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To Terry — teacher, colleague, and friend







Preface to the Series

Springer’s Selected Works in Probability and Statistics series offers scientists and
scholars the opportunity of assembling and commenting upon major classical works
in statistics, and honors the work of distinguished scholars in probability and statis-
tics. Each volume contains the original papers, original commentary by experts on
the subject’s papers, and relevant biographies and bibliographies.

Springer is committed to maintaining the volumes in the series with free ac-
cess of SpringerLink, as well as to the distribution of print volumes. The full text
of the volumes is available on SpringerLink with the exception of a small num-
ber of articles for which links to their original publisher is included instead. These
publishers have graciously agreed to make the articles freely available on their web-
sites. The goal is maximum dissemination of this material.

The subjects of the volumes have been selected by an editorial board consisting
of Anirban DasGupta, Peter Hall, Jim Pitman, Michael Sörensen, and Jon Wellner.
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Preface

The purpose of this volume is to provide an overview of Terry Speed’s contribu-
tions to statistics and beyond. Each of the fifteen chapters concerns a particular area
of research and consists of a commentary by a subject-matter expert and selection
of representative papers. Note that, due to space constraints, not all articles dis-
cussed in the commentaries are reprinted in this volume. The reader is referred to
the book website for access to these papers (http://www.stat.berkeley.
edu/˜sandrine/Pubs/SelectedWorksTerrySpeed/). The chapters, or-
ganized more or less chronologically in terms of Terry’s career, encompass a wide
variety of mathematical and statistical domains, along with their application to bi-
ology and medicine. Accordingly, earlier chapters tend to be more theoretical, cov-
ering some algebra and probability theory, while later chapters concern more recent
work in genetics and genomics. The chapters also span continents and generations,
as they present research done over four decades, while crisscrossing the globe.

The commentaries provide insight into Terry’s contributions to a particular area
of research, by summarizing his work and describing its historical and scientific
context, motivation, and impact. I’ve enjoyed reading the personal anecdotes, which
remind us that one cannot always dissociate the scholar from the person and show
how relationships beginning as professional collaborations can turn into long-lasting
friendships. In addition to shedding light on Terry’s scientific achievements, the
commentaries reveal endearing aspects of his personality, such as his intellectual
curiosity, energy, humor, and generosity. The title of Bin Yu’s piece, “the n → ∞
dimensions of Terry”, says it all and captures Terry as an avid and tireless scholar
and explorer.

Due to space constraints, this volume is only the tip of the iceberg, as it is clearly
impossible to give a complete account of Terry’s work. And it is certain that addi-
tional significant contributions are forthcoming — Terry’s thirst for knowledge has
not abated, and neither has his dynamic pace. For “coming attractions”, one will
have to wait for another such volume ...

Berkeley, CA Sandrine Dudoit
June 2011
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Biographical Sketch of Terry Speed

Terence Paul (Terry) Speed was born on March 14th, 1943, in Victor Harbor,
South Australia. He grew up in Melbourne, attending Westgarth Central School
and University High School. In his final year of high school, he decided that he
wanted to pursue a career in medical research, influenced by the award that year
(1960) of the Nobel Prize in Medicine to Sir Frank Macfarlane Burnet, the Direc-
tor of Melbourne’s Walter and Eliza Hall Institute (WEHI) of Medical Research.
In 1961, Terry enrolled in a joint Medicine and Science degree at the University of
Melbourne. By the end of the first term, his lack of enthusiasm for laboratory work
prompted him to change his enrollment to Science alone, majoring in mathematics,
while maintaining a strong interest in genetics. He graduated in 1964 with an hon-
ours degree in mathematics and statistics. In his final year, he edited the magazine
Matrix of the mathematics students society and also attended lectures on algebra
at Monash University, located in an outer suburb of Melbourne. At the end of that
year, he married Freda Elizabeth (Sally) Pollard, whom he had met at a party at the
home of Carl Moppert, then a Senior Lecturer in the Department of Mathematics at
the University of Melbourne.

Although an attempt to join the PhD program in the Department of Statistics at
the University of California, Berkeley (UCB) fell through, Terry was awarded an
Australian Commonwealth Postgraduate Research Scholarship in the Department
of Statistics at the University of Melbourne. He began his graduate studies in 1965,
under the supervision of Professor Evan J. Williams. Rather than pursuing research
in the area of his supervisor (Fisherian statistics), Terry developed an interest in
probability theory, along the lines of Michel Loève’s work at Berkeley. He did not
however complete his doctoral degree at that point. In mid-1965, he took a job as
a tutor in the Department of Mathematics at nearby Monash University and en-
rolled for a part-time PhD in mathematics under the supervision of Professor Peter
D. Finch. With hindsight, it is interesting to note that several elements that were to
feature prominently in Terry’s later life had already manifested themselves: interests
in medical and genetic research, the Walter and Eliza Hall Institute, and probabil-
ity and statistics as practiced in the Department of Statistics at the University of
California, Berkeley.

xxiii



xxiv Biographical Sketch of Terry Speed

At Monash, Finch had eclectic interests in probability theory and mathematics
and encouraged Terry to examine probability and measure theory on the class of
lattices generalizing Boolean algebras that corresponded to the intuitionistic logic
of L. E. J. Brouwer. This led to Terry’s 1969 PhD thesis entitled Some topics in
the theory of distributive lattices. In addition to working on his doctoral research,
Terry taught introductory probability and statistics to large classes for four years
running, and developed and presented undergraduate lecture courses on information
theory (introductory and advanced), measure theory, projective geometry, and lat-
tice theory. He also lectured on the theory of games to students in the Department
of Mathematics at the new La Trobe University, located in another outer suburb of
Melbourne. On top of this, he completed a Diploma of Education at Monash, rea-
soning that, if all else failed, he would be happy as a secondary school mathematics
teacher and that it would be wise to be qualified.

While waiting for the examiners’ reports on his thesis, Terry met Professor Joe
Gani, then Director of the Manchester-Sheffield School of Probability and Statistics
in the United Kingdom. Gani encouraged him to consider a lecturing position in the
School. The presence in Manchester of Professor K. R. Parthasarathy — who carried
out research on probability theory over algebraic structures such as locally compact
abelian and Lie groups — proved to be the clincher. So off to Sheffield he and Sally
went! Sheffield was an exciting place at that time, with excellent staff and lots of
visitors. Equally important was its accessibility to other centers of probability and
statistics such as Manchester and London. Initially, Terry travelled to Manchester
weekly to attend Partha’s seminar and went down to London to attend seminars at
Imperial College, meetings of the Royal Statistical Society, and the like. There was
lots of train travel. However, Terry’s career in Partha-style probability theory did
not take off and, in due course, he found himself collaborating with Elja Arjas on
the topic of random walks, an experience that was both satisfying and productive.
A later visitor to Manchester, Professor Debrabata Basu, re-kindled his interest in
Berkeley-style statistics and led to a new obsession: sufficiency.

Terry returned to Australia to head the small group of statisticians in the
Department of Mathematics at the University of Western Australia (UWA). He
started at UWA as Associate Professor in 1974, became Professor in 1975, and spent
a very happy and productive period there, culminating in being appointed Head of
Department in 1982. From late 1977 until early 1979, he had his first sabbatical,
spending time at the University of Copenhagen, Princeton University, Rothamsted
Experimental Station, and UC Berkeley, all with Sally, and on his own at the Indian
Statistical Institute in Calcutta.

In 1982, Terry was invited to apply for the position of Chief, Division of
Mathematics and Statistics, at Australia’s Commonwealth Scientific and Industrial
Research Organization (CSIRO). He took up that appointment in 1983 and had a
very hectic first year, being based in Canberra, but travelling to visit members of his
division in every state capital and several other centers around Australia.

In 1984, he spent two enjoyable months visiting the Department of Statistics at
the University of California, Berkeley, in a way, fulfilling his unrealized dream from
1964. While there, he was encouraged to apply for a permanent position, and three
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years later, in fall 1987, joined UCB as a tenured professor. On the basis of his
administrative experience with CSIRO, he was appointed Department Chair 1989–
94, after which he took a second sabbatical, encouraged by Sally to explore job
opportunities back in Australia. Nothing happened on this front for two years, but in
1996, a former classmate from University High School, Professor Suzanne Cory, by
then Director of the Walter and Eliza Hall Institute of Medical Research, invited him
to start up bioinformatics at WEHI. Sally said “yes!” and so he half accepted. From
August 1997 to July 2009, Terry split his time evenly between UCB and WEHI or,
as he used to say, spent half his time in Berkeley, half in Melbourne, and the other
half in the air in between.

Following yet more encouragement from Sally, Terry officially retired from
teaching at UC Berkeley at the end of the US academic year 2008–9 and took on
a full-time appointment at WEHI. At the time of writing, he still has four PhD
students, three postdoctoral fellows, and a number of continuing collaborations at
Berkeley. He visits there for short periods every 1–2 months and remains as active
as ever.

To quote from one of Terry’s recent e-mails: “Life has been hectic!”

Terry has (co-)authored over 300 refereed articles, in journals such as Nature
and The Annals of Statistics, and on a wide variety of subjects, ranging from dis-
tributive lattices and ring theory in algebra, to pre-processing of high-throughput
microarray and sequencing data in genomics. He contributes a regular column, Ter-
ence’s Stuff, to the Institute of Mathematical Statistics Bulletin, with his unique and
provocative opinions on the current state of statistical practice and education. His
book Stat Labs: Mathematical Statistics Through Applications provides a glimpse
into his teaching philosophy, which integrates the theory of statistics with its prac-
tice through case studies. As illustrated by his dizzying travel schedule, he is a
much sought-after speaker worldwide. He has delivered prestigious lectures such
as the 2001 Wald Memorial Lectures and 2006 Fisher Lecture, at the Joint Statisti-
cal Meetings, and the 2007 Hotelling Lectures, at the University of North Carolina,
Chapel Hill.

Terry is an active and dedicated member of the main statistical and biological
professional societies, journal editorial boards, and grant and peer review com-
mittees. He is also highly-solicited as a consultant and scientific advisory board
member in industry. He is a Fellow of the Institute of Mathematical Statistics
(1984), the American Statistical Association (1989), the American Association for
the Advancement of Science (1990), and the Australian Academy of Science (2001).
He has received various honors, including the 2002 Pitman Medal (Statistical So-
ciety of Australia), the 2003 Moyal Medal (Macquarie University), an Australian
Government Centenary Medal (2003), the 2004 American Statistical Association
Outstanding Statistical Application Award (for the paper Irizarry et al. (2003), Bio-
statistics, 4(2):249–264), as well as an Achievement Award for excellence in health
and medical research (2007) and an Australia Fellowship (2009) from Australia’s
National Health and Medical Research Council (NHMRC).
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In addition to his invaluable contributions to research, Terry is an extraordi-
nary teacher, who has trained and influenced generations of students at Berkeley,
in Australia, in the United Kingdom, and beyond. According to the Mathemat-
ics Genealogy Project (http://genealogy.math.ndsu.nodak.edu/id.
php?id=30979), he has advised or co-advised 60 PhD students and has over 120
“descendants”. He is a most inspiring and generous mentor. His contagious enthu-
siasm and intellectual curiosity have made him one of the most popular advisors in
the UC Berkeley Department of Statistics and a great resource for students in other
departments.

Berkeley, CA Sandrine Dudoit
June 2011 with contributions from Terry Speed

http://genealogy.math.ndsu.nodak.edu/id.php?id=30979
http://genealogy.math.ndsu.nodak.edu/id.php?id=30979
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Michael Evans Monash University 1973
Philip Pegg University of Sheffield 1973
James (Jim) Pitman University of Sheffield 1974
John Whitehead University of Sheffield 1975
Anne Houtman Princeton University 1980
Harri Kiiveri University of Western Australia 1982
Matthew Knuiman University of Western Australia 1983
Jens Breckling University of Western Australia 1987
Bin Yu University of California, Berkeley 1990
Sang Ho Lee University of California, Berkeley 1991
Trang Nguyen University of California, Berkeley 1991
Rudy Guerra, Jr. University of California, Berkeley 1992
Darlene Goldstein University of California, Berkeley 1993
Ferdinand Verweyen University of California, Berkeley 1993
Mary Sara McPeek University of California, Berkeley 1993
Steven Rein University of California, Berkeley 1993
Ann Kalinowski University of California, Berkeley 1995
David Nelson University of California, Berkeley 1995
Hongyu Zhao University of California, Berkeley 1995
Gregory Alexander The American University 1996
Mark Grote University of California, Berkeley 1996
Karl Broman University of California, Berkeley 1997
Barathi Sethuraman University of California, Berkeley 1997
William Forrest, III University of California, Berkeley 1998
Lei Li University of California, Berkeley 1998
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Shiying Ling University of California, Berkeley 2000
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Chapter 1
Algebra

Brian A. Davey

It gives me great pleasure to present this brief commentary on some of T. P. Speed’s
papers on algebra. It may come as a surprise to many of Speed’s colleagues to know
that his 1968 PhD thesis was entitled Some Topics in the Theory of Distributive
Lattices. Moreover, of his first 15 papers only one was in probability theory with the
remainder in algebra. Nevertheless, this fruitful excursion into algebra has its roots
in the foundations of probability theory. In the introduction to his PhD thesis, Speed
writes:

In July 1965, the author began to look at the lattices associated with intuitionistic logic
which are called variously – relatively pseudo-complemented, brouwerian or implicative
lattices. This was under the direction of Professor P. D. Finch and aimed towards defining
probability measures over these lattices. It was hoped that a probability theory could be
developed for the intuitionistic viewpoint similar to the Kolmogorov one for classical logic.

Speed never returned to the search for an intuitionistic probability theory for, as he
says later in the introduction to his thesis, he became “sold on distributive lattices”.
In the summer of 1968–1969, between my third and honours years, I spent three
months on a Monash University Graduate Assistantship during which I read Speed’s
PhD thesis. By the end of that summer I was also sold on distributive lattices and
have been ever since [2].

Between 1969 and 1974, Speed published 17 papers on a range of algebraic
topics: distributive lattices, including their topological representation (9), Baer
rings (3), Stone lattices (2), semigroups (2), and �-groups (1). In the commentary
below, I will discuss five of these papers. Only one of these papers, the first dis-
cussed, comes from Speed’s thesis.

B.A. Davey
Department of Mathematics and Statistics, La Trobe University, Australia
e-mail: b.davey@latrobe.edu.au

S. Dudoit (ed.), Selected Works of Terry Speed, Selected Works in Probability and Statistics,
DOI 10.1007/978-1-4614-1347-9 1,
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Distributive lattices in general

Most of Speed’s work on distributive lattices revolves around the role of particular
sorts of prime ideals, with an emphasis on minimal prime ideals. In this section, we
will look at two of the seven papers that fall into this category, namely, On rings of
sets [10] and On rings of sets. II. Zero-sets [16].

In the first of these papers, Speed provides a unified approach to a number of
representations of distributive lattices as rings of sets, that is, as lattices of subsets
of some set in which the operations are set-theoretic union and intersection. Each of
these characterisations was originally given in terms of the existence of enough el-
ements of a special form, and their proofs looked quite different. Given cardinals m
and n, a lattice L is called (m,n)-complete if it is closed under the operations of least
upper bound and greatest lower bound of sets of at most m and n elements, respec-
tively. An (m,n)-complete lattice of sets is an (m,n)-ring of sets if m-ary least upper
bounds and n-ary greatest lower bounds are given by set union and intersection, re-
spectively. For example, the open sets of a topological space form an (m,2)-ring of
sets for every cardinal m. Speed introduces n-prime m-ideals and employs them to
give natural necessary and sufficient conditions for an (m,n)-complete lattice to be
isomorphic to an (m,n)-ring of sets. As Speed remarks in the introduction to the
paper, It is interesting to note that the elementary methods used in representing dis-
tributive lattices carry over completely and yield all these results, although this is
hardly obvious when one considers special elements of the lattice.

In On rings of sets. II. Zero-sets [16], Speed turns his attention to an important
example of (2,ω)-rings of sets, the lattice Z(X) of zero-sets of continuous real-
valued functions on a topological space X . The paper, which is deeper and somewhat
more technical than the first, includes lattice-theoretic characterisations of Z(X) in
two important cases, when X is compact (Theorem 4.1) and when X is an arbi-
trary topological space (Theorem 5.9). In both cases, the characterisations involve
minimal prime ideals. Along the way he proves a result (Theorem 3.1) that very
nicely generalises Urysohn’s Lemma for normal topological spaces and the fact that,
in a completely regular space, disjoint zero-sets can be separated by a continuous
function.

Distributive lattices—Priestley duality

About the same time that Speed was writing his PhD thesis at Monash University,
H. A. Priestley was writing her DPhil at the University of Oxford. Speed was
amongst the first to realise the importance of the new duality for bounded distribu-
tive lattices that Priestley established in her thesis (see Priestley [8, 9] and Davey
and Priestley [2]).

In On the order of prime ideals [13], Speed addresses the question, raised
by Chen and Grätzer [1], of characterising representable ordered sets, that is, or-
dered sets that arise as the ordered set of prime ideals of a bounded distributive
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lattice. By using Birkhoff’s duality between finite distributive lattices and finite
ordered sets, he shows that an ordered set is representable if and only if it is the
inverse limit of an inverse system of finite ordered sets. Speed observes that, when
combined with deep results of Hochster [5], this tells us that an ordered set is iso-
morphic to the ordered set of prime ideals of a commutative ring with unit if and
only if it is isomorphic to an inverse limit of finite ordered sets. This cross fertilisa-
tion in Speed’s work between commutative rings with unit and bounded distributive
lattices will arise again in Section 1.

Soon after writing Speed [13], Speed became aware of Priestley’s results. He
quickly realised that, since an inverse limit of finite sets is endowed with a nat-
ural compact topology, his characterisation of representable ordered sets could be
lifted to a characterisation of compact totally order-disconnected spaces, the ordered
topological spaces that arise in Priestley duality (and are now referred to simply as
Priestley spaces). In Profinite posets [12], he proved that an ordered topological
space is a Priestley space if and only if it is isomorphic, both order theoretically and
topologically, to an inverse limit of finite discretely topologised ordered sets.

Baer rings

Speed’s PhD thesis was strongly influenced by the seminal paper Minimal prime
ideals in commutative semigroups [6]. He took ideas from Kist’s paper and reinter-
preted them in the context of distributive lattices. Speed saw that there was some
informal connection between the commutative Baer rings introduced and studied
in Kist [6] and Stone lattices, a class of distributive lattices introduced by Grätzer
and Schmidt [4]. A commutative ring R is a Baer ring if, for every element a ∈ R,
the annihilator ann(a) := {x ∈ R | xa = 0} is a principal ideal generated by a (nec-
essarily unique) idempotent a∗. A bounded distributive lattice L is a Stone lattice if,
for every element a ∈ L, the annihilator ann(a) := {x ∈ L | x∧ a = 0} is a princi-
pal ideal generated by an element a∗, and in addition the equation a∗ ∨ a∗∗ = 1 is
satisfied. While quite different looking, the requirements that a∗ be an idempotent,
in the ring case, and the identity a∗ ∨a∗∗ = 1, in the lattice case, guarantee that the
elements a∗ form a Boolean algebra and correspond precisely to the direct product
factorisations of the ring or lattice.

While the proofs will typically be quite different, it is often true that a result
about Baer rings will translate to a corresponding result about Stone lattices and
vice versa. For example:

(i) Grätzer [3] proved that Stone lattices form an equational class; Speed and Evans
[17] proved that Baer rings also form an equational class. (In both cases, ∗ is
added as an additional unary operation.)

(ii) Grätzer and Schmidt [4] proved that, in a Stone lattice, each prime ideal con-
tains a unique minimal prime ideal; Kist [6] proved that precisely the same
condition holds in a Baer ring.
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In separate papers on Stone lattices [11] and Baer rings [14], Speed proves that
there are broad classes of distributive lattices and rings, respectively, within which
Stone lattices and Baer rings are characterised by the property that each prime ideal
contains a unique minimal prime ideal.

In his third and final paper on Baer rings [15], Speed considers the question of
embedding a commutative semiprime ring R into a Baer ring B. Two such embed-
dings had already been given: the first by Kist [6] and the second by Mewborn [7].
In both cases, the Baer ring B was constructed as a ring of global sections of a sheaf
over a Boolean space. Speed shows that, in fact, there is a hierarchy of Baer ex-
tensions of R, the smallest being Kist’s and the largest Mewborn’s. Moreover, he
is able to replace the sheaf-theoretic construction with a purely algebraic one sim-
ilar in nature to one that had been used previously in the theory of lattice-ordered
groups. The underlying lattice of a lattice-ordered group is distributive, so again we
see Speed’s fruitful use of the interplay between rings and distributive lattices.
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Chapter 2
Probability

Elja Arjas

Writing a brief commentary on three of Terry Speed’s papers in probability brings
to mind many memories from a time now almost forty years away. Two of these
papers were written while Terry worked as a Lecturer in Sheffield, and during this
period my encounters with Terry were very frequent. The third paper was written
after Terry had already moved on to Perth.

These were times “when we were very young”, and there was a great deal of
excitement about new developments in probability. One of the main sources of in-
spiration was Volume 2 of Introduction to Probability Theory and its Applications
by Feller [8], which had come out sixteen years after the publication of Volume 1
[7], and was then followed five years later by an expanded Second Edition. Feller
was a master in making probability theory look like it were a collection of challeng-
ing puzzles, for which one, if only sufficiently clever, could find an elegant solution
by some ingenious trick that actually made the original problem look like it had
been trivial. Feller’s books offered also a large number of examples leading to po-
tentially important applications. This idea of making probability a tool for practical
mathematical modeling was gaining ground in other ways, too. An important move
in this direction, in 1964, was founding, at the initiative of Joe Gani, of the Applied
Probability journals. The Department of Probability and Statistics in Sheffield, also
Gani’s creation, was a hub of these developments and it attracted a number of young
talents to its circles from around the world, Terry being one of them.

Another source of inspiration at the time was ‘the general theory of stochas-
tic processes’, which was represented, most importantly, by the French and the
Russian schools of probability. The key figure behind this in France was Paul-André
Meyer and his book Probability and Potentials [10] was one of the favorites in
Terry’s impressive home library in Sheffield. (A sign of Terry’s interest in the works
coming from the French school is that he translated into English J. Neveu’s book
Martingales à temps discret [11], which appeared in 1975 with the title Discrete Pa-
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rameter Martingales [12]. I remember Terry wondering why the French publishers
did not seem to make any effort towards marketing their books outside France, or
even making them available in the largest bookstores in UK.)

Chronologically, the earliest of the three papers on probability in this collection
is the one entitled Symmetric Wiener-Hopf factorisations in Markov additive pro-
cesses, which Terry and I submitted to the prestigious Springer journal ‘ZW’ in
November 1972 [2]. For me, the background story leading to this is as follows: Not
finding anyone in Finland to suggest a topic to work on for a PhD in probability,
let alone to act as a supervisor, I had in desperation written to Professor Gani, ask-
ing him whether he would let me come and spend some time in his Department in
Sheffield. I was immediately welcomed, and I stayed there for the winter and spring
1970–71. Sheffield turned out to be an excellent choice, with lots of academically
interesting things going on all the time. There were many visitors, good weekly
seminars, and if this wasn’t sufficient, the Department paid train trips for us to go to
London and Manchester to listen to more. But above all, there were people roughly
of my age some of whom were working towards a PhD just like I was, and others
who were already much beyond, like Terry. There I learned what doing research
in probability might involve in practice. My contact with Terry, which grew into a
friendship, was particularly important in this respect. During the first and longest
stay in Sheffield in the spring of 1971 I lived next door from Terry and Sally, and on
my later visits I enjoyed their hospitality as a guest in their home.

This paper on Wiener-Hopf factorizations was inspired, in particular, by the ideas
on Random Walks in R

1 that were contained in Chapter XII of Feller’s Volume 2,
with that same title. On the introductory page of this chapter Feller writes: “The the-
ory presented in the following pages is so elementary and simple that the newcomer
would never suspect how difficult the problems used to be before their natural set-
ting was understood.” The key to such elementary understanding offered by Feller
is the concept of ‘ladder point’, a pair of random variables consisting of a ‘ladder
epoch’ and ‘ladder height’. Consecutive ascending (descending) ladder points make
up the sequence of new maximal (minimal) record values of the random walk. The
sample path of the random walk arising from its first n steps can now be divided
into random excursions, each ending with a new maximal (minimal) record value,
and finally including an incomplete excursion from such a record value to where the
random walk is after n steps. Due to the assumed iid structure of the random walk,
the differences between the successive ascending (descending) ladders are also iid,
and therefore the distribution of the sum of any k of them can be handled by forming
a k-fold convolution ‘power’ of the distribution of one. These convolution powers of
the common distribution of the ascending ladder heights make up the ‘positive part’
of the Wiener-Hopf factorization. The ‘negative part’ stems from the incomplete
excursion, by first noting that its distribution remains the same when the order of
its steps is reversed and that, when considered in this manner ‘backwards in time’,
the position at which the original random walk had its maximum now becomes a
minimal record value. Therefore the distribution of this incomplete excursion gets a
similar representation as the original sample path up to the maximal value, but now
in terms convolution powers arising from the descending ladder points.
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A second ingredient leading to our ZW paper was the emergence, in varying
formulations and uses, of the concept of conditional independence. Conditional in-
dependence had been previously considered, for example, by Pyke [14] and Çinlar
[4] in connection of semi-Markov and Markov renewal processes, and it was also an
essential ingredient in Hidden Markov Models (HMMs) introduced by Baum and
Petrie [3]. The general definitions and properties of conditional independence were
expressed in measure theoretic terms in Meyer’s book [10]. In statistics, it seems
to have taken a few more years, to the well-known discussion paper of Dawid [6],
until the fundamentally important ideas relating to conditional independence were
fully appreciated and elaborated on. Presently, as is well known, conditional inde-
pendence plays a major role particularly in Bayesian statistical modeling.

By replacing ‘time’ in Markov renewal processes by an additive real valued vari-
able led us to consider, in a straightforward manner, a stochastic process called
‘random walk defined on a Markov chain’, or somewhat more generally, to Markov
additive processes [5, 1]. It was relatively easy to see that the key ideas of Feller’s
treatment of random walks could be retained if the model was extended to include
an underlying Markov chain, then assuming that the increments of the additive vari-
able were conditionally independent given the states of this chain. In the case where
the state space of the chain is finite, ordinary univariate convolutions used in the
original random walk would be replaced by the corresponding matrix convolutions.
Our paper in ZW adds a further level of generality to these results, by stating them
in terms of transition kernels defined on a measurable state space. The technically
most demanding aspect here was the construction of the dual or adjoint operators,
corresponding to the time reversal in the original process. For the record, I should
say that it was Terry who was primarily responsible for correctly adding all neces-
sary mathematical bells and whistles to these general formulations.

The second paper, entitled A note on random times [13], provides the natural def-
inition of, as it is called there, randomized stopping time in the case of processes of
a discrete time parameter. In this brief note, Jim and Terry not only define this con-
cept, but actually exhaust the topic completely by listing all its relevant properties
and by linking it to different variants of essentially the same concept that existed
in the literature at the time. Here, too, the key concept is conditional independence:
Definition 1 says that a random time is a randomized stopping time relative to a
family of histories if its occurrence, given the past, has no predictive value con-
cerning the future. Of the properties derived, of most interest would seem to be the
equivalence of (i) and (ii) of Proposition 2.5, and the intuitive explanation that is
provided afterwards. To put it simply, a randomized stopping time is an ‘ordinary’
stopping time if it is considered relative to a family of bigger histories. What is re-
quired of these larger histories is that, at any given time point and given the past of
the ‘original’ history, events in the past of this larger history do not help in predict-
ing the future of the original. When expressed in this way, one can see how close
it is to the concept of ‘non-causality’ of Granger [9], which is famous in the time
series and econometrics literature, as well as, for example, to the property of local
independence introduced by Schweder [15].
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Looking at a result like this, one gets the feeling that the message it conveys
should have been read, and understood, by generations of statisticians working in
the area of survival analysis, in need of a natural definition of the concept of non-
informative right censoring. They should have been thinking in terms of randomized
stopping times! Instead, the common assumption stated in nearly all of the survival
analysis literature is that of the ‘random censoring model’, which postulates for each
considered individual the existence of two independent random variables, of which
only the smaller is actually observed in the data. This model leads to strange events
such as ‘censoring of a person who is already dead’.

Terry is sole author of the third paper discussed here, entitled Geometric and
probabilistic aspects of some combinatorial identities [16]. It is rather difficult to
describe its contents in an understandable way in only a few sentences. In geomet-
rical terms, it is concerned with certain hyperplanes in the positive orthant of the
(k+ 1)-dimensional integer lattice. The main focus is on a particular combinatorial
expression, which is shown to correspond to the number of minimal lattice paths
from the origin to the considered hyperplane and such that the paths do not touch
that plane until at the last point. This geometric interpretation then leads to concise
derivations of some convolution type identities between the combinatorial expres-
sions. Later on, the paper provides probabilistic interpretations, and corresponding
proofs, for these results by considering the first passage time of a random walk
from the origin to the hyperplane. There are also results on the associated moment
generating functions, which have interesting analogues in the theory of branching
processes. Although these combinatorial identities were not included in Feller’s two
books, one could say that Terry’s approach to deal with them is very much Feller-
like: when going through the mathematical derivations, at some point there is a
phase transition from mysterious to intuitive and obvious. Another thing about this
paper which I liked is its careful citing of the work of all authors who had earlier
contributed, in various versions, to this same topic. But it looks like Terry just about
exhausted this topic since, according to Google Scholar, to date this paper has been
cited only once, and it isn’t even listed in the ISI Web of Knowledge database.

Epilogue

When looking at the list of contents of this volume, which covers fifteen topics start-
ing from algebra and ending with analysis of microarray data, one soon concludes
that it would be hopeless to try to compete with Terry in terms of scientific output.
In fact, competing with him in anything turned out to be a futile attempt. I once
tried, in the late 1970s, when Terry visited me in Oulu and we went jogging. As we
came back, I believe Terry was a bit more out of breath than I. Later on, however,
Terry started practicing regularly by running up and down the steep hills surround-
ing Berkeley, and at some point I was told that he had run the marathon in less than
three hours. My first marathon is still due. But luckily, there may be a sport where
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I have a chance of beating him: cross-country skiing. This is an open invitation to
Terry to try.
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Chapter 3
Sufficiency

Anirban DasGupta

It was the Fall of 1978. I had just finished my masters in statistics and started out as a
PhD student in the stat-math division at the ISI in Calcutta. Teachers of the calibre of
B.V. Rao and Ashok Maitra had taught me an enormous amount of mathematics and
probability theory. But deep inside me I was curious to learn much more of statistical
theory. Unfortunately, Basu had already left and moved to the US, and C.R. Rao was
rarely seen in the Calcutta center. I considered following Basu to Tallahassee, but
my friend Rao Chaganty warned me that the weather was so outlandishly good that I
would probably never graduate. My other favorite teacher T. Krishnan was primarily
interested in applied statistics, and J.K. Ghosh had only just returned from his visit
to Pittsburgh. I remember being given a problem on admissibility; but, alas, that too
turned out to be a modest extension of Karlin [30].

ISI allowed its students an unlimited amount of laziness and vagrancy, and I
exploited this executive nonchalance gratuitously. I was not doing anything that I
wanted to admit. Stat-Math was then located in an unpretentious, dark old building
across from the central pond in the main campus. One day I was intrigued to see a
new face; a visitor from Australia, someone whispered. In a week or so, the office
sent out an announcement of a course on sufficiency by our visitor; the name was
Terence P. Speed. That is how I first met Terry 34 years ago, and became one of his
early students. Much later, I came to know that he was professionally and personally
close to Basu, who had an enduring influence on my life. Together, Terry and Basu
prepared a comprehensive bibliography of sufficiency [8]. They had intended to
write a book, but communication at great distances was not such a breeze 40 years
ago, and the book never came into being. Most recently, Terry and I worked together
on summarizing Basu’s work for the Selected Works series of Springer. I am deeply
honored and touched to be asked to write this commentary on Terry’s contributions
to statistics, and particularly to sufficiency. Terry has worked on such an incredible
variety of areas and problems that I will limit myself to just a few of his contributions
that have directly influenced my own work and education. Sufficiency is certainly
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one of them. My perspective and emphasis will be rather different from other survey
articles on it, such as Yamada and Morimoto [51].

For someone who does not believe in a probability model, sufficiency is of no use.
It is also of only limited use in the robustness doctrine. I think, however, that the im-
portance of sufficiency in inference must be evaluated in the context of the time. The
idea of data summarization in the form of a low dimensional statistic without losing
information must have been intrinsically attractive and also immensely useful when
Fisher first formulated it [23]. In addition, we now know the various critical links
of sufficiency to both the foundations of statistics, and to the elegant and structured
theory of optimal procedures in inference.

For example, the links to the (weak and the strong) likelihood principle and
conditionality principle are variously summarized in the engaging presentations in
Barnard [3], Basu [6], Berger and Wolpert [10], Birnbaum [14], Fraser [26], and
Savage [42]. And we are also all aware of such pillars of the mathematical the-
ory of optimality, the Rao-Blackwell and the Lehmann-Scheffé theorem [12, 35],
which are inseparably connected to sufficient statistics. At the least, sufficiency has
acted as a nucleus around which an enormous amount of later development of ideas,
techniques, and results have occurred. Some immediate examples are the theory of
ancillarity, monotone likelihood ratio, exponential families, invariance, and asymp-
totic equivalence [5, 17, 18, 22, 33, 36, 38]. Interesting work relating sparse order
statistics (e.g., a small fraction of the largest ones) to approximate sufficiency is
done in Reiss [40], and approximate sufficiency and approximate ancillarity are
given a direct definition, with consequences, in DasGupta [20]. We also have the
coincidence that exact and nonasymptotic distributional and optimality calculations
can be done precisely in those cases where a nontrivial sufficient statistic exists. The
fundamental nature of the idea of sufficiency thus cannot be minimized; not yet.

Collectively, Kolmogorov, Neyman, Bahadur, Dynkin, Halmos, and Savage,
among many other key architects, put sufficiency on the rigorous mathematical
pedal. If {P,P ∈ P} is a family of probability measures on a measurable space
(Ω ,A ), a sub σ -field B of A is sufficient if for each measurable set A ∈ A , there
is a (single) B measurable function gA such that gA = EP(IA |B),a.e. (P)∀P ∈ P .
This is rephrased in terms of a sufficient statistic by saying that if T : (Ω ,A ) −→
(Ω ′,A ′) is a mapping from the original (measurable) space to another space, then
T is a sufficient statistic if B = BT = T−1(A ′) is a sufficient sub σ -field of A .
In a classroom situation, the family P is often parametrized by a finite dimen-
sional parameter θ , and we describe sufficiency as the conditional distribution of
any other statistic given the sufficient statistic being independent of the underly-
ing parameter θ . Existence of a fixed dimensional sufficient statistic for all sample
sizes is a rare phenomenon for regular families of distributions, and is limited to the
multiparameter exponential family (Barankin and Maitra [2], Brown [16]; it is also
mentioned in Lehmann [34]). Existence of a fixed dimensional sufficient statistic in
location-scale families has some charming (and perhaps unexpected) connections to
the Cauchy-Deny functional equation [29, 32, 39].

Sufficiency corresponds to summarization without loss of information, and so
the maximum such possible summarization is of obvious interest. A specific sub
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σ -field B∗ is a minimal sufficient sub σ -field if for any other sufficient sub σ -field
B, we have the inclusion that B∗ ∨NP ⊆ B ∨NP , where NP is the family of
all P-null members of A . In terms of statistics, a specific sufficient statistic T ∗
is minimal sufficient if given any other sufficient statistic T , we can write T ∗ as
T ∗ = h ◦T a.e.P , i.e., a minimal sufficient statistic is a function of every sufficient
statistic. A sufficient statistic that is also boundedly complete is minimal sufficient.

This fact does place completeness as a natural player on the scene rather than as a
mere analytical necessity; of course, another well known case is Basu’s theorem [4].
The converse is not necessarily true; that is, a minimal sufficient statistic need not be
boundedly complete. The location parameter t densities provide a counterexample,
where the vector of order statistics is minimal sufficient, but clearly not boundedly
complete. It is true, however, that in somewhat larger families of densities, the vec-
tor of order statistics is complete, and hence boundedly complete [9]. If we think
of a statistic as a partition of the sample space, then the partitions corresponding to
a minimal sufficient statistic T ∗ can be constructed by the rule that T ∗(x) = T ∗(y)
if and only if the likelihood ratio fθ (x)

fθ (y)
is independent of θ . Note that this rule ap-

plies only to the dominated case, with fθ (x) being the density (Radon-Nikodym
derivative) of Pθ with respect to the relevant dominating measure.

Halmos and Savage [28] gave the factorization theorem for characterizing a suf-
ficient sub σ -field, which says that if each P ∈ P is assumed to be absolutely con-
tinuous with respect to some P0 (which we may pick to be in the convex hull of P),
then a given sub σ -field B is sufficient if and only if for each P ∈ P , we can find
a B measurable function gP such that the identity dP = gPdP0 holds. Note that we
insist on gP being B measurable, rather than being simply A measurable (which
would be no restriction, and would not serve the purpose of data summarization).
Once again, in a classroom situation, we often describe this as T being sufficient if
and only if we can write the joint density fθ (x) as fθ (x) = gθ (T (x))p0(x) for some
g and p0. The factorization theorem took the guessing game out of the picture in
the dominated case, and is justifiably regarded as a landmark advance. I will shortly
come to Terry Speed’s contribution on the factorization theorem.

Sufficiency comes in many colors, which turn out to be equivalent under special
sets of conditions (e.g. Roy and Ramamoorthi [41]). I will loosely describe a few of
these notions. We have Blackwell sufficiency [15] which corresponds to sufficiency
of an experiment as defined via comparison of experiments [48, 50], Bayes suffi-
ciency which corresponds to the posterior measure under any given prior depending
on the data x only through T (x), and prediction sufficiency (also sometimes called
adequacy) which legislates that to predict an unobserved Y defined on some space
(Ω ′′,A ′′) on the basis of an observed X defined on (Ω ,A ), it should be enough
to only consider predictors based on T (X). See, for example, Takeuchi and Akahira
[49], and also the earlier articles Bahadur [1] and Skibinsky [44]. I would warn the
reader that the exact meaning of prediction sufficiency is linked to the exact as-
sumptions on the prediction loss function. Likewise, Bayes sufficiency need not be
equivalent to ordinary sufficiency unless (Ω ,A ) is a standard Borel space, i.e., un-
less A coincides with the Borel σ -field corresponding to some compact metrizable
topology on Ω .
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Consider now the enlarged class of probability distributions defined as PC(A) =
P(X ∈ A |Y ∈C),P ∈P,C ∈A ′′. Bahadur leads us to the conclusion that prediction
sufficiency is equivalent to sufficiency in this enlarged family of probability mea-
sures. A major result due to Terry Speed is the derivation of a factorization theorem
for characterizing a prediction sufficient statistic in the dominated case [45]. A sim-
ply stated but illuminating example in Section 6 of Speed’s article shows why the
particular version of the factorization theorem he gives can be important in appli-
cations. As far as I know, a theory of partial adequacy, akin to partial sufficiency
[7, 25, 27], has never been worked out. However, I am not sure how welcome it
will now be, considering the diminishing importance of probability and models in
prevalent applied statistics.

Two other deep and delightful papers of Terry that I am familiar with are his
splendidly original paper on spike train deconvolution [37], and his paper on Gaus-
sian distributions over finite simple graphs [47]. These two papers are precursors
to what we nowadays call independent component analysis and graphical models.
Particularly, the spike train deconvolution paper leads us to good problems in need
of solution. However, I will refrain from making additional comments on it in order
to spend some time on a most recent writing of Terry that directly influenced me.

In his editorial column in the IMS Bulletin [46], Terry describes the troublesome
scenario of irreconcilable quantitative values obtained in bioassays conducted under
different physical conditions at different laboratories (actually, he describes, specif-
ically, the example of reporting the expression level of the HER2 protein in breast
cancer patients). He cites an earlier classic paper of Youden [52], which I was not
previously familiar with. Youden informally showed the tendency of a point esti-
mate derived from one experiment to fall outside of the error bounds reported by
another experiment. In Youden’s cases, this was usually caused by an unmodelled
latent bias, and once the bias was taken care of, the conundrum mostly disappeared.

Inspired by Terry’s column, I did some work on reconcilability of confidence
intervals found from different experiments, even if there are no unmodelled biases.
What I found rather surprised me. Theoretical calculations led to the conclusion
that in as few as 10 experiments, it could be quite likely that the confidence inter-
vals would be nonoverlapping. In meta-analytic studies, particularly in clinical trial
contexts, the number of experiments combined is frequently 20, 25, or more. This
leads to the apparently important question: how does one combine independent con-
fidence intervals when they are incompatible? We have had some of our best minds
think about related problems; for example, Fisher [24], Birnbaum [13], Koziol and
Perlman [31], Berk and Cohen [11], Cohen et al. [19], and Singh et al. [43]. Holger
Dette and I recently collaborated on this problem and derived some exact results and
some asymptotic theory involving extremes [21]. It was an exciting question for us,
caused by a direct influence of Terry.

Human life is a grand collage of countless events and emotions, triumphs and
defeats, love and hurt, joy and sadness, the extraordinary and the mundane. I have
seen life from both sides now, tears and fears and feeling proud, dreams and schemes
and circus crowds. But it is still my life’s illusion of those wonderful years in the
seventies that I recall fondly in my life’s journey. Terry symbolizes that fantasy and
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uncomplicated part of my life. I am grateful to have had this opportunity to write a
few lines about Terry; prendre soin, Terry, my teacher and my friend.

References

[1] R. R. Bahadur. Sufficiency and statistical decision functions. Ann. Math.
Statist., 25:423–462, 1954.

[2] E. W. Barankin and A. P. Maitra. Generalization of the Fisher-Darmois-
Koopman-Pitman theorem on sufficient statistics. Sankhyā Ser. A, 25:217–244,
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Chapter 4
Interaction Models

Steffen L. Lauritzen

The articles in this bundle are all associated with the notion of interaction and
represent the genesis of the subject of graphical models in its modern form, the
origins of these being traceable back to Gibbs [11] and Wright [30] and earlier.

Around 1976, Terry was fascinated by the notion of conditional independence,
along the lines later published in Dawid [6, 7]. In 1976, Terry invited me to Perth
and we were running a daily research seminar with the theme of studying similar-
ities and differences between Statistics and Statistical Mechanics. In particular, we
wondered what the relations were between notions of interaction as represented in
linear models, in multi-dimensional contingency tables, and in stochastic models
for particle systems; in addition, the purpose was also to understand what was the
relation between these concepts and conditional independence.

As we discovered that these were all essentially the same concepts, the simi-
larity being obscured by very different traditions of notation, the term graphical
model was coined. Our findings, also obtained in collaboration with John Dar-
roch, were collected in Darroch et al. [4], and later expanded and published in
Speed [24], Darroch et al. [5], and Darroch and Speed [3] as well as Lauritzen et al.
[19] and to some extent Speed [25], the latter giving an overview of a number of dif-
ferent variants and proofs of what has become known as the Hammersley–Clifford
theorem [14, 2].

Of these articles, Darroch et al. [5] rather quickly had a seminal impact and a
small community of researchers in the area of graphical models gradually emerged.
In a certain sense, the article does not contain much formally new material (if any at
all), but for the first time a simple, visual description and interpretation of the class
of log-linear models [12, 13], which otherwise could seem obscure, was available.
The interpretation of a subclass of the models in terms of conditional independence
had an immediate intuitive appeal. In addition, the article identified and emphasized
models represented by chordal or triangulated graphs as those where estimation
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and other issues had a particularly simple solution, the combinatorial theory of these
graphs being further studied in Lauritzen et al. [19].

Darroch and Speed [3] studied the notion of interaction from an algebraic point
of view in terms of fundamental decompositions of the linear space of functions
on a product of finite sets; indeed it essentially but implicitly uses the fundamental
decomposition of this space into irreducible components which are stable under a
product of symmetric groups [9] and thus gives an elegant algebraic perspective on
the Hammersley–Clifford theorem.

Towards the end of 1976, Terry serendipitously came across Wermuth [29],
which identified that a completely analogous theory could be developed for the
Gaussian case, with chordal graphs playing essentially the same role as in the case of
log-linear models; indeed, Dempster [8] had developed the basic computational and
statistical theory for these under the name of models for covariance selection. This
fact and the corresponding interpretation was emphasized and discussed in Darroch
et al. [4] as well as in Speed [24, 25], but received otherwise relatively little attention
at the time. Gaussian graphical models have had a remarkable renaissance in con-
nection with the modern analysis of high-dimensional data, for example concerning
gene expression [10, 23]. Out of this early work with Gaussian graphical models
grew also the article by Speed and Kiiveri [26], which describes and unifies a class
of iterative algorithms for fitting Gaussian graphical models of which special cases
previously had been considered by e.g. Dempster [8]. Essentially, there are two fun-
damental types, of which one initially uses the estimate under no restrictions and
iteratively ensures that restrictions of the model are satisfied; the other type initially
uses a trivial estimator and iteratively ensures that the likelihood equations are sat-
isfied. The article elegantly shows that an abundance of hybrids of these algorithms
can be constructed and gives a unified proof of their convergence.

The last two articles [16, 17], represent the genesis of what today is probably
the most prolific and well-known type of graphical models; these are based on di-
rected acyclic graphs and admitting interpretation in causal terms similar to that of
structural equation models [1]. At the time when these articles appeared they were
(undeservedly) largely ignored both by the statistical and structural equation com-
munities. Graphical models based on directed acyclic graphs—now mostly known
as Bayesian networks [21]—have an unquestionable prominence in current scientific
literature, but the surge of interest in these models was in particular generated by the
prolific research activities in computer science, where work such as, for example,
Lauritzen and Spiegelhalter [18], Pearl [22], Spirtes et al. [27], Heckerman et al.
[15], and Pearl [20] established these models as objects worthy of intense study. In
retrospect, it is clear that the global Markov property defined in Kiiveri et al. [17]
was not the optimal one as there are independence relations true in any Bayesian
network that cannot be derived from it, but fundamentally this article establishes the
correct class of directed Markov models for the first time and thus yields a condi-
tional independence perspective on structural equation models, as later elaborated,
for example by Spirtes et al. [28].
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Chapter 5
Last Words on Anova?

Terry Speed

Many people like to say the last words in an academic debate, and I am no exception.
I have tried to do this on a few occasions, only to discover that when I came to say
my piece, everyone had left the room. The analysis of variance is a case in point,
and my comments on Tukey’s contributions to anova explain the problem. If – as I
believe to be true – people don’t care much these days what Tukey thought about
anova, they are going to care even less what I think. This is not said with any sense
of bitterness. Indeed I regard myself as something of a student of fads, fashions and
trends in statistics, so why should I expect otherwise? Nevertheless, I’m very happy
to see these articles reprinted, as their easier availability may kindle the interest of
someone, somewhere, sometime in what I still believe to be an important part of
(the history of) our subject.

My main stimulus for work in this area came from the papers of six people:
R.A. Fisher, Frank Yates, and John A. Nelder from the U.K, indeed all from Rotham-
sted, Alan T. James and Graham Wilkinson from Adelaide, Australia, and John W.
Tukey from the U.S.A. Unpublished lecture notes by James were extremely help-
ful in getting me going. The anova program within GENSTAT, initially created by
Wilkinson based on research by James, Wilkinson, James & Wilkinson and Nelder,
was enormously influential. It was (and remains) truly brilliant in conception and
execution, and I wanted to understand it. For a long time I was interested in – one
might say obsessed with – the symmetries underlying much of anova, and that is
reflected in some of the papers reprinted (thank you Rosemary Bailey)! But also I
wanted to understand how users of anova saw things, including gory details such as
the combination of information, the analysis of covariance and dealing with missing
values, all topics with wonderful histories. I made one attempt to put it all together
for general consumption, but that got rejected, and so I moved on to other things.
As explained above, it is not clear how many people now care. I hope you enjoy the
papers. There are several more if you do.

T. Speed
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Chapter 6
Cumulants and Partition Lattices

Peter McCullagh

This is the first paper to appear in the statistical literature pointing out the importance
of the partition lattice in the theory of statistical moments and their close cousins,
the cumulants. The paper was first brought to my attention by Susan Wilson, shortly
after I had given a talk at Imperial College on the Leonov-Shiryaev result expressed
in graph-theoretic terms. Speed’s paper was hot off the press, arriving a day or two
after I had first become acquainted with the partition lattice from conversations with
Oliver Pretzel. Naturally, I read the paper with more than usual attention to detail
because I was still unfamiliar with Rota [18], and because it was immediately clear
that Möbius inversion on the partition lattice En, partially ordered by sub-partition,
led to clear proofs and great simplification. It was a short paper packing a big punch,
and for me it could not have arrived at a more opportune moment.

The basic notion is a partition σ of the finite set [n] = {1, . . . ,n}, a collection
of disjoint non-empty subsets whose union is [n]. Occasionally, the more emphatic
term set-partition is used to distinguish a partition of [n] from a partition of the inte-
ger n. For example 135|2|4 and 245|1|3 are distinct partitions of [5] corresponding
to the same partition 3+ 1+ 1 of the integer 5. Altogether, there are two partitions
of [2], five partitions of [3], 15 partitions of [4], 52 partitions of [5], and so on. These
are the Bell numbers #En, whose exponential generating function is exp(et − 1).
The symmetric group acting on En preserves block sizes, and each integer partition
is a group orbit. There are two partitions of the integer 2, three partitions of 3, five
partitions of 4, seven partitions of 5, and so on.

It turns out that, although set partitions are much larger, the additional structure
they provide is essential for at least two purposes that are fundamental in modern
probability and statistics. It is the partial order and the lattice property of En that
simplifies the description of moments and generalized cumulants in terms of cumu-
lants. This is the subject matter of Speed’s paper. At around the same time, from
the late 1970s until the mid 1980s, Kingman was developing the theory of partition
structures, or partition processes. These were initially described in terms of inte-
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ger partitions [3, 10], but subsequent workers including Kingman and Aldous have
found it simpler and more natural to work with set partitions. In this setting, the
simplification comes not from the lattice property, but from the fact that the family
E = {E1,E2, . . .} of set partitions is a projective system, closed under permutation
and deletion of elements. The projective property makes it possible to define a pro-
cess on E , and the mutual consistency of the Ewens formulae for different n implies
an infinitely exchangeable partition process.

In his 1964 paper, Rota pointed out that the inclusion-exclusion principle and
much of combinatorics could be unified in the following manner. To any function f
defined on a finite partially-ordered set, there corresponds a cumulative function

F(σ) = ∑
τ≤σ

f (τ).

The mapping f �→ F is linear and invertible with inverse

f (σ) = ∑
τ

m(τ,σ)F(τ),

where the Möbius function is such that m(τ,σ) = 0 unless τ ≤ σ . In matrix nota-
tion, F = L f , where L is lower-triangular with inverse M. The Möbius function for
the Boolean lattice (of sets, subsets and complements) is (−1)#σ−#τ , giving rise to
the familiar inclusion-exclusion rule. For the partition lattice, the Möbius function
relative to the single-block partition is m(τ,{[n]}) = (−1)#τ−1(#τ−1)!, where #τ is
the number of blocks. More generally, m(τ,σ) = ∏b∈σ m(τ[b],b) for τ ≤ σ , where
τ[b] is the restriction of τ to the subset b.

Although they have the same etymology, the word ‘cumulative’ in this context is
unrelated semantically to ‘cumulant’, and in a certain sense, the two meanings are
exact opposites: cumulants are to moments as f is to F , not vice-versa.

Speed’s paper is concerned with multiplicative functions on the partition lat-
tice. To understand what this means, it is helpful to frame the discussion in terms
of random variables X1,X2, . . . ,Xn, indexed by [n]. The joint moment function μ
associates with each subset b ⊂ [n] the number μ(b), which is the product mo-
ment of the random variables X [b] = {Xi : i ∈ b}. Any such function defined on
subsets of [n] can be extended multiplicatively to a function on set partitions by
μ(σ) = ∏b∈σ μ(b). Likewise, the joint cumulant function κ associates with each
non-empty subset b ⊂ [n] a number κ(b), which is the joint cumulant of the random
variables X [b]. The extension of κ to set partitions is also multiplicative over the
blocks. It is a property of the partition lattice that if f ≡ κ is multiplicative, so also
is the cumulative function F ≡ μ . In particular, the full product moment is the sum
of cumulant products

μ([n]) = ∑
σ

∏
b∈σ

κ(b).

For zero-mean Gaussian variables, all cumulants are zero except those of order two,
and the above expression reduces to Isserlis’s theorem [5] for n = 2k, which is a the
sum over n!/(2k k!) pairings of covariance products. Wick’s theorem, as it is known
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in the quantum field literature, is closely associated with Feynman diagrams. These
are not merely a symbolic device for the computation of Gaussian moments, but
also an aid for interpretation in terms of particle collisions [4, Chapter 8]. For an
account that is accessible to statisticians, see Janson [8] or the AMS feature article
by Phillips [17].

The moments and cumulants arising in this way involve distinct random vari-
ables, for example X2X3X4, never X3X3X4. However, variables that are given dis-
tinct labels may be equal, say X2 = X3 with probability one, so this is not a limi-
tation. As virtually everyone who has worked with cumulants, from Kaplan [9] to
Speed and thereafter, has noted, the general results are most transparent when all
random variables are taken as distinct.

The arguments put forward in the paper for the combinatorial lattice-theoretic
approach are based on the simplicity of the proof of various known results. For ex-
ample, it is shown that the ordinary cumulant κ([n]) is zero if the variables can be
partitioned into two independent blocks. Subsequently, Streitberg [25] used cumu-
lant measures to give an if and only if version of the same result. To my mind, how-
ever, the most compelling argument for Speed’s combinatoric approach comes in
Proposition 4.3, which offers a simple proof of the Leonov-Shiryaev result us-
ing lattice-theoretic operations. To each subset b ⊂ [n] there corresponds a prod-
uct random variable Xb = ∏i∈b Xi. To each partition σ there corresponds a set
of product variables, one for each of the blocks b ∈ σ , and a joint cumulant
κσ = cum{Xb : b ∈ σ}. One of the obstacles that I had encountered in work on
asymptotic approximation of mildly non-linear transformations of joint distributions
was the difficulty of expressing such a generalized cumulant in terms of ordinary cu-
mulants. The lattice-theoretic expression is remarkable for its simplicity:

κσ = ∑
τ:τ∨σ=1n

∏
b∈τ

κ(b),

where the sum extends over partitions τ such that the least upper bound σ ∨τ is the
single-block partition 1n = {[n]}. Tables for these connected partitions are provided
in McCullagh [14]. For example, if σ = 12|34|5 the third-order cumulant κσ is a
sum over 25 connected partitions. If all means are zero, partitions having a singleton
block can be dropped, leaving nine terms

κ12,34,5 = κ1,2,3,4,5 +κ1,2,3κ4,5[4]+κ1,3,5κ2,4[4]

in the abbreviated notation of McCullagh [13]. Versions of this result can
be traced back to James [6], Leonov and Shiryaev [11], James and Mayne [7],
and Malyshev [12].

A subject such as statistical moments and cumulants that has been thoroughly
raked over by Thiele, Fisher, Tukey, Dressel and others for more than a century,
might seem dry and unpromising as a topic for current research. Surprisingly, this is
not the case. Although the area has largely been abandoned by research statisticians,
it is a topic of vigorous mathematical research connected with Voiculescu’s theory
of non-commutative random variables, in which there exists a notion of freeness
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related to, but distinct from, independence. The following is a brief idiosyncratic
sketch emphasizing the parallels between Speicher’s work and Speed’s paper.

First, Speed’s combinatorial theory is purely algebraic: it does not impose posi-
tive definiteness conditions on the moments or cumulants, nor does it require them
to be real-valued, but it does implicitly require commutativity of the variables. In a
theory of non-commutative random variables, we may think of X1, . . . ,Xn as orthog-
onally invariant matrices of unspecified order. For a subset b ⊂ [n], the scalar prod-
uct Xb = tr∏i∈b Xi is the trace of the matrix product, which depends on the cyclic
order. The first novelty is that μ(b) = E(Xb) is not a function on subsets of [n],
but a function on cyclically ordered subsets. Since every permutation σ : [n]→ [n]
is a product of disjoint cycles, every function on cyclically ordered subsets can be
extended multiplicatively to a function on permutations μ(σ) = ∏b∈σ μ(b). Given
two permutations, we say that τ is a sub-permutation of σ if each cycle of τ is a sub-
cycle of some cycle of σ — in the obvious sense of preserving cyclic order [1]. For
τ ≤σ , the crossing number χ(τ,σ) is the number of 4-cycles (i, j,k, l) below σ such
that i,k and j, l are consecutive in τ: χ(τ,σ) = #{(i, j,k, l)≤σ : τ(i) = k, τ( j) = l},
and τ is called non-crossing in σ if χ(τ,σ) = 0. For a good readable account of the
non-crossing property, see Novak and Sniady [16].

Although it is not a lattice, the set Πn of permutations has a lattice-like structure;
each maximal interval [0n,σ ], in which 0n is the identity and σ is cyclic, is a lattice.
With sub-permutation as the partial order, [0n,σ ] ∼= En is isomorphic with the stan-
dard partition lattice; with non-crossing sub-permutation as the partial order, each
maximal interval is a partition lattice of a different structure. Speicher’s combinato-
rial theory of moments and cumulants of non-commutative variables uses Möbius
inversion on this lattice of non-crossing partitions [24]. If f ≡ κ is multiplicative, so
also is the cumulative function F ≡ μ , and vice-versa. The function κ(b) on cycli-
cally ordered subsets is called the free cumulant because it is additive for sums of
freely independent variables. Roughly speaking, freeness implies that the matrices
are orthogonally or unitarily invariant of infinite order. For further discussion on this
topic, see Nica and Speicher [15] or Di Nardo et al. [2].

The partition lattice simplifies the sampling theory of symmetric functions,
leading to a complete account of the joint moments of Fisher’s k-statistics and
Tukey’s polykays [19]. It led to the development of an extended theory of sym-
metric functions for structured and nested arrays associated with a certain sub-
group [20, 21, 22, 23]. Elegant though they are, these papers are not for the faint
of heart. With some limitations, it is possible to develop a parallel theory of spectral
k-statistics and polykays — polynomial functions of eigenvalues having analogous
finite-population inheritance and reverse-martingale properties. Simple expressions
are easily obtained for low-order statistics, but the general theory is technically
rather complicated.
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Chapter 7
Asymptotics and Coding Theory: One of the
n → ∞ Dimensions of Terry

Bin Yu

Terry joined the Berkeley Statistics faculty in the summer of 1987 after being the
statistics head of CSIRO in Australia. His office was just down the hallway from
mine on the third floor of Evans. I was beginning my third year at Berkeley then and
I remember talking to him in the hallway after a talk that he gave on information
theory and the Minimum Description Length (MDL) Principle of Rissanen. I was
fascinated by the talk even though I did not understand everything. Terry pointed
me to many papers, and before long Terry started to co-advise me (with Lucien Le
Cam) as his first PhD student at Berkeley. It was truly a great privilege to work with
Terry, especially as his first student at Berkeley since I had the luxury of having
his attention almost every day – he would knock on my door to chat about research
and to take me to the library to find references. Every Saturday I was invited to
have lunch with him and his wife Sally at his rented house in the Normandy Village
on Spruce Street, a cluster of rural European styled houses near campus (the most
exotic part to me about the lunch was the avocado spread on a sandwich). Through
my interactions with Terry, I was molded in n → ∞ dimensions. In particular, I was
mesmerised by the interplay shown to me by Terry of data, statistical models, and
interpretations – it was art with rigor! I am able to pursue and enjoy this interplay in
my current research, even though I ended up writing a theoretical PhD thesis.

The four papers under “asymptotics and coding theory” in this volume represent
the MDL research done during my study with Terry (and Rissanen) and a paper after
my PhD on Information Theory proper: lossy compression.

The Minimum Description Length (MDL) Principle was invented by Rissanen
[7] to formalize Occam’s Razor. Based on a foundation of the coding theory of
Shannon, its most successful application to date is model selection, now a hot topic
again under the new name of sparse modeling or compressed sensing in the high-
dimensional situation. An idea closely related to MDL was Minimum Message
Length (MML) first articulated in the context of clustering in Wallace and Boulton
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[13]. In a nutshell, MDL goes back to Kolmogorov’s algorithmic complexity, a rev-
olutionary concept, but not one that is computable. By rooting MDL in Shannon’s
information theory, Rissanen made the complexity (or code length) of a statistical
or probabilistic model computable by corresponding a probability distribution to a
prefix code via Kraft’s inequality. At the same time, this coding interpretation of
probability distribution removed the necessity of postulating a true distribution for
data, since it can be viewed operationally as a code-generating device. This seem-
ingly trivial point is fundamental for statistical inference. Moreover, Rissanen put
MDL on solid footing by generalizing Shannon’s order source coding theorem to
the second order to support the coding forms valid for use in MDL model selection.
That is, he showed in Rissanen [8] that, for a nice parametric family of dimension
k with n iid observations, they have to achieve a k

2 logn lower bound asymptotically
beyond the entropy lower bound when the data generating distribution is in the fam-
ily. More information on MDL can be found in the review articles Barron et al. [3]
and Hansen and Yu [5], and books Rissanen [6, 9] and Grünwald [4].

Not long before he and I started working on MDL in the late 1987, Terry had met
Jorma Rissanen when Jorma visited Ted Hannan at the Australia National University
(ANU). Hannan was a good friend of Terry. Jorma’s homebase was close by, the
IBM Almaden Research Center in San Jose, so Terry invited him to visit us almost
every month. Jorma would come with his wife and discuss MDL with us while
his wife purchased bread at a store in Berkeley before they headed home together
after lunch. We found Rissanen’s papers original, but not always easy to follow.
The discussions with him in person were a huge advantage for our understanding of
MDL.

After catching up with the literature on MDL and model selection methods such
as AIC [1] and BIC [11], we were ready to investigate MDL from a statistical angle
in the canonical model of Gaussian regression and became among the first to explore
MDL procedures in the nonparametric case, using the convenient and canonical his-
togram estimate (which is both parametric and nonparametric). This line of research
resulted in the first three papers on asymptotics and coding in this volume.

The research in Speed and Yu [12] started in 1987. The paper was possibly writ-
ten in 1989, with many drafts including extensive comments by David Freedman on
the first draft and it was a long story regarding why it took four years to publish.
By then, it was well-known that AIC is prediction optimal and inconsistent (unless
the true model is the largest model), while BIC is consistent when the true model is
finite and one of the sub-regression models considered. Speed and Yu [12] addresses
the prediction optimality question with refitting (causal or on-line prediction) and
without refitting (batch prediction). A new lower bound on the latter was derived
with sufficient achievability conditions, while a lower bound on the former had been
given by Rissanen [8]. Comparisons of AIC, stochastic complexity , BIC, and Final
Prediction Error (FPE) criteria [1] were made relative to the lower bounds and in
terms of underfitting and overfitting probabilities. A finite-dimensional (fixed p to
use modern terms) Gaussian linear regression model was assumed, as was common
in other works around that time or before. The simple but canonical Gaussian regres-
sion model assumption made the technical burdens minimal, but it was sufficient to
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reveal useful insights such as the orders of bias-variance trade-off when there was
underfit or overfit, respectively. Related trade-offs are seen in analysis of modern
model selection (sparse modeling) methods such as Lasso under high-dimensional
regression models (large p large n). In fact, Speed and Yu [12] entertained the idea
of a high-dimensional model through a discussion of finite dimensional models vs
infinite dimensional models. In fact, much insight from this paper is still relevant to-
day: BIC does well both in terms of consistency and prediction when the bias term
drastically decreases to a lower level at a certain point (e.g. a “cliff” bias decrease
when there is a group of major predictors and rest marginal). Working with Terry
on this first paper of mine taught me lessons that I try to practice to this day: mathe-
matical derivations in statistics should have meanings and give insights, and a good
formulation of a problem is often more important than solving it.

The next two papers, Rissanen et al. [10] and Yu and Speed [14], are on his-
tograms and MDL. They extend the MDL paradigm to the nonparametric domain.
Around the same time Barron and Cover were working on other nonparametric
MDL procedures through the resolvability index [2]. Rissanen spearheaded the first
of the two papers, Rissanen et al. [10], to obtain a (properly defined) code length
almost sure lower bound in the nonparametric case in the same spirit as the lower
bound in the parametric case of his seminal paper [7]. This paper also showed that
a histogram estimator achieve this lower bound. The second paper [14] introduced
the minimax framework to address both the lower and upper code length bound
questions for Lipschitz nonparametric families. Technically the paper was quite in-
volved with long and refined asymptotic derivations, a Poissonization argument, and
multinomial/Poisson cumulant calculations for which Terry showed dazzling alge-
braic power. A surprising insight from the second paper was that predictive MDL
seemed a very flexible way to achieve the minimax optimal rate for expected code
length. Working on the two histogram/MDL papers made me realize that there is
no clear cut difference between parametric and nonparametric estimation: the so-
called infinite dimensional models such as the Lipschitz family actually correspond
to parametric estimation problems of dimensions increasing with the sample size.
This insight holds for all nonparametric estimation problems and the histogram is a
concrete example of sieve estimation.

The last of the four paper was on lossy compression of information theory proper.
MDL model selection criteria are based on lossless code (prefix code) lengths. The
aforementioned lower bound in Rissanen [7] was also fundamental for universal
source (lossless) coding when the underlying data generating distribution has to be
estimated, in addition to being the cornerstone of the MDL theory in the parametric
case. It was natural to ask whether there is a parallel result for lossy compression
where entropy is replaced by Shannon’s rate-distortion function. Yu and Speed [15]
showed it was indeed the case and there are quite a few follow-up papers in the
information theory literature including Zhang et al. [16].

During my study with Terry, starting in the late 1987, Terry was moving full
steam into biology as a visionary pioneer of statistical bioinformatics. To accom-
modate my interest in analysis and asymptotic theory and possibly pursue his other
love for information theory rather than biology, Terry was happy to work with me
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on theoretical MDL research and information theory, an instance of Terry’s amazing
intellectual versatility as amply clear from this volume.
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Chapter 8
Applied Statistics and Exposition

Karl W. Broman

I particularly admire Terry for the breadth of his thinking, the depth of his under-
standing, the strength and openness with which he expresses his opinions, and the
clarity of his writing. All of these qualities are on display in the manuscripts in this
section.

But before I comment on those articles, I want to first mention that the best
illustrations of Terry’s admirable qualities are his regular commentaries for the IMS
Bulletin, begun when he was President of the Institute of Mathematical Statistics and
continued by popular demand. (To date, he has written over 70 such commentaries!
They are available online at http://bulletin.imstat.org.) Among my
favorites: In Praise of Postdocs [10], Keep Gender on the Agenda [8], A Toast to
Posters! [11], Books Worth Reading [7] (his five favorite books are Feller Volume
I [2], editions 1, 2 and 3, and Feller Volume II [3], editions 1 and 2), and It’s Job-
hunting Time! [9]. Terry has strong opinions on a wide range of topics, and we all
benefit from his willingness to share them.

Terry’s technical report on probabilities related to the reliability of nuclear re-
actors [14], commenting on probability statements in the Reactor Safety Study [4],
demonstrates Terry’s willingness to delve deeply and thoroughly into a problem and
the clarity and insight he then gives us. (The manuscript is especially relevant today,
given the problems with nuclear reactors following the tsunami in Japan.) Misuse of
the addition and multiplication rules of probability is well known to statisticians. His
further point, that probability statements are meaningless without an understanding
of how they were derived, is obvious in retrospect yet often overlooked. It is related
to a point that Terry has repeatedly emphasized: an estimate is of no value without
some statement on its uncertainty (such as a standard error). I can imagine no better
(or more amusing) illustration of this issue than the statement from the Chairman
of the U.S. National Transportation Safety Board regarding the chance of two jets
colliding on the ground, and the response to Terry’s aerogramme. (The word “aero-
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gramme” itself makes me smile.) Also amusing is Terry’s comment [14, p. 24], “The
whole exercise can now be recognized as being totally without relevance to the real
world.” Ouch!

Terry’s work on salmon populations [16] and bioassays [1] were among his last
projects before he began to focus almost exclusively on genetics and genomics.
The salmon work is a particularly good illustration of Terry’s approach: know the
science and the scientific questions and goals, and let the methods follow. I saw this
in action in the bioassay project; our (or really his) normal-Poisson mixture model,
which now seems so natural, was the last of a long sequence of preliminary models.
My most vivid memory of that effort was our initial error (or really my initial error)
in implementing an EM algorithm for the normal-Poisson mixture. The sufficient
statistics include not just ∑xi but also ∑x2

i , and so the E-step requires not just the
expected values of the xi, but also of the x2

i . That one should follow the log likelihood
across iterations, as a diagnostic for the correct implementation of an EM algorithm,
was another important lesson.

Terry’s comment [12] on Robinson’s Statistical Science article on BLUP [5] is
masterly. The diverse applications of BLUP that Terry provides add great emphasis
to the importance of Robinson’s paper. Terry’s comment has been widely cited as
being the first articulation of the connection between smoothing splines and BLUPs.

Finally, let me comment on the two encyclopedia entries reprinted in this section,
on restricted maximum likelihood [15] and on iterative proportion fitting (IPF) [13],
though I can think of little to say except that they are superb examples of the clarity
of Terry’s writing (and to note that Terry has an IMS Bulletin commentary [6] on
IPF, too!). The breadth and depth of Terry’s thinking often fills me with envy, but
the effort he devotes to sharing his ideas allows me to get past the envy and simply
appreciate his insights.
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Chapter 9
History and Teaching Statistics

Deborah Nolan

When Terry Speed arrived in Berkeley in the 1980s, I too was a new arrival. He was
coming to Berkeley as a senior hire and I as a junior. It was through our connec-
tion to David Pollard that we discovered our mutual interest in teaching statistics.
We first collaborated on a small project to introduce computing into the advanced
undergraduate theoretical statistics course. The computing exercises we developed
were aimed at students uncovering, through simulation studies, some of the rules
of thumb that a practicing statistician regularly uses. This was not as successful as
we had hoped because our students didn’t see any reason to care about the simula-
tion results. We had fallen into the trap Terry warns against in Speed [10]: teaching
pseudo-applied statistics with context-free numbers. Subsequent attempts led us to
connect the work to real applications and then to the template described in Nolan
and Speed [8] and used in Stat Labs: Mathematical Statistics through Applications
[9]. It would seem that this template should have been an immediate and obvious re-
sult of Speed [10]. It wasn’t. While Terry modestly claims to be “no exception – for
allowing ourselves to forget the fundamental importance of the interplay of ques-
tions, answers and statistics”, I dare conjecture that one of his goals in the project
was for me to gain experience through trial and error in developing an effective
approach to teaching statistics.

Speed [10] successfully argues that the “whole point of statistics lies in the in-
terplay between context and statistics.” Others share this viewpoint as noted in the
quotes included in the article from James, Cox, Dawid, and Tukey. However, Terry
takes this assertion into the education arena and compels us to reflect this important
thesis in our teaching. Following Speed [10], others have made similar arguments
to change statistics education. According to Cobb and Moore [3], “The focus on
variability naturally gives statistics a particular content that sets it apart from math-
ematics itself and from other mathematical sciences, but there is more than just
content that distinguishes statistical thinking from mathematics. Statistics requires
a different kind of thinking, because data are not just numbers, they are numbers

D. Nolan
Department of Statistics, University of California, Berkeley
e-mail: nolan@stat.berkeley.edu

S. Dudoit (ed.), Selected Works of Terry Speed, Selected Works in Probability and Statistics,
DOI 10.1007/978-1-4614-1347-9 9,

377
© Springer Science+Business Media, LLC 2012



378 D. Nolan

with a context.” Higgins [6] and Nicholls [7] echo these statements; e.g., Higgins
claims that “for the past 40 years, statistics has been doing a great job of training
theoretical statisticians, but we have a more data based society and it is crucial that
we identify changes to course content and delivery that need to occur.” Similarly,
Wild and Pfannkuch [11] note “the biggest holes in our educational fabric, limiting
the ability of graduates to apply statistics, occur where methodology meets context
(i.e. the real world).”

One teaching strategy offered in Speed [10] is to meet people with data by, for ex-
ample, pairing the statistics teacher with a teacher in an empirical field of inquiry or
pairing statistics students with students who have subject matter knowledge. Anec-
dotal evidence of the success of this approach appears in Field et al. [5]. There we
learn of the preparation of Betty Allan, Mildred Barnard, and Helen Turner for suc-
cessful careers in biometrics at CSIR in the 1930s. All three women spent significant
time in Rothamsted Station where they learned statistics by designing and carrying
out experiments under the guidance of Fisher, Wishart, and Yates.

Terry raised and answered in his 1986 paper two common objections to working
with real problems: that these problems are too complex and the data too large to
be practical in the classroom and that only the most advanced students who have a
sufficiently large set of tools can successfully attack real problems. Today, we face
a new version of these same concerns. Data are now free and ubiquitous. People
with all sorts of backgrounds have ready access to data. This data explosion is an
enormous opportunity for us to make better, more informed decisions. However,
this opportunity presents challenges because people expect to be able to interact
with data in new ways and the role of the statistician is changing.

As I reflected on Terry’s call to change how we teach statistics, it was at first
disconcerting to see that we are still asking statistics educators to consider this issue.
Cobb [2] explains that “What we teach was developed a little at a time, for reasons
that had a lot to do with the need to use available theory to handle problems that were
essentially computational.” Efron [4] describes the mathematical statistics course as
“caught in a time warp” that “does not attempt to teach what we do and certainly not
why we do it.” Brown and Kass [1] examine statistics graduate training and warn
us to break away from the view of the statistician’s role as “short-term consultant”
because that model “relegates the statistician to a subsidiary position, and suggests
that applied statistics consists of handling well-formulated questions, so as to match
an accepted method to nearly any kind of data.” I have since realized that we must
periodically revisit this question of how best to teach statistics and that is precisely
the point. We are not aiming at a fixed target that once arrived at we will have
accomplished our goal.

Efron [4] suggests starting over by imagining “a universe where computing pre-
ceded mathematics in the development of statistics” and advocates “starting more
muscularly without worrying about logical order of presentation” and focusing in-
stead on the basic kinds of reasoning and explanations that can be arrived at through
randomization-based inference. Cobb [2] further develops this notion, explaining
how randomization-based inference “makes a direct connection between data pro-
duction and the logic of inference that deserves to be at the core of every intro-



9 History and Teaching Statistics 379

ductory course.” Cobb further posits that “Technology allows us to do more with
less: more ideas, less technique. We need to recognize that the computer revolu-
tion in statistics education is far from over.” Brown and Kass [1] advocate taking
a “less restrictive view of what constitutes statistical training.” They see a blur-
ring of the distinction between people with data and people with statistical exper-
tise and state “some of the most innovative and important new techniques in data
analysis have come from researchers who would not identify themselves as statisti-
cians.” Brown and Kass recommend we minimize prerequisites to research, require
real-world problem solving in our courses, and embrace a deeper commitment to
cross-disciplinary training. Efron [4], Cobb [2], and Brown and Kass [1] advocate
twenty-first century changes to statistics education that echo Terry’s call to include
the value of statistics in our training programs.

Terry Speed’s advice from twenty-five years ago remains extremely relevant to-
day as computational and data challenges continue to evolve and shape our field.
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Chapter 10
Genetic Recombination

Mary Sara McPeek

Genetic recombination and genetic linkage are dual phenomena that arise in connec-
tion with observations on the joint pattern of inheritance of two or more traits or ge-
netic markers. For example, consider two traits of the sweet pea, Lathyrus odoratus,
an organism studied in depth by Mendel [9]: flower color, with purple (dominant)
and red (recessive) phenotypes, and form of pollen, with long (dominant) and round
(recessive) phenotypes. Under the Mendelian model for flower color (recast in more
current terminology), each plant carries two alleles for flower color, one inherited
from each parent, where each allele can be one of two types, denoted P and p. The
pair of alleles carried by a plant is known as its genotype. Plants with genotype PP or
Pp have purple flowers, while plants with genotype pp have red flowers. Mendel’s
First Law can be interpreted as specifying that a parent plant passes on a copy of one
of its two alleles to each offspring, with each parental allele having an equal chance
of being copied, and with this occurring independently across offspring and across
parents. Similarly, each plant carries two alleles for form of pollen, where each of
these can be L or l. Plants with genotype LL or Ll have long pollen, while plants
with genotype ll have round pollen. Suppose one crossed a true-breeding parental
line having purple flowers and long pollen (all individuals having genotype PPLL)
with a true-breeding parental line having red flowers and round pollen (all individ-
uals having genotype ppll). Then the offspring of that cross, known as the F1 gen-
eration, would all have genotype PpLl, resulting in purple flowers and long pollen.
Suppose a backcross were performed, in which F1 individuals were crossed with in-
dividuals from the ppll parental line. In this example, genetic linkage would refer to
a tendency for pairs of alleles inherited from the same parent, such as the pair PL or
the pair pl, to be transmitted together during meiosis, while genetic recombination
would refer to the event that an individual transmits a pair of alleles that were in-
herited from different parents, such as the pair Pl or pL. If we let 0 ≤ θ ≤ .5 denote
the recombination fraction, which is the probability of a recombination between
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the genes for these two traits in a single meiosis, then in the backcross offspring, we
expect individuals with genotypes PpLl, ppll, Ppll and ppLl to occur with relative
frequencies (1−θ )/2, (1−θ )/2, θ/2 and θ/2, respectively.

A long-standing, important application of the ideas of linkage and recombina-
tion is to construction of genetic maps [15] and to subsequent localization of genes
(or other genetic variants of interest) on those maps. The key observation is that
the recombination fraction between a pair of genetic markers tends to increase with
the chromosomal distance between them, with markers on different chromosomes
having recombination fraction .5. Thus, by merely observing patterns of joint in-
heritance of traits, one can make inference about which trait genes lie on the same
chromosome, chromosome, and make estimates of distances between them. The
basic ideas of and mathematics behind linkage and recombination were developed
early in the 20th century [10, 15, 5]. Notably, these problems attracted the interest
of R. A. Fisher [3].

Starting in the early 1980s, there was a resurgence of interest in the problem of
genetic map construction, spurred by the development of recombinant DNA tech-
nology, which resulted in the ability to collect genotype data on large numbers of
neutral genetic markers throughout the human genome [1] as well as genomes of
model organisms. It was not long after these technological breakthroughs occurred
that Terry shifted much of his energy and interest into the field of statistical ge-
netics, near the beginning of the explosion of new data and resulting need for new
statistical models and methods. In human data, the map construction problem called
for more sophisticated statistical analysis than that typically required in experimen-
tal organisms. In model organisms, experimental crosses can often be planned in
such a way that it is feasible to simply observe the relative frequency of recom-
binants in any given interval and convert it to a distance using a “map function”,
an analysis method that we will call the “two-point analysis.” However, in humans,
crosses cannot be planned, and so any given human meiosis would typically be
uninformative for some of the markers of interest. (For example, in the sweet pea
example above, all meioses from an individual with genotype Ppll would be un-
informative for recombination between these two genes, because the recombinant
and non-recombinant allele pairs are indistinguishable.) When many genetic mark-
ers are considered simultaneously in each meiosis, and many meioses from different
individuals (with different patterns of informativeness) are analyzed together, sub-
stantial additional information, beyond that available from a two-point analysis, can
typically be obtained by a joint analysis using a suitable statistical model for joint
recombination events among a collection of genetic markers.

Thus, the statistical challenges of genetic mapping in humans naturally led to
consideration of probability models for the crossover process that causes the ob-
servation of recombination. In humans and other diploid eukaryotes, crossing over
takes place during a phase of meiosis in which the two parental versions of a
given chromosome have each been duplicated, and all four resulting strands or
chromatids are lined up together, forming a tight bundle. Crossovers can be modeled
as points located along this bundle, with each crossover involving exactly two of the
four chromatids. It is assumed that the two chromatids involved in any particular



10 Genetic Recombination 399

crossover are nonsister chromatids, that is, the two chromatids cannot be the two
identical copies of one of the parent’s versions of the chromosome. After crossing
over has occurred, the four resulting chromatids are each mosaics of the original
parental chromosomes. Keeping in mind this framework, one can consider two key
aspects of the model: (1) the distribution of crossover points along the bundle of
four chromatids and (2) the choice of nonsister pair of chromatids involved in each
crossover. Perhaps the simplest useful model is the no-interference model of Hal-
dane [5], which models aspect (1) by assuming that the crossover points form a
homogeneous Poisson process and models aspect (2) by assuming that each non-
sister pair is equally likely to be chosen for each crossover, independently across
crossovers. Interference refers to deviation from Haldane’s model. Interference, in
the form of local inhibition of crossover points on a resulting single chromatid, was
readily apparent in early Drosophila data [16, 11]. It is convenient to refer to fail-
ure of assumption (1) of Haldane’s model as crossover interference and failure of
assumption (2) of Haldane’s model as chromatid interference.

Under the assumption of no chromatid interference (NCI), Speed et al. [14] de-
rive a set of constraints, on the multilocus recombination probabilities, that are nec-
essary and sufficient to ensure the existence of a counting process model for the
distribution of crossover points along the bundle of four chromatids. They apply
these constraints to prove a consistency result for the maximum likelihood estimate
of the map order of a finite number of genetic markers along a chromosome. Specif-
ically, they show that, under the assumption of NCI, in the case of complete data,
i.e. when all meioses are informative for all markers, if maximum likelihood es-
timation is performed assuming the Haldane model, then the MLE will converge
almost surely to the true map order, even when the true crossover point process is
not Poisson (it can be any counting process).

The idea that the assumption of NCI imposes constraints on multilocus recombi-
nation probabilities is developed further in Zhao et al. [18], in which the main goal is
assessment of the empirical evidence for chromatid interference. This paper extends
the constraints from single spore data (such as that from humans and Drosophila)
to tetrad data (from organisms such Neurospora crassa, Saccharomyces cerevisiae
and Aspergillus nidulans) in which data on all 4 chromatid strands are available for
each meiosis, providing much more information about strand choice and, hence, al-
lowing a more powerful test of the NCI assumption. An efficient iterative algorithm
for maximum likelihood estimation under the constraints is developed, and a like-
lihood ratio test is proposed to assess whether there is evidence that the constraints
are not satisfied by the multinomial model assumed to generate the data. An em-
pirical bootstrap approach is used to assess significance. Some of the experiments
did provide evidence for chromatid interference, but overall there was no consistent
pattern. The extent and type of chromatid interference seemed to vary across or-
ganisms and across experiments. Because the loci considered in these experiments
are functional genes, as opposed to neutral markers, it is possible that differential
viability may play a role in the results as well. In single-spore data, in particular, the
constraints imposed by NCI are rather weak, and the available data do not provide
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much power to contradict them. Therefore, it seemed reasonable to assume NCI and
focus attention on models for the crossover process.

Because the Haldane no-interference model was so clearly contradicted by most
of the available, relevant data, Terry was somewhat concerned about relying on it
for map inference. If a more flexible, yet still parsimonious and tractable, model
could be developed and shown to fit the data better, Terry reasoned, it could be use-
ful for a range of applications in genetic inference. This problem is addressed by
McPeek and Speed [8], in which a range of point process models, involving one
or two additional parameters, are fit to Drosophila data by maximum likelihood.
Goodness of fit of the models is assessed, and the pattern of interference gener-
ated by each model is compared to that in data. The most promising model that
emerges from this study, the gamma model, is a stationary gamma renewal process
on four strands, combined with the assumption of NCI to generate a thinned pro-
cess. In addition to fitting the data better and providing a pattern of interference that
mimics that in data, the gamma model is also parsimonious and, when an integer
shape parameter is used, results in efficient computational methods. This promising
model is further developed in Zhao et al. [19], in which the gamma model with in-
teger shape parameter is referred to as the chi-square model because it results in
a stationary renewal process having chi-square interarrivals (with even degrees of
freedom) for the process on a single strand. The model is fit to datasets from a num-
ber of different organisms, with different datasets from the same organisms having
similar estimated shape parameter. The results of the analyses suggest that it may
be reasonable to use an organism-specific shape parameter to model interference.

In a closely-related line of research, Terry and colleagues sought to connect prob-
ability modeling of the crossover process with the initially mysterious-seeming map
functions commonly used in two-point analysis. A map function is used to convert
probability of recombination across an interval to genetic distance of the interval,
where genetic distance is defined as the expected number of crossovers per strand
per meiosis. A difficulty in application of map functions to multilocus analyses is
that when there are more than three markers, the multilocus recombination prob-
abilities cannot be uniquely determined from the map function [3]. Earlier work
[4, 13, 7] had proposed to solve this identifiability problem by constraining the
probability of an odd number of crossovers across a union of disjoint intervals to
depend only on the total length of these intervals. However, this is not a biologically
plausible assumption, and, as shown by Evans et al. [2], assuming NCI, the class of
count-location models [6, 12] is the only class of models having map functions that
satisfy this constraint. Zhao and Speed [17] remove this biologically implausible
constraint, and instead solve the general problem of developing stationary renewal
process models that can generate specific map functions. They show that in most
cases of previously-proposed map functions, one can construct a stationary renewal
process that generates the map function. Furthermore, they show that this station-
ary renewal process can typically be approximated quite well by the gamma or chi-
square model. The useful practical consequence of this is that two-point analyses us-
ing a particular map function can easily be extended to more informative multipoint
analyses, an approach that is particularly valuable in the presence of missing data.
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Chapter 11
Molecular Evolution

Steven N. Evans

Although the Department of Statistics at Berkeley decided they wanted to hire me
in 1987, I didn’t take up my position there until 1989. I don’t have any recollection
of meeting Terry when I interviewed, but, due in part to our shared Australian na-
tionality, we became good friends shortly after I moved to Berkeley. Two years later,
I jumped at the chance to move from my gloomy, north-facing office to one next to
Terry’s. Its corner location with a view across the San Francisco Bay through the
Golden Gate was merely an added inducement.

The resulting proximity led us to discuss scientific matters to a much greater
extent. I was soon meeting with Terry and his students, serving on his students’
dissertation committees, and attending Terry’s weekly “statistics and biology” sem-
inar. The thing that got me irredeemably hooked on the applications of statistics and
probability to biology arose out of Terry’s work with his student Trang Nguyen on
phylogenetics, the enterprise that seeks to reconstruct the evolutionary family tree
of some collection of taxa (typically, species) using data such as DNA sequences.
Phylogenetics was already a huge field in the early 1990s with a variety of statistical
and non-statistical methods, and it has expanded greatly since then. Some idea of its
scope may be gleaned from Semple and Steel [43], Felsenstein [19], Gascuel [20],
and Lemey et al. [28].

Phylogenetic inference can be viewed as a standard statistical estimation prob-
lem [22]. One has a probability model for the observed DNA sequences that in-
volves two kinds of parameters: those that define the mechanism by which DNA
changes over time down a lineage and those that define the tree. The latter can be
thought of as being further divided into a discrete parameter, the shape of the tree,
and a set of numerical parameters, the lengths of the various branches (which rep-
resent either chronological time or evolutionary distance). In principle, the problem
is therefore amenable to standard inferential techniques such as maximum likeli-
hood or Bayesian methods. Unfortunately, likelihoods are somewhat expensive to
compute for large numbers of taxa because they consist of large sums of products –
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essentially, one has to sum over all the possibilities for the genetic types of the unob-
served ancestors at each of the internal nodes of the tree. Even more forbidding is the
fact that the number of possible trees for even a modest number taxa is enormous,
so any approach that involves naively searching over tree space for the tree with
maximal likelihood or summing and integrating over tree space to compute a poste-
rior distribution will quickly become computationally infeasible, although there are
widely used software packages that incorporate effective heuristics for maximizing
the likelihood [21, 46, 45] and MCMC methods to computing posterior distributions
[23, 24]. This computational difficulty is particularly galling because a significant
proportion of the effort is expended to estimate the edge lengths of the tree and the
parameters of the DNA substitution model, while the main object of interest is often
just the shape of the tree.

Trang and Terry had come across an intriguing alternative approach to phyloge-
netic inference, the use of phylogenetic invariants, that had been proposed in Lake
[27] and Cavender and Felsenstein [12] and developed further in Cavender [10] and
Cavender [11]. The idea behind this approach is the following. Assume we have N
taxa. At any site there are 4N possibilities for the nucleotides exhibited by the taxa.
Each of these possibilities has an associated probability that is a function of the
parameters in our model. It is usual to assume that these probabilities are the same
for each site and that different sites behave independently. Suppose that for a given
tree there is a collection of polynomial functions of these probabilities such that each
function has the property it has value zero regardless of the values of the numerical
parameters. Such functions are called phylogenetic invariants. Moreover, suppose
that the values of these polynomials are typically non-zero when they are evaluated
on the corresponding probabilities associated with other trees for generic values of
the numerical parameters. The hope is that one can find enough invariants to distin-
guish between any pair of trees, estimate their values using the observed empirical
frequencies of vectors of nucleotides across many sites, and then determine which
tree appears to have the estimates of the values of “its” invariants close to zero and
hence is a suitable estimate of the underlying phylogenetic tree.

In order to implement this strategy, one needs ideally a procedure for finding
all the invariants for a given tree. Because a linear combination of invariants is an
invariant and the product of an invariant and an arbitrary polynomial is an invariant,
the invariants form an ideal in the ring of polynomials, and so one actually wants
to characterize an algebraically independent generating set. When Terry and I dis-
cussed this problem, we realized that the models of DNA substitution for which oth-
ers had been successful in finding specific examples of invariants by ad hoc means
were ones in which there is an underlying group structure. More specifically, if
one identifies the nucleotides {A,G,C,T} with the elements of the abelian group
Z2 ⊗Z2 in an appropriate manner, then the substitution dynamics are just those of
a continuous time random walk (that is, a processes with stationary independent
increments) on this group. This suggested that we should attack the problem with
Fourier theory for abelian groups – I should note that similar observations about
the substitution models were made by others such as Székely et al. [50] around the
same time. We found in our joint paper reproduced in this volume that the algebraic
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structure of the likelihoods looks much simpler in “Fourier coordinates” and that
one can determine a generating set for the family of invariants of a given tree using
essentially linear algebra. We also proposed some conjectures on the number of
“independent” invariants for various models that were verified subsequently in
Evans and Zhou [17] and Evans [18].

It turned out that Terry and I had been like Molière’s Monsieur Jourdain in
Le Bourgeois Gentilhomme who “for more than forty years” had been “speaking
prose without knowing it.” The simple structure we observed after the passage to
Fourier coordinates is an instance of a toric ideal, and we had unwittingly repro-
duced some of the elementary theory related to such objects. This connection was
made in Sturmfels and Sullivant [47] and it led to a large amount of work using
tools from commutative algebra to construct and analyze phylogenetic invariants in
a number of different settings [1, 2, 8, 15, 6, 3, 5, 4, 9, 14]. Even tools from the
representation theory of non-abelian groups have turned out to be useful in this con-
text [49, 48]. Moreover, the investigation of phylogenetic invariants led in part to
an appreciation of the extent to which many statistical models could be profitably
studied from the perspective of commutative algebra and algebraic geometry, and
this point of view is the basis of the field of algebraic statistics [37, 38, 41, 16].

An extremely important observation in phylogenetics is that evolution occurs
at the level of genes and that different genes can have evolutionary family trees
that disagree with the associated species tree. For example, genes can be duplicated
and the duplicate can mutate to take on a new function, sometimes resulting in the
loss of another gene that originally performed that function. Also, the lineages of
orthologous genes (that is, genes descended from a common ancestral gene) in two
taxa will split some time before the corresponding split in the species tree, and if
this difference is sufficiently great the shape of the tree for a given gene will differ
from that of the species tree. This means that in constructing a species tree one needs
to resolve the incompatibilities observed between the trees constructed for various
genes. On the other hand, if one has an accepted species tree, then it is desirable to
reconcile a discordant gene tree with the species tree by describing how the above
phenomena might have conspired to produce the differences between the two. This
general problem is discussed in Pamilo and Nei [40], Page and Charleston [39],
Nichols [36], and Maddison [32].

The papers by Bourgon et al. [7] and Wilkinson et al. [51] carry out the task of
clarifying the connection between a gene tree and a species tree in two important
instances, the evolution of the serine repeat antigen in various Plasmodium species
(including P. falciparum, the parasite responsible for the most acute form of malaria
in humans) and the evolution of relaxin-like peptides across species ranging from
humans to the zebra fish and the African clawed frog.

There has been considerable fascinating theoretical research on the problem of
constructing species trees from gene trees, some of it showing quite paradoxical
behavior; for example, the most likely gene tree can differ from the species tree and
inferring a species tree by concatenating the sequences of several genes and treating
the result as one gene can lead to an incorrect species tree with high probability [42,
13, 31, 25, 33, 34]. Some recent approaches to constructing well-behaved estimates
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of species trees using data from several genes are Liu and Pearl [30], Liu [29],
Kubatko et al. [26], and Mossel and Roch [35].

The last of Terry’s work on molecular evolution is his paper with Sidow and
Nguyen [44] on estimating invariable codons using capture-recapture methods.
Invariable codons are those that are conserved across different species because of
structural or functional constraints. In essence, they are codons that are prevented
from changing because any change would have fatal biochemical consequences. It is
not possible to observe which codons are invariable by simply looking at sequence
data because some codons might be conserved by chance across all species even
though there is no biochemical reason preventing a change, and so the invariable
codons form some unknown fraction of the conserved ones. This paper is another
example of Terry at his best: it provides answers of genuine scientific importance
using simple, sensible statistical ideas that are normally not associated with the anal-
ysis of molecular data and that he probably learned from his extensive teaching and
consulting experience.

Working with Terry has been one of the high points of my career at Berkeley.
He has affected deeply the areas in which I have worked and my general attitude to
research. Perhaps more importantly, by my good fortune of being his neighbor for
around twenty years I have had an unrivaled opportunity to witness the humanity,
dedication and commitment that he always shows to his students and collaborators.
I may not have always lived up to the wonderful example he continues to set, but
that does not make me any the less grateful for it.
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trees. Adv. in Appl. Math., 14:200–210, 1993.

[51] T. N. Wilkinson, T. P. Speed, G. W. Tregear, and R. A. Bathgate. Evolution of
the relaxin-like peptide family from neuropeptide to reproduction. Ann. N.Y.
Acad. Sci., 1041:530–533, 2005.



448 11 Molecular Evolution



11 Molecular Evolution 449



450 11 Molecular Evolution



11 Molecular Evolution 451



452 11 Molecular Evolution



11 Molecular Evolution 453



454 11 Molecular Evolution



11 Molecular Evolution 455



456 11 Molecular Evolution



11 Molecular Evolution 457



458 11 Molecular Evolution



11 Molecular Evolution 459



460 11 Molecular Evolution



11 Molecular Evolution 461



462 11 Molecular Evolution



11 Molecular Evolution 463



464 11 Molecular Evolution



11 Molecular Evolution 465



466 11 Molecular Evolution



11 Molecular Evolution 467



468 11 Molecular Evolution



11 Molecular Evolution 469



470 11 Molecular Evolution



Chapter 12
Statistical Genetics

Darlene R. Goldstein

Terry Speed has produced many interesting and important contributions to the
field of statistical genetics, with work encompassing both experimental crosses and
human pedigrees. He has been instrumental in uncovering and elucidating algebraic
structure underlying a diverse range of statistical problems, providing new and uni-
fying insights.

Here, I provide a brief commentary and introduction to some of the key building
blocks for an understanding of the papers. Some readers may also find useful a
refresher on group action (see e.g. Fraleigh [6]) and hidden Markov models [13].

Linkage mapping

Linkage analysis studies inheritance of traits in families, with the aim of determining
the chromosomal location of genes influencing the trait. The analysis proceeds by
tracking patterns of coinheritance of the trait of interest and other traits or genetic
markers, relying on the varying degree of recombination between trait and marker
loci to map the loci relative to one another.

A measure of the degree of linkage is the recombination fraction θ , the chance of
recombination occurring between two loci. For unlinked genes, θ = 1/2; for linked
genes, 0 ≤ θ < 1/2.
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Human pedigrees

S. Dudoit and T. P. Speed (1999). A score test for linkage using identity by descent
data from sibships. Annals of Statistics 27:943–986.

This paper offers a novel and comprehensive algebraic view of sib-pair meth-
ods, fundamentally unifying a large collection of apparently ad hoc procedures and
providing powerful insights into the methods.

Identical by descent allele sharing

Data for linkage analysis consist of sets of related individuals (pedigrees) and infor-
mation on the genetic marker and/or trait genotypes or phenotypes. The recombina-
tion fraction is most commonly estimated by maximum likelihood for an appropriate
genetic model for the coinheritance of the loci.

However, likelihood-based linkage analysis can be difficult to carry out due to
the problem that the mode of inheritance may be complex and in any case is usually
unknown. Nonparametric approaches are thus appealing, since they do not require a
genetic inheritance model to be specified. Such methods typically focus on identical
by descent (IBD) allele sharing at a locus between a pair of relatives. DNA at a locus
is shared by two relatives identical by descent if it originated from the same ances-
tral chromosome. In families of individuals possessing the trait of interest, there is
association between the trait and allele sharing at loci linked to trait susceptibility
loci, which can be used to localize trait susceptibility genes.

Testing for linkage with IBD data has developed differently, depending on the
type of trait. For qualitative traits, tests are based on IBD sharing conditional on
phenotypes. Affected sib-pair methods are a popular choice; these are often de-
scribed as nonparametric since the mode of inheritance does not need to be specified
(see Hauser and Boehnke [10] for a review). On the other hand, for quantitative trait
loci (QTL), linkage analysis is based on examination of phenotypes conditional on
sharing (for example, the method of Haseman and Elston [9] or one of its many
extensions).

Inheritance vector

The pattern of IBD sharing at a locus within a pedigree is summarized by an inher-
itance vector, which completely specifies the ancestral source of DNA. For sibships
of size k, label locus (1, 2) and maternally derived alleles (3, 4). The inheritance
vector at a given locus is the vector x = (x1,x2, ...,x2k−1,x2k), where for sib i, x2i−1

is the label of the paternally inherited allele (1 or 2) and x2i is that of the maternally
inherited allele (3 or 4) at the locus.
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For a pair of sibs, when paternal and maternal allele sharing are not distinguished,
the 16 possible inheritance vectors give rise to three IBD configurations Cj: the sibs
may share 0, 1, or 2 alleles IBD at the locus (Table 12.1). The IBD configurations
can be thought of as orbits of groups acting on the set of possible inheritance vectors
X [2].

Table 12.1 Sib-pair IBD configurations

Alleles IBD Inheritance vectors |Cj |
0 IBD (1, 3, 2, 4), (1, 4, 2, 3), (2, 3, 1, 4), (2, 4, 1, 3) 4
1 IBD (paternal) (1, 3, 1, 4), (1, 4, 1, 3), (2, 3, 2, 4), (2, 4, 2, 3) 8

(maternal) (1, 3, 2, 3), (1, 4, 2, 4), (2, 3, 1, 3), (2, 4, 1, 4)
2 IBD (1, 3, 1, 3), (1, 4, 1, 4), (2, 3, 2, 3), (2, 4, 2, 4) 4

Score test for linkage

The literature contains several proposed tests of the null hypothesis of no linkage
(H : θ = 1/2) based on score functions of IBD configurations for sibships and other
pedigrees, with scores chosen to yield good power against a particular alternative.
The score test of Dudoit and Speed to detect linkage represents a major break-
through in that it creates a coherent, unified based approach to the linkage analysis
of qualitative and quantitative traits using IBD data. The likelihood for the recom-
bination fraction θ , conditional on the phenotypes of the relatives, is used to form a
score test of the null hypothesis of no linkage (θ = 1/2).

The probability vector of IBD configurations, conditional on pedigree pheno-
types, at a marker locus linked to a trait susceptibility locus at recombination frac-
tion θ can be written as ρ(θ ,π)1×m = π1×mT (θ )m×m, where π represents the con-
ditional probability vector for IBD configurations at the trait locus and the number
of IBD configurations is m. T (θ ) denotes the transition matrix between IBD config-
urations at loci separated by recombination fraction θ .

In general, the probability vector π depends on unknown genetic parameters.
However, using their formulation of the problem, Dudoit and Speed [4] show rig-
orously that for affected sibships of a given size, the second-order Taylor series
expansion of the log likelihood around the null of no linkage is independent of the
genetic inheritance model. They thus provide a mathematically justified basis for
affected sib-pair methods, which do not require an assumed mode of inheritance.

Practical advantages of the score test include: it is locally most powerful for
alternatives close to the null; any genotype distribution can be used (i.e., Hardy-
Weinberg equilibrium is not required); conditioning on phenotypes eliminates se-
lection bias introduced by nonrandom ascertainment; and combining differently as-
certained pairs is straightforward, providing the important benefit of allowing us to
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avoid discarding any data. For many realistic simulation scenarios [7, 8], the score
test proves to be robust and shows large power gains over commonly used nonpara-
metric tests.

Although the paper focuses on pairs of sibs, the same score test approach is also
applicable to any set of relatives [3].

Experimental crosses

N. J. Armstrong, M. S. McPeek and T. P. Speed (2006). Incorporating interference
into linkage analysis for experimental crosses. Biostatistics 7:374–386.

This paper improves multilocus linkage analysis of experimental crosses by in-
corporating a realistic model of crossover interference, and implementing it by
extending the Lander-Green algorithm for genetic reconstruction. It represents the
culmination of a series of studies of the modeling of crossover interference.

χ2 model of crossover interference

During the (four-strand) process of crossing over in meiosis, two types of inter-
ference (nonindependence) are distinguished: chromatid interference, a situation in
which the occurrence of a crossover between any pair of nonsister chromatids af-
fects the probability of those chromatids being involved in other crossovers in the
same meiosis; and crossover interference, which refers to nonrandom location of
chiasmata along a chromosome.

Most genetic mapping is carried out assuming independence; that is, no
chromatid interference and no crossover interference. This assumption simplifies
likelihood calculations. Although there is little empirical evidence for chromatid
interference, there is substantial evidence of crossover interference. Thus, more a
more realistic model incorporating crossover interference should be able to provide
more accurately estimated genetic maps.

The χ2 model of crossover interference [5] provides a dramatically improved
fit over a wide range of models [12, 14]. This model assumes that recombination
intermediates (structures formed after initiation of recombination) are resolved in
one of two ways: either with or without crossing over. Recombination initiation
events are assumed to occur according to a Poisson distribution, but constraints on
the resolution of intermediates creates interference. The χ2 model assumes m unob-
served intermediates between each crossover. For m = 1, the model reduces to the
no (crossover) interference model. This model is a special case of the more general
gamma model, but has the advantage of being computationally more feasible.
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Genetic reconstruction and the Lander-Green algorithm

Genetic mapping in humans can be viewed as a missing data problem, since we are
typically unable to observe the complete data (the number of recombinant and non-
recombinant meioses for each interval). If complete data were available, maximum
likelihood estimates of a set of recombination fractions θi, i = 1, . . . ,T − 1, for ad-
jacent markers M1, . . . ,MT would just be the observed proportion of recombinants
in an interval.

The genetic reconstruction problem is to determine the expected number of re-
combinations that occurred in intervals of adjacent markers, given genotypes at mul-
tiple marker loci in a pedigree and the recombination fraction for each interval. Con-
struction is straightforward when there is complete genotype information, including
the ancestral origin (paternal or maternal).

More commonly this information is not known, so a different strategy for likeli-
hood calculation is needed to obtain recombination fraction estimates. Lander and
Green [11] proposed an approach based on the use of inheritance vectors. They
showed that the probability of the observed data can be calculated for any particular
inheritance vector and that under no crossover interference, the inheritance vectors
form a Markov chain along the chromosome. They model the pedigree and data as a
hidden Markov model, where the hidden states are the (unobserved) inheritance vec-
tors. The complexity of their algorithm for calculating likelihoods increases linearly
with the number of markers but exponentially in pedigree size, making it appropriate
for analysis of many markers on small to moderately sized pedigrees.

In experimental crosses, mapping is generally more straightforward since inves-
tigators can arrange crosses to produce complete data. However, the presence of
unobserved recombination initiation points creates a new kind of missing data when
the no interference model is not assumed. The creative insight of Armstrong et al.
[1] is to model the crossover interference process as a hidden Markov model. This
step works because even though crossovers resulting from initiation events do not
occur independently (in the presence of crossover interference), the initiation events
themselves are assumed to be independent. Armstrong et al. [1] are thus able to
extend the Lander-Green algorithm to incorporate interference according to the χ2

model, thereby providing more accurately estimated genetic maps.

Conclusion

Terry’s work in statistical genetics has identified underlying commonalities across
seemingly disparate procedures, contributing meaningful theoretical and practical
improvements. An impressive aspect of these works is the fresh perspective offered
by viewing the problems at a stripped-down, fundamental level. Applying an excep-
tional combination of extensive mathematical expertise and pragmatic sensibility,
Terry provides inventive solutions and a richer structural understanding of signifi-
cant questions in statistical genetics.
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Chapter 13
DNA Sequencing

Lei M. Li

DNA sequencing is one great leap in the advance of life sciences. The research in
these two sequencing articles came respectively from two chapters of my PhD thesis
at Berkeley, and it is my luck to connect my life with DNA sequencing through my
wonderful thesis advisor, Professor Terry Speed.

Several factors motivated the selection of DNA sequencing as my thesis topic.
First, I had an ambition to be an applied mathematician when I was young. In my
last year of college, however, I was tortured by fatigue and infection. My mood was
very low then, and I had no appetite for more mathematics at all. With the help of
my family, I gradually recovered with a therapy of Chinese herbs, and I continued to
study hard mathematics. From then on, I had a vague yet deep thought in my mind
that someday I should apply my mathematical knowledge to the understanding of
life and medicine. This was one reason why in graduate school I looked for some
applied topic related to life sciences. Second, Terry had been working on statistical
genetics and was very enthusiastic about new statistical problems in genomics. He
gave me a physical mapping problem as a start-up project. I quickly made some
progress that helped me pass the oral exam. Third, in 1995 the Human Genome
Project accelerated and researchers from many disciplines such as chemistry, engi-
neering, computer science, mathematics, statistics jumped into the field. And Terry
brought me into the adventure with a good will.

Among the interesting mathematical problems associated with genomics, I picked
DNA sequencing, or more exactly, DNA base-calling as my thesis topic, as Terry
suggested. In 1994-95, DNA sequencing was based on Sanger’s dideoxy DNA am-
plification, fluorescence dye technique and electrophoresis. In the beginning, I knew
nothing about molecular biology, and Terry helped me understand the basic ideas
with a great patience. His former student, David Nelson, participated in DNA se-
quencing research at that time too, and provided us with fairly complete background
on electrophoresis [8, 9, 10]. Another source of collaboration came from Professor
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Richard Mathies’ group in the chemistry department at Berkeley, who were con-
ducting research on capillary DNA sequencing. In a statistical consulting service,
of which Terry was in charge for the Statistics Department during one semester in
1995, Dr. Indu Kheterpal, who was a PhD graduate student in Professor Mathies’
group, brought in an interesting estimation problem in fluorescence dye technique.
Terry set up a good collaboration with them and I learned a lot of chemistry related
to DNA sequencing through the interaction.

Sanger DNA sequencing generates a signal trace from each template DNA, and
base-calling is the data analysis part of DNA sequencing, aimed at reconstructing
the nucleotide sequence with a fair fidelity. We decomposed the problem into three
parts: color correction, deconvolution, and base-calling. Then we tried to work out
solutions to each of them. In my opinion, the work on color correction and de-
convolution is mathematically and statistically more elegant and original, and we
put a lot of effort into publishing it. In comparison, the solution to the last step
of base-calling is more engineering-like in flavor. Terry introduced me to the tech-
nique of the hidden Markov model (HMM), which was not so widely known then
as it is now. I was intrigued by the idea and we designed an HMM for base-calling.
In genome research, a good idea alone is not sufficient to have an impact, and a
good implementation is equally important, if not more so. The implementation of
the HMM base-calling requires model-training and a lot of serious software pro-
gramming. Due to graduation and my limited programming strength, I only tested
the idea and did not develop a real software solution. A little later, Dr. Green and
his team published their famous work on base-calling. In the meantime, microarray
technology gradually caught people’s attention. And our HMM base-calling idea
was not pursued further [3].

By now our most influential contribution to DNA sequencing is color cor-
rection [4]. A few years ago, Terry told me that Solexa, now owned by Illu-
mina, one major next generation sequencing platform, adopted our scheme. This
is encouraging and yet not surprising because we have shown, at least in one
important perspective, that the color correction scheme we proposed is optimal.
In capillary Sanger sequencing, four dyes, which emit different colors as ex-
cited by laser, are used to distinguish four kinds of nucleotides. The purpose of
color correction is to remove the cross-talk phenomenon of the four dyes’ emis-
sion spectra. One key idea of our work is that we need to estimate the cross-
talk phenomenon adaptively from each experiment. Another key idea of our es-
timation is that we make use of the “canonical” distribution of data without any
cross-talk. As a PhD student, I was enthusiastic about the solution when it was
first discovered. In a late afternoon, we walked home down Hearst Avenue, and
Terry asked me a serious question, “how do we know our solution is right?”
I gave him an answer, “If we estimate the cross-talk matrix properly, the distribution
of the corrected data should match the nominal one.” Terry agreed. After I gradu-
ated, I went through several interesting problems in engineering and science, and
realized that they share a common nature with the color correction problem. I wrote
an article about this class of blind inversion problems in the festschrift for Professor
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Terry Speed’s 60th birthday [6], because Terry’s question partially inspired the for-
mulation of this notion.

In usual DNA sequencing light intensities at four wavebands are measured, since
four dyes are used. Interestingly, Dr. Kheterpal and Professor Mathies asked us if we
could instead use only three light intensities for base-calling. After some struggles,
we designed a procedure consisting of a series of nonnegative least squares and a
model selection scheme [1]. Professor Mathies was very pleased with the result.

The work on deconvolution is also motivated by Sanger sequencing and is more
technical than color correction. Each base in a Sanger sequencing trace can roughly
be represented by a Gaussian-shaped peak on a continuous scale, and the four kinds
of nucleotides, namely A, G, C and T, are represented by four different colors re-
spectively. The motion of DNA molecules in capillary is usually explained by the
reptation theory. The aggregation of the molecules of the same size can approxi-
mately be described by a Brownian motion. That explains why each peak looks like
a normal distribution. In Sanger sequencing, most base-calling errors come from
the regions with runs of the same kind of nucleotides, and lead to insertions and
deletions, or simply indels. Once an error of this type occurs in base-calling, it often
causes more trouble than a substitution error does in an alignment. How to separate
these peaks, or in other words, how to count the bases in a run correctly, is a problem
that we solved with the deconvolution technique.

The parametric deconvolution [5] was something we worked out without much
prior literature knowledge on the topic. Terry suggested that we do a literature sur-
vey. In 1995, I searched the key word, deconvolution, on Yahoo (I am sure it was not
Google then), and got over one thousand hits, and the early work went back to the
nineteenth century. Obviously deconvolution is a common problem in many areas.
I read almost all relevant papers I could find, and discussed them with Terry over a
long period of time till 2000 in Melbourne. One issue that puzzled us was whether
deconvolution is an ill-posed problem — a notion postulated by Hadamard in 1902.
Without any constraint on the solution space, deconvolution is an ill-posed problem,
and had been classified so in applied mathematics. Nevertheless, in many cases, the
signals to be reconstructed are positive and “sparse”. In parametric deconvolution,
we formulate the unknowns by a mixture of finite Dirac spikes, and we can estimate
them well in a regular sense, see Theorem 4.1 and 4.2 in Li and Speed [5], although
the dimension of the solution space needs to be estimated too by model selection,
see Algorithm 5.2 in Li and Speed [5] and Proposition 3.3 in Li [2]. Thus Terry and
I came to the conclusion: if the signal to be reconstructed is positive and sparse, then
deconvolution is well-posed.

The well-posedness explains why historically some nonparametric deconvolvers
such as the Jansson’s method and the folk iteration (5.2) in Li and Speed [7], ob-
tained in different scenarios by either EM algorithms or Bayesian methods in the
literature, work quite well in their respective applications. Furthermore, Terry and I
did an investigation on the general linear inverse problem with positive constraints
(LININPOS) that underlies the folk iteration. We discovered that the iteration in fact
minimizes the Kullback-Leibler divergence between the target and the fit, and this
result clarifies the core structure of the LININPOS solution.
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The work described here has been a source of both enlightenment and enjoyment
to me. When I was writing down these words, those scenes when Terry and I walked
down Hearst Avenue and chatted on various issues came upon my mind like yes-
terday. I am sure that Terry’s other students and colleagues had their own pleasant
study and work experiences with him as well. His spirit is no doubt the source of
many good things. In addition to his passion for science and mathematics, his re-
spect of the interests and talents of each student, each collaborator and his own may
partially explain his wide research spectrum.
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Chapter 14
Biological Sequence Analysis

Simon E. Cawley

Shortly after the start of my graduate studies at the U.C. Berkeley Statistics depart-
ment in 1995, I had the good fortune to meet Terry and learn about some of his
work in the area of the application of statistics to genetics and molecular biology.
Not having thought about biology since high school, I was very impressed by the
large impact statistical approaches were making in a field I had naively considered
as one that had little to do with quantitative analysis. I eagerly dove in to a collabo-
ration that Terry had put in place with the Human and Drosophila Genome Projects
at Lawrence Berkeley National Laboratories and spent the next few years having a
great time working on interesting and practical statistical problems that arose in the
context of the ongoing genome sequencing efforts.

In this section we present some of Terry’s contributions in the area of Sequence
Analysis – generally speaking, the area of analysis of biological sequences such as
DNA or protein sequences. The papers presented here relate to the interpretation of
DNA sequences.

DNA sequence analysis has been an area of growing importance since DNA
sequencing techniques started to emerge in the early 1970s. The chain-terminator
method developed by Frederick Sanger at the University of Cambridge [7] was a
pivotal moment, enabling the first rapid scaling up of DNA sequencing capabili-
ties. The rate of sequencing was further accelerated through the 1980s and 1990s as
ever-greater levels of automation were brought to bear on Sangers original concept.

As the level of automation increased, it became possible to sequence entire
genomes of successively more complex organisms with larger genomes, ranging
from bacteriophage phiX174 in the late 1970s, various microbial genomes in the
early 1990s through to the draft of the human genome sequence published in 2001.
The Sanger method showed remarkable longevity and was at the core of the vast
majority of sequencing efforts through to the early 2000s.

The dominance of Sanger sequencing finally ended in the early 2000s with the
advent of a renaissance of sorts as multiple new massively parallel technologies such
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as 454 pyrosequencing, followed soon after by Solexa (Illumina), SOLiD, polony,
DNA nanoball and Ion Torrent sequencing.

As DNA sequencing technologies scaled up, huge opportunities arose along the
way for the application of statistics, both in the area of analysis of the signals gen-
erated from each of the various instruments and technologies to improve DNA se-
quencing accuracy (the subject of Chapter 13), and in the downstream analysis of the
DNA sequence collected. In particular, as the volumes of sequence generated started
to exceed what an expert molecular biologist could manually browse and interpret,
it became crucial to develop statistical models for assembling and interpreting the
sequences.

The papers presented in this chapter cover two important areas in the interpre-
tation of DNA sequences. The first, Cawley et al. [3], addresses the problem of
analyzing stretches of DNA to search for the collections of sub-sequences that cor-
respond to gene transcripts. The model presented was not the first of its kind; simi-
lar Hidden Markov Models (HMMs) had been published before [2, 4, 5]. Its novel
contributions were various observations about computational shortcuts that can be
made, at no cost to accuracy, taking advantage of some of the structure of the prob-
lem of applying HMMs to gene finding. This paper was also the first instance where
the probabilistic formulation of the HMM gene finder was used to derive posterior
probabilities of bases being part of the gene; previous attempts focused exclusively
on the use of the Viterbi algorithm to predict gene structures. The software im-
plementing the gene finder was also the first HMM gene finder made available as
open-source software, something of value given the rate at which new organisms
were then being sequenced.

As an interesting side note, while doing some of the work that was described in
the publication, I had a near-death experience with the very Malaria parasite that
was the subject of the work. A pure coincidence – the work had involved nothing
more than electronic interaction with the parasite!

The second paper, Zhao et al. [8], introduced the novel concept of a Permuted
Variable Length Markov Model (PVLMM), a generalization of the VLMM [1, 6].
VLMMs themselves are a generalization of Markov models. When applied to se-
quence analysis, they have the advantage of allowing for modeling of long context
dependencies without necessarily coming at the cost of an exponential increase in
the number of parameters to estimate. However, the dependencies that VLMMs best
model are still relatively local dependencies and they are ill-suited to describe long-
range dependencies between particular positions in a sequence as sometimes occurs.
PVLMMs offer a way around that limitation by providing a framework in which the
modeled sequence can be permuted to bring dependent positions together, turning
long-range dependencies into local ones.

The paper provides some impressive work, putting the new theory into practice
in two substantial applications: modeling of splice sites, a sub-component of gene
sequences; and modeling of Transcription Factor Binding Sites (TFBS), important
regions of DNA to which regulatory molecules known as transcription factors bind
as part of the regulation mechanism for gene expression. By showing effective per-
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formance in two different sequence analysis problems, a strong case is made for the
PVLMM as a general tool that will be well suited to a broad range of applications.

These papers, along with the diverse range of publications reviewed in the other
chapters, provide a sense of the amazing breadth of Terry’s work. I am a direct
beneficiary of his diverse interests – when he introduced me to the field of statistics
applied to molecular biology, I enjoyed it so much that it ended up being the basis
of my career to-date. I will always be grateful to him for how selflessly he shared
his time and insights, and for the patient guidance he provided during my graduate
years and beyond.
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Chapter 15
Microarray Data Analysis

Jane Fridlyand

I met Terry when I was a beginning graduate student in the Department of Statistics
at UC Berkeley. The first year is the time when bright-eyed and idealistic graduate
students start thinking about what they want to do for the next 30 years of their
lives, or at least until they are handed their PhD diploma and a job offer from Wall
Street. I was in awe of Terry, but gathered my courage to approach him with that
crucial question: “Would you work with me?” Now that I write this, I find that it
sounds rather like a marriage proposal. And indeed, it becomes one: a covenant of
commitment between a student and the mentor, with all the ups and downs, for better
or for worse, lasting a lifetime. I wanted to work with Terry because he inspired me,
as a scientist and as a person, and his interests in biological and medical applications
were close to my heart. I also had reason to hope for a positive response – I was told
in confidence by several people that in his 20 years of working with students Terry
had never turned anyone down. So, here I was asking “Would you work with me?”.
His reply was immediate and crushing: “Why?”. I did not know what to say – with
all the mental rehearsals I had done, I was not prepared for this comeback. I must
have blushed, mumbled something and run away. I guess there is always a first one
to be turned down, unfortunately it just happened to be me!

My despair did not last long. The next day I found a thick stack of papers on
statistical genetics and schizophrenia research in my mailbox with a note asking
me to read them and meet Terry the next day at a specific time to discuss. And
this is how our work together began. Although I transitioned from schizophrenia
research, our working relationship had been established, and Terry has remained a
very important part of my life since (15 years and counting!).
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Microarrays and high-dimensional data

Starting in the late nineties, the field of applied statistics in biomedical research has
transformed from the traditional paradigm of many samples and few variables to
a situation that had not been greatly considered before by statisticians outside of
the machine learning community – one of few samples and an enormous number
of variables, also known as the “small n, large p” problem. Unlike the past when
existing theory and methods foreshadowed (or even dictated) data types that would
occur in practice, this time the technology came first along with excitement and
great promise. cDNA microarrays and high-density oligonucleotide chips allowed
measurement of many thousands, and eventually, millions, of gene products simulta-
neously. High-density SNP (Single Nucleotide Polymorphism) arrays enabled high-
throughput genetic profiling of living organisms. Taken together and occurring in
parallel with the ongoing human and other genome projects, these breakthroughs
in technology generated exciting possibilities in biomedical research: human dis-
ease prognosis and classification, new drug targets, mammalian models, basic re-
search, and, finally, the ability to conduct discovery experiments on a scale pre-
viously unimaginable. As new technologies were quickly adopted by researchers
and clinicians, questions encompassing a broad spectrum of statistical issues arose,
including:

• “How reliable and reproducible are the measurements?” (quality assessment and
control)

• “Can I really find a needle in a haystack?” (experimental design, estimation,
testing)

• “What can one do with so many variables at a time?” (modeling, prediction
techniques)

• “How can I minimize the false leads?” (testing)

Re-formulating and addressing such questions falls in the purview of statisticians,
who are able to draw on their knowledge of experimental design, prediction tech-
niques, modeling, estimation and testing, and adapt and expand existing concepts to
work with these new and unprecedentedly large datasets.

When I think of Terry’s approach to statistics and mentorship, a few quotes from
Albert Einstein come to mind – In theory, practice and theory are the same. In
reality, they are not and Everything should be made as simple as possible, but not
simpler. These points could not have been more appropriate or timely than when
excited statisticians, physicists, and computer scientists started working on high-
dimensional biomedical problems.

It is difficult to overemphasize Terry’s contributions to the field of high-dimen-
sional data analysis in biomedical research. He stepped in at the very start and, with
vigor, rigor and great enthusiasm, began to transform the analytical methods used in
the field. Generically, we can consider two levels of microarray data analysis: low-
level analysis, which is concerned with preprocessing the raw data into meaningful
and analyzable measures; and high-level analysis, which is the statistical analysis
of the resulting data matrix. Most methodological researchers tend to specialize in
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one or the other of these. Terry has made major, fundamental, and very widely used
contributions across the analysis spectrum.

The May 8th 2011 PubMed search for “TP Speed” reveals that Terry has co-
authored in excess of 150 peer-reviewed publications, a large number of which focus
on the analysis of high-dimensional biological data. Here, I provide a historical
commentary to only a few of the most ground breaking of those.

Your results will only be as good as the information you put in
(more commonly known as “garbage in, garbage out”)

Perhaps the most widely cited microarray contributions from Terry have been from
his work on low-level preprocessing of the measurements. Early on, it was rec-
ognized that there are many sources of systematic variation in both cDNA and
oligonucleotide microarrays. Although understanding the underlying physical rea-
sons for the observed variation is useful, it is not always feasible. Terry recognized
that simple empirical normalization approaches may be competitive with more com-
plex biophysical models. Terry also proposed a number of what are now among the
most commonly used quality control visualization tools assuring that appropriate
preprocessing has been done (e.g. MA-plots, chip pseudo-image plots). Finally, for
a formal evaluation of preprocessing methods, relevant biological calibration exper-
iments had to be designed and conducted.

Yang et al. [10] and Irizarry et al. [4] represent some of the papers describing
revolutionary microarray normalization (preprocessing) techniques for cDNA ar-
rays (lowess) and short oligonucleotide chips (RMA), respectively. RMA, or some
subsequent variant of it, is the most frequently used and cited preprocessing tech-
nique for short oligonucleotide chips. Rabbee and Speed [7] describe a multi-chip,
multi-SNP approach to genotype calling for Affymetrix SNP chips, providing the
first such alternative to the standard (at the time) genotype calling procedures, which
processed all the features associated with one chip and one SNP at a time.

Microarray data analysis �= clustering

In the very early days of microarray data analysis, probably due to the high dimen-
sionality of the data, virtually all analyses included a cluster analysis – regardless of
the scientific question under study (for which clustering may or may not be appro-
priate).

For the problem of identifying genes that are differentially expressed in two con-
ditions, a more natural, statistically based approach would be to use the mean differ-
ence or standardized mean difference of the expression levels, separately for each
gene. However, these statistics are problematic. A large mean difference may be due
to large variability or an outlier. But taking account of the variability by using the
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standardized difference is also problematic because when the number of replicates
is small the estimate of variance is less reliable, and in particular may be artificially
small. In this case, a small average difference can be highly statistically significant,
yet biologically meaningless.

Lönnstedt and Speed [6] address this issue using an empirical Bayes approach
that avoids these problems. They use a Bayes log posterior odds for differential
versus equal expression to select differentially expressed genes. Tai and Speed [9]
extend the model to allow for analysis of time-course microarray data.

Do complex datasets require complex methods?

A new laboratory technology without an established methodology for analysis of
the resulting data may be attractive to aspiring quantitative analysts eager to apply
new sophisticated analytical methods “brewing” in their labs yet lacking an excit-
ing application. This situation violates a firm rule that Terry had for his students:
it is the real life problems that motivate methodological research, not the reverse.
Thus, when human cancer microarray datasets were first publicly released for re-
analysis by other groups, Terry questioned whether the complex, state-of-the-art
prediction methods that were being published with the aim of addressing biomed-
ical research problems (e.g. prediction of a patient’s tumor subtype or treatment
outcome) do indeed outperform more simplistic approaches that place tight restric-
tions on the parameter space, such as a linear discriminant analysis with diagonal
covariance matrix. Another question that came up was how to measure the relative
performance of multiple candidate predictors in the absence of true, independent
datasets, particularly when many parameters are estimated.

These two issues are discussed in-depth in Dudoit et al. [2]. Somewhat surpris-
ingly, the main conclusion of this work (later supported theoretically by Levina and
Bickel [5]) was that for small n, large p problems the simplest methods, with the
most restrictive assumptions, perform as well as or better than the latest machine
learning approaches. Moreover, unbiased assessment of performance can be chal-
lenging and must be done through a careful and valid cross-validation – an important
caveat ignored by several groups in early publications. In view of these results, it is
not surprising that in high-dimensional genomics, the rate of independently vali-
dated predictions remains low. Nevertheless, much of the progress that has been
made is due to Terry’s work on formulating and disseminating the appropriate mes-
sage.

If you torture data enough, it will confess

Testing many thousands of genes for association with the phenotype of interest in-
variably presents an issue. From the statistical point of view, testing must be per-
formed at an exceedingly stringent alpha level to control the overall number of false
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positive findings. At the time of this writing, this idea seems obvious; however, even
5 years ago, it was not – a change of mindset was required as a great majority of
papers reported the significance of individual tests without regard to the number of
the comparisons performed. The initial discussion of permutation-based adjusted
(rather than nominal) p-values took place in Callow et al. [1]; an extensive review
of approaches to multiple testing was presented in Ge et al. [3].

And finally...

On a very personal note, I would like to conclude with the story of a paper that
Terry and I have never written but work on which manifests in my mind many of the
wonderful qualities that Terry possesses: inspiration, mentorship and willingness to
always give one more chance. In 1998, I hit a creativity wall, a not uncommon occur-
rence in the life of a PhD student. Terry had many PhD students, but each of us was
important to him as an individual. Terry brought me to Australia with him and there
I was able to stumble on a topic that excited and reinvigorated me – the search for
interactions in high-dimensional SNP studies. There we were able to utilize binary
tree partitioning techniques to discover epistatic genes without prominent indepen-
dent (marginal) effect, while at the same time illuminating an underlying interaction
structure. The results summarizing the application of our approach are described in
Symons et al. [8]; however, the methodological paper was never written. Neverthe-
less, this is our joint work for which I am most grateful to Terry, and that ultimately
motivated me to start and finish my PhD dissertation. A lesson in this to all the men-
tors out there: do not give up on your students, and eventually you will be thanked
in print!
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C. Carmichael, M. E. Ritchie, F. Schütz, P. Cannon, M. Liu, X. Shen, Y. Ito
et al. Integrative analysis of RUNX1 downstream pathways and target genes.
BMC Genomics, 9(1):363, 2008.

[287] S. Mukherjee and T. P. Speed. Network inference using informative priors.
Proc. Natl. Acad. Sci. USA, 105(38):14313–14318, 2008.



662 Bibliography of Terry Speed

[288] The Cancer Genome Atlas Research Network. Comprehensive genomic
characterization defines human glioblastoma genes and core pathways. Na-
ture, 455(7216):1061–1068, 2008.

[289] E. Purdom, K. M. Simpson, M. D. Robinson, J. G. Conboy, A. V. Lapuk,
and T. P. Speed. FIRMA: A method for detection of alternative splicing from
exon array data. Bioinformatics, 24(15):1707–1714, 2008.

[290] J. P. Rubio, J. Stankovich, J. Field, N. Tubridy, M. Marriott, C. Chapman,
M. Bahlo, D. Perera, L. J. Johnson, B. D. Tait, M. D. Varney, T. P. Speed
et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis
susceptibility genes in Australians. Genes Immun., 9:624–630, 2008.

[291] L. J. Ball, N. Levy, X. Zhao, C. Griffin, M. Tagliaferri, I. Cohen, W. A. Ricke,
T. P. Speed, G. L. Firestone, and D. C. Leitman. Cell type- and estrogen
receptor-subtype specific regulation of selective estrogen receptor modulator
regulatory elements. Mol. Cell. Endocrinol., 299(2):204–211, 2009.

[292] H. Bengtsson, A. Ray, P. Spellman, and T. P. Speed. A single-sample method
for normalizing and combining full-resolution copy numbers from multiple
platforms, labs and analysis methods. Bioinformatics, 25(7):861–867, 2009.

[293] H. Bengtsson, P. Wirapati, and T. P. Speed. A single-array preprocessing
method for estimating full-resolution raw copy numbers from all Affymetrix
genotyping arrays including GenomeWideSNP 5 & 6. Bioinformatics,
25(17):2149–2156, 2009.

[294] D. Chandran, Y. C. Tai, G. Hather, J. Dewdney, C. Denoux, D. G. Burgess,
F. M. Ausubel, T. P. Speed, and M. C. Wildermuth. Temporal global expres-
sion data reveal known and novel salicylate-impacted processes and regu-
lators mediating powdery mildew growth and reproduction on Arabidopsis.
Plant Physiol., 149(3):1435–1451, 2009.

[295] Y. Ge, S. C. Sealfon, and T. P. Speed. Multiple testing and its applications to
microarrays. Stat. Methods Med. Res., 18:543–63, 2009.

[296] R. A. Irizarry, C. Wang, Y. Zhou, and T. P. Speed. Gene set enrichment anal-
ysis made simple. Stat. Methods Med. Res., 18:565–75, 2009.

[297] N. Levy, S. Paruthiyil, X. Zhao, O. I. Vivar, E. F. Saunier, C. Griffin,
M. Tagliaferri, I. Cohen, T. P. Speed, and D. C. Leitman. Unliganded
estrogen receptor-beta regulation of genes is inhibited by tamoxifen. Mol.
Cell. Endocrinol., 315:201–7, 2009.

[298] S. Loi, C. Sotiriou, B. Haibe-Kains, F. Lallemand, N. M. Conus, M. J. Piccart,
T. P. Speed, and G. A. McArthur. Gene expression profiling identifies acti-
vated growth factor signaling in poor prognosis (Luminal-B) estrogen recep-
tor positive breast cancer. BMC Med. Genomics, 2:37, 2009.

[299] S. Mukherjee, S. Pelech, R. M. Neve, W. L. Kuo, S. Ziyad, P. T. Spellman,
J. W. Gray, and T. P. Speed. Sparse combinatorial inference with an applica-
tion in cancer biology. Bioinformatics, 25(2):265–271, 2009.

[300] S. Paruthiyil, A. Cvoro, X. Zhao, Z. Wu, Y. Sui, R. E. Staub, S. Baggett, C. B.
Herber, C. Griffin, M. Tagliaferri, H. A. Harris, I. Cohen et al. Drug and cell
type-specific regulation of genes with different classes of estrogen receptor
β -selective agonists. PLoS One, 4(7):e6271, 2009.



Bibliography of Terry Speed 663

[301] A. J. Pask, A. T. Papenfuss, E. I. Ager, K. A. McColl, T. P. Speed, and M. B.
Renfree. Analysis of the platypus genome suggests a transposon origin for
mammalian imprinting. Genome Biol., 10(1):R1, 2009.

[302] J. A. Powell, D. Thomas, E. F. Barry, C. H. Kok, B. J. McClure, A. Tsykin,
L. B. To, A. Brown, I. D. Lewis, K. Herbert, G. J. Goodall, T. P. Speed et al.
Expression profiling of a hemopoietic cell survival transcriptome implicates
osteopontin as a functional prognostic factor in AML. Blood, 114:4859–70,
2009.

[303] M. D. Robinson and T. P. Speed. Differential splicing using whole-transcript
microarrays. BMC Bioinformatics, 10(1):156, 2009.

[304] Y. Sui, X. Zhao, T. P. Speed, and Z. Wu. Background adjustment for DNA
microarrays using a database of microarray experiments. J. Comput. Biol.,
16:1501–15, 2009.

[305] Y. C. Tai and T. P. Speed. On gene ranking using replicated microarray time
course data. Biometrics, 65(1):40–51, 2009.

[306] C. J. Tonkin, C. K. Carret, M. T. Duraisingh, T. S. Voss, S. A. Ralph,
M. Hommel, M. F. Duffy, L. M. Silva, A. Scherf, A. Ivens, T. P. Speed, J. G.
Beeson et al. Sir2 paralogues cooperate to regulate virulence genes and anti-
genic variation in Plasmodium falciparum. PLoS Biol., 7(4):e1000084., 2009.

[307] E. J. Atkinson, S. K. McDonnell, J. S. Witte, D. C. Crawford, Y. Fan,
B. Fridley, D. Li, L. Li, A. Rodin, W. Sadee, T. Speed, S. T. Weiss
et al. Conference scene: Lessons learned from the 5th Statistical Analysis
Workshop of the Pharmacogenetics Research Network. Pharmacogenomics,
11(3):297–303, 2010.

[308] H. Bengtsson, P. Neuvial, and T. P. Speed. TumorBoost: Normalization of
allele-specific tumor copy numbers from a single pair of tumor-normal geno-
typing microarrays. BMC Bioinformatics, 11:245, 2010.

[309] C. L. Carmichael, E. J. Wilkins, H. Bengtsson, M. S. Horwitz, T. P. Speed,
P. C. Vincent, G. Young, C. N. Hahn, R. Escher, and H. S. Scott. Poor progno-
sis in familial acute myeloid leukaemia with combined biallelic CEBPA mu-
tations and downstream events affecting the ATM, FLT3 and CDX2 genes.
Br. J. Haematol., 150:382–5, 2010.

[310] International Cancer Genome Consortium. International network of cancer
genome projects. Nature, 464(7291):993–8, 2010.

[311] M. W. Coolen, C. Stirzaker, J. Z. Song, A. L. Statham, Z. Kassir, C. S.
Moreno, A. N. Young, V. Varma, T. P. Speed, M. Cowley, P. Lacaze,
W. Kaplan et al. Consolidation of the cancer genome into domains of re-
pressive chromatin by long-range epigenetic silencing (LRES) reduces tran-
scriptional plasticity. Nat. Cell. Biol., 12:235–46, 2010.

[312] A. Lapuk, H. Marr, L. Jakkula, H. Pedro, S. Bhattacharya, E. Purdom, Z. Hu,
K. Simpson, L. Pachter, S. Durinck, N. Wang, B. Parvin et al. Exon-level
microarray analyses identify alternative splicing programs in breast cancer.
Mol. Cancer Res., 8(7):961–74, 2010.



664 Bibliography of Terry Speed

[313] D. C. Leitman, S. Paruthiyil, O. I. Vivar, E. F. Saunier, C. B. Herber,
I. Cohen, M. Tagliaferri, and T. P. Speed. Regulation of specific target genes
and biological responses by estrogen receptor subtype agonists. Curr. Opin.
Pharmacol., 10:629–36, 2010.

[314] S. Loi, B. Haibe-Kains, S. Majjaj, F. Lallemand, V. Durbecq, D. Larsimont,
A. M. Gonzalez-Angulo, L. Pusztai, W. F. Symmans, A. Bardelli, P. Ellis,
A. N. Tutt et al. PIK3CA mutations associated with gene signature of low
mTORC1 signaling and better outcomes in estrogen receptor-positive breast
cancer. Proc. Natl. Acad. Sci. USA, 107:10208–13, 2010.

[315] M. Ramakrishna, L. H. Williams, S. E. Boyle, J. L. Bearfoot, A. Sridhar,
T. P. Speed, K. L. Gorringe, and I. G. Campbell. Identification of candidate
growth promoting genes in ovarian cancer through integrated copy number
and expression analysis. PLoS One, 5(4):e9983, 2010.

[316] M. D. Robinson, A. L. Statham, T. P. Speed, and S. J. Clark. Protocol matters:
Which methylome are you actually studying? Epigenomics, 2(4):587–598,
2010.

[317] M. D. Robinson, C. Stirzaker, A. L. Statham, M. W. Coolen, J. Z. Song, S. S.
Nair, D. Strbenac, T. P. Speed, and S. J. Clark. Evaluation of affinity-based
genome-wide DNA methylation data: Effects of CpG density, amplification
bias, and copy number variation. Genome Res., 20:1719–1729, 2010.

[318] D. J. Speca, D. Chihara, A. M. Ashique, M. S. Bowers, J. T. Pierce-
Shimomura, J. Lee, N. Rabbee, T. P. Speed, R. J. Gularte, J. Chitwood, J. F.
Medrano, M. Liao et al. Conserved role of unc-79 in ethanol responses in
lightweight mutant mice. PLoS Genet., 6(8):e1001057, 2010.

[319] I. K. Tan, L. Mackin, N. Wang, A. T. Papenfuss, C. M. Elso, M. P. Ashton,
F. Quirk, B. Phipson, M. Bahlo, T. P. Speed, G. K. Smyth, G. Morahan et al.
A recombination hotspot leads to sequence variability within a novel gene
(AK005651) and contributes to type 1 diabetes susceptibility. Genome Res.,
20:1629–38, 2010.

[320] R. G. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi, M. D. Wilkerson,
C. R. Miller, L. Ding, T. Golub, J. P. Mesirov, G. Alexe, M. Lawrence et al.
Integrated genomic analysis identifies clinically relevant subtypes of glioblas-
toma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.
Cancer Cell, 17:98–110, 2010.

[321] O. I. Vivar, X. Zhao, E. F. Saunier, C. Griffin, O. S. Mayba, M. Tagliaferri,
I. Cohen, T. P. Speed, and D. C. Leitman. Estrogen receptor beta binds to and
regulates three distinct classes of target genes. J. Biol. Chem., 285:22059–66,
2010.

[322] C. Y. Yu, O. Mayba, J. V. Lee, J. Tran, C. Harris, T. P. Speed, and J. C.
Wang. Genome-wide analysis of glucocorticoid receptor binding regions in
adipocytes reveal gene network involved in triglyceride homeostasis. PLoS
One, 5(12):e15188, 2010.

[323] E. F. Lee, O. B. Clarke, M. Evangelista, Z. Feng, T. P. Speed, E. B.
Tchoubrieva, A. Strasser, B. H. Kalinna, P. M. Colman, and W. D. Fairlie.



Bibliography of Terry Speed 665

Discovery and molecular characterization of a Bcl-2-regulated cell death
pathway in schistosomes. Proc. Natl. Acad. Sci. USA, 108(17):6999–7003,
2011.

[324] S. Lopaticki, A. G. Maier, J. Thompson, D. W. Wilson, W. H. Tham,
T. Triglia, A. Gout, T. P. Speed, J. G. Beeson, J. Healer, and A. F. Cowman.
Reticulocyte and erythrocyte binding-like proteins function cooperatively
in invasion of human erythrocytes by malaria parasites. Infect. Immun.,
79(3):1107–17, 2011.

[325] The Cancer Genome Atlas Research Network. Integrated genomic analyses
of ovarian carcinoma. Nature, 474(7353):609–615, 2011.

[326] P. Neuvial, H. Bengtsson, and T. P. Speed. Statistical analysis of single
nucleotide polymorphism microarray in cancer studies. In H. H. S. Lu,
B. Schölkopf, and H. Zhao, editors, Handbook of Statistical Bioinformatics.
Springer, New York, 2011.

[327] P. Shen, W. Wang, S. Krishnakumar, C. Palm, A. K. Chi, G. M. Enns, R. W.
Davis, T. P. Speed, N. N. Mindrinos, and C. Scharfe. High-quality DNA
sequence capture of 524 disease candidate genes. Proc. Natl. Acad. Sci. USA,
108(16):6549–54, 2011.

[328] T. P. Speed. Commentary on D. Basu’s papers on sufficiency and related top-
ics. In A. DasGupta, editor, Selected Works of Debrabata Basu, pages 35–40.
Springer, New York, 2011.

[329] W. Wang, P. Shen, S. Thyagarajan, S. Lin, C. Palm, R. Horvath, T. Klopstock,
D. Cutler, L. Pique, I. Schrijver, R. W. Davis, M. Mindrinos et al. Identifica-
tion of rare DNA variants in mitochondrial disorders with improved array-
based sequencing. Nucleic Acids Res., 39(1):44–58, 2011.

[330] X. V. Wang, R. G. Verhaak, E. Purdom, P. T. Spellman, and T. P. Speed.
Unifying gene expression measures from multiple platforms using factor
analysis. PLoS One, 6(3):e17691, 2011.

[331] S. White, T. Ohnesorg, A. Notini, K. Roeszler, J. Hewitt, H. Daggag,
C. Smith, E. Turbitt, S. Gustin, J. van den Bergen, D. Miles, P. Western et al.
Copy number variation in patients with disorders of sex development due to
46, XY gonadal dysgenesis. PLoS One, 6(3):e17793, 2011.


	SelectedWorks of Terry Speed
	Preface to the Series
	Preface
	Acknowledgements for the Series
	Acknowledgements
	Contents

	Biographical Sketch of Terry Speed
	PhD Students of Terry Speed
	Contributors
	Chapter�1 Algebra
	Chapter
2 Probability
	Chapter
3 Sufficiency
	Chapter
4 Interaction Models
	Chapter
5 Last Words on Anova?
	Chapter
6 Cumulants and Partition Lattices
	Chapter�7 Asymptotics and Coding Theory: One of the n  Dimensions of Terry
	Chapter
8 Applied Statistics and Exposition
	Chapter
9 History and Teaching Statistics
	Chapter
10 Genetic Recombination
	Chapter
11 Molecular Evolution
	Chapter
12 Statistical Genetics
	Chapter
13 DNA Sequencing
	Chapter
14 Biological Sequence Analysis
	Chapter
15 Microarray Data Analysis
	Bibliography of Terry Speed



