of them end up near Cape Hatteras where they can interact with their
parent jet and induce a meridional oscillation of the jet axis.

Agulhas Rings

Another intense western boundary current producing rings is the Agulhas Current.
The Agulhas Current is fast (2 m/s near the surface), narrow (about 80–100 km),
and concentrated in the upper 1000 m of the ocean ([90] and references therein).
Its transport (about 95 Sv, with 1 Sv = 106 m3/s) is comparable to that of the Gulf
Stream (100–130 Sv).

South of Africa, the Agulhas Current veers on itself (it turns anticlockwise to
head east as the Agulhas Return Current, parallel to, and north of the Antarctic Cir-
cumpolar Current). This change of direction has been widely studied and is known
as retroflection [92]; its origin has been attributed to potential vorticity conservation.
As the current heads south, it gains planetary vorticity and must acquire anticyclonic
relative vorticity [47]. Therefore, it must veer counterclockwise. Another possibility
for the current to conserve potential vorticity is to increase its depth as it goes pole-
ward; but this depth increase is physically limited so that the current must finally
stabilize zonally at a given latitude [63, 91]. Other mechanisms proposed to explain
retroflection implied the wind stress curl distribution [46], which vanishes south of
the African continent or bottom topography.

The Agulhas rings are generated at the retroflection of the Agulhas Current (con-
trary to the Gulf Stream which produces rings essentially far from the coast). To
form rings, the retroflecting current extends westward and then recedes eastward,
thus isolating a loop which closes on itself (often near 16–18E, 38–40S). This zonal
pulsation of the Agulhas Current has been attributed to variations in the current itself
(variations in transport or advection of solitary meanders called Natal Pulses) or to
variations in its surroundings (presence of nearby eddies, in particular cyclonic, or
local current shears). This ring generation mechanism has long since been studied
[18, 17, 32]. Periodic eddy shedding ensuring momentum conservation [114, 127]
or barotropic instability of the Agulhas Current [48] has been identified as ring
generation mechanisms.

The Agulhas rings are anticyclonic, with azimuthal velocities of 0.5–1 m/s, have
diameters ranging from 250 to 400 km, and are often accompanied by smaller
cyclones. These rings are intensified above 1000 m depth, but their dynamical extent
can reach the bottom of the ocean, due to their barotropic velocity component. One
survey identified 18 rings in the vicinity of this retroflection [49]. Once formed,
Agulhas Rings drift northwestward into the South Atlantic Ocean at a few cm/s
speed. Tall seamounts can strongly disrupt the internal balance of these rings and
lead to their splitting into two or three parts [3].
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3.1.1.2 Mesoscale and Submesoscale Vortices

In the ocean depth, eddies exist which are much smaller than the rings at the sur-
face: their radius is close to the first internal radius of deformation Rd1 or to the
deformation radius corresponding to their vertical structure1 (i.e., at mid-latitudes,
radii smaller than 50 km for mesoscale vortices or even smaller than 10 km for sub-
mesoscale vortices, see Table 3.1).
For instance, deep mesoscale anticyclones co-exist with cold-core rings south of the
Gulf Stream [137] and smaller, submesoscale, vortices exist in the thermocline of
the Sargasso Sea [99].
Among all mesoscale and submesoscale vortices, we focus our attention on eddies
of Mediterranean Water, generated on the eastern boundary of the North Atlantic
Ocean. The Mediterranean Sea is a concentration basin, forming warm and salty
waters (at 300 m depth, in the Alboran Sea, the salinity is above 38 psu). These
waters flow out of the Mediterranean basin into the Gulf of Cadiz and adjust there
as slope currents (in fact, as three different cores at 600, 800, and 1200 m depths;
see Fig. 3.3 (top)). Once these currents have attained their equilibrium depths (near
8◦W), they flow quasi-zonally and they encounter the Portimao Canyon, a deep
submarine trench. This perturbation on the currents triggers their instability and
leads to the formation of intra-thermocline eddies of Mediterranean Water, called
meddies (see Fig. 3.3 (bottom)). Meddy radii can vary between 20 and 50 km,
their thicknesses between 600 and 1000 m, their azimuthal velocity is close to
0.3–0.5 m/s [5–7, 136], and they present two thermohaline maxima when formed
south of the Iberian Peninsula: a temperature maximum (T ∼ 13◦C) near 800 m
depth and a salinity maximum (S ∼ 36.6 psu) near 1200 m depth. Other locations
around the Iberian Peninsula are well-known sites of meddy generation: Cape Saint
Vincent, the Estramadura Promontory, Cape Ortegal, but due to a change in thermo-
haline properties of the Mediterranean Water downstream, meddies formed north
do not exhibit the double (T,S) structure [119]. Shallower meddies have also been
observed [129].

Table 3.1 Characteristics of eddies described in the text
Type of eddy GS WCR (1) GS CCR (2) Agulhas rings (3) Meddies (3)

Vertical Surface Whole water Surface Intra-
structure intensified column intensified thermocline
Thickness (m) 800 4000 1000 600–1000
Radius (km,*) 60–80 120–150 120–200 20–50
Maximum velocity (m/s) 2.0 1.5 0.8 0.5
Temperature anomaly 7◦C 7◦C 4◦C 4◦C
Number formed/year 5–8 5–8 5 15
Notes: (*) based on thermal or haline anomaly, (1) Gulf Stream Warm Core Rings (anticyclonic),

(2) Gulf Stream Cold Core Rings (cyclonic), and (3) anticyclonic eddies.

1 Deformation radii are horizontal length scales over which the effects of planetary rotation and of
density stratification on motion are comparable.
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Fig. 3.4 Trajectories of meddies followed by deep float (acoustically tracked) from their site of
generation, near Portimao Canyon, from http://www.whoi.edu/ (observing systems: floats and
drifters); courtesy Amy Bower, WHOI, Larry Armi, SIO/UCSD and Isabel Ambar, CO/FCUL;
see also [19, 20]

Once formed, meddies drift southwestward under the influence of the beta-effect
and of the large-scale, baroclinic currents; their typical speed is 3–5 cm/s, though
this speed is quite variable (see Fig. 3.4; see [7, 135, 19, 20, 133]). Meddies can
undergo destructive encounters with seamount chains (Horseshoe seamounts, mid-
Atlantic ridge) which erode them irreversibly [132]. They can also collapse in the
deep ocean, when horizontal intrusions of external water masses, acting with dou-
ble diffusion, erode their core. Nevertheless, an upper bound on meddy lifetime
has been set as high as 4 years, and an average lifetime was assessed as 1.7 years
[133]. Meddies substantially contribute to the salt flux from the eastern boundary
into the North Atlantic Basin: estimates for this eddy salt flux vary between 25
and 100% of the total salt flux in intermediate waters in this region [136, 2, 95].

3.1.2 Generation Mechanisms

3.1.2.1 Barotropic and Baroclinic Instabilities of Parallel Currents

As mentioned above, many oceanic vortices are generated by the instability of
intense and narrow parallel flows, e.g., surface-intensified jets in the deep ocean,
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continental slope currents, and coastal currents. The main processes leading to vor-
tex formation are the barotropic instability of thin jets and the baroclinic instability
of currents separating water masses of different densities. Again in most cases, baro-
clinic instability is more efficient than barotropic instability at producing vortices
[39, 38]. Baroclinic instability of surface jets (like the Gulf Stream or the Kuroshio)
often has maximum growth rates for wavelengths on the order of 2πRd1. Thus the
fastest growing waves would be on the order of 200 km long for the Gulf Stream
[56] and about 40 km long for frontal currents on the continental shelf (e.g., the
Ushant front; [122]).

Therefore, a large variety of vortices (large rings, mesoscale vortices) can be gen-
erated by the same mechanism from different currents. In particular, certain coastal
currents lead to the formation of vortex couples (cyclone–anticyclone association):
horizontal dipoles in the Sea of Okhotsk [52], baroclinic dipoles from the Mediter-
ranean outflow on the continental slope. The growth of perturbations on intense jets
leads to vortices via meander occlusions (corresponding to multiple wave growth
and finally to the appearance of long waves, for unforced mean flows). An illustra-
tive animation of meander growth and vortex formation on the Gulf Stream can be
found at http://kingfish.coastal.edu/marine/gulfstream.

3.1.2.2 Retroflection, Change of Direction of Currents, Currents Exiting from
Straits

Apart from the Agulhas Current, mentioned above, many ocean currents shed vor-
tices as they change direction: the East Madagascar Current south of this island, the
North Brazil Current into the NECC (see Fig. 3.5; see also [61, 60]), the Mediter-
ranean outflow at Cape Saint Vincent, or the Navidad (a warm poleward current
intensified northwest of Spain in winter) around Cape Ortegal. In the same context,
ocean currents exiting from gaps and straits form vortices: the Indonesian through-

Fig. 3.5 Schematic diagram of ring formation due to the retroflection of the North Brazil Current
(from http://www.aoml.noaa.gov/phod/nbc; Sylvia L. Garzoli, personal communication)
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flow exiting in the South Indian Ocean forms Teddies (throughflow eddies) and the
Loop Current in the Gulf of Mexico forms Loop Current Eddies as it exits from the
Straits of Yucatan. The mechanism underlying this phenomenon is momentum con-
servation: as the current changes direction, momentum is deflected and part of the
incoming fluid mass must move in a complementary direction to close the momen-
tum budget [113]. Intrusions of homogeneous fluid in a stratified ocean [62, 4] are
also a cause for the formation of vortex lenses.

3.1.2.3 Convection and Geostrophic Adjustment

Several regions of the world ocean (Weddell Sea, Greenland Sea, Labrador Sea, and
Gulf of Lion) are sites of deep convection driven by rapid and intense cooling of a
weakly stratified water column, preconditioned by wind forcing. Convective chim-
neys, of size on the order of 50 km, form, containing small-scale vertical plumes
(of size 1 km, depending on the heat flux). Via cyclogeostrophic balance,2 these
chimneys correspond to a superposition of a cyclone over an anticyclone which can
be baroclinically unstable. When this destabilizes the chimney, meanders grow on
the periphery leading to the generation of vortices (of size 5–10 km, often baroclinic
dipoles) which propagate away from the chimney spreading the cold water at a speed
of 3–5 cm/s [86]. The whole event lasts a few weeks.

3.1.2.4 Topographic Effects on Currents

Seamounts and submarine canyons can trigger the formation of vortices from an
intense current, even if this current is stable upstream of the topographic anomaly. In
the Bay of Biscay, the Cape Ferret Canyon is recognized as a site of swoddy (slope
water oceanic eddy) formation [128]. A deep canyon south of Portugal (Portimao
Canyon) is held responsible for triggering the formation of Meddies [35, 144, 36,
143]; see also Fig. 3.3 bottom).

The influence of the New England Seamounts on the Gulf Stream was a debated
subject: observations seemed contradictory on the amplification of Gulf Stream
meanders downstream of these seamounts. Ezer [51] clarified this question via high-
resolution numerical modeling: MKE (mean kinetic energy) increases downstream
of the seamounts while EKE (eddy kinetic energy) increases upstream. The propa-
gation speed of meanders is decreased upstream of the seamounts, while topography
induces quasi-steady barotropic recirculation cells downstream.

Currents encountering islands can also induce vortices in their lee: for instance,
a long-lasting cyclonic vortex, observed in the Alenuihaha Channel between the
islands of Hawaii and Maui, was accompanied by intense biological activity. Satel-
lite observations have also revealed that a number of such vortices could form in
the lee of the Hawaiian Islands and subsequently merge [54]. One such evolution
was observed with satellite altimetry. During this evolution, which lasted 240 days

2 The balance between radial pressure gradient on the one hand and centrifugal and Coriolis force
on the other hand.
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and counted several consecutive mergers, the vortex radii grew from 50 to 150 km
and their turnover period from 3 to 24 days. Eddies have been observed in the lee of
other islands, such as the Canary Islands.

3.1.3 Vortex Evolution and Decay

3.1.3.1 Vortex Interactions with Other Currents or with Topography

Vortex–vortex interactions are often nonlinear processes which can lead to the mod-
ification of the vortices involved, or even to the disappearance of a vortex. Vortex–
vortex interactions include: dipolar pairing, merger, and vertical alignment.
Dipolar pairing is the association of a cyclone and an anticyclone, not necessarily at
the same depth. Horizontal and vertical dipoles have been regularly observed in the
ocean.
Merger is the process by which two like-signed vortices form a larger vortex, sur-
rounded by filaments or by smaller vortices. Merger has been reported for Gulf
Stream rings [74, 50], for Kuroshio rings [142, 168, 167], for Hawaiian eddies [54]
and for meddies [145].
Alignment occurs when two like-signed vortices, with cores lying at different depths
and at a finite distance initially, tend to form a vertical column in the final state.
Vertical alignment has been observed for two East Australian Current eddies [37].

Vortices can also interact with neighboring currents, some of which may be their
parent current. Satellite measurements and long-term in situ networks (e.g., the
SYNOP experiment) have extensively documented the formation and subsequent
merger of Gulf Stream rings with the jet itself [137, 131] and references therein).
This occurs when the meander which has created the ring has not completely
disappeared after the ring formation or when the newly formed ring has closely
approached a following meander of the jet. Rings tend to propagate westward near
the Gulf Stream, via a combination of the beta-drift effect and of the interaction with
the jet.

Finally, interactions of oceanic vortices with isolated seamounts, with seamount
chains, or with island chains have been regularly observed. In particular, Agul-
has rings have been observed to encounter the Vema seamount, a tall and narrow
seamount in the South Atlantic Ocean [3] and to break under the influence of topo-
graphically induced circulation [66, 67].
Deep vortices, such as meddies, have also been observed to interact with seamounts
[173, 172, 146, 132, 120, 119]. Meddies can squeeze between tall and narrow
seamounts, be eroded, or disintegrate over the Mid-Atlantic Ridge. Meddies can
also encounter the continental slope [24] and remain stationary for a significant
duration.

3.1.3.2 Vortex Advection, Drift, and Decay

Once formed, vortices rarely remain in their generation region. They can be advected
by the mean flow that gave them birth (e.g., the Gulf Stream or the Mediterranean
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water undercurrents) or they can propagate away from their formation region via
self-advection (for instance, in the case of dipolar vortices). In this process, vortices
adjust to a stationary form, provided that the surrounding currents are uniform on
large enough distances for the adjustment to take place. If self-advection is usually
a fast process (dipoles can drift at a speed of 5–8 cm/s), advection by a uniform
current is most often slow (drift velocities are often smaller than 1 cm/s).
Another mechanism explaining vortex propagation along a coast is the presence
of an opposite-signed image vortex due to the coast. In addition, the continental
slope causes vortex squeezing, leading to an asymmetry in vortex structures. These
mechanisms are considered responsible for the propagation of North Brazil Current
rings along the South American coast [94, 134] and for Loop Current Eddies in the
Gulf of Mexico.

To reach the observed drift velocities (3–5 cm/s for meddies, for instance),
monopolar (or quasi-monopolar) vortices must be influenced by another factor than
uniform currents. Numerical modeling has shown that beta-effects, either planetary
or due to baroclinic currents, can induce large drift velocities on vortices. Indeed,
ambient vorticity gradients induce an asymmetry in the vortex circulation, which
results in their propagation. For instance, the meridional gradient of the Coriolis
force induces a meridional drift of vortices, in a direction depending on the vortex
polarity [141]. Whatever the vortex polarity, a westward drift, due to the interaction
of the vortex and of the planetary beta-effect, is observed [1, 102]. In summary,
the planetary beta-effect advects cyclones (resp. anticyclones) northwestward (resp.
southwestward) in the northern hemisphere, and conversely in the southern hemi-
sphere: meddies, Agulhas rings clearly confirm this effect. In the ocean, the com-
bination of topographic and baroclinic currents, and of planetary and topographic
beta-effects can lead to complex vortex trajectories (see Fig. 3.6).

Atmospheric ventilation is an important process for surface-intensified vortices
in regions of strong heat exchange between the atmosphere and ocean (e.g., the
Gulf Stream). For instance, warm-core ring 82B was observed to lose 1500 W/m2

in response to a strong winter storm and ring 82I lost 800 W/m2 during two consec-
utive storms [75]. Models show that the response to cooling is governed by Rossby
adjustment. Associated with this cooling, convective mixing suppresses the surface
signature of the ring [27].
Isopycnal and diapycnal mixing can also affect deep eddies, such as meddies. A
long and detailed experiment with Sofar3 floats and multiple hydrological surveys
allowed the investigation of the long-term (2-year long) evolution of the hydrolog-
ical structure of a meddy [7]. Several mechanisms, lateral intrusions, double dif-
fusion, and turbulence acted to erode the meddy on its top, bottom, and periphery.
Lateral intrusions were the most effective to mix heat and salt. The salt content of
the meddy core became strongly affected by lateral intrusions reaching the core after
1 year (see Fig. 3.6).

3 SOund Fixing And Ranging.
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Fig. 3.6 Trajectory of an acoustic float released in a meddy, and remaining in this eddy for 2 years;
the structure of the meddy at each survey (core, salinity boundary, and periphery) is indicated on
the side; from [7]

3.1.4 Submesoscale Structures and Filaments; Biological Activity

The eddy activity of the ocean is not limited to the coherent vortices described
above. Much turbulent activity lies in small-scale, shorter-lived vortices and in
filaments (often formed by the interaction between vortices and by the instabil-
ity of currents (deep-ocean jets, continental slope, and coastal currents). Fila-
ments play an essential role in the vertical transfers to and from the ocean sur-
face. Experiment POMME in the Northeastern Atlantic Ocean had evidenced that
the major biological signals (chlorophyll, zooplankton, particles, and pCO2) were
concentrated in frontal and filamentary structures around mesoscale vortices (see
Fig. 3.7). Recent numerical simulations of oceanic turbulence at very high reso-
lution have shown that half of the vertical transfers in the upper ocean layers is
achieved by elongated filaments, the other half being done by circular filaments and
vortices [84].
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Fig. 3.7 Submesoscale signature during POMME3 experiments: sea level anomaly from a
QG forecast model, showing the transect (left); vertically integrated content in particles over
250 m (upper right) and vertical cross-section (lower right). From http://www.lodyc.jussieu.fr/
POMME/PROGRAMME/site_pomme_2003

It must nevertheless be stated that biological activity has also been observed in
the core of oceanic vortices: cold-core rings of the Gulf Stream initially contain
slope water rich in nutrients and plankton; as it decays, this water is replaced by
Sargasso Sea water with much lower biological contents [137]. Tropical instabil-
ity vortices (for a description of these vortices, see [78]), which are synoptic-scale
anticyclones, downwell nutrients just below their core, leading to biological produc-
tion (phytoplankton, zooplankton) just above the nitracline (the level of maximum
gradient in nitrate concentration).

3.2 Physical and Mathematical Framework for Oceanic Vortex
Dynamics

Many models have been used to describe the dynamics of vortices, depending on
the spatial structure or the scale of the effects to be represented: three-dimensional
Boussinesq non-hydrostatic models and primitive-equation models have been widely
used to study vortex formation, mutual vortex interactions or vortex interactions,
with inertia-gravity waves.
Layered models (based on shallow water, frontal geostrophic, and quasi-geostrophic
dynamics, hereafter SW, FG, and QG) have been widely used to study vortex stabil-
ity, interactions, and drift, under the assumption that the ocean (or the atmosphere)
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can be represented as a stack of homogeneous layers and that vortices are con-
fined in one layer, or in a few of these layers. A central property of these models
is conservation of potential vorticity in unforced, non-dissipative flows. Indeed,
potential vorticity conjugates many vortex properties (internal vorticity, relation
with planetary vorticity, and the vertical stretching of water columns) in a single
variable.

3.2.1 Primitive-Equation Model

The primitive equations are the Navier–Stokes equations on a rotating planet, for
an incompressible fluid, with Boussinesq and hydrostatic approximations. These
dynamical equations are complemented with an equation of state for the fluid and
with advection–diffusion equations for temperature and salinity (in the ocean). They
are usually written as

Du

Dt
− f v = −1

ρ0
∂x p + Fx + Dx ,

Dv

Dt
+ f u = −1

ρ0
∂y p + Fy + Dy

for the two horizontal momentum equations (ρ0 being an average density),

∂z p = −ρg

for the hydrostatic balance,

ρ = ρ(T, S, p)

for the equation of state,

∂x u + ∂yv + ∂zw = 0

for the incompressibility equation, and

DT

Dt
= κT ∇2T + FT

DS

Dt
= κS∇2S + FS

for the temperature and salinity equations (T is temperature and S is salinity). The
Lagrangian advection is three-dimensional D/Dt = ∂t + u∂x + v∂y + w∂z . The
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Coriolis parameter is f = 2� sin(θ), where � is the rotation rate of the Earth
and θ is latitude; g is gravity. Fx , Fy and Dx , Dy are the forcing and dissipative
terms in the horizontal momentum equations, and FT , FS are the source terms in
the thermodynamics/tracer equations. The thermal and salt diffusivities are κT and
κS , respectively.
This system is associated with a set of boundary conditions: mechanical, thermal,
and haline forcing at the sea surface, interaction with bottom topography, and pos-
sible lateral forcing via exchanges between ocean basins.

Primitive equations conserve potential vorticity in adiabatic, inviscid evolutions;
this potential vorticity has the form

� = (ω + f k) · ∇ρ
ρ
,

with ω = (−∂zv, ∂zu, ∂xv − ∂yu).
The primitive equations can be rendered non-dimensional. Non-dimensional num-
bers quantify the intensity of each physical effect:

- the Rossby number Ro = U/ f L , where U is a horizontal velocity scale and L
a horizontal length scale characterizes the influence of planetary rotation on the
motion (this number is the ratio of inertial to Coriolis accelerations),

- the Burger number Bu = N 2 H2/ f 2L2, where N 2 = −(g/ρ)∂zρ is the Brunt–
Väisälä frequency and H is a vertical length scale, indicates the influence of
stratification on motion (it is the ratio of buoyancy to Coriolis terms),

- the Reynolds number Re = U L/ν, where ν is viscosity, is the ratio of lateral
friction to acceleration and it characterizes the influence of dissipation on motion,

- the Ekman number Ek = ν/ f H2 is the ratio of vertical dissipation to Coriolis
acceleration and characterizes the importance of frictional effects at the ocean
surface and bottom,

- the aspect ratio of motions, H/L , also indicates how efficiently planetary rotation
and ambient stratification have confined motions in the horizontal plane.

These non-dimensional numbers are used to derive the simplified equation sys-
tems (shallow-water and quasi-geostrophic models). In particular, for unforced, non-
dissipative motions, a small Rossby number (associated with small aspect ratio of
the motion) indicates that the Coriolis acceleration balances the horizontal pressure
gradient:

f v = 1

ρ0
∂x p

f u = −1

ρ0
∂y p.

These equations are called the geostrophic balance. Using now the hydrostatic bal-
ance, and under the same conditions, we obtain the thermal wind relations
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f ∂zu = −g

ρ0
∂xρ,

f ∂zv = g

ρ0
∂yρ,

which indicates that the vertical shear of horizontal velocity is then related to the
horizontal density gradients.

The primitive-equation model has been used for the study of vortex generation
by deep ocean jets or by coastal currents.
Along the continental shelf from the Florida Straits to Cape Hatteras, the Gulf
Stream is a frontal current and it can undergo frontal baroclinic instability, leading
to the formation of meanders and cyclones. With a primitive-equation model, Oey
[115] showed that the relative thickness of the upper ocean layer and the distance of
the front from the continental slope govern the frontal baroclinic instability. Chao
and Kao [26] evidenced successive barotropic and baroclinic instabilities on this
current and the formation of anticyclones. To analyze the formation of meanders
and rings in the Gulf Stream region east of Cape Hatteras, Spall and Robinson [147]
used a primitive-equation, open-ocean model, and they showed that bottom topog-
raphy plays an important role in the structure of the deep flow. Warm-core ring
formation results from differential horizontal advection of a developed meander,
while cold-core ring formation involves geostrophic and ageostrophic horizontal
advection, vertical advection, and baroclinic conversion.
With a primitive-equation model, Lutjeharms et al. [93] studied the formation of
shear edge eddies from the Agulhas Current along the Agulhas Bank. These eddies,
with a diameter of 50–100 km, are prevalent in the Agulhas Bank shelf bight as
observed, and their leakage may trigger the detachment of cyclones from the tip of
the Agulhas Bank. These cyclones have sometimes been observed to accompany the
detachment of Agulhas rings from the Agulhas Current.

More recently, the primitive-equation model was used for the study of ocean
surface turbulence, vertical motions and the coupling of physics with biology, via
submesoscale motions. Levy et al. [88] modeled jet instability at very high reso-
lution and showed that submesoscale physics reinforce the mesoscale eddy field.
Submesoscale structures (filaments) are associated with strong density and vorticity
gradients and are located between the eddies. They also induce large vertical veloc-
ities, which inject nutrients in the upper ocean layer. This study was complemented
by that of Lapeyre and Klein [84] who showed that elongated filaments are more
efficient than curved filaments at injecting nutrients vertically.

3.2.2 The Shallow-Water Model

3.2.2.1 Equations and Potential Vorticity Conservation

At eddy scale or even at the synoptic scale (a few hundred kilometers horizon-
tally), the ocean can be modeled as a stack of homogeneous layers in which the
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motion is essentially horizontal (due to Coriolis force and stratification). In each
layer, horizontal homogeneity leads to vertically uniform horizontal velocities.
The shallow-water equations are obtained by integrating the horizontal momentum
and the incompressibility equations over each layer thickness. Here, we write the
shallow-water equations in polar coordinates for application to vortex dynamics (u j

is radial velocity and v j is azimuthal velocity):

Du j

Dt
− f v j = −1

ρ j
∂r p j + Fr j + Dr j

Dv j

Dt
+ f u j = −1

rρ j
∂θ p j + Fθ j + Dθ j

Dh j

Dt
+ h j∇ · u j = Dh j

Dt
+ h j

r
(∂r (ru j )+ ∂θv j ) = 0, (3.1)

with

D

Dt
= ∂t + u j∂r + (v j/r)∂θ .

Here p j , h j , ρ j , Fj , and D j are pressure, local thickness, density, body force, and
viscous dissipation, respectively in layer j ( j varying from 1 at the surface to N
at the bottom); f = f0 + βy is the expansion of the spherical expression of f on
the tangential plane to Earth at latitude θ0. The local and instantaneous thickness is
h j = Hj +η j−1/2−η j+1/2, where Hj is the thickness of the layer at rest and η j+1/2
is the interface elevation between layer j and layer j + 1 due to motion. We choose
to impose a rigid lid on the ocean surface (η1/2 = 0) and the bottom topography is
represented by ηN+1/2 = hB(x, y) (see Fig. 3.8). Finally, the hydrostatic balance is
written as p j = p j−1 + g(ρ j − ρ j−1)η j−1/2.

An essential property of these equations is layerwise potential vorticity conservation
in the absence of forcing and of dissipation (Fj = D j = 0). By taking the curl of
the momentum equations, and by substituting the horizontal velocity divergence in
the continuity equation, Lagrangian conservation of layerwise potential vorticity� j

is obtained:

d� j

dt
= 0, � j = ζ j + f0 + βy

h j
, (3.2)

with ζ j = (1/r)[∂r (rv j )− ∂θu j ] the relative vorticity.
For vortex motion, it is more convenient to introduce the PV anomaly with respect
to the surrounding ocean at rest. For instance, in the case of f -plane dynamics

Q j = � j − �0
j = ζ j + f0

h j
− f0

Hj
= 1

h j

(
ζ j − f0

δη j

H j

)
,
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Fig. 3.8 Sketch of a N -layer ocean for the shallow-water model

where δη j = h j − Hj is the vertical deviation of isopycnals across the vortex.
Obviously, the PV anomaly is then conserved. On the beta-plane, one usually does
not include planetary vorticity in the PV anomaly, which is then not conserved [108].

To evaluate the potential vorticity contents of each layer, we restore the forcing
and dissipation terms, so that

d� j

dt
= 1

h j

[
1

r
∂r (r(Fθ j + Dθ j ))− 1

r
∂θ (Fr j + Dr j )

]
.

Now

d� j

dt
= ∂t� j + u j · ∇� j = ∂t� j + ∇ · [u j� j ]

using the non-divergence of horizontal velocity. Therefore, if we integrate the rela-
tion above on the volume of layer j , we have
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d

dt

∫ ∫

S j

� j h j d S =
∮

C j

(F j + D j ) · dl j ,

where C j is the boundary of S j (see [64, 65, 109]). Thus, the potential vorticity
contents in layer j vary when forcing or dissipation is applied at the boundary of
the layer. The equation for the potential vorticity anomaly is the following:

d

dt

∫ ∫

S j

Q j h j d S = − f
dVj

dt
+
∮

C j

(F j + D j ) · dl j ,

where Vj is the volume of layer j [109]. Thus, the potential vorticity anomaly
contents can change when this volume varies (e.g., via diapycnal mixing) or when
forcing or dissipation occurs at the boundary of the layer. This “impermeability
theorem” has important consequences for flow stability (see also [110]).

For isopycnic layers which intersect the surface, Bretherton [21] has shown that
“a flow with potential [density] variations over a horizontal and rigid plane boundary
may be considered equivalent to a flow without such variations, but with a concen-
tration of potential vorticity very close to the boundary.” In particular, Boss et al.
[16] show that an outcropping front corresponds to a region of very high potential
vorticity, conditioning the instabilities which can develop on this front.

3.2.2.2 Velocity–Pressure Relations and Inversion of Potential Vorticity

The prescription of the potential vorticity distribution characterizes the eddy struc-
ture, but one needs to know the associated velocity field to determine how the eddy
will evolve. To do so, one needs a diagnostic relation between pressure (or layer
thickness) and horizontal velocity, to invert potential vorticity into velocity. In the
shallow-water model, such a relation does not always exist. One important instance
where it does is the case of circular eddies.

It can be easily shown that axisymmetric and steady motion in a circular eddy
obeys a balance between radial pressure gradients, Coriolis and centrifugal acceler-
ations, called cyclogeostrophic balance; this is obtained by simplifying the shallow-
water equations above with ∂t = 0, ∂θ = 0, vr = 0 (see [40])

− v2
θ

r
− f0 vθ = −1

ρ

dp

dr
. (3.3)

In this case, inversion of potential vorticity into velocity leads to a nonlinear ordi-
nary differential equation which can be solved iteratively, if the centrifugal term is
weak compared to the Coriolis term.
This equation can be put in non-dimensional form with the Rossby number Ro =
U/ f0 R and the Burger number Bu = g′H/ f 2

0 R2 with U, R,�H, H scaling the
eddy azimuthal velocity, radius, and thickness and the upper layer thickness:
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Ro
v2
θ

r
+ vθ = Bu

Ro

�H

H

dη

dr
. (3.4)

Note that this balance introduces an asymmetry between cyclones and anticyclones
(see also [23]).
For small Rossby numbers, geostrophic balance holds:

U = g′�H

f0 R
and

�H

H
= Ro

Bu
,

while for Rossby numbers of order unity or larger, horizontal velocity scales on
pressure gradient via the centrifugal term (cyclogeostrophic balance) and

U = √
g′�H and

�H

H
= Ro2

Bu
.

Lens eddies are defined by large vertical deviations of isopycnals �H/H ∼ 1 or
Ro ∼ Bu, and they are described by the full shallow-water equations (or by frontal
geostrophic equations, see below). Quasi-geostrophic vortices correspond to smaller
deviations of isopycnals, i.e., �H/H << 1 or Ro << 1, Bu ∼ 1.

In fact, the cyclogeostrophic balance is the f -plane, axisymmetric version of
the gradient wind balance. To obtain the gradient wind balance, one starts from
the horizontal velocity divergence equation. Calling � j = 1

r ∂r ru j + 1
r ∂θv j the

horizontal divergence, this equation is

d� j

dt
+�2

j − 2J (u j , v j )− f ζ j + β cos(θ)u j = − 1

ρ j
∇2 p j + ∇ · [F j + D j ],

where J (a, b) = 1
r [∂r a∂θb − ∂r b∂θa] is the Jacobian operator. In the absence of

forcing and dissipation, if the Rossby number is small, the advection of horizontal
velocity divergence and the squared divergence are smaller than the other terms. The
equation becomes then

2J (u j , v j )+ f ζ j − β cos(θ)u j = 1

ρ j
∇2 p j ,

which is the gradient wind balance. On the f -plane, this equation is

2J (u j , v j )+ f0ζ j = 1

ρ j
∇2 p j ,

which, for a circular eddy, is the divergence of the cyclogeostrophic balance.
For eddies which are not circular, the gradient wind balance provides a diagnostic
relation between velocity and pressure, which must be solved iteratively. Writing
this balance

ζ j = 1

f0ρ j
∇2 p j − 2

f0
J (u j , v j )
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the first term on the right-hand side of the equation is called the geostrophic relative
vorticity, and the second term is a first-order approximation (in Rossby number) of
the ageostrophic relative vorticity. At first order in the iterative solution procedure,
this balance is written as

ζ j = 1

f0ρ j
∇2 p j − 2

f 2
0 ρ j

J (∂x p j , ∂y p j ),

using in the Jacobian operator geostrophic balance to replace velocity into pressure
gradient. This relation is a Monge–Ampère equation which has a limited solvability.
If a solution exists, the potential vorticity distribution can be inverted into pressure
and then into velocity.
On the f -plane and in a one-and-a-half layer reduced gravity model, for a circular,
anticyclonic, lens eddy, with zero potential vorticity and radius R, potential vor-
ticity can be easily inverted into pressure (height) and velocity fields. In this case,
relative vorticity is equal to − f0 and azimuthal velocity is equal to − f0r/2. The
cyclogeostrophic balance leads to

h(r) = f 2
0

8g′ (R
2 − r2),

where R is the eddy radius. The central thickness is h(0) = f 2
0 R2/(8g′).

Another instance where potential vorticity is easily inverted is the case of a circular
eddy with constant potential vorticity q > 0 inside radius R and constant potential
vorticity q ′ outside. Assuming here geostrophic balance, the layer thickness satisfies
the equation

d2h

dr2
+ 1

r

dh

dr
− f0q

g′ h + f 2
0

g′ = 0

for r ≤ R. The inner solution is h(r) = ( f0/q) + h0 I0(r
√

f0q/g′), where I0 is
the modified Bessel function of the first kind of order zero. The equation for the
layer thickness outside is similar to that inside the eddy, and the outer solution is
h(r) = ( f0/q ′) + h1 K0(r

√
f0q ′/g′), where K0 is the modified Bessel function of

the second kind of order zero. The two constants h0 and h1 are obtained by matching
h and the azimuthal velocity (g′/ f0)dh/dr at r = R:

f0

q
+ h0 I0

(
R

√
f0q

g′

)
= f0

q ′ + h0 I0

(
R

√
f0q ′
g′

)

h0
√

q I1

(
R

√
f0q

g′

)
= −h1

√
q ′K1

(
R

√
f0q ′
g′

)
,
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where I1 and K1 are modified Bessel function of the first and second kinds of order
one. Obviously, such calculations must be performed numerically when centrifugal
terms are inserted in the velocity–pressure relation.

3.2.2.3 Flow Stationarity

The cyclogeostrophic solution presented above shows that a circular vortex remains
stationary on the f -plane. But this case is not the only stationary solution of the
shallow-water equations. For instance, on the f -plane, a steadily rotating vortex
with constant rotation rate�, obeys the following equations (in the absence of forc-
ing and of dissipation)

u′
j ∂r u′

j +
(
v′

j/r
)
∂θu′

j − f v′
j = −1

ρ j
∂r p′

j

u′
j ∂rv

′
j +

(
v′

j/r
)
∂θv

′
j + f u′

j = −1

rρ j
∂θ p′

j

∂r

(
rh j u

′
j

)
+ ∂θ

(
rh jv

′
j

)
= 0,

where u′
j = u j , v

′
j = v j −�r, h′

j = h j , p′
j = p j + �2r2

2 and f = f0 + 2�.
Note that these equations can also be written as

(
ζ ′

j + f
)

k × u′
j + ∇

[
p′

j

ρ j
+ 1

2

((
u′

j

)2 +
(
v′

j

)2
)]

= 0

and

∇ · [h j u′
j ] = 0.

Setting B ′
j =

(
p′

j/ρ j

)
+
((

u′
j

)2 +
(
v′

j

)2
)
/2 and eliminating velocity between

both equations, the condition for steadily rotating shallow-water flows is

J
(

B ′
j ,�

′
j

)
= 0,

with �′
j = (

ζ " j + f
)
/h j . This leads to B ′

j = F
(
�′

j

)
.

Note also that the non-divergence of mass transport implies the existence of a trans-
port streamfunction ψ j such that h j u′

j = −(1/r)∂θψ j , h jv
′
j = ∂rψ j . The momen-

tum equations are then

�′
j∇ψ j = −∇B ′

j = −∇�′
j F ′ (�′

j

)
,

and therefore

∇ψ j = −∇�′
j F ′ (�′

j

)
/�′

j = ∇
(

G
(
�′

j

))
,

thus relating transport streamfunction and potential vorticity.
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An example of steadily rotating shallow-water vortex is the rodon, a semi-
ellipsoidal surface vortex on the f -plane in a one-and-a-half layer model. This
vortex was used to model Gulf Stream rings.

On the beta-plane, vortex stationarity is conditioned by the “no net angular
momentum theorem,” originally presented in Flierl et al. [59] and later developed
by Flierl [55]. If the vortex is vertically confined between two isopycnals, it will
remain stationary on the beta-plane (in the absence of forcing and of dissipation)
if its net angular momentum vanishes to avoid a meridional imbalance in Rossby
force (Coriolis force acting on the azimuthal motion). This condition is expressed
mathematically as:

β

∫ ∫
� dxdy = 0,

where � is the transport streamfunction associated to the vortex.
Note that this condition can also be obtained by canceling the drift speed for lens
eddies on the beta-plane calculated by Nof [111, 112] and Killworth [79]

c = −β
f

∫ ∫
�dxdy∫ ∫
hdxdy

.

3.2.2.4 Rayleigh-Type Stability Conditions for Vortices in the Shallow-Water
Model

The former two paragraphs have described the structure of isolated, stationary vor-
tices in the shallow-water model. They have not dealt with conditions for their
stability. Ripa [138, 139] derived stability conditions for circular vortices (on the
f -plane) and for parallel flows, with a variational method. Stable solutions were
characterized as minima of pseudo-energy (energy added to functionals of potential
vorticity and to angular momentum).

Due to potential vorticity conservation in the absence of forcing and of dissipa-
tion, functionals of potential vorticity are invariants of the flow:

I [F] =
N∑

j=1

∫ ∫
h j Fj (� j ) rdrdθ,

with � j = ( f + Vj/r + dVj/dr)/Hj .
Total energy is also conserved under the same conditions:

E = 1

2

∫ ∫ ⎡
⎣

N∑
j=1

h j

(
u2

j + v2
j

)
+

N ′∑
j=1

g′
jη

2
j+1/2

⎤
⎦ rdrdθ,
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with N ′ = N for reduced gravity flows and N ′ = N − 1 for flat bottom oceans.
Angular momentum is conserved for unforced, inviscid flows

A =
∫ ∫ N∑

j=1

h j

(
rv j + 1

2
f r2
)

rdrdθ.

Starting from an axisymmetric flow in cyclogeostrophic balance

U j = 0, Vj = Vj (r), Hj = Hj (r), Pj = Pj (r),

if all small perturbations [u′, v′, h′] satisfy

δS = S[U + u′, H + h′] − S[U, H ] > 0,

with S = E − σ A − I [F] (σ a constant), then the flow is stable.

The first variation δ(1)S will vanish if Fj−� j d Fj/d� j = 1
2 V 2

j −σ
(

Vjr − 1
2 f r2

)
+

Pj in each layer. Then, the second variation of S will be

δ(2)S = 1

2

∫ ∫ ⎡
⎣

N∑
j=1

Hj

(
(u′)2j + (v′)2j

)
+ (Vj − σr)

{
2(v′) j (h

′) j+

ξ2
j

d� j/dr

}]
+

N ′∑
j=1

g′
j (η

′)2j+1/2] rdrdθ.

Some algebra (see [138]) is needed to convert δ(2)S into a simpler form, which is
positive definite (implying a stable flow) if the following conditions are satisfied:

1) if there exists σ 	= 0 such that

Vj − σr

d� j/dr
< 0

for all r and for all j = 1, . . . , N , and
2) if Gi j (σ ) is positive definite with

Gii = g′
i − λi − λi+1, Gi−1,i = λi , Gi+1,i = λi+1 ,

and Gi j = 0 otherwise, with λ j = (Vj − σr)2/Hj , then the flow is stable.

The first condition is derived from the Rayleigh inflection point theorem [130], the
second condition is a subcriticality condition.



3 Oceanic Vortices 85

Three examples of applications are

- the two-dimensional flow where there is no subcriticality condition, and where
the first condition is equivalent to the Rayleigh stability condition by choosing σ
out of the range of values of V (r)/r .

- the one-and-a-half layer reduced gravity flow, for which the subcriticality condi-
tion is (V − σr)2 < g′H .

- the two-layer (flat bottom) flow, for which this condition becomes

(V1 − σr)2

g′H1
+ (V2 − σr)2

g′H2
< 1.

3.2.2.5 Balanced Dynamics

The shallow-water model allows both fast and slow motions (e.g., inertia-gravity
waves versus vortical motions). For slow motions, relative acceleration is small
compared to Coriolis accelerations, and the divergent flow remains weak at all times.
In the shallow-water model, a usual decomposition of the velocity in streamfunction
ψ and velocity potential χ is

u = k × ∇ψ + ∇χ.
In the one-and-a-half layer reduced-gravity model, relative vorticity is ζ = ∇2ψ

and the horizontal velocity divergence is D = ∇2χ . Their evolution equations are
written as

∂tζ + f D = −∇ · (vζ )
∂t D + g∇2h − f ζ = 2J (u, v)− ∇ · (vD).

Slow motions are characterized by mostly rotational flows, i.e., χ ∼ O(Ro)ψ .
When this condition is inserted in the divergence equation, the remaining terms at
O(Ro) form the Bolin–Charney balance [15, 30]. On the f -plane, this balance is
written as

f0∇2ψ + 2J (∂xψ, ∂yψ) = g∇2h,

which is the gradient wind balance presented above (further details are available in
[100]).

The problem of separating these two types of motions in numerical weather pre-
dictions, and in particular of suppressing transient, fast motion (often gravity waves
generated by unbalanced initial conditions), has been the subject of many studies
since the 1950s (e.g., [30, 15, 124, 68, 87, 89, 69, 162]). Many balanced equation
models have been developed and applied to vortex dynamics and to oceanic tur-
bulence (e.g., [103, 106, 169–171, 105]). Recently, original systems of balanced
equations or balance conditions were derived for the shallow-water model: first, the
slaving principle of Warn et al. [165] and then the hierarchy of balance conditions of
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Mohebalohojeh and Dritschel which relate to the work of McIntyre and Norton [97].
Both systems of equations are convenient for vortex dynamics (see also a recent
review in [98]).

Mesoscale oceanic motions such as long-lived eddies mostly obey the Bolin–
Charney balance, and thus they have been studied in various kinds of geostrophic
models: balanced equations, frontal geostrophic, generalized geostrophic, or quasi-
geostrophic models, two of which are now presented.

3.2.3 Frontal Geostrophic Dynamics

When Ro � 1, the shallow-water equations have been expanded in this small
parameter to express horizontal velocity in terms of height in a variety of manners.
In particular, when Ro ∼ Bu, lens eddies which are not too intense are described
by a set of equations called the frontal geostrophic equations. These equations have
been derived mostly in the context of one-and-a-half layer reduced gravity flows
[41, 42, 148, 149] and of two-layer flows [43, 157, 155, 11–14, 77].

In the one-and-a-half layer reduced gravity model, frontal-geostrophic equations
describe the time evolution of the layer thickness h (since horizontal variations of
this thickness occur on synoptic scales, vortex stretching dominates relative vorticity
in potential vorticity):

∂t h + J

(
h∇2h + 1

2
|∇h|2

)
= 0.

In the two-layer model, when the flow is surface-intensified, a thin surface layer is
the usual assumption. Then the lower layer is quasi-geostrophic:

∂t h + J

(
p + h∇2h + 1

2
|∇h|2

)
= 0

∂t [∇2 p + h] + J (p,∇2 p + h + hb)+ β∂x p = 0,

where h is the upper-layer thickness, p is the lower-layer pressure, and hb is bottom
topography elevation.
Note that, for bottom-intensified flows over topography, Swaters [154, 156] has
derived the dynamical equations which are only quadratic in the variables

∇2ηt + J (h + η, hb)+ J (η,∇2η) = 0

ht + J (η + hb, h) = 0,

where η is the sea surface elevation, h is the bottom layer thickness, and hb the
bottom topography elevation, as above.
Frontal geostrophic models have often been used to study the formation of vor-
tices from unstable surface or bottom flow, and vortices in turbulent flows. The
surface frontal geostrophic equations imply a different behavior of cyclones and of
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anticyclones. Indeed, it was shown that anticyclones are more stable than cyclones
on the f -plane and on the beta-plane propagate westward faster than cyclones.

3.2.4 Quasi-geostrophic Vortices

3.2.4.1 Model Equations

The quasi-geostrophic model is derived from the primitive equations (in continuous
stratification) or from the shallow-water equations (in layerwise form) assuming
small Rossby number (weak relative acceleration compared to Coriolis accelera-
tions), order unity Burger number (small vertical deviations of isopycnals), and
small height of bathymetry, compared to the bottom layer thickness. It is also
assumed that the latitudinal variation of the Coriolis parameter remains moderate
(planetary scales are excluded). The original derivation of the quasi-geostrophic
model is due to Charney [28, 29].

Since relative acceleration and beta-effect are weak, the flow is nearly in geostro-
phic equilibrium (hence the name “quasi-geostrophic”); therefore, at zeroth order
in Rossby number Ro = U/ f0L (L being a horizontal length scale), the flow is
horizontally non-divergent:

u = u(0) + Rou(1) + · · · , v = v(0) + Rov(1) + · · ·
u(0) = − 1

ρ f0
∂y p, v(0) = 1

ρ f0
∂x p, ∂x u(0) + ∂yv

(0) = 0,

thus defining a streamfunction ψ = p/(ρ f0).
The vertical velocity gradient will equilibrate the horizontal flow divergence at first
order in Rossby number

w(0) = 0, ∂zw
(1) = −[∂x u(1) + ∂yv

(1)].

Here, as in the shallow-water model, momentum and vorticity advection are per-
formed by the horizontal flow only.4 Therefore, calculating the relative vorticity
equation and substituting horizontal velocity divergence as in the shallow-water
equations, one also obtains potential vorticity conservation in the absence of forcing
and of dissipation. In layerwise form, this equation is

dq j

dt
= 0 = ∂t q j + u(0)j ∂x q j + v

(0)
j ∂yq j = ∂t q j + J (ψ j , q j ).

Note that the quasi-geostrophic potential vorticity is the first-order term in a Rossby
number expansion of the shallow-water potential vorticity anomaly.

4 In the continuously stratified quasi-geostrophic model, this also holds, contrary to the PE model.
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To determine the expression of quasi-geostrophic potential vorticity, we start
from a non-dimensional δ�̄ j :

δ�̄ j = Hj

f0
� j − 1 = 1

f0h j
[Hj (ζ j + f )− f0h j ].

Recalling that

h j = Hj

(
1 + Ro

Bu
δη̄ j

)
,

and

f = f0(1 + Rβ ȳ),

with

Rβ = βL/ f0 ≤ Ro, ȳ = y/L , δη̄ j = δη j/Hj ,

and setting ζ j/ f0 = Roζ̄ j , one obtains

δ�̄ j ∼ Ro

[
ζ̄ j + Rβ

Ro
ȳ − 1

Bu
δη̄ j

]
+ O(Ro2)

so that, naturally, in non-dimensional form q̄ j = (1/Ro)δ�̄ j .
Finally, calling β̄ = Rβ/Ro, ψ̄ j = ψ j/U L , and expressing relative vorticity and
the stretching of water columns (vortex stretching) in terms of streamfunction, via

ζ̄ j = ∇2ψ̄ j

and

δη̄ j/Bu = Fj, j−1/2[ψ̄ j − ψ̄ j−1] + Fj, j+1/2[ψ̄ j − ψ̄ j+1],

the non-dimensional quasi-geostrophic potential vorticity is written as

q̄ j = ∇2ψ̄ j − Fj, j−1/2[ψ̄ j − ψ̄ j−1] + Fj, j+1/2[ψ̄ j − ψ̄ j+1] + 1 + β̄ y,

with Fj, j+1/2 = f 2
0 L2/g′

j+1/2 Hj (here 1 stands for f0).
A rigid lid on the upper layer cancels F1,1/2 while bottom topography is taken
into account by replacing FN ,N+1/2[ψ̄N − ψ̄N+1] by −hb/HN (dimensionally by
− f0hb/HN ).
When f = f0, the dynamics are those of the f -plane; when f = f0+βy, beta-plane
dynamics are studied.
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3.2.4.2 Equations for Continuous Stratification

Note that potential vorticity conservation can also be expressed in terms of stream-
function in the continuously stratified quasi-geostrophic model as

[∂t + J (ψ̄, ·)] q̄ = 0,

where (again in non-dimensional form)

q̄ = ∇2ψ̄ + ∂z

(
f 2
0 L2

N 2 H2
∂zψ̄

)
= 0,

and N 2 is the squared Brunt–Väisälä frequency.

Usually the stratification operator ∂z

(
f 2
0 L2

N 2 H2 ∂z

)
is diagonalized to provide vertical

eigenmodes (see more details in [123] or in [23]). The modal and layerwise descrip-
tions of motions are formally equivalent.

In fact, the conservation and impermeability theorems for potential vorticity,
were first derived in continuously stratified quasi-geostrophic flows, [64, 44, 65].
The (more recent) shallow-water version of these theorems was presented in
Sect. 3.2.2.
In the quasi-geostrophic framework, these theorems state that even in the presence
of diabatic heating and frictional or other forces, there can be no net transport of
potential vorticity across any isentropic surface in the atmosphere (or across any
isopycnic surface in the ocean), and that potential vorticity can neither be created
nor destroyed within a layer bounded by two isentropic (isopycnic) surfaces. Con-
sequently, it can be created or destroyed at places (if any) where the layer ends later-
ally. This concerns isopycnic layers which ventilate, for instance, or which intersect
the sea floor.

Another essential principle concerning potential vorticity is its invertibility, i.e.,
the possibility to recover the flow structure from the potential vorticity distribution,
as long as limits of centrifugal, static instabilities or a change in sign of the quantity
(absolute vorticity + strain rate) are not reached [101]. This invertibility has been
studied at length by McWilliams and Gent [104], Hoskins et al. [69], McIntyre and
Norton [96] (see also above, “shallow-water model” and “balanced models”).

In the quasi-geostrophic model, invertibility of potential vorticity into stream-
function is possible for all physically realistic problems (which are thus mathemat-
ically well-posed). Indeed, in this model, this invertibility is related to the nature
of the operator which relates potential vorticity and streamfunction. The barotropic
vorticity is the Laplacian of the barotropic streamfunction

qbt = ∇2ψbt

(a Poisson equation), while, for baroclinic modes, the relation between potential
vorticity and streamfunction is a Helmholtz equation
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qbc = ∇2ψbc − ψbc/R2
d,

where Rd is the radius of deformation of the given baroclinic mode. Both types of
equations are elliptical and can be inverted, provided that conditions on ψ or on
velocity (its first spatial derivatives) are given at the domain boundary.
The elementary solutions of the Poisson and Helmholtz equations (that is, with
Dirac distributions for potential vorticity) are the Green’s functions

Gbt (x, y) = 1

2π
Log(r), Gbc(x, y) = −1

2π
K0(r/Rd),

where r = √
x2 + y2 and K0 is the modified Bessel function of second kind of order

zero (see also above). The solution for regular distributions of potential vorticity are
therefore given by a convolution product between them and the Green’s functions

ψbt = Gbt ∗ qbt

or

ψbt (x, y, t) =
∫ ∫

R2
dx ′dy′Gbt (x − x ′, y − y′)qbt (x

′, y′, t),

and similarly for the baroclinic components.
Consider now a potential vorticity distribution confined to a finite domain D,

as is expected for an oceanic vortex. How will the associated flow vary at large
distances? If the vortex is axisymmetric, its barotropic flow will decrease as 1/r
at large distances, while the velocity of any baroclinic mode will decrease as
K1(r/Rd) ∼ exp(−r/Rd),

vbt ∼
[∫ ∫

D
dx ′dy′qbt (x

′, y′, t)

]
∂r Gbt (x − x ′, y − y′)

vbt ∼
[∫ ∫

D
dx ′dy′qbt (x

′, y′, t)

]
/(2πr)

Therefore, the kinetic energy of the vortex K ∼ ∫ ∫
v2rdr will be finite if the area

integral of the barotropic vorticity of the vortex is null. This can be achieved in two
ways: either by having an annulus of opposite-signed vorticity around the vortex
core or by having opposite-signed poles of vorticity above or below this core [108].
Obviously, if the potential vorticity distribution depends on a single spatial variable,
direct integration is usually possible to obtain the associated streamfunction. A sim-
ple and well-known example is the barotropic “shielded” Gaussian vortex, which
has potential vorticity

qbt (r) = q0(1 − r2) exp(−r2) = d2ψbt

dr2
+ 1

r

dψbt

dr
,
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and a Gaussian streamfunction profile

ψbt (r) = (−q0/4) exp(−r2).

Hence, potential vorticity does not solely represent the internal structure of the
vortex but also the whole flow that it generates. This allows calculations of vortex
stationarity, stability, and interactions.

3.2.4.3 Vortex Stationarity in the Quasi-geostrophic Model

Stationarity is expressed directly from the potential vorticity equation by canceling
the time derivative (stationarity in a fixed frame of reference):

J (ψ j , q j ) = 0 → q j = F(ψ j ).

This is the case, for instance, of axisymmetric vortices on the f -plane. The Jacobian
vanishes since ψ j and q j depend only on the radius r .
For stationarity in a moving frame of reference, the time derivative is replaced by the
appropriate spatial derivative. For instance, stationarity in a reference frame moving
at constant zonal velocity c is written as

J (ψ j + cy, q j ) = 0 → q j = F(ψ j + cy).

This is the case of vortex dipoles, called modons, on the beta-plane [57, 59].
Vortices which remain stationary in a frame of reference rotating with constant rate
�, obey the equation

J (ψ j +�r2/2, q j ) = 0 → q j = F(ψ j +�r2/2).

3.2.4.4 Vortex Stability in the Quasi-geostrophic Model

We consider here the stability of circular vortices on the f -plane in a quasi-
geostrophic model. The mean circular vortex is defined by ψ j (r), q j (r). A normal-
mode perturbation

ψ ′
j (r, θ, t) = φ j (r) exp[il(θ − ct)], q ′

j (r, θ, t) = ξ j (r) exp[il(θ − ct)]
is added. What are the conditions for linear instability of this perturbed vortex?
The potential vorticity equation is linearized around the mean flow

∂t q
′
j + J

(
ψ j , q ′

j

)
+ J

(
ψ ′

j , q j

)
= 0,

which is also written as

(V j − rc)ξ j − dq j

dr
φ j = 0,
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where V j is the mean azimuthal velocity. This equation can also be written as

ξ j − dq j

dr

φ j

V j − rc
= 0.

Multiplied by φ∗
j , the complex conjugate of φ j and integrated over the domain area,

and over layer thicknesses, this leads to

−E ′ +
∑

j

H j
dq j

dr

|φ j |2
V j − rc

= 0,

where E ′ is the perturbation energy. Since c = cr + ici , the imaginary part of this
equation is

ci

∑
j

H j
dq j

dr

|φ j |2
(V j − rcr )2 + r2c2

i

= 0.

To obtain positive growth rates σ = lci for the perturbation (i.e., for the vortex to
be unstable), a necessary condition is that dq j/dr changes sign either in a layer or
between layers. This is the Charney–Stern [31] criterion for baroclinic instability in
the quasi-geostrophic model. It is a generalization of the Rayleigh [130] criterion
for stratified flows.
A detailed calculation of σ when the barotropic vorticity is piecewise constant and
nonlinear evolution of linearly unstable vortices can be found in [23].

3.2.5 Three-Dimensional, Boussinesq, Non-hydrostatic Models

To investigate motions which do not belong to the slow manifold (hydrostatic, bal-
anced motions) and in particular, the breaking of inertia-gravity waves, the direct
energy cascade to dissipation at small scales, intense vertical motions [164], three-
dimensional Boussinesq models have been developed and used. An appropriate for-
mulation of these equations for vortex dynamics includes potential vorticity conser-
vation.

Usually, the 3D Boussinesq equations are written under the assumption that the
averaged density distribution varies linearly along the vertical axis. We follow here
the presentation of the equations given by Dritschel and Viudez and we use their
notations. Density is the sum of the linear averaged density and a perturbation, and
buoyancy is related to the density perturbation

ρ(x, t) = ρ0 + ρz z + ρ′(x, t), b = −gρ′/ρ0.
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The motion is composed of a balanced part (geostrophic and hydrostatic balance)
and of an imbalanced part. The balanced part is defined by

f k × uh = −∇h�/ρ0, 0 = −∂z�/ρ0 + b,

where f is the Coriolis parameter, uh the horizontal velocity, and � is the geopo-
tential. These equations also provide a relation between the buoyancy and the hori-
zontal components of relative vorticity ξ and η

f ξ = −∂x b, f η = −∂yb,

with ξ = ∂yw − ∂zv, η = ∂zu − ∂xw and ω(ξ, η, ζ ) with ζ = ∂xv − ∂yu.
The imbalanced motions are described by the horizontal components of the vector

A = ω/ f + ∇b/ f 2,

which is an “ageostrophic, non-hydrostatic vorticity.” Then one can define a vector
velocity potential ϕ via A = ∇2ϕ. Then u/ f = −∇ × ϕ and D = −b/N 2 =
−(1/c2)∇ · ϕ.
Dimensionless potential vorticity is defined by

� = (ω/ f + k) · ∇Z ,

where Z is the reference height of an isopycnal defined by Z(x, t) = −g[ρ(x, t)/
ρ0 − 1]/N 2 = z − D(x, t). The potential vorticity anomaly is π = �− 1. With the
vector potential ϕ = ϕh + φk, the following relation holds:

ω/ f = A − c2∇D = ∇2ϕ − ∇(∇ · ϕ),

with c = N/ f .
With these definitions, the Boussinesq equations are potential vorticity conservation
(in unforced, non-dissipative conditions), relative vorticity, and imbalance equations

dπ

dt
= 0

d(ω/ f )

dt
= (ω/ f ) · ∇u + ∂z u + f c2k × ∇h D

d Ah

dt
= − f k × Ah + (1 − c2)∇hw + (ω/ f ) · ∇uh + c2∇h u · ∇D,

with Ah = ∇2ϕh and w = d D/dt .
Viudez and Dritschel [164] simulate the evolution of a single, baroclinic, mesoscale
eddy with these equations. They observe internal gravity wave generation during
the evolution of the vortex, a priori related to filamentation. With the same equa-
tions, Pallas-Sanz and Viudez [121] investigate the three-dimensional ageostrophic
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motion in a mesoscale vortex dipole. For a small distance between a cyclone and an
anticyclone, the vortices drift as a compact dipole and the vertical velocity pattern is
octupolar. For larger separation between the vortices, the propagation speed and ver-
tical velocities decrease and the octupolar pattern is disturbed by vortex oscillations.
Dubosq and Viudez study the frontal collisions between two 3D mesoscale dipoles.
The outcome can be the interchange between partners, the formation of a tripole
(which is diffusion-dependent) or the squeezing of the central vortices between the
outer ones.

3.3 Process Studies on Vortex Generation, Evolution, and Decay

In this section, as in the following two sections, we will show how the shallow-
water models, either with PE, FG, or QG dynamics, have been used to study vortex
dynamics via the analysis of individual processes.

3.3.1 Vortex Generation by Unstable Deep Ocean Jets or of Coastal
Currents

The formation of vortices either from deep-ocean jets or from coastal currents has
often been modeled in shallow-water or in quasi-geostrophic models. Vortex gener-
ation from these currents has been identified as resulting essentially from barotropic
or baroclinic instabilities; Kelvin–Helmholtz instability, ageostrophic frontal insta-
bility, and parametric instability are other mechanisms which induce vortex shed-
ding by such currents.

In a one-and-a-half layer quasi-geostrophic model, on the beta-plane, Flierl et al.
[58] evidence a variety of nonlinear regimes of a barotropically unstable Gaussian
jet depending on the wavelength and beta-effect: dipoles form for long waves at low
beta, staggered vortex streets for intermediate wavelengths and cat’s eyes for short
waves. At higher values of beta, multi-stage instability is observed where harmonics
develop and interact under the form of meanders, accompanied by Rossby wave
radiation.

In a multi-layer quasi-geostrophic model, barotropic and baroclinic jet instabil-
ity leads to meanders which amplify to form eddies [72, 73]. Eddy detachment is
assisted by beta-effect which then restores the zonal mean flow. Flierl et al. [56]
determine the nonlinear regimes of a mixed barotropically–baroclinically unstable
jet and analyze the similarity with the two-dimensional case [58]. Meacham [107]
studies the stability of a baroclinic jet with piecewise constant potential vorticity; he
finds that the nonlinear regimes of vortex formation are related to the linear stability
properties of the jet and that the most realistic nonlinear jet evolutions are obtained
for a single potential vorticity front in the upper and lower layers.

In a multi-layer shallow-water model, Boss et al. [16] show that several types
of modes can develop on an unstable outcropping front in a two-layer SW model:
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Fig. 3.9 Baroclinic dipole formation and ejection from an unstable coastal current; from Cherubin
et al. [34]

Kelvin-like modes (those previously observed for frontal instability) and Rossby-
like modes (related to baroclinic instability). Baey et al. [8] show that the instability
of identical jets is stronger in the SW model than in the quasi-geostrophic model
and that anticyclones seem to appear more often and are larger than cyclones in the
former model.

Chérubin et al. [33] investigate the linear stability of a two-dimensional coastal
current composed of two adjacent uniform vorticity strips and found evidence of
dipole formation when the instability is triggered by a canyon. In contrast, stable
flows (made of a single vorticity strip) shed filaments near deep canyons. Capet and
Carton [22] study the nonlinear regimes of the same QG flow over a flat bottom
or over a topographic shelf. They find that the critical parameter for water export
offshore is the distance from the coast where the phase speed of the waves equals
the mean flow velocity. Chérubin et al. [34] study the baroclinic instability of the
same flow over a continental slope with application to the Mediterranean Water
(MW) undercurrents: vortex dipoles similar to the dipoles of MW can form for
long waves when layerwise PV amplitudes are comparable but of opposite sign
(see Fig. 3.9). This confirms the Stern et al. [151] results of laboratory experiments
and primitive-equation modeling which show that dipoles can form from unstable
coastal currents as in two-dimensional flows.

3.3.2 Vortex Generation by Currents Encountering a Topographic
Obstacle

The interaction of a flow with an isolated seamount is a longstanding problem in
oceanography, and in a homogeneous fluid the classical solution of the Taylor col-
umn is well known. When the flow varies with time, when the fluid is stratified,
or when the topographic obstacle is more complex, several studies have provided
essential results on vortex generation.

Verron [163] addressed the formation of vortices by a time-varying barotropic
flow over an isolated seamount. He found that vortices are shed by topographic
obstacles of intermediate height. Small topographies do not trap particles above
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them (they are advected by the flow). Tall topographies do not release significant
amounts of water. The conditions under which vortices can be shed by a seamount
in a uniform flow are given in Huppert [70] and Huppert and Bryan [71].

3.3.3 Vortex Generation by Currents Changing Direction

Many oceanic eddies are formed near capes where coastal currents change direction.
Ou and De Ruijter [118] relate the flow separation from the coast to the outcropping
of the current at the coast as it veers around the cape. Another mechanism, based on
vorticity generation in the frictional boundary layer, is proposed for the formation of
submesoscale coherent vortices, when the current turns around a cape [45]. Klinger
[80–82] finds a condition on the curvature of the coast to obtain flow separation, and
in the case of a sharp angle, he observes the formation of a gyre at the cape for a
45◦ angle and eddy detachment at a 90◦ angle.

Nof and Pichevin [114] and Pichevin and Nof [125, 126] propose a theory for
currents changing direction, e.g., as they exit from straits or veer around capes. In
this case, linear momentum is not conserved in all directions (see Fig. 3.10a). Indeed
an integration of the SW equations in flux form over the domain ABCDEFA leads to

∫ D

C
[hu2 + g′h2/2 − fψ] dy = 0

via the definition of a transport streamfunction ψ and the Stokes’ theorem. With the
geostrophic balance

fψ = g′h2/2 − β

∫ L

y
ψdy

the previous equation becomes

∫ L

0
hu2dy + β

∫ L

0
[
∫ L

y
ψdy]dy = 0,

which cannot be satisfied since both terms are positive.

a b

Fig. 3.10 (a) Top: sketch of the current exiting from the strait without vortex formation; (b) bottom:
same as (a) but now with vortex generation; from Pichevin and Nof [126]
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The equilibrium is then reached in time by periodic formation of vortices which exit
the domain in the opposite direction to the mean flow (see Fig. 3.10b). By defining
a time-averaged transport streamfunction ψ̃ (over a period T of vortex shedding),
the balance then becomes

∫ D

C
[hu2 + g′h2/2 − fψ] dy =

∫ T

0

∫ E

F
[hu2 + g′h2/2] dy dt −

∫ E

F
f ψ̃dy.

The flow force exerted on the domain by the water exiting from its right is balanced
by eddies shed on the left.

Numerical experiments with a PE model indeed show that vortices periodi-
cally grow and detach from the current, when this current changes direction (see
Fig. 3.11). This can explain the formation of meddies at Cape Saint Vincent, of
Agulhas rings south of Africa, of Loop Current eddies in the Gulf of Mexico, of
teddies (Indonesian Throughflow eddies), etc. (see Sect. 3.1.2).

Fig. 3.11 Result of PE model simulation; from Pichevin and Nof [126]
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3.3.4 Beta-Drift of Vortices

First, let us recall the basic idea behind the motion of vortices on the beta-plane.
Consider an isolated lens eddy (see, for instance, [111] or [79]): since f varies
with latitude, the southward Coriolis force acting on the northern side of an anti-
cyclone will be stronger than the opposite force acting on its southern side (in the
northern hemisphere). Hence circular lens eddies cannot remain motionless on the
beta-plane. To balance this excess of meridional force, a northward Coriolis force
associated with a westward motion is necessary. For a cyclone, the converse rea-
soning leads to an eastward motion which is not observed. Why? Because cyclones
are not isolated mass anomalies (the isopycnals do not pinch off). Therefore, they
entrain the surrounding fluid and the motion of this fluid must be taken into account.
The surrounding fluid advected northward (resp. southward) by the vortex flow will
lose (resp. gain) relative vorticity, creating a dipolar vorticity anomaly which will
push the cyclone westward. This mechanism is responsible in part for the creation
of the so-called beta-gyres (see Fig. 3.12).
In summary, on the beta-plane, both a deformation and a global motion of the vortex
will occur. Now we provide a short summary of the mathematics of the problem,
essentially for two-dimensional vortices, with piecewise-constant vorticity distri-
butions. These mathematics describe the first stage of the beta-drift in which the
influence of the far-field of the Rossby wave wake is not important. In the ocean,
his effect becomes dominant after a few weeks. This wake drains energy from the
vortex and the mathematical model of its interaction with the vortex at late stages is
still an open problem.

For a piecewise-constant vortex, assuming a weak beta-effect relative to the vor-
tex strength (on order ε), Sutyrin and Flierl have shown that one part of the beta-gyre
potential vorticity is due to the advection of the planetary vorticity by the azimuthal
vortex flow. The PV anomaly is then of order ε and its normalized amplitude is

q = r [sin(θ −�t)− sin(θ)] = ∇2φ − γ 2φ,

where � is the rotation rate of the mean flow and γ = 1/Rd. The other part is due
to the deformation of the vortex contour due to its advection by the first part of the

Fig. 3.12 Early development of beta-gyres on a Rankine vortex in a 1-1/2 QG model, with R = Rd
and βRd/qmax = 0.04
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beta-gyres. Assuming a mode 1 deformation and a single vortex contour, one has
the following time-evolution equation for the vortex contour r = 1 + η(t) exp(iθ):

dη/dt − i[�(r)+ �

r
G1(r/1)]η = i

φ

r
− u − iv,

with u and v the drift velocities, G1 the Green’s function for the Helmholtz prob-
lem with exp(iθ) dependence, and � is the PV jump across the vortex boundary.
Choosing �(1) = 1, one obtains the following drift velocity (in normalized form):

u + iv = −1

γ 2
+
∫

G1(r/1) exp(i�(r)t) r2 dr.

This theory does not model the far field of the wave separately. The nonlinear evo-
lution of the vortex will induce a transient mode 2 deformation in the vortex contour
so that temporary tripolar states can be observed [153]. This will create cusps in the
trajectories, where these tripoles stagnate and tumble. Lam and Dritschel [83] inves-
tigate numerically the influence of the vortex amplitude and radius on its beta-drift
in the same framework. They observe that the zonal speed of a vortex increases with
its size. Large and weak vortices are often deformed, elliptically or into tripoles.
Furthermore, strong gradients of vorticity appear around and behind the vortex: the
gradient circling around the vortex forms a trapped zone which shrinks with time,
while the trailing front extends behind the vortex. The interaction of these vortex
sheets with the vortex still needs mathematical modeling.

3.3.5 Interaction Between a Vortex and a Vorticity Front or a
Narrow Jet

Bell [9] investigates the interaction between a point vortex and a PV front in a 1-1/2
layer QG model. The asymptotic theory of weak interaction (small deviations of the
PV front) leads to the result that a spreading packet of PV front waves will form in
the lee of the vortex, thus transferring momentum from the vortex to the front, and
that the meander close to the vortex will induce a transverse motion on the vortex
(toward or away from the front). Stern [150] extends this work to a finite-area vortex
in a 2D flow and finds that the drift velocity of the vortex along the front scales with
the square root of the vorticity products (of the vortex and of the shear flow). He
observes wrapping of the front around the vortex. Bell and Pratt [10] consider the
case of an unstable jet interacting with a vortex in QG models with a single active
layer. In the 2D case, the jet breaks up in eddies while in the 1-1/2 layer case, the jet
is stable and long waves develop on the front and advect the vortex in the opposite
direction to the 2D case.

Vandermeirsch et al. [159, 160] investigate the conditions under which an eddy
can cross a zonal jet, with application to meddies and to the Azores Current. They
find that a critical point of the flow must exist on the jet axis to allow this crossing
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and this condition can be expressed both in QG and SW models. They further
address the case of an unstable surface-intensified jet in a two-layer model and show
that

(a) a baroclinic dipole is formed south of the jet (for an eastward jet interacting
with an anticyclone coming from the North) and

(b) the meanders created by vortex-jet interaction clearly differ in length from those
of the baroclinic instability of the jet.

Therefore, the interaction is identifiable, even for a deep vortex. Such an interac-
tion was indeed observed with these characteristics in the Azores region during the
Semaphore 1993 experiment at sea [158].

3.3.6 Vortex Decay by Erosion Over Topography

The interaction of a vortex with a seamount has been often studied, bearing in mind
its application to meddies interacting with Ampere Seamount or Agulhas rings with
the Vema seamount. Van Geffen and Davies [161] model the collision of a monopo-
lar vortex on a seamount on the beta-plane in a 2D flow. Large seamounts in the
southern hemisphere can deflect the vortex northward or back to the southeast while
in the northern hemisphere, the monopole will be strongly deformed and its further
trajectory complex. Cenedese [25] performs laboratory experiments and evidences
peeling off of the vortex by topography and substantial deflection as for meddies
encountering seamounts. Herbette et al. [66, 67] model the interaction of a surface
vortex with a tall isolated seamount, with application to the Agulhas rings and the
Vema seamount. On the f -plane, they find that the surface anticyclone is eroded
and may split, in the shear and strain flow created by the topographic vortices in
the lower layer. Sensitivity of these behaviors to physical parameters is assessed.
On the beta-plane, these effects are even more complicated due to the presence of
additional eddies created by the anticyclone propagation. In the case of a tall iso-
lated seamount, the most noticeable effect is the circulation and shear created by the
anticyclonic topographic vortex and the incident vortex trajectory can be explained
by its position relative to a flow separatrix [152].

3.4 Conclusions

This review of oceanic vortices has deliberately neglected the aspects of mutual
vortex interactions and vortices in oceanic turbulence, which have been described
in McWilliams [100] and in Carton [23]. These aspects are nevertheless important.
The first part of the present review has illustrated the diversity of oceanic eddies
and of their evolutions (formation mechanisms, interactions with neighboring cur-
rents or with topography, decay). Though surface-intensified eddies have received
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more attention earlier, intrathermocline eddies (such as meddies) have been sam-
pled, described, and analyzed in great detail in the past 20 years, due to progress
in technology (in particular, for acoustically tracked floats). Nevertheless, for deep
eddies, the generation mechanisms in the presence of fluctuating currents and over
complex topography are not completely elucidated.

Many measurements at sea are still needed to provide a detailed description of
oceanic eddies, in particular in the coastal regions and near the outlets of marginal
seas. The global network for ocean monitoring, based on profiling floats, on hydro-
logical and current-meter measurements, and on satellite observations, will certainly
bring interesting information in that respect, but it needs to be densified in the
coastal regions. New tools such as seismic imaging of water masses may provide
a high vertical and horizontal resolution and spatial continuity in the measurement
of water masses. The relative influence of beta-effect, topography (or continental
boundaries), and barotropic or vertically sheared currents over the propagation of
oceanic vortices also needs further assessment. Little work has been performed on
the decay of vortices via ventilation. The relation of eddy structure to fine-scale
mixing is a current subject of investigation.

Vortex interaction, both mutual and with surrounding currents or topography,
has proved an important source for smaller-scale motions (submesoscale filaments,
for instance, see [53]). Recent work [88, 84, 85] shows that these filaments are the
sites of intense vertical motion near the sea surface and below, effectively bringing
nutrients in the euphotic layer, for instance, and contributing more efficiently to the
biological pump than the vortex cores (as traditionally believed). This research field
is certainly essential for an improved understanding of upper ocean turbulence and
biological activity.

More generally, a research path of central importance for the years to come is the
interactions between motions of notably different spatial and temporal scales. The
relations between submesoscale, mesoscale, synoptic, basin, and planetary-scale
motions are a completely open field, to which, undoubtedly, the past work on vortex
dynamics will contribute.
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Chapter 4
Lagrangian Dynamics of Fronts, Vortices
and Waves: Understanding
the (Semi-)geostrophic Adjustment

V. Zeitlin

The geostrophic adjustment, i.e. the relaxation of the rotating stratified fluid to the
geostrophic equilibrium is a key process in geophysical fluid dynamics. We study
it in idealized plan-parallel and axisymmetric configurations (semi-geostrophic
adjustment) in a hierarchy of models of increasing complexity: rotating shallow
water equations, two-layer rotating shallow water equations, and continuously strat-
ified hydrostatic Boussinesq equations. We show that the use of Lagrangian vari-
ables allows for substantial advances in understanding the semigeostrophic adjust-
ment and related issues: existence of the adjusted state (“slow manifold”), wave
emission, wave trapping, and wave breaking, pulsating front solutions, symmet-
ric/inertial instability, and frontogenesis.

4.1 Introduction: Geostrophic Adjustment in GFD
and Related Problems

Geostrophic adjustment, i.e. relaxation of the rotating fluid to the state of geostrophic
equilibrium (equilibrium between the pressure and the Coriolis forces) is a key
process in geophysical fluid dynamics (GFD), cf, e.g. Blumen [3]. The so-called
balanced states, close to the equilibrium and associated with frontal and vortex
structures in the atmosphere and oceans, evolve slowly, in contradistinction with
fast unbalanced motions associated with waves. The dynamical separation (“split-
ting”) of balanced and unbalanced motions in GFD is of utmost importance for
applications, such as weather and climate predictions. A concise introduction to the
dynamical splitting of fast and slow motions with references may be found in Reznik
and Zeitlin [19].

In rotating stratified fluids the geostrophic balance (the “geostrophic wind” rela-
tion) is to be combined with the hydrostatic balance giving the so-called thermal
wind relation. The process of relaxation to the balanced state is still called the
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geostrophic adjustment. We should note in passing that the thermal wind relation
alone allows to understand many of the observed synoptic-scale features in the
atmosphere and oceans [16, 11].

In the fluid dynamics perspective, a series of questions arise in what concerns
the process of adjustment. The first is whether the adjusted state exists. If not, what
will be the end state of the evolution and may the adjustment process lead to a
singularity? If the adjusted state does exist, is it attainable, or in other words, is the
adjustment complete? What happens if the adjusted state is unstable? The details of
the adjustment process are also of importance: how the energy is evacuated via the
unbalanced wave motions? What are the properties of the emitted waves?

In what follows we will show that the Lagrangian approach to idealized con-
figurations of straight fronts and circular vortices allows to substantially advance
in understanding the process of adjustment and, in many cases, to give exhaustive
answers to the above-posed questions. The major simplification arises from the inde-
pendence of the system of one of the spatial coordinates. In this case the adjusted
states are not just slow, but stationary (“infinitely slow”), and the introduction of
Lagrangian coordinates considerably simplifies the problem.

This chapter is organized as follows. We start in Sect. 4.2 from the simplest,
albeit conceptually most important model of GFD: the rotating shallow water model
(RSW) and show how the adjustment problem may be solved in its 1.5-dimensional
version using Lagrangian coordinates. We then introduce in Sect. 4.3 a rudimen-
tary stratification by superimposing two shallow water layers and display the novel
phenomena arising in this case. Finally, in Sect. 4.4 we analyse the continuously
stratified, so-called primitive equations of 2.5-dimensional GFD. In all of the above-
mentioned models the “half-” dimensionality means that although the dependence
of all dynamical variables of one of the spatial coordinates is removed, the non-zero
velocity in this passive direction is still allowed. The presentation in Sect. 4.2 is
based on Zeitlin et al. [25], that of Sect. 4.3 on LeSommer et al. [14] and on Zeitlin
[24], and that of Sect. 4.4 on Plougonven and Zeitlin [17], although new with respect
to the above-mentioned papers added in each section.

4.2 Fronts, Waves, Vortices and the Adjustment Problem in 1.5d
Rotating Shallow Water Model

4.2.1 The Plane-Parallel Case

4.2.1.1 General Features of the Model

The RSW equations in the f -plane approximation with no dependence on the
y-coordinates (i.e. ∂y . . . ≡ 0) are

∂t u + u∂x u − f v + g∂x h = 0,

∂tv + u∂xv + f u = 0, (4.1)

∂t h + ∂x (uh) = 0 .
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x

v(x,t)

h(x,t)

(x,t)

g Ω

u

Fig. 4.1 Schematic representation of the 1.5d RSW model

Here u, v are the across-front and the along-front components of the velocity,
respectively, h is the total depth (no topographic effects will be considered in what
follows), g is gravity (or reduced gravity – see below), f is the Coriolis parameter,
which will be supposed constant (the f -plane approximation), unless the opposite
is explicitly stated, and the subscripts denote the corresponding partial derivatives.
A sketch of the plane-parallel RSW configuration is presented in Fig. 4.1.

The model possesses two Lagrangian invariants: the generalized (geostrophic)
momentum M = v + f x and the potential vorticity (PV) Q = vx + f

h :

(∂t + u∂x )M = 0, (∂t + u∂x )Q = 0, (4.2)

which are related: Q = ∂x M
h . Let us emphasize that the conservation of the

geostrophic momentum is a consequence of 1.5 dimensionality of the problem. The
straightforward linearization around the state of rest h = H0 = constant gives the
zero-frequency (slow) mode (the linearized PV) and the fast surface inertia - gravity
waves with the dispersion law:

ω = ±(c2
0k2 + f 2)

1
2 , (4.3)

where c0 = √
gH0 is the “sound speed”, i.e. the maximum phase speed of short

inertia-gravity waves, ω is the frequency and k is the wavenumber.
The geostrophic equilibria are steady states:

f v = g∂x h. (4.4)

They are the exact solutions of the full nonlinear equations (4.1), which makes a dif-
ference with respect to the full 2d RSW equations, where the geostrophic equilibria
are not solutions, but are just slow (e.g. Reznik et al. [20]).
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4.2.1.2 Lagrangian Approach to 1.5d RSW

In order to fully exploit the existence of a pair of Lagrangian invariants in the model,
it is natural to introduce the Lagrangian coordinates X (x, t) of the fluid “parcels”
(in fact, fluid lines along the y-axis). They are given by the mapping x → X (x, t),
where x is a fluid parcel position at t = 0 and X – its position at time t . Hence
Ẋ ≡ ∂t X = u(X, t). The momentum equations in (4.1) become:

Ẍ − f v + g
∂h

∂X
= 0, (4.5)

∂t (v + f X) = 0 , (4.6)

where v is considered as a function of x and t . The mass conservation for each fluid
element h(X, t)d X = hI (x)dx means that

h(X, t) = hI (x)
∂x

∂X
. (4.7)

This equation, obviously, is equivalent to the continuity equation in (4.1). Equation
(4.6) immediately gives

v(x, t)+ f X (x, t) = vI (x) f x = M(x) . (4.8)

By applying the chain differentiation rule to (4.7) and injecting the result into (4.5)
we get a closed equation for X :

Ẍ + f 2 X + gh′
I

1

(X ′)2
+ ghI

2

[
1

(X ′)2

]′
= f M , (4.9)

where prime denotes ∂x . In terms of the deviations of fluid parcels from their initial
positions X (x, t) = x + φ(x, t) (4.9) takes the form:

φ̈ + f 2φ + gh′
I

1

(1 + φ′)2
+ 1

2
ghI

[
1

(1 + φ′)2

]′
= f vI . (4.10)

This single equation is equivalent to the whole system (4.1). It should be solved with
initial conditions φ(t = 0) = 0; φ̇(t = 0) = uI (x). Thus, the Cauchy (adjustment)
problem is well and naturally posed for this equation.
It should be noted that 1.5d RSW in Lagrangian variables may be as well formulated
in the β-plane approximation, i.e. taking into account the dependence of the Coriolis
parameter on latitude: f = f0 + βy. For example, for purely zonal flows on the
equatorial β-plane ( f0 ≡ 0) we get



4 Lagrangian Dynamics of Fronts, Vortices and Waves 113

Ÿ + βY u + g
∂h

∂Y
= 0 , (4.11)

∂t

(
u − β

Y 2

2

)
= 0 ,

h(Y, t) = hI (y)
∂y

∂Y
, (4.12)

and the closed equation for Y follows:

Ÿ + βY

(
uI + β

Y 2 − y2

2

)
+ gh′

I
1

(Y ′)2
+ ghI

2

[
1

(Y ′)2

]′
= 0 , (4.13)

to be solved with initial conditions Y (y, 0) = y, Ẏ (y, 0) = vI (y).

4.2.1.3 The Slow Manifold

By additional change of variables x = x(a), the elevation profile in (4.5), (4.6),
and (4.7) may be “straightened” to a uniform height H in order to have J = ∂X

∂a =
H

h(X,t) . It is easy to see that ∂h
∂X = ∂P

∂a , where P = gH
2J 2 is the so-called Lagrangian

pressure variable. The Lagrangian equations of motion then take the form:

u̇ − f v + gH
∂

∂a

1

2J 2
= 0, (4.14)

v̇ + f u = 0, (4.15)

J̇ − ∂au = 0, (4.16)

and may be again reduced to a single equation:

J̈ + f 2 J + ∂2 P

∂a2
= f H Q , (4.17)

where Q – potential vorticity as a function of the a variable is Q(a)

= 1
H

(
∂v
∂a + f J

) = 1
H

(
∂vI
∂a + f JI

)
.

The slow manifold is the stationary solution of (4.17) or (4.9). By re-introducing
the X -variable and the dependent variable η = h

H we get

− g

f

d2h(X)

d X2
+ h(X) Q(X) = − f. (4.18)

Note that potential vorticity in terms of initial height and velocity fields reads

Q(X (x)) = f + ∂vI
∂x

h I
. The following theorem may be proved by standard methods of
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ordinary differential equations (Zeitlin et al. [25]): Equation (4.18) has a bounded
and everywhere positive unique solution h(X) on R for positive Q(X) with compact
support and constant asymptotics (frontal case).

It should be noted that positiveness of Q corresponds to the absence of the so-
called inertial instability (see the next section). The latter is related to the presence
of sub-inertial (i.e. ω < f ) frequencies in the spectrum of small excitations of
the adjusted state. It may be, however, explicitly shown either in Eulerian variables
(Zeitlin et al. [25]) or in Lagrangian variables (see below) that the spectrum of small
perturbations over an adjusted front in 1.5d RSW is supra-inertial. Although we have
no proof for non-positive distributions of Q, direct numerical simulations (Bouchut
et al. [4]) indicate that a unique adjusted state is always achieved in this case too.

4.2.1.4 Relaxation Towards the Adjusted State

Once the existence of the adjusted state is established, the process of relaxation
towards this state may be analysed. The first step in studying relaxation is lineariza-
tion around the adjusted state:

u = ũ, v = vs + ṽ, J = Js + J̃

∂t ũ − f ṽ − gH∂a( J̃/J 3
s ) = 0, (4.19)

∂t ṽ + f u = 0, (4.20)

∂t J̃ − ∂au = 0, (4.21)

where the Lagrangian time derivative is denoted by ∂t from now on. By using

f J̃ + ∂a ṽ = 0, (4.22)

it is easy to get a single equation for J̃ and/or for ṽ

∂2
t t J̃ + f 2 J̃ − gH∂2

aa( J̃/J 3
s ) = 0, ∂2

t t ṽ + f 2ṽ − gH∂a(ṽa/J 3
s ) = 0 . (4.23)

Let us consider stationary solutions

J̃ = Ĵ (a)e−iωt + c.c., ṽ = v̂(a)e−iωt + c.c.. (4.24)

Then the stationary equations are

∂2
aa(gHs Ĵ )+ (ω2 − f 2) Ĵ = 0, (4.25)

∂a(gHs∂a v̂)+ (ω2 − f 2)v̂ = 0, (4.26)

where we denoted Hs = H/J 3
s . The equation for v̂ is self-adjoint and supra-

inertiality ofω and, hence, the absence of trapped states follows trivially from (4.26)
by multiplying by v̂∗ and integrating by parts:
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ω2 = f 2 +
∫

da gHs
∣∣∂a v̂

∣∣2
∫

da |v̂|2 ;
⇒ ω2 ≥ f 2. (4.27)

By using a new dependent variable

v̂ = ψ

gH1/2
s

, (4.28)

we transform the stationary equation to a two-term canonical form

d2ψ

da2
+
[
ω2 − f 2

gHs
− 1

4

(
(Hs)a

Hs

)2

− 1

2

(
(Hs)a

Hs

)

a

]
ψ = 0. (4.29)

Rewritten as

d2ψ

da2
+ k2

ψ(a)ψ = 0, (4.30)

this equation can be interpreted as that of a quantum mechanical oscillator with
variable frequency kψ(a) (or as a Schrödinger equation with a potential V and an
energy E such that k2

ψ = E − V (a)). It is clear that k2
ψ can be negative for ω > f

and suitable Hs . This means that for certain intervals on the x-axis the wavenumber
kψ may be imaginary and, hence, quasi-stationary states slowly tunneling out such
zones may exist. Thus, the wave motions can be maintained for long times in such
locations.

4.2.1.5 Wave Breaking

The direct simulations of the Lagrangian equations of motion indicate that singu-
larities (shocks) may appear in the emitted inertia-gravity field. In the context of
adjustment, shocks could provide an alternative sink of energy, whence the impor-
tance to establish the criteria of wave breaking and shock formation. Shocks are
of no surprise in gas dynamics, and the shallow-water equations are a particu-
lar case of it. The only question, thus, is the role of rotation in this process. The
Lagrangian approach, again, proves to be efficient (Zeitlin et al. [25]). The dimen-
sionless Lagrangian equations of motion in a-variables introduced above are

∂t u + ∂a p = v ,

∂t J − ∂au = 0 , (4.31)

where v is not an independent variable and is to be found from ∂av = Q(a)− J .
We thus have a quasi-linear system
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∂t

(
u
J

)
+
(

0 −J−3

−1 0

)
∂a

(
u
J

)
=
(
v

0

)
. (4.32)

The eigenvalues of the matrix in the l.h.s. of (4.32) are μ± = ±J− 3
2 and the

corresponding left eigenvectors are
(

1 ,±J− 3
2

)
. Hence, Riemann invariants are

w± = u ± 2J− 1
2 and we have

∂tw± + μ±∂aw± = v . (4.33)

Expressions of original variables in terms of w± are

u = 1

2
(w+ + w−) , J = 16

(w+ − w−)2
> 0 , μ± = ±

(
w+ − w−

4

)3

. (4.34)

In terms of the derivatives of the Riemann invariants r± = ∂aw±, we get

∂t r± + μ±∂ar± + ∂μ±
∂w+

r+r± + ∂μ±
∂w−

r−r± = ∂av = Q(a)− J , (4.35)

which may be rewritten using Lagrangian derivatives along the characteristics d
dt± =

∂t + μ±∂a as

dr±
dt±

+ ∂μ±
∂w+

r+r± + ∂μ±
∂w−

r−r± = Q(a)− J . (4.36)

Wave breaking and shock formation correspond to r± → ±∞ in finite time.
In terms of new variables R± = eλr±, with λ = 3

128 log |w+ − w−|, (4.35) may
be rewritten as

d R±
dt±

= −e−λ ∂μ±
∂w±

R2± + eλ (Q(a)− J ) , (4.37)

where ∂μ±
∂w± = 3

64 (w+ − w−)2 > 0.
The qualitative analysis of these generalized Ricatti equations shows that if initial
relative vorticity Q − J = ∂av is sufficiently negative (anti-cyclonic), rotation does
not stop wave breaking, which is taking place for any initial conditions. However,
if the relative vorticity is positive (cyclonic case), as well as the derivatives of the
Riemann invariants at the initial moment, there is no breaking. An example of wave
breaking due to the geostrophic adjustment of the unbalanced jet is presented in
Fig. 4.2.
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Fig. 4.2 Wave breaking and shock formation (right panel) during adjustment of the unbalanced
jet (left panel, top to bottom: consecutive profiles of the free surface with time measured in f −1

units). Length is measured in deformation radius units: L = Rd = gH
f

4.2.1.6 “Trapped Waves” in 1.5d RSW: Pulsating Density Fronts

The above-established supra-inertiality of the spectrum of the small perturbations
around a balanced 1.5d RSW front means the absence of trapped waves, and, hence,
the attainability of the adjusted state by evacuating the excess of energy via inertia-
gravity wave emission (eventually with shock formation). There exist, however, the
RSW fronts, where the wave emission is impossible. These are the lens-type con-
figurations with terminating profile of fluid height. Such RSW configurations are
used to model oceanic double density fronts, either outcropping or incropping, e.g.
Griffiths et al. [10]. In Lagrangian description (4.9) the evolution of a double RSW
front corresponds to positive hI terminating at x = x±. Adjustment of such fronts,
therefore, should proceed without outward IGW emission. An example of adjusted
front treated in literature is given in Fig. 4.3.
A family of exact unbalanced pulsating solutions is known for such fronts (Frei [9];
Rubino et al. [22]). Let us make the following ansatz:

X (x, t) = xχ(t), hI (x) = h0

2

(
1 − x2

L2

)
, vI (x) = x�, (4.38)

Fig. 4.3 An example of equilibrated double density front
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where h0,�, L are constants. Plugging (4.38) into (4.9) and non-dimensionalizing
with the timescale f −1 and the length-scale L gives the following ODE for χ :

χ̈ + χ − γ

χ2
= μ, (4.39)

where γ is the Burger number gh0
f 2 L2 and μ = 1 + �

f .
Integrating (4.39) once gives

χ̇2

2
+ P(χ) = E, P(χ) = χ2

2
− μχ + γ

χ
, (4.40)

where the integration constant E is expressed in terms of initial conditions χ(t = 0)
= 1, χ̇(t = 0) = U :

E = U 2

2
+ 1

2
− μ+ γ. (4.41)

Equation (4.40) may be integrated in elliptic functions. The “potential” P(χ) being
convex, the solution for χ is finite amplitude and oscillating with supra-inertial
frequency. The minimum of P corresponds to the front in geostrophic equilibrium
and constant χ = 1. Thus, the adjustment (initial-value) problem for double density
fronts will result, in general, in a pulsating solution, whereas relaxation to the steady
state is possible only due to viscous effects (shocks).

4.2.2 Axisymmetric Case

4.2.2.1 Governing Equations and Lagrangian Invariants

Axisymmetric RSW motion is described in cylindrical coordinates by fields depend-
ing on radial variable only. As in the rectilinear case, it is possible to reduce the
whole dynamics to a single PDE for a Lagrangian variable R(r, t), the distance to
the center of a “particle” (or rather a particle ring) initially situated at r .

We first rewrite the Eulerian RSW equations in cylindrical coordinates (r, θ ) and
assume exact axial symmetry:

(∂t + ur ∂r )ur − uθ
(

f + uθ
r

)
+ ∂r h = 0 ,

(∂t + ur ∂r )uθ + ur

(
f + uθ

r

)
= 0 , (4.42)

∂t h + 1

r
∂r (r ur h) = 0 .

Here ur , uθ are the radial and azimuthal components of velocity. Note that the
adjusted stationary state changes character as compared to the rectilinear case: it
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verifies conditions of the cyclo-geostrophic balance and not of the purely geostrophic
one:

uθ
(

f + uθ
r

)
= ∂r h, ur = 0. (4.43)

Multiplying the second equation in (4.42) by r , we recover the conservation of angu-
lar momentum:

(∂t + ur ∂r )

(
ruθ + f

r2

2

)
= 0 , (4.44)

which replaces the conservation of geostrophic momentum in the plane-parallel
case. Equation (4.42) can be rewritten using the Lagrangian coordinate R(r, t).
Integrating (4.44) gives

R(r, t) uθ (r, t)+ f
R2(r, t)

2
= r uθ I (r)+ f

r2

2
≡ G(r) , (4.45)

where uθ I is the initial azimuthal velocity profile. Using the above expression we
get

uθ
(

f + uθ
R

)
= 1

R

(
G − f

R2

2

)(
f + G

R2
− f

2

)

= 1

R3

(
G2 − f 2 R4

4

)
. (4.46)

The mass conservation is expressed by the following relation:

h(r, t) R(r, t) d R = hI (r) r dr . (4.47)

With the help of (4.46), (4.47) and the definition Ṙ(r, t) = ur (r, t), the radial
momentum equation becomes

R̈ + f 2

4
R − 1

R3
G2 + 1

∂r R
∂r

(
r h I

R ∂r R

)
= 0 , (4.48)

to be solved with initial conditions R(r, 0) = r, Ṙ(r, 0) = urI . The stationary part
of this equation defines the adjusted, slow states. The fast motions are axisymmetric
IGW. Indeed, for small perturbations about the state of rest:

R(r, t) = r + φ(r, t) , (4.49)

with |φ| � r , hI (r) = 1 and uθ I (r) = 0, the following equation is obtained after
some algebra:
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φ̈ + f 2 φ − ∂rφ

r
− ∂2

rrφ + φ

r2
= 0 . (4.50)

If solutions are sought in the form φ(r, t) = φ̂(r) eiωt , (4.50) yields, after a change
of variables, the canonical equation for the Bessel functions. The familiar axisym-
metric wave solutions involving Bessel functions J1 then follow:

φ(r, t) = C J1(

√
ω2 − f 2 r) eiωt + c.c. , (4.51)

where C is the wave amplitude.
The whole program of the previous section may be carried on as well in cylindri-
cal coordinates, with similar conclusions. We present below only the case of the
axisymmetric density fronts (Sutyrin and Zeitlin [23]).

4.2.2.2 Axisymmetric Density Fronts and Radial “pulson” solutions

We make the following ansatz in (4.48):

hI (r) = h0

2

(
1 − r2

L2

)
, R(r, t) = rφ(t), uθ I (r) = r�, � = const. (4.52)

Then by non-dimensionalizing the system in the same way as for the rectilinear
fronts, introducing the Burger number γ , and denoting M = 1

2 + �
f we get

φ̈ + φ

4
− M2

φ3
− γ

φ3
= 0, (4.53)

to be solved with initial conditions φ(0) = 1, φ̇(0) = urI . A drastic simplification
of this equation is provided by the substitution φ2 = χ which immediately gives the
equation of the harmonic oscillator with shifted equilibrium position:

χ̈ + χ − 4E = 0, E = u2
rI

2
+ 1

8
+ M2 + γ

2
> 0. (4.54)

The “radial pulson” solution (cf. Rubino et al. [21] for a derivation in Eulerian
framework) satisfies the initial conditions χ(0) = 1, χ̇(0) = 2urI and is given by

χ(t) = 4E + (1 − 4E) cos t + (2urI + 1 − 4E) sin t. (4.55)

The crucial difference between the radial and rectilinear pulson, thus, is that the for-
mer always has inertial frequency and thus represents nonlinear inertial oscillations,
while the latter is always supra-inertial.
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4.3 Including Baroclinicity: 2-Layer 1.5d RSW

4.3.1 Plane-Parallel Case

4.3.1.1 Governing Equations and General Properties of the Model

To introduce the baroclinic effects in the dynamics in the simplest way we consider
the two-layer rotating shallow water model. We use the rigid lid upper boundary
condition and again consider for simplicity a flat bottom. In this case the equations
governing the motion of two superimposed rotating shallow-water layers of unper-
turbed depths H1,2, H1 + H2 = H and densities ρ1,2 in Cartesian coordinates under
hypothesis of no dependence of y (straight two-layer fronts) are

∂t ui + ui∂x ui − f v1 + ρ−1
i ∂xπi = 0 , (4.56a)

∂tvi + ui ( f + ∂xvi ) = 0 , (4.56b)

∂t hi + ∂x ((hi ui ) = 0 , i = 1, 2 (4.56c)

π1 + g′(ρ1h1 + ρ2h2) = π2 , (4.56d)

h1 + h2 = 1, (4.56e)

where no sum over repeated index is understood, πi are the pressures in the layers,
g′ = ρ2−ρ1

ρ2+ρ1
g is the reduced gravity and hi are the variable layers depths. A sketch

of the 2-layer 1.5d RSW is presented in Fig. 4.4.
The Lagrangian invariants of equations (4.56a), (4.56b) and (4.56c) are potential
vorticities and geostrophic momenta in each layer:

Qi = f + ∂xvi

hi
, Mi = f x + ∂xvi , i = 1, 2. (4.57)

For any solution of system (4.56a), (4.56b), (4.56c), (4.56d) and (4.56e), constraint
(4.56e) imposes that

x

v2(x,t)

u2(x,t)

.

g Ω

ρ2

ρ1

h2(x,t)

v1(x,t)

(x,t)u1

h1(x,t)

Fig. 4.4 Schematic representation of the 2-layer 1.5d RSW model
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∂x (h1u1 + h2u2) = 0. (4.58)

Hence, the barotropic across-front velocity is

U = h1u1 + h2u2

H
= U (t). (4.59)

Choosing the boundary condition of absence of the mass flux across the front sets
U = 0. The geostrophic equilibria are stationary solutions:

ui = 0, vi = 1

f ρi
∂xπi , i = 1, 2 , π2 = π1 + g(ρ1h1 + ρ2h2). (4.60)

The fast motions in the linear approximation are internal inertia-gravity waves prop-
agating along the interface between the layers. By linearizing about the rest state
h1 = H1, h2 = H2, u1,2 = 0, v1,2 = 0, the dispersion relation for the waves with
frequency ω and wavenumber k follows:

ω2(ω2 − f 2 − c2
e k2) = 0 . (4.61)

Here c2
e = g′ He is the phase speed of the waves, He = (ρ2−ρ1)H1 H2

ρ1 H1+ρ2 H2
is the equivalent

height for the baroclinic modes of the model. As in the one-layer model, conditions
for existence and uniqueness of the adjusted state can be obtained as conditions for
existence and uniqueness of solutions to the PV equations (LeSommer et al. [14]).
These equations can be combined to give two ordinary differential equations for the
depths of the layers:

g′

f
h′′

1 − (Q2 + r Q1) h1 = − (− f (1 − r)+ H Q2) , (4.62a)

g′

f
h′′

2 − (Q2 + r Q1) h2 = − ( f (1 − r)+ r H Q1) , (4.62b)

where notation r = ρ1/ρ2 for the density ratio of the layers has been introduced and
the prime denotes the x ′- differentiation. An essential difference of these equations
from their one-layer counterpart is that the forcing terms at the r.h.s. are not constant.
They, nevertheless, may be analysed by the same method as in 1dRSW.

For an equation of the form h′′ − R(x) h = −S(x), the existence and uniqueness
of solutions are guaranteed if R and S have constant asymptotics at ±∞. Further-
more, the solution is positive if R and S are positive. Hence, for the initial states
with localized PV anomalies such that

Q1 ≥ 0 and Q2 ≥ (1 − r) f/H , (4.63)

the above equations have unique solutions h1 and h2 that are everywhere positive.
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A crucial simplification of the rigid-lid 2-layer equations follows from the fact
the pressures πi may be eliminated from (4.56a), (4.56b) and (4.56c). Indeed by
using (4.58) and (4.56e) and (4.56d) we get, again under the hypothesis of zero
overall across-front mass flux:

∂π1

∂x
=
(

h1

ρ1
+ h2

ρ2

)−1 (
f (h1v1 + h2v2)− ∂

∂x

(
h1u2

1 + h2u2
2

)

− gh2

ρ2

∂

∂x
(ρ1h1 + ρ2h2)

)
, (4.64)

∂π2

∂x
=
(

h1

ρ1
+ h2

ρ2

)−1 (
f (h1v1 + h2v2)− ∂

∂x

(
h1u2

1 + h2u2
2

)

+ gh1

ρ1

∂

∂x
(ρ1h1 + ρ2h2)

)
. (4.65)

One can use (4.64), (4.65) in order to reduce the system to four equations for four
independent variables u2, h2, v2 and v1, i.e. lower (heavier)-layer variables plus
upper-layer jet velocity:

∂u2

∂t
+ u2

∂u2

∂x
− f v2 + ρ1

ρ2h1 + ρ1h2

(
f (h1v1 + h2v2)

− ∂

∂x

(
h1u2

1 + h2u2
2

)
+ g(ρ2 − ρ1)

ρ1
h1
∂h2

∂x

)
= 0, (4.66)

∂h2

∂t
+ u2

∂h2

∂x
+ h2

∂u2

∂x
= 0, (4.67)

∂v2

∂t
+ u2

∂v2

∂x
+ f u2 = 0, (4.68)

∂v1

∂t
+ u2

∂v1

∂x
+ (u1 − u2)

∂v1

∂x
+ f u1 = 0, (4.69)

where

u1 = h2u2

h2 − H
, h1 = H − h2. (4.70)

4.3.1.2 Lagrangian Approach to 2-Layer 1.5d RSW

We start from the system (4.66), (4.67), (4.68), (4.69) and (4.70), taken for sim-
plicity in the frequently used limit r → 1 and introduce the Lagrangian coordinate
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X (x, t) corresponding to the positions of the fluid particles in the lower layer. In
terms of displacements φ with respect to initial positions X (x, t) = x + φ(x, t).
The corresponding Lagrangian derivative is d

dt = ∂
∂t +u2

∂
∂x . The dependence of the

height variable h2 on the Lagrangian labels and transformation of its derivatives are
obtained via the mass conservation in the lower layer: h2I dx = h2(X (x, t), t)d X .
The subscript 2 will be omitted in what follows. As in the one-layer case, (4.68)
expresses the conservation of the geostrophic momentum in the lower layer and
allows to eliminate v2 in terms of φ and its initial value:

v2(x, t)+ f φ(x, t) = v2I (x). (4.71)

The 2-layer Lagrangian equations, thus, are

Ẍ − f

(
1 − h

H

) (
v2I − v1 − f (X − x)

)− 1

X ′

[
h Ẋ2

H − h

]′
+ g′

(
1 − h

H

)
1

X ′ h′ = 0,

(4.72)

v̇1 − Ẋ

1 − h
H

(
v′

1

X ′ − f
h

H

)
= 0, (4.73)

where h = hI (x)
X ′ , prime and dot denote x- and t-differentiations, respectively, and

g′ = g ρ2−ρ1
ρ2

– the reduced gravity in the limit r → 1.

4.3.1.3 Symmetric Instability

A qualitatively new phenomena appearing in the dynamics of fronts due to the baro-
clinic effects is a specific symmetric instability, i.e. an instability developing without
perturbations in the front-wise direction. This instability is frequently called inertial,
the term “symmetric” being often reserved for its moist counterpart (e.g. Bennetts
and Hoskins [2]).

For simplicity, we will consider the particular case of the initial conditions in the
form of a barotropic jet with h2I = H2 = const., v2I = v1I = vI (x). By introducing
the notation α1 = H1

H , α2 = H2
H , α1 + α2 = 1 we have in non-dimensional form:

φ̈ + φ
α1 + φ′

1 + φ′ + ε
α1 + φ′

1 + φ′ (v1 − vI )− α2

1 + φ′

(
φ̇2

α1 + φ′

)′
− γ

1

(1 + φ′)4
φ′′ = 0 ,

(4.74)

v̇1 − 1

α1 + φ′ φ̇v
′
1 − α2

α1 + φ′
1

ε
φ̇ = 0, (4.75)

where ε = Ro = V
f L is the Rossby number based on the typical jet velocity V and

typical jet width L , γ = Bu = g′ Hα1α2
f 2 L2 is the Burger number.
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Equations (4.74), (4.75) are to be solved with initial conditions φ(x, 0) = 0, φ̇(x, 0)
= u2I , v1(x, 0) = vI . The initial jet v1 = vI , φ = 0, if non-perturbed: uI = 0 is a
solution.
System (4.74), (4.75) in the linear approximation gives

φ̈ + α1φ + εα1ξ1 − γφ′′ = 0 , (4.76)

ξ̇1 − v′
I

α1
φ̇v′

I − α2

α1

1

ε
φ̇ = 0 , (4.77)

where we introduced v1 − vI = ξ . Hence,

...
φ + φ̇(1 + εv′

I )− γ φ̇′′ = 0 . (4.78)

Using the variable ψ = φ̇, renormalizing x with
√
γ and looking for the solution

ψ ∝ eiωt , we get the quantum-mechanical Schrödinger equation:

∂2
xxψ + (E − V (x))ψ = 0 (4.79)

for a particle having the energy E = ω2 and moving in the potential V (x) = 1+εv′
I .

It is worth noting that Burger number plays the role of the Planck constant squared.
It is known (e.g. Landau and Lifshits [13]) that in the case of quantum mechanical

potential well there are both propagating solutions corresponding to the continuous
spectrum ω2 ≥ 1 and trapped in the well, localized solutions corresponding to the
discrete spectrum Min(V (x)) < ω2 < 1. As is easy to see, the potential well cor-
responds to the region of anticyclonic shear. Hence, the trapped modes are localized
there, oscillating at sub-inertial frequencies.

If the potential is deep enough (strong enough anticyclonic shear), non-oscillatory
unstable modes with ω2 < 0 appear and therefore a specific instability arises. This is
the symmetric instability which is thus intricately related to the presence of trapped
modes inside the front. It should be noted that the known explicit solutions of
the Schrödinger equations for some potentials, e.g. cosh−2 potential (e.g. Landau
and Lifshits [13]) may be used for analytical studies of symmetric instability. The
Lagrangian equations (4.74), (4.75) provide a convenient framework for studying
the nonlinear stage of this instability.

4.3.1.4 Equatorial 2-Layer 1.5d RSW in Lagrangian Variables

As in the one-layer case, the Lagrangian description may be also applied to the
equatorial zonal flows. The equatorial counterparts of (4.72), (4.73), with obvious
interchanges between the zonal (u) and meridional (v) components of velocity and
respective Lagrangian coordinates, are
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Ÿ + βY u2 +
[
−βY ((1 − h)u1 + hu2)−

(
h

1 − h
Ẏ 2
)

Y
+ g′(1 − h)hY

]
= 0 ,

(4.80)

u̇1 −
(

1 + h

1 − h

)
Ẏ u1Y + β

h

1 − h
Y Ẏ = 0, (4.81)

where

u2 − β
Y 2

2
= u2I − β

y2

2
, (4.82)

h = hI
Y ′ and ∂Y = 1

Y ′ ∂y .
Introducing φ(y, t) = Y (y, t) − y, linearizing around the barotropic jet u2I =

u1I = uI and non-dimensionalizing as above with an obvious change for the fre-
quency scale: f → βL , we get the equatorial counterpart of (4.78):

...
φ − βy(εu′

I − α2 y)φ̇ − γ φ̇′′ = 0 . (4.83)

This is an equation for linear equatorial symmetric (inertial) instability (e.g.
Dunkerton [8]). Unlike the mid-latitude case, even a linear shear may lead to sym-
metric instability at the equator. In this case (4.83) after Fourier tranformation in t
and a shift of y gives a quantum-mechanical Schrödinger equation for the harmonic
oscillator with well-known solutions.

4.3.1.5 Relation to 1.5 RSW and Comments on the Pulson Solutions

A limit of strong disparity between the layers depths h
H → 0 may be considered in

(4.72), (4.73). This gives to zeroth order in h
H a system of decoupled equations:

Ẍ − f
(
v2I − v1 − f (X − x)

)+ g′ 1

X ′

(
hI

X ′

)′
= 0, (4.84)

v̇1 − Ẋ

X ′ v
′
1 = 0. (4.85)

We thus recover in the case of motionless upper layer, when v1 = 0, the one-layer
RSW equation in Lagrangian form (4.64), with the replacement g → g′, which
provides both a (standard) justification of the one-layer reduced-gravity model and
a possibility to calculate baroclinic corrections to the one-layer RSW solutions. For
example, the pulsating front solution presented in Sect. 4.2 is a zero-order in h

H
solution of (4.72), (4.73), but corrections will appear in the next orders, in particular
the non-zero velocity field v1 in the thick upper layer. They may be calculated order
by order, which will be presented elsewhere. It is, however, clear that a nontrivial
signature of the pulson solutions in the upper layer will appear.
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4.3.2 Axisymmetric Case

As in the one-layer case, the Lagrangian approach can also be developed in the
axisymmetric case. The two-layer rigid-lid RSW equations for axisymmetric con-
figurations are described by the equations in polar coordinates r, θ :

(∂t + u(i)r ∂r )u
(i)
r − u(i)θ

(
f + u(i)θ

r

)
+ ∂rπ

(i) =0 , (4.86a)

(∂t + u(i)r ∂r )u
(i)
θ + u(i)r

(
f + u(i)θ

r

)
=0 , (4.86b)

∂t h
(i) + 1

r
∂r (r u(i)r h(i)) =0 , i = 1, 2, (4.86c)

π(1) + g(ρ1h1 + ρ2h2) =π(2) , (4.86d)

h(1) + h(2) = 1, (4.86e)

where u(i)r and u(i)θ , i = 1, 2 are radial and azimuthal components of the velocity,
respectively, in each layer. The analog of constraint (4.58) is

∂r (rh(1)u(1)r + rh(2)u(2)r ) = 0. (4.87)

Hence

U = rh(1)u(1)r + rh(2)u(2)r

H
= U (t). (4.88)

Choosing the boundary condition of zero-radial mass flux across the vortex bound-
ary sets U = 0 gives

u(1)r = − h(1)

H − h(2)
u(2)r . (4.89)

The pressures π(i), i = 1, 2 may be excluded, as in the rectilinear case, and we thus
arrive at the following system of equations for four independent variables u2, h2, v2
and v1, which is the axisymmetric counterpart of (4.66), (4.67), (4.68) and (4.69):

∂u2

∂t
+ u2

∂u2

∂r
−
(

f + v2

r

)
v2 +

ρ1

ρ2h1 + ρ1h2

((
f + v1

r

)
(h1v1)+

(
f + v2

r

)
(h2v2) −

∂

∂r

(
r(h1u2

1 + h2u2
2)
)

+ g(ρ2 − ρ1)

ρ1
h1
∂h2

∂r

)
= 0, (4.90)
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∂h2

∂t
+ ∂

∂r
(ru2h2) = 0, (4.91)

∂v2

∂t
+ u2

∂v2

∂r
+ u2

(
f + v2

r

)
= 0, (4.92)

∂v1

∂t
+ u2

∂v1

∂r
+ (u1 − u2)

∂v1

∂r
+
(

f + v2

r

)
u1 = 0, (4.93)

where we switched back to the lower index notation for the layer number and
denoted ur ≡ u, uθ ≡ v.

A Lagrangian version of these equations may be easily written down along the
lines of the plane-parallel case using the Lagrangian mapping r → R(r, t), the
angular momentum conservation and the mass conservation h2 Rd R = hI rdr , with
similar applications and conclusions, which we will not present here. It should be
emphasized that centrifugal instability replaces the symmetric (inertial) instability
in the axisymmetric case.

4.4 Continuously Stratified Rectilinear Fronts

4.4.1 Lagrangian Approach in the Case of Continuous
Stratification

The hydrostatic primitive equations for a continuously stratified fluid with no depen-
dence on y (the “2.5-dimensional” case) read:

∂t u + u∂x u + w∂zu − f v + g∂xφ =0 , (4.94a)

∂tv + u∂xv + w∂zv + u f =0 , (4.94b)

∂zφ = g
θ

θr
, (4.94c)

∂x u + ∂zw =0 , (4.94d)

(∂t + u∂x + w∂z)θ =0 . (4.94e)

Here they are written in the atmospheric context using potential temperature θ and
the so-called pseudo-height vertical coordinate (Hoskins and Bretherton [12]), θr

is a normalization constant. For oceanic applications potential temperature should
be replaced by density and the sign in the hydrostatic relation (4.94c) should be
changed, z then becomes the ordinary geometric coordinate.
Potential vorticity (PV)

q = ( f + ∂xv) ∂zθ − ∂zv ∂xθ (4.95)

is a Lagrangian invariant (∂t + u∂x +w∂z)q = 0. As usual for straight fronts, there
exist an additional Lagrangian invariant, the geostrophic momentum
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M = v + f x, (4.96)

where x is understood in Lagrangian sense. The expression for the potential vorticity
in terms of M is

q = ( f + ∂xv) ∂zθ − ∂zv ∂xθ = ∂(M, θ)

∂(x, z)
. (4.97)

The “slow” balanced motions are geostrophic and hydrostatic equilibria

u = w = 0, f v = g∂xφ, ∂zφ = g
θ

θr
, (4.98)

which are exact stationary solutions of (4.94a), (4.94b) and (4.94c) and obey the
thermal wind relation

f
∂M

∂z
= g

θr

∂θ

∂x
. (4.99)

A potential � may be introduced for balanced states, such that

M = f −1 ∂�

∂x
, θ = θr

g

∂�

∂z
. (4.100)

In fact, � is an “extended” geopotential given as � = φ + f 2 x2

2 .
The fast motions are internal inertia gravity waves. Their dispersion relation may

be easily obtained in the case of linear background stratification θ0(z) = N 2

g θr z by
linearization about the state of rest:

ω2 = N 2 k2
x

k2
z

+ f 2, (4.101)

where ω is wave frequency, kx,z are the wavenumber components in the horizontal

and vertical directions, respectively and N 2 = g
θ ′

0(z)
θr

.
Lagrangian variables in the vertical plane X (x, z, t) and Z(x, z, t) are introduced as
positions at time t of the fluid particles initially found at (x, z). The incompressibil-
ity equation is written in the form of the volume conservation:

∂(X, Z)

∂(x, z)
= 1 , (4.102)

The primitive equations become
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Ẍ + f 2 X + ∂(φ, Z)

∂(x, z)
= vI + f 2 x , (4.103)

∂(X, φ)

∂(x, z)
= g

θI

θr
, (4.104)

and the potential vorticity is expressed as

q = ∂( f x + vI , θI )

∂(x, z)
. (4.105)

Elimination of φ by cross-differentiation gives

∂(X, Ẍ − f vI − f 2x)

∂(x, z)
+ g

θ0

∂(θI , Z)

∂(x, z)
= 0, (4.106)

∂(X, Z)

∂(x, z)
= 1, (4.107)

and for the stationary adjusted state, we get

∂(X,− f vI − f 2x)

∂(x, z)
+ g

θ0

∂(θI , Z)

∂(x, z)
= 0, (4.108)

∂(X, Z)

∂(x, z)
= 1. (4.109)

4.4.2 Existence and Uniqueness of the Adjusted State
in the Unbounded Domain

To study the adjusted states it is convenient to use the PV equation written in terms
of �:

∂2�

∂X2

∂2�

∂Z2
−
(
∂2�

∂X∂Z

)2

= g f

θr
q , (4.110)

where PV in the r.h.s. is understood as a function of (X, Z). This is the Monge–
Ampère equation. The boundary conditions which we will use far from the frontal
zone are

θ |z→±∞ = θr
N 2

g
z, N = const., X̄

∣∣
x→±∞ = x . (4.111)

Although these are formally Neumann-type boundary conditions, it is easy to see
that they are equivalent to the condition that far enough from the origin � has the
form
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�||X |,|Z |→∞ = f 2 X2

2
+ N 2 Z2

2
. (4.112)

This means that on some distant ellipse (which is a convex curve) f 2 X2

2 + N 2 Z2

2 =
const., the function � is constant, so the problem of finding the adjusted state is
reduced to the first (Dirichlet) boundary-value problem for the Monge–Ampère
equation. Existence of solution is guaranteed if the r.h.s., i.e. the PV, is continuous
and positive (Pogorelov [18]). Moreover, if the condition of convexity is added,
which is the case of (4.112), the solution is unique. Thus, for positive PV, condition
of absence of symmetric instability, the adjusted state exists and is unique in the
absence of boundaries. It is to be emphasized that the criterion is the same as for
fronts in 1- and 2-layer RSW.

An alternative Lagrangian formulation using the geostrophic and isentropic coor-
dinates (M, θ) as independent variables in the Monge–Ampère equation was exten-
sively used in the literature, in particular by Cullen and collaborators [5–7]. In
(M, θ) coordinates, the thermal wind relation takes the form:

f
∂X

∂θ
= g

θr

∂Z

∂M
. (4.113)

Hence a potential � for the final positions of the fluid particles may be introduced:

X = g

θr

∂�

∂M
, Z = f

∂�

∂θ
. (4.114)

The Jacobian of the transformation from (x, z) to (X, Z) can be rewritten as

∂(X, Z)

∂(M, θ)

∂(M, θ)

∂(x, z)
= 1 , (4.115)

from which we can obtain, replacing X and Z by their expressions (4.114) the fol-
lowing Monge–Ampère equation for � with a “potential pseudo-density” which is
the inverse of the PV at the r.h.s.:

∂2�

∂M2

∂2�

∂θ2
−
(
∂2�

∂M∂θ

)2

= θr

g f

1

q
. (4.116)

Assuming that fluid on the boundaries remains there, this equation has oblique
Neumann-type boundary conditions

∂�

∂θ
(M±(s), θ±(s)) = z±

f
, (4.117a)

(
g

θr

∂�

∂M
, f
∂�

∂θ

)
→ (x(M, θ), z(M, θ)) as M → ±∞ , (4.117b)
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where (M±(s), θ±(s)) define the upper (z+ = H ) and lower boundaries (z− = 0)
in (M, θ) space, s is a coordinate along those boundaries, x and z are initial posi-
tions. The domain in (M, θ) space is generally not convex which may prevent the
existence of the smooth solutions of Monge–Ampère equation, although in general,
this latter may be solved by methods of the optimal transportation theory (Benamou
and Brenier [1]).

To illustrate the possible non-existence of the smooth solutions of the adjustment
problem and the advantages of the Lagrangian approach, we give below an explicitly
integrable example of zero PV in the vertically bounded domain (cf. Ou [15]).
We start with a flow in a slab between z = 0 and z = 1 (in non-dimensional
variables) with purely horizontal density gradients and no vertical shear in v:

θI = θI (x), vI = vI (x), (4.118)

and solve (4.109). The stationary part of the horizontal momentum equation
reduces to

∂X

∂z
f (v′

I + f )+ ∂Z

∂z

gθ ′
I

θ0
= 0 , (4.119)

where the prime denotes the x-derivative. Integration of (4.119) gives

X = F(x)
f v′

I + f 2
− gθ ′

I /θ0

f v′
I + f 2

Z , (4.120)

and from the incompressibility equation it follows that

Z2
(

gθ ′
I /θ0

f v′
I + f 2

)′
− 2

( F
f v′

I + f 2

)′
Z + 2(G(x)+ z) = 0 . (4.121)

The functions F(x), G(x) are to be determined from the boundary conditions. For
the unit strip in the x, z-plane they are

Z(x, 0) = 0 , Z(x, 1) = 1 . (4.122)

Hence

X = x + A(x)
(

1

2
− Z

)
, A = gθ ′

I /θ0

f v′
I + f 2

, (4.123)

Z = 1

A′(x)

⎡
⎣1 + 1

2
A′(x)−

√(
1 + 1

2
A′(x)

)2

− 2zA′(x)

⎤
⎦ , (4.124)
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Fig. 4.5 The end-state of the evolution of the zero-PV state with initially vertical isentropic sur-
faces in the case of existence (left panel, no crossing of the isentropes) and non-existence (right
panel, crossing of the isentropes) of the adjusted state

which is the explicit solution for the adjusted state.
If a discontinuity forms, it forms at a boundary due to the elliptic character of the
problem, i.e. where ∂x X (x, 0) = 0 or ∂x X (x, 1) = 0. This will happen if

∂X

∂x
(x, 0) = 1 ± 1

2
A′(x) = 0 , (4.125)

i.e. if

g

f θ0

(
gθ ′

I /θ0

f + v′
I

)′
= ±2 . (4.126)

The positions of isentropic surfaces and isotachs may be easily obtained from
knowing explicit final positions of the fluid particles (4.123), (4.124) and using the
Lagrangian conservation of θ and M . It may be thus shown (Plougonven and Zeitlin
[17]) that singularity corresponds to intersecting isentropes, as shown in Fig. 4.5 and
infinite gradients of v. We thus have a frontogenesis process, which in fact coincides
with the classical scenario of Hoskins and Bretherton [12], with the only difference
that in their example the parameters of the system were driven towards the singular
case by an adiabatic change due to external deformation field.

4.4.3 Trapped Modes and Symmetric Instability in Continuously
Stratified Case

The Lagrangian approach is also efficient for studying symmetric/inertial instability
in the continuously stratified case. For this, we consider (4.94a), (4.94b), (4.94c),
(4.94d) and (4.94e) taken between the flat top z = H and bottom z = 0. We rewrite
them in the form (4.107) and introduce the deviations of the particle positions from
the stationary balanced state:

X = X̄ + χ , Z = Z̄ + ζ , (4.127)
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so that

∂(X̄ + χ, χ̈)

∂(x, z)
− ∂(X̄ + χ, f MI )

∂(x, z)
+ g

θr

∂(θI , Z̄ + ζ )

∂(x, z)
= 0 . (4.128)

It is more convenient to use as independent variables the positions of the particles in
the adjusted state (X̄ , Z̄), rather than the initial positions (x, z). When this change of
variables is made in (4.128), two terms which express the thermal wind relation in
the adjusted state cancel out. Furthermore, it is convenient to express the gradients
of v̄ and θ in the adjusted state through the geopotential φ̄, making explicit use of
geostrophic and hydrostatic balances. Equation (4.128) then becomes

(
∂2

∂t2
+ f 2 + ∂2φ̄

∂ X̄2

)
∂χ

∂ Z̄
+ ∂2φ̄

∂ X̄∂ Z̄

(
− ∂χ
∂ X̄

+ ∂ζ

∂ Z̄

)
− ∂2φ̄

∂ Z̄2

∂ζ

∂ X̄
+ ∂(χ, χ̈)

∂(X̄ , Z̄)
= 0 .

(4.129)
The incompressibility condition gives

∂χ

∂ X̄
+ ∂ζ

∂ Z̄
+ ∂(χ, ζ )

∂(X̄ , Z̄)
= 0 . (4.130)

We non-dimensionalize these equations in the context of perturbations of a balanced
jet by rescaling time by f −1, the horizontal displacements by U/ f , where U is
typical transverse velocity which is small with respect to the typical jet velocity V ,
so U = δV , with δ � 1. Typical horizontal and vertical length scales are L and H ,
respectively. The scale of the vertical displacements is U H/ f L , from the continuity
equation. We thus obtain

(
∂2

∂t2
+ 1 + Ro

∂2φ̄

∂ X̄2

)
∂χ

∂ Z̄
+ Ro

∂2φ̄

∂ X̄∂ Z̄

(
− ∂χ
∂ X̄

+ ∂ζ

∂ Z̄

)

− Bu
∂2φ̄

∂ Z̄2

∂ζ

∂ X̄
+ +δ Ro

∂(χ, χ̈)

∂(X̄ , Z̄)
= 0 , (4.131a)

∂χ

∂ X̄
+ ∂ζ

∂ Z̄
+ δ Ro

∂(χ, ζ )

∂(X̄ , Z̄)
= 0 , (4.131b)

where Ro = V/ f L is the Rossby number and Bu = N 2 H2/ f 2L2 is the Burger
number. We consider intense jets and presume Ro ∼ 1, Bu ∼ 1. We expand χ and
ζ in small parameter δ and obtain to leading order from (4.131b):

∂χ(0)

∂ X̄
+ ∂ζ (0)

∂ Z̄
= 0 , (4.132)
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Hence there exists a streamfunction ψ(0) such that

χ(0) = −∂ψ
(0)

∂ Z̄
, ζ (0) = ∂ψ(0)

∂ X̄
. (4.133)

Equation (4.131a) becomes

(
∂2

∂t2
+ 1 + ∂2φ̄

∂ X̄2

)
∂2ψ(0)

∂ Z̄2
− ∂2φ̄

∂ X̄∂ Z̄

∂2ψ(0)

∂ X̄∂ Z̄
+ ∂2φ̄

∂ Z̄2

∂2ψ(0)

∂ X̄2
= 0 . (4.134)

The boundary conditions are zero vertical displacements of parcels at the top and
bottom boundaries. This implies that ψ(0) is constant on the boundaries. As there
is no overall displacement of the fluid layer in the X̄ -direction, these constants are
equal; they can be both set to zero: ψ(0)(X̄ , 0) = ψ(0)(X̄ , 1) = 0. ψ(0) should also
remain bounded as X̄ → ±∞ . Equation (4.134) closely resembles the homoge-
neous part of the Sawyer–Eliassen equation (e.g. Holton [11], p. 275) except for
the term with the double-time derivative, which makes (4.134) prognostic. In the
Sawyer–Eliassen equation, this term is absent because the fast time has been filtered
out by balanced scaling, making the equation diagnostic.

Like in the two-layer case above, we take the simplest example of a barotropic
jet. The non-dimensional geopotential describing a balanced jet is

φ̄ = �(X̄)+ Z̄2

2
. (4.135)

The mean stratification, which we suppose constant, is given by the second deriva-
tive of the second term in this expression and the jet velocity is v̄ = �′, where the
prime denotes the X̄ -derivative �′ = ∂�/∂ X̄ . If an unbalanced fast component is
added to (4.135), the equation for its evolution is (cf. (4.134)):

(1 +�′′ + ∂2
t t ) ∂

2
Z̄ Z̄
ψ(0) + ∂2

X̄ X̄
ψ(0) = 0 . (4.136)

It allows a separation of variables and results in a regular Sturm–Liouville problem
in the vertical results; given the boundary conditions, the vertical eigenfunctions are
sin(nπ Z̄). Hence the solutions are sought in the form:

ψ(0)(X̄ , Z̄ , t) =
∑

n

sin(nπ Z̄) ψ(0)n (X̄ , t) . (4.137)

We look for ψ(0)n (X̄ , t) with a time dependence of the form e−iωt and get a Sturm–
Liouville problem on ]−∞,+∞[). We denote by ψ̂nω(x) the horizontal eigenfunc-
tion with vertical wavenumber n and frequency ω. The equation for ψ̂nω(X̄) has the
form of Schrödinger equation of a particle in a well:

∂2
X̄ X̄
ψ̂nω − n2π2(1 +�′′ − ω2)ψ̂nω = 0 . (4.138)
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The factor n2π2 may be removed by rescaling X̄ as S = nπ X̄ :

∂2
SSψ̂nω − (1 +�′′(S/nπ)− ω2)ψ̂nω = 0 , (4.139)

where the “potential” is (1 +�′′(S/nπ)) and the eigenvalues are ω2. For any given
profile of �, the depth of the potential is always the same, but its width depends on
the vertical wavenumber n: the smaller the vertical scale of the waves, the wider the
potential.
The Schrödinger equation (4.139) has a continuous and a discrete spectrum of eigen-
values ω2. The potential (1 +�′′) tends to one as X̄ → ∞; hence, for a given n, we
have

• continuous spectrum of solutions with ω > 1. This part of the spectrum is doubly
degenerate (two independent solutions for each eigenvalue ω) and corresponds to
leftward and rightward propagating IGW.

• discrete spectrum of solutions with subinertial frequencies:

√
Min(1 +�′′) < ω < 1 . (4.140)

This part of the spectrum is nondegenerate, and consists of solutions exponen-
tially decaying outside the region where (1 + �′′ − ω2) < 0, and oscillating
inside that region: they are trapped in the anticyclonic part of the jet.

• For a jet with relative vorticity lower than −1(i.e. − f in dimensional variables),
modes with ω2 < 0 arise in the trapped mode spectrum, yielding the symmetric
instability, like in the two-layer case.

4.5 Conclusions

Thus we have shown that Lagrangian variables represent an excellent tool for han-
dling dynamics of symmetric fronts (translational symmetry) and vortices (rota-
tional symmetry), both qualitatively and quantitatively. Although it is known that
relaxing the strict symmetry can lead to qualitatively new effects (cf., e.g. Griffiths
et al. [10]), such fundamental “symmetric” phenomena as singularity formation
(catastrophic adjustment) or nonlinear stage of symmetric instability are still ill-
understood. We believe that the mathematical framework developed in the previous
sections will allow to advance in their understanding.
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Chapter 5
Wave–Vortex Interactions

O. Bühler

This chapter presents a theoretical investigation of wave–vortex interactions in fluid
systems of interest to atmosphere and ocean dynamics. The focus is on strong
interactions in the sense that the induced changes in the vortical flow should be
significant. In essence, such strong wave–vortex interactions require significant
changes in the potential vorticity (PV) of the flow either by advection of pre-existing
PV contours or by creating new PV structures via wave dissipation and breaking.
This chapter explores the interplay between wave and PV dynamics from a theoret-
ical point of view based on a recently formulated conservation law for the sum of
mean-flow impulse and wave pseudomomentum.

First, the conservation law is derived using elements of generalized Lagrangian
mean theory such as the Lagrangian definition of pseudomomentum. Then the cre-
ation of vorticity due to breaking and dissipating waves is explored using the shal-
low water system and the example of wave-driven longshore currents and vortices
on beaches, especially beaches with non-trivial topography. This is followed by an
investigation of wave refraction by vortices and the concomitant back reaction on
the vortices both in shallow water and in three-dimensional stratified flow.

Particular attention is paid to the phenomenon of wave capture in three dimen-
sions and to the peculiar duality between wavepackets and vortex couples that it
entails.

5.1 Introduction

We are interested in the nonlinear interactions between waves and vortices in
fluid systems such as the two-dimensional shallow water system or the three-
dimensional Boussinesq system. In particular, we concentrate on waves whose
dynamics has no essential dependence on potential vorticity (PV), so a typical
example would be surface gravity waves in shallow water (or internal gravity waves
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in three-dimensional stratified flow) and their interactions with the layerwise two-
dimensional vortices familiar from quasi-geostrophic dynamics.

Many such interactions are possible, but we focus on strong interactions, which
are defined by their capacity to lead to significant O(1) changes of the PV field even
for small-amplitude waves. More specifically, if the wave amplitude is given by a
non-dimensional parameter a � 1 and if the governing equations are expanded
in powers of a, then the linear wave dynamics occurs at O(a) and the leading-
order nonlinear interactions occur at O(a2). A strong interaction occurs if the
wave-induced O(a2) changes in the PV can grow secularly in time such that over
long times t = O(a−2) these PV changes may accrue to be O(1). Naturally, this
involves some kind of resonance of the wave-induced forcing terms with the PV-
controlled linear mode in order to achieve the secular growth O(a2t) in the PV
changes.

This straightforward perturbation expansion in small wave amplitude easily
obscures an all-important physical fact that is not restricted to small wave ampli-
tudes. It is clear from fundamental fluid dynamics that strong interactions between
waves and vortices require the achievement of significant wave-induced changes
in the potential vorticity (PV) distribution of the flow. However, such changes are
tightly constrained by the material invariance of the potential vorticity in perfect
fluid flow, which is a consequence of Kelvin’s circulation theorem. As an example,
consider the standard one-layer shallow-water equations with Cartesian coordinates
x = (x, y), velocity components u = (u, v), and layer depth h such that

Du
Dt

+ g∇(h − H) = F and
Dh

Dt
+ h∇ · u = 0. (5.1)

Here D/Dt = ∂t + u · ∇ is the material derivative, g is gravity, F is some body
force, and H(x) is the possibly non-uniform still water depth such that h − H is the
surface elevation (see Fig. 5.1). The potential vorticity is given by

q = ∇ × u
h

such that
Dq

Dt
= ∇ × F

h
, (5.2)

where ∇ × u = vx − uy .
Now, the point is that for perfect fluid flow F = 0 and therefore q is a material

invariant. This makes obvious that for perfect fluid flow any changes in the spatial

hB

h
H

Fig. 5.1 Shallow-water layer with still water depth H and topography hB . For non-uniform bottom
topography h − H is the surface elevation. In the case of uniform bottom topography the still water
depth is constant and can be ignored
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distribution of q must be due to advection of fluid particles across a pre-existing
PV gradient. Strong interactions between gravity waves and vortices are possible
only if the gravity waves can lead to large O(1) displacements of fluid particles in
the direction of the PV gradient. Examples of this kind of non-dissipative scenario
do exist [e.g. 15, 17], but more commonly observed is the lack of strong interac-
tions between waves and vortices in perfect fluid flow. This is essentially due to the
resilience of circular vortices to large irreversible deformations.1

This indicates the importance of non-perfect flow effects for strong wave–vortex
interactions. Perhaps the most important such effect is wave dissipation, which leads
to F 	= 0 and therefore to material changes in the PV. Wave dissipation can be
due either to laminar viscous effects or due to nonlinear wave breaking and the
concomitant breakdown of the organized wave motion into three-dimensional tur-
bulence, as exemplified by the breaking of surface waves on a beach. We will take
the view that both forms of wave dissipation can be treated on the same footing as far
as the wave–vortex interactions are concerned. Consideration of the wave-induced
changes in PV due to dissipating waves leads to the well-known phenomenon of
wave drag which is the standard term for the effective mean force exerted on the
mean flow due to steady but dissipative waves.2

For instance, wave drag is central for the generation of longshore currents by
obliquely incident surface waves on a beach, for the reduced speed of the high-
altitude mesospheric jet in the atmosphere due to dissipating topographic waves,
and for the maintenance and shape of the global circulation of the middle atmo-
sphere [e.g. 35]. The situation is less clear in the deep ocean, where wave drag
seems to be less important than the small-scale mixing induced by the breaking
waves [43].

We will look at both dissipative and non-dissipative wave–vortex interactions in
this chapter. A useful theoretical tool is the definition of the Lagrangian mean veloc-
ity and of the pseudomomentum vector as they were introduced in the generalized
Lagrangian mean GLM theory of Andrews and McIntyre [2, 3]. These Lagrangian
(i.e. particle-following) definitions allow writing down a circulation theorem and
corresponding PV evolution for the Lagrangian mean flow as defined by a suitable
averaging procedure. In contrast, this does not work for the Eulerian mean flow. In
this chapter we consider small-scale waves and large-scale vortices, so there is a
natural scale separation that can be used for averaging. This is the standard aver-
aging over the rapidly varying phase of a wavetrain whose amplitude and central
wavenumber vary slowly in space and time. Another advantage is that in this regime

1 A special case is one-dimensional shallow-water flow, in which significant and irreversible mate-
rial deformations are ruled out a priori. In this case there are no strong wave–vortex interactions in
perfect fluid flow [29].
2 The connection between wave drag and PV dynamics is somewhat obscured in the standard
treatments of this phenomenon, which are based on zonally symmetric mean flows [e.g. 1].
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there are simple relations between Lagrangian and the more familiar Eulerian mean
quantities. For instance, we shall see that in shallow water the pseudomomentum,
Stokes drift, and bolus velocity (i.e. the eddy-induced transport velocity) are all
approximately equal in this regime.

Now, the main theoretical result is a conservation law for the sum of the total
pseudomomentum and the impulse of the mean PV field, with impulse to be defined
below. This conservation law expresses a certain wave–vortex duality, which allows
understanding the essence of various interactions even without detailed computa-
tions, which is a distinct practical advantage. Examples are given for the dissipa-
tive generation of PV by breaking shallow-water waves and for the non-dissipative
refraction of waves by vortical mean flows, which can lead to irreversible scattering
of the waves. The latter leads to a peculiar irreversible feedback on the PV structure
termed remote recoil in [16], which is very well explained by the aforementioned
conservation law. The same effect is even stronger for internal gravity waves in
the three-dimensional Boussinesq system, where refraction can lead to a peculiar
form of non-dissipative wave destruction termed wave glueing or wave capture,
which is due to the advection and straining of wave phase by the vortical mean
flow [4, 17].

All these examples serve to illustrate the interplay between PV evolution and
the dynamics of the waves and how strong interactions are compatible with con-
straints on PV dynamics that follow from the exact PV evolution law (5.2). The
plan of this chapter is as follows. In Sect. 5.2 the Lagrangian mean flow and pseu-
domomentum are introduced, the mean circulation theorem is written down, and the
simple relations between various Lagrangian and Eulerian quantities in the regime
of a slowly varying wavetrain are noted. This leads to the conservation law for
pseudomomentum and impulse. In Sect. 5.3 the PV generation by breaking waves
in shallow water is discussed and its application to vortex dynamics on beaches
is described in Sect. 5.4. Refraction of waves by the vortical mean flow and the
attendant wave–vortex interactions are discussed in Sect. 5.5 both in shallow water
and in the three-dimensional Boussinesq system. Finally, concluding comments are
offered in Sect. 5.6.

5.2 Lagrangian Mean Flow and Pseudomomentum

Here we introduce the elements of GLM theory that are most useful for study-
ing wave–vortex interactions. GLM theory is described in full in [2, 3] and more
detailed introductions to some of the elements used here can be found in [15, 11]
and in the forthcoming book [13]. The effort to understand these elements of GLM
theory is not very great and they provide very useful reference points for the inter-
action dynamics. Overall, the aim is not to present a full set of GLM equations,
but rather to extract a minimal set of equations that captures most of the constraints
that Kelvin’s circulation theorem puts on wave–vortex interactions. We focus on
the two-dimensional shallow-water system, but this material readily generalizes to
three-dimensional flow (e.g. [17]).
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5.2.1 Lagrangian Averaging

GLM theory is based on two elements: an Eulerian averaging operator (. . .) and a
disturbance-associated particle displacement field ξ(x, t). Averaging allows writing
any flow field φ as the sum of a mean and a disturbance part φ = φ + φ′, say.
The choice of the averaging operator is quite arbitrary provided it has the projection
property φ′ = 0, which makes the flow decomposition unique. For instance, zonal
averaging for periodic flows is a common averaging operator in atmospheric fluid
dynamics.

In our case averaging means phase averaging over the rapidly varying phase
of the wavetrain, which can also be thought of as time averaging over the high-
frequency oscillation of the waves. More specifically, if the oscillations are rapid
enough, then one can distinguish between the evolution on the “fast” timescale of the
oscillations and the evolution on the “slow” timescale of the remaining fields such
as the wavetrain amplitude. This could be made explicit by introducing multiple
timescales such that t/ε is the fast time for ε � 1, for instance. We will suppress
this extra notation and leave it understood that ξ and the other disturbance fields
are evolving on fast and slow timescales whereas uL evolves on the slow timescale
only.

The new field ξ is easily visualized in the case of a timescale separation
(see Fig. 5.2): the location x + ξ(x, t) is the actual position of the fluid particle
whose mean (i.e. time-averaged) position is x at (slow) time t . This goes together
with ξ = 0, i.e. ξ has no mean part by definition. This definition of ξ is a natural
extension of the usual small-amplitude particle displacements often used in linear
wave theory. With ξ in hand we can define the Lagrangian mean of any flow field as

φ
L = φ(x + ξ(x, t), t), (5.3)

where the opulent notation makes explicit where ξ is evaluated. From now we
resolve that we will never evaluate ξ anywhere else but at x and t , so we can omit
its arguments henceforth.

u (x, t)

x

u L(x, t)

x0

t=0

z y
x

Actual trajectory

Mean trajectory

ζ
ζ

Fig. 5.2 Mean and actual trajectories of a particle in problem with multiple timescales: x + ξ(x, t)
is the actual position of the fluid particle whose mean position is x at (slow) time t . The notation
uξ (x, t) is shorthand for u(x + ξ(x, t), t)
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Now, by construction (5.3) constitutes a Lagrangian average over fixed particles
rather than a Eulerian average over a fixed set of positions. To round off the kine-
matics of GLM theory we note that it can be shown that

D
L
(x + ξ) = u(x + ξ , t) ⇒ D

L
ξ = u(x + ξ , t)− uL(x, t) (5.4)

where D
L = ∂t + uL · ∇ is the Lagrangian mean material derivative. This ensures

that x + ξ moves with the actual velocity if x moves with the mean velocity uL .
The main motivation to work with Lagrangian mean quantities lies in the follow-

ing formula:

Dφ

Dt
= S ⇒ Dφ

Dt

L

= D
L
φ

L = S
L
. (5.5)

In particular, if the source term S = 0, then φ is a material invariant and φ
L

is

a Lagrangian mean material invariant, i.e. φ
L

is constant along trajectories of the
Lagrangian mean velocity uL . Again, such simple kinematic results are not available
for the Eulerian mean φ, which evolves according to

(∂t + u · ∇) φ = S − u′ · ∇φ′. (5.6)

This illustrates the loss of Lagrangian conservation laws that is typical for Eulerian
mean flow theories.

In general, φ
L 	= φ and the difference is referred to as the Stokes correction or

Stokes drift in the case of velocity, i.e.

φ
L = φ + φ

S
. (5.7)

For small-amplitude waves ξ = O(a) and then the leading-order Stokes correction
can be found from Taylor expansion as

φ
S = ξ jφ

′
, j + 1

2
ξiξ j φ,i j + O(a3), (5.8)

where index notation is with summation over repeated indices understood. The first
term dominates if mean flow gradients are weak.

5.2.2 Pseudomomentum and the Circulation Theorem

The circulation  around a closed material loop Cξ , say, is defined in a two-
dimensional domain by
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 =
∮

Cξ
u(x, t) · dx =

∫

Aξ

∇ × u dxdy. (5.9)

The second form uses Stokes’s theorem and Aξ is the area enclosed by Cξ , i.e.
Cξ = ∂Aξ . As written, the material loop Cξ is formed by the actual positions of a
certain set of fluid particles. Under the assumption3 that the map

x → x + ξ (5.10)

is smooth and invertible, we can associate with each such actual position also a
mean position of the respective particle, and the set of all mean positions then forms
another closed loop C, say. In other words, we define the mean loop C via

x ∈ C ⇔ x + ξ(x, t) ∈ Cξ . (5.11)

This allows rewriting the contour integral in (5.9) in terms of C, which mathemati-
cally amounts to a variable substitution in the integrand. The only non-trivial step is
the transformation of the line element dx, which is

dx → d(x + ξ) = dx + (dx · ∇)ξ . (5.12)

In index notation this corresponds to

dxi → dxi + ξi, j dx j . (5.13)

This leads to

 =
∮

C
(ui (x + ξ , t)+ ξ j,i u j (x + ξ , t)) dxi (5.14)

after renaming the dummy indices. The integration domain is now a mean material
loop and therefore we can average (5.14) by simply averaging the factors multiply-
ing the mean line element dx. The first term brings in the Lagrangian mean velocity
and the second term serves as the definition of the pseudomomentum, i.e.

 =
∮

C
(uL − p) · dx where pi = −ξ j,i u j (x + ξ , t) (5.15)

is the GLM definition of the pseudomomentum vector; the minus sign is conven-
tional and turns out to be convenient in wave applications. This exact kinematic
relation shows that the mean circulation is due to a cooperation of uL and p, i.e. both
the mean flow and the wave-related pseudomomentum contribute to the circulation.

3 This can fail for large waves.



146 O. Bühler

In perfect fluid flow the circulation is conserved by Kelvin’s theorem and hence
 = . Just as  is constant because Cξ follows the actual fluid flow we now also
have that  is constant because C follows the Lagrangian mean flow. This mean
circulation conservation statement alone has powerful consequences if the flow is
zonally periodic and the Eulerian-averaging operation consists of zonal averaging,
which is the typical setup in atmospheric wave–mean interaction theory. In this peri-
odic case a material line traversing the domain in the zonal x-direction qualifies as
a closed loop for Kelvin’s circulation theorem. By construction, ∂x (. . .) = 0 for any
mean field, and therefore a straight line in the zonal direction qualifies as a mean
closed loop. The mean conservation theorem then implies theorem I of [2], i.e.

D
L

uL = D
L
p1, (5.16)

where p1 is the zonal component of p. This is an exact statement and its straight-
forward extension to forced–dissipative flows constitutes the most general state-
ment about so-called non-acceleration conditions, i.e. wave conditions under which
the zonal mean flow is not accelerated. These are powerful statements, but their
validity is restricted to the simple geometry of periodic flows combined with zonal
averaging.

In order to exploit the mean form of Kelvin’s circulation theorem for more gen-
eral flows, we need to derive its local counterpart in terms of vorticity or potential
vorticity. Indeed, the mean circulation theorem implies a mean material conservation
law for a mean PV by the same standard construction that yields (5.2) from Kelvin’s
circulation theorem. Specifically, the invariance of  in the second form in (5.9)
for arbitrary infinitesimally small material areas Aξ implies the material invariance
of ∇ × u dxdy. The area element dxdy is not a material invariant in compressible
shallow-water flow, but the mass element h dxdy is. Factorizing with h leads to

D

Dt

(∇ × u
h

h dxdy

)
= 0 ⇒ D

Dt

(∇ × u
h

)
= 0, (5.17)

which is (5.2) for perfect flow. Mutatis mutandis, the same argument applied to
(5.15) yields

q L = ∇ × (uL − p)

h̃
and D

L
q L = 0, (5.18)

provided the mean layer depth h̃ is defined such that h̃ dxdy is the mean mass
element, which is invariant following uL . This is true if h̃ satisfies the mean conti-
nuity equation

D
L

h̃ + h̃∇ · uL = 0. (5.19)
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Unfortunately, h̃ 	= h
L

in general, which is a disadvantage of GLM theory. It can be
shown that h̃(x, t) = h(x + ξ , t)J (x, t), where J = det(δi j + ξi, j ) is the Jacobian
of the map (5.10).

The mean circulation theorem is an exact statement, so in particular it is not
limited to small wave amplitudes. It shows that the Lagrangian mean flow inherits
a version of the constraints that Kelvin’s circulation theorem puts on strong wave–
vortex interactions. For example, in irrotational flows we have q = 0 and therefore

q L = 0 ⇒ ∇ × uL = ∇ × p. (5.20)

This shows that if ∇ × p is uniformly bounded at O(a2) in time then so is ∇ × uL ,
which rules out strong interactions based on mean flow vorticity. Of course, even
though uL and p have the same curl they can still be different vector fields. This
can be either because ∇ · uL is markedly different from ∇ ·p or because uL and p
satisfy different boundary conditions at impermeable walls (see [2] for an example
involving sound waves). Any strong wave–vortex interaction in the present case of
irrotational flow must therefore involve wavelike behaviour of the mean flow itself,
with significant values of ∇ · uL for instance.

If q 	= 0, then (5.20) is replaced by

∇ × uL = ∇ × p + h̃q L . (5.21)

This illustrates the scope for further changes in ∇ × uL due to dilation effects medi-
ated by variable h̃ (i.e. vortex stretching) or due to material advection of different
values of q L into the region of interest. The latter process requires the existence of a
PV gradient, as discussed earlier. Obviously, any knowledge of bounds on changes
in h̃ and q L can be converted into bounds on changes in ∇ × uL by using the exact
(5.21) as a constraint.

5.2.3 Impulse Budget of the GLM Equations

The impulse (also called Kelvin’s impulse or hydrodynamical impulse) is a classical
concept in incompressible constant-density fluid dynamics going back to Kelvin
[e.g. 30, 6]. In essence, the impulse complements the standard momentum budget
whilst being based strictly on the vorticity of the flow. This can be a very powerful
tool. We start by describing the classical impulse concept and then we go on to
define a useful impulse for the GLM equations.

The classical impulse is a vector-valued linear functional of the vorticity
defined by

impulse = 1

n − 1

∫
x × (∇ × u) dV, (5.22)
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where n > 1 is the number of spatial dimensions, dV is the area or volume element,
and the integral is extended over the flow domain. We are most interested in the
two-dimensional case, in which

two-dimensional impulse =
∫
(y,−x)∇ × u dxdy. (5.23)

The impulse has a number of remarkable properties for incompressible perfect fluid
flow. To begin with, the impulse is clearly well defined whenever the vorticity is
compact, i.e. whenever the vorticity has compact support such that ∇ × u = 0
outside some finite region. If n = 3 then this fixes the impulse uniquely, but if n = 2
then the value of the impulse depends on the location of the coordinate origin unless
the net integral of ∇ × u, which is the total circulation around the fluid domain,
is zero. For example, in two dimensions the impulse of a single point vortex with
circulation  is equal to (Y,−X) where (X,Y ) is the position of the vortex. This
illustrates the dependence on the coordinate origin. On the other hand, two point
vortices with equal and opposite circulations ± separated by a distance d yield a
coordinate-independent impulse vector with magnitude d and direction parallel to
the propagation direction of the vortex couple. To fix this image in your mind you
can consider the impulse of the trailing vortices behind a tea (or coffee) spoon: the
impulse is always parallel to the direction of the spoon motion.

The easily evaluated impulse integral in an unbounded domain contrasts with
the momentum integral, which in the same situation is not absolutely convergent
and therefore is not well defined [30, 40, 12]. For instance, in the case of the two-
dimensional vortex couple the velocity field decays as 1/r2 with distance r from
the couple, which is not fast enough to make the momentum integral absolutely
convergent. Thus a vortex couple in an unbounded domain has a unique impulse,
but no unique momentum.

As far as dynamics is concerned, it can be shown that the unforced incompress-
ible Euler equations in an unbounded domain conserve the impulse. The proof
involves time-differentiating (5.22) and using integration by parts together with an
estimate of the decay rate of u in the case of a compact vorticity field. Moreover,
if the flow is forced by a body force F with compact support, then the time rate of
change of the impulse is equal to the net integral of F. This follows from the vortic-
ity equation in conjunction with a useful integration-by-parts identity for arbitrary
vector fields with compact support:

∫
F dV = −

∫
x ∇ · F dV = 1

n − 1

∫
x × (∇ × F) dV . (5.24)

The integrals are extended over the support of F and the second term is included for
completeness; it illustrates that ∇ · F and ∇ × F are not independent for compact
vector fields. Note that (5.24) does not apply to the velocity u because u does not
have compact support. Now, in the tea spoon example the impulse of the trailing
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vortex couple can be equated to the net force exerted by the spoon.4 This illustrates
how impulse concepts are useful for fluid–body interaction problems. For example,
similar impulse concepts have been used to study the bio-locomotion of fish [19]
and of water-walking insects [12].

In a bounded domain the situation is somewhat different. Now the momentum
integral for incompressible flow is convergent and in fact the net momentum is
exactly zero because the centre of mass of an enclosed body of homogeneous fluid
cannot move. The impulse, on the other hand, is nonzero and usually not constant in
time anymore. This is obvious by considering the example of a vortex couple prop-
agating towards a wall, which increases the separation d of the vortices and thereby
increases5 impulse. However, the instantaneous rate of change of the impulse due
to a compact body force F is still given by the net integral of F. This works best
if F is large but applies only for a short time interval, because then the boundary-
related impulse changes are negligible during this short interval. Indeed, this kind
of “impulsively forced” scenario gave the impulse its name. Finally, intermediate
cases such as a zonal channel geometry are also possible, in which the flow domain
is periodic or unbounded in x , but is bounded by two parallel straight walls in y. In
this case the x-component of impulse is still exactly conserved under unforced flow,
but not the y-component.

So now the question is whether the impulse concept can be applied to wave–
vortex interactions. The idea is to define a suitable mean flow impulse that evolves
in a useful way under such interactions. This raises two issues. First, the classi-
cal impulse concept is restricted to incompressible flow, i.e., if compressible flow
effects are allowed, then most of the useful conservation properties of the impulse
are lost. Still, the vortical mean flow dynamics, especially in the geophysically rel-
evant regime of slow layer-wise two-dimensional flow, is often characterized by
weak two-dimensional compressibility; a case in point is standard quasi-geostrophic
dynamics in which the horizontal divergence is negligible at leading order. This
suggests that two-dimensional impulse may still be useful. The second issue is the
question as to which velocity field to use to form the impulse as in (5.23). For
instance, one could base the GLM impulse on uL , but it turns out to be much more
convenient to base the GLM impulse on uL − p instead [17]. We therefore define
the GLM impulse in the shallow water system as

I =
∫
(y,−x)∇ × (uL − p) dxdy =

∫
(y,−x) q L h̃ dxdy, (5.25)

where the integral extends over the flow domain, as before. Clearly, I is well defined
if q L has compact support, which is a property that can be controlled from the initial

4 More precisely, the time rate of change of the impulse equals the instantaneous force exerted by
the spoon; time-integration then yields the final answer.
5 It is a counter-intuitive fact that as d increases the impulse of the vortex couple increases even
though its propagation velocity decreases! Indeed, the impulse is proportional to d and the velocity
to 1/d.
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conditions of the flow together with the mean material invariance of q L . Also, I is
obviously zero in the case of irrotational flow. This suggest that I is targeted on
the vortical part of the flow, which is what we want, but the important question
is how I evolves in time. The easiest way to find the time derivative of I in the
case of compact q L is by interpreting the integral in (5.25) as an integral over a
material area that is strictly larger than the support of q L . The time derivative of

such a material integral can then be evaluated by applying D
L

to the entire integrand,
including dxdy. However, as both q L and h̃dxdy are mean material invariants the

only nonzero term comes from D
L
(y,−x) = (vL ,−uL). After some integration by

parts this yields

dI
dt

=
∫
(uL − p)∇ · uL dxdy +

∫
(∇uL) · p dxdy + remainder. (5.26)

Here the p contracts with uL and not with ∇, i.e. in index notation the second
integrand is uL

j,i p j with free index i . Explicitly,

(∇uL) · p = (uL
x p1 + vL

x p2, uL
y p1 + vL

y p2) (5.27)

in terms of the pseudomomentum components p = (p1,p2).
The remainder in (5.26) consists of integrals over derivatives such as vL

x v
L =

0.5∂x (v
L)2 or (vLp2)x , which yield vanishing contributions in an unbounded domain

if uL and p decay fast enough with distance r . For example, a decay uL = O(1/r)
or uL = O(1/r2) is sufficient, respectively, depending on whether p is compact or
not. We will assume that p is compact in our examples (unless an explicit exception
is made) and hence we can safely ignore this remainder. Likewise, the first term in
(5.26) is due to compressibility and mean layer depth changes (via (5.19)), and we
will assume that such compressible changes are relatively small, i.e. we assume that
the second term in (5.26) is much bigger than the first. So, for practical purposes we
approximate the impulse evolution by

dI
dt

= +
∫
(∇uL) · p dxdy. (5.28)

If the source term can be written as a time derivative of another quantity, then this
would yield a conservation law. This is as far as we can go using the general exact
GLM equations. Significantly more progress is possible if we turn to the ray tracing
equations, which describe the evolution of a slowly varying wavetrain.

5.2.4 Ray Tracing Equations

We now assume that the disturbance field consists of a slowly varying wavetrain
containing small-amplitude waves. This involves two small parameters, namely the
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wave amplitude a � 1 and another parameter ε � 1 that measures the scale sepa-
ration between the rapidly varying phase of the waves and the slowly varying mean
flow, wavetrain amplitude, central wavenumber, and so on. The asymptotic equa-
tions that describe the leading-order behaviour of the wavetrain are the standard ray
tracing equations for linear waves. We will not carry out explicit expansions in a or
ε here because these results are well known (e.g. [13]), so we just note the outcome.

In a slowly varying wavetrain the solution looks everywhere like a plane wave
locally, but the amplitude, wavenumber, and frequency of the plane wave are varying
slowly in space and time. More specifically, if the fields in a wavetrain are propor-
tional to exp(iθ) for some wave phase θ , then the local wavenumber vector and
frequency are defined by

k(x, t) = +∇θ and ω(x, t) = −θt . (5.29)

Note that (5.29) implies

∇ × k = 0 ⇔ ∇k = (∇k)T , (5.30)

which is a non-trivial statement in more than one dimension. The key asymptotic
result in ray tracing is that the dispersion relation must be satisfied locally, i.e., k
and ω must satisfy the dispersion relation for plane waves using the local values for
the basic state. For example, the shallow-water dispersion relation for plane gravity
waves with H = constant and k = (k, l) is

ω = �(k) = U · k ±√
gH κ, (5.31)

where κ = |k| is the wavenumber magnitude and U is the velocity of a constant
basic flow. The basic flow induces the Doppler-shifting term U · k, so the absolute
frequency ω differs from the intrinsic frequency ω̂ = ω − U · k. It is the intrinsic
frequency that is relevant for the local fluid dynamics relative to the basic flow. In
ray tracing only a single branch for the intrinsic frequency is considered in a given
wavetrain; we pick the upper sign without loss of generality.

Now, if the still water depth H(x) and basic flow U(x) are slowly varying6, then
(5.31) applies locally, i.e. we have

ω = �(k, x) = U(x) · k +√
gH(x) κ, (5.32)

where k and ω are defined by (5.29). Indeed, substituting (5.29) in (5.32) yields a
first-order nonlinear PDE for the wave phase:

θt +�(∇θ, x) = 0 ⇒ θt + U · ∇θ +√
gH(x) |∇θ | = 0. (5.33)

6 We assume that U(x) and H(x) satisfy the steady nonlinear shallow-water equations.
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This is the Hamilton–Jacobi equation for the wave phase. The solution of this first-
order PDE involves finding the characteristics, which are the group-velocity rays
along which k can be found by integrating a set of ODEs. Using the standard pro-
cedure for the characteristic system we obtain the Hamiltonian system of ODEs

dx
dt

= cg = +∂�
∂k

and
dk
dt

= −∂�
∂x
, (5.34)

where cg is the absolute group velocity, d/dt is the rate of change along a ray, and
the partial derivatives of �(k, x) act on the explicit dependence of the frequency
function �, which plays the role of the Hamiltonian function in this ODE set. The
evolution of x and k describes the propagation and the refraction of the wavetrain,
respectively. It is not necessary to compute θ explicitly in this procedure, although
its value along a ray could be found from integrating

dθ

dt
= k · ∂�

∂k
−�. (5.35)

For steady U and H the Hamiltonian function �(k, x) has no explicit time depen-
dence and then it is a generic consequence of the Hamiltonian system (5.34) that
dω/dt = 0, i.e. the absolute frequency ω = � is constant along a ray. Of course,
this does not imply that the intrinsic frequency ω̂ = ω − U · k is constant along
a ray as well; indeed, the changes in ω̂ when U is non-uniform are crucial to the
wave dynamics of refraction, for critical layers, and so on. If the basic state is slowly
evolving in time as well as in space, then we have the more general dω/dt = ∂�/∂t .

In the shallow water case the ray tracing equations come out as

dx
dt

= U +√
gH

k
κ

and
dk
dt

= −(∇U) · k − √
g κ ∇√

H . (5.36)

The second, depth-related refraction term shows how components of k can be
changed in the presence of a gradient in still water depth H . This is relevant for
waves propagating on a beach, for instance. Note that the first, velocity-related
refraction term involves a similar operator as in (5.27), i.e. the k contracts with
U and not with ∇. This will turn out to be a crucial observation for the impulse
budget. Incidentally, the phase evolution along a ray from (5.35) is dθ/dt = 0,
which is typical for non-dispersive waves.

The ray tracing equations are completed by an equation for the wave amplitude,
which in the most ideal case of a basic flow that varies slowly in all directions and
in time is given by the conservation law for wave action along non-intersecting rays
(i.e. away from caustics7):

7 As is well known, at caustics neighboring rays intersect and (5.37) and the other ray tracing
equations become invalid and must be replaced by more accurate asymptotic approximations; we
will not consider caustics here, but see [13].
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∂

∂t

(
Ē

ω̂

)
+ ∇ ·

(
Ē

ω̂
cg

)
= 0 ⇔ d

dt

(
Ē

ω̂

)
+ Ē

ω̂
∇ · cg = 0. (5.37)

Here Ē is the phase-averaged wave energy per unit area of the waves. For example,
in the shallow water case

Ē = 1

2

(
Hu′2 + Hv′2 + gh′2

)
= H |u′|2 = gh′2 (5.38)

in terms of the linear wave velocity u′ = (u′, v′) and depth disturbance h′; this also
shows the energy equipartition. Note carefully that the intrinsic frequency ω̂ appears
in the definition of the wave action, not the absolute frequency ω. Because the wave
field looks locally like a plane wave, knowledge of Ē and k implies knowledge of
the amplitudes of u′ and h′. Specifically, in a plane wave with ω̂ > 0 the so-called
polarization relations u′/

√
gH = (h′/H)k/κ hold, which complete the wavetrain

description.
The pseudomomentum vector takes a particularly simple form in ray tracing:

all we need to do is to evaluate the GLM pseudomomentum definition pi = −
ξ j,i u j (x + ξ , t) at leading order for a plane wave. For small wave amplitude,
ξ = O(a), and therefore the leading-order non-vanishing contribution to p arises at
O(a2) and involves the O(a) part of u j (x + ξ , t). This illustrates that p is a wave
property, i.e. it is O(a2) for small-amplitude waves, but it can be evaluated using
just the linear, O(a) solution.

We write down the leading-order approximation for p using u = U +u′ + O(a2)

where u′ = O(a) is the linear wave velocity. Taylor-expanding U(x + ξ , t) with
one term yields

pi = −ξ j,iξmU j,m − ξ j,i u′
j + O(a3). (5.39)

So far we have used a � 1 but not ε � 1. Invoking the second small parameter
now allows us to neglect the first term against the second, because the gradient of U
involves a small factor ε. Of course, this is also consistent with the idea of a local
plane wave. Furthermore, in a plane wave with constant U the particle displacement
evolution in (5.4) is approximated to O(a) by

ξ t + U · ∇ξ = u′. (5.40)

In a plane wave this relation becomes

− i(ω − U · k)ξ = −iω̂ξ = u′ (5.41)

and therefore

∇ξ = − k
ω̂

u′ ⇔ ξ j,i = −ki

ω̂
u′

j , (5.42)
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where ∇ corresponds to k. Substituting back into (5.39) yields

p = + k
ω̂

|u′|2. (5.43)

Now, shallow-water plane waves satisfy energy equipartition by (5.38) and this leads
to the final expression for the leading-order pseudomomentum in a plane wave:

p = + k
ω̂

Ē

H
. (5.44)

Thus pseudomomentum equals wavenumber vector times wave action density.8 This
shows that in a plane wave the pseudomomentum vector is always parallel to the
intrinsic phase speed ĉg = kω̂/κ2, regardless of the sign of ω̂.

Actually, (5.44) is a generic relation, i.e. it applies to plane waves in all wave
systems, including internal waves, internal waves with Coriolis forces, or Rossby
waves (e.g. [13]). This fact is disguised in our derivation, which uses equipartition
and other results that may or may not work in a given wave system. Nevertheless,
the appropriate pseudomomentum definition is always such that (5.44) holds for a
plane wave. This is important.

It turns out that in shallow water the leading-order pseudomomentum density for
a slowly varying wavetrain is also equal to two other familiar wave properties, the
so-called bolus velocity h′u′/H and the Stokes drift ui

S = ξ j u′
i, j . The derivation

involves neglecting derivatives of mean fields and using the linear relation h′ =
−H∇ · ξ as well as ∇ × u′ = 0. Unlike the generic expression (5.44) above, these
additional equalities are specific to the shallow-water system and do not carry over
to other systems. For example, in the Boussinesq system the Stokes drift in a plane
wave is zero, but not the pseudomomentum.

The ray tracing evolution law for p follows from multiplying (5.37) by k and
using (5.34) and (5.36). The result is

∂p

∂t
+ 1

H
∇ · (Hpcg

) = − Ē

H ω̂

∂�

∂x
= −(∇U) · p − |p|√g ∇√

H . (5.45)

This shows that p inherits the conservation properties of k, in an integral sense. For
example, if � has no explicity dependence on x , then k is constant along rays and
Hp1 satisfies an integral conservation law. Of course, whether or not a particular
component of p is conserved in an integral sense does not affect the importance of
all components of p in the GLM circulation theorem!

8 The non-essential depth factor H could be absorbed in the definition of Ē or of p; it arises
because Ē is a density per unit area, which is convenient in the wave action law, whereas p is a
density per unit mass, which is convenient in the GLM circulation theorem. The world is made
imperfect.
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5.2.5 Impulse Plus Pseudomomentum Conservation Law

So far we allowed the still water depth H to be variable, which is natural for shallow-
water waves on beaches and other applications. However, to make progress now we
restrict to constant H ; perhaps at a later stage the present theory can be extended to
cover variable H . (An extension to the intermediate case of one-dimensional H(x)
is given in Sect. 5.4.1 on wave-driven vortex dynamics on beaches.)

For constant H the pseudomomentum law (5.45) simplifies to

∂p

∂t
+ ∇ · (pcg

) = −(∇U) · p, (5.46)

which shows that refraction by the mean flow is now the only mechanism to change
the pseudomomentum. The total pseudomomentum in the domain is

P =
∫

p dxdy, (5.47)

and for compact p its rate of change is obviously

dP
dt

= −
∫
(∇U) · p dxdy. (5.48)

The Lagrangian mean flow uL = U + O(a2), so the leading-order expression for
the impulse law (5.28) is

dI
dt

= +
∫
(∇U) · p dxdy (5.49)

and therefore we have the conservation law [17]

I + P = constant. (5.50)

This conservation law is remarkable both in its simplicity and its scope, because it
includes arbitrary refraction by the mean flow. The impulse I is a simple linear func-
tional of the mean PV q L , so changes in I can be easily monitored and visualized. In
general, (5.50) quantifies that net changes in pseudomomentum are compensated for
by net changes in mean flow impulse. This is reminiscent of similar-sounding results
for zonal momentum in zonally symmetric mean flow theory, so (5.50) extends those
results to local wave–mean interaction theory. As is natural from a fluid-dynamical
point of view, the zonally symmetric results are based on momentum whereas the
local results here are based on vorticity.

The theoretical considerations are completed by including the effects due to a
body force F, of dissipative origin or otherwise, in the momentum equation (5.1).
We first define the useful disturbance-associated mean force
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F = −(∇ξ) · F(x + ξ , t) ⇔ Fi = −ξ j,i Fj (x + ξ , t). (5.51)

The relation between F and F is analogous to the relation between u and p. It is
then possible to show that [15, 11]

D
L

q L = ∇ × (F
L − F)

h̃
(5.52)

holds exactly and therefore the exact impulse law becomes

dI
dt

= +
∫
(∇uL) · p dxdy +

∫
(F

L − F) dxdy, (5.53)

if F
L − F is compact so that (5.24) can be used. Now, the reason to introduce F is

because this vector appears on the right-hand side of the pseudomomentum law. In
particular, the ray tracing equation (5.46) with forcing is

∂p

∂t
+ ∇ · (pcg

) = −(∇U) · p + F (5.54)

and therefore

dP
dt

= −
∫
(∇U) · p dxdy +

∫
F dxdy. (5.55)

Thus, the conservation law (5.50) is replaced by

d

dt
(I + P) =

∫
F

L
dxdy, (5.56)

because the terms in F cancel. This shows that internal redistributions of momen-
tum via F do not affect the sum of impulse plus pseudomomentum.

The effect of viscous stresses will be considered in the next section, but for com-
pleteness we note here the results for the case in which F is due to an irrotational
wavemaker, i.e. F = ∇φ for some compact potential φ. This case is particularly
important for numerical experiments and for simple models of waves generated by
oscillating boundaries. We have ∇ × F = 0 and therefore q remains a material
invariant. Consistent with this we have the exact relations

F
L − F = ∇φL ⇒ D

L
q L = 0, (5.57)

and therefore the mean impulse is also not explicitly affected by an irrotational

wavemaker. In (5.56) the contribution of ∇φL
integrates to zero for compact φ and

so we have
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F = ∇φ ⇒ d

dt
(I + P) =

∫
F

L
dxdy =

∫
F dxdy. (5.58)

This also shows that an irrotational wavemaker creates “normal” momentum and
pseudomomentum at the same rate. This is a typical result also for waves generated

by flow past undulating boundaries. Finally, F
L ≈ F for slowly varying irrotational

wavemakers, because then ∇φL
in (5.57a) has an explicit small factor O(ε).

5.3 PV Generation by Wave Breaking and Dissipation

The generation of potential vorticity by wave breaking is a very direct wave–vortex
interaction: dissipating waves robustly create PV structures out of nothing. If the
dissipation persists, then these PV structures can grow in time and therefore we
have a strong interaction. As we shall see, in the case of a wavetrain the new PV
structure resembles a vortex couple, i.e. the PV change integrates to zero and the
impulse of the new PV structure is equal to the amount of pseudomomentum that
has been dissipated [36, 11]. This robust result underlies the standard theory of wave
drag as well, although in the standard theory the mean flow is zonally symmetric and
the role of vorticity is implicit.

We consider the fluid-dynamical link between PV generation and wave breaking
first, then we look at an idealized example of a wavepacket life cycle, and finally we
consider the example of wave-driven longshore currents on beaches.

5.3.1 Breaking Waves and Vorticity Generation

It is a basic fluid-dynamical fact that breaking waves can generate vorticity even if
there has been no vorticity prior to the breaking. A classical and vivid example is the
spectacular breaking of surface waves in surfers’ paradise movies. For instance, con-
sider a two-dimensional surface wave propagating from left to right in the xz-plane
and assume that the wave is steepening and overturning, say because the water depth
is decreasing in x as it would be in the approach to a beach. The water–air interface
forms a plunging breaker until the moment the overturning wave crest crashes onto
the water just before the crest. The flow can remain essentially irrotational up to this
moment. Thereafter, there are violent viscous boundary layer effects at the over-
turned water–water interface and a rapid transition to three-dimensional turbulence
occurs, which is clearly visible and audible by the foam and bubbles in the breaking
region (Fig. 5.3).

The presence of the three-dimensional turbulence alone indicates a significant
creation of vorticity, but to us the more or less disorganized vorticity of the tur-
bulence is not of particular interest. Rather, there is also an organized, large-scale
component of vorticity in the y-direction, which results from the conversion of the
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Fig. 5.3 Plunging wave breaker. The wave is moving left to right and the rolling motion after
breaking implies an organized bundle of vorticity pointing into the picture along the wave crest,
spinning clockwise

overturning irrotational water mass into a rolling water mass with an appreciable
amount of solid-body rotation in the y-direction, i.e. clockwise in the xz-plane.

Now, in the strict two-dimensional version of this problem (which is physically
impossible, of course, because of the three-dimensional turbulence), this organized
vorticity points strictly into the y-direction. However, we can imagine that the break-
ing wave is confined in the y-direction such that wave breaking is possible only in
y ∈ [0, D] with some lateral breaking width D. This would be appropriate for the
localized wave breaking on a beach with a point break, for instance. In this case the
vorticity must be confined to this lateral interval and because vorticity lines cannot
end in the fluid that means the clockwise vorticity in the core of the breaker must
burrow out and connect to the boundaries of the fluid. If the water is deep enough
it stands to reason that the only possible boundary is the water–air boundary. This
leads to the image of a banana-shaped region of organized vorticity, with the core
of the banana lying in y ∈ [0, D] and the upwards-bending ends of the banana
connecting to the free surface.

A modicum of doodling then shows that viewed from above (i.e. looking down
onto the xy-plane) the vertical vorticity components are such that there is positive
vorticity to the left of the propagation direction of the breaking wave and negative
vorticity to the right [37, 38].9 Consequently, the impulse associated with this ver-
tical vorticity points in the x-direction, i.e. it points in the same direction as the
phase velocity of the wave. This is consistent with a breaking-induced conversion
of horizontal pseudomomentum (which is parallel to the intrinsic phase speed) into
mean flow impulse.

9 To understand the signs you may find it useful to consider a rolling banana at the moment when
its curved ends are pointing upward.
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Fundamentally the same considerations can be applied to the overturning and
breaking of internal waves in a continuously stratified fluid [36], with stratification
surfaces of constant entropy replacing the water–air interface and with Rossby–Ertel
PV replacing the vertical vorticity. Again, the lateral confinement of the breaking
region sets the width of the resultant vortex couple that is being produced on the
stratification surface under consideration.10

5.3.2 Momentum-Conserving Dissipative Forces

Now, in order to verify the quantitative details of the exchange between pseudo-
momentum and impulse during wave dissipation, we need to consider the details

of F and F
L

during wave breaking, which is hard in theory if three-dimensional
turbulence is present during the breaking. A constructive middle ground is offered
by considering wave breaking through shock formation in compressible fluids. For
instance, it is well known in engineering gas dynamics that the flow through a curved
shock, or through a shock whose strength varies along the shock front, leads to
the generation of vorticity in the flow behind the shock (this is sometimes called
Crocco’s law in gas dynamics). In particular, if the flow is two-dimensional, then
the generated vorticity is normal to the plane of the flow.

The case of a variable-strength shock front appears similar to the case of a
finite-width plunging breaker, at least when viewed at some distance from above!
Moreover, the shallow-water equations also describe the two-dimensional flow of a
constant-entropy ideal gas with ratio of specific heats equal to 2 (see [10] for some
peculiar uses of this gas-dynamical analogy), although the precise analogy breaks
down at a shock because the local production of entropy at the shock cannot be
captured in the shallow-water equations, which dissipates mechanical energy at the
shock instead.

Nevertheless, the jump conditions at a shallow-water shock are the same as the
classical jump conditions at a hydraulic bore, which is another reason to use the
shallow-water equations for flows with shocks, even though the assumptions that
underly shallow-water theory clearly break down at a shock. Thus we take the view
that shocks in shallow water provide a reasonable model in which to study wave–
vortex interactions due to wave breaking and dissipation [11]. Details are found in
this reference, which also includes Coriolis forces (see also [7] for a related study
on the equatorial beta-plane), so here we will just note the main results.

10 By their mathematical construction both vorticity and potential vorticity always satisfy conser-
vation laws in the integral sense, i.e. their evolution law can always be written in flux divergence
form, even in the presence of external forces [24, 36]. For instance, the Rossby–Ertel PV is defined
by q = ∇ × u · ∇θ/ρ, where θ is potential temperature for atmospheric applications. This can be
rewritten as ρq = ∇ · (θ∇ × u) for arbitrary choices of the scalar θ . This form makes obvious that
(ρq)t is always the divergence of some flux, even for non-physical choices of θ . In some cases this
mathematical fact can be used to some advantage, but I find it mostly confusing.
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Now, the jump conditions at a shock in shallow water follow from the con-
servation laws for mass and momentum. These conservation laws remain valid if
momentum-conserving viscous stresses are added to the equations, such as would
arise in the two-dimensional compressible Navier–Stokes equations, for instance.
The presence of such viscous terms allows the flow fields to remain smooth at the
shock, so the mathematical formalism of GLM theory can apply with F being the
force due to these viscous stresses. Because F is momentum conserving in (5.1), it
must be of the form

Fi = 1

h
τi j, j , (5.59)

where τi j are the components of a symmetric stress tensor. The density factor 1/h

is crucial in this expression. Now, it can be shown that F
L

inherits this divergence
form, i.e. it turns out that

F
L
i = 1

h̃
τ̃i j, j , (5.60)

where τ̃i j are the components of a certain mean tensor related to τi j and the dis-
placement fields. This is an exact result in GLM theory (e.g. [13]). The details of

τ̃i j are not important here, but it is important that F
L

is always proportional to the
derivative of a mean field. For a slowly varying wavetrain, such a derivative brings
in a small factor O(ε). On the other hand, F does not have this divergence form, so
in a slowly varying regime it does not carry a small factor O(ε). The upshot is the
generic result that

|F | � |FL | (5.61)

for momentum-conserving forces within a slowly varying wavetrain. We can there-

fore neglect F
L

in this case, which is in contrast to the previously discussed situation

for forces due to an irrotational wavemaker, in which F and F
L

are of the same
size. This remarkably simple result implies that the impulse plus pseudomomentum
conservation law holds in the presence of momentum-conserving wave dissipation,
i.e. I + P is constant even if waves dissipate.

5.3.3 A Wavepacket Life Cycle Experiment

We illustrate the results obtained so far by considering a simple life cycle of a wave-
packet in shallow water. A wavepacket is a special case of a wavetrain, in which
the wavenumber is essentially constant across a compact amplitude envelope; this is
a single bullet of wave activity. In a wavepacket the amplitude varies more rapidly
than the wavenumber vector and it has been known for a long time [8] that the
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wavepacket scaling is less robust than the wavetrain scaling, i.e. a wavepacket will
quickly evolve into a wavetrain such that wavenumber and amplitude again vary
on the same scale. Nevertheless, wavepackets are convenient conceptual building
blocks and they are helpful to understand both waves and wave–vortex interactions.

Now, the life cycle begins with a quiescent fluid in which at time t = 0 and
location x = (0, 0), say, a wavepacket is generated by an irrotational body force.
The wavepacket then travels to a new location where at time t = T it is dissipated
by a momentum-conserving body force. Let the large wavenumber be k = (k, 0)
with k > 0 and we use the convention ω̂ > 0 as before. Then the pseudomomentum
p = (p1, 0) with p1 > 0 and the x-component of the ray tracing law (5.54) is

∂p1

∂t
+ c

∂p1

∂x
= F1. (5.62)

This uses c = √
gH = constant and U = 0. It is easiest to envisage a process of

quite rapid wave generation, i.e. F1 acts impulsively at t = 0 to produce the wave-
packet in a short time interval such that the flux term is negligible during generation
and therefore ∂t p1 = F1. Such rapid forcing is not essential, but it gives the easiest
picture. For definiteness, we write

wave generation: F = δ(t)( f (x, y), 0), (5.63)

where f (x, y) ≥ 0 is a smooth envelope for the wavepacket centred around the
origin; a Gaussian would do. Directly after the generation we have p1 = f (x, y).
The curl of this pseudomomentum field is ∇ × p = −∂y f , which is positive to the
left of the wavepacket and negative to the right. Here left and right are relative to
the direction of p. This is the characteristic signature of ∇ × p for a wavepacket.
For definiteness, we let f integrate to unity so P = (1, 0) at this stage. The impulse
I = 0 because q L = 0, of course.

After generation, the wavepacket propagates without change in shape in a straight
line with constant speed c from left to right, i.e., p1 = f (x − ct, y). Both I = 0
and P = (1, 0) remain constant during propagation. The subsequent dissipation
process can be modelled either impulsively as well or by an exponential attenuation
such that F1 = −αp1, where α > 0 is an exponential damping rate. The latter
option is familiar from linear wave dissipation mechanisms. Either way, the sum
I + P = (1, 0) remains constant because the dissipation is momentum conserving.
In other words, any pseudomomentum lost to dissipation is converted into impulse.

How does the mean flow react in detail to this wavepacket life cycle? We are
really only interested in the vortical part of the mean flow response, but in shallow
water it is easy enough to write down the complete mean flow equations at O(a2) for
small-amplitude slowly varying wavetrains (e.g. [14]). In the present case they are

h̃t + H∇ · uL = 0 and uL
t + g∇h̃ = pt − 1

2
∇|u′|2 + F

L − F . (5.64)
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A simple derivation of (5.64) uses that p ≈ h′u′/H and h̃ ≈ h for slowly varying
wavetrains; taking the curl of (5.64) recovers (5.52) at O(a2), in which uL = O(a2)

and h̃ = H to sufficient approximation. The complete set (5.64) illustrates that the
mean flow inherits a forced version of the modal structure of the linear equations, i.e.
there are two gravity-wave modes and one balanced, vortical mode. It also shows
that the mean flow forcing can be viewed as being due to a combination of tran-
sience, wavetrain inhomogeneity, external forcing, and dissipation.

During the rapid generation of the wavepacket the third and fourth forcing terms
cancel and the first term dominates the second term because of the time derivative.
The same argument applies to the left-hand side of (5.64) and therefore we have
h̃ = H and uL = p = ( f, 0) just after the impulsive wavepacket generation. This
initial condition for the mean flow is a compact bullet of x-momentum centred at
the origin.

The subsequent evolution of the mean flow consists of the evolution of this initial
condition under the additional influence of the forcing terms. The upshot is that
there is a persistent generation of weak O(a2) mean flow gravity waves during the
propagation of the two-dimensional wavepacket [8].11 The vorticity of the mean
flow remains bound to the wavepacket because of q L = 0 and therefore ∇ × uL =
∇ × p; a mean flow vorticity probe would detect a vorticity couple flanking the
wavepacket, but this vorticity couple would move with the linear wave speed c, not
the nonlinear advection speed.

After t = T dissipation becomes active; during dissipation F
L

is negligible and
F = −αp, say. Then (5.62) leads to p1 = f (x − ct, y) exp(−α(t − T )) for t ≥ T .
During this attenuation process we have

Hq L
t = −∇ × F = α∇ × p, (5.65)

which shows how ∇×p is transferred into q L in a manner that is consistent with the
conservation of I + P = (1, 0). The form of (5.65) indicates that q L evolves “as
if” an effective mean force equal to minus the dissipation rate of pseudomomentum
were acting on the mean flow; this effective force points in the same direction as
p. After a long time t − T � 1/α the wavepacket is practically gone, and so is
the wavelike part of the mean flow, which will propagate away from the dissipation
site of the wavepacket. What remains behind after p → 0 is the vortical mean flow
with vorticity ∇ × uL = Hq L . This is a dipolar vortex couple with I = (1, 0) that
resembles a smeared-out version of the instantaneous curl of the wavepacket’s pseu-
domomentum. The smearing-out is due to the advection of the wavepacket during
dissipation, it can be reduced by making the dissipation more rapid.

11 Actually, there is also a non-essential resonance effect because the wavepacket forcing terms
move with speed c, which is the only available speed in the non-dispersive shallow-water equa-
tions. This projects resonantly onto the mean flow gravity waves, which is also a reminder of the
beginning of shock formation in shallow water. Still, for our purposes this resonance is artificial
and we will not consider it. For example, by adding some dispersion to the equations (e.g. by
adding Coriolis forces) this resonance would disappear.
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The take-home message from this wavepacket life cycle is that irrotational wave
generation changes P but not I , that propagation through a quiescent medium pre-
serves both P and I , and that dissipation leads to a zero-sum transference of P
into I . The lasting vortical mean flow response is described by q L and behaves in
an easy, generic manner. The full mean flow response also contains parts to do with
wavelike mean flow dynamics, which are not generic and complicated.

If the life cycle is repeated many times then q L would grow secularly at the
dissipation site, which would in time lead to the spin-up of a substantial vortex
couple there. This is a model example of a strong wave–vortex interaction.

5.3.4 Wave Dissipation Versus Mean Flow Acceleration

The life cycle experiment in the previous section makes it easy to discuss the inter-
esting relationship between wave dissipation and mean flow acceleration (see [17]
for more details). It is clear from the mean PV law (5.52) and (5.61) that there
is a direct link between (momentum-conserving) wave dissipation and mean PV
changes. However, does the mean flow actually accelerate where and when the
waves dissipate?

We can get a clear answer to this question if we make the dissipation as impulsive
as the wave generation, i.e. if we assume that the wavepacket is annihilated in a
very short time interval �t ∝ 1/α such that the dominant balance in (5.62) is again
∂t p1 = F1. What happens to the mean flow acceleration in this case can now be
read off from (5.64): we obtain

uL
t + g∇h̃ = −1

2
∇|u′|2. (5.66)

The sole remaining term on the right-hand side is bounded and vanishes during the
decay interval �t . Moreover, this term was already there prior to the wave dissipa-
tion, so it really has nothing to do with dissipation. We are led to conclude that uL

does not change during dissipation, i.e. there is no obvious mean flow acceleration
when and where the waves are dissipating.

This is a surprising result, because it completely disagrees with the standard sit-
uation in wave drag studies in which there is a steady wavetrain subject to localized
dissipation. In this case pt = 0 by assumption and therefore (5.66) is replaced by

uL
t + g∇h̃ = −1

2
∇|u′|2 − F = −1

2
∇|u′|2 + αp (5.67)

in the dissipation region. The first term can be balanced by a suitable depth variation
h̃, but the second term is not irrotational in general and therefore it keeps on pushing.
In this case, the site of wave dissipation is also the site of mean flow acceleration,
or at least of mean flow forcing.
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So how can these two results be consistent with each other? They must be con-
sistent because we can approximate a steady wavetrain by sending in an infinite
sequence of wavepackets, like pearls on a string. The answer lies in the physi-
cal nature of mean flow forcing by the waves. At a fundamental level, the mean
flow responds to wave-induced fluxes of mass and momentum in the shallow-water
equations. Typically, these wave-induced fluxes are nonzero but also non-divergent
within a plane wave. Therefore, as a wavepacket arrives at a given location, there is a
period of transition from zero flux to constant flux inside the bulk of the wavepacket
[34]. It is during this transient period that the mean flow acceleration is strongest in
response to the nonzero flux divergences; this effect is described by pt in (5.64).

Once the wavepacket leaves there is again a transient period, but this time all the
flux divergences have their signs reversed, which undoes the previous mean flow
accelerations. The net result is that the mean flow has been nudged back and forth
by the arrival and departure of the wavepacket, which may set off some mean flow
waves, but there has been no obvious lasting change.

How does dissipation change this picture? Dissipation weakens the wavepacket
without leading by itself to a nonzero flux divergence. In other words, dissipation
reduces the wave-induced fluxes inside the wavepacket, but it does not change their
spatial distribution. So, as the wavepacket leaves the location under consideration,
the undoing of the mean flow accelerations that occurred during the wavepacket’s
arrival are only partially undone, because by now the wavepacket has been weak-
ened. This leads to a net residuum of the time-integrated mean flow forcing and
therefore to a net lasting change in the mean flow. It is also clear that the net residual
forcing points in the direction of p.

So there is no intrinsic link between wave dissipation and mean flow forcing but
there is such a link between wave transience and mean flow forcing. Mathematically,
this state of affairs can perhaps most easily be spotted in the evolution law for ∇ ×
uL , which is

∂

∂t
∇ × uL = ∂

∂t
∇ × (p − F). (5.68)

Without dissipation ∇ × uL is slaved to the pseudomomentum curl, and therefore
it changes directly through wave transience. During rapid dissipation, on the other
hand, the terms on the right-hand side cancel and ∇ × uL does not change at all.

The apparently different result for a steady wavetrain is then explained by
the necessary coalescence of wave dissipation regions and wavepacket transience
regions in the case of a steady wavetrain. For instance, in the pearls-on-a-string
approach many wavepackets mimic a steady wavetrain and then the fluid in the
dissipation site is repeatedly accelerated by arriving wavepackets, but it never gets
decelerated because the wavepackets never leave, because of the dissipation. This
leads to the persistent, growing mean flow acceleration in the dissipation site that is
familiar from the standard steady wavetrain picture.

If we want to summarize the main point of this section in one sentence, then it
could be that wave dissipation makes irreversible a mean flow acceleration due to
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wave transience that has already taken place. To model this aspect of wave–vortex
interaction correctly is important in order to understand the full mean flow response,
including mean flow waves, during wavepacket dissipation (e.g. [44, 41, 17]).

5.4 Wave-Driven Vortices on Beaches

The material in this section is based on [14] and [5]. The breaking of ocean waves
that are obliquely incident on a beach can drive longshore currents along the beach.
These currents are of appreciable magnitude, with typical alongshore speeds of
1 m/s and typical horizontal current width of a hundred metres or so. Longshore
currents can interact with and co-produce rip currents, they contribute to beach
erosion and evolution, and they can be important in their impact on engineering
structures in the nearshore region.

The basic physical mechanism for longshore currents is the wave-induced trans-
port of alongshore momentum towards the beach and the associated wave drag when
the waves are breaking in the surf zone. This momentum flux is M = Hu′v′ in
shallow-water theory, where x is the cross-shore and y is the alongshore coordinate
such that the shoreline corresponds to x = constant, say (see Fig. 5.4). In the sim-
plest geometry we allow only one-dimensional topography such that the still water
depth H(x) is a function only of distance to the shoreline. We also assume that the

(a) (b)

y
y

x x

Surf zoneSurf zone

< 0r
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Fig. 5.4 Left: crests of homogeneous wavetrain obliquely incident on beach with shoreline on the
right. The waves break in the surf zone and drive a longshore current in the positive y-direction
there. There are no vortices. Right: crests of inhomogeneous wavetrain. The breaking location is
flanked by a vortex couple generated by wave breaking; the indicated vorticity signatures are the
vertical outcropping of the three-dimensional vorticity banana described in Sect. 5.3.1. Due to the
oblique wave incidence, the vortex couple is slightly tilted relative to the shoreline and therefore it
has a positive impulse in the y-direction
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flow is periodic in the alongshore y-direction. The general case of two-dimensional
topography with still water depth H(x, y) is more complicated, because then there
can be pressure-related momentum exchanges with the ground.

5.4.1 Impulse for One-Dimensional Topography

Can we define a useful mean flow impulse in the case of variable H(x)? In the
case of constant H we modelled the mean flow impulse on the classical impulse
for two-dimensional incompressible flow. This corresponds to a shallow-water flow
between two parallel rigid plates with constant distance H . In the present case,
we can look for inspiration in the case of a two-dimensional rigid-lid flow with
non-uniform H . This flow is governed by

∇ · (H u) = 0 and
Dq

Dt
= 0 where q = ∇ × u

H
. (5.69)

There is only a single degree of freedom in the initial-value problem, namely the
vortical mode described by the initial distribution of q; the rigid lid filters all gravity
waves. The corresponding two-dimensional momentum equation is

Du
Dt

+ ∇ p = 0, (5.70)

where p is the pressure at the rigid lid, which can be computed from an elliptic
problem just as the pressure in incompressible flow. If we allow for H(x) only, then
the y-component of momentum is conserved, i.e.

d

dt

∫
Hv dxdy = 0 (5.71)

in a periodic channel geometry with solid walls at two locations in x , say. This leads
to a conserved impulse in terms of the PV if we define a potential L(x) for the
topography such that

d L

dx
= −H(x). (5.72)

The y-component of the impulse is then (e.g. [26, 25])

I2 =
∫

L(x)H(x)q dxdy ⇒ d I2

dt
= 0. (5.73)

The proof uses DL/Dt = −Hu, integration by parts, periodicity in y, and
that u = 0 at the channel side walls. In the constant-depth case H = 1, we
have L(x) = −x and therefore (5.73) recovers the classical impulse. On a planar
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constant-slope beach with H = x , say, we obtain L = −x2/2 and so on. In general,
I2 equals the net y-momentum in (5.71) up to some constant terms related to the
(constant) circulation along the channel walls.

To illustrate (5.73), we again consider I2 due to a point vortex couple with cir-
culations ± and separation distance d in the x-direction.12 Now, if the left vortex
has positive circulation, then in the case of constant H = 1 this produces I2 = d.
For variable H we obtain I2 = �L instead, where �L is the difference of L(x)
between the two vortex locations. If H(x) is smooth then using the definition of
L(x) and the mean value theorem this can be written as �L = d H(x∗), where
x∗ is an intermediate x-position between the vortices. For small x-separations this
suggests the approximation �L ≈ d H̃ where H̃ is the average depth at the two
vortex positions and therefore I2 ≈ d H̃.

The simplest example in which variable topography gives a non-trivial effect is in
a domain with two large sections of constant H = HA and H = HB , say, connected
by a smooth transition. In this case the conservation of I2 implies that a vortex
couple that slides from one section to the other must change its separation distance.
Specifically, if the couple starts in the section with H = HA and separation dA then
we have

I2 = const. ⇒ dA HA = dB HB ⇒ dB = dA
HA

HB
(5.74)

if the couples makes it to the other section. If HB > HA, i.e. if the couple moves
into deeper water, then dB < dA and therefore the couple has moved closer together.
Because the mutual advection velocity is proportional to /d, this implies that the
vortex couple has sped up. Considerably more detailed analytical results about the
vortex trajectories can be computed in the case of a step topography [25].

Similarly, on a constant-slope beach with H = x and L = −x2/2, the conclusion
would be that x̃d is exactly constant, where x̃ is the average x-position of the two
vortices. This has the consequence that the cross-shore separation d of a vortex cou-
ple climbing a planar beach towards the shoreline (i.e. propagating towards x = 0
if H = x) would increase as the water gets shallower.

We return to wave–vortex interactions: based on the rigid-lid role model, we
define a shallow-water mean flow impulse in the y-direction at O(a2) by

I2 =
∫

L(x)H(x)q L dxdy ⇒ d

dt
(I2 + P2) = 0 (5.75)

under unforced evolution or momentum-conserving dissipation. Clearly, this assumes
that the mean flow behaves approximately as if there was a rigid lid, i.e. it assumes

12 Strictly speaking, a point vortex model is not well posed if ∇H is nonzero, because of the
infinite self-advection of a point vortex on sloping topography, which is analogous to the infinite
self-advection of a curved line vortex in three dimensions. We can resolve this by replacing the
point vortex with a vortex with finite radius b provided that b is much smaller than d or any other
scale in the problem.
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that ∇ · (H uL) = 0 and therefore mean flow gravity waves are weak. This conser-
vation law also holds for wave refraction by the mean flow, the only difference is
that the production term −(∇U) · p in (5.46) and the definition of the net pseudo-
momentum P in (5.47) both acquire a factor of H(x).

5.4.2 Wave-Induced Momentum Flux Convergence and Drag

Now, returning to the wave-driven currents, M is the mean wave-induced flux of
y-momentum in the x-direction. It is a basic exact result in GLM theory that this
“off-diagonal” mean momentum flux equals the flux of y-pseudomomentum in the
x-direction [3]. Indeed, in the wavetrain regime it is easy to check that

M = Hu′v′ = Hp2ug = lk

κ2
Ē . (5.76)

The y-component of the pseudomomentum law (5.45) shows that

∂x (Hp2ug)+ ∂y(Hp2vg) = 0 (5.77)

for a steady wavetrain. During the approach of a shoreline the wavetrain is refracted
toward the beach, i.e. the wavenumber vector is turned normal to the shoreline. This
implies that |k| is much bigger than |l| near the shoreline, which allows making a
small-angle approximation in which terms l2/k2 and higher are neglected. In this
approximation the pseudomomentum law implies ∂x (Hp2ug) = 0 and therefore M
is constant for a steady wavetrain.

However, diminishing H leads to an increase in wave amplitude as measured,
say, in the relative depth disturbance h′/H , which is a useful definition of non-

dimensional wave amplitude. This follows from Ē = gh′2, the constancy of (5.76),
the ray invariance of l and ω = √

gHκ , and the small-angle approximation, which
together imply the scaling

Ē ∝ κ2/(kl) ∝ κ ∝ H−1/2 ⇒ h′/H ∝ H−5/4. (5.78)

This indicates the sharp growth of wave amplitude as the water depth decreases,
which must lead to nonlinear wave breaking before the shoreline is reached. Where
the waves break the momentum flux M is diminished and therefore in the breaking
region there is a net acceleration of the mean flow along the beach, which leads to the
longshore current. As before, this is a momentum-conserving transfer of alongshore
pseudomomentum into alongshore mean flow impulse.

The first rational theory for longshore currents was formulated by Longuet–
Higgins in [32, 33]. In this theory the flow is periodic in the alongshore direction
and, most importantly, the incoming wave forms a slowly varying wavetrain with
constant amplitude in the alongshore direction. That means that y-derivatives of all
mean quantities are zero by assumption. The mean flow situation is then described
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by the simplified y-component of (5.67), which is

vL
t = −F2. (5.79)

This very simple form stems from the assumption of a one-dimensional wavetrain.
The force term −F2 is deduced from a saturation assumption, which limits the
surface elevation h′ to be less or equal to a fixed fraction of the local still water
depth H(x).

Actually, (5.79) describes the secular spin-up of the longshore current, but not its
steady state. The forcing term is O(a2) but after a long time t = O(a−2) the cur-
rent would have grown to O(1). This is a strong wave–vortex interaction, with the
current playing the role of the vortices. A forced-dissipative steady state is possible
if friction terms are added in (5.79). The friction can be due to both bottom friction
and/or horizontal eddy diffusion by turbulent motion, but the simplest model uses
bottom friction only. The usual assumption is that a turbulent boundary layer exists
near the ground such that the net drag on the water column is proportional to the
quadratic force −u|u|, which means that a body force FB = −c f u|u|/h must be
added to the shallow-water equations. A typical value of the friction parameter is
c f = 0.01.

The phase average of FB is complicated even for a plane wave on a uniform
current because of the absolute value sign. It was argued in [32] that the dominant
term in FB comes from a product of wave and mean flow contributions. This means
that in order to balance the O(a2) forcing term in (5.79) the mean flow had to be
O(a), which yields a non-trivial scaling for the steady longshore current, i.e. the
amplitude of the steady longshore current is proportional to the amplitude of the
incoming wave.

5.4.3 Barred Beaches and Current Dislocation

The theory of Longuet–Higgins together with various extensions and refinements
has been very successful in predicting the current structure, at least on beaches with
simple topography profiles such that H(x) decreases monotonically with decreasing
distance to the shoreline. However, there has been evidence (e.g. [18]) that this the-
ory is making less correct predictions on barred beaches, where there is an off-shore
minimum of H(x) on a topography bar crest plus a depth maximum closer to the
shoreline at the bar trough (see Fig. 5.5b). Frequently, though not always, observa-
tions on such beaches show a current maximum at the location of the bar trough, i.e.
at a location which is not identical with the location of strongest wave breaking. This
current dislocation cannot be explained by the original theory of Longuet–Higgins.

In coastal oceanography, the presently favored explanation is the invocation of
so-called wave rollers, which are meant to represent a certain body of rolling water
during wave breaking that is capable of “storing” momentum for a while. The stored
momentum is then released at some later time after breaking, which can be chosen
so as to produce the observed current dislocation effect. As is to be expected, apply-
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ing this ad hoc wave roller procedure requires a substantial amount of parameter
fitting in order to produce the observed currents. Moreover, the procedure does not
explain why wave rollers should be important only on barred beaches, i.e. it does
not explain why the original theory, without rollers, is successful on other beaches.

Regardless of the merit and ultimate fate of wave roller models, it is also inter-
esting to look for other mechanisms that could explain the current dislocation. One
suggestion is wave-driven vortices. This goes back to comments by Peregrine, who
some time ago advocated theoretically and with careful photography that more
attention should be paid to vortices in nearshore dynamics [37, 38].

Vortices appear the moment one drops the crucial assumption that the wave-
train is y-independent [14, 9, 28]. Such alongshore inhomogeneity could be either
through y-dependent topography or due to a y-dependent wavetrain envelope. The
latter case is easier to study and was explored in [14]. Basically, the breaking of
obliquely incident waves now produces a vortex couple that is oriented at a small
angle to the cross-shore direction (see right panel in Fig. 5.4). The small angle of the
vortex couple goes together with a small alongshore component of its impulse. This
is the familiar picture discussed previously, and it constitutes a strong wave–vortex
interaction just as before.

With the same model for quadratic bottom friction as before, the vortices now
grow in amplitude until one of two things happens: either friction terminates their
further growth or the mutual interaction between the vortices begins to move them
nonlinearly. If the first alternative prevails then the flow is simply steady, and the
alongshore-averaged current structure does not differ much from the predictions
of Longuet–Higgins. However, if the second alternative prevails then the vortices
move away from the forcing site and they take the current maximum with them
(see Fig. 5.5). For a given wavetrain shape it is the size of the coefficient for bottom
friction that decides which of the two alternatives is realized. It appears that for the
typical c f = 0.01 vortex mobility is possible, so realistic wave-driven vortices on
beaches should be capable of moving around. As they move, they conserve their
alongshore impulse.

Most interestingly, there are good fluid-dynamical reasons why mobile vortex
couples should then “prefer” the deep water of the bar trough [14], which provides
a ready explanation for current dislocation on a barred beach. In essence, a vortex
couple that moves into deeper water is pushed together by the convergent horizon-
tal motion of the water column. This reduction in distance intensifies their mutual
interaction and makes them move faster and further. Conversely, a vortex couple
that moves into shallower water gets more separated and slows down, which allows
friction effects to take over. This also explains why on a plane beach with monotone
H(x) the vortices will not move far up the beach and therefore why there is little
current dislocation on such a beach. This two-sided explanation is perhaps the most
attractive feature of a vortex-based theory of longshore currents: vortices like deep
water.

Finally, one could imagine that wave-driven vortices on a beach should also be
capable of performing the dynamical manoeuvres commonly associated with two-
dimensional turbulence. This would lead to an interesting statistical problem about
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Fig. 5.5 Left: PV structure at a late time for inhomogeneous wavetrain incident on barred beach.
The topography is indicated on the right. The vortex couple has moved to the bar trough, away from
the main wave breaking region over the bar crest at approximately 100m off-shore. Right: topog-
raphy and longshore current velocity profile obtained by averaging over the alongshore direction.
The current maximum has been dislocated into the trough

the mechanics of the vortices in a highly non-uniform shallow-water domain. How-
ever, it turns out that c f = 0.01 is too high to allow two-dimensional turbulence
[5]. This follows from the investigations of two-dimensional turbulence forced at
small scales and dissipated at large scales by [21]. They show that quadratic fric-
tion introduces a stopping scale in wavenumber space, i.e. it produces a barrier in
wavenumber magnitude below which there can be no turbulence.

For the typical beach parameters this stopping scale more or less coincides with
the wavenumber threshold below which shallow-water theory becomes accurate.
In other words, vortex motions on realistic beaches that are accurately described
by shallow-water models are non-turbulent. This agrees with numerical evidence,
which shows non-trivial but laminar trajectories for beached vortices unless c f is
lowered substantially below 1%.

5.5 Wave Refraction by Vortices

We now turn to the exchange mechanism between mean flow impulse and pseu-
domomentum described by the refraction term −(∇U) · p in (5.46). There is no
essential need for either dissipation or topography effects here, so we can set F = 0
and H = 1 for simplicity. We begin by looking in a little bit more detail at the wave
refraction process and its partial analogy with passive tracer transport, then we look
at refraction due to a single vortex in shallow water and the concomitant feedback on
the vortex [16]. This is followed by a new system, the three-dimensional Boussinesq
equations, where a different strong interaction effect is possible [27, 4, 17]. We finish
by looking at the peculiar interactions between a vortex couple and a wavepacket.
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5.5.1 Anatomy of Wave Refraction by the Mean Flow

Wave refraction by vortical mean flows can be easily observed in a bath tub: surface
waves propagating towards a bath-tub vortex over the open plug-hole are refracted,
and their tilting wave crests give a vivid, if often misleading, impression of the
spinning flow around the vortex. The impression is often misleading because the
wave crest pattern spins mostly clockwise if the vortex spins anti-clockwise and
vice versa (see Sect. 5.5.2).

In ray tracing the refraction of the wave phase θ is described by the ray tracing
equation for the wavenumber vector k = ∇θ , i.e.

dk
dt

= −(∇U) · k. (5.80)

The refraction of k is then inherited by p = k Ē/ω̂. An intuitive understanding
of (5.80) can be obtained by comparing it with the more familiar evolution of the
gradient ∇φ of a passive tracer φ. We use the short-hand Dt = ∂t + U · ∇ for the
material derivative based on the basic flow U and we assume that φ is passively
advected by U . This leads to

Dtφ = 0 ⇒ Dt (∇φ) = −(∇U) · ∇φ. (5.81)

Comparing (5.80) and (5.81) we find the same operator on the right-hand side. This
shows that the basic flow refracts the phase θ as if the phase was a passive tracer
relative to the basic flow U . For instance, this analogy implies that the antisymmetric
part of ∇U seeks to rotate k without changing its length around an axis parallel to
∇ × U . On the other hand, the symmetric part of ∇U seeks to strain the θ -surfaces,
which changes both the orientation and the length of k.

This standard straining behaviour is illustrated in Fig. 5.6, which illustrates the
three types of straining depending on the sign of

D = U 2
x +

(
Vx + Uy

2

)2

−
(

Vx − Uy

2

)2

. (5.82)

This uses Ux +Vy = 0. Perhaps the most interesting message from Fig. 5.6 is that in
the case of D > 0 the gradient of the tracer is asymptotically oriented in a direction
completely determined by ∇U , i.e. the tracer gradient forgets its initial state. If the
same is true for k and by implication for p, then a wavepacket forgets its initial
pseudomomentum if it is refracted by a similar flow.

Of course, the analogy between θ and φ is only a partial analogy for two rea-
sons. First, the phase pattern also moves relative to the flow by the intrinsic wave
propagation, so it is clearly not a passive tracer. Second, the two equations agree
on the right-hand side but not on the left-hand side because (5.81) involves the
O(1) material derivative Dt whereas (5.80) involves the derivative along group
velocity rays. These two operators differ by the advection with the intrinsic group
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Hyperbolic    D>0 Parabolic    D=0 Elliptic    D<0

Fig. 5.6 Straining pictures depending on the sign of D in (5.82). The streamlines are drawn in a
frame moving with the local velocity and also shown is a patch of an advected tracer φ together
with its gradient ∇φ indicated by an arrow. Left: D > 0, hyperbolic case, open streamlines. The
tracer contours align with the axis of extension, the tracer gradient turns normal to this axis and
grows exponentially in time. Middle: D = 0, parabolic case with shear flow. Tracer contours align
with shear direction and ∇φ grows linearly in time. Right: D < 0, elliptic, vorticity-dominated
flow with closed streamlines. Tracer contours rotate in time and ∇φ oscillates in direction and
magnitude

velocity, i.e.

d

dt
− Dt = ĉg · ∇. (5.83)

Nevertheless, the analogy is quite useful for understanding refraction by the basic
flow and it is also quantitatively relevant if the intrinsic wave propagation is weak.

5.5.2 Refraction by Weak Irrotational Basic Flow

Significant analytical progress with little effort can be made if the basic flow is irro-
tational, which covers the important case of flows outside of vortex cores. Simplest
of all is the case of a steady weak irrotational flow, in which the Froude or Mach
number |U |/c = O(ε) where c = √

gH and ε � 1. In this case layer depth
variations in the basic state are O(ε2) by the usual scaling based on the Bernoulli
function, and these small variations can be ignored. Furthermore, to O(ε) we can
make use of the classical result that non-dispersive wave rays through an irrotational
background flow are straight lines to O(ε), i.e. to first order in Froude (or Mach)
number (e.g. [31], p. 261; the result readily generalizes to dispersive waves with
large intrinsic group velocities relative to the background flow, see, e.g., [20]). This
remarkable result (which can be derived from Fermat’s principle of least time) says
that whilst k and hence the intrinsic group velocity are changed by refraction due
to U , the absolute group velocity cg = U + ck/κ remains pointing in the same
direction.

This allows solving the ray tracing equations for (x, k) analytically to O(ε). The
result is [16]
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x = x0 +
(

U0 + c
k0

κ0

)
s + O(ε2) and k = k0 − κ0

c
(U − U0)+ O(ε2) (5.84)

where U is evaluated along the ray, the subscript zero refers to the initial conditions
at the start of the ray, and s ≥ 0 is the distance along the straight ray. It is easy to
check that k satisfies (5.80) to O(ε) because Ui, j = U j,i .

We can apply (5.84) to the case of a single circular vortex with counterclockwise
circulation  > 0 and radius b centred at the origin of the coordinate system. The
basic flow outside the vortex is then13

U = (U, V ) = 
(−y,+x)

x2 + y2
, (5.85)

and we consider the fate of a wavepacket that starts from far away (such that U0
can be ignored) and then propagates past the vortex. For simplicity we assume that
the packet does not enter the vortex core where ∇ × U 	= 0. Let us denote by α the
angle that the straight propagation direction of the packet makes with the location of
the vortex core. For definiteness, let α > 0, so the vortex lies on the port side of the
packet. Initially, when α is very small, the refraction is turning k counterclockwise,
which makes the wavepacket crests glance towards the vortex. As α reaches 45
degrees, this glancing reaches its maximum. Thereafter the crests are now turned
clockwise until α reaches 135◦. Thereafter the crests are straightened out again and
the vortex is left behind.

In the bathtub example the most visible wave refraction part is the counter-
rotating crest tilt as the waves are near the vortex and α ∈ [45, 135] degrees.
This counter-rotation of the wave crests gives the misleading impression of the
vortex rotation sense. Of course, there are also other effects at higher order in ε.
For example, it is shown in [16] that at O(ε2) there is an irreversible scattering of
the wavepacket towards the lee of the vortex.

5.5.3 Bretherton Flow and Remote Recoil

We now turn to the wave–vortex interactions that go together with refraction by a
single vortex. Here we follow [16] and truncate the wavepacket trajectory by putting
irrotational wave sources and sinks a finite distance L apart. Moreover, we consider
a steady wavetrain generated by the source “loudspeaker” and absorbed by the sink
“anti-loudspeaker”. The finite wavetrain allows us to see the effect of pseudomo-
mentum changes at O(ε). This set-up is described in the somewhat busy Fig. 5.7.

The figure shows the loudspeakers and the vortex at a distance D from the steady
wavetrain. The circumferential basic velocity with magnitude Ũ is indicated by
the dashed line. The loudspeakers are slightly angled because of the mean flow

13 The azimuthal symmetry of this flow induces a further ray invariance, namely lx −ky. However,
this “angular momentum” invariant is not needed here.
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Fig. 5.7 A steady wavetrain travels left to right from the wavemaker A to the wave absorber B.
The vortex refracts the wavetrain and there is a net recoil force RA + RB in the y-direction on
the loudspeakers. Concomitant is an effective remote recoil force RV felt by the vortex such that
RA + RB + RV = 0. The recoil is mediated by a leftward material displacement of the vortex at
O(a2) due to the Bretherton return flow

refraction and the wave crests are counter-rotating relative to the vortex. One can see
by inspection that the y-component of the intrinsic group velocity at the wavemaker
A on the left cancels the y-component of the basic velocity there and vice versa at
the wave absorber B on the right.

Now, at the irrotational loudspeakers we have

F
L = F and RA,B = −

∫

A,B
F

L
dxdy (5.86)

are the respective recoil forces exerted on the wavemaker and wave absorber (we
use H = 1 for simplicity). There is an equal-and-opposite push in the x-direction
and a net recoil in the negative y-direction due to the refraction, i.e.

RA + RB + RV = 0 where RV = (0, RV ) with RV > 0, (5.87)

say. The net recoil −RV equals the net pseudomomentum generation per unit time
due to the refraction.

How does the mean flow impulse change? The impulse plus pseudomomentum
conservation law (5.56) for a steady wavetrain yields

d(I + P)
dt

= dI
dt

=
∫

F
L

dxdy = −(RA + RB) = RV . (5.88)

This shows that the mean flow impulse should change in order to compensate for the
net recoil in the y-direction exerted on the loudspeakers. The total impulse due to a
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single vortex with nonzero net circulation depends on the origin of the coordinate
system, but changes in the impulse due to movement of the vortex are coordinate-
independent. In particular, the mean flow impulse is

I =
∫
(y,−x)q L dxdy = (Y,−X) (5.89)

if (X,Y ) are the coordinates of the vortex centroid. Therefore (5.88) implies

dY

dt
= 0 and

d X

dt
= − RV


. (5.90)

This is a surprising result because it means that the vortex must move to the left
in Fig. 5.7. Where does the velocity field come from that achieves this material
displacement?

The answer comes from the wave–mean response at O(a2) to the presence of the
finite wavetrain. In fact, to compute this response at leading order it is not necessary
to include the vortex. Without the vortex there is no tilt in the loudspeakers and
the wave crests do not rotate. The Lagrangian mean flow in the presence of the
irrotational steady wavetrain is then determined from

∇ · uL = 0 and q L = 0 ⇒ ∇ × uL = ∇ × p. (5.91)

These equations express that uL is the least-squares projection of p onto the space
of non-divergent vector fields. The pseudomomentum curl is positive above the
wavetrain and negative below, so uL is the incompressible flow described by a
vortex couple with precisely this curl. Away from the wavetrain uL = u and the
flow resembles the standard dipole flow familiar from elementary fluid mechanics.
The streamlines of this dipole flow are indicated by the solid lines in Fig. 5.7; we
suggested the name “Bretherton flow” for this characteristic mean flow response to
a wavepacket, because its description goes back to [8].

Crucially, the Bretherton flow points backward, i.e. in the negative x-direction, at
the vortex location above the wavetrain. Therefore the Bretherton flow does indeed
push the vortex to the left and it has been checked in [16] that it does so with pre-
cisely the right magnitude to be consistent with (5.90).

We called this action-at-a-distance of the wavetrain on the vortex “remote recoil”
in order to stress the non-local nature of this wave–vortex interaction. After all, the
waves and the vortex do not overlap in physical space. The term “recoil” is also apt
because the movement of the vortex is consistent with the action of a compact body
force on the vortex with net integral equal to RV . Such a force would be relevant
in a parametrization problem in which the small-scale wavetrain is not explicitly
resolved but modelled. This force will produce positive vorticity to the left of the
vortex and negative vorticity to its right, which would lead to a movement of the
vortex centroid to the left as required. In this case the vorticity moves although the
fluid particles do not.
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Finally, it can be shown that the remote recoil idea remains valid at O(ε2) if the
loudspeakers recede to infinity and the pseudomomentum generation is due to the
weak O(ε2) net scattering of the waves into the lee of the vortex.

So whilst the set-up in Fig. 5.7 is certainly very special it is not artificial; the
recoil is real.

5.5.4 Wave Capture of Internal Gravity Waves

The analogy between tracer advection and wave refraction described in Sect. 5.5.1
suggests a further interesting possibility for wave–vortex interactions: the unbounded
exponential growth in time of k and therefore the unbounded growth of P which is
implied by the conservation of wave action and the definition of pseudomomentum
for a wavetrain. Such exponential growth is the likely outcome in the long run in
the passive tracer case, although a proper description of this process also requires
statistical tools. A convenient reference point in the literature aimed at related atmo-
spheric applications is [23].

However, unbounded growth of k is not possible in the shallow-water wave sys-
tem, at least not in the case of steady and sub-critical U(x). This is because then the
ray invariance of ω implies a bound on κ:

ω = ω0 = U · k + cκ ⇒ κ ≤ ω0/c

1 − ||U/c||∞ . (5.92)

This is finite if the maximal Froude/Mach number ||U/c||∞ is less than unity so for
sub-critical flows there can be no unbounded wavenumber growth. However, this is
not the case for other types of waves.

A good example of geophysical interest are internal gravity waves in the three-
dimensional Boussinesq system, which is described by

∇ · u = 0,
Db

Dt
+ N 2w = 0, and

Du
Dt

+ ∇P = b̂z. (5.93)

Here u = (u, v, w) is the velocity, b is the buoyancy, N is the buoyancy frequency,
P is the pressure divided by the constant reference density, and ẑ is the unit vector
in the vertical. All fields depend on x = (x, y, z) and t . The buoyancy equation can
also be written as

D�

Dt
= 0 with � = b + N 2z, (5.94)

which shows that� is a material invariant marking the stratification surfaces. Phys-
ically,� corresponds to either potential temperature or density in the atmosphere or

ocean. Note that (5.94) implies the exact D
L
�

L = 0.
Linear internal waves are dispersive transversal waves (due to ∇ · u = 0) with

dispersion relation
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ω = U · k ± N

√
k2 + l2

k2 + l2 + m2
, (5.95)

where k = (k, l,m). The intrinsic part of this dispersion relation is zeroth-
order homogeneous in the wavenumber components, so multiplication of k by any
nonzero constant does not change ω̂. Consequently, there is no a priori bound on
wavenumber growth in this case. There is no leading-order Stokes drift for slowly
varying wavetrains in this system but the pseudomomentum is still given by the
generic formula

p = k
ω̂

Ē where Ē = 1

2

(
u′2 + v′2 + w′2 + b′2

N 2

)
= |u′|2 = b′2

N 2
. (5.96)

Now, U could have three nonzero components but for atmosphere–ocean appli-
cations a useful restriction is to consider U = (U, V, 0) with Ux + Vy = 0, which
models the quasi-horizontal layerwise flow familiar from quasi-geostrophic dynam-
ics (e.g. [23]). (We omitted Coriolis forces in (5.93), but they are easily added there
and in the remainder of the theory; cf. [17].)

This restriction implies that the refraction problems for the horizontal wavenum-
bers kH = (k, l, 0) and for the vertical wavenumber m decouple, i.e. we find that

dkH

dt
= −(∇H U) · kH and

dm

dt
= −kUz − lVz, (5.97)

where ∇H = (∂x , ∂y, 0). The horizontal part evolves completely analogous to the
two-dimensional considerations in Sect. 5.5.1. If circumstances conspire (i.e. if the
basic flow is varying slowly enough along a group velocity ray) then kH will be
turned onto a growing eigenvector of (5.97) and exponential growth in kH and m
will follow. This leads to an interesting phenomenon ([4, 17]) which is due to the
fact that the magnitude of the intrinsic group velocity of internal gravity waves at
fixed intrinsic frequency is proportional to the wavelength of the wave. This follows
immediately from the zeroth-order homogeneity of ω̂ as a function of k, because

ĉg = ∂ω̂

∂k
, (5.98)

and therefore ĉg is homogeneous in k of order minus one. Explicitly, we have

|̂cg| = 1

κ

√
N 2 − ω̂2

ω̂2
. (5.99)

This suggests that exponential growth of k goes together with ω̂ approaching a con-
stant and |̂cg| → 0 exponentially. In other words, the wavepacket gets “glued” into
the basic flow [4], because its group velocity converges to the basic flow veloc-
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ity. By definition, this strengthens the analogy between passive advection and wave
refraction, which then leads to more stretching of k and to even more reduced |̂cg|,
reinforcing the cycle.14

This process and the attendant wave–vortex interactions were studied under the
name “wave capture” in [17]. The key question is: How does the mean flow react
to the exponentially growing amount of pseudomomentum P that is contained
in a wavepacket? The answer to this question follows reasonably easily once we
have written down the impulse plus pseudomomentum conservation law for three-
dimensional stratified flow.

5.5.5 Impulse Plus Pseudomomentum for Stratified Flow

This is discussed in detail in [17], so we only summarize the result. Basically, it
is possible to write down a useful impulse for the horizontal mean flow in the
Boussinesq system provided the mean stratification surfaces remain almost flat in
the chosen coordinate system. Specifically, we assume that

∇H · uL
H = 0 and wL = 0, (5.100)

and also that the mean stratification surfaces�
L = constant are horizontal planes to

sufficient approximation. There is an exact GLM PV law

ρ̃q L = ∇�L · ∇ × (uL − p) ⇒ D
L

q L = 0 (5.101)

if D
L
ρ̃ + ρ̃∇ · uL = 0, but with the above assumption we have the simpler

q L = ẑ · ∇ × (uL − p) ≡ ∇H × (uL
H − pH ). (5.102)

We can now define the total horizontal mean flow impulse and pseudomomentum by

I H =
∫
(y,−x, 0)q L dxdydz and P H =

∫
pH dxdydz (5.103)

and we then find the conservation law

d(I H + P H )

dt
=
∫

F
L
H dxdydz. (5.104)

14 The slowdown of the wavepacket is reminiscent of the well-known shear-induced critical layers,
which inhibit vertical propagation past a certain critical line. Still, the details are quite different, e.g.
here the wavenumber grows exponentially in time whereas in the classical critical layer scenario it
grows linearly in time.
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Fig. 5.8 A wavepacket indicated by the wave crests and arrow for the net pseudomomentum is
squeezed by the straining flow due to a vortex couple on the right. The vortex couple travels a little
faster than the wavepacket, so the wavepacket slides toward the stagnation point in front of the
couple, its x-extent decreases, its y-extent increases, and so does its total pseudomomentum. The
pseudomomentum increase is compensated by a decrease in the vortex couple impulse caused by
the Bretherton flow of the wavepacket, which is indicated by the dashed lines

As before, both I H and P H vary individually due to refraction and momentum-
conserving dissipation, but their sum remains constant unless the flow is forced
externally.

This makes obvious that during wave capture any exponential growth of P H

must be compensated by an exponential decay of I H . Because the value of q L on
mean trajectories cannot change, this must be achieved via material displacements
of the PV structure, just as in the remote recoil situation in shallow water.

As an example we consider the refraction of a wavepacket by a vortex couple
as in Fig. 5.8, which shows a horizontal cross-section of the flow [17]. The area-
preserving straining flow due to the vortex dipole increases the pseudomomentum
of the wavepacket, because it compresses the wavepacket in the x-direction whilst
stretching it in the y-direction. At the same time, the Bretherton flow induced by
the finite wavepacket pushes the vortex dipole closer together, which reduces the
impulse of the couple and this is how (5.104) is satisfied.

5.5.6 Local Mean Flow Amplitude at the Wavepacket

The previous considerations made clear that the exponential surge in packet-integr-
ated pseudomomentum is compensated by the loss of impulse of the vortex cou-
ple far away. Still, there is a lingering concern about the local structure of uL at
the wavepacket. For instance, the exact GLM relation (5.16) for periodic zonally
symmetric flows suggests that uL at the core of the wavepacket might make a large
amplitude excursion because it might follow the local pseudomomentum p1, which
is growing exponentially in time. This is an important consideration, because a large
uL might induce wave breaking or other effects.
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We can study this problem easily in a simple two-dimensional set-up, brushing
aside concerns that our two-dimensional theory may be misleading for the three-
dimensional stratified case. In particular, we look at a wavepacket centred at the
origin of an (x, y) coordinate system such that at t = 0 the pseudomomentum is
p = (1, 0) f (x, y) for some envelope function f that is proportional to the wave
action density. This is the same wavepacket set-up as in Sect. 5.3.3. At all times the
local Lagrangian mean flow at O(a2) induced by the wavepacket is the Bretherton
flow, which by q L = 0 is the solution of

uL
x + vL

y = 0 and vL
x − uL

y = ∇ × p = − fy(x, y). (5.105)

We imagine that the wavepacket is exposed to a pure straining basic flow U =
(−x,+y), which squeezes the wavepacket in x and stretches it in y. We ignore
intrinsic wave propagation relative to U , which implies that the wave action density
f is advected by U , i.e. Dt f = 0. We then obtain the refracted pseudomomentum as

p = (α, 0) f (αx, y/α) and ∇ × p = − fy(αx, y/α). (5.106)

Here α = exp(t) ≥ 1 is the scale factor at time t ≥ 0 and (5.106) shows that p1
grows exponentially whilst ∇×p does not; in fact ∇×p is materially advected by U ,
just as the wave action density f and unlike the pseudomomentum density p. This is
a consequence of the stretching in the transverse y-direction, which diminishes the
curl because it makes the x-pseudomomentum vary more slowly in y. Thus whilst
there is an exponential surge in p1 there is none in ∇ × p.

In an unbounded domain we can go one step further and explicitly compute uL

at the core of the wavepacket, say. We use Fourier transforms defined by

FT{ f }(k, l) =
∫

e−i[kx+ly] f (x, y) dxdy (5.107)

and

f (x, y) = 1

4π2

∫
e+i[kx+ly]FT{ f }(k, l) dkdl. (5.108)

The transforms of uL and of p1 are related by

FT{uL}(k, l) = l2

k2 + l2
FT{p1}(k, l). (5.109)

This follows from p = (p1, 0) and the intermediate introduction of a stream func-
tion ψ such that (uL , vL) = (−ψy,+ψx ) and therefore ∇2ψ = −p1y . The scale-
insensitive pre-factor varies between zero and one and quantifies the projection onto
non-divergent vector fields in the present case. This relation by itself does not rule
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out exponential growth of uL in some proportion to the exponential growth of p1.
We need to look at the spectral support of p1 as the refraction proceeds.

We denote the initial p1 for α = 1 by p1
1 and then the pseudomomentum for other

values of α is pα1 (x, y) = αp1
1(αx, y/α). The transform is found to be

FT{pα1 }(k, l) = αFT{p1
1}(k/α, αl). (5.110)

This shows that with increasing α the spectral support shifts towards higher values
of k and lower values of l. The value of uL at the wavepacket core x = y = 0
is the total integral of (5.109) over the spectral plane, which using (5.110) can be
written as

uL(0, 0) = 1

4π2

∫
l2

k2 + l2
FT{pα1 }(k, l) dkdl

= α

4π2

∫
l2

α4k2 + l2
FT{p1

1}(k, l) dkdl (5.111)

after renaming the dummy integration variables. This is as far as we can go without
making further assumptions about the shape of the initial wavepacket.

For instance, if the wavepacket is circularly symmetric initially, then p1
1 depends

only on the radius r = √
x2 + y2 and FT{p1

1} depends only on the spectral radius
κ = √

k2 + l2. In this case (5.111) can be explicitly evaluated by integrating over
the angle in spectral space and yields the simple formula

uL(0, 0) = α

α2 + 1
p1

1(0, 0) = 1

α2 + 1
pα1 (0, 0). (5.112)

The pre-factor in the first expression has maximum value 1/2 at α = 1, which
implies that the maximal Lagrangian mean velocity at the wavepacket core is the
initial velocity, when the wavepacket is circular. At this initial time uL = 0.5p1 at
the core and thereafter uL decays; there is no growth at all.

So this proves that there is no surge of local mean velocity even though there is a
surge of local pseudomomentum. This simple example serves as a useful illustration
of how misleading zonally symmetric wave–mean interaction theory can be when
we try to understand more general wave–vortex interactions.

Finally, how about a wavepacket that is not circularly symmetric at t = 0?
The worst case scenario is an initial wavepacket that is long in x and narrow
in y; this corresponds to values of α near zero and the second expression in
(5.112) then shows that the mean velocity at the core is almost equal to the
pseudomomentum. This scenario recovers the predictions of zonally symmetric
theory.

The subsequent squeezing in x now amplifies the pseudomomentum and this
leads to a transient growth of uL in proportion, at least whilst the wavepacket
still has approximately the initial aspect ratio. However, eventually the aspect ratio
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reverses and the wavepacket becomes short in x and wide in y; this corresponds to α
much larger than unity. Eventually α becomes large and uL decays as 1/α=exp(−t).

5.5.7 Wave–Vortex Duality and Dissipation

We take another look at the similarity between a wavepacket and a vortex couple in
an essentially two-dimensional situation (see Fig. 5.9). The Bretherton flow belong-
ing to the wavepacket is described by (5.105). In the three-dimensional Boussi-
nesq system the Bretherton flow is observed on any stratification surface currently
intersected by a compact wavepacket [8]. The physical reason for this different
behaviour is the infinite adjustment speed related to pressure forces in the incom-
pressible Boussinesq system; such infinitely fast action-at-a-distance is not avail-
able in the shallow water system. We will look at the three-dimensional stratified
case.

Now, the upshot of this is that a propagating wavepacket gives rise to a mean
flow that instantaneously looks identical to that of a vortex couple with vertical
vorticity equal to ∇H × pH . Of course, this peculiar vortex couple attached to the
wavepacket moves with the group velocity, not with the nonlinear material velocity.
Importantly, refraction can change the wavepacket’s pseudomomentum curl in a
manner that is again identical to that of a vortex couple, a situation that is particularly
clear during wave capture. For instance, in Fig. 5.8 the straining of the captured
wavepacket leads to the material advection of pseudomomentum curl, just as in a
vortex couple. If the wavepacket were to be replaced by that vortex couple, then we
would recognize that Fig. 5.8 displays the early stage of the classical vortex-ring
leap-frogging dynamics, with two-dimensional vortex couples replacing the three-
dimensional vortex rings of the classical example. This suggests a “wave–vortex

(a): Wavepacket (b): Vortex dipole

Fig. 5.9 Wave–vortex duality. Left: wavepacket together with streamlines indicating the Bretherton
flow; the arrow indicates the net pseudomomentum. Right: a vortex couple with the same return
flow; the shaded areas indicate nonzero PV values with opposite signs
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duality”, because the wavepacket acts and interacts with the remaining flow as if it
were a vortex couple.

Moreover, if we allow the wavepacket to dissipate, then the wavepacket on the
left in Fig. 5.9 would simply turn into the dual vortex couple on the right in terms of
the structural changes in q L that occur during dissipation. However, there would
be no mean flow acceleration during the dissipation, for the same reasons that
were discussed in Sect. 5.3.4. This leads to an intriguing consideration: if a three-
dimensional wavepacket has been captured by the mean flow (i.e. its intrinsic group
velocity has become negligible), then whether or not the wavepacket dissipates has
no effect on the mean flow [17].

These considerations lead to a view of wave capture as a peculiar form of dis-
sipation: the loss of intrinsic group velocity is equivalent, as far as wave–vortex
interactions are concerned, to the loss of the wavepacket altogether.

5.6 Concluding Comments

All the theoretical arguments and examples presented in this chapter served to illus-
trate the interplay between wave dynamics and PV dynamics during strong wave–
vortex interactions. Only highly idealized flow situations were considered in order
to stress the fundamental aspects of the fluid dynamics whilst reducing clutter in the
equations. For instance, Coriolis forces were neglected throughout, but they can be
incorporated both in GLM theory and in the other theoretical developments; this has
been done in the quoted references.

The main difference between the results presented here and those available in the
textbooks on geophysical fluid dynamics [e.g. 39, 42] is that we have not used the
twin assumptions of zonal periodicity and zonal mean flow symmetry, which are the
starting points of most accounts of wave–mean interaction theory in the literature.
As is well known, these assumptions work well for zonal-mean atmospheric flows,
but they do not work for most oceanic flows (away from the Antarctic circumpolar
current, say), which are typically hemmed-in by the continents and therefore are not
periodic. To understand local wave–mean interactions in such geometries requires
different tools.

In practice, even when zonal mean theory is applicable it might not use the best
definition of a mean flow. For instance, in general circulation models (GCMs) it
is natural to think of the resolved large-scale flow as the mean flow and of the
unresolved sub-grid-scale motions as the disturbances. This suggests local averag-
ing over grid boxes rather than global averaging over latitude circles. This has an
impact on the parametrization of unresolved wave motions in such GCMs, which
are typically applied to each grid column in isolation even though their theoretical
underpinning is typically based on zonally symmetric mean flows. For example, in
[22] the global angular momentum transport due to atmospheric gravity waves in
a model that allows for three-dimensional refraction effects is compared against a
traditional parametrization based on zonally symmetric mean flows.
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From a fundamental viewpoint, all wave–mean interaction theories seek to
simplify the mean pressure forces in the equations. The reason is that the pressure
is difficult to control both physically and mathematically, because it reacts rapidly
and at large distances to changes and excitations of the flow, both wavelike and
vortical. In zonal-mean theory for periodic flows the net zonal pressure force drops
out of the zonal momentum equations, but this does not work in the local version of
the problem. On the other hand, Kelvin’s circulation theorem and potential vorticity
dynamics are independent of pressure forces from the outset. Thus, quite naturally,
whilst zonal-mean theory is based on zonal momentum, the local wave–mean inter-
action theory presented here is based on potential vorticity.

Perhaps the single most important message from this chapter is the role played
by the pseudomomentum vector in the mean circulation theorem (5.15). All sub-
sequent results flow from this theorem, which shows why pseudomomentum is so
important in wave–mean interaction theory. This contrasts with the primary stress
that is often placed on the integral conservation of pseudomomentum in the presence
of translational mean flow symmetries.

We now know that pseudomomentum plays a crucial role in wave–mean interac-
tion theory whether or not specific components of it are conserved.
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Retroflection current, 68
Retroflection mechanism, 65, 68
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Reynolds number, 76
Rings

Agulhas, 64, 65
characteristics, 68
Gulf Stream, 62, 64
Kuroshio, 62, 68, 71
large rings, 62
from meandering jets, 62
merging, 71
modeling, 84
propagation, 71
warm/cold-core, 62

Rip currents, 165
Rodon, 84
Rossby–Ertel PV, 159
Rossby number, 3, 36, 76
Rotating fluid

properties, 1, 3, 4
on a rotating sphere, 4

Rotating shallow water model, 78, 84, 86, 88,
95, 110

adjusted state, 114
axisymmetric case, 118
general features, 110
Lagrangian approach, 112
slow manifold, 113
trapped waves” in 1.5 RSW, 117
two-layer, 121

S
Schrödinger equations, 125
Shallow water model, see rotating shallow

water model
Shock formation, 159
Slow balanced motions, 129
Slow manifold, 113
Stokes drift, 141
Strained vortex, 43
Stratified fluids

properties, 20
vortex generation in, 20

Stratified turbulence, 48
Surface inertia gravity waves, 111
Swoddy, 70
Symmetric instability, 124, 133
Synoptic eddies, 62

T
Taylor column, 4, 97
Taylor-Proudman theorem, 4, 41
Teddies, Throughflow Eddies, 69, 98
Thermal wind balance, 4, 28, 77, 81, 86, 109,

131
Topographic effects on currents, 70

Topographic β-plane, 19
Trapped state, 114
Trapped wave, 117

U
Unstable manifold, 46

V
Vortex instability

anticyclone versus cyclone, 15, 39,
81, 87

centrifugal, 14,
40, 41, 54

dipolar vortex in stratified fluid, 50
elliptical, 44, 46, 55
in geophysical flows, 36
helical modes, 41, 42
hyperbolic, 46, 55
monopolar vortex in rotating fluid, 14
pressureless, 56
shear, 14, 37, 40
shortwave, 38
small strain, 56
zigzag, 47, 50, 52

Vortex interaction
alignment, 71
dipole, 32, 71
with jets, 71, 101
merging, 71
with other currents, 71
between pancake vortices, 31, 33
with seamount, 67, 71, 102
with topography, 18, 19, 71

Vortices
barotropic, 9
basic balances, 6
columnar, 9, 12, 36
diffusing, 24
dipolar, 14, 18, 20, 32
Gaussian, 25
generation in rotating fluids, 9
isolated, 9
layerwise two-dimensional, 140
stability in quasi-geostrophic model, 92
stable barotropic, 15
stationarity, 83
stationarity in quasi-geostrophic model, 92
in stratified fluids, 20

decay, 24
density structure, 28
generation in the laboratory, 22

tripolar, 30
wave–driven, 169
wave refraction, 171
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Vorticity
diffusion, 24
generation, 157, 159

W
Wave

breaking, 115, 157, 165
capture, 142, 179
dissipation, 141, 159, 163, 164
drag, 141, 157
driven currents, 168
glueing, 142
refraction, 171, 172, 177

rollers, 169
shallow water, 150, 154

Wave–driven vortices, 169
Wave–vortex

dissipative and non-dissipative interactions,
141

duality, 142, 183
interactions, 141, 147
interactions and GLM theory, 143
interactions on beaches, 165

Wavepacket, 160–162, 164, 174, 179, 183, 184
Wavetrain, 174, 176, 177
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