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Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and
scholars the opportunity of assembling and commenting upon major classical works
in statistics, and honors the work of distinguished scholars in probability and statis-
tics. Each volume contains the original papers, original commentary by experts on
the subject’s papers, and relevant biographies and bibliographies.

Springer is committed to maintaining the volumes in the series with free ac-
cess of SpringerLink, as well as to the distribution of print volumes. The full text
of the volumes is available on SpringerLink with the exception of a small num-
ber of articles for which links to their original publisher is included instead. These
publishers have graciously agreed to make the articles freely available on their web-
sites. The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting
of Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sorensen, and Jon Wellner.



Preface

The purpose of this volume is to provide an overview of Terry Speed’s contribu-
tions to statistics and beyond. Each of the fifteen chapters concerns a particular area
of research and consists of a commentary by a subject-matter expert and selection
of representative papers. Note that, due to space constraints, not all articles dis-
cussed in the commentaries are reprinted in this volume. The reader is referred to
the book website for access to these papers (http://www.stat .berkeley.
edu/~sandrine/Pubs/SelectedWorksTerrySpeed/). The chapters, or-
ganized more or less chronologically in terms of Terry’s career, encompass a wide
variety of mathematical and statistical domains, along with their application to bi-
ology and medicine. Accordingly, earlier chapters tend to be more theoretical, cov-
ering some algebra and probability theory, while later chapters concern more recent
work in genetics and genomics. The chapters also span continents and generations,
as they present research done over four decades, while crisscrossing the globe.

The commentaries provide insight into Terry’s contributions to a particular area
of research, by summarizing his work and describing its historical and scientific
context, motivation, and impact. I've enjoyed reading the personal anecdotes, which
remind us that one cannot always dissociate the scholar from the person and show
how relationships beginning as professional collaborations can turn into long-lasting
friendships. In addition to shedding light on Terry’s scientific achievements, the
commentaries reveal endearing aspects of his personality, such as his intellectual
curiosity, energy, humor, and generosity. The title of Bin Yu’s piece, “the n — oo
dimensions of Terry”, says it all and captures Terry as an avid and tireless scholar
and explorer.

Due to space constraints, this volume is only the tip of the iceberg, as it is clearly
impossible to give a complete account of Terry’s work. And it is certain that addi-
tional significant contributions are forthcoming — Terry’s thirst for knowledge has
not abated, and neither has his dynamic pace. For “coming attractions”, one will
have to wait for another such volume ...

Berkeley, CA Sandrine Dudoit
June 2011
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Biographical Sketch of Terry Speed

Terence Paul (Terry) Speed was born on March 14th, 1943, in Victor Harbor,
South Australia. He grew up in Melbourne, attending Westgarth Central School
and University High School. In his final year of high school, he decided that he
wanted to pursue a career in medical research, influenced by the award that year
(1960) of the Nobel Prize in Medicine to Sir Frank Macfarlane Burnet, the Direc-
tor of Melbourne’s Walter and Eliza Hall Institute (WEHI) of Medical Research.
In 1961, Terry enrolled in a joint Medicine and Science degree at the University of
Melbourne. By the end of the first term, his lack of enthusiasm for laboratory work
prompted him to change his enrollment to Science alone, majoring in mathematics,
while maintaining a strong interest in genetics. He graduated in 1964 with an hon-
ours degree in mathematics and statistics. In his final year, he edited the magazine
Matrix of the mathematics students society and also attended lectures on algebra
at Monash University, located in an outer suburb of Melbourne. At the end of that
year, he married Freda Elizabeth (Sally) Pollard, whom he had met at a party at the
home of Carl Moppert, then a Senior Lecturer in the Department of Mathematics at
the University of Melbourne.

Although an attempt to join the PhD program in the Department of Statistics at
the University of California, Berkeley (UCB) fell through, Terry was awarded an
Australian Commonwealth Postgraduate Research Scholarship in the Department
of Statistics at the University of Melbourne. He began his graduate studies in 1965,
under the supervision of Professor Evan J. Williams. Rather than pursuing research
in the area of his supervisor (Fisherian statistics), Terry developed an interest in
probability theory, along the lines of Michel Loeve’s work at Berkeley. He did not
however complete his doctoral degree at that point. In mid-1965, he took a job as
a tutor in the Department of Mathematics at nearby Monash University and en-
rolled for a part-time PhD in mathematics under the supervision of Professor Peter
D. Finch. With hindsight, it is interesting to note that several elements that were to
feature prominently in Terry’s later life had already manifested themselves: interests
in medical and genetic research, the Walter and Eliza Hall Institute, and probabil-
ity and statistics as practiced in the Department of Statistics at the University of
California, Berkeley.

XXiii



XX1V Biographical Sketch of Terry Speed

At Monash, Finch had eclectic interests in probability theory and mathematics
and encouraged Terry to examine probability and measure theory on the class of
lattices generalizing Boolean algebras that corresponded to the intuitionistic logic
of L. E. J. Brouwer. This led to Terry’s 1969 PhD thesis entitled Some topics in
the theory of distributive lattices. In addition to working on his doctoral research,
Terry taught introductory probability and statistics to large classes for four years
running, and developed and presented undergraduate lecture courses on information
theory (introductory and advanced), measure theory, projective geometry, and lat-
tice theory. He also lectured on the theory of games to students in the Department
of Mathematics at the new La Trobe University, located in another outer suburb of
Melbourne. On top of this, he completed a Diploma of Education at Monash, rea-
soning that, if all else failed, he would be happy as a secondary school mathematics
teacher and that it would be wise to be qualified.

While waiting for the examiners’ reports on his thesis, Terry met Professor Joe
Gani, then Director of the Manchester-Sheffield School of Probability and Statistics
in the United Kingdom. Gani encouraged him to consider a lecturing position in the
School. The presence in Manchester of Professor K. R. Parthasarathy — who carried
out research on probability theory over algebraic structures such as locally compact
abelian and Lie groups — proved to be the clincher. So off to Sheffield he and Sally
went! Sheffield was an exciting place at that time, with excellent staff and lots of
visitors. Equally important was its accessibility to other centers of probability and
statistics such as Manchester and London. Initially, Terry travelled to Manchester
weekly to attend Partha’s seminar and went down to London to attend seminars at
Imperial College, meetings of the Royal Statistical Society, and the like. There was
lots of train travel. However, Terry’s career in Partha-style probability theory did
not take off and, in due course, he found himself collaborating with Elja Arjas on
the topic of random walks, an experience that was both satisfying and productive.
A later visitor to Manchester, Professor Debrabata Basu, re-kindled his interest in
Berkeley-style statistics and led to a new obsession: sufficiency.

Terry returned to Australia to head the small group of statisticians in the
Department of Mathematics at the University of Western Australia (UWA). He
started at UWA as Associate Professor in 1974, became Professor in 1975, and spent
a very happy and productive period there, culminating in being appointed Head of
Department in 1982. From late 1977 until early 1979, he had his first sabbatical,
spending time at the University of Copenhagen, Princeton University, Rothamsted
Experimental Station, and UC Berkeley, all with Sally, and on his own at the Indian
Statistical Institute in Calcutta.

In 1982, Terry was invited to apply for the position of Chief, Division of
Mathematics and Statistics, at Australia’s Commonwealth Scientific and Industrial
Research Organization (CSIRO). He took up that appointment in 1983 and had a
very hectic first year, being based in Canberra, but travelling to visit members of his
division in every state capital and several other centers around Australia.

In 1984, he spent two enjoyable months visiting the Department of Statistics at
the University of California, Berkeley, in a way, fulfilling his unrealized dream from
1964. While there, he was encouraged to apply for a permanent position, and three
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years later, in fall 1987, joined UCB as a tenured professor. On the basis of his
administrative experience with CSIRO, he was appointed Department Chair 1989—
94, after which he took a second sabbatical, encouraged by Sally to explore job
opportunities back in Australia. Nothing happened on this front for two years, but in
1996, a former classmate from University High School, Professor Suzanne Cory, by
then Director of the Walter and Eliza Hall Institute of Medical Research, invited him
to start up bioinformatics at WEHI. Sally said “yes!” and so he half accepted. From
August 1997 to July 2009, Terry split his time evenly between UCB and WEHI or,
as he used to say, spent half his time in Berkeley, half in Melbourne, and the other
half in the air in between.

Following yet more encouragement from Sally, Terry officially retired from
teaching at UC Berkeley at the end of the US academic year 2008-9 and took on
a full-time appointment at WEHI. At the time of writing, he still has four PhD
students, three postdoctoral fellows, and a number of continuing collaborations at
Berkeley. He visits there for short periods every 1-2 months and remains as active
as ever.

To quote from one of Terry’s recent e-mails: “Life has been hectic!”

Terry has (co-)authored over 300 refereed articles, in journals such as Nature
and The Annals of Statistics, and on a wide variety of subjects, ranging from dis-
tributive lattices and ring theory in algebra, to pre-processing of high-throughput
microarray and sequencing data in genomics. He contributes a regular column, 7er-
ence’s Stuff, to the Institute of Mathematical Statistics Bulletin, with his unique and
provocative opinions on the current state of statistical practice and education. His
book Stat Labs: Mathematical Statistics Through Applications provides a glimpse
into his teaching philosophy, which integrates the theory of statistics with its prac-
tice through case studies. As illustrated by his dizzying travel schedule, he is a
much sought-after speaker worldwide. He has delivered prestigious lectures such
as the 2001 Wald Memorial Lectures and 2006 Fisher Lecture, at the Joint Statisti-
cal Meetings, and the 2007 Hotelling Lectures, at the University of North Carolina,
Chapel Hill.

Terry is an active and dedicated member of the main statistical and biological
professional societies, journal editorial boards, and grant and peer review com-
mittees. He is also highly-solicited as a consultant and scientific advisory board
member in industry. He is a Fellow of the Institute of Mathematical Statistics
(1984), the American Statistical Association (1989), the American Association for
the Advancement of Science (1990), and the Australian Academy of Science (2001).
He has received various honors, including the 2002 Pitman Medal (Statistical So-
ciety of Australia), the 2003 Moyal Medal (Macquarie University), an Australian
Government Centenary Medal (2003), the 2004 American Statistical Association
Outstanding Statistical Application Award (for the paper Irizarry et al. (2003), Bio-
statistics, 4(2):249-264), as well as an Achievement Award for excellence in health
and medical research (2007) and an Australia Fellowship (2009) from Australia’s
National Health and Medical Research Council (NHMRC).
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In addition to his invaluable contributions to research, Terry is an extraordi-
nary teacher, who has trained and influenced generations of students at Berkeley,
in Australia, in the United Kingdom, and beyond. According to the Mathemat-
ics Genealogy Project (http://genealogy.math.ndsu.nodak.edu/id.
php?id=30979), he has advised or co-advised 60 PhD students and has over 120
“descendants”. He is a most inspiring and generous mentor. His contagious enthu-
siasm and intellectual curiosity have made him one of the most popular advisors in
the UC Berkeley Department of Statistics and a great resource for students in other
departments.

Berkeley, CA Sandrine Dudoit
June 2011 with contributions from Terry Speed
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Chapter 1
Algebra

Brian A. Davey

It gives me great pleasure to present this brief commentary on some of T. P. Speed’s
papers on algebra. It may come as a surprise to many of Speed’s colleagues to know
that his 1968 PhD thesis was entitled Some Topics in the Theory of Distributive
Lattices. Moreover, of his first 15 papers only one was in probability theory with the
remainder in algebra. Nevertheless, this fruitful excursion into algebra has its roots
in the foundations of probability theory. In the introduction to his PhD thesis, Speed
writes:

In July 1965, the author began to look at the lattices associated with intuitionistic logic
which are called variously — relatively pseudo-complemented, brouwerian or implicative
lattices. This was under the direction of Professor P. D. Finch and aimed towards defining
probability measures over these lattices. It was hoped that a probability theory could be
developed for the intuitionistic viewpoint similar to the Kolmogorov one for classical logic.

Speed never returned to the search for an intuitionistic probability theory for, as he
says later in the introduction to his thesis, he became “sold on distributive lattices”.
In the summer of 1968-1969, between my third and honours years, I spent three
months on a Monash University Graduate Assistantship during which I read Speed’s
PhD thesis. By the end of that summer I was also sold on distributive lattices and
have been ever since [2].

Between 1969 and 1974, Speed published 17 papers on a range of algebraic
topics: distributive lattices, including their topological representation (9), Baer
rings (3), Stone lattices (2), semigroups (2), and ¢/-groups (1). In the commentary
below, I will discuss five of these papers. Only one of these papers, the first dis-
cussed, comes from Speed’s thesis.

B.A. Davey
Department of Mathematics and Statistics, La Trobe University, Australia
e-mail: b.davey @latrobe.edu.au
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Distributive lattices in general

Most of Speed’s work on distributive lattices revolves around the role of particular
sorts of prime ideals, with an emphasis on minimal prime ideals. In this section, we
will look at two of the seven papers that fall into this category, namely, On rings of
sets [10] and On rings of sets. II. Zero-sets [16].

In the first of these papers, Speed provides a unified approach to a number of
representations of distributive lattices as rings of sets, that is, as lattices of subsets
of some set in which the operations are set-theoretic union and intersection. Each of
these characterisations was originally given in terms of the existence of enough el-
ements of a special form, and their proofs looked quite different. Given cardinals m
and n, a lattice L is called (m,n)-complete if it is closed under the operations of least
upper bound and greatest lower bound of sets of at most m and n elements, respec-
tively. An (m,n)-complete lattice of sets is an (m,n)-ring of sets if m-ary least upper
bounds and n-ary greatest lower bounds are given by set union and intersection, re-
spectively. For example, the open sets of a topological space form an (m,2)-ring of
sets for every cardinal m. Speed introduces n-prime m-ideals and employs them to
give natural necessary and sufficient conditions for an (m,n)-complete lattice to be
isomorphic to an (m,n)-ring of sets. As Speed remarks in the introduction to the
paper, It is interesting to note that the elementary methods used in representing dis-
tributive lattices carry over completely and yield all these results, although this is
hardly obvious when one considers special elements of the lattice.

In On rings of sets. 1. Zero-sets [16], Speed turns his attention to an important
example of (2, ®)-rings of sets, the lattice Z(X) of zero-sets of continuous real-
valued functions on a topological space X . The paper, which is deeper and somewhat
more technical than the first, includes lattice-theoretic characterisations of Z(X) in
two important cases, when X is compact (Theorem 4.1) and when X is an arbi-
trary topological space (Theorem 5.9). In both cases, the characterisations involve
minimal prime ideals. Along the way he proves a result (Theorem 3.1) that very
nicely generalises Urysohn’s Lemma for normal topological spaces and the fact that,
in a completely regular space, disjoint zero-sets can be separated by a continuous
function.

Distributive lattices—Priestley duality

About the same time that Speed was writing his PhD thesis at Monash University,
H. A. Priestley was writing her DPhil at the University of Oxford. Speed was
amongst the first to realise the importance of the new duality for bounded distribu-
tive lattices that Priestley established in her thesis (see Priestley [8, 9] and Davey
and Priestley [2]).

In On the order of prime ideals [13], Speed addresses the question, raised
by Chen and Gritzer [1], of characterising representable ordered sets, that is, or-
dered sets that arise as the ordered set of prime ideals of a bounded distributive
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lattice. By using Birkhoff’s duality between finite distributive lattices and finite
ordered sets, he shows that an ordered set is representable if and only if it is the
inverse limit of an inverse system of finite ordered sets. Speed observes that, when
combined with deep results of Hochster [5], this tells us that an ordered set is iso-
morphic to the ordered set of prime ideals of a commutative ring with unit if and
only if it is isomorphic to an inverse limit of finite ordered sets. This cross fertilisa-
tion in Speed’s work between commutative rings with unit and bounded distributive
lattices will arise again in Section 1.

Soon after writing Speed [13], Speed became aware of Priestley’s results. He
quickly realised that, since an inverse limit of finite sets is endowed with a nat-
ural compact topology, his characterisation of representable ordered sets could be
lifted to a characterisation of compact totally order-disconnected spaces, the ordered
topological spaces that arise in Priestley duality (and are now referred to simply as
Priestley spaces). In Profinite posets [12], he proved that an ordered topological
space is a Priestley space if and only if it is isomorphic, both order theoretically and
topologically, to an inverse limit of finite discretely topologised ordered sets.

Baer rings

Speed’s PhD thesis was strongly influenced by the seminal paper Minimal prime
ideals in commutative semigroups [6]. He took ideas from Kist’s paper and reinter-
preted them in the context of distributive lattices. Speed saw that there was some
informal connection between the commutative Baer rings introduced and studied
in Kist [6] and Stone lattices, a class of distributive lattices introduced by Grétzer
and Schmidt [4]. A commutative ring R is a Baer ring if, for every element a € R,
the annihilator ann(a) := {x € R | xa = 0} is a principal ideal generated by a (nec-
essarily unique) idempotent a*. A bounded distributive lattice L is a Stone lattice if,
for every element a € L, the annihilator ann(a) := {x € L |xAa =0} is a princi-
pal ideal generated by an element a*, and in addition the equation a*V a™* =1 is
satisfied. While quite different looking, the requirements that a* be an idempotent,
in the ring case, and the identity a* V a** = 1, in the lattice case, guarantee that the
elements a* form a Boolean algebra and correspond precisely to the direct product
factorisations of the ring or lattice.

While the proofs will typically be quite different, it is often true that a result
about Baer rings will translate to a corresponding result about Stone lattices and
vice versa. For example:

(i) Gritzer [3] proved that Stone lattices form an equational class; Speed and Evans
[17] proved that Baer rings also form an equational class. (In both cases, * is
added as an additional unary operation.)

(ii) Gritzer and Schmidt [4] proved that, in a Stone lattice, each prime ideal con-
tains a unique minimal prime ideal; Kist [6] proved that precisely the same
condition holds in a Baer ring.
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In separate papers on Stone lattices [11] and Baer rings [14], Speed proves that
there are broad classes of distributive lattices and rings, respectively, within which
Stone lattices and Baer rings are characterised by the property that each prime ideal
contains a unique minimal prime ideal.

In his third and final paper on Baer rings [15], Speed considers the question of
embedding a commutative semiprime ring R into a Baer ring B. Two such embed-
dings had already been given: the first by Kist [6] and the second by Mewborn [7].
In both cases, the Baer ring B was constructed as a ring of global sections of a sheaf
over a Boolean space. Speed shows that, in fact, there is a hierarchy of Baer ex-
tensions of R, the smallest being Kist’s and the largest Mewborn’s. Moreover, he
is able to replace the sheaf-theoretic construction with a purely algebraic one sim-
ilar in nature to one that had been used previously in the theory of lattice-ordered
groups. The underlying lattice of a lattice-ordered group is distributive, so again we
see Speed’s fruitful use of the interplay between rings and distributive lattices.
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ON RINGS OF SETS

T. P. SPEED
(Received 16 March 1967}

1. Introduction

In the past a number of papers have appeared which give representations
of abstract lattices as rings of sets of various kinds. We refer particularly
to authors who have given necessary and sufficient conditions for an abstract
lattice to be lattice isomorphic to a complete ring of sets, to the lattice of
all closed sets of a topological space, or to the lattice of all open sets of a
topological space. Most papers on these subjects give the conditions in
terms of special elements of the lattice. We thus have completely join-
irreducible elements — G. N. Raney [7]; join prime, completely join prime,
and supercompact elements — V. K. Balachandran [1], [2]; A4 -sub-irreducible
elements — J. R. Biichi [5]; and lattice bisectors — P. D. Finch [6]. Also meet-
irreducible and completely meet-irreducible dual ideals play a part in some
representations of G. Birkhoff & O. Frink [4].

What we do in this paper is define a new kind of prime ideal —called an
n-prime m-ideal — and show that all the above concepts correspond to a
particular kind of n-prime m-ideal. Here and throughout we mean m and n
to be (possibly infinite) cardinals, always greater than 1. Also the symbol oo
will be used to denote an arbitrarily large cardinal number. A class of
lattices called (m, n)-rings of sets is then defined and some theorems proved
which cover all the representation theorems mentioned above. It is interest-
ing to note that the elementary methods used in representing distributive
lattices carry over completely and yield all these results, although this is
hardly obvious when one considers special elements of the lattice.

I wish to express my gratitude to Professor P. D. Finch, whose paper [6]
was the inspiration for this work.

2. Notations and Definitions

We assume a familiarity with the elementary notions of lattice theory
as outlined in G. Birkhoff 3].

DEerFINITION 2.1. A lattice & = (L; vV, A) is said to be (m, n)-complete
if the join of not more then m elements of L belongs to L, and the meet of
not more than n elements of L belongs to L.
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Thus an (m, n)-complete lattice may be considered as an algebra with
the m-ary operation of join and the n-ary operation of meet.

DEeFINITION 2.2. An (m, n)-complete lattice of sets & = (L;v, A) is
called an (m, n)-ring of sefs if the m-ary operation of join corresponds to
set union, and the n-ary operation of meet corresponds to set intersection.

ExampLE. The lattice of all open sets of a topological space is an
(o0, 2)-ring of sets.

DEFINITION 2.3. Anideal P of the (m, n)-complete lattice & = (L;v, A)
is called an n-prime m-ideal if

(i) For {z,:y eI'} C L with |I'| < m we have:

rye PVyel' & Vz,eP
yel'
(ii) For {y, : 6 e 4} C L with [4] < n we have:
ys ¢ PVdeAd < Ay¢P.
de4a

REMARKs. 1. An ordinary prime ideal is a 2-prime 2-ideal in the above
notation.

2. The definition is obviously not the most general possible but it
will suffice for the purpose of this paper.

3. If P is an n-prime m-ideal then L\ P is an m-prime n-dual ideal
with the obvious (dual) definition of the latter.

DEFINITION 2.4. An homomorphism y between two (m, n)-complete
lattices is called an (m, 1)-homomorphism if y preserves joins of m elements
and meets of 1t elements.

Note that a lattice of sets is not assumed to have set union and inter-
section as lattice operations unless stated, although the partial ordering is
set inclusion.

3. (m, n)-rings of sets

In this section we clarify the notion of (m, n)-ring of sets.

PROPOSITION 3.1. Let & = {L;v,A) be an (m, n)-complete lattice of sub-
sets of a set S. Then £ is an (m, n)-ring of sets if and only if for any se S

(i) sé¢V{{eM:s¢l}forany M CL with | M| <m

(ii)) se AleN:sel} for any NC L with |[N| < n.

Proor. If £ is an (m, n)-ring of sets, then the m-ary join and the n-ary

meet operations correspond to set union and intersection respectively. It is
thus clear that (i) and (ii) hold in this case.
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[3] On rings of sets

For the converse we assume (i) and (ii). Observe that we must always
have (for M C L with [M| < m)

V{:leM}2U{l:leM).

Now if s¢ (J{{:leM} then s¢!VieM and thus by (i) we see that
s¢V{l:leM}. The reverse inclusion is hence proved and we obtain
V{:leM}=J{l:leM}. Similarly A{{:!eN}C({{:leN} always holds
for N C L with |N| <n, and (ii) implies the reverse inclusion giving

A{:leN}=N{:1eN}.

The proposition is thus proved.

Our next result is a direct generalisation of G. Birkhoff’s theorem
for distributive lattices (= (2, 2)-rings of sets), [3] p. 140.

PROPOSITION 3.2. Let £ = {(L;V,A) be an (m, n)-complete lattice. Then
L is isomorphic to an (m, n)-ring of sets if and only if L has a faithful
representation as a subdirvect union of a family {&L, : o € A} of replicas of 2 in
which each projection n, 1 L — L, is an (m, n)-homomorphism.

ProoF. Assume first that % has a sub-direct union representation with
the stated properties. This is equivalent to the existence of an isomorphism
y of & onto a lattice (&, U, N) of subsets of the index set 4; explicitly

yil>ly={aed:iln,=1}, AL ={y:lel}
It is clear that (&; U, n) is a (m, n)-complete lattice. We show it is a
(m, n)-ring of sets. Take .# C o/ with |.#| < m, and an arbitrary « € 4.
Now ViKe#:a¢K}
=V {Iy e A : « ¢ ly] since every K € .4 is of the form ly,le L
=V{{eM:a¢lylly where M = #yp*CL
=[V{{eM:lin, = 0}y since a ¢ ly = ln, = 0.
Further, [V {{ e M : In, = 0}}n, = 0 since |M| < m and the =, are (m, 1n)-
homomorphisms, so that « ¢ V{K € # : « € K} for A4 C o/ with | 4| =< m.
Similarly AN{KeN 1aeK}
=A{yets 1aely}
= [A{eN:aeclylly
= [A{{eN:in,=1}]pfor /" C .o/ and a € 4.
This gives INfleNiln,=1}jx,=11f /| =|N|=n
since the 7, are (m, n)-homomorphisms, so that « e A{K e 4" : x € K}, and

we have shown that (i) and (ii) of Proposition 3.1 are satisfied. Hence £
is an (m, n)-ring of sets.
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For the converse assume & is isomorphic to an (m, n)-ring of sets #’.
Then %’ has a representation as a subdirect union of replicas of 2 and the
working above readily reverses to establish the fact that the z, are (m, n)-
homomorphisms.

4. n~-prime m-ideals

We now discuss the notion of n-prime m-ideal. The first result is straight-
forward but the corollary is used to establish the equivalence between our
ideals and the various concepts mentioned in the introduction. These
concepts are not defined here — we refer to the papers concerned — for this
reason the corollary is presented without proof.

PROPOSITION 4.1. Let & = {L;v,A) be an (m,n)-complete lattice. Then
there is a one-one correspondence between
(1) n-prime m-ideals,
(ii) m-prime n-dual ideals,
(iii) (m, n)-komomorphisms onto 2.

ProoOF. It has already been remarked that (i) and (ii) are in one-one
correspondence. Let y:.% — 2 be an (m, n)-homomorphism onto 2. Then
it is easy to see that {1}y! is an m-prime n-dual ideal and {0}p~! is an
n-prime m-ideal. Conversely if P is an n-prime m-ideal, we may define a
map = : £ — 2 by setting Iz = 0 or 1 according as € P or I ¢ P. # may be
checked to be an (m, n)-homomorphism and our proposition is proved.

CoROLLARY (Special Cases). Under the conditions of the proposition,
with the appropriate values of m and n, there is a one-one correspondence
between the objects in the following groups.

A m=2 1= )

(i) prime principal dual ideals

(ii) join prime elements (V. K. Balachandran [2]); lattice bisectors
(P. D. Finch [6]); .#"-sub-irreducible elements for a certain 4" (J. R. Biichi
(5]).

(iii) (2, c0)-homomorphism onto 2; lower complete homomorphisms
onto 2 (P. D. Finch [6]).

B. (m= o0, n=2)

(i) co-prime dual ideals; completely prime dual ideals (G. Birkhoff &
O. Frink [4]).

(ii) prime principal ideals
(iii) (oo, 2)-homomorphisms onto 2.
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C. (m= oo, n = o0)

(i) completely prime principal dual-ideals

(ii) completely join prime elements (V. K. Balachandran [2]); super-
compact elements (V. K. Balachandran [1]); completely join irreducible
elements (G. N. Raney [7]).

(iii) (o0, co)-homomorphisms onto 2; complete homomorphisms onto 2
(G. N. Raney [7]).

LemMmA 4.2, Let & = (L;Vv,A) and ¥ = (L',v,A) be two (m,n)-
complete lattices. Suppose there is an (m, n)-homomorphism

n: ¥ >,
Then if P’ is an n-prime m-ideal of &', P = P’ 7~ is an n-prime m-ideal of £.

PROOF. P is well known to be an ideal of £. We first show that P is an
m-ideal. Let {/, : y € I'} C P be such that [I'| < m. Then
(Vi)a=V Ly
yel' yell
and since ,we P',Vyel, \V, . rl,me P, and we deduce that Vyerlye P=
Pl
Finally we show that P is n-prime. Suppose {J, : € 4} C L is such that
|4 Enandl, ¢ P VéeA.
Then (Ascals)® = Ascslsm and since l, ¢ P Voe A we have lyn ¢ P’
Vé e A. Thus, since P’ is n-prime, Age4ly7n¢ P’ and so Ageyls ¢ P = P'aL.
The result is proved.

LEMMA 4.3. Let & = (L; v, A) be an (m, n)-ring of sets, subsets of a
set Z. Then for anyx € &, P, = {{ e L : x ¢ I} is an n-prime m-ideal of L.

PROOF. P, is clearly an ideal of #. We show it is an m-ideal.

Let {I, :y e I'} C P, be such that |I"| < m. Since z ¢ 1, for y e I', Proposi-
tion 3.1 (i) tells us that 2 ¢ V.l or V, . p 1, € P,.

Similarly let {/; :6e4}C L be such that |4] <n and /, ¢ P,Vée A.
Then Proposition 3.1 (ii) tells us that z € Ase g% OF Asesls ¢ Po-

We have thus proved P, is n-prime and so it is an n-prime m-ideal.

5. Representation of lattices by (m, n)-rings of sets

In this section we give a fundamental representation theorem and
then show all such representations are of this form.

PROPOSITION 5.1. Let & = (L;v,A) be an (m, n)-complete lattice and
P =P (ZL; m,n) the set of all n-prime m-ideals of L. We assume P # [.
Let & denote a non-empty subset of P and define a lattice Ry = (R;V, A) by
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Ry, = L p where p = p, is defined by p: L —> Ry, lp={PeP:l¢ P}
Then Ry is an (m, n)-ring of sets and p is an (m, n)-homomorphism.

Proor. We show that p is an (m, n)-homomorphism and it will then
follow that %, is an (m, n)-ring of sets. Take {{, 1y e I'} C L with || = m.

Since
I,=Vli,
yell
we deduce that
Lp2(Vh)e
yelI'
and hence
Ul‘)’P 2 ( \ l‘)’)P'
yell yeTI'

Now if Pe U, l,p, then I, ¢ P for some yeI'. Thus V,.pl, ¢ P and
hence P € (V,rl,)p. We have proved p preserves joins of m elements.
Next take {/; : 6 e 4} C L with [4] = m:

A <l, Véed

ded
and so (Ases ls)p 2 lsp, giving
( A la)P 2 N Zsp-
3ed ded

For the reverse inclusion take P € (Aycy2s)p- Then Aseqls ¢ P and so,
since P is n-prime, we must have J; ¢ P Vé € 4;
Thus P € (34 2sp and we have

(Als)p = Lp.
ded ded

p is now proved to be an (m, n)-homomorphism and the statements in the
proposition all follow.
Our next result is basic.

PROPOSITION 5.2. Let & = (L; v, A be a (m, n)-complete lattice, and ¢
a (m, n)-homomorphism of £ onto a (m,n)-ring of sets A = <K; U, n),
subsets of some set Y. Then there is a nonempty subset  of P = P(£; m, n)
and an isomorphism 0 : A~ — R, suchthat $o 0 = p,.

PrOOF. Let us first look at 2. Since A is a (m, n)-ring of subsets of ¥,
P,={keK :y¢Fk}is an n-prime m-ideal of # by Lemma 4.3. Also, since
# is a (m, n)-homomorphism of .# onto ", P,¢! is a n-prime m-ideal of &
by Lemma 4.2.

Define & C # by & = {P,$~1: y € #}. In the statement of the proposi-
tion %, and p = p, are defined as in Proposition 5.1. It remains to check
that 6 defined by ¢ o 6 = p, is an isomorphism of #~ onto Z,.
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(1) 0is well defined. For suppose /¢ = l,¢ forl,, [, € L.
Then

fye? :L$¢Pt={ye? :l,¢¢ P}

and so {ye¥? :1,¢ P¢ '} ={ye¥ :1,¢ P,p'}.
Thus {(PeZ:,¢ P}={PeZ :1l,¢ P}
and so Lp = lyp.

(ii) 6 is an injection. For suppose /¢80 = l,¢0. Then l,p = l,p by
definition of 6, and the lines above reverse completely to prove ;¢ = ;.

(iii) 6 is clearly a surjection, for p,, is a surjection and so is ¢.

(iv) We finally check that 6 is an homomorphism. Take %, 2, € K
such that 2, = /,¢. Then
kyvky,=U4L¢vid = (Vi)
whence
(ByVERy)8 = (lyvis)pol = (Lvi)p=1lpViyp
= ()P0 V ()P0 = k0 Vv E, 0.

Similarly (%, A ;)0 = k, 0 A ky0 and 6 is established to be an isomor-
phism. The proposition is thus proved.

We close with a theorem which determines when faithful representa-
tions exist. For the theorem, let 2¢(.Z; m, n) denote the set of all m-prime
m-dual ideals of .Z.

THEOREM 5.3. Let & = (L; Vv, A) be an (m, n)-complete lattice. Then the
following are equivalent:
(i) &£ is isomorphic with an (m, n)-ring of sets.
() (J=N{PeP(L mmn):leP}foralllel.
(i) ) =N{PeP (¥ mn):leD}forallel.

PROOF. Assume % is isomorphic with an (m, n)-ring of sets. Then by
Proposition 5.2 there must be a set Z C & such that p, is one-one. Thus we
see that the map / — {P e Z(&; m, n): l € P} is also one-one and hence

(l=N{PeP(&¥;mn):le P}
So (i) = (ii).
It is clear that (ii) and (iii) are equivalent. Let us assume (ii). Then the
map p is seen to be one-one and so % has a faithful representation as an
(m, n)-ring of subsets of &. The proof of the theorem is now complete.

RemMARK. We do not deduce all possible corollaries. It suffices to illus-
trate the method by taking m = n = oo and deducing the result.
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CoroLLARY. (G. N. Raney [7], V. K. Balachandran [1]). 4 complete
lattice L is isomorphic with a complete ring of sets if and only if L possesses
a join basis of completely join irreducibles.

Proo¥. Take m = n = oo in Theorem 5.3 parts (i) and (ii). An co-prime
c0-dual ideal is equivalent to a completely prime principal dual ideal and its
generator is thus a completely join irreducible element. Since the intersec-
tion of a family of principal dual ideals is the principal dual ideal generated
by the join of the generators of the family, we see that (iii) tells us that for
any lelL

[2) =N er [4y) = [V,],) where the §, are completely join irreducible.
This is equivalent to / = V7, and our Corollary is proved.
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Profinite posets

T.P. Speed

The class of ordered topological spaces which are projective
limits of finite partially ordered sets (equipped with the
restriction of the product of the discrete topologies) is shown
to coincide with the class of compact totally order-disconnected
ordered topological spaces. Hence this is another category of
spaces equivalent to the category of distributive lattices with

zero and unit.

1. Introduction

In her papers [7], [8], Miss Priestley has discussed in detail the
equivalence of the category of compact totally order-disconnected ordered
topological spaces (with continuous monotone maps) and the category of
distributive lattices with zero and unit (with zero and unit preserving
lattice homomorphisms). More recently it has been shown [10] that the
partially ordered set (= poset) of all prime ideals of such a lattice must
be of the form iff X, where each X (e € I) is a finite poset. A

ael
synthesis of these two results immediately suggests itself, and we prove

the following:

THEOREM. Let X be an ordered topological space. Then X 1is
compact and totally order-disconmected iff X = lim X_ , where {X_, f .}
— a’ “of
ael
is an inverse system of finite posets each equipped with the discrete

topology.

We prove this theorem in 8§83, 4. An ordered topological space which

Received 8 October 1971. The author would like to thank Miss Hilary
Priestley for the preprint of her paper [§].
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is of the form %E Xa for an inverse system {Xa’ faB} of finite

ael
discretely topologised posets will be called a profinite poset by analogy
with the group case. Thus the theorem above is an analogue of the well
known characterization of profinite groups; see also [6] for other related

results.

2. Preliminaries

The notation and terminology of [7], [&] will be adopted without
further comment. Let us write 4 f. B for subsets A, B of a poset
(X; <) iff for all a €4, b €B we have a £b .

LEMMA 1. Let (X, T, =) be a compact totally order-disconnected
space. Then for disjoint closed sets A, B we have 4 ¥ B 1iff there is
an order-disconmection (U|L) such that A cU, BcL.

Proof. Assume A4 f.B . Then since X 1is totally order-disconnected,

for any x € A , y € B there is an order-disconnection (U:x: ) such

|z
Y EY
that ““’xy ., Y € ny . Pix z . Then the family {L:c,y iy € B}

3. k4
constitutes an open cover of B , and so there exists a finite sub-cover
n n
{Lx,y.:j=l,2,...,n}. Put U:x:= nu and L = U L and

J g=1 T Togm %Yy

we observe that [leLx) is an order-disconnection with x € U:x: s

B c Lx . Now the family {Ux : z € A} is an open cover of A and so has

a finite subcover {U T =1,2, «.., m} . Put U= U U and
. R
z =1l "z
n
L=10 L:z: and we have an order-disconnection (U|L) such that U D24 ,
=1l 1

L > B as required.

REMARK. This lemma shows that, as one would expect, compact subsets
behave in much the same way as points in compact ordered spaces. For
further evidence of this see Theorem 4, p. U6 of [4]. When the order is-

trivial, Lemma 1 reduces to a well known result for boolean algebras.

Let (X; <) be a poset and p € X X X an equivalence relation on
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X . Then one way of defining a quasi-order on X/p is to write

x/p =' y/p iff there exists z; Zx (P) , y1 =y (pP) such that

2]} < y; . Unfortunately this relation =<' is not always a partial order
on X/p ; when it is we say that p is order compatible. Thus the

equivalence O on X is order compatible iff for any x;, ¥; in X , if

z) Sx, (p) and y; Sy, (p) and 2z Sy, , «, 2y, then

z) Sz Zy) =y, (p) . Equivalently, p is order compatible iff for any
x,y € X such that x §y (p) , we have either

gy :z; 22 (P} £y 41 =y (P)} or

z ()} 3 {y; :y1 2y ()} .

{x; : =
3. First proof of the theorem

Suppose X = lim Xa where {Xa’ fuB} is an inverse system of finite
—
ael
posets each equipped with the discrete topology, and I 1is a directed set.
Then X is certainly a compact space ([7], Chapter I, §9.6, Proposition
] . - . 1
8). For any o € I and xg € X, write Ux; ={zx€ex: z, z xa} s

L

- . ' - . - ! -
o = {x ex: z, < xu} and T, = {xex: :z = xa} » vhere x =(zx)

' o ael
[+3 o

denotes a typical element of X . Then T;, is clopen, and (since each
a

Xa is discrete] so are Ux" Lx' . Further Ux' is increasing and Lx'
a a a a

is decreasing. We now prove that X 1is totally order-disconnected.

Suppose x $ Yy in X ; +then for some o € I we must have xa ﬁ ya .

Thus (U

. L ] is an order-disconnection and x € Ux » Y € Ly , and so
a

o a [+

the result is proved.

For the converse we suppose that X is compact and totally
order-disconnected. Let R denote the family of all clopen order

compatible equivalences p on X , that is, all order compatible

m

equivalences of the form p = U Vi X Vi for some finite partition {Vi}
=1

of X into open sets. Then Xp = X/p is a finite poset, and, when

equipped with the discrete topology, is a continuous monotone image of X

under the canonical projection prp X > X/p .
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Now Lemma 1 implies that the equivalence p 1is order compatible iff

v, # Vj implies that there exists an order discomnection (U|L) such that

V.cU

SV, VjSL or VjEU, V. € L . We now prove that the family of

z
all clopen order compatible equivalences is directed, and that

N{p : p € R} = A, the diagonal of X X X . The last remark is easy, for
if x #y then either x $y or y $a: . Suppose =z t Yy 5 then there is
an order-disconnection (UIL) such that x € U, y € L . But it is

easily checked that {U, L, Uc nLc} is a partition which induces an order

compatible equivalence p , and hence x ¥y (p) .

Suppose P and pP' are two clopen order compatible equivalences

induced by the partitions {Vi :4=1,2, ..., m} and

{V:y' 1 g=1,2, ..., n} respectively. Then the partition

{Vith;-:11=l,2,...,m,j=1,2,...,n,VinVJ'.;6¢}

induces an order compatible equivalence p v p' . For if
V. n V"]. # Vi1 n V"j1 > then either V. # Vi1 or V;. # Vél , say the former.
Then either Vi $ Vi1 or Vil $ Vi , again suppose the former. By Lemma 1
there is an order-disconnection (U|L) such that Vi c U and Vil crL.
But now V. n V';. c U and Vi1 n V';.l c L which proves that
Vi n V‘;. ¥ Vi1 n V;.l and so p Vv p' is order compatible.

We now collect the foregoing results: the system {Xp : p € R} where
o > Xp is continuous and

monotone, and R is directed, becomes an inverse system {Xp, fpp’} . The

for p < p' the canonical map fppy X

map ¢ : X > lim Xp given by ¢(x) = <prp(:r)> is continuous,
peR peR

bijective, and an order isomorphism, and so X and 1lim Xp are

peR

homeomorphic as required.

4. Second proof of the theorem

We quickly sketch an alternative, shorter, proof of the theorem. It
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does however, have the disadvantage of using results from [2], [5], [10] of
a non-topological nature, but is the way the theorem was originally
deduced.

Suppose X = lim Xa is a projective limit of finite, discretely
—
oel

topologised posets. Then Xu = PatchAa for a unique distributive lattice

Ay - Thus X = lim X 2 lim Patchd | = Patch(lim A ) = Patch A where
@ -— < —_— O

A= 1lim Aa is the direct limit of the direct system {Aa’ ng} , and where

—

P > i : g =< . i
faB Ay AB is the dual map to faB XB X, for o B8 By the main
result of [7] and some remarks of [2], X = Patch 4 is compact and totally

order-disconnected.

Conversely, suppose X is compact and totally order-disconnected. By
the main result of [7], X = Patch 4 for a unique distributive lattice

A . Write A = lim Aa as a direct limit of its finitely generated
—

(finite) sublattices Aa . Then

Patch 4 = Patch(lim 4 } = lim Patch 4 = lim X
—_— D o — ¢

where {Xa} is a family of finite posets equipped with discrete
topologies. The details of this proof can be reconstructed from [2], [5].

In a notice which appeared after this note was written, Joyal [3]
states a theorem closely.related to our main result. His proof is probably

more like the one sketched above.

5. Final remarks

The theorem of this note and other results show that the following

categories are equivalent:

(i) distributive lattices with zero and unit (with zero and unit

preserving homomorphisms);
(ii) spectral spaces (with spectral maps);

(iii) compact totally order-disconnected spaces (with continuous

monotone maps);
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(iv) profinite posets (with continuous monotone maps).

The study of the relations between (i) and (ii) was begun by Stone in [171];

some further details are in [9] and the forthcoming part II, while much

useful information is in [2]. The relation (i) ¢+ (iii) is the object of

[7], (8], and the connections between (i), (ii) and (iii) are being studied

at the moment.
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T. P. SPEED

A poset X is isomorphic to the poset of all prime ideals of a (distributive) lattice
with zero and unit if, and only if, X is the projective limit of an inverse system of
finite posets.

1. Introduction

The problem of characterising posets of the form X, where X, denotes the set
of all prime ideals of the (distributive) lattice 4 with zero and unit, ordered by in-
clusion, was raised by C. C. Chen and G. Grétzer [2]. In a similar context M. Hochster
[3]1 discussed the same problem for commutative rings with identity, and gave a
solution in terms of a certain family of order preserving maps. We note below that
these problems have a common solution.

Let us call a poset X profinite if X="""X, for an inverse system {(X,), (¢o5)} of
Jinite posets defined over some directed set I. In terms of this notion we will prove the
following:

THEOREM. 4 poset X is isomorphic to the poset of all prime ideals of a (dis-
tributive) lattice with zero and unit if, and only if, X is profinite.

COROLLARY 1. A4 poset X is isomorphic to the poset of all prime ideals of a
commutative ring with identity if, and only if, X is profinite.

COROLLARY 2. A4 poset X is isomorphic to the poset of all prime ideals of a
(distributive) lattice [resp. lattice with zero, lattice with unit] if, and only if, X with
largest and smallest [resp. with largest, with smallest] element adjoined, is profinite.

2. Preliminary lemmas

For any (finite) distributive lattice 4 the set X, of all prime ideals of 4 ordered
by inclusion is a (finite) poset; further if f: A— A’ is a zero and unit preserving lattice
homomorphism between distributive lattices 4 and 4’ with zero and unit, there is
an induced order preserving map f*: X .-~ X .

Also, if X is a finite poset, there is a finite distributive lattice 4y = A4, unique up to
isomorphism, such that X= X,; again if ¢: X— X" is an order preserving map between
finite posets X and X', there is an induced zero and unit preserving lattice homo-

Presented by G. Grdtzer. Received November 24, 1971. Accepted for publication in final form April
4,1972.
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morphism *@: Ay, —Ayx. All these results are well known [1], and we summarise
them in:

LEMMA 1. The assignment A—X,, fr>f*, defines a contravariant functor between
the category D of all finite distributive lattices (with zero and unit preserving lattice
homomorphisms) and the category Py of all finite posets (with order preserving maps).

This functor is a category equivalence.

Let I be a directed set and suppose {(4,), (f.5)} is a direct system in 2y over L
Denote by X, the poset of all prime ideals of A, and by X the poset of all prime ideals
of A=""A4,. Then we can see that each xe X defines a thread (x,), x,€X,, x€l, such
that if a<f, x5 f = =X,: we simply put x,=xf, ' where f,: 4, A4 is the canonical
map into the direct limit. Conversely each such thread (x,) can be readily seen to
define an element xeX: we put x=|{J, x,f,. This correspondence can be shown
to be bijective and order preserving in both directions, and we then have

LEMMA 2. XAg’f_":Xa.
3. Proofs of the main results

We first prove the theorem. Let X be a profinite poset ie. X='™X, where
{(X,), (¢45)} is an inverse system in P relative to a directed set I. By Lemma 1
we then have a direct system {(4,), (f,5)} in 2p with X, =X, f,5="P.5 Put
A=""4_ Bylemma 2 X,=~X and we have proved that X arises as X, for a suitable
distributive lattice 4 zero and unit.

Conversely, let 4 be a distributive lattice with zero and unit. Then we may write
A=""74, where {(4,), (f.s)} is the direct system in 2 of all finite sublattices of 4
containing the zero and unit of 4, with connecting maps f,z:4,—~4; when 4,54,
being the canonical injections. By Lemma 1 we then have an inverse system {(X,),
(¢ap)} in Pp with X, =X, , ¢,5=f2. Put X=""X . By Lemma 2 X=X, and we
have proved that X is profinite.

This completes the proof of the theorem.

Corollary 1 can be proved using Proposition 12 of [3]; we omit the details.

If a distributive lattice fails to have a zero [resp. unit, zero and unit] we can simply
add one, thereby adding a smallest [resp. largest, smallest and largest] prime ideal.
By the theorem the poset of all prime ideals obtained must be profinite, and there is a
natural converse. Thus we have Corollary 2.

4. Final remarks

Since a first draft of the above results was written, equivalent results were an-
nounced (without proof) by A. Joyal [4].
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In conclusion I would like to thank Professor G. Gritzer for his remarks concern-
ing the first draft, and also Brian Davey for his interest.
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Introduction

In an earlier paper [11] we discussed the problem of when an (m, n)-complete
lattice L is isomorphic to an (m, n)-ring of sets. The condition obtained was simply
that there should exist sufficiently many prime ideals of a certain kind, and
illustrations were given from topology and elsewhere. However, in these illus-
trations the prime ideals in question were all principal, and it is desirable to find
and study examples where this simplification does not occur. Such an example is
the lattice Z(X) of all zero-sets of a topological space X ; we refer to Gillman and
Jerison [5] for the simple proof that Z(X) is a (2, 0)-ring of subsets of X, where
we denote aleph-zero by .

Lattices of the form Z(X) have occurred recently in lattice theory in a number
of places, see, for example, Mandelker [10] and Cornish [4]. These writers have
used such lattices to provide examples which illuminate a number of results
concerning annihilators and Stone lattices. We also note that, following
Alexandroff, a construction of the Stone-Cech compactification can be given
using ultrafilters on Z(X); the more recent Hewitt realcompactification can be
done similarly, and these topics are discussed in [5]. A relation between these two
streams of development will be given below.

In yet another context, Gordon [6], extending some aspects of the work of
Lorch [9], introduced the notion of a zero-set space (X,Z). This is a structure
abstracted from the system consisting of a set X and the family & of zero-sets of
the functions in a uniformly closed ring of real-valued functions defined on X.
Gordon’s axioms naturally embody some of the lattice-theoretic properties of
Z(X) for a topological space X, but as we shall see below, they are more general.

We can now explain the contents of this paper. After listing our notation and
terminology, we give some lattice-theoretic results which are necessary for sub-
sequent analysis, but not without interest separately. We then give some
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constructions, similar to Urysohn’s, of certain functions separating disjoint sets.
They are more delicate than the usual since the family of sets used is closed under
(finite unions and) countable intersections only, and hence the notion of closure
is not available. Also these results enable us to give alternative proofs of some
results of Gordon [6], thus avoiding the use of proximity spaces and the con-
sequent application of Cech’s difficult version of Urysohn’s lemma, valid for
uniformizable proximity spaces. In §§4,5 we turn to the main task which is find
properties of Z(X) in addition to those which follow from its being a (2, ¢)-ring
of sets. Our results include algberaic characterisations of Z(X) for X a compact,
respectively arbitrary, topological space.

To conclude this introduction we gratefully thank Drs. J. W. Baker and
C. J. Knight for listening to, and helpfully commenting upon, early versions of
the material presented below. Also the referee is to be thanked for pointing out

an incorrect result stated in the first version, and for remarks leading to some
shortening of proofs.

1. Notation and terminology

(1.1) Lattice theory. Most of the concepts from lattice theory we need are
defined somewhere in Birkhoff [1], while the more special ones relating to rings
of sets and special prime ideals are discussed in [11]. All our lattices will be assumed
to possess a zero (least element) 0 and unit (greatest element) 1, and all sublattices
will be assumed to contain the same zero and unit. The join and meet operations
are denoted \/ and A respectively, and thus a lattice can be considered as an
abstract algebra L = (L; \/, A,0,1) with carrier L; we use the partial order on L
without comment. Typical elements of L will be denoted a, b, ¢, d,---; typical
prime or minimal prime ideals will be denoted w, x, y, ---. We will abbreviate the
term (2, ¢)-prime (see [11]) to o-prime, in accordance with usual practice. A lattice
is said to have enough ideals of a specified type if distinct elements of the lattice
can be separated by ideals of that type. The lattice L is said to be a (2, 6)-regular
sublattice of the lattice L’ if L is a sublattice of L’ such that countable meets of
elements in L’ which exist in L’ or L exist in both and coincide.

(1.2) Topology. Our general reference in this sphere is Bourbaki [2], while
the reference for the less common concepts used below, such as zeroset, z-filter,
realcompactification etc. is Gillman and Jerison [5]. We will reserve W, X, Y
for topological spaces; generic elements will be denoted by the corresponding
lower case letter; typical subsets will be written 4, B, C,---; typical open sets
G, -++; typical closed sets F,---.

(1.3) General. For subsets A, B of a set X we write AU B, A N B for set
union and intersection respectively, and (4 for the complement of 4 in X. The
empty set is denoted ¢. If f: X — Y is a map, we write f 4 for the direct image of

25
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A € X and f~ !B for the inverse image of B < Y ; parentheses will only be included
where necessary. The unit interval {teR:0 <t <1} is denoted [0,1].

2. Some lattice-theoretic results

Our first definition is based on the work of Cornish [4]; see also Kerstan [7]
§6, Definition 2 for a closely related definition.

DEerINITION 2.1. A lattice L is normal if for any pair a, be Lwith a A b =0,
there exists ¢, de L such that a Ac=bAd=0and c\Vd=1.

It is not hard to see that a Hausdorff space X is normal if, and only if, the
lattice F(X) of all closed subsets of X is a normal lattice. Further it has been known
for some time that the lattice Z(X) of all zero-sets of a topological space X is a
normal lattice.

A number of equivalent formulations of 2.1 in the case L a distributive lattice
are given in [4], and although we need none of these, we note the following: a
distributive lattice L is normal if, and only if, every prime ideal contains a unique
minimal prime ideal. This last result is known for Z(X) in the form: a prime
z-filter is contained in a unique z-ultrafilter, ([5] 2.13). We also refer to [4] for
many consequences of normality. For later use we note that any Boolean lattice
is normal.

Another topologically inspired concept we need is that of a Gs-element of a
lattice L, and again we note that a similar idea occurs in [7].

DEFINITION 2.2. An element ae L is a G; in the lattice L if there exists a
sequence {a,: n = 1} of (not necessarily distinct) elements of L with the following
properties:

(@ aAa,=0foralln;

(B) if for be L we have b A\ a,= 0 for all n, then b < a.

Our final definition in this section is the following abstraction of the analogous
topological property.

DEFINITION 2.3. A lattice L is perfectly normal if («) L is normal; and (f)
every aeLis a G,

Clearly a Hausdorff space X is perfectly normal if, and only if, the lattice
F(X) is perfectly normal. Also it is easy to prove ([6] 2.3) that for any topological
space X, the lattice Z(X) is perfectly normal.

We turn to some algebraic consequences of the definitions.

LEMMA 2.4. A lattice L in which every ac L is a Gy is disjunctive.

ProoOF: Take a £ b in L. By 2.2 (f) there must exist an »n such that a A b, # 0
while by 2.2 («) b A b, =0. This proves the result.
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A deeper result which we use frequently below requires the characteristic
property of a minimal prime ideal, Kist [8] viz: a prime ideal x of a distributive
lattice L is minimal if, and only if, for any aex there exists b¢ x such that
aANb=0.

LEMMA 2.5. Let y be a a-prime ideal in a (2,0)-complete perfectly normal
distributive lattice L. Then y is a minimal prime ideal.

ProoOF: Let aey; we must find b¢ y such that a A b =0. Since a is a G,
there exists a sequence {a,: n = 1} with properties 2.2 (), (8). Thus a A a,=0,
and so normality of L implies the existence of two sequences {c,}, {d,} with:
afNc,=0=a, Ad,and c,\ d,=1 for all n. If, for some n, c,¢ y, then we are
through. Suppose now that ¢, € y for all n; then d, ¢ y for all n, and by the ¢-prime
property of y, d = A,d,¢y. But for all n, a, Ad < a, A d, =0 and so by 2.2(f)
d < a which contradicts aey, dé¢y.

Hence a A ¢, =0 for some ¢, ¢ y and y is minimal.

3. Constructions similar to Urysohn’s

In this section we will be working with a (2,0)-ring of subsets of a set X
satisfying various conditions, and a careful analysis will enable us to extend the
construction of a continuous function separating disjoint closed sets to this
situation. We conclude by giving an alternative, direct, proof of a result of Gordon.

THEOREM 3.1. Let H be a (2,0)-ring of subsets of a set X. Then the following
are equivalent:

1) H is a normal lattice.

2) For any A, Be H with AN B = ¢ there exists a function f: X —[0,1]
such that

() f7'FeH for every closed subset F of [0,1];

B) A<f {0}, B<fH{1).

ProOF: 1) implies 2). We will explain the proof backwards thus motivating
the construction. Let A, Be H with 4 N B = ¢ be given. Our aim is to define a
system
*) % = {U(t), F(1): 0 < t £ 1} where

() Cu(neH, FpeH, 0=t<1;

(i) A< U(), B< GUQ);

(i) If0 <t < ¢’ £ 1 then U(t) < F(t) = U(t').
Then we will see that the well-known procedure of defining a map f: X — [0,1] by
writing, for xe X:

(*%) f(x) = inf{t: x e U(1)}
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gives a function satisfying:

@iv) f71[0,1] = F(t), f~[t,1] = GU().

Having done this we may take an arbitrary closed subset [0, 1]\ U, («,, 8,) of [0,1]
and find that

S0V (@B
= f! O {[O’ d,,] v [ﬂm 1]}
N {/'0a]uf " [B, 11}

€ H as required.

Thus our function f so constructed satisfies (&) and (8) of (3.1)2) above.
An so we turn to defining the system %. To do this we first define a subsystem
%,, where A is the set of binary rationals in [0,1]:

®’ U, = {U(S), F(5): 5 A} where

(i)' CU@)eH, F(6)eH, seA;

(i)Y A< U©), Be GUQ);

(i)’ f0<6 <8’ <1 then U(S) = F(9) = U(S).
Let us suppose for the moment that %, is defined and satisfies (i)’, (ii)’ and (iii)’.
Then if we write, for 0 <1< 1:

M u@ = }i U@, F@n = a[;]‘ F(9),

we clearly obtain a system % satisfying (i) and (ii). We check (iii). Take ¢, t’ with
0Lt <t £1; there exists 8, 8, "€ A with t < § < &' < 8" < t’, and so by (iii)’
and (1)

U() cU@) = F(6) = U(0) = F(6") = U(6") = U(t").

Clearly F(6) < F(t) < F(6’) follows from (f) and so with the above we obtain
U(t) € F(0) < F(t) < F(6') € U(t’) which implies (iii).

Thus our problem reduces to constructing %, satisfying (i), (ii)’, (iii)’. This is
done inductively, using the representation A = {k2"™:k=0,1,---,2"; m = 0};
we define for m = 0:

*" Uy = {UK2™™), F(k27™):0 £ k < 2™} where

@ QU®k2 ™eH, F(k2 ™) eH,0< k <2™;
(i) A< U(©), B< QUQ);
(iii)” fO<k<Il<2™then UK2™™ < F(k2™™) < U(I2™™).

Then we put %, = U,,5 o .
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Case m = 0. Put %, = {U(0), F(0), U(1), F(1)} where
U(1) = OB, F(1) = X, and
U(0), F(0) are chosen so that (U(0)e H, F(0)e H, and
A< U0) s FO) = (B.

This can be done: for A N B = ¢ implies, by the assumed normality of H, the
existence of V, Fe H with:

ANV =¢, BNF=¢ and VUF = X.

But these relations imply 4 = OV, F = (B and (V < F so that putting U(0)
= (V with F(0) = F satisfies our requirements.

Now suppose that for some m = 1, %,,_, is defined and satisfies (i)", (ii)”
and (iii)”, and let us consider %,,. For even k we define U(k2™™), F(k2™™) in the
obvious way. For odd k = 1 we note that (iii)” implies:

Uk—1)2 M cF((k—-12"" c U((k+ 1)27™).

The last inclusion can be written F((k — D2-"YN QU ((k + 1)2-™) = ¢ and so
we may proceed as for the case m = 0 with F replacing A, QU replacing B, and
find elements V, F of H with

F((k—12"™) < (V= Fc Uk + 1)2™™).

Thus we may put U(k2™™) = OV and F(k2™™) = F and satisfy (iii)’ thus
completing the inductive step.

And so we have constructed %, and thus %, and it only remains to prove (iv)
is valid in order to complete the proof of 1) implies 2). Recall the definition (**) of f.

If f(x)<t for some te[0,1] then for any deA with § >t we have
x € U(S)  F(6) whence x € >, F(8) = F(2).

On the other hand, if x € F(f), then for any € A with >t we may find
6’'eA with § >8>t and so xe F(6') = U(6). Thus f(x) < for each 6> ¢
whence f(x) < t, and we have proved that f ~![0, 1] = F(t). The other part of (iv)
is proved similarly.

2) implies 1) Let us assume that 4 N B = ¢ for A, Be H. By 2) there exists
f:X —[0,1] such that A<= f {0}, B<f~'{1} and f "'FeH for each closed
F<[0,1]. If we take F = [0,4] and [},1] we obtain D = f~![0,}]eH,
C=f"!31]eHsuchthat ANC=¢, BN D = ¢ and CuU D = X, as required.

ReMARK 3.2. If H = F(X) is the lattice closed subsets of a topology on X
then 3.1 is just Urysohn’s lemma. Another special case is when H = Z(X) is the
lattice of all zero-sets of a completely regular (Hausdorff) space X. In this case we
have proved (cf. [5] 1.15) that disjoint zero-sets can be separated by a continuous
function.
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Our application of 3.1 is in the following result:

THEOREM 3.3. Let H be a normal (2, 0)-ring of subsets of a set X. Then the
following are equivalent for an element Ae H:

1) There exists a sequence {A,:n =1} of elements of H with the following
properties:

() ANA,= ¢ for all n;
(B) if for Be H we have B N A, = ¢ for all n, then B < A.

2) There exists a function f: X — [0,1] such that
(x) f "'FeH for every closed subset F of [0,1];

B) A =f""{0}.

Proor: 1) implies 2). By 3.1 there exists f,: X — [0, 1] satisfying 2) («) such
that A = f,”'{0} and 4, = £, * {1}. This uses only 1) () and works for all n. Now
consider the element (1,5, f, *{0} of H;clearly A = (1,5, f, *{0},and for any n,

00O SN 00 =
Thus by 1) (8) 4 2 N, 1/, {0} and if we define f: X — [0, 1] by
f= X 27,

nz1

it is easy to see f “{0} = M,>1f 1{0} = 4, and Lemma 2.4 of [6] implies that
f satisfies 2) (). This completes the proof of the first implication.

2) implies 1). If A = f~'{0} for a function f satisfying 2) (f), then we may
define 4, = f ~![1/n,1] for n 2 1, With this definition

4= U 4,
nz1

and conditions 1) («), 1) () are readily checked.

The following corollary can easily be proved using the two previous results.

COROLLARY 3.4. Let H be a (2, 0)-ring of subsets of X. Then the following are
equivalent:
1) H is a perfectly normal lattice.
2) For every A€ H there exists a function f: X —[0,1] such that:
() f~YFeH for every closed subset F of [0,1];
®) 4=771{0}.

In the terminology we are using, a zero-set space is a pair (X, Z) where X is a set
and £ is a perfectly normal (2, 6)-ring of subsets of X which separates points of X.
With any such space Gordon associates the set S(X, Z) of all functions f: X — R
such that f ~1F € & for every closed subset F of R; such functions are called zero-
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set functions. The lemma ([6] 2.4) used in the previous proof shows that S(X, 2) is
a uniformly closed ring of functions on X; also S(X, Z) separates points of X and
contains the constant functions.

We give a new proof of [6] 3.5 viz:

THEOREM 3.5. Let (X, Z) be a zero-set space and S(X, Z) the family of all
zero-set functions on X. Then

Z = {2(f):fe SX, Z)}.

PROOF. By 3.4 every A€ Z is the zero-set of a suitable function of S(X, 2);
if feS(X, %) then Z(f) = f ~*{0} € & and the proof is complete.

4. The lattice Z (X) for X compact

1t is well known that a completely regular space X is compact if, and only if,
every z-ultrafilter is fixed. However, as in the case of the ring C(X), the notion of
fixed (resp. free) is not a lattice-theoretic invariant and so we must proceed
slightly differently. At this point also, our treatment begins to differ from that in [6]
since we only have the lattice Z(X) and not X itself.

The main result of this section is given a proof independently of the discussion
in the next section, although it can also be derived from results there. We do this
because the simplications which occur when X is compact allow quite different
techniques to be used.

THEOREM 4.1. Let L be a lattice. Then the following are equivalent:
1) L is isomorphic to the lattice Z(X) for a compact space X.
2) (@) L is a (2, 0)-complete lattice;

(B) Every minimal prime ideal of L is o-prime;

(y) L is perfectly normal.

The space X of 1) is NOT unique up to homeomorphism.

PRroOF. 1) implies 2). We will show that for any compact space X the lattice
Z(X) has properties 2) (a), (8), (y); these are obviously lattice invariants and so the
implication will be proved. But we have already noted the validity of («), (y) for X
general, and (B) follows since every minimal prime ideal of Z(X) is exactly those
elements not belonging to a particular fixed ultrafilter u, = {a e Z(X): xea},
where x € X is unique. Clearly such a minimal prime is o-prime, completing the
proof.

2) implies 1) Suppose we are given a lattice L satisfying (&), (8), (y) of 2). Let
X denote the set of all minimal prime ideals of L, and equip X with the topology
whose closed sets are intersections of the sets in L' = {X,:aeL} where for
acL, X,={xeX:a¢x}. We will prove that X so defined is a compact
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(Hausdorff) space, and that the family of all zero-sets of X is exactly L', a lattice
which will be shown to be isomorphic to L.

We prove this last remark first. Condition 2) (y) together with Lemma 2.5
above implies that L is disjunctive, and so by a result which is well known (see
e.g. [8]) a — X, is bijective. It can be readily checked that for a, be L, X, U X,
= X, and since the ideals in X are all o-prime, we find that for {a,:n = 1}
L,Npz1 X,, = X, where a = A,», a,. The latter exists, of course, by 2) («).

The proof that X, so topologised, is a compact (Hausdorff) space given (in a
dual form) in [4] Theorem 7.3 hence we omit it.

And so it remains to prove that L' is exactly the family of all zero-sets of X.
Now X is normal and so it is enough to prove that L' is exactly the set of all closed
G;-subsets of X. But every ae L is a G; and this is easily seen to imply

6x,=U Xx,,
nz1

proving that X, is a G-subset, by definition, closed, of X. This proves half of
what is required, and to complete the proof we take an arbitrary closed G;-subset
F of X. By definition, there is a sequence M, of subsets of L, and a subset B < L
such that

n%=r=n{U Cx).

beB n21 \geM.
We concentrate on the right-hand equality first. Since F is compact, for any n > 1
there is a finite subset m, & M, such that

Fe U 0x,=0x,,

aem.

where a, = A,.m,a.- Thus we see that

n Xb=F= ncxa,.'

beB nx1
Now each X, is compact, and so for each n there is a finite subset B, = B
such that

X, = NX,<0x,,

where b, = A,.p,b. Putting these results together gives

F=NG0x,=2 Nx, =2 NX,=F,
nz1 n21 beB
whence F = (), Xp. = X, where b = A, b,, and in this last step we have
used the fact that b — X, is a (2, 0)-homomorphism. The proof is now complete.
An interesting byproduct which will be explained in the next section is the

following:
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COROLLARY 4.2. Let Y be a pseudocompact topological space. Then there is a
compact space X such that Z(Y) and Z(X) are lattice isomorphic.

ProoF. Putting together 5.8(b) and 5.14 of [5] we find that for Y
pseudocompact Z(Y) satisfies (4.1) 2) () and so the result follows.

In particular, the corollary shows that non-homeomorphic pseudocompact
spaces can have isomorphic lattices of zero-sets. We will see that this cannot
happen when the spaces are both realcompact. Finally, we note that the space X
in 4.2 can be taken to be fY, or any space Y < X < BY.

5. The lattice Z(X) for a general X

In this section we characterise the lattice Z(X) algebraically, for a general
topological space X. We begin with a reduction, relying heavily upon results
from [5].

PROPOSITION 5.1. For every topological space X there exists a completely
regular space Y and a continuous map t of X onto Y such that the map:

Z(9) > Zg07)
is an isomorphism of Z(Y) onto Z(X).
PrOOF. See [5] 3.9. The details are easy, and omitted.
The next stage of our reduction is again similar to the ring case.

PROPOSITION 5.2. For every completely regular space X there exists a
realcompact space vX and a continuous map t of X into vX such that the map:

a— szxa
is an isomorphism of Z(X) onto Z(vX)).
ProoF. See [5] 8.8.

From now on we will suppose, where appropriate, that X is realcompact.
As a first attack on our characterisation problem we abstract the lattice-theoretic
properties of a zero-set structure.

DEFINITION 5.3. A lattice L is a z-lattice if

(o) L is (2, 0)-complete;
(B) L has enough o-prime minimal prime ideals;
() L is perfectly normal.

For any topological space X the lattice Z(X) is a z-lattice. To see this we need
only check (f) as () and (y) of 5.3 have already been noted. Now for any xe X
the family j, = {a €Z(X): x ¢ a} is easily seen to be a o-prime ideal of Z(X) and
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there are certainly enough of these ideals to distinguish elements of Z(X). Thus (8)
will be satisfied if we show that all the o-prime ideals j, are minimal. But this
follows from 2.5 above; alternatively a direct proof can be given.

We will see below that although not every z-lattice is isomorphic to a lattice
Z(X), such a lattice can be embedded as a sublattice of Z(X) for a suitable X in a
particularly precise manner, which it is convenient to formulate separately. For
any z-lattice L (possibly with superscripts) we denote by X%, or just X if no
ambiguity is possible, (with the same superscripts) the set of all ¢-prime minimal
prime ideals of L; for ae L we write X% = X, = {xe X“:a¢x}.

DEFINITION 5.4. A z-lattice L is said to be a z-sublattice of the z-lattice L’,
equivalently, L’ is a z-extension of L, if

(«) L is a (2, 0) regular sublattice of L’;
(B) the map x’ - x’ N L is a bijection from X’ onto X;
(y) forany beL, X; = ({X,:aeL, azb}.

We will see that the property of being a z-sublattice is transitive, a fact needed
below.

LEMMA 5.5. If L is a z-sublattice of L', and L’ is a z-sublattice of L”, then
L is a z-sublattice of L".

Proor. Clearly («) and (p) are true so we need only prove (y). Let be L'. We
will show that

Q) X,=N{X,;aeL, axb}
is true, and then the fact that for any ce L’
X =N{Xy:bel,b2c}

will complete the proof. Now suppose that x” e X” is such that a¢ x’ for allae L
with a =2 b. Then a ¢ x" N L' = x’ say, for all a e L such that @ = b, and so b ¢ x’,
since L’ is a z-extension of L. Thus we have proved b ¢ x” and the equality (*) is
proved.

The following results is the main step in our characterisation theorem.

THEOREM 5.6. Let L be a z-lattice. Then X = X" is a realcompact space,
and L is isomorphic to a z-sublattice of the z-lattice Z(X).

Proor. We give X the topology whose closed subsets are intersections of
setsin L' = {X,: ae L}. Exactly as in 4.1 above we can prove that L is isomorphic
to L’ where L’ is the set L' under the operations of finite set-union and countable
set-intersection; the isomorphism is a (2, ¢)-homomorphism.
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Thus L' is a z-lattice, and so the results of §3 above will apply. We prove that
X is completely regular. Take a point x € X and a closed set F = ({X,: aeM}
not containing x. Then there is X, = F with x ¢ X,; since a in L and hence X, in
L'isa G,, xe X, with X, N X, = ¢ for a suitable b € L. By Theorem 3.1 there is a
continuous function f: X — [0,1] with f(x) = 1 and f {0} = F. Now Corollary
3.4 shows that every element of L’ is a zero-set of X and so L = Z(X). Before we
show that L' is a z-sublattice of Z(X) it will be necessary to prove that X is real-
compact. Let 7 be a real z-ultrafilter on X ; then y = {a € Z(X): a ¢ n} is a g-prime
minimal prime ideal on Z(X), and so y’ = y N L' is a o-prime ideal of L’. Lemma
2.5 implies that y’ is in fact a minimal prime ideal, and so y’ = x for some unique
x € X. Now the intersection of all the zero-sets in # is, by the definition of the
topology, an intersection of all the zero-sets of the form X, in # and this intersection
contains x; thus X is realcompact by [5] 5.15.

Having now established that L is isomorphic to the sublattice L’ of the lattice
Z(X) where X is a realcompact space, our proof is completed by proving that
Z(X) is a z-extension of L’. This is really quite easy once we observe that the
z-lattice Z(X) has a space X *®) of g-prime minimal prime ideals which is
canonically homeomorphic to X under the map x — j, = {a€Z(X): x¢a}.
Referring to 5.4 we see that («) is valid, (B) follows from Lemma 2.5 and the
preceding remark, and (y) simply expresses the fact that every zero-set in X (more
precisely, its homeomorph X*®) is closed and hence an intersection of the basic
closed sets in L' (more precisely, their copies inside X%¥)), Thus the theorem is
proved.

It might have been hoped that in the previous construction, L’ actually
coincides with Z(X), but as already observed, this is not generally so. After
examining an example which validates this assertion we formulate and prove the
maximality property possessed by lattices Z(X), and our main characterisation
theorem quickly follows.

ExaMPLE 5.7. Consider the z-lattice B = B[0, 1] of all Borel subsets of [0, 1].
Then B is a z-sublattice of the power set P = P[0,1].

ProoF. To see this we also need to refer to F = F[0,1], the z-lattice of all
closed sets (= zero-sets) of [0,1] with the usual topology. Before the assertion
can be proved we need to describe the o-prime minimal prime ideals of each of
F, B, and P. Since [0, 1] is compact those of F are all fixed, i.e. of the form j, N F
where j, = {aeP: x ¢ a}, for x e [0, 1]. Also the non-measurability of the cardinal
of [0, 1] implies that the o-prime minimal prime ideals of P are all of the form j,
for x € [0, 1]. Now all three of F, B and P are perfectly normal and so Lemma 2.6
implies that every o-prime minimal prime ideal of B is of the form j, N B for some
x €0, 1]. This last result is also a consequence of 8.4 [6].

Turning now to proving that B is a z-sublattice of P we note that 5.4 («) is
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obviously true, (§) has already been remarked upon, and so only (y) remains. But
each singleton {x} belongs to B and so (y) is easily seen to be equivalent to

[0,1]\b = Db [o,1]\{x}, b =[0,1];

where the sets in the right-hand intersection are all in B. Thus B is a proper
z-sublattice of P.

Our next result shows that a zero-set lattice Z(X) can never be a proper
z-sublattice of a z-lattice, and this is the point where we can see why Gordon’s
results [6] differ in some respect from the usual topological ones. Simply put, his
zero-set structures are more general than those which can arise in the topological
context, and so a result such as: a product of pseudo-compact zero-set spaces is
pseudo-compact, can be valid in the former while failing in the latter. Put another
way, z-lattices such as the B of 5.7 can never arise as Z(X) for a topological space
X. We note that if this could happen, results of Mandelker [10] imply that X
would be at least a P-space!

THEOREM 5.8. Suppose X and Y are realcompact spaces and that Z(Y) is
isomorphic to a z-sublattice L of Z(X). Then Z(Y) is isomorphic to Z(X).

ProoF. We prove that X and Y are homeomorphic under the stated as-
sumptions. It is easy to see that the space of g-prime minimal prime ideals of
Z(X) topologised as in 5.6 is canonically homeomorphic to X ; we denote it X*
with points j, = {a € Z(X): x ¢ a}. Similarly for Z(Y). Thus we have the following
diagram, where L' = {X?®:aeL} and Z' = {XZ®: be Z(X)}:

S Lez
LN\
L'c Z'c Z(X*

where all the maps which are not inclusions are isomorphisms; the vertical maps
are as in the construction 5.6 and the diagonal map is defined using the homeo-
morphism x - j_.
Now (5.4) (B) states that the map
x¥*=j.->j. NL
is a bijection; by construction it is continuous from X* onto X*. We show that it
is a closed map. A typical closed subset F of X* is of the form

F= (N x*
beB

where B < Z(X). Condition (5.4) (y) states in this context that for each b € Z(X),
Xy =N {XY aeL, a=b} whence
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F= x*
ac 4

where A < L. But now we may apply the bijection above, and we find that
F > N,.4X", a closed subset of X*. Thus X* is homeomorphic to X" and so we
deduce that X is homeomorphic to Y. Finally we complete the proof by noting
that the lattice of zero-sets of a topological space is a topological invariant.

We can now finish off with the characterisation theorem.

THEOREM 5.9. T he following are equivalent for a lattice L.

1) L is isomorphic to Z(X) for a topological space X.
2) (a) L is (2, 0)-complete;
(B) L has enough o-prime minimal prime ideals;
(y) L is perfectly normal;
(8) L is isomorphic to every z-extension L’ of L.

ProOF. 1) implies 2). Properties («), (f) and (y) have already been observed
Suppose that Z(X) is a z-sublattice of a z-lattice L’. Noting that we may suppose
X is realcompact by 5.2, we have the following diagram:

Z(X) c L'

|l

Z < L' < ZXY)

where the vertical maps are isomorphisms as in the construction of 5.6, and the
horizontal maps are inclusions. By the transitivity of the property of being a
z-sublattice, Z’ is a z-sublattice of Z(X"") isomorphic to Z(X), and so Z(X) =~ L’
follows from 5.8.

2) implies 1). We have already proved that if L satisfies 2) («), (), (), L is
isomorphic to a z-sublattice L’ of Z(X) for a completely regular space X, and so
by (6) we may conclude that L =~ Z(X).
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Chapter 2
Probability

Elja Arjas

Writing a brief commentary on three of Terry Speed’s papers in probability brings
to mind many memories from a time now almost forty years away. Two of these
papers were written while Terry worked as a Lecturer in Sheffield, and during this
period my encounters with Terry were very frequent. The third paper was written
after Terry had already moved on to Perth.

These were times “when we were very young”, and there was a great deal of
excitement about new developments in probability. One of the main sources of in-
spiration was Volume 2 of Introduction to Probability Theory and its Applications
by Feller [8], which had come out sixteen years after the publication of Volume 1
[7], and was then followed five years later by an expanded Second Edition. Feller
was a master in making probability theory look like it were a collection of challeng-
ing puzzles, for which one, if only sufficiently clever, could find an elegant solution
by some ingenious trick that actually made the original problem look like it had
been trivial. Feller’s books offered also a large number of examples leading to po-
tentially important applications. This idea of making probability a tool for practical
mathematical modeling was gaining ground in other ways, too. An important move
in this direction, in 1964, was founding, at the initiative of Joe Gani, of the Applied
Probability journals. The Department of Probability and Statistics in Sheffield, also
Gani’s creation, was a hub of these developments and it attracted a number of young
talents to its circles from around the world, Terry being one of them.

Another source of inspiration at the time was ‘the general theory of stochas-
tic processes’, which was represented, most importantly, by the French and the
Russian schools of probability. The key figure behind this in France was Paul-André
Meyer and his book Probability and Potentials [10] was one of the favorites in
Terry’s impressive home library in Sheffield. (A sign of Terry’s interest in the works
coming from the French school is that he translated into English J. Neveu’s book
Martingales a temps discret [11], which appeared in 1975 with the title Discrete Pa-
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rameter Martingales [12]. I remember Terry wondering why the French publishers
did not seem to make any effort towards marketing their books outside France, or
even making them available in the largest bookstores in UK.)

Chronologically, the earliest of the three papers on probability in this collection
is the one entitled Symmetric Wiener-Hopf factorisations in Markov additive pro-
cesses, which Terry and I submitted to the prestigious Springer journal ‘ZW’ in
November 1972 [2]. For me, the background story leading to this is as follows: Not
finding anyone in Finland to suggest a topic to work on for a PhD in probability,
let alone to act as a supervisor, I had in desperation written to Professor Gani, ask-
ing him whether he would let me come and spend some time in his Department in
Sheffield. I was immediately welcomed, and I stayed there for the winter and spring
1970-71. Sheffield turned out to be an excellent choice, with lots of academically
interesting things going on all the time. There were many visitors, good weekly
seminars, and if this wasn’t sufficient, the Department paid train trips for us to go to
London and Manchester to listen to more. But above all, there were people roughly
of my age some of whom were working towards a PhD just like I was, and others
who were already much beyond, like Terry. There I learned what doing research
in probability might involve in practice. My contact with Terry, which grew into a
friendship, was particularly important in this respect. During the first and longest
stay in Sheffield in the spring of 1971 I lived next door from Terry and Sally, and on
my later visits I enjoyed their hospitality as a guest in their home.

This paper on Wiener-Hopf factorizations was inspired, in particular, by the ideas
on Random Walks in R! that were contained in Chapter XII of Feller’s Volume 2,
with that same title. On the introductory page of this chapter Feller writes: “The the-
ory presented in the following pages is so elementary and simple that the newcomer
would never suspect how difficult the problems used to be before their natural set-
ting was understood.” The key to such elementary understanding offered by Feller
is the concept of ‘ladder point’, a pair of random variables consisting of a ‘ladder
epoch’ and ‘ladder height’. Consecutive ascending (descending) ladder points make
up the sequence of new maximal (minimal) record values of the random walk. The
sample path of the random walk arising from its first n steps can now be divided
into random excursions, each ending with a new maximal (minimal) record value,
and finally including an incomplete excursion from such a record value to where the
random walk is after n steps. Due to the assumed iid structure of the random walk,
the differences between the successive ascending (descending) ladders are also iid,
and therefore the distribution of the sum of any k of them can be handled by forming
a k-fold convolution ‘power’ of the distribution of one. These convolution powers of
the common distribution of the ascending ladder heights make up the ‘positive part’
of the Wiener-Hopf factorization. The ‘negative part’ stems from the incomplete
excursion, by first noting that its distribution remains the same when the order of
its steps is reversed and that, when considered in this manner ‘backwards in time’,
the position at which the original random walk had its maximum now becomes a
minimal record value. Therefore the distribution of this incomplete excursion gets a
similar representation as the original sample path up to the maximal value, but now
in terms convolution powers arising from the descending ladder points.
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A second ingredient leading to our ZW paper was the emergence, in varying
formulations and uses, of the concept of conditional independence. Conditional in-
dependence had been previously considered, for example, by Pyke [14] and Cinlar
[4] in connection of semi-Markov and Markov renewal processes, and it was also an
essential ingredient in Hidden Markov Models (HMMs) introduced by Baum and
Petrie [3]. The general definitions and properties of conditional independence were
expressed in measure theoretic terms in Meyer’s book [10]. In statistics, it seems
to have taken a few more years, to the well-known discussion paper of Dawid [6],
until the fundamentally important ideas relating to conditional independence were
fully appreciated and elaborated on. Presently, as is well known, conditional inde-
pendence plays a major role particularly in Bayesian statistical modeling.

By replacing ‘time’ in Markov renewal processes by an additive real valued vari-
able led us to consider, in a straightforward manner, a stochastic process called
‘random walk defined on a Markov chain’, or somewhat more generally, to Markov
additive processes [5, 1]. It was relatively easy to see that the key ideas of Feller’s
treatment of random walks could be retained if the model was extended to include
an underlying Markov chain, then assuming that the increments of the additive vari-
able were conditionally independent given the states of this chain. In the case where
the state space of the chain is finite, ordinary univariate convolutions used in the
original random walk would be replaced by the corresponding matrix convolutions.
Our paper in ZW adds a further level of generality to these results, by stating them
in terms of transition kernels defined on a measurable state space. The technically
most demanding aspect here was the construction of the dual or adjoint operators,
corresponding to the time reversal in the original process. For the record, I should
say that it was Terry who was primarily responsible for correctly adding all neces-
sary mathematical bells and whistles to these general formulations.

The second paper, entitled A note on random times [13], provides the natural def-
inition of, as it is called there, randomized stopping time in the case of processes of
a discrete time parameter. In this brief note, Jim and Terry not only define this con-
cept, but actually exhaust the topic completely by listing all its relevant properties
and by linking it to different variants of essentially the same concept that existed
in the literature at the time. Here, too, the key concept is conditional independence:
Definition 1 says that a random time is a randomized stopping time relative to a
family of histories if its occurrence, given the past, has no predictive value con-
cerning the future. Of the properties derived, of most interest would seem to be the
equivalence of (i) and (ii) of Proposition 2.5, and the intuitive explanation that is
provided afterwards. To put it simply, a randomized stopping time is an ‘ordinary’
stopping time if it is considered relative to a family of bigger histories. What is re-
quired of these larger histories is that, at any given time point and given the past of
the ‘original’ history, events in the past of this larger history do not help in predict-
ing the future of the original. When expressed in this way, one can see how close
it is to the concept of ‘non-causality’ of Granger [9], which is famous in the time
series and econometrics literature, as well as, for example, to the property of local
independence introduced by Schweder [15].
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Looking at a result like this, one gets the feeling that the message it conveys
should have been read, and understood, by generations of statisticians working in
the area of survival analysis, in need of a natural definition of the concept of non-
informative right censoring. They should have been thinking in terms of randomized
stopping times! Instead, the common assumption stated in nearly all of the survival
analysis literature is that of the ‘random censoring model’, which postulates for each
considered individual the existence of two independent random variables, of which
only the smaller is actually observed in the data. This model leads to strange events
such as ‘censoring of a person who is already dead’.

Terry is sole author of the third paper discussed here, entitled Geometric and
probabilistic aspects of some combinatorial identities [16]. It is rather difficult to
describe its contents in an understandable way in only a few sentences. In geomet-
rical terms, it is concerned with certain hyperplanes in the positive orthant of the
(k+ 1)-dimensional integer lattice. The main focus is on a particular combinatorial
expression, which is shown to correspond to the number of minimal lattice paths
from the origin to the considered hyperplane and such that the paths do not touch
that plane until at the last point. This geometric interpretation then leads to concise
derivations of some convolution type identities between the combinatorial expres-
sions. Later on, the paper provides probabilistic interpretations, and corresponding
proofs, for these results by considering the first passage time of a random walk
from the origin to the hyperplane. There are also results on the associated moment
generating functions, which have interesting analogues in the theory of branching
processes. Although these combinatorial identities were not included in Feller’s two
books, one could say that Terry’s approach to deal with them is very much Feller-
like: when going through the mathematical derivations, at some point there is a
phase transition from mysterious to intuitive and obvious. Another thing about this
paper which I liked is its careful citing of the work of all authors who had earlier
contributed, in various versions, to this same topic. But it looks like Terry just about
exhausted this topic since, according to Google Scholar, to date this paper has been
cited only once, and it isn’t even listed in the ISI Web of Knowledge database.

Epilogue

When looking at the list of contents of this volume, which covers fifteen topics start-
ing from algebra and ending with analysis of microarray data, one soon concludes
that it would be hopeless to try to compete with Terry in terms of scientific output.
In fact, competing with him in anything turned out to be a futile attempt. I once
tried, in the late 1970s, when Terry visited me in Oulu and we went jogging. As we
came back, I believe Terry was a bit more out of breath than I. Later on, however,
Terry started practicing regularly by running up and down the steep hills surround-
ing Berkeley, and at some point I was told that he had run the marathon in less than
three hours. My first marathon is still due. But luckily, there may be a sport where
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I have a chance of beating him: cross-country skiing. This is an open invitation to
Terry to try.
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Symmetric Wiener-Hopf Factorisations
in Markov Additive Processes

E. Arjas and T. P. Speed

The classical Wiener-Hopf factorisation of a probability measure is extended to
an operator factorisation associated with a semi-Markov transition function. Some
consequences of this factorisation are indicated including a set of duality relations.

1. Introduction

The classical Wiener-Hopf factorisation of a probability measure F on (R!, %)
has been put in a symmetric form by Spitzer [14] and Feller {7] and can be
written as follows:

(1.1) 0o —F=(8o—H7)*(8g—{d0)*(8o— H)

where J, is the unit mass at zero, 0<{<1 and H*, H™ are possibly defective
probability measures concentrated on (0, o0) and (— oo, 0) respectively. In fact
H* (resp. H™) is identified as the distribution of the strict ascending (resp. de-
scending) ladder variable.

In his very interesting extension of (1.1) Dinges [6] considered a substochastic
transition function P on a measurable space (E, &) with a total order, and con-
structed a factorisation:

(1.2) 1-1P=(1—;izkg;) ° (I~§T"BJ) o (I—fjrkﬂ*)

where B, B, and B*,k=0,1,..., are suitable operators or sub-stochastic
transition functions, 0<t<1 and “-” denotes composition. Dinges’ result gives
(1.1) as a special case, but first a few rearrangements are required to do this. The
reason is that although B~ and B* are notationally dual their constructions are
not immediately seen to be so, and thus it is desirable to clarify this point. Further
Presman [11, 12] has unsymmetric matrix factorisations which are similar to ones
derived below, but these are obtained algebraically.

It is the purpose of this paper to obtain a symmetric factorisation which
generalises (1.1) in two distinct ways: for we deal with Markov additive processes
{(X,,S,): n=0}, which reduce to the classical random walk by specialising the
first component to a single value, or by suppressing the second component and
specialising the first to be a random walk. Thus we can also obtain a result like
(1.2) with the difference that our factorisation is manifestly symmetric. We formu-
late our results in an abstract way and the different results referred to are special
cases. One aspect we emphasise throughout is the duality obtained from, and
implicit in the proof of, our symmetric factorisations. In this respect our method
g
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is quite analogous to that of Feller’s [7] Fourier analytic derivation of (1.1) in
Chapter X VIIL

We now describe the contents of this paper. After some preliminaries con-
cerning Markov additive processes we consider briefly Markov additive pro-
cesses in duality. Next we formulate our abstract Wiener-Hopf factorisation and
give its simple proof. The following two sections give concrete applications of this
result and give a selection of corollaries. We close with some purely probabilistic
duality results which are of some interest in themselves, and which can also be
used to give alternative (probabilistic) proofs of our factorisations.

2. Markov Additive Processes

Our approach and notation will be based as far as possible upon Cinlar [4, 5]
which in turn, is modelled upon Blumenthal and Getoor [3]. We recall some
terminology. If (G, %) and (H, /) are measurable spaces and if f: G— H is meas-
urable with respect to ¢ and # then we write fe%/#. If H=R'=[— o0, co] and
# =R, the Borel subsets of R!, then we write fe% instead of fe%/# Further
b%={fc%: fis bounded}, 4, ={fe¥: f20} and b¥%, =b¥% %, .

A mapping N: Fx% — [0, 1] is called a transition function from (F, %) into
(G,%)ifa) A— N(x, A)is a measure on ¥ for all fixed xeF, and b) x —» N(x, 4) is in
b# for all fixed Ae%. Analogously, we define a mapping Q: E x (& x #™)— [0, 1]
to be a semi-Markov transition function (abbrev. SMTF) on (E, &, #™) if a) x>
Q(x, Ax B) is in b& for every Ae&, BeZ™, b) Ax B— Q(x, A x B) is a measure on
& x " for every xeE.

If Q, R are two SMTF’s on (E, & #™) we may define the convolution product
Qo°R as the function,

(21) (x,AXxB)—(QoR)(x, AXB)=| [ Q(x,dx' xds)R(x', Ax (B—s)).

E Rm
QR is easily checked to be an SMTF. For any SMTF Q we define Q°=1I where
I(x, Ax B)=0,(A) 6,(B), and for n>1 Q" 0" 1.Q.

There are many different ways of viewing a SMTF Q, and at various times we
will be doing this. Thus Q may be viewed as a positive contraction valued measure
defined on (R™, ™) by the map B— Q(B), where (Q(B)1,)(x)= Q(x AxB); as a
transition function on (E x R™, & x #™) which is homogeneous in the second
component by the map ((x, s), A X B)—> Q(x, 4 x (B—ys)); as a transition function
from (E, &) to (ExR™ & x &™) by (x, A x B)— Q(x, A x B) (cf. Cinlar [4] (1.2));
and finally as giving a sequence {Q": n =0} satisfying Definition (1.1) of Cinlar [5].

Any SMTF Q induces a family {Q(6): 6cIR™} of contractions on the Banach
space b& by writing (Q(0) f)(x)=[{ Q(x,dx xdy)- f(x) &®?, where (-, -) denotes
the usual inner product in R™. We call {Q(8)} the Fourier transform of Q.

We will consider a Markov process with state space (E, &) to be a sextuple
X=Q, 4 M, X,,0,, P*) (xeE), and all such processes will be assumed non-
terminating (see Blumenthal and Getoor [3]). Following Cinlar [5] we have:

(2.2) Definition. Let X be a Markov process with state space (E, &), write (F, #)=
(R™, #™), and let S={S,: n=0} be a family of functions from (@, .#) into (F, #).
Then (X,S8)=(Q, #, #,,X,,S,,0,, PY) is called a Markov additive process

45
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(abbrev. MAP) provided the following hold:

a) So=0a.s.;

b) for each n=0, S,e,/F ;

¢) foreach n=0, Aeé, Be%, the mapping x - P*{X,€4, S,eB}of E into [0, 1]
isin &, ;

d) foreach k,120, S, ,=S;+S;00, as.;

e) for each k,1=0, xeE, Ac&, BeF

P*{X,o0,€A, S,08,cB|.4,}=P*{X,c4,S,eB}.

We follow Cinlar [5] in our notation for objects associated with the definition,
23) 0(x, O)=P*{(X,,5,)eC}, CeéxF;
24) P(x, A)=Q(x, AX F), A€é.

The action of Q (B) mentioned above is as follows: for feé&,
(2.5) (Q(B) f)(x)=E*[f(Xy); S;€B].

Let N be a stopping time on Q relative to {.#,}; we define the (operator)
transforms associated with (X, Sy) and with the behaviour of (X,, S,) for n<N:
for febé, 6eR™ 0=t<1:

N—-1
6) GN@=E| T v eesisx)],
0
2.7) (H)(x)=E*[t" '@ 5™ f(X); N< 0].

A fundamental passage-time identity relating the transforms G=Gy(r,0), H=
Hy(z, 0) and Q(6) is the following proved in Arjas and Speed [2] (I is the identity
operator):

(2.8) Proposition. Gy(z, 0)[1—1Q(0)]=1I1—Hy(z, 0).

3. Markov Additive Processes in Duality
Let us suppose that we are given a o-finite measure = over our fixed state space
(E, &). We shall say that the MAP’s
X.8)=Q, A, M,,X,,S,,0,,P") and (X,8)=(Q, 4, 4, X,,3,,8,, P
with SMTF’s Q, { respectively, are in duality relative to x if
a) for every xeE, P(x,*)<n, P(x,")<n;
b) for every Be®™, f, geé,

G.1) {£,0(B)g>=<f0(~B), 2>

where, for fi,g,€€, , we have {f;,g,>={fi(x) g (x) n(dx). In this case we say
also that Q and { are in duality relative to 7.

It can be proved (cf. Blumenthal and Getoor [3]) that © is P-excessive where
P=Q(R™) is the Markov transition function of X, and similar results hold for P.
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Thus (cf. Nelson [10]) the operators Q(B) (resp. O(B)) defined by (2.5) act as linear
contractions on I?(n) for 1<p=<oco. With this interpretation (3.1) expresses the
fact that Q(— B), acting on I?(r), is the Banach space adjoint of Q(B) acting on
I4(m) where p~! +q~! =1. Slightly modifying this terminology we will speak of T
and T* being adjoint if { f, T(B)g)=<{fT(— B)*, g) for every Be#", f, geé, .

4. The Factorisation

In this section we present an axiomatic approach to symmetric Wiener-Hopf
factorisations of SMTF’s. A special case of our work is the unsymmetric matrix
factorisation of Presman [12] whose derivation is abstract algebraic in nature.
We would like to emphasise that while the discussion to follow is in a sense
abstract, probabilistic considerations are used throughout and thus our argu-
ments could hardly be termed algebraic.

Our formulation of the Wiener-Hopf factorisation will be in terms of the
Fourier transforms of certain operator-valued measures. Explicitly, we will call
a map B — T(B) from #£™ into the space of all bounded linear operators over LF(r)
an operator-valued measure if for every feI?, geLf, the set function B— {f, T(B)g>
is countably additive. In this case the Fourier transform of the operator-valued
measure is the operator-valued function 8 — T(#) from R™ into the space of all
bounded linear operators over I?(r) where we write, for fe I7, ge 4, { f, T(0) g) =
[ @I f, T(dy)g). It is easy to see that the functions § - Gy(z, 6) and 6 — Hy(z, 6)
are Fourier transforms of suitable operator-valued measures. The space of all such
Fourier transforms will be denoted ./, clearly an algebra over C.

We make the following convention which shortens somewhat our statements:
We say that a statement holds

(i) symmetrically (abbrev. s.) if it holds when all “+ ” symbols are replaced by
“—” symbols and vice versa;

(ii) dually (abbrev. d.) if it holds when (X, S) and the possible other elements
associated with it are replaced by (X, S) and the corresponding associated ele-
ments.

As we conceive them, symmetric Wiener-Hopf factorisations of transforms
of SMTF’s have three essential ingredients. We assume the following (I-III)
throughout this section (almost surely):

I: A decomposition A=A~ @A @A™ of a subalgebra A c.o7 with
(i) A—, A, A" all subalgebras of A;
(i) ATAcA,AA <A ,ands,;
(iii) (A")*=A" and s, (A)*=A"
Here A~ A ={ST:SeA™, TeA'} etc., and (A*)*={S*: SeA*} and s.
We call a decomposition as in I a symmetric W-decomposition. The letter W

is to stand for “Wendel” as there is a close relationship between the above and the
so-called Wendel-projections of Kingman [9].

1I: A system of stopping times N+, N'*, N, relative to {.#,}, and s. and d.,
such that almost surely

() Ny=N*<N"if N*<ooand N, =N*if N'* =c0,and s. and d.;
(i) on {N'* <0} N*=N*+4+N+toly. .,and s. and d.
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The stopping time N* will be sometimes described as a strict ladder index
and N, as a weak ladder index, and s. and d.

We require that the above stopping times be adapted to the symmetric W-
decomposition, by which we mean:

III: (i) I€A’;
(i) Hy.€A*,Gy. €A~ @A ,ands.and d.;
(iil) Hy, €A ®A*,Gy, —IcA ,ands.and d.;
where A—, A" and A+ stay fixed when statements are dualised.

We now prove two important preliminary lemmas, which give the desired
factorisation as an almost immediate corollary. In the first lemma only II is
used, whereas the second lemma is based on I and III.

(4.1) Lemma (Relation between strict and weak ladder indices ).
I—Hy,=(I—-Hy.+){—Hy+),and s. and d.
Proof. We note first that for xeE, 0<7<1, 6eR™, fel?
4.2) E*[N &OSNIf(Xy.); NP <Nt <owo]=(Hy-+Hy+ f)(x).
To see this we write
EX[T @Sy f(X ) N'F <N+t <]
=E[V T 0 Sn ) Er[NT 0N« Gl Shscn ) (X 0By L)
N*ofy..<owo|My.-+]1; N T <o] byl and the general properties of
conditional expectations
=B[N ¢S O (Hy, f)(Xy.-); N+ <c0]
by the (strong) Markov property
=(Hy-+ Hy+ f)(x).
Then, using I1(i) and (4.2), we observe that
(Hy_ /) ()=E*[1" ®Sv O f(Xy ) N, < 0]
=B [V @SN If(Xy,); Ny =N+ <o0]
+E* [tV fOSNIf(Xy ) N, =N*<o0]
=Ex[,L_N' * ei(g’SN'+)f(XN»+); N+ <001
+E* [N @SN I (XL ); Nt <oo]
—E [N OSSO f(X L) N+ <N+ <oo]
=(Hy-+ ) () +(Hy+ ) (X)~(Hy-+ Hy-f)(x) by (4.2)

which completes the proof. The symmetric and dual statements are proved simi-
larly.

The second of the preliminary lemmas is

(4.3) Lemma (Duality).
() Gy-=(I—H )", and s. and d.;
(i) Gy, =(I—H%,)"', and s. and d.
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Proof. By Proposition (2.8) applied to N, , and its dual form applied to N+,
for0<t<1,
(I-tQ)"'=(I~Hy,) ' Gy,
and
(I-1Q)'=(I—Hg.) ' Gy-.

These equations are mutually adjoint because Q =Q*, and so comparing the right
hand sides we get
(I—Hy, ) ' Gy, =Gt (I-H%)™,
and further
Gy, (I-H¥,)=(I-Hy,)G%,.

From I and III follows that the left hand side is of the form I+ K where KeA™,
and the right hand side is in A"@® A*. Hence both sides must be 1, giving (4.3)(ii)
and the dual statement of (4.3)(i). Other symmetric and dual statements are
proved similarly.
(44) Corollary. (i) Hy..=H%., ands.;

(i) Hy-+€A’ and s. and d.

Proof. (i) I—Hy..=(I—Hy,)(I—Hy-)"" by (4.1)
=Gy, (I-1Q)(I-1Q)~' G§* by(2.8)
=Gy, Gyt cancelling
=(I-A%)*(U-HE) by (4.3)

=[(I—Hy,)I—Hg) '*=I-Af., by@l).

(ii) Hy.-eA @A™ follows from the first line of the above proof when using III,
and H} .eA'@ A~ can be proved similarly. The assertion then follows from
4.4)(0).

(4.5) Theorem (Wiener-Hopf factorisation). Let (X, S) and (X,S) be in duality
relative to m, and assume 1-111 to be valid. Then, for 0<t<1, e R™:

4.6) I—tQO)=[I—H%.(t,0][I—Hy. . (v,0)]] [I—Hy-(1,0)], ands.andd.,

where the middle term is interchangeable with 1 —If;q'i+ (t,0), and s. and d. Further,
the factorisation (4.6) is unique in the sense that for a given W-decomposition there
are no other factorisations with the non-unit term of the first (resp. second, third)
factorin A~ (resp. A, A™Y), and s., and d.

Proof. 1-1Q(0)=Gy!(z,0) [I—Hy, (1,0)] by (2.8)
=[I—A%. (0] [I-Hy, (z.6)] by (4.3)(ii)
=[I-A}. (.01 [I~Hy.+ (1,0)] [I —Hy- (s,6)] by (4.1),
which is the required factorisation. The interchangeability of I — Hy.. (z,0) with
I—HE., (1, 0) follows from (4.4)(i).
We now prove uniqueness. To do this let us abbreviate the notation and assume

that
I-1Q=K "K' K*=L"LL"
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are two factorisations with factors invertible such that I—K~, I—-LeA~;
I-K',I-LeA and I-K*,I-L"eA*. Then

K KH(I) ML) =KL,
and arguing as in the proof of (4.4)(ii) we see that both sides must be equal I,
giving K-=L and K'K+=LI.
A similar argument on the latter equation shows that K* =L and K =L. (This
proof followed a familiar pattern, cf. Dinges [6].)

We also state the factorisation in a measure form, allowing a direct comparison
to the factorisation (1.2) of Dinges. Without going through the lengthy prelimina-
ries (regarding the decomposition of the convolution algebra of operator-valued
measures etc.) or making qualifications regarding uniqueness we simply describe
the form of the factorisation and briefly explain some details of its components.

(4.7) Theorem (Wiener-Hopf factorisation, measure form). For suitable operator-
valued measures H,f, H,* H;, n=1, we have

(438) [1—1Q](B)=[1—f;r"(ﬁ,,+)*]o[1—§T"H,;+]o[1-$an:](3},
and s. and d.

Interpretation. (i) “o” denotes the convolution product (see (2.1)) and “=” the
adjoint as in § 3;
(ii) for xeE, Be #™, fe? and n=>1:
(Hy (B)f) )=E*[f(X,); N*=n, S,eB],
(H,* (B)f) ()=E*[f(X,); N'*=n, S,eB],
(A B NHX)=E*[f(&,); N*=n, $,eB].

5. A Factorisation for Markov Chains with Totally Ordered State Space

We now specialise the results of the previous section to give a symmetrised
factorisation for a transition function P, analogous to Dinges’ [6] result. Recall
however that we have assumed our process to be non-terminating, whereas in
Dinges’ case no extra assumptions of this kind are made save the necessary ones
regarding order. These are that E has a reflexive, transitive binary relation, denoted
<, such that for any x, x'eE either x<x' or x' < x. Further, if we write x~ x iff
x<x' and x'=<x, and x<x' if x<x' and x~x' is false, then we require that
{(x, x'): x' < x} belong to the product o-field & x &.

For our algebra A (subalgebra of «#) we choose the real algebra generated by
the set of all positive contractions on 7 (n); this arises by putting §=0 in each
element of .o/. Using the well-known equivalence between positive contractions
and transition functions on (E, &) we define the appropriate symmetric W-decompo-
sition as follows: for Te A, xeE, Aeé& put

TH(x, A)=T(x, {x': x<x'}nA);
(5.1) T (x, A)=T(x, {x': X' ~x} N A);
T (x, A)=T(x,{x": X' <x}n A);



2 Probability

E. Arjas and T.P. Speed:

clearly T=T~ 4T + T* and this is easily seen to define a direct sum decomposition
of A satisfying I(i), (ii) of § 4. To see how the decomposition can be defined directly
in terms of its action on functions, we refer to Dinges [6].

The system of stopping times is the familiar one — the usual ladder indices:
N*=inf {n>0: X,<X,};
N, =inf{n>0: X,<X,};
N'*=N, if N <N*, and N'*=o0 otherwise;

and s. and d.

(52)

We omit the verification of the fact that (5.2) satisfies Il and III of § 4; I1(ii) follows
because on {N'*<w} Xy..~X, and N'*<N* so that N*=inf{n>N"*:
Xy-+<X,}, and other requirements are satisfied quite obviously. Thus we can
read off the following theorem, where we write Hy - (t)=Hy (z, 0) etc.:

(5.3) Theorem. Let P and P be in duality relative to m, and consider the stopping
times (5.2). Then as a relation between contractions on I¥ () for 0<t< 1
(54 I—tP=[I—-A% (1)][1-Hy.. (]I —Hy:(c)), ands.andd.,

where the middle term is interchangeable with I —FIS. +(n), and s. and d. The uni-
queness is as in Theorem (4.5).

(5.5) Application 1. The one-dimensional random walk. Suppose that X, =) Z,
1

where the {Z,} are i.i.d. random variables with law u. Let A denote Lebesgue meas-
ure on (R*, %'); then it is easy to see that A is P-excessive with P(x, A)= (4 —x)
where /i is the measure u reflected in the origin i.e. for Be #* fi(B)=u(— B).

Now the operator P on L*(J) is

(5.6) (PA) (x)=E*[f(X)] =] f(x+x) u(dx).

Following Dinges [6] we call this operator T,; note that if e(x)=¢"* for feR*
then (T, ) (x)=¢(0) e(x) i.e. scalar multiplication by the characteristic function
¢(0) of u. The following expressions are readily checked: with notation as in
Feller [7], Chapter XVIII (3.5)

(Hy-+ €) (0)=1(z, ),
() (Hy-+ ) (0)=f(x),
(H- 9 (0)=2"(z,0).
Note that in the last case the adjoint simply means complex-conjugation; the

Eg. (3.5) of Feller is now seen to be an immediate consequence of (5.4) above
acting on e(x) and evaluating at x=0.

(5.8) Application 2. The m-dimensional random walk.

Here X, =) Z, where {Z,} is a sequence of L.i.d. random variables with law s.

1 & . . . .
The dual process X is constructed as in the previous example, with respect to
A, m-dimensional Lebesgue measure. We order the state space (R™, %£™) by

51
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selecting a basis for R™ so that each Z, can be written Z,=(Z{"), ..., Z{") and we

then write: )
(M, X ™y > (xD, Xy x> X
~1 =

In terms of this order the ladder indices N* etc. relate to the hyperplane x™ =0.
Exactly as we found in the preceding example a factorisation arises by operating
on e(x)=¢&'®» for feR™.

(5.9) Application 3. A duality principle.

We now briefly describe a duality principle which is implicitly contained in
Lemma (4.3). We express it as adjointness of two transition functions or rather,
their associated contractions. For xeE, Aeé, n=1, define:

(5.10) (i) D,(x, H)=P*{X;=x,...,X,=x, X,e4},
(i) D,(x, A=P*{X,=X,,....X,_1£X,,X,e4}.
Clearly these transition functions induce contractions D, and D, on I?(n) and
I#(n) respectively, and the duality result is:
(5.11) Propostion. D* =D, for all n>0.

(5.12) Remark. The symmetric statements, where =< in (5.10) is replaced
systematically by <, = or >, and the dual statements hold also.

Proof. With the stopping times N* and N, and the duality being used in this
section we see that with definition (5.10)(i)
Gy+ (‘L’)=§ ™D, where Dy=I.
Further, observing that °
D,(x, A)=P*{n is a weak ascending ladder index, X, Z€A}
we readily find that

(I—-Hy, ()" '=Y 1D, where Do=1I,

OMS

and the proof is an immediate consequence of Lemma (4.3)(ii).
(5.13) Remark. We can express Proposition (5.11) as follows: for feI?(r),
geli(n), n>0:
LD = f) P {X;<x, ..., X, = x, X,e(dx)} g(x) n(dx)
=[{f) P {X,2X,,....X, =X, X,e(dx)} g(x) n(dx)
= <fDm g> .

In this form it is easy to give a direct probabilistic proof, and with this proof
of Lemma (4.3), combined with a direct probabilistic proof of Lemma (4.1), we
have an alternative method of obtaining Theorem (5.3).

6. A Factorisation Associated with the Second Component of a MAP

As a second specialisation we derive a factorisation using the ladder indices
associated with the S-component of a MAP (X, S). This was our original aim and
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amongst many possible applications, it gives an alternative way of deriving the
result (1.1). Throughout we suppose the dimension m=1, see Remark (6.6).

The algebra which we decompose is the full algebra .o7 of all Fourier transforms
T(6). For any such transform we have T(0)={ ¢'®” T(dy), and we define

TO = | & Ty,

— 0

(6.1) T(6)'=T({0}),

TO)* = [ T@y),
0+

where the right sides can be interpreted formally or precisely, as operator integrals.
For example, if fe IZ, ge I%, p~' 4+ g~ =1, then we define such integrals by

0—
LTO) g>= [ <, T@y)e)

and similarly for T(0)*. Clearly T(6)=T(0)" + T(6) + T(0)* and this decomposi-
tion induces a decomposition of o/ satisfying I(i), (ii) of § 4. The system of stopping
times is the family of ladder indices for S:
N+ =inf {n>0: S,>0};
N, =inf {n>0: §,20};
N'*=N, if N <N*, and N'* =00 otherwise;

and s. and d.

6.2)

We again omit the verification of the fact that (6.2) satisfies I and III of §4;
IE(ii) now follows because Sy.+ =0 on {N * <c0}. We have the following theorem,
Whel’e HN‘+ (T)=HN~+ (T, O):

(6.3) Theorem. Let Q and Q be in duality relative to , and consider the stopping
times (6.2) and s. and d. Then as a relation between contractions on I?(n), for 0<t <1,

feR: N
(64 I-1Q0)=[I—-H}.(t,)] [I—Hy.+ (7)] [I —Hy. (z,0)],

and s. and d.,

where the middle term is interchangeable with I —H * (1), and s. and d. The unique-
ness is as in Theorem (4.5).

We now suppose that the state space E={1, 2, ..., s} and for a given SMTF Q
the underlying chain P is ergodic. Thus there is a unique invariant measure ©
such that 7(i)>0, ie E. Put 4=(5,;7(i)).

(6.5) Corollary. In the finite-state case just described, if t denotes matrix transpose:

I—7Q@)=A""[I—Hg. (7,01 AU —Hy.. ()] [I —Hy- (z,6)]
and s. and d.
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This result is a symmetrised form of Theorem (2.1) of Presman [12], and if the
last two factors are combined it becomes exactly his result.

(6.6) Remark. Before going on to give applications of Theorem (6.3) we will
observe that the restriction to m=1 in this section is purely for simplicity. At least
one interesting situation in m>1 dimensions is when N is the hitting time to a
half-space through 0, as described in § 5. This topic can be treated exactly as the
1-dimensional case has been, giving rise to a generalised form of (6.3).

(6.7) Application 1. A duality principle.

The following discussion is a generalisation of the result Feller [7], p. 609, as
indeed was the result (5.9). In a manner similar to our previous discussion we define
SMTF’s D,, D,: for xeE, Aeé&, Be#' and n>1
(6.8) (i) D,(x,AxB)=P*{X,eA4,S,=0,...,5,20,S,eB};

(ii) D,(x, Ax B)=P*{X,e4, §,<8,,...,5,_:<8,,5,€B}.
It is easy to see that these induce contractions on I?(n) and I4(r) respectively, and
the duality result here is:
(6.9) Proposition. D¥ (B)=D, (B) for all Be®*, n>0.

Proof. The proof is almost identical to that given for Proposition (5.11).

Remark (5.12) applies here as well. Also as in § 5 we can give a direct proof of
this result, but we refer to the final section for a fuller discussion.

We now discuss briefly the above duality in the context of the bivariate proces-
ses (X, W)={(X,, W,): n=0} and (X, M)={(X,, M,): n=0} where we define

(Xos Wo)=(Xo,0)

(6.10)

(Xn, W/;l)z(Xna(Wt—l+Sn—Sn—1)+)a n>0;
and
6.11) (X, M))=(X,, min (0,S,,...,5,),  n20.

We now formulate this duality explicitly as:

(6.12) Theorem. For (X, S) and (X, S) in duality the bivariate processes (X, W)
and (X, M) are adjoint.

Proof. As shown in Arjas and Speed [2] the resolvent of (X, W) is
A(t,0)=[1—Hy_(z,0)]* Gy _(z,6)
and that of (X, M) is
B(z,0)=[1— Ay- (1,0)] ' G3-(1,0),
where the stopping times are the ladder indices (6.2). Now if we take the adjoint
of A(z,6) we find
A*(1,0)=G%_(z.0) [I —H% _(c,0)]"!
=[I—Hy (r,00] ' G5-(1,0) by Lemma (4.3)
=&(r,0) as stated.
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(6.13) Application 2. A moment identity.

In Feller [7] one of the more immediate consequences of the factorisation
(1.1)is a relation between the expectations of the hitting times to half-lines (assum-
ing both exist) which reads

(6.14) ~16?=E[Sy-1[1-{] E[Sy-1.

We now derive an analogue of (6.14) for the stopping times under discussion in
this section. Let E*[ f7] be an abbreviation for {1, )= [ f(x) m(dx) and let us con-
sider (when possible) the limited expansions:

QO)=P+i0Q,—36*Q,+0(6%);
Hy.(1,0)=H"+i0M™* +0(0);
Hy..()=H'*;
and d.

(6.16) Theorem. Let Q and Q be in duality relative to n, and consider the stopping
times (6.2). Then, if Sy+ (resp. Sg+) is s proper and has a finite expectation irrespective
of the starting point X, of X (resp. X, of X),

Q1=0s Q2<m
—$E*[S71=[[ E*[Sy-1U—H *] (x,dx) E¥ [Sy+] n(dx).
Proof. We use the factorisation (6.4) at T=1, giving
LUI-00)11>
=, [I—-H. (1,0)] [ —Hy-+ (V][I — Hy+ (1,0)] 1)
=([I-H*—iM*+0@]1,[I-H *[I—H"—i0M* +0(6)]1>
=—02(M+1,[I-H *IM* 1>+0(6?),
since, by the assumption of properness, H* 1=1 and H* 1=1. On the other hand
we can use the expansion
LU-0011>
=<1, [I-P—~i0Q,+36*Q,+0(6*)]1>
=—i0<1,0,1)+36°<1,0, 1> +0(6?),

and the assertion follows by comparing the coefficients of 6 and §2.

(6.15)

and

7. Two-Barrier Duality Relations in MAP’s

In this final section we show that some general duality relations obtained
recently by one of us in the case of one-dimensional random walks carry over to
the present situation. In particular we can use them to give a direct probabilistic
proof of (6.3).

Let (X, S) be as before, m=1, and define the “reflected” process (X', §’') with
SMTF Q' by Q'(B)=0Q(~—B), Be#". Further, let (X, V) (resp. (X', V")) be the
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process obtained from (X, S) (resp. (X, §')) by placing two absorbing barries for
the second component at specified positions, and (X, W) (resp. (X', W) be the
process obtained from (X, §) (resp. (X, §)) by placing two impenetrable barries
for the second component at 0 and a> 0. In the latter case we have inductively

Wo=8,; W,=min(a, max(W,_,+S,—S,_;,0)), n>0.

The dual processes (X, 3), (X', 8, (X, V), (X', V"), (X, W) and (X', W’) have their
obvious meanings. We remark that the definition of an MAP can easily be ex-
tended to allow S to have a non-zero starting position.

Our duality relations are expressed in terms of the equality and adjointness
of certain operators on I?(n). We define the following transition functions, where
absorbing barriers are placed in braces following the expressions: for xeE, A&,
an interval Ie#!, y, zeR!, n=0, a>0:

D,(x,4,1,y,2)=P*{X,eA4, W, =z, S,el +y|So=)};
ﬁ,,(x,A,I,y,z)=}3x{X',,eA,Iz,ga—y,§nel+a—z]§0=a—z}, {0,a+};
D%, A, 1, y, 2)=P*{X,e 4, W Za—z,S,e— I +a—y|Sy=a—y}:
Dy(x,A, Ly, 2)=P*{XR,eA4,V,2y,8,e—1+2z|8,=z}, {0—,a}.

(1.1)

The associated operators are denoted by dropping the first two arguments e.g.
D,(1, y, z) arises from D,(x, 4, I, y, z).
(7.2) Proposition. The following operators coincide:
(1) DL y,2)
@ Did,y,2),
(3) Dy y,2)
4 D*(1,y,2).
Further, if the inequalities on the right side of (7.1) are made strict and the
barriers changed to {0—, a} and {0, a+} respectively, the above result is still true.
Proof. The result (1)=(2) follows from the corresponding result of Speed [13]
by proving that for fel?, gel4:
[ 100 P*{X,e(dx), W,z S,el +y|So =} g(x) n(dx)
={{f(x) P* {X,e(dx), V,<a~y,8,el +a—z|8y=a—z} g(x)n(dx).

All the other assertions are proved similarly.

Finally we remark that the case a= oo (one impenetrable or absorbing barrier
only) can be formulated as (7.2) above using the analogous results in the i.i.d. case.
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A NOTE ON RANDOM TIMES
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Abstract. A generalisation of the notion of stopping time is stated, and related to similar generali-
sations introduced by Bahadur, Kemperman, Siegmund and others with a view to permitting
auxiliary experimentation to enter into the definition of stopping rule. The main zim of this

note is to draw attention to the conditional independence implicit in the definiticus of these
writers, and briefly indicate some consequences of this.

random time , conditional independence
stopping time ‘

1. Introduction and description of results

Suppose that (X,,, n=1, 2, ...) is a sequence of random variables de-
fined on a probability space (§2, F,P), and let ¥, denote the o-field
generated by the random variabies X, X,, ..., X,,. In the theory of op-
tional stopping of such a process (X,,), the random times considered are
commonly assumed to be stopping ‘imes of (F,), that is to say, ex-
tended positive integer-valued random variables ¢ such that for each
n=1,2,.., the event {#> n} lies in the o-field ¥, determincd by the
evolution of the process up to time n. Several authors have also con-
sidered stopping procedures involving the outcomes of random experi-
ments auxiliary to the basic process (X,,); in this connection we mention
Bahadur [ 2], Kemperman [6], Singh [9], Sieginunc [8], Chow, Robbins
and Siegmund [4], and Arjas and Speed [1].

In order to provide a unified approach to the work of these authors
we make the definition which follows. Let (§2, #,P) be a probability
space and let us refer to an extended positive integer-valued random
variable defined on 2 as a random time. Suppose that (F,, n=1,2,...)
is an increasing sequence of sub-o-fields of ¥, and let ¥ denote the
smallest o-field containing every %,,n=1,2,....
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Definition 1.1. A random time ¢ is a randomised stopping tiine of ( F,)
if foreachn =1, 2, ..., the event {#> n} and the o-field F_ are condi-
tionally independent given ¥,,.

The point of this note is to state Propositions 2.4 and 2.5 below
which utilise some elementary properties of conditional independence
to give various equivalen formulations of the above definition. These
formulations show that the kinds of random times considered by
Bahadur and Siegmund are essentially the same and just randomised
stopping timcs according to the above definition, and it is clear that the
random times considered by Kempc.rman and Singh are also included.
We do not discuss here any applicitions of randomised stopping times,
but refer the reader to the papers :ind books mentioned above.

When &, is the o-field generated by random variables X, ..., X,,, we
refer to a (randomised) stopping time of ( ¥,) as a (randomised) stop-
ping time of (X,)). It will be seen that a randomised stopping time of
(X,,) can be thought of as being generated in the following way: an cb-
server watches the evolution of the process (X)) as time #n increases,
until a ranaom time ¢ when he stops observing the process; if at time &
he has not yet stopped observing the process, the observer notes the
value of X, and then decides according to the outcome of some random
experiment whether to stcp at time k or to continue to observe the
process. The random time ¢ is a randomised stopping time of (X)) if for
each k, the outcome of the random experiment at time K and the as yet
unobserved future (X,,, k < n < =) are conditionally independent given
the observed past (X,,, 1 < # < k). The random time ¢ is a stopping time
of (X,,) if for each k, the decision at time k is made deterministically
(and measurably) according to the past (X, | < n < k).

A consequence of Proposition 2.5 is that properties of randomised
stopping times associated with Markov processes or martingalcs can be
immediately deduced from ihe well-known properties of stopping times
of these processes. Indeed, let (X,,, n =1, 2, ...) be a sequence of random
variables adapted to an increasing sequence of s-fields ( #,, n =1, 2, ...),
and suppose that (X,,) is a Markov process (respectively, martingale)
with respect to ( %,). If ¢ is a randomised stopping time of ( ¥,) and
F! denotes tlie o-field generated by %, and the events {# =1}, ...

..., {£ =n}, then it follows from the equivalence of (i) and (iv) in Propo-
sition 2.5 that (X,,) is also a Markcv process (respectively, martingaie)
with respect to (%%), and since ¢ is a stopping time of (F},), all the
standard results for stopping tim=s of Markov processes and martingales



60 2 Probability

4 2. Details

can be applied at once to randomised stopping times of these processes.
For the sake of simplicity, we have only considered here random

times associated with processes whose time set is the positive integers,

but most of :he discussion is easily adapted to the other usual time sets.

2. Details

Let N denote the set of natural numbers { 1, 2, ..., u, ...}. Suppose
throughout that (2, #,P) is a probability space and that ( F,, # € N) is
an increasing sequence of sub-o-fields of ¥, with %_ the smallest sub-o-
field of # containing each %,. The reader is yeferred to [7] for a treat-
ment of conditional independence.

Remark 2.1. Recalling from the introduction the definition of a random-
ised stopping time of ( ¥,), we observe that aJternative but equivalent
definitions are obtained by replacing the se' {¢ > 1} apearing in the
definition by any one of the sets { < n}, {#~=n}and {t+ n}.

Examples 2.2. Any random time independent of F__ is a randomised
siopping time of ( F,), and so too is any stopyping time of ( %,). For a

less trivial example, consider a real-valued pracess (X)) defined on

(2, F,P) and suppose that Y is a real-valued random variable independent
of the process (X,,). Let ¢ -inf{n: X, > Y} Then it is easily seen that

t is a randomised stopping time of (X,,). A sinilarly defined randomised
stopping time of a continuous time process {finds an application in [3,

p. 276].

For another example, suppose that (X,,) is a Mark.ov chain and let T,
be the time of the n'™ visit tc state i. Let 7 ba any stopping time of (X))
and define a random time ¢ by ¢ =inf{n: 7, 2 T}, so that t — 1 is the
number of visits to state i before time T. Then £ is a randomised stopping
time of (T,), as may be seen from the fact that {¢> n} = {T,, < T}, [7,
IV T41] and the strong Markov proyerty (cf. [S, p. 27, proof of
Theorem (76)]).

For sub-o-fields o and B of F, let us denote by of vB the smallest
sub-o-field of F which contains both s{ and 93. Suppose we are given
sub-o-fields &,, &, and & of ¥.

Lemma 2.3. The following statements are equ jvalent:



2 Probability 61

J.W. Pitman, T.P. Speed, A note on random times

(i) & and &, are conditionally indepenueiir given &;
(i) PlAI& v &,] =P[A| &] as. for every set A in &;
(iii) & v &, and & v &, are conditionally independent given &;
(iv) E{Y|&v &,} =E{Y|&}as. for every intcgrable & v & -measur-
able random variable Y .

In (ii) ar.d (iii) the subscripts 1 and 2 can be interchanged to give
further statements equivalent to (i).

Proof. The equivalence of (i) and (ii) is proved in [7, I T51;. The
further equivalence of (iii) and (iv) follcws by repeated application of
this result.

With the aid of Lemma 2.3, the conditional independence condition
in the definition of randomised stopping time can now be rephrased in
a multitude of ways. Proposition 2.4 below displays some minimal
conditions for a random time to be a randomised stopping time of
( F,). while in Proposition 2.5 the conditioral independence is exploited
to the full to give some strong properties of randomised stopping times.
Suppose that ¢ is a random time on (82, % ,P).

Propesition 2.4. The jollowing statements are equivalent:
1) t is a randomised stopping time of ( F,);
(i) forailne N,PLu>n | F_ 1=Pli>n| F,las.;
(it joratlln € NJAC F_ Pt >n,A) =S {e>n}PlAL F,]dP.
Further statements equivaient to (i) are obrained by replacing the set
{t > n'} appearing in (ii) ard (iii) by any of {t < n}, {t =n} and {t # n}.

Proof. Let &, denote the sub-o-field of F generated by the event {r > n}.
By definition, ¢ is a randomised stopping time of ( %,) if and only if ‘or
each n in N, the o-fields d,, and F_ are conditionally independent

given F,. The equivalence of (i), (ii) and (iii) now follows from the
equivalence of (i) and (ii) in Lemma 2.3 since ¥_v ¥,= ¥_ and

dy, v F, has an obvious simple structure. Using Remark 2.1 the remain-
ing assertions can be proved in an identical manner.

Continuing to suppose that ¢ is a random time on (R, F,P), let F/,
denote the smallest sub-o-field of F containing F,, and the events
{r=1}, ..., {t=n}.
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Proposition 2.5. The following staterents are equivalent:
(i) t is a randomised stopping time of ( F,);

(ii) for each n € N the o-fields F f, and F_ are conditionally inde-
pendent given F,; B

(iii) foreach n € N,E{Y | F_} =E{Y| ¥,}a.s. for each integrable
F 1-measurable random variclle Y,

(iv) for each n € N, E{Z| F.} = E{Z| F,} as. for each integrable
¥ -measurable random variable Z.

Procf. Let F, denote the sub-o-ficld of F generated by the events
{t=1}, .., {t=n],so that F, = F, v F,. The fac. that ( F,) is an in-
creasing sequence of o-fields ensures that ¢ is a randomised stopping
time of ( %,) if and only if for each n in N, the o-fields %, and F_ are
conditionally independent given %, and the proposition now follows
by applying Lemma 2.3.

Put another way, the equivalence of (i) and (ii) in Proposition 2.5
means that ¢ is 2 randomised stopping time of ( #,) if and only if there
exists an increasing sequence of o-fields (g,,) within & such that
F,C @, tisastopping time of (§,), and G, and F_ are conditionally
independent given F,. With this conditional independence criterion
written in the form

PlAI g,]=PlA1%,] as

foralin € Nand A € F_, this is just the property required by Siegmund
of his ‘randomised stopping variables for (%,)".

Given an increasing sequence ( %, ) of o-fields in a probability space
(82, F,P), it may be that the probability space as it stands is not large
enough to support many randomised stopping times of ( 7). As an
extreme case, if F = F_, then the only randomised stopping times of
( #,) are stopping times of ( F,). For this reason, it seems reasonable to
consider the possibility of enlarging the original probability space in
some way to allow room for experimentation auxiliary to ¥, . Consider,
for example, the following procedure used by Bahadur [2]. Suppose
that there is given for each n, an F ,-measurable function a, with
0<a,<1.

Observe the sequence of o-fields ( %,) in succession, and given that
the first m o-fields have teen observed, conduct an auxiliary random
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experiment with probability of success equal to the observed value of
a,, , stopping at the time of the first success. This procedure will define
a random time # on a probability space (%', F',P') constructed from
(82, 7, P) and all necessary auxiliary experiments. This probability space
will contain an isomorphic image of  in ¥ on which P’ agrees with P,
and after identifying o-fields and random variables defined on (82, ¥, P)
with their isomorphic copies in (', F', P') it is being assumed that for
each n € N, the event {# > n} and the o-field F_ are conditionally inde-
pendent given ¥, and {t 2 n}, and that

P'i{r=n}l ¢, {t=n=a, on {r=n}.

The construction of the probability space ($2', F',P') and random time ¢
is easily formalised, and it may be shown that ¢ is a randomised stopping
time of ( F,) in (', F',P'), with

Plt>n}i F 1=(1—a)..(1—a,), neN.

Moreover, if ¢* is any randomised stopping time of ( #,) defined (in the
obvious way) on an enlargement (2%, #*, P*) of (2, #, P), then a ran-
domised stopping time of (F,) having the same joint distribution with
F _ as t* can be constructed in the manner described above by taking

a, =P t=n|F,1/F[t=2n|F,].
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GEOMETRIC AND PROBABILISTIC ASPECTS
OF SOME COMBINATORIAL IDENTITIES
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Abstract

For positive integers a, b and n define the combinational expression

a a+bn
A,,(a,b)=a+bn( i )

We give geometric and probabilistic interpretations of these expressions (and their multidimen-
sional extensions) and find new, simple proofs of the convolution identities known to hold for such
expressions.

1. Introduction

For non-negative integers a, b with a + bn > 0 let us define the combinator-
ial expression

__a a+bn
) A,.(a,b)-a+bn< i )
In two papers written some twenty years ago Gould (1956, 1957) discussed the
above (and related) expressions. He obtained, amongst other results, the
following convolution identity: for positive integral ¢

@) E_ An (@, b) An-m(c,b)= A(a +c, b).

Gould’s two papers contain different approaches to this identity whilst in his
recent article Gould (1974) gives yet another. We also note that Riordan (1958)
presents an inductive proof of (2), as do Gould and Kaucky (1966) where further
comments and extensions can be found. The proof of Blackwell and Dubins
(1966) is perhaps closest in spirit to the one given below. Mohanty (1966a)
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extended the argument of Gould’s first paper, stating and proving multinomial
analogues of (2) and the related identities. He also gave a probabilistic
interpretation of these facts. To formulate these results we use bold letters to

denote k-tuples of non-negative integers, b= (b, b, ---,b) and n=
(ni, nz, -+, n). Further we use the usual dot-product notation b-n =
bini+ byno+ - -+ + by and write 1=(1,1,- -+, 1). With these preliminaries we
can extend the notation above when a + b - n >0 writing

, _ a a+b-n
@) A"(a’b)_a+b-n( n )

where (:’) =N(N-1)---(N—1-n+1)/In! denotes the usual multinomial

coefficient. In this notation one of Mohanty’s results (1966a, equation (9) p. 502),
the generalisation of (2) above, can be written

@) > An(a,b) A, .(c,b)= A.(a +c,b).
m=0
Here is the summation from m, =0 to m,=n,,"--,m. =0 to m. = n. as the

notation suggests, and # —m = (n,— my, Ba— My, -, W — My).

It is the purpose of this note to provide new proofs of these identities, the
first, it is believed, that involve the geometrical interpretation of the expression
(1"). After doing this we reconsider the probabilistic aspects of (2'), being
somewhat more concrete than Mohanty in obtaining a random walk whose first
passage probabilities to a certain hyperplane provide yet another interpretation
and proof of (2').

2. Geometric interpretation of A, (a, b)

It is hoped that the notation will enable us to deal with the general case
(arbitrary k) almost as as easily as one would the case k = 1, but this will involve
some slightly unusual temporary usages. We will be working in the positive
orthant of the integer lattice in k + 1 dimensions, the coordinate variables being
denoted by Xo, X,,--, Xk and an arbitrary element will be denoted by (xo, X)
where x = (xi, X2, - - -, X« ). The first coordinate will be treated differently, and ail
all bold letters will be k-tuples of non-negative integers.

Given any k-tuple b and non-negative integer a we can define a hyperplane
by the equation

(P) Xo=a+((b-1-X

Clearly the point (a + (b —1)- n, n) lies on (P) for any k-tuple n, and we
may now state the desired interpretation as follows:
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ProrosiTioNn 1 (Mohanty). The number of minimal lattice paths from (0, 0)
to (a+(b—1)-n,n) which do not touch the plane (P) until the last point, is
A.(a,b).

For the case k = 1 this result is in implicit in Mohanty and Narayana (1961)
(following by duality from their Corollary on p. 256), and appears in the present
generality in Mohanty (1972). The following proof is essentially Mohanty’s but
we include it for completeness.

Proor. The minimal lattice paths from (0,0) to (a + (b —1)- n, n) can be
put into one-one correspondence with N-tuples L = (A, Az -+, An), Where
N=a+b n;foreach ii1=i=N, A is one of the symbols So, S, -, S; for
each j, 1 =j =k there are precisely n; symbols S, and there are a +(b— 1) n
symbols So.

Given such an N-tuple L we can build up a minimal lattice path, starting at
either end, by interpreting a symbol S; to mean ‘move one unit along the X;-axis
towards the other end’. Conversely any minimal lattice path defines a unicue
such N-tuple in the obvious way.

It is also clear that there are precisely (fj) such N-tuples and so this is the

total number of minimal lattice paths connecting (0,0) with (a + (b —1)- n, n).
But we want the number of these which do not touch the plane (P) other than at
the last point. To express this requirement as a property of the N-tuple L we
need a little more notation. For each h, 1=h =N and j, 0=j = k define

m-={1 if Av=3S;

" |0 otherwise.

Clearly 2f_,0i,; = 1. Also put & = Zi-, o, this being the number of times the

symbol S; appears in the first i positions of L, and finally write &= (&,,&2, -, &«).
We will build up the lattice path by working backwards from the endpoint

using L. After i steps have been incorporated, the X coordinate has reduced by

&;(0=j = k) and so we are at the point (a + (b — 1) - n — &o, n — &). This point

lies in the half-space defined by (P) which contains the origin for all i, 1 =i = N,

if, and only if,

a+(b-1)-n—¢&<a+b-1)-(n—§&) (1=i=N),
equivalently, upon expanding and using the fact that &0+ 1 - & = i, if and only if
©) b-&<i (I1=i=N).

Now b - & = Zf_, b, is simply a partial sum along L of numerical terms if we
replace S; by the integer b, 1 =j =k, and S, by 0. With this interpretation we
can immediately recognise the condition (C) and use a well-known result to
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deduce that of the N cyclic permutations of the N-tuple L (with the numerical
components just indicated), precisely a = N — b - n have the property (C); that
is, satisfy the condition that for all i (1 =i = N) the partial sums of the first i
terms are less than i

We refer to Takacs (1967) p. 4 for this result; for a geometric proof more in
the spirit of the present paper, see Mohanty (1966b).

This completes the proof that the number of minimal lattice paths from

(0,0) to (a+(b—1)-n,n) not touching (P) before their endpoint is %(N)
n
where N=a +b -n.

3. Derivation of identities

Let us consider the hyperplane (P) defined above, and the parallel
hyperplane (¢ being another non-negative integer)

P Xo=a+c+(b-1)-X

Clearly any minimal lattice path from (0,0) to (@ + ¢ + (b — 1) n, n) on (P’) must
hit (P) for the first time at X = m for some m, 0=m = n. Indeed there are
precisely A, (a, b) such paths. Each can be completed in A._.(c, b) ways, as can
be seen by viewing (P’) relative to the coordinate system (Xg, X') where
Xo=Xo—a and X'= X — m. This, plus an obvious counting argument, com-
pletes the proof of (2).

Another identity which can be derived in a similar way is:

3) S An(@,b) Aunld - mb+d)= Au(a,b +d).

To get this one we consider the hyperplane (P) and the ‘steeper’ plane (P")
having the same Xo-intercept viz:

(P") Xo=a+(b+d-1)-X

Any minimal lattice path from (0,0) to (a + (b +d —1)- n,n) on (P") must
hit the hyperplane (P) for the first time at X = m for some m, 0 = m = n. Again
there are A.(a, b) such, and each can be completed in A._.(d - m, b + d) ways,
as we can see by viewing (P") relative to the coordinate system (Xg, X”) where

0=Xo—a—(b—1)-m, X"= X — m. Thus (3) follows in the same way as (2').

The general identity in Mohanty (1966a) is seen to be a combination of (2')

and (3). Another identity derived in Gould’s papers involves the expressions

__a (atbny
@ An(a, b) = a+bn n! -

Gould (1957 equation 6) shows that (2) holds with this definition of A.(a, b)
and one might wonder whether a geometric interpretation exists for the entities
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(4) similar to that derived for (2). I have been unable to find such an
interpretation although a probabilistic one exists, and Raney (1964) gives the
combinatorial interpretations of closely related expressions which lead to the
proof of (2) in this case. The definition (4) also suggests a generalisation not
discussed by Mohanty, namely

a f(a+b-n)"
a+b-n n!

@) Ad(a,b)=

where n!=n!n,!---m'andl-n =n,+ n,+ --- + n. The coeflicients A.(a, b)
defined by (1) approximate those defined in (4) when a and b are large so it is
reasonable to suppose that the convolution identity (2') also holds in this case.
This is indeed true, the result being deducible (with a little effort) from Raney
(1964).

4. Associated probability distributions

Let (p,,p) be a (k +1)-tuple with po>0, p1>0,---,p >0 and po+p, +
-+ +p.=1. Then if b-p =1, Mohanty (1966a) proved that

) S Ax(a,b)p5™ " p" = 1

where p” = pi'p;2---pix. We will offer an alternative derivation of (5) based
upon a random walk interpretation. To do this we consider the random walk on
the lattice points in the positive orthant in (k + 1)-space which begins at (0, 0)
and at each step moves along the X; axis one unit in the positive direction with
probability p; (0=j =k), steps being mutually independent and identically
constructed.

PROPOSITION 2. The probability that the above random walk ever hits the
hyperplane (P) is w°, where  is the smallest positive root of

k
(6) > pxt—x+po=0.
1

Proof. Let us define the function, in fact a probability generating func-
tion:

?) f(x) = po+ 2 px"

We will see that the probability that the walk ever hits (P) is w* where 7 is a
probability that the walk ever hits (P) when a =1, and that = is the smallest
positive root of the equation f(x)=x. The first assertion is an immediate
consequence of the assumed independence of the steps in the walk, as the
passage from (0,0) to.(P) can be viewed as a succession of independent and
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probabilistically identical passages from (0,0) to Xo=1+ (b —1)- X, from this
plane to Xo=2+(b—1) X, and so on up to (P).

Let m,(m) denote the probability that the walk hits the hyperplane (P) in
less than m steps. Clearly m,(m) 1 7 as m — . If m > 1 we may condition upon
the outcome of the first (random) step and find that

® m(m) = pot+ 3, pymy (m —1).

Now m,(m —1)= m,(m)=[m(m)]" and so we find that m,(m) satisfies the
inequality

©) 0= m(m) = f(m(m)).

Letting m — « we see from (8) and the remarks opening this proof that = = f()
and it follows from (9) that = is the smallest such positive root.

CoRrOLLARY. 7 =1 if and only if b-p =1.

Proor. This is easily derived using methods well known in the theory of
branching processes. See for example Harris (1963).

Let us define T to be random time, possibly infinite, which the walk takes to
hit the hyperplane (P). Then we have the distribution of T involving our
coefficients.

ProrositioN 2. (i) P(T=a+b-n)= A.(a,b)ps** " "p"
(ii) P(T <»)= 7" where 7 is defined above.

Proor. Result (i) follows from Proposition 1 and the definition of the
walk, whereas (ii) follows from the previous proposition.

COROLLARY 2. Identity (5) holds if b-p =1.

If we denote by T, the above random variable, then it is probabilistically
obvious that the first passage time 7... should be distributed as the sum of a r.v.
T, and another, independent, r.v. T.. This convolution property is equivalent to
(2') as is easily checked. Thus an alternative, probabilistic, proof of (2) could be
constructed. The details are left to the reader.

Finally we note that E{T.}=a/(1—b-p) can be proved in a manner
analogous to that used to obtain the equation for #. That is, by first deriving the
equation E{T.} = aE {T}, and then conditioning upon the outcome of the first
step obtaining

E(T)=po+ X p(1+E(T).

The variance formula for T, can be derived in a similar way.
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Chapter 3
Sufficiency

Anirban DasGupta

It was the Fall of 1978. I had just finished my masters in statistics and started out as a
PhD student in the stat-math division at the ISI in Calcutta. Teachers of the calibre of
B.V. Rao and Ashok Maitra had taught me an enormous amount of mathematics and
probability theory. But deep inside me I was curious to learn much more of statistical
theory. Unfortunately, Basu had already left and moved to the US, and C.R. Rao was
rarely seen in the Calcutta center. I considered following Basu to Tallahassee, but
my friend Rao Chaganty warned me that the weather was so outlandishly good that I
would probably never graduate. My other favorite teacher T. Krishnan was primarily
interested in applied statistics, and J.K. Ghosh had only just returned from his visit
to Pittsburgh. I remember being given a problem on admissibility; but, alas, that too
turned out to be a modest extension of Karlin [30].

ISI allowed its students an unlimited amount of laziness and vagrancy, and I
exploited this executive nonchalance gratuitously. I was not doing anything that I
wanted to admit. Stat-Math was then located in an unpretentious, dark old building
across from the central pond in the main campus. One day I was intrigued to see a
new face; a visitor from Australia, someone whispered. In a week or so, the office
sent out an announcement of a course on sufficiency by our visitor; the name was
Terence P. Speed. That is how I first met Terry 34 years ago, and became one of his
early students. Much later, I came to know that he was professionally and personally
close to Basu, who had an enduring influence on my life. Together, Terry and Basu
prepared a comprehensive bibliography of sufficiency [8]. They had intended to
write a book, but communication at great distances was not such a breeze 40 years
ago, and the book never came into being. Most recently, Terry and I worked together
on summarizing Basu’s work for the Selected Works series of Springer. I am deeply
honored and touched to be asked to write this commentary on Terry’s contributions
to statistics, and particularly to sufficiency. Terry has worked on such an incredible
variety of areas and problems that I will limit myself to just a few of his contributions
that have directly influenced my own work and education. Sufficiency is certainly

A. DasGupta
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e-mail: dasgupta@stat.purdue.edu

S. Dudoit (ed.), Selected Works of Terry Speed, Selected Works in Probability and Statistics, 71
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one of them. My perspective and emphasis will be rather different from other survey
articles on it, such as Yamada and Morimoto [51].

For someone who does not believe in a probability model, sufficiency is of no use.
It is also of only limited use in the robustness doctrine. I think, however, that the im-
portance of sufficiency in inference must be evaluated in the context of the time. The
idea of data summarization in the form of a low dimensional statistic without losing
information must have been intrinsically attractive and also immensely useful when
Fisher first formulated it [23]. In addition, we now know the various critical links
of sufficiency to both the foundations of statistics, and to the elegant and structured
theory of optimal procedures in inference.

For example, the links to the (weak and the strong) likelihood principle and
conditionality principle are variously summarized in the engaging presentations in
Barnard [3], Basu [6], Berger and Wolpert [10], Birnbaum [14], Fraser [26], and
Savage [42]. And we are also all aware of such pillars of the mathematical the-
ory of optimality, the Rao-Blackwell and the Lehmann-Scheffé theorem [12, 35],
which are inseparably connected to sufficient statistics. At the least, sufficiency has
acted as a nucleus around which an enormous amount of later development of ideas,
techniques, and results have occurred. Some immediate examples are the theory of
ancillarity, monotone likelihood ratio, exponential families, invariance, and asymp-
totic equivalence [5, 17, 18, 22, 33, 36, 38]. Interesting work relating sparse order
statistics (e.g., a small fraction of the largest ones) to approximate sufficiency is
done in Reiss [40], and approximate sufficiency and approximate ancillarity are
given a direct definition, with consequences, in DasGupta [20]. We also have the
coincidence that exact and nonasymptotic distributional and optimality calculations
can be done precisely in those cases where a nontrivial sufficient statistic exists. The
fundamental nature of the idea of sufficiency thus cannot be minimized; not yet.

Collectively, Kolmogorov, Neyman, Bahadur, Dynkin, Halmos, and Savage,
among many other key architects, put sufficiency on the rigorous mathematical
pedal. If {P,P € &} is a family of probability measures on a measurable space
(Q,47), asub o-field B of o is sufficient if for each measurable set A € <7, there
is a (single) 8 measurable function g4 such that g4 = Ep(I4|%),a.e.(P)VP € L.
This is rephrased in terms of a sufficient statistic by saying that if T : (Q,.«7) —
(Q', /') is a mapping from the original (measurable) space to another space, then
T is a sufficient statistic if Z = %7 = T~'(&/') is a sufficient sub o-field of .&7.
In a classroom situation, the family & is often parametrized by a finite dimen-
sional parameter 6, and we describe sufficiency as the conditional distribution of
any other statistic given the sufficient statistic being independent of the underly-
ing parameter 0. Existence of a fixed dimensional sufficient statistic for all sample
sizes is a rare phenomenon for regular families of distributions, and is limited to the
multiparameter exponential family (Barankin and Maitra [2], Brown [16]; it is also
mentioned in Lehmann [34]). Existence of a fixed dimensional sufficient statistic in
location-scale families has some charming (and perhaps unexpected) connections to
the Cauchy-Deny functional equation [29, 32, 39].

Sufficiency corresponds to summarization without loss of information, and so
the maximum such possible summarization is of obvious interest. A specific sub
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o-field #* is a minimal sufficient sub o-field if for any other sufficient sub o-field
A, we have the inclusion that *V N p C BV Np, where A5 is the family of
all Z-null members of 7. In terms of statistics, a specific sufficient statistic 7
is minimal sufficient if given any other sufficient statistic 7, we can write 7" as
T* =hoTae. 2, i.e., aminimal sufficient statistic is a function of every sufficient
statistic. A sufficient statistic that is also boundedly complete is minimal sufficient.
This fact does place completeness as a natural player on the scene rather than as a
mere analytical necessity; of course, another well known case is Basu’s theorem [4].
The converse is not necessarily true; that is, a minimal sufficient statistic need not be
boundedly complete. The location parameter ¢ densities provide a counterexample,
where the vector of order statistics is minimal sufficient, but clearly not boundedly
complete. It is true, however, that in somewhat larger families of densities, the vec-
tor of order statistics is complete, and hence boundedly complete [9]. If we think
of a statistic as a partition of the sample space, then the partitions corresponding to

a minimal sufficient statistic 7* can be constructed by the rule that 7*(x) = T*(y)

if and only if the likelihood ratio ;2—8 is independent of 8. Note that this rule ap-

plies only to the dominated case, with fy(x) being the density (Radon-Nikodym
derivative) of Py with respect to the relevant dominating measure.

Halmos and Savage [28] gave the factorization theorem for characterizing a suf-
ficient sub o-field, which says that if each P € & is assumed to be absolutely con-
tinuous with respect to some Py (which we may pick to be in the convex hull of &),
then a given sub o-field Z is sufficient if and only if for each P € &, we can find
a # measurable function gp such that the identity dP = gpd Py holds. Note that we
insist on gp being & measurable, rather than being simply .27 measurable (which
would be no restriction, and would not serve the purpose of data summarization).
Once again, in a classroom situation, we often describe this as 7 being sufficient if
and only if we can write the joint density fg(x) as fg(x) = go(T (x))po(x) for some
g and pg. The factorization theorem took the guessing game out of the picture in
the dominated case, and is justifiably regarded as a landmark advance. I will shortly
come to Terry Speed’s contribution on the factorization theorem.

Sufficiency comes in many colors, which turn out to be equivalent under special
sets of conditions (e.g. Roy and Ramamoorthi [41]). I will loosely describe a few of
these notions. We have Blackwell sufficiency [15] which corresponds to sufficiency
of an experiment as defined via comparison of experiments [48, 50], Bayes suffi-
ciency which corresponds to the posterior measure under any given prior depending
on the data x only through 7' (x), and prediction sufficiency (also sometimes called
adequacy) which legislates that to predict an unobserved Y defined on some space
(Q", /") on the basis of an observed X defined on (Q,.«7), it should be enough
to only consider predictors based on 7' (X). See, for example, Takeuchi and Akahira
[49], and also the earlier articles Bahadur [1] and Skibinsky [44]. I would warn the
reader that the exact meaning of prediction sufficiency is linked to the exact as-
sumptions on the prediction loss function. Likewise, Bayes sufficiency need not be
equivalent to ordinary sufficiency unless (£2,.27) is a standard Borel space, i.c., un-
less .o/ coincides with the Borel o-field corresponding to some compact metrizable
topology on €.
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Consider now the enlarged class of probability distributions defined as Pc(A) =
P(X€A|Y €C),Pe 2,C € &/". Bahadur leads us to the conclusion that prediction
sufficiency is equivalent to sufficiency in this enlarged family of probability mea-
sures. A major result due to Terry Speed is the derivation of a factorization theorem
for characterizing a prediction sufficient statistic in the dominated case [45]. A sim-
ply stated but illuminating example in Section 6 of Speed’s article shows why the
particular version of the factorization theorem he gives can be important in appli-
cations. As far as I know, a theory of partial adequacy, akin to partial sufficiency
[7, 25, 27], has never been worked out. However, I am not sure how welcome it
will now be, considering the diminishing importance of probability and models in
prevalent applied statistics.

Two other deep and delightful papers of Terry that I am familiar with are his
splendidly original paper on spike train deconvolution [37], and his paper on Gaus-
sian distributions over finite simple graphs [47]. These two papers are precursors
to what we nowadays call independent component analysis and graphical models.
Particularly, the spike train deconvolution paper leads us to good problems in need
of solution. However, I will refrain from making additional comments on it in order
to spend some time on a most recent writing of Terry that directly influenced me.

In his editorial column in the IMS Bulletin [46], Terry describes the troublesome
scenario of irreconcilable quantitative values obtained in bioassays conducted under
different physical conditions at different laboratories (actually, he describes, specif-
ically, the example of reporting the expression level of the HER2 protein in breast
cancer patients). He cites an earlier classic paper of Youden [52], which I was not
previously familiar with. Youden informally showed the tendency of a point esti-
mate derived from one experiment to fall outside of the error bounds reported by
another experiment. In Youden’s cases, this was usually caused by an unmodelled
latent bias, and once the bias was taken care of, the conundrum mostly disappeared.

Inspired by Terry’s column, I did some work on reconcilability of confidence
intervals found from different experiments, even if there are no unmodelled biases.
What I found rather surprised me. Theoretical calculations led to the conclusion
that in as few as 10 experiments, it could be quite likely that the confidence inter-
vals would be nonoverlapping. In meta-analytic studies, particularly in clinical trial
contexts, the number of experiments combined is frequently 20, 25, or more. This
leads to the apparently important question: how does one combine independent con-
fidence intervals when they are incompatible? We have had some of our best minds
think about related problems; for example, Fisher [24], Birnbaum [13], Koziol and
Perlman [31], Berk and Cohen [11], Cohen et al. [19], and Singh et al. [43]. Holger
Dette and I recently collaborated on this problem and derived some exact results and
some asymptotic theory involving extremes [21]. It was an exciting question for us,
caused by a direct influence of Terry.

Human life is a grand collage of countless events and emotions, triumphs and
defeats, love and hurt, joy and sadness, the extraordinary and the mundane. I have
seen life from both sides now, tears and fears and feeling proud, dreams and schemes
and circus crowds. But it is still my life’s illusion of those wonderful years in the
seventies that I recall fondly in my life’s journey. Terry symbolizes that fantasy and
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uncomplicated part of my life. I am grateful to have had this opportunity to write a
few lines about Terry; prendre soin, Terry, my teacher and my friend.
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A NOTE ON PAIRWISE SUFFICIENCY AND COMPLETIONS

By T. P. SPEED
University of Western Australia, Nedlands

SUMMARY. The result of Halmos and Savage that pairwise sufficiency implies
sufficiency for dominated families of measures is obtained here by a simple technique. We
also use this technique to obtain an easy proof of the equality between the two notions of
completion with respect to a dominated family of probability measures for sub-o-fields in a
measure space. The proofs have natural generalisations to the so called campact case.

1. INTRODUCTION

In their proof that pairwise sufficiency implies sufficiency for dominated families
of measures Halmos and Savage (1949) use four technical Lemmas. One of the
purposes of the present note is to describe a simple method of obtaining this result
directly. We find that the technique used also provides a simpler method of deriving
a result of Le Bihan, Littaye-Petit and Petit (1970) asserting the equality between
two notions of completion with respect to a family of probability measures for sub-
o-fields in a measure space. We close the note with an indication of how simple
generalisations of these two results to the so-called compact case can be obtained.

2. PAIRWISE SUFFICIENCY IMPLIES SUFFICIENCY IN THE DOMINATED CASE

Let & be a sub-o-field of 4 in a measure space (&, _¥) and suppose that
A3 is pairwise sufficient for a countable family #, of probability measures on A
that is, for any bounded _4 measurable function f on & and a pair {P, @} C #,,
there exists a 43-measurable function fp,g on 4 such that

fp,q = E;,Gf as. P

and fre=E85 as. @

Put f* =V A fpe the sup and inf extending over #,;, and observe that for
P

every Pef, we have
NPeSFES Y for

We can now see that for every P ¢ #,
F=E8f as P e ()

and the proof that 43 is sufficient for #, on ¥ is completed. For a dominated family
& of probability measures on ¥ take a countable equivalent subset &, of #, see
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Halmos and Savage (1949) for this fact, and argue as above obtaining one f* such
that (1) holds. Now take @ € X\ #, and consider #,|J {@}. We can produce an f**

such that (1) holds with f* replaced by f**, and f** = Eg? fa.s. Q. Butthen we see

that f* = f** a.s. P for all P ¢ #,, and hence f* = f*¥* as. @;i.e. f* = Eé‘efa,.s. Q.

3. PAIRWISE AND STRONG COMPLETIONS OF A SUB-0-FIELD
In the notation used above let us define the pairwise completion of & with

SlP, A

respect to #Zon _A, in symbols 4 or just & where no confusion can result, to
be all elements 4 ¢ & with the following property : for each pair {P, @} C # there
exists B = Bp,g ¢ & such that P(AAB) = @Q(4AB) = 0. We can also define the

strong completion 8 = Zg[p’ﬂ] of & with respect to # on A to be all elements
A e A for which there exists B e 43 such that P(4AB) = 0 for every Pe #. TUsing
analytic sets it was proved in Marie-Francoise Le Bihan et al (1970) that for a domi-
nated family # we have 8= ;é Let us see that this result follows easily using the

argument of Section 2. If A e &, then for each pair {P, @} C_ 7%, a countable equi-
valent subfamily of #, there exists Bp,ge & such that P(AABp,q) = Q(AABp,g)
=0. Put

-B:UnBP,Qy
P Q

the unions and intersections being taken over #,, and we see that P(AAB) = 0 for

all P e &, and hence for all P ¢ #. This proves that 3 C &8 and the reverse con-
clusion is immediate.

4. COMPACTNESS

Both of the above results generalise to the case of a compact family of probabi-
lity measures # on (X, A). A family {fp: P ¢ #} of bounded 43-measurable functions
on K will be called pairwise [respectively finitely, countably, completely] compatible
if for every subfamily QC # consisting of two [respectively finitely, countably, arbi-
trarily many] measures, there exists a 43-measurable function fg such that for all
Pe@ we have fg = fp a.s. P. Pitcher (1965) defined the notion of compactness for
families ® of probabilities and an equivalent form of it is the following : #is
compact on the sub-o-field &2 of ¥ if every countably compatible family {fp, P ¢ #}
of bounded 43-measurable functions is completely compatible.

Let us observe that a dominated family 7 of probabilities on (&2, ¥) is com-
pact on every sub-g-field &2 of 4. As before we first take a countable equivalent
subset #,C #. Any pairwise compatible family {fp: P e #} of 43-measurable
functions is clearly completely compatible here : simply put f* = ¥ A fp.q where
fp.q is the function defining the compatibility of fp and fg, and the sup and inf are
taken over #,. Now take @e¢ X\ #, By considering #, ) {¢} we find a
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43-measurable f** such that f** = fpa.s. P for all Pe#,, and f** = fo = a.s. Q.
This first condition implies that f** = f* a.s. P for all P ¢ X, and so f** = f* = fg
a.8. @ and the proof is complete.

These remarks prove that the following result is a generalisation of those outl-

ined in Sections 2, 3 and provides an alternative approach to them, although the
details are not dissimilar.

Theorem : Let # be a family of probabilities over (XL, A) and 4B a sub-o-field
of A such that 7 is compact on 4. Then

(i) 8=4, and Surther,

() B 1is sufficient for 2 on A whenever it is pairwise sufficient for X on .

Proof : (i) For A e we take fp to be the indicator of any Be & for which
P(AAB) = 0; such exist and it follows from the assumption on 4 that {fp : P e #}
is a pairwise compatible family of 43-measurable functions.

This easily extends to countable compatibility by using the sup-inf trick and so
the compactness assumption on 43 ensures the existence of a 43-measurable f with
f=1fpas. Pforeach Pe#. Clearly B = {f = 1}¢ & satisfies P(AAB) =0, Pe X
and the proof of (i) is complete.

(i) For a bounded _4-measurable function f we put fr = Ef f. The system

{fp : P e P} is again a pairwise compatible family of 43-measurable functions by the
pairwise sufficiency assumption and again this lifts to countable compatibility using
the sup-inf trick. The proof is completed by invoking the compactness of # on 4.
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A FACTORISATION THEOREM FOR
ADEQUATE STATISTICS!

T. P. SpEED
Department of Mathematics, University of Western Australia

1. Introduction

In his interesting paper [3] Goro Ishii convincingly demonstrated
the usefulness of the notion of adequacy in a number of situations by
using this concept, together with completeness, to derive optimality
properties of some known predictors. These proofs were all based
upon analogues of the well known Rao-Blackwell and Lehmann-
Scheffé theorems and to help recognise the adequacy of the statistics
under discussion, Ishii cited an extension of the Fisher-Neyman
factorisation criterion due to Sugiura and Morimoto [7]. I have not
been able to consult this work.

The purpose of this paper is to state and prove a factorisation
theorem of the type mentioned above. Our result is slightly more
general than the one cited in [3]; we do not suppose a product
structure for the underlying measure space and so in this respect our
situation is more like that in the original paper by Skibinsky [5], and
further, we do not suppose the dominating measure to be a probability
measure. We begin by reviewing some simple facts regarding condi-
tional expectations and then prove a factorisation theorem characteris-
ing conditional independence. A section is devoted to organising the
known factorisation theorem characterising sufficiency in the domi-
nated case, and may be of some independent interest. Finally a
combination of these results gives the theorem of our title.

2. Conditional expectations

Our basic setting is a measurable space (%, ) equipped with a
o-finite measure u; these will remain fixed throughout the paper. In
this and the next section we will be considering a probability measure
P on o which is absolutely continuous with respect to u; let its
Radon-Nikodym derivative be p and let us write this relationship as
P=p.pu.

For any sub-o-field €< o on which the restriction pe of p
remains o-finite we can define a conditional expectation operator Ef

! Manuscript received January 6, 1977; revised November 22, 1977.
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in the usual way: for any measurable non-negative or w-integrable
f:&—R there exists a ¢-measurable function E¥f satisfying

(2.1 L E‘:fdp.q=J’cfdp. (Ce®.

If we suppose that € is [p, sf}-complete i.e. contains all the elements of
o of zero p-measure, (2.1) defines (see Neveu [6] p. 1) a unique
w-equivalence class of ¥-measurable functions and we will adopt the
usual procedure of denoting this class or a representative of this class
by Ef. The relation between E¢ and the usual operator Ef is as
follows: for any measurable non-negative f

(2.2) =EYfp/ESp as.P

where p = dP/dp satisfies P({E p = 0}) = 0. Thisis not hard to prove from
the definitions and can be found in Loéve (4] pp. 344-345; see also
Neveu [6] pp. 16-17 for a brief discussion. Another relation which we
need below is the following minor modification of the result just noted:
if B2 € is another sub-o-field of & and f is also B-measureable, then

(2.3) E¥f=ESfp,/Elp, as.P
where

p1=dPa/dus=Ejp.

3. Conditional independence

Let &,, &, and € be sub-o-fields of A. We say that &, and B, are
conditionally P-independent given % if for all non-negative ;-
measurable functions f; (i=1, 2):

(3.1 ?fif2=EFfEFf, as.P.

Itis well-known that this is equivalent to: for all non-negative %B,v 6-
measurable functions f,:

(3.2) E2V*f, is ¢-measurable, and so = E¥f,

where we suppose that € is [P, #]-complete. For a proof of essentially
this assertion see Loeve [4] pp. 563-564. It is also shown in Loéve that
if @, and %, are conditionally P-mdependent given € then so also are
B, v€ and %v%

When 1 is o-finite the operator E is well-defined and we can
give an analogous definition of conditional p.-independence. It will then
follow that (3.1) and (3.2) with w instead of P are still equivalent.

Conditional P-independence of o-fields has a formulation in terms
of the factorisation of a density just as independence of o-fields does,
but I am unable to locate the following result in the literature. It is
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surely well known in its special case as the corollary. Let (%, o), u, P
and p be as in §2 and suppose that 8,, B, and ¥ are sub-o-fields of &;
for simplicity we will assume that B,v€v®,=4, and that € is
[, f}-compiete.

Proposition 1.  Let u be o-finite and B, and B, be conditionally
w-independent given €. If B, and B, are conditionally P-independent
given € then we have the factorisation

(3.3) P=piP2q Ig=0y as. P
where p; = dPg /g« (i=1,2) and q=dPdue. Conversely, if p
can be factorised

(3.4) p=fif» as.P

where f; is B, v€-measurable (i=1, 2), then B, and B, are condition-
ally P-independent given €.

Loosely speaking the result asserts that when %, and %, are
conditionally p-independent given € and P« p, a necessary and
sufficient condition for @, and ®, to be conditionally P-independent
given € is that the density p of P with respect to p factorises into the
product of a non-negative %, v¥-measurable function and a non-
negative %, v ¢-measurable function.

Proof. Suppose that &, and @, are conditionally P-independent
given €. We will prove (3.3) and it is here that we use the fact that
By vEVvB, = dA; trivial modifications weuld allow us to drop this as-
sumption. Take B,e®,, C€¥% and B,€3,. Then

_[ PxPz‘f1 Ioey du.
'B,CB,
= J; P:Islpzfa,q-l du
N{g>0}
= L ES(p:1Is,pIs)q " due as g is ¥-measurable,
N{q>0}

= L E¥(pIs)EX(p.Is)q "  die  using cond. p-independence
MN{q>0}

- j’ E:(plIBL) E:(leazz qdue
'CN{g>0} q q

Ef(Is)E3(Is,) dPe

cnia>0t using 2.3 and the fact that q = dP/du.= ESp,

= L E3(Is,s,) dPe using cond. P-independence
N{q>o}
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= L I p, dP
N{q>0}

=P(CN{q>0}B,B,)
=P(CB,;B,) since P({q>0})=1

=L pdu as P=p.p
1CB2

This implies the relation (3.3) as sets of the form B;CB, form a
w-system generating 9B, v€v %, = .

For the converse suppose that p can be factorised as in (3.4). It is
easy to check that P({f, =0}) = P{{f. = 0}) = PUED*f,f, =0}) follows
from the fact that P=f,f,.u. Let f be a non-negative &B,v%-
measurable function; then

Ep“f = E3fpl E3°p
= E3ffif/EXfif2
= hER IRl L ERf;
= E}fHIERf,
= Eiff./ELf,

=a ¥-measurable function,

provided we suppose that € is (i, #]-complete. This completes the
proof.

Corollary 1. Suppose that X =, X%, A=A, Qsty, =, Qu,
where the p; are a-finite on ¥, (i=1,2), and that B,, B, are the
o-algebras generated by the coordinate projections. Let €< o, be a
(11, oy )-complete sub-o-field of o, such that p, remains o-finite when
restricted to €, and let us also denote the sub-o-field of o isomorphic to
€ by €. Then for a probability measure P< u we have B, and &,
conditionally P-independent given € if and only if the density p = dP/du
can be factorised

p=ff2 as. p

where f, is B,-measurable and f, is € B,-measurable.

Proof. This is an immediate consequence of the proposition, for
the hypotheses of the corollary imply that %, and @, are actually
w-independent and hence conditionally w-independent given €< %;.

4. Sufficiency

Let 2 be a family of probability measures on & and %8, € be sub-
o-field of . We say that ¢ is sufficient for P on R if for any Be R
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there exists a €-measurable function ¢g such that for every Pe 2
(4.1) op=E%I; as. P

We will always suppose that € is [%, ]-complete i.e. contains all
elements of & having zero P-measure for every Pe 2. In this section
we may take 8= o without loss of generality, but in section 4 we will
revert to the more general situation.

To understand the factorisation theorem of Fisher and Neyman let
us consider the case # ={P, Q} with P« Q. We will denote dP/dQ by
g and suppose €< o to be [Q, f]-complete.

Proposition 2. € is sufficient for {P, Q} on 4 if and only if g is
€-measurable.

Proof. We choose an arbitrary A € and hope to prove that
there exists a ¢4 satisfying (4.1) if and only if g is ¥-measurable. But
(4.1) in this case implies that such a ¢@,, if it exists, must be unique a.s.
Q, and so must actually be E§L,. Thus we are really trying to prove:
the necessary and sufficient condition that for all A e 4ESL, =E%I,
as. P, is g=dP/dQ be %-measurable.

Let us integrate E§I, and EfI, over Ce¥ with respect to
P=g.Q; we obtain

[ Etrap=| Esngdo=[ LESgd0=| LE%gdo;
C C C A

L E$l, dP= L I, dP= L LigdQ= L Lg dQ.

Now if € is sufficient for {P, Q} on #, equivalently, if for all Ae
o, EEL, =EfL, as. P, then the first terms in the two above equations
coincide and hence so must the last. Taking C=& and varying A € of
we have proved that E§g =g a.s. Q; but €is [Q, #]-complete and so g
is ¥-measurable.

On the other hand, if g is ¢-measurable then the last terms in the
above two equations, and hence the first, must coincide. By the
remarks beginning the proof, this means that € is sufficient for {P, Q}
on . This completes the proof.

Now let us suppose that 2 is dominated by our o-finite measure p
on (Z, ). It is well known (see Halmos and Savage [2]) that this
implies the existence of a countable subset P, P equivalent to
P—simply take (notation as in [6] p. 121) &, for which

sup I{dP/du > 0} = ess supI{dP/du. > 0}
Pe®, Pe®

—and so a probability measure Q in the countable convex hull of &

equivalent to 2. Furthermore, if € is sufficient for ? on %, € is also

sufficient for 2 U{Q} on @: the same ¢, works in (4.1) for Q since
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Q=Ya,P.(a,=0,Ya,=1, P,e?P). Thus we have the following result
assuming that ¢ is [?, sf]-complete, and thus also [Q, #/]-complete:

Corollary 1. ¢ is sufficient for P on o if and only if for every
PeP, go =dP/dQ is €-measurable.

The most frequently used form of the factorisation theorem is that
of Bahadur [1] given in the next corollary.

Corollary 2. Let # be dominated by p on (%, ). Then for a
[P, sd)-complete sub-o-field €< to be sufficient for P on o it is
necessary and sufficient that there exists a non-negative function h, and
for each Pe P, non-negative functions gp defined on Z such that
(i) h is d-measurables;
(1) for all Pe P, gp is 6-measurable;
(iii) for al Pe P, P=gph. p on A

Proof. This is an immediate consequence of the previous corol-
lary; simply take Q as above, and h = dQ/dp.

5. Adequacy

Let P be a family of probability measures on (%, o) and B,, B,, €
sub-o-fields of . Slightly paraphrasing Skibinsky [5] we say that € is
adequate for B, with respect to B, and P if (i) € is sufficient for ? on
@,, and (ii) B, and BB, are, for all Pe ®, conditionally P-independent
given €. In Skibinsky [5] €< %,, but although we could replace %, by
@&, v¥€ to achieve this, and no generality would be lost in doing so, we
prefer the more symmetric situation natural to a formulation involving
conditional independence. We will also suppose the € is [P, #])-
complete, and that B, v€v %A, = A.

As we did with sufficiency, it is instructive to formulate the
factorisation theorem in the case ? ={P, Q} where P=g. Q on #.

Proposition 3a. If € is adequate for B, with respect to B, and
{P, Q} then g is € v B,-measurable.

Proof. The conditional independence of 8, and &, given € with
respect to P and Q gives, using Proposition 1 with Q replacing u

(5.1) 8=8189 o> 25.Q
where
8 = dPs /dQa«=E3"“g (i=1,2)
and
q = dP./dQ.=E&g.
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But € is sufficient for {P, Q} on ®,, and hence ®,v<%, and so by
Proposition 2

(5.2 g1 =AdPa,/dQa, . is ¢-measurable.

This fact combined with (5.1) implies that g is €v%,-measurable.

To see that we cannot get a complete analogue of Proposition 2 by
proving that the adequacy of € follows from the measurability of g
with respect to €v %, we need only consider the case P = Q. For in this
case g=1 is certainly measurable €v®,, the sufficiency part of the
adequacy of 4 trivial but the conditional independence part false in
general. In fact the converse requires a conditional independence
assumption.

Proposition 3b. If 3B, and B, are conditionally Q-independent
given € and g is €v®B,-measurable, then € is adequate for B, with
respect to B, and {P, Q}.

Proof. The fact that B, and @&, are conditionally P-independent
given ¥ is an immediate consequence of Proposition 1 now that we
have assumed their conditional Q-independence given €. To see that €
is sufficient for {P, Q} on %, or, what is the same %, v¥, we prove that
g1=dPgs «/dQa,  is ¢-measurable, and then use Proposition 2. But
this is also a consequence of the assumed conditional Q-independence
for, as g is €v®,-measurable by hypothesis, g,=E&x"“g is %-
measurable by (3.2).

Having considered the factorisation theorem for adequate sub-o-
fields in this very special case, the way is now clear to formulate an
analogue of Bahadur’s result (given as Corollary 2 to Proposition 2
above).

Theorem 1. Let (%, o, p) be a a-finite measure space, ? a family
of probability measures on A dominated by u, B,, B,, € sub-c-fields of
o, such that B, vEvRB, =, pe is o-finite and € is [P, A]-complete.
Suppose further that B, and B, are conditionally p-independent given
€. Then a necessary and sufficient condition for % to be adequate for B,
with respect to B, and P is that there exist a non-negative h, and for
each Pe P non-negative functions gp, on & such that

(i) h is B, v ¥-measurable,
(ii) for all PeP, gp is €V B,-measurable,

(iii) for all Pe P, P=gh. u on A.

Proof. Suppose that € is adequate for %, with respect to %, and
%. Then by Proposition 1 for each P ? we can write

dP

E= 8?.18?.24;11{»»} as. u

where gp; is %B; vé-measurable (i=1,2) and g, is %¢-measurable.
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Furthermore gp;=dPg «/dita e By Corollary 2 to Proposition 2
these can all be factorised

gr1=8F.-h as. [P,B,VE]
where gp is ¢-measurable and h is B, v ¢-measurable. Putting

gr = 858p2q7 g >0y

a €v®,-measurable function, and keeping the common h completes
the proof of the necessity of this factorisation.

Conversely, suppose that functions h and gp can be found satisfy-
ing (i), (ii) and (iii) of the theorem. Then by Proposition 1 %, and B,
are, for all P, conditionally P-independent given ¥. The sufficiency of
€ for ? on B,v¥€ follows more or less as it did in the proof of
Proposition 3b. We note that gp; = dug «/da, ¢ can be obtained as
E#*“(dP/dw) and so

gp1 = E%V¥(geh) =(Ea"“g)h=(E, g)h

since h is B, v¥€ measurable, g is €v®,-measurable, and (3.2) applies
with w instead of P. The proof is completed by invoking Corollary 2 to
Proposition 2. This completes the proof of our main result.

Corollary 1. Suppose that Z=Z, X &Z,, A=, QA,, u=pn,Qp,
where the B; are o-finite on o, (i=1,2) and that B,, B, are the
o-fields generated by the coordinate projections. Let €< o, be a sub-o-
field of A, such that u, remains o-finite when restricted to € and let us
also denote the sub-o-field of of isomorphic to € by €. Then a necessary
and sufficient condition for € to be adequate for B, with respect to %,
and a family P of probability measures dominated by w is that there exist
a non-negative function h, and for each Pe P non-negative functions
gp defined on ¥ such that

(i) h is B,-measurable,
(ii) for all Pe P, gp is €\ RB,-measurable,
(iif) for all Pe P, P=geh.pnon A.

Proof. Once we observe that 8, and %, are p-independent, and
hence conditionally u-independent given € <3,, there is nothing left
to prove. This corollary includes the result cited as Theorem 2.2 in
Ishii {3].

6. An Mustration

The examples in Ishii’s paper [3] all concern cases in which the
o-fields &, and @, are actually P-independent for each PeP. Apart
from a problem noted in the next section, the theorem of §5 above
applies to Ishii’s examples, and we now consider a simple situation in
which a more general type of behaviour takes place.
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Let (X, X;, . .., X, X,+1) be jointly normally distributed random
variables such that for each i, 1 <i=<n+1, the distribution of X given
X1, Xia, ..., Xp is N(pX;_4, 1), where X is given (i.e. held constant)
and |p|<1. Put &, =R", %, =R, and

wqldx, .. ..dx)={(2mw) "? exp (-—%ix?) dx, ...dx,

to(dXpir) = (277)-U2 exp (_%xi«r-l) dx, 1.

The conditions on {Xj, . .., X ,,) are then seen to be equivalent to the
requirement that their joint distribution P has density with respect to

B =p,Qu, given by

dP n+1 n+1
SL=exP [p 2 xox—4p% Y, x?]-
w 1 1

Defining the sub-o-field €=0cQ1X X, Y1X7 X,) of B, =
o(Xy, ..., X,), and putting B, = 0(X,.,), we see that the conditions of
Corollary 1 'in §5 above are satisfied, viewing & as the class of
probabilities indexed by p, |p| < 1. Thus the triple 71X, X, Y1 X2, X,)
is an adequate reduction of (X, ..., X)) as far as estimation of p and
prediction of X, is concerned. It is not hard to see that X, could not
be omitted from the triple, and this is, of course, intuitively obvious.

The reason why we chose to use the particular probability meas-
ure pu=p,@u, as the dominating measure, rather than the more
natural dominating measure A"*?, (n+ 1)-dimensional Lebesgue meas-
ure, is explained below.

7. Limitations

In all of the results involving p as a dominating measure we have
had to suppose w o-finite in order to be able to formulate conditional
u-independence given €. This is a strong assumption and is violated in
many simple examples.

Example. Let £=R>3, #=R> and p=2A> (Lebesgue measure)
corresponding to three real random variables X, X, X defined as the
coordinate projections. One frequently considers a system such as

B, =0(X,, X2), B,=0(X;3) and € =0(X; + X,) = B,

and would certainly hope that since %, and %, are, in a sense,
w-independent, one would also have B, and %, conditionally u-
independent given 4. But p is not o-finite when restricted to 4, every
set in € having zero or infinite p-measure.

In hardly needs stating that in many examples of interest the pwill
be exactly of the kind in the example, and a similar remark applies to
the sub-o-field ¥, since many sufficient o-fields are based upon sums.
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Thus, although it seems very reasonable to assert that the theorem in
§5 is in a sense a natural analogue of the Halmos-Savage formulation
of the Fisher-Neyman theorem, it simply does not cover many exam-
ples of interest to statisticians. This also applies to the result of Sugiura
and Morimoto cited in Ishii [3].

When the sample (£, &, 1) has a Euclidean structure it appears
possible to prove a theorem which includes the examples mentioned
but what seems difficult at the moment is the formulation of a result
generalising Theorem 1 to cover all such cases. The problem is this: a
satisfactory theory of conditional expectations, and hence of condi-
tional independence, given sub-o-fields on which the basic measure is
not o-finite, has yet to be developed. One might approach the problem
via the notion of set of o-finiteness Neveu (6] p. 16-17 but so far this
has not been worked out. On the other hand there may be no
alternative to formulating Euclidean problems in an Euclidean
measure-theoretic framework cf. Tjur [8].

8. Acknowledgments

I would like to thank Professor D. Basu for his constant interest in
this and related work, Professor J. F. C. Kingman for remarks which
clarified some confusion in my mind, and Dr. M. L. Thornett, whose
interest also contributed to this note. I am also indebted to Professor
H. Morimoto for encouraging me to publish this extension of his result
with M. Sugiura.

References

[1] Bahadur R. R. (1954) “Sufficiency and statistical decision functions.” Ann. Math.
Statist. 25, 423-462.

{2} Halmos, Paul R. and Savage, L. J. (1949) “‘Application of the Radon-Nikodym
theorem to the theory of sufficient statistics.” Ann. Math. Statist. 20, 225-241.

[3] Ishii, Goro (1969) ‘‘Optimality of unbiased predictors.” Ann. Inst. Statist. Math. 21,
471-488.

{4] Loéve, Michel (1963) Probability Theory Third Edition. Van Nostrand, Princeton
NJ.

[5] Skibinsky, Morris (1967) “Adequate subfields and sufficiency.” Ann. Math. Statist.
38, 155-161.

[6] Neveu, Jacques (1972) Martingales a temps discret. Masson et Cie, Paris.

[7] Sugiura, M. and Morimoto, H. (1969) “‘Factorisation theorem for adequate o-field.”
(in Japanese). Sagaku 21.

[8] Tjur, Tue (1974). Conditional Probability Distributions. Institute of Mathematical
Statistics, University of Copenhagen.



Chapter 4
Interaction Models

Steffen L. Lauritzen

The articles in this bundle are all associated with the notion of interaction and
represent the genesis of the subject of graphical models in its modern form, the
origins of these being traceable back to Gibbs [11] and Wright [30] and earlier.

Around 1976, Terry was fascinated by the notion of conditional independence,
along the lines later published in Dawid [6, 7]. In 1976, Terry invited me to Perth
and we were running a daily research seminar with the theme of studying similar-
ities and differences between Statistics and Statistical Mechanics. In particular, we
wondered what the relations were between notions of interaction as represented in
linear models, in multi-dimensional contingency tables, and in stochastic models
for particle systems; in addition, the purpose was also to understand what was the
relation between these concepts and conditional independence.

As we discovered that these were all essentially the same concepts, the simi-
larity being obscured by very different traditions of notation, the term graphical
model was coined. Our findings, also obtained in collaboration with John Dar-
roch, were collected in Darroch et al. [4], and later expanded and published in
Speed [24], Darroch et al. [5], and Darroch and Speed [3] as well as Lauritzen et al.
[19] and to some extent Speed [25], the latter giving an overview of a number of dif-
ferent variants and proofs of what has become known as the Hammersley—Clifford
theorem [14, 2].

Of these articles, Darroch et al. [5] rather quickly had a seminal impact and a
small community of researchers in the area of graphical models gradually emerged.
In a certain sense, the article does not contain much formally new material (if any at
all), but for the first time a simple, visual description and interpretation of the class
of log-linear models [12, 13], which otherwise could seem obscure, was available.
The interpretation of a subclass of the models in terms of conditional independence
had an immediate intuitive appeal. In addition, the article identified and emphasized
models represented by chordal or triangulated graphs as those where estimation
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and other issues had a particularly simple solution, the combinatorial theory of these
graphs being further studied in Lauritzen et al. [19].

Darroch and Speed [3] studied the notion of interaction from an algebraic point
of view in terms of fundamental decompositions of the linear space of functions
on a product of finite sets; indeed it essentially but implicitly uses the fundamental
decomposition of this space into irreducible components which are stable under a
product of symmetric groups [9] and thus gives an elegant algebraic perspective on
the Hammersley—Clifford theorem.

Towards the end of 1976, Terry serendipitously came across Wermuth [29],
which identified that a completely analogous theory could be developed for the
Gaussian case, with chordal graphs playing essentially the same role as in the case of
log-linear models; indeed, Dempster [8] had developed the basic computational and
statistical theory for these under the name of models for covariance selection. This
fact and the corresponding interpretation was emphasized and discussed in Darroch
et al. [4] as well as in Speed [24, 25], but received otherwise relatively little attention
at the time. Gaussian graphical models have had a remarkable renaissance in con-
nection with the modern analysis of high-dimensional data, for example concerning
gene expression [10, 23]. Out of this early work with Gaussian graphical models
grew also the article by Speed and Kiiveri [26], which describes and unifies a class
of iterative algorithms for fitting Gaussian graphical models of which special cases
previously had been considered by e.g. Dempster [8]. Essentially, there are two fun-
damental types, of which one initially uses the estimate under no restrictions and
iteratively ensures that restrictions of the model are satisfied; the other type initially
uses a trivial estimator and iteratively ensures that the likelihood equations are sat-
isfied. The article elegantly shows that an abundance of hybrids of these algorithms
can be constructed and gives a unified proof of their convergence.

The last two articles [16, 17], represent the genesis of what today is probably
the most prolific and well-known type of graphical models; these are based on di-
rected acyclic graphs and admitting interpretation in causal terms similar to that of
structural equation models [1]. At the time when these articles appeared they were
(undeservedly) largely ignored both by the statistical and structural equation com-
munities. Graphical models based on directed acyclic graphs—now mostly known
as Bayesian networks [21]—have an unquestionable prominence in current scientific
literature, but the surge of interest in these models was in particular generated by the
prolific research activities in computer science, where work such as, for example,
Lauritzen and Spiegelhalter [18], Pearl [22], Spirtes et al. [27], Heckerman et al.
[15], and Pearl [20] established these models as objects worthy of intense study. In
retrospect, it is clear that the global Markov property defined in Kiiveri et al. [17]
was not the optimal one as there are independence relations true in any Bayesian
network that cannot be derived from it, but fundamentally this article establishes the
correct class of directed Markov models for the first time and thus yields a condi-
tional independence perspective on structural equation models, as later elaborated,
for example by Spirtes et al. [28].
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We use a close connection between the theory of Markov fields and that of
log-linear interaction models for contingency tables to define and investigate a
new class of models for such tables, graphical models. These models are
hierarchical models that can be represented by a simple, undirected graph on as
many vertices as the dimension of the corresponding table. Further all these
models can be given an interpretation in terms of conditional independence and
the interpretation can be read directly off the graph in the form of a Markov
property. The class of graphical models contains that of decomposable models
and we give a simple criterion for decomposability of a given graphical model.
To some extent we discuss estimation problems and give suggestions for further
work.

0. Introduction and summary. In the present paper we shall utilize some close
connections between the theory of Markov fields and that of log-linear interaction
models to define a new class of models for multidimensional contingency tables:
graphical models. The graphical models have two important properties:

(i) they can be represented by an undirected, finite graph with as many vertices
as the table has dimensions;

(ii) they can be interpreted in terms of conditional independence (in fact, a
Markov property) and the interpretation can be read directly off the graph.

This class of models is a proper subclass of the so-called hierarchical models, but
it strictly -contains the decomposable models (Goodman (1970, 1971), Haberman
(1970, 1974), Andersen (1974)). This implies that we can give a simple, visual
representation of any decomposable model, thus making the interpretation easy.

We also characterise those graphs that correspond to decomposable models, thus
giving an alternative to Goodman’s algorithm for checking decomposability of a
given hierarchical model: first, check whether it is graphical and then, if it is, check
whether the graph is decomposable, i.e., whether there are any cyclic subgraphs of
length > 4.

In Section 1 we introduce some notation and define the various classes of models
for contingency tables. In Section 2 we review some basic elements of the theory of
Markov fields and Gibbs states. In Section 3 we draw together the results in these
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two sections, define the graphical models and discuss their interpretation. Section 4
contains the arguments needed to realise that all decomposable models are graphi-
cal and we also give the characterisation of decomposable graphs. Section 5 is
devoted to maximum likelihood estimation in decomposable models. Although this
is completely solved by Haberman (1974) we define an index directly interpretable
from the graph and show how these indices are the powers of the marginal counts
in the estimation formula. A combinatorial property of this index can also be used
as a characterisation of decomposable graphs. Section 6 contains a list of all
graphical models of dimension less than or equal to five together with their
interpretation and these are divided into decomposables and nondecomposables.
This is meant to both illustrate our theory and be an analogue of the tables in
Goodman (1974) with all hierarchical models of dimension less than or equal to
four together with an interpretation of the decomposables among them. Finally we
give some suggestions regarding the use of the models and some directions for
possible further work.

The present paper is almost without proofs. Most of our results are just
“translations” of results from other areas. It is somewhat technical to establish the
connection between graphical models and decomposable models. In fact, in our
opinion these results are of a purely graph theoretic nature and the proofs and
necessary formalism to derive the results can be found in Lauritzen, Speed and
Vijayan (1978).

1. Preliminaries. We shall discuss log-linear interaction models for con-
tingency tables. Since we want to use the analogies between the theory of Markov
fields and that of such models, it will be convenient to introduce a notation that
makes such analogies more apparent.

We shall consider a finite set C of classification criteria or factors. For each
y € C we let I, be the set of /evels of the criterion or factor y. The set of cells in
our table is the set / = II, -/, and a particular cell will be denoted i = (i, y €
C). A set of n objects is classified according to the criteria and we let the counts n(i)
be the number of objects in cell i.

For a C C, we consider the marginal counts n(i,). n(i,) is the number of objects
in the marginal cell i, = (i,, vy € a) and is obtained as the sum of the n(i) for all
such i that agree with i, on the coordinates corresponding to a. In other words,
n(i,) are the counts in the marginal table, where objects only are classified
according to the criteria in a. Similarly we let P(i)[ P(i,)] denote the probability that
any given object belongs to the [marginal] cell i[i,].

We consider the classifications of the n objects as n independent observations of
the distribution P such that the distribution of the counts becomes a multinomial
distribution:

P{NG) = n(i),ie I} = (n(i)”; - I)H‘EI PG,
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The general log-linear interaction model involves specification of the above un-
known distribution P as follows: firstly we expand the logarithm of P as

IOgP(i) = Eaccga(ia)’

where &, are functions of i that only depend on i via the coordinates in q, i.e.,
through i,. If a = I, £ is the constant vector.

Such an expansion can be made for any P with P(i) > 0 for all i € I. If we are
interested in having a one-to-one correspondence between the system of functions
{&,, a € C} and P, we have to introduce standardising constraints as, e.g.,

Vb Ca:Zy.ppe-,)é(,) =0 foralli,

i.e., that summation over any factor gives a zero. This is all well known and
standard although the notation is slightly unusual.

The functions £, are called the interactions among the factors in a. If |a| = 1 we
call § the main effect, if |a| =2 a first-order interaction and, in general, if
|a| = m, & is an interaction of order m — 1. A general log-linear interaction model
involves specifying certain of these interactions to vanish and letting the remaining
interactions be arbitrary and unknown. It is usually convenient to work with a
smaller class of models, the hierarchical models.

A hierarchical model is an interaction model where the specifications of vanish-
ing interactions satisfy the following property: if &, is specified to vanish and b D a
then &, is specified to vanish. In other words, if there is no interaction among factors
in a then there is no interaction of higher order involving all the factors in a.

As is easily seen and well known, a hierarchical model can be specified via a
so-called generating class being a set C of pair-wise incomparable (w.r.t. inclusion)
subsets of C to be interpreted as the maximal sets of permissible interactions, i.e.,

£, = 0iff there is no ¢ € C witha C c.

A probability P belonging to a hierarchical model with generating class C is
uniquely determined by the marginal probabilities given by the elements of ©. The
maximum likelihood estimate of P is obtained by equating these marginal probabil-
ities to the marginal sample proportions.

A certain subclass of hierarchical models is of special interest: the decomposable
models, introduced by Goodman (1970, 1971) and later defined formally by Haber-
man (1970, 1974). Following Haberman, a generating class is decomposable if either
it has only one element or if it can be partitioned into generating classes @ and B
with@ N B =,C=@& U B and such that

(UaE@,a) N (Ubegb) = a* N b*

for some a* € @, b* € B. A slightly different definition was given by Lauritzen,
Speed and Vijayan (1978) (henceforth referred to as LSV) but it is shown in the
same paper that the definitions are equivalent.
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As shown by Haberman (1970) these models have two fundamental properties

(i) the problem of maximum likelihood estimation has an explicit solution;
(ii) the models can be interpreted in terms of conditional independence, inde-
pendence and equiprobability.

The basic idea in our work is that such an interpretation is most directly
formulated as a Markov property. Goodman (1970), in fact, uses the terminology
“models of Markov type” for decomposable models.

This leads us to consider Markov fields on finite graphs and from these
considerations it turns out that it is natural to define a class of models, graphical
models whose interpretation most elegantly is given as a Markov property of a
certain random field associated with the model.

2. Markov fields and Gibbs states. In the theory of Markov fields, see, e.g.,
Kemeny, Snell and Knapp (1976), we operate with a set I of sites and here we
assume I to be finite. I" will correspond to the set of factors C. At each site y €T
there is a finite set I, of elementary states. The set I =1I rI is the set of
configurations. A given configuration is denoted by i = (i,, y € I). Further there is
an undirected graph T' on T, i.e., a pair I' = (V(I'), E(I)) consisting of the vertex set
V() =T and edge set E(I'), where E(I) is a set of unordered pairs of distinct
elements of I'. We say that a and B are adjacent or neighbours and write a ~ S iff
{a, B} € E(D).

If a C T, the boundary of a, da, is the set of vertices in I' \ a that are adjacent to
some vertex in a. The closure of a is a U da and is denoted by a. When no
confusion is possible we write da, & instead of d{a}, {a}. A complete subset is a
subset a C IT' where all elements are mutual neighbours. A cligue is a maximal
(w.r.t. inclusion) complete subset.

We now consider a probability P on I with P(i) > O for alli € I and the random
variables defined by coordinate projections: :

X,(0) =i, yeT
and
X,(i) =i, foracCT, a#+ .

The random field (X,, y € T) is said to be Markov w.r.t. P and T (or P is Markov
w.r.t. I) if one of the following four equivalent properties hold:

(i) for all y €T, X, and Xr.; are conditionally independent given Xj,.

(i) for all @, B8 €T with a < B, X, and X, are conditionally independent given
X\(a, 8}

(ii) for all @ C T, X, and X1; are conditionally independent given X, ;

(@iv) if two disjoint subsets a C I' and b C I separated by a subset d C I in the
sense that all paths from a to b in I go via 4, then X, and X, are conditionally
independent given X,.
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That these four conditions in fact are equivalent for a probability with P(i) > 0
is more or less well known, see, e.g., Pitman (1976) or Kemeny, Snell and Knapp
(1976). It can be proved with quite elementary methods.

A potential is a real-valued function @ on I of the form

@) = Z,cr &)
where the functions &, depend on i through i, only and are called the interaction
potentials. In fact, any real-valued function is a potential, see the remarks in the
previous section, so this notion first gets interesting when we make restrictions on
the £, - functions.
A probability P on I is called a Gibbs state with potential ® if

P(i) = %0,

Similarly, any probability on I with P(i) > 0 for all i is a Gibbs state (with
potential ®(i) = log P(i)). @ is called a nearest-neighbour potential if it is built up
from interactions only among mutual neighbours, i.e., if £ = 0 if not all vertices in
a are mutual neighbours, i.e., if a is not a complete subset of I. P is called a
nearest-neighbour Gibbs state iff P is a Gibbs state with potential ®, where ® is a
nearest-neighbour potential.

One of the most basic results about Markov fields and nearest-neighbour Gibbs
states asserts that, in fact, the two notions are identical: P is a nearest-neighbour
Gibbs state if and only if the corresponding random field is Markov. A proof of this
result can be found many places. In the case I, = I, there is, e.g., a proof in
Kemeny, Snell and Knapp (1976), and the method of proof there easily extends to
the case with I, depending on v, see, e.g., Pitman (1976) or Speed (1976).

This theorem is in fact the key to our results: it establishes a connection between
certain linear restrictions on the logarithm of a probability (being n.-n.-Gibbs)
and a Markov property (an interpretation in terms of conditional independence).
What remains to be done is to introduce the graphs in the contingency table
framework.

3. Graphical models. Let us return to the contingency table set-up. Assume
that we have given a graph C on our set of factors C, specified by the vertex set
V(C) = C and edge set E(C). Let C be the cligues of C, i.e., the maximal complete
subsets. The graphical model given by C is the hierarchical model with generating
class C. Note that C also uniquely defines the graph C by a ~ g iff 3¢ € € such
that {a, B} C c. In that sense our graph C is just another representation of the
generating class C.

Let us examine the restrictions on our interactions given by this generating class.
By the definition of a hierarchical model we have & = 0 unless a is contained in a
maximal complete subset, i.e., unless a is a complete subset. In other words, the set of
probabilities P in our model is exactly the set of nearest-neighbour Gibbs states
corresponding to C.
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Consequently, by the fundamental theorem in the previous section, we have that
the probabilities P, contained in our model are exactly those making (X,,y € C) a
Markov field. 1t is now clear that our model is given by conditional independence
constraints involved in the four equivalent formulations of the Markov property. It
is thus clear that if two sets of factors are in different connected components of the
graph, they are independent. If two factors are not neighbours, they are condition-
ally independent given the other factors. If two sets of factors a and b are separated
by a set of factors d, they are conditionally independent given those in d, etc.

We should like to point out, that not all hierarchical models are of the graphical
type. It is, however, still possible to associate a graph with any generating class.
The graph defines the interaction structure in part.

Let @ be a generating class and assume that C = U_ ¢ ¢ (this assumption is
merely of technical nature). Define a graph C = (V(C), E(C)) by letting V(C) = C
and {a, B} € E(C) if and only if {a, B} C ¢ for some ¢ € C. We could call this
graph the first-order interaction graph for C since it has all main effects as vertices
and first-order interactions as edges. It is clear, that C corresponds to a graphical
model if and only if € exactly is the set of cliques of this graph. If this is the case,
we shall say that C is a graphical generating class. If there are cliques in the graph
that are not in G, which very well can be the case, then € is not graphical and the
interaction structure in the model is not adequately described by the graph alone.
Note that these remarks imply that the interaction structure in a graphical model is
determined by the first-order interactions, since these interactions define the graph,
which, in turn, gives us its cliques and thus its interactions of higher order.

The simplest example of a hierarchical model which is not graphical is that with
C ={1,2,3}and C = ({1, 2}, {2, 3}, {1, 3}}. Its first-order interaction graph is

2

A,

i.e., the complete 3-graph. If C had been graphical, © should have been {{1, 2, 3}}
which is not the case. The model in question, that of vanishing second-order
interaction in a three-way table, is also known as the simplest nondecomposable
hierarchical model, and it is well known that it cannot be interpreted in terms of
conditional independence.

In the next section we shall see that all decomposable models are graphical and
characterise graphs corresponding to decomposable models.

4. Decomposable models and graphical models. Lauritzen, Speed and Vijayan
(1978) (LSV) study properties of generating classes and their first-order interaction
graphs, especially w.r.t. the notion of a decomposition. This is done in a purely
graph-theoretic framework and they therefore use a slightly different terminology
to be able to relate their results to other areas of mathematics.
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A generating class is, in LSV, called a generating class hyper graph (g.c. hyper-
graph). The first-order interaction graph of a generating class is called the 2-section
of the g.c. hypergraph.

Here we shall quote some of the results from LSV of importance to us. For
proofs and details, the reader is referred to that paper using the “translation key”
just given. Corollary 4 in LSV asserts that any decomposable model is graphical. This
fact was noted by Andersen (1974) in a somewhat disguised form (his Theorem 5).

We are now led to the following considerations: decomposability is a property of
a generating class, a property which is not too easy to get hold of and verify
directly. We have just seen that any decomposable model is graphical, i.e., is very
well represented by its first-order interaction graph. Then decomposability must be
a property of such a graph. Theorem 2 of LSV asserts (among other things) that:
the cliques of a graph form a decomposable generating class if and only if the graph is
triangulated (i.e., contains no cycles of length > 4 without a chord). For the notion
of a triangulated graph, see Berge (1973).

This result is definitely the main result of LSV and gives us a possibility of
making an immediate visual check on the decomposability of a given graphical
model, see our tables in Section 6.

Thus the smallest nondecomposable graphical generating class is given by the
4-cycle:

4 3

ie., with C = (1,2,3,4}, C = {{1,2}, {2,3}, {3, 4}, {1, 4}}. In fact, Andersen
(1974) gives this example of a nondecomposable model that can be interpreted in
terms of conditional independence (1 and 3 are c.i. given 2 and 4, 2 and 4 are c.i.
given 1 and 3).

The Markov interpretation originally made by Goodman, Haberman etc. is

along the following lines: a generating class C = {q;, - - -, a;} is decomposable iff
its elements can be ordered so that
4.1 an(@uU---Ueg_)=agna,r,€{l,---,t-1}

' t=2---,k

It follows that
by=a\(a;U---Ug_) =a\a *J.
It is easy to see that, if P is hierarchical with generating class €, that is
P(i) = exp Elt‘-lzaCa,ga(ia)’
then the conditional probability

P(ib,‘lialu uak-,)
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simplifies to P(i,|i, ) where
¢=a\b=ana,

and that the marginal probability P, , ..., _, satisfies the hierarchical model with
generating class C = {q,}. It follows by induction that

P(i) = P(ial)H,:-ZP(ib,]ic,)

and that the distribution of an X with probability P may be characterised by the
sequence of Markov properties

conditional distribution of X, givenX, ... 4_,

= conditional distribution of X, given X, t=2,--- k.

Further, (2) may be rearranged as

which is the explicit formula for P and includes as a special case the formula for
the maximum likelihood estimate of P.

In order to arrive at this formula by the above method it is necessary to search
for an ordering of the elements of € which satisfies (4.1). This search is helped by
reference to the graph and also by the awareness that each element a, must contain
at least one element which is not in @¢; U - - - Uaq,_,. There are, generally, many
orderings satisfying (4.1). Haberman proved that there are at least & by proving
that any element of C may be chosen as initial member of some sequence. That
there may be many more is illustrated by the example with |[I'| = 6 and

€ = {{1,2}, {2,3}, {45}, {1, 5, 6}}
for which the graph is

§ 5 4
It turns out that 14 of the 4 ! = 24 possible orderings satisfy (4.1).

The description of the Markov property given by the graph seems more natural
since it is immediate that the property does not involve an ordering of the elements
of C.

Theorem 2 in LSV also characterises decomposable graphs by a combinatorial
property involving a certain counting index. Since this index is involved fundamen-
tally in the estimation formula, we shall discuss this in the coming section.

5. The index and the estimation formula. Haberman (1974) introduces the
adjusted replication number for subsets of sets in a generating class. In the decom-
posable case he shows that this number enters in the explicit formula for the
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maximum likelihood estimate ﬁ(i) of P(i). In LSV a related quantity is defined.
Whereas the adjusted replication number is defined recursively, this index is
defined directly.

Let C be a connected graph (C, E(C)) and d C C be a complete subset. The
pieces of C relative to d are defined as follows: remove d from C and form the
subgraph C\ d with vertices C \ d and edges which are those in E(C) that do not
involve vertices in d. C\ d now has one or more connected components A, t € T,
say. Let C, be the subgraphs of C obtained by readjoining 4 to the subgraphs A,
i.e., C, has vertex set 4, U d and edges which are those in E(C) that only involve
vertices in 4, U d. C,, t € T are the pieces of C relative to d.

Probably the procedure is best illustrated by an example:

Consider this graph and let d = {3}. By removing d we get the following connected
components:

4

Readjoining d to these components we get the pieces:

2
1 3 and 3e———5
4
For d = {1, 3} we get components of C\ 4:
20,
*5
Le

and thus pieces

2

A 1e—3 {——eo—05
A V4 a
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Clearly, since d was complete in C, d is complete in all the pieces C,, but not
necessarily a clique in C, (i.e., maximal).
Let »(d) be defined as

»(d) = 1 — the number of pieces of C relative to d in which 4 is not a clique.

In the example given above we have »({3}) = — 1, since {3} is not a clique in any
of the two pieces and »({1, 3}) = — 1 since {1, 3} is a clique in 10——5——05

but not in the two remaining pieces.
Corollary 7 of LSV asserts that for any connected graph C we have

2zit:cmplev,eu(d) >1

and Theorem 2 of LSV that C is decomposable if and only if equality holds. Thus we
have a combinatorial identity characterising decomposable graphs.

If C is not connected itself but has connected components C,, t € T we define
an index »,(d) for each of the components and have that C is decomposable iff

Zier2av(d) = |T|,

which is an easy consequence of the inequality.

The index is primarily a tool for revealing combinatorial properties of decompos-
able graphs. However, it is worth noting that this index occurs in the estimation
formula.

In a decomposable, and thus graphical model the maximum likelihood estimate ﬁ(i)
of P(i) based upon n independent observations, is given by

AGi) = [HteTHd"(id)yl(d)] 71,

provided that all n(i;) are positive. (In this formula »,(d) is interpreted as zero if
dgzC,)

To show this result we first realise that it is enough to consider connected graphs.
For the various connected components correspond to independent sets of factors
and their probabilities as well as their estimates multiply. Next we see that the
formula is correct for a graph with just one clique. This is clear because such a
graph corresponds to an unrestricted probability and in that case we have

B(i) = n(i)/n.

Noting that for such a graph we have »(d) = 0 unless d = C in which case
v(d) = 1, we see that our formula is correct in this case.
The final step in the proof is an induction argument using two basic facts:

(i) if a generating class C is decomposed into @ and ® such that @ U B
C,@N B = and A N B=a*n b* for some a* € @, b* € B, where 4
Ugee@ B = Uyecqb, then

Po(iy) Py (ip)

Pol) = A8
P(a‘nb‘)(la‘nb‘)

s
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which, e.g., follows directly from Theorem 2 of Andersen (1974);

(i) if a generating class C, where C is the maximal cliques of a connected graph
C is decomposed as above, then both @ and B are the cliques of the subgraphs A
and B, these are both connected and the indices »,, »; and v, satisfy

ve(d) = vy(d) + vg(d) ford #+ a* N b*
ve(d) = vy (d) + vg(d) — 1 ford = a* N b*.
This is Lemma 8 of LSV.

If we use these two facts and assume the result to be true for all graphical
models with fewer than |C| cliques, we get

By = Leln)Palls) _ MLn() L n(i)"
T Plarnomy(igenpe) n(igmrse)
= Hd"(id)”dd)/"

where we again have let »,(d) = 0[vz(d) = 0] if d € A[d Z B].

The estimation formula makes it possible for us to derive some further properties
of our index. Let n, = |I,| and suppose that we have n = |I| = ]I . -n, observa-
tions with exactly one observation in each cell, i.e., n(i) = 1 for all i. Then, clearly

Pi)=n""
Using our formula for a connected graph C we also get
ﬁ(‘) = "_lnd”(id)y(d)
- v(d
n 'Hd(Hyedny)( )

d).
-1 vd) — ,,—1 zch\('I)’(
n HyECHdaayny =n HyEC"y

Since this expression is valid for all possible values of n, we must have for a
connected, decomposable graph C
Zicevin¥(d) =0 forally € C.
Since
Zp(d)=1=Z;50(d)+ Z;5,7(d),
we thus have, for all y € C,
Ed:yed';(d) =1
for any connected, decomposable graph C.
A further identity is obtained by summation of the above identity for y € C:

IC| = Eyeczdsy"(d) = 2 |d|»(d).

6. Graphical models of dimension less than or equal to five. Here, we shall give
the graphical representation and the interpretation of all graphical models corre-
sponding to an m-dimensional contingency table with m < 5. Apart from the
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interpretation column this is just a question of listing all graphs with less than five
vertices. We do this both to illustrate the material in the previous sections and as a
counterpart to the tables in Goodman (1970) of all hierarchical models of dimen-
sion < 4. We only list connected graphs since other models can be constructed by
using these as connected components of other graphs. As remarked earlier, the
various connected components in a graph of a graphical model correspond to
independent sets of factors.

Giving the various interpretations in terms of conditional independence we shall
use the notation of Goodman (1970), e.g.,

[1 ® 23]
meaning that, given 3, the factors 1 and 2 are conditionally independent. In Table 1

we list the decomposable graphical models and in Table 2 the nondecomposable
models where we also indicate the critical > 4-cycle.

TABLE 1
Decomposable dels of di ion less than or equal to five.
graph interpretation
; unrestricted
1o—e2 unrestricted
2
i z unrestricted
1 3
toe——3—3 1®3p2
O 3 n [1©3,42]N[1,284)3]
3
1
3 [1®3®42]
4
3
1 3 [1®3,4)2]
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2

1

1

1

>

2

[ S——

5

1

2

1

2

1

4

S
2
2

3
4
3
3
3
5
[A
3
5
4L

3

4
5
4
5

1®3)2,4]

unrestricted

[1® 3, 4,5[2], etc.

[1®283®4|5]

[1©3,4,52]1n[1,2®4® 53]

[1®5®32,4]n[1®3,4,572]
NIS® 1,2, 34]

1,2®4,53]N[1®3,4,5]2

[1®2®3,45]

(1,2 3,45]
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2
1 3 4 2®5®4|1,31N (1,2 5®4)3]
5
2
1 3 e [1,2,5@4B3] N [1®3,42, 5]
5
1 2
gg ::>3 1®3®52 4]
5 L
1 4 5
(1,2,3® 5/4]
2 3
2 3
Z{S;Z?E& [1®3,42, 5N [1,2943, 5]
1 %
2
S 1,2® 5|3, 4]

@®5|1,2, 3]

3
2 4
unrestricted.

—
@N ~ w w
w
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TABLE 2
Nondecomposable models that are graphical of dimension less than or equal to
Jive.
graph > 4-cycle interpretation
2 3
{1,2,3,4) [1®3)2,4Nn[2®4,3)]
1 4
2
1 3
{1,2,3,4,5) [1,2 ® 43, 5), etc.
5 4
3
1 {2,3,4,5) [1,2®5[3,4 N [1®3,4,572
NB®1®4{2, 5]
4
2 3
4 {1,2,3,5} [1,2®4]3,5]n [1 ®3,4)2,5)
N2 ®4,5|1,3)
1 5
2

3

o~ ——
—l‘b)l—i
N W W
w AN
(S IV IV}

Nt Nt St
E

-

{1,3,4,5} and
(2, 3,4,5)

{1,2,3,4}

[1©2®4f3,5)
N[3®5[1,2,4]

(1,2 ® 43, 5]
N3 ®5]1,2,4]

[1®3[2,4,5]
N2 ®4|1,3,5).
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Note that the last graph in Table 2 is not triangulated although it is made up by
triangles. {1, 2, 3, 4} is a cyclic subgraph without a chord. Thus the term *triangu-
lated” is a bit misleading.

The interpretation column is made to give an interpretation in usual terms. Of
course other conditional independence properties can be derived from those listed
using rules of conditional independence. The most accurate interpretation will
always be that the model consists of all Markov fields on the given graph.

To illustrate the complexity of the various types of models we have computed the
number of possible models of any given type for a given contingency table of
dimension < 5. The number of general log-linear interaction models is equal to
27'-1_ The number of graphical models is equal to 37_y(7)2®. The number of
decomposable models does not seem to admit an explicit formula, but can be
counted using the graphs in Tables 1 and 2. To count the number of hierarchical
models is tedious for n = 5.

TABLE 3
Number of models of given type.
dimension
type 1 2 3 4 5
Interaction 2 8 128 32,768 2,147,483,648
Hierarchical 2 5 19 167 7,580
Graphical 2 5 18 113 1,450
Decomposable 2 5 18 110 1,233

7. Some final remarks. Finaily we shall give some suggestions as how to use
the models and some possible directions for further work.

Searching for models. The graphical models are primarily relevant for the analysis
of contingency tables of rather high dimension where it is difficult a priori to have
very precise ideas about the relevant models and where one initially is looking for
possible conditional independence among factors. We suggest that in such cases the
graphs and their associated models be used directly in the search for possible
models rather than the generating classes. It assures interpretability of any final
model and it is in fact a very handy aid in visualising the features of the models.
So, instead of trying gradually to remove interactions of high order, try to remove
edges or throw in edges.

Estimation and test of hypotheses. At present, the graphs do not seem to be of
great help in the numerical procedures of estimation and testing. There is some-
thing to be gained in discovering decomposability, thereby reducing the estimation
problems. It might be the case that the graphs could be used in the estimation and
testing problems. Consider for example the following model:
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The model is not decomposable because of the 4-cycle to the right. On the other
hand, the nondecomposability is isolated to that region. So, in fact, numerical
iteration is only needed to find the marginal estimates in the table corresponding to
these four factors. The estimate for the entire table can then be combined easily
from this and an explicit formula for the marginal probability of the remaining
factors using fact (i) in the proof of the basic estimation formula.

Similarly, we can get a simplification in a testing problem. Suppose that we want
to find the likelihood ratio statistic for the hypothesis that the model

can be reduced to

Even though neither of the two models are decomposable, the difference between
them is isolated to a decomposable region. Therefore, the likelihood ratio test
statistic is nothing but that of testing independence in the two-way table involving
the two factors at the left.

There is some work to be done in giving a good formulation of “local decompos-
ability” and using such a notion in an efficient way in estimation and testing
problems.

Exposition of the theory. Another possible use of the graphs is in an exposition of
a theory of graphical models for contingency tables that uses the graphs directly
instead of first relating these to generating classes and hierarchical models. This
could have important pedagogical advantages.

We hope in the future to be able to give some more content to the vague remarks
above.
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A unified treatment is given of the classical additive models for complete
factorial experiments and of multiplicative models and Lancaster-additive
models for multi-dimensional contingency tables. The models are character-
ised by properties of being simplest subject to having a prescribed set of
marginals. It is shown that, by using averaging operators and the notion of a
generalised interaction, the interaction properties of these models can be
derived very simply.

1. Introduction. Interaction models provide simplified structures for the arrays of
unknown parameters which arise in factorial experiments and in multidimensional contin-
gency tables. These two fields of application will be considered side by side, rather more
attention being given to contingency tables.

In a factorial experiment there are, say, s factors A,, ..., A, and a single response y. If
the factors have ry, ..., r, levels there are r, X ... Xr, different combinations of levels
called cells. The expected value Ey = 7 of the response varies from cell to cell and
inferential attention is focused on the array n of the ryx ... Xr, values of 1.

In a pure response s-dimensional contingency table there are s categorical variables
X, ---, X, taking ry, ---, ry values. This time the unknown parameter at each cell is the
probability p of that particular combination of response values. The following discussion
also applies to s-dimensional contingency tables in which some of the dimensions corre-
spond to factors and the remainder to responses. The probability p is then the probability
of the response values given the factor levels. There remains one further model for
contingency tables. In it the r; X ... X r, frequencies are independent Poisson variables
and the theory of this paper is applied to the array of their mean values p.

The standard models for 5, p, p or some function of them are defined by linear
subspaces of R, where

F={i=(i, L) 1=h=r,o0=1-., 5}

They are usually obtained by introducing a system of interactions and then requiring that
a subset of these interactions vanish. This may be quite appropriate with additive models
for factorial experiments, where the individual interactions can have a practical interpre-
tation, but it is not necessarily so with multiplicative models for contingency tables. One
of the aims of this paper is to give a simple account of an alternative approach in which we
define models first (Section 2) and interactions later (Section 4). In doing so we take the
opportunity to compare and contrast additive and multiplicative models, and to note the
similarities and differences between two widely used parametrizations.

There is a certain amount of overlap in subject matter between this paper and the work
of Haberman (1974, 1975) but the mathematical treatments of the common material are
substantially different. Andersen (1975) gives a very clear summary of the general prop-
erties of interaction subspaces, applicable either to additive or multiplicative models,
whilst other general treatments are by Mann (1949), Good (1958, 1963), Kurkjian and
Zelen (1962), Grizzle, Starmer and Koch (1969), Goodman (1970) and Davidson (1973).
Writings which concentrate upon multiplicative models for probabilities include several
books: Haberman (1974, 1978, 1979), Bishop, Fienberg and Holland (1975), Fienberg (1977),
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Gokhale and Kullback (1978), and Plackett (1981). Lancaster’s theory of interaction and
generalised correlation can be found in his book (1969), although the formulation given
here (for finitely-valued random variables) is slightly different from his, being chosen to
facilitate comparisons with other models. Further literature references are given in the
body of the paper.

Inference matters are not discussed apart from a few comments on least-squares,
sufficient reductions and maximum likelihood estimation. There is also no discussion of
experimental design questions. A number of the results in this paper are new but in general
the emphasis is on unifying existing results and on proving them by elementary methods.

2. Models and marginals. In this section we introduce the models which will be the
main topic of the paper. The s factors or responses will be labeled by elements of S =
{1,2, - - -, s}, subsets of which will be denoted by a, b, ¢, d. As in the introduction ¢ € S'is
supposed to have r, values (levels or response categories), and we write . for the set of
cells i; precisely = {i = (i,) :i = i, = r,, 0 € S}. More generally we write i, for the sub-
tuple i, = (i,:0 € a),a C S.

2.1 The models. Let </ be a collection of subsets of S. The linear subspace Q. of
Q = R’ is defined by the property that the function f = (f() : i € #) belongs to . if and
only if

(21) f(l) = Zue.d }\a(ia)

for some functions {A;:a € «/}. Having defined Q,, the model M,, for f is simply the
property that f belongs to 2,,. The collection «is called the generating class of the model.
Given «let &/* denote the sub-collection of elements of .o/ which are maximal with respect
to inclusion. It is clear that M+ is the same model as M,, because if b C a, then A, (i,) +
Ab(ls) = pa(is). Whilst it is economical in practice to work with «*, the theory does not
require us to do so.

ExampLE 2.1.  All our examples will have s < 4 and for convenience we will write i, /,
k and [ instead of i, i2, i3 and i;. Whenever no confusion is possible, we will use subscripts
and omit the set describing the relevant indices. Thus we will write A;;, instead of A(1,2,3) (i1,
iz, U3).

Suppose that s = 3 and & = {{1, 2}, {2, 3}, {3, 1}}. Then @, consists of all arrays
f = (fijz) representable in the form

fije = aij + Bir + i

for some arrays (a;;), (8x) and (\x:). O

Of the following interpretations of M., the first is applicable mainly to a factorial
experiment with observations y = (y(i) : i € #) and expected values 7 = (9(i) : i € #). The
others are applicable to a contingency table with cell frequencies n = (n(i):i € .#) and
probabilities p = (p(i) : i € #) or expected frequencies p = (u(i) : ¢ € #).

Additive model: n E Q.
Multiplicative model: log p € Q, p positive.
or log p € Q,, p positive.
Lancaster-additive model I: p/q € Q.
Lancaster-additive model I1: P/Q € Q.

Here the function f = log p is defined by f(i) = log p(i) whilst f = p/q means f(i) =
p(2)/q (@) where g(i) = p1(i1) --- ps(is) is the product of the one-dimensional marginal
probabilities from p. Finally f = P/Q means f(i) = P(i)/Q(i) where P(i) = Y ;=; p(i) and
similarly for @, where j < { means j, < i,, 6 = 1, - - -, s. Additive and multiplicative models
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are commonly called linear and log-linear models, respectively. The general results below
apply also to any generalised linear model; see Nelder and Wedderburn (1972), Baker and
Nelder (1978).

Why should we study additive, multiplicative and Lancaster-additive models? In the
first place, the way in which they combine linearity and economy has an obvious appeal.
Less obvious is that they can be characterised by attractive properties relating them to
their o/marginal functions; these are given in the following section. Their best-known
properties are the no-interaction ones by which they are usually characterised, and these
are given in Section 4.

Suppose that fis known or assumed to satisfy M., so that f(i) is representable as the
sum of parameters A,(i.). Leaving aside the trivial case when the generating class &/
contains only one element, it is always possible to choose more than one parametric
representation of f. That is the parameters A, (iz) are not uniquely determined by f. The
extent to which they are unique is discussed in Section 4.

Generally speaking, the parameters A, (i,) have little more than a mathematical exist-
ence but, on rare occasions, they also have a physical meahing.

ExaMPLE 2.2. Let { index the cities of a country, let j index age-categories of brides
and let % index age-categories of bridegrooms. Let p;; be the expected number of marriages,
in a given year, in city i between brides of age j and bridegrooms of age k. Then

pije = MijNupijn,
M;j, Ni being the numbers of eligible women of age j, men of age k in city i at the

beginning of the year, and where p,;, is the rate of marriages in city { between women of
age j and men of age k. It may be very reasonable to assume that p;;x = pjx so that

log pijx = log Mi; + log pj + log Ni.

Thus we have an instance of the model of Example 2.1 in which the parameters (a;;), (8z),
(yi£) can be given a physical interpretation. 0

2.2 Marginals. For an arbitrary element £ = (£(i) : i € #) € € and a subset a C S we
write £a(ie) = Yi £(i), the sum being over alli, =1, .-+, r,, 06 €@’ = S — a, and call £, the
(unweighted) a-marginal of §& The o/-marginals of £ are {£,:a € &), Now let m(i) be a
positive weight attached to cell , where Y; m(¢) = 1. It is necessary in much of what follows
to work with weight functions different from the uniform weight function m(i) = (IL,r,) ™.
We define the (m-weighted) a-marginal mean 7, of n € Q by

I S
(2.2) na(la) = m Zt,,: m(l)'ﬂ(l),

and the </ marginal means of 7 are {7.:a € «}. The (m-weighted) inner product
(& n)m of & 1 € Q is defined by

(2.3) (& Mm = X m(D)E@M(),
and its associated norm (length) is || || = {(£ &)m} /%

Additive models. In terms of these notions we can now characterise the additive
model M,,. We begin with a lemma.

LEmMMA 2.1. Fix & no € Q and consider the set of all n with the same si-marginal
means as o and the squared distance ||m — £||% of each such  from £. Suppose that, in
this set, there exists 1, satisfying 11 — ¢ € Q. Then 7, uniquely minimizes | n — £||%.

ProOF. The condition that no have the same o/-marginal means is n — 10 L Q.v, where
orthogonality 1, is with respect to the inner product (2.3). Therefore 7 — 71 L Q. since
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N—"Notm Qwand 1 — o LmQy. But 1 — £ € Quand s0 (n —~ 91, M — £ )m = 0. Rearrangement
gives

ln—&17 = Im = &7 = In —ml?
which establishes the truth of the Lemma. 0

Note that if e is the unit function e(i) = 1 and £ = ke, % constant, then ¢ € Q. and it
seems appropriate to describe ¢ as uniform. The characterisation of the additive model can
now be stated: any n € Q. is simplest in the sense that it is closest to being uniform
amongst all arrays with the same 2/-marginal means. Closeness is measured by || - ||% and
simplest means that ¢ is uniform. There is thus a separate characterisation for each positive
weight function m.

The above discussion has not involved the question of existence, given 7o, £ of
satisfying
(2.4) m=Moln, m—§EQ

but this question is well-known to have an affirmative answer. For n; — £ is the projection
of no — £ onto Q. orthogonal with respect to (., - }; equivalently, 10 — m: is the orthogonal
projection of 1o — ¢ onto 24, the orthogonal complement of Q.

Multiplicative models. The analogous characterisation of the multiplicative model
M,,, which is due to Good (1963) and Ku and. Kullback (1968), closely resembles the
previous one. Let the (unweighted) o~marginals of the probability p be fixed at those of po
and measure the difference between p and a positive probability = by the Kullback
discriminatory information

(2.5) K(p, 7) =Y p(i) log p(i) /= (i) = ( p, log p/7)
where (£ ) = Y £({)3(¢) is the unweighted inner product.

LEMMA 2.2, Suppose that, among all p with the same s-marginals as po, there exists
D1 satisfying log p1/m € Q.. Then p; uniquely minimises K(p, ).

ProoF. Since p — po L Qu, p1 — po L Qv and log p: /7 € Q., we deduce that (p — p1,
log p1/#) = 0. Rearranging this gives (p, log p/7) — (p1, log p1/7) = (p, log p/p1), i.e.
K(p, m) — K(p:1, m) = K(p, p1), from which the lemma follows. O

Taking 7 to be the uniform probability function gives the following characterisation:
any p satisfying the multiplicative model log p € Q. is simplest in the sense that it
maximises —Y,; p(i) log p(i) among all probabilities having the same «/-marginals. Assuming
that U {a:a € &} = S, we may take 7 = go, the product of the one-dimensional marginals
of po and obtain the conclusion that any p satisfying the multiplicative model M., is closest
to being independent amongst all probabilities with the same .«/-marginals, closeness being
measured by K.

The existence of p; satisfying

(2.6) D1 —pod Qg logpi /7€ Qy

is assured provided that the s/-marginals of p, admit a positive probability, see Haberman
(1974), Barndorff-Nielsen (1978). Darroch and Ratcliff (1972) proved that, with this proviso
and for any subspace w of £, it is possible to construct p, given p,, 7 and w by generalised
iterative scaling. When w = Q,, then iterative proportional scaling can be used.

Lancaster-additive Model I. The results concerning additive models can be adapted
to provide a characterisation of the Lancaster-additive model I and because it is very
similar to the two preceding ones, we only give a brief outline.

Suppose that the unweighted %/-marginals of p are held fixed at those of po, and that
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U {a:a € &} = S. Then all of the univariate marginals p, are also held fixed and so too is
q = Ip,, equal to go say. If we put m = go and 1 = p/q = p/qo in (2.2) we find that holding
Da fixed is equivalent to holding 7, fixed. With ¢ = e the difference || 7 — £||Z simplifies to

2.7 $%(p, @)= T: [P (@) — go(0)]*/q0 (@),

the Pearson Chi squared measure of difference between p and go. Lemma 2.1 may be
translated to apply in this context and using that we obtain the following characterisation:
any p satisfying the Lancaster-additive model I with Q. is simplest in the sense of being
closest to independent among all probabilities having the same «/-marginals, closeness
being measured by ¢2.

The equations that p, satisfies are

(2.8) P1—potQy, pi1/qo € Qy

where L here denotes orthogonality with respect to the unweighted inner product. The
existence of p; given po, that is, of a probability function having prescribed s/-marginals
and satisfying the Lancaster additive model I is not now guaranteed; see Darroch (1974)
for a counter-example when & = {{1, 2}, {2, 3}, {8, 1}}, and for further comparisons
between these models and the analogous multiplicative models.

2.3 Fitting the models. Let us suppose that data y = (y(Z):i € #) from a factorial
experiment has a normal distribution with mean 7 € €, and covariance matrix
o’ diag(m) ', the diagonal matrix with value m (i) ! in the ith position. Then a sufficient
reduction of y is to the pair (1, || — 70||%) where 1, the projection of y = 7o onto Qs
orthogonal with respect to (-, - )=, satisfies (2.4) with £ = 0. We have already seen that
71 is completely determined by its </-marginal means, and these coincide with those of y.
If we further suppose that m is completely multiplicative in that it can be written

m(l) = k I1,m, (i),

where for each o € S, m,(i,) = 0, Yi;m,(i,) = 1 and k& is a constant, then we can express
7m in terms of the /-marginal means of y via formula (3.6) below. Thus (when m is
completely multiplicative) the set of 2-marginal means is not only a sufficient reduction
of y under the additive model M., but also there is a closed-form solution of the least-
squares (= maximum likelihood) estimation problem.

We turn now to the contingency table n = (n(i):i € .#), supposing that n has a
multinomial distribution with probability parameter p satisfying the multiplicative model
M, and total sample size N = };n(i). The (unweighted) /-marginal totals {n.:a € <}
constitute a sufficient reduction of # and, provided these marginals admit a positive table,
the log-likelihood (n, log p) is maximised, or K((1/N)n, p) is minimised, subject to
log p/7 € Q. (normally 7 is uniform) when p = p; satisfies (2.6) with po = (1/N)n. That
these equations give the unique maximum likelihood solution is immediately verified on
noting that (log p: — log p, (1/N)n — p;) = 0 and on rearranging the term on the left-hand
side of this equation to give K((1/N)n, p)— K((1/N)n, p:) = K(p1, p). As was noted in 2.2
above, the equations (2.6) can be solved by the well-known iterative proportional scaling
procedure.

To our knowledge there is no exact maximum-likelihood theory for the fitting of
Lancaster-additive multinomial models to contingency tables, although a number of
authors have discussed asymptotic theory for likelihood-ratio tests under the independence
alternative, see Lancaster (1969) for details.

3. Generalised interactions. Denote by M., the model for f = (f(i):i € #) defined
by

My:fe Q&[.
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The function fwill be variously interpreted as 7, log p, p/q or P/Q. In 3.2 below M, will be
formulated as imposing zero generalised s/-interaction, where generalised interactions are
defined very simply by repeatedly averaging over the values f(i) of f.

3.1 Averaging operators. Let w, be a weight function defined on {1, 2, ---, r,}, ie.
YieWws (i) = 1. The numbers w, (i,) will be thought of as non-negative although there is no
strict need for them to be so. Write S — {6} = S — o. Then the averaging operator Ts_,
operating on fis defined by

(Ts-of) @) = Xi,wo (E)f (@)

Thus Ts_, takes weighted averages over the oth coordinate and leaves a function which
depends on i through 7s_, only. For a C Slet T, be the operator which takes averages over
all coordinates with indices in @’ = S — a. In other words,

Te = Ioea Ts—0.

For example, if S = {1, 2, 3}, then T'\y; = Ts—2Ts—s = T3y T1,2y. When a = S we define T's
= I, the identity operator. An alternative definition of T, is possible via (2.2): Tan = 70
where this average is weighted with respect to the completely multiplicative weight
function w (i) = M,esw, (i,). It is immediate that T is a linear operator on &, that 7% = T,
and, more generally that

(3.1) TaTo=TsTa= Tas

where for a, b C S we write a N b = ab.
Two particular weight functions w are of special interest. One is the uniform weight
function defined by

w,(i,) = 1/r,.
The other is the substitution weight function defined by

. 0 if i,#r,
wolle) =11 it iy=r,

The resulting substitution operator 7T, has the defining property (7.f)(f) = f(ia7=’) Where
J = laro denotes the cell with j, = i, if 0 € @ and j, =1, if 6 € a’. Thus T, substitutes r, for
i,, 6 € a’. Of course any other fixed reference cell could be used instead of r. It will be
convenient to denote f(i.7«) by f5 (ia).

ExAMPLE 3.1. Let s = 4 and a = {1, 2}. When w is the uniform weight function the
transformation f — T.f replaces fij.: by f;;.. where, as usual, - denotes uniform average.
When w is the substitution weight function f;;x; is replaced under T, by fijr,,. O

Much of the theory in this paper is obtained using only the simple algebraic equipment
of averaging operators. The same ground may be covered using sums and products of
linear subspaces and their orthogonal projections. Little will be said about this approach
here because it is part of this paper’s aim to demonstrate the feasibility of the more
elementary approach. It will suffice to show that 7, is an orthogonal projection operator.

We have already noted that 7’2 = T, and so T is a projection operator. Since T.f = f
iff f(i) = A(i,) it follows that T, projects onto the subspace £, of € defined by this
property. Further, T, is self-adjoint with respect to (-, - ), since

(f, TaB)w = Tiw @)f ) T:, wa (i )g ()]
= Eiawa (ia)[Zi,, (ia' )f(l)][Zza Wa (la’ )g(l)] = (Taf; g)w
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Finally, T, is orthogonal with respect to (. , - ),, because ((I — T.)f, Tof ) = (TaI ~ TJ)f,
flw=1(0, flu=0.

3.2 Zero generalised interaction. Given a generating class & of subsets of S, define
the generalised s-interaction operator I — T, by
(3.2) I—Ty=Tlaesl — Te).

By (3.1) the terms on the right-hand side of (3.2) can be multiplied together in any
order and so, on expanding it, we find
3.3) T,=E.,T.,—Eﬁ; Tao+ ++- F Trna
where the sums are over all a € &, distinct pairs a, b € &, etc. Another useful expression
for T, results from ordering the elements of o/ as ai, as, -+ - , @», namely

(3.4) T.w‘ = Ta, + (I - Ta,)Tag + oo+ Hl<m‘(I_ Tu,)Ta,,,-

PRrOPOSITION 3.1. The function f satisfies M., if and only if
(3.5) Tdf = f

Proor. If fsatisfies M., then for some functions {A.:a@ € &/} we can write f = Y aewla.
Now (I — T.)A, = 0 for each a € «, and so it follows that ITe s (I = Ts) YacasAa = 0; that
iS, Tdf = f'

Conversely, if T'vf = f then, by (3.4),

f=Tof+ U =To)Tof+ -+ + eI = T,))- T f
which is of the form ¥ sesla. O

Since the {7} are orthogonal projections onto the subspaces {§.}, it follows that 7'y
is the orthogonal projection onto Q4 = Y.c,Q, although we do not use this fact in what

follows.
The proposition formulates M., as imposing zero generalised o/-interaction, in that

I-ToHf=0.
As foreshadowed in Section 2.3 above, when the weight function is completely multi-
plicative we have an explicit formula for an element satisfying the additive model M., in

terms of its &/-marginal means, namely
(3.6) n=zaﬁa—2;ﬁab+“';ﬁnd-
a
This result is an immediate consequence of (3.3) as soon as we recall that T,n = 7,. Using
the substitution weight function we obtain the following special case of (3.6).
7'(’) = Ea ﬂ;(ia) - ;,‘; 'ﬂZb(iab) + e F 'flﬁw(l‘rw)-

From (I — T.,) log p = 0 when T, is based upon the substitution weight function, the

multiplicative model is seen to be expressible as
p@) - U,‘l;l Pab(ias)
Hap;(ia) M H H Hp;bc(inbc)
asbyc

(3.7 [PhalindT* = 1.

The left-hand side of (3.7) is a generalised cross product ratio.

ExamPLE 3.2. Asin Example 2.1 let & = {{1, 2}, {2, 3}, {3, 1}}. Then (3.3) becomes
Ty=Tuz + Tesy + Tey — Tuy — Ty — Ty + Tt
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Using the uniform weight function, (3.6) expresses M., as the familiar
Nijk = Nijo + Njp+ Mk — Nie. — Njo — N+ 7.,
while (3.7) becomes the equally familiar cross-product ratio formulation of no three-
dimensional interaction, namely
DPijkPiryrs Brijry Prirsk =1
DPijrs PrijePirykPryryry o

Alternative formulations of the Lancaster-linear models M.;:p/q € Q. and P/Q € Q.,
will now be given. First choose w, = p,. Then

P(l) - 1 Palla)
o) = B 4elie) B = oy b9 =2t
Applying (3.3) the Lancaster-additive Model I is seen to be expressible was
P_« Pa Pab Pt
3.8 Py, lo_yyle, | 20
@8 q Z Z Qab qnw

Turning now to the Lancaster-additive model II, let T, be based on the substitution
weight function. Then
P@) - P(ire) _Palia)
QG Qlare) Qulia)

Consequently the model here is

P ab P [a%’2
C Fo—,
D R~
It is now easy to see that the two Lancaster-additive models are equivalent. After
multiplication of (3.8) by ¢(i) and (3.9) by @(i), each term in (3.9) is seen to be the
distribution function of the corresponding term in (3.8).

(3.9)

3.3 Marginals and generalised interactions. A by-product of the model characteris-
ations of 2.2 above is that, given f € Q., where fis 3, log p, p/q or P/Q, f is uniquely
determined by its /-marginals, suitably interpreted as weighted means or unweighted
sums. This is a special case of the result which we now prove that given its .«/-marginals
and its generalised /-interaction, fis uniquely determined.

There is almost nothing in the proof for 3, p/q, P/@. Thus, defining T, with respect to
any completely multiplicative weight function w, we can write n = T'yn + (I — Ty) 7 as the
sum of the expansion (3.6), involving its .»/-marginals, and its generalised .«7-interaction.
Similarly for p/q, except that we now define 7', with respect to w = ¢ and use (3.8), and
for P/€ where the substitution operators are used.

There is no explicit demonstration of this uniqueness result for log p and it has to be
proved using Lemma 2.2. Let us suppose that p is a positive probability and that
(I — Ty)log p = u. Define 7 = k exp u where & is the normalising constant making }; 7 (i)
= 1. Then T log p/n = Ty(log p — log k — u) = T'yJlog p — log k = log p — log k — u by the
definition of » and the fact that T'vu = 0. But this means that log p/= € @, and by Lemma
2.2 there is only one p with this property having given .&/-marginal sums, provided only
that these marginals admit a positive probability.

A postscript on this result is the following: it does not matter which (completely
multiplicative) weight function w is used to define the generalised .o/-interaction function
(I = T.)f because (I — T.,)f defined with respect to one weight function is recoverable
from (I — T.)f defined with respect to another. For, if {T.} and {T,} are defined with
respect to w and 15, we see from Ty T, = T., @ € o, and (3.3) that T, T,y = T, i.e. that

I-TH)I-Tf=U-TNf
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Incidentally, this identity shows directly why 7.f = f iff T.,f = f, a fact implicit in
Proposition 3.1.

4. Interactions.

4.1 Interaction operators. Inthe previous section we saw that, given a weight function
w and averaging operators 7, the operators 7., and I — T, arise naturally from consid-
eration of the model M,,. In the particular case & = {S — o: 6 € S} the operator I — T
=II,es(I — Ts-,) will be denoted by Us and called the S-interaction operator. Thus

Us = Ilses(Ts — Ts—,).
The definition is now extended to cover any subset b of S. Define U, = T; and, otherwise
Us = I,es(Ts — Ts-,).

The operator U, will be called the b-interaction operator. Alternative ways of writing it
are easily seen to be

(4.1) U, = ,esI — To—;). T,
4.2) U, = ,es(I — Ts-5). oet-Ts—0,
4.3) Uy = Tecs (-)I*ITe.

ExaMPLE 4.1. Again let s = 3. The interaction operator U(y,s, s is identical to the
operator I — T, with &/ = {{1, 2}, {2, 3}, {8, 1}}, discussed in Example 3.2. The interaction
operator Uyy,s) is expressible in various ways as

Uz = I = Te)T — Tey) Ty = (I — Tiz) (L — Tia5) Ttz
=Ty~ Ty — Ty + T,
Thus, for the uniform weight function,
(Uazijr =n5. — M. — .. +1.... 0O

Interactions are usually introduced recursively and their recursive structure is clearly
seen in the interaction operators. For example, when s = 3,

Upssy =T —Tes)I—Tus) — (I—Tes)I — Tuy)Ths-

The second term on the right side is Uy, s and gives {1, 2} interactions averaged over k.
The first term gives {1, 2} interactions within each level k. Thus {1, 2, 3} interactions are
clearly seen to be differences of {1, 2} interactions.

Some basic results about interaction operators are collected together in the following
lemma.

LEMMA 4.1 (i) T.U,=0 if bZ a.
(i) ¥, wo(i) Upf(i) =0 if o€ b.
(i) T.Us=Us if bCa.
(iv) Yoca Usp = To.

(V) U(z, = Ub.
i) U,Up=0 if a#b.
(vil) Let by, -, b, be distinct sets. Then

Y ki Us f = 0 implies that k; Us = 0 for all j.

(viii) U, is self-adjoint with respect to the inner product( -, <)u .
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Proor (i) Choose 7 € b — a. Since T, = [1,c4T's—, it follows that Ts—.(I — Ts_,) is a
factor of T, U,.

(ii) By () Ts-.Up=0,0E b.

(iii) Apply (4.1) and (3.1).

(iV) First consider @ = S. By (42) Zbgs Ub = Ebgs [H.,eb(l - Ts_,) Hoeb'TS—a]
= I,es[I — Ts-s) + Ts—,] = Il es] = I. Having established that Y scs Us
= I, we now multiply by 7, to get ¥ ,cs Toa U, = To. Application of (i) and
(iii) now gives (iv).

(v) Uy is a product of idempotent operators which commute and hence is itself
idempotent.

(vi) Choose 7 € (b — a) U (a — b) and reason as in the proof of (i).

(vii) Multiply ¥ &; Us f = 0 by U, and apply (v) and (vi).

(viii) By (4.3) U, is a linear combination of operators which are self-adjoint. [

We note that U, is an orthogonal projection operator because it is idempotent and self-
adjoint. Further U,f(i) = g(i») say and for each ¢ € b, i, w,(i,)g(i») = 0. Moreover, if f
is a function satisfying (a) f(i) = A(i») and (b)}.;, w.(i,)f(i) = O for all o € b, then, by (4.1),
U, f = f. Thus U, is the orthogonal projection operator onto the subspace ©, of all functions
satisfying (a) and (b), although we will not use this interpretation in the sequel.

4.2 Hierarchical no-interaction models. Let the closure s/ of a generating class & be
defined by

o ={b:bCa forsome a€ ./}

The complement of 7 is
A'={b:bZa forall a€ ).
Note that the class.&’ is hierarchical. That is, if b; € &’ and b; D b,, then b, € &7’.

ProPOSITION 4.1. Ty = Yyc.7 Us.
ProorF. It is easier to prove that
(4.4) I-Ty=3YbecaUs

from which the proposition follows. But this is a direct consequence of our definitions and
Lemma 4.1. For
I—T,y=1se,I— T,) by the definition (3.2)

=Taex(Yoga Us) by (iv) of Lemma 4.1
= Yses Us by (v) and (vi) of Lemma 4.1,
and the definition of &’. O

Thus the model M, for f may now be expressed as

(4.5) f@) = Yses Usf(@)
or as
(4.6) Upf(i)=0 forall be "

Formula (4.5) follows immediately from Proposition 4.1 and formula (4.6) by application
of (iv) with @ = S and (vii) of Lemma 4.1. By virtue of (4.6), M., may be called a
hierarchical no-interaction model. Proposition 4.1 thus provides the link with the more
common approach to models and interactions which starts with interactions and then
defines models by requiring that a hierarchical set of interactions are zero.
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Models with equal sized generating sets are frequently used in searches for parsimonious
fits to data and, for such models, there is a simple formula relating T\, to {T: b € %/}.

ExAMPLE 4.2. Let s =5 and consider « = {12, 13, 14, 15, 23, 24, 25, 34, 35, 45} where
12 denotes (1, 2} etc. We shall prove that

w=[Ti+ -+ Tl —3[Ti+ -+ +T5]+6T,. O

The general result is given in Proposition 4.2 below. It really belongs in Section 3 but
its proof uses results of this section.

PROPOSITION 4.2. For0<t<slet
S=odi={aCS:|a|=t)}.
Then

T = im0 (—1)'_"(8 _tl_t ; 1) Yo:ibi=u Ts.

Proor.
Ty = Yo o1=t Us = Dp:p1=t Hoesll — Ts—o) HoepTs—
= Yo coefficient of z* in I ,e[2(I — Ts—) + Ts—]
= coefficient of z* in (1 — 2) ™! M,es[zI + (1 — 2)Ts—]
= coefficient of z° in (1 — 2) ™! Y50 2“(1 — 2)* ™ Ys:161=u T

= coefficient of z* in Yi-0 2“(1 — 2)° ™7 Xu:61=uTs

=0 (—=1)*7* (s ;f ; 1) Yoigpi=u Tp. O

4.3 Dimensions of models. Let us denote the rank of a linear operator T by r(T'), and
the dimension of a subspace w of € by dim w. The following are immediate consequences
of the relevant definitions.

dim &, = r(To) = M,ears.
dim 0, = r(Us) = I es(rs — 1).
Our next result is an immediate consequence of Propositions 3.1, 4.1, and the linearity of
trace, as soon as we recall that r(P) = trace (P) for a projection operator P.
PROPOSITION 4.3. (i) For a generating class o/
dim Qy = Yo M ocars — uzg; Meeas?o+ + -+ F Hoenwlc = Joed Hoes(rs — 1).

(ii) For any t satisfying0<t<|S|=s

dim @, = Tino (— 1) (s e 1) Sttt Tacore.

4.4 Discussion. As an illustration of the use of the interaction operators with the
additive model M,,, consider the following simple method of deriving the least-squares
estimates of the interactions U,7(i) of n when we have datay = (y(i,7):j=1, ---, n(@@), ¢
€ #) with n(i) observations made on cell i, and the cell frequencies n(i) are proportional,
that is, completely multiplicative

4.7) n(i) = Mng(i,)/N*"
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where N = ¥, n(i). Condition (4.7) is of course most likely to be realised in practice when
(i) is constant. If we denote the mean of y(i, j) over j by y(i) then the sum of squared
deviations of the observations from their expectations is ¥.,; (y(Z, /) — 7())? = ., (¥, )
= y(@)*+ Y: n()(y() — n(i))? so that the least value has to be found of

4.8) 2in@) (@) — 16)? = Yocs X, ne(io)(Usy (@) — Upn(i))>
Identity (4.8) follows from the calculation
(2, 2V = (2, To Us2)w = 36 (2, Up2ho = L5 { Us2, Up2)u,

using Lemma 4.1 (iv), (v) and (viii), with z = y — n and w(i) = n(i)/N. Identity (4.8) shows
that, for any no-interaction model (hierarchical or not), the least squares estimate of U,y
is U,y (when the cell frequencies are proportional) for every model in which this interaction
is not assumed zero.

Consider now the multiplicative model M, i.e. log p € Q. Two particular weight
functions have been widely used in the literature. Since Birch’s (1963) paper, most authors
have used the uniform weight function. In this case

Uslog p(i) = Yeco (-1)!*“log p(i.)

where p#(i.) is the geometric mean of all p(j) for which j, = i,, and we do not find these
interactions easy to interpret. The system of interactions based upon the substitution
weight function does seem easier to interpret with multiplicative models and has been
used to effect by Plackett (1974). It was introduced by Mantel (1966), and is used more
generally in GLIM, see Baker and Nelder (1978). Here

Uslog p(i) = Tecs (—1)'*~'log pi(ic),

which is the logarithm of a cross product ratio. Thus if d = 3 and b = {1, 2}, the cross
product ratio is

PG, j, )p(ry, 1, 13)
PG, re, r3)p(r, j, rs)’

Referring back to Section 2.3 above, we now turn to what may be called the estimated
model interactions Uslog p, b €./, where p is the maximum likelihood estimate of p under
M,,. No matter which w is chosen, U,log p does not share the attractive properties of
Uy when the cell frequencies are proportional, properties which stem from the equation
Upi = Usy. Thus Uslog p does not depend only on the b-marginal table n, of n = (n(i): i
€ ) but, in general, on all &“marginals. (An important exception occurs when the
generating class is decomposable; see Haberman (1974), Darroch, Lauritzen and Speed
(1980) and Lauritzen, Speed and Vijayan (1978).) Also it changes each time a different
model (that is, a different /) is fitted. This is one of the most important differences
between the additive and multiplicative models. Of course when b is one of the maximal
elements of &7, that is b € &7 *, then U,log p can be put to use since its magnitude, relative
to its standard deviation, indicates whether or not the model obtained from M., by putting
Uslog p = 0 is likely to be acceptable; see Baker and Nelder (1978).

Finally we consider the implications of Proposition 4.1 for Lancaster-additive models.
Using the weight function g (see Section 3.2) the b-interaction for model I is

. L Pe

4.9) Ubg =Yoo (=1)I® IE’

and using the substitution weight function the b-interaction for model II is
P P.

(4.10) U, 3" Yecs (=1)12l o

It is easy to see (cf. Section 3.2) that the two definitions of no b-interaction obtained from
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(4.9) and (4.10) are equivalent to each other and to Lancaster’s (1969, page 256) definition,
namely

(4.11) ees(P3 (@) — Polic)) =0,
where the P are artificial functions multiplied according to the rule
MoecP3 (i) = Pe(ic)-
Zentgraf (1975) proved that, if (4.11) holds for all  with | 5| > ¢, then

(4.12) P(i) = Yo (-1) ,_,,(s ;I_‘ ; 1) Yo:151=u Po(is) @ (in).

This result, when combined with its converse, amounts to a special case of Proposition 4.2
above.

4.5 A uniqueness property of interactions. The main purpose of this paper has been
to show that many general properties linking models and interactions can be easily stated
and proved using interaction operators. We have seen that given any model M., and any
multiplicative weight function w there corresponds a generalized interaction operator T,
that the interaction operators U, provide a useful way of partitioning 7', and, finally, that
M_, has the “hierarchical no-interaction” property by which it is usually characterised.

We conclude by returning to a question raised in Section 2.1, namely: given that f
satisfies M., to what extent are the parameters A,(i,) uniquely determined by f? The
answer, as shown in the following proposition, is that interactions and only interactions of
A. are uniquely determined.

PROPOSITION 4.4. Assume

(4.13) f(l) = Eaed Aa(ia)
and let ¢ € of. The extent to which ). is determined by f is defined by the equations
(4.14) Ushc(ic) = Upf(i) forall be s/ — %

where € = of — {¢} and where the U, are defined with respect to any multiplicative
weight function.
Proor. Since
f@) = Aclic) = YacwAalia)
therefore
Us(f(i) —Ae(ic)) =0 forall bE F'.

However Ubf(i) = UsAe(i.) = O for all b € &’. Thus, given (4.13), A, certainly satisfies
(4.14). ‘

We now prove that equations (4.14) define all that is uniquely determined about A.
from a knowledge of £. This is done by showing that the information about A. contained in
(4.14) is sufficient for us to construct a A., AZ say, such that

f@) = A2(Ee) + Tacw Aalia).
Simply define '
A=Y iea-z Usf.
Then
f@) — A2(@E) = Yoez Usf@)
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and, by Proposition 4.1, the right side can be written in the form
Eae%' )\a(ia)- D

ExXaMPLE 2.2 (continued). We have s = 3 and & = ({1, 2}, {2, 3}, {3, 1}}.
Let ¢ = {2, 3} so that &/ — % = {{2, 8}}. Using the substitution weight function for
convenience, we find that the total information about the marriage rates p;; that can be
determined from a knowledge of the expected numbers of marriages ;% is contained in the
equations

PjkPryry = Foryjeloriror,
PjrsProk Moy jrstrirat
Likewise, all that can be determined about the numbers M;; of eligible women is contained
in the equations
MifM’1’2 - Hijrsfr ror,
MirzM"lj Miryrgfhry jry
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GAUSSIAN MARKOV DISTRIBUTIONS OVER FINITE GRAPHS
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Australia

Gaussian Markov distributions are characterised by zeros in the inverse
of their covariance matrix and we describe the conditional independencies
which follow from a given pattern of zeros. Describing Gaussian distributions
with given marginals and solving the likelihood equations with covariance
selection models both lead to a problem for which we present two cyclic
algorithms. The first generalises a published algorithm for covariance selec-
tion whilst the second is analogous to the iterative proportional scaling of
contingency tables. A convergence proof is given for these algorithms and this
uses the notion of I-divergence.

1. Introduction. Most modelling of jointly Gaussian (normal) random vari-
ables involves the specification of a structure on the mean and the covariance
matrix K. However, models which specify structure on K~! have also been
developed, although they are seemingly less popular. Our interest in this paper
focuses on the covariance selection models, introduced by Dempster (1972) and
studied by Wermuth (19764, b), in which certain elements of K~! are assumed to
be zero.

In Section 2 we show how zeros in K~! correspond to conditional indepen-
dence statements and characterise all such statements consequent upon a given
pattern of zeros. The characterisation is achieved by associating a simple graph
[Behdzad et al. (1979)] with the elements of K~! and providing rules for reading
the graph. The results are a direct analogue of those given in Darroch et al. (1980)
for contingency table models; see also Speed (1979).

The likelihood equations for covariance selection models lead naturally to a
consideration of the problem of finding Gaussian distributions with prescribed
margins. The results in Sections 3 and 4 provide a solution to this problem and a
general algorithm for constructing the required distributions is given. Two special
cases of this algorithm are considered. The first one is a generalisation of an
algorithm in Wermuth and Scheidt (1977) whilst the second one has properties
analogous to iterative proportional scaling for contingency tables [Haberman
(1974)]. The notion of I-divergence [Csiszar (1975)] or discrimination information
in the terminology of Kullback (1959), plays an important role in the convergence
proof of this algorithm.

Finally, in Section 5 we show how the I-divergence geometry of Csiszar (1975)
provides a framework in which both algorithms can be seen to be an iterated
sequence of I-projections.
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AMS 1980 subject classifications. Primary 62F99; secondary 60K 35.

Key words and phrases. Conditional independence, Markov property, simple graph, covariance
selection, I-divergence geometry.
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2. Conditional independence for Gaussian random variables. In the
following we consider a random vector X having a Gaussian distribution with
mean 0 and positive definite covariance matrix K. The components of X will be
indexed by a finite set C and for a C C we write X, for the subset of the
components of X indexed by a, namely (X,: y € a). The covariance matrix
K = (K(a,B): a,€C) on C is defined by K(a,B)=E{X,X;}, &, € C,
where E denotes expected value. For subsets a,b < C, K, , = {K(a,B): a €
a, B € b} denotes the cross covariance matrix of X, and X,. When a = b we
write K, instead of K, ,. Note that care must be taken to distinguish between
K. and (K !),. The density p(x) of X is, of course,

1 p(x) = (27)'*(det K) ™ exp{ — 1x7K 'x}, x € RIC,
2

where |-| denotes the cardinality of the argument. Marginal densities are
subscripted by their defining sets, e.g., p,(x,) or simply p,, refers to the marginal
density of X,, where a is an arbitrary subset of C.

Proposition 1 relates the conditional independence of two components of X to
the structure of K. In the proposition and following we abbreviate the set
intersection a N b to ab and write a \ b for the complement of 4 in a. The set
C\ b will be denoted b'.

ProPOSITION 1. For subsets a, b of C with a U b = C the following state-
ments are equivalent.

(l) Ka, b= Ka, abK;l}Kab,f'l

1) Ka\b, N\a = Ka\b, ao KooK gs, b\a*

(ii) (Kﬁl)a\b, ona = 0.
(iii) X, and X, are conditionally independent given X ;.

ProOOF. (i) and (i’) are easily seen to be equivalent by partitioning the rows of
K over a\ b and ab and the columns over b\ a and ab. By partitioning over
a\b, b\ a, and ab, a straightforward use of the expression for the inverse of a
partitioned matrix [Rao (1973, page 33)] proves that (i’) is equivalent to (ii). The
standard formula (2) for the conditional covariance matrix gives the connection
between (iii) and (i’),

(2) Cov(xa\b,xb\alxab) = Koo, 000 — Kars, asKaoKap, pna- O

A useful special case of the above proposition is the following corollary, given
by Wermuth (1976a).

CoROLLARY 1. For distinct elements a, B of C, X, and X, are conditionally
independent given X, g, iff K~ '(a, B) = 0.

Proor. Put a = C\ {a} = {a} and b = {B}’ in Proposition 1. O

Having shown that zeros in K~! correspond to conditional independence
statements we now describe all such statements which follow from a given
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pattern of zeros in K~ 1. To do this we associate a simple undirected graph with
the pattern of zeros and then give rules for reading the graph to obtain the
independence relations.

To begin, some graph-theoretic notation and definitions are needed; for a
general reference see Behdzad et al. (1979). Our simple undirected graph will be
denoted by C = (C, E(C)) where C is the vertex set, and E(C) the edge set
which consists of unordered pairs of distinct vertices. Pairs of vertices {a, 8} €
E(C) are said to be adjacent. A maximal set of (> 2) vertices for which every pair
is adjacent is called a cligue. For any vertex y we write dy = {a: {a, v} € E(C)}
for the set of neighbours of y. We also write y = y U dy.

An important notion is the separation of sets of vertices in C. To define this we
first need to define a chain which is a sequence y = vy, v,-.., ¥,» = B of vertices
such that {y, v,,,} € E(C) for I =0,1,..., m — 1. If y, = v,, the chain is called
a cycle. Two sets of vertices a, b are said to be separated by a third set d if every
chain connecting an a € a to a 8 € b intersects d.

The graph C is said to be triangulated [see Lauritzen et al. (1984)] iff all cycles
Yos Y1r---» Yp = Yo Of length p > 4 possess a chord, where a chord is an edge
connecting two nonconsecutive vertices of the cycle.

Finally, the graph C complementary to C has vertex set C and edge set E(C)
with the property that {a, 8} € E(C) iff « # B and {a, 8} ¢ E(C). Example 1
illustrates these ideas.

ExamMpLE 1. The graph C with vertex set {1,2,3,4} and edge set {{1,2},
{1,3}, {1,4}, {2,3}, {3,4}} could be depicted as in Figure 1. For this graph the
set of neighbours of 1 is {2,3,4}; the cliques are {1,2,3}, {1,3,4}; a chain from
{2} to {4} is 2,3,1,4 and {2} is separated from {4} by {1, 3}. Figure 2 shows the
complementary graph.

As it stands the graph in Figure 1 is triangulated. However, if the edge {1,3}
were removed we would have the simplest example of a nontriangulated graph.

The characterisation of all conditional independence relations consequent
upon a given pattern of zeros in K~! is presented in Proposition 2.

PRrROPOSITION 2. Let C be a simple graph with vertex set C indexing the
Gaussian random variables X. Then the following are equivalent.

() K (a,B) =0 if {a, B} & E(C) and a + B;

Fic. 1 Fic. 2
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The local Markov property:
(ii) For every y € C, X, and X, are conditionally independent given X ;. ;
The global Markov property:

(iii) For every a, b and d with d separating a from b in C, X, and X, are
conditionally independent given X ,.

Proor. To show the equivalence of (i) and (ii) we note that (i) is equivalent
to K~ '(y, {¥}’) = 0. Putting @ = {y} and b = {y}’ in Proposition 1 then proves
the result.

The equivalence of (i) and (iii) for the case ¢ U b U d = C follows in a similar
way if we put “a”’=aUd and “b”=bU d in Lemma 1. WhenaU bU d # C
a simple maximality argument as in Vorobev (1963) shows that maximal sets
a*, b* exist such that a C a*, b C b*, a* U b* Ud = C, and a* is separated
from b* by d. Proposition 1 then gives us p = p,.p,./p; and integration to
obtain the marginal density of X, , 4 shows that (i) implies (iii).

The implication in the reverse direction follows on noting that if (a, 8) ¢ E(C)
then a, 8 are separated by {a, 8}. Hence by (iii) X, and X, are conditionally
independent given X, 4, and Corollary 1 shows that K Ya,8)=0.0

The results of Proposition 2 are illustrated in Example 2.

ExXaMPLE 2. Suppose K~! has the following pattern with * denoting a
nonzero element:

v LN

SO O * *
* O * * * O
* * % * O W
* * * O O W
* % * * O W

Then the corresponding graph C would be as shown in Figure 3. If we put
vy = {2}, dy = {1,3,5}, and use the local Markov property we deduce that X,
and X, are conditionally independent given X, ; ;,. Similarly with a = {1},
b = {4}, and d = {2}, the global Markov property can be used to assert that X,
and X, are conditionally independent given X,.

3. Gaussian Markov distributions with prescribed marginals. In this
section we consider the problem of finding a Gaussian probability measure with
prescribed marginals, i.e., we seek a joint probability density p whose marginals

(3) pcl""YpC"

are known beforehand, c,,..., ¢, being proper subsets of C. (The notation is
explained after (1) above.) Clearly if our marginal specifications are consistent it
is necessary to give only the maximal ¢; in (3).
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3

F16. 3

As motivation for this problem consider the following. Suppose we have n
independent and identically distributed observations x,,...,x, from (1) and we
wish to find a maximum likelihood estimate of K subject to certain elements of
K~! being zero. When written in our notation, the likelihood equations for such
a model (Dempster, 1972) are:

K(a,B) = S(a,B) if {a,B} € E(C)ora =B,
4
“) K Y(a,B)=0 if {a, B} & E(C) and a # B,

where nS = Y7 x xT. The first equation in (4) is easily shown to be equivalent to
(4) K.=8, ifce ¢(C),

where %(C) is the class of cliques of C. Since a Gaussian distribution with mean
zero is completely specified by its covariance matrix, (4’) amounts to specifying
the marginal distributions p, for ¢ € #(C).

Theorem 1 can be used to describe the class of Gaussian measures with
prescribed margins.

THEOREM 1. Given positive definite matrices L and M defined on the vertices
C of a graph C = (C, E(C)) there exists a unique positive definite matrix K such
that

(i) K(a, B) = L(a, B) if {a, B} € E(C) or a = B,
(il) K Y (a, B) = M(a, B) if {a, B} & E(C) and a + B.

Equivalently
(@) K. =L, if c € €(C); )
(ii") K~Y(&, &) and M(&, &) agree except on the diagonals, ¢ € %(C).

Proor. The equivalence of (i) and (i’) follows from the relation

(5) EC)= U U ({a8).

c€%(C) (a,B)cc
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Replacing C by € in (5) enables the equivalence of (ii) and (ii’) to be demon-
strated.

The main result of Theorem 1 can be established using the theory of exponen-
tial families [Barndorff-Nielsen (1978), Johansen (1979)] and such a proof is
sketched by Dempster (1972, Appendixes A and B).

The results in Section 4 will show how to generate a sequence of matrices
converging to the K of Theorem 1 and thus provide an alternative proof. We
prefer this proof as it provides a basis for simple numerical algorithms which do
not require Newton-Raphson type iterations or storage of large matrices to
compute K. O

Replacing the L in Theorem 1 by the sample covariance matrix and setting
M = I shows that the estimation problem for covariance selection models has a
well defined solution. When M = I, the K in Theorem 1 gives the Gaussian
distribution with maximum entropy satisfying (i) or (i’) [see Dempster (1972)].

Note that varying the M in Theorem 1 gives the family of distributions with
margins prescribed by L., ¢ € 4(C).

In the next section we will make use of the notion of the I-divergence of two
positive definite matrices. This is defined by

(6) F#(P|R) = —{logdet(PR™") + te(I - PR™")}.

The definition (5) results from evaluating the discrimination information measure
of Kullback (1959), namely [p(x)log{ p(x)/r(x)} dx for the two Gaussian distri-
butions with densities p(X), r(x) defined by covariance matrices P, R. When it
exists, the I-divergence behaves somewhat like a norm on a space of probability
measures (Csiszar, 1975), although it is not.

Some properties of (6) which we will use later are given in Lemma 1. We write
2 for the set of |C| X |C| positive definite matrices and regard this as a (convex)
subset of R? where g = |C|2. In the following a set of unordered pairs of (not
necessarily distinct) elements of C will be denoted by E.

LEMMA 1. The I-divergence #(-|- ) has the following properties.

() If P, R € 2, #(P|R) = 0 with equality iff P = R.
(ii) Given P, R € P, if there exists a € & such that
(a) Q(a, B) = P(a, B) if (a,B) €EE, and
(b) Q" (e, B) = R (e, B) if (a, B) & E, then

(7) #(P|R) = #(P|Q) + #(QIR).
If such a @ exists it is unique.

(iii) If {K,} and {L,} are sequences contained in compact subsets of & then
JF(K,IL,) = 0 impliesK,— L, — 0.

PRrRoOF. The first assertion is a well known property of the Kullback informa-
tion measure so we focus on (ii) and (iii).
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(ii) A simple calculation shows that for @ € #
(8) #(PQ) + #(QIR) = #(P|R) — ; tr{(Q — P)A},

where A = @' — R™!. Conditions (a) and (b) then ensure that the trace term in
(8) is zero.

To prove uniqueness suppose @, and @, satisfy (a) and (b) of (ii). Then setting
P = R = @, shows that

j(Ql]Ql) = f(QﬂQz) + f(Q2|Q1)

and since I-divergences are positive unless both arguments are equal we must
have @, = Q,.

(iii) Suppose #(K,|L,) = 0 but K, — L, » 0. Then there exist convergent
subsequences K,. —» K and L, — L with K # L. By continuity #(K,|L,) -
F(K|L) # 0, which is a contradiction. O

4. Algorithms. This section develops two algorithms for constructing the K
of Theorem 1. The first algorithm preserves (i’) of Theorem 1 throughout the
iterations and cycles through &€ #(C) forcing the off-diagonal elements of
K~(&, &) to zero. The second algorithm preserves (ii") whilst forcing K, = L, as
it cycles through ¢ € #(C). Both of these algorithms are special cases of a more
general cyclic algorithm and we begin by presenting this algorithm. Throughout
the discussion E,, E,,..., E,, denote sets of unordered pairs of (not necessarily
distinct) elements of C whose union is denoted by E.

4.1. A general cyclic algorithm. The general cyclic algorithm is designed to
solve the following problem. Given G, H € # find an F € & with the property
that

9) F(a,B) = G(a,B) if(a,B) €E,
(10) FYa,B) =H(a,B) if(a,B) ¢ E.

The algorithm is defined as follows. Generate a sequence {F,} of positive definite
matrices satisfying F, = H! and, for n > 1,

(9) F(a,B) = G(o,B)  if(a,B) €E,,
(10) F (a,B) = F,°\(, B) if(a,B) € E,,

where n’ = n(mod m). Basically the idea is to maintain (10) throughout the
sequence whilst cycling through the E,, and forcing (9). The crucial step in the
algorithm involves going from F,_, to F,. Assuming for the moment that this
step can be performed, a convergence proof for this algorithm, modelled upon
that found in Csiszar (1975, Theorem 3.2), is given in Proposition 3. The two
algorithms to be discussed are examples for which the sequence {F,} can be easily
constructed. We write N for the set of nonnegative integers.

PROPOSITION 3. The sequence {F,} generated by the general cyclic algorithm
converges to the unique F € P with the properties (9) and (10).
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PROOF. By (ii) of Lemma 1 we can write for r > 1
(11) #(GIF,_,) = #(GIF,) + #(F,|F,_,).

Summing relations of the form (11) over r gives for uz > 1

(12) #(GIF,) = #(GIF,) + ¥, $(EJF._,)

r=1
and from (12) we deduce that
(13) (F,} € (F: 5(GIF) s 5(GIF,)} = A (say).

The set A is compact since #(G|F) is strictly convex (as a function of F~!) with
a unique minimum. From (12) it also follows that

(14) Y. #(FJ|F,_,)) < 4(GIF,).
r=1
Hence ¥, #(F,|F,_,) is convergent and #(F,|F,_;) > 0asr — co.
Now by (13) the vector sequence {F,, ,, F,pi9:.-es Fymim): § =0} has a
convergent subsequence, defined by s € N; € N, with limit (F*, Fy*,..., FX¥)
say. For any 2 < t < m we can write

(15) (Ft - Fc—1) = (Ft - Fsm+z) + (Esm+t_ Esm+t—1) + (Fsm+t—1 - Fz-1)~

Letting s € N, » co and using (iii) of Lemma 1 with L, = K, _, shows that
F* = F;* = --- F* = F (say). Note that (10) holds for each F, and hence for the
limit F. Similarly for each s € N, and ¢, F,, , ,(a, 8) = G(a, B)if (a, 8) € E,, s0
the same property holds for the limit F, i.e., (9) holds.

A similar argument for any other convergent subsequence shows that the limit
point satisfies (9) and (10) of our proposition. Lemma 1, part (ii) then establishes
that all convergent subsequences have the same limit and hence {F,,} converges.

O

The next lemma enables sequences {F,} satisfying (9') or (10’) to be con-
structed when either

(16) E = {(a,B): a,B€a;c C}
or
17) E,={(a,B):a,BE€a,CC,a+B}.

LEMMA 2. Suppose Q, R, and B € P. Then
(i) for a  C the matrix

-1 _ p-1
(18) Q R '+ 0 0

B;' - R} 0]

is positive definite and satisfies
(a) Q(a, B) = B(a,B) if a € aand B € a; and
(b) @ (a,B)=R Ya,B)ifa¢ aorf&a.
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(ii) The matrix Q is given by
Ba BaRglRa a’
(19) Q= -1 -1 ’ -1
Ra’,aRa Ba Ra’ - Ra’,aRa (I - BaRa )Ra,
(iii) We have the expression:

(20) #(QIR) = —1{logdet B,R,;' + tr(I, — B,R;")}.

a’

ProOOF. (i) We use the density scaling of Kullback (1968). In the Gaussian
case, given densities b(x) and r(x) corresponding to positive definite matrices B
and R, scaling so that r,(x,) agrees with b,(x,) corresponds to computing

r(x)b,
(21) ax) = 0ulxe) r)(x"(’;") .

Expanding the right-hand side of (21) gives

q(x) = (27r)‘101/2( det R det B, ) s

det R,
B;'— R 0)] }
X ’
0 0
which by (18) is just

(23) (27) 'V?(det Q)_l/2exp{ — %xTQ‘lx}.

The properties (a) and (b) are now immediate. A direct proof using matrix algebra
can also be given.
The proofs of (ii) and (iii) are straightforward so we omit them. O

(22)

1
Xexp{— EXT[R‘1 +

The two algorithms discussed below correspond to choosing the a; in (16) and
(17) to be the cliques of C or C, respectively. In the following we will abbreviate
the class of cliques of C by % and the class of cliques of C by #. The notation
diag(A) refers to a diagonal matrix whose diagonals are the same as those of A.

4.2. The first cyclic algorithm. List the cliques of the complementary graph €
as &,...,C, and generate a sequence {K,} as follows: K,=L; for s €N,
l<st<m, K,,.,=Z2(K, ., 1), where Z(K) = Q!, @ being the matrix (18)
of Lemma 2 with R = K~!, a = &, and B, = diag((K~!);!)"". The fact that
this sequence converges to the required matrix K when M = I follows from
Proposition 3 on replacing a; in (17) by & and making the identifications
F,=K,!, G=M, and H = L. It does not seem possible to give an explicit
expression for B, in the case when M # I. -

For this algorithm the elements of the sequence {K,} are fixed over ¢ whilst
the elements of {K '} vary over %. From a computational point of view it is not
necessary to compute the sequence {K,} by inverting K,' at each step. The
expression (18) provides a simple updating formula for K, given K,_,. Hence it
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is only necessary to invert |¢| X || positive definite matrices when cycling
through & € %.

The cyclic algorithm of Wermuth and Scheidt (1977) is also a special case of
the general algorithm. Instead of using the cliques of € these authors cycle
through the edges {a, 8} € E(C). The 2 X 2 matrix inversions required are
explicitly performed and used to give a simple updating formula. Their algorithm
is defined in the same way as above but they have a € E(C) and

-1
B =&l O]’
@ [0 u!

where
-y _Ju v
(K 1) a [ ') w]
and & = uw — v2 It is easily seen that at each step the current value of K(a, 8)

is changed by —v/8 so that K~ '(a, 8) = 0. A computer program for performing
the adjustments is given in Wermuth and Scheidt’s paper.

4.3. The second cyclic algorithm. Enumerate the cliques of C as ¢, c,,...,c,,
and define a sequence {K,} as follows: Ko=M"'; for s >0, 1 <t < m,
K,...= Y(K,,.,_1), where Y(K) = Q, Q being the matrix (6) of Lemma 1
with R = K, a = ¢,, and B = L. Making the identifications a; = ¢; in (16) and
F,=K,, G=L,and H=M in Proposition 3 shows that the second algorithm
converges to the K of Theorem 1. This result also gives an alternative proof of
Theorem 1. Note that {K;} is held fixed over € whilst {K,} varies over €.

That this second algorithm is analogous to iterative proportional scaling for
contingency tables should be clear. At each step we “scale” the current covari-
ance matrix to match the relevant “margin” L. We can also connect this
algorithm with a general procedure in Kullback (1968) where, however, the proofs
are incomplete. Using our notation, Kullback’s procedure can be described as

follows. Given the required marginal densities g,..., g, and an initial density
w(x) construct the sequence { f,} (assumed to exist) defined by
fo(x) = 7(x),

and fors>0,1<t<m

fsm+ t— l(x)gc,(x c,)
( fsm+ t—l)c,(xc,) )

Note that this simply amounts to scaling the previous density to ensure the
desired marginals and this is how we obtain the matrix @ of Lemma 2. Hence the
second cyclic algorithm is a Gaussian version of Kullback’s general procedure. It
can also be shown to be a cyclic ascent algorithm.

fsm+ t(x) =

4.4. Finite termination. When the graph C is triangulated and M = I the
second cyclic algorithm converges after one cycle if the cliques are suitably
ordered. This result is completely analogous to the one cycle convergence of
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iterative proportional scaling for contingency tables when the generating class is
decomposable [see Haberman (1974, Chapter 5)].

To demonstrate the result we need the following two lemmas. Without loss of
generality we assume that the graph C is connected.

LEMMA 3. If C is triangulated then there exists an enumeration c,,..., c,, of
the cliques such that fori =2,..., m
i-1
(24) ¢ Uc=* 2.
=1

PRrOOF. The result is obtained by successively removing detachable cliques
from C [see Lauritzen et al. (1984)]. O

Note that (24) states that for each i the clique c; contains a vertex not in ¢, for
l=1,...,i—1.

The second lemma gives an expression for the determinant of the matrix K in
Proposition 1 which is useful in proving the finite termination of the second
algorithm.

LEMMA 4. Suppose K € # and K 4, 4\, = 0 for a, b witha U b = C. Then
(25) det K = (det K,)(det K,)/det K ,,,.

ProoF. Note that (iii) of Proposition 1 implies p = p,p,/p,,- Evaluation at
x = 0 then gives the result. O

PROPOSITION 4. If the cliques of C are ordered as in Lemma 3 and we start
the second cyclic algorithm with K, = I, then

i) (K,).=L, force %, 3
(i) (K", is diagonal for ¢ € €.

Proor. We will prove that #(K|K,) = 0 where K is the unique matrix of
Theorem 1 with M = I. This will follow directly from (12) provided we can show
that

(26) J(KI|I) = Zj(KilKi—l)
i=1
and we prove this by induction on m, the number of cliques. It is clearly true for

m =1 and so we assume that it is true for all m < g where ¢ > 1. If we can
prove ’

(27) j(KII) =j(Kq+l|Kq) +j(KE,IE)’

where ¢ = UZ_,c;, then (26) will follow for m = ¢ + 1; g steps of the second
algorithm starting from K, = I generate matrices having the form

I 0 .
Ki=[0 Ki], i1=1,...,q,
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where K, is |¢| X |¢| and from the inductive hypothesis
q q
F(K L) = EJ(KilKi—l) = Zj(KilKifl)'
1 1

Turning now to the proof of (27) we remark that it follows from Lemma 4 with
a = c,., and b = ¢, the relationship (20) with @ = K ,,,, R =K ,and a = ¢,
as before, and the fact that

(K)o o L)

The logdet terms in the definition of # match up by Lemma 4 and the trace
terms correspond by (20) and the fact just noted. O

We conclude this section with a few remarks comparing the two algorithms.
When M = I, the main drawback of the first algorithm is the need to invert L at
the beginning. It is possible that a numerical inversion of L could be difficult or
impossible yet the second algorithm would work. This problem aside, it should be
clear that the choice of which algorithm is to be favoured in any given situation is
very much dependent on the number and sizes of the cliques in ¥ and €.
However, if C is triangulated and M = I, the finite termination property of the
second algorithm makes it attractive.

5. Some comments about the geometry. To give a geometric interpreta-
tion of the two algorithms it is convenient to define the “subspaces” £, .=
(PeP P,=L.}, 2y .= {Q€ P (Q '), agrees with M; except on the diago-
nal}, and &, o= N{P, c€ €}, 2y o= N{2y,+ CE F}.

Equation (7) bears a resemblance to Pythagoras’ theorem and clearly for all
Pe#, . we have #(P|R) 2 #(Q|R) with equality iff @ = P. Hence one can
call the matrix @ the I-projection of R on to £, , [see Csiszar (1975)].

Viewing the adjustment defined by @ in Lemma 2 as an I-projection we can
give an interpretation of the two cyclic algorithms as follows.

The first algorithm begins with a K, € 2, , and cycles through &€ &,
I-projecting the current estimate of K onto &, N 2, ; in order to obtain the
required element in #; N 2, ;. The fact that we are I-projecting follows from
(ii) of Lemma 1. Using this, for all K € 2, . we have

FS(KNR')=S(K Q) + #(QIR™)
or equivalently
S(RIK)=4#(Q 'K) +#(RIQ""),

and so #(R|K) > #(R|Q ") for all K €2, . with equality iff K = @ .

For the second algorithm we begin with K, € 2), ; and cycle through c € ¢,
I-projecting the current estimate K onto 2,, ;N &, .

Both of the above algorithms are analogous to computing the projection onto
the intersection of nonorthogonal (linear) subspaces by successively projecting
onto each subspace [see for example von Neumann (1950, Chapter 13)].
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Chapter 5
Last Words on Anova?

Terry Speed

Many people like to say the last words in an academic debate, and I am no exception.
I have tried to do this on a few occasions, only to discover that when I came to say
my piece, everyone had left the room. The analysis of variance is a case in point,
and my comments on Tukey’s contributions to anova explain the problem. If — as I
believe to be true — people don’t care much these days what Tukey thought about
anova, they are going to care even less what I think. This is not said with any sense
of bitterness. Indeed I regard myself as something of a student of fads, fashions and
trends in statistics, so why should I expect otherwise? Nevertheless, I'm very happy
to see these articles reprinted, as their easier availability may kindle the interest of
someone, somewhere, sometime in what I still believe to be an important part of
(the history of) our subject.

My main stimulus for work in this area came from the papers of six people:
R.A. Fisher, Frank Yates, and John A. Nelder from the U.K, indeed all from Rotham-
sted, Alan T. James and Graham Wilkinson from Adelaide, Australia, and John W.
Tukey from the U.S.A. Unpublished lecture notes by James were extremely help-
ful in getting me going. The anova program within GENSTAT, initially created by
Wilkinson based on research by James, Wilkinson, James & Wilkinson and Nelder,
was enormously influential. It was (and remains) truly brilliant in conception and
execution, and I wanted to understand it. For a long time I was interested in — one
might say obsessed with — the symmetries underlying much of anova, and that is
reflected in some of the papers reprinted (thank you Rosemary Bailey)! But also I
wanted to understand how users of anova saw things, including gory details such as
the combination of information, the analysis of covariance and dealing with missing
values, all topics with wonderful histories. I made one attempt to put it all together
for general consumption, but that got rejected, and so I moved on to other things.
As explained above, it is not clear how many people now care. I hope you enjoy the
papers. There are several more if you do.

T. Speed

Department of Statistics, University of California, Berkeley, and Division of Bioinformatics,
Walter and Eliza Hall Institute, Australia

e-mail: terry @stat.berkeley.edu

S. Dudoit (ed.), Selected Works of Terry Speed, Selected Works in Probability and Statistics, 141
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1. Introduction

For i=1,2, let (G;,A;)) be a permutation group. The permutation direct product
(G, A1) x(G,,4,) is (G, x G,, Ay X A,) with action defined by

(01,62)(91,92) = (8191,9292)-

If A; x A, is visualized as a rectangular array, an element of G, x G, may be described
as a permutation of rows by an element of G, followed by a permutation of columns
by an element of G,.

A,
1 2
A G ° )
1
G, D
FiG. 1

The permutation wreath product (G, A,)wr(G,,Ay) is (G2 x G,,A; x A,), with
action defined by

(01,62)(£,92) = (6,(6,.1),6292),

where f is a function from A, to G,. Thus an informal description of an element of
G, wr G, is ‘independent permutations of the points within each column by elements
of G,, followed by a permutation of the columns by an element of G,’.

A,

G, on each
column separately
F1G. 2
Proc. London Math. Soc. (3), 47 (1983). 69-82.
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In the first case, the indexes 1 and 2 play an equal role, and the rows of the array are
significant. In the second case, the index 2 dominates the index 1, and the rows have no
significance.

Sets with the two structures described above are frequently used in designed
experiments. Nelder [9] described a class of structures obtained from these by
successive crossing (corresponding to the direct product) and nesting (corresponding
to the wreath product). He developed a large body of theory for these structures and
asked whether only these structures satisfied his results.

However, there are many structures that are recognized as tractable by designers of
statistical experiments, but which are not in Nelder’s class: the simplest such was
described by Throckmorton [14].

ExampLE 1. The set is divided into rows (index 1) crossed with columns (index 2).
Each row is subdivided into minirows (index 3), which meet all columns. Within each
square (row—column intersection), the fragments of minirows are crossed with
microcolumns (index 4). Thus 1 dominates 3 and 4, while 2 dominates 4.

minirow

10 L2
microcolumn
4 3 4
——
column
@
FiG. 3

Although this is not one of Nelder’s structures, most statisticians working in the
design of experiments could describe its automorphism group, in such terms as
‘permute rows, permute columns, within each row separately permute minirows,
within each square separately permute microcolumns’.

A more precise discussion of structures such as this is given by Speed and Bailey
[12], and Bailey [2]: however, our concern here is with the associated permutation
groups. In § 3 of this paper we introduce an explicit description of the elements of both
the full automorphism group of such a structure and some of its subgroups. For
Nelder’s structures these groups can be obtained by successively forming direct
products and wreath products of the appropriate permutation groups (group actions),
but for our more general class we need to use a construction which Wells [15, §7]
described for actions of semigroups: he called it the wreath product of an ordered set of
actions. The ordered set here is a partially ordered set, the partial order being given by
the combinatorial structure. (The right-hand part of Figs 1-3 shows the appropriate
partially ordered set.) We need to prove that if we start with group actions then Wells’s
wreath product action is also a group action.

Since statistical experiments are, necessarily, finite, our main interest is in structures
defined by finite partially ordered sets: in this case, as is quite straightforward to check
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using the results of §4, the permutation group which we construct is identical with
that constructed by Holland [6] and Silcock [11]. This is why we call it a generalized
wreath product. However, finiteness is not essential to all of the theory: and so we
have not confined our attention to this case.

Throughout this paper we rely heavily on Wells’s explicit representation of the
elements of the generalized wreath product. We use a slightly modified version based
on the notation introduced in §2.

In §§ 5-6 we address two questions which are relevant to the use of these structures
in designed experiments. What are the orbits on pairs of points (§5)? In particular,
which subgroups have the ‘expected’ orbits? What are the irreducible constituents of
the permutation linear representation (§6)? In particular, when is the centralizer
algebra commutative?

2. Notation and terminology

The notation introduced in this section is used without comment in the rest of this
paper. Throughout, (1, p) denotes a partially ordered set. We shall find it convenient to
use both of the symbols p and < for the partial order, the former in descriptive work
and the latter in computations (when we shall also use the associated symbols <, >,
and > with their obvious meanings).

DEerINITIONS. Following Gritzer [4], we define a subset J of I to be

hereditary if, whenever i < jand je J, thenie J;

ancestral if, whenever i > jand je J, thenie J;

a chain if, whenever i, j € J, then either i < jor j <i;

an antichain if, whenever i, j € J and i # j, then neither i <j nor j <.
For i € I we define

AWy={jel: j>i}, Alil={jel:j=i},
Hi)={jel:j<i}, HlJ={jel: j<i},
and for J = I we define

A(J) = UJA(i), AlJ] = UJA[i],
H()=H(), H[I=H[]
ieJ ieJ
Note that all the A-subsets are ancestral and all the H-subsets are hereditary.

Forie I, let A; be a set with | A;| > 2 (this restriction is to avoid irritating special
cases). For J < I, put Ay = [ iy Ai. If K = J < 1, let 1k denote the natural projection
from A, onto A. If K = {k}, we shall often write rj for ng. We shall also abbreviate A,
to A and 7} to 7;. We shall need A 4, and m 4 so often that we abbreviate them to A’
and ' respectively.

We write elements of A as § = (§;) with §; € A;. For J < I we define the equivalence
relation y on A by 6 ¢ if and only if én; = ex;.

Foreach i € I let G; be a (faithful) permutation group on A; with identity 1;, and let
F; be the set of all functions from A’ into G,. For J = I put F; = [];c; F;, and let
F = F,. We write elements of F as f = (f)) with f; e F,. If K = J < I, let ¢} denote the
natural projection from F, to Fy. The abbreviations ¢] and ¢, are used analogously
to nj and ;.
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Note that if J is empty then both A, and F, are singletons, and that if J is infinite
then each is the full Cartesian product.

3. Specification of the generalized wreath product

Our aim is to identify F with a set of functions from A to A. We do this by defining
an ‘action’ of F on A and showing that this action is, in a natural sense, faithful.

DEFINITION. For each f = (f)) € F, we define an action of f on A by the following
rule: for each § = (§;) € A,

Sf =&, where e = (g) € A, and ¢; = 6{on'f);
that is, (8f); = 60n' f)).

LEMMA 1. The action on A is faithful in the sense that if ffhe F and if 6f = oh
for all 6 € A then f = h.

Proof. Letie I and let y € A Put x = yf;and y = yh;, so that x,y € G;. Leta € A,
and choose 6 € A so that §; = « and 6n' = y. Then (5f); = ax and (6h); = ay so
ax = ay. We can choose such a 6 for every a € A;, and so x = y. Thus y f; = yh, for all
y € A%, and so f; = h;.

Lemma 1 shows that the above definition identifies F with a subset of A%, and
henceforth we shall regard F as this subset. Thus elements of F are ‘multiplied’
according to the composition of the corresponding functions from A to A. We wish to
prove that this subset F of the semigroup A is a subgroup. To do this we first need to
investigate in some detail the relationship between the action of F on A and the partial
order on I; these results (Lemmas 2, 3, and 6) are also used in subsequent sections. The
proof that F is a submonoid (Lemmas 4 and 5) is immediate but the existence of
inverses in F (Lemmas 7 and 8) requires a restriction on the partial order on I.

LeEMMA 2. Let J be an ancestral subset of I; let 6, € A and fe F. If 6 + & then
Sfy ef

Proof. Suppose that § + ¢. Let i € J. Then, since J is ancestral, §; = ¢; for all j > i.
Thus J; = ¢; and on’ = en’. It follows that (3f); = (¢f);. Hence 0f  ¢f.

Lemma 2 shows that, if f € F and J is an ancestral subset of I, then f induces a
map f;: A, » A, such that fr, = n,f,. It follows directly from the definitions that
for J any subset of I and f,g € F we have fn, = gn, if and only if fo;, = g¢,. Thus
Lemma 2 gives us a way of defining an action of F, on Ay, in the case when J is an
ancestral subset, by identifying f¢, with f}. It is evident that this definition coincides
with that obtained by defining the action of F; on A; analogously to that of F on A. If
J = {j} then A, = A; and f, = f;: there is therefore no ambiguity in writing f, for f}
and f; for f.

LemMa 3. Let J,K be ancestral subsets of I with K = J, and let fe F. Then
nk = nxfx: in particular, fr; = n,f,.
JTk
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LEMMA 4. Let fhe F. Then fh =t, where
ti = fi X fa@h
and the product of the functions f; and fyuh; from A, to G, is defined pointwise.

Proof. Let 6 € A. Then

(0f h); = (8f )(ofn'hy)
= 5i(575iﬁ)(575‘f,1(5)hf) (by Lemma 3)
= §,(6m't;).

LemMMaA 5. If, for each i € I, the function z; € F; is defined by yz; = 1, for all y € A}
then z = (z;) is the identity permutation on A.

LEMMA 6. Let J and K be ancestral subsets of I with K < J. Then ¢%: F; —» Fyisa
semigroup homomorphism.

DEFINITION. Let J be an ancestral subset of I and let f € F. Then f is invertible on J
if f, has an inverse in F;.

LeMMA 7. Let & be a family of ancestral subsetsof 1;let L =) &, let fe F.If f is
invertible on J for all J in & then f is invertible on the ancestral subset L.

Proof. Since all the projections involved are semigroup homomorphisms, if
J,K e % and ieJnK then (f)” 'o! = (fx) '¢X. Hence we may define h in F, by
hot = (f))"'o!, using any J € & such that i € J. It is straightforward to check that
h=f"" '

LeEMMA 8. Suppose that (1, p) satisfies the maximal condition. If fe F and J is an
ancestral subset of I then f is invertible on J.

Proof. Let X = {i e J: f is not invertible on A[i]}. If X is not empty, then X
contains a maximal element m. Then f is invertible on A[i] for alli > m. By Lemma 7,
f is invertible on A(m), because | J;», A[i] = A(m). Define h in F,,, by

hettm = f 1108 for all i e A(m)
and
Yhoa™) = f 2 Sw) ™' for all y € A™

Then Lemma 4 shows that & is the inverse of fy,,;, so f is invertible on A[m]. This
contradiction shows that X is empty. Since J = U,-E, A[i], Lemma 7 shows that f is
invertible on J.

The following example can be modified to show that, if (I, p) is any partially ordered
set which contains an infinite ascending chain, then F contains an element which is
not invertible on /. Thus the maximal condition in Lemma 8 is necessary.

ExaMPLE 2. Let N be the natural numbers with the usual ordering. For alli € N, let
A; be an arbitrary fixed 2-element set {a, b}, and let G; = Symm(A,). Now, for all
i € N, let f; be the function in F; which maps every element of A, with one exception,
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to the transposition in G;: the exception being the element a in A’, each of whose co-
ordinates is equal to a; this element a is mapped to the identity of G;. Then f.is not a
bijection on A, because its image does not include the element b with each co-ordinate
equal to b.

Holland [6] and Silcock [11] avoid this problem by restricting the sets A and F;
other approaches are worth investigation.
We summarize the results of this section in the following theorem.

THEOREM A. Let (I, p) be a partially ordered set with the maximal condition. Then
(i) for all ancestral subsets J of I, (F;,A)) is a (faithful) permutation group;
(i) if J and K are ancestral subsets of I with J 2 K then (¢, %) is a permutation
homomorphism from (F,,A;) onto (Fg,Ag) with kernel

Ny ={feF, fj=z, for je K};
(i) if J, K and L are ancestral subsets of I and J 2 K 2 L then

(¢k T)(@F, nf) = (@1, 71).

In particular, (F,A) is a permutation group, which we call the generalized wreath
product of the permutation groups (G;, A,);. ;. More formally, we write [, ,,(G:, A)
for this generalized wreath product.

We observe that if p is the identity relation on I then [], ,(Gi,A) is the
permutation Cartesian product of the (G;,A;); if I is finite, this is simply the
permutation direct product. Similarly, if / is the disjoint union I, U I, and no element
of I, is comparable with any element of I, then Hu,p)(Gn A;) is the permutation direct
product of the generalized wreath products H(,,,p)(Gi,A,») and n(lz,p)(GhAi)’

At the other extreme, if (I, p) is the finite chain 1 <2 < ... < n then H(,'p,(Gi,Ai) is
the permutation wreath product (G,,A,) wr(G,,A,) wr...wr(G,, A,). More generally,
if I is the disjoint union I, U I, and, for all i € I, and j € I, i <}, then [ ], ,(G;, A) is
the permutation wreath product of the generalized wreath products [ [;,.,/(G:, A;) and
H(lz.p)(Gi’ 4a)).

Although, as remarked above, we cannot apply our generalized wreath product
construction to obtain a group if (1, p) is the natural numbers with the usual ordering,
we can if we take the opposite ordering N~. This gives a class of potentially
interesting examples of uncountable permutation groups on uncountable sets which
are built up by an explicit construction from (possibly) finite permutation groups: for
example, for all i € N take |A;| = 2 and G; = Symm(A) ~ Z,. .

Of practical significance to statistics, Example 1 shows that if | I | > 4 then there are
partial orders on I which cannot be decomposed into chains and identity relations:
thus these generalized wreath products include more than the wreath and direct
products and their iterated composites.

4. Poset block structures and their automorphism groups

DEFINITION. A poset block structure is a pair (A, S), where
(i) A is the Cartesian product over a partially ordered set (I, p) of sets A; (i € I),
with |A;] > 2,
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(ii) S is the following set of equivalence relations on A:

S = {v:J an ancestral subset of /}.

These structures, and their relationship with association schemes and distributive
lattices, are discussed by Speed and Bailey in [12], with the appellation ‘distributive
lattices of commuting uniform equivalence relations’. Their automorphism groups are
described, without proof, by Bailey in [2]; the purpose of this section is to prove
Theorem 1 of that paper (our Theorem B).

DEFINITION. An automorphism of a poset block structure (A, S) is a permutation t of
A such that, for all ¢ € S,

doe¢ ifand only if (6t)o(st) (0,¢ € A).

The following example shows that the weaker condition
doe implies (6t)o(et)

is not sufficient to ensure that the inverse of ¢ also preserves the block structure.

ExAMPLE 3. Let (I, p) be the two-element chain 1 < 2,let A; = A, = N, and definet
as follows:

(n,0)t = (2n,0), (n,1)t =(2n+1,0),
(n,mit =n,m—1) formz=2.

THEOREM B. Let (A,S) be a poset block structure with poset (I,p). Let F be the
generalized wreath product [ ., Symm(Q,). If (I, p) satisfies the maximal condition
then F is the group of automorphisms of (A,S).

Proof. Let f€ F and let J be an ancestral subset of I. Lemma 2 shows that
6 ¢ implies of v ¢f.
But f~!is also in F, and application of Lemma 2 to f~! shows that
0y ¢ isimplied by 6&f v ¢f.

Hence f is an automorphism of (4, S).

Now let ¢ be an automorphism of (A, S). We need to prove that there are functions
t; € F;such that t = (t;) € F.

Fix i e 1, and put J = A[i], K = A(i), so that Ay = A’. Because t is an auto-
morphism, there exist permutations t; and ¢, of A, Ag respectively such that
tn; = myty and tnyg = mgtg. Also, as in Lemma 3, nkty = t,nk.

Identifying A, with A; x Ay, for B € A define ft;: A, - A, by

a(Bt;) = (o, P)t,m] for € A,.
We shall show that

(i) for all B in A’ the function Bt; is a permutation of A;, which shows that ¢; € F;;

(i) for all 6 € A, 6tm; = 5,(on't,).

Since these results hold for all i € I, we can complete the proof as follows: by (i),
(t;) € F, and by (ii), t = (t,).
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Proof of (). We need a preliminary equality. For all « € A; and all § € A,

(& Bty = (o, Bty (o, B)tym) = (o(Be), (o, Bymictid) = ((Bt), i)

To prove that Bt; is injective, suppose that a,a’ € A; and a(ft;) = o'(ft;). By the
above equality, («, f)t; = (&, B)t;. Since ¢, is injective, o = o'.

To prove that ft; is surjective, we observe that, because t; is surjective, for
each a e A, there are o' € A; and B € Agx such that (o, ), = (o, ftg); then
(' (B't), B'ty) = (a, Bty). But ty is injective, so f = f and &'(Bt;) = a.

Proof of (ii).
Stn; = Sty = dmyt,m] = (6m;, Omy)tym.

By the definition of ¢ this is (67;)(9nxt;), which is 5,(0n't,).

S. Orbits on Ax A

Throughout this section we assume that (I, p) satisfies the maximal condition, so
that, as we established in Theorem A, (F, A) is a permutation group. We are interested
only in the case when F is transitive on A, so we first state the following lemma.

LEMMA 9. The generalized wreath product of the permutation groups (G;,A);e; is
transitive if and only if (G;, A) is transitive for all i € I.

When F is transitive on A, we are concerned with the orbits of F on AxA. For
subsets ['; of A; x A;, we denote by(X);., T'; the subset of A x A which contains (6, ) if
and only if (§;,¢;) € I'; for all i € I. For each i € I we denote by D, the diagonal subset
{(o,a): @ € A;} of A;x A;, and put E; = A; x A;.

DEerINITIONS. Let J be an ancestral subset of 1. The border of J, denoted B(J), is the
set of maximal elements of /\J. The subset O, of A x A is defined by
0, =(®D)®( X (E\D)) ®( ® E)

ieB(J) ieI\J\B(J)

LemMa 10. (i) If J is an ancestral subset of I and (8,¢) € O, then & ~+ & and J is the
maximal ancestral subset with this property.

(ii) The set Ax A is the disjoint union of the subsets O, taken over all ancestral
subsets J of I.

We shall refer to the subsets O, as association sets.

In work on the design of experiments, A is taken to be a set of random variables and
a covariance model on A is specified in terms of the equivalence relations (A'[‘i)-'el'
Many authors (see, for example, John [7]), assume a model in which the value of the
covariance of § and ¢ depends only on the values of i for which 5,4T.-‘18? that is, only on
the association set O, containing (,¢). Thus the decomposition of A x A into the
association sets is a useful one to study. Other authors (see, for example, Nelder [9]
and Bailey [1]) assume a model in which the covariance of é and ¢ depends only on
the orbit of F on A x A containing (,¢), where F = [],.,(G:,A;) and the groups G;
are specified transitive subgroups of the Symm(A;). Still other authors (see, for
example, Yates [17] and Preece, Pearce, and Kerr [10]), say that randomization based
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on the group F is valid if and only if the orbits of F on A x A coincide with the
association sets.

By Lemma 2, it is evident that each association set is a union of orbits of F on A x A.
Grundy and Healy [5] showed that, for the direct product (G,,A,)x(G,,A,),
2-transitivity of each (G;, A;) ensures that each association set is a single orbit. Bailey
[2] proved a similar result for generalized wreath products. Here we prove the
following stronger result.

Tueorem C. The orbits of [[.,(Gi,A;) on AxA are precisely the association
sets if and only if, for each i € I, the permutation group (G;, A,) is 2-transitive.

We shall prove Theorem C as a corollary to Theorem D. First we illustrate
Theorem C by an example, and comment on its significance.

ExaMpLE 1. When F is transitive on A, as it is in this example, the orbits of F on
A x A are more conveniently displayed as the orbits on A of the stabilizer F;in F of a
fixed element & € A. In this case the ancestral subsets of I are &, {1}, {2}, {1,2}, {1,3},
{1,2,3}, {1,2,4}, and {1,2,3,4}. If each of the four groups (G;, A;) is 2-transitive, the
orbits of F5 on A are as shown in Table 1.

TABLE 1
Corresponding
Orbit ancestral set
{6} {1,2,3,4}
{¢: 6 and ¢ are in the same micro-column, and & # ¢} {1,2,4}
{e: & and ¢ are in the same column and minirow, and é # ¢} {1,2,3}
{g: 6 and ¢ are in the same minirow but different columns} {1,3}
{e: 6 and ¢ are in the same square but different minirows and different {1,2}
microcolumns}
{e: 6 and ¢ are in the same row but different minirows and different {1}
columns}
{e: 6 and ¢ are in the same column but different rows} {2}

{&: 6 and ¢ are in different rows and different columns} (7]

The significance of Theorem C is that, by Theorem B, the orbits of the automorph-
ism group of a poset block structure are precisely the combinatorially defined
association sets. Nelder [9] showed that this is true for those poset block structures in
which the partial order p is successively built up from chains and identity relations,
and asked which other structures have this property. We have here a wider class of
structures with this property, and hence a partial answer to the question. There are
still other block structures, not based on posets, for which association schemes can be
combinatorially defined (see Speed and Bailey [12]). The association sets of some of
these structures are identical to the orbits of their automorphism groups, but only
under fairly severe extra conditions (see Bailey [2,3]). Thus a complete answer to the
question does not yet seem to be known.

THEOREM D. Suppose that, for i € 1, (G;,A;) is transitive. For i € I, let M;; for
Jj(i) € A; be the non-diagonal orbits of G; on A; x A;. Then, if S is any antichain in I, and,
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for i € S,j(i) is any element of A;, the following subset M is an orbit of F on A x A:
M=( ® D)® (RQMi0) ® & E).
i€ ieH(S)

ieI\H[S)

Moreover, each orbit of F on A x A has a unique representation of this form.

Proof. Since | A;| > 2, none of the D, or M, is E;, nor is A; ever empty; therefore
distinct antichains S and distinct families (j(i));.s give distinct subsets of A x A.

Now let 4, ¢ € A. Then (d,¢) € M if and only if both J; = ¢; for all i e I\ H[S] and
(0:,6) € My for all ieS. Let (3,6) e M. If i e I\H(S) then A(i) = I\H[S], so
on' = en’. Thus if f € F then dn' f; and e’ f; are the same elements of G; for i € I\ H(S),
and hence (5f); = (&¢f); for i e INH[S] and ((6f);,(ef);) € M;j; for i € S. Therefore
bfief)e M.

Conversely, suppose that «,f,7,¢ € A, that (¢,8) e M and (y,e) € M. We must
show that there is an element fe F such that af =y and ff=¢ We deal with
coordinates in I\ H(S) and H(S) separately.

(i) Ifi € I\ H(S) then there is an element g; € G, such that a,g; = y; and f,g; = ¢;. Let
fir At > G, be the constant function with image g;.

(i) If i € H(S) then there is an element k € S with i < k. Since (o, ) € My, we
have o, # f,. By transitivity, there are elements g; and h; in G, such that a,g; = y; and
Bih; = ¢;. Define s;: Ay — G; by os; =g; and ws;=h; for all @ in A\, Let
fi A" > G; be the function nyUs;. Then afan'f;) = a,g; = y; and B(Br'f)) = Bih; = ;.

Now the element f = (f;) we have constructed maps « to y and f to ¢. Thus M is
indeed an orbit of F on A xA.

All that remains to show is that every orbit of F on A x A arises in this way. Let
é,¢ € A and let J be the unique ancestral subset of I such that (d,¢) € 0,. Now, B(J)
is an antichain. Moreover, H(B(J)) = (I\J)\ B(J), and so I\ H[B(J)] = J. By defini-
tion of Oy, for each i in B(J) there is a unique j(i) in A; such that (d;,¢;) € M;;;. Thus, if
M is defined as above for S = B(J) and these j(i), then (6,¢) € M.

The proof of Theorem D gives the following, alternative, description of the orbits of
F on A x A. Each such orbit is specified by

(i) an ancestral subset J of I,

(ii) for each maximal element i of I\ J, a non-diagonal orbit M; of G; on A; x A,.
The pair («, ) is in the corresponding orbit if and only if

(i) o; = B;forallieJ,

(i) (&, B;) € M; for each maximal element i of I\ J.

Proof of Theorem C. If (G;, A;) is 2-transitive then the only M;;; which occurs is
E;\ D;: hence each antichain S gives just one orbit M. Let J = I\ H[S]. Then J is an
ancestral subset of I, and B(J) = S; the last part of the proof of Theorem D shows that
Mg = 0,.

To prove the converse, for k € I let J = I\ H[k]; then O, is the union of | A, | orbits.
If (G, A,) is not 2-transitive then |A,| = 2.

6. Characters

In this section we assume that I is finite and that, for each i € I, (G;, A;) is finite and
transitive. We investigate the permutation characters of the action of F on A and on
A,, for ancestral subsets J of I. Since we are using the letter @ for projections, we
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denote the permutation character of F on A, (that is, on equivalence classes of ) by
V,, and put Y = ,. Once again, the case in which every (G;,A)) is 2-transitive is
particularly interesting and straightforward.

THEOREM E. If I is finite and, for each i € I, (G;,A,;) is finite and 2-transitive then
e (G, A) has distinct irreducible characters {y,: J < I, J ancestral} such that, if
K is any ancestral subset of I, the permutation character Yy of []y.,(Gi,A;) on
the equivalence classes of < is Y ,cxy,: in particular,  is the sum Y.y, over all
ancestral subsets J. Moreover, if, for each i€ l, |A;| =n;, the degree of y, is
[ Tiemn =V [ Tics\mwy ni» where m(J) is the set of minimal elements of J.

We shall prove Theorem E as a corollary to Theorem F. Here we simply note that,
since the ¥, are very easy to compute in practice, so are the (irreducible) ;.

The permutation linear representations of (G;, A;) and (F, A) are afforded canoni-
cally by the vector spaces R* and R* respectively. Let W, = R*. We shall identify R*
with );.; W; by regarding the tensor product of the functions w;, with i € I, to be the
function which maps 6 € A to [ [;c, 6;w;. We shall also use the natural inner product
on R* given by v+ w = Y 5. 4(6v)(5w).

THeOREM F. Let F =[], ,(G:, A). Suppose that 1 is finite and, for i € I, (G;,A) is
finite and transitive. Let C; be the subspace of constant functions in W, and let V,,
for j(i) € ©; denote the other components of a direct decomposition of W, into
G-irreducible subspaces. Let S be an antichain in I, and, for each i € S, let j(i) be an
element of ®,. Then

(i) the following subspace V of R is F-irreducible:

V= W.)®(® Vij(i)) ® (' ® C).
S) ieS i

ieA eI\ A[S]

(i) Moreover, R is the direct sum of such subspaces.
Let

W=(® M@ Vu)®( ® C)
ie A(T) ieT ieI\A[T]
for some antichain T and some family (k(i));. r such that, for eachi € T, k(i) € ®;. Then
(i) V=W if and only if S =T and j(i) = k(i) for each i€ S.
(iv) The subspaces V and W afford equivalent representations of F if and only if
S = Tand, for each i € S, the spaces Vi;;, and V., afford equivalent represen-
tations of G;.

Proof. (iii) Since, for each i € I, | A;| > 2, none of the subspaces W, or V, is equal
to C; and O, is non-empty; therefore V' n W is the zero subspace unless S = T and, for
each i € S, j(i) = k(i).

(i) (a) Now we show that the subspace V given above is F-invariant. For each
o € Ay let w,: Ay — R be the characteristic function of {«}. Then V is spanned by
the set of all functions v: A — R of the following form:

v= (nA(S)Wa)l_I ;s
ieS

where o € A ), and, for i € S, v; € Vj;,; the product is pointwise. It is, therefore,
sufficient to show that, for each fe F and each function v of this form, the function
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for A > Risin V. Put f=of 14, and let § € A. Since 7, fys) = fTas)> We have
6 fmas = o if and only if o7 45 = B.

Thus if én, # B then fv = 0. On the other hand, if 0m 4 = § then, for each
i€es, .

ofmp; = 6,(0n' f)v; = 5:(‘57‘A(S)7Tﬂffsyjfi)vi = 5;(1375‘:53)]:')”-‘ = 0igiv; = Omigv;,

where g; = Br4 f; € G, and so gw; € Vy, because Vi, is G-invariant.

Thus fv = (n45Wp) [ [ies mgiv:, which is in V, and so V is F-invariant.

(i) To see that R* is the direct sum of such subspaces, for each i € I we let H; be the
orthogonal complement of C; in W,. Now for each antichain S let

Ys=(.@ W)®(@H)®( & C).
ie A(S) ieS

ieI\A[S)

Then, since F acts orthogonally on R?, Y is the direct sum

@ (® M@V ® C)), (6.1)
JjeE, ieA(s) ies ieI\A(S)
where X is the set of families (j(i));.s such that, for alli € S, j(i) € ®;. Moreover, if X
is the subspace generated by {Y;: T is an antichain, T < A[S], and T # S}, then
Ysn X is the zero subspace. Thus the Yy generate their direct sum. Now, R is
spanned by vectors of the form w =(X); ., w;, where, for i € 1, either w; € H; or w; € C;.
Let S(w) = m({i € I: w; € H;}). Then S(w) is an antichain and w € Yg,,. Thus

R= @ Vs

antichains
S

(i)(b) and (iv). For each i e I, denote by m; the sum of the squares of the
multiplicities of the distinct inequivalent G;-irreducible components of H;. Let m and
mg be the corresponding sums of squares for the F-irreducible components of R* and
Y s respectively. Then Proposition 29.2 of Wielandt [16] shows that m; = | A;|, where
A; is as defined in §5; then, with Theorem D, it shows that

m= Y [[m. (6.2)

antichains ieS
N
Since R? is the direct sum of the F-subspaces Yy,

mz= Y mg, 6.3)

antichains
S

with equality if and only if, for S # T, no F-component of Y is equivalent to any
F-component of Y.

Let jkeZs If, for all ieS, the spaces V; and Vg afford equivalent
representations of G;, then the direct summands in (6.1) corresponding to j and k
afford equivalent representations of F. The sum of the squares of the numbers of these
F-equivalent direct summands is calculated to be [ [;.sm;. Since (6.1) gives Ys, we have

mg 2= [1m;, . 6.4)
ieS
with equality if and only if both each V is F-irreducible and there are no more
F-equivalences among the direct summands of (6.1) than those just described.
Now Equation 6.2 forces equality in Equations 6.3 and 6.4, and the result follows.
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Proof of Theorem E. If (G, A)) is 2-transitive then the orthogonal complement H; of
C; in W, is Girreducible. Thus, for each antichain S, the set X contains just one
element j, and so, by Theorem F, the subspace Y; defined above is F-irreducible.

For each antichain S, the subset A[S] is ancestral and m(A[S]) = S. For each
ancestral subset J, the subset m(J) is an antichain and A[m(J)] = J. Thus the maps
J — m(J) and S — A[S] are mutually inverse bijections. For each ancestral subset J,
let x, be the irreducible character of F afforded by Y.

If K is any ancestral subset of I, the permutation character Y, of F is afforded by the
subspace

Vk=R*® ®C..
ik
Applying Theorem F to the partially ordered set K, and then tensoring the result with
Rk C;, gives )
Vg = @ YS = @ Ym(J)»

antichains ancestral
SckK JEK

and so Yg = Yoo

ancestralJS K

From the point of view of the statistician, a permutation group (G, I') is useful only
if the centralizer algebra o/ of G in RT is commutative, or possibly if only the subset
& of symmetric matrices in this centralizer algebra is commutative (and so forms
a subalgebra) (see McLaren [8], and Speed, Bailey, Praeger, and Taylor [13]).
Denote the permutation character of (G,T") by ¢.

LeMMA 11. (1) g is commutative if and only if Y is multiplicity-free.
(il) Fg is commutative if and only if all irreducible quaternionic characters in  ; have
multiplicity 2 and all other irreducible characters in Y have multiplicity 1.

Proof. Part (i) is well-known (see Wielandt [16, Theorem 29.3]), whilst (ii) is a slight
modification of (i), and is proved by McLaren [8] and Speed et al. [13].

CorOLLARY TO THEOREM F. Under the hypotheses of Theorem F:

(i) p is commutative if and only if o ;, is commutative for all i € I;

(i) &r is commutative if and only if L, is commutative for all i € I and there is no
two-element antichain {i, j} such that Y, includes quaternionic characters and
Y, includes either non-real or quaternionic characters.

For example, if I is the two-element antichain {1,2} and, for i = 1,2, (G, A)) is the
regular representation of the quaternion group Qg, then &;, and ¥, are both
commutative but & is not.
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The notion of general balance due to Nelder is discussed in relation to
the eigenvectors of an information matrix, combinatorial balance and the
simple combinability of information from uncorrelated sources in an experi-
ment.

1. Introduction. This paper is about the notion of general balance (GB) introduced
by Nelder (1965) in two papers on designed experiments with orthogonal block structure.
Nelder defined (GB) as a relationship between the block structure or dispersion model for
the data and the treatment structure or model for the expécted value of the data. It
embodies and unifies three important and apparently unrelated ideas concerning designed
experiments: the usefulness of eigenvectors of the associated information matrices, the
combinatorial and statistical notions of balance, and the simple combinability of infor-
mation from different, uncorrelated, sources in the experiment. These ideas have been
discussed independently by a number of authors including Yates (1936, 1939, 1940), Sprott
(1956), Morley Jones (1959), Pearce (1963), Martin and Zyskind (1966), Corsten (1976)
and many others. We will review the work of these authors in Section 3 and relate it to
Nelder’s (1965) work.

Nelder (1965, 1968) has shown how a simple and unified approach may be adopted to
the analysis of multistratum designed experiments satisfying (GB), including the estima-
tion of stratum variances and the combination of information across strata. We summarise
these facts in Section 4 and also prove a useful supplementary result: that (GB) is not
only a sufficient but also a necessary condition (assuming known stratum variances) for
the simple recovery of all information on every contrast from every stratum in which it is
estimable. Our definition of (GB) is slightly different from Nelder’s in that we accommo-
date unequal treatment replications, but it has all the same consequences, and the broad
scope of the notion so defined is underlined by the fact that all block designs with equal
block size are then generally balanced (assuming the standard dispersion model). It will
be seen from our examples and the associated discussion that essentially all designs with
orthogonal block structure which have ever been recommended for use satisfy (GB). It
also provides a convenient basis for the classification of designs, one which is connected
with the simple and directly interpretable analysis.

Section 5 below is devoted to examples, beginning with the balanced incomplete block
design (BIBD) which is the prototype of all designs satisfying (GB). Instead of going on
to prove directly‘that partially balanced incomplete block designs (PBIBDs) all satisfy
(GB), we obtain the saime conclusion for their natural generalisations to more general
block structures. Following a brief discussion of some further examples, we close the paper
with a row-column design not satisfying (GB).

2. Basic framework.

2.1. Treatment structure. Our data will be viewed as a random array y = (¥i)ia
indexed by a set I of n = | I| unit labels and taking values in the vector space I = R'
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which has the inner product (¢ |d) = ¥ c;d; and squared norm | ¢ ||2 = {c| ¢). The models
we consider for 7 = Ey, termed the treatment structure, will all be linear, i.e. of the form

(2.1) Eye 7

where 7 C & is a linear subspace of Z In the theory of designed experiments
this usually arises as follows: we have a set 2 of v = | Z | treatment labels, a design map
x:1 > Z which assigns a treatment to each unit, and a design matrix X satisfying
XGu=1ifx(@)=u,i €I, u € Z, and = 0 otherwise. In this case 7 = Z(X), the
range of X, and r = Xa for some « € R% However none of the general discussion which
follows assumes that 7 arises in this way. The (unweighted) orthogonal projection of &
onto 7 will be denoted by T; if 7 = 2(X) then T = X(X'X)™'X".

A vector ¢ = (¢;) € “Z of constants satisfying ¥ ¢; = 0 is said to define (or be) a contrast;
if ¢ € 9, then c defines (or is) a treatment contrast. This usage arises because least-
squares estimation concentrates on the estimation of linear functions (¢|7) of r = Ey (¢
€ 7) based upon linear functions {(c|y) of the data. Thus the term contrast refers in
each case to the coefficients of these linear functions. In many analyses interest focuses
on treatment contrasts (t|7) defined by elements ¢ of specific subspaces of 7 ; for
examples, we refer to Section 5 below. When 7 = #(X) we say that simple treatment
contrasts are those elements t,, € 7 for which (t,, | 7) is proportional to a, — a,, 4, 0 €
Z , where Xa = 7.

2.2. Block structure. Following Nelder (1965) we use the term block structure to mean
the model for the dispersion matrix V = Dy, and all our models for V will have the form

(2.2) Dy € 7

where 2/ is a suitably parameterized set of positive semi-definite (p.s.d.) matrices. We
will say that we have orthogonal block structure (OBS) when 2 consists of all p.s.d.
matrices V(£) = Y. £.S., where &, = 0 for all @, and the {S,} are a family of known
pairwise orthogonal projectors summing to the identity matrix, i.e. S, = S’ = 8%, S.Ss =
SS.=0if a # B, and ¥, S, = I, the identity matrix. We call this representation of V(£)
its spectral form. In the theory of designed experiments such models usually arise in the
following way: there is a system {A,} of association matrices defined over the set I of unit
labels, and the dispersion matrix V = Dy has the form V = ¥, v,A, where {v,} is a set of
covariances varying freely subject only to the constraints ensuring that V is p.s.d. If the
matrices {A,} satisfy the requirements of an association scheme then there always exist
matrices P = (p..) and Q = (q..) of coefficients such that S, = (1/n) Y. g..A. satisfies the
properties listed above, and £, = ¥ P.«v. cOnstitutes an invertible linear reparametrization;
see MacWilliams and Sloane (1978, Chapter 21, especially Section 2) for definitions and
the results cited. Once more we remark that the general results which follow do not assume
that our orthogonal block structure arose in this way although in practice the vast majority
(block, row-column, split-plot designs etc.) do so. For example, any model 2° whose
elements have the form V = Y; 6;C,, where the {C;} are known symmetric idempotent
matrices which commute, will be a submodel of a model of the form (OBS) above as the
{C;} are simultaneously diagonalizable, but in general there will be more £s than fs.

Summarising, we will be supposing that our data y is modeled by (2.1) and (2.2) where
7 is a linear subspace of & and 2 satisfies (OBS). The subspaces &, = 2(S.) are
termed the strata of the dispersion model, the {S.} are strata projectors and the {£.} the
strata variances (for it is easy to see that DS,y = £.S.). Multi-strata designs are those
with two or more strata variances in the dispersion model.

2.3. Examples.

ExaMPLE 1. The data y from an experiment consisting of v treatments applied across
b blocks of k plots each are usually analysed under the mixed model
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(2.3) y=Xa+Zy+e,

where X and Z are the n X v and n X b treatment and block incidence matrices, respectively,
« is a v X 1 vector of treatment parameters, and v is a b X 1 vector of zero-mean block
effects having dispersion matrix o¢}I, uncorrelated with the n X 1 vector ¢ of errors which
have dispersion matrix ¢2I,.

The dispersion matrix associated with such a model is V = 6}ZZ’ + ¢%I,, and its
spectral form is

(2.4) V=4G+ &(B - G) + &(,. - B)

where G = n'11’ is the grand mean averaging operator (1 is the n X 1 vector of ones), B
= k™1ZZ’ is the block averaging operator, & = £, = ko} + ¢ and & = o> Note that here
we have the constraint £ = §&; = & > 0.

A randomisation maodel for y, see Nelder (1954), would generate a dispersion matrix of
the form (2.4).

In order to include both types of model, we will assume when analysing data from block
designs with equal block size (which are the only sort we consider) that So =G, S, =B —
G and S, = I — B defines our block structure satisfying (OBS). It will be simpler, and
necessary for most results, to assume £ > 0, £, > 0 and £ > 0 as well. 0

EXAMPLE 2. The data y from an experiment in which v treatments are allocated to
the n = rc plots of a row-column design consisting of r rows and ¢ columns are usually
analysed under the mixed model

(2.5) y=Xa+Zivi+Zyya+e

where X, Z; and Z, are the treatment, row and column incidence matrices, respectively,
and 71, v2 and ¢ are uncorrelated zero-mean vectors having dispersion matrices o2, ¢2I.
and oI, respectively.

This time the dispersion matrix of y is V = ¢2Z,Z{ + ¢2Z:Z3 + o2, and its spectral
form is

(2.6) V=4(G+LHR-G)+&C-GQ+H1-R-C+G)

where G = (r¢)™11’, R =¢"'Z,Z{ and C = r™'Z,Z}, &, = co? + ro? + 62, &, = co? + o2, &,
=ra? + o? and & = o> Again we have constraints: £ = £ >0, 5= 6>0and & =6 +
£ — &

A randomisation model for y would also generate a dispersion matrix of the form (2.6).
Accordingly we will analyse row-column designs below with S =G, S; =R -G, S;=C —
Gand S; =1 — R — C + G, a block structure satisfying (OBS). Again we will usually
assume that £ >0, £ >0, £, >0and £&> 0.0

2.4. Designed experiments. The design of an experiment, i.e. the actual allocation of
treatments to units, affects the least-squares analysis (under our model) of the data
generated through the relationships it determines between the treatment subspace .7 and
the strata subspaces {%}. For example, it is known that if T commutes with all the {S.},
then the analysis is easy; such designs are known as orthogonal designs, a class which
includes completely randomised, randomised block, latin square and split-plot designs.
For other designs, such as the balanced incomplete block designs (BIBDs), this commu-
tativity fails, and a more elaborate analysis is required. Nelder’s (1965) notion of general
balance (GB) describes a relationship between T and the {S,} which generalises, but in a
sense is no more difficult than, that which arises with a BIBD, and as a consequence we
find that essentially all designed experiments may be analysed in a manner almost identical
to that of a BIBD. Note that the {C;} of Nelder (1965) correspond to our }S.}. Before
giving any further details of these ideas, we devote the next section to reviewing the
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antecedents of general balance and clarifying its connections with similar notions which
have appeared since 1965. See also Bailey (1981) for a related discussion.

3. Eigenvectors, balance and simple combinability.

3.1. Eigenvectors of information matrices. It has long been known in linear regression
analysis that contrasts which are eigenvectors of the information matrix have special
properties which make inference concerning them particularly straigh. ‘. ward; the analogy
with principal components analysis explains why this is so. Howev. ' it appears that
Morley Jones (1959) was the first person to examine these ideas in so.-e detail in the
context of block experiments, and because of their relevance to general balance we will
summarise his results within the framework introduced in Example 1 of the previous
section.

Morley Jones analysed the data y under the “fixed block effects” model: Ey € 7 + 4,
Dy € 2 where 2 = #(B) and 2 = {¢2[:¢* > 0}, and he concentrated upon the intra-
block analysis, i.e. that using the reduced data By (B = I — B) consisting . f the observations
adjusted by their block means. Clearly EBy € B.7 and DBy € B %/B, and the task of
minimising | By — Br |2 over 1 € 7 is equivalent to solving the reduced normal equations
(“eliminating blocks”):

TBTr = TBy

for r € 7 In this context the eigenvectors and eigenvalues of the information matrix
TBT are likely to be of interest. (In fact Morley Jones studied a closely-related matrix
with the same eigenvectors but eigenvalues one minus those of TBT.) He made the
following observations: (a) an element t € 7 is an eigenvector of TBT iff there exists a
constant k such that for allu € 7 (u| (B — G)t) = k(u| Bt); (b) if one of two orthogonal
treatment contrasts ¢ and u is an eigenvector of TBT, then their inter-block components
Bt, Bu (resp. intra-block components Bt, Bu) are also orthogonal; (c) the best linear
unbiased estimators (BLUEs) of contrasts (¢ | 7) defined by eigenvectors of TBT are easy
to compute, as are their precisions, and these are related to the corresponding eigenvalue;
(d) the eigenvalues of TBT are directly related to the Fisher efficiency factors describing
the relative loss of information occurring by restricting attention only to the intrablock
analysis; and (e) normalised contrasts defined by eigenvectors of TBT corresponding to
the same eigenvalue are estimated with the same precision; in particular, all contrasts are
estimated with the same precision in BIBDs.

Although not explicitly referring to eigenvector contrasts, similar ideas can be found
in Kurkjian and Zelen (1963). Their “property A” is equivalent to the spectral decompo-
sition TBT = 34 A\sTs where the {T;} are the orthogonal projections decomposing 7 into
subspaces { 9} corresponding to main effects and interactions in a factorial experiment
laid out in blocks. Their conclusions included (c) above, with the BLUE of (s} ) based
upon By being A\;'{t;s | By) for an arbitrary t; € 7, having variance ¢2\5' || ¢; |2, and they
observed that BLUEs of contrasts defined by elements of the different subspaces { .7;} are
uncorrelated (cf. (b) above). They also applied their results to other types of incomplete
block designs including group divisible and direct product designs. A further paper, Zelen
and Federer (1964) extended the same ideas to row-column designs, but still only in the
context of the lowest stratum analysis, i.e. that based upon (I — R — C + G)y; cf. Example
2 above.

In Pearce, Calinski and Marshall (1974) the eigenvectors of TBT are called “basic
contrasts”, and these authors note that those with eigenvalue 1 can be estimated with full
efficiency in the intra-block analysis, those with eigenvalue 0 are “totally confounded”
with blocks, whilst the remainder are “partially confounded”. They recommend that the
spectral decomposition of TBT be used by experimenters to ensure that the design permits
contrasts of particular interest to be estimated with maximum efficiency in the intra-
block analysis.
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Corsten’s (1976) canonical analysis is also equivalent to the spectral analysis of TBT.
He calls the eigenvectors (with non-zero eigenvalues) “identifiable contrasts” and views
the corresponding eigenvalues as the squared cosines of the canonical angles between the
subspaces .7 and " the orthogonal complement of #; the same geometric approach is
used by James and Wilkinson (1971).

3.2. Balance. BIBDs were introduced by Yates (1935) as incomplete block designs
with equal block sizes, equal replications, and having the combinatorial property that
every pair of distinct treatments appeared together in a block the same number of times.
It followed that simple treatment contrasts were all estimated with the same precision,
and as a consequence, that normalised treatment contrasts were also estimated with the
same precision. Thus combinatorial balance was related to the property of sets of contrasts
being estimated with the same precison.

Generalised forms of these ideas appeared soon afterwards: PBIBDs were introduced
by Bose and Nair (1939); designs with unequally replicated treatments having a restricted
form of balance were studied by Nair and Rao (1942); designs with supplemented balance
by Hoblyn, Pearce and Freeman (1954), and Pearce (1960, 1963). Morley Jones (1959)
continued this line of development.

Balance in block designs was first linked to the spectral properties of the intra-block
information matrix (or a closely related matrix) by V. R. Rao (1958) and Morley Jones
(1959). The latter proved that a block design is balanced with respect to a set of treatment
contrasts iff those contrasts span a subspace of an eigenspace of TBT. The combinatorial
aspects of balance are reviewed in Raghavarao (1971), although we will see that the
approach through general balance is more relevant to the problem of analysing data from
an experiment with a design exhibiting the given type of balance.

3.3. Simple combinability. The term recovery of interblock information has come to
mean the double task of estimating the relevant strata variances and the calculation of
weighted combinations of the inter- and intra-block estimates (where this is appropriate)
of a given treatment contrast. Following earlier work with cubic lattice designs, Yates
(1939), Yates (1940) showed that the overall (weighted least squares) BLUE of any
treatment contrast in a BIBD was the linear combination of its BLUE calculated using
the intra-block data (I — B)y and that calculated using the inter-block data (B — G)y,
each weighted inversely according to its variance. We shall call this result, which assumes
that the strata variances are known, the property of simple combinability, which is valid
for all contrasts in a BIBD. Yates also gave a method of estimating the usually unknown
strata variances from the anova table.

Conditions on a design which ensure the simple combinability in PBIBDs of certain
sets of treatment contrasts were described by Sprott (1956) in a paper which gave great
insight into the rrelation between combinability and combinatorial balance. In particular
Sprott showed that the property of simple combinability holds for all contrasts in a PBIBD
only if the design is actually a BIBD. This and other results along the same lines are
special cases of a general theorem proved in the next section.

A link between the spectral properties of TBT and simple combinability in an incom-
plete block design was established by Zyskind and Martin (1966), who showed that a
treatment contrast is simply combinable iff it is an eigenvector of TBT. Thus these three
topics: the eigenspaces of TBT, balance, in either the combinatorial sense or in the
statistical sense of contrasts being estimable with the same precision, and simple combin-
ability are all seen to be intimately related. With this introduction to general balance we
now turn to its definition and study.

4. General balance. As we have explained in Section 2 above, our model for the
data y = (¥:)ier associated with our designed experiment is given by (2.1) Ey € 7 and
(2.2) Dy € 2 where  C & is a linear subspace and 27 = {V(§):V(§) = Y. £.S.,



162 5 Anova

A.-M. HOUTMAN AND T. P. SPEED

£, > 0 for all o} is a dispersion model satisfying (OBS). General balance is a structural
property relating 7 and the strata { ).

4.1. Definition of (GB). We say that a design with (OBS) defined by {S.} and
treatment structure 7 is generally balanced with respect to the decomposition 7 =
®; 7 or just generally balanced if there exists a matrix ()\,s) of numbers such that for
all o

(GB) TSaT = ZB AaBT&

where the {T}} are the orthogonal projectors onto the subspaces { 7). It is clear that (GB)
is equivalent to the requirement that the matrices {7'S. T} are simultaneously diagonali-
sible, with the { 7} as their common eigenspaces. Another equivalent form is the following:
there exists numbers (\,s) such that for all o, 8 and 8’

_ AaﬁTg if ﬁ = ,3’,
TpS8:Ty = {0 otherwise.

Since the {S.} and {T}} are all projectors, we must have 0 < \; < 1 for all « and §, and
it follows from Y. S. = I that for all 8, Y. A.s = 1. A statistical interpretation of the A,z
as efficiency factors will be explained in Section 4.3 below, and we refer-to Fisher (1935)
for the first use of such a two-way array. Orthogonal designs are just those for which each
Agis O or 1.

4.2. Overall analysis assuming (GB): known strata variances. It is well known that the
BLUE of r = Ey based on y is given by the solution 7 € 7 of the normal equation

(NE) TV'Tr = TV™y;

equivalently, that it is given by 7 = Uy where U = PY% is projection of & onto 7
orthogonal with respect to the weighted inner product (c|d)v := (c| V7'd). Yet one
further statement of this (Gauss’s) result is the following: {t|7) is the unique BLUE of
(t|7)foreveryt € 7

Now TV™'T = ¥4 3T, under (GB), where we write v, = ¥, A.s£2", and so the unique
matrix inverse of TV~'T on the subspace .7 is Y v3'Ts. Consequently the solution 7 =
Uy of (NE) is given by

4.1) U= Yus Washad TS

where we have written w.s = v3"£."\.s. This expression is called the weight for the
treatment term B within stratum «, a name which we will shortly justify. Here and later
all summations involving A7} will be restricted only to those « or 8 for which A,z > 0.

As we have already observed, the unique BLUE of (t| ) for t € 7 is (t| ) and by
(4.1) this is just

“4.2) (L) = Tap Waphab(t] ToSuy)
with variance ¥ v3' | Tst |2 If t = t; € F, the BLUE simplifies to
(4.3) (gl 7) = Yu wapAZi{ts | Say)

with variance v3' || ;|| 2.
Finally, the covariance between two BLUEs (¢, | 7) and (t,| 7) is just
Zs v3 (Tpty | Totz),

andif t, € %, t, € Jy, 8 # B’, this reduces to zero.
" It is clear from the above that as long as the strata variances are known (up to a
common scalar multiplier) and we can readily effect the projections {S.} and {T}}, the
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weighted least squares analysis of data from a designed experiment with generally balanced
block structure is particularly simple. We will deal with the problem of unknown strata
variances in the next subsection and in Section 4.5 below. On the issue of the ease of
calculation and computation of the projections we can say this: the {S,} are commonly
built up from simple averaging operators such as G and B in Example 1 or R, C and G in
Example 2 above, and rarely give any difficulties. The common decompositions {7}
relative to which designed experiments satisfy (GB) are also of this form, although there
are some that are quite different, and in general the problem is not: “how do we compute
the projections {T};}?” but: “how do we discover them?” This is essentially a combinatorial
problem, which needs to be done for each new design or class of designs. The usual
mathematical skills (trial and error, ingenuity, etc.) help, as does the occasional computer-
aided spectral analysis, and it is only the broader classes of block designs for which general
solutions are unavailable; see Section 5.4.

4.3. Within strata analysis assuming (GB). A reduction of the full data y to its strata
projections S,y permits analyses within strata without knowledge of the strata variances,
for ES,y € 8.9 and DS.y = £,.S.; in particular, the dispersion matrix of S,y is known
up to a scalar, and this is adequate for the usual least-squares analyses.

The least-squares fitted value J. of y in stratum a is J. = Ps 7y, the unweighted
projection of y onto S,,.7, unweighted because the subspace S, 7 is invariant under DS,y
whence unweighted and weighted projectors coincide. The normal equation within % is

(NE,) TS . T+ =TS.y
and its solution 7, = U,y is given by (cf. Nelder (1965) equation 3.3)
(4.4) Uey = T Nas ToSay

where the sum is only over those 8 for which A.; > 0. We can readily prove that Ps_, =
S, U,. It follows from (4.4) that the unique BLUE of a contrast (¢ | 7) which is estimable
in & (i.e. for which there exists a BLUE based on S, y) is

(4.5) (t] 7o) = o NG (Tt | Say)
with variance &, Ys Ao || Tst l|2. If t = t; € J; the BLUE simplifies to
(4.6) (] 7a) = Nai(ts| Sey)  (provided A,z > 0)

with variance A\ 3¢, [ £s11%, and if A\,s = O then no contrast (ts|7) is estimable in &.
Finally, we remark that the covariance between two BLUEs (¢, |7.) and (t|7.) is
£ Ts ANop(Tsts | Tste) and if t, € G, t, € Fpr, B # B, this again reduces to zero.

There are a number of points in the formulae above and in the corresponding ones in
the previous sub-section which are worth noting. First, it is clear from both (4.6) and (4.3)
that estimation is especially simple for contrasts which are eigenvectors of all the
information matrices TS, T, cf. Section 3.1 point (c). Secondly, BLUEs of contrasts from
distinct (common) eigenspaces of the T'S,T are orthogonal, cf. Section 3.1 point (b), and
so the BLUESs of contrasts (¢ | 7) for arbitrary ¢t € 7 are sums of the uncorrelated BLUEs
of (Tst|7) which have the simple form. And finally, the overall BLUE (4.3) of (5| )
for tg € F is quite clearly the simple combination of its BLUEs (4.6) in each stratum in
which it is estimable, each weighted inversely according to its variance: (ts|7)
= Y. wes(ts| 7o). This justifies our use of the term weight for w.s introduced following
equation (4.1). Similarly we can compare the variance of (i;|7.) to that of (t;| 7) when
the &, are assumed equal, and see why A\ is termed the efficiency factor for treatment
term g in stratum e, cf. point (d) in Section 3.1.

In a sense there is no single analysis of variance table which summarises all aspects of
the least-squares analysis of a designed experiment satisfying (GB), but rather one for
each stratum and one overall. See Table 1, the anova table within stratum «. Examples of
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TABLE 1
Anova table within stratum a

Source df. Sum of squares E{Mean square}
Treatment term 7 . - 2 Aag 2
g a0 dim % A3 TaS.y | AL

Residual d,:By difference By difference £, (ifd,>0)
1 1
may be zero
Total dim %, I1S.y?

.

designs with residual degrees of freedom d, = 0 in some strata are quite common, e.g.
symmetric BIBDs, double, triple, - - - lattice designs, rectangular lattice designs all have
zero residual d.f. in the inter-block stratum, and the best general way to estimate £, is
certainly not via the anova table for stratum «. For further comments on the estimation
of £,, see Section 4.5 below.

4.4. Simple combinability: a converse to (GB). We now prove a result asserting that
under certain general circumstances, if a set of contrasts spanning .7 is simply combinable,
then the design satisfies (GB). The following lemma has its straightforward proof omitted.
Our framework is that of Section 2.4 without assuming (GB).

LEMMA. If the treatment contrast {t| ) is estimable in stratum o, then there exists a
unique c, = c,(t) € 2(S.T) such that Tc, = t. Furthermore, the unique BLUE of (t|7)
based on S,y is then (c,| y).O

PROPOSITION 4.1. Let (t|7) be a treatment contrast such that for each stratum %, it
is either estimable in or orthogonal to %, and suppose that there is a set {w.} of non-
negative weights summing to unity such that

4.7 (t]7) = Ta walea|y), (yE D)

where (c. | y) is the BLUE of (t| ) based on S.., if (t|7) is estimable in ¥,, and w, =0
if t is orthogonal to &,. Then for all a, t is an eigenvector of TS.T with eigenvalue \, =
£l T Eala) "

PROOF. ‘It is not hard to prove that the transpose U’ of U = PY% coincides with
V-UV. It follows from equation (4.7) that VUVt = ¥, w.c, and so

4.8) UVt = (Za £Se)(Ta WeCe) = T £alWaCa-
Now TU = U and since Tc, = t for all «, (4.8) implies

(4.9) UVt = (3. Ewa)t.

On the other hand, (4.8) also implieé that S, UVt = £,w.C., and so
(4.10) TS UVt = Ew,.t.

The conclusion now follows from (4.9) and (4.10).0

Now let us suppose that the subspace .7 has a basis consisting of vectors ¢ satisfying



5 Anova 165
BALANCE IN DESIGNED EXPERIMENTS

the hypotheses of Proposition 4.1. Then for each such ¢ there is a set {\..} eigenvalues,
and we can obtain a pairwise orthogonal system { .7} of subspaces of 7 by grouping
together all ts with a common set of eigenvalues, say {A.s} for each ¢t € ;. It is clear that
the system { 7} forms a complete set of eigenspaces common to all the matrices {T'S,T'}
and also that 7 = @; ;. Thus we can obtain the following converse to (GB) implying
equation (4.1).

PROPOSITION 4.2. If there exists an orthogonal decomposition 9 = ®; Jsof 7 and a
set {wks} of weights such that for all V € 2 the projection U onto 7 orthogonal with
respect to (- | -Yv is U= Y. s w¥TsS,, where wkst, is independent of a, then the design
satisfies (GB) with respect to { Z3}.0

The proof will be omitted; it can be found in Houtman (1980). A stronger result can be
obtained when there are only two effective strata, i.e. 2/ is spanned by S, = G, S,, Ss; for
this case the hypothesis “for all V€ 2” in Proposition 4.2 is not required, as one suitable
V leads to the same conclusion.

4.5. The estimation of strata variances under (GB). We remarked in Section 4.3 above
that the residual operator R, = S, — Ps_.- in stratum « may be zero, equivalently, that d,,
=tr R, = dim % — Y {dim 9;:\.s > 0} may be zero. The reason for this is not hard to
see: if 0 < A s < 1, then treatment term T} is being fitted and its full d.f. dim 7; removed
not only in stratum «, but also in one or more other strata in which it is estimable. In a
sense we should only remove that fraction w.s(dim %) of the d.f. corresponding to the
amount of information on % in %, and the approach of Nelder (1968) amounts to just
this.

More precisely, Nelder’s approach is based upon equating the observed with expected
mean square of the actual residual S.(I — U)y = S,Uy in stratum « rather than doing so
with the apparent residual R,y as is done if only the anova table is consulted. To illustrate
the difference between the two we cite the following without proof:

LemMAa () [|S.Oyl?=[R.y|*+ || (Ps,> = S.U)y|*
(i) di=tr(S,0) =d.+ ¥ (1 — ws)dim ;.
(ili) When every treatment term is estimated in one of two strata, « and a’ say, then
| (Ps,. — Sy ? = T warphas | Apy |I?

where Agy = A3TpS.y — A TSy is the difference between the estimates of treatment
term (3 in the two strata, and a similar equation holds with the roles of a and o’ reversed.ll

Now both U and d involve the weights {was} so if we are to make use of the identity
E||S.Uy|? = d.£. in estimating £, an iterative approach must be used. We proceed as
follows: '

(0) Begin with initial estimates {£®} or {w %3} of the strata variances or weights,
possibly making use of the strata anova tables;

(1) Given a set {£.} and {w.s} of working estimates of the strata variances and weights,
calculate U and d/, and obtain revised estimates {£}} by solving for {£.} in
(411) ” SnUy "2 = Eadn;: o= 01 1’ MR

It is interesting to note that equation (4.11) is in fact the likelihood equation for {£,}
based upon || (I — T)y||? under the assumption that y has a multivariate normal distri-
bution, see Patterson and Thompson (1971) for details. The information matrix corre-
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sponding to these restricted ML estimates {£.} under normality has elements

_m{azlog l} _ 1 {[dn + 35 (1= wdim F)] if «=a’
35«5«' gaEa’ [Zﬁ wnﬁwn'ﬁ(dim %)] lf a F a’

where the sums are over all 3 for which A, (or A,-s) > 0.

4.6. Inferential difficulties under (GB). Even when a designed experiment with or-
thogonal block structure defined by the strata { <%} and treatment structure { 7} satisfies
(GB), there remain difficulties with estimation and testing the model.

Although the formula (4.1) gives a precise expression for 7 when the strata variances
{t.} are known, these considerations no longer apply when we use the estimates {£.}
obtained as in Section 4.5. The general problem of combining information on a common
mean when the weights require estimation has a large literature; see Brown and Cohen
(1974) for a general discussion and further references. In some of these papers the problem
of combining information on treatment contrasts in BIBDs is considered and it would be
of interest to extend these conclusions to multi-strata designs with a number of treatment
terms.

A second difficulty arises when the analyst wishes to test the hypothesis Ty = 0 for
some (3, say under a normality assumption. This can be done by an F-test in every stratum
a for which A, > 0 and the stratum residual d.f. d, > 0, and although such tests would be
independent, there appears to be no accepted procedure for combining the tests into a
single one. On the other hand, an overall test might be sought, fitting to .7 first and then
to the orthogonal complement 7 © 7, of 9;in .7 which still satisfies (GB). The problem
here is the fact that the likelihood ratio test for such hypotheses does not appear to have
been studied when information concerning .7 resides in more than one stratum.

Both of these problems would seem to warrant further research. Until straightforward
exact or approximate solutions are found, most analysts will follow Yates (1940) and
others in substituting the estimated weights into (4.1), and testing hypotheses Ts7 = 0 in
the stratum a for which A, is largest.

5. Examples.

5.1. BIBDs. The basic notation for block designs was introduced in Section 2.3: b
blocks of k plots each, and the term balanced means that the v = k different treatments
are applied to the plots in such a way that each pair of distinct treatments appears together
in a block the same number of times, A say. The strata projections are G, B— G and I —
B, all derived from simple averaging operators, whilst the treatment decomposition T'= G
+ (T — G) is similarly straightforward. We readily find that

(5.1) TGT=G, TB-G)T=¢é(T-G), TU-B)T=e(T-G)

where e = (1 — k7')/(1 — v™') = 1 — é is the efficiency factor of the design; Yates (1936).
The computation which establishes the (GB) conditions most easily is the checking that
(T — G)B(T — G) = é(T — G) by applying (T — G)B to a simple contrast t,,; in this form
it is nothing more than checking the balance condition.

The overall BLUE of a treatment contrast (¢|z) is given by (t|7) = £r'(ét1" +
et Wt (B — Q)y) + Ez'(éert + egz')!(t| (I — B)y), the correctly weighted linear
combination of the inter- and intra-block BLUEs é~'(¢t| (B — G)y), and e™'(¢t | (I = B)y),
respectively.

When we turn to the estimation of £ and &, we note that the residual d.f. d, = (b — 1)
— (v — 1) in the inter-block stratum is usually small and is zero if v = b. Nelder’s iterative
method or its Fisher scoring variant can be used with initial values £{® = ¢ =d;' | R,y ||?
ond, = b(k — 1) — (v — 1) d.f. from the intra-block stratum. The only quantities needed
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for this calculation are the residual arrays
Riy=B-Gy-¢'B-QATB-Gy
R,y = By — e 'BTBy
and the array of differences of effects estimated in the two strata:
Ay =¢é'T(B — G)y — e™'TBy.

The procedure generally converges quickly, and gives estimates which are close, although
not identical, to those given by Yates’ (1940) method based on anova tables, and the
statistical properties of these estimates appear (by simulations) to be very similar to those
of Yates’ estimates.

5.2. A natural generalisation of PBIBDs. PBIBDs were introduced by Bose and Nair
(1939) as generalisations of BIBDs and have been the subject of much study since then,
mostly devoted to combinatorial aspects of the designs because the combinatorial objects
now known as association schemes were first defined in this context, see MacWilliams and
Sloane (1978) and Raghavarao (1971). The standard reference on the analysis of PBIBDs
seems to be Clatworthy (1973). The idea behind PBIBDs is quite simple: where it is not
possible for every pair of distinct treatment to be together in a block the same number A
of times, the pairs are partitioned into association classes forming an association scheme
so that this can hold within classes, and the single number A is replaced by a family A,
Az, - - - of numbers, one for each association class. Our generalisation carries this idea over
to more general block structures than just blocks and plots such as nested BIBDs; Preece
(1967).

Let us suppose that the orthogonal block structure of our design arises from a dispersion
model based upon an association scheme {A,} over the set I of unit labels as described in
Section 2.2. That is, the strata projections {S.} are given by S, = (1/n) ¥, ¢..A. where @
= (g..) is a matrix of structure constants. The association matrices {A.} are defined in
terms of the strata projections by A, = Y. PaaS. where P = (p,,) is the “inverse” matrix
of constants: PQ = QP = nl.

Similarly we suppose—as is customary with PBIBDs—that there is an association
scheme {B,} defined over the set Z of treatment labels, see Section 2.2, with co;responding
orthogonal projectors {T'} given by T's = (1/v) 3 GusBs, where @ = (dys) and P = (py,) are
the appropriate matrices of structure constants.

DEFINITION. A design map x:I — & is said to be ({A.}, {B,})-balanced if for all
association classes a over I and b over 2 and u,, u, € Z with By(u,, us) = 1, the number
H(, j) € I X LA, j) =1, x(i) = w1, x(j) = u,} | depends only on b and not on the pair
U1, U, chosen. If we denote the number (of concurrences) in this definition by n,, then,
recalling the design matrix X introduced in Section 2.1 above, we see that an equivalent
form of the definition is: theére exists numbers n,; such that for all a we have

(5.2) X'A.X = Y naBs.

In particular if we consider A. and B, where e represents the identity association, we find
that n.. = r defines the common replication number for the treatments of our design.

PROPOSITION 5.1. An experiment with block structure arising from an association
scheme {A,} over the set I of units, and having a design map which is ({A.}, {By})-balanced
with respect to an association scheme {B,} over the set & of treatments, satisfies (GB). In
notation introduced above, the treatment decomposition is given by {Ts} where Ty =



168 5 Anova

A. M. HOUTMAN AND T. P. SPEED

r'XTyX’, and the matrix A = (Aep) of efficiency factors is given by
Aeg = (rn)™" Ta Tb GaaltabDeb

where n = (nq) is the matrix of concurrences.

PROOF. We begin by noting that T'= r~*XX’. Then for all «

TS.T =n""' ¥4 quTA.T (definition of S,)
= (r’n)" ¥, gu X(X'A. X)X’ (definition of T')
= (r’n)™" Yo T Quana XBp X' (by (5.2))

= (r*n)™" Yo Yo X Qualtas Do XTs X’  (definition of T;)
= Y5 {(rn)™" Ta Tb GualasPes} T (definition of T})

and the assertion is proved.

EXAMPLE 1. It is not hard to see that a BIBD is built over an association scheme on
its units with associations which can be labeled e (equality), 1 (same block but different
unit) and 2 (different block), whilst its treatments have the trivial association scheme
with associations e (equality) and 1 (inequality). We readily find that (rn)'Q'nP’ takes
the form

1 11 r 0 L1 1 0
)™ b—-1 b-1 -1 0 A _1 4l= 0 1—-e
bk—-1 =b o0 llrc-1 r2=2J? 0 e

making use of the relations r(k — 1) = A\(v — 1) and rv = bk = n.

EXAMPLE 2. Kshirsagar (1957) gave the very interesting 6 X 6 row-column design
with 9 treatments A, B, C, D, E, F, G, H, I shown in Table 2. Let us consider the
association scheme defined on the treatments by imposing a row-column pseudo-structure
on them as shown in Table 3. If we let e, 1, 2 and 3 denote the associations of equality,
same row (but unequal), same column (but unequal) and different row and column for
both schemes, then we have what is shown in Table 4, with a similar result holding for
X'A; X by differencing, since A, + A, + A; = J — I, where J is the matrix of all 1s. These
clearly satisfy our balance condition with matrix n = (n.) of concurrences, shown in
Table 5. With these preliminaries we can readily get P and @ and calculate the matrix A
= (A,s) of efficiency factors; this turns out to be as given in Table 6.

For many further such designs see Preece (1968, 1976) and Cheng (1981a, b).

TABLE 2 TABLE 3
Treatment allocation to 36 units with a 3 X 3 row-column pseudostructure
6 X 6 row-column block structure on 9 treatments

A B C

BID/H|G|F|C DETF

CIE|G[B|D|I G H I
E{F|CIA|G[H
DI'T|A/H|C|E
FIG|I|E|A|B
A/HIB|D|I|F
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TABLia 4
A B C D E F G H I
0 2 2 2 3 3 2 3 3 A
0 2 3 2 3 3 2 3 B
0 3 3 2 3 3 2 C
0 2 2 2 3 3 D
X'AX= 0 2 3 2 3 E
by symmetry 0 3 3 2 F
0 2 2 G
0 2 H
0 1
A B C D E F G H |
[ o 3 3 3 2 2 3 2 2 A
0 3 2 3 2 2 3 2 B
0 2 2 3 2 2 3 C
0 3 3 3 2 2 D
X'AX= 0 3 2 3 2 E
by symmetry (1] 2 2 3 F
0 3 3 G
0 3 H
0 I
TABLE 5
e 1 2 3
4 0 0 O e
n= 0 2 2 3 1
0 3 3 2 2
12 11 11 11 3
TABLE 6
Treatment pseudo-factor gm r ¢ r-c
1 0 0 0 Grand mean
_ 10 Y Y 0 Rows
A= 0 0 0 s Columns Block stratum
0 % s s Rows - Columns

5.3. Suppleémented balance and related notions. Pearce (1960) described a class of
block designs possessing what he termed supplemented balance, and later Pearce (1963)
extended the notion to row-column and more general designs. A typical example is a
BIBD consisting of b blocks of k& plots each and a standard balanced allocation of v
treatments, which is supplemented by the addition of an extra plot to each block to which
a control is applied. The resulting block design has b blocks each of k + 1 plots and v + 1
“treatments”, but is readily found to satisfy (GB) for the “treatment” decomposition

(5.3) T=9® I,

where ¥ = 2(G), 7, is the (v — 1)-dimensional space of contrasts amongst the v original
treatments, and 7, is the 1-dimensional subspace spanned by the contrast comparing the
control to the average of the original treatments. This contrast is estimated with efficiency
1 in the intra-block stratum, whilst the contrasts in 7, are estimated intra-block with
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efficiency e* where 1 — e* = k(k + 1)7'(1 — ¢), e being the efficiency factor of the original
BIBD.

A similar analysis holds for block designs which only satisfy (GB) with more compli-
cated treatment decompositions, and also for row-column and other designs with supple-
mented balance: in these cases 7, is replaced by the direct sum of the terms relative to
which the original (unsupplemented) design satisfied (GB).

Pearce’s block designs with supplemented balance are a special case of a class of block
designs introduced by Nair and Rao (1942), which are themselves a variant on those
described in the previous sub-section. They are analogous to PBIBDs with group-divisible
association schemes defined on the treatments, but do not necessarily have equal group
sizes, in which case they do not define an association scheme. Despite this fact, even when
the group sizes are unequal the line of argument used in Proposition 5.1 carries over. We
illustrate the results with the case of two groups, as discussed in Nair and Rao (1942),
supposing that there are v, “rare” treatments each replicated r, times, and v, “frequent”
treatments each replicated r, times. Each pair of “rare” (resp. “frequent”) treatments
occurs together in the same block n,; (resp. ng.) times, whilst pairs of treatments one of
which is “rare” and the other “frequent” occur together in a block n,; = n; times. It is
easy to establish that such designs are balanced with respect to the treatment decompo-
sition

T=9® 906 %0 7

where 9 (resp. %) is the space of dimension 7; — 1 (resp. n, — 1) spanned by contrasts
between the “rare” (resp. “frequent”) treatments, and .7, is spanned by the single d.f.
contrast comparing the average of the “rare” treatments with the average of the “frequent”
treatments. The array of efficiency factors is shown in Table 7.

5.4. Designs satisfying (GB). Nelder (1965) observed that most of the common designs
in use satisfied his definition of general balance. With our extension (GB) to designs in
which treatments are not necessarily equally replicated, we can go further and assert that
all block designs (with equal block sizes, and the usual dispersion model) satisfy (GB),
since it is quite obvious that TGT, T(B — G)T and T(I — B)T all commute. All row and
column designs which we have seen in the literature satisfy (GB), see Kshirsagar (1957),
Pearce (1963, 1975), Zelen and Federer (1964a) for examples, and so also do all designs
known to us with orthogonal block structure having three or more strata.

Knowing that a block design must satisfy (GB) is one thing; having explicit expressions
for the orthogonal projections {T}} is quite another matter. There are a very large number
of types of PBIBDs, and although it is generally not difficult to describe the structure of
their Bose-Mesner algebra, see MacWilliams and Sloane (1978, Chapter 21), and hence
obtain the {T},}, most writers in statistics have not taken this viewpoint. Corsten (1976)
is an exception,

For classes of block designs which are not PBIBDs, other methods must be used; the
details concerning rectangular lattice designs, linked block and a number of other classes

TABLE 7
Treatment 1 2 c Stratum:
term:
1 0 0 0 grand mean
A=1]o0 rn—nn g — Ny rir; — by blocks
kry kry riry
r(k —1) + ny ralk — 1) + naos bni
0 k=27 = - = —_— plots

kry kry rir
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are available on request. Recently the class of a-designs was introduced, Patterson and
Williams (1976), these being obtained in a particularly simple way from a basic generating
array. This class seems to be so large, including BIBDs, PBIBDs, square and rectangular
lattice designs as well as many others, that it does not seem to be possible to give a general
description of the subspaces { .7} relative to which the designs satisfy (GB). However this
should be regarded as a challenging unsolved problem.

5.5. Designs not satisfying (GB).

A black sheep. Although all block designs satisfy (GB) this is not necessarily the case
for row-column designs as the following 4 X 4 example with four equally-replicated
treatments is shown in Table 8. To see that (GB) fails, one simply notes that the contrast
which compares treatment 1 with the average of treatments 2, 3 and 4 is an eigenvector
of T(C — G)T (notation as in Section 2 above) and not of T(ﬂ -Qo)T.

Other designs. Some designs in common use which may not satisfy (GB) are those in
which repeated measures are taken on a number of units, when both time (e.g. periods)
and subjects (say) are assumed to contribute to the dispersion model, i.e. are regarded as
“random effects”, and “residual” as well as “direct” treatment effects are included in the
model, see Cochran and Cox (1957) for a general discussion. The problem here is that
there are no residual effects applying to the first period. In general both time and subjects
are regarded as “fixed”, in which case no problems arise because the dispersion model is
then trivial.

Another class of designs whose structure and accepted analysis does not satisty (GB)
is the class of so-called two-phase experiments, McIntyre (1955, 1956), Curnow (1959).
The explanation here appears to be simply the amount of structure in the experiment.

5.6. Concluding discussion. Throughout this paper we have discussed the notion of
balance and its generalisations from a purely theoretical point of view, focusing upon
contrasts with particular mathematical properties. It has not been our concern whether
these contrasts are natural, or of possible scientific interest, although this is clearly the
case in many common examples.

The designer of an experiment has a quite different perspective. Amongst other things,
he tries to ensure that contrasts of primary interest are estimated with as high a precision
as possible, subject to the constraints imposed by the experimental material. It by no
means follows that he should always design his experiment so that such contrasts are
eigenvectors of all the {T'S.T} of Section 4.1; indeed in many cases this is impossible.

If a designed experiment with orthogonal block structure satisfies (GB), then the
coarsest decomposition .7 = @ 7; with respect to which it does so is uniquely defined by
the design. Other decompositions of 7 which satisfy (GB) can only arise by further
decomposition of the individual { 7} in the coarsest one. When the designer is able to
arrange that all of the subspaces { .7} consist of contrasts of interest, the analysis of data
from the experiment and the display of the results will be particularly straightforward;
examples here include BIBDs and the designs of Section 5.3. In general, however, not all

TABLE 8
Design not satisfying (GB).
2 111 1
1133
2 24713
414413
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contrasts of interest will belong to one of the 7, and it will be necessary in the analysis
to use the more complicated formula (4.2) involving the projections {7%}; examples here
include unbalanced lattice designs.

A final point concerning the subspaces {.%} in (GB) is worth making. Even when they
do not consist of contrasts of scientific interest, they are frequently recognisable as arising
from a pseudo-structure on the treatments, i.e. an artificial view of the treatments relative
to which the {7} are natural or interpretable. Examples here include many PBIBDs,
most lattice designs and Example 2 of Section 5.2. The most general design satisfying
(GB)—and we need go no further than block a-designs to find examples—involves a
decomposition of 7 into subspaces { %3} which have neither scientific interest nor any
natural or interpretable structure, however we care to view the treatments. Qur general
theory applies to such designs, although it may be an affront to some to describe them as
balanced in any sense. We hope that our readers will appreciate the value of tracing the
path from balance in BIBDs through to the notion of general balance, and conclude that
the unity of outlook achieved outweighs any terminological problems met along the way.
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Summary

Building upon early work of E. A. Cornish we show that G. N.
Wilkinson’s version of Yates’ approach to the analysis of designed
experiments with a single error stratum carries over completely to
designs with an arbitrary non-singular covariance matrix, initially
assumed known. We show that the equations, corrections, adjustments
and algorithms all have their more general analogues and that these
can be solved, computed or executed quite readily if the design has
orthogonal block structure and satisfies Nelder’s condition of general
balance. The results are illustrated with a split-plot and a simple
(square) lattice design.

1. Introduction

The problem of analysing designed experiments with incomplete
data—for example, missing or mixed-up values—has received a lot of
attention when the designs are analysed with only a single error line.
The corresponding questions for designs analysed with more than one
error line (which we term multistrata designs), such as split-plot
designs or block designs in which inter-block information is recovered,
have rarely been raised, and in our opinion the accepted answers in
these areas are not completely satisfactory. The most frequently
adopted approach is to change the model back to one with only a
single error line, that corresponding to the lowest stratum, and to carry
out the analysis appropriate for incomplete data under the model in
which all other terms (including the other errors) are fixed. Such an
approach has the merit of simplicity, but it has no theoretical basis

! Manuscript received May 30, 1983.



5 Anova 175

A. HOUTMAN AND T. P. SPEED

and in our experience can give replacement values which are undesir-
ably discordant with the remaining data. This paper reports an attempt
to give an analysis of multistrata designed experiments with incomplete
data which is closer to the exact one under the model usually assumed
for such data.

We will build upon the early work of Cornish (1943, 1944, 1956),
showing that Wilkinson’s (1958a,b) version of Yates’ (1933) approach
carries over completely to experimental designs with an arbitrary
non-singular covariance matrix V, initially assumed known. More
precisely, we show that the equations, corrections, adjustments and
algorithms associated with the analysis of an experiment with incom-
plete data but only one error line all have their more general
analogues; the main problem is their solution, evaluation or execution.
To simpilify the discussion, as well as to make contact with the common
multistrata designs, we then specialise to designs which are generally
balanced in the sense of Nelder (1965a,b, 1968). This means that we
suppose V to have a very specific relationship to the treatment model
under discussion, and we remark that all common designs—e.g. all
those in Cochran & Cox (1957)—possess this property, see Nelder
(1965b) and Houtman & Speed (1983). Indeed most of the common
multistrata designs have only two effective strata, i.e. all of the infor-
mation concerning treatment contrasts lies in only two strata, and for
such designs our results are simplified substantially.

Our results are all exact as long as the covariance matrix V is
known, and in the case of generally balanced designs a natural exten-
sion of Nelder’s (1968) method for estimating an unknown V suggests
itself. The discussion is then illustrated by giving our analysis of a
split-plot and a simple (square) lattice design, each having a single
missing value.

We have not attempted in this paper to describe what we regard
as the best way to carry out the associated calculations. One reason for
this is our desire to outline a general approach and avoid concentrating
on particular designs, but the main reason is the absence of widely-
used general algorithms which perform multistrata analyses and are
capable of the few modifications necessary to do the calculations we
require. The ANOVA algorithm and the associated Macro facilities
which can be found in GENSTAT, see Alvey et al. (1977), provide the
most convenient framework known to us for doing the job.

2. Previous Work on the Subject

Formulae for replacing a single missing value in randomized
complete block designs and in Latin squares were given by Allan &
Wishart (1930), but it was Yates (1933) who laid down the general
principles for replacing missing values in designed experiments and for
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correcting other aspects of the analysis of the completed data. Yates’
method, suggested to him by Fisher, consists of using those replace-
ment values which minimize the residual sum of squares when un-
knowns are substituted for the missing response values. When only one
value is missing, this method leads to a simple direct formula for the
replacement; when there are several missing values Yates suggests an
iterative method for solving the equations. He notes that this method
leads to the correct fitted values for the observed data, but with
inflated treatment sums of squares, gives the correction for randomized
blocks and for Latin squares and also computes the adjustment to the
variance of a contrast for those two types of designs.

Yates’ work was later generalized and expressed in a modern
framework by Wilkinson (1958a,b, 1959) and a host of authors have
made contributions to the formulation, interpretation, existence,
uniqueness and solution of problems with incomplete data, see Hoyle
(1971) for an extensive but incomplete bibliography. In particular we
note the coordinate-free approach shown by Kruskal (1961) to include
the estimation of mixed-up values and to provide an easy extension to
the analysis of designs with extra observations.

A different approach to estimating missing values was introduced
by Bartlett (1937). This method first assigns arbitrary response values
to the missing plots and then adjusts the completed data by covariance
upon pseudo-covariates, one being introduced for each missing plot
and having value unity for that missing plot and zeroes elsewhere. It is
easy to see that estimates so obtained are identical to those derived by
Yates’ method. Further contributions framed within the analysis of
covariance approach with a single error can be found in Nair (1940),
Truitt & Fairfield Smith (1956), Coons (1957), John & Prescott (1975),
John & Lewis (1976) and P. L. Smith (1981).

Many authors have studied iterative methods to obtain estimates
of missing values in single stratum experiments. The use of an iterative
procedure was first recommended by Yates (1933). Later Healy &
Westmacott (1956) gave a more general algorithm based on Yates’
observation that the residuals after fitting the completed data must be
zero in the cells corresponding to the missing values. Pearce (1965)
improved the Healy-Westmacott algorithm by introducing an ac-
celerating factor n/E where n 1s the total number of experimental units
and E is the number of residual degrees of freedom for a complete
experiment. This correction is also used in papers by Preece (1971)
and Pearce & Jeffers (1971). More recently Rubin (1972), Haseman &
Gaylor (1973), John & Prescott (1975) developed non-iterative
methods involving m +1 uses of the same subroutine used for fitting
the full model where m is the number of missing values. Jarrett (1978)
describes the relationships between those various computing proce-
dures.
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The problem of mixed-up values was first considered by Nair
(1940) using the analysis of covariance. Kruskal (1968) follows Yates’
approach in a coordinate-free framework. Preece & Gower (1974) give
an iterative procedure to deal with mixed-up values similar to the one
advocated by Healy & Westmacott (1956) for missing values. John &
Lewis (1976) give a direct procedure based on the appropriate analysis
of variance.

Most of the literature on missing values concerns experiments with
a single error stratum. The earliest efforts to adapt Yates’ approach to
designs with more than one error line, mainly lattices and BIB designs,
are due to Cornish (1943, 1944, 1956) in three papers dealing with the
recovery of interblock information. An influential early note of Ander-
son (1946) seems to end up recommending the lowest-stratum-only
analysis for split-plot designs with missing data. Anderson’s view has
become accepted, see Cochran & Cox (1957), and is widely used to
this day’ We note in passing that little satisfaction can be gained by an
appeal to the analysis of covariance, since, for multistrata designed
experiments, this technique is not in much better state than the special
cases which incomplete data pose. An exception is the unpublished
report Cochran (1946) which discusses the analysis of covariance in
split-plot designs and whose results may be modified to handle missing
and mixed-up values. Recently Williams, Ratcliff & Speed (1981)
showed how to get missing value estimates based on the information
contained in the lowest two strata.

Finally we note that the EM algorithm described by Dempster,
Laird & Rubin (1977) provides an iterative approach to the maximum
likelihood estimation of parameters from incomplete data under quite
general distributional assumptions. Under normality assumptions it can
be shown that the recursion in the EM algorithm is the same as that
satisfied by the estimates obtained at each step from Healy and
Westmacott’s algorithm, or from the extension we give of that al-
gorithm for multistrata experiments. However the discussion below
will only make the standard second-order assumptions usual in the
analysis of designed experiments.

3. Derivation of the Basic Equations

We regard the observations as an array of numbers y =(y;);cs
indexed by a set I of n unit labels and assume the following model for
the expectation and dispersion of y:

EyeT 3.1)
Dy=V

where J is the subspace of arrays that are constant over treatments
and V is a positive-definite matrix which is assumed to be known. The
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n-dimensional vector space & of all possible arrays y is endowed with
the natural inner product {(x,y)=3.; %Yy and with the inner product
(x,y)v ={x, V''y) induced by V, the associated norms are denoted
respectively by || and |.|y.

If the data are incomplete, the space @ splits into the sum of two
orthogonal sub-spaces

Q= @1 @92
reflecting the decomposition
y=y:ty:

of the data into the observed part y, and the “missing” part y,. This
notation was shown by Kruskal (1968) to include both the case of
missing values and the case of mixed-up values: in the first case, y; has
zeroes in all units corresponding to missing observations and in the
second case, y, has a quantity z=m™'S in all m units corresponding to
the observations whose sum S only was observed.

For the observed part y, of the data, the model (3.1) now becomes

EY159.1
Dy, =V,

(3.2)

where 7, =D,7, the orthogonal projection of J onto 9; and V,=
D, VD,. (In this paper we will always use script letters to denote linear
spaces and the corresponding capital letters to denote the orthogonal
projections onto those spaces, with a superscript V if the projection is
orthogonal with respect to (., .)y rather than {.,.)). Although the data
could be fitted by estimating Ey, by its BLUE %, =T}y, it is usually
not straightforward to do so, since any special relationship that existed
between V and J (e.g. orthogonality or general balance) would not
usually continue to hold between V, and & ,. Accordingly, following
Cornish (1956), we minimize

ly:+y>—7R,

over €7 and y,€9,, and assume that (7, §,) is a pair at which the
minimum is achieved. Arguing as Yates (1933) did in the single
stratum case, we may minimize first over 7 and then over 2, to get

¥.=DJ(F-yy),
and in the reverse order, obtaining
F=TV(y,+¥2).
Each of the two relations can be substituted into the other, leading to
D;,Tvyz = _D;’Tv)ﬁ (3.3)
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and _
T'D}7=T'D]y, (3.4
where TV =I-T" and similarly DY =1-DY.

In the next section section we will show how to solve these
equations. For the moment we simply state the result which justifies
their solution as follows: the restriction D, TV(y; +¥,) to the subspace
corresponding to the observed data of the fitted values TV(y,+¥,)
obtained by analysing the observed data y, completed with any solu-
tion ¥, of (3.3) coincides with the fitted values TYty, of the observed
data y, to the appropriate submodel, i.e.

4 =D,7. (3.5)

A proof of this result is given in the appendix.
_From (3.3) or (3.4) it is easy to verify that the vector of residuals
f=TY(y, +¥,) satisfies the equation

D3i=0, (3.6)

which is similar but not equivalent to the property noticed by Yates in
the single stratum case, that the residuals after fitting the completed
data to J must be zeroes in the units corresponding to missing values.

4. Solutions of the Equations

In the simple case in which there is a single missing value (or only
two mixed-up values) a direct formula may be obtained. Letting &
denote a dummy vector with unity in place of the missing value (or +1
and —1 in place of the two mixed-up values) and zeroes everywhere
else, the unobserved vector has the form y,=ae where a is to be
estimated, and Dyz=lelv¥e, z)ve. It follows then immediately from

(3.3) that g _E&Ty
= ITVe2

A more manageable form of y, will be obtained in §6 for
generally balanced designs and it will be illustrated with examples in
§8. We will now suppose that dim @ > 1, i.e. that there is more than
one missing value or there are more than two mixed-up values, and
study iterative methods for computing the solutions of (3.3) and (3.4)
The following recursion formulae suggest themselves for ¥,, y =y, + ¥,
% and F=TV§:

4.1)

M ¥y =0; WY =D T3, + %) -yl m=0.
@ §=yi; YU =U-DITH™, m=0.
@) #°=T"y; FP=T"(Dy,;+DJF™), m=0.
(v) £ =T",; ¥P=T'D}™, m=0.
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All of these recursions are essentially the same, each being obtain-
able from the others by simple algebraic manipulations. Recursion (i) is
a generalization of Healy and Westmacott’s algorithm, and, under
normality assumptions, (iii) can be shown to be equivalent to the EM
algorithm of Dempster et al. (1977). It is the last recursion which most
clearly indicates why convergence must take place, since TV and DY
are projection operators, and so [f™*Vy=<k™)|y for all m=
0,1,2,..., with equality if and only if ¥ =¢", in which case the
algorithm stops and #™ is the solution ¥ by virtue of (3.6). An
alternative proof of convergence uses a theorem of Von Neumann
(1950, p. 55) showing that (iv) converges to the projection of y, onto
VI +NVP,, orthogonal with respect to (.,.)y. We also notice that
each algorithm is equivalent to a Taylor expansion.

The speed of convergence may be improved by the introduction of
an appropriate acceleration factor w. With the same initial values as
before, the algorithms are modified as follows for m =0:

Q) §5 0 =55~ 0T DITY (3, +F5)
(11)’ i(m+1) = s,(m)_ w—1D¥Tvi(M)-
(i) 7V =7~ T TVDI(E™ ~y)).
(iv) ¥ Y =" - o I TVDYE™.
As all four algorithms are equivalent we study the convergence of (i).
Using (3.3) one obtains
$2- 95 = - 0 DITVDY)F, ~ §57).

It follows that the algorithm converges to a solution of (3.3) for all y
in @, if and only if the spectral radius p of I—w 'DYTYDY is strictly
smaller than unity. The solution is unique if we assume that ,NT =
{0}, excluding, in particular, situations where all the observations on
a treatment combination are missing. Under this assumption, the
algorithm converges to the unique solution ¥, if and only if

© >3 (DYTVDY)

where A,.(A) is the largest eigenvalue of A. The fastest convergence
is obtained for the value w,, which minimizes p and hence

@opt = HAmin(DYTVDY) + Ao (DYTVDY)],

where A.(A) is the smallest nonzero eigenvalue of A.

5. Maodifications to the Subsequent Analysis

The analysis performed on the data completed with a solution of
(3.3) will produce the correct residual sum of squares (although the
number of degrees of freedom must be reduced by the dimension of
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9,) but treatment sums of squares (differences between residual sums
of squares for a pair of nested treatment models) and variances of
contrasts will need adjustment. Yates had already pointed this out in
1933 and he gave the corrections for the designs he studied. We now
give the appropriate adjustments for multistrata experiments.

For a submodel Eye % <& of our original model, the treatment
sum of squares [UVy[3 — T'y|% will be inflated by the quantity

[CYY(DR -0y @R = [CVy(7) - y2(0) ] (5.1

where y(7)=y,+y.(7) and y(U) =y, +y.(%) denote the completed
data obtained by solving the missing values equations (3.3) respectively
for the models Ey e J and Ey €e%. Equation (5.1) is simple the differ-
ence between the apparent sum of squares

[CYY (DR ~1T DR
and the correct sum of squares
TYy@)F~ 1Ty (R,

the latter being smaller than the former since y(%) minimizes [UVy}%
over @,. The algebra leading to the RHS of (5.1) is given in the
appendix.

On the other hand, the variance of a contrast (t,7) where ¥
satisfies (3.4) can be decomposed into the sum of the variance of that
contrast when the data are complete and an adjustment due to the loss
of precision encountered when estimating missing data. We have the
identity

cov ({t, T, (, ) = (¢, TV Vu) +(t, TV (DI T'D;) DT Vu). (5.2)
If 9, is of dimension one only, this expression simplifies to

t, TVeXu, TVe)

cov ({t, #), , 7)) =(t, TV Va) + Ve

(5.3)

where € is the dummy vector introduced in §4. Again we leave the
algebra to the appendix and illustrations to §8.

6. Generally Balanced Experiments

Following Nelder (1965a) we now assume that the design has an
orthogonal block structure which determines the eigenstructure of the
covariance operator

v=Y¢&s8, - (6.1)

where the {¢,} are (usually unknown) positive eigenvalues and the {S_}
are known symmetric and idempotent projectors such that 3, S, =L
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Designs with such dispersion models are said to be generally balanced
for an orthogonal decomposition 7 =€D, T4 of the treatment space if
for all «

TS.T=Y AusTs (6.2)
<]

for a set of eigenvalues {A,z} such that 0=<A_;=1and )}, A,z = 1. This
condition will be assumed to hold for the rest of this section. The effect
corresponding to treatment [ in stratum « is then calculated by
Q. = A24T4S, (unless there is no information 5 in %,, and A,g = 0)
and, assuming that the {£,} are known, the overall effect of treatment
term B is Qg =Y, WasQus a linear combination of the within strata
effects with weights

Wag = sz‘m(g £:' N

{the sum being over all a’ such that A,.z# 0). Further, the {Qg} are
mutually orthogonal and TY =3, Q. We refer to Houtman & Speed
(1983) for a fuller discussion.

For a single missing value the solution (4.1) may be written usuig

(6.1) as

-1 V. TV

= @ So (SaT €, SaT )

3, = _[Z fa ST eS. 1)), 6.3)
Za Ea {SaT €|

If the design is generally balanced and there are only two effective

strata, the lowest, say «’, and another, say «”, with eigenvalues A, .5

and A, ., for treatment 74, and Q, - and Q. as effects in those strata,
we will write Ag = Q.5 — Q.5 for their difference. Then

Yo £ (R, e, Rayl>+ZB pa(Ags, Agyy)
”= — . 6.4
= T £ R+ Tp s 1Ape S

where g = €160  Aarghas (62 A ag + EatAarg) ', and R, is the residual
operator after fitting to J in stratum «.

If no treatment term is estimated in more than one stratum, then
(6.4) simplifies to

o Za §;1<Ra€l Ray1>
2= [ Za g;I lRaelz ] (65)

This is the case for all orthogonal designs i.e. designs for which A,z =0
or 1. For example, the covariance operator of a complete randomized
block design has spectral decomposition V= §£,G+4,(B~G) + £,(I—-B)
where G is the overall averaging operator (replacing all the compo-
nents of y by the grand mean) and B is the block averaging operator
(replacing all the components of y by the average of those components
belonging to the same block). If there are b blocks and t treatments, a
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single missing value is estimated using (6.5) by

E S +bYe=Y6)+& Ce—bTy)
EJ-DB-D+&Nb-1)

where Y5, Y5 and 3. denote respectively the sum of all the observa-
tions, the sum of the observations in the block containing the missing
observation and the sum of the observations that received the same
treatment as the missing unit.

In a txt Latin square with one missing value, the replacement
using (6.5) is given by

R+ I+ —2Y 61+ E ' Qo —t Lr)+E ' Ts —t Xe)
-1 -2)+ & -D+E1 (-1 '

Here V=¢(,G+§{R-G)+£(C-G)+£,(I-C-R+G) (R and C are
the row and column averaging operators and G is as before), Y and
Y are respectively the sum of the observations in the same row and
same column as the missing observation and Y and ). are as before.
The case of a split plot design will be discussed in §8.

In practice the operator V is only partially known: the projectors
{S,.} are determined by the structure of the design whilst the strata
variances {£,} need to be estimated, and we outline a method for doing
so in the next paragraph. The {£,} are not needed however if we
assume that most of the information on treatments is concentrated in
the lowest stratum in which they are estimable. If attention is restricted
to that stratum only, we let £;=0 in all the other strata and write Ry
for the vector of residuals in that stratum, then

= — [(Ryly Re)]e
Y2 lRelz .

This gives all the usual missing value estimates, see, for example,
Cochran & Cox (1957).

7. Estimation of Strata Variances

When information on some or all treatment terms is available
from more than one stratum, we saw in the previous paragraph that
the missing value estimators involve the strata variances {£,}. We now
outline a method for estimating the {£,} in a generally balanced design.
The method we propose is an extension of Nelder’s way of handling
the problem for a complete design. The main steps are as follows:

(i) complete the data with initial estimates y5 computed using lowest
stratum information only;

(ii) calculate estimates {¢”} using the data completed with y&;
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(iii) calculate y5V using one of the methods indicated in §§4 or 6;

(iv) calculate new estimates {£.} and then go back to (iii), continuing
as often as seems necessary.

Estimates of the {£,} in (ii) and (iv) may be obtained in two ways.
If, after estimating treatments, there are enough degrees of freedom
left in stratum «, equating the error mean square in that stratum to its
expectation easily provides an estimator of £,. Indeed we have under

(6.2)
E|R.y*=¢&, trace R,

= g(trace S, - Z trace TB) 7.1
8

= &da
where the sum is over all 8 such that A,z >0. But d, is often small and

may even be zero, and so we would rather use the actual residual in
stratum « given by S, TVy. If (6.2) holds we have

E|S. TVy|*=¢, trace S, TV
=§°{d,, +Z (1—w,z) trace TB} (7.2)
8

=£.d;

where the sum is again over all 8s such that Az >0. The “degrees of
freedom” d. is larger than d, in (7.1), but, like |[S,TVy[? it involves
the unknown {£} through the w,s;. Nelder suggested an iterative
method, choosing initial va.lues_{&f,f”}, for example from (7.1) in the
lowest stratum, obtaining |S,TY®y|*> and d/®, and then revised
estimators

‘SQTV(O)yP

(1)
§a - d,(o]
(=3

Again this needs to be continued as often as seems necessary.

In our experience the estimates of {£,} do not change very much,
and unless there is a lot of missing data, one would not expect them to.
No result guaranteeing convergence is available even with complete
data.

8. Examples

(i) Split-plot: Let us consider a general split-plot experiment with
r replications of a plots (levels of A) each of b subplots (levels of B).
The block structure determines the spectral form of Dy =V as

V=£4G+ELR-G)+§(P-R)+&(I-P) 8.1
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where G, R and P are respectively the overall averaging operator, the
operator averaging over replications, and the operator averaging over
plots. The factorial treatment structure determines the decomposition
of the treatment space

T=4D(ASYD(RBOYB(TO(A+RB)) (8.2)
corresponding to a decomposition of the vector of means
Ey=1=Gr+(A-G)1+ (B—G)7+ T, T

for ali 1€ J. The operator G is the same as above, A and B average
respectively over the levels of A and over the levels of B, and
T, pg=T—A—-B+G where T is the treatment averaging operator. We
note that G, A, B, T and T, g are orthogonal projectors with respec-
tive ranges 4, &, B, I and TO (A4 + R).

The experiment is generally balanced with respect to the treat-
ment structure (8.2), with a set of eigenvalues all equal to zero or one,
this always being the case for orthogonal designs. All the information
on contrasts comparing levels of A (contrasts in & © %) is contained in
the main plot means adjusted by their replicate means (P—R)y, whilst
all the information on contrasts comparing levels of B (contrasts in
BES%) and on those describing interaction between A and B (con-
trasts in 7 @(s + B)) is contained in the stratum of subplot compari-
sons (I—P)y. And so a single missing value can be estimated using
(6.5) by x where x is

£ (raYp+abYan—ala)t&, X rt+afa—raYp=3g)+& ' (Ts—rir)
EMalr=Db- DI+ & r-Da-D]+£71(r-1)

(8.3)

Here Y p is the total of the observations in the plot containing the
missing observation,

Y r is the sum of all the observations in the replicate containing
the missing observation,

Yap is the total of all the subplots that received the same
treatment combination as the missing unit,

Y 4 is the total of all the subplots that received the same level of
treatment A as the missing one,

Y is the sum of all the observations.

This formula may be compared with the estimate obtained by
Anderson (1946) by minimizing the subplot error only:

/=rZP+bZAB-ZA
(r=1(b-1)
If £ and £ are both very large in comparison with &, then (8.3)

reduces to (8.4). In the example treated in his paper, Anderson obtains
a replacement of 763 whereas (8.3) gives 726 (using (7.1) to estimate

(8.4)
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the strata variances); the latter value is in better harmony with the rest
of the data whose mean was 492.

The correction to the variance var ((t, 7)) where 7 satisfies (3.4),
will be zero whenever the missing value is at another treatment level
than the levels compared in the contrast . When this correction is not
zero we will follow Cochran & Cox (1957, p. 303) and consider four
simple kinds of contrasts. Let us write

t. (resp. tg) = a difference between two A means (resp. B means),
tp, = a difference between two B means at the same level of A,
t., = a difference between two A means at the same level of B,
or at different levels of B.
With the denominator of the correction given in (5.3) equal to [TVel% =
(r=1)(rab) [+ &, (a— D+ £ (b—1)a]=d, we have
var ((ta, 7)) =2£,(rb) 1+ (F*0%ad) 7,
var ((tg, 7)) = 2, (ra) "' + (r*ad)™,
var ((ta,, T)) = 2&r7 1+ (r2d) 77,
var ({tap, ) =[2&,(rb) ' +2£,(b— 1)(rb) "]+ (r2d) 1.
Our corrections (second terms) reduce to the ones obtained by Coch-

ran & Cox (1957, p. 303) and based on a lowest stratum estimate of
the missing value by setting & ! and &, equal to zero.

If we now consider the submodel having no AB-interaction term,
namely Ey € & + %, the apparent sum of squares due to the interaction,
ITY gY@ =& (T—A-B+G)y(9)? must be adjusted. This is done
by subtracting from it the correction term

Py a3 (T) -yt + BN =(d— )2 PY.qeld
where d is the replacement (8.3) under the full model, and f is the
replacement under the submodel given by f where f is

£ (ralp+bYp—2g)tép ILrtaYa—arle—3c)+£ ' To—rizr)
EMra=Db-D+ &N a-Dr—1)+&(r—1) i

(8.5)

The notation is as in (8.3) with Y 5 denoting the sum of the observations
that received the same level of treatment B as the missing one, and

finally
[Py . gely = (abr) & ra~ Db -1+ & (a— D)(r— D)+ £ (r=1)].
(ii) Simple (square) lattice: We consider an experiment per-
formed to compare k? treatments in two replicates of k blocks of k

plots each. As in a split-plot experiment, the block structure here is
doubly nested and so there are three strata (other than the grand
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mean): between replicates, within replicates between blocks, and
within blocks. This defines the spectral decomposition of the dispersion
matrix Dy =V as

V=£G+4R-G)+6(B-G)+£,(I-B) (8.6)
where G, B and R are respectively the overall, block and replicate

averaging operators. This design does not satisfy the conditions (6.2) of
general balance with respect to the natural treatment decomposition

T=G+(T-G)

corresponding to “no structure” on treatments but general balance is
obtained by introducing a factorial “‘pseudo-structure’. This is deter-
mined by the following scheme: the treatments are arranged in a k Xk
square and treatments belonging to the same row (resp. column) of the
square are allocated to the same block in the first (resp. second)
replicate. Let us use M and N for the pseudo-factors corresponding to
the rows and columns of the treatment array. The experiment is
generally balanced with respect to the treatment decomposition

t=GT+M-G)t+(N-G)7+ Ty~ 8.7

where v =[Ey € . The notation here is as in (i) with M and N instead of
A and B. The relationships (6.2) are

TR-G)T=0,
TB-R)T=}M-G)+3N-G),
TI-B)T=iM-G)+i(N-G) +Tynx:
and so the effects are
Qv =3 M(B-R), Q. =(3)"'MI-B),
Q,n =@ 'N(B-R), Q.~ = () 'NI-B),
Qv =0, Qorn = TaynI—B) =Ty,
and the weights are
Wort = Won = W =385 1385 T 36 D T =N ETHE DT
W =W =1-w =&+ D)7
wonen =0, Wonar =1

Assuming known strata variances {£,}, a single missing value may
be estimated using (6.4) by x where x is
UKL r—2 R + 26 —2kC—kC)—=2(& +£,) T (2Y 6 —4Xr —2kC+ kC")
£ (k=12 +4(& + &) (k—1)

(8.8)

where Y5, Yr and Y1 denote respectively the sum of all the observa-
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tions, the total of the observations in the replicate containing the
missing observation and the total of the observations that received the
same treatment as the missing unit. We have borrowed from Cochran
& Cox (1957) the notation

C =[total (over replicates) of all treatments in the block to which
the missing unit belongs]—2 Y g,

where Y is the sum of all the observations in the block containing the
missing unit, and

C’'=sum of the C values for all blocks containing the treatment
that was allocated to the missing unit.

Since there is no natural submodel of the treatment model
assumed, corrections to sums of squares due to treatments will not
usually be needed. And so we only compute the adjustments to be
added to the variances of elementary contrasts (contrasts between pairs
of treatments). For a complete experiment, the usual formulae for
those variances are

klggt+g,t 28" '
if the two treatments belong to the same block (in either replicate) and

2 {# + k-2 } (8.10)

k lggt+ &0 2¢77 o

if the two treatments never appear in the same block. The correction
to those variances, due to the estimation of a single missing value is
given in (5.3) by (¢, TVe)*('T el3) ™" with

D= ITV£I€=2—11(4 (465 (k — 12+ &7k
+ &4k (k= Dw? + (k- D(k —2)%}
+ & 4k (k — D)w(k — 1)k%}] (8.11)

where w = 1—w. Using D for the denominator, the correction to (8.9)
is

1 —\2
ai2p K 72W)

for a comparison between the treatment allocated to the missing unit,

say T,, and a treatment in the same block as the missing unit, and

1

2ip Kk 2wr

for a comparison between T, and a treatment appearing in the same
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block as 7, in the replicate that does not contain the missing unit. The
correction to (8.10) is

1
4D
for a comparison between 7, and a treatment never appearing in the
same block as 7,,; it is

1
ﬁ)‘ (1-2w)?

for a comparison between a treatment appearing in the same block as
T In the same replicate as the missing unit and such a treatment in the
other replicate; finally, it is

5 (0) (=5 )

D \k/ \"™P' B \k
for a comparison between a treatment appearing in the same block as
T,. in the same replicate as the missing unit (resp. in the replicate that

does not contain the missing unit) and a treatment never appearing in
the same block as T,,. The corrections in all other cases are zero.

9. Appendix

(i) Proof of (3.5)
Step 1. We define the vector of residuals

P=T'(y:+52) (A1)
where §, satisfies the missing values equations (3.3), and
first prove that

r=1-P) .1y, (A2)
where P} ., is the projection onto the space @,+J =

{y2+t]|y,€9,,te T}, orthogonal wr.t. (., ).
Using recursion (iv) of Section 4, we have

t= lim (TYDY))"T'y,

=PYr-rva, T Y; Von Neumann (1950, p. 55)
= (I_P;+92)Tvy1-
This last relationship and the previous one both use the

fact that the orthogonal complements w.r.t. (., .}y of &
and 9, are respectively VI + and V2,.
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Step 2.
D,#=D,TV(y, t¥2) where ¥, satisfies (3.3)
=D, (I-T )y, +¥2)
=y,—Dr using (Al)
=y, —-D,(I- P§+92)Tv)’1 using (A2)
=y =Dy +D Ty, -D.PY ., Ty, +D,PS . -y,
=D,P3, .71 since Py 5 TV =T".

Step 3. We first observe that
D+ T =D,+T,=2,5DYT,

where the last sum is orthogonal with respect to (., )y.
Thus the weighted projection onto 2,+J decomposes
into the sum of the weighted projections onto 9, and
A =DYT, respectively. We then have

D,7= DID;IYI + DtAVY1
=D,AVy,.

Now R(AY)=R(V(D,VD,) T,), and so

D,7=D,V(D,VD,)T,[T,(D,VD,) VV!
xV(D,VD,) T,] T,(D,VD,) " VV~ly,
=T,[T,(D,VD,)"T,]"T,(D,VD,)y,
=Ty, (where V,=D,VD,)
=4
which proves (3.5).
(ii) Verification of (5.1)
[CYy(R— 10"y (W)
=(CVy(7), TYy(@)v—(Uy(@), Ty (@)
= (@), Oy (@))y— y(@), TYy(u))y
+ (@), UYy@)v—(y(7), Ty (@))y
=y(7), O'V(T) —y@) Dv + (@) —y@), TVy(@))v.
Now, (y(9)—y (@), U¥y@)v = 32(T) ~y2(u), UVy(u))v
= (D3[y2(T) —y-(W)], Uy @)y
= (¥2(T) ~y2(u), DY O y())v,
and, using (3.6) for the model %, we have DY UVy(%) = 0. Thus we
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may write
[CY(@R -0y @)%
= (), Uly(T) —y (@) Dy~ y(T) —y(@), TVy(@))y
=(y(9), I—Jv[yZ{g) =y2(U) Dy — (y (@), fjv[)’z(?/.) =¥ v
= (¥2(T) —y-(), UV[y2(T) - y,() Dy
= lﬁv[lb(g) ‘h(‘m)]ﬁ-
(iii) Verifications of (5.2) and (5.3)
We start from equation (3.4) giving the vector of fitted values
7 when the data are incomplete, writing the equation in the form
@-1VDYT5 =T'DYy,. (A3)
We will only consider the case where I N@, ={0} so that all the
eigenvalues of TVD3T" are strictly smaller than one and hence all
those of I-TYDYTY = A are strictly positive and the operator A is
invertible. The unique solution of (A3) is thus
*=A7'TDYy,
and so we have
var#=A"'"TVDYD, VD, (DY)*(TV)*[A"1]*
=AT'TYDYTYA™'V
=ATATVATV
=T'I-T'D3ITY) V.

We may re-express this as follows

var"r=Tv[

Y (TVD;’TV)i]v

=0

=TV+ ) (TDYTY)'V
i=1

=T'V+T'DYTY [ 2 (IVDITYy ]v

i=0
=T'V+ T"[ > (D}'TVD;')i]D;’T"V
i=0
=T'V+TY(DYT'DY) DYT"Vu.
From this we have for all t,tae T

cov ((¢, 7, G, ) = (¢, T" V) + (¢, T'(DYT'D3) D; T Vu)

which is (5.2).
Now consider the case where dim %, = 1 so that 9, is spanned
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by the vector € and DYz =[5 (¢, z)ve. Let c € R be such that
(DITDY) DT Vu=ce. (A4)
Since DYTYVu is a vector in @,, premultiplying both sides of (A4)
by DYTVDY gives
DT Vu=cDyT'DYe=cDyT",
and using the above expression for the projector D3 we get
le]52 (&, TV Vu)ve = clely? &, TVe)y.

c ={g, TVVa)y[(e, TVe)y] "
=(TV, w{|T e
Using this value of ¢ in (A4) and substituting (A4) into (5.2), we
see that the latter expression simplifies in this particular case to
{t, TVe)(u, TVe)
[TVely

Hence

cov ({t, 7), (w, 7)) = (¢, TVu) +

This completes the verification.

References

ALLAN, F. E. & WISHART, J. (1930). A method of estimating the yield of a missing plot
in field experimental work. Jour. Agric. Sci. 20, 399-406.

ALVEY, N. G. et al. (1977) GENSTAT. A general statistical programme. Rothamsted
Experimental Station.

ANDERSON, R. L. (1946). Missing-plot techniques. Biometrics 2, 41-47.

BARTLETT, M. S. (1937). Some examples of statistical methods of research in agriculture
and applied biology. J. Roy. Statist. Soc., Suppl. 4, 137-183.

COCHRAN, W. G. (1946). Analysis of covariance. Insntute of Staftistics Mimeo Series No.
6, University of North Carolina.

CocHRAN, W. G. & Cox, G. M. (1957). Experimental designs. (2nd Edition} New York:
Wiley.

Coons, 1. (1957). The analysis of covariance as a missing-plot technique. Biometrics 13,
387-405.

CornisH, E. A. (1943). The recovery of inter-block information in quasi-factorial
designs with incomplete data. I. Square, triple and cubic lattices. C.S.L.R. Bull., No.
158.

CornisH, E. A. (1944). The recovery of inter-block information in quasi-factorial
designs with incomplete data. II. Lattice squares. C.S.I.LR. Bull., No. 175.

CornisH, E. A. (1956). The recovery of inter-block information in quasi-factorial
designs with incomplete data. III. Balanced incomplete blocks. C.S.LR.O. Divn.
Math. Stats. Tech. Paper, No. 4.

DEMPSTER, A. P, LAIRD, N. M. & RuBmw, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. Roy. Starist. Soc. B 39, 1-38.

HASEMAN, J. K. & GAYLOR, D. W. (1973). An algorithm for non-iterative estimation of
multiple missing values for crossed classifications. Technometrics 15, 631-636.

HeaLy, M. J. R. & WESTMACOTT, M. H. (1956). Missing values in experiments analysed
on automatic computers. Appl. Stanst. 5, 203-206.

Houtman, A. M. (1980). The analysis of designed experiments. Ph.D. thesis, Princeton
University.

HoutMmaN, A. M. & Speep, T. P. (1983). Balance in designed experiments with
orthogonal block structure. Ann. Statist., 11, 1069-1085.



5 Anova 193

A. HOUTMAN AND T. P. SPEED

HovLe, M. H. (1971). Spoilt data—an introduction and bibliography. J. Roy. Statist. Soc.
A 134, 429-439.

James, A. T. & WILKINSON, G. N. (1971). Factorization of the residual operator and
canonical decomposition of nonorthogonal factors in the analysis of variance.
Biomertrika 58, 279-294.

JARRETT, R. G. (1978). The analysis of designed experiments with missing observations.
Appl. Statist. 27, 38-46.

JouN, J. A. & LEws, S. M. (1976). Mixed-up values in experiments. Appl. Statst. 25,
61-63.

Joun, J. A. & PrescotT, P. (1975). Estimating missing values in experiments. Appl.
Statist. 24, 190-192.

KruskaL, W. H. (1961). The coordinate-free approach to Gauss-Markov estimation,
and its application to missing and extra observations. Fourth Berkeley Symp. Math.
Statist. Prob. 1, 435-451.

NAIRr, K. R. (1940). The application of the technique of analysis of covariance to field
experiments with several missing or mixed-up plots. Sankhya 4, 581-588.

NELDER, J. A. (1965a). The analysis of randomised experiments with orthogonal block
structure. I. Block structure and the null analysis of variance. Proc. Roy. Soc.
(London) Ser. A. 273, 147-162.

NELDER, J. A. (1965b). The analysis of randomised experiments with orthogonal block
structure II. Treatment structure and the general analysis of variance. Ibid. 163-
178.

NELDER, J. A. (1968). The combination of information in generally balanced designs. J.
Roy. Statist. Soc. B 30, 303-311.

PeEARCE, S. C. {1965). Biological statistics: An Introduction. New York: McGraw Hill.

PEARCE, S. C. & JEFFERS, J. R. N. (1971). Block designs and missing data. J. Roy. Statist.
Soc. B 33, 131-136.

PrReece, D. A. (1971). Iterative procedures for missing values in experiments. Tech-
nometrics 13, 743-753.

PREECE, D. A. & GOWER, J. C. (1974). An iterative procedure for mixed-up values in
experiments. Appl. Statist. 23, 73-74.

RuBm, D. B. (1972). A non-iterative method for L.S. estimation of missing values in any
analysis of variance design. Appl. Statist. 21, 136-141.

RusiN, D. B. (1976). Non-iterative least squares estimates, standard errors and F-tests
for analysis of variance with missing data. J. Roy. Statist. Soc. B 38, 270-274.
RuBlN, D. B. (1976). Inference and missing data (with discussion). Biometrika 63,

581-592.

SmrrH, P. L. (1981). The use of Analysis of Covariance to analyse data from designed
experiments with missing or mixed-up values. Appl. Statist. 30, 1-8.

TrRuUrTT, J. T. & FAIRFIELD SMITH, H. (1956). Adjustment by covariance and consequent
tests of significance in split-plot experiments. Biometrics 12, 23-39.

Von NEUMANN, J. (1950). Functional operators, vol. II: The geometry of orthogonal
spaces. Princeton University Press.

WILKINSON, G. N. (1958a). Estimation of missing values for the analysis of incomplete
data. Biometrics 14, 257-286.

WILKINSON, G. N. {1958b). The analysis of variance and derivation of standard errors for
incomplete data. Biometrics 14, 360-384.

WILKINSON, G. N. (1960). Comparison of missing value procedures. Aust. J. Stafist. 2,
53-65.

Wrriams, E. R, RATCLIFF, D. & SpeeD, T. P. (1981). Estimating missing values in
multi-stratum experiments. Appl. Statist. 30, 71-72.

YATES, F. (1933). The analysis of replicated experiments when the field results are
incomplete. Emp. Jour. Exp. Agric. 1, 129-142,



194 5 Anova

The Annals of Statistics
1986, Vol. 14, No. 3, 874-895

RECTANGULAR LATTICE DESIGNS:
EFFICIENCY FACTORS AND ANALYSIS

BY R. A. BAILEY AND T. P. SPEED
Rothamsted Experimental Station and C.S.I.R.O.

Rectangular lattice designs are shown to be generally balanced with
respect to a particular decomposition of the treatment space. Efficiency
factors are calculated, and the analysis, including recovery of interblock
information, is outlined. The ideas are extended to rectangular lattice designs
with an extra blocking factor.

1. Introduction. The class of incomplete block designs known as rectangu-
lar lattice designs was introduced by Harshbarger (1946), with further details and
extensions being given in a subsequent series of papers by Harshbarger (1947,
1949, 1951) and Harshbarger and Davis (1952). Apart from a contribution by
Grundy (1950) concerning the efficient estimation of the stratum variances and
the papers by Nair (1951, 1952, 1953) relating rectangular lattice designs to
partially balanced designs, little further theoretical discussion of this class of
designs seems to have occurred. Expositions of the basic results about rectangular
lattice designs in two and three replicates, as well as tables of designs, can be
found in Robinson and Watson (1949) and Cochran and Cox (1957). Discussions
exist in other standard texts on the design and analysis of experiments, for
example Kempthorne (1952), but, apart from recent contributions by Williams
(1977) and Williams and Ratcliff (1980), the literature seems to end in the early
1950’s. [In his recent note, Thompson (1983) uses the results in the present paper,
as he acknowledges.] A possible explanation of this fact may be the observations
of Nair (1951, 1953) that every 2-replicate rectangular lattice design is a partially
balanced incomplete block design with four associate classes, whilst the obvious
extension of the argument to r-replicate rectangular lattice designs for r > 3 fails
in general, although the classes of rectangular lattice designs for n(n — 1)
treatments in n — 1 or n replicates again turn out to be partially balanced.
Perhaps it was felt that, in not being partially balanced, rectangular lattice
designs were rather too complicated.

In his fundamental papers on designed experiments with simple orthogonal
block structure Nelder (1965a, b) introduced the notion of general balance, this
being a relationship between the treatment structure and the block structure of
the design. It is immediate from his definition that all block experiments (in the
usual sense of the term) are generally balanced for some treatment structure [see
Houtman and Speed (1983)], although here we might more properly use the term
treatment pseudo-structure, and when this structure is elucidated for a given
class of designs they can be regarded as understood and readily analysed. In a

Received June 1985; revised September 1985.

AMS 1980 subject classifications. Primary 62K10; secondary 62J10, 05B15.

Key words and phrases. Analysis of variance, block structure, combination of information,
efficiency factor, general balance, Latin square, rectangular lattice, resolvable design, stratum,
treatment decomposition.
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later paper, Nelder (1968) showed the importance of general balance in permit-
ting the straightforward estimation of stratum variances, introducing a method
equivalent to that which has come to be known as restricted maximum likelihood
estimation of variances [see Patterson and Thompson (1971) and Harville (1977)].
The definition of general balance in block designs is intimately connected with
the eigenspaces of a certain linear transformation, denoted by Ly in this paper,
and in this form a number of other authors have recently emphasised the same
concept [see, for example, Pearce, Calinski, and Marshall (1974), who called the
eigenvectors of Ly basic contrasts, and Corsten (1976)].

In Sections 3 and 4 of this paper we obtain an orthogonal decomposition of the
space of all treatment contrasts associated with a general r-replicate rectangular
lattice design. In Section 5 we use this decomposition to identify all the eigen-
spaces of the linear transformation L. An equivalent description of our results is
that we determine the treatment pseudo-structure relative to which the designs
are generally balanced; equivalently again, we describe the basic contrasts of the
design. Using these results, a full analysis, modelled on Nelder’s (1965b, 1968)
general approach, of rectangular lattice designs is given in Section 6, involving
the derivation of a fully orthogonal analysis of variance and estimates of the
stratum variances, and the calculations of estimates of treatment contrasts,
together with their standard errors. A recursive analysis along the lines of
Wilkinson (1970) is most satisfactory, as the eigenspaces are orthogonal comple-
ments of subspaces each of which has a simple formula for its orthogonal
projection in terms of averaging operators, and so these subspaces can be swept
out successively in a quite straightforward manner. Our general approach to the
analysis of designed experiments is framed in vector space terms, similar to that
used by James and Wilkinson (1971) and Bailey (1981), but in the multistratum
framework of Nelder’s papers.

Finally, we use the foregoing ideas to sketch the design and analysis of an
experiment in which an extra blocking factor was imposed on a rectangular
lattice design. Two examples are used throughout the paper to illustrate the
theory.

ExXAMPLE 1. This is a rectangular lattice for 20 treatments in three replicates
of five blocks of four plots. Although this is an entirely abstract example, there
being no associated experiment, it illustrates the general theory well because it
has no special features: the design is not partially balanced, and its construction
does not use a complete set of mutually orthogonal Latin squares. Tables 1, 3-5,
7, and 12-15 refer to Example 1.

ExXAMPLE 2. In an experiment into the digestibility of stubble, 12 feed
treatments were applied to sheep. There were 12 sheep, in three rooms of four
animals each. There were three test periods of four weeks each, separated by
two-week recovery periods. Each sheep was fed three treatments, one in each test
period. During the recovery periods all animals received their usual feed, so that
they would return to normal conditions before being subjected to a new treat-
ment.
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TABLE 1
Transversal of a 5 X 5 Latin square

3
@
1
5
2

- ® s w o

4
5
2
1

®

It was desired that each treatment should be fed once in each room and once
in each period. If periods are ignored, a suitable design is a rectangular lattice
design in which sheep are blocks and rooms are replicates. We shall ignore the
periods until Section 7, where we show how to deal with this extra blocking
factor. Tables 9-11 and 18-19 refer to Example 2.

2. Construction. In this section we review the construction of rectangular
lattice designs, partly in order to establish our terminology and notation.

A rectangular lattice design is a resolvable incomplete block design for ¢
treatments in r replicates of n blocks of size n — 1, where ¢t = n(n — 1) and
2 < r < n, for some integer n. We write b for rn, the total number of blocks, and
N for b(n — 1), the total number of plots. The design has the property that any
pair of treatments occur together in at most one block. The design is constructed
from a set of r — 2 mutually orthogonal n X n Latin squares A,,..., A,_,.

A transversal of such a set of Latin squares is defined [see Dénes and
Keedwell (1974), pages 28 and 331] to be a set of n cells with one cell in each row
and one in each column, which between them have all the letters of all the
squares A,,..., A,_,. In Table 1 a transversal of a single 5 X 5 Latin square is
indicated with circles. Transversals do not always exist: Table 2 shows a 4 X 4
Latin square with no transversal. A sufficient condition for the existence of a
transversal is the existence of a Latin square A,_; orthogonal to each of
A, ..., A, _,, for then each letter of A, _; corresponds to a transversal. Such a set
of mutually orthogonal n X n Latin squares A,,..., A,_, exists whenever n is a
prime or prime power and r is less than or equal to n [see Dénes and Keedwell
(1974), page 165]. However, this condition is not necessary, because the square in
Table 1 has no orthogonal mate.

It is convenient (although not essential) to permute the rows and columns of
Ay, ..., A, _, simultaneously so that the transversal lies down the main diagonal.

TABLE 2
A 4 X 4 Latin square with no transversal

[NSRVCRICN
[
BN
N W o
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TABLE 3a
Table 1 with rows permuted

1 2 3 4 5

3 5 1 2 4

2 1 4 5 3

5 4 2 3 1

4 3 5 1 2
TABLE 3b

Table 3a with letters permuted

O N O W =
ENEVERE VNG )
[ S-S NVUREEY N
[l N < V)
OV - b W N

This is achieved by moving the ith row to the jth row if the unique transversal
cell in row i is in column j. It is also convenient to rename the “letters” of each
square independently so that the letters on the main diagonal are in natural
order. Tables 3a and 3b show the results of applying these processes to the square
in Table 1.

An n X n square array is drawn. The diagonal cells are left blank, and the ¢
treatments are allocated to the remaining cells, as in Table 4. In this example we
have labelled the treatments A, B,..., T, but we shall usually use w to denote a
general treatment, to avoid confusion with other symbols. We denote the n
diagonal cells by i, j,... and the r classifications (that is, rows, columns, letters
of A,,...,lettersof A,_,)bya,b,....

We define subsets of the treatments called spokes and fans. A 1-spoke is the
set of n — 1 treatments in any row; a 2-spoke is the set of n — 1 treatments in
any column. For a = 3,..., r, an a-spoke is the set of n — 1 treatments in the
positions of any one letter of square A,_,. Fora=1,...,rand i=1,...,n we
denote by &,; the unique a-spoke which would naturally go through the ith
diagonal cell if the diagonal cells were not excluded. For each fixed i, the fan %
through the ith diagonal cell is defined to be the union of all spokes through that

TABLE 4
Treatment array for Example 1

B

Oz e
NrXQQ
FuST D

F
*
0
S

QR ~y




198 5 Anova

R. A. BAILEY AND T. P. SPEED

TABLE 5
Rectangular lattice block design (Example 1)
(blocks are columns)

replicate 1 replicate 2 replicate 3
A E I M Q E A B C D F D C B A
B F J N R 1 J F G H | J K H E G
C G K (0] S | M N 0 K L P M N L 1
D H L P T Q R S T P T S Q R (0]

diagonal cell; that is,
F =L, UL U - UF,

The terminology is suggested by the fact that all spokes in a fan have the

corresponding diagonal cell in common, while no two spokes in the same fan have
any further cells in common. In the example given by Tables 3b and 4, we have

<, = {A, B,C, D},
Su={C,G,K,T},
S ={D,K, M, S},
#,={Q,R,S,T,D,H,L,P,A,G,1,0}.

The design is now constructed very easily. For a = 1,..., r, the blocks of the
ath replicate are just the a-spokes. Table 5 shows the (unrandomized) design
which emerges in this way from Tables 3b and 4. Thus spokes have a genuine
statistical meaning, as each spoke gives a block of the design. Fans have no direct
statistical meaning, but they are a combinatorial consequence of the spokes
which prove useful for the analysis of the design.

Orthogonal cyclic Latin squares may be constructed by the automorphism
method of Mann (1942), which is described in Section 7.2 of Dénes and Keedwell
(1974). If p is the smallest prime divisor of n then p — 1 orthogonal squares are
obtained, and hence rectangular lattice designs may be constructed for r < p
(reserving one of the squares for the transversal). The same designs may also be
constructed as a-designs [Patterson and Williams (1976)]. Let ¢, ¢5,..., q,_; be
any integers such that no two are congruent modulo p and none is divisible by p.
Without loss of generality we may take g, = 1. The generating a-array is in
Table 6, in the format used by Patterson and Williams (1976), whose series I, II,
and IV are all examples of the array shown here.

3. Decomposition of the treatment space. Let R’ be the real vector space
of vectors indexed by the ¢ treatments. We need to find an orthogonal decomposi-
tion of R’ that will enable us to analyse data from experiments with the
rectangular lattice design. To this end, we define certain special vectors in and
subspaces of R’

Let u be the vector (1,1,...,1). Fora=1,...,rand i = 1,..., n let v,; be the
characteristic vector of the spoke .%,; that is, the w-entry (v,;), of v,, is 1 if
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TABLE 6
Generators for a-designs which are also rectangular lattice designs
(entries in the array should be reduced modulo n)

0 0 0 0
0 1 2 9r-1
0 2 2q, 29,
0 n—-2 - (n—2)q, (n—-2)q,_,
0 n-1 (n—1)g, e (n-1)g,,

w € %,; and 0 otherwise. Similarly, for i = 1,..., n, let w; be the characteristic
vector of the fan %, so that

w;

=V, Ve v,

Let U, be the subspace spanned by u; let U; be the subspace spanned by the fan
vectors w; let U, be the subspace spanned by the spoke vectors v,; and let U, be
the whole space R’ [Our conventions for labelling the first and last of these
spaces agree with those used by Throckmorton (1961) and Kempthorne (1982).]
Then

U,clclcl.

For Example 1 we display each vector in R? in a two-dimensional array
corresponding to Table 4. Tables 7a and 7b give examples of vectors in U, \ U;
and in U; respectively.

The dimension of U, is 1. The space R’ has an inner product ¢, ) on it defined
by

t
(z,2") = Z 2,2,
w=1

TABLE 7a
The vector v,; — 2Vy, + 53y

* 1 1 -1 6
0 * 0 -2 0
0 0 * 3 0
5 0 0 * 0
0 0 5 -2 *
TABLE 7b
The vector w, + 3wy

* 4 1 1 4
1 * 1 3 3
4 1 * 0 3
1 0 3 * 4
4 3 3 4 *
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We use this to find the dimensions of the spaces U; and Uj,. Note that
(Vais Vi) = S0 0 Sl
n—1 ifa=>b and 1=,
(3.1) 0 ifa=b and i#}],
0 ifa#b and i=],
1 ifa#b and i#j,

so that
<Wi’wj> =|#N -g;jl

(3.2) _[r(n—1) ifi=],
{r(r—l) if i+ .

Moreover, L ,w; = ru. Suppose that X ,A,w; = 0 for some real numbers A,. If

r # n, taking inner products with individual w; shows that A, = --- = A, and
hence that A\, = --- = A, = 0: thus the fan vectors are linearly independent and
so U; has dimension n. On the other hand, if » = n then w; = u for i,..., n: thus

U; = U,. Now suppose that ¥,X;A,.v,, = 0 for some real numbers A ;. Taking
inner products with individual v,, shows that there are real numbers 6§, and ¢;
such that A, = 6, + ¢, for all a and i. Since

Va1 +va2+ +van=u

for a = 1,..., r, this implies that (X 6,)u + ¥,¢;w; = 0. Hence U, has dimension
nr—(r—1Difr#¥nand nr—(r—1)—(n—-1)if r=n.

For Example 1, Equations (3.1) and (3.2) are demonstrated in Tables 7a and
7b, respectively. For example, the six entries equal to 4 in Table 7b correspond to
the elements of #, N %;. In this case the five fan vectors form a basis for U};
while a basis of Uj consists of u and all but three spoke vectors, one being omitted
for each classification.

We can form the orthogonal complements of the U-subspaces, and thus obtain
the subspaces that really interest us. Specifically, we put

V.- U,
V; = the orthogonal complement of U, in Uy,
V, = the orthogonal complement of U; in U,
V. = the orthogonal complement of Uj in U..

Then V; is spanned by vectors of the form w; — w;; while V, is spanned by
vectors of the form v,; — v,,. Now R’ is the orthogonal direct sum

R‘=V,eV,eV, eV,

We record the important facts about this decomposition in Table 8.

In two special cases this decomposition can be described in simpler terms. If
r = n then the set {A,,..., A,_,} is only one square short of a complete set of
mutually orthogonal Latin squares. Thus there exists a (unique) Latin square
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TABLE 8
Decomposition of the treatment subspace

subspace \A Vi V, V.
description mean contrasts contrasts orthogonal
between fans between spokes to spokes
within fans
dimension (r < n) 1 n—1 (n—=1)(r-1 (n=r(rn-1)-1
dimension (r = n) 1 0 (n—1)? n-2

A, _, orthogonal to all the others, by Theorem 1.6.1 of Rhagavarao (1971). One
letter of A,_, must correspond to the transversal. Each other letter of A,_,
occurs just once in each a-spoke, for each classification a. Hence the contrasts
between these n — 1 other letters are orthogonal to spokes, and so they form the
whole space V,. Since V; is null in this case, V, must consist of all treatment
contrasts which are orthogonal to the letters of A, _,. Thus the treatments have
the simple nested structure (r — 1) — n [in the notation of Nelder (1965a)], and
the treatment space decomposition is the familiar one into mean, between letters
of A, _, and within letters.

If r=n—1 and n # 4, the results of Shrikhande (1961) and Bruck (1963)
show that there is a unique complete orthogonal set {A,,..., A, _;} containing
the original set {A,,..., A,,_;} and that the original transversal corresponds to a
letter of one of the two extra squares, say A,_,. The same result is true even
when n = 4, because the existence of the original transversal prevents A, from
being isotopic to the square in Table 2, which is the only 4 X 4 Latin square (up
to isotopy) which is not uniquely embeddable in a complete set of mutually
orthogonal Latin squares [isotopy classes are also called transformation sets (see
Fisher and Yates (1934))]. The treatments now have the simple crossed factorial
structure @, X Q,, where the levels of @, are the n — 1 other letters of A, _, and
the levels of @, are the n letters of A,_;. Now V, is the main effect of @,; while
V; is the main effect of @, and V, is the @,Q, interaction.

Example 2 has r = n — 1 = 3. The rectangular lattice design is constructed
from the set of mutually orthogonal 4 X 4 Latin squares in Table 9 : the rows,
columns, and letters of A, are the three classifications; letter 1 of A, gives the
transversal; the remaining letters of A, and A; give the 3 X 4 factorial treat-
ment structure described above and shown in Table 10. The design is that shown
in Table 11, ignoring periods.

In both these special cases the factorial treatment decomposition has no direct
statistical meaning, but is merely an aid to the analysis. The factors @, and @,
are entirely analogous to the pseudo-factors used in the construction and analysis
of square lattice designs [ Yates (1936)].

4. Treatment projection. Let z be a vector in R®. In order to use the spaces
V., Vi, V,, and V, in the analysis of an experiment we need to know how to
calculate the projections of z onto these spaces. This is done in terms of the
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TABLE 9a
Three mutually orthogonal 4 X 4 Latin squares
A, (“1” gives transversal;
other letters are Aj (letters are
A, (gives 3rd replicate) levels of @,) levels of @,)
1 4 2 3 1 2 3 4 1 2 3 4
3 2 4 1 2 1 4 3 3 4 1 2
4 1 3 2 3 4 1 2 4 3 2 1
2 3 1 4 4 3 2 1 2 1 4 3
TABLE 9b
Array of twelve treatments for Example 2
* A B C
D * E F
G H * 1
J K L *
TABLE 10
3 X 4 factorial structure for Example 2
treatment A B C D E F G H I J K L
level of @, 2 3 4 2 4 3 3 4 2 4 3 2
level of @, 2 3 4 3 1 2 4 3 1 2 1 4
TABLE 11
Design which is not generally balanced
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 B D 1 L K E F G A J C H
period 2 C E H K A L 1 J G B D F
3 A F G J H B C D E I K L

following totals:

grand total G(z) = Y. z,,,

spoke total S,;(z) = ). {z,: w € %,;} = (2,V,,),

fan total Fi(z) = ) {z,: w € %} = (z,w,).
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TABLE 12
A particular vector z in R

[ - I

LS B I N |

N o * Ov W

QU x O W

* =3 W

It is immediate that
(4.1)

(4.3)

Y5, - G(2),
(4.2) 2.8,i(z) = Fy(z),
ZE(Z) =rG(z).

Define the fan totals vector f(z) and the spoke totals vector s(z) by

i(z) = LF(@)w,,
8() = ¥ L8, (2)v,..

We also need the grand totals vector g(z), all of whose entries are equal to G(z).
Continuing our Example 1, a vector z is shown in Table 12. Its spoke totals are
in Table 13: the column margins are the fan totals, and the row totals are all the
grand total. The vectors f(z) and s(z) are shown in Table 14.
We aim to give the projections of z onto the spaces V,, V;, V,, and V, in terms
of f(z), s(z), and g(z). The necessary calculations are contained in the following

two lemmas.

LEMMA 1.
@) (8(2),v,,) = nS,i(z) + (r — 1)G(2z) - F,(2),
(ii) (£(2),v,,) = (n = r)F(z) + r(r - 1)G(a),
(iii) (#(z),w;) = r(n — r)F(z) + r*(r - 1)G(z).
TABLE 13
Spoke totals of z
i 1 2 3 4 5 total

row (a =1) 15 24 20 18 13 90
column (a = 2) 17 18 18 22 15 90
letter (a = 3) 13 15 13 20 29 90
fan totals 45 57 51 60 57 270

203
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TABLE 14
fan totals vector {(z) spoke totals vector s(z)

* 159 156 156 159 * 62 53 50 45
162 * 153 174 165 61 * 55 75 52
153 153 * 168 168 66 51 * 57 55
162 168 168 * 162 50 49 65 * 46
153 174 165 162 * 43 51 46 48 *

Proor. To simplify the expressions, we omit “(z)”, the vector z being
understood.

(i) (8, V) = Xb: E_Sbj<vbj’vai>
=(n-1)8,+ bZ Z'Sbj (by (3.1))
=(n-1)8,+ bE (G-8y) (by (4.1))

= nSal. + (r - 1)G - Zsbt
b

— 1S, + (r=1)G - F, (by (42)).
(if) (£,ve) = TF(W,,v00)
= (n-DF+(r-1)TF (by(31)

=(n-r)E+(r-DLE

=(n—r)F,+r(r—1)G (by(4.3)).
(iii) Summing the equation in (ii) over all the spokes in %, gives

12

d,w,) =r(n—-r)F,+r’r-1)G. O

LeMMA 2. The orthogonal projections of z onto U,,U,, U, U,, respectively,
are

(2 ) (- De
n(n-1)’ rin-r) (n-1)(n-r)’
@) (- Vg

n nn-r) (n-1U(n-r)’

when r # n. When r = n then U; = U, and the orthogonal projection of z onto
U, is

s(z) (n-2)g(z)
n n(n—1)
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PrOOF. Put x=[r(n—r)] ¥ —(r— D[(n— 1) (n—r)]"'g when r+n.
Since f and g are both sums of fan vectors, x € U;. Thus it suffices to show that
z — x is orthogonal to U;. This is so if (z — x,w,) = 0 for each fan %, By
Lemma 1(iii) and (3.2),
r(n-r)E+r¥(r-1)G r(n-1)(r-1)G

r(n—r) (n—-1)(n-r)

Similarly, puty = n7's + [n(n — r)]" 4 — (r — D)[(n — 1)(n — r)]"'g. Then
y € U,, because 8, f, and g are all sums of spoke vectors, so it suffices to show
that (z — y, v,;) = 0 for all spokes %,,. Lemmas 1(i) and (ii) show that (y, v,;) is
equal to

nS,, + (r—1)G - F; . (n=r)E+r(r-1)G (n-1)(r-1)G
n n(n-r) (n=-D(n-r)"

<X, wl> = F; = <Z,WE>.

which is S,;, which is (z,v,;).

Nowlet r=nand puty =n"!'s — (n — 2)[n(n — 1)]7'g. Then

nS,; + (n - 2)G ~ (n=2)(n-1)G =8, =(z,v,)

<y:vai> = n n(n _ 1)

so that y € U, and z — y is orthogonal to U,. O
Now subtraction gives the orthogonal projection of z onto V,, V;, V, V..

THEOREM 1. Let T, T}, T,, T, be the operators of orthogonal projection from

R’ onto V,, V;, V,, V,, respectively. Then, for all z in R’,

g(z)
ETCE
f(z rg(z
T,z = (2) - g(2) when r + n and zero otherwise,
rin—r) n(n-r)
s(z) {(z)
sé = n - m ’

T,z =z - (T,z + Tjz + T,z).

In Example 1 we have n =5 and r = 3, so T,z = g(z)/20; T;(z) = f(z)/6 —
3g(z)/10; T,z = s(z)/5 — f(z)/15, and T.z is best obtained by subtraction. For
the particular vector z shown in Table 12, these four components of z are shown
in Table 15. The orthogonality of the decomposition may be verified by noting
that

IIT,z||* + |IT;z||* + |T,2)|” + |[T,z)|®

=405 + 24 + 47.2 + 21.8 = 498 = |jz||%.
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TABLE 15
T“ z Trz
* 4.5 45 4.5 45 * -0.5 -1.0 -1.0 -05
4.5 * 4.5 4.5 4.5 0.0 * -15 2.0 0.5
45 45 * 4.5 45 -15 -1.5 * 1.0 1.0
4.5 4.5 4.5 * 45 0.0 1.0 1.0 * 0.0
4.5 4.5 4.5 4.5 * -15 2.0 0.5 0.0 *
T,z T,z
* 1.8 0.2 -04 -1.6 * 1.2 -0.7 -1.1 0.6
14 * 0.8 3.4 -0.6 0.1 * 1.2 -0.9 —-04
3.0 0.0 * 0.2 -0.2 -1.0 -1.0 * 0.3 1.7
-0.8 -14 1.8 * -1.6 0.3 0.9 0.7 * -19
-1.6 -14 -18 -1.2 * 0.6 -1.1 -1.2 1.7 *

5. General balance. The block structure of a rectangular lattice design is
the double nested classification of plots within blocks within replicates. This is
one of the simple orthogonal block structures defined by Nelder (1965a). In what
follows we retain the notation of Nelder (1965a,b, 1968) and Bailey (1981) as far
as possible.

Let RY be the real vector space associated with the N plots. Each grouping of
the plots according to the block structure defines an averaging operation P on
R™. In our case there are four averaging operators: the grand mean averaging
operator P, = J/N, where J is the all-1’s matrix; the replicates averaging
operator Pp; the blocks averaging operator Pp; and the identity P, = I. Nelder
(1965a) showed that there is an orthogonal direct sum decomposition ® W, of RY
such that each W, is an eigenspace of every P. Let C, be the operator of
orthogonal projection from R™ onto W,. Nelder (1965a) showed that each C, is a
linear combination of the P’s with integer coefficients: Speed and Bailey (1982)
gave explicit formulae for these coefficients. In our case we have

C,=P, Cp=P,-P,
Cy=P,-P, C, =P —P,

The spaces W, are called strata: they play an important role in analysis of
variance [see Nelder (1965b) and Bailey (1981)]. Our covariance model for the
data vector y is

(5.1) Cov(y) = ¢,C, + £xCr + £5Cp + £.C,

for unknown scalars £ Er» Ep,and €.

Denote by X the N X ¢ design matrix; that is, X, is 1 if plot p receives
treatment «w and 0 otherwise. For each stratum W,, the matrix L, defined by
L, = X'C X is called the information matrix for that stratum. For designs with
equal replication r, we have L, = rT,. If L, = 0 there is no information about
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treatments in stratum W,. Strata, other than w,, for which L, # 0, are called
effective strata.

Suppose that &,V; is an orthogonal direct sum decomposition of R’. Nelder
(1965b) defined an equally replicated design to be generally balanced with
respect to this treatment decomposition if each V; is an eigenspace of every
information matrix; that is, there are numbers A, such that L, = X A 4Ty,
where T, denotes orthogonal projection onto V;. We have 0 < A 4, < r for all «
and 6; and ¥ A, = r for all 4. The quantity A ,/r is the efficiency factor for
treatment term V, in the stratum W,. In a simple block design with blocks
stratum Wj, examination of the trace of Ly shows that L,A gdim(Vy)/r =
b/r — 1, the so-called loss of information due to blocks.

Houtman and Speed (1983) have shown that in any design with only two
effective strata there must be some decomposition @V, of R® with respect to
which the design is generally balanced. However, the decomposition may not be
easy to find, use or interpret. Our claim is that a rectangular lattice design is
generally balanced with respect to the treatment decomposition given in Sec-
tion 3.

LEMMA 3. Fora=1,...,randi=1,...,n
X'PpXv,, = (nv,,— w,+ (r— Du)/(n - 1).
Proor. If & is any block and v is any vector in R’ then the entries of Py Xv
for the plots in # are all equal to the average of the entries of v for those
treatments which occur in 4. If v = v,,, and % consists of &,; then this average

is equal to (V,;, vp,;)/(n — 1). Denote the characteristic vector of this block by
,- Then

(n - 1 l)BXV Z Z<vlll7vbj>xbj

Since X'x,; = v,; we have
(n’ - 1)X’PBXV Z Z< Vars vbj>vbj

=(n—-1v,+ bZ (u-w,) (by(3.1))
=nv, +(r—lu-w, ]

THEOREM 2. Rectangular lattice designs are generally balanced with respect
to the treatment decomposition given in Section 3.

Proor. We always have L,u = ru, and L,z = 0 whenever z is orthogonal to
u. By definition of replicate, X'P,Xz = rg(z)/n(n — 1) = X'P,Xz, so Ly = 0.
Moreover, L = X’'PzX — X'P;X, and so
Lp(Ve; — vy) = n(n - 1)—1(".1;' - Vi)
by Lemma 3. Since V; is spanned by vectors of the form v,, — v,,, this shows that
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TABLE 16
Efficiency factors of a rectangular lattice design

treatment subspace

v, v v, v,
stratum
mean W, 1 0 0 0
replicates Wy 0 0 0 0
blocks W, 0 T z

ocks Wa r(n—1) r(n—1)
n(r—-1) m-r—n

plots W, 0 1

r(n—1) r(n—1)

V, is an eigenspace of Ly with eigenvalue A 5, = n/(n — 1). Similarly, Lemma 3
shows that

LB(WL' - W,) =(n-r)(n- 1)_1(Wi - Wj),

so V; is an eigenspace of L with eigenvalue A g, = (n — r)/(n — 1). Whether or
not r = n, Table 8 now shows that A pdim(V,) + A 5;dim(V;) = b — r, so there
can be no further nonzero eigenvalues in the blocks stratum. Thus V, must be an
eigenspace of Lz with A5, = 0.

By the result of Houtman and Speed (1983), the spaces V,,V,,V, are also
eigenspaces of L. O

The eigenvalues in stratum W, are calculated by subtraction. Division by r
gives the efficiency factors, which are shown in Table 16, which is laid out like the
table in Section 4.2 of Nelder (1968).

Block designs are often classified by a single measure of efficiency: the
harmonic mean of the efficiency factors (taking account of multiplicity) in
stratum W,. It follows from Tables 8 and 16, that, whether r = n or r < n, the
harmonic mean efficiency factor for a rectangular lattice design is

n(r—-1)(m-r—n)(n?-n-1)

(r—-1)’n*(n2-n-1)-r(n-1)"+m(r-1)

This efficiency factor is proportional to the reciprocal of the average variance of
the intrablock estimates of simple treatment differences, and so may also be
obtained from this average variance, which is given by Williams (1977, page 413).

6. Analysis. Since rectangular lattice designs are generally balanced, their
analysis follows the pattern described by Nelder (1965b, 1968), Wilkinson (1970),
and James and Wilkinson (1971). In this section we specialize their results to
rectangular lattice designs, retaining most of Nelder’s notation. We outline the
procedure for fitting the model, deriving a complete analysis of variance, estimat-
ing the stratum variances £z, &5, and £, and obtaining minimum variance
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unbiased linear estimates (with estimated weights) of arbitrary treatment con-
trasts, together with their estimated variances.

Let t be the ¢ X 1 vector of individual treatment effects and let y be the N x 1
vector of observations. If A, # 0, the treatment effect Tyt is estimated in
stratum W, by h _,, where h , = T,X"C,y/A 4. The contribution of treatment
term V, to the fitted value in stratum W, is C Xh 4, with the sum of squares
A .ol ll2. Thus the overall fitted value in stratum W, is Y;C,Xh ,, where ¥}
denotes summation over those 8 for which A, # 0. The residual sum of squares,
RSS,, in stratum W,, and its number of degrees of freedom, d, are obtained by
subtraction:

(6.1) RSS, = y'C,y — LA llh0l%,
g
(6.2) d, = dim(W,) — ¥ dim(V}).
]

Thus we obtain the analysis of variance shown in Tables 17a (r < n) and 17b
(r=n).

If the stratum variances £, are known, we put wy, =X A /¢, and define
weights w,g by w,y = A 4/¢,Wy. The weighted effect corresponding to treatment
term V is X w,,h 4, and the overall weighted fitted value tis L, w,oh 4. If x is
any treatment contrast (that is, x € R and (x,u) = 0) then the minimum
variance unbiased linear estimate of (x,t) is (x,1), with variance X,|[Tyx||?/w.

TABLE 17a
Analysis of variance whenr < n

source of
stratum variation df SS EMS
mean 1 y'C.y rITL® + &,
replicates r—1 y'Cry ér
Aps T2
blocks 7 n-1 Mgyl |12 Lrlz“t,li + g
ATt
V. - 1)(r—-1 Aglh g2 —_—+
A (n—1)(r-1) Bslh gl -D(r-1) §
total r(n—1) y'Cpy
A T2
plots 1/ n-1 Aol 112 AT,
n-—1
v, (n=1(r -1 Nlbglt T
s €S €s (n_l)(rgl) €
v, (n=rn-1)—-1  Ah,|? L’wjtg
3 eell™ee (n~r)(n~1)—1 3
error n(rm—2r-n+1)+1 RSS, £,

total rn(n — 2) y'C.y
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TABLE 17b
Analysis of variance whenr = n

source of
stratum variation df SS EMS
mean 1 y'Cy rITLI? + &,
replicates r—1 y'Cry r
A gl Tt
blocks V, (n—1)2 Apslih g 1? Mlg‘ +ép
(n-1)
error n-1 RSS, £p
total n(n—-1) y'Cpy
R T
plots v, (n—17 Agslih gl — &
(n-1)
AT
_ 2
v, n-2 Al otk
error (n—1)(n?-2n-1) RSS, £
total n*(n-2) y'C.y

Usually the stratum variances £, are not known. If d, # 0 then RSS,/d,
provides an unbiased estimate of £, but in general such estimates are based on
too few degrees of freedom, because one or more treatment terms have been fitted
and removed in more than one stratum. For a rectangular lattice design with
r < n there is no such estimate of £z, because dz = 0.

The solution to this difficulty is to estimate the stratum variances and the
weights simultaneously. With the weighted fitted value t given above, the sum of
squares, R, for the residual in stratum W, is given by

(6'3) Ra = RSSa + zg:kaﬂz’zwﬂowyﬂ<ha0 - h,l?0’ha0 - hy0>’
B v
with expected value d/£_, where
(6.4) d; = dim(W,) — ¥ w,dim(V;).
]

Equating observed and expected values of the R, gives a set of equations in the
£, As Nelder (1968) observed, (6.3) simplifies considerably when there are only
two effective strata. Thus for rectangular lattice designs we obtain the following
equations for £z and £

RSS; + YA ggwjlhg, — h g% = 53["(” -1)- ;'wB,,dim(V},)],
9

RSS, + YA qwhgllh,g — hpgy® = 55["”(” -2) - Z'ws,,dim(V,,)}.
9 9

Note that RSS, is zero when r < n, and that the weights w,, also involve the
unknown £,. However, these equations may be solved, iteratively if necessary, to
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give us estimates £ and £,, which, under normality, correspond to the so-called
restricted maximum likelihood estimates, and these may be used to give the best
available estimates of linear combinations (x,t) and the estimated variances of
those estimates.

It is clear that the analysis depends on the availability of the projection
operators C, and T,. The former are quite standard, and correspond to fitting
and removing the grand mean, replicate means, and block means. The latter are
given by the fan and spoke totals, and so are straightforward to calculate, even
by hand. If the statistical programming language GENSTAT is used, spoke
totals are automatically calculated if r treatment pseudo-factors are declared,
one for each classification: the levels of the ath pseudo-factor are the a-spokes.
An alternative strategy is to input r copies of the data and use just two
treatment pseudo-factors, FAN and SPOKE. In the ath copy, treatments in
spoke &,; are declared to have level i of FAN and level a of SPOKE. The
treatment declaration FAN /SPOKE ensures that all the correct major calcula-
tions are done, using the sweeps of Wilkinson (1970), although minor adjust-
ments have to be made to the output to allow for the multiple copies. Thompson
(1983) explains this method, and its difficulties, in more detail, using the general
methods of Thompson (1984), and shows that this type of pseudo-factorial
structure is also useful for diallel experiments.

Thus, apart from the use of estimated weights because the stratum variances
are in general not known, a completely satisfactory analysis of any rectangular
lattice design can be made once the operators T, are available. Given these, the
analysis is analogous to that of a balanced incomplete block design with recovery
of interblock information.

Williams and Ratcliff (1980) gave a procedure for the analysis of rectangular
lattice designs which differs from ours in two respects. In the first place, their
covariance model is of the form

COV[(I - Pr)y] = vsPs + 7.1,

which differs from our equation (5.1). Secondly, our iterative analysis ensures
that the final estimates of £, £, and the treatment effects are consistent with
each other, while the Williams—Ratcliff procedure, which is based on that given
by Yates (1940) and Cochran and Cox (1957, Section 1.3), is, roughly speaking,
only the first cycle of the restricted maximum likelihood analysis of Patterson
and Thompson (1971). The differences between these methods, which apply not
only to rectangular lattice designs, will be discussed in more detail elsewhere.

7. Rectangular lattices with cross-blocking. The foregoing ideas may be
extended to a more complicated block structure.

In Example 2 we have so far ignored the periods. However, it was desirable
that each treatment should be fed once in each period. The experimenter
concerned found that, for the rectangular lattice design constructed at the end of
Section 3, the treatments could be permuted within sheep so that each treatment
occurred once in each period: his proposed design is shown in Table 11.
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Unfortunately, this design takes no account of the grouping of the 36 experi-
mental units into nine room-periods: each room-period consists of the four
observations made in the same test period in the same room. In the notation of
Nelder (1965a), the block structure is

3 periods X (3 rooms — 4 sheep).

The stratum projection matrices are given by

c,-P,
Cr=Pz-P,
Cp=P,— P,
Crp=Prp—Pp— P+ P,
Cs = Ps = Pp,

C,=P, —P,— P, +Pp,

where, for example, P, is the averaging matrix for room-periods. Although
V., V;, V,, and V, are eigenspaces of C,, Cp, Cp, and Cg, they are not eigen-
spaces of Cpp and C,, because the block design given by the room-periods
alone is not in any sense balanced with respect to the treatment decomposition
V., ® V;® V, @ V. Thus the design is not generally balanced.

However, it is possible to permute the treatments given to each sheep so that
each treatment occurs once in each period and the design is generally balanced.
This may be done for n(n — 1) treatments in the simple orthogonal block
structure

(n — 1) periods X [(n — 1) rooms — n sheep]

as follows. Ignoring periods, the design is constructed from a set of mutu-
ally orthogonal Latin squares A,,..., A,_;, as in Section 2. A supplementary
(n — 1) X (n — 1) Latin square A is needed, whose letters are the remaining
letters of A, _,. Let §,, be the letter in row @ and column p of A. Then the
treatment in the pth period and the ith animal of the ath room is the unique
treatment which is in spoke %,, and in letter §,, of A,_,. In our particular
example we may take the supplementary square A shown in Table 18: the
resulting design is in Table 19.

In the notation of Section 3, V, is the main effect of @,, where the levels of @,
are the remaining letters of A,_,. By our construction, @, is completely con-
founded with room-periods, while all treatment vectors which are orthogonal to
Q, are also orthogonal to room-periods. Hence the efficiency factors for this
extension of the rectangular lattice design are those shown in Table 20.

TABLE 18
Supplementary Latin square
2 3 4
3 4 2

4 2 3
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TABLE 19
Generally balanced design for [ periods X (rooms — sheep)]
room 1 2 3
sheep 1 2 3 4 5 6 7 8 9 10 11 12
time 1 A D I L G K B F H J C E
. 2 B F (€] K J H E C L 1 D A
period
3 C E H J D A L I F B K G
TABLE 20

Effictency factors of an extended rectangular lattice design

treatment subspace
V,. Vf =Q, V. =@Q,Q, V.=@

stratum

mean W; 1 0 0 0
rooms Wy 0 0 0 0
periods Wp, 0 0 0 0
room-periods Wpp 0 0 0 1

1 n

o
(=]

sheep W,

(n=1)" (n=1)°
. n(n—2) n?-3n+1
units W, 0 2 3 0
(n-1) (n-1)
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WHAT IS AN ANALYSIS OF VARIANCE?

By T. P. SPEED
CSIRO, Canberra, Australia

The analysis of variance is usually regarded as being concerned with
sums of squares of numbers and independent quadratic forms of random
variables. In this paper, an alternative interpretation is discussed. For certain
classes of dispersion models for finite or infinite arrays of random variables, a
form of generalized spectral analysis is described and its intuitive meaning
explained. The analysis gives a spectral decomposition of each dispersion in
the class, incorporating an analysis of the common variance, and an associ-
ated orthogonal decomposition of each of the random variables. One by-prod-
uct of this approach is a clear understanding of the similarity between the
spectral decomposition for second-order stationary processes and the familiar
linear models with random effects.

“...the analysis of variance, which may perhaps be called a statistical
method, because the term is a very ambiguous one—is not a mathematical
theorem, but rather a convenient method of arranging the arithmetic.”

R. A. Fisher (1934)

1. Introduction. To most of us the expression analysis of variance or anova
conjures up a subset of the following: multiindexed arrays of numbers, sums of
squares, anova tables with lines; perhaps, somewhat more mathematically,
independent quadratic forms of random variables, chi-squared distributions, and
F-tests. We would also think of linear models and the associated notions of main
effects and interactions of various orders; indeed the standard text on the
subject, Scheffé (1959, page 5) essentially defines the analysis of variance to be
regression analysis where the regressor variables (x;;) take only the values 0 or 1,
although he mentions in a footnote that —1 and 2 have also arisen. What is
anova? Is there a variance being analysed? Is there a mathematical theorem,
contrary to Fisher’s assertion? Or is it just a body of techniques, a statistical
method, ..., a convenient method of arranging the arithmetic?

Signs that there might be an underlying mathematical structure began to
appear in the late 1950s and early 1960s. James (1957) emphasised the role of the
algebra of projectors in the analysis of experimental designs, Tukey (1961)
outlined the connection between anova and spectrum analysis [something which
was made more explicit by Hannan (1961, 1965), who focussed on the decomposi-
tion of permutation representations of groups], whilst Graybill and Hultquist
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AMS 1980 subject classification. 62J10.

Key words and phrases. Analysis of variance, dispersion model, sums of squares, association
scheme, group, symmetry, manova.
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(1961) gave a definition of anova (assuming joint normality of all random
variables concerned) which incorporated many of the same ideas as the others
mentioned: the commuting of projectors and the spectral decomposition of a
covariance matrix.

Of course, anova is just a word (or three) and people can give it any meaning
they wish, so there is no sense in which the definition I offer in the following text
has any greater claim to be the correct one than any other. What I do believe is
that it is a mathematically fruitful definition, that it covers most if not all
situations which statisticians would regard as being instances of anova and that
its generality and simplicity are both pedagogically and scientifically helpful.
And yes, I believe there are relevant mathematical theorems, although as we will
see it is perhaps unreasonable to expect a single theorem to cover all existing
cases.

2. Two simple examples. Let us begin with an array y = (y;;) of mn
random variables where i = 1,..., m and j = 1,..., n is nested within i, i.e., j
only has meaning within the values of i. The following decomposition of the sum
of squares is familiar to all who have met anova:

(2.1) Y X yh=mnyl+ L (3= 2.) + L X (5, - %)%
ko1 h i

and we denote the three terms on the right by SS,, SS; and SS,. Here
Yie=n"'Y,y,;, y.=m 'Ly, etc. It is not hard to derive (2.1) by the standard
juggling which many believe characterises anova. Of what interest or use is this
decomposition? To answer this question, we must make some assumptions about
the y,;, and one set—the ones Fisher (1934) probably had in mind when he made
the remark quoted—is the following: Ey;; = p;, where (p;) is a set of m
unknown parameters, the (y,;) are pairwise uncorrelated and they have a
common variance o2 i.e., the dispersion matrix Dy of y is just 62I. Under these
assumptions we can prove (see the following text) that E{SS)} = mnp2+ o2,
E(SS,} = (m — 1)o® + nZy(p; — p.)* and E{SS,} = m(n — 1)o> It is here that
we can see the point of Fisher’s remark about “the arithmetic,” for when the
() are jointly normal, SS,/0?, SS,/0? and SS,/0? are mutually independent
with chi-squared distributions on 1, m — 1 and m(n — 1) degrees of freedom,
respectively, and the ratio ¥ = m(n — 1)SS,/(m — 1)SS, permits a test of the
hypothesis H: p, = p, = -+ = p,, having a central F-distribution with (m — 1,
m(n — 1)) degrees of freedom when H is true. The F-test of this hypothesis has
many desirable properties [Hsu (1941, 1945), Wald (1942), Wolfowitz (1949),
Herbach (1959) and Gautschi (1959)] and the decomposition (2.1) is indeed a
convenient method of arranging the arithmetic.

But all of this is just sums of squares—quadratic forms in normal variates if
you wish; the only variance in sight is the common ¢2 and that does not appear
to be undergoing any analysis. However, let us look closely at the proof of some
of the foregoing assertions. How do we see that the quadratic forms SS,, SS, and
SS, are independent under the assumption Dy = ¢2I and joint normality? One
approach, owing to Tang (1938), uses the fact that their (unsquared and un-
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summed) components y.., ¥;.— y.. and y;; — y,. are uncorrelated, and hence, by
the joint normality, independent, and this property is retained when the compo-
nents are squared and summed.

How do we see that these components are uncorrelated? Each is a linear
combination of elements in the array y with easily calculated coefficients and,
with the assumption that Dy = ¢2I, their covariances are simply o2 times the
sums of the products of these coefficients. For example, the coefficient of y,; in
Yp.— Y. is =1/mn if k# h and 1/n — 1/mn if k = h, whilst that of y,, in
Yy~ Y% 1s0ifk+i —1/nifk=iand [#jand 1 - 1/nif k=iand I=.
Thus if A = ¢,

cov( ¥;.— ¥..r Yij — %)

1 1 1 1 1 1 1
ot (2 L Doy e (- L) 2]
mn n mn n n  mn n
which is zero as stated; the case A # i is dealt with similarly. Similar calcula-
tions prove that cov(y.., y,.— y.) = cov(y., ¥;; — ».) =0 and, further, that
E{y2} = u?;(l/mn)oz, E{(yh.*zy-.)2} = ((m — 1)/mn)o® + (p;, — p)* and
E{(y,; — %)%} = (m(n — 1)/mn)s~.
It has just been proved that the three components in the sum

(2:2) Yi=Y. t Yo—y. T Dy~
are uncorrelated; their variances thus add and we may write this as
1 m-—1 m(n—1
(2.3) 02= —o?+ o+ ( )02.
mn mn mn

Here at last is a variance being analysed! But before we examine this any further
let us see with a minimum of further algebra how the sums of squares of the
components in (2.2) must add up and give (2.1). Denoting the coefficients of y,,
in y., y..— y.and y; — 3. by Sy7, kl), S,(¥, kl) and Sy(¥, kl), respectively, we
can easily check that the mn X mn matrices S), S, and S, so defined are
symmetric, idempotent, pairwise orthogonal and sum to the mn X mn identity
matrix I. Symmetry is quickly apparent from their definition; orthogonality is
implicit in the calculation which proved the components in (2.2) uncorrelated,
whilst idempotence is proved by a similar calculation; and clearly they sum to
the identity. Thus we can write y = S;y + S,y + S,y as

(24) (3) = (5. + (.= 3. + (3 — %),

where the S, act on arrays u = (u;;) of real numbers as follows (Su);; =
2.2,S(5, kRDu,,, a = 0,1,2. But then (2.4) is a decomposition of the array into
component arrays which are orthogonal with respect to the inner product
(u, vy = L, ;u;;v;;, whilst (2.1) is simply the Pythagorean relationship

1712 =181 + IS5 + IS, ¥1%,

where |y|2 = (y, y) is the associated squared norm.
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An unexpected bonus. Without any further calculations we may assert that
(2.2) remains an orthogonal decomposition of y;; when the dispersion matrix
Dy =T has the form

(2.5) I=§,S, + &S, + £,S;,
where the eigenvalues £, §, and £, are positive real numbers. A modified version
of (2.3) also holds, namely

1 m—1 m(n —1)

(2.6) var( ;) = Ego + — &+ -~ £,

These assertions are readily checked. For example,
cov( ¥;. = ¥.. Yij — ¥.) = (8TS)(#,4) =0,
and

o .., mn-1)
Var(yij - %)= (Szrs2)(U’ j) = 5282(% i) = ng-
The question this observation now raises is: How wide is the class of matrices of
the form (2.5)? Perhaps unexpectedly, it coincides with a class which arises
frequently, namely the set of all matrices I' having the form

(2-7) I'= 174, + 114, + 14,

where A, = I is the identity matrix, A,(ij, k) =1 if i = k, j # [ and 0 other-
wise, Ay(¥, kl) = 1if i # k and 0 otherwise, and vy,, v, and v, are a variance and
two covariances constrained only to ensure that I' is positive definite. The
easiest way to see that I'’s of the form (2.5) and (2.7) coincide is to list the index
i/ lexicographically and write the matrices in tensor product form. We find that
A, =1,01, A =1,8(J,—1) and A,=(J,—1I,) ®J, whilst S,=
1/m)d, ® 1/n)d,, S, = (I, - (1/m)J,) ® (1/n)d, and S, =1I, @ (I, -
(1/n)dJ,), where I, and J,, are the m X m identity and matrix of 1’s, respec-
tively. The eigenvalues £ and the entries y correspond in the following way:

& 1 n—1 n(m-1)||y,
(2.8a) §i|=|1 n—-1 —-n Y1 |
£, 1 -1 0 Yo
Y2 1 1 m-1 m(n—1) |4
(2.8b) Hhl=—|1 m-1 -m £ .
mn
Yo 1 -1 0 ¢,

Where have we gotten to? We have exhibited a set of covariance matrices (2.7)
for a random array y = (;;) which are simultaneously diagonalisable, cf. (2.5);
their eigenvalues are invertible linear combinations (2.8) of their entries; their
common eigenspace projectors decompose the elements of the array into statisti-
cally orthogonal (i.e., uncorrelated) components (2.2) whilst also decomposing the
arrays themselves into geometrically orthogonal arrays (2.4). Pythagoras’ theo-
rem applied to the decomposition of array elements gives an analysis of variance
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qua variance (2.6), whilst it gives the sum of squares decomposition (2.1) of an
anova table when applied to the decomposition of arrays. We might also add
that these decompositions all make “statistical sense.”

How special is this example? Before answering this question let us look at a
second example, which is not normally regarded as being an instance of anova.

This time our array has a circular nature: A sequence y = (y,: t =0,1,...,n — 1)
of n = 2m + 1 random variables with cov(y,, 3,) = Yie-sp 0 < S, <, ie, I' =
Dy is a symmetric circulant with first row (voy; *** VY = 71)- To emphasize

the similarity with (2.7) we write it as
m

(2.9) F=Yv,A,,
0

where A, is the symmetric circulant having first row (0---010---010---0)
with 1’s in the ath and (n — a)th position, 1 <a <m, and A,=1,the n X n
identity matrix. It is well known that the class of all such matrices is simulta-
neously diagonalisable with common projectors S, = (1/n)J, and S (s, t) =
(2/n)cos(27(s — t)a/n), 0 <a <m, 0 <s, t <n, whilst their eigenvalues are
linear combinations of their entries

m 2@
(2.10a) £.=Y + 2Zyacos(—aa), a=0,...,m,
T n
with inverses
1 2m 2
(2.10b) Yo = ;go + - ;&acos(zaa), a=0,...,m.

Further, we have an orthogonal decomposition of the random variables similar to
(2.2):

(2'11) Y=yt Zsayt)
1

where S, y, = (2/n)L2 'y cos(27(s — t)a/n), 1 < a < m, cf. Hannan (1960, 1.2),
and the variances of each component add, corresponding to a = 0 in (2.10b).

Finally, we remark that a decomposition of the n-dimensional vector space
analogous to (2.4) and its associated sum of squares decomposition may also be
derived; it is just the (real form of the) discrete Fourier transform. The analogy
with the view of the classical anova we have just presented is complete.

3. Sums of squares. ‘Let y=(y: t€T) be a finite array of random
variables with mean Ey = 0 and dispersion matrix Dy =T € V, where V is a
family of positive definite matrices over T. The formal definition of anova given
by Graybill and Hultquist (1961) refers to a decomposition of |y|? into a sum of
quadratic forms under an assumption of joint normality of y. It had two aspects
which we will recall shortly: one which in essence refers to properties of the
individual matrices I' € V, and one which was clearly a property of the model as
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a whole. Later writers on the same topic include Albert (1976), Brown (1984) and
Harville (1984), and in all of these papers the role of anova as a property of a
model V has tended to get emphasised less than the consequences of the
definition for arrays y with Dy € V. In what follows we modify the Graybill and
Hultquist (1961) definition slightly, removing some details without, we hope,
losing its essence. We also express the definition solely in terms of the class V of
dispersion matrices, removing the joint normality assumption. Finally we argue
that the definition is most fruitful when applied to a particular parametrization
of V, one which is not usual in this context, although as we will see it coincides
with that used in developing the spectral theory of second-order stationary
processes over index sets of various kinds.

Initially we will suppose that V is a class of positive definite matrices having
the form

(3.1) r(6) = ¥ 0,4,

where the {A,} are known symmetric matrices and 6 = (6,) is an s-dimensional
real parameter belonging to ® C R®. It will be convenient to suppose that the
{A,} are linearly independent matrices over T and that V contains s linearly
independent elements. Dispersion models of this form have been studied by a
number of authors over the years including Anderson (1969, 1970, 1973) and
Jensen (1975), but our emphasis is quite different from theirs. Essentially
following Graybill and Hultquist (1961) we say that an anova exists for V if there
exists a family {S,} of s known pairwise orthogonal symmetric idempotent
matrices summing to the identity matrix I over T such that

(a) for every § € © and a there exists £ (6) such that
(3:2) I'(6)S, = £,(0)S,;
(b) the map 8 = (6,) — £(8) = (£(0)) is linear and invertible.

Condition (a) replaces the condition that for each § € ® the s quadratic forms
{1S,y|?} are mutually independent scale multiples of chi-squares under the
assumption y ~ N(0, I'(8)) [see Albert (1976, Theorem 1(a))], whilst condition
(b) asserts that the multipliers £,(6) = E{d_'|S,y|?}, where d, = rank S,, are
independent linear functions of the {4,}.

It is clear from (a) that the matrices {S,} simultaneously reduce all T € V,
ie., that T = £ _£,S,, where we omit the dependence on ¢ if no confusion can
result, and thus every element of V commutes with every other. As long as V
contains s linearly independent elements, these conclusions extend to all matrices
of the form ¥,0,A, with § € R® and in particular we deduce that the {A,}
commute. It also follows from (b) that, in general, I'(#) has s distinct eigenval-
ues.

Conversely, if the {A,} all commute, a well known theorem in linear algebra
tells us that there is a family {S,} of ¢ (say) pairwise orthogonal symmetric
idempotent matrices summing to I such that A,S, = p,,S, for constants p,,,
a=1,...,t, a=1,...,s. It follows that an element I' € V will have spectral
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decomposition I' = ¥ £,S,, where £, = ¥ p,.0,, and if, in general, such a I has
s distinct eigenvalues, then we deduce that ¢t=s and that P=(p,,) is an
invertible s X s matrix.

Where have we gotten to? Without giving full details we have seen the reason
why the preceding (a) and (b) are jointly equivalent to the two conditions

(c) the matrices {A,} commute,
(d) in general, I'(#) has s distinct eigenvalues.

This is in essence the content of Graybill and Hultquist (1961, Theorem 6). Note
that under (c) and (d) we can write A, =X, p..S, and S, = (1/n)L,q,. 4.
where we have inserted a scale factor n = |T| for later convenience, and where
Y oPua9ap = 8 and Zaqaa Doy = nd%, 8 here being Kronecker’s delta. These
equations combine to give

(33) AaAb = AbAa = Z{(l/n)zpaapacha}Ac’
implying that V may be extended to the linear algebra generated by the {A,)}
without invalidating anything we have said to date.

If the {A,} all have the property that all their row (column) sums are the
same, i.e., if for each a there exists £, such that ¥ A (s,t) = L, A (s, t) =k
then the matrix S, = (1/n)<J, where ¢/ is the matrix of 1’s over T, is always one
of the {S,}.

Let us leave the matrices I' € V for a moment and turn to the elements y, of
random array y = (y,: t € T) with Dy = I’ € V, still assuming that V satisfies
(¢) and (d). The prescription S,y, = X.S(s, t)y, defines a family of random
variables such that

(3-4) N = Zsayr

Now cov(S, ¥, Sgy,) = (S.ISe)(¢t, u) = §,S(t,u)d¢ =0 if a# B and so the
different terms on the R.H.S. of (3.4) are uncorrelated. Further var(S,y,) =
£,S,(t, t). Next suppose that var(y,) = o2 is the same for all ¢t € T, i.e,, that the
matrices {A,} are all constant down their diagonals. Then S,(¢,¢)=n"'d,,
where d, = rank(S,) = trace(S,), and we can sum the variances in (3.4) obtain-
ing

(3.5) 0% = Ve,

where ¢, = n7d, ¢, = var(S, y,), independent of ¢ € T. Clearly this is an analy-
sis of variance. The connection between it and the sum of squares decomposition

(3.6) 171% = XISu?

resulting from the geometric orthogonality of the terms in

(3.7) y=287
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is clear: The eigenvalues £, are the expected mean squares:

(3.8) ¢, = E{d;"S,y%}.

Is this the correct anova? Does it have all the properties one might hope for? I
would like to suggest that the answer to these questions is no, and that although
the definition is basically correct, it is really only appropriate for a particular
class {A,} of basis matrices and parameters {6,}, namely, when the entries of
the basis matrices are either 0 or 1 and the parameters are covariances. With this

class we will find that we have a notion that extends fruitfully far beyond sums
of squares.

4. Anova: Finite arrays. In this section we will sketch the most natural
framework within which the special properties of our examples hold generally.
The restriction to finite arrays is vital because there are many sorts of infinities
and, perhaps surprisingly, no single mathematical framework is yet available
which covers all the cases.

As before we begin with an array y = (y,: ¢ € T') of random variables indexed
by a finite set T with Ey =0 and we will consider a very special sort of
parametrization of its dispersion matrix I' = Dy, namely that defined by equality
constraints among the elements of I'. More fully, we will suppose that

(4.1) r=>Yy,A,,

where {A,: a € X} is a class of matrices over T whose elements are 0 and 1 only
satisfying (i) each matrix A, is symmetric; (ii) ¥,A, = JJ, the matrix of 1’s over
T; (iii) one of these matrices, A, say, is the identity matrix I over T; and (iv)
there exist integers (n,,.), @, b,c € X such that A,A, =X .n,,. A, Finally,
{¥s: @ € X} is a set of covariances which are such that T given by (4.1) is
positive definite.

Such matrices {A,} are the adjacency matrices of the association scheme over
T defined by saying that s and ¢ are a-associates, a(s, t) = a, say, if A (s, t) =1,
s,te€T, a€ X; see MacWilliams and Sloane (1977, Chapter 21) for fuller
background and the theory which follows.

We proceed to analyse the class of all T of the form (4.1). From (i) all such T
are symmetric; .from (ii) the {A,} are linearly independent and hence the
dimension of the vector space A of all such T (forgetting positive definiteness for
the moment) is s = |X|; from (iii) A contains the identity and from (iv) we
deduce that A is a commutative algebra. The theorem in linear algebra already
cited tells us that there exists a unique basis of A of primitive idempotents {S,:
a € Z}, where S,=82=8;, 5,5;= $S, =0, a# B, L,S,=1, containing
(1/n)d = §,, say. Further the transformation from this basis to the original one
consisting of the {A_,} is linear and invertible:

1
(4.23) Sa = ; anaAa’

(4'2b) Aa = Zpaasa’
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where P = (p,,) and @ = (q,,) are matrices of coeflicients satisfying PQ =
QP = nl, n = |T| and I here is the identity matrix of order s = | X| = |Z|. Since
the eigenvalues of A, are (p,,) from (4.2b), those of ' = ¥ y,A, = L £,S, are

(433.) ga = ZpaaYa

whilst the entries y, of I' in (4.1) are recoverable from the eigenvalues via

(4.3b) Ya=(1/7) L qucka

Writing &k, = |{t € T: A(s, t) = 1}, independent of s € T, and d, = rank(S,),
we summarise some basic facts concerning these numbers and the matrices P
and Q. Here 8 denotes the Kronecker delta.

THEOREM (cf. MacWilliams and Sloane 1977, Chapter 21, Section 2).

(i) Pae = an = 1; pOa = ka; Qea = da; dapaa = kaqaa‘
(i) LodoPaaPab = MRSE; LakaGaalap = NS
(111) PoaPup = chabcpac'

All of these facts give us great insight into the structure of matrices of the
form (4.1) and many examples can be found in the literature; see MacWilliams
and Sloane (1977) and references therein. Speed and Bailey (1982) show that all
standard (“balanced complete,” “orthogonal”) anova models arise from such
schemes where X is a modular lattice of equivalence relations on 7, and the
Mbobius function on X (together with the number of levels of each index)
determines the matrices P and @. These results are summarized in Section 6. For
most but not all classical anova models, results equivalent to the preceding were
given by Nelder (1954, 1965) when I' is induced by randomisation; see Speed
(1985) for more details concerning the connexions. Early forms of (3.4) and (3.6)
can be found in Kempthorne (1952, Chapter 8), again with a randomisation
distribution defining T'.

Let us turn now to the elements y, of the array y. As in Section 3 we write
S,y, = L,S(t, u)y,, and find that (3.4) is a decomposition of y, into uncorrelated
components which in this context satisfies

(4'4) E{(Sayt)(sﬂyu)} = n~1§aQa(l, u)aaa’

and in particular this equals n~'d ¢, = ¢, say, if ¢t = u and « = B. Here a(t, u)
is the unique a € X such that A (¢, u) = 1. With this notation we may write
(4.3b) in the form

(4.5) Yo = (e '000) ba

[:3
noting that the special case a = e (the identity association) gives us the analysis
of variance (3.5) corresponding to the decomposition (3.4). The index « labels the
“lines” of the anova table—we call them strata—and the projectors S, will be
termed stratum projectors.
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Summarising, we have seen that if I' = Dy has the form (4.1) where the {A )
satisfy conditions (i), (ii), (iii) and (iv) following (4.1), then, from Section 3, our
variants (a) and (b) [equivalently, (c) and (d)] of Graybill and Hultquist’s (1961)
definition are certainly satisfied. Do we get anything extra which might justify
our belief that it is only with these sorts of basis matrices and corresponding
parameters that the term anova is appropriate? I believe we do, and make the
following supporting observations:

(i) the present framework has a common variance (that to be analysed) as
part of its formulation;
(ii) the {A,} matrices already have the property that their row (column)
sums are the same, which implies that S, = (1/n)J is one of the {S,};
(iii) the {A,} matrices are all constant down their diagonal, a property which
combines with (i) to give the analysis of the common variance;
(iv) we have the compact and extremely useful formula (4.4).

In the more general discussion of Section 3 each of the preceding (i), (ii) and (iii)
had to be assumed in order to obtain the desired consequences, whilst (iv) shows
the great simplification which results from covariance parametrization: With it,
we need only know {A4,}, {d,}, {k,} and the function s (a) = &, D, = d3'q .
without it (cf. Section 3) we need the entries of the {A,}, the {S,} and the
change-of-basis matrices ( p,,) and (q,,)-

In a sense the reasons just given for selecting this formulation as the one
deserving the title anova are mere details; the real reason is the fact that almost
all examples and the natural generalisations and variants all derive from the
present and no other approach. This will become more apparent in the next
section, but first we give an example.

EXAMPLE. Suppose that T'=TI{{1,..., n;} and that the indices are nested
in a hierarchical structure ¢, nesting ¢, which nests ¢;, etc. If we write ¢ =
(¢,...,t,) then there is an obvious way to define a set of matrices {A,:
a=0,...,r} satisfying (i), (ii), (iii) and (iv), namely, A (s,¢) =1 if s, = ¢,
h=1,...,a, Sg.1Fty.1, As,t) =0 otherwise, 0 <a<r; A, =1 (=4),).
When working with this example it is helpful to introduce the equivalence
matrices {R,: a=0,...,r} defined by R (s,8)=1if s,=¢, h=1,..., a,
R (s, t) = 0 otherwise; clearly R, = A, + --- +A,,0<a <r,whileA, =R, —
R, ,0<a<r and A, =R, =1 This is because the primitive idempotents
{S,} are now readily defined by

So=(ny -+ n,) 'Ry,
Se=(ngy - n) 'Ry—(n,---n,) 'R,,, l<a<r,
S,=I-n;'R,_,.

It is easy to calculate that b, = 1 =d, b, = (g, — Digiy - n,,0<a<r,
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dy=ny -+ (n,—1,0<a<r,and
0, a=0,...,a— 2,
' ={ —(n,-1)7", a=a-1,
1, a=a,...,r.

The decomposition of y, =y, ..., is totally straightforward:
Vet oty sty = Yoo oo F (P e — Ve )

o (Yt = Yty oty )

and the other results follow immediately. This is one of the examples where X
(and hence Z) have a lattice structure, namely the (r + 1)-chain {¢,{1},
{1,2},...,{1,2,..., r}}; see Section 6.

5. Anova for infinite arrays. From the viewpoint presented in this paper
one of the earliest instances of anova in statistics was the spectral representation
of weakly stationary time series y = (y,;: ¢t € Z), essentially put in its modern
form by Cramér (1940) following earlier work by Khinchin (1934). Here
the covariance matrix I'(s, ) = cov(y,, ¥,) satisfies I'(s, ¢t) = I'(z, v) whenever
t — s = v — u and so may, formally at least, be written

(5.1) r=YvyA,,
0

where A, = I is the doubly infinite identity matrix and A, is the doubly infinite
symmetric circulant having zerothrow (---010---0--- 010 --- ) with a 1 in the
ath and —ath position, a = 1,2,... . Because T is positive definite, a theorem of
Herglotz tells us that for such a matrix there exists a uniquely defined positive
measure on [ — 7, 7) whose Fourier coefficients are the {v,}. Since y_, = v,, this
measure must be symmetric about 0 and so we can obtain the real spectral
representation

(5.2) Y. = ][‘0 77)cos((zor)q)(doz), acZ,

a formula which can readily be compared with (2.10b). The corresponding (real)
representation of y, with E{y,} = 0 takes the form

(5.3) Y=y +2 j(o ﬂ)[cos(ta)u(da) + sin(ta)o(da)],

where u and v are additive and mean-square continuous random set functions
defined on the Borel subsets of (0, 7), spanning the Hilbert space generated by
¥y = (3, t € Z) having zero means and satisfying

E{u(A)u(B)} = E{v(A)v(B)} = ¢(A N B),
E{u(A)v(B)} =0,
for A, B Borel subsets of (0, 7). Finally y. is the mean-square limit of T7'X7y, as

(5.4)
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T — oo, which is easily shown to exist. To compare (5.3) and (2.11) one simply
expands the cos(27(s — t)a/n) and separates out random variables from non-
random coefficients.

This is one kind of “infinite anova”; there are many similar ones in the
literature of stochastic processes; see Hannan (1970, Chapter 1) and references
therein.

At this point we do not stop to consider the method of proof of (5.3); in
essence it reduces to the spectral decomposition of a unitary operator in Hilbert
space and this will be covered by the discussion in Section 6. Rather we turn to
another kind of infinite array.

Our original example y = (y;: i=1,...,m; j=1,...,n) with j nested
within ¢ and having ' = Dy of the form (2.7) makes perfect sense if m or n (or
both) is (are) countably infinite. Indeed one such example is the “random effects
model”

(5.5) Yij=¢& te&te,

where (¢;) and (¢;;) are uncorrelated infinite sequences of uncorrelated random
variables with zero means and variances o2 and o2, respectively, and ¢, is a zero
mean random variable uncorrelated with the ¢; and the e,; with variance ol. In
this case the parameters v,, v, and vy, of (2.7) are

(5.6) Yo=of +of +oi, v =of+of, y=05.

What is the analogue of (2.4), (2.5) and (2.6) for an array y = (y,;) with
I’ = Dy satisfying (2.7) for m = n = o0? Clearly we can truncate ¢ and j (within
i) to the ranges 1,...,m and 1,..., n, respectively, and see what results as
m, n — oo, and doing this leads to some simple and interesting conclusions.
Denoting the parameters and other objects associated with the truncated array
by a superscript (m, n), we can prove directly that ¢{™™ = (mn) 'd{™ »¢(m»
and [d(™™] 1g{™™ both converge as m and n — « to ¢, and s (a) say,
a=0,1,2 and a = 0,1,2. It follows that the terms £_S, in the spectral represen-
tation (2.5) also converge as m and n — oo, since &(™™MS{™ )(yj, kl) =
£ ™ (mn) " 'q {7y and we find that the limiting form of (2.5) is

(5.7) F=¢J®J+¢,1QJ + I ® I,

where I and o are the infinite identity matrix and matrix of all 1’s, respectively.
Although (5.7) is not a spectral representation in any obvious sense, it can be
proved that the most general positive definite matrix of the form

(5.8) T=vIQI+yI®(J-I)+y(J-1)®J

has a unique representation in the form (5.7) with ¢,, ¢, and ¢, all positive. The
relations between ¢’s and y’s are simple enough:

(5.9a) Yo =+ ¢ + ¢, Y1=¢ t+ ¢y, Yo = o

with inverse

(59b) b = Yo — Y1» $1 =71~ Yo, b0 = Yo-
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In an obvious notation we can also prove that for m’ > m and n’ > n,

a0 rn sl g L )G L2
mn mn m m

(i m = ymm) = (= yimam) |

B

1 1

n n

2 B4

(5.100) (5™ = 3mm) = (7m0 = ) | = 4’2[

from which it follows that y(™™), y(™™ — y(™™ and yi™™» — yl™™—the
components in (2.2)—all converge in mean square as m, n — oo. Denoting their
limits by &, ¢; and ¢;;, respectively, it can also be proved that not only are ¢, ¢,
and ¢;; pairwise orthogonal—they come from different strata in the limiting
form of (2.2)—but also ¢, and e, are orthogonal if & # i, and similarly ¢;; and e,
are orthogonal if i # 2 or i = k and j # [. But all this has proved that (5.5) is
(up to second order) the most general form for an array y = (y;;) with Dy =T
satisfying (5.8), and that (5.7) is the most general form for such I'. In this sense
the standard random effects models arise naturally as the spectral decomposi-
tions of infinite arrays of multiindexed random variables with the appropriate
dispersion models. For further details including a proof of this general result we
refer to Speed (1986).

For our final illustration of an anova for an infinite array we return to the
Example at the end of Section 4 and suppose that the repeated nesting goes on
ad infinitum, i.e, that T =TI(1,..., n;} with each index of ¢ = (¢,,¢,,...) € T
nesting all subsequent ones. As with the finite version, we can define association
matrices {A,: @ =0,1,...} to which we must add A, = I (= A, in our general
notation). The relationship matrices {R,: a =0,1,...,0} are defined in the
same way as we did earlier and the passage from A-matrices to R-matrices is as
before. We now look for a spectral representation for the positive definite
matrices of the form

a=o0
(5.11) L= Y v,A,.
a=0

As with our previous discussion, it is instructive to look at a truncated version of
T, and the obvious candidate here is T = (t € T: t,,, = t,, o= --- =1}

Denoting parameters and other expressions associated with the subarray
¥ = (y: te€ T™) with a superscript (r), we note that s (a) = [d{"] ¢
does not depend upon r as long as 0 < a, a < r. Furthermore, a straightforward
calculation proves that ¢{” = (n, -+ n,) 'd{V¢ satisfies

(512) ¢ -V =(1-nYnzl - n7 (1 - ni)(Ye - V),

which is nonnegative since v, < v, for all a. Since 0 < ¢{” <y, forall r > 1 and
a < r, we deduce that ¢{” converges, to ¢, say, as r — 0. Thus the elements of
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¢(7S(" also converge as r — oo and so we conjecture a unique representation for
I in (5.11) taking the form of an ordinary infinite series

(5.13) I'=3 6,8,

where the ¢, are positive (summing to y,—the anova) and the S, satisfy
Sﬁ(s7 t) = sa(a(s’ t))’ i'e')

a=oo
(5.14) S,= Y s(a)A,.

a=0
These facts are readily proved and are perhaps most easily seen by using formal
infinite tensor products. In an obvious notation S, = J = J, ® J, ® ---, whilst
for a > 0 we can use the expression for s (a) to get
S = Z Aa - (na - 1)71Aa—1

a
aza

I, ® - ---®I ®

-1 n; Moy

1
This completes our discussion of the spectral decomposition of Dy and we turn
to that of y,, t € T. As with our previous example, its components are defined as
mean-square limits, and in this case it is perhaps no surprise to see that these
exist for

Ny = -
SaVYe = Yoy ooty e tysrtyg e Vet e o tytyag

as r > . Indeed ||S{"y, — S{My||2 = ¢” — ¢ for 1 < r < r’, and by (5.12)
this converges to zero as r, r’ — oo (assuming n, > 2 for all r). Of course the
mean-square limit S, y,, say, of S{"y,, satisfies ||S, y,/|2 = ¢,, and so the spectral
representation of y, is the infinite sum, defined as a mean-square limit

(515) yt = Zsayts

with associated anova y, = X ¢, Note that (5.15) is not the same as the
expression
Yityty - = €0 T & T &g, T &y T 00,

where {&,}, {€,}, {¢,,,}, {€44,¢,},- - - are uncorrelated sets of uncorrelated effects
having variances ¢, ¢,, ¢,, ¢5,...; to get such a representation we would also
need to let n, = o0, ny, > o0, ny > 0,... in the preceding discussion.

These three examples of anovas for infinite arrays give a good idea of the
range of possibilities. With the finite cyclic structure going over to the infinite
one, we obtain a “continuous infinity” of strata; with the classical anova models
illustrated by our second example, we simply recover standard random effects
models, the number of strata remaining constant; whilst our final example shows
how limits can be taken along infinite chains in the partially-ordered subset
defining the nesting relationships on the set of indices, with the number of strata
going to a countable infinity.
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In none of these infinite examples does there appear to be a full analogue of
the geometrically orthogonal decomposition of arrays y of real numbers, nor any
associated sum of squares decompositions. Given that we never observe an
infinite array of real numbers, this is no real limitation of the theory, and for
many examples—most importantly the standard anova models in statistics—
these decompositions for finite subarrays give useful information concerning
aspects of the full array. Some details are sketched in Speed (1985) in a
discussion relating the anova of a subarray, where it exists, to the anova of a full
array.

The conclusion we come to after this discussion is that there is more to anova
than sums of squares. Our view, already stated in the previous section, is that
anova is a feature of certain models V which impose equality constraints on the
covariances between pairs of elements of arrays of random variables.

6. Classical anova: Factorial dispersion models. The historically im-
portant anovas with multiply indexed arrays are the random effects models,
dating back beyond Fisher (1925) to the last century, the randomization or
permutation models following those discussed by Neyman, Iwaskiewicz and
Kolodziejczyk (1935) and the more recent generalisations of de Finetti’s ex-
changeability, studied by Aldous (1981) and others. Because of the importance of
these ideas in statistics, I will sketch their common second-order theory.

We begin with a set F of factors f,, f,,..., and a partial order < on F where
f1 < f, means that the factor f, is nested within the factor f,; cf. Nelder (1965).
A subset a C F issaid to be a filterif f, € @ and f, < f, implies that f, € q, the
need for such subsets arising because it is frequently necessary, when referring to
the levels of a given factor f, to refer at the same time to all factors within which
f is nested. The set of all filters of the partially ordered set (F; <) forms a
distributive lattice L(F') under the operations of set union and intersection [see
Aigner (1979, page 33)] and we refer to this book for all other order-theoretic
terminology and results used in what follows. We remark in passing that our use
of partially ordered sets in this context is closely related to, but does not coincide
with, that of Throckmorton (1961), adopted by Kempthorne and Folks (1971,
Section 16.11).

Next we suppose that the set of levels of factor f is T;, f € F, and we write
T =T1;T; for the set of all combinations of levels of factors in F, denoting a
typical element by ¢ = (¢;: f € F). For any pair s, t € T we write a(s, ¢) for the
largest filter @ € L(F) such that s;=¢; for all f€a; eg., if s =k and
t = i’j’k’, where we have three factors whose levels are denoted by the usual 7k
rather than (s,, s,, s3), and the second factor j is nested within the first i, then
a(s,t)={1,2}ifi=1i, j=j and k # R, whereas a(s, t) = (3}if i+, j=J
and & = &', for {2, 3} is not a filter of the partially ordered set of factors.

With these preliminaries we turn to the definition of factorial dispersion
models. These are for arrays y = (y,: t € T') of real random variables indexed by
the set T of all combinations of levels of a set F of factors whose nesting
relationships are defined by the partially ordered set (F; <). The factorial
dispersion model V = V(F, T) is the class of all covariance matrices I' = Dy over
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T which satisfy
(6'1) COV( ys’ yt) = COV( yu’ yu)

whenever a(s, t) = a(u, v), s, t, u, v € T. Such classes are slightly more general
than ones introduced by Nelder (1965), and we note that it has not yet been
necessary to state whether or not the sets 7} are finite. For our summary of the
structure of these models, we consider the two cases |T;| < oo for all f € F, and
|T;| = o for all f € F.

Finite factorial dispersion models. 1f |T;|=n; < co for all f € F, and we
write n =1II;n;, then V(F,T) is a class of n X n matrices whose structure is
readily exhibited; see Speed and Bailey (1982) for full details. First we define the
family {A,: @ € L(F)} of matrices over T by writing A (s,¢) = 1lif a(s,¢) = a
and A(s, t) =0 otherwise, s,t € T, a € L(F). Each element T € V(F,T)
satisfying (6.1) may then be represented uniquely in the form I' = ¥ _y,A,, the
sum being over L(F), with the parameters {vy,: a € L(F)} being covariances.

It can be shown that the {A,} so defined form an association scheme, i.e., that
(i), (i), (iii) and (iv) of Section 4 and hence the consequences of these conditions
hold, but here we can construct the structure constants {k,},{d,} and the
functions {s(a)} directly. To do this we introduce a second representation of
V(F, T) involving relationship matrices {R,: b € L(F)}, where R,(s, t) =1 if
s;=1t; forall f € band R,(s,t) = 0 otherwise, s,¢ € T and b € L(F). Clearly
R,=1Y,,,A, and the representation we refer to is

(6.2) [ =Y fyRs,
b

where the parameters { f,: b € L(F)} have been called canonical components of
variance by Fairfield-Smith (1955), 2-quantities by Wilk and Kempthorne (1956),
and f-quantities by Nelder (1965), although he later called them components of
excess variance [Nelder (1977)]. Unfortunately it would take us too far afield to
explain fully the frameworks of these other writers and the correspondence of
the different parameters.

Relating the {f,} to the {y,} requires the zeta function of the lattice L(F),
defined by {(a, b) = 1if a C b, {(a, b) = 0 otherwise, and the associated Mobius
function p defined by ¥{(a, b)u(b, c) = Zu(a, b)§(b,c) =8(a,c)=1if a=c
and O otherwise; here a, b and ¢ € L(F) and the sums are over all b € L(F);
see Aigner (1979, page 141) for further details. In this notation

(6.3a) fr=2r(a, b)y,
and
(6.3b) - Yo= 28(b,a)f, = bZ fo-

It can be shown that for all lattices of the form L(F) the Mébius function p
takes only the values 1, —1 or 0; indeed the following concise formula for p can
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be proved:

(6.4) w(a, b) = {(—1)"’\“', if 52 aand b\a C b,
, otherwise,

where b,, denotes the set of minimal elements of b C F.

The final representation of elements of V(F, T') we present is an explicit form
of their common spectral decomposition. If we write n, = [1{n;: f ¢ a} for an
element a € L(F), then the formula

(6.5) S, =Yula,a)n;'R,, a«€L(F)

defines a set of pairwise orthogonal symmetric idempotent matrices summing to
the identity matrix I over T. Further the formula

(6.6) €, = Li(a,b)nyf,
b

gives the eigenvalues of T'=1%,f,R, and its spectral decomposition is then
I'=%£.S,. Thus the eigenvalues {{,: a € L(F)} constitute a third set of
parameters whose positivity succinctly defines the parameter space, and there
are two related sets of parameters which also have been used: the specific
components of variance {02: a € L(F)} of Cornfield and Tukey (1956), given by

ol = 7, ',, and the spectral components of variance {¢,: @ € L(F)}, cf. Daniels

(1939), given by ¢, = n"'d_¢,, where d, = rank(S,).

If we combine the relationships between the {vy,} and the {f,} with those
connecting the {f,} and the {{,} we can obtain (4.3a) and (4.3b) where a and
a € L(F) and the sums are over L(F), and of course (4.2a) and (4.2b) also hold
with the same coefficients (p,,) and (q,,). The following formulas give expres-
sions for the key quantities:

(6.7) d,= I1 nyx IT (n;-1),

fea\ay, f€ay,

where «,, denotes the set of minimal elements of «,

(6.8) ko= TI1 n; 11 (n;-1),

feaN\am™ fea™
where a™ denotes the set of maximal elements of @ = F\ a, and the common
value s (a) of d;’q,, = k; Py, is

(6.9) s(a) = ,GD\.,{-I/M—U}, if a\a, C a,

0, otherwise,

where an empty product is defined to be unity.

The foregoing discussion enables a fairly complete analysis of finite factorial
dispersion models to be given and we now indicate the changes necessary when
|T;] = n; = oo for all f € F. The main conclusion is the fact that the first two
representations, I' = ¥ y,A, and I' = X, f,R,, continue to apply because we
never need to multiply these matrices. After a suitable normalization and
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limiting argument, the third representation turns out to coincide with the
second. In particular the limiting forms of the two parametrizations, which are
essentially normalized eigenvalues {62} and {¢,}, coincide with the correspond-
ing { f,}. Finally, the limiting form of the function s(a) is just the zeta function
{(a,a) = 1if a« C a and 0 otherwise.

We turn now to the spectral decompositions (3.4) and (3.6) in our classical
anova context. It is easy to see that for finite arrays the matrices {7,'R,:
a € L(F)} act on y,(t € T) by simply averaging out all indices ¢, with f & a,
and so by (6.4) the expression (6.5) for S, reduces to an alternating sum of
averaging operators starting with 72, 'R_. For infinite arrays it all carries through
using mean-square limits; cf. Section 5. In the finite case this is just the familiar
anova decomposition of multi-indexed arrays into admissible main effects and
interactions termed the population identity by Kempthorne (1952, Chapter 8)
(his arrays having permutation or sampling distributions) and called the yield
identity by Nelder (1965). For infinite arrays we recover the standard random
effects linear models appropriate to the nesting structure on the indices: the
components S, y, are not only uncorrelated across strata but (when n; = o) also,
when distinct, within strata. Again we refer to Speed (1986) for more details.

7. Anova and groups. In all the particular examples we have given so far,
and in the vast majority of those which occur in practice, there is an underlying
group G acting transitively on the index set T, denoted (g, t) — ¢4, in such a
way that the class of covariance matrices I' = Dy of y = (y,; t € T') which we
consider for our anovas coincides with the class of positive definite functions T
on T X T which are G-invariant in the sense that

(7.1) I(s,t) =T(s5t%), (s,t)eTxT,gea.

It will follow from a few simple manipulations that the mathematical parts of
our anovas, getting the spectral representation of the matrices I' and the
corresponding orthogonal decompositions of the array elements y, (¢ € T'), are
only a slightly disguised form of a standard problem in harmonic analysis. This
should hardly come as a surprise given the earlier discussion of finite and infinite
circular arrays (y,: £t =0,1,...,n — 1) and (y,: t € Z).

We will only sketch the connexion here; the interested reader is referred to
Hannan (1965, Section 5) and Dieudonné (1978) for further details. Choosing and
fixing an arbitrary ¢, € T, we define the subgroup K = {g € G: ¢t = t,} of G
and observe that the homogeneous space G/K of cosets of G modulo K
corresponds naturally with T, gK corresponding to ¢ iff t8 = ¢,. Now a function
® on T is said to be spherically symmetric (relative to K) if ®(¢) = ®(¢%),
te T, k € K; similarly a function ¥ on G is said to be bi-invariant (relative to
K)if Y(kgk’) = ¥(g), g € G, k, k' € K, whilst we have called a function T on
T X T G-invariant if it satisfied (7.1). The simple manipulations previously
referred to show that these three classes of functions are essentially the same
one, e.g., if I' is G-invariant on T X T, then ¥(g) = I'(¢§, t,) is bi-invariant on G
whilst ®(t) = I'(¢, t,) is spherically symmetric on 7. Conversely, if ¥ is bi-
invariant on G and g,, g, are elements g and k € G for which s€ = ¢, t" = ¢,
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respectively, then I'(s, t) = ¥(g;'g,) is G-invariant on T X T. Finally, we let Y
denote the space of all orbits of G over T X T, clearly functions y over Y
correspond in an obvious way to G-invariant functions I on 7' X T and hence to
the other classes previously mentioned. With this background our initial anova
problems take the form: Describe the class of all functions y on Y, in particular
those for which I'(s, ) = vy, , is positive definite over T, where b(s, t) is the
unique element of Y containing (s,¢) € T X T.

Solutions to the problem just posed exist for many group actions, the most
elegant case apparently being when (G, K ) is a Gel'fand pair [ Dieudonné (1978,
page 55)] usually discussed when G is a unimodular separable metrizable locally
compact group and K a compact subgroup. When (G, K) is a Gel'fand pair there
is a class Z of functions called zonal spherical functions which plays a prominent
role and in our terms these are the functions on Y defined by s (a) = d,'q,,,
a € Y, a € Z. We note in passing that this class includes all characters of locally
compact abelian groups, so our anova decomposition of the matrix I' is a form of
generalised Bochner-Godement theorem.

In his expositions Letac (1981, 1982) presents a wide range of applications of
the theory of Gel'fand pairs in probability theory and we can clearly add anova
to his list. The example in Letac (1982) which he calls the infinite symmetric tree
is just the third example we discussed in the previous section—the infinitely
nested hierarchical anova model—and so we have given an alternative approach
to its harmonic analysis. It is also of interest to note that the theory of discrete
Gel’fand pairs which Letac summarises in his paper is included within the theory
of association schemes: All of his formulas can be found in the theorem we cited
in Section 4, e.g., m(a) = k, is the measure on X induced by the uniform
measure on T, the spherical functions are s (a) = d,’q,, as has already been
noted and the Plancherel measure on Z is v(a) = n"'d,.

What of the spectral decompositions for the elements y, (¢ € T') of the
arrays? These arise from the decomposition of the permutation representation
& — U, of G into its irreducible constituents, where U, is defined on the Hilbert
space H spanned by the (y,: ¢t € T') [using the inner product {y,, 3,) = I'(s, ¢)]
by extending the assignment U,y, = y«, t €T, g € G to the whole of H. In
seeking to derive the decomposition in any particular case there are issues
concerning the compactness of K, separability and local compactness of G, the
nature of the representation {U,} and so on, which must be verified before
general theory can be applied; we refer to Dieudonné (1978, 1980) for details.
Perhaps surprisingly, none of the simple (infinite) classical anova models gives
rise to pairs (G, K ) for which these conditions hold, and so the ad hoc approach
adopted in Speed (1986) still seems to be necessary. Even defining the groups for
these classical anova models is a formidable task; see Bailey, Praeger, Rowley
and Speed (1983) for details of the finite cases and Speed (1986) for some remarks
on their infinite analogues.

8. Manova. The multivariate analysis of variance or manova does for arrays
of random vectors what anova does for arrays of (real-valued) random variables,
that is, gives suitable spectral decompositions of their dispersion matrices,
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orthogonal decompositions of both the elements of the arrays and the arrays
themselves; associated with these are analysis of the variances and covariances
and decompositions of the sums of squares and products. There are some twists,
however, which require us to generalise slightly our earlier formulation involving
association matrices. For example, suppose that w = (w,: £=0,...,n— 1) is a
circular array of zero mean random vectors w, = (x,, 3,) with dispersion matrix
X I‘XI ny
I'= D[y] = [ryx I‘yy]'

We assume that I'"* = Dx and T'>? = Dy both have the form (2.9) whilst
I'*Y = cov(x, y) satisfies (s, ¢) = I'*(u,v) if t—s=v—u, ie, I'* is a
circulant, although not necessarily a symmetric one. Indeed cov(x,, y,) and
cov( y,, x,) are in general different. What is the decomposition of T'*” analogous
to the diagonalisation of I'** and I'???

The solution in this case is easy enough because the structure of arbitrary
circulants is as transparent as that of symmetric circulants: Write I'*? =
Yo~ 'y§7B,, where B, is the n X n circulant having a single 1 in the bth position
and 0’s elsewhere in its first row. Assuming that n = 2m + 1 as before—the case
n = 2m is just as readily dealt with—we recover our earlier association matrices
by noting that A, = B,, whilst A, =B, + B,, a=1,...,m. The (m + 1) X
(m + 1) structural matrices P = (p,,) and @ = (g,,) are best described by the
equations

27
(8.1) k'Pea = d'q0a = COS(7aa),
where ky=d,=1, k,=d,=2, 1 <a, a <m. We now need to introduce
another inverse pair of m X m matrices of structural constants, namely T = (¢,,)
and L = (I,,):
: 2
(8.2) by = lop = 2sin(7ba), l1<a,b<m.
It is not hard to prove that TL = LT = nl,,. With these constants defined, we
supplement the {S,} defined following (2.9) with T, defined by T (s,?) =
(1/n)tys 1o Where b(s, t) = (¢ — s) (mod n). This is equivalent to
m
(8.3) T,=1/n) Yty (B, — B;), a=1,...,m.
1
In these terms we have
(8'4) Bb=SD+%E(pabSa+labTa)’ b=1""’m!
1
which, incidentally, agrees with our earlier notation since

m m
A,=B,+B,=28+ Y P0uSa= YoPecSe» a=1,...,m.
1 0

Also we see that B, — B} = L7, ,T,, a consequence of the relation LT = TL =
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nl,. It is not hard to check that T/ = —T,, T2 = —8S,, a = 1,... m, and with
all these preliminaries we can write the real form of the spectral decomposition
of I'*” as

(8.5) [ = 9y + L8, + ¢2°T.),
1

where c¢Z” and gZ” are given by

m 2
(8.6a) Y=y + ) cos(—;—aa)[yjy +v52.1,
a=1
m 2
(8.6b) =X Sin(—aa)[v,’fi"a -y,
a=1 n
with inverse
(8.:6¢) 5 1 ) 2 i y 27rb S 27rb
.6c 7= —c3r + — cXcos| — + g sin| — .
Yo n 0 Pt aCO( n «a qasn( n lX)
In fact ¢l = Re(§}”) and ¢ = —Im(£3Y), a =0,1,..., m, where {7, a =
0,..., n, are the eigenvalues of I'*?, in general complex, although they do satisfy

the reality constraint £ = £X7
The element y;” can be viewed as the bth entry in I'*? or as the xy entry in
Ty, the lag b cross covariance matrix of the two sequences (x,) and (y,):

5T Y
T, = . e
v
Grouping the ¢, and g, into matrices we may combine (8.6¢c) with the corre-
sponding results for y;* and y2” to get

8.7 T,= ! C 2 C 2 ba| + in[ 27 b }
. = — + — _— —_ .
(8.7) p=C+ Ea acos( - a) Qasm( - a)

This is the real spectral representation of I', with {C,} and {Q,} being termed
the cospectral and quadrature spectral matrices, respectively. The former are
positive definite and the latter antisymmetric, as we will see in due course.
Either (8.5) (together with the corresponding result for I'** or I'*?) or (8.7) leads
to the real spectral representation of a I' having the form

(8.8) r=A,9r,+Y[B,®T,+B, ,®T,_,],
1
which is
(8.9) r=8®C+[S,eC +T,®Q,].
1

Now that we have the equivalent of the relations (4.2a) and (4.3a) for this
class of cavariance matrices, we can consider the corresponding decomposition of
the elements w, and the arrays w. The orthogonal decomposition of elements is
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just what one would expect, namely

x tl _ Suxt
(8.10) [yl] B ;[Sayt],
where S,x, = ¥,5,(¢, u)x, are similar for S, y,; cf. (2.11). The terms are of course
orthogonal across strata and obey the following rules within strata:

(8.11)  cov(S,x,, S,y,) =n"d.c2,  cov(Tx,,S,y,) =n"'d,qg>.

We can combine (8.11) with the corresponding results for x, and y, alone and
obtain the formulas

Sux, Txtjl [Saxt] -
8.12 D =n'd,c,, D||, "], -n"'d,Q,,
( ) [Sayt] " o H:Tayt Snyl " aQ

from which it is clear that C, is positive definite; since T,/ = —T,, T,x, is
orthogonal to S,x, and so @, is antisymmetric.

The preceding discussion gives a good illustration of the extra difficulties
encountered when nonsymmetric elements B, appear in the class of basis
matrices describing the cross covariances between different components of a
vector element of a random array. How general can the class of {B,} of matrices
be and still permit a satisfactory manova? Condition (i) of symmetry on our
family of adjacency matrices can be modified—the matrices would then be
described as the adjacency matrices of a homogeneous coherent configuration
[Higman (1975, 1976)], but more is needed to give a reasonable theory. The
appropriate conditions on a class {B,: b € Y} of matrices over a set T with
entries 0 and 1 only are the following:

(i) the transpose Bj belongs to the class { B,}, i.e., there exists b" such that
B{ = B,.;
(ii)) X,B, = J, the matrix of 1’s over T;
(iii) one of the matrices, B, say, is the identity matrix over T;
(iv) B,B, = ¥ n,.4B, for suitable integers (n,.,);
(v) the symmetric elements of the algebra B of all linear combinations of the
{B,} commute, i.e., (B, + B;)(B, + B!) = (B, + B.)(B, + B}).

The last condition was introduced in a similar context by McLaren (1963).
Some of the B, may already be symmetric: Let us list them first and write
them as A,; the remaining A-matrices are the symmetrized B-matrices A, =
B, + B/, and we can list the remaining B-matrices in transpose pairs.
A dispersion model for an array w = (w,: ¢t € T') of random vectors which has
the form

(8.13) r=YA,9T,+ Y[B,®T, + B, ®T,.],
a b
where the first sum is over the symmetric relations and the second over the

appropriate half of the nonsymmetric relations will have a manova decomposi-
tion provided that (v) is satisfied as well as (i), (ii), (iii) and (iv). The general
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spectral decomposition of such a I' then takes the form
r=Yy%s eC,+Y?[S,®C, +T,®Q,]

(8.14)
+Y®[S,eC,+T,®Q,+U,®D,+V,®E,],

where the sums ¥, ¥® and £® are over what we term the real, complex and
quaternionic types of strata, respectively; T, = ~-T,, U/ = -U,, V)= -V,
T?=U2=V:=-8,T.U, =V,UV, =T, and V,T, = U,. In the representa-
tion (8.14) the parameter matrices {C,} are positive definite whilst {@,}, {D,}
and {E,} are all antisymmetric; cf. (8.12). There are further sets of structure
matrices beyond P = (p,,) and @ = (q,,) which continue to relate the {S,} and
the {A,}; where complex strata occur we need matrices T = (¢,,) and L = (I,,)
to pass from the {B,} to the {T,} as we did in the cyclic example; and where
quaternionic strata arise we also need two further pairs of mutually inverse
structure matrices to permit the passage between the {B,} and the {U,} and
{V.}. The details are straightforward but lengthy and will not be given here;
they will appear in Chapter 11 of Bailey, Praeger, Speed and Taylor (1987).

When the structure of the vector space B spanned by the {B,} is fully
exhibited, the decompositions of w, and (w,) follow as before. We have the
familiar expression

(8.15) w,= Y. S,w,

where, as usual, S,w, = ¥,S,(¢, v)w, (i.e., S, effectively acts componentwise) and
the terms in (8.15) are orthogonal across strata and satisfy relations similar to
(8.12) within complex or quaternionic strata. For example, if « is quaternionic we
have

a a

d d
D(Sawt) = 7Ca’ D(Tuwt’ Sawt) = FQa!

a 34

d d
D(U,w,, S,w,) = 7“0 ,  D(Vow, S,w,) = 7E

whereas D(U,w,, V,w,) must be worked out from (8.14) using the formulas given
after it. The anova in this context is simply

(8.16) r,=Yo,

where ®, = n~'d_C, is the (matrix) spectral component of variance of stratum
acX.

9. What is an anova? It must be abundantly clear by now that we regard
anova as a property of certain special classes of dispersion models for arrays of
random variables, or vectors, namely, for certain models defined by equality
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constraints amongst (co)variances. There should be an appropriate (real) spectral
decomposition for all the dispersion matrices in the model, and a corresponding
orthogonal decomposition for elements of the array. The components in these
decompositions have interpretations which range from the notions of (random)
main effects and interactions, in the classical anovas, through to harmonics at
different wavelengths, wave numbers, etc.,, in the more classical harmonic
analyses. For finite arrays there are also decompositions of sums of squares.

All of this is in marked contrast to the current use of the term in regression
analysis and variance component analysis, where analysis of variance decomposi-
tions is more-or-less arbitrary orthogonal decomposition of sums of squares
relating to “fixed” or “random” effects in assumed linear models. At this point it
is worth explaining why our theory concerns only those structures described as
“balanced” or “orthogonal.” The reason is simple: Arrays with an anova as we
use the term—one might add unique and complete—all have a high degree of
symmetry, and in a sense the underlying index set is “complete.” By comparison,
the so-called “unbalanced” or “nonorthogonal” (random effects) anova models
are in general rather messy subarrays of arrays with anova, and do not have an
anova in their own right. For some further discussion of these points, see Speed
(1985).

Although the vast majority of anova decompositions—of the matrices (or
functions) and the random variables—are associated with a group action, and
hence could be viewed as a part of a theory of generalised harmonic analysis, this
line of thinking is by no means the best or the most general approach. For many
arrays of random variables, including the standard multi-indexed ones of classi-
cal anova, the permutation groups are extremely complicated, whilst a direct
combinatorial approach by-passing all representation theory is quite efficient;
see Speed and Bailey (1982). Also in the reference just cited, an example of an
association scheme which is not induced by a group action is given which shows
that there are cases without an underlying group action.

Is there a single general theorem? It is hard to believe that one theorem will
ever be formulated which covers all the examples mentioned so far. It would
have to include all homogeneous coherent configurations satisfying condition (v)
of Section 8, all limits of finite association schemes such as those illustrated in
Section 5, the theory of Gel’fand pairs mentioned in Section 7, and much more.
For example James (1982) has discussed the classical diallel cross in genetics from
essentially our viewpoint; the triallel, double cross and other genetic structures
give further interesting examples.

In closing we state what must be quite obvious to the reader: This paper has
concentrated on the question, “What is an anova?”’ We have not discussed any
of the many questions, which are both mathematically and statistically interest-
ing, which arise when the array of random variables has an anova.
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Factorial Dispersion Models
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Summary

A class of dispersion models for multi-indexed arrays of random variables is introduced and
discussed. These models generalize the second-order properties of variance component, randomiza-
tion and exchangeability models, and lead naturally to general techniques for calculating the
orthogonal decompositions, expected mean squares and other aspects of the analysis of variance of
such arrays.

Key words: Analysis of variance; Association scheme; Canonical component of variance; Exchange-
ability; Linear model; Permutation model; Randomization; Sample; Symmetry; Variance
components.

1 Introduction

The analysis of variance of multi-indexed arrays, i.e. data from factorial experiments,
interpreting this expression in the widest possible sense, had its origins in the
quantitative genetic research of R.A. Fisher. By the time of the publication of Fisher
(1925) these ideas had also been applied to comparative experiments in agriculture and in
the following 15 years the range of applications was broadened to include sampling (Yates
& Zacopanay, 1935; Youden & Mehlich 1937; Cochran, 1939) and industrial statistics
(Daniels, 1938, 1939). Over the same period the models and assumptions underlying the
analysis of variance were closely scrutinized: see especially Eden & Yates (1933), who
examined the z-test using nonnormal data, and the later work of Pitman (1938) and
Welch (1937) on the same topic, and the critical study by Neyman et al. (1935) of the use
of Fisher’s methods in agricultural experiments. Somewhat different problems were being
tackled within a similar framework in psychometrics (Spearman, 1910; Brown, 1913) and
animal breeding (Lush, 1931; Lush et al., 1933). In both of these fields there were
measurements with two components of error; in modern terms they were concerned with
the estimation in the presence of random effects, a topic whose origins can be found in
nineteenth century astronomy: see Scheffé (1956) for further details.

Many modern writers on what has come to be called variance component analysis take
as their starting point a linear model for their data array built up from independent sets of
independent random effects, with one set of effects for each appropriate index or set of
indices: some of these effects are termed main effects, the remainder interactions. Such
effects induce a variety of covariances between elements of the array, although it is not
common to regard the estimation of these covariances as an issue of particular statistical
interest. This linear model approach is not appropriate if the underlying distribution of
the array is a permutation distribution, a viewpoint adopted by a number of writers from
Fisher onwards, including Kempthorne (1952) and Nelder (1965), who have chosen to
emphasize the randomization aspects of analysis of variance. Nor is it appropriate if the
effects or indeed the whole array are to be regarded as randomly sampled without
replacement from one or more finite populations, an approach also adopted by Fairfield
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Smith (1955), Cornfield & Tukey (1956) and Hooke (1956a,b). Finally, we mention that a
statistician may wish to assume nothing more than a certain amount of symmetry,
invariance or stationarity, such as the generalization to multi-indexed arrays of de
Finetti’s exchangeability: see, for example, Dawid (1977) and Aldous (1981). Do these
symmetry assumptions still permit us to carry out the usual analysis of variance
calculations in a meaningful way?

All of the different views or models mentioned above lead to the same structure for the
covariance matrix of the data, although the form and interpretation of the parameters and
the problems attacked naturally differ between models. Our approach is therefore based
upon this common dispersion model. We shall see that all of the second-order calculations
associated with analysis of variance can be derived straightforwardly from the relevant
aspects of the dispersion model. Here we are taking the point of view of Cox (1960) and
Speed (1987) that the term ‘analysis of variance’ means the decomposition of the common
variance of several random variables into variance components which are of intrinsic
interest, rather than the calculations required to analyse data from a so-called ‘fixed
effects model” with a single variance which is a nuisance parameter. Of course, many of
the calculations are the same for both cases, because they are merely the mathematical
decompositions of quadratic forms or geometric projections, as Bryant (1984) and Saville
& Wood (1986) have recently pointed out. However, the underlying philosophy is quite
different.

The work reported in this paper had as its starting point the paper by Nelder (1965),
which concerns the second-order properties of the class of multi-indexed arrays which can
be built up by successively nesting and crossing simpler ones, starting from a single
unstructured factor. Although ostensibly set within a randomization framework, Nelder’s
results have a broader applicability, and §2 below refines them somewhat and extends
them to random arrays with more general (not necessarily permutation) distributions, to a
wider class of index sets, and to the case where the number of values, or levels, of the
indices, or factors, may be countably infinite. Nelder’s (1965) work was primarily
motivated by the need to systematize analysis of variance techniques so that a general
computer program could be written to replace large collections of subroutines, each
appropriate for a particular ‘design’. An independent stream of work, initiated by
Kempthorne (1952) and continued throughout the 1950’s and early 1960’s, see for
example Wilk (1955), Wilk & Kempthorne (1956a,b; 1957), was concerned with the
objective development and interpretation of linear models for randomized experiments.
This body of research, from what we shall call the Iowa (State University) school,
includes a number of valuable techniques for calculating the averages of certain quadratic
forms over random sampling and randomly selecting designs. At around the same time
Cornfield & Tukey (1956) reported on work done by them some years earlier addressing
essentially the same problem: the calculation of expected mean squares in analysis of
variance tables, or, as they term it, ‘average values of mean squares in factorials’. One of
our aims was to derive the main results of these authors within the modified Nelder
framework outlined above.

Much of the paper is devoted to the broad problem of relating the characteristics of a
subset of a multi-indexed array, which we can think of as a sample, to those of the full
array, thought of as the population. The results of Cornfield & Tukey (1956) and the Iowa
school do come out naturally, as do some less familiar ones concerning the prediction of
unobserved from observed random variables, a topic usually referred to in this context as
the estimation of random effects; see, for example, Harville (1976).

We hope that our methods, which attempt to treat finite and infinite populations, the
different models or approaches noted above, as well as various kinds of samples, in a
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uniform manner, will lead to:

(i) an understanding of the different parameterizations of factorial dispersion
models, together with their interpretations;

(ii) the various orthogonal decompositions of random variables, of arrays of
numbers, and of sums of squares, including the associated numbers of degrees of
freedom;

(iii) techniques for calculating expected values of mean squares under a range of
assumptions including linear models, over randomization, random sampling, and
symmetry, obtaining answers in terms of the desired parameters;

(iv) procedures for getting ‘best’ estimates of all parameters;

(v) formulae for obtaining ‘best’ linear predictors of key unobserved random
variables.

Throughout the paper we illustrate our results with a triply indexed array y = (y;%) and
its associated dispersion matrix I'= Dy, assuming that the second index, j, is nested
within the first, i, and that these two are crossed with the third, k. As well as being
complicated enough to exhibit most of the possibilities, this example allows the reader to
specialize the results to a simple nesting, by suppressing k, and to a simple crossing, by
suppressing j.

A good deal of the new work reported here is closely related to joint work with C.E.
Praeger and D.E. Taylor which we hope will appear soon in a monograph entitled
Analysis of Variance. We should like to thank them both for their collaboration over the
years.

2 Factorial dispersion models

2.1 Preliminaries

We will suppose given a set IT of factors p, ¢, ... and a partial order < on II, where
q <p means that the factor g is nested in the factor p, in the sense of Nelder (1965). It is
helpful to draw the partially ordered set (IT; <), which we term the nesting poset, with p
above q if ¢ <p and connected to g if there is no r distinct from p and g for which g <r
and r <p; this is the so-called Hasse diagram; see Fig. 1. We refer to Aigner (1979) for
terminology and further details concerning ordered sets. A subset a c IT is said to be a
filter if p ea whenever both g<p and q €a; such subsets have also been termed
admissible by the Iowa school, but we shall adhere to (one) standard order-theoretic
terminology. The need for such subsets arises because, in referring to the levels of a
factor, it is frequently necessary to refer at the same time to all factors within which that
factor is nested. The class L(IT) of all filters of a poset (II; <) is readily found to be a
distributive lattice under the operations of set union and set intersection, containing the
empty set & and the whole set IT (Aigner, 1979, p. 33). The lattice L(IT) is also a poset
under set-inclusion and so we can draw its Hasse diagram as well. It is convenient for our
purposes to draw the subset lattice diagram ‘upside down’, using the reverse ordering
from set inclusion. Figures 1 and 2 depict an example of a simple poset of three factors
and its associated distributive lattice of filters; note that 2<1 (meaning2<1and 2 #1) is
the sole nontrivial nesting relationship. This example will be used to illustrate much of
what follows. Note that our use of Hasse diagrams in this context is quite different from
that of Throckmorton (1961).

In a completely general factorial model, if factor g is nested in factor p then there is no
need for g to have the same number of levels within each level of p. However, models
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%]
1 (3} {1}
o 1,3} (1,2}
2 {1,2,3)
Figure 1. The poset Il in the example. Figure 2. The lattice L(I1) in the example.

based on assumptions of exchangeability or randomization do imply that ¢ has the same
number of levels with each level of p, and § 4 makes it clear that models based on random
sampling also imply this balance condition if all the random variables are to have the
same variance. Of all the viewpoints discussed in § 1, only the linear model approach
permits g to have different numbers of levels within different levels of p. Since this paper
is concerned with the theory that is common to all the approaches in § 1, we may assume
that g has the same number of levels within each level of p; this paper has nothing to say
about so-called ‘unbalanced’ data.

Next we suppose that the set of levels of factor p is T, for p in II. Of course, if g is
nested in p then the levels of g at different levels of p bear no relation to one another at
all even if the number of levels is constant. Nevertheless, it is extremely common to use
the same set T; to denote the levels of g within each level of p; see, for example, John
(1971) or Kempthorne (1952). Although this might appear somewhat confusing, there are
two good reasons for this convention: it facilitates both the algorithm for analysis of
variance calculations (Nelder, 1965) and some of the formal mathematics (Bailey et
al.,1983). We write T =], T, for the set of all combinations of levels of factors in II,
denoting a typical element of T by ¢ = (t,:p e IT). For any pair ¢, u in T we write a(t, u)
for the largest filter @ in L(IT) such that ¢, = u, for all p in a.

Example. With II as in Fig. 1, let t =ijk and u =i'j'k’. Then a(t, u)={1,2} if i=i’,
j=j" and k#k’'; whilst a(t, u) = {3} if i#i’, j=j' and k =k’, since {2, 3} is not a filter
of IT in this case. Here and below, when discussing our example, it is convenient to write
(t1, t2, t3) as (i, j, k) and abbreviate this to ijk.

With these preliminaries we can now define the dispersion models of our title. They are
for arrays y = (y,:t € T) of real random variables indexed by the set T of combinations of
levels of a set IT of factors whose nesting relationships are described by the partially
ordered set (IT; <). The covariance matrix Dy is defined over T and is said to be factorial
if cov (y,, y.) =cov (y,, y») whenever a(t, u) =a(v, w) for ¢, u, v, win T, and the class of
all such covariance matrices is denoted by V(II, T); briefly, a covariance matrix is
factorial if the covariance between any two elements y, and y, depends only on the
(largest) subset (filter) of the factors corresponding to the components on which the
indices ¢ and u agree. This class is more general than that introduced by Nelder (1965),
and we note that it has not yet been necessary to state whether or not the sets 7, are finite
for p in I1. See Tjur (1984) for a discussion of an even wider class of models, and Bailey
(1984) for a discussion of the relationship between Tjur’s work and the present paper:
factorial dispersion models correspond to Bailey’s poset block structures.

2.2 Finite index sets: Algebraic theory

If |T,| = n, < for p in II, and we write n =], n,, then V(II, T) is a class of n X n
positive-definite matrices whose structure is readily exhibited: see Speed & Bailey (1982)
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for fuller details and proofs. Firstly, we can define the association matrices {A,:a € L(IT)}
over T by writing A,(t, u) =1 if a(t, u) = a, and A,(t, u) =0 otherwise. A general element
T of V(II, T) thus has the form I'=Y%,y,A,, the sum being over L(II), with the
parameters {y,:a € L(IT)} being covariances.
For reference in §4, we note that the set of matrices {A,:a € L(I)} forms an
association scheme. This means that the following conditions are satisfied:
(i) for all a in L(IT), every entry in A, is equal to 0 or 1, but A, is not the zero
matrix;
(ii) for all a in L(IT), the matrix A, is symmetric;
(iii) the sum ¥,c.m A, is the matrix J with every entry equal to 1;
(iv) one of the matrices (in this case Ap) is equal to the identity matrix I;
(v) there are integers n,, for a, b, ¢ in L(IT) such that, for all a, b in L(II),

A A= 2 naA.
celL(IT)
See, for example, MacWilliams & Sloane (1977, Ch. 21) for a good discussion of the
general theory of association schemes.

A second, useful representation of elements of V(II, T) involves the relationship
matrices {R,:b e L(IT)}, where R,(t,u)=1 if t,=u, for all p in b, and R,(t, u)=0
otherwise. Clearly

Ry=2 A,

axb

and the representation we refer to is I' = X, fyR,, where the parameters {f;:b € L(IT)}
are called canonical components of variance by Fairfield Smith (1955), Z-quantities by
Wilk & Kempthorne (1956a); and simply f-quantities by Nelder (1965), although later he
called them components of excess variance (Nelder, 1977). Relating the f’s to the y’s
requires the zeta function of the lattice L(IT) given by {(a, b)=1if ac b and {(a, b) =0
otherwise, and the associated Mobius function u defined by

; &(a, b)u(b, c) = Eb: u(a, b)(b, c) = 6(a, c),

where 6(a, c) =1 if a =c, and 6(a, c) = 0 otherwise; the sums are over all b in L(II): see
Aigner (1979, p. 141) for further details. In this notation f, = ¥, u(a, b)y,.

Because it plays such a prominent role in the discussion which follows, we explain
briefly how the Mobius function u of a lattice L is calculated from a Hasse diagram. An
easy reformulation of the definition is the following: u(a, ¢) =0 unless a c c; u(a, a) =1;
and for a cc:

u(a, C) == g l‘(a: b)y
equivalently,

p@a,c)== 2 u(b,c).

acbgcce

Example (cont.). Let us calculate some values of u. From u(J, &) =u({1}, {1}) =1
and either of the above, we deduce that u(J, {1}) = —1. A similar argument applies to
any pair connected by an edge in the Hasse diagram. Turning to u(J, {1, 3}) we can use
the first of the above formulae to find that

1@, {1, 3}) = —(u(@, D) + u(@, {1} + u(@, 3P = +1,
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Table 1
The matrices of the zeta and Mobius functions for the example.
(@) Z )z
@ {1y {12} {3} (1,3} {1,2,3} g {1 {1L2} 3 {13} {1,2,3}

%] 1 1 1 1 1 1 1 -1 0 -1 1 0
{1} 0 1 1 0 1 1 0 1 -1 0 -1 1
{1,2} 0 0 1 0 0 1 0 0 1 0 0 -1
{3} 0 0 0 1 1 1 0 0 0 1 -1 0
{1,3} 0 0 0 0 1 1 0 0 0 0 1 -1
{1,2,3} 0 0 0 0 0 1 0 0 0 0 0 1

whilst similar reasoning shows that

r(@, {1, 2}) = —[u(@, D)+ u(@, {1p] =0.

Alternatively, the Mobius function may be calculated by matrix inversion. Let Z be the
L(IT) X L(IT) matrix with entries {(a, b): Table 1(a) shows Z for our example. Since Z is
upper triangular (if the elements of L(IT) are written in a suitable order), it is easily
inverted. The values of u are simply the entries of Z~". For example, Table 1(b) shows
that u({1}, {1,2,3})=1.

It can be shown that, for all lattices of the form L(II) that we are considering, u takes
only the values 0, +1 or —1. A concise formula for the values of u can be given but we do
not need it here.

The final representation of elements of V(II, T) is the explicit form of their common
spectral decomposition. If we write 7, = II(n,:p ¢ a) for a in L(IT), then the formula

S. =2 u(a, ®)i;'R,, aeL(I),

gives a set of pairwise orthogonal, that is S,S5; = 0= S35, if & # f, idempotent ($2=5,)
symmetric matrices which sum to the identity (I =¥, S,). Further, the formula

Ea= ; C(a’: b)ﬁbﬁ» o€ L(H)’

gives the eigenvalues of T', whose spectral decomposition is then I'= Y« &S, Thus the
eigenvalues {&,:a € L(IT)} constitute a third set of parameters for V(II, T), and there
are two related sets of parameters which have also been used: the specific components of
variance {0%:a e L(I1)} of Cornfield & Tukey (1956), where o%=7;'€,, and the
spectral components of variance {¢,: a € L(I1)}, of Daniels (1939), where ¢, =n"" d,&,
and d,, = rank (S, ). Table 2 summarizes the main representations of a factorial covariance
matrix.

The nonnegativity of the eigenvalues {&,:a € L(IT)} or, equivalently, {0%: a € L(I)}
or {¢:a e L(IT)}, succintly defines the parameter space for V(II, T). There is no such
simple characterization in terms of the covariances {y,:a € L(IT)}, nor, in general, of the
{f,:b € L(I)}. In the linear model approach the latter parameters are the variances of

Table 2
Representations of a factorial covariance matrix

2 VA, 2 foRs 2 &S,

aeL(I) beL(IT) aeL()

Using Association matrices Relationship matrices Orthogonal projectors
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independent sets of random variables, and so are constrained to be nonnegative. This
constraint is stronger than the nonnegative-definiteness of I', and so the linear model
approach is, in general, a proper subset of V(I1, T). We shall show in §2.4 that the
classes coincide when T, is infinite for all p in I1.

It is convenient to combine the relationships between y’s and f’s and f’s and &’s to give

gﬁ’ =2paa7a’ Ya=n—12 qaa&a: (1)

where a, « € L(IT) and the sums are over L(IT). It is also true that
S&‘ =n_12 qaaAm Aa =2paasa (2)

and the matrices P.= (p,,) and Q = (q,,) thus hold the key to the solution of many later
problems.

The B-row of the matrix P consists of the elements pg, =k, =|{u:a(t, u)=a}|,
independent of ¢, whilst the IT-row of Q consists of gp, = d,, = rank (S,), the number of
so-called degrees of freedom in the stratum «: see below for an explanation of this
terminology.

It can be shown that k,q,, = d,p,, and the simplest way to describe the entries of P
and Q is via formulae for d,, k, and the common value s,(a) of d;'q., =k 'p,.. These
are as follows:

de= [I n,x [ (n,-1),

pea\a, PEQ,

where «,, denotes the set of minimal elements of «;

ko= H n, X H (n,—1),

pea\a™ pea™
where a = I1\a and @™ denotes the set of maximal elements of a; and
[I (-1/(n,-1)} if a\a,,, ca,

\a
sa@)=y 7
0 otherwise,

where an empty product is defined to be unity.

For our example given in Fig. 1 and 2 the values of d,, k, and s,(a) are shown in
Table 3.

2.3 Finite index sets: Decomposition of arrays

The preceding approach permits a full discussion of the structure of matrices in the
class V(I1, T). We now turn to the random array y = (y,:¢ € T') with dispersion matrix T
in V(I1, T). The matrices {S,: & € L(IT)} are pairwise orthogonal projectors summing to
the identity and so define an orthogonal decomposition of the n-dimensional space R” of
T-indexed arrays of real numbers, and hence also of the space of random arrays taking
values in R”. Thus the decomposition

y= 2 Sy ©))
aeL(IT)
of the array y into component arrays S,y is orthogonal with respect to the standard inner
product (x,y) =X, x.y. Therefore we have the sum of squares decomposition |y|>=
LaS.yl?, where |yl = (y,y) =%, y?.
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Table 3

(a) Values of d and k in the Example

a d, k,
@ 1 (ny = Dny(ny— 1)
(1) n—1 (n= D(ns—1)
{1,2) ny(ny—1) (ns—1)
3} ny—1 (= D,
{1,3) (1= 1)(n3—1) ny—1
(1,2,3}  m—-1)n,—1) 1

(b) Values of s,(a) in the Example

« a=0 a={l)  a={1,2} a={3} a={13} a={1,23)
@ 1 1 1 1 ! !
1 n,_—ll 1 ! nl_—ll ! '
{1,2) 0 P ! s 1
{3} "3_—11 "3__11 na_-ll ! ' '
R e = S 1
R v o = R

By taking components of equation (3) and writing S,y, for (S,y), we obtain the
decomposition

%= 2 Sun @

aeL(IT)

of the element y,, for ¢t in T, into components S,y, which depend only on indices in a. This
is the population identity of Kempthorne (1952, Ch. 8), his arrays having permutation or
sampling distributions, which we discuss below; it is also called the yield identity by
Nelder (1965).

Example (cont.). This decomposition is the familiar one:
Yk =Y.t Yi.—y.)+ 5=y )Yk =y. )t Gik=Yi.—y.xty.)
+ (Vi =Y.~ ik +yi), (4a)

where the terms correspond to a =, {1}, {1, 2}, {3}, {1, 3} and {1, 2, 3} respectively,
and we denote the averaging over an index by a dot in that position.
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For simplicity, suppose that Ey =0. Since I'=}, &,S,, the components of (3) are
uncorrelated, as are the components of (4); thus the S,y, are the principal components of
y. We find that E(S,y,)*= ¢, for & in L(II) and so var (y,) = ¥, ¢.. Moreover, since
¢, =n"1d,E,, we have

E{dZ' 1Sy} = &a- ©)

Example (cont.) As an illustration we consider & = {1, 2, 3}. From Table 3 we have
d (12,3 =n1(n,— 1)(n3 — 1) whilst (4a) gives S 2,3y = (Vs — ¥y — Yir +¥:.); hence for
any array y = (y;;) with zero mean and dispersion matrix in V(II, T) we have

1
E{——l) Z ; ; (Vi = Yi. = Vi +}’i“)2} =&1,23)-

ny(ny — 1)(ns

From (1) and the values of k, and s,(a) in Table 3 we find that

123 = Y23~ Ya3y — Ya T Yoy

It should now be apparent from our Example, if not the general discussion, that we are
providing an alternative interpretation of the analysis of variance of a multi-indexed array
y = (y,). We have indicated how the components S,y, of (4) are the principal components
of the random array y, provided that Dy e V(I1, T), and seen that their variances ¢, are,
when suitably normalized by their multiplicities d, and the array size n, the eigenvalues
&, of Dy. Because of the double role of the projectors S, these components are also the
terms which, when squared and summed, give the sums of squares decompositions that
are such a familiar feature of analysis of variance tables. The lines of the analysis of
variance table, termed strata by analogy with stratified sampling, are labelled by the filters
of I1, that is by the elements « of the lattice L(IT), and the number of degrees of freedom
for the line labelled « is d,, coinciding with the multiplicity of the corresponding
eigenvalue &,. And, finally, the expected mean square in line « given by (5) is the link
between the principal components and the sum of squares decompositions. All this has
been done by assuming only that Dy € V(I1, T); we have not assumed any linear model
for the array y, although (4) is in a sense an implicit linear model. Note that we have
assumed throughout that Ey = 0 and so our discussion is truly an analysis of variance qua
variance; the introduction of structured mean values is an additional complication which
we do not discuss here. All of this seems very similar to the discussion by Hannan (1965,
§5.2) and indeed the connection with spectral analysis can be made complete.

2.4 Infinite index sets

Most of the foregoing extends to the situation where some or all of the factors have
countably infinitely many levels, and for simplicity we discuss the case that T, is countably
infinite for all p in II. The representations I' =¥, y,A, = ¥, f, R, continue to hold (as
these matrices are never multiplied), and we find that the spectral representation
™=y, g®s® of the truncation I'™ of T, converges, after a suitable normalization, to
the representation X, f,R,. Here we use the superscript (n) to denote the truncation to
t,<n, for all p in IT and our limits are all as n,— for all p in II. Indeed
¢®=n"1dWE® converges to f,, as does 7izE™=(0™)? and we find that the
components Sy, of y,, where t, <n, for all p in II, also converge in mean square. The
decomposition (4) of y, continues to hold in the limit with the additional property that
E{(S:Y:)(Say.)} =0if (t,:p € @) # (4, :p € «), and so in this case (4) is (to second-order)
just the often assumed linear model with random effects used in variance component
analysis with the set IT of factors exhibiting the nesting structure characterized by (IT; <).
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Example (cont.). The above implies that the linear model
Yie =+ &+ By + Vi + O + €

where u, {a;}, {B;}, {v«}, {0} and {&;} are uncorrelated sets of uncorrelated effects
with zero means and variances 0%, 0%y, 0712, O%3), 0%1,3 and 0%, 3) respectively is, to
second order, the most general array y with Ey =0, Dy € V(I1, T) with IT as in Fig. 1 and
T,=T=T,={1,2,...}.

3 Permutation distributions

Suppose that 7 =(7n,:t€T) is a finite array of real numbers indexed by T as in §2
above and that we define an array of random variables y = (y,:t € T) by the rule y, = 1,
for t in T, where 7 is a random permutation of the index set T which respects the nesting
relationships; see Bailey et al. (1983) for full details of the group G of all such
permutations. Following Nelder (1954, 1965) we ask: What are the covariances induced
by this randomization? It is not hard to see that to answer this question we do not need to
know anything about the group G other than the following facts:

P(y,=m)=n"", P(y.=n.|y=n)=kato(a u),a(v, w)),

where ¢, u, v and w are in T. With this information it is clear that Ey, =n~'Y, n,, and, if
a(t,u)=a,

Eyy.= (nka)_lz 2 A(v, w)n,m,.

By using the relations between the matrices {A,} and {S,} given in (2) above, we find
that I'= Dy = ¥,z E.S,, where &, =d;"|S,n|>. Since ¥, y, has the constant value %, 7,
and Szy =y, the eigenvalue & is equal to zero. Using (1) we can obtain the covariances
{v.} of y in terms of the {&,}.

Example (cont.). We might ask for the covariance y 3y, which is cov (y;, yi;«) with
i#i'. Since y(3y=n"'L4 q(3),4E., Table 3 shows that

ninansy sy =8z — Eqy + (na — 1)(E5y — §1.3)-

We therefore need expressions for §(;y, &3y and &, 3, as = 0. From (4a) and (5) we
see that (n, — 1)y, = nons T; (. — n..)? and the corresponding expressions for &5 and
&1,3) are as readily obtained.

4 Restricting to subsets

In many situations, including all of those for which T is infinite, we can observe only a
finite part y> = (y,:u € U) of our random array y = (y,:t€ T), where U is some subset
of T. What can we learn from y) about the various sets of parameters {y,}, {f,} and
{&.} of Dy? It is evident from the simplest examples that the restriction of a factorial
dispersion model V(I1, T) to a subset U of T does not necessarily result in a factorial
dispersion model over U, so we are led into some broader aspects of analysis of variance
which it is beyond our scope to cover fully here. For a in L(IT), let A{Y be the restriction
A, |uxu of the association matrix A, over T to the subset U. The restriction A{” may be
zero for some values of a: however, if A and A{Y are both nonzero for distinct filters a,
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b in L(IT), then A # A, Let M = {a € L(IT): ALV #0}. It is clear that {4{"’:a € M}
satisfies conditions (i)—(iv) of § 2.2. It may happen that condition (v) is also satisfied, so
that {A{":a e M} forms an association scheme over U: in this case we shall call U a
tractable subset of T. We note that, even if U is a tractable subset of 7, the association
scheme over U is not necessarily of the same kind as that over T: indeed, it may not even
be a factorial association scheme.

Example (cont.). Let U be the subset {(i, j,j):1<i<r, 1<j<wv}, where r and v are
integers with r<n,, v<n, and v<ns. Then A}, =A% =0 and M ={g, {1}, {3},
{1,2,3}}. It may be checked that {A{"’:a € M} satisfies condition (v), and so U is
tractable. In fact, the association scheme over U is the factorial one corresponding to the
simple crossed structure obtained from the poset IT in Fig. 1 omitting the factor 2. In § 5
we shall give an example where the association schemes on U and T are given by the same
poset II. '

For simplicity let us suppose T to be finite; the extension to infinite T is quite
straightforward. The standard theory of association schemes (MacWilliams & Sloane,
1977, p. 655) shows that, if U is a tractable subset of 7, the set {A{”:ae M} of
association matrices can be simultaneously diagonalized, with |M| distinct common
eigenspaces. Thus there are orthogonal projectors {S{: 1 € A}, where |A| =|M|, and, as
in §2.2, a A X M matrix PV and M x A matrix QY such that

S =1UI"1 Y qPAY, AP =3 piDs.
aeM AeA
We shall comment later on how the coefficients ¢$3’ and p{%’ may be found explicitly.

Just as in §2.3, the projectors {S{¥’:1 €A} define orthogonal decompositions of
random arrays y” and of elements y, of y*” for u in U, and sum of squares
decompositions with known expressions for expected mean squares. In short, when U is
tractable then the dispersion model {T'|yxy:T € V(I1, T)} exhibits the main features of
an analysis of variance.

Write & for the eigenvalue of Dy corresponding to the projector S§°, where
AeA. Then EY is not, in general, equal to an eigenvalue of Dy. However, since
Dy = Dy |yxu, We know that every covariance y<” in Dy‘”’ must appear, as v, in Dy.
Thus we can combine the expression £ = ¥, p{2y{Y for £{” with the formula (1) for
v, to relate the expected mean square parameters {£{”): 1 € A} in the analysis of variance
of y¥ to the analogous parameters {&,:a € L(IT)} of y. This relationship may be
expressed in matrix form as

£ = PO T|7 O, ©)

where IY"D is an M x L(IT) matrix with IV"T)(a, b) = 6.

A sufficient condition for tractability is that the restricted relationship matrices
{RW:a € L(IT)}, where R\’ =R, |yxy, arise from a lattice of commuting uniform
equivalence relations on U; see Speed & Bailey (1982) for definitions and fuller details.
We note that in such cases, if at least one of AL, A{Y is zero, then R{” may be equal to
R{Y) even if a # b. For convenience let L* be any subset of L(IT) containing M such that
{RV:aeL*}={R{M:ae L(I1)} but that R{’ # R whenever a and b are distinct
elements of L*. Then, for a in L(IT), let a* be the unique element of L* such that
RV=RY®. In many cases L* is a (not necessarily distributive) lattice of the type
considered by Speed & Bailey (1982, § 2), who proved that analogues of all the earlier
formulae and results hold with x and { replaced by the Mobius and zeta functions of the
lattice L*. In particular, we have the following simple relationship between the
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f-parameters of the two systems:

f9=3 f (@eL?) ™

In most examples M = L* and the theory of § 2 applies to y‘“” with no difficulty: we shall
give an example of such a subset U in § 5. However, there are minor technical difficulties
when M < L*. One example where this happens is a 3 X 3 Graeco-Latin square viewed as
a subset of a full 3 x 3 X 3 X 3 array. The difficulties are caused by the facts that AS) = 0 for
a € L*\M, and, correspondingly, some of the projectors defined in terms of the R{") and
the Mobius function of L* are zero.

It should be clear that the foregoing discussion covers classical variance component
estimates, at least in principle, although we do not discuss any general ways of
disentangling estimates of population (that is, T) parameters from, say, quadratic forms
in observed subsets. Equations (6) and (7) are most useful in the so-called ‘balanced’ or
‘orthogonal’ cases, where the observed subarray has a high degree of symmetry closely
related to that of the full array. In most recent literature the full array is taken to be
infinite, arising from an assumed linear model rather than an assumed covariance
structure, but the results quoted in §2.4 show that these two sets of assumptions are
equivalent for our present purposes; see also Speed (1986).

5 Random sampling from structured populations

As in § 3, suppose that n =(n,:t € T) is a finite population of real numbers indexed by
T, and let U be an arbitrary subset of T. Let us consider sampling a random copy of U
within T; that is, obtaining a random subset y(U) of T which is labelled by U via the
random injection . Note that different choices of 9 may give rise to the same set y(U)
and yet must be considered different samples, because the labelling by the elements of U
is a crucial feature of the sample. Thus random sampling amounts to random choice of y
from some set W of injections from U to 7. We can now define a random array
y@=(y,:ueU) indexed by U by putting y, =10, for u in U. The randomness
underlying the distribution of y“ is provided by the random sampling of .

If we take W to be (the restriction to U of) the group G mentioned in § 3, then y is
identical to the array obtained by restricting to U the random array y = (y,:¢ € T) having
the permutation distribution defined in §3. Since all our results depend only on
second-order properties, it follows from § 3 that all we require of W is that it satisfy the
following condition: for all u, vin U and all ¢, win T,

P(y)==n"",
P(y(u) =t| y(v) = w) =k d(a(t, w), a(u, v)). ®

Thus *-random sampling an array of numbers is (to second order) the same as
restricting to a subset of an array of random variables having an appropriate permutation
distribution. Indeed the array 7 could well consist itself of random variables; provided
that Dy e V(I1, T), a sampling procedure satisfying (*) has no effect on the form of the
dispersion matrix of the random variables selected, although the values of the individual
covariances will change if E7 is not constant. If # has zero mean and dispersion matrix in
V(I1, T) then we may restrict at the outset to the subarray n“’=(n,:u e U) of the
desired form.

With this background we can carry out calculations concerning the sampled array using
the structure on U derived from that on 7. If U is a tractable subset of T then we may use
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(6) and (7) to derive many expressions for average values of mean squares over sampling
distributions: compare this with the work of Cornfield & Tukey (1956), Wilk (1955) and
Wilk & Kempthorne (1956a,b; 1957).

Example. A triply-indexed population of numbers,
n=Mpx:I=1,...,N,J=1,...,N,, K=1,..., N;),
where the three factors ‘rows’, ‘subrows’ and ‘columns’ have the nesting relationship
shown in Fig. 1, may be sampled as follows. Using simple random sampling without
replacement, obtain n; rows ¥,(1), . .., ¥,(n,), and, independently within each of these,

n, subrows Y,(1, 1), ..., ¥o(1, ny), ..., PYa(ny, 1), ..., ¥on,, ny), and, independently
of all the foregoing, ns columns (1), . . ., Ys(ns;). We then form the array

(yijk) = (nWI(i)Wz(iJ)'PJ(k):i= 1, ceey nl,j= 1, A (7] k= 1, ey n3).

By the equivalence above, this is no different from restricting to the first n, rows, the first
n, subrows within each row, and the first ny columns of the array (y;x) having the
appropriate permutation distribution, for condition (*) is easily checked in this case. For
example, if I #1' and i #i' then

P(y,(")=1', o(i", ) =T', Ya(k) =K [ 91()) =L, 96, /) =J, ys(k)=K)
is equal to 1/(N;—1)N,, which is as it should be since Table 3 shows that k=
(Nl - 1)N2.

In this case it is clear that the sample y = (y;;) has the same lattice structure as the
population: we may therefore use (6) to relate the two sets of parameters. For example, if
we write the §-parameters for the population as (£, : @ € L(IT)) and those for the sample
as (&, : a € L(IT)), Table 3 shows that

E,3) =N3'[nEw3 + (Vo= n2)E (23] ®)
In other words

E{;E ; Ek: Oik—Yi.=Y.x +Y...)2}

(n—D(ns—1)4
mz 2 2 (711 K—MNi-——MN__x+ 17___)2

(Nz nz)
Nle(Nz -1)(N;—-1) ; §,: % Mk = M- — N+ 112)%

where we are using . and - to denote the sample and population averages respectively. If
the array 7 were random with zero mean, we would simply enclose an expectation
operator around the right-hand side. Similarly (7) shows that & 2 = nsf 1,2) + f1.2,3),
sample and population f’s, and y’s, coinciding because M = L* = L(II) and neither set of
parameters directly involves the sizes of the arrays.

The foregoing example is a regular sample in the sense that U =[], U,, where U, c T,
for p in I1. Using the results and notation of § 2.2 with n, = |U,| and N, = |T,,| for p in I,
it can be shown that, for a regular sample, the coeﬁiaent of & in the expansion (6) of
&Y is bg,, which is equal to

(g/Ng) I (1-n,/N,) ©)

PEBm\x

if @ =B, and zero otherwise. This formula is given (in words) by Cornfield & Tukey
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(1956) and may be used to derive the coefficients in (8). The first proof was given by
Haberman (1975, Th. 2).

Example (cont.). Suppose that our rows and sub-rows are blocks and plots,
respectively, and that our columns correspond to treatments. Then we may regard our
initial sampling 1y as the selection of n;n, experimental units, in n; blocks of n, plots per
block, together with n; treatments. Now put n, =r and suppose that n,=n;=v, and
allocate treatments to plots in such a way that plots in the same block receive different
treatments, all such allocations being equally probable. There are many ways of doing
this; we are in effect choosing a complete block design at random. As before, the labelling
of the sample by i, j, k is important, and we do not want this labelling to destroy the
relationship of having the same treatment. Thus we denote a complete block design by
the function 8, where 0(i, k) =j if treatment k is assigned to plot j of block i. This
procedure now defines a doubly-indexed array 7,y 66,k)w,x) Which is a random
(1/v)th fraction (subject to certain constraints) of our originally selected sample.
However, it is easy to check that this (combined) sampling procedure still satisfies (*): for
example,

P(6(G, k)=j| 6@, k) =j)=v""
whenever i #i’, and so

Py (i) =1', o', 8", k) =T, ¥s(k) =K [ 9:1(i) =1, ¥(i, 6(, k) =J, 3(k) = K)

is equal to 1/(r — 1)v whenever [ #1' and i #i'. Note that, if we had replaced 8 by the
more natural function 6* allocating treatments to plots, so that 8*(j, j) = k whenever
6(i, k) =j, and obtained the array

Nwr @O ws0* @)
then our combined sampling procedure would not have satisfied (*). This illustrates the
care that is necessary in considering a random sample as a labelled subset.

By the equivalence given at the beginning of the section, we may regard the sample as
being the first r blocks, the first v plots within each of these blocks, and the first v
treatments, with the fraction selected being given by any one complete block design. It is
convenient to use the complete block design in which the treatments have the same labels
as the plots, in every block. Thus, our sampled array is y’, where U={(i, ], j):
i=1,...r,j=1,...,v} and (y,:t € T) has the permutation distribution based on 7. We
showed in § 4 that U is a tractable subset of T and that M = {{J, {1}, {3}, {1, 2, 3}}.
Moreover, R{Y%, =R{Y%, = R{Y) 5), whilst RS, R{Y), RY) and R{} 5, are distinct: thus
L* = M. Equation (7) gives

& =fo f@=Ffayp f&=fe fn=fon+fan+fus
These identities were first derived by Wilk (1955).

The techniques of this and §§ 3 and 4 allow us to re-derive the results of Throckmorton
(1961) and White (1963, 1975) in a unified and direct way which fully exploits the under-
lying combinatorial structure; but see also the Appendix of Neymann et al. (1935). We
make no comments here on the relative merits of these as compared with other

approaches to the analysis of experimental data; a discussion which did justice to the topic
would take us too far from the main subject of this paper.

6 Prediction

Our final topic is the best (that is, minimum mean-squared error linear) prediction of
linear combinations of elements of an array y = (y,:¢t € T) with Ey =0, and known Dy in
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V(II, T), based upon the observation of a finite subarrary y” where Uc T. As an
illustration from many possible results we shall suppose that U=1II,{1,...,n,} is a
regular sample from T =]I, {1, ..., N,} where n, <N, < for p in IT and even here we
shall consider the prediction of only the components (S,y,: a € L(IT), ¢ € U) in (4) above.
In this case it can be shown that the best predictor of S,y, based upon y¥) when t € U is

gsx”% [E%U)]_lbaﬁsgu) (3] (10)

where, for B € L(IT), S§” denotes the matrix introduced in § 2 above for the array y. If
t ¢ U a more complicated expression can be derived. Predictors of more general linear
combinations of elements of y are best derived using (10) and linearity. If any of the N, is
infinite we must pass to a limit in (10) by combining £ with the b,z which, of course,
depend upon the N, for p in II.

Example (cont.). Let us compute the best predictor of y,._—y___; that is, let us
evaluate (10) with IT as in Fig. 1 and o = {1}. Note that the averages we are predicting
are in the population (7-indexed) array, and this will be done using averages from the
sample (U-indexed) array. From (9) we find that b, (1) = nyns/ NNy whilst by o=
nyn3(1 —ny/N;)/N,N; and so

=R

NoN; [(}'i.. _}'.“)/55111)) + (1 _:_{>Y.../§&U)].

If we let N;, N, and N; all tend to infinity and expand the &’s in terms of f’s, this
expression simplifies to
nansf {1}
nanaf qy +naf oy +naf sy + a2

yi.—y.)

+ nanf(l) y
ninansfo + nonsf y + naf g oy Fmnaf sy e f st fazs”

It is clear that the above discussion is essentially what some writers term the estimation
of random effects (Harville, 1976). Our approach places it firmly within a prediction
framework, of unobserved random variables by observed ones, but the two are, of
course, equivalent. As we remarked earlier, matters become more complicated in the
presence of a structured mean value (fixed effects), and we shall say nothing further about
this topic here.

7 Closing remarks

There are many more aspects of this topic which could be addressed if space permitted.
For example, concise rules for forming analysis of variance tables, that is sums of squares,
degrees of freedom and expected mean squares and so on, can be formulated and proved
in the above framework. Other randomization analyses can be obtained with a minimum
of effort, for example, for split plot and other more complex designs. These topics and a
number of others will be expounded together with a fuller exposition of the material we
have surveyed in a forthcoming monograph mentioned in § 1.
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Résumé

On étudie un ensemble de modeles de structure des covariances pour des tableaux multi-indexés (i.e. indexés
par les €léments d’un produit cartésien) de variables aléatoires. Par leurs propriétés au second ordre, ces
modeles généralisent les modeles de composantes de la variance, les modeles de randomisation, ainsi que les
modeles d’échangeabilité. Ils conduisent de fagon naturclle 3 des techniques générales pour effectuer des
décompositions orthogonales, calculer les espérances des carrés moyens et évaluer les autres quantités
intervenant dans I’analyse de variance de ce type de tableaux.

[Received April 1986, revised March 1987)
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John Tukey connected the theory underlying simple random sampling
without replacement, cumulants, expected mean squares and spectrum
analysis. He gave us one degree of freedom for nonadditivity, and he
pioneered finite population models for understanding ANOVA. He wrote
widely on the nature and purpose of ANOVA, and he illustrated his approach.
In this appreciation of Tukey’s work on ANOVA we summarize and comment
on his contributions, and refer to some relevant recent literature.

1. Introduction. Most (9/15) of John Tukey’s contributions to analysis of
variance (hereafter ANOVA) can be found in Volume 7 of The Collected Works of
John W. Tukey [17]. Also in that volume are two items which will be of interest
to readers of this paper. One is a six-page foreword to the nine collected papers
by John Tukey himself. The other is an historical introduction to and remarks
on the roles of analysis of variance, and some brief comments on the individual
papers by the volume editor, David R. Cox. However, Tukey being Tukey, there
is no substitute for reading the papers themselves. Every one of them advances
our knowledge, at times dramatically, while seeming to be no more than a lucid
exposition from first principles of some well-established part of our subject. There
are exceptions to this last statement.

John Tukey’s main published contributions to ANOVA were made in a little
over a decade, from 1949 to 1961. They constitute approximately 20% of his
output over this period, and so about 5% of his total output. In subject matter
these papers range from the foundational to the computational, from the algebraic
to the interpretational, and contain some strikingly original views of the topics he
discusses. How many of us see a clear connection between finite-population simple
random sampling as in books on sampling, Fisher’s k-statistics and cumulants
for calculating moments of sample moments, the moments of mean squares in
ANOVA tables and the arithmetic of spectrum analysis? At the same time as he
was clarifying the analysis of variance qua variance, he highlighted the importance
of scale to the notion of interaction in the analysis of means, and gave us a tool
for identifying and removing removable nonadditivity. He also showed us how
to analyze a complex multifactorial data set; indeed in no fewer than four of the

Received January 2002; revised March 2002.
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Key words and phrases. Odoffna, ANOVA, moments, cumulants, k-statistics, polykays, vari-
ances, components of variance, mean squares, factorials, interactions, pigeonhole model.
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papers below we get his views on the nature and purpose of ANOVA. It was much
broader than the usual one which focusses on testing.

In my opinion much of Tukey’s work on ANOVA is underappreciated, and
much of that which was appreciated at the time has been forgotten. He laments
[17, page lii], wrongly as it turns out, “Perhaps regrettably, I am not aware of very
much that extends papers 5, 6, 7, and 9” (of [17]). Some of his work on ANOVA,
for example, his “dyadic ANOVA” and his “components in regression,” was never
followed up. Neither of these titles scores a hit (with Tukey’s meaning) in Current
Index to Statistics. Fashions change, and the foundational worries or solutions of
one generation of statisticians can cease to be of interest to a later generation. It
is for this reason as well as to celebrate Tukey’s genius that it is a real pleasure
to be able to remind readers of his wonderful contributions to ANOVA, including
creating the abbreviation itself.

2. ODOFFNA. How we will miss Tukey’s neologisms. His one degree of
freedom for nonadditivity (ODOFFNA) paper [2] is perhaps his best-known and
most striking contribution to the analysis of variance and needs little introduction
here. Whereas others had paid attention to nonconstancy of the variance or
nonnormality of the “errors” in ANOVA, Tukey was concerned with nonadditivity.
Explaining his ideas in the context of a singly replicated row-by-column table,
he showed how to isolate a single degree of freedom from the “residual,” “error”
or “interaction” sum of squares (“call it what you will” he said), and so test the
null hypothesis of additivity using a statistic which gave power against a restricted
class of multiplicative alternatives. The statistic was motivated by the idea of a
power transformation; it was illustrated graphically through three examples, and
some elegant distribution theory was presented. This is a gem of a paper and amply
deserves its place in the texts [see, e.g., Scheffé (1959) or Seber (1977)]. Tukey’s
later papers [5, 13] on the same topic present no new ideas; rather they illustrate
the earlier ideas in more general contexts, something he pointed out was possible
in [2].

What has happened to ODOFFNA since the 1960s? These days most people
concerned about the possibility that their linear model might better satisfy the
standard assumptions of additivity, homoscedasticity and normality of errors after
a transformation will make use of the Box and Cox (1964) theory. However, their
approach to transformations is not a complete substitute for ODOFENA, as can
be seen in Tukey’s [14] discussion of additive and multiplicative fits to two-way
tables (see especially [14], Section 10F). It is likely that we will continue to extract
ODOFFNA in new contexts in the future, and for more on this, see Tukey’s own
comments on the follow-up to ODOFFNA in his foreword to [17].

3. Complex analyses of variance: general problems [11]. In[11] Green and
Tukey made a number of general points concerning complex analyses of variance
in the course of analyzing a specific experimental data set. Some of the points are
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familiar, some were new at the time but most are still of interest today. The authors
explain that the purpose of their analysis is “to provide a simple summary of the
variation in the experimental data, and to indicate the stability of means and other
meaningful quantities extracted from the data.” They intended their approach to be
in opposition to the view that the sole purpose of ANOVA is to provide tests of
significance. It was aimed at researchers in psychology and followed a review of
the use of ANOVA in that field a few years earlier.

The experiment is from psychophysics and involves six factors: sex (S, two
levels), sight (1, two levels), persons (P, eight levels), rate (R, four levels), weight
(W, seven levels) and date (D, two levels). All of S, I, R, W and D are crossed,
while P is nested in a balanced way within § x I so we may describe the factor
relationships by the formula ((§ x I)/P) x R x W x D. The response was a
difference limen, a kind of threshold of perception, which could be expressed
as a difference in weights, a squared difference in weights, a ratio of weights,
a logarithm of a ratio of weights or even a response time.

One novel aspect of this paper is that the authors discuss not only what scale to
use for the dependent variable; that is, possible transformations, but also just what
the dependent variable should be in that context: a difference, a squared difference,
a ratio, a log ratio, etc. After an initial analysis with one response variable, they
choose another and obtain a new, and to their minds better, analysis. Another
novelty at that time was the careful discussion of the nesting and crossing between
factors and their implications for the analysis. This was no doubt inspired by the
discussion of these matters Tukey and Cornfield gave in [8], which was published
some four years before [11].

Perhaps the most interesting part of this paper is the extended section “Variance
components and the proper error term” and the section “Variance components in
the illustrative example” which follows it. The first of these discusses an example
simpler than the actual experiment and draws heavily on material concerning the
pigeonhole model in [8]; see Section 4.3. Then they turn to the experiment and
things get interesting when they seek to impose a sampling model on the factors.
The four levels of rate (50, 100, 150 and 200 g/s) and the seven levels of weight
(100, 150, ...,400 g) are admitted to present a problem for their pigeonhole
model. Are they exhaustive samples from finite populations, that is, fixed; are
they small samples from large populations of levels, that is, random; or are they
something else? Whereas it was easy for them to view sex and sight (blind or not)
as fixed, and person as random, the choice for R and W was far less obvious. After
some discussion of various options, including a mention of using polynomials to fit
responses to rate and weight, they decide to regard R and W as random “although
we recommend against this procedure [for scaled variables] in general.” The ideal
that one ANOVA theory fits all cases seems hard to live up to, even when you are
the creator of the theory.

As soon as all factors are assigned the category fixed or random, it is possible
to write out all 39 expected mean square lines of the ANOVA table, and this they



262 5 Anova

T. P. SPEED

do. Next follows an illuminating discussion of “aggregation and pooling” of lines
in the table, which, when implemented with the illustrative data, reduces the 39
lines to 15. They make use of a modified version of a procedure of Paull (1950)
which Tukey highlights in his Introduction to [17] and seems to be of interest
today. There are two useful graphical representations of the relative contributions
of the different sources of variability, one in two dimensions which is especially
appealing, but on the whole there is relatively little plotting of the data, a large
contrast with Tukey’s later work, for example, in [14].

A later analysis of this same data set can be found in Johnson and Tukey [15].
Looking back on this paper after four decades, and bearing in mind all that
Tukey wrote on ANOVA before and after that time, one cannot help but be
struck by how little use he made in this paper of the processes and procedures
he recommended when considering such an analysis. Referring to matters to
be discussed in Section 4, he made no attempt to assign standard errors to his
estimated variance components, under either normality or any other assumptions,
the scientific purpose of the experiment was nowhere mentioned, the situations or
populations to which inference was to be made were nowhere mentioned, even
the means he calculated and plotted were not assigned any measures of their
stability, something that was stated at the beginning of the paper to be one of the
major purposes of ANOVA. Granted this was an expository paper with a limited
objective, and probably already long by the standards of the journal, but I think the
point remains that it is hard to put Tukey’s ANOVA theory into practice, even for
Tukey himself.

4. Some moment calculations. Tukey wanted to derive average values and
variances and later a third moment of consider later. He tells us [17, page liv]
that his first attempt at deriving the variance of the between variance component
in an unbalanced one-way design took five or six full days “using old-fashioned
clumsy methods.” He was “convinced that it ought not to be so hard” and so “went
looking for better tools, and eventually came out with the polykays.” Polykays are
generalizations of Fisher’s k-statistics and we now outline the main points from
the papers in which they were introduced.

4.1. Some sampling simplified; keeping moment-like computations simple
[3, 6]. In 1929 Fisher introduced k-statistics as unbiased estimators of cumulants
and a computational technique which radically simplified much previous research
on moments of moments. It would take us too far astray to describe his technique
in detail [see Speed (1986a)], but we can describe the simplest of his results in
this area as soon as we recall the following well-known facts. If X, ..., X, are
i.i.d. random variables with common first two cumulants «; and «, (the mean and
variance, respectively), then

1 - 1 -
k==Y X; = = . —X)?
=22 Xi=X and k=-—=3(Xi - X)
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satisfy
Eki =k; and Ek; =«k).

Now the k’s are Fisher’s k-statistics, that is, unbiased estimates of the correspond-
ing cumulants. The key results of Fisher (1929) were the general definition of
k-statistics and a procedure for calculating their joint cumulants whose core was a
rule for calculating the coefficients of lower order k-statistics in an expansion for
the product of two k-statistics. The relationships above are the simplest relevant re-
sults: the expected values or first cumulants of the first two k-statistics. Next would
come the results which come from replacing E by var or covar; that is, replacing
first by second cumulant in the sample-population calculation.

We all know that var(k;) = «2/n, but what about var(k;)? This result, first
derived by Gauss, is not quite so well known, but turns out to be

var(kp) = K22 —+ -1-K4.

n—1 n
Deriving this last fact is already messy enough to warrant thinking very carefully
about the algebraic formulation one adopts, and any desire to obtain more general
expressions of the same kind focusses the mind greatly on the same issue. Fisher
had his approach, Tukey simplified it as we shall see and it can be simplified yet
again; see Speed (1983) and McCullagh (1987).

Tukey’s main aim in [3] and [6] was to extend these results (and others like
them) to the finite population case. Apparently unknown to Tukey, this task had
been begun by Neyman in 1923 [see Neyman (1925)], though far less elegantly
or generally. To achieve his aim Tukey extended Fisher’s entire machinery.
He named the tool he developed polykays—multiply-indexed generalizations of
k-statistics—later noting that these same functions had been introduced earlier by
Dressel (1940) in a paper that was not noticed at the time. For Tukey polykays of
order or weight r are indexed by partitions of the natural number r. For example,
there are two of order 2, indexed by (1, 1) and (2); three of order 3, indexed by
(1,1, 1), (1,2) and (3); four of order 4, indexed by (1,1,1,1), (1,1,2), (1,3)
and (4); and so on. Fisher’s k-statistics are the single subscript versions of the
polykays, (1), (2), (3), (4) etc., hence Tukey’s name. In what follows we drop the
commas and parentheses in the partition notation, writing 1, 11, 2, etc.

How are polykays defined in general? To do this Tukey made use of an
auxiliary class of symmetric functions also labelled by partitions, which he called
symmetric means or, more simply, brackets, denoted by (1), (11), (2), etc. These
functions had the appealing property of rather transparently being “inherited on the
average,” which means that the average of the sample function over simple random
sampling without replacement from a finite population was just the corresponding
population function. Tukey avoided using the term “unbiased” as (so he said)
“there are now so many kinds of unbiasedness!” The sample mean

=3
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is clearly inherited on the average, as is

(11)=n(n-1)

Z XiXj.

i#]

The value of brackets lies in the fact that [3, page 111] “every expression which is
(i) a polynomial, (ii) symmetric, (iii) inherited in the average, can be written as a
linear combination of brackets with coefficients which do not depend on the size of
the set of numbers involved.” As one illustration we give the following well-known
and useful representation:

1 1 1

Py DU e D i PO
i#]
where the last two terms are transparently inherited in the average, neatly proving
that the first term is also, a standard fact from sampling theory. Tukey would write
this last relationship (2) = (2) — (11), and in general he needed a rule giving the
coefficients of brackets in the expansion of his parentheses (polykays). As he said
([3], page 124) “the single-index brackets have the coefficients for moments in
terms of cumulants (given numerically by Kendall [(1943), Section 3.13] up to the
10th moment). The coefficients of brackets with several indices can be found by
formal multiplication.”

How do we use all this machinery? Elegant though it is, there is still some hard
work: the multiplication tables need to be derived. Tukey derived his own, but by
the time of publication of [3, 6] comprehensive tables had independently appeared
[Wishart (1952a, b)]. A simple instance of a multiplication rule is

%) 2P =)+ 1)+ 22
n n—1

Let us see how this leads very painlessly to the main result of Neyman (1925).
First, note that the preceding identity has a version connecting population
k-statistics which is of the same form, but with n replaced by N. Next recall that
the polykays (22), (4), etc. are all “inherited on the average.” We now take the
expectation (i.e., average) of (x) over all samples and subtract from the result the
population version of (x). This leaves us with
1 1 1 1
@)=z - 5|+ 77 - 5 |-

which is the formula Neyman worked hard to obtain. This was indeed “sampling
simplified.” Note also that if we let N — oo (so-called infinite population) and use
the easily proved fact that, in this case, (22) is just (2)2, we obtain Gauss’ result.

Tukey certainly simplified sampling. He demonstrated clearly that indeed finite
populations are simpler to deal with, and more powerful, and he now had the
machinery to carry out certain calculations in ANOVA.



5 Anova 265

TUKEY: ANALYSIS OF VARIANCE

Later developments cast Tukey’s work in the framework of tensors [cf. Kaplan
(1952) and, most recently within the general theory of symmetric functions, Speed
(1986a)]. The gains from so doing are modest, but I think definitely worthwhile.
One consequence of the tensor formulation is that some of Tukey’s formal
calculations (e.g., his symbolic o-multiplication) cease to be “tricks.” Another
is the greater simplicity which comes from allowing all random variables to be
potentially different. For example, instead of calculating variances of variances, we
calculate covariances of distinct covariances, and obtain variances by appropriately
equating arguments. With this slightly greater generality, (x) above becomes
[Speed (1986a), page 43]

(12) ® (34) = (12)34) + %(1234) + n—i—I[(13|24) + (14]23)],

where 1, 2, 3 and 4 all label distinct variables. This simplification removes certain
multiplicity factors and then reveals the coefficients defining polykays to be values
of the Mobius function over a partition lattice, which I think is a real step forward;
see Speed (1983) and McCullagh (1987).

Where are polykays now? There was a little theoretical development of them
after Tukey’s work, but he left no major problems unaddressed. I extended them
to multiply-indexed arrays in Speed (1986a, b) and Speed and Silcock (1988a),
and used the extensions to generalize the calculations of Tukey discussed in the
next section. Apart from my own work the most recent references to polykays are
Tracy (1973) and, an application of them, McCullagh and Pregibon (1987). To my
knowledge there have been no other publications concerning polykays since then.
In short, it seems that after about 25 years of life, polykays have been dead or
sleeping for 25 years. Apparently they have served their purpose, though I have no
doubt that they will be resurrected, awakened or reborn at some time in the future,
when another problem comes along for whose solution they are the natural tool.

4.2. Variances of variance components [7, 9, 10]. Why did Tukey go to all
the trouble of inventing polykays and their calculus, and what did he learn from so
doing? Giving as one purpose of the analysis of variance “to estimate the sizes of
the various components contributed to the overall variance from the corresponding
sources,” he wanted “to obtain formulas for the variances of the natural estimates
of these variance components.” Along with Gauss, Fisher and many others, Tukey
wanted to go beyond normality, but almost uniquely he did so in dispensing with
infinite populations. He regretted ([7], page 157) that he still had to leave “the
customary (and dangerous) independence assumptions” concerning the terms in
his linear population models. This answers the question “Why?” Let us now
see some of what he learned in a simple case: the balanced single (or one-way)
classification. Tukey’s model for this takes the form

xij=ﬂ+77i+wij’ i=1,...,c,j:l,...,r,
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where the {7;} are sampled from a population of size n with k-statistics ki, k2, . ..,
the {w;;} are from a population of size N with k-statistics Ky, K2, ... and the
samplings are independent and order randomized. If we denote by B and W the
usual between-class and within-class mean squares, respectively, with expectations
ks and K>, then Tukey showed, among other results, that

var(B) = (% - %)ka, +2I: ! - —J—]kzz

c—1 n-1

4 2(rc—1)
kK Ky,
+r(c—1) 202 rZe(r— (c—1) 2
2
B,W)y=———K>»,
cov( ) re(r—1) 22
(W)"[l lle +2[ — ! :IK
var(W) = | — — — | K4 -0 N_1 2.

The remainder of [7] consists of more formulae of this kind, derived for
other variance component models: row-by-column classifications, Latin squares,
balanced incomplete blocks and more general balanced models.

Paper [9] considers the special, more complicated case of an unbalanced one-
way classification. One novelty here is that there is no single compelling estimate
of the between-class component of variance, and so Tukey considers a class
of estimates involving weights which need to be specified. He then derives the
variances and covariances as before, generalizing those just given, and presents
numerical examples. Lastly, paper [10] does what its title says: it presents the third
moment about the mean, that is, the third cumulant of the quantity W given above.

What can we learn from or do with such formulae? In the first place, we can
obtain qualitative insights by comparing the general finite population results with
the special case of infinite normal populations. There k4 and K4 vanish, while
kop and Ko, are k% and K22, respectively, and of course N = oco. In this case the
results are familiar, and the extent to which the normal variances for the estimated
variance components are too small or too large could, in principle, be examined.
Interestingly, Tukey does not present formulae giving unbiased estimates of either
the individual terms in his expressions for the variances of the estimated variance
components, or for the variance expression as a whole. I would be very surprised
if he did not have such formulae, for example, for k4 and K4 and k7 and K»»
above, but he makes no mention of them. Without them, his aim of calculating
estimates of the precision of estimated variance components under these more
general assumptions must remain unfulfilled.

What has been done since the 1950s in this area? There has been more work
on the topic of variances of estimated components and variance; see, for example,
Harville (1969), but there, as in all other such cases that I know, the calculations
are carried out under an assumption of normality. In some of my own work [Speed
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(19864, b), Speed and Silcock (1988a, b)] I have tried to extend Tukey’s work to
ANOVA models which are not built up additively from independent components.

4.3. Average values of mean squares in factorials [8]. This is an interesting
and important paper: broad in coverage, profound in its analysis, beautifully
written and elegant in its dealing with messy algebraic details. It is arguably
Tukey’s most important contribution to ANOVA. By the early to mid-1950s it
was becoming clear that the concise description in Eisenhart (1947) of models
for ANOVA did not provide a foundation for all uses of ANOVA. The now well-
known mixed-model ambiguity concerning the interaction component of variance
when (say) rows are “fixed” and columns “random” had emerged: in some linear
model formulations this component appeared in the expected mean square line for
both rows and columns, while in others it did not. It was apparent to many that
the combining of linear models and ANOVA was not as simple as might have
seemed at first. Neyman and his Polish colleagues found this out the hard way
in 1935, but made no later attempt at a broad synthesis. Kempthorne (1952) in
Ames, building on the work of Neyman and co-workers, Fairfield Smith in Raleigh,
Tukey in Princeton, Cornfield at the National Institutes of Health in Bethesda and
no doubt others elsewhere all sought to devise models of differing breadth and
flexibility which would specialize appropriately under different assumptions, and
lead to the desired analyses and inferences. Throughout all this, Fisher was silent
on the topic, apparently holding to his view that “the analysis of variance is ... a
convenient method of arranging the arithmetic.”

Anyone who reads the five sections comprising the Initial discussion of [8]
quickly realizes that providing a general framework for ANOVA is no mean task.
The subsequent six sections spelling out Cornfield and Tukey’s approach prior to
their presenting any average values shows that theirs is not an easy resolution. So
it should come as no surprise when I say that the situation today is hardly any
better than it was then in the mid-1950s. Cornfield and Tukey’s paper should be
essential reading for all those who care about these matters. But it is not read, and
neither their approach nor any other has taken root among the legions of users of
ANOVA and linear models. No treatment of the issues that prompted them to write
that paper has yet gained acceptance; see below.

What are the issues? Although in most of his writings on ANOVA Tukey
emphasized estimation of variance components above significance testing, this
paper is very much motivated by testing. Expressions for average values of mean
squares in factorials are the primary basis for testing: they tell us which mean
squares can usefully be compared with which; that is, they dictate the choice of
error term. So attention focuses sharply on the model assumptions leading to these
averages. As Tukey and Cornfield point out in Section 2 of their paper, the choice
among assumptions is important and is not simple. It includes but goes beyond
empirical questions about the behavior of the experimental material. Assumptions
must also depend on the nature of the sampling and randomization involved in



268 5 Anova

T. P. SPEED

obtaining the data, and the purpose of the analysis, as expressed by the situations
or populations to which one wishes to make statistical inference.

Cornfield and Tukey’s way ahead is by the use of what they call a pigeonhole
model, in which combinations of experimental factors (rows, columns, etc.) define
pigeonholes containing a finite or infinite population. If, like them, we illustrate
ideas with the replicated row-by-column classification, then their assumption
is that a sample of r rows is drawn from a possible R, and a sample of
¢ columns is drawn from a possible C. These rc intersections define the pigeon-
holes which are the cells of the actual experiment, and from each of the rc cells
a sample of n elements is drawn. “All the samplings—of rows, of columns, and
within pigeonholes—are at random and independent of one another.” This is their
approach. They discuss at considerable length the way in which an equivalent
linear model can be defined, making it clear just how different their linear model
was from those previously used (and used today). Of particular significance was
their notion of “tied” interaction, their avoidance of what they term the “special
and dangerous” assumption of independence of the variation of interaction terms
of main effects terms.

After their lengthy preliminaries it is almost a relief to get to the algebraic
part of the paper: definitions of components of variance and rules for calculating
what we now term expected mean squares. They discuss two-way and three-
way designs in detail and give rules for designs with factors nested or crossed
in arbitrary ways. There is an interesting discussion of the nature of the various
proofs then extant of the formulae. At that time there were two types: “Proofs using
special machinery or indirect methods (e.g., symmetry arguments and equating
of coefficients for special assumptions),” the approach preferred by Tukey, and
“proofs using relatively straightforward algebra,” which was the preferred way of
Comnfield. Neither of these was particularly effective in full generality.

The mathematical content of [8] has been revisited at least twice since 1956.
The first time was by Haberman (1975), in a dense paper which does not seem to
have been widely read. He makes effective use of the calculus of tensor products
of vector spaces to give very concise proofs of the main results. A quite different
approach was used in Speed (1985) [see also Speed and Bailey (1987)] (also not
widely read), where the discussion was expressed in terms of the eigenvalues of
the associated dispersion matrices. Other, less general formulations can be found in
books on linear models and ANOVA, for example, Searle, Casella and McCulloch
(1992).

As suggested earlier, all attempts at providing a general framework for ANOVA
since 1956 should have come to terms with the material in [8]: they should either
incorporate it or suggest an alternative approach. There have been many such
attempts over the last 45 years, with Nelder (1977) providing the most far-reaching
alternative, building on Nelder (1965a, b). This paper and especially the discussion
of it are well worth reading, especially today. The most recent discussions of
the “mixed models controversy” [see, e.g., Schwarz (1993) and Voss (1999) and
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references therein] refer to neither Cornfield and Tukey, Kempthorne, Nelder nor
any other of the earlier generation of researchers in this area. Plackett (1960) gives
an excellent review of this early work.

Tukey’s contribution to the discussion of Nelder (1977) is particularly inter-
esting, in part because it reveals so clearly his distrust in models. It should be
read in full, but here are some tantalizing excerpts, all the more relevant when
one bears in mind that all recent discussion of this issue is a discussion of mod-
els:

I join with the speaker in hoping for an eventual and agreed-upon description. I hope
the present paper will help us approach this ideal state, but I must say that it has not
brought us there.

Three types of variability arise in almost any question about a set of comparative
measurements, experimental or not: measurement variability, sampling variability and
contextual variability.

A major point, on which I cannot yet hope for universal agreement, is that our focus
must be on questions, not models.

One conclusion I draw from such examples is this: Models can—and will—get us into
deep trouble if we expect them to tell us what the unique proper questions are.

I close this section with some personal comments, but before I do so, I should
confess that I too have attempted to publish a description of ANOVA which I
had hoped might have become “agreed-upon.” It did not even get accepted for
publication. However, I think I represent more than myself when I say that, for
all my admiration of [8] and what it attempted to do, that solution was simply
too far away from the world of linear models most of us inhabit. In my view, and
I suspect that of many others, linear models are most readily specified through a
model for the expected values and a model for the variances and covariances of the
observables. After all, we are simply specifying (apart from the values of certain
unknown parameters) the first two moments of our observables. Had their approach
been in these terms, I believe it might still be discussed. Nelder (1977) had a
related objection when he pointed out that randomization models (involving finite
populations but random effects) could not be seen as a special case of the approach
in [8]. The matter of providing linear unbiased estimates of quantities of interest
figured nowhere in [8], and I believe this reduces many people’s willingness to
see its solution as general and relevant to their use of linear models and ANOVA.
But perhaps the real reason that the description in [8] is not yet agreed upon is
this: the majority of statisticians these days (perhaps even 50 years ago) are not
interested in the issues that concerned Tukey, Cornfield, Kempthorne, Fairfield
Smith and Neyman and co-workers, before them, and Nelder and others, including
me, after them. Perhaps it is just too hard, connecting assumptions and models to
the subject matter, to the data collection process, to the questions one is asking
and the kinds of answers one seeks. “Does it really matter? Does it make any
practical difference?” I get asked. It is so much easier discussing models and
parameterizations.



270 5 Anova

T. P. SPEED

5. Other ANOVA papers by Tukey.

5.1. Dyadic ANOVA [1]. This paper was based on a talk Tukey gave in
November 1946, and is more interesting for what it tells us about the development
of his thinking concerning ANOVA than for the material related to its title.
Ostensibly about ANOVA for vectors, that is, what we would now call multivariate
analysis of variance (MANOVA), the paper also contains a wealth of interesting
material only marginally related to that topic. The reason he wrote it, he says,
was that other accounts of MANOVA concentrate too much on tests and too little
on that which is most useful and revealing in ordinary ANOVA. It is impossible to
resist passing on one of his introductory remarks, presumably aimed at the average
reader of Human Biology. He writes:

It is a maxim of arithmetic that it is not proper to add 2 oranges to 1 apple; this is good
arithmetic but may be poor vector algebra. For

(2oranges, 0) 4 (0, 1 apple) = (2oranges, 1 apple)
is a meaningful and useful statement.
Later, he goes on:
If we are to have an analysis of variance, we must have squares, and the solution is

4orange2 2 (orange) (apple)
2 _
(2 oranges, 1 apple)” =
2 (orange)(apple) 1 apple2

The paper includes a concise discussion of components of variance, initially in
the context of Eisenhart’s (1947) models, but also including the finite population
pigeonhole models which were to play such a big role in his later work. Rather
surprisingly in view of his later disdain for F-tests, and his stated motivation for
writing the paper, he makes a start on tests of significance for dyadic ANOVA, that
is, the distribution of eigenvalues in 2 x 2 MANOVA. He even attempts to give
fiducial intervals for quantities of interest, but concludes that more distribution
theory is required.

A topic not obviously related to dyadic ANOVA is what he calls choice of terms,
that is, choice of the response variable to be analyzed in a given experiment.
He castigates Fisher for not paying more attention to this point, illustrating it
dramatically by carrying out the same analysis on some hydrogen spectrum
data using both wavelength and its reciprocal, wave number, as responses. In
a fascinating analysis foreshadowing the power transformation underpinnings of
ODOFFNA, he uses his newly developed dyadic ANOVA to find that linear
combination of a response variate and the variate squared which minimizes the
ratio of row plus column sums of squares to interaction sum of squares in an
unreplicated row-by-column array. Illustrating the method on one of the data sets
which he uses in his later paper on ODOFFNA, Tukey shows the considerable
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gain in efficiency he achieves with his transformation. The eigenvalue problem he
solves is reminiscent of canonical variate analysis, and he ends that discussion with
some interesting speculations on alternative criteria to optimize in the definition of
discriminant functions.

A further point of interest in this paper can be found in the Appendix, headed
“Two identities and a lemma.” The lemma gives the variance of the average and the
expectation of the sample variance of a set of variates which have different means
and different variances, but a common covariance A, a simple enough variant on
the result which is well known for i.i.d. variates. He goes on to apply this result to
his pigeonhole models, illustrating once more what was to be a recurrent theme in
his statistical research: a desire to weaken standard assumptions wherever possible.
He finds that, under these more general assumptions, the formulae are essentially
ur;changed, with a common variance 0% being replaced by the average variance
ol — A

5.2. Components in regression [4]. This paper is about simple linear regres-
sion when both variates are subject to “error,” and the use of instrumental variates
in this context. The fields of application discussed include precision of measure-
ment, psychology and econometrics, and, as is so often the case with Tukey, the
paper demonstrates the prodigious breadth of his knowledge. The connection with
ANOVA is slight, really only arising because he discusses an example in which
measurements are taken in replicate. As he says, “We could have avoided mention
of variance components . . . since we only deal with the simplest sorts . . . between-
vs-within or regression-vs-balance. However, we have chosen to bring them in for
two reasons. Mainly to set the analysis in terms which can easily be carried over
to more complicated analyses where the correct procedure might otherwise be a
mystery. Secondarily, to stress the analogy with variance components for a single
variate.” The paper is not easy reading and, since its connection to other material
here is not great, we do not discuss it any further.

5.3. ANOVA and spectral analysis [12]. As might be expected from its
context—the discussion of two papers on the spectral analysis of time series—
[12] is much more about spectral analysis than ANOVA. It was placed in one of
the time series volumes [21], not in [17], yet I want to mention it here, in part for
its influence on me personally. What Tukey makes very clear in this discussion is
that spectrum analysis, with a line for each frequency, is ANOVA. More fully, he
says “the spectrum analysis of a single time series is just a branch of variance
component analysis.” This was one of his inspired connections which proved
illuminating in both directions. It is clear from his remarks that Tukey supposed
that his statistical audience knew something about ANOVA and could read [8] if
they wished, and that this would enlarge their understanding of spectrum analysis,
the topic of the papers. What was probably not apparent at the time was that there
were people, myself included, for whom spectrum analysis was straightforward,
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but variance component analysis a mystery, and that his connection would be
helpful to such people in the other direction. For evidence of the impact of this
paper on me, see Speed (1987); for a valuable introduction to this paper, see the
comments by Brillinger in [21].

5.4. Toward robust ANOVA [16]. This paper offers “a recipe for robust/
resistant analysis of variance of data from factorial experiments in which all factors
have three or more versions.” Its motivation is eloquently explained as follows:

Analysis of variance continues to be one of the most widely used statistical methods.
Not only the form of the analysis of variance table with its lines of mean squares and
degrees-of-freedom associated with each of several sorts of variation, but the entire
analysis, including confidence statements, is classically supposed to be determined by
the design—the hierarchical structure, conduct, and the intent of the experiment—
alone. The behaviour of the data itself is, classically, not supposed to influence how
its description is formatted. Hardly an exploratory attitude. ... In this account, rather
than using a data-free structure to define our procedure, we provide a further stage
of responding to the data’s behaviour, one where summarization is based on a robust
alternative to the mean.

The recipe is explained by its application to a particular 5 x 3 x 8 array of data
from an experiment concerning the hardness of gold alloy fillings. It begins with a
pre-decomposition, this being a multiway analogue of median polish, and proceeds
through the identification of so-called exotic entries, to a re-decomposition dealing
with these, and a robust analysis of variance with the familiar sums of squares
and degrees-of-freedom calculated from the re-decomposition. Next, a process of
downsweeping is carried out, this being a variant of the pooling of mean squares
which we met in Section 3 above, and the recipe concludes with the calculation of
error mean squares, standard errors and confidence statements.

5.5. Methods, comments, challenges [18-20]. Tukey expounded and dis-
cussed ANOVA in a number of his many overview papers, and I will single out
three of these for brief mention.

In [18] he goes over “some methods that form sort of a general core of the sta-
tistical techniques” that were used at that time. He aimed “to supply background:
statistical, algebraic and perhaps intuitive,” and he succeeded admirably. The ex-
position could hardly be improved upon, indeed is better than most we see today,
in that it contains possibly the first instance of the “analysis of variance diagram”
mentioned in the discussion of paper [11] in Section 3 above. This diagram surely
deserves to be more widely used. Also noteworthy is a remark which may well be
the first appearance in print of the abbreviation ANOVA.

In [19] Tukey offers 37 methodological comments about statistics on topics
ranging from exploration versus confirmation, re-expression and causation, to
spectrum analysis, and naturally he has something so say about ANOVA. Relevant
comments concern regression and analysis of variance, nonorthogonal analysis and
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MANOVA, and can only be described as stimulating and provocative. For example,
in seeking a replacement of conventional MANOVA: “We could calculate principal
components, but they are not likely to be simply interpretable. So let us not”; and:
“Much the same could be said of ‘dust bowl empiricists factor analysis’.”

In Section 21 of the last of these three overview papers [20], Tukey foreshadows
the issues dealt with more fully in [16] discussed above. We see clearly how
keen Tukey was to unify his understanding of and approach to ANOVA with his
robust/resistant and exploratory data analysis paradigms. While [16] is a fine start,
it seems clear that there is much more to be said on this unification.

6. Concluding remarks. John Tukey was an extraordinarily able and creative
statistician. He made a number of lasting contributions to ANOVA: to our
understanding of what it is and what it can do for us; to the algebraic
and computational aspects of the subject; and, perhaps most important and
characteristic to showing us how to go beyond the usual assumptions. The impact
of all this work on the subject today is less than it should be, perhaps in part
because Tukey set his standards rather high. However, his papers are all there for
anyone to read, and if this appreciation of them encourages one person who would
not otherwise, to do so, its purpose will have been achieved.
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Chapter 6
Cumulants and Partition Lattices

Peter McCullagh

This is the first paper to appear in the statistical literature pointing out the importance
of the partition lattice in the theory of statistical moments and their close cousins,
the cumulants. The paper was first brought to my attention by Susan Wilson, shortly
after I had given a talk at Imperial College on the Leonov-Shiryaev result expressed
in graph-theoretic terms. Speed’s paper was hot off the press, arriving a day or two
after I had first become acquainted with the partition lattice from conversations with
Oliver Pretzel. Naturally, I read the paper with more than usual attention to detail
because I was still unfamiliar with Rota [18], and because it was immediately clear
that Mdbius inversion on the partition lattice &, partially ordered by sub-partition,
led to clear proofs and great simplification. It was a short paper packing a big punch,
and for me it could not have arrived at a more opportune moment.

The basic notion is a partition ¢ of the finite set [n] = {1,...,n}, a collection
of disjoint non-empty subsets whose union is [n]. Occasionally, the more emphatic
term set-partition is used to distinguish a partition of [n] from a partition of the inte-
ger n. For example 135|2|4 and 245]1|3 are distinct partitions of [5] corresponding
to the same partition 34 1 + 1 of the integer 5. Altogether, there are two partitions
of [2], five partitions of [3], 15 partitions of [4], 52 partitions of [5], and so on. These
are the Bell numbers #&,, whose exponential generating function is exp(e’ — 1).
The symmetric group acting on &), preserves block sizes, and each integer partition
is a group orbit. There are two partitions of the integer 2, three partitions of 3, five
partitions of 4, seven partitions of 5, and so on.

It turns out that, although set partitions are much larger, the additional structure
they provide is essential for at least two purposes that are fundamental in modern
probability and statistics. It is the partial order and the lattice property of &, that
simplifies the description of moments and generalized cumulants in terms of cumu-
lants. This is the subject matter of Speed’s paper. At around the same time, from
the late 1970s until the mid 1980s, Kingman was developing the theory of partition
structures, or partition processes. These were initially described in terms of inte-
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ger partitions [3, 10], but subsequent workers including Kingman and Aldous have
found it simpler and more natural to work with set partitions. In this setting, the
simplification comes not from the lattice property, but from the fact that the family
& ={8,6,,...} of set partitions is a projective system, closed under permutation
and deletion of elements. The projective property makes it possible to define a pro-
cess on &', and the mutual consistency of the Ewens formulae for different n implies
an infinitely exchangeable partition process.

In his 1964 paper, Rota pointed out that the inclusion-exclusion principle and
much of combinatorics could be unified in the following manner. To any function f
defined on a finite partially-ordered set, there corresponds a cumulative function

F(o)= 3 f(7).

<0

The mapping f +— F is linear and invertible with inverse
f(o) =Y m(,0)F(7),
T

where the Mobius function is such that m(7,06) = 0 unless 7 < ¢. In matrix nota-
tion, F = Lf, where L is lower-triangular with inverse M. The Mobius function for
the Boolean lattice (of sets, subsets and complements) is (—1)*~#7, giving rise to
the familiar inclusion-exclusion rule. For the partition lattice, the Mdbius function
relative to the single-block partition is m(t, {[n]}) = (= 1)**~!(#7—1)!, where #7 is
the number of blocks. More generally, m(t,0) = [Ipeq m(t[D],b) for T < o, where
7[b] is the restriction of 7 to the subset b.

Although they have the same etymology, the word ‘cumulative’ in this context is
unrelated semantically to ‘cumulant’, and in a certain sense, the two meanings are
exact opposites: cumulants are to moments as f is to F, not vice-versa.

Speed’s paper is concerned with multiplicative functions on the partition lat-
tice. To understand what this means, it is helpful to frame the discussion in terms
of random variables X', X?,..., X", indexed by [n]. The joint moment function u
associates with each subset b C [n] the number p(b), which is the product mo-
ment of the random variables X[b] = {X': i € b}. Any such function defined on
subsets of [n] can be extended multiplicatively to a function on set partitions by
w(o) =TIpeos u(b). Likewise, the joint cumulant function k associates with each
non-empty subset b C [n] a number k(b), which is the joint cumulant of the random
variables X [b]. The extension of Kk to set partitions is also multiplicative over the
blocks. It is a property of the partition lattice that if f = x is multiplicative, so also
is the cumulative function F' = . In particular, the full product moment is the sum

of cumulant products
u(ln)) =X TT x(®).

O beo

For zero-mean Gaussian variables, all camulants are zero except those of order two,
and the above expression reduces to Isserlis’s theorem [5] for n = 2k, which is a the
sum over n!/(2¥k!) pairings of covariance products. Wick’s theorem, as it is known
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in the quantum field literature, is closely associated with Feynman diagrams. These
are not merely a symbolic device for the computation of Gaussian moments, but
also an aid for interpretation in terms of particle collisions [4, Chapter 8]. For an
account that is accessible to statisticians, see Janson [8] or the AMS feature article
by Phillips [17].

The moments and cumulants arising in this way involve distinct random vari-
ables, for example X2X>X*, never X3X3X*. However, variables that are given dis-
tinct labels may be equal, say X> = X > with probability one, so this is not a limi-
tation. As virtually everyone who has worked with cumulants, from Kaplan [9] to
Speed and thereafter, has noted, the general results are most transparent when all
random variables are taken as distinct.

The arguments put forward in the paper for the combinatorial lattice-theoretic
approach are based on the simplicity of the proof of various known results. For ex-
ample, it is shown that the ordinary cumulant x([n]) is zero if the variables can be
partitioned into two independent blocks. Subsequently, Streitberg [25] used cumu-
lant measures to give an if and only if version of the same result. To my mind, how-
ever, the most compelling argument for Speed’s combinatoric approach comes in
Proposition 4.3, which offers a simple proof of the Leonov-Shiryaev result us-
ing lattice-theoretic operations. To each subset b C [n] there corresponds a prod-
uct random variable X” = [];c, X’. To each partition ¢ there corresponds a set
of product variables, one for each of the blocks b € o, and a joint cumulant
k% = cum{X”: b € c}. One of the obstacles that I had encountered in work on
asymptotic approximation of mildly non-linear transformations of joint distributions
was the difficulty of expressing such a generalized cumulant in terms of ordinary cu-
mulants. The lattice-theoretic expression is remarkable for its simplicity:

k7= Y J[x®),

T:tvVo=1, bet

where the sum extends over partitions 7 such that the least upper bound ¢ V 7 is the
single-block partition 1, = {[n]}. Tables for these connected partitions are provided
in McCullagh [14]. For example, if 6 = 12|34|5 the third-order cumulant k€ is a
sum over 25 connected partitions. If all means are zero, partitions having a singleton
block can be dropped, leaving nine terms

(12345 _ (12345 1 123,45 4] + 135 K2,4[4]

in the abbreviated notation of McCullagh [13]. Versions of this result can
be traced back to James [6], Leonov and Shiryaev [11], James and Mayne [7],
and Malyshev [12].

A subject such as statistical moments and cumulants that has been thoroughly
raked over by Thiele, Fisher, Tukey, Dressel and others for more than a century,
might seem dry and unpromising as a topic for current research. Surprisingly, this is
not the case. Although the area has largely been abandoned by research statisticians,
it is a topic of vigorous mathematical research connected with Voiculescu’s theory
of non-commutative random variables, in which there exists a notion of freeness
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related to, but distinct from, independence. The following is a brief idiosyncratic
sketch emphasizing the parallels between Speicher’s work and Speed’s paper.

First, Speed’s combinatorial theory is purely algebraic: it does not impose posi-
tive definiteness conditions on the moments or cumulants, nor does it require them
to be real-valued, but it does implicitly require commutativity of the variables. In a
theory of non-commutative random variables, we may think of X!,..., X" as orthog-
onally invariant matrices of unspecified order. For a subset b C [n], the scalar prod-
uct X? = tr[;c, X' is the trace of the matrix product, which depends on the cyclic
order. The first novelty is that u(b) = E(X?) is not a function on subsets of [n],
but a function on cyclically ordered subsets. Since every permutation o: [n] — [n]
is a product of disjoint cycles, every function on cyclically ordered subsets can be
extended multiplicatively to a function on permutations (t(0) = [Iycq (D). Given
two permutations, we say that 7 is a sub-permutation of ¢ if each cycle of 7 is a sub-
cycle of some cycle of 0 — in the obvious sense of preserving cyclic order [1]. For
T < 0, the crossing number ¥ (7, ) is the number of 4-cycles (i, j, k,1) below & such
that i,k and j,1 are consecutivein 7: x(t,0) =#{(i, j,k,l) < o: 1(i) =k, 1(j) =1},
and 7 is called non-crossing in ¢ if y(7,0) = 0. For a good readable account of the
non-crossing property, see Novak and Sniady [16].

Although it is not a lattice, the set I', of permutations has a lattice-like structure;
each maximal interval [0,, 0], in which 0,, is the identity and o is cyclic, is a lattice.
With sub-permutation as the partial order, [0,, 0] = &, is isomorphic with the stan-
dard partition lattice; with non-crossing sub-permutation as the partial order, each
maximal interval is a partition lattice of a different structure. Speicher’s combinato-
rial theory of moments and cumulants of non-commutative variables uses Mdbius
inversion on this lattice of non-crossing partitions [24]. If f = k is multiplicative, so
also is the cumulative function F' = 1, and vice-versa. The function x(b) on cycli-
cally ordered subsets is called the free cumulant because it is additive for sums of
freely independent variables. Roughly speaking, freeness implies that the matrices
are orthogonally or unitarily invariant of infinite order. For further discussion on this
topic, see Nica and Speicher [15] or Di Nardo et al. [2].

The partition lattice simplifies the sampling theory of symmetric functions,
leading to a complete account of the joint moments of Fisher’s k-statistics and
Tukey’s polykays [19]. It led to the development of an extended theory of sym-
metric functions for structured and nested arrays associated with a certain sub-
group [20, 21, 22, 23]. Elegant though they are, these papers are not for the faint
of heart. With some limitations, it is possible to develop a parallel theory of spectral
k-statistics and polykays — polynomial functions of eigenvalues having analogous
finite-population inheritance and reverse-martingale properties. Simple expressions
are easily obtained for low-order statistics, but the general theory is technically
rather complicated.
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CUMULANTS AND PARTITION LATTICES'

T. P. SPEED
CSIRO Division of Mathematics and Statistics, Canberra

Summary

The (joint) cumulant of a set of (possibly coincident) random
variables is defined as an alternating sum of moments with appropriate
integral coefficients. By exploiting properties of the Mdbius function of
a partition lattice some basic results concerning cumulants are derived
and illustrations of their use given.

1. Introduction

Cumulants were first defined and studied by the Danish scientist T.
N. Thiele (1889, 1897, 1899) who called them half-invariants (halvin-
varianter); see Hald (1981) for a review of this early work. The ready
interpretability and descriptive power of the first few cumulants was
evident to Thiele, as was their role in studying non-linear functions of
random variables, and these aspects of their use have continued to be
important to the present day, see Brillinger (1975, Section 2.3). In a
sense which it is hard to make precise, all of the important aspects of
(joint) distributions seem to be simpler functions of cumulants than of
anything else, and they are also the natural tools with which transfor-
mations (linear or not) of systems of random variables (independent or
not) can be studied when exact distribution theory is out of the
question.

The definition of multivariate cumulant most commonly used

today involves moment-generating functions. If X, ..., X,, is a system
of m random variables and r=(r,,...,7,) is an m-tuple of non-
negative integers, then the cumulants {«,} of Xy, ..., X,, are defined

by ko.0=0 and the identity
er r
;«,F=log2‘:IE{X'}E. (1.1)

where we have written 0"=67...6, X' =X7?...Xx and rl=
r!...rn,!, and summed over r,=0,...,r,=0. Here and below all
relevant moments are assumed to exist. An alternative approach which

! Manuscript received September 22, 1982; revised February 1, 1983.
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is in some respects more convenient defines the joint cumulant
€(X,, ..., X, of X;,....X. (x, , in the notation above) directly:

blo)
(X, X =L Db T I x} a2
o a=1 i€o,
the sum being over all partitions o of {1,...,m} into b=b(o)=1
blocks o, o5, . .., 0,. For example, if m =3 we have

(X1, Xa, Xa) = [E{X1X2X3} _E{X1X2}‘E{X3}
—E{X, XHE{X,} — E{ X JE{ X, X5} + 2E{ X YE{ XL JE{ X}

Note that we have not required that the random variables X, ..., X,
are all distinct. If X, =X,=X5=X in the last formula, we obtain an
expression which in the notation of Kendall & Stuart (1969) we
recognise to be the formula wxy=pui—3pins+2(ni)’>. The general
multivariate cumulant «, can be defined via (1.2) in a similar manner.

The purpose of this expository note is to derive some basic results
concerning (joint) cumulants from definition (1.2) and give illustra-
tions of their use. Our approach is based upon the fact that (1.2) is an
instance of M&bius inversion over the lattice ?(m) of all partitions of
the set m ={1, ..., m}, and further use of this technique leads to some
new proofs. None of the results we prove are new; our aim is simply to
show how a small investment in modern algebra—in this instance the
theory of Mobius functions—helps us to step our way elegantly
through some potentially messy classical algebra.

It is a great pleasure to be able to contribute to this number
honouring Evan Williams. Amongst many other things he introduced
me to cumulants and showed me their usefulness, and I hope that this
note can convey some of the enjoyment I have found working with
them.

2. Lattice Preliminaries

A partition o of a non-empty set S is simply a family of non-empty
subsets oy, ..., o,—=<alled the blocks of o—whose union is S. For
example, the family o = {{1, 2}, {3}, {4}} is a partition of S ={1, 2, 3, 4}
and we denote it by o =12|3|4. If o and 7 are two partitions of the
same set S and every block of o is contained in a block of 7, then we
say that o is finer than  ( is coarser then o) and write o =71 (T1=0).
In this way we find that the collection %(S) of all partitions of S
becomes a partially-ordered set and it is in fact a lattice, for every pair
o, 7€ P(S) has a least upper bound and a greatest lower bound in the
partial order. The greatest-lower bound oAt of o and 7 is easy to
describe directly: its blocks are just the non-empty intersections of
blocks of o with blocks of 7. For example, 123 [4A12|34=12|3|4
and 12[34A13|24=1]2]3]4 hold in ?(4). An excellent general
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1/2/3/4

Pla)
Fig. 1

reference for lattice theory and those results we quote below is Aigner
(1979). We illustrate the foregoing with Hasse diagrams of the small
partition lattices, see Figure 1.

In these diagrams each element of the partially-ordered set is
denoted by a vertex, and an edge is drawn between the vertices
corresponding to p and 7 if p <t (or p>7) and there is no element o
with p<o <7t (0or p>0>7).

Associated with any finite partially ordered set (%, <) are two
important numerical functions defined on %: its zeta function {p
given by {(o, 7)=1 if o =<1, and 0 otherwise; and its M0bius function
g = pge which can be defined in many ways, one simple one being the
following:

1 if p=1;

plon)=4- Y ulpo) if p<m
pso<r

0 otherwise.

It is not hard to prove that Y, u(p, 0){(o, 7)=Y,¢(p, o)ula, 7)=
8(p, 7) where 8(p,7)=1 if p=7 and 0 otherwise, i.e. the matrices
Z=({(o, 7)) and M= (u(o, 7)) over P are mutually inverse.

Let us suppose that f is a real-valued function on # and that we
define another function F on ? by

F(r)= Y. f(o).

o=T
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Thinking of f as a column vector this is saying that F=Zf Mobius
inversion is just the recovery of f from F: formally, f=Z"'F=MF,
and more fully

fir)=3 wlo, 7)Flo).

The power of Mdbius inversion rests in the fact that for many familiar
partially ordered sets, there is a simple formula for w. Indeed it can be
quite a useful technique without even having a formula! These basic
ideas apply to any finite partially ordered set and we refer to Aigner
(1979) for many illustrations.

It is clear from the definition of w that if p <7 and there is no o
with p<a <, then pu(p, 7)=—w(p, p) = —1. Referring to the diagram
of ?(3) we can readily calculate that w(1]2]3,123)=2, whilst all
other w-values there are +1 or —1. Similarly we find that in P(4) the
following are true: w(12|3]4, 1234)=2 whilst u(1]2]|3]4, 1234)=
—6. It can be shown that for any ceP(m) we have p(o,m)=
(=1 "Yb-1)! where b = b(o) is the number of blocks of ¢; a product
of such expressions gives a formula for p(o, 7) in ?(m) but we will
have no occasion to use it. We refer to Rota (1964), and Aigner (1979)
for a proof.

3. Equivalence of the Two Definition

We will begin the proof of the equivalence of the two definitions
by seeking an expression for E{X, ... X,.} in terms of the {x.}, and to
this end we introduce some notation which plays a fundamental role in
what follows. For a partition o =0, |...| 6, of {1, ..., m}let us write

b{er)
Ke = H‘ Ke(og)
where ¥(g,)=(r,, ..., r,) is defined by r, =1 if i€ g,, r, =0 otherwise,
a=1,...,b(0). For example, if o =1234, then «, = k;;;, Whilst if
o=12]34, then k, = K1100K0011-

Now let us exponentiate both sides of {1.1) and calculate the
coefficient of 8,...6, on the left-hand side. It is really quite
straightforward to see that the answer is Y, k,, Where the k, have just
been defined and the sum is over all partitions o of {1,..., m}. For
example, E{X,X,X;X,} is the sum of 15 terms beginning with k53, =
k1111 and ending with k34 = K1000K0100K0010K0001- More generally, if 7
is an arbitrary partition of {1, ..., m} with blocks 7,,..., 7, then we
can multiply expressions of the form just derived to obtain the identity

ﬁ) E{H X}=ﬁ Y k=Y ko (3.1)

a=1 ier, a=1 o, eP(r,) osr
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For example, E{X,XGHE{XGHE{X4}=(k12+ ki) K3Ks = K120+ Ky 2paja-
Now equation (3.1) can be inverted by Mdbius inversion and doing so
gives us the fundamental relationship:

blr)
K, =Y. wlo, ) Hl IE{H x,}. (3.2)
When +=m this reduces to (1.2), apart from the identification of
plo, m) as (=1)*7'(b(o)-1)!, and we have proved the equivalence
of the definitions.

A more abstract and general theory including this equivalence can
be found in Doubilet et al. (1972).

Example. Putting m =4 we see from (3.2) and Figure 1 that
K234 = K111 Is an alternating sum of 15 terms with coefficients +1, —1,
+2 and -6. If we identify two or more of the random variables
X1, ..., X,, additional numerical factors enter because the same ex-
pression appears more than once in the 15 terms. At the extreme,
when X, =X,=X;=X,=X, we find cf. Kendall & Stuart (1969, p.
701) the traditional expression

xa =E{ X} - 4E{XYE{X} - 3E{X ) + 12E{X*HE{X})* - 6(E{XD*.

Here the factors of —4, —3 and 12 are a combination of multiplicities
and Mobius function values.

It is a long standing observation of workers with cumulants that
the general results are most transparent when all random variables
under discussion are taken as distinct. The identification of some or all
at a later stage merely introduces extra factors, and at times these
multiplicities are not particularly easy to calculate.

4. Properties of Cumulants

Cumulants of order 2 are just variances and covariances and a
number of properties which are familiar in this case seem much less
well known in general. Our first result provides a good illustration of
the way in which Mobius inversion may be used in this context
although its proof using (1.1) is also easy. We take as given a set
X;, ..., X, of random variables, and write m ={1, ..., m}.

Proposition 4.1. If there is a subset s < m such that the random
variables {X;:ies} and {X;:iet} are independent, t=m\s, then
(X, ..., Xn)=0.

Proof. For each w € ?(m) we denote the partition induced on s,
i.e. that partition having as blocks the non-empty numbers of
m Ns,...,mNs, by wNs, and similarly for wNt. The proof makes
crucial use of the following simple fact: for any 7€ P(m), o< P(s)
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and 7€ P(t) we have
m=zcl|lr if wNs=o and w7Nt=1 (4.1)
We can now go to (1.2) and calculate:

b{w)
(X X =T ul, m)E‘E{H X}

iew,

= wtm m) b:fiﬂﬁ{ I xi}“ﬁ”rE{ I1 X.-}

iem,Ms a=1 iemw,Mt

by independence,

= ; w(m, m){;{(a, T nS)K(,}{Z: L(r, TN I)K,}

by (3.1),
=Y Y ¥ wlm mo, wNs)(r, 7 N1k, k,)
=Y T Y wlmm)io]r, wikex, by (4.1),

=YY 8(c |7, m,7, by Mobius inversion

and this expression is zero since m# o | T for any o€ P(s), T P(1).

For the next two propositions we consider an array (X;:jen, i € m)
of real random variables and a similarly indexed array (a;) of real
numbers. The following result also generalises a well known one for
variances and covariances: it states that € is a multi-linear operator.

Proposition 4.2.

‘@(Z @, X e Z a,,,,-me,-m>
I fm

=2 Ay Gy € X, X )
I Im

Proof. From (1.2) and the distributive law

T wlom) ﬁ1 e{I1 ¥ ax,)

i€o, jien

=§ (o, m) f[ E{ r II a«-,-.Xm}

a=1 ii€n.ieo, i€a,
b
~Tuoom ¥ e eI %]
o fiem.iem i a= i€o,
b
=Z e Z al,-) e amfmz [L(O', m) I-IIE{H 'Xii;}
I im o a= ieq,

which is the stated result.



6 Cumulants and Partition Lattices 289

T. P. SPEED

Corollary. If X,=Y;+Z, i=1,..., m, where {Y;} and {Z} are
independent sets of m real random variables, then

€(X,,....X)=%(Y,,..., Y, )+€(Z,,...,2Z,).

Proof. This is an immediate consequence of Propositions 4.1 and
4.2.

The following proposition is the core of the main result of Leonov
& Shiryaev (1959). Our proof is much more direct than theirs and
highlights the power of Mdbius inversion. Any partition r =, |.. .l m,
of the row labels m of the (Xj;) induces a partition 7 of the full set
S={(i, j):jen, i e m} of labels in a natural way: 7 has blocks {(i, j):j e
n,iem}, a=1,..., b(w). We say that a partition o of S is decompos-
able relative to a partition 7 of m when o=, where # has just been
defined, and we call o indecomposable if no such relation holds other
than o =<m. Brillinger (1975, p. 20) gives some equivalent formula-
tions, and states without proof the following.

Proposition 4.3.
bler)

@ IT Xy, TT %) =2 [T €,:pea)

Ji€ny Jin € Bin o

where Y. * denotes the sum over all indecomposable partitions o of S.

Proof. For any 7€ P(m) we have by (3.1)
b(r) hia)
T IT I %)= % 11 €6 peow.
a=1 iem, jen o=sta=1

The sum on the right, which we denote by F(ar), is over all o€ 2(S)
which are decomposable relative to 7. Such o may also be decomposa-
ble relative to some p <, and so we can use Mobius inversion over
P(m) to write f(w) =Y, ulp, w)F(p) for the corresponding sum over
all o which are decomposable relative to o and no finer partition. With
this notation we use (1.2) and Mobius inversion over (m) once more
to obtain

¢(TT X o> TT X )= T b, m)EC) = )
jiem im€hm L

and the proof is complete.

This proposition provides easy access to a number of results due
to Isserlis (1918-19a,b) Bergstrom (1918-19), Wishart (1928-29,
1929) and others.

Example. Let us take S={(1,1),(1,2),(2,1),(2,2)} which we
simplify to {1, 2, 3, 4}. Then we may refer to the lattice ?(4) and, by
omitting the decomposable partitions 1234, 12|3|4, 1|2|34 and
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1]213|4 we readily see that

:g(XlXZs X3X4) =<€(le XZ’ X3a X4)
+B(X))E (X5, X5, X)) +6(X)€6(X,, X5, X,)
+E(X)E (X, Xz, Xo) + €(X)E(X1, X, X3)+ 6(X), X5)€(X5, Xa)

+ B(X), X 6(Xs, X3)+ 6(X,)E(X3)6(Xz, Xa)
+B(X)E(X)E(Xs, X5)

+E(X)E(X5)6(X,; Xo)+B(X)E(X)E(X,, X3).
If X,, X5, X5 and X, have a joint normal distribution, then cumulants

of order exceeding two all vanish, and in this case if their means are all
zero we have

cov (X, X5, X5X,) =cov(X,, X5) cov (X, X,)+cov (X, X,) cov (X, X,).

As a further illustration of this result, let us suppose that X, ..., X,
are mutually independent and identically distributed random vari-
ables with cumulants x, =0, «,, k3, k3, . . . (traditional notation). Then
for any matrix (a;) of coefficients, we have

var (ZZ a,~,)(,~X,-> =Ky Z azi+ k2 ZZ (aZ+a;a;).
i i i
The proof is almost immediate once we observe that we require
2T ax% IT aXX) =L L T T a0 8X, X, X,X).
i i

i i) iy ix s

Of the 15 possible combinations of equality and inequality on i,, iy, i3
and i,, each corresponding to an element of ?(4) in an obvious way,
only three give a non-zero cumulant, namely those corresponding to
1234, 13|24 and 14|23. Now

a1 _gpoly e 1 X
’ _n—lz(xi %) _nZ;Xi n(n-l)zfl,.,zx)(’

and so if we put

nn-1)"

1 s
aii=; and a;=a;= i#],
in the preceding result we obtain the formula which goes back to
Gauss (1823);

K3.

var (82)='1— Kyt
n n—1

Our final result, due to Brillinger (1969), and generalizes to
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higher-order cumulants the familiar identity
Var (X)=E{Var (X | Y)}+ Var E{X | Y}

for real random variables X and Y. We will use an obvious notation
for conditional cumulants.

Proposition 4.4.
C(Xy, ..., Xn) =Y (€ (X,:iem, | Y):aehb(m),
the sum being over all partitions = of {1,..., m}.

Proof. The proof which follows is not as simple as Brillinger’s,
which uses moment-generating functions. A typical term in the expan-
sion (1.2) for ¥(X,,...,X,) is a product of terms of the form
E{[Ticn, X} =E{E{[Lic, Xi | Y}}, and we expand the inner term on the
right-hand side of this using (3.1), switch the sum and the outer
expectation, and use (3.1) once more. Most terms cancel and the
simple result is derived. The notational details are somewhat messy,
but we proceed.

E{u—:{l’[ x[y}}= Y )IE{ I1 %(x:iea’;!Y)}

iem, g, €P(m, kehta™)
= 2 2 I @t n:ker)
d €P(m,) T,€P(bla")) lebls,)

where we have abbreviated 4(X;:ico’|Y) by (%] Y). Putting this
expression into (1.2) we obtain

€X,,....X)=Yurm Y Y Il TI @t v:kerd)

osT T, ePlhla,)) ashin) tehlry)
a=1_..b(m)
where in the third sum we write o,=cN7® a=1,...,b(w). Our
result is proved if we can show that only terms involving = =m, i.e.
b(a) =1, survive.
To this end suppose that o€ ?(m) and 7€ P(b(o)) and write

P(o,7)= [] 4" | V):ker)

133-18))]
ployn)=U ol U o4....
ker, ket

Noting that p(c, T) =0, we find that the last sum can be written as

¥ 2 2 wlm m)(m, plo, )Plo, 1) = 3, 3. 8(m, p(o, 7)) P(o, 7)

wT o T o

by Mbobius inversion and the result is proved.

291
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Example. For m =3 this result asserts that

B(X1, X X3) = B(6(X,, X0, X3 | Y)+B(B(X, | V). 8(X2, X5 Y))
+8(8(X2]Y), €(X,, X5 YY)
+8(8(X:| V), (X, X2 Y))
+E(B(X | Y), €(X, | ), 6(X5| Y)).

If X,=X,=X;=X and we adopt a suggestive notation, the previous
expression simplifies to a formula similar to the well-known one for
Var (X):

k5(X) =E{xs(X | )} +3 cov (E{X | Y}, Var (X | Y)) + x5(E{X | Y}).

We note in closing that Proposition 4.4 has been used to obtain the
cumulants of random sums of (iid) random variables, see e.g. Lange et
al. (1681).

5. Closing Remarks

The theory of k-statistics developed by Fisher (1928-~29) and its
generalized form involving the so-called polykays due to Tukey (1950)
is also simplified greatly by a recognition of the role played by the
underlying partition lattices and their Mobius functions. For example,
it is possible to give a fairly compact proof of a generalization of
Fisher’s famous result concerning the joint cumulants of sample k-
statistics along the lines of that of Proposition 4.3 above.

In a quite different direction, (joint) cumulants of another kind
can be defined for arrays of random variables labelled by multiple
indices as in a complex experimental design. Here the second order
cumulants turn out to be components of variance, and many interesting
generalizations of anova notions appear. We leave this and other work
to another time.

References

AIGNER, M. (1979). Combinatorial Theory. New York: Springer-Verlag.

BERGSTROM, S. (1918-19). Sur les moments de la function de correlation normale de n
variables. Biometrika 12, 177-183.

BRILLINGER, D. R. (1969). The calculation of cumulants via conditioning. Ann. Inst.
Statist. Math. 21, 375-390.

BRILLINGER, D. R. (1975). Time Series. Data analysis and theory. New York: Holt,
Rinehart and Winston.

DOUBILET, PETER, ROTA, GIAN-CARLO & STANLEY, RICHARD, P. (1972). On the
foundations of combinatorial theory VI: The idea of a generating function. Proceed-
ings of the 6th Berkeley Symposium on Probability and Mathematical Statistics
267-318. Edited by L. Le Cam, University of California Press.

FISHER, R. A. (1928-29). Moments and product moments of sampling distributions.
Proc. Lond. Math. Soc. (2) 30, 199-238.



6 Cumulants and Partition Lattices 293

T. P. SPEED

Gauss, C. F. (1823). Theoria Combinationis Observationum Erroribus Minimis Obnox-
iae Pars Posterior. Comm. Soc. Reg. Scient. Gotting. 5. See also: Werke Band IV.

HALD, A. (1981). T. N. Thiele's contributions to statistics. Int. statist. Rev. 49, 1-20.

IsserLIS, L. (1918-19a). On a formula for the product moment coefficient of any order
of a normal frequency distribution in any number of variables. Biometrika 12,
134-139.

IsserLis, L. (1918-19b). Formulae for determining the mean value of products of
deviations of mixed moment coefficients in two to eight variables in samples from a
limited population. Biometrika 12, 183-184.

KeNpALL, MAURICE G. & STUART, ALAN (1969). The Advanced Theory of Suatistics.
Volume 1 (Third Edition). London: Griffin.

LANGE, KENNETH, BOEHNKE, MICHAEL & CARSON, RICHARD (1981). Moment computa-
tions for subcritical branching processes. J. Applied Probability 18, 52-64.

LEONOV, V. P. & SHIRYAEV, A. N. (1959). On a method of calculation of semi-
invariants. Theor. Prob. Appl. 4, 319-329.

Rota, GIAN-CARLO (1964). On the foundations of combinatorial theory 1. Theory of
Mobius functions. Zeit. f. Warsch. 2, 340-368.

THIELE, T. N. (1889). Forelaesninger over Almindelig lagttagelseslaere: Sandsynlighed-
regning og mindste Kvadraters Methode. Kgbenhavn: Reitzel.

THIELE, T. N. (1897). Elementaer Iagagelseslaere. Ksbenhavn: Gyldendalske. English
translation: Theory of Observations. London 1903: Layton. Reprinted in Ann. Math.
Statist. (1931) 2, 165-308.

THIELE, T. N. (1899). Om lagttagelseslaerens Halvinvarienter, Overs. Vid. Sels. Forh. Nr.
3, 135-141.

Tuxkey, JOUN W. (1930). Some sampling simplified. J. Amer. Statist. Assoc. 48, 501-519.

WISHART, JOHN (1928-29). A problem in combinatorial analysis giving the distribution
of certain moment statistics. Proc. Lond. Math. Soc. (2) 30, 309-321.

WISHART, JOHN (1929). The correfation between product moments of any order in
samples from a normal population. Proc. Roy. Soc. Edin. 49, 1.



Chapter 7

Asymptotics and Coding Theory: One of the
n — oo Dimensions of Terry

Bin Yu

Terry joined the Berkeley Statistics faculty in the summer of 1987 after being the
statistics head of CSIRO in Australia. His office was just down the hallway from
mine on the third floor of Evans. I was beginning my third year at Berkeley then and
I remember talking to him in the hallway after a talk that he gave on information
theory and the Minimum Description Length (MDL) Principle of Rissanen. I was
fascinated by the talk even though I did not understand everything. Terry pointed
me to many papers, and before long Terry started to co-advise me (with Lucien Le
Cam) as his first PhD student at Berkeley. It was truly a great privilege to work with
Terry, especially as his first student at Berkeley since I had the luxury of having
his attention almost every day — he would knock on my door to chat about research
and to take me to the library to find references. Every Saturday I was invited to
have lunch with him and his wife Sally at his rented house in the Normandy Village
on Spruce Street, a cluster of rural European styled houses near campus (the most
exotic part to me about the lunch was the avocado spread on a sandwich). Through
my interactions with Terry, I was molded in n — oo dimensions. In particular, I was
mesmerised by the interplay shown to me by Terry of data, statistical models, and
interpretations — it was art with rigor! I am able to pursue and enjoy this interplay in
my current research, even though I ended up writing a theoretical PhD thesis.

The four papers under “asymptotics and coding theory” in this volume represent
the MDL research done during my study with Terry (and Rissanen) and a paper after
my PhD on Information Theory proper: lossy compression.

The Minimum Description Length (MDL) Principle was invented by Rissanen
[7] to formalize Occam’s Razor. Based on a foundation of the coding theory of
Shannon, its most successful application to date is model selection, now a hot topic
again under the new name of sparse modeling or compressed sensing in the high-
dimensional situation. An idea closely related to MDL was Minimum Message
Length (MML) first articulated in the context of clustering in Wallace and Boulton

B. Yu

Departments of Statistics and Electrical Engineering & Computer Sciences,
University of California, Berkeley

e-mail: binyu@stat.berkeley.edu

S. Dudoit (ed.), Selected Works of Terry Speed, Selected Works in Probability and Statistics, 295
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[13]. In a nutshell, MDL goes back to Kolmogorov’s algorithmic complexity, a rev-
olutionary concept, but not one that is computable. By rooting MDL in Shannon’s
information theory, Rissanen made the complexity (or code length) of a statistical
or probabilistic model computable by corresponding a probability distribution to a
prefix code via Kraft’s inequality. At the same time, this coding interpretation of
probability distribution removed the necessity of postulating a true distribution for
data, since it can be viewed operationally as a code-generating device. This seem-
ingly trivial point is fundamental for statistical inference. Moreover, Rissanen put
MDL on solid footing by generalizing Shannon’s order source coding theorem to
the second order to support the coding forms valid for use in MDL model selection.
That is, he showed in Rissanen [8] that, for a nice parametric family of dimension
k with n iid observations, they have to achieve a § logn lower bound asymptotically
beyond the entropy lower bound when the data generating distribution is in the fam-
ily. More information on MDL can be found in the review articles Barron et al. [3]
and Hansen and Yu [5], and books Rissanen [6, 9] and Griinwald [4].

Not long before he and I started working on MDL in the late 1987, Terry had met
Jorma Rissanen when Jorma visited Ted Hannan at the Australia National University
(ANU). Hannan was a good friend of Terry. Jorma’s homebase was close by, the
IBM Almaden Research Center in San Jose, so Terry invited him to visit us almost
every month. Jorma would come with his wife and discuss MDL with us while
his wife purchased bread at a store in Berkeley before they headed home together
after lunch. We found Rissanen’s papers original, but not always easy to follow.
The discussions with him in person were a huge advantage for our understanding of
MDL.

After catching up with the literature on MDL and model selection methods such
as AIC [1] and BIC [11], we were ready to investigate MDL from a statistical angle
in the canonical model of Gaussian regression and became among the first to explore
MDL procedures in the nonparametric case, using the convenient and canonical his-
togram estimate (which is both parametric and nonparametric). This line of research
resulted in the first three papers on asymptotics and coding in this volume.

The research in Speed and Yu [12] started in 1987. The paper was possibly writ-
ten in 1989, with many drafts including extensive comments by David Freedman on
the first draft and it was a long story regarding why it took four years to publish.
By then, it was well-known that AIC is prediction optimal and inconsistent (unless
the true model is the largest model), while BIC is consistent when the true model is
finite and one of the sub-regression models considered. Speed and Yu [12] addresses
the prediction optimality question with refitting (causal or on-line prediction) and
without refitting (batch prediction). A new lower bound on the latter was derived
with sufficient achievability conditions, while a lower bound on the former had been
given by Rissanen [8]. Comparisons of AIC, stochastic complexity , BIC, and Final
Prediction Error (FPE) criteria [1] were made relative to the lower bounds and in
terms of underfitting and overfitting probabilities. A finite-dimensional (fixed p to
use modern terms) Gaussian linear regression model was assumed, as was common
in other works around that time or before. The simple but canonical Gaussian regres-
sion model assumption made the technical burdens minimal, but it was sufficient to
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reveal useful insights such as the orders of bias-variance trade-off when there was
underfit or overfit, respectively. Related trade-offs are seen in analysis of modern
model selection (sparse modeling) methods such as Lasso under high-dimensional
regression models (large p large n). In fact, Speed and Yu [12] entertained the idea
of a high-dimensional model through a discussion of finite dimensional models vs
infinite dimensional models. In fact, much insight from this paper is still relevant to-
day: BIC does well both in terms of consistency and prediction when the bias term
drastically decreases to a lower level at a certain point (e.g. a “cliff”” bias decrease
when there is a group of major predictors and rest marginal). Working with Terry
on this first paper of mine taught me lessons that I try to practice to this day: mathe-
matical derivations in statistics should have meanings and give insights, and a good
formulation of a problem is often more important than solving it.

The next two papers, Rissanen et al. [10] and Yu and Speed [14], are on his-
tograms and MDL. They extend the MDL paradigm to the nonparametric domain.
Around the same time Barron and Cover were working on other nonparametric
MDL procedures through the resolvability index [2]. Rissanen spearheaded the first
of the two papers, Rissanen et al. [10], to obtain a (properly defined) code length
almost sure lower bound in the nonparametric case in the same spirit as the lower
bound in the parametric case of his seminal paper [7]. This paper also showed that
a histogram estimator achieve this lower bound. The second paper [14] introduced
the minimax framework to address both the lower and upper code length bound
questions for Lipschitz nonparametric families. Technically the paper was quite in-
volved with long and refined asymptotic derivations, a Poissonization argument, and
multinomial/Poisson cumulant calculations for which Terry showed dazzling alge-
braic power. A surprising insight from the second paper was that predictive MDL
seemed a very flexible way to achieve the minimax optimal rate for expected code
length. Working on the two histogram/MDL papers made me realize that there is
no clear cut difference between parametric and nonparametric estimation: the so-
called infinite dimensional models such as the Lipschitz family actually correspond
to parametric estimation problems of dimensions increasing with the sample size.
This insight holds for all nonparametric estimation problems and the histogram is a
concrete example of sieve estimation.

The last of the four paper was on lossy compression of information theory proper.
MDL model selection criteria are based on lossless code (prefix code) lengths. The
aforementioned lower bound in Rissanen [7] was also fundamental for universal
source (lossless) coding when the underlying data generating distribution has to be
estimated, in addition to being the cornerstone of the MDL theory in the parametric
case. It was natural to ask whether there is a parallel result for lossy compression
where entropy is replaced by Shannon’s rate-distortion function. Yu and Speed [15]
showed it was indeed the case and there are quite a few follow-up papers in the
information theory literature including Zhang et al. [16].

During my study with Terry, starting in the late 1987, Terry was moving full
steam into biology as a visionary pioneer of statistical bioinformatics. To accom-
modate my interest in analysis and asymptotic theory and possibly pursue his other
love for information theory rather than biology, Terry was happy to work with me
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on theoretical MDL research and information theory, an instance of Terry’s amazing
intellectual versatility as amply clear from this volume.
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Density Estimation by Stochastic Complexity

Jorma Rissanen, Senior Member, IEEE, Terry P. Speed, Bin Yu

Abstract—The results by Hall and Hannan on optimiza-
lion of hi density esti wulh equnl bin widths by
of the h ded and
sharpened In lwo separale ways. As the ﬁrst mntnbuuon, two
are constructed. The first has
unequal Inn wndths wlnch lugether with the number of the bms.
are of the h:
with help of dynamic progr ing. The other con-
sists of a mixture of equal bin wudth estimators, each of which is
defined by the lexity. As the main
contribution in this paper, two theorems are proved, which
together extend the universal coding theorems to a large class of
data generating densities. The first gives an asymptotic upper
bound for the code redundancy in the order of mngmtude,
achieved with a special pi ive type of hi
which sharpens a related bound. The second theorem states lhat
this bound cannot be improved upon by any code whatsoever.

Index Terms—MDL Principle, universal coding, histograms,
asymptotic bounds, variable bin widths.

1. INTRODUCTION

HE MDL (minimum description length) principle to

nonparametric density estimation is applied in this paper.
This principle permits us to compare any two density estima-
tors based upon a finite set of observed data by the code-
length with which the data together with the estimator itself
can be encoded. We prefer an estimator that achieves a short
total codelength, which means that the best estimators are
such that they assign high probabilities to clusters of the data
points while at the same time the estimators themselves are
not too complex to describe. Hence, for example, a his-
togram estimator with a large number of bins will not neces-
sarily be good, because we have to describe, one way or
another, the large number of counts of the observations
falling in these bins. Similarly, the usual kernel estimators,
which are formed as a sum of functions, one centered at each
observed data point, are bad, because to describe them we
need at least as many bits as for the description of the data
points themselves. However, such estimators can be greatly
simplified by retaining just enough functions to permit a good
fit to the data, the number of them being subject to optimiza-
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tion. Such pruned-down kernel estimators turn out to have
quite short codelengths [21].

In [11], an idealized codelength, the stochastic complexity,
based upon the class of histogram estimators with equal-width
bins was computed, which when minimized gave the optimal
number of the bins and the associated density estimator. This
estimator turns out to be good for data that are roughly
uniformly distributed. However, when the distribution is
strongly nonuniform, for instance having a long sparse tail,
then many of the optimized number of bins may have very
few data points or none at all, and one may then say that for
the sparse portion of the data the density function is described
with unnecessary detail. For such reasons, we extend the
Hall-Hannan stochastic complexity calculation to the class of
histogram estimators with variable-width bins, which can be
calculated with dynamic programming. Despite an increased
number of additional parameters to be encoded, the resulting
codelength can be shorter than the Hall-Hannan stochastic
complexity, while never exceeding it by more than about
three bits for the entire data string. For small data sets
histogram estimators lack smoothness. However, by con-
structing an estimator as a mixture of many equal bin width
histograms we achieve a degree of ‘‘smoothness,”” not lo-
cally in terms of continuity or differentiability, but in a
broader sense, without sacrificing efficiency. The analysis of
the new estimators appears to be difficult, and we compare
their performance with the equal bin width histogram estima-
tor in an example.

It was shown in [11] that the optimal number of bins is
also asymptotically of the correct magnitude to minimize the
largest absolute deviation of the histogram estimator from the
data generating density, in a fairly large family of nonpara-
metric densities. Although such a result lends support to the
idea of MDL principle providing good estimators, the sup-
port is somewhat indirect: the optimality is in terms of a
sensible but still arbitrary distance measure. As the main
analytic result in this paper, we prove another, stronger
optimality property of a complexity based estimator, denoted
S*(y| x"), which is extended to a family of densities f¥(x")
for sequences x” = x,-+, x, predictively by multiplica-
tion. In broad terms, we show that this estimator gives
asymptotically the shortest codelength for the data in the
order of magnitude that can be achieved by any density
estimator, be it of histogram type or not, relative to the class
A of densities f(y) defined on the unit interval, which are
uniformly bounded and also bounded away from zero and
from infinity, and each having a bounded first derivative.
These are extended to sequences by independence with the
result f"(x"). Moreover, we spell out the shortest mean
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codelength, which we define to be the asymptotic stochastic
complexity of the data, relative to the nonparametric model
class .4 in question. More specifically, our first theorem
states that

I(x")

% n =
Sr(x")
while the second theorem states that for any family of density
estimators {g,(x")}

A (n2),

1
;Eflog (1.1)

S7(x")
2.{(x")

holds for some positive constant K and all densities fe 4,
except for a set that is asymptotically ignorable in a suitable
sense. We recall [17], [18] that for a model class with & free
parameters, the right-hand side in (1.2), which represents the
shortest codelength required to encode the optimal model

1
— E, log = Kn~ 7
n

(12)

with which the code for the data is designed, is —— log 7.

Hence, we see that it takes a longer code to describe the
estimator in the non-parametric family, as it should.

In [1], density estimators p, minimizing a codelength
criterion of the form L(x", ¢) = —log q(x") + L,(q) were
studied, where the second term denotes a prefix codelength
for the estimator. Instead of providing an explicit construc-
tion for this length the authors specify it abstractly by certain
properties. As their main contribution, the authors define the
index of resolvability and show it to provide an upper bound
both for the code redundancy, as well as for the Hellinger
distance between the ‘‘true’” density and its estimator of the
form p(y| x"), in probability. Further, an asymptotic for-
mula is given for the index of resolvability. There are three
main differences between their work and ours. First, we give
an explicit construction for a density estimator, obtained with
the MDL principle. Second, the class of estimators, provided
by the two-stage codelength in [1], excludes those which do
not satisfy the imposed condition that L,(-) depends only on
n as well as the important estimators obtained by a predictive
coding process or by stochastic complexity. This is because
the codelength for the data, resulting from these estimators,
cannot be separated into codelengths for the model and the
data, and hence the index of resolvability is inapplicable to
them. By contrast, our second theorem does apply, not only
to predictively constructed estimators but to estimators of any
kind.

1I. HisToGRAM ESTIMATORS AND UNIVERSAL CODES

In [11], the stochastic complexity (for a general defini-
tion, see [21, Section 3.2]) of a set of observed data, relative
to the class of histogram densities with equal size bins, their
number to be optimized, was derived and the associated
density estimator constructed. Another paper with similar
ideas is [6], based on an earlier paper [5]. In the former,
Dawid considers what is in effect a density estimate obtained
from the equal bin width stochastic complexity in predictive
form, and he demonstrates through simulations some of its
desirable properties.

Although the histogram-like density estimators with the
number of bins optimized will be shown to have strong
asymptotic optimality properties among all density estimators
whatsoever, other estimators may well perform better for
small and medium size data or have other desirable properties
such as a great degree of smoothness. For example, the
varjous kernel estimators can be designed to provide any
desired degree of smoothness, and the number of functions
can be optimized with the MDL principle even though we
cannot calculate the stochastic complexity for them in a
closed form. In this section we study two generalizations of
the usual histogram estimators, in both of which we can take
advantage of the closed form solution for the stochastic
complexity. The first class of estimators have variable-length
bins, the lengths as well as the number of the bins determined
by optimizing the stochastic complexity. This class shares the
asymptotic optimality properties of the equal bin width his-
togram estimators. The other class consists of a mixture of a
collection of ordinary equal bin width histograms, aimed at
providing increased over-all ‘‘smoothness.”’

We begin by generalizing the Hall-Hannan complexity and
the associated density estimators to histograms with
variable-width bins. For convenience of notation we index
the observed data so that x; <x, < --- <Xx,, and note
that the indexes need have no bearing on the time order of
their arrival. Without loss of generality, we take all the
observed data points as integers with the smallest x, = 0,
and we write x" = x,**-, x,. Let @ = (a,,"**, a,,_,) de-
note an increasing sequence of the end points of m bins
[0, 4], (a,, 4,1, -, (@,,_, R], partitioning the range
[0,R]; let R, =a; - a,.,, a,=0and a,, = R, denote the
length of the ith bin. Next, consider parametric histogram

densities defined by f(»| p, R, m, a) = Te’_’ if y falls in

the ith bin, where p = (p,,"*-, p,,) denotes nonnegative
parameters with sum unity.

With the uniform prior #(p) = (m — 1)! on the simplex
defined by the parameters, we can evaluate the integral

S Roma) = [ 11 7(x,) po R, a)n(p) dp

(m - 1)'M;n;!
(m+n-1)t"

= (ﬁ R;"') 2.1

i=1

Then the stochastic complexity, /(x"|R, m, a) =
—log f(x"| R, m, a), fixing n, R, m and a, is given by

m
I(x"|R,m,a) =Y n;log Ri+1"g(n|.~~”~,n,,,)
i=1

+log (7 +m = ‘), 2.2)

in terms of the multinomial

n )_ n!
ORI
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and the binomial

(n+m—1)!

(H+M-1)_ ni(m - 1)!

n =

coefficients. Here, #; denotes the number of observations
that fall in the ith bin. In the special case R =1 and
R, = 1/m we get the Hall-Hannan complexity, which we
write as I(x" | m).

We may interpret the three terms in (2.2) as codelengths
corresponding to a particular encoding process. (Although a
codelength is an integer-valued quantity it is convenient to
regard the negative logarithm of a probability as a kind of
idealized codelength, and with a further idealization we call
even the negative logarithm of a density a codelength [17].)
The last term is the length required to encode the m nonnega-
tive integers n;, when m is given; this is a special case of
(2.4), derived next. The first two terms give the codelength
for the observations when we imagine each to be specified by
a pair (i, y), where i gives the bin (the ith) in which the
observation falls, and y gives the position of the observation
within this bin. Encoding of y, when we know that it belongs
to the ith bin, clearly takes about log R; bits, and the first
term in (2.2) is the sum of these over all the n observations.
Finally, the second term in (2.2) is the codelength required to
encode the bin numbers (the first component in (i, )) of all
the n observations, for it is the logarithm of the number of
all strings of length 7 in m symbols with the given counts.
Another, predictive encoding process is defined by the condi-
tional densities in (2.7), and taking the sum of their negative
logarithms gives exactly the same codelength (2.2) for the
same parameter values.

We can find the optimal sequence of the bins by dynamic
programming. However, since the codelength required to
encode the sequence of the bins, which must be added to
(2.2), may be large, we generally get a shorter overall
codelength if the end points of the bins are suitably restricted.
We do this by introducing two parameters. The first is the
precision, an integer d, with which the break points a; are
expressed; in other words, @, = k,d and a = dk, where
k = (ky," -, k,,_,). The second new parameter is the mini-
mum bin width we permit, say «d, also expressed as a
multiple of d. To apply the dynamic programming argument,
subdivide the interval [0, R], where R is taken as a variable
multiple of d, into m + 1 bins with the break points a =
a,,"**,a,_,,7 and writt @ = a,," -, a,,_,. Then from
(2.2) we get by a straightforward calculation a decomposition
of the form I(x"®|R,m + 1, a) = I(x"?| 1, m, &)
+ -+, where Xx,,"*-, X,, denotes the portion of the
observed data falling within [0, R], and similarly for x™,
The remaining term, represented by the dots, is given by the
last three terms in (2.3). Next, let

L,(R) = min I(x"®|R, m,a),
a

where @ = dk with k;,, — k; =« and k,,_, < k — «, and

k = R/d. By the dynamic programming argument, we then
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get the recursion
L) = i 1(7) + ((R) = () o 2 =)

n(r)+m
+log% ,

(2.3)

where 7, besides being less than R, is also restricted to be a
multiple of d as well as by the requirement of the minimum
bin width. The recursive equations are solved for m = 1 and
for R = dk, d(x + 1), -, until the desired range including
all the observations is reached. The initial value is L,(R) =
n(R)log R for all R. A recursive evaluation of (2.3) for the
desired value of m and the range gives both the minimized
stochastic complexity and the optimal sequence of the bin
boundaries @ with about (R /d)? operations.

We need the codelengths required to encode the various
integer-valued parameters, of which we first consider the
increasing sequence k with k;, — k,_, =k fori=1,---, m
— 1, ko = 0, and k,, = k. To get this length, associate with
the sequence in a one-to-one fashion a binary string as
follows. Begin with.k, — « 0’s and a 1, followed by k, —
k, —«k O’sand a 1, and so on until ¥ — k,,_, — « O’s are
added, followed by the last 1. The string has & — m« 0’s
and m 1’s, and it always ends with a 1. Hence, the code-
length required for such a sequence is to within one bit

k—m(k —1) -1
m-—1

n(R) +m
*log ( n(r) +m

L(k) = log (2.4)
This (nonprefix) length estimate is valid provided that m, k
= R/d, and « are given. In fact, we need to encode the four
parameters m, d, k, and k, since in general the range R
cannot be regarded as given. The code for these four integers
must be a prefix code, for we must be able to decode them
from a preamble in the entire code string without a separating
comma. We recall that a positive integer i can be encoded in
a prefix manner with about L*(i) = 1.5 + log i + loglog /
+ -+ bits, where the series includes all the positive terms
[8], [16]. Hence, we can encode the four parameters with the
length L(d, m, x, k) = L*(d) + L*(m) + L*() +
L*(max {1, k — m«}) bits. The best codelength we can get
for the data sequence using variable-length bins by this
procedure is then

Ly(x) min

= min {I(x|k,m.dk) +L(k)
- +L(d, m,x, k)}. (2.5)

For each m, d, «, and k only the first term in (2.5) depends
on the sequence k, and the minimization is done by the
recursion (2.3). The minimization with respect to the remain-
ing three bounded integer-valued parameters (k being deter-
mined by d and the range, which is not subject to optimiza-
tion) is to be done by exhaustive search.

Consider the choice d = 1 and x = [(k/m), where [ x
denotes the least integer upper bound for x. This forces the
bins to have equal lengths, which means that L(k) = 0, and
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with K = R we have
L(1,m,x, R) = L(m, R}y + 2L*(1),

where the first term denotes the prefix codelength for m and
the range R, both to be added to the Hall-Hannan complex-
ity to make it complete. We then see that the codelength
L, (x") of the optimal variable bin width code never exceeds
the length, say Lz(x"), of the optimal equal bin width code
by more than about 2L1*(1) = 3 bits. A further (trivial)
subclass of uniform densities results from the choice d = 1
and m = 1.

Once the optimal parameters 71, aA’, K, and l}, minimizing
the stochastic complexity are found, we generally wish to
construct a density estimate. One way is to calculate the
natural histogram estimator

n

fV(Y‘x"):;iR;l»

2.6)

for y in the ith bin with length R, = (k, — k,_,)d. Another
is defined by (2.1) as

S(x"y| R, m, &)
© f(x"|R. M, )

n+1 .
= —R;', (2.7)
n+m

Frixm)

for y also in the ith bin; the pair x"y denotes the string
X\, . X,, y of length n + 1.

‘We next describe the estimator obtained as a mixture of the
equal bin width histograms. Writing first

n+1m

f(ylx",m)=n+m R’

(2.8)

for the special case of (2.7) with equal bin widths, we define
the mixture density estimator as

A 1 M
Su(y|x") = — ¥ f(r]x", m)
M =

1 M

—_— m
RM =

n;+1
n+m

)

where, again, / is the index of the bin in which y falls, and
n; is the number of the data points that fall within this bin.
The number M is taken as a parameter to be optimized. With
this estimator the data sequence can be encoded with the
codelength

n-1
—log fp(x") = — Zo log fys(¥ri1 | x[)~ (2.10)
=
Example: We calculated the optimal codelength L, (x")
= 572, obtained with the parameters /# = 4, d = 6, & = 18,
k =18, and k = 12,14, 16 for the set of 76 integers 0, 7,
18, 39, 49, 50, 61, 80, 82, 82, 82, 82, 84, 84, 85, 86, 88,
89, 89, 91, 91, 92, 92, 92, 92, 92, 93, 95, 96, 96, 101, 101,
101, 101, 105, 107, 107, 111, 112, 115, 115, 116, 117, 117,
118, 119, 119, 121, 122, 123, 124, 124, 125, 125, 125, 129,
129, 129, 130, 131, 196, 201, 201, 203, 212, 232, 236, 241,
241, 243, 243, 243, 245, 246, 248, 248. We also calculated
the ““fit,”” —log f(x"| R, 1, 4 = 549. Fig. 1 shows the

0012
T
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T
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Fig. 1. Three density estimators.

corresponding  density estimator marked ‘‘variable bin
width.”” The optimal number of equal-length bins is # = 13,
which gives the total codelength Lg(x") = 577 and the
“fit’” 554. In Fig. 1, the associated density estimator is
marked ‘‘equal bin width.” Finally, we calculated the total
codelength for the mixture estimator with the optimized
number M = 16 as L,(x") = 578, and the ‘‘fit”
—log fp(x™ = 557. The dependence of the codelength on
the number of terms M in the mixture is very slight, and we
can pick it in the form of an integer power of two. The
associated density estimator is marked with ‘‘mixture’” in
Fig. 1.

Due to the relatively small data set the codelengths ob-
tained with all the three estimators are virtually the same,
despite the fact that the estimators differ considerably. We
see in Fig. 1 that the large optimal number of bins, 13, in the
equal bin width density estimator makes it somewhat
“‘jumpy’” in creating perhaps needlessly many local maxima
and minima. The four bins in the variable bin width estima-
tor, by contrast, give a less ragged density function. By far
the best looking estimator, however, is the mixture density,
in which, unlike in the usual kernel and spline estimators,
“‘smoothness’” is achieved without imposing analytic continu-
ity. As a practical matter, both the equal bin width and the
mixture estimators are casy to calculate, requiring only O(n)
number of operations for 7 observations, which makes them
feasible to compute even for multidimensional data. By con-
trast, the variable bin width estimator requires O(R”) opera-
tions, which just about confines their calculations for scalar
observations only.

III. AsympPTOTIC OPTIMALITY

Ordinarily the goodness of a density estimator is expressed
in terms of a suitably chosen distance measure between the
estimated density and an assumed data generating one in
some class. In this paper, in accordance with the MDL
principle, we have taken the codelength with which the data
and the estimator itself can be encoded as the yardstick for
the quality of an estimator. The purpose of this section is to
derive optimum asymptotic rates, in the order of magnitude,
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for the expected codelengths, relative to a class of smooth
data generating densities, and to demonstrate an estimator
and the associated universal code that achieves the optimal
rate in the order of magnitude. The same measure also
translates into the Kullback distance between the estimated
and the data generating densities, which provides further
support for the codelength criterion. Specifically, the class .#
consists of densities f(y), defined on the unit interval such
that 0 < ¢y < f(¥) <¢,, ¢ <1, ¢; > 1, and each density
having a bounded first derivative, say | f(»)| < c,. This
class is larger than the class .#’ considered in [11], in which
the absolute derivative was required to be bounded uniformly
over the densities. It was shown in [11] that for each density
function f in the class .#’ the number of bins minimizing
(2.2) for R = 1 satisfies i(x")/(n /log n)'”* = C; in prob-
ability, where C; is a constant for each f. Moreover, the
corresponding optimal bin width 1/#(x") is also of the
correct order of magnitude for minimizing the largest abso-
lute deviation of the histogram estimator from any data
generating density in the same class. With this number of
bins, the stochastic complexity (2.2), denoted now by
I(x"| m,), behaves asymptotically like

‘1,. _ 1l ., lognz/"’%l
- (xlm,,)~—; ogf(x)+K(T) (3.1)

in probability, and the second term gives also the amount by
which the mean-per-symbol stochastic complexity exceeds
the entropy. Since the codelength provided by the variable
bin width estimator, constructed in the previous section,
exceeds the optimal equal bin width estimator /(x"|m,)
only by at most three bits, its mean-per-symbol length, too, is
asymptotically no greater than the right-hand side.

However, we get a smaller excess term for a different
density estimator, constructed from the stochastic complexity
I(x"| m) in a predictive way. This estimator is defined in
terms of the conditional densities (2.8), rewritten here for
R=1and0 =1t

i+ 1

mm, (3.2)

f(xr+l'x(>m) =

where we let the number of bins grow with ¢ as m} = [ '/
to take advantage of an increasing information. Writing

Syl x) = syl x' mi), (3.3)
where x° is the empty string, we obtain for any string
FEx™ =107, f*(x,| x ), regardless of the ordering of
the observations. Notice that the negative logarithm of f¥(x")
is not the stochastic complexity /(x”|m) for any single
value of m, but rather it is the sum of the increments
I(x™ ' m¥) — I(x"| m*). Itis interesting that here the mean
predictive codelength is asymptotically strictly shorter than
the nonpredictive one. This is in contrast with all the para-
metric model classes studied, where the two mean lengths are
asymptotically equal.

303
Theorem 1: For all fe 4,
1 fr(x")
—E;log ———~ < A,n %3, 3.4
n B8 Tty = G4

where f"(x") =TI]_,f(x,) and A, a number dependent
on f. Also,
! 7(») 2
2 gy < %
£y [ 40108 Zoly oy = B
B is a number dependent of f. The expectation E is taken
with respect to f” over the data sequences x".

The proof is given in Appendix A.

The question arises whether any code exists with shorter
mean length in the order of magnitude than given by the
right-hand side of (3.4). Just as for parametric model classes
[17], [18], we cannot expect this to be the greatest lower
bound for all data generating densities, since one designed
with f clearly reaches the entropy, but what we can expect is
the right-hand side of (3.4) to represent, in the order of
magnitude, the shortest possible mean codelength for all but a
negligible subset of the densities. This turns out to be true,
although the lack of nonsingular measures in function spaces
forces us to invent a plausible way to capture the intuitive
idea of ‘‘negligible subset’” of densities. For this we need
some notation. Consider a partition of the unit interval into
m,, equal size bins, where

m, = [(n'/log n). (3.6)
For a density function f in .# let p; denote the probability
of the ith bin. Write f; =m,p; and denote by 6,=
(f1,"**, fon ) the collection of such linear functionals that act
as paramete"rs although they do not determinc the density
function completely. Further, write @, = {6,€R™"| fe
MY

(.5)

Theorem 2: Let g = {g,(x")} be any family of densities
on ", where [ is the unit interval, such that the Kolmogorov
consistency conditions are satisfied, and each member is
positive except in a set of measure zero. Then, there exists a
positive constant K such that for all sufficiently large values
of nand all fin 4,

1)
— —_ 3.7
n E;log 2 () (3.7

except for finaset { f|(f}, ", fn ) €A, , C 2, CR™}

such that the ratio of the volume of A, , to that of the entire
set Q, = {6,€R™"| fe 4} satisfies

V(A )
v(e,)

> Kn?P,

-0,

as n— oo,

The proof is given in Appendix B.

Remarks: The requirement that the family {g,} satisfies
the consistency conditions for a random process is not really
needed in this version of the theorem. However, in universal
coding the main interest is in encoding sequences modeled as
samples from random processes, for which the consistency
requirement provides a collection of Kraft-inequalities for the
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symbols and hence, prefix codes. Further, just as in the case
with parametric model classes we may interpret the right-hand
side in (3.4) as the optimal model cost per observation in
order of magnitude; i.e, the codelength per observation re-
quired to encode the density estimator itself. Since the esti-
mator is defined predictively, this cost does not appear
explicitly in the total codelength, but it may be visualized as
resulting from the cumulative effect of the errors in the
estimated counts #,. This cost is greater than in the case with
parametric models, namely, (k log n)/2n, where k denotes
the number of free parameters, reflecting the fact that the
nonparametric model class here is richer and its members
more difficult to estimate. The choice of m¥ = [¢'/ is seen
to be appropriate for the model class .# with its specific
smoothness conditions. For a class with different smoothness
conditions and hence different e-entropy, [7], another choice
would be better leading to a different optimal rate. Extensions
and variations of Theorems 1-2 have already been proved,
including an a.s. approximation for the codelength and a
minimax form of Theorem 2. These will be published sepa-
rately. Finally, the second bound (3.5) serves to indicate that
not only does the codelength obtained with the estimator
(3.3) converge to the entropy, but also the estimator itself
converges to the data generating density at the same rate,
when the distance is measured in terms of the Kullback
distance.

We may regard the theorems as the latest step in the series
of statements about universal codelength, relative to model
classes of steadily increasing generality. The very first such
result is Shannon’s coding theorem for the singelton class
{P(x)}. It was followed by the theorems in [3], [4], [14],
establishing worst case bounds for independent and Markov
sources as well as for some gaussian classes. In [17], a
sharper inequality of the type in Theorem 2, valid for all but
a vanishing subset of parameters, were proved for general
parametric classes, which was further strengthened for the
Markov sources in [19]. A further generalization of the latter
to the ARMA class became possible through the works [9]
and [18].

The reachability of the lower bound with predictive coding
has important implications in prediction theory. Indeed, the
bound for the codelength translates naturally to a bound for
the mean prediction error. Here, the early results in [17] and
[20] have been vastly generalized in [12], [10], and [13].
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APPENDIX A

Partition the unit interval into m equal-length bins and let 7,

=|—, ——\|shere0<m<nand k=0,---, m. To sim-
m m

plify the notation in (3.2) slightly we write

frixm,my=f, .(¥) =

1 n m
—(——m+—),
1+m/n\n n

for y €I, while bearing in mind that this density depends on the

data x”. Notice that 0 < Py =< fu,m(y) S m.

Lemma 1: For every fe d, 0<c,
> 1,

=fMN=c, <1, ¢

RACEF=oE

s%@ﬂUH%LAOY“

+4am(n+1)(cf + mz)e“’"%"/"‘””,
where B is a positive constant.

Proof of Lemma I: Put p; = [; f(x)dx, and we have
mpy = ¢,. Further, [2, p. 10],

( g *

E/ S(x) log =—5
(s(x) - LAW
SEL o)

V() =~ o
= E{‘m_mm,@,/o (%) = fa.m(x))"

2
dx
S m(X) }
1
+E l(fn,mz‘c,,/z)/o

(f(x) - 1, m(X))
Sa.m(%)
The first term in the sum is bounded from above by the first term in
the right-hand side of the inequality in the lemma. As to the second
term, using the inequality (f(x) — f, )% = 2(f2(X) + £, (X))
together with the bounds for f and f, ,, we get the upper bound

2(n+ 1)(c + m*) P{f, (%) # co/2} (A1)

for it. Now, any sequence x” for which {f, ,(x") < ¢,/2} for
some K (and, hencc, {fr. m(X") # o /2} is true) also satisfies
ny Co S

~m_——~ - = <—,andsmcempk
n 2 n 2 2

n o
satisfies mp; — £ m > 2. Therefore, P{fom(X)#c/2} =

g it further

P{n,m/n — mp, = c,/2} for some k. Further, by Bennett's
inequality, [15],

n;,
P{—m mp, = cm/\/_}<PH—m mp,
n

>cm/f}

<2e7Bm,

(a2)
for any ¢, whfnre Bi 1s a positive constant, independent of m, n, and

k. Putting — = — ° the upper bound (A.1) with (A.2) gives the
vn 2

second term in the right-hand side of the inequality in Lemma 1,
which completes the proof. a

Lemma 2: For every fe 4

1 2m c? Lom?
E//o (F(x) = fo.m(x)) dx = —+ A—m—fz +a(l+e)— .
(A3)

where ¢, = max, | f(»)|.
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Proof of Lemma 2: We have first

l:‘/ol(f(x) — S m(%)) dx

'«

& nem/n — mp,
-E g| /,( 1+m/n

14+ m/n

(“ﬂﬂﬂﬂ—u»Y“

A
mp,+m/n
1+m/n

<EY [/ 2(nem/n — mp)?
=1 Yy,

—ﬂnfu (a4)

N mp,+m/n
1+m/n

2
- f(x) ) ] dx.
For the first term in the right-hand side of the inequality we get

m
EY /Z(n,(m/n—mpk)zdx
k=1 Yy,

2

M=

1

2
E(ngm/n — m, X —
(nem/n Pr) m

~
)

=2 m7_pk(1—pk) sz—m.
n

nm

Ms

(a.5)

For the second term in the right-hand side of the inequality in (A.4),
which does not depend on x”, we get, again using (g + b)Y < 2d®
+ b?) and the upper bounds for the densities and their derivatives

i

2 2
Cr m
54(? + 037). (A.6)

mp,+m/n
1+m/n

42] [./,k('"p"_f(x))zdx+ %(

This completes the proof. O

Returning to the proof of Theorem 1, we verify that the right-hand
side of the inequality in Lemma 2 is minimized for m approxi-
mately n'/3. At any rate, with the choice m}_, = [ n'/? for m the
right-hand side is bounded from above by

2(1+2c})n 2P + O(n™%7).
By Lemma 1, then, we get with this bound
7(x)

————~dx< AP
fr,mf,,(x) 4

Ef/olf(x) log

+O(r3Pe ) 1 0(1747),

where A,=2(1 + 2c}), proving (3.5). Further, with the notation
(3.3) and the subsequent convention

1 L) 1 1 /(%)
—Elog 57— = — E/fxlog—dx
wER ey T w5 T
1
=< ;(Bfn‘/3 +0(1)),
for a constant B -, which concludes the proof. O
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APPENDIX B
N n;
We begin with an estimate of the rate with which f; = m, —
converges to f; in probability, where m, is given in (3.6). By
Bennett’s inequality, (A.2), we get

m

P{ U | fi—fil = ¢ "} <2m,e B, (B.1)

7 n

We wish to select ¢ so that the right-hand side gets smaller than
some number «, 0 < o < 1, say a = 2/3, to be specific. This is
true with the choice

This value, in turn, determines the threshold ¢m,, / Vn in (B.1), for
which we pick

r,=(3B) 05, (B.2)
which for large n is slightly larger than what required. With these
choices (B.1) gives the inequality

P{ULi-sil =) <25 (3.3)

Next, we generalize an inequality in (17], [21], valid for paramet-
ric classes of models, which links the Kullback distance and the
estimation rate for parameters. Consider a partition of the compact
set Q,, into m,-dimensional hypercubes of edge length r,, given in
(B.2). Write fl,, for the finite set of the centers of these cubes, and
let C(8) denote the cube with its center at §. Further, let X, () =

" a nn] mnnm
{(x,,""*, x,)|0 € C(6)}, where 6 = (T,,—n—")
From (B.3)
P,(6) = P{X,(0)} = 1/3. (B.4)

Next, consider the density function g,, as specified in the theo-
rem, and let Q,(8) = Pg(X,,(O)) denote the probability mass g,
assigns to the set X, (6). Notice that for any two distinct points in
ﬁ,, these sets of strings are disjoint. The ratio f"(x")/P,(8) defines
a distribution on X,(8), as does of course g,(x")/Q,(6). By the
nonnegativity of the mutual information, applied to these two distri-
butions, we get

P,(8)
0,(8)
(B.5)

S"(x")

dx" = P,(0) )
.7 (6)10g

T,(6) = /X”w]fn(xn)log

Also,

=T (0) - 1,

r(x")
Pea) @)

E;log
7 ga(x

where we used the inequality log z =1 — 1/z for z =
SF(x™)/g,(x"), whenever g,(x") >0, to get

RGO T I

=Q,(8) - P,(0) > - 1;
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here X denotes the complement of X. Notice that for each hyper-
cube with its center 8 in fz,. we have a set of density functions
associated with that §, any one of which by (B.4) assigns a O(1)
probability to the cube. Let f, ; denote one of them. Now, if a
single density function g, succeeds in approximating all these
density functions f, , well, as 6 runs through all the centers, then
the probability mass it assigns to each cube cannot go to zero as 7
grows. But since there is just so much probability mass available for
this density function, there can be only so many cubes where the
approximation can be very good. A quantitative evaluation of the
number of the cubes, where a very good approximation is possible,
is what gives the desired inequality.

Putting the just sketched plan to work let X be a positive number
and let 4, , be the set of 8°s such that the left-hand side of (B.5)
satisfies the inequality

1

> T,(8) < Kn™%73, (B.7)
which means that for these 8’s we are trying to force the codelength
—log Q,(8) to be close to the ideal —log P,(#). This with (B.4)
and (B.S) implies

log P,(6)

<2Kn'3,
TTe)

—log Q,(0) < T,(0)| P '(6) —

(8.8)

which holds for 6 €4, , and for all sufficiently large n. This gives
a lower bound for Q,(6), which we write as g,(8) for short; in
other words, forcing (B.7) causes us to ‘‘spend’’ a certain minimum
amount of the available probability mass. Next, let B, , be the
smallest set of the centers of the hypercubes which cover A 2, n> and
let v, be the number of the elements in B, ,. Since the sets X,,(6),
[} eﬂ are disjoint, we have

z ¥ 0,(0) 2 n4, (8.9)
ocB, ,

which with (B.8) gives the inequality log », < 2 Kn'/>. The volume
of A, , is then bounded from above by
V(A, ) < v,rm, (B.10)
which holds for all sufficiently large 7.
We next calculate a Jower bound for the volume of the m,-di-
mensnonal set Q,={6,=f, ", f, |fed}. Todoit, 1ot C
4min{l - ¢;, ¢; — 1}, and consider the set

My

,_210‘=m"' [6,— 1] < C,all j,

D= [05R”’~

which has the volume (2C)™~. This will be the sought-for lower
bound after we show that D is a subset of Q,. Hence, we must
demonstrate that for each § = (6,,---, 0,,,"), Y8, =m,, in D
there is a density function in .# such that f; = 6,. In fact, define a

density function f, successively on [y,---, I, _,, where I,_,
-1 i "

= , — |, as follows:
m m

" n

£o(x) = 8, + (6, - 8,) sin [Zwm,,(x— i;:) - ;]

(B.11)

for xe,_,. By a direct verification

m/ fo(x) dx" =1, =6, (8.12)
ll*l

5o that the integral over the unit interval is unity. Further, the values
of this function at the bin boundaries all equal 8;, so the function is
continuous. Its derivative at the bin boundaries vanishes, and the
function has a first derivative in the entire unit interval. Also,

[f,;(x)‘sm?x|21rm,,(6,-—9‘)|<cu. (B.13)

Finally,

fo(x) < max|f;] + max |6, - 6,| =C+1+2C=¢
i i

fo(x) = —max |6;| —max[§;-6,| 21 -C-2C=¢.
i J

(B.14)
By (B.12)~(B.14) f; belongs to .#.
The volume of Q,, is then at least as large as the volume of D, or
(2C)™=. Hence, with (B.10) we get
v(4,.,)

lug-—V(n )

<logw, — m,log (2C/r,)

1 1
sn‘/3[2K——5—O(l )]
og n

which goes to ~oo for all K smaller than 1/6. Hence, for each
1

such K we get by (B.7) — T,(8) = Kn 2/, except for § €A, n

and by (B.6) the claim in the theorem follows.
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Abstract. This paper discusses the topic of model selection for finite-
dimensional normal regression models. We compare model selection criteria
according to prediction errors based upon prediction with refitting, and pre-
diction without refitting. We provide a new lower bound for prediction with-
out refitting, while a lower bound for prediction with refitting was given by
Rissanen. Moreover, we specify a set of sufficient conditions for a model se-
lection criterion to achieve these bounds. Then the achievability of the two
bounds by the following selection rules are addressed: Rissanen’s accumulated
prediction error criterion (APE), his stochastic complexity criterion, AIC, BIC
and the FPE criteria. In particular, we provide upper bounds on overfitting
and underfitting probabilities needed for the achievability. Finally, we offer a
brief discussion on the issue of finite-dimensional vs. infinite-dimensional model
assumptions.

Key words and phrases: Model selection, prediction lower bound, accumulated
prediction error (APE), AIC, BIC, FPE, stochastic complexity, overfit and
underfit probability.

1. Introduction

This paper discusses the topic of model selection for prediction in regression
analysis. We compare model selection criteria according to the quality of the pre-
dictions they give. Two types of prediction errors, prediction with and without
refitting, will be considered. A lower bound on the former type of error was given
by Rissanen (19864), and in this paper (Section 2) we provide a lower bound for
the latter. Moreover, also in Section 2 we specify a set of sufficient conditions for
a model selection criterion to achieve these bounds. Roughly speaking, to achieve
these bounds, a model selection criterion has to be consistent and satisfy some
underfitting and overfitting probability constraints. Section 3 concerns the follow-
ing model selection criteria: Rissanan’s predictive “minimum description length”

* Support from the National Science Foundation, grant DMS 8802378 and support from ARO,
grant DAAL03-91-G-007 to B. Yu during the revision are gratefully acknowledged.
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(accumulated prediction error, or predictive least squares), stochastic complex-
ity, AIC, BIC and FPE. We consider bounds on their overfitting and underfitting
probabilities, and therefore their achievability of the prediction lower bounds. In
particular, the selection rule based on the accumulated prediction error and BIC
achieve the two prediction lower bounds, but AIC does not unless the largest model
considered is the true model.

Detailed proofs are relegated to the last section 5. All of our results are
obtained under the assumption that a finite dimensional normal model generates
the data under discussion. This contrasts greatly with most previous discussions,
notably Shibata (1983a, 1983b) and Breiman and Freedman (1983), where the
“true” model is infinite-dimensional. More discussion on finite-dimensional models
vs. infinite-dimensional models can be found in Section 4.

2. Model selection and prediction in regression

In order to compare model selection procedures a number of choices need to
be made; these can be critical. Two objectives of regression analysis are data
description and prediction. The focus will be on the second, prediction.

Write y = (y1,...,yn) for the n-dimensional column vector of observations,
and X = (z;;) for the n x K matrix of covariates or regressors. Inner products
and squared norms are denoted by (y,z) = 3" y:2; and |y|® = (y,y), respectively.
For1 <t<mn,1<k<K,denote by y(t) and Xi(¢) that ¢t x 1 and ¢ x k subvector
and submatrix of y and X respectively, consisting of the first ¢ rows and, in the
case of X, of the first k columns. The subscript k or the parenthetical ¢ will be
omitted when they are clear from the context, or when k = K or t = n. The ¢-th
row of X is denoted by z} and the j-th column by ¢;, whilst x}(k) denotes the
t-th row of Xj, with an analogous convention regarding the dropping of ¢ or k.
Parameter vectors are denoted by 8 = (3;,..., B)’, written 8(k) when necessary.

The class of models to be discussed will be denoted by {My : 1 < k < K},
where M}, is the model prescribing that y is N(X.3,0%1) for some 3 € R* and
02 > 0. The number K of models is supposed known, and for the present discussion
is held fixed as the sample size n — oc.

One framework for prediction involving regression is the following: (yi,x1),
(y2,x2), ..., (yt, x¢) are given. The object is to predict y;+1 from z,1+1. An obvious
approach is to select a model on the basis of the data available at time ¢, and predict
yr+1 from this model with ¢ + 1 replacing ¢t. The response y; at time ¢ is known
before predicting y;+1, so this framework is called prediction with repeated refitting
because it allows model selection at each time.

A quite different framework assumes the existence of an initial data set
{(y1,21)s- -+, (Yn,Tn)}, often called a training sample, and the regressors Zy,...,
T associated with a number of other units, the requirement being to predict the
corresponding responses 91, ...,Um. A familiar variant on this would be when
the “prediction” is in fact the allocation of units into predetermined groups. The
standard solution to this problem is to select a model on the basis of the initial
data set, and then predict or allocate using the model selected. This framework
will be called prediction without refitting.
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In this section, the above two frameworks for prediction will be discussed in
detail: lower bounds are given in each case, and sufficient conditions for a model
selection procedure to achieve them are obtained. However, we leave to Section 3
the achievability of these lower bounds by common selection procedures.

2.1 Prediction with repeated refitting
A natural measure of the quality of a sequence of predictions in the repeated
refitting framework is the sum

(2.1) APE, = Z(yt — Gee—1)’

t=1

where §;);—; denotes a predictor of y; made on the basis of data up to and including
time ¢ —1, and any covariates available at time ¢. Model selection is thus permitted
at every stage. The predictors which we consider below are ;1 = ;G _1(ks-1),
where fit_ 1( l%t*l) is the least squares estimator based on model M %, at time

t, and we will compare selection procedures leading to different ks according to
the average size of APE which is achieved for large n. For the purposes of our
asymptotic analysis, it is not necessary to specify how we define ke fort < K. In
practice a number of reasonable approaches exist.

Our comparison is based upon a general inequality derived by Rissanen
((1986a), p. 1087). As in Sections 3 and 4 we denote by k* the dimension associ-
ated with the true model, and §,_; is any predictor of y; which is a measurable
function of y1,... 4.1, and z1,...,z:. Although all our discussions so far have
supposed that the error variance o2 is known and equal to unity, we will state
the inequality for an arbitrary unknown o2. It asserts that for all k* there is a
Lebesgue null subset A(k*) of R¥" such that for 3* ¢ A(k*):

E‘ . S\ . ~ _ 2 o 2 .
(2.2) lim inf s {Ll (ye Grie-1) no’} > g2,

n-—+0C k* log n -

We say that the lower bound (2.2) is achieved by a model selection criterion if it
is achieved by the corresponding predictor y;;—;.

We need some assumptions before we can state our results on the achievability
of the prediction lower bound (2.2).

Assume (cf. Lai et al. (1979)) that there exists a positive definite K x K matrix
C = Cx such that

M+N
(2.3) Jim N7UOY T aag = C
! t=M+1

uniformlyin M > 0. If M = 0, the left-hand side is just limy ]\f’lX(A")'X(JN). A
further specialization gives limy N ™' X (N)' X (N) = Cy, where Cy, denotes the
principal k x k submatrix of C. Assume also that

(2.4) My~ C Mg is the smallest true model, and 8(k™) the true parameter.
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With this background we can now state the following result, proved in Section
5 below.

THEOREM 2.1. Suppose that (2.3) and (2.4) hold and that k., the dimension
defined by a model selection procedure, satisfies:

(i) pr(k, < k*) = O(n~2(logn)~°) as n — oo, for some c > 1, and

(ii) pr(k, > k*) < O((logn)™*) as n — oo, for some o > 2.
Then the predictor g1 = z’tﬁtnl(lbct_l) achieves the lower bound (2.2).

2.2 Prediction without refitting

Now let us suppose that we have observed (y1,z1),...,(Yn,Zn) and are re-
quired to predict the responses 7, ..., ¥n corresponding to units with covariate
vectors Z1,...,Zm. In most discussions of this aspect of model selection, see e.g.
Nishi (1984) and Shibata (1986a), m = n and z; = Z;, 1 <¢ < n. Our framework
is more realistic and although the general conclusions do not seem to be different
from Shibata’s, this was not obvious a priori.

Our predictors will all be of the form :i;,é(k), w=1,...,m where k corresponds
to a model selected on the basis of {(ys, z¢) : t = 1,...,n}. Given that k=k, a
natural measure of the quality of our set of m predictions is given by the prediction
error

PE(k) = E{[§ — XpB(k)|* | y} = mo? + | Xy-B(k™) — XiB(K)|?,

which averages over the new observations and conditions on the initial data. Fol-
lowing this line of thought, an equally natural measure of the effectiveness of the
model selection procedure leading to k is E{PE(k) — ma?}, where this time the
expectation is over the possible initial data sets. What we now do is give some
results on the behaviour of this quantity under a range of assumptions about X.

Our results are asymptotic in both n, the size of the initial sample, and m,
the number of predictions being made. For this reason we need to supplement
assumption (2.3) with an analogous, but weaker hypothesis concerning X namely:
that there exists a K x K positive definite C = Cg such that

M—oo

M
(2.5) lim M~y "z, =C.
u=1

In the theorems which follow, k = {k,} is the index resulting from a procedure
selecting from the models {M} : 1 < k < K}.
The components of condition (B) below are defined by the partitioning

Croy = [ Ck Dk,k-‘rl}
- Dirr1 Ergsr |’
where Cy, k < K is defined following (2.3).

THEOREM 2.2. Assume conditions (2.3), (2.4) and (2.5). Then under any of
the following conditions:
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(A) limp—oo pr(ky < k) > 0;

(B) Ck_le,k-H = Ck_leJH-l» E*<k<K;

(C) k= IAcppEa for a sequence a = (o) with n™ ey, — 0 where FPE, is the
Final Prediction Error criterion defined in Section 3, we may conclude

(2.6) m,lri:.rilm nm 'E{PE(k,) — mo?} > tr{C .} Cy-}o?.

The proof will be given in Section 5. It can be seen from the proof of this
theorem that there will be other “symmetric” selection rules other than FPE, for
which the conclusion holds.

The next question of interest is the following: what kinds of selection rules
attain the lower bound (2.6)?

THEOREM 2.3. The lower bound (2.6) is attained for any consistent selection
rule whose underfitting probability pr(k, < k*) is o(n™2) as n — oc.

3. APE, stochastic complexity, and FPE

In this section, we consider the achievability of the two lower bounds in Section
2 of some commonly-used model selection criteria. We derive upper bounds on the
underfitting and overfitting probabilities of these criteria and then use Theorem
2.1 or Theorem 2.3.

First, we consider the criterion based upon accumulated (one-step) prediction
errors (APE) (or predictive least squares). This criterion is the predictive MDL
criterion introduced in Rissanen (1984, 19865). Many authors have discussed this
criterion as detailed in the remark after Theorem 3.1.

We now introduce the definition of APE. Only ordinary least squares estimates
will be used. For 1 <k < K, k+ 1< s <n, write

Bs(k) = (Xn(s) X (5)) 2 Xk(s) y(s)

and 8(k) = B,(k). All of the matrices X,(¢) will be assumed to have rank k
when ¢t > k. The recursive residuals, also called one-step prediction errors, based
on My are e;(k) = y: — z:(k)'B:—1(k). The ordinary residuals are r; (k) = y: —
a:t(k)’Bn(k). The parenthetical k£ will be dropped if its value is clear from the
context.

For any fixed k¥ < K, consider the accumulated squared prediction error
APE, (k) = Y1, ., ei(k)®. Obviously, APE,(k) is the same as the prediction
error with refitting (2.2) when the model M}, is fixed through time ¢.

Expression APE,, (k) will lead us to a model selection criterion: choose that &
which minimizes APE, (k) over all £ < K.

For the remainder of this section o2 is supposed known and so, for simplicity,
is taken to be 1. This is possible because, unlike many model selection criteria, the
one based on APE does not require knowledge or an estimate of o2. The numbers
{bx} which appear in the following theorem are normalized limiting (squared) bias
terms defined by

b = tr{(Ex g — Dy 4-Ci ' Dy e )C(k)C(k)'}
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where for k£ < k* the principal submatrices Cy and Cy- of C are written

_ | Cx  Dyp-
Ck‘_Ika,k‘ Epp- |’

and 8(k*) = (8(k)’ | ((k)’)’ is the corresponding partitioning of 3(k*). It is shown
in Section 5 (Lemma 5.3) that by > by > -+« > bg«_1 > 0.

THEOREM 3.1. Under assumptions (2.3) and (2.4), as n — oo, let k, de-
note the dimension selected by minimizing APE, (k). Then we have the following
bounds: A

(i) pr(ks, < k*) < O(exp(—bn)) asn — oo, for b = min(bg=—_1/3,b%. _,/18).

(i) pr(k, > k*) < O(n=/8) as n — .

Remark. The upper bound in (i) shows the interplay between the bias term by
and the sample size n; the product of them determines the underfitting probability,
not the sample size n alone.

COROLLARY 3.1. The lower bounds (2.2) and (2.6) are attained for the APE
selection rule.

PrOOF. Straightforward from Theorems 2.1, 2.2 and 3.1.

Remark. (a) Convergence in probability of the APE selection rule was estab-
lished by Rissanen (1986b) under essentially the same conditions as we have used
here. Other writers who have suggested the use of APE or a related criterion to
select regression models include Hjorth (1982) and Dawid (1984, 1992). The latter
describes a generalization of the use of APE as the prequential approach to sta-
tistical analysis. (b) There is no doubt that our assumptions could be weakened,
but the derivations of the same results are expected to be much more involved. In
the context of time series, Wax (1988) derived the weak consistency of an anal-
ogous estimator of the order of an autoregressive process without the Gaussian
assumption, and Hemerly and Davis (1989) strengthened it to the a.s. consistency.
Moreover, Wei (1992) obtained the a.s. consistency and asymptotic expansions of
APE under stochastic regression models.

Now we turn to selection rules based on the residual sum of squares, which
is RSSp(k) = 37 re.n(k)? where the ordinary residuals ¢, (k) are defined above.
When o2 = 1 in the regression models M, the final prediction error (FPE) criterion
is FPE,, (k) = RSS, (k) + a,k where (o) is a sequence of positive numbers. For
AIC, a,, = 2. For BIC (Schwartz (1978)), o, = logn. When o2 is not known,
we may replace it by its usual estimate from the largest model My . Our results
should still hold in that case.

Rissanen (1986a) introduced stochastic complexity (SC) of a set of data rela-
tive to a model as variant of his MDL and PMDL expressions, and in many cases
it is asymptotically equivalent to the latter, whilst being easier to calculate. We
refer to his paper for definitions of these quantities. For our regression models
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with error variance equal to unity, SC takes a particularly simple form if the prior
distribution for the parameter B(k) is taken to be N(0,71;) where 7 > 0 is a scale
parameter, k = 1,..., K. A simple calculation yields the expression

1 1 1 _
(3.1)  SCp(k) = 5nlog2ﬂ'+ 5 log det (I, + 7 Xk X}) + 57'/([" + 7 X X1) "y
From Lemma 5.5 in Section 5 we see that as n — oo,
1
SCn(k) —- §n10g27r = klogn + RSS,(k) +O(1) as.

and so any discussion of model selection based upon stochastic complexity is sub-
sumed under that of BIC.

The FPE criterion has been discussed by Akaike (1970, 1974), Bhansali and
Downham (1977), Atkinson (1980), and Shibata (1976, 1986a) amongst others.
Geweke and Meese (1981) discuss the problem quite generally, but with random
regressors, whilst Kohn (1983) considers selection in general parametric models.
Shibata (1984) may be consulted for further details on some cases of FPE. The con-
sistency of FPE’s, with a,,’s satisfying limn~'a,, = 0 and lim(2 log log n)_lan > 1,
was established in a time-series context by Hannan and Quinn (1979). Moreover,
the equivalence of BIC and APE has been shown by Hannan et al. (1989) for the
finite-dimensional autoregressive models and by Wei (1992) for finite-dimensional
stochastic regression models.

THEOREM 3.2. Let l%n denote the dimension selected by FPE,, for some
sequence o, such that n™*a, — 0 as n — oco. Then

(1) ky, overfits with probability approaching unity as n — oo. More precisely,
for any constant 0 < b < bg-_1 /4, pr(k, < k*) < O(exp(—bn)) as n — 0.

(i) If k* < K, and liminf(2loglogn)~ta, > 2, we have, for some v > 2,
pr(k, > k*) < O((logn)™) as n — oc.

We omit the proof of this theorem in this paper because Woodroofe (1982)
and Haughton (1989) contain smilar bounds for BIC under more general models.
Moreover, a lower bound, instead of an upper one, on the overfit probability (ii)
is given in the Appendix II of Merhav et al. (1989) for BIC. Their result suggests
that the overfit probability of BIC tends to zero slower than exponentially as n
tends to infinity.

COROLLARY 3.2. (i) The selection rules defined by BIC and SC all lead to
predictors which achieve the lower bounds (2.2) and (2.6);

(ii) If lim(2loglogn)~la,, < 1, the selection rules defined by FPE,, do not
achieve the lower bounds (2.2) and (2.6) unless k* = K in particular, AIC does
not achieve the lower bounds unless k* = K.
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4. Discussion

The results presented seem to suggest that if prediction is part of the objec-
tive of a regression analysis, then model selection carried out using APE, BIC,
SC or an equivalent procedure has some desirable properties. Of course there is
a qualification: in deriving these theorems we have assumed that the model gen-
erating our data is (i) fixed throughout the asymptotics; (ii) finite-dimensional;
and (iii) belongs to the class of models being examined. Before commenting on
these assumptions, let us see that our theorems are at least in general agreement
with a number of analyses and simulations in the literature. The first paper to
point out clearly that consistent model selection gives better predictions seems to
be Shibata (1984), although he does not emphasize this conclusion. Atkinson’s
(1980) results also suggest the conclusion we have reached, but again this is not
emphasized. The simulation results of Clayton et al. (1986) led them to conclude
“that if the ‘true’ or ‘approximately true’ model is included among the alternatives
considered, all reasonable model selection procedures will possess rather similar
predictive capabilities”. We feel that this conclusion is more a reflection of the
limited scope of the simulations conducted rather than the true state of affairs.
Indeed a close examination of the sample sizes and models these authors studied
suggests that there was little opportunity for the procedures (not the models) to
be distinguished, as far as the squared prediction error of the resulting choices
is concerned. More recently, Rissanen (1989) reported clear differences between
cross validation and SC, and to the extent that cross-validation and AIC perform
similarly, Stone (1977), this is explained by Corollary 3.2.

Shibata (1981, 1983a, 19835, 1984, 19864, 1986b) presents a number of theo-
rems demonstrating the optimality of AIC or other forms of FPE,, with bounded
sequences (o, ), as well as arguments rebutting the criticisms that such procedures
are unsatisfactory by virtue of their inconsistency under assumptions (i), (ii) and
(iii). Shibata (1981), and Breiman and Freedman (1983) using random regressors,
suppose the true model to be infinite-dimensional rather than finite-dimensional.
Shibata (1981) also offers an optimality result for AIC valid under a “moving
truth” assumption.

Clearly, the prediction optimality of BIC and its analogues like APE depend
on the assumption that the true model is finite-dimensional, i.e., the bias term
by = 0 for £k > k*. When the true model is assumed to be infinite-dimensional,
i.e., by > 0 for all k, Breiman and Freedman (1983) showed that AIC’s equivalent
is optimal in terms of one-step further prediction. We now show by the following
three simple examples that the decay rate of the bias term plays a determining
role in the battle of AIC vs. BIC.

For simplicity, let us take the framework of Breiman and Freedman (1983)
where an infinite-dimensional model with Gaussan N(0,1) independent regressors
is assumed with the error variance o2 = 1. Then the one-step ahead prediction
error for the (n + 1)-st observation based on model My is roughly PE(k) = by +
kn~!. Moreover, AIC approximately minimizes by + kn~!, while BIC minimizes
br + kn~!logn. By the result of Breiman and Freedman (1983), asymptotically,
PE(]Egjc) / PE(];?AI(;) > 1, where kajc is the model selected by AIC, and similarly
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fOI‘ ];:31(3.

Ezample 1. Assurr}e by = k~%. Straightforward calculation shows that, as
n — oo, PE(kpic)/PE(kaic) — .

Ezample 2. Assume by = e~*. Then as n — 00, PE(kpic)/PE(karc) — 2.

Ezample 3. Assume by = e~¢", Then as n — oo, PE(kpic)/PE(kaic) — 1.

To summarize, as the decay rate of the bias term increases, the prediction
performance of BIC catches up with that of AIC. And, as we have seen, BIC
out-performs AIC when b, = 0 for & > k*, i.e. when the model is finite.

Finally, all three of APE, BIC and SC derive from general approaches to the
model selection problem and have extensions to situations where one or more of (i),
(ii) and (iii) are dropped, see Sawa (1978) for some remarks about this situation.
When something is known about these extensions, it will be of interest to compare
them with AIC or, more generally FPE,, .

5. Proofs

Most of the arguments given below are straightforward. We have tried to be
explicit wherever possible, and have included some proofs which may be found
elsewhere in order to keep this paper self-contained.

The proofs are presented in the following order: Theorem 3.1, Corollaries 3.1
and 3.2, Theorem 2.2, Theorem 2.3 and Theorem 2.1. We continue to use the
notation introduced in Section 2 above. It is straightforward to show

LEMMA 5.1. Fork < s <t <n and ¢ € R(X(t)), we have cov(esi,(k),
c'y(t)) = 0.

It follows from the lemma that

COROLLARY 5.1. (a) For all k < s < t < n, we have cov(es(k),ec(k)) = 0.
(b) For all k <t < n, and ¢ € R(X), cov(es(k),c'y) = 0.

Let us write A\;(k) = E{e:(k)} and ps(k) = Var{e:(k)} — 1, &, = yr — E{y:}
and H, (k) = X,,(k)(Xn (k) Xn(k)) 1 X, (k), and define the following quantities:

n

Valk) = 3" (), Balk)= Y M(k)?  Nu(k) =|Hn(k)el?,

t=k+1 t=k+1
i €4 k “)‘t k 2
N = 3 | I o]

t=k+1

Bl =2 3" (eulk) — MRDAK).

t=k+1
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It is clear from the proof of the result we state shortly that V' is a variance term,
B is a bias term, and N is a noise term, whilst NT is a second noise term and Bf

a part-noise part-bias term.

LEMMA 5.2. With the above notation

(5.1) D7 ek)? =€ = Vi(k) + Bu(k) — N, (k) + BL(k) + N (k).
t=k+1 t=1
Proor. It follows from Corollary 5.1 that {ex+1(k),...,e,(k)} are pairwise

uncorrelated, and uncorrelated with ¢’y for all ¢ € R(X}). Thus we can make an
orthogonal transformation and obtain

- 2 = lee(k) — E{e:(k)}?
(52) O Y S amr

The lemma then follows from this equation and the comparing two sides of (5.1). O

In the lemmas which follow, (2.1) and (2.2) will be assumed without comment.
Moreover, to state our next result we need a little further notation. For k < k*,
write the principal k X k submatrix Cy of C given by (2.4) in the form

| Ck Dy
Che = [ch,k- Ek,k‘]

and we write 8(k*) = (8(k)’ | ((k)’)" and Xk~ (n) = [Xi(n) | Zr(n)].

LEMMA 5.3. n7!B,(k) — by asn — oo, where

by = tr{(Eg x> — Dj - C ' D= )C(R)C(K)'}

satisfies by > by > -+ 2> b1 > 0.

PrROOF. We begin by observing that for k < k*, Ai(k) = Ak (¢)'((k), where

Ap(t) = 2e(k) — z4(k) (Xp(t — 1)/ X (t — 1)) T Xp(t — 1) Zy(t — 1).
It follows that Ai(k)? = tr{Ax(t) Ak (t)’¢(k)((k)'} and so
n”! 2": Ae(k)? = tr {n_l i Ak(i)Ak(t)'C(k)C(k)'} :
t=k+1 t=k+1

Using (2.4) and the notation introduced above, t= Xy (¢)' Xy (t) — Cy, t 71Xk (t)’ -

Zi(t) — Dy =, and t 72 Zi(t)' Zy(t) — Ex k- as t — 00, and so it follows that

nt z Ay Ar(t) — Ej e — Dy - Cp ' Dy e
t=k+1
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as n — o0, giving the expression for b, stated. The monotonicity of by can then
be checked using the partial order of positive definite matrices. O

For the next lemma we need some notation paralleling that used in Lemma
5.2 above. Write A(k) = E{r.(k)} and Bn(k) = Y.7 Ae(k)®. Furthermore, put
Bl (k) = 237 Ae(k)es. By variants of the proofs of Lemmas 5.2 and 5.3 and by
the law of iterative algorithm, we obtain

LEMMA 5.4.

(5.3) D orik)? =" = Bu(k) — Nu(k) + Bl (k)
1 1
where for k < k*, n" B, (k) — by, and B} (k) = O((nloglogn)'/?) a.s. asn — 0.
LEMMA 5.5. In the notation introduced prior to equation (3.1)
log det(I,, + 7Xg(n) Xp(n)) + y(n) (In + 7Xk(n) Xik(n)") 1y(n)

=klogn+2'rt(k)2+0(1) a.s. n — 00.
1

ProoF. Straightforward from assumption (2.3) and Rao ((1973), p. 33). O

In the following lemmas we use the notation pr = k+1 — XYk, Pk = gk_}_l —
Xpve and n = Xp(XLXg) " X1k, where v = (X3 Xk) ' Xj&ks1. It is evident
that 7y, is the regression coeflicient of the (k + 1)-st variable on the previous k,
and so pi and pi are essentially residuals when the current model is M}, whereas
Nk is part residual and part fitted value.

LEMMA 5.6.
X1 (Xps1 Xei1) " Xppre = X (XL X5) 7 X e + |ok] "2 or, €) .

Proor. This is a straightforward consequence of the formula for the inverse
of a partitioned matrix, see e.g. Rao ((1973), p. 33). O

If we write Ny, (k) = |Xk(X}X5) ' XLel? by analogy with the noise term
introduced just before Lemma 5.2, then we have

COROLLARY 5.2.
‘Nmﬂ(k + 1) - A’Vm,n(k) + 2lpkl—2<nk’ E\){Pk=€> + !,Dk‘_4]ﬁk|2<ﬁ’k~, 6>2'

Now let us write Xg- = [Xk | Zi] and Ry = Z; — Xp(XL X)) ' XL 2. Fur-
thermore, for k > k*, write

Ck D kg1

Ck+1 =
Dy rv1 Erpsr
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and similarly for Ck+1. Finally, denote by Ay 1 and Ag, the differences C‘,:l .
Dk’k+1 - C,;'le,k,*.l and C’;lf)k,y — Ck”le‘k*, respectively.

The following formulae bear a close resemblance to ones obtained in a similar
context by Box and Draper (1959, 1963). There, however, the emphasis is on
design: the choice of x vectors. It should be clear from the context whether or not
k < k* is required to give a non-trivial result.

LEMMA 5~.7‘~ As m,n — 0o we have
(i) vaX,’ch — Crlg.
(ii) 'IR;CR;; — Ek - D;ctkté'k_lbk‘k* + A;Cék_lAk
(iii) ~1|ﬁk|2 — Ek']c+1 - E;c!k+1ék_l[)k,k+l + A;C,IHLIC;IAkJﬁ—I-
(iv) n”I[pklz — Eipy1 — D;c:k+1Ck—IDk,k+1-
(v) =22 = AL 1 Ok Gl

m
m

ProOOFs. These are all straightforward consequences of the relevant defini-
tions. O

Next we extend some earlier notation, writing B, (k) = tr{ R} RiC(k)C(k)'},
and S, (k) = 2(RikC(k), Xp(X} Xi) "' X}e€). Clearly the first term is the analogue
of the bias term introduced prior to Lemma 5.2, and reduces to it if m = n and
X = X. For the definition of PE(k), see Section 2 above.

LEMMA 5.8. In the notation just introduced, we have

PE(k) — mo? = Bpn(k) + N (k) — Smn(k).
PROOF. PE(k)—mo? = |Xp-B(k*) — Xp((k)|?, where we may write

Xp-Bk) — XpBk) = Xpe BE*) — X (X1 X3) " X1 (X B(K™) + €)
= (Zk — Xe(X[ Xk) T X Z1)C (k) — Xi( X[ Xe) ™ Xie.

The result now follows upon taking the squared norm of this vector. [

LEMMA 5.9. Asm,n — oo we have
(i) m™Bpn(k) = tr{(Ex — D} 4. Gy ' Di e + LG AR)C(R)C(R)'}.
(i) m™ nE{ Ny n(k)} — tr(CLCTH).

iii) m~'nNp, (k) = O(loglogn) a.s.

iv) m™nSp (k) — 0 a.s. if Ay = 0.

(v) m~ 18, (k) = O((n " loglogn)'/?) a.s. if Ay # 0.

PROOF. (i) is an immediate consequence of Lemma 5.7(iv); (ii) and (iii)
are straightforward calculations; (iv) follows from the definitions, whilst {v) is a
now-familiar form of the law of the iterated logarithm. [J
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PRrROOF OF THEOREM 3.1. (i) We begin by obtaining some probability in-
equalities concerning the terms in APE,(k), cf. Lemma 5.2. Since N,(k) =
|H,.(k)e|? is a chi-squared r.v.,

pr(Np(k) > B,) < O(exp(—Bn)) as n— oo,

Similarly, B,(k) is a sum of independent zero mean normal r.v.’s whose variance
is O(n), and so pr(| B} (k)| > ) < O(v; /2 exp(—2/2n)).

Finally, Wy, (k) = V,,(k)+ N} (k) is a sum of n—k independent squared normals,
the ¢-th of which is scaled by p,(k), and so

pr(Wy,(k) > 6,) < exp(—6,) ﬁ(l — ‘Zut(k))“l”2 < exp {—6n + Zn:ut(k')}

E+1 k+1
= exp{—&, + klogn + o(logn)}

< pktl exp(—é,), as n — oo.

We now put these inequalities together, select (3,), (v») and (6,,), and obtain
(i). For simplicity, we drop subscripts n where no confusion will result. If k < k*,

pr(k = k) < pr{APE(k) < APE(k*)}
= pr{B(k) — N(k) + W(k) + Bl (k)
< B(k*) = N(k*) + W(k*) + BT (k™)}
< pr{W(k*) > B(k) + B'(k) — N(k)}
since W(k) >0 and N(k*) >0,
< pr{W (k™) > nbx + o(n) — vn — By}
+ P{N(k) > Bn} + P{|B"(k)| > 7}
< nFFlexp(—nby + o(n) 4+ Y + Bn)
+ O(exp(—Bn)) + Oy 'n'/? exp(—~2 /2n)).
We now see that if 3,, = byn/3 and +,, = bpn/3, the desired conclusion follows
since b, decreases as k increases to k* — 1. X
(ii) For the overfitting probability, we estimate pr(k = k) for k > k*, noting
that in this case APE(k) = V(k) — N(k) + N1(k), i.e. the bias terms disappear.
In this proof we bound —Nf(k) and NT(k*) from below by the same quantity, 3,
say, and calculate the tail probability as in the first part of the proof. We find

that
pr(NT(k) < —B,) = pr(=NT(k) > 3,)

< exp(=a) [ {1+ 21(k)) /2 exp pue(k)}

E+1

< O(exp(—5y)).-
Similarly we have pr(NT(k*) > 3,) < O(exp(—£3,)), and since N(k) — N(k*) is a
chi-squared r.v. on k — k* degrees of freedom,

pr(N(k) — N(k*) > ) < O(v; T *=F)/2 exp(—,/2)).
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Thus if & > k*,

pr(k = k) = pr{APE(k) < APE(k*)}
=pr{V (k) = N(k) + NT(k) < V(k*) = N(k*) + NT(k*)}
< pr{V (k) = Bn — (N(k) = N(k*)) < V(k*) + Bn}
+pr{NT(k) < =8,} + pr{NT(k) > Bn}
< Oy HHEFI2 exp(—y /2)) + 20(exp(—B,)),

where v,, = (k — k*)logn + o(logn) — 23,, since V(k) = klogn + o(logn), and
similarly for V(k*). If we take 3, = Blogn for 3 = 671, say, then we deduce that
pr(k > k) <O(n~Y%). 0

Corollary 3.2 can be shown by an argument similar to Theorems 2.1 and 2.3.
Note that when the selection rule is not consistent, the inequality is sharp since the
prediction error based on M) for some k > k* is strictly larger than the one based
on M+, and underfitting does not cause any problem since all FPE’s underfit with
a probability vanishing exponentially fast (Theorem 3.1(i)).

Let {H; : j = 1,...,n} be a set of pairwise orthogonal rank 1 projectors
summing to the identity, such that for all k = 1,..., K we have Z‘;zl H, = H(k),
where R(H(k)) = R(Xk(n)). Let € = (&) be an n-tuple of iid N(0,1) random
variables, F' any function of |H;e|? for a fixed i € {1,...,n}, and £, 7 fixed vectors.

LemMA 5.10. E{(z;, Hie)F(|H;e[?)} = 0.

PrROOF. The lemma is an immediate consequence of the symmetry of the
normal distribution. O

COROLLARY 5.3. Let f be a function of |Hye|?, ..., |Hyel?. Thenifl <i,j <
k, we have

E{(¢, Hie)f(|Hiel*,...,[Hke®)} = 0,
E{<£a Hiﬁ)(nv Hj6>f(1H16|2= ) |Hk€l2)} =0.

PROOF. The identities follow from the lemma by a suitable conditioning. 0

In the lemma which follows we use the expressions p; and n, defined prior to
Lemma 5.6 above.

LEMMA 5.11. Let k,, denote the dimension selected by FPE,, and suppose
that l > k > k*. Then we have

(5.4) limm ™ n|px| 2 E{(pk, €) (e, €)1 4, -} = 0.
. m\n
PrOOF. We begin by replacing lAc,, by k. that k which minimizes FPE(k) over

the range {k*,k* 4+ 1,..., K}. From Theorem 3.2 we know that pr(k, # k,) — 0
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Now recall the definition of FPE(k) and note that if £ <[, FPE(k) < FPE(])
if and only if Y., [Hpel* < (I — k)a. Thus the event {k = [} is the intersection
of the two events: {Zp“h*l |Hpel? > (1 — h)a; k* < h < 1} and {Z i1 | Hpe? <
(h—Da,l < h < K} whose 1nd1cators we denote by f; and g respectlvely Our
aim is to show that

(5.5) E{{p,€)(n,€) figi} =0

and then deduce the conclusion of the lemma.

Since my € R(Xk), we may write (mx,€) = Sory (M, Hi¢). Similarly, py €
R(Xi)* and so (pg,€) = o k*l(pmH ¢). Thus our interim objective will be
achieved if we can prove that for all 4, j, 1 <¢ <k, k+1 < j < n, we have

(5.6) E{(ni. Hie){pr, Hje) figi} = 0.
Note that fi is a function of {|H,e|? : k* < p < I} whilst g; is a function of
{|Hpel* : 1 < p < K}, and so if i < k* or j > k, (5.6) is trivially zero. If we

take the case k* < ,j <[, we can split off g; by independence and use Corollary
5.3 to get the conclusion. Similarly if &* <i <l and ! < j < K, we can again
use independence this time splitting off (nx, H;€) fi, and again getting zero by the
same corollary. Thus (5.6) and hence (5.5) are established.

The proof is completed by noting that lim,, » m™n|px| "2 E|(nk, €){pk, €)] is
finite, and so we can combine the result pr(k, # k,) — 0 as n — oo with (5.5) to
obtain (5.4). O

PROOF OF THEOREM 2.2. We obtain (2.6) under each of the three conditions
in turn; in all cases making use of Lemmas 5.8 and 5.9. Then by Lemma 5.8, the
left-hand side of (2.6) will be O(n) as m,n — oo, since the bias terms nB,, ,(k)
for k < k* are not all eliminated, and these are O(n) as m,n — oo, and cannot
be canceled by either of the noise terms. Thus (2.6) is trivially true. Now let us
assume (B). By virtue of the result just established, we may also suppose that
pr(kn, < k*) — 0 as n — oo. Otherwise we make no assumptions concerning the
selection procedure k. On the set {k > k*}, Bm,n(fc) = m,n(ic) = 0, and so
PE(k) — mo? = Ny (k).

Our proof begins by observing that

lim nm ™ E||pk| "% {1k, €) (o, €)|
m,n
< lrilrryllnm"l\'pkiﬁ{E(Uk, €)2E (py, €)*}1/?
= limnm ™ o] "2 {|me|*| o |2} /2,
mmn

and this limit is zero by Lemma 5.7 and (B).
Repeated application of this result and Corollary 5.2 give a series of inequali-
ties, which imply that for k£ > k*:

1}}% nm  E{Np o (k)1 iy} 2 ,l,lfr,i nm_lE{Nm,n(k*)l{;c:k}},
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whence limp, n nm ™  E{ N n(k)1 55y} 2 limpmn nm ™ E{Npm n(E)1 55y }
Since pr(k, > k*) — 1 as n — 00, and Ny, (k*) > 0, limp, o nm ™ E{Np . (k*)}
= tr{Cy-C,.'} implies (2.6) in case (B).

Finally we consider case (C). The proof goes as for case (B), and in particular
the selection rules k& based on FPE,, for a, such that n"'a, — 0 as n — oo,
overfit with probability approaching unity by Theorem 3.2. The chain of inequal-
ities leading to the final conclusion is also true, but this time the individual steps
are justified by Theorem 3.1, and the proof is completed exactly as it was in case
(B). Any other selection rule for which the same symmetry argument is valid also
has the lower bound. O

PrROOF OF THEOREM 2.3. (i) We begin by proving that the underfitting
contribution to the left-hand side of (2.6) is asymptotically negligible. This follows
from the readily checked fact that when k < k*, nm™'E{(PE(k) —mo?)} < O(n)
as m,n — oo. Thus for all k < k*,

nm ' E{(PE(k) = mo®)1_y } < O(n)y/pr(k, = k) = 0

as m,n — oo, and so nm ™' E{PE(k) — moz)l{,kk.}} — 0 as n,m — oo.

Turning now to the overfitting contribution, we begin by proving that in the
chain of inequalities used to prove the lower bound in cases (B) and (C), the terms
dropped-—the second and third terms of the right-hand side of Corollary 5.2—all
have absolute expectations which are O(mn~!). The argument at the beginning
of the proof of case (B) of Theorem 2.2 shows this for the second term, for even
without the hypothesis (B) we get a constant at that stage by Lemma 5.7(v).
Similarly for the third terms,

lim nm ™" E{|pk|~*|p|*(px. €)*} = O(1)
by Lemma 5.7. Thus we may use the consistency hypothesis and get

}?lln;ll nm ™' E{(PE(k) - mffz)l{bk*}}

K
= Z grryllnm'lE{(PE(lAc)—m02)1{,‘c:k}}
k=k~+1
K
= Z lirnnm'lE{(PE(k*)—m(r2)1{jczk}}
k=k*+1

= limnm 'E(PE(k™) — mo?) = tr{Cy-C;. },

the second last step following from our assumption that pr(fcn =k)—0asn— oo
for all k > k*. This completes the proof of (i).

(ii) Now we suppose that k is obtained by minimizing FPE, for a sequence
on < 2loglogn. We know from Theorem 3.2 that pr(k < k*) = o(n~!) and so
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need only consider overfitting. By Shibata (1984), liminf pr(k, = k* + 1) > 0.
We next simplify limp, , nin ! E{(PE(k) — mo?)} in the now familiar way, noting
that (as in the proof of Theorem 2.2) it coincides with

lim ™! B{(PE(R) ~ mo®)1 ;54 }

> tr{Cp-Cil'} + lim nm” L E{|px- % Px- i2<pk”6>21{§:=k'+1}}'
Now the second term above is zero only if pk- = 0, which implies £* = K, since

we have assumed all design matrices to be of full rank. Thus the inequality (2.6)
is strict for selection rules based on FPE,, with liminf(2loglog n)_lan <1l.0O

PROOF OF THEOREM 2.1. Since ¢ is independent of l’épl and ,ét_l for all
t>1,

E {Z(yt - x;Bt—l(iCt—l))z} =no? + ZE(I'Q,B* — 2B 1 (ke-1))?.
1 1

Write .
Un =Y E{(z}3" — 2} Bi-1(keo1)®1 (4, ey b
1

Vo= B{(z}8" — z\fBi1(ki1))1 (5, gy b
1

W = 3" B{(@l8" = w4Bis (ke-1))L g5 sy b
1

We deal with each of these three components in turn. Let us temporarily denote
Th(Xp(t — 1) Xp(t — 1)) 71Xk (t — 1)e(t — 1) by d’e. Then

k*—1 n

Un=Y_ Y E{(z}p" - 24 Bo-1(ke-1))1 (5, =iy}
k=1 t=1
k*=1 n

ZZE{ (Me(k) = d'*L, gy}

k=1 t=

23S Z K)2pr(kes = k) + 2B{(d0)1 5, _})
k=1 t=1

Now for k < k*, 37 Me(k)? = byn + 0(1) as n — oo, whilst pr(l?:t_l =k) <
O(t=?(logt)™¢) as n — oo, ¢ > 1. Summing by parts we thus conclude that

k-1 n
> Z/\t(k)2pr(ict_1 =k)=0(1) as n—oo.

k=1 t=1
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Furthermore, E{(d'¢)*} = 3E{(d’¢)?}, and since E(d'¢)? = |d|?0? = . (k)o?,

k-1 n k=1 n
Z ZE{(d'e)Zl{kt_lzk}} < Z Z\/garzm(k){pr(}%t_l = k)}/2
k=1 t=1 k=1 t=1

I

O(1) as n— oo,

as argued above, but this time using 7 w: (k) = klogn(1+o0(1)) as n — oco. Thus
U, =0(1) as n — oo.

Turning now to the overfitting term V;,, we find only the quadratic form (d’¢)?,
as the bias term vanishes. Thus we can argue as above, giving

K n
Wo= > ZE{(d’e)Ql{;ﬁ_lzk}}
k=k*+1t=1
K n
<VBo® YN k) {pr(kior = k)}2 = 0(1),

k=k*+1 t=1

since pr(k,—1 = k) < O(logt~°) as t — oo, where a > 2.
_Finally, we examine the term corresponding to getting the model correct. Since
pr{ki_1 # k*) < A(t™%(logt)~¢) + B(logt)~ for large t,

Il
NE

v, E{(z,5" - x;Bt_l(k:*))%{,;t_l:k,}}

i
L

I
M=

E{(d¢)’} =Y B{(de)1 5, ey}
t=1

Flogn(l+o(1))+0(1) as n— . O

T

o~
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7 Asymptotics and Coding Theory

A Rate of Convergence Result for a
Universal D-Semifaithful Code

Bin Yu and T. P. Speed

Abstract—The problem of optimal rate universal coding in the
context of rate-distortion theory is considered. A D-semifaithful
universal coding scheme for discrete memoryless sources is given.
The main result is a refined covering lemma based on the
random coding argument and the method of types. The average
codelength of the code is shown to appraoch its lower bound,
the rate-distortion function, at a rate O(n™" log n), and this is
conjectured to be optimal based on a result of Pilc. Issues of
constructiveness and universality are also addressed.

Index Terms— Discrete memoryless source, rate-distortion,
D-semifaithful, universal coding, optimal rate, random coding,
method of types.

1. INTRODUCTION

NTROPY has a central position in information theory,
in part because in the limit it gives the shortest possible
per-symbol average length of a noiseless code. If we consider
a discrete memoryless source with distribution Py, the entropy
H(P,) serves as a nonasymptotic lower bound to the average
expected codelength for data strings from this source. More-
over, the entropy lower bound can be achieved asymptotically
at the rate O(n 1) when the source distribution P, is known,
and at the rate O(n~! log n) when P, is not known.
Rissanen [19] improved the ’ entropy lower bound by
showing that entropy %kn"logn is an asymptotic lower
bound to the average expected codelength. His bound holds
for data strings from parametric statistical models satisfying
mild regularity conditions, and the k in the lower bound is
the dimension of the model. Discrete memoryless sources
are covered by his result, with & there being the cardinality
of the source alphabet minus one, and the rate O(n~'logn)
is optimal in this case, when Py is not known. The rate
O(n~'logn) has been shown to be achievable for various
other statistical models, see for example Davisson [8],
Rissanen [19], [20], Hannan and Kavalieris [10], Hemerly and
Davis [11], Gerenscer and Rissanen [9], Clarke and Barron
[5], and Weinberger, Lempel, and Ziv [27]. Extensions to
nonparametric models can be found in Barron and Cover [1],
Rissanen, Speed, and Yu [21], and Yu and Speed [28].
Rate-distortion theory was started by Shannon [23], and in
that context we consider block-codes with a fidelity criterion,
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Foundation Grant DMS 8802378.
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or semifaithful codes to use the term from a recent paper of
Omnstein and Shields [15]. Instead of the expected codelength
used in noiseless coding it is natural in rate-distortion theory
to consider the log of the number of D-balls required to cover
the n-tuple space of the source alphabet under some single-
letter distance measure. The role of entropy in noiseless coding
is then taken by the rate-distortion function, in the following
sense: the rate-distortion function gives a lower bound to the
log of the covering number, which we may also refer to
as the expected code length of a D-semifaithful code, and
this lower bound can be achieved in the limit by certain D-
semifaithful codes. In particular, Ornstein and Shields [15]
obtain D-semifaithful codes which achieve the rate-distortion
function lower bound almost surely, for ergodic sequences,
and Shields [22] uses Markov types for similar results. Earlier
work for other classes of sources include Neuhoff, Gray, and
Davisson [14], Mackenthun and Pursley [13] and Kieffer [12].
In the case of memoryless sources, the achievability proof can
be found in standard texts, see for example, Cover and Thomas
[7] for a recent exposition using the random coding argument.
However, no results have yet been provided on the rate at
which this lower bound is approached.

In this paper, we describe a D-semifaithful universal coding
scheme of memoryless sources and obtain an associated rate
result. We show, for a discrete memoryless source with a
source alphabet of J elements and an unknown distribution
Py, that under some mild smoothness conditions on the rate-
distortion function, a universal D-semifaithful code can be
constructed such that the average expected length of this
code tends to the rate-distortion function at the rate n~logn.
The techniques used are the method of types and random
coding. The main result will be based on a refined coding
lemma (Theorem 1) for type classes. It is “refined” because it
improves the o(1) term in the covering lemma in Csiszar and
Korner [6] to an O(n*llogn) term. In other words, we are
able to give a better upper bound on (the log of) the number
of D-balls needed to cover a type class, equivalently, on
the number of D-semifaithful code words required to encode
a type class. Then a two-stage code is conmstructed as the
D-semifaithful code for all strings: first we encode the type
class, and next we encode the elements of each type class using
the refined covering lemma. The above results are contained
in Section IL

In Section III, we conjecture that the rate n™! log n is
asymptotically optimal. Our conjecture is based on a result
of Pilc [16], [17], which is expressed in terms of the inverse
of the rate-distortion function: the distortion-rate function. Pilc
has upper bounds and lower bounds for noiseless channels and
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for noisy channels, but we use his results only for noiseless
channels. Unfortunately, although the rate n~! log » in the
upper bound of our two-stage code matches that in Pilc’s lower
bound, his lower bound is on the log cardinality of an expected
D-semifaithful code (cf. the forthcoming definition) while our
code is pointwise D-semifaithful with an upper bound on the
expected codelength. Hence, we do not know at this stage
if the rate n~! log n is indeed optimal in terms of expected
codelength. Moreover, his bound does not include Rissanen’s
since it holds only for nonzero distortion levels.

In Section IV, we compare our code with the code corre-
sponding to Pilc’s upper bound. The main point made there
is that our code is universal, while the other one is not. In
addition, the issue of construction versus pure existence is
addressed in relation to our code and the one corresponding
to Pilc’s upper bound.

We start with some preliminaries on rate-distortion theory
and the method of types. Our main reference on rate-distortion
theory is Berger [2], and that on the method of types is Csiszar
and Korner [6].

II. PRELIMINARIES

Let Ay = {1,2,---,J — 1, J} be the source alphabet, and
let By = {1,2,---, K} be the reproducing alphabet. By could
be the same as or a subset of Ag. We assume our source is
memoryless, i.e., that the letters z1,- - -, z,, which make up
our strings are mutually independent and identically distributed
(i.i.d.) with distribution Py on Ag. Without loss of generality
we assume Py(j) > 0 for all j € Ap. We use a single-letter
fidelity criterion to measure the distortion between any nth
order source string 2" = (z1,---,2z,) € A}, and its code
word y" € By. More precisely, let

n
da(z",y™) = 07y d(ws,32),

t=1

where d is a bounded real nonnegative function on Ay x By,
with maximum dy; and minimum d,,,. Then the rate distortion

function R, (Py, D) for the distribution of zy,--,z, equals.

nR(Py, D) where the rate-distortion function R(Py, D) of Py
can be formally defined as follows:

R(Po, D) = min I(W, Po)

Wiklj)
Q)
where the minimum is taken over the set of matrices W
from Ay to By such that for any j,k,