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PROGRESS IN THEORETICAL CHEMISTRY
AND PHYSICS

A series reporting advances in theoretical molecular and material sciences, including
theoretical, mathematical and computational chemistry, physical chemistry and
chemical physics

Aim and Scope

Science progresses by a symbiotic interaction between theory and experiment: theory
is used to interpret experimental results and may suggest new experiments; experi-
ment helps to test theoretical predictions and may lead to improved theories. Theo-
retical Chemistry (including Physical Chemistry and Chemical Physics) provides the
conceptual and technical background and apparatus for the rationalisation of phe-
nomena in the chemical sciences. It is, therefore, a wide ranging subject, reflect-
ing the diversity of molecular and related species and processes arising in chemical
systems. The book series Progress in Theoretical Chemistry and Physics aims to
report advances in methods and applications in this extended domain. It will com-
prise monographs as well as collections of papers on particular themes, which may
arise from proceedings of symposia or invited papers on specific topics as well as
initiatives from authors or translations.

The basic theories of physics – classical mechanics and electromagnetism,
relativity theory, quantum mechanics, statistical mechanics, quantum electrodynam-
ics – support the theoretical apparatus which is used in molecular sciences. Quantum
mechanics plays a particular role in theoretical chemistry, providing the basis for
the spectroscopic models employed in the determination of structural information
from spectral patterns. Indeed, Quantum Chemistry often appears synonymous with
Theoretical Chemistry: it will, therefore, constitute a major part of this book series.
However, the scope of the series will also include other areas of theoretical chemistry,
such as mathematical chemistry (which involves the use of algebra and topology in
the analysis of molecular structures and reactions); molecular mechanics, molecular
dynamics and chemical thermodynamics, which play an important role in rational-
izing the geometric and electronic structures of molecular assemblies and polymers,
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clusters and crystals; surface, interface, solvent and solid-state effects; excited-state
dynamics, reactive collisions, and chemical reactions.

Recent decades have seen the emergence of a novel approach to scientific research,
based on the exploitation of fast electronic digital computers. Computation provides
a method of investigation which transcends the traditional division between theory
and experiment. Computer-assisted simulation and design may afford a solution to
complex problems which would otherwise be intractable to theoretical analysis, and
may also provide a viable alternative to difficult or costly laboratory experiments.
Though stemming from Theoretical Chemistry, Computational Chemistry is a field
of research in its own right, which can help to test theoretical predictions and may
also suggest improved theories.

The field of theoretical molecular sciences ranges from fundamental physical ques-
tions relevant to the molecular concept, through the statics and dynamics of isolated
molecules, aggregates and materials, molecular properties and interactions, and the
role of molecules in the biological sciences. Therefore, it involves the physical basis
for geometric and electronic structure, states of aggregation, physical and chemical
transformation, thermodynamic and kinetic properties, as well as unusual properties
such as extreme flexibility or strong relativistic or quantum-field effects, extreme
conditions such as intense radiation fields or interaction with the continuum, and the
specificity of biochemical reactions.

Theoretical chemistry has an applied branch – a part of molecular engineering,
which involves the investigation of structure–property relationships aiming at the
design, synthesis and application of molecules and materials endowed with spe-
cific functions, now in demand in such areas as molecular electronics, drug design
or genetic engineering. Relevant properties include conductivity (normal, semi- and
supra-), magnetism (ferro- or ferri-), optoelectronic effects (involving nonlinear
response), photochromism and photoreactivity, radiation and thermal resistance,
molecular recognition and information processing, and biological and pharmaceutical
activities; as well as properties favouring self-assembling mechanisms, and combina-
tion properties needed in multifunctional systems.

Progress in Theoretical Chemistry and Physics is made at different rates in these
various research fields. The aim of this book series is to provide timely and in-depth
coverage of selected topics and broad-ranging yet detailed analysis of contempo-
rary theories and their applications. The series will be of primary interest to those
whose research is directly concerned with the development and application of the-
oretical approaches in the chemical sciences. It will provide up-to-date reports on
theoretical methods for the chemist, thermodynamician or spectroscopist, the atomic,
molecular or cluster physicist, and the biochemist or molecular biologist who wish
to employ techniques developed in theoretical, mathematical or computational chem-
istry in their research programmes. It is also intended to provide the graduate student
with a readily accessible documentation on various branches of theoretical chemistry,
physical chemistry and chemical physics.
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1.4.3.4 Löwdin partition technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5 BASICS OF QUANTUM CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.5.1 Many-electron wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.5.1.1 One-electron basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1.2 Slater determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1.3 Implementations of AO basis sets . . . . . . . . . . . . . . . . . . . . . . 41

1.5.2 Full configuration interaction: exact solution of approximate
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.5.3 Hartree-Fock approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



viii Contents

1.5.4 Second quantization formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.5.5 Unitary group formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.5.6 Group function approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.6 ALTERNATIVE TOOLS FOR REPRESENTING ELECTRONIC
STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
1.6.1 Reduced density matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
1.6.2 Resolvents and Green’s functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

1.7 GENERAL SCHEME FOR SEPARATING
ELECTRONIC VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
1.7.1 Limitations of the GF approximations as overcome
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PREFACE

Computer aided modeling of polyatomic molecular systems is one of the leading
consumers of processor time and computer memory nowadays. Despite tremendous
progress in both computer hardware and molecular modeling software, the complete
quantum mechanics-based numerical study of a realistic model of any, say biologi-
cally or technologically, relevant system is out of the reach of the workers in the field.
The problem, however, is not only the enormity of computational resources required
for conducting such a study, but the absence of any clear proof “by construction”of
the validity of the employed calculation methods and a lack of real understanding
of the result. These two problems are related to each other and the situation may be
described as follows: even if we get an answer by a quantum mechanical (QM) or
quantum chemical (QC) modeling package, we are almost never able to say what the
physical reasons are for it to be that or something else. We cannot add anything to
that last number printed in the output. Chemists, however, generally think differently.
They need more trends than numbers. The reason is of course that in many cases
exact experimentally derived numbers are missing. This situation is by no means a
new one. Yet at the dawn of numerical quantum chemistry, C.A. Coulson [1] made
a point about the importance of qualitative understanding and commented that accu-
racy of quantum chemical calculation is “purchased very dearly” since “ab initio-
ists abandon all conventional chemical concepts and simple pictorial quality in their
results”.

This situation, well known to the workers in the field, has occurred due to a factor
external to quantum chemistry itself, namely the intense development of computa-
tional hardware during the past few decades. The numerical point of view, which
reduces the subject of Quantum Chemistry to obtaining certain numbers, has thus
become predominant. It might be acceptable, but the situation changes completely
when we find ourselves in the realm of complex systems (for which, as we shall see,
hybrid modeling is basically necessary): obtaining numerical results for the complex
systems or their subsequent interpretation in the frame of the standard procedures
becomes too costly if at all possible and the answer obtained numerically becomes
unobservable (if some one does not understand just one number to be the answer

xiii
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e.g. the energy). Therefore hybrid QM/MM (QM is Quantum and MM is Molecular
Mechanics) modeling requires development of the relevant concepts which could
help to achieve decision making while singling out the relevant quantum and clas-
sical parts and establishing the adequate construction of the interface between them
on a rational basis. This can be done by finding an alternative to pure numerics – the
qualitative and theoretical approach, paying attention to the development of adequate
concepts related to hybrid modeling and learning to perform the calculations using
theoretical concepts relevant to the system under study.

The very possibility of hybrid modeling is intimately related to the idea of divid-
ing the problem to be solved or the object to be studied into parts formalized in
various techniques of separating variables. Dividing into parts is the most general
method of studying the reality. As a philosophical maxim it was first formulated by
René Descartes in his “Discours de la Méthode” [2] (“to divide each of the difficul-
ties under examination into as many parts as possible, and as might be necessary for
its adequate solution“). Separation of a complex system into parts has two aspects:
the technical aspect, aimed at simplifying calculations by separating the variables
describing the system under study, and the conceptual aspect, having as a purpose the
development of qualitative concepts i.e. identifying the ideas which would describe
the system in adequate, comprehensible terms. Clearly, the description of a system
comprising numerous strongly interacting components in terms of some almost inde-
pendent parts and/or variables describing these parts will be inevitably approximate
and the art here is to select these parts and variables in such a way that the descrip-
tion of their terms is acceptable. One may be pretty sure that in the case of the com-
plex problem that requires hybrid modeling, there will be no chance to “invent” ade-
quate parts into which the modeled system has to be divided “from one’s head”. For-
tunately, the quantum mechanical paradigm itself provides sufficient requirements,
which allow the reasonable identification of the parts the system can and has to be
divided into. The adequate parts must be observable. This very general requirement
allows one to establish a relation between hybrid modeling and the rest of theoretical
chemistry. Yet at the early stage of the development of chemical theory the idea of
“chromophores”– some specific parts of the molecule responsible for the color of the
substance – was proposed. This approach was not that naive as it can seem nowadays
since it helped to make the problem tractable by significantly reducing the number
of variables (those related to the chromophore only) and to take its environment as a
weak perturbation. Particularly remarkable in this context however is the observabil-
ity of the chromophore.

Regarding the problems of the electronic structure of molecular systems, we notice
that in the past, the importance of the qualitative concepts and explanations has been
stressed many times. In this context, V.A. Fock [3, 4] discussed the (basically meta-
physical) problem of interrelation between “exact solution” and “approximate expla-
nation”. His point was that any approximation (more precisely, the general form of
the trial electron wave function i.e. an Ansatz used for it) sets the system of qualita-
tive concepts (restricted number of variables), which can only be used for interpreting
the calculation results and for describing the experiments. A characteristic example
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for QC is provided by the orbital energies and the MO expansion coefficients coming
from the Hartree-Fock-Roothaan (HFR) approximation. Although in a great number
of cases they can be related to the observed ionization potentials, they are never-
theless only mental constructs, having a definite sense only within the HFR realm,
becoming invalid beyond its scope.

The chromophores are obviously observable entities. Are there others? This ques-
tion has been addressed by Ruedenberg who suggested a kind of extension of the
standard quantum mechanical definition of observability from the quantities to the
entities. The example he used had a rather unhappy destiny in quantum chemistry
although it relates to the fundamental chemical concept – that of chemical bond.
At quite an early stage it was decided that chemical bonds are not observable as
“there is no quantum mechanical operator for the bond”. This argument is, however,
not acceptable as the “bond” is not assumed to be a quantity, but an entity and to
deduce nonobservability of bonds from the fact that there is no operator for the bond
is equivalent to concluding that there is no atomic nuclei as there are no operators
for them. Nevertheless, something had to be done about the observability of entities
and K. Ruedenberg [5] proposed the following definition: “fragments in a molecular
system can be singled out if these latter are observable, so that they manifest a repro-
ducible and natural behavior; if for a series of molecules variations of fragments fit
to that or another curve and its parameters can be found empirically by consider-
ing enough of the series members this proves that singling out the fragments makes
sense”. This definition allows us to single out numerous fragments which can be
two-center two-electron bonds, or conjugate π-systems, open d-shells, atomic cores,
etc. An adequate theory must be constructed in terms of such observable objects. At
first glance the current situation in quantum chemistry is in sharp contradiction to
this requirement. However, as we show in Chapter 2, the real constructs of quantum
chemistry rely heavily upon the above-mentioned observable objects. This allows us
to consider the whole of quantum chemistry from the hybrid perspective. As a result
the hybrid methods, instead of being an isolated and specific area of how to program
junctions between classically and quantally1 treated parts of complex systems, shift
to the center of the theory. This allows us to talk about the usual QM/MM methods,
as of the hybrid methods, in a narrow sense.

It also allows us to reach multiple goals. First, it allows sensible and natural inter-
pretation of the result in chemical terms, and with the use of chemical concepts.
Second, estimates of the correction (error) to the energy (or any other quantity) com-
ing from the use of the approximate form of the wave function in this calculation

1Trying to find an adverb to be a counterpart to ‘classically’ the author faced
certain problem: no adequate antonym had been designed so far. Merriam-Webster
suggests ‘quantal’ as an adjective derived from ‘quantum’. So we decided to use an
adverb ‘quantally’ already used in the required meaning in Handbook of Solvents
(Chemicals) by George Wypytch, Noyes Publications 2001 (p. 21), in Modern Elec-
trochemistry 2A: Fundamentals of Electrodics by John O’M. Bockris, Amulya K.N.
Reddy, and Maria E. Gamboa-Aldeco, Springer 2001 (p. 724), and in Introduction
to Computational Chemistry by Frank Jensen, John Wiley & Sons 1998 (p. 393).
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can be obtained. And last, but not the least, this approach allows us to carry out
the entire calculation with relatively low computational costs using effective electron
Hamiltonians for the important (i.e. observable) parts of the system – the “chro-
mophores” – and leaving the defects of the restricted form of the trial wave func-
tion to be taken into account by renormalized matrix elements of these effective
Hamiltonians.

From the above the reader may conclude that this book is largely devoted to the the-
ory of hybrid methods. This it true to a large extent. Nevertheless, the author could
not (and did not want to) ignore the existing hybrid QM/MM methods described
in the literature and widely used for describing various aspects of the behavior
of the complex molecular systems. The key practical problem when applying the
QM/MM methodology, namely, the substantiated construction/selection of the junc-
tion between the parts of the system described at the QM and MM levels, respec-
tively, is thoroughly discussed here. The author’s feeling is that the “Sturm und
Drang”period of the hybrid QM/MM modeling has come to an end and that it is
time now to give an evaluation of the state-of-the-art reached during this period and
to present a theory of this family of methods, capable of giving a general view of the
field, to identify the fundamental problems characteristic of it and to propose physi-
cally better based and mathematically more sound approaches to these problems. In
this context the theory is useful also because it allows us to introduce some order into
the diversity of the junction forms present in the literature, which otherwise resembles
the famous classification of animals given by J.-L. Borges [6].

This book offers a step by step derivation of the consistent theoretical picture of
hybrid modeling methods and the thorough analysis of the underlying concepts. This
forms a basis for classification and analysis of current practical methods of hybrid
molecular modeling, including the narrow meaning of this term. Historical remarks
are important here since they put the current presentation in a general context and
establish a relation with other areas of theoretical chemistry. It presents its material
paying attention both to the physical soundness of the approximations used and to
mathematical rigor, which are necessary for the practical development of the robust
modeling code and for a conscious use of either existing or newly developed model-
ing tools. The reader should have a knowledge of the basic concepts of quantum and
computational chemistry and/or molecular modeling. Familiarity with vector spaces,
operators, wave functions, electron densities, second quantization and other tools is
also necessary. Short discussions of these topics are given only to establish the rela-
tion between the standard presentation of these items in the literature and their spe-
cific form as required in the context of the theory of hybrid modeling described in
this book.

This book is intended both for practicing experts and students in molecular mod-
eling and to those in related areas, such as Materials Science, Nanoscience, and Bio-
chemistry, who are interested in making an acquaintance with the conceptual basis of
hybrid modeling and its limitations, which possibly enables them to make educated
decisions while choosing a tool appropriate for solving their specific problem and for
interpreting the results of the modeling. It also contains a self-sufficient example of
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developing a targeted hybrid method designed for molecular modeling of transition
metal complexes with open d-shells. This presentation allows the reader to specify on
the spot all the significant elements of the general theory and to see how they work.

The theory described here was originally developed by the author, as also the spe-
cific targeted application of the theory to molecular modeling of the transition metal
complexes. This and other original methods of molecular modeling described here
have been implemented in FORTRAN program suits. They are a kind of “research
software” available for use to other researchers through the Net Laboratory access
system which provides sample input files and minimal reference information to start
with, at http://www.qcc.ru/∼netlab .

Some of the results presented in this book have been published in original research
papers and in two reviews in the Springer series of Progress of Theoretical Chemical
Physics based on materials of the Congress on Theoretical Chemical Physics and
of the European Conference on Physics and Chemistry of Quantum Systems both
edited by Prof. J. Maruani and Prof. S. Wilson. When the material was presented at
these conferences, Prof. J. Maruani and Prof. S. Wilson suggested that I extend and
reorganize it into a book. Without their kind suggestion and constant encouragement
and support, this book would never have appeared. Prof. I. Mayer kindly agreed to
read the manuscript and give his valuable comments. I am very grateful to him for
his help in improving the manuscript significantly. All the errors are of course the
author’s fault.

The process of rearrangement and of translation into English of some results avail-
able only in Russian took somewhat longer time than originally planned. I beg pardon
and hope on understanding of all those whom I promised to do something during this
period and failed to perform it on time. I am particularly thankful to Ms Laura Chan-
dler of Springer Verlag for her kind patience.
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1

MOLECULAR MODELING: PROBLEM FORMULATION
AND WRAPPING CONTEXTS

Abstract In this chapter we start with a brief recap of the general setting of the molecular model-
ing problem and the quantum mechanical and quantum chemical techniques. It may be of
interest for students to follow the description of nonstandard tools of quantum mechanics
and quantum chemistry presented after that. These tools are then used to develop a general
scheme for separating electronic variables in complex molecular systems, which yields the
explicit form of its potential energy surface in terms of the electronic structure variables of
the subsystem treated at a quantum mechanical level, of the force fields for the subsystem
treated classically, and explicitly expressing the central object of any hybrid scheme – the
inter-subsystem junction – in terms of the generalized observables of the classically treated
subsystem: its one-electron Green’s function and polarization propagator.

1.1. MOTIVATION AND GENERAL SETTING

Molecular modeling includes a collection of computer-based tools of varying theoret-
ical soundness, which make it possible to explain, and eventually predict, the proper-
ties of molecular systems on the basis of their composition, geometry, and electronic
structure. The need for such modeling arises while studying and/or developing var-
ious chemical products and/or processes. The raison d’être of molecular modeling
is provided by chemical thermodynamics and chemical kinetics, the basic facts of
which are assumed to be known to the reader.1

According to chemical thermodynamics the relative stability of chemical species
and thus their basic capacity to transform to each other (understood in a very wide
sense, for example, as the possibility to form solutions i.e. homogeneous mixtures
with each other or undergo phase transitions e.g. from gas to liquid state) is described
by the equilibrium constant of the (at this point) hypothetical process:

R1 + R2 + ... � P1 + P2 + ...(1.1)

where R1, R2, ... stand for the reactant species and P1, P2, ... stand for the product
species governed by the equilibrium constant Keq = Keq(T, P, ...) dependent on

1The sources in physical chemistry are numerous. Elementary volumes to be
known by heart are [1,2]; the more the better.

1
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temperature, pressure, and other external conditions so that the concentrations (or
other quantities taking their part in the specific situations e.g. – partial pressures) of
the species denoted as [R1], [R2], ..., [P1], [P2], ... obey the ratio:

Keq =
[P1] · [P2] · ...
[R1] · [R2] · ...

(1.2)

If the set of species R1, R2, ... on the left of eq. (1.1) is more stable than P1, P2, . . .
on the right, the equilibrium constant shows that by being less than one: Keq < 1. In
this case the system prepared as a mixture of species R1, R2, ... with [P1] = [P2] =
... = 0 tends to stay in the state where the concentrations of reactants are generally
larger than those of the products, although of course in the equilibrium described by
eq. (1.2) all species are present in concentrations necessary to satisfy this equation.
If the opposite happens and Keq > 1 the system prepared as a mixture of the species
R1, R2, ... tends to transform to that formed predominantly by the species P1, P2, ...,
to the extent prescribed by the previous inequality and eq. (1.2).

The magnitude of Keq is governed by the relative value ∆∆Gf for the left and
right sides of eq. (1.1) of a single quantity – the Gibbs free energies of formation of
the system under study in its left hand and right hand states:

Keq = exp
(
−∆∆Gf

kBT

)
or

kBT ln Keq = −∆∆Gf

(1.3)

(kB is the Boltzmann constant and T stands for the temperature). The latter is
expressed through the Gibbs free energies of formation of each species:

∆∆Gf =
(
∆Gf (R1) + ∆Gf (R2) + ... + ∆Gmix

f (R1, R2, ...)
)

(1.4)

−
(
∆Gf (P1) + ∆Gf (P2) + ... + ∆Gmix

f (P1, P2, ...)
)

which are themselves related to their enthalpies ∆Hf and entropies ∆Sf of
formation:

∆Gf = ∆Hf − T∆Sf(1.5)

counted from the enthalpies and entropies of formation of chemical elements taken
as reference (zero) points and on the contributions to the free energy ∆Gmix

f coming
from the interactions between the system components which may be different for
their forms present on the left and right sides of eq. (1.1). In this setting, for two
systems having the same composition – brutto formula describing the fractions of
atoms of each chemical element present in the system – that one which has the smaller
(more negative) value of ∆Gf is more stable. In this case the transformation of the
system with a larger value of ∆Gf to that with the smaller one is thermodynamically
allowed no matter how long it may take to perform this process in reality. So, in order
to predict on the basis of a computer experiment the thermodynamic feasibility of the
process, one has to be able to calculate the Gibbs free energies of formation for the
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system in two states with such precision that the difference between the two is also
accurate enough. This is obviously a challenge since the quantity more or less directly
describing the pragmatic situation – the equilibrium constant eq. (1.2) – depends on
the quantity to be calculated exponentially, so that knowing Keq up to a factor of
two which makes quite a difference in terms concentrations requires knowing the
free energy difference ∆∆Gf with the precision less than kBT which for ambient
temperature (one relevant to modeling of biological processes) corresponds to the
precision of 0.03 eV or 0.001 Hartree.

Chemical kinetics, in contrast to chemical thermodynamics, centers on the rates of
chemical transformations:

R1 + R2 + ... → P1 + P2 + ...(1.6)

According to it the reaction rate i.e. the rate of the concentration change of any par-
ticipating species is given by the relation:

d[P1]
dt

=
d[P2]
dt

= · · · = −d[R1]
dt

= −d[R2]
dt

= · · · = k[R1] · [R2] . . .(1.7)

where the concentration independent quantity k – rate constant – depends on tempera-
ture, pressure, and other external conditions. The good old transition state theory [1,2]
allows us to relate the rate constants k = kTST:

kTST = κ
kBT

h
exp

(
−∆G�=

kBT

)
(1.8)

with some thermodynamically-looking quantities, although it is somewhat less fun-
damental than thermodynamics.2 Above ∆G�= is the Gibbs free energy difference
between the transition state of the system and the reactants. By transition state one
somewhat vaguely understands a certain specific state of the system when an individ-
ual assembly of the reacting molecules turns out in such a situation that it inevitably
transforms to the assembly of product molecules. The multiplier κ – transmission
coefficient – takes care of all possible deviations from this simple picture (formula).
Of course, such a peculiar state cannot be easily represented and for that reason, dur-
ing the modeling process, additional assumptions are made concerning its nature (see
below). One can, however, see that the precision requirements derived from chemical
kinetics are similar to those based on chemical thermodynamics: knowing the reac-
tion rate up to a practically significant factor of two at ambient temperature requires
knowing the somewhat vaguely defined quantity ∆G�= with the same precision as the
thermodynamically sound free energies of formation.

2The “classical” TST dating back to the 30-ies as presented in say [10] is the
simplest way of relating obseravble macroscopic rates of chemical transformations
with the microscopic view of energy of molecues. It is not surprizing that within
70 years of development it has been criticized and improved. For more recent views
of this topic see [11,12].
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The next question to be answered is where the Gibbs free energies may be obtained
theoretically. Statistical thermodynamics3 gives an answer, allowing one to express
the thermodynamic quantities entering eqs. (1.3) and (1.8) in terms of a single quan-
tity Q – the partition function of the system and its derivatives with respect to tem-
perature and volume according to the formulae:

A = − kBT ln Q; U = kBT 2

(
∂ ln Q

∂T

)
V

P = −
(

∂A

∂V

)
T

; CV =
(

∂U

∂T

)
V

(1.9)

H = U + PV ; S =
U − A

T
G = H − TS

Here, U is the internal energy, A is the Helmholtz free energy, P is the pressure, CV

is the heat capacity at constant volume, H is the enthalpy, S is the entropy, and G is
the Gibbs free energy itself.

The partition function Q is thus a fundamental quantity which in a way contains
all the information about the system under study. Its general expression is:

Q(T ) =
∫
Ω

exp(−E(ω)
kBT )dω(1.10)

where E(ω) stands for the energy of an individual state ω of the system under con-
sideration and the integration may include summation over discrete states of the sys-
tem. The set of variables ω characterizing the system deserves some discussion. As
we know, materials and substances (the primary topic of our interest) are formed of
molecules, molecules of atoms, atoms of nuclei and electrons and nuclei of protons
and neutrons. It is very probable that these latter (together with electrons), known
today as elementary particles, are in some sense formed of smaller particles (quarks).
The question is to what extent we must be concerned about all that and on what
level of detail. The answer is determined by the energy range in which we are inter-
ested, which in its turn is set by the temperature T . Through the exponential factor
it restricts the variety of the states of the system accessible in the conditions of our
experiment. For the temperatures relevant for chemistry i.e. not higher than a couple
of thousands Kelvin, all nuclei reside in their ground states (not talking about hypo-
thetical quark excitations) unless their spin degrees of freedom relevant for the NMR
and ESR/EPR experiments are addressed. The latter however, require an external
magnetic field to manifest themselves. It is a separate area of research and we do not

3As previously, the sources on statistical thermodynamics are hardly numerable.
Conciseness in them struggles with comprehensibility and both lose. Elementary
information is given in physical chemistry courses already mentioned [1, 2]. More
fundamental courses are [3] – a rather physical one and [4] – a classical text on this
subject. An interesting approach based on consistent usage of a single quantity – the
entropy – is described in [5].
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pursue here problems related to it. Most electrons move around while being tightly
attached to nuclei. That means that atoms are almost perfectly “elementary” particles
for molecular modeling problems. Closer to a lower border of the described temper-
ature region, that which better suits the living conditions of biological systems, one
may safely think that not only do atoms form separate entities, but that relatively sta-
ble assemblies of atoms known as molecules move around preserving their integrity.
The main content of chemistry is precisely those relatively rare events when stable
atomic associates (molecules) exchange by atoms or change the mutual arrangement
of the atoms they are formed of. In this temperature range the manifestations of any
independent motion of electrons are extremely rare events, so that one can think that
the only variables describing the individual states ω of the system are the positions
Rα and the momenta Pα of the nuclei of all atoms α = 1÷N composing the system
under study. The points {Rα,Pα|α = 1 ÷ N} form what is called the phase space
of a molecular system. In this case the energies E(ω) entering eq. (1.10) are:

E(ω) = E({Pα} , {Rα}) = T ({Pα}) + U({Rα})(1.11)

where T and U are, respectively, the kinetic and potential energy of the system of
atoms and notation {Rα}, {Pα} refers to the entire set of atomic radius-vectors and
momenta involved. The quantities Rα and Pα are vectors in the three-dimensional
space and the integration in eq. (1.10) must be understood as a usual integration
over the 6N -dimensional phase space. In the discussed temperature range one can
also safely limit oneself by a classical description of nuclear motions (see, however,
below).

If the system under study consists of only weakly interacting or noninteracting
molecules (gas phase) the thermodynamical (or other observable) quantities can be
obtained from single molecule calculations by relying upon the corresponding statis-
tical theory and the assumptions inherent for it. In this case the number of atoms N
in the molecule can be thought to be the number of atoms in the entire system. The
procedure is as follows. First, a search for local minima of the potential energy

min
q

U({Rα}(q))(1.12)

is performed. These minima are related to more or less stable arrangements of the
atoms of the molecule. In the above expression it is assumed that q is the set of
independent nuclear coordinates characterizing the system so that for all atoms α in
the system, their Cartesian coordinates Rα = Rα(q) are some 3-vector functions
of 3N − 6 independent components of q (3N − 5 in the case of linear arrangement
of nuclei). This corresponds to the fact that the potential energy surface (PES) U is
invariant under the translation and rotation of the system (molecule) as a whole, so
that it does not depend on the corresponding 6 functions of {Rα} describing these
motions (of which three are simply the Cartesian coordinates of the center of mass of
the molecule, and the other three are the angles necessary to define the orientation of
e.g. principal axes of the tensor of inertia – see below – of the molecule with respect
to the laboratory reference frame; energy, clearly, does not depend on these angles).
The deep minima of U (much deeper than kBT ) are then identified with the stable
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states of the molecule under consideration, its structure isomers, which is important
information from the chemical point of view.

Then the hypothesis is applied that in the vicinity of each of the minima of poten-
tial energy surfaces (PES) the potential energy can be adequately represented by its
expansion up to second power of the variations of the nuclear coordinates with respect
to their equilibrium values q(0). In the vicinity of this minimum the appropriate coor-
dinates are

δq = q − q(0)(1.13)

the 3N − 6 independent shifts of the atoms relative to their equilibrium positions. In
terms of these coordinates the PES acquires the form:

U(δq) = U0 +
1
2

3N−6∑
i,j

∂2U
∂qi∂qj

∣∣∣∣
q=q(0)

δqiδqj(1.14)

From the above assumption that q = q(0) is a true minimum it follows that the sym-
metric matrix ∂2U

∂qi∂qj

∣∣∣
q=q(0)

can be transformed into diagonal form by going to the

normal coordinates (modes) which are linear combinations of the basic nuclear shifts
δqi. In the classical treatment the 3N − 6 normal modes describe independent oscil-
lations of the molecular system with the frequencies ων , ν = 1 ÷ 3N − 6, which are
square roots of the eigenvalues of the dynamic matrix in the atomic mass weighted
coordinates.4 Sometimes the situation can be more involved so that nontrivial rela-
tive motions of atoms or atomic groups in the molecules on which U depends cannot
be adequately described as (small) oscillations, but by contrast represent motions of
large amplitudes. They are then described by two (inversions) or by multiple well
potentials (internal rotations).

The harmonic approximation reduces to assuming the PES to be a hyperparaboloid
in the vicinity of each of the local minima of the molecular potential energy. Under
this assumption the thermodynamical quantities (and some other properties) can be
obtained in the close form. Indeed, for the ideal gas of polyatomic molecules the
partition function Q is a product of the partition functions corresponding to the trans-
lational, rotational, and vibrational motions of the nuclei and to that describing elec-
tronic degrees of freedom of an individual molecule:

Q = QtransQrotQvibQel

Qtrans =
(

M

2π�2kBT

) 3
2

V

4The topic discussed here pertains to classical mechanics, namely to the theory of
small oscillations. The fundamental sources are [6] and [7]. More chemistry (vibration
spectroscopy) oriented is [8]. A concise and clear (not the same thing!) description
of classical mechanics is presented in [9].
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Qrot =
(

2kBT

�2

) 3
2 (8πIxIyIz)

1
2

σ

Qvib =
3N−6∏
ν=1

exp
(
− �ων

2kBT

)
1 − exp

(
− �ων

kBT

)
Qel = ge exp

(
− U0

kBT

)
(1.15)

where M is the molecular mass:

M =
N∑
α

Mα,(1.16)

(here Mα is the atomic mass of atoms in the system); Ix, Iy , and Iz are the principal
inertia momenta obtained by diagonalizing the 3×3 inertia tensor calculated at the
equilibrium geometry:

N∑
α

Mα

⎛⎝ y2
α + z2

α −xαyα −xαzα

−xαyα x2
α + z2

α −yαzα

−xαzα −yαzα x2
α + y2

α

⎞⎠(1.17)

where xα, yα, and zα are the equilibrium Cartesian coordinates of atoms relative
to the center of masses of the molecule; σ is the so-called symmetry factor and ων

are the harmonic frequencies obtained by diagonalizing the second derivatives matrix
of the potential energy eq. (1.14). The given forms of the rotational and vibrational
partition functions take care of the quantum effects in molecular vibrations (having

a nonvanishing zero vibration energy of
�ων

2
associated with each vibration) as well

as of the quantum behavior of molecular systems in general. The electronic contribu-
tion at this point can be taken as the number of degeneration of the electronic ground
state ge multiplied by the Boltzmann factor for the value of the potential energy in
the corresponding minimum. The deepest minimum can be taken as a natural zero
energy. Since the electronic excitations are supposed to be rare in the temperature
range considered, different electronic states can be accessed only if they are degen-
erate with the ground one which is reflected by the multiplier ge. For the ideal gas
of some number of identical molecules (typically for the mole i.e. for the Avogadro
number NA of particles) the above multipliers must be taken in power of NA and the
whole must be divided by NA! to take care of the indistinguishability.

The described procedure applies to all available potential minima on the poten-
tial energy of the polyatomic system under consideration. Then, taking the necessary
logarithms and performing the necessary differentiations, one arrives at the estimates
of the thermodynamic quantities: enthalpies, entropies, and the Gibbs free energies,
associated with a given minimum of the molecular potential energy. The differences
between the thermodynamic quantities associated with different minima are consid-
ered as estimates of ∆∆Hf , ∆∆Sf , and ∆∆Gf entering eqs. (1.4) and (1.5). One
can easily realize that in a majority of cases the ∆∆Gf is dominated by the values of
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∆U0 – the differences between the depths of different minima: so going down from
a shallower to a deeper minimum of the molecular PES means decreasing the Gibbs
free energy and such a process generally has an equilibrium constant larger than unity.
However, for precise calculations, the terms coming from translations, rotations and
vibrations also must be taken into account.

Description of chemical reactivity (kinetics) also can be achieved in this setting.5

When kinetics is addressed in its simplest TST form the key quantity of interest is
the Gibbs free activation energy ∆G�=. As we noticed previously, to calculate it one
has to make some assumptions concerning the nature of transition state to which
it is attributed. First of all we notice that molecular potential energy generally has
multiple minima, which are usually interpreted as different stable states of the sys-
tem. Then it is natural to think that molecular potential energy has also other critical
points, like maxima and saddle points of different nature. It is assumed in the TST,
that the transition state for the transformation of a reactant to a product (in, say, sim-
plest monomolecular isomerization reaction) is such a saddle point by which one can
pass from one local minimum of molecular PES to another by acquiring a minimal
additional energy along the path. It means that if there exists more than one path from
one minimum to another, only the one with the minimal height of the saddle point
counts and all others should be discarded. After the transition state is identified, all
the characteristics needed to calculate the different contributions to its free energy
(like vibrational frequencies and inertia momenta) are sought and used according
to general formulae eqs. (1.9) and (1.15). The most important consideration is that,
at the defined saddle point, one of the vibrational normal modes (that crossing the
ridge between the reactant and the product basins) corresponds to the negative eigen-
value of the dynamic matrix and thus to an imaginary frequency. It must be excluded
from the count of vibrational modes while calculating the vibrational partition func-
tion and the vibrational contributions to the thermodynamic quantities. The electronic
contribution to the partition function must be calculated using the molecular potential
energy at the saddle point U �=. With this after necessary transformations we get to a
natural qualitative conclusion, that the higher barriers correspond to slower reactions,
although precise calculations require much more subtle work, which is not a topic for
the present introductory review.

The above results apply to the ideal gas of molecules. The objects addressed in the
context of molecular modeling of complex systems are known in the form of macro-
scopic samples, mostly in the condensed phase. Thus the intermolecular degrees of
freedom significantly contribute to the thermodynamical and other properties due
to intermolecular interactions. For taking these latter into account the Monte-Carlo
(MC) or molecular dynamics (MD) techniques are applied to model systems contain-
ing from hundreds to thousands of molecules and correspondingly tens and hun-
dreds of thousands of atoms. These two approaches represent two more modern
contexts where a demand for efficient methods of calculation of molecular potential

5Elementary introduction to chemical kinetics can be found in [1] and a more
detailed one in [10]. An old, but eternally fresh description of the TST is given
in [13].
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energy appears. Incidentally this allows us to treat nonideal systems with interactions
between molecules.6

Molecular dynamics is frequently portrayed as a method based on the ergodicity
hypothesis which states that the trajectory of a system propagating in time through
the phase space following the Newtonian laws of motion given by the equations:

MαR̈α = −∇αU({Rα})(1.18)

where ∇α stands for the gradient with respect to spatial coordinates of the α-th atom;
or in the Hamilton form:

Ṗα = −∇αU({Rα})(1.19)

Ṙα =
1

Mα
Pα,

comes infinitesimally close to each point in the phase space. From this hypothesis
by very subtle considerations one can derive a conclusion that the thermodynamical
averages 〈A〉 of an observable A = A({Pα}, {Rα}) which is actually the only true
observable quantity can be calculated as a time average of the same observable along
some trajectory (solution of eq. (1.18))7:

〈A〉 = lim
τ→∞

1
τ

τ∫
0

A({Pα(t)}, {Rα(t)})dt(1.20)

Similarly the quantities which are functions describing the response of the system to
external time dependent fields can be modeled by the MD approach.

6Detailed description of Monte Carlo and molecular dynamics techniques are
given in [14]. Brief descriptions are given in many sources on computational chemistry
e.g. [15] and [16].

7The sad truth is that the actually existing MD procedures implemented in
respective computer codes do not really rely upon the ergodic theorem. In fact the
using of various “thermostates” or “barostates” makes the sampling in the MD pro-
cedures to be performed not over the constant enenrgy hypersurface in the phase
space as it must be if the true Newtonian trajectory had been used, but over a wider
area of the phase space, which is in a way an advantage – using a “fat” trajectory
instead of “thin” ones allows one to acquire the thermodynamical averages earlier
than the infinite time assumed by the ergodic theorem. Incidentally using true New-
tonian trajectories is in a way senseless as shows the simple estimate due to É. Borel
[É. Borel, Introduction géométrique à quelques théories physiques, Paris: Gauthier-
Villars, p. 97, 1914]. There Borel shows that under conditions taking place in a gas
the uncertainty in the direction of the molecular motion coming from uncertainty of
initial data amplifies such that a shift of one gram of matter by one centimeter in a
star located at a separation of several light years from the Earth results in an error
in the direction of 4π within a time of 10−6 seconds. Clearly much larger masses
coming significantly closer to our planet are not either explicitly included in any
MD experiment and thus their effect must be modeled by some randomness which
is tacitly introduced by the above mentioned “barostates” and by for purpose using
very crude algorithms for integrating Newton equations.
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An alternative to MD, not relying upon the ergodicity hypothesis, is the Monte-
Carlo procedure which yields the required thermodynamical average of observable A
by performing the numerical estimate of the following integral (note that A does not
depend on momenta):

〈A〉 = Z−1
∫
Ω

A({Rα}) exp(−U({Rα(q)})
kBT )dq(1.21)

Z =
∫
Ω

exp(−U({Rα(q)})
kBT )dq

In the above expression Z stands for the configuration integral which differs from the
partition function Q by being calculated only over the coordinates of the molecules
and not over their momenta. This is possible because the coordinate and momentum
parts of the whole phase space are run over independently throughout the integration
and to a simple quadratic form of the kinetic energy, which thus can be integrated
immediately.

All the examples of the wrapping contexts for molecular modeling can be charac-
terized as major consumers of numerical methods of calculating molecular potential
energy. We have mentioned several times that in the physical conditions assumed
throughout molecular modeling, the independent motions of electrons are usually
rare. However, it must be understood that in fact the required molecular potential
energy function is defined by that state which electrons in the molecule acquire for
any given positions {Rα} of all atomic nuclei. This state can be found only from suf-
ficiently quantum mechanical calculation of molecular electronic structures. On the
other hand, the situation when only one electronic state is addressed in the chemical
experiment and thus in the supporting molecular modeling is, although predominant,
not the only possible one. In complex cases (which are in fact the true targets of the
hybrid methods described here) several electronic states of molecular system can be
accessed by experimentalists and thus must be covered by the modeling tools. The
first step is rather transparent: in addition to the variables of the phase space {Pα}
and {Rα} one has to add a discrete variable m distinguishing various electronic states
of the polyatomic system which has to be used throughout in the thermodynamic cal-
culations. This generalizes the definition of the partition function:

Q =
∑
m

gm

∫
Ω

exp(−T ({Pα})+Um({Rα})
kBT )d{Pα}d{Rα}(1.22)

The quantities Um({Rα}) are inevitably obtainable only from a quantum mechanical
calculation of molecular electronic structure for numerous points in the configuration
space. In the following section we review this sophisticated problem.

1.2. MOLECULAR POTENTIAL ENERGY: QUANTUM MECHANICAL
PROBLEM

In all the contexts of molecular modeling reviewed briefly above, it was taken for
granted that the quantities on the right hand side of the above equations – the poten-
tial energies of molecular systems in their corresponding electronic states considered
as functions of the system variables Um(q) = Um(R{α}(q)) i.e. the PES – exist and
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are known. The concept of PES, however, is not an elementary one since in order to
be defined it requires a certain construct known as the Born-Oppenheimer approxi-
mation.8 Although a deeper analysis of this approximation is not a task of the present
book, we briefly touch upon this problem here as its treatment shares an important
common feature with our main topic, namely, variable separation in the quantum
mechanical context.

The procedure begins with writing down the quantum mechanical Hamiltonian for
a molecular system (electrons + nuclei) in the coordinate space:

Ĥ({Rα}, {ri}) = T̂n + T̂e + V̂ ({Rα}, {ri})
with

T̂n = − 1
2

N∑
α=1

1
Mα

∇2
α; T̂e = − 1

2

∑
i

∇2
i

V̂ ({Rα}, {ri})=V̂ne({Rα}, {ri}) + V̂ee({ri}) + V̂nn({Rα})

V̂ne({Rα}, {ri}) = −
∑
αj

Zα

|Rα − rj |

V̂ee({ri}) =
1
2

∑
i�=j

1
|ri − rj |

; V̂nn({Rα}) =
1
2

∑
α�=β

ZαZβ

|Rα − Rβ|

(1.23)

In these expressions written with use of so-called “atomic units” (elementary charge,
electron mass and Planck constant are all equal to unity) Rαs stand as previously
for the spatial coordinates of the nuclei of atoms composing the system; ris for the
spatial coordinates of electrons; Mαs are the nuclear masses; Zαs are the nuclear
charges in the units of elementary charge. The meaning of the different contributions
is as follows: T̂e and T̂n are respectively the electronic and nuclear kinetic energy
operators, V̂ne is the operator of the Coulomb potential energy of attraction of elec-
trons to nuclei, V̂ee is that of repulsion between electrons, and V̂nn that of repulsion
between the nuclei. Summations over α and β extend to all nuclei in the (model)
system and those over i and j to all electrons in it.

The variables describing electrons and nuclei are termed electronic and nuclear.
For the majority of problems which arise in chemistry, the nuclear variables can be
thought to be the Cartesian coordinates of the nuclei in the physical three-dimensional
space. Of course the nuclei are in fact inherently quantum objects which manifest in
such characteristics as nuclear spins – additional variables describing internal states
of nuclei, which do not have any classical analog. However these latter variables
enter into play relatively rarely. For example, when the NMR, ESR or Mössbauer
experiments are discussed or in exotic problems like that of the ortho-para dihy-
drogen conversion. In a more common setting, such as the one represented by the

8The Born-Oppenheimer approximation is described in numerous sources on
quantum chemistry; [17] being a standard text. Detailed derivation recommended
to everyone who wants to understand it is presented in [18].
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non-relativistic Hamiltonian eq. (1.23) for the molecular system, the nuclear spins do
not enter.

The electronic variables are, however, unavoidably quantum and consist of Carte-
sian coordinates r of each electron in the system and of their respective projections
of the spin s on some predefined axis x = (r, s). The electronic spin projections do
not enter the above (nonrelativistic) Hamiltonian as well, but significantly affect the
electronic structure of the system through the Pauli principle (see below).

Further reasoning leading to the PES concept, i.e. the Born-Oppenheimer con-
struct, is based on the fact that the molecular systems are formed by the further indi-
visible (under the conditions of the chemical experiment) units of two sorts: nuclei
and electrons. The mass of electron is smaller by at least three orders of magnitude
than that of the lightest nucleus (proton), which suggests that at any current config-
uration of nuclei the electrons would feel only the current value of the electrostatic
field induced by the nuclei, so that the electrons have enough time to adjust their state
to any current position of the nuclei. When studying nuclear motion one may think
that nuclei are followed by electrons with no delay and thus feel only the potential of
the distribution of electrons defined by the current configuration of nuclei. Thus the
variables describing the system or more precisely the spatial coordinates of the parti-
cles: those of nuclei and electrons enter in a nonequivalent manner. These notions are
formalized in choosing a special Ansatz for the wave function of the molecular sys-
tem described by the Hamiltonian eq. (1.23). As we know from quantum mechanics,
the state of any quantum system is described by its wave function of coordinates of
all particles composing the system. The wave functions corresponding to stationary
states of the system satisfy the time independent Schrödinger equation of the form:

Ĥ({Rα}, {ri})Ψ({Rα}, {ri}) = εΨ({Rα}, {ri})(1.24)

The Ansatz corresponding to the Born-Oppenheimer approximation for the wave
function of all particles consists in separating the nuclear and electronic variables,
i.e. in representing the total wave function in the form of a simple product:

Ψ({Rα}, {ri}) ≈ Φ({ri}; {Rα})χ({Rα})(1.25)

of the electronic wave function Φ({ri}; {Rα}) calculated in the field of the fixed
nuclei ({Rα} = const.), and χ({Rα}) is the nuclear wave function. Substitut-
ing this form into eq. (1.24) yields the following. Each nuclear configuration {Rα}
defines an electrostatic field acting upon the electronic subsystem of the entire molec-
ular system. At each configuration of the nuclei this subsystem obeys the electronic
Schrödinger equation:

ĤeΦ({ri}; {Rα}) = U({Rα})Φ({ri}; {Rα})(1.26)

with the electronic Hamiltonian

Ĥe = T̂e + V̂ ({Rα}, {ri}) = −1
2

Ne∑
i=1

∇2
i + V̂ ({Rα}, {ri})(1.27)

formally including the energy of the nuclear–nuclear repulsion V̂nn, which in the
present context is not any more an operator acting on the coordinates of the particles
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under study (electrons), but a so-called c-number – a constant (with respect to {ri}s)
term added to the electronic Hamiltonian not affecting the functional form of the
solution Φ({ri}; {Rα}) of the electronic Schrödinger equation eq. (1.26). In fact
eq. (1.26) is not a unique equation, but the family of equations parametrized by
the nuclear configurations {Rα}. At each configuration {Rα} eq. (1.26) has mul-
tiple solutions numbered by integers m = 0, . . .: the eigenvalues Um({Rα}) and the
eigenfunctions Φm({ri}; {Rα}) termed together as eigenstates. Of course they are
different for the different values of coordinates {Rα}. This dependence is generally
termed parametric dependence of the electronic eigenvalues and eigenfunctions of
the molecular system on the nuclear coordinates. Propagating the m-th solution of
eq. (1.26) through the nuclear configuration space determines a PES Um({Rα}) for
the given (ground if m = 0 or excited if m > 0) electronic state. It is then used
as the potential energy for the nuclear motion described by the nuclear Schrödinger
equation:

Ĥnχ({Rα}) = εχ({Rα})(1.28)

where

Ĥn = −
N∑

α=1

1
2Mα

∇2
α + Um({Rα})(1.29)

is the (effective) Hamiltonian for the nuclear motions occurring if the system resides
in its m-th electronic state. As in the case of the electronic Schrödinger equation,
the nuclear Schrödinger equation is not a single equation in the general sense. The
potential energy and thus the Hamiltonian itself is specific for each of the electronic
eigenstates numbered by the subscript m. A physical prerequisite for employing the
Born-Oppenheimer approximation is that it is possible to consider only one (ground
or excited) isolated electronic state of the system and to treat the nuclear motion
as if it evolved on the single PES Um({Rα}). In this case χ is a function of the
nuclear coordinates only. Within this picture the effect of the electronic subsystem
is condensed to a single function PES Um({Rα}). In the vicinity of the PES minima
the harmonic approximation allows one to get a simple quantum description of the
nuclear motions of the molecular system. The nuclear wave function of the molecular
system appears as a product of harmonic oscillator wave functions for all normal
modes – eigenvectors of the dynamic matrix eq. (1.14).

The molecular modeling usually assumes the nuclear motions to be classical i.e.
described by eq. (1.18) or eq. (1.19) rather than quantum described by eq. (1.28).
Generally, molecular modeling consists in calculating the PES Um({Rα}) of the
molecular systems in their m-th electronic states, which are some functions of the
entire set of independent nuclear coordinates {Rα} = {Rα(q)}. Sometimes other
PES’s elements are necessary, like its gradients, Hessians etc., although it is quite a
rare case when the derivatives of PESs of the orders higher than two are required.
The obtained PESs can then be used for calculations of thermodynamic or kinetic
quantities, as described in the previous section. The theory of molecular electronic
structure, on the other hand, gives basic procedures for obtaining Um(q)s by approx-
imating solutions of the electronic Schrödinger equation eq. (1.26) which is done by
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using various quantum mechanical and quantum chemical techniques, which we will
review briefly in subsequent sections.

1.3. BASICS OF THE QUANTUM MECHANICAL TECHNIQUE

Solving the families of electronic Schrödinger equations eqs. (1.26) and (1.27),
which are the second order equations in partial derivatives of 3Ne variables, is
an enormously complex problem for any system with a minimally realistic number of
electrons. For that reason the practical means of solving (approximately) Schrödinger
equations are based on alternative formulations which we review here briefly. These
techniques can be further subdivided into quantum mechanical (QM) ones, common
for all microscopic problems, and the quantum chemical ones which take into account
specific aspects of the many-electron problem in a strong nonuniform field induced
by nuclei. The relevant QM tools are described in numerous books at any required
level of simplicity/complexity.9 Here we recall these techniques only briefly, trying
to pay attention to qualitative aspects and interrelations between their different forms
which might be suitable in various situations, directing the reader to other sources for
detailed formal descriptions.

1.3.1. The variation principle

The variational principle is the basis for a majority of practical methods of quantum
mechanics. It is an implementation of a very general mathematical method: some
very sophisticated problem – in our case solving the partial differential equation of
an enormous number of variables – is equivalently reformulated to search for just
one “controlling” number in some sense measuring how far we are from the solution
of the original complex problem. The variational principle in quantum mechanics
basically states several things: there is such a number, this number is the energy, the
smaller is the energy the closer we are to the ground state of the system. It exists in
several versions of which its formulation for the ground state is the most important.10

It reads as follows: Among the wave functions Ψ normalized to unity and satisfying
the boundary conditions of the problem under consideration, the expectation value of
the energy E is the upper bound for the exact energy of the ground state E0 i.e. for
any trial function Ψ the inequality holds

E = 〈Ψ|Ĥ |Ψ〉 ≥ E0(1.30)

9Books on quantum mechanics are numerous. Understandably, the author inclines
towards the Russian school of presenting quantum mechanics, which may be subdi-
vided into three major subschools (one of Leningrad – Fock [19] and two of Moscow:
Landau [20] and Blokhintsev [21]). Classical works are also very useful [22–24].

10Literature on the variational principle is voluminous. In what relates to quantum
mechanics the texts also contain necessary information on the variational principle.
Here we add only [25] – a brilliant mathematical text on variations and [26] – a
somewhat too casuistic, but useful, description of different aspects of the variational
technique. I. Mayer [18] gives a good survey of what is necessary.
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which turns to the equality only for the exact ground-state eigenfunction and eigen-
value. We have used in eq. (1.30) the so-called bracket notation dating back to P.A.M.
Dirac to denote the expectation values – diagonal matrix elements or general matrix
elements of the operators calculated over the wave functions. This is a handy nota-
tion allowing one to manipulate such quantities without addressing in detail what
is actually needed to find them. For any pair of functions Ψ = Ψ(x1, x2, ...), Φ =
Φ(x1, x2, ...) and any operator Â = Â(x1, x2, ...) of an observable all taken in the
coordinate representation (the only one we have been using so far) the expressions
〈Ψ|Â|Φ〉 are understood as integrals:

〈Ψ|Â|Φ〉 =
∫

Ψ∗(x1, x2, ...)Â(x1, x2, ...)Φ(x1, x2, ...)dx1dx2...(1.31)

An important special case in such an expectation value is the scalar product of two
functions, where the operator Â is the identity operator Î = Î(x1, x2, ...) ≡ 1. Then
one can write:

〈Ψ|Φ〉 = 〈Ψ|Î|Φ〉 =
∫

Ψ∗(x1, x2, ...)Φ(x1, x2, ...)dx1dx2...(1.32)

In the many-electron system, the system variables x are the pairs of spatial coordi-
nates of an electron r and its spin projection s. In this case, the symbols

∫
dxi must be

understood as
∑
s

∫
dri i.e. as integration over spatial coordinates of each electron and

a summation over its two possible spin-projections. An important gain of the above
notation is that it allows one to “postpone for tomorrow” the unpleasant integrations
involving a knowledge of calculus and reduces everything to simple algebraic manip-
ulations with formal quantities, some of which may be known e.g. by assumptions.
A simple example is given here:

〈Ψ|λ1Φ1 + λ2Φ2〉 = λ1〈Ψ|Φ1〉 + λ2〈Ψ|Φ2〉(1.33)

Similar relations hold for operators which will be explained below and widely used
throughout the book.

With these notation the proof evolves as follows: The energy is the quantum
mechanical expectation value E = 〈Ψ|Ĥ |Ψ〉 of the Hamiltonian calculated for any
wave function Ψ normalized to unity (〈Ψ|Ψ〉 = 1). The Schrödinger equation is a
linear equation of the form:

ĤΨ = εΨ(1.34)

with an Hermitean Hamiltonian Ĥ . Thus its solutions, eigenvectors Ψi and corre-
sponding eigenvalues Ei, form a complete orthonormalized set of functions satisfy-
ing the boundary conditions of the problem. For the eigenvectors and eigenvalues of
an Hermitean operator Ĥ , the following holds by definition:

ĤΨk = EkΨk,(1.35)
〈Ψk|Ψl〉 = δkl
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Since the operator is limited from below it has a minimal eigenvalue E0 which is by
definition that of the ground state Ψ0. Then any wave function Ψ satisfying the same
boundary conditions can (completeness of the set {Ψk}) be expanded in a series

Ψ =
∑

k

ukΨk(1.36)

As one can see normalization to unity gives:

〈Ψ|Ψ〉 =
∑

k

|uk|2 = 1(1.37)

Then the quantum mechanical expectation value of the Hamiltonian over the function
Ψ reads:

E = 〈Ψ|Ĥ |Ψ〉 =
∑

k

|uk|2Ek(1.38)

Since Ek ≥ E0, we get

E ≥
∑

k

|uk|2E0 = E0(1.39)

Subtracting E0 from E and assuming that the ground state is nondegenerate we get
the following inequality where all excitation energies ∆Ei are strictly positive:

E − E0 =
∑

k

|uk|2(Ek − E0) =
∑
k>0

|uk|2∆Ek ≥ 0(1.40)

so that equality can be reached only when all |uk|2 = 0 for k > 0. Then the nor-
malization condition yields the result u0 = 1 and thus Ψ = Ψ0 (the equality in fact
holds up to immaterial phase factor of absolute value of unity eiα). This provides
the required proof (possible degeneracy of the ground state is not a great problem
here).

1.3.2. The linear variational method (Ritz method)

The variation principle as formulated above does not seem to be practical as it relies
upon solutions of the Schrödinger equation – the eigenvectors and eigenvalues of
the Hamiltonian, which in fact have to be found. It can be used, however, as a
starting point for constructing more practical methods. They are based on the con-
cept of the trial wave function of the system. Let us consider a family of functions
dependent on the system variables (in the case of electrons, on their spatial coor-
dinates and spin projections {xi} = {(ri, si)}), satisfying the boundary conditions
of the problem, and in whatever sophisticated manner depending on some other set
of variables ξ – variational variables – i.e. having the form Ψ(ξ|{xi}). Function
Ψ(ξ|{xi}), which may be subject to additional conditions of the form S(ξ) = 0,
of which the most frequently occurring in practice is again the normalization con-
dition S(ξ) = 〈Ψ(ξ)|Ψ(ξ)〉 − 1 = 0), (in the bracket notation the integration is
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assumed over the system variables xi and not on the variation variables ξ) is then
called the trial wave function for the system. For any value of ξ it can be expanded
over the eigenfunctions of the Hamiltonian, such that the expansion amplitudes (coef-
ficients) uk themselves become some functions of ξ i.e. uk = uk(ξ). If the functions
of the family Ψ(ξ|{xi}) are constructed so that for each value of ξ they are normal-
ized to unity then the sets of all expansion coefficients uk(ξ) also satisfy the nor-
malization condition eq. (1.37) automatically for all values of ξ. Substituting uk(ξ)
into eq. (1.38) yields an estimate for the energy E = E(ξ) for which the inequal-
ity eq. (1.39): E(ξ) ≥ E0 also holds. This is a variational estimate for the ground
state energy obtained with the trial wave functions of the selected class. Minimizing
E(ξ) with respect to ξ brings the best estimate for the ground state energy within the
selected class of trial functions.

Among the classes of the trial wave functions, those employing the form of the
linear combination of the functions taken from some predefined basis set lead to the
most powerful technique known as the linear variational method. It is constructed
as follows. First a set of M normalized functions Φk, each satisfying the boundary
conditions of the problem, is selected. The functions Φk are called the “basis func-
tions” of the problem. They must be chosen to be linearly independent. However we
do not assume that the set of {Φk} is complete so that any Ψ can be exactly repre-
sented as an expansion over it (in contrast with exact expansion eq. (1.36)); neither
is it assumed that the functions of the basis set are orthogonal. A priori they do not
have any relation to the Hamiltonian under study – only boundary conditions must be
fulfilled. Then the trial wave function Ψ is taken as a linear combination of the basis
functions Φk:

Ψ(ξ) =
M∑

k=1

ukΦk(1.41)

so that the expansion amplitudes themselves take the part of the variational variables
ξ and must be subject to the normalization condition 〈Ψ(ξ)|Ψ(ξ)〉 = 1. The best
estimate for the energy with the trial wave function of the above form in the chosen
basis {Φk} is then obtained by selecting the coefficients uk such that the expectation
value for the energy is minimal:

min
{uk}

E = min
{uk}

〈Ψ(ξ)|Ĥ |Ψ(ξ)〉(1.42)

with the additional condition

〈Ψ(ξ)|Ψ(ξ)〉 = 1(1.43)

Since the functions Φi are fixed, the expectation value of the energy E considered as
a function of the variational parameters ui is a quadratic form:

E({ul}) = 〈Ψ|Ĥ |Ψ〉 =
M∑

k,l=1

u∗
kHklul(1.44)
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(expansion amplitudes are in general case complex and u∗
k is a complex conjugate of

uk.) Here the notation is introduced for the matrix elements of the Hamiltonian with
respect to the selected functional basis:

Hkl = 〈Φk|Ĥ |Φl〉(1.45)

The extremum for this form must be found taking into account the normalization
condition

〈Ψ|Ψ〉 =
M∑

k,l=1

u∗
kMklul(1.46)

where the notation for the matrix elements of the metric characterizing the basis set

Mkl = 〈Φk|Φl〉(1.47)

is introduced.
In order to find extrema of E({ul}), subject to the normalization condition, stan-

dard moves known as the Lagrange multipliers’ method are applied, which read-
ily lead us to the well-known form of the generalized matrix eigenvalue/eigenvector
problem:

M∑
l=1

(Hkl − EMkl)ul = 0(1.48)

The above equality must hold for each k, so that finding extrema of the auxiliary
quadratic function is equivalent to a system of m linear equations. Assembling the
quantities Hkl and Mkl, into M×M matrices H and M representing the Hamiltonian
and the metric, respectively, and the amplitudes ui into a column-vector u, we rewrite
the system of linear equations (eq. (1.48)) in the form

(H− EM)u = 0

or

Hu = EMu

which is known as a “generalized matrix eigenvalue problem”. If the functional basis
{Φk} is taken to be orthonormalized, Mkl = δkl; the metric matrix in this basis
becomes the unity matrix, M = 1. This reduces to a “standard” matrix eigenvalue
problem:

Hu = Eu(1.49)

Solving the eigenvalues problem for a Hermitian matrix is equivalent to diagonalizing
it by performing the similarity transformation of the matrix H by the unitary matrix
U composed of its eigenvectors. The reverse also holds: the columns of a matrix U
diagonalizing the Hermitian matrix H are the eigenvectors of the latter. In fact

U†HU = D, Dkl = Ekδkl(1.50)
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If all the eigenvalues are different, the transformation matrix U is unique up to the
order of the eigenvalues/eigenvectors and to the arbitrary phase factors eiαk for k-th
column (eigenvector). Otherwise, i.e. when some eigenvalues coincide – are degen-
erate – the eigenvectors matrix is defined up to arbitrary unitary transformations
of the eigenvectors spanning the subspaces which belong to each of the degenerate
eigenvalues.

The minimal eigenvalue of the matrix H should be taken as an upper bound for the
exact ground state eigenvalue of the original Schrödinger equation written in terms of
differential operator and coordinate wave functions (in the complete and thus infinite
basis). They obviously never coincide unless the exact ground state wave function
Ψ0 is by chance one of the basis functions {Φk}. This obviously can hardly happen
unless the problem is very simple and does not require any serious numerical treat-
ment. Otherwise the amount of noncoincidence depends of course on the choice of
the basis set {Φk}. One can easily imagine the situation when the exact ground state
wave function is orthogonal to the subspace spanned by the basis set {Φk}. Then both
the minimal eigenvalue of the matrix problem and the eigenvector corresponding to
it have nothing to do with the exact ground state of the original problem. By this, one
can see that the choice of the basis set is very important. In practice of course much
effort is spent in finding a better basis or getting some equivalent of this. It can be
formalized by introducing an additional (multidimensional) parameter ω, which in a
concise form represents the subset of the entire functional space spanned by the trial
functions of the chosen form. In the case of the linear Ritz method for the finite basis
described in this section the parameter ω defines this basis {Φk}. In a more general
case it may include information concerning the form of the trial wave function, which
on some physical grounds can be chosen to be much more sophisticated than a sim-
plistic expansion eq. (1.41) due to allowing a better coverage of the vicinity of the
exact ground state. This will be exemplified later.

1.3.3. Perturbation methods

The variation methods, particularly the linear variational method of solving the
Schrödinger equation reducing to diagonalization of its matrix representation
described briefly above, serve largely as a basis for developing numerical proce-
dures. Qualitative theories are by contrast based on a different type of reasoning.
Since in the present book we are concerned with the general theoretical constructs
necessary for developing methods of hybrid modeling, we briefly review the relevant
perturbative techniques.

Diagonalizing a general Hermitian matrix (of an acceptable dimensionality), being
feasible numerically, does not provide any insight on the qualitative nature of the
result. The general strategy of perturbational methods is based on the idea of obtain-
ing estimates of necessary quantities, including eigenvalues and eigenvectors of
Hamiltonians of interest, on the basis of an a priori knowledge of the eigenvalues
and eigenvectors of a simpler, but in a sense close (unperturbed), Hamiltonian. Of
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course from a certain angle it can be viewed also as a formula for constructing an
adequate basis set for the linear variation method (see above). We consider here only
the simplest Rayleigh–Schrödinger perturbation theory, as it will be the only version
used in this book.

Let us consider the situation when the solutions (i.e., the orthonormalized eigen-
vectors Ψ(0)

i and the corresponding eigenvalues E
(0)
i ) of the Schrödinger equation

Ĥ(0)Ψ(0)
i = E

(0)
i Ψ(0)

i(1.51)

with an unperturbed Hamiltonian Ĥ(0) are known. This information can be used for
obtaining estimates of the eigenvalues and eigenvectors of a “perturbed” Schrödinger
equation, containing a Hamiltonian Ĥ(λ) depending on a smallness parameter λ. It
is “close” to Ĥ(0) provided λ is small enough. The perturbed equation reads:

ĤΨ = (Ĥ(0) + λŴ )Ψ = EΨ(1.52)

Perturbation theory (PT) tries to represent the eigenvectors and the eigenvalues of the
perturbed Schrödinger equation eq. (1.52) as power series:

Ψk =
∞∑

m=0

λmψ
(m)
k , Ek =

∞∑
n=0

λnε
(n)
k(1.53)

with respect to the “perturbation strength parameter” λ. Alternatively one can write

Ψk = Ψ(0)
k +

∞∑
m=1

Ψ(m)
k , Ek = E

(0)
k +

∞∑
n=1

E
(n)
k(1.54)

where

Ψ(m)
k = λmψ

(m)
k ; E

(n)
k = λnε

(n)
k

The problem of convergence of the series eq. (1.53) and eq. (1.54) will not be
addressed here. In general terms it can be said that only the so-called asymptotic
convergence of the latter can possibly be assumed. Moreover, in most cases of quan-
tum chemical interest, λ is not a true variable of the problem as it cannot be changed
in any physical experiment, but is only an accounting tool. In this case the result is
obtained by setting λ = 1 at the end of the calculation. Then of course

Ψ(m)
k = ψ

(m)
k ; E

(n)
k = ε

(n)
k

holds in all orders of the PT. In any case we are going to use only the first nontrivial
terms of these expansions.

Formal derivation evolves as follows: substituting the expansions eq. (1.53) for the
k-th eigenstate into the Schrödinger equation eq. (1.52) yields:

(Ĥ(0) + λŴ )
∞∑

m=0

λmψ
(m)
k =

∞∑
n=0

λnε
(n)
i

∞∑
m=0

λmψ
(m)
k(1.55)
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Then equating the coefficients at the equal powers of λ (accounting!) we get:(
Ĥ(0) − E

(0)
k

)
Ψ(0)

k = 0 ,(
Ĥ(0) − E

(0)
k

)
Ψ(1)

k = λ
(
ε
(1)
k − Ŵ

)
Ψ(0)

k ,(
Ĥ(0) − E

(0)
k

)
Ψ(2)

k = λ
(
ε
(1)
k − Ŵ

)
Ψ(1)

k + λ2ε
(2)
i Ψ(0)

k(1.56)
.........................(

Ĥ(0) − E
(0)
k

)
Ψ(m)

k = λ
(
ε
(1)
k − Ŵ

)
Ψ(m−1)

k + ... + λmε
(m)
k Ψ(0)

k

This is a system of inhomogeneous linear equations for the functions (vectors) Ψ(m)
i

(the mixed notation for the perturbation corrections to eigenvalues and eigenvectors is
used above). The 0-th order in λ yields the unperturbed problem and thus is satisfied
automatically. The others can be solved one by one. For this end we multiply the
equation for the first order function by the zeroth-order wave function and integrate
which yields:

ε
(1)
k = 〈Ψ(0)

k |Ŵ |Ψ(0)
k 〉 = 〈ψ(0)

k |Ŵ |ψ(0)
k 〉(1.57)

Applying the same move to the further equations we get:

ε
(n)
k = 〈ψ(0)

k |Ŵ |ψ(n−1)
k 〉

As we can see, to get the correction of the n-th order to the eigenvalue (energy) one
has to know the correction on the (n−1)-th order to the eigenvector (wave function).
In fact a much stronger statement is valid, namely, that knowing the correction of the
n-th order to the wave function allows us to know the correction of the (2n + 1)-th
order to the energy. Since we are interested here only in lower order corrections, we
do not elaborate on this further. One can find proofs and detailed discussions in books
by I. Mayer [18] and by L. Zülicke [27].

Further development i.e. obtaining the corrections to the wave functions (eigenvec-
tors) depends on the character of the spectrum of the eigenvalues of the unperturbed
Hamiltonian Ĥ(0). Two major cases are distinguished: when all eigenvalues of the
zero order problem eq. (1.51) are different it is referred to as the nondegenerate case.
When some of the eigenvalues of the unperturbed problem coincide, it is referred to
as a degenerate case. These cases are generally considered separately.

1.3.3.1. Nondegenerate case

The problem of finding a vector is usually solved by representing the required vector
as an expansion with respect to some natural set of basis vectors. Following this
method one can expand the vector of the n-th order correction to the k-th unperturbed
vector – ψ

(n)
k in terms of the solutions Ψ(0)

k (eigenvectors) of the unperturbed problem
eq. (1.51):

Ψ(n)
k = λn

∑
l�=k

u
(n)
il Ψ(0)

l (n ≥ 1)(1.58)
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By this, the expansion coefficients u
(n)
il are themselves of the 0-eth order in λ. The

restriction l 	= k indicates that the correction is orthogonal to the unperturbed vector.
In order to get the corrections to the k-th vector, we find the scalar product of the
perturbed Schrödinger equation for it written with explicit powers of λ with one of
the eigenvectors of the unperturbed problem Ψ(0)∗

j (j 	= k). For the first order in λ
we get:

λWjk + E
(0)
j λu

(1)
kj = E

(0)
k λu

(1)
kj(1.59)

where we used the fact that:

〈Ψ(0)
k |Ĥ(0)|Ψ(0)

j 〉 = E
(0)
j δkj

and the notation

Wkj = 〈Ψ(0)
k |Ŵ |Ψ(0)

j 〉(1.60)

Collecting the correction to the wave function on the left side and all the perturbation
terms on the right side we get

(E(0)
j − E

(0)
k )λu

(1)
kj = −λWkj

which can be resolved for the coefficients at λ on the two sides:

u
(1)
kj = − Wjk

E
(0)
j − E

(0)
k

(1.61)

The first order correction to the k-th eigenvector (wave function) then reads as
follows:

Ψ(1)
k = − λ

∑
j �=k

(
Wjk

E
(0)
j − E

(0)
k

)
Ψ(0)

j(1.62)

ψ
(1)
k = −

∑
j �=k

(
Wjk

E
(0)
j − E

(0)
k

)
Ψ(0)

j

This result indicates that the Rayleigh–Schrödinger PT is expected to be well applica-
ble in those cases in which these fractions are small. Inserting eq. (1.62) into expres-
sions for the energy corrections we get the well-known explicit expression for the
second-order ones:

ε
(2)
k =

∑
j �=k

(
− Wjk

E
(0)
j − E

(0)
k

)
Wkj = −

∑
j �=k

|Wkj |2

E
(0)
j − E

(0)
k

E
(2)
k = − λ2

∑
j �=k

|Wkj |2

E
(0)
j − E

(0)
k

The second-order correction to the energy of a ground state is always negative as all
E

(0)
j > E

(0)
0 for j 	= 0 (nondegenerate case).
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We do not elaborate further on this as the results concerning higher orders of the
PT can be found in many sources (see e.g. [18]). One more remark can be given:
restricting to the second order correction to the energy and the first order correction to
the wave function allows us to treat the perturbation operator as strictly off-diagonal
with Wkk ≡ 0 for all k, as the diagonal matrix elements of the perturbation do not
affect the wave functions. This allows us to simplify some further general formulae.

1.3.3.2. Expectation values: linear response

In the previous section we described the result of “turning on” a perturbation on
the wave functions (eigenvectors) of the unperturbed Hamilton operator with non-
degenerate spectrum in the lowest order when this effect takes place. In quantum
mechanics the wave function is an intermediate tool, not an observable quantity. The
general requirement of the theory is, however, to represent the interrelations between
the observables. For this we give here the formulae describing the effect of a pertur-
bation upon an observable. Let us assume that in one of its unperturbed states Ψ(0)

k

the system is characterized by the expectation value of an observable Â:〈
Â
〉(0)

k
=
〈
Ψ(0)

k

∣∣∣Â∣∣∣Ψ(0)
k

〉
Turning on the perturbation λŴ produces the correction to the wave functions (eigen-
vectors) of the system described by eq. (1.62). Inserting it into the definition of the
expectation value of A yields:〈

Â
〉(λ)

k
=
〈
Ψ(0)

k + Ψ(1)
k

∣∣∣Â∣∣∣Ψ(0)
k + Ψ(1)

k

〉
Assembling the terms linear in λ and introducing the notation

Akj =
〈
Ψ(0)

k

∣∣∣Â∣∣∣Ψ(0)
j

〉
we get the augment in the observable A linear in the strength of the above perturbation

δ〈A〉(λ)
k = 〈A〉(λ)

k − 〈A〉(0)k =(1.63)

= − λ
∑
j �=k

((
Wjk

E
(0)
j − E

(0)
k

)
Akj +

(
W ∗

jk

E
(0)
j − E

(0)
k

)
Ajk

)
The coefficient at λ describes the linear response of the quantity A to the pertur-
bation Ŵ . It can be given a rather more symmetric form. Indeed the amplitude of
the j-th unperturbed state in the correction to the k-th state is proportional to some
skew Hermitian operator (the perturbation matrix W is Hermitian, but the denomi-
nator changes its sign when the order of the subscripts changes). With this notion and
assuming that Wkk ≡ 0 (see above) we can remove the restriction in the summation
and write:

δ〈A〉(λ)
k = −λ

∑
j

(
Akj

(
Wjk

E
(0)
j − E

(0)
k

)
−
(

Wkj

E
(0)
j − E

(0)
k

)
Ajk

)
(1.64)
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Introducing the notation

Wkj

E
(0)
j − E

(0)
k

= (1 − δkj)Kkj(1.65)

we immediately get:

δ〈A〉(λ)
k = −λ

〈
Ψ(0)

k

∣∣∣[K̂, Â
]∣∣∣Ψ(0)

j

〉
(1.66)

where

[Â, B̂] = ÂB̂ − B̂Â(1.67)

is the commutator of the operators Â and B̂.
It is of interest to learn more about the operator K̂ which plays that remarkable

rôle. It is defined by the perturbation operator Ŵ and the unperturbed Hamiltonian
Ĥ(0). As a function of Ŵ it is obviously linear in the sense that if Ŵ = ω1Ŵ1+ω2Ŵ2

then K̂ = ω1K̂1 + ω2K̂2 where K̂1 and K̂2 are generated by Ŵ1 and Ŵ2 according
to the rule eq. (1.65). Thus the operation giving K̂ by Ŵ can be considered a linear
operator in the space of the operators themselves, which can be called superoperator.
To study it and the relation of K̂ to Ĥ(0) let us consider the commutators of any linear
operator B̂ with Ĥ(0). For all eigenvectors of Ĥ(0) in the original space where Ĥ(0)

and B̂ themselves act we can write:〈
Ψ(0)

k

∣∣∣[Ĥ(0), B̂
]∣∣∣Ψ(0)

j

〉
=
〈
Ψ(0)

k

∣∣∣Ĥ(0)B̂ − B̂Ĥ(0)
∣∣∣Ψ(0)

j

〉
=(1.68)

=
(
E

(0)
k − E

(0)
j

)〈
Ψ(0)

k

∣∣∣B̂∣∣∣Ψ(0)
j

〉
=

=
(
E

(0)
k − E

(0)
j

)
Bkj

This operation is linear with respect to B̂ so that it defines some superoperator in
the space of operators. This superoperator has a kernel – the subspace of opera-
tors that become zero upon its action: these are the operators diagonal in the basis
of the eigenvectors of the selected operator Ĥ(0). These are the only elements of
the kernel, provided all the eigenvalues of Ĥ(0) are different (nondegenerate case).
The operators from the complement to this kernel are one-to-one transformed by
the above multiplication of their matrix elements by eq. (1.68) by the differences
of the eigenvalues of Ĥ(0). The Hermitian operators (with zero diagonal) are trans-
formed to the skew-Hermitian ones and vice versa. The superoperator defined by
the operator Ĥ(0) and performing the described transformation is called an adjoint
superoperator of Ĥ(0) and is denoted in mathematics as AdĤ(0) . It can be inverted
on the subspace complementary to its kernel. The action of the inverse superop-
erator Ad−1

Ĥ(0) on off-diagonal operators is easily seen from the above relations,
namely: 〈

Ψ(0)
k

∣∣∣Ad−1

Ĥ(0) B̂
∣∣∣Ψ(0)

j

〉
=
(
E

(0)
k − E

(0)
j

)−1

Bkj(1.69)
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With its use the response of the quantity A in the k-th state of the operator Ĥ(0) to
the perturbation given by the operator Ŵ is conveniently written as:

δ〈A〉(λ)
k = −λ

〈
Ψ(0)

k

∣∣∣[Ad−1

Ĥ(0) Ŵ , Â
]∣∣∣Ψ(0)

k

〉
(1.70)

In the literature the response theory is largely described in the time-dependent form
which requires a somewhat complicated technique of time ordering of the opera-
tors and Fourier transformations between time and frequency domains. The static
responses which are largely needed in the present book appear as a result of subtle
limit procedures for the frequencies flowing to zero. Here we have developed the
necessary static results within their own realm.

1.3.3.3. Degenerate case11

The formulae presented in the previous sections do not apply if the unperturbed eigen-
state to which the corrections are to be found belongs to a degenerate eigenvalue of
the unperturbed Hamiltonian, because some of the denominators become zero. For
that reason the degenerate case of the theory strongly differs from the nondegener-
ate case. The evanescence of the energy denominators is, however a more formal
manifestation of a deeper reason for the difference between the two cases. From the
substantial point of view the degenerate and nondegenerate cases are qualitatively
distinct by the results obtained: in the nondegenerate case each of the eigenvalues
acquires some corrections, but the overall form of the eigenvalues’ spectrum does not
change. In the degenerate case the perturbation changes (as we shall see) the charac-
ter of the spectrum: the degeneracy is lifted and the relation between the perturbation
and the result it produces is explained below.

Let us consider the situation when the eigenvalues E
(0)
k of the unperturbed

Hamiltonian Ĥ(0) are respectively gk-fold degenerate. In this case the unperturbed
Schrödinger equation reads:

Ĥ(0)Ψ(0)
k,i = E

(0)
k Ψ(0)

k,i ; i = 1, 2, . . . , gk

where we denote by Ψ(0)
k,i the gk orthonormalized eigenvectors of the unperturbed

problem, belonging to the eigenvalue E0
k . The perturbed problem is:

(Ĥ(0) + λŴ )Ψ = EΨ

Expanding Ψ and E as power series of λ, we have

(Ĥ(0) + λŴ )
∞∑

n=0

λnψ
(n)
k =

∞∑
m=0

λmε
(m)
k

∞∑
n=0

λnψ
(n)
k

11The author is greatly indebted to Prof. I. Mayer for his suggestions, which
significantly improved the presentation in this section.
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Equating as previously coefficients at the different powers of λ on the two sides we
get for 0-eth power of λ

Ĥ(0)Ψ(0)
k = E

(0)
k Ψ(0)

k

which brings us back to the unperturbed Schrödinger equation which is satisfied by
any arbitrary linear combination of the orthonormal basis vectors belonging to the
eigenvalue E

(0)
k :

Ψ(0)
k =

gk∑
i=1

uiΨ
(0)
k,i

For the first power of λ we have just the same equation as for the nondegenerate case:

ŴΨ(0)
k + Ĥ(0)ψ

(1)
k = ε

(1)
k Ψ(0)

k + ε
(0)
k ψ

(1)
k

but the treatment must be quite different. Collecting on the left the terms containing
the unperturbed vector Ψ(0)

k we get

(Ŵ − ε
(1)
k )Ψ(0)

k = −(Ĥ(0) − E
(0)
k )ψ(1)

k

In the non-degenerate case it was an inhomogeneous equation with the nonvanishing
right hand part, which could be used to determine the first order energy ε(1) and the
expansion coefficients of the first order wave function Ψ(1)

k . It is not like this in the
degenerate case. It is easy to see by substituting expansion of Ψ(0)

k over the basis in
the degenerate manifold:

(Ŵ − ε
(1)
k )

gk∑
i=1

uiΨ
(0)
k,i = −(Ĥ(0) − E

(0)
k )ψ(1)

k

The point is that the vectors Ψ(0)
k,i satisfying the unperturbed Schrödinger equation, if

used to expand ψ
(1)
k , make the right hand side disappear and the equation becomes a

uniform one. The only thing we can do is to use it to determine the proper expansion
coefficients of the zeroth order wave function Ψ(0)

k in terms of the degenerate sub-
space as well as the first order energy. (The first order wave function is usually not
calculated/considered in the degenerate case.)

This can be done by going to the eigenvalue equation which can be obtained simply
by forming the scalar products from the left with the different unperturbed vectors
Ψ(0)∗

k,j , and then the terms in the right hand side except the diagonal ones become
zero:

〈Ψ(0)
k,j |Ŵ − ε

(1)
k |

gk∑
i=1

uiΨ
(0)
k,i〉 = 0; j = 1, 2, . . . , gk

and introducing the notation

W
(k)
ji = 〈Ψ(0)

k,j |Ŵ |Ψ(0)
k,i〉
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we get
gk∑
i=1

W
(k)
mi ui = ε

(1)
k um; m = 1, 2, . . . , gk

which is precisely the eigenvalue/eigenvector problem for the operator Ŵ taken in
the subspace spanned by the vectors Ψ(0)

k,i belonging to the degenerate eigenvalue of
the original unperturbed Hamiltonian. In this case Ŵ takes the part of the Hamilto-
nian itself (in the degenerate subspace). This corresponds to the shift of the energy
reference point by E

(0)
k . The energy correction in the degenerate first order, as we see,

requires diagonalization of the matrix representation W(k) in the subspace spanned
by the eigenvectors of the degenerate eigenvalue of the unperturbed Hamiltonian.
This correction is not unique, and generally gk different first order corrections ε

(1)
k,m

appear after diagonalization and the degeneracy is lifted. This result clarifies the sense
in which degenerate perturbation theory is somewhat discontinuous. Of course, as one
can easily see, the amount of splitting of originally degenerate eigenvalues is propor-
tional to λ: E

(1)
k,m = λε

(1)
k,m, and at zero perturbation the splitting vanishes. However

the wave functions of each of the split states are the same irrespective of the strength
of the perturbation. They are defined by the matrix block W(k) and not by λ.

One more interesting example of the degenerate perturbation theory appears if
one considers a possibility of having two degenerate eigenvalues of the unperturbed
Hamiltonian E

(0)
k and E

(0)
l with the degeneracy numbers gk and gl respectively, sub-

ject to such a perturbation which has vanishing matrix elements at least in one of the
degenerate manifolds:

W
(k)
mi = 0(1.71)

but nevertheless has nonvanishing ones between the states coming from different
degenerate manifolds:

W
(kl)
mi = 〈Ψ(0)

k,m|Ŵ |Ψ(0)
l,i 〉 	= 0(1.72)

Then as previously inserting the expansion for eigenvalues and eigenvectors in pow-
ers of λ for the manifold related to the k-th degenerate eigenvalue of Ĥ(0) and equat-
ing separately the terms up to the second order in λ on the left and on the right sides
of eq. (1.56) we get:

Ĥ(0)Ψ(0)
k,i = E

(0)
k Ψ(0)

k,i ,

Ŵψ
(0)
k + Ĥ(0)ψ

(1)
k = ε

(1)
k ψ

(0)
k + ε

(0)
k ψ

(1)
k ,

Ĥ(0)ψ
(2)
k + Ŵψ

(1)
k = ε

(0)
k ψ

(2)
k + ε

(1)
k ψ

(1)
k + ε

(2)
k ψ

(0)
k

(1.73)

The first equation satisfies trivially, and in the two following, we regroup the terms
and get: (

Ŵ − ε
(1)
k

)
ψ

(0)
k = −

(
Ĥ(0) − ε

(0)
k

)
ψ

(1)
k ,(

Ĥ(0) − ε
(0)
k

)
ψ

(2)
k +

(
Ŵ − ε

(1)
k

)
ψ

(1)
k = ε

(2)
k ψ

(0)
k

(1.74)
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The first equation as in the nondegenerate case, can be satisfied by taking the correc-
tion ψ

(1)
k to be orthogonal to the unperturbed ground state vector which is satisfied

by any linear combination of vectors from the manifold related to the l-th degenerate
eigenvalue. Inserting the required expansion we get:(

Ŵ − ε
(1)
k

)
ψ

(0)
k = −

(
Ĥ(0) − ε

(0)
k

)∑
m

ul
kmΨ(0)

lm(1.75)

which must be satisfied for any vector ψ
(0)
k in the k-th degenerate manifold. Let us

take one of the basis functions Ψ(0)
k,i for it and multiply from the left by some other

basis vector Ψ(0)
k,j . Both the left and right parts of the equality vanish trivially for i 	= j

whereas for i = j the right side vanishes and the left side equals to ε
(1)
k , which is only

possible if

ε
(1)
k = 0(1.76)

By contrast, forming from the scalar product from the left with the basis vectors Ψ(0)
l,j

belonging to the l-th degenerate eigenvalue yields:

W
(kl)
ij = −

(
ε
(0)
l − ε

(0)
k

)
ul

kj(1.77)

which means that the i-th basis vector in the k-th degenerate manifold gets a first
order correction:

ψ
(1)
ki = −

∑
j

W
(kl)
ij(

ε
(0)
l − ε

(0)
k

)Ψ(0)
lj(1.78)

for the eigenvector.
The energy is so far uncorrected. For obtaining this we consider the equation for

the second order corrections for the energy. Inserting in it the equation for the vectors
in the k-th manifold obtained in the previous step and noticing that the term contain-
ing the unperturbed Hamiltonian and its k-th eigenvalue vanishes as it should in the
degenerate situation we arrive at an eigenvector/eigenvalue problem for the matrix in
the k-th manifold:

gk∑
i=1

gl∑
n=1

W
(lk)
mn W

(kl)
ni(

ε
(0)
k − ε

(0)
l

)ui = ε
(2)
k um; m = 1, 2, . . . , gk(1.79)

which is analogous to the simple degenerate case described above, but with a differ-
ence that a new (second order) Hamiltonian serving to define the eigenvectors and
eigenvalues ε

(2)
k in the k-th manifold is now given as a sum over the states in the l-th

manifold:

h
(k)
mi =

gl∑
n=1

W
(lk)
mn W

(kl)
ni(

ε
(0)
k − ε

(0)
l

)(1.80)

We shall have a chance to see more elegant representations of this situation in the
future.
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Something more can be obtained if the perturbation Ŵ vanishes also within the l-th
manifold so that the only nonvanishing matrix elements occur between the functions
belonging to different manifolds. In this case applying the singular value decompo-
sition allows us to state the following: There exist two unitary matrices U(k) and
U(l) of the sizes gk × gk and gl × gl, respectively, which when respectively applied
on the left and on the right to the gk × gl matrix W(kl) formed by the matrix ele-
ments 〈Ψ(0)

k,m|Ŵ |Ψ(0)
l,i 〉 of the operator Ŵ produce the matrix U(k)W(kl)U(l) which

has only min(gk, gl) nonvanishing elements wi = (U(k)W(kl)U(l))ii i = 1, 2, . . . ,
min(gk, gl). Obviously the matrices U(k) and U(l) perform some unitary transfor-
mations in the respective manifolds. If the results of these transformations are taken
for the new basis functions Ψ̃(0)

k,i , Ψ̃
(0)
l,i the original eigenvector/eigenvalue problem

reduces to min(gk, gl) 2×2 eigenvector/eigenvalue problems of the form:(
ε
(0)
k wi

w∗
i ε

(0)
l

)
(1.81)

which can be easily solved even analytically.

1.4. ALTERNATIVE REPRESENTATIONS OF QUANTUM MECHANICS

The derivations made so far were done in terms of the wave functions (vectors). In
fact all the basic tools of the quantum theory used throughout this book are covered
by this brief account. However, it may be practical to have a variety of representations
for the same set of basic techniques in different incarnations. Not adding too much
either to pragmatic numerical tools or to a deeper understanding of what is going
on, these tools are useful for getting general relations which are an important part
of the present book and for a more economical representation of the variables of the
problems considered here. For that reason we review them below.

1.4.1. Projection operators12

Taking a vector (function) |ϕ〉 in the space of the allowable wave functions (e.g.
integrable with its square and normalized to unity) allows us to construct an operator
P̂ϕ which acts on an arbitrary vector |Ψ〉 (function) as:

P̂ϕ|Ψ〉 = |ϕ〉〈ϕ|Ψ〉(1.82)

i.e. yields the projection of |Ψ〉 on |ϕ〉. One can easily check that the operator P̂ϕ for
any |ϕ〉 possesses the properties

12Presentation in this section follows the route presented in the brilliant lectures
delivered by one of the author’s teachers Dr. V.I. Pupyshev of the Chemistry
Department of the Moscow State University during last 30 years, but which appeared
in a printed form [V.I. Pupyshev, Additional chapters of molecular quantum
mechanics, Parts 1–3. Moscow University Publishers [in Russian], 2008] during the
time of proofreading of the present book.
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P̂ †
ϕ = P̂ϕ(1.83)

P̂ 2
ϕ = P̂ϕP̂ϕ = P̂ϕ

– hermiticity and idempotency. This resolves one of the concerns related to the wave
function picture of quantum mechanics. The wave function is not an observable
quantity whereas the projection operator uniquely related to it in principle corre-
sponds to an observable due to its hermiticity. The eigenvalues of P̂ϕ can take two
values 0 and 1 where the function |ϕ〉 is the eigenvector of P̂ϕ with the eigenvalue 1
and any vector orthogonal to |ϕ〉 is an eigenvector with the eigenvalue 0. For a pair of
projection operators generated by two orthogonal vectors |ϕ〉 and |ψ〉 the following
holds:

P̂ϕP̂ψ = P̂ψP̂ϕ = 0(1.84)

Any vector |Ψ〉 can be presented as a sum of its projection on |ϕ〉 and of its orthogonal
complement:

|Ψ〉 = P̂ϕ|Ψ〉 + (1 − P̂ϕ)|Ψ〉

If an orthonormalized basis {Φi} is given, the vector |ϕ〉 is defined by its expansion
over it:

|ϕ〉 =
∑

i

|Φi〉〈Φi|ϕ〉(1.85)

Then the projection operator P̂ϕ acquires the form:

P̂ϕ = |ϕ〉〈ϕ| =
∑
ij

|Φi〉〈Φi|ϕ〉〈ϕ|Φj〉〈Φj |(1.86)

which yields its matrix representation Pϕ:

〈Φi|P̂ϕ|Φj〉 = (Pϕ)ij = 〈Φi|ϕ〉〈ϕ|Φj〉(1.87)

For a pair of orthogonal vectors |ϕ〉 and |ψ〉 the operator

P̂ = P̂ϕ + P̂ψ(1.88)

is also a projection operator in the sense that

P̂ 2 = (P̂ϕ + P̂ψ)2 = P̂ 2
ϕ + P̂ 2

ψ = P̂ϕ + P̂ψ = P̂ϕ⊕ψ(1.89)

It projects to the subspace spanned by |ϕ〉 and |ψ〉. This construct is extended to any
number of orthonormal vectors.

Now, let us return to an eigenvalue/eigenvector problem:

ĤΨ = EΨ

Let {Ψi|i = 0, ...} be the set of its eigenvectors corresponding to the eigenvalues Ei,
respectively. The operators projecting to its eigenvectors are:

P̂i = |Ψi〉〈Ψi|(1.90)
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Now we consider

ĤP̂i = Ĥ |Ψi〉〈Ψi| = Ei|Ψi〉〈Ψi|(1.91)
P̂iĤ = |Ψi〉〈Ψi|Ĥ = Ei|Ψi〉〈Ψi|

Thus we get:

ĤP̂i = P̂iĤ(1.92)

On the other hand the first equation can be rewritten as:

ĤP̂i = EiP̂i(1.93)

Now, taking a sum of the projection operators P̂ =
∑

i P̂i to any subset of the eigen-
vectors of the operator Ĥ and multiplying by the projection operators in different
orders we get:

ĤP̂ =
∑

i

Ĥ|Ψi〉〈Ψi| =
∑

i

Ei|Ψi〉〈Ψi|(1.94)

P̂ Ĥ =
∑

i

|Ψi〉〈Ψi|Ĥ =
∑

i

Ei|Ψi〉〈Ψi|

so that the rightmost parts of the above equations coincide and the left ones must do
the same, which yields the Schrödinger equation in terms of the projection operators:

ĤP̂ = P̂ Ĥ(1.95)

whose solutions are all operators P̂ projecting to different possible subspaces
spanned by eigenvectors of the operator Ĥ .

1.4.2. Resolvent

Let us return to the Schrödinger equation for the projection operators P̂i eq. (1.93):

ĤP̂i = EiP̂i

We notice that summing up projection operators corresponding to all individual
eigenvectors yields the identity operator:∑

i

P̂i = Î(1.96)

This is simply the completeness relation for the eigenvectors of an Hermitian oper-
ator Ĥ. We introduce formally the resolvent of the operator Ĥ as a function of a
complex variable z:

R̂(z) = (zÎ − Ĥ)−1(1.97)

This definition is, however, legal since all the eigenvalues of a Hermitian Ĥ are real
and thus for any nonreal z the operator in the brackets is not degenerate and thus can
be inverted. On the other hand the following holds:

(zÎ − Ĥ)P̂i = (z − Ei)P̂i(1.98)
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where on the left side there is an operator in the brackets although on the right side it
is a (complex) number. Then we get a chain of equalities:

R̂(z)
(
zÎ − Ĥ

)
P̂i = P̂i = R̂(z) (z − Ei) P̂i = (z − Ei) R̂(z)P̂i(1.99)

so that

R̂(z)P̂i =
P̂i

z − Ei
(1.100)

Summing this over all i’s yields, because of eq. (1.96):

R̂(z) =
∑

i

P̂i

z − Ei
(1.101)

which reveals the structure of the resolvent of an Hermitian operator Ĥ: it is a matrix
(operator) function of the complex variable z; it has simple poles Ei on the real axis
which are the eigenvalues of Ĥ .

Summing over all i’s the first equality of the above chain yields:

R̂(z)
(
zÎ − Ĥ

)
= Î(1.102)

which is the Schrödinger equation in terms of the resolvent.
The residues theorem allows treating the resolvent as a formal solution of the

eigenvector/eigenvalue problem. Indeed, taking a contour integral over any path Ci

enclosing each of the poles one gets:

P̂i =
1

2πi

∮
Ci

R̂(z)dz(1.103)

Taking an integral over a path enclosing several poles yields the operator projecting
to the subspace spanned by the corresponding eigenvectors.13

1.4.3. Approximate techniques for alternative representations
of quantum mechanics

As mentioned earlier, alternative representations of quantum mechanics may be use-
ful for deriving general relations and representing approximate treatments of quantum
mechanical problems in a concise and convenient form. Here we briefly review the
tools – largely the versions of the perturbation theory – presented in terms of projec-
tion operators, resolvents, and wave operators. As is usually done in the perturbation
context, it is assumed that the eigenvectors and eigenvalues of some unperturbed
Hamiltonian Ĥ(0) are known. It means also that the projection operators, resolvents
and wave operators (see below) representing the unperturbed eigenvalues and eigen-
vectors are known as well.14

13The best description of projection operators and resolvents is given by Kato [28].
A brief account is given in [27] also.

14The best description of perturbation techniques in terms of projection operators
and resolvents is given by Kato [28].
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1.4.3.1. Projection operators

Let the operator P̂ (0) project to some subspace spanned by several eigenvectors of
the unperturbed Hamiltonian Ĥ(0). It is known that a set of operators projecting to a
subspace of the same dimensionality and including P̂ (0) can be parametrized in the
following form [29–31]:

P̂ = (P̂ (0) + V̂ )(Î + V̂ †V̂ )−1(P̂ (0) + V̂ †),

dim Im P = dim Im P̂ (0)
(1.104)

by the matrices V̂ and their Hermitian conjugate V̂ † satisfying the conditions:

P̂ (0)V̂ = 0; V̂ P̂ (0) = V̂ ; (Î − P̂ (0))V̂ P̂ (0) = V̂ ;

P̂ (0)V̂ † = V̂ †; P̂ (0)V̂ †(Î − P̂ (0)) = V̂ †; V̂ †P̂ (0) = 0
(1.105)

The above relations formally present the block-off-diagonal structure of the matrices
V̂ and V̂ †. Matrix V̂ has dim Im P̂ (0) × dim Im(Î − P̂ (0)) elements. The projection
operator P̂ (0) itself corresponds to V̂ = V̂ † = 0. The dimensionality of the square
matrix V̂ †V̂ equals dim Im P̂ (0) so that for modest dimensions of the subspace under
consideration (or eventually for the ground state) the matrix Î + V̂ †V̂ can be easily
inverted. As an alternative, one can use a recurrent relation:

(Î + V̂ †V̂ )−1 = Î − V̂ †V̂

Î + V̂ †V̂
(1.106)

which yields the following form of the projection operator eq. (1.104):

P̂ = P̂ (0) + (V̂ + V̂ †) + V̂ V̂ † −(1.107)

− V̂ †V̂

Î + V̂ †V̂
− V̂ V̂ †V̂

Î + V̂ †V̂
− V̂ †V̂ V̂ †

Î + V̂ †V̂
− V̂ V̂ †V̂ V̂ †

Î + V̂ †V̂

Iterating this move one can easily get an expansion of P̂ into a power series in V̂
and V̂ †.

Using either the exact form of the projection operator as a function of V̂ and V̂ †,
or cutting the series expansion, allows us to construct different approximate variation
schemes with matrix elements of V̂ as variables. On the other hand, inserting the
expansion for the projection operator eq. (1.107) in the Schrödinger equation for the
projection operator eq. (1.95) with the perturbed Hamiltonian gives in the first order:

(Ĥ(0)+λŴ )
(
P̂ (0) + (V̂ + V̂ †)

)
=
(
P̂ (0) + (V̂ + V̂ †)

)
(Ĥ(0)+λŴ )(1.108)

Since the unperturbed Hamiltonian commutes with the unperturbed projection oper-
ator we obtain for terms linear in λ:

λŴ P̂ (0) + Ĥ(0)(V̂ + V̂ †) = (V̂ + V̂ †)Ĥ(0) + λP̂ (0)Ŵ(1.109)
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which can be rewritten in a form of a commutator equation:

λ
[
Ŵ , P̂ (0)

]
= −

[
Ĥ(0), (V̂ + V̂ †)

]
(1.110)

On the right we already have a familiar superoperator adjoint to the unperturbed
Hamiltonian Ĥ(0). However, the conditions of its inversibility are considerably eased.
It is now enough only if the images of complementary projection operators Im P̂ (0)

and Im(Î − P̂ (0)) contain no eigenvectors with common eigenvalues of Ĥ(0). In this
case the AdĤ(0) acting restricted to the space of matrices V̂ +V̂ † is nondegenerate and
thus can be inverted and the first order correction to the projection operator acquires
the form:

V̂ + V̂ † = −λAd−1

Ĥ(0)

[
Ŵ , P̂ (0)

]
(1.111)

If the perturbation operator Ŵ has itself the block structure given by projection oper-
ators P̂ (0) and Î − P̂ (0) so that

Ŵ = ŵ + ŵ†(1.112)
ŵ = P̂ (0)ŵ(Î − P̂ (0))

the result is further simplified as:

V̂ = −λAd−1

Ĥ(0)

[
ŵ, P̂ (0)

]
(1.113)

1.4.3.2. Resolvent

As mentioned earlier, the resolvent is a tool allowing one to formally write down the
solution of an eigenvalue/eigenvector problem. It is also useful for developing per-
turbation expansions, which, as we saw previously, require somewhat tedious work
when done in terms of vectors (wave functions).

According to eq. (1.102) the perturbed Schrödinger equation for the resolvent
reads:

R̂(z)(zÎ − Ĥ(0) − λŴ ) = Î(1.114)

where the resolvent for the unperturbed Schrödinger equation reads:

R̂(0)(z) = (zÎ − Ĥ(0))−1(1.115)

The simplest relation which can be written concerns the inverses of the resolvents:

R̂−1(z) = R̂(0)−1(z) − λŴ(1.116)

This is not of great use by itself, as, according to eq. (1.103), the answer can be
expressed through the resolvent itself, not the inverse of it. However, multiplying the
above equation by R̂(0)(z) from the left and by R̂−1(z) from the right and regrouping
terms yields:

R̂(z) = R̂(0)(z) + λR̂(0)(z)Ŵ R̂(z)(1.117)
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which is known as the Dyson equation. The simplest nontrivial approximation to its
solution is to replace R̂(z) by R̂(0)(z) in the right hand side, thus obtaining the linear
correction as:

R̂(z) = R̂(0)(z) + λR̂(0)(z)Ŵ R̂(0)(z)(1.118)

in a close form. By contrast, inserting the Dyson equation itself in its right hand side
gives:

R̂(z) = R̂(0)(z) + λR̂(0)(z)Ŵ R̂(0)(z) + λ2R̂(0)(z)Ŵ R̂(z)(1.119)

which can be iterated yielding a series:

R̂(z) = R̂(0)(z) + λR̂(0)(z)Ŵ R̂(0)(z)

+ λ2R̂(0)(z)Ŵ R̂(0)(z)Ŵ R̂(0)(z) + ...(1.120)

with a fairly simple form of the terms. It can be rewritten in a twofold manner:

R̂(z) = R̂(0)(z)

(
Î +

∞∑
n=1

λn
(
Ŵ R̂(0)(z)

)n
)

(1.121)

R̂(z) =

(
Î +

∞∑
n=1

λn
(
R̂(0)(z)Ŵ

)n
)

R̂(0)(z)

which can be obtained also by direct expansion of the definition of the perturbed
resolvent.

The sums in the brackets are those of the geometric series of operators (matrices).
If λ is small enough they can be summed up:

R̂(z) =
(
Î − λR̂(0)Ŵ

)−1

R̂(0)(1.122)

which can be also derived from eq. (1.117).

1.4.3.3. Wave operator and Van-Vleck transformation

One more representation for the perturbation technique is based on the so-called
Van-Vleck transformation as applied to the exact Hamiltonian to exclude the interac-
tion matrix elements and by this to approximately diagonalize it. As we remember the
finding eigenvectors and eigenvalues of a Hamiltonian reduces to searching a unitary
(orthogonal) matrix U transforming the original Hamiltonian matrix H into diagonal
form D according to:

D = U−1HU = U†HU

(due to orthogonality or unitarity of U the relation U−1 = U† holds). If, as it is done
in the context of perturbation theory, the Hamiltonian matrix acquires the form:

H = H(0) + λW
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where the eigenvectors and the eigenvalues of the matrix H(0) are assumed to be
known, one can conclude that events evolve on the basis of these eigenvectors, so
the matrix H(0) is diagonal. The perturbation W is nondiagonal and the unperturbed
eigenvectors and eigenvalues can be considered “zero approximations” to the exact
ones of the Hamiltonian matrix H. In this context, the sought matrix U is called the
“wave operator” and is verbally described as a matrix transforming the approximate
eigenstates (those of the matrix H(0)) into the exact ones (those of the matrix H).

Obviously the zero order wave operator in this case equals the unity matrix:

U(0) = I(1.123)

It is easy to see that an arbitrary unitary matrix can be represented in the form:

U = exp(iΛ)(1.124)

where Λ is Hermitian and the exponent has to be understood as the corresponding
series expansion everywhere convergent. So for the lower orders we can write:

U ≈ I + iΛ− 1
2
Λ2 + ...(1.125)

Applying the approximate expansion for U from the right and the Hermitian conju-
gate from the left to the perturbed Hamiltonian matrix yields:

D = U†HU =(I− iΛ + ...)
(
H(0) + λW

)
(I + iΛ + ...) =(1.126)

= H(0) + i[H(0),Λ] + λW + ...

H(0) is already diagonal, λW by contrast is not; the Hermitian matrix Λ is to be
determined from the relation

i[H(0),Λ] + λW = 0(1.127)

which assures that the off-diagonal matrix elements have the order at least higher than
the first in λ. Employing in a new context the concept of the adjoint superoperator
(supermatrix) we can write:

Λ = −iλAd−1
H(0) W(1.128)

which gives the solution of the problem. If the matrix U is presented up to the linear
term in Λ, this coincides (as one can see) with standard formulae for the nondegen-
erate perturbation theory for wave functions. The main problem with them is that
these functions are not normalized to unity and for that reason the energy estimates
obtained in the perturbation theory are not the variational estimates “from above”.
However, one can take the exponential expansion seriously and by this arrive at a uni-
tary matrix; then the approximate eigenvectors are normalized. Although they diago-
nalize the Hamiltonian approximately (as mentioned earlier the remnant off-diagonal
elements are of the order of λ2) but the expectation value of the Hamiltonian matrix
over the ground state produced by U provides a true upper bound for the ground state
energy.
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1.4.3.4. Löwdin partition technique

In this book we employ a range of quantum mechanical techniques. Most of them are
reflected or employed in numerical methods implemented in QC packages. One of
the general ways significantly simplifying the problem of diagonalizing matrices of
large dimensionality is the Löwdin partition. From a slightly different point of view
it can be considered a tool generating the whole variety of perturbative treatments in
quantum mechanics and quantum chemistry. Let us consider this formalism.

Following Löwdin [32] we assume that we know a subspace of vectors which
contains a good approximation of the exact ground state vector. In addition we can
think that the low-energy excited states of interest also belong to this same subspace.
Then let P̂ be the projection operator onto this subspace and Q̂ = Î − P̂ be the
complementary projection operator satisfying the following conditions:

P̂ 2 = P̂ , Q̂2 = Q̂, P̂ Q̂ = 0, P̂ + Q̂ = Î(1.129)

These are nothing but the conditions of orthogonality of the subspace of interest
ImP̂ (ImP̂ – image P̂ – stands here for the set of vectors of a linear space which
are obtained by action of the linear operator P̂ upon all vectors of the linear vector
space) and its complementary subspace ImQ̂.

To apply the partition of the whole vector space to the solution of the Schrödinger
equation with the exact Hamiltonian ĤΨ = EΨ we multiply this equation from the
left in turn by P̂ and Q and making use of the fact that

Ψ = P̂Ψ + QΨ(1.130)

we arrive at a pair of equations:

P̂ ĤP̂ P̂Ψ + P̂ ĤQQΨ = EP̂Ψ

Q̂ĤP̂ P̂Ψ + Q̂ĤQ̂Q̂Ψ = EQ̂Ψ
(1.131)

The second equation in this pair can be solved for QΨ:

Q̂Ψ = (EQ̂ − Q̂ĤQ̂)−1Q̂ĤP̂ P̂Ψ(1.132)

which is only a formal solution as existence of the inverse operator (matrix) in the
right hand side is not guaranteed. Inserting the solution for Q̂Ψ in the first equation
of the pair we get for the function PΨ:[

P̂ ĤP̂ + P̂ ĤQ̂(EQ̂ − Q̂ĤQ̂)−1Q̂ĤP̂
]
P̂Ψ = EP̂Ψ(1.133)

The expression in the square brackets is an Ĥeff(E) and itself depends on energy. Its
most important characteristic is that it acts in the subspace defined by the projection
operator P̂ (P̂ -block) Im P̂ , but its eigenvalues by construction coincide with the
eigenvalues of the exact Hamiltonian. The eq. (1.133) represents a pseudoeigenvalue
problem as the operator in the right hand part is Ĥeff(E), where “pseudo” indicates
its own dependence on the sought energy eigenvalue. In principle such a problem has
to be solved iteratively until self-consistency is reached for all eigenvalues of inter-
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est. One usually does that if the partitioning of the entire space into subspaces is used
for constructing approximate diagonalization schemes directed to the lower eigen-
values [33] of the matrices of higher dimensionality. On the other hand, expanding
the inverse operator in the definition of the effective Hamiltonian in the series yields
different perturbation series. For more details on this one can take a look at [58].

1.5. BASICS OF QUANTUM CHEMISTRY

The approximation techniques described in the earlier sections apply to any (non-
relativistic) quantum system and can be universally used. On the other hand, the
specific methods necessary for modeling molecular PES that refer explicitly to elec-
tronic wave function (or other possible tools mentioned above adjusted to describe
electronic structure) are united under the name of quantum chemistry (QC).15 Quan-
tum chemistry is different from other branches of theoretical physics in that it deals
with systems of intermediate numbers of fermions – electrons, which preclude on
the one hand the use of the “infinite number” limit – the number of electrons in
a system is a sensitive parameter. This brings one to the position where it is nec-
essary to consider wave functions dependent on spatial r and spin s variables of
all N electrons entering the system. In other words, the wave functions sought by
either version of the variational method or meant in the frame of either perturbational
technique – the eigenfunctions of the electronic Hamiltonian in eq. (1.27) are the
functions Ψ(x1, . . . , xN ) where xi stands for the pair of the spatial radius vector of
i-th electron ri and its spin projection si to a fixed axis. These latter, along with the
boundary conditions (in this case reducing to the square integrability requirement),
must satisfy also symmetry conditions known as the Pauli principle.16 Namely, the
wave function Ψ(x1, . . . , xN ), to be correctly formed, must change its sign when its
arguments referring to whatever pair of the electrons interchange their place in the
argument list. This is the formulation of the Pauli principle in terms of the electronic
wave function in the coordinate representation. Quantum chemistry uses different
representations for the electronic structure, each requiring a slightly different appear-
ance of the Pauli principle, which is built in the structure of the specific theoretical
tools used in each specific representation. Due to sophistications brought about by the
necessity to simultaneously bear in mind different representations of quantum chem-
istry in the context of hybrid modeling, we present here the most important ones used
in this book.

15Modern quantum chemistry is described in numerous books of which we mention
[17,18,27,29,30]. They differ in detail and depth.

16The nature of these conditions is still under dispute. The fact that too small
particles cannot be ordered derives from quantum mechanics [21]. But the question
whether the Pauli principle is an independent axiom of quantum mechanics or not
is still unclear [34].
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1.5.1. Many-electron wave functions

The most direct way to represent the electronic structure is to refer to the electronic
wave function dependent on the coordinates and spin projections of N electrons. To
apply the linear variational method in this context one has to introduce the com-
plete set of basis functions ΦK for this problem. The complication is to guarantee
the necessary symmetry properties (antisymmetry under transpositions of the sets of
coordinates referring to any two electrons). This is done as follows.

1.5.1.1. One-electron basis

Let us assume that a complete set of the orthonormalized functions ϕn(r) of the
spatial coordinates r is known. They form a basis in the space L = L2(R3) of the
square integrable functions of r, known in this context as orbitals. The completeness
condition means that the following holds:∑

n

ϕ∗
n(r)ϕn(r′) = δ(r − r′)(1.134)

where the summation extends to the whole set of subscripts n. (We use boldsface
for the orbital index since the quantum numbers necessary to label basis functions in
L2(R3) naturally organize in a three-component entity).

It is much easier to introduce the complete basis in the space of functions depend-
ing on the spin variable of one electron. Allowable values of the spin projection s (in
the units of � ) are ±1/2. Corresponding functions have the form:

α(1
2 ) = 1; α(− 1

2 ) = 0

β(1
2 ) = 0; β(− 1

2 ) = 1
(1.135)

This explains the commonly used terms according to which α electrons are those
with “spin-up” whereas β-electrons have “spin-down”. The orthonormality and com-
pleteness of the set of functions α(s) and β(s) can be checked easily.

If one now takes a set of orthonormalized functions ϕn(r) and forms the products
of the spin functions α(s) and β(s) by ϕn(r)’s, one obtains the complete set of
functions:

φk(x) = φnσ(x) = φnσ(r, s) = ϕn(r)σ(s)(1.136)

with σ = α, β. These functions are habitually termed spin-orbitals. They are func-
tions of the electronic variables x = (r, s).

1.5.1.2. Slater determinants

Now let us select an ordered “tuple” of N subscripts referring to spin-orbitals: K=
{k1 < k2 < . . . < kN}. The N -tuple of spin-orbitals defines uniquely the Slater
determinant of N electrons as a functional determinant
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ΦK =
1√
N !

∣∣∣∣∣∣∣
φk1(x1) . . . φk1(xN )

...
. . .

...
φkN (x1) . . . φkN (xN )

∣∣∣∣∣∣∣(1.137)

which is obviously a function of coordinates of N electrons. It is formed like any
other determinant of a matrix with the only specificity that the rows of the latter are
numbered by functions (in one row, all the elements are the values of the same func-
tion) and the columns are numbered by the electrons so that in each column the values
of all entering spin-orbitals are calculated for the coordinates of that same electron).
Apparently, if two spin-orbitals coincide, then for arbitrary values of coordinates two
rows of such a determinant coincide and the determinant itself vanishes. On the other
hand, if coordinates of two electrons coincide, then two columns of such a determi-
nant also coincide and the determinant vanishes as well.

It can be proven [31] that all possible Slater determinants of N particles con-
structed from a complete system of orthonormalized spin-orbitals φk form a com-
plete basis in the space of normalized antisymmetric (satisfying the Pauli principle)
functions, of N electrons i.e. for any antisymmetric and normalizable Ψ one can find
expansion amplitudes so that:

Ψ(x1, . . . , xN ) =
∑
K

CKΦK∑
K

C2
K = 1

(1.138)

Thus the basis of Slater determinants can be used as a basis in a linear variational
method eq. (1.42) when the Hamiltonian dependent or acting on coordinates of N
electrons is to be studied. The problem with this theorem is that for most known
choices of the basis of spin-orbitals used for constructing the Slater determinants of
eq. (1.137) the series in eq. (1.138) is very slow convergent. We shall address this
problem later.

The general setting of the electronic structure description given above refers to a
complete (and thus infinite) basis set of one-electron functions (spin-orbitals) φnσ(x).
In order to acquire the practically feasible expansions of the wave functions, an addi-
tional assumption is made, which is that the orbitals entering eq. (1.136) are taken
from a finite set of functions somehow related to the molecular problem under consid-
eration. The most widespread approximation of that sort is to use the atomic orbitals
(AO).17 This approximation states that with every problem of molecular electronic
structure one can naturally relate a set of functions χµ(r), |{µ}| = M > N –
atomic orbitals (AOs) centered at the nuclei forming the system. The orthogonality
in general does not take place for these functions and the set {χµ} is characterized

17It may not seem mandatory now, with the advent of plane wave basis sets. How-
ever, to give a better description, these latter are variously “augmented” to repro-
duce the behavior of electrons in the vicinity of nuclei. For more detailed description
see [35] and reference therein.
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by the metric matrix (known in this context as the overlap integrals matrix) S with
the elements

Sµν =
∫

d3rχ∗
µ(r)χν(r)(1.139)

The finite set {ϕµ} of the orthonormalized functions required in the above construct
eq. (1.137) of the Slater determinants can be obtained in numerous ways, say by
applying the transformation S− 1

2 to the set of initial AOs. This is called the Löwdin
orthogonalization. It is not a unique way of constructing an orthonormal basis of
orbitals as, obviously, any further orthogonal transform of the Löwdin orthogonalized
basis set gives another basis set that is orthonormal as well. The above construct
applies only when the metric matrix is not degenerate and thus the inverse square
root can be calculated. It may become degenerate if the entire set of the AOs {χµ}
is linearly dependent. Of course, in practice, it never happens exactly, but a situation
close to degeneration of the basis set occurs rather frequently when the eigenvalues
of the S matrix become close to zero. Constructing the Slater determinants of a set of
spin-orbitals containing a linearly dependent one results in a vanishing determinant
(by this the set of the Slater determinants itself becomes linearly dependent). For that
reason the linear combinations of χµs corresponding to too small eigenvalues of the
metric matrix must be excluded. Thus the number of orthonormal orbitals ϕµ may
be smaller than the original number of AOs. From now on we assume that M is the
number of the linearly independent orthogonal combinations of AOs.

1.5.1.3. Implementations of AO basis sets

The functional form of the AOs is best described by an exponential function of the
separation between the nucleus of the atom to which the AO is assigned (or centered
upon) and the electron multiplied by a polynomial function of the same separation
and by the angular part – the spherical function of the polar and azimuthal angles
together with the separation describing the position of an electron in the spherical
coordinate system centered at the nucleus. For example the hydrogen-like AOs – the
solutions of the Schrödinger equation for a one-electron atom with the nuclear charge
Z i.e. one with

V̂ne = −Z

r

have the form:

χH
Znlm (r, θ, ϕ) = RZ

nl(r)Ylm(θ, ϕ)

RZ
nl(r) =

{(
2Z

n

)3 (n − l − 1)!
2n [(n + l)!]3

} 1
2

×

×
(

2Zr

n

)l

exp
(
−Zr

n

)
L2l+1

n+l

(
2Zr

n

)



42 Andrei L. Tchougréeff

Lk
n (x) =

dk

dxk

[
exp (x)

dn

dxn
(xn exp (−x))

]

Ylm(θ, ϕ) = (−1)
m+|m|

2

[
1
2π

2l + 1
2

(l − |m|)!
(l + |m|)!

] 1
2

P
|m|
l (cos θ) exp (imϕ)

P
|m|
l (x) =

1
2ll!

(
1 − x2

) |m|
2 dl+|m|

dxl+|m|
(
x2 − 1

)l

Here the triple nlm corresponds to the “vector” subscript n in the definition and the
quantities Lk

n (x) and P
|m|
l (x) called respectively adjoint Laguerre and adjoint Leg-

endre polynomials and can be checked immediately for their polynomial form. The
main features correctly reproduced here by the hydrogen-like functions are the expo-
nential decay of all wave function at large electron-nuclear separations and the fulfill-
ment of the nuclear cusp condition for the s-states (ones with l = 0) in the coordinate
origin (r = 0). One has to realize, however, two interrelated aspects: the hydrogen
like AOs for the bound states (with the negative energy) do not form the complete set
of one-electron functions in L2(R3) since the complete set is formed by the entire set
of the solutions of the Schrödinger equation, which in the case of the hydrogen-like
atom contains also the states with positive energies forming the continuous spectrum
with energies above the dissociation limit of the atom. On the other hand, there is
no reason to think that the exponents describing the decay of the electronic states
with increase of the electron-nuclear separation are equal to Z

n in a general case of
a many-electron atom. By contrast, a general argumentation leads to the conclusion
that in a many-electron atom the decay of the AO must follow the rule

exp (−ζr) with ζ ∼
√

IP

where IP stands for the ionization potential – the energy necessary for an electron
to be extracted from this AO (see below). The experimental values of ionization
potential do not have too much to do with the squared nuclear charge, unless it goes
about the hydrogen-like atoms. Thus many hydrogen-like AOs may be necessary to
decently approximate a single exponent function with more or less arbitrary value of
the orbital exponent ζ. For this reason the hydrogen-like functions are never used in
practice for constructing AOs basis sets.

Slater functions The general arguments concerning the physically sound form of
the states to be included in the AOs basis sets given above have been implemented in
the Slater type AOs:

χSTO
ζnlm (r, θ, ϕ) =

(2ζ)n+ 1
2√

(2n)!
rn−1 exp (−ζr)
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Here again the triple nlm corresponds to the “vector” subscript n in the definition.
Formally they can be obtained as solutions of the electronic Schrödinger equation
with the potential of the form:

V̂ne = −nζ

r
+

n(n − 1) − l (l + 1)
2r2

The original Slater rules for selecting the values of ζ conform to the idea of being
related to the atomic ionization potentials (see above). However other schemes are
also in use.

Gaussians The Gaussian type AOs are the most widespread basis set in the area of
ab initio quantum chemistry:

χGTO
αnlm (r, θ, ϕ) =

⎡⎣22n(n − 1)!
(2n − 1)!

√
(2α)2n+1

n

⎤⎦
1
2

rn−1 exp
(
−αr2

)
Ylm(θ, ϕ)

These functions can be understood as solutions of the Schrödinger equation with the
potential

V̂ne = 2α2r2 +
n(n − 1) − l (l + 1)

2r2

In variance with the hydrogen-like and Slater functions the potential employed to
formally construct the gaussian basis states has nothing to do with the real potential
acting upon an electron in an atom. On the other hand the solutions of this (actually
three-dimensional harmonic oscillator problem) form a complete discrete basis in the
space of orbitals in contrast to the hydrogen-like orbitals.

An alternative (and in fact dominating) representation uses the possibility to rep-
resent the Gaussian function of the squared distance in a form of a product of three
Cartesian Gaussian orbitals. Indeed as one can easily see

r2 = x2 + y2 + z2

so that

exp
(
−αr2

)
= exp

(
−αx2

)
exp

(
−αy2

)
exp

(
−αz2

)
and taking into account the definitions of the spherical coordinates

x = r sin θ cosϕ

y = r sin θ sin ϕ

z = r cos θ
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one can easily figure out that the spherical function multiplied by rn−1 with l ≤ n−1
becomes a polynomial in x, y, and z (in fact a uniform one – such that all monoms
in x, y, and z entering it have the same overall power n − 1 in x, y, and z together).
This allows one to equivalently represent a Gaussian supplied by the angular part in
the form of a spherical function as a combination of Cartesian Gaussians:

χGTO
αpqr (x, y, z) = NαpNαqNαrx

pyqzr exp
(
−αx2

)
× exp

(
−αy2

)
exp

(
−αz2

)
Nαp =

{√
π

2α

(2p − 1)!!
22pαp

}− 1
2

etc

Here the triple pqr corresponds to the “vector” subscript n in the definition.
The above Gaussian functions are termed primitive ones. They are used largely not

by themselves but as a basis over which the Slater AOs are expanded. In this case,
the expansion coefficients are called contraction coefficients and are fixed. However,
with the passage of time, this restriction is eased step by step to assure flexibility of
the AOs in response to variations of the atomic environment.

1.5.2. Full configuration interaction: exact solution of approximate problem

At this point we are sufficiently equipped to consider briefly the methods used to
approximate the wave functions constructed in the restricted subspace of orbitals.
So far the only approximation was to restrict the orbital basis set. It is convenient to
establish something that might be considered to be the exact solution of the electronic
structure problem in this setting. This is the full configuration interaction (FCI) solu-
tion. In order to find one it is necessary to construct all possible Slater determinants
for N electrons allowed in the basis of 2M spin-orbitals. In this context each Slater
determinant bears the name of a basis configuration and constructing them all means
that we have their full set. Then the matrix representation of the Hamiltonian in the
basis of the configurations ΦK is constructed:

HKK′ =
〈
ΦK

∣∣∣Ĥ∣∣∣ΦK′
〉

(1.140)

and the FCI problem itself reduces to finding the lower eigenvalues and correspond-
ing eigenvectors of the Hamiltonian matrix in the chosen basis by the linear variation
method.

The FCI approach, if one had decided to actually use it to study any realistic prob-
lem, would require enormous computing power since the dimensionality of the FCI
problem increases factorially with the increase of the size of the system: for N elec-
trons in 2M spin-orbitals the number of basis configurations amounts to:

CN
2M =

(2M)!
N !(2M − N)!

(1.141)
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Various symmetry constraints (mainly due to the requirement that the total spin of
the considered system of N electrons must acquire some definite value – see below)
reduce the number of basis vectors to be treated in a given eigenvector problem signif-
icantly, but even after that their dimensionalities remain too high. Of course nowadays
even millions of configurations do not represent an unsolvable problem for numerical
treatment, but our concern here is to develop a theory which helps to reduce at least
that unnecessary computing that could in principle be avoided. In any case when it
goes about a “complex system” of thousands of atoms, there is no hope of actually
performing the described procedure. With this in mind, we describe the methods of
approximating the solution of an otherwise exact FCI problem.

1.5.3. Hartree-Fock approximation

The situation of the FCI from the numerical point of view is not very favorable –
expansion of the ground eigenvector may be very long i.e. too many configurations
(Slater determinants) have the expansion amplitudes which cannot be neglected.
On the other hand, the FCI problem is invariant to whatever transformation of
the (spin-)orbital basis set. This means that any unitary transformation U of the
(spin-)orbitals induces some other unitary transformation UΛ of the set of all
N -electron Slater determinants. This changes (by a similarity transformation with
matrix UΛ) only the matrix representation of the FCI problem not affecting the eigen-
values and reduces to the transformation of the eigenvectors: i.e. of their amplitudes
CK by the same matrix UΛ. Operators acting in the N -electron space are transformed
accordingly, so that their expectation values (i.e. the observables) do not change. This
may be formulated as independence of the answer of the FCI problem on the partic-
ular choice of the orbital basis in the chosen subspace spanned by (spin-)orbitals. By
contrast, the FCI does depend on the orbital subspace it is formulated in (see below).

The natural idea would be to use the freedom given by the invariance of the result
with respect to the basis choice in the space of (spin-)orbitals in order to make the FCI
expansion shorter. In more formal terms one can set the task as follows: to find such a
transformation of the original basis of orbitals that relative to the new (transformed)
basis the expansion of the N -electron ground state wave function is as short as pos-
sible. To give this a somewhat more precise meaning: we want to find such an orbital
basis set so that the expansion amplitudes (or better still the overall weight – sum of
the squared amplitudes) of several leading configurations take as large a fraction as
possible of the exact ground state wave function.

The Hartree-Fock approximation is the first step along this way. In its original
form it was proposed by V.A. Fock [36]. The idea (in its modern formulation) is to
find a single Slater determinant as close as possible to the precise ground state. The
expectation value of the energy operator (in agreement with the variational principle)
is taken as a measure of this closeness: the lower the energy, calculated with the use
of the trial wave function, the closer it approaches the true ground state i.e. the larger
is the overlap integral between the trial wave function and the exact one.
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The trial wave function in the Hartree-Fock approximation takes the form of a
single Slater determinant:

Ψ(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣∣
φ1(x1) . . . φ1(xN )

...
. . .

...
φN (x1) . . . φN (xN )

∣∣∣∣∣∣∣
=

1√
N !

∣∣φ1(x1) . . . φN (xN )
∣∣

(1.142)

we are already familiar with. However, the spin-orbitals φk, k = 1÷N are not taken
directly from the set of 2M basis spin-orbitals, but are selected to be linear combina-
tions of them. Then the expansion coefficients with respect to the same original basis
set {φm} become the variables of the variational procedure (and take the role of the
variables ξ mentioned above).

Restricting the wave function by the form eq. (1.142) allows one to significantly
reduce the calculation costs for all characteristics of a many-fermion system. Insert-
ing eq. (1.142) into the energy expression (for the expectation value of the electronic
Hamiltonian eq. (1.27)) and applying to it the variational principle with the addi-
tional condition of orthonormalization of the system of the occupied spin-orbitals φk

(known in this context as molecular spin-orbitals) yields the system of integrodiffer-
ential equations of the form (see e.g. [27]):{

−1
2
∇2 + V̂ne(r) +

∫
dx′ ρ

(1)
HF(x′; x′)
|r − r′|

}
φk(x)−

−
∫

dx′φk(x′)
ρ
(1)
HF(x; x′)
|r − r′| = εkφk(x)

(1.143)

where

ρ
(1)
HF(x; x′) =

N∑
i=1

φi(x)φ∗
i (x′)(1.144)

is the one-electron density matrix (see below) in the Hartree-Fock approximation.
This system must be solved self consistently since the kernels of the integral oper-
ators in its left hand part depend on the functions which are its solutions through
eq. (1.144).

The Hartree-Fock equation eq. (1.143) can be rewritten using the Coulomb and
exchange integral operators Ĵ and K̂ , respectively:

Ĵ [ρ̂(1)
HF]φ(x) =

∫
dx′ ρ

(1)
HF(x′; x′)
|r− r′| φ(x)

K̂[ρ̂(1)
HF]φ(x) =

∫
dx′φ(x′)

ρ
(1)
HF(x; x′)
|r − r′|

(1.145)
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If one-electron operators in eq. (1.143) are collected into a single operator defined
according to:

ĥ = −1
2
∇2 + V̂ne(r)(1.146)

the integrodifferential operator in the left hand part of eq. (1.143) – the Fock operator
– becomes:

F̂ [ρ̂(1)
HF] = ĥ + Ĵ [ρ̂(1)

HF] − K̂[ρ̂(1)
HF] = ĥ + Σ̂[ρ̂(1)

HF](1.147)

With these notations the Hartree-Fock problem acquires the form of an eigen-
value/eigenvector problem:

F̂ [ρ̂(1)
HF]φi = εiφi(1.148)

with the reservation that the operator whose eigenvalues and eigenvectors are sought
depends on the solution. These solutions represent an approximate picture of a motion
of a single electron in a field induced by the nuclei and by the averaged distri-
bution of all electrons. It is usual to hear in this context that an electron moves
in the field induced by other electrons. It is not completely true since the Hartree
term represented by the operator Ĵ involves the total density of all electrons includ-
ing the one which seems to be singled out. This results in self interaction which
is cured by the exchange operator not having any classical analogue and coming
from the averaging over the electron coordinates while taking into account the Pauli
principle.

On the basis of AOs the Fock operator eq. (1.147) acquires a matrix representation
of the form:

Fµν = hµν + Jµν − Kµν = hµν + Σµν

so that the Hatree-Fock problem written in the original AOs basis acquires the form
of the generalized eigenvalue/eigenvector problem eq. (1.48):

Fu = εSu(1.149)

where u stands for the vector of molecular spin-orbitals represented by their expan-
sion coefficients with respect to the original (nonorthogonal) basis of AOs {χµ}.

The solutions {φi} of the Hartree-Fock equation eq. (1.143) in the form of the
eigenvalue/eigenvector problem eq. (1.149) are known as molecular (spin-)orbitals
(MO). As in the case of the FCI problem some finite basis of M orbitals related with
the particular form of the electronic Hamiltonian (one-electron potential) is chosen
and the matrix elements of the operator F̂ relative to this basis are found and the
standard methods of searching for eigenvectors and eigenvalues (diagonalization) can
be applied. It provides the expansion of the functions

φi =
∑

µ

uiµϕµ(1.150)
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where the quantities uiµ are referred to as MO LCAO coefficients (here we have used
an orthonormal basis set {ϕµ} to expand MOs).18 Only N eigenvectors with lower
eigenvalues are needed (at least at this point). Obviously the number of independent
variables whose optimal values are to be determined within the Hartree-Fock proce-
dure is already not as large as in the case of the FCI method. For N spin-orbitals
entering the determinant eq. (1.142) only N ×M transformation coefficients are nec-
essary19 which is by many orders of magnitude less than the factorial estimate for
the FCI functions. The Hartree-Fock (single determinant) wave function eq. (1.142)
is also invariant with respect to the orthogonal transformation of the occupied spin-
orbitals only. The set of these transformations is given by the N × N orthogonal
matrices. That means that the true solution of the problem of searching the wave func-
tion in the Hartree-Fock approximation requires not the specific form of the occupied
MOs, but that of the N -dimensional subspace in the 2M -dimensional original space.
This suggests the formulation of the Hartree-Fock problem in terms of the operator
projecting to the subspace to be found. This is done as follows. It is easy to check
that the integral kernel eq. (1.144) when acting on the functions of x, behaves as a
projection operator. Indeed, the action of the integral kernel ρ

(1)
HF(x; x′) is defined in

a standard way:

ρ̂
(1)
HFf(x) =

∫
dx′ρ

(1)
HF(x; x′)f(x′) =

=
N∑

i=1

φi(x)
∫

dx′φ∗
i (x

′)f(x′)(1.151)

=
N∑

i=1

|φi〉 〈φi|f〉

Every single term in the sum in eq. (1.144) acts as the operator projecting on φi(x)
which are mutually orthogonal and normalized, so thus ρ̂

(1)
HF projects on the subspace

spanned by the occupied spin-orbitals. The idempotency and hermiticity are checked
immediately. So eq. (1.151) obviously coincides with the definition of an operator
projecting to a subspace. The equation defining it reads:

F̂ ρ̂ = ρ̂F̂(1.152)

In variance with the standard formulation of the Schrödinger equation in terms of
projection operators eq. (1.95) in the above Hartree-Fock equation for the projection

18The idea to employ a finite basis set of AOs to represent the MOs as linear
combinations of the former apparently belongs to Lennard-Jones [68] and had been
employed by Hückel [37] and had been systematically explored by Roothaan [38].
That is why the combination of the Hartree-Fock approximation with the LCAO
representation of MOs is called the Hartree-Fock-Roothaan method.

19The orthonormalization conditions reduce the number of independent variation
variables as compared to this estimate, but do not reduce so to say the number of
numbers to be calculated throughout the diagonalization procedure.
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operator ρ̂ the operator F̂ itself depends on the projection operator to be found:

F̂ [ρ̂] = ĥ + Σ̂[ρ̂](1.153)

It is easy to see that the self-energy operator – average electron-electron interaction –
can be considered also as a linear superoperator in the space of the matrices it depends
on. Indeed, from the point of view of the 2M -dimensional space of spin-orbitals Σ̂[ρ̂]
acts as a 2M × 2M matrix, so that Σ̂[ρ̂] is a 2M × 2M matrix constructed after
another 2M × 2M matrix ρ̂. On the other hand, it easy to see from the definition
of the Coulomb and exchange operators in eq. (1.145) that the result of calculating
each of them (and thus of the sum of them) taking a sum of two functions ρ1(x; x′)+
ρ2(x; x′) and/or a product of this function by a number λρ(x; x′) as its argument
yields respectively a sum of the results of the actions of Σ̂ and the product in the
same number as the result of action of Σ̂:

Σ̂[ρ̂1 + ρ̂2] = Σ̂[ρ̂1] + Σ̂[ρ̂2](1.154)

Σ̂[λρ̂] = λΣ̂[ρ̂]

(This holds even if ρ̂ is not a projection operator, since the property to be a projection
operator is not generally conserved by linear operations, but just a matrix). Thus
Σ̂ can be considered a linear superoperator transforming one 2M × 2M matrix to
another one of the same dimension.

The projection operator formulation of the Hartree-Fock problem can be used
for constructing a perturbation procedure for determining the electronic structure in
terms of the latter.20 The simplest formulation departs from the Hartree-Fock equa-
tion for the projection operator to the occupied MOs eq. (1.152). Let us assume that
the bare perturbation (see below) concerns only the one-electron part of the Fock
operator so that:

ĥ = ĥ(0) + λŴ(1.155)

Then we know that for the unperturbed Fock operator

F̂0 = ĥ0 + Σ̂[ρ̂0](1.156)

the following holds:

F̂0ρ̂0 = ρ̂0F̂0(1.157)

Then we assume that the projection operator for the exact Fock operator is close to
the unperturbed one so that the expansion

ρ̂ = ρ̂0 + ρ̂(1) + ρ̂(2)

ρ̂(1) = V̂ + V̂ †

ρ̂(2) = V̂ V̂ † − V̂ †V̂

(1.158)

20Presentation in this section also follows the route presented in the brilliant
lectures delivered by one of the author’s teachers Dr. V.I. Pupyshev of the Chemistry
Department of the Moscow State University [V.I. Pupyshev, Additional chapters of
molecular quantum mechanics, Parts 1–3. Moscow University Publishers [in Russian],
2008] published only recently.
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(see eq. (1.107)) can be used. Inserting this into the Hartree-Fock equation with the
perturbed Fock operator one gets (keeping the terms not higher than the first order in
λ and V̂ simultaneously):[

λŴ + Σ̂[V̂ + V̂ †], ρ̂0

]
=
[
V̂ + V̂ †, ĥ(0) + Σ̂[ρ̂0]

]
(1.159)

It can be formally resolved using the superoperator adjoint to the unperturbed Fock
operator:

V̂ + V̂ † = −Ad−1

F̂0

[
λŴ + Σ̂[V̂ + V̂ †], ρ̂0

]
(1.160)

but now V̂ + V̂ † appears also on the right side which is known as renormalization
(“dressing”) of the original (“bare”) perturbation due to average electron-electron
interaction Σ̂ entering the Fock operator.

The above equation can be solved iteratively, but apparently it is not a very good
choice and for that reason a somewhat different approach may be useful. It is based on
the variational procedure for the energy. Using the projection operator ρ̂ the Hartree-
Fock estimate for the electronic energy reads:

E = Sp
(
ĥρ̂
)

+
1
2

Sp
(
ρ̂Σ̂ [ρ̂]

)
(1.161)

which is a quadratic function of the matrix elements of ρ̂. Now let ρ̂0 be the projection
operator to that subspace of occupied MOs which gives the lowest possible Hartree-
Fock energy for the unperturbed Fock operator in the given basis of AOs. Then using
the expansion eq. (1.107) for the projection operators close to a given one, writing
explicitly the corrections up to the second order in V̂ , inserting this expansion in the
expression for the energy and keeping the terms of the total order not higher than two
in V̂ and taking into account that under the spur sign the argument of the self-energy
part Σ̂ can be interchanged with the matrix multiplier we arrive at

E = Sp
(
ĥρ̂0

)
+

1
2

Sp
(
ρ̂0Σ̂ [ρ̂0]

)
︸ ︷︷ ︸

=E0

+ Sp[F̂0

(
V̂ + V̂ †

)
] +

+ 1
2 Sp

{(
V̂ + V̂ †

)
Σ̂
[
V̂ + V̂ †

]}
+ Sp[F̂0

(
V̂ V̂ † − V̂ †V̂

)
]

(1.162)

In the minimum the terms linear in V̂ + V̂ † vanish so that the electronic energy
becomes:

E = E0 + 1
2 Sp

{(
V̂ + V̂ †

)
Σ̂
[
V̂ + V̂ †

]}
+ Sp[F̂0

(
V̂ V̂ † − V̂ †V̂

)
](1.163)

which is a quadratic form with respect to the matrix elements of V̂ , which in its turn
can be given a form of the expectation value of some quantity Λ over V̂ considered
as an element of the vector space of the 2M × 2M matrices

E = E0 +
1
2

〈〈
V̂ |Λ| V̂

〉〉
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This describes the quadratic response of the electronic energy to the variation V̂
of the one-electron density matrix in the vicinity of a minimum. The quantity Λ
can be considered a superoperator (supermatrix) acting in the space of variations
of the density matrices taken as elements of a linear space of the 2M × 2M matri-
ces. The supermatrix Λ has four indices running through one-electron states in the
(2M -dimensional) carrier space. To get an idea of the properties of the quantity Λ
we notice that in the absence of the self-energy term Σ̂ the Fock operator F̂0 reduces
to its one-electron part. For it the Hartree-Fock approximation eq. (1.142) provides
the exact solution: the one-electron part of the Hamiltonian ĥ must be diagonalized
and N lowest eigenstates must be taken as occupied. Let the subscript i run over
the occupied MOs and the subscript j run over the empty MOs. Then the relation
between the allowable matrices V̂ and the projection operators assures that the matrix
|j〉 〈i|, all filled with zeroes with only one unity in the i-th column and j-th row
can be used as matrix V̂ . Then V̂ † = |i〉 〈j| , V̂ V̂ † = |j〉 〈j|, and V̂ †V̂ = |i〉 〈i|.
On the other hand the Fock operator in the basis of its eigenvectors |i〉 and |j〉 has
the form:

F̂0 =
∑

i∈occ

εi |i〉 〈i| +
∑

j∈vac

εj |j〉 〈j|(1.164)

where summation separately extends to the occupied and vacant MOs. Inserting all
this in to the expression eq. (1.163) one gets that for the noninteracting Hamiltonian
the vectors |j〉 〈i| (elements of the space of 2M × 2M matrices) are the eigenvectors
of the superoperator Λ̂ with the eigenvalues εj − εi

Λ̂ |j〉 〈i| = (εj − εi) |j〉 〈i|

which are obviously the excitation energies corresponding to transfer of one electron
from the i-th (occupied) MO to the j-th (empty) MO. It is clear (one can check)
that if there is no Coulomb interaction in the Hamiltonian the self-energy term also
vanishes and such excited states are exact ones for the Hamiltonian without inter-
action. If the electron-electron interaction (self-energy term) is not vanishing it cou-
ples different configurations obtained by single excitations of the ground state Slater
determinant.

The projector operator formulation also allows the perturbative treatment of the
Hartree-Fock problem known as the self-consistent perturbation theory. In variance
with the perturbative treatment departing of the Schrödinger equation we start from
the energy expression with the perturbed one-electron part of the Hamiltonian. The
path, based on the perturbative treatment of the Fock equation, is more complicated as
even if only the one-electron part of the Fock operator ĥ(0) gets perturbed i.e. ĥ(0) →
ĥ = ĥ(0) + λŴ the projection operator or equivalently the one-electron density gets
the correction of the order λ so that the perturbation of the Fock operator is not limited
to the term λŴ (bare perturbation), but is additionally perturbed in the same order
through the self-energy (renormalized or dressed perturbation). The treatment based
on the energy expression eq. (1.161) is more straightforward. Indeed, the energy of



52 Andrei L. Tchougréeff

the ground state with the perturbed one-electron part of the Fock operator in the
Hartree-Fock approximation reads:

E = Sp
((

ĥ(0) + λŴ
)

ρ̂
)

+
1
2

Sp
(
ρ̂Σ̂ [ρ̂]

)
(1.165)

whereas the unperturbed energy E0 is as previously defined by eq. (1.162) calculated
with the unperturbed one-electron operator and with the corresponding projection
operator ρ̂(0) = ρ̂0. Inserting as previously the expansion of the projection operator
up to second order in V̂ results in the following:

E = Sp
(
ĥ(0)ρ̂(0)

)
+

1
2

Sp
(
ρ̂(0)Σ̂

[
ρ̂(0)

])
︸ ︷︷ ︸

=E0

+ Sp[F̂ (0)
(
V̂ + V̂ †

)
] +

+ λSp ρ̂(0)Ŵ + λSp
(
V̂ + V̂ †

)
Ŵ

+ 1
2 Sp

{(
V̂ + V̂ †

)
Σ̂
[
V̂ + V̂ †

]}
+ Sp[F̂ (0)

(
V̂ V̂ † − V̂ †V̂

)
]

(1.166)

where we dropped the terms of presumably higher than the second order in V̂ and λ
together. As previously the term linear in V̂ (the second one in the first row) vanishes
due to the fact that ρ̂(0) brings the minimum to the energy calculated as an expec-
tation value of the unperturbed Hamiltonian. On the other hand the first term in the
second row does not affect the subspace spanned by the occupied MOs since it does
not contain the matrices of interest V̂ and V̂ †. In fact it is merely the first order cor-
rection to the energy – the sum of the diagonal matrix elements of the perturbation
operator, which can be also omitted (see above) from the problem of searching the
new subspace of the occupied MOs adjusted to the perturbation. With these notions
we rewrite the energy retaining only the terms relevant to the problem of searching
the corrected subspace of the occupied MOs:

Ẽ = λSp
(
V̂ + V̂ †

)
Ŵ

+ 1
2 Sp

{(
V̂ + V̂ †

)
Σ̂
[
V̂ + V̂ †

]}
+ Sp[F̂ (0)

(
V̂ V̂ † − V̂ †V̂

)
]

(1.167)

Then let us take into account the form of the matrices V̂ . It represents an off-diagonal
matrix block having nonvanishing matrix elements only if one of the vectors (bra)
belongs to the subset of the occupied MOs and another (ket) to the subset of the
vacant MOs. Then the only relevant part of the perturbation matrix Ŵ is the sum of
two similar conjugate off-diagonal blocks:

Ŵ = ŵ + ŵ†;

where

(1 − P̂ (0))ŵP̂ (0) = ŵ;

P̂ (0)ŵ†(1 − P̂ (0)) = ŵ†

(1.168)
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in terms of which the contribution proportional to λ rewrites as

Sp
(
V̂ + V̂ †

)
Ŵ = Sp

(
V̂ ŵ† + V̂ †ŵ

)
= 〈〈V | ŵ〉〉 + 〈〈ŵ | V 〉〉(1.169)

where an obvious notation for the scalar product in the vector space of 2M × 2M
matrices is introduced. With this notation the energy becomes:

Ẽ = λ [〈〈V | ŵ〉〉 + 〈〈ŵ | V 〉〉] +
1
2

〈〈
V̂ |Λ| V̂

〉〉
(1.170)

This expression has to be optimized with respect to V̂ which yields the following
linear relation:

λŵ + ΛV̂ = 0(1.171)

(and an analoge for the Hermitian conjugates of ŵ and V̂ ) which can be formally
solved:

V̂ = −λΛ−1ŵ(1.172)

using the inverted supermatrix Λ−1. It is easy to see, however, at least in the case
of the interactionless Hamiltonian, that the inversion can be easily done since the
supermatrix Λ is not degenerate in the case when the highest occupied MO (HOMO)
is separated from the lowest unoccupied MO (LUMO) by a finite energy gap ∆ε so
that:

Λ−1 |j〉 〈i| = (εj − εi)
−1 |j〉 〈i|

If the supermatrix Λ becomes degenerate (at the point where the Hartree-Fock solu-
tion for which it is calculated loses its stability i.e. ceases to be a minimum of the
energy functional) the inversion is not possible any more, but the Hartree-Fock pic-
ture of the electronic structure itself becomes invalid. In this case the above treatment
obviously loses any sense.

1.5.4. Second quantization formalism

We have introduced the basic elements of the formalism to be used for describing
the electronic structure of molecular systems and described two most important tech-
niques of quantum chemistry: FCI and HF methods. The notations used so far to
represent many electronic wave functions – the coordinate representation – were
extremely cumbersome and in fact superfluous. There was no need to write down all
the combinations of the one-electron functions and their arguments entering the deter-
minant wave functions as the latter were completely defined by the list of entering
one-electron functions. Moreover, using the coordinate representation for the Hamil-
tonian leads to long lasting confusion related to the so called separable Hamiltonians,
which turn out, in fact, to be symmetry breaking (see below).
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The notation concerns are easily overcome by the following simple construct bear-
ing the name of second quantization formalism.21 Let us consider the space of wave
functions of all possible numbers of electrons and complement it by a wave func-
tion of no electrons and call the latter the vacuum state: |vac〉. This is obviously
the direct sum of subspaces each corresponding to a specific number of electrons.
It is called the Fock space. The Slater determinants eq. (1.137) entering the expan-
sion eq. (1.138) of the exact wave function are uniquely characterized by subsets
of spin-orbitals K = {k1, k2, . . . , kN} which are occupied (filled) in each given
Slater determinant. The states in the list are the vectors in the carrier space of spin-
orbitals (linear combinations of the functions of the {φk (x) = φmσ (r, s)} basis. We
can think about the linear combinations of all Slater determinants, may be of differ-
ent numbers of electrons, as elements of the Fock space spanned by the basis states
including the vacuum one.

The linear operators in Fock space are defined by their action on its basis elements.
Action of an operator a+

k on the vacuum state i.e. on the empty determinant produces
a 1×1 determinant formed by the function ϕk (x). These “determinants” are obvi-
ously the basis spin-orbitals themselves. By these acts of operators a+

k on the vacuum
state all the basis of one-electron states can be formed. It is logical to conclude that
an arbitrary linear combination of the operators a+

k with numerical coefficients, when
acting on the vacuum state, produces the function which is a linear combination of the
functions φk (x) with the same numerical coefficients. The Hermitian conjugate ak of
the operator a+

k acting on the Slater determinant containing only one function φk (x)
gets it back to the vacuum state. Acting by an operator ak on the vacuum state yields
the zero element of the vector space (not the vacuum state; the vacuum state is a state,
zero is zero). The pair of operators a+

k and ak are called respectively the creation and
annihilation operators of an electron in the state φk (x) or together – Fermi operators.
Further moves are necessary to extend the action of these operators to more general
determinants. This is done as follows. It is declared that the operator a+

k acting on an
N -electron determinant (that of an N × N -matrix) adds a column with the values of
all N functions already included in the Slater determinant for the coordinates of the
(N +1)-electron and a row with the values of the one-electron function φk for coor-
dinates of all electrons. Additionally the resulting determinant is multiplied by

√
N !

and divided by
√

(N + 1)!. This definition is natural: if the spin-orbital φk is already
in use in the N -electron determinant the result of action of the operator a+

k on such a
Slater determinant is the zero element of the vector space. The Hermitian conjugate
Fermi operator ak acting on the Slater determinants not containing the spin-orbital
φk converts them to the zero. If a row with the values of the function φk is present in
the N -electron Slater determinant it is removed as well as the column with the val-
ues of all functions at the coordinates of the N -th electron. Also the normalization is
adjusted by multiplying the result by

√
N !/ (N − 1)!. To complete this constructive

21For a detailed description of second quantization in the context of Quantum
Chemistry see [39–41]
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description of the creation and annihilation operators we have to add that applying the
same operator two times to any Slater determinant yields the zero for sure. Applying
two different operators in an arbitrary order to the vacuum operator must yield the
same state; 2 × 2 determinants, however, obtained by the rules described above, are
going to differ by the phase multiplier equal to −1. It is an automatic consequence
of the fact that changing the order of rows in any determinant results in changing its
sign.

All the described features of how the creation and annihilation operators act on the
Slater determinants constructed from the fixed basis of spin-orbitals are condensed in
the set of the anticommutation rules:

{a+
k , a+

k′} = {ak, ak′} = 0;

{a+
k , ak′} = δkk′ = δσσ′δmm′

(1.173)

which the Fermi operators obey. The braces above stand for the anticommutator of
two operators, so that:

{A, B} = AB + BA(1.174)

The above construct is known as second quantization formalism.
Much more important than the possibility of expressing the Slater determinants in

terms of creation operators is the possibility of expressing all the operators acting
upon the electron states in terms of the Fermi operators. We are not going to present
the formal construct here (it is well described in books [39–41]), rather we are going
to explain the situation.

Let us assume that we have a system of electrons in a single determinant state in
which, say, the state ϕk (k = mσ) is occupied (other states may be either occupied or
empty). This electron propagates interacting with some external potential (for exam-
ple that induced by nuclei). Under the action of this potential the electron scatters
into a state ϕk′ (k′ = m′σ′). In the absence of the magnetic field the spin projection
does not change so that σ′ = σ. This process is represented by the product of the
Fermi operators:

a+
k′ak

which can be literally described as destroying an electron in the one-electron state φk

and creating an electron in the one-electron state φk′ . The creation and annihilation
operators take care of the following selection rules: the above scattering process can
take place if the k′-state is not occupied and the k-state is (of course, it is possible
that k′ = k).

The corresponding contribution to the Hamiltonian reads

h
(1)
k′ka+

k′ak

and the energy multiplier h
(1)
k′k is the scattering matrix element of the operator of the

scattering potential between the states φk and φk′ . As we mentioned previously the
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external potentials in the nonrelativistic case do not depend on the spin projections of
the scattered electrons:

h
(1)
k′k =

∑
s

∫
d3rϕ∗

m′ (r)σ′∗(s)
(
−1

2
∇2 + V̂ne(r)

)
ϕm(r)σ(s)(1.175)

= δσ′σhm′m =
∫

d3rϕ∗
m′ (r)

(
−1

2
∇2 + V̂ne(r)

)
ϕm(r)

so that it is enough to calculate the integral with the orbitals ϕm′(r) and ϕm(r) only.
Analogously if there are two electrons in the states φk and φl their (Coulomb)

interaction results in the state where one of them is scattered to φk′ and the other to
φl′ . The product of the Fermi operators

a+
k′a

+
l′ alak

corresponds to this process which is literally described as destroying two electrons
in the states φk and φl, respectively, and creating two electrons in the states φk′

and φl′ (l = nτ ; l′ = n′τ ′). The selection rules ensured by the above product of
the Fermi operators are more complicated: the products of the annihilation operators
take care of the elimination of “self interaction” of the electron due to the fact that
akak ≡ a+

k a+
k ≡ 0; next, due to the fact that the total spin projection does not change

as in the classical Hamiltonian the electron-electron interaction is spin independent
the spin projections of the electrons involved satisfy the condition s′ + t′ = s + t –
total projection of spin conserves in each scattering act. The latter can be satisfied
if two pairs of spin functions: σ′ = σ; τ ′ = τ and σ′ = τ ; τ ′ = σ are used to
construct the involved spin orbitals. As in the case of one-electron scattering the
electron-electron scattering process contributes to the Hamiltonian the term:

h
(2)
k′l′lka+

k′a
+
l′ alak

with the energy multiplier:

h
(2)
k′l′lk =

∑
ss′

∫ ∫
d3rd3r′ϕ∗

m′(r)σ′∗(s)ϕm(r)σ(s)

× 1
|r − r′|ϕ

∗
n′(r′)τ ′∗(s′)ϕn(r′)τ(s′) =

Its nontrivial part

(m′m|n′n) =
∫ ∫

d3rd3r′ϕ∗
n′(r)ϕn(r)

1
|r − r′|ϕ

∗
m′(r′)ϕm(r′)(1.176)

known as a two-electron integral is, as previously, calculated over the orbitals only.
These moves allow us to write the electronic Hamiltonian in the second quantized

form with respect to the basis of (spin-)orbitals {φk(x)} introduced above:

Ĥ =
∑
k′k

h
(1)
k′ka+

k′ak +
1
2

∑
k′l′lk

h
(2)
k′l′lka+

k′a
+
l′ alak(1.177)
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where the multiplier 1
2 appears to avoid double count of the possible mutually scat-

tering pairs of electrons; restrictions on the spin indices in the above sum appear
as a result of the spin independence of either the kinetic energy, or of the elec-
tron attraction potential or of the electron-electron Coulomb interaction. Finally one
can use the anticommutation rules for the Fermi creation and annihilation opera-
tors in order to calculate expectation values (matrix elements) of different operators
(including the Hamiltonian) represented in the second quantized form over the pairs
of many-electron functions in the same representation. As mentioned already, the
Slater determinants are represented by rows of operators creating electrons in the
occupied spin-orbitals acting on the vacuum state. When an operator containing an
annihilation operator as a multiplier applies to such a row, the anticommutation rules
are used to transpose step by step the annihilation operator so that it finally acts
on the vacuum state. This latter term obviously vanishes, and the rest contributes
to the matrix element of many-electron functions. The formal representation of this
technique is known to physicists as the Wick theorem and to chemists as the Slater
rules [30].

1.5.5. Unitary group formalism

We mentioned earlier that the dimensionality of the FCI space is significantly reduced
due to spin symmetry. This can be formulated somewhat differently due to the relation
existing between the spin and permutation symmetries of the many-electronic wave
functions (see [30, 42]). Indeed, the wave function of two electrons in two orbitals a
and b allows for six different Slater determinants

b+
β a+

α |vac〉 = |a(1)α(1), b(2)β(2)| b+
α a+

β |vac〉 = |a(1)β(1), b(2)α(2)|
b+

α a+
α |vac〉 = |a(1)α(1), b(2)α(2)| a+

β a+
α |vac〉 = |a(1)α(1), a(2)β(2)|

b+
β a+

β |vac〉 = |a(1)β(1), b(2)β(2)| b+
β b+

α |vac〉 = |b(1)α(1), b(2)β(2)|

where a(1) stands for a handy notation of a(r1) and α(1) for that of α(s1) etc. They
all apparently satisfy the Pauli principle of antisymmetry of the many-electron wave
function with respect to interchange of the order of electron coordinates in the wave
function argument list. On the other hand, we also know that the electronic Hamil-
tonian does not depend on the spin coordinates of electrons so that one may think
that due to this the many electron wave functions can be factorized into products of
functions, one dependent on the spatial coordinates ri only and the other on the spin
coordinates si only, called respectively the spatial and the spin functions. It is easily
done to the above Slater determinants which can be linearly transformed (in fact it
is enough to pass to the sum and difference of the functions of the first row) to the
following set of functions:

|a(1)b(2)| (α(1)β(2) + α(2)β(1)) (a(1)b(2) + a(2)b(1)) |α(1)β(2)|
|a(1)b(2)|α(1)α(2) a(1)a(2) |α(1)β(2)|
|a(1)b(2)|β(1)β(2) b(1)b(2) |α(1)β(2)|
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In this set the functions can be classified into two types: in the right column the spa-
tial multiplier is symmetric with respect to transpositions of the spatial coordinates
and the spin multiplier is antisymmetric with respect to transpositions of the spin
coordinates; in the left column the spatial multiplier is antisymmetric with respect
to transpositions of the spatial coordinates and the spin multipliers are symmetric
with respect to transpositions of the spin coordinates. Because in the second case
the spatial (antisymmetric) multiplier is the same for all three spin-functions, the
energy of these three states will be the same i.e. triply degenerate – a triplet. The
state with the antisymmetric spin multiplier is compatible with several different spa-
tial wave functions, which probably produces a different value of energy when aver-
aging the Hamiltonian, thus producing several spin-singlet states. From this example
one may derive two conclusions: (i) the spin of the many electronic wave function
is important not by itself (the Hamiltonian is spin-independent), but as an indica-
tor of the symmetry properties of the wave function; (ii) the symmetry properties
of the spatial and spin multipliers are complementary – if the spatial part is sym-
metric with respect to permutations the spin multiplier is antisymmetric and vice
versa.

These observations are valid for the wave functions of an arbitrary number of elec-
trons. The respective generalization is done as follows: first we notice that the per-
mutation symmetry of a function is given by the so-called Young patterns: figures
formed by boxes, e.g.:

Υ =

and representing the way a given number of boxes N is represented as a sum of
smaller numbers of boxes (in the corresponding rows). These figures label the irre-
ducible representations Υ of the group of permutations of N objects (the SN group)
since any representation of N by the above sum uniquely corresponds to the class
of conjugated elements of the permutation group which in its turn is characterized
by the lengths of cycles in each permutation. The representation of many variables
by the functions is achieved if one fills the boxes by functional symbols (see below)
and assumes that the symbols along the rows are symmetrized and along the columns
are antisymmetrized. The Young pattern Υ with the boxes filled by functional sym-
bols is called Young tableau Υυ. They represent functions of N variables possess-
ing definite permutational symmetry. With this it is easy to understand how the spin
functions of definite permutational symmetry can be constructed. Indeed, we have
two functional symbols for the spin functions α and β. In order to obtain a repre-
sentation of the group of permutations of N particles by products of spin functions
they must be inserted in a Young pattern Υ of N boxes. It is clear however that the
allowable Young patterns cannot contain more than two rows as in this case at least
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one of the columns contains two equal functional symbols and thus vanishes upon
antisymmetrization, e.g.:

α
α
β

≡ 0

So only the patterns like:

Ῡ =
. .. . ..

are allowable and their allowable fillings are:

Ῡῡ = α α α α . . . β
β β β

It is easy to figure out the relation of this with the spin of the many-electron state. It
is clear that the above Young tableau corresponds to a many-electron state with the
spin projection equal to

nα − nβ

2
It is also clear that for a given two-row Young pattern one can construct 2S + 1
Young tableaux starting from a tableau where the first row is completely filled by αs
and replacing them one by one with βs. This allows us to conclude that each two-row
Young pattern corresponds not only to a state with definite permutational properties,
but also to the state with definite total spin S if the first row is longer by 2S boxes
than the second row (S may be thus half integer).

Now we can consider the symmetry properties of the spatial functions correspond-
ing to the above spin functions. They are uniquely defined from the requirement that
the product of the spatial and spin functions must be antisymmetric. In a way, what
was symmetrized in the spin part (rows) must be antisymmetrized in the spatial part
(columns) and vice versa. That means that the spin function represented by a two-
row Young pattern Ῡ with the first row longer by 2S boxes than the second one must
be complemented by a spatial function represented by a two-column Young pattern
Υ with the first column longer by 2S boxes than the second one, e.g.:

Υ =

Such Young patterns have to be filled by symbols of the orbitals with the understand-
ing that the many-electron spatial function thus obtained is formed from products
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of orbitals which are symmetrized along the rows and antisymmetrized along the
columns. Obviously, two equal orbitals cannot appear in the same column, but can
appear in different columns. As there are no more than two columns, each orbital
appears no more than twice, which corresponds to the usual notion that orbitals can
be no more than doubly filled. By this the permutational properties of the spatial func-
tions complementary to the spin functions of the definite total spin are established.

Using only the spatial parts of the many electronic wave functions as the basis
functions solves, to some extent, the problem of reducing the dimensionality of the
FCI method. Indeed, by employing thus labeled basis set of many electron functions
one uses only one basis function of a given total spin for all possible spin projections
and the Hamiltonian matrix breaks down into blocks for each given value of the total
spin. The problem is, however, to be able to write down the electronic Hamiltonian in
the basis of the spatial parts only. This can be done by algebraic means by employing
the wonderful interrelation between the irreducible representations of the permutation
group SN and the representations of the group of M × M unitary matrices U(M).
The breathtaking fact is that the above N -box Young tableaux filled by orbital sym-
bols taken from an orthonormal basis of an M -dimensional space of orbitals form a
basis of an irreducible representation Υ of the group U(M). This representation is
of the N -th (tensor) power with respect to the matrix elements of an M × M matrix
u ∈ U(M) transforming the orbitals and has the permutation properties as those
defined by the irreducible representation of the permutation group SN determined
by the Young pattern employed. The dimensionality of this representation is given by
the Weyl formula:

dim(Υ = Υ(M, N, S)) =
2S + 1
M + 1

(
M + 1

1
2N + S + 1

)(
M + 1
1
2N − S

)
and the rows of this degenerate irreducible representation of U(M) are numbered by
the Young tableaux Υυ filled by the orbital symbols. The fact that the Young tableaux
Υυ filled by M orbital symbols form the basis of an irreducible representation Υ of
the group U(M) allows one to express operators acting within the space of this rep-
resentation in terms of the so-called generating operators (generators) of this group
specific for this representation. The generating operators of the group U(M) can be
defined through the creation and annihilation operators by the relations

Eij =
∑

σ

a+
iσaiσ

where i, j = 1 ÷ M run over the basis orbitals. The matrix representation EΥ
ij of

the operators Eij in the space of the irreducible representation spanned by the Young
tableaux Υυ can be found on purely algebraic grounds. In their terms the Hamiltonian
matrix in the basis of the Young tableaux acquires the form

H =
∑
ij

h
(1)
ij EΥ

ij +
1
2

∑
ijkl

(ij | kl)
(
EΥ

ijE
Υ
kl − δjkEΥ

il

)
(1.178)
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This representation among others removes one more inconsistency: in quantum
chemistry one generally deals with the systems of constant composition i.e. of the
fixed number of electrons. The expression eq. (1.178) allows one to express the matrix
elements of an electronic Hamiltonian without the necessity to go in a subspace with
number of electrons different from the considered number N which is implied by the
second quantization formalism of the Fermi creation and annihilation operators and
on the other hand allows to keep the general form independent explicitly neither on
the above number of electrons nor on the total spin which are both condensed in the
matrix form of the generators EΥ

ij specific for the Young pattern Υ for which they are
calculated.

1.5.6. Group function approximation

The Hartree-Fock(-Roothaan – HFR) approximation briefly described in Section 1.5.3
still remains the basis for further development of the major part of quantum chem-
istry methods. Even for the so-called post Hartree-Fock methods, it serves as the
first step for several of them. The solutions of the Hartree-Fock equations in the
fixed basis of orbitals yield a set of orthonormalized orbital functions (canonical
MOs) which can be used to construct the set of the N -electron basis determinants
necessary for the FCI method. This way of doing things is, however, not free from
problems. Despite their appearance as a linear method, in eqs. (1.143)–(1.148),
the HFR method is in fact strongly nonlinear due to the dependence of the Fock
operator on its own eigenstates through the one-electron density. Thus, obtaining
the solutions to the HFR problem requires a well-known iteration procedure, which
does not always easily converge. On the other hand, in some situations even if the
HFR approximate wave function is obtained, it turns out to be nevertheless too far
from the true ground state. In this case a stepwise obtaining of further corrections
to it turns out to be impractical since the expansion in terms of the MO-built deter-
minants converges too slowly and is not easily interpretable. Thus it again goes
about regrouping the terms in the FCI expansion to get better convergence. This
can be done on physical grounds, which incidentally provide a good starting point
for constructing hybrid methods, which is the topic of the present book. Following
McWeeny [29, 30, 45] one can employ for that purpose a somewhat more general
form for the zero approximate wave function, known as the group function approx-
imation. Let us assume that the molecular system under consideration consists of
“distinguishable” subsystems A, B, C, . . . , each containing some definite number of
electrons NA, NB, NC , . . . NA + NB + NC + · · · = N . The simplest choice of the
wave function in the form of a product

ψ(x1, . . . , xN ) = ψA(x1, . . . , xNA)ψB(xNA+1, . . . , xNA+NB ) . . .

was originally called the group function approximation. It is exact for so-called “sep-
arable” Hamiltonians. According to [43] in a system comprising (for the sake of sim-
plicity) only two subsystems A and B its Hamiltonian can be written in the coordinate
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representation in terms of the separable Hamiltonian H0 and the intersubsystem part
(it is not, however, the interaction):

Ĥ = Ĥ0 + ĤAB = ĤA + ĤB + ĤAB;

ĤA = −1
2

NA∑
i=1

∇2
i +

NA∑
i=1

i−1∑
j=1

1
|ri − rj |

ĤB = −1
2

NA+NB∑
i=NA+1

∇2
i +

NA+NB∑
i=NA+1

i−1∑
j=NA+1

1
|ri − rj |

ĤAB =
NA∑
i=1

NA+NB∑
j=NA+1

1
|ri − rj |

(1.179)

The true Hamiltonian H appears as a limiting case of the parametric family of the
operators:

Ĥ(λ) = Ĥ0 + λĤAB;

Ĥ(0) = Ĥ0; Ĥ(1) = Ĥ

For the value λ = 0 (separable Hamiltonian) any interaction between the subsystems
is excluded. This, however, brings up two problems: first of all, excluding all interac-
tions yields a very poor Hamiltonian, as even strong ones like Coulomb repulsions of
electrons are dropped from the zero approximation. The second problem, however,
is even more severe, as the separability condition breaks that symmetry of the sys-
tem which is imposed by the fundamental requirement of equivalence of electrons.
As one can easily see [44] a “separable” Hamiltonian is not invariant with respect
to interchange of electronic coordinates if these latter “belong” to different groups
(subsystems). It is obviously wrong, as the principle of the equivalence of electrons
forbids us to make any statements concerning the relation of that or another electron
to that or another subsystem. This requirement has nothing to do with the strength
of the interaction between the subsystems. No matter how far the molecules are, the
electrons in them do not become red or blue because of that, so the overall antisym-
metry of the electronic wave function must be preserved. As the antisymmetry is not
preserved, the product wave function cannot be an eigenstate even for the simplest
Hamiltonian:

H = HA + HB + HC + . . .(1.180)

without interaction between parts A, B, C, . . . . Even in the absence of interactions
between the subsystems, the symmetry requirement for the wave function is to belong
to the fully antisymmetric representation of the symmetric group of N electrons SN ,
and the simple product function obviously does not belong to this representation.
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This problem is solved by explicitly including the antisymmetrization operator in
the definition of the group function [45]:

ψ(x1, . . . , xN ) = A
[
ψA(x1, . . . , xNA

)ψB(xNA+1, . . . , xNA+NB
) . . .

]
=

= ψA(x1, . . . , xNA
) ∧ ψB(xNA+1, . . . , xNA+NB

) ∧ . . .
(1.181)

where A stands for the antisymmetrization operator (projection operator to the
required fully antisymmetric irreducible representation of the SN group) in the
coordinate representation and ∧ stands for the antisymmetrized product of functions,
provided each multiplier is already an antisymmetric function.

The wave function of eq. (1.181) is already an eigenfunction for the Hamiltonian
with the interaction between the subsystems turned off and its eigenvalue is simply:

E = EA + EB + EC + . . .(1.182)

where it is assumed that each of the group functions ψm is an eigenfunction for the
corresponding Hamiltonian with the eigenvalue Em.

Although upto this point we have coped with the antisymmetry of the wave func-
tion, the group function (GF) approximation still does not look too attractive, due
to a strong feeling that the whole construct may be valid only in a weak interaction
limit. The problem of interaction strength can be solved and the range of the sys-
tems to which the GF approximation applies can be significantly enlarged. Indeed
in the second edition of his brilliant book R. McWeeny [30] includes in the list of
weakly interacting subsystems the core shells of atoms, lone electronic pairs, pairs of
electrons in different chemical bonds, etc. Obviously, all these subsystems of molec-
ular systems interact very strongly at least due to the Coulomb forces. An obvious
counterexample can be added for the requirement of the “strong spatial isolation”:
namely, the canonical MOs coming from the Hartree-Fock method. The wave func-
tion of the Hartree-Fock approximation eq. (1.142) is obviously a special case of the
group expansion where each MO takes part of a function for a group formed by the
single electron. In the case of the canonical MOs there is no reason to speak either
about weak interaction nor about spatial isolation of these subsystems.

To find a way out of this contradiction we have to first of all elucidate the phys-
ical sense of some terms used and then find formal mathematical expression for
these physical ideas. The key concept is the distinguishability of the subsystems
described by the group functions. This concept has been introduced and analyzed
by K. Ruedenberg, who noticed [46] that ‘fragments in a molecular system can be
singled out if these latter are observable, so that they manifest a reproducible and
natural behavior; if for a series of molecules variations of fragments fit to that or
another curve and its parameters can be found empirically by considering enough of
the series members this proves that singling out the fragments makes sense’. Obvi-
ously the fragments can be singled out in organic molecules where these can be
two-center two-electron bonds, or conjugate π-systems in polyunsaturated species.
Analogously d-shells in transition metal complexes in many cases can be shown to
be observable objects (see below). Now we have to decide what is a more formal
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expression for the distinguishability or observability of the fragments in molecular
systems. For this we notice that the GF eq. (1.181) satisfies a specific symmetry con-
dition: it is an eigenfunction for each of the family of the particle number operators
N̂A, N̂B, N̂C , . . . with the eigenvalues NA, NB, NC , . . . , respectively. Each of these
operators obviously commutes with the approximate Hamiltonian with no interaction,
as defined above. However, the possibility of defining a set of conserved operators of
numbers of particles for the system under consideration represents a much weaker
requirement than that of “spatial separation” or “weak interaction” and thus can be
satisfied in numerous cases. As for the general Hamiltonian, the criterion for the exis-
tence of an acceptable description in terms of the GF may be formulated as that of
the existence of a set of the number of particle operators:

N̂m;
∑
m

N̂m = N̂(1.183)

such that they all commute with a “significant” part Ĥ0 of the Hamiltonian Ĥ:[
N̂m, Ĥ0

]
= 0;

[
N̂m, Ŵ

]
	= 0, ∀m

Ĥ = Ĥ0 + Ŵ
(1.184)

The noncommuting part Ŵ of the Hamiltonian takes the part of “interaction” or “per-
turbation” defined with respect to that part Ĥ0 of the total Hamiltonian Ĥ which is
symmetric with respect to the group generators N̂m.22 This perturbation must be
weak in order to assure the validity of the GF approximation. The set of the operators
N̂m optimized with respect to this criterion yield the natural break of the system into
subsystems.

Switching to a basis of orbitals allows us to proceed toward constructing the
description of a molecular electronic structure based on the GF approximation under
well acceptable restrictions. Indeed, let us assume that the multipliers in eq. (1.181)
satisfy the additional condition of strong orthogonality:∫

ψR∗(x1, x2 . . . xi . . . xNR)ψS(x1, x2 . . . xi . . . xNS )dxi = 0

∀i ≤ min(NR, NS)
(1.185)

Then the separability theorem [48, 49] states that the strong orthogonality is equiva-
lent to dividing the complete space of one-electron functions into mutually orthogo-
nal subspaces:

L =
⊕
m

Lm; dimLm ≥ Nm

Lm ∩ Ln = {0}, m 	= n
(1.186)

and constructing each of the multiplier functions ψm as an expansion over nm-
electron Slater determinants such that the filled spin-orbitals in them belong to the

22See information on the Lie groups and its generators. For a beginning, [47] may
be enough.
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subspace Lm and only to it. More technically, one can think about selecting a set of
orthogonal projection operators summing upto the identity operator:∑

m

P̂m = Î; P̂mP̂n = δmnP̂m

Lm = ImP̂m

(1.187)

and setting subspaces Lm to be the images of the corresponding projection operator.
The relation with the definition of groups in terms of numbers of electron operators is
reestablished by the following construct. In each of the subspaces Lm an orthogonal
basis of spin-orbitals ϕmv can be chosen. Defining the operator N̂m of the number
of electrons in the carrier subspace Lm (or equivalently in the corresponding electron
group) as

N̂m =
∑

v

a+
mvamv(1.188)

we get the required expansion. From this the GF approximation is equivalently for-
mulated as a statement about the constancy of the number of electrons in certain
orthogonal subspaces of the entire space of one-electron states.

The wave function of electrons in the GF approximation can be briefly rewritten in
the form:

Ψ0 =
M∧

A=1

ΨA(1.189)

The sign ∧, as previously, denotes the antisymmetrized product of the multipliers
following it. The functions ΨA are taken as linear combinations of the NA-electron
Slater determinants such that the occupied spin-orbitals in each Slater determinant
are taken from the carrier subspace LA.

Using the second quantization formalism simplifies everything greatly: Antisym-
metrization is achieved simply by putting all the operators creating electrons in the
one-electron states of the A-th group to the left from those of the B-th group, pro-
vided B < A. The multipliers ΨA can be considered as linear combinations of rows
of NA creation operators a+

Av.
The second quantization formalism also greatly simplifies the treatment of the

Hamiltonian and allows its analysis pertinent to the GF approximation for the wave
function.23 Indeed, the total electron Hamiltonian Ĥ can be rewritten using the sec-
ond quantization formalism according to the division of the orbital basis set into
carrier subspace basis sets as introduced above:

Ĥ =
∑
A

ĤA +
∑
A<B

ŴAB(1.190)

23Subsequent material is based on A.L. Tchougréeff, Group Functions, Loewdin
Partition, and Hybrid QC/MM Methods for Large Molecular Systems. Phys. Chem.
Chem. Phys. 1, 1051, 1999. Reproduced by permission of the PCCP Owner Societies.
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where ĤA contains only the products of the Fermi operators creating/annihilating
electrons in the spin-orbitals ascribed to group A. The interaction operators ŴAB

are those which contain the mixed products of the creation/annihilation operators
of the groups A and B. (In the general case there are, of course, the terms in the
Hamiltonian, which contain products of the operators belonging to three or four dif-
ferent groups. We, however, omit them here for the sake of simplicity. Apart from the
latter restriction the above form of the electronic Hamiltonian is quite general.) Also
for the sake of simplicity we restrict ourselves to the interaction operator contain-
ing only one-electron transfer terms (resonance interaction) between the groups and
restrict the two-electron interactions to those which conserve numbers of electrons
in the groups. Under these conditions the interaction terms in eq. (1.190) acquire the
form:

ŴAB = Ŵ r
AB + Ŵ c

AB ,

Ŵ r
AB =

∑
a∈A,b∈B

wr
ab(a

+b + b+a)

Ŵ c
AB =

∑
aa′∈A,
bb′∈B

(aa′ || bb′)a+b+b′a′

(1.191)

Here (aa′ || bb′) is the symmetrized two-electron matrix element of the electron-
electron Coulomb repulsion.

(aa′ || bb′) = (aa′ | bb′) − (ab′ | ba′)(1.192)

and other notations are self-explanatory.
An estimate of the ground state of the system can be found by applying the vari-

ational principle to the GF trial wave function. Let us assume that the (spin-)orbital
basis in each carrier subspace assigned to a group is fixed. It is not necessary, as
it is enough if the carrier subspaces are themselves fixed, but this assumption eases
the technical details. Under these conditions, each of the group multipliers ΨA can
be thought to be an FCI wave function of NA electrons in the dim Lm-dimensional
space and the amplitudes of the corresponding configurations over these Slater deter-
minants form the set of the variational variables ξ. This yields a system of intercon-
nected eigenvalue problems with the effective Hamiltonians ĤA

eff for the functions
ΨA for the corresponding groups. Each of the group effective Hamiltonians depends
on the ground state wave functions of all remaining groups [29, 30]:

ĤA
effΨA = EAΨA

ĤA
eff = ĤA +

∑
B �=A

〈ΦB
0 | ŴBA | ΦB

0 〉

ŴBA = Ŵ c
BA

(1.193)

The averaging of the Coulomb interaction operator can be easily performed following
the prescription given in [29, 30]:
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〈ΦB
0 | Ŵ c

BA | ΦB
0 〉 =

∑
aa′∈A

a+a′
∑

bb′∈B

(aa′ || bb′)
〈〈

b+b′
〉〉

B
(1.194)

where 〈〈
b+b′

〉〉
B

= 〈ΦB
0 | b+b′ | ΦB

0 〉
It leaves intact the fermion operators related to the A-th group itself. By virtue of this
the two-electron operators Ŵ c

BA result in a renormalization of one-electron terms in
the Hamiltonians for each group A = 1, ..., M . The expectation values 〈〈b+b′〉〉B
are the one-electron densities. The Schrödinger equation eq. (1.193) can be driven
close to the standard HFR form. This can be done if one defines generalized Coulomb
and exchange operators for group A by their matrix elements in the carrier space of
group A:

ĴAB
aa′ =

∑
bb′∈B

(aa′ | bb′)
〈〈

b+b′
〉〉

B
(1.195)

K̂AB
aa′ =

∑
bb′∈B

(ab′ | ba′)
〈〈

b+b′
〉〉

B

After this the analogy with the Hartree-Fock equation eq. (1.143) becomes complete
as the effective Hamilton operator for group A acquires the form:

ĤA
eff = ĥA +

∑
B �=A

ĴAB −
∑
B �=A

K̂AB + ĝA(1.196)

where ĥA is the collection of one-electron terms involving the Fermi operators form
group A; ĴAB and K̂AB defined just above are also the one-electron operators acting
in the carrier subspace of group A; and ĝA is a collection of two-electron terms
formed by the Fermi operators associated with group A.

1.6. ALTERNATIVE TOOLS FOR REPRESENTING ELECTRONIC
STRUCTURE

Similar to quantum mechanics, which can be formulated in terms of different quanti-
ties in addition to the traditional wave function formulation, in quantum chemistry a
number of alternative tools are developed for this purpose, which may be useful in the
context of the present book. We have already described different approximate models
of representing the electronic structure using (many-electronic) wave functions. The
coordinate and second quantization representations were employed to get this. How-
ever, the entire amount of information contained in the many-electron wave function
taken in whatever representation is enormously large. In fact it is mostly excessive for
the purpose of describing the properties of any molecular system due to the specific
structure of the operators to be averaged to obtain physically relevant information
and for the symmetry properties of the wave functions the expectation values have
to be calculated over. Thus some reduced descriptions are possible, which will be
presented here for reference.
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1.6.1. Reduced density matrices

Closely inspecting the operator terms entering the electronic Hamiltonian eq. (1.27)
one can easily see that they are sums of equivalent contributions dependent on coordi-
nates of one or two electrons only. Analogously in the second quantization formalism
only the products of two and four Fermi operators appear in the Hamiltonian. Insert-
ing the trial N -electron wave function of the (ground) state into the expression for
the electronic energy yields its expectation value in terms of the expectation values
of the one- and two-electron operators:

E =
〈
Ĥ
〉

=
∑
nn′σ

h
(1)
nσn′σ

〈
a+

nσan′σ
〉

+

+
∑

mm′nn′
σσ′

h
(2)
mσ′mσ′nσn′σ

〈
a+

nσa+
mσ′am′σ′an′σ

〉
(1.197)

entering the Hamiltonian expansion eq. (1.177). The averaging is performed over a
function which corresponds to some specific values of the total spin S, of its projec-
tion Sz , of the irreducible representation of the point group Γ, and the row γ of the
latter.

The expectation values

ρ(1) (k1, k2) =
〈
a+

k1
ak2

〉
ρ(2) (k1, k4; k2, k3) =

〈
a+

k1
a+

k2
ak3ak4

〉(1.198)

are the elements of so-called one- and two-electron reduced density matrices in the
representation of the spin-orbitals φki . Habitually they are defined in the coordinate
representation according to [30]:

ρ(1)(x, x′) = N

∫
Ψ∗(x, x2, . . . xN )×

×Ψ(x′, x2, . . . , xN )dx2 . . . dxN

ρ(2)(x1, x
′
1; x2, x

′
2) =

N(N − 1)
2

∫
Ψ∗(x1, x2, x3, . . . xN )×

×Ψ(x′
1, x

′
2, x3, . . . , xN )dx3 . . . dxN

(1.199)

The relation to the density matrix elements in the spin-orbital occupation num-
bers representation recovers from noticing that the rows of indices of spin-orbitals
{k1, k2, . . . , kN} = K (defining a row of creation operators a+

kN
...a+

k2
a+

k1
, forming

a basis Slater determinant) can be in the same manner considered as a set of elec-
tronic coordinates in the spin-orbital representation as is the list {x1, x2, . . . , xN},
which is the list of arguments of the Slater determinant (N !)−

1
2 |φk1 (x1), φk2 (x2),

. . . , φkN (xN )| in the coordinate representation. The value of the wave function in
the point {k1, k2, . . . , kN} of this new configuration space is nothing but CK where
K = {k1, k2, . . . , kN}. The only difference is that in the definition of the ampli-
tudes CK in Section 1.5.1 eq. (1.137) we assumed the N -tuple K to be ordered:
{k1 < k2 < . . . < kN}. This restriction can be lifted here by noticing that according
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to the Pauli principle the value of the wave function on whatever unordered N -tuple
{k1, k2, . . . , kN} equals CK times (−1)p where p is the number of the transpositions
to be applied to {k1, k2, . . . , kN} to make it ordered. From the above it is easy to
understand that

ρ(1) (k, k′) =
∑
K,K′

CKCK′

ρ(2) (k1, k
′
1; k2, k

′
2) =

∑
K,K′

CKCK′
(1.200)

where in the first case the summation extends to all pairs of N -tuples such that K=
{k, k2, . . . , kN}, K′ = {k′, k2, . . . , kN} and in the second case it extends to all pairs
of N -tuples such that K= {k1, k2, k3, . . . , kN}, K′ = {k′

1, k
′
2, k3, . . . , kN}. Using

the defined elements of one- and two-electron density matrices the value of the energy
can be rewritten as:

E(ΓS) = Spρ(1)h(1) + Spρ(2)h(2)(1.201)

where ΓS refers to the symmetry and spin of the wave function the densities
eq. (1.199) are calculated for.

The expressions eqs. (1.197), (1.199), (1.200), (1.201) are completely general.
From them it is clear that the reduced density matrices are much more economi-
cal tools for representing the electronic structure than the wave functions. The two-
electron density (more demanding quantity of the two) depends only on two pairs of
electronic variables (either continuous or discrete) instead of N electronic variables
required by the wave function representation. The one-electron density is even sim-
pler since it depends only on one pair of such coordinates. That means that in the
density matrix representation only about (2M)4 numbers are necessary to describe
the system (in fact – less due to antisymmetry), whereas the description in terms of
the wave function requires, as we know (2M)!

N !(2M−N)! numbers (FCI expansion ampli-
tudes). However, the density matrices are rarely used directly in quantum chemistry
procedures. The reason is the serious problem which appears when one is trying to
construct the adequate representation for the left hand sides of the above definitions
without addressing any wave functions in the right hand sides. This is known as
the N -representability problem, unsolved until now [51] for the two-electron den-
sity matrices. The second is that the symmetry conditions for the electronic states
are much easier formulated and controlled in terms of the wave functions (Density
matrices are the entities of the second power with respect to the wave functions so
their symmetries are described by the second tensor powers of those of the wave
functions).

The density matrix description is useful when discussing the electron correlations.
The statement that the motion of electrons is correlated can be given an exact sense
only if the two-electron density matrices eqs. (1.199) and (1.200) are used. In terms
of the wave function, the statement of the correlated character of electron motions
sounds like a negative statement: the non-correlated (Hartree-Fock) wave function
is one which is represented by a single Slater determinant, and the correlated one
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is that which cannot be represented by any single Slater determinant. This type of
definition does not have strict sense as the number of determinants in the expansion
of the wave function depends on the basis of spin-orbitals used for this purpose.
Simply inserting the expansion of MOs over the basis of atomic spin-orbitals in each
row one immediately gets a function which is a superposition of all (2M)!

N !(2M−N)! . The
invariant formulation dating back to Löwdin [50] can be written as:

ρ(2)(k1, k
′
1; k2, k

′
2) =

∣∣∣∣ρ(1)(k1, k
′
1) ρ(1)(k2, k

′
1)

ρ(1)(k1, k
′
2) ρ(1)(k2, k

′
2)

∣∣∣∣− χ(k1, k
′
1; k2, k

′
2)(1.202)

where the first term expands as∣∣∣∣ρ(1)(k1, k
′
1) ρ(1)(k′

1, k2)
ρ(1)(k1, k

′
2) ρ(1)(k2, k

′
2)

∣∣∣∣ = ρ(1)(k1, k
′
1)ρ

(1)(k2, k
′
2)(1.203)

− ρ(1)(k1, k
′
2)ρ

(1)(k′
1, k2)

and the second one is known as the cumulant of the two-electron density matrix (see
e.g. [51, 52]). Different approximate forms of wave function produce corresponding
simplification in the reduced density matrices. For example, substituting the single
determinant Hartree-Fock wave function eq. (1.142) to the density matrix definitions
eq. (1.199) yields a simple expression for the two-particle density matrix, which is
uniquely determined by the one-electron density matrix:

ρ
(2)
HF(k1, k

′
1; k2, k

′
2) =

∣∣∣∣∣ ρ(1)
HF(k1; k′

1) ρ
(1)
HF(k1; k′

2)
ρ
(1)
HF(k2; k′

1) ρ
(1)
HF(k2; k′

2).

∣∣∣∣∣(1.204)

In other words, the Hartree-Fock approximation is nothing but setting the cumulant
of the two-electron density matrix to be zero:

χHF(k1, k
′
1; k2, k

′
2) ≡ 0(1.205)

From here it is obvious that for the Hartree-Fock approximation the parametrization
of the energy not referring directly to the wave function is nevertheless possible (the
Hartree-Fock density is a projection operator and it can be directly written using say
eq. (1.107)), but the cost is fixing χ ≡ 0 with the consequences of this. (We can say
that the works devoted to foundations of DFT basically reduce to developing a more
or less widely applicable form of the two-electron density.)

The GF approximation has many common features with the HF(R) approximation.
According to [29, 30] the following relations for the one- and two-electron density
matrices take place and allow us to calculate efficiently the matrix elements of the
density with the functions of eq. (1.181):

ρ
(1)
GF(k; k′) =

∑
A

ρ
(1)
A (k; k′)

ρ
(2)
GF(k1, k

′
1; k2, k

′
2) =

∑
A

ρ
(2)
A (k1, k

′
1; k2, k

′
2)+

+
∑
A �=B

∣∣∣∣∣ρ(1)
A (k1; k′

1) ρ
(1)
A (k1; k′

2)
ρ
(1)
B (k2; k′

1) ρ
(1)
B (k2; k′

2)

∣∣∣∣∣
(1.206)
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where the density matrices ρ
(1)
A and ρ

(2)
A are calculated according to the formulae in

eq. (1.200) by partially integrating the wave functions of the corresponding group
only. The two-electron density matrix for each group ρ

(2)
A can be expanded analo-

gously to the total two-electron density matrix: into the determinantal HF(R) part and
the cumulant χA. It is easy to see that in the GF case the cumulant of the two-electron
density is nonvanishing only if all four spin-orbital indices k1, k2; k′

1, k
′
2 belong to the

same group. If at least one of them belongs to a different group the corresponding ele-
ments of the cumulant matrix vanish. By this we can see that the GF functions take
into account the nontrivial part of the correlation only inside each of the groups (the
trivial part of correlation – the Fermi hole is accounted for by the antisymmetry of
the wave function or equivalently by either the intragroup or intergroup determinan-
tal terms in the expansion of ρ

(2)
GF). The disappearance of the cumulant between the

groups indicates that electrons in them behave as independent particles with no more
correlation than is imposed by the antisymmetry requirement (Fermi correlation).

1.6.2. Resolvents and Green’s functions

The density matrices described in the previous section allowed to significantly reduce
the description of the electronic structure as compared to that provided by the wave
function representation and also retain the most important features of the electron
distribution. Also in the HF approximation the one-electron density matrix is tightly
related to the wave function: It is an operator projecting to the subspace spanned by
the occupied MOs of the single Slater determinant involved. However, the energy
characteristics of this occupied manifold are missing as are the dynamic features –
all of which describe the response of the system to external perturbation (including
the interactions between the subsystems in complex systems) – not covered by the
density matrices alone. Physicists have developed a powerful language which allows
one to describe by a single quantity all aspects of the behavior of a many-particle (in
special cases many-electron) system – the formalism of the Green’s functions, which,
despite the existence of very clear introductions to it targeted at chemists [39, 40] is
not widely used so far in quantum chemistry. The reason is most probably that even in
physics this language is largely used for deriving some general relations rather than
for performing actual calculations. As in the present book we are more concerned
with the general constructs necessary for understanding the situation in the complex
molecular systems, we briefly describe this technique and use it in several occasions
in our further derivations.

Probably the easiest way of introducing Green’s functions in the many-electron
context is to begin by using it to describe the electronic structure in the Hartree-Fock
approximation. As shown in Section 1.5.3 the solution of the Hartree-Fock prob-
lem is known up to the subspace spanned by the occupied MOs of the single Slater
determinant representing the trial wave function of the Hartree-Fock approximation.
This subspace can be treated as an image subspace of the corresponding projection
operator which is given by eq. (1.144). This projection operator is obviously a direct
sum (in the sense of Section 1.5.6) of the one-dimensional orthogonal projection
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operators, each corresponding to an occupied MO. Due to the eigenvalue/eigenvector
form of the HF problem the projection operators to the occupied MOs can be written
in terms of the formal solution of this problem by resolvents:

ρi(x, x′) = φ∗
i (x)φi(x′) =

1
2πi

∮
Ci

R̂(z)dz(1.207)

R̂(z) =
(
z − F̂ [ρ̂]

)−1

(1.208)

The resolvent in eq. (1.208) is called the one-electron Green’s function and the nota-
tion for it reads G

(1)
HF(z). The integration contour may be set in such a way that it

encloses all the poles of the resolvent corresponding to the occupied MOs giving by
this the required total projection operator. In the spin-orbital occupation number and
the second quantization representations related to each other, one can write the oper-
ator projecting to the occupied (spin)-MO as an operator of the number of particles
in it. Indeed, the expression

f+i =
∑

k

uika+
k

where uik are the MO LCAO expansion coefficients, is nothing but the operator cre-
ating an electron on the i-th MO; its Hermitian conjugate fi – destroys one. Forming a
product f+i fi and applying it to the Slater determinants constructed in the basis of the
MOs of the problem at hand, immediately shows that those determinants which have
the i-th MO occupied are the eigenvectors of this operator with the eigenvalue one;
all others – which have this MO empty – are eigenvectors with the eigenvalue zero:
i.e. f+i fi is a projection operator. The same applies to the operator 1− f+i fi which in
its turn projects to the Slater determinants which have the i-th MO empty. This allows
to further develop the formalism by writing

G
(1)
HF(z) =

2M∑
i=1

{ 〈
f+i fi

〉
HF

z − εi − iδ
+

1 −
〈
f+i fi

〉
HF

z − εi + iδ

}
where both the occupied and empty MOs are included in the construction of what
is called the one-electron Green’s function in the Hartree-Fock approximation in
the energy (frequency) representation. The expectation value is assumed over the
Hartree-Fock ground state Slater determinant. The integration contour can now be
taken as the entire real axis (from −∞ to ∞) with the notion that it is closed in
the upper half-plane. Under these conditions only the occupied orbitals whose poles
εi + iδ turn out to be infinitesimally shifted up from the real axis enter into play. The
Fermi operators f+i and fi can be replaced by their expansions over the basis operators
a+

k and ak′ thus giving the representation of the Green’s function:

G
(1)
HF(k, k′; z) =

2M∑
i=1

{〈
a+

k ak′
〉
HF

z − εi − iδ
+

δkk′ −
〈
a+

k ak′
〉
HF

z − εi + iδ

}
(1.209)
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in the basis of the original basis spin-orbitals, where from the values of the density
matrix elements it is restored by integration over frequency:

ρ
(1)
HF(k, k′) =

〈
a+

k ak′
〉
HF

=
1

2πi

∫
dωG

(1)
HF(k, k′; ω)(1.210)

So far nothing interesting has happened, as everything turns out to be different dis-
guises of the same known quantities: if the solution of the Hartree-Fock problem is
known, it can be rewritten in a suitable form. The situation changes if one decides to
extend the above definition of the one-particle Green’s function to a general ground
state by dropping the subscript HF. In this situation one can hope to save the relation
between this function and potentially exact one-electron density, but to do so one
needs an equation to determine the Green’s function form. Of course, one can use the
perturbative techniques for the resolvent by trying to represent the difference between
the exact Coulomb interaction and its average form, entering the HF approximation,
as a perturbation. This gives a start to a whole variety of techniques based on the
Dyson equation for the resolvent and thus for the Green’s function. We are however
interested in a more exciting result which is used below.

Let us assume from now on that by definition the one-electron Green’s function in
the energy domain is:

G(1)(k, k′; z) =
∑

i

{ 〈
a+

k ak′
〉

z − εi − iδ
+

〈
ak′a+

k

〉
z − εi + iδ

}
(1.211)

where εi represents, in the first term, the energies of positively ionized states of the
system under study (those with one electron less) and in the second term the energies
of the negatively ionized states of the system under study (those with one electron
more), both counted from the ground state energy of the system which is incidentally
used for calculating the expectation values in the above definition, where we also
employed the anticommutation relation for the Fermi operators. This quantity when
integrated over the real frequency axis produces the exact one-electron density matrix

ρ(1)(k, k′) =
〈
a+

k ak′
〉

=
1

2πi

∫
dωG(1)(k, k′; ω)(1.212)

By going to the time domain and back (see for details [30]) one obtains the relation
for the exact ground state energy of the system which reads:

E0 =
1

4πi

∫
dω

[
ω SpG(1)(ω) + Sp

(
G(1)(ω)h(1)

)]
(1.213)

This is a deceivingly simple result, which is, however, useful. It says that for obtaining
the exact ground state energy it is enough to know one-particle Green’s function,
and that there is no immediate need for two-electron quantities such as two-electron
densities and cumulants. The life is of course not that easy: In fact to be on the safe
side one needs to really deal with exact one-electron Green’s function over all energy
domain and to know exact values all ionization potentials and electron affinities and
the corresponding matrix numerators. Namely these quantities accurately hidden in
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the word “exact” are dependent on exact two-electron densities and are not easily
accessible. Nevertheless, the possibility of the above form of the exact ground state
energy opens prospects for various “fitting” procedures which will be discussed in
due prescription.

1.7. GENERAL SCHEME FOR SEPARATING ELECTRONIC VARIABLES

In the previous sections we gave a brief account of several approaches to molec-
ular electronic structure. From a general point of view they can be classified as
reflecting different levels of separating electronic variables and/or taking into account
and/or neglecting electronic correlations. The technical implementations (specific
tools used) were not very important in that context, although the ease of discus-
sion may significantly depend on selecting an appropriate representation. The FCI
wave function, being the most general form of the electronic wave function, does not
assume any level of separating electronic variables: they are all correlated. By con-
trast, the Hartree-Fock approximation corresponds to as much uncorrelated motion of
electrons as admitted by the Pauli principle. Clearly the GF approximation takes an
intermediate position between these two extrema as it allows us to take into account
correlations within those or other groups to the extent it is necessary for any specific
problem. It can be done by selecting that form of the group function which is ade-
quate for the specific purpose of describing characteristic physical conditions in each
group. Prerequisite for such a convenient treatment is of course the validity of the GF
approximation itself.

The GF form of the trial wave function is, of course, an approximation. In general,
the electron transfers between the groups do take place and in general destroy the
variable separation built in the structure of the GF approximation. It would be desir-
able to take the effect of these transfers into account without destroying the attractive
features of the GF wave function: the separation of the electronic variables describ-
ing different groups. This is done using the Löwdin partition applied to derive the GF
approximate form for the wave function.

1.7.1. Limitations of the GF approximations as overcome by Löwdin
partition24

We start from a most general form [53–56] of the wave function. It differs from the
GF approximation eq. (1.181) in that respect that the number of electrons in each
group is not fixed, so that the generalized group function (GGF) expansion is a linear
combination of functions which are antisymmetrized products of multipliers with a
different number of electrons in the groups [53–56]:

Ψk =
∑
{nA}

∑
{iA}

Ck
{iA}({nA})

∧
A

ΦA
iA

(nA)(1.214)

24Subsequent material is based on A.L. Tchougréeff, Group Functions, Loewdin
Partition, and Hybrid QC/MM Methods for Large Molecular Systems. Phys. Chem.
Chem. Phys. 1, 1051, 1999. Reproduced by permission of the PCCP Owner Societies.
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In other words, the entire space originally spanned by the orbitals {ϕm} is repre-
sented as the direct sum of orthogonal subspaces serving as the carrier subspaces to
different groups, but the numbers of residing electrons are not fixed for each car-
rier subspace and all their possible distributions enter the expansion. In the expan-
sion eq. (1.214) each distribution {nA} of electrons among the groups satisfies the
condition: ∑

A

nA = Ne; ∀A, nA ≥ 0(1.215)

Also ΦA
iA

(nA) is the iA-th nA-electron function where only the one-electron states
of the A-th group may be occupied. Expansion coefficients Ck

{iA}({nA}) are thought
to be determined on the basis of the variational principle.

The GGF representation is very general. In fact whatever Ne-electron wave func-
tion in the finite basis of (spin-)orbitals can be recast into the GGF form. The latter is
merely a specific regrouping of the standard FCI expansion. We however assume that
we can make a justified division of the one-electron basis into the groups and that we
have physical grounds to assign a specific number of electrons to each group as well.
This is a usual formulation of the GF approach given in the literature [29, 30, 58]. Its
exact meaning is that in the GGF expansion eq. (1.214) only the product functions
with certain fixed distribution {n̄A} of electrons among the groups give the dominat-
ing contribution.

In the GGF wave function the electronic variables describing different groups are
not separated (this situation is sometimes described by saying that the states of the
groups are entangled [57]). The separation of electronic variables is reached by pro-
jecting exact electronic wave functions (eq. (1.214)) to the subspace spanned by the
functions with the fixed numbers (n̄A) of electrons in the groups. Let P̂ be the oper-
ator projecting Ne-electron functions (eq. (1.214)) to this subspace. The projection
operator P̂ when acting on the GGF type wave function cuts off all the states with
the electron distribution different from that fixed above. The target states in the ImP̂
subspace have the form:

Ψk =
∑
{iA}

Ck
{iA}({n̄A})

M∧
A=1

ΦA
iA

(n̄A)(1.216)

Provided the separation of the entire space of orbitals into carrier subspaces is per-
formed, the Hamiltonian in the second quantized form can be rewritten accordingly,
following eqs. (1.190) and (1.191). In the Hamiltonian the matrix elements of the
Ŵ r

AB operator contributions are vanishing for the pair of the states when both belong
to the ImP̂ subspace spanned by the functions eq. (1.216). Namely these operators
are responsible for electron transfers between the groups A and B. When acting upon
a state from the ImP̂ subspace the Ŵ r

AB operator produces the states which all have
distribution of electrons among the groups different from that characteristic for the
states from ImP̂ . This is obviously the defect of the GF approximation as, in fact,
the intergroup electron transfers do occur. The contributions of the states with the
electron transfers between the groups are taken into account by applying the Löwdin
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partition procedure (see [29,30,32,58] and above). As mentioned above this Hamilto-
nian differs from the exact one by dropping the two-electron terms which may trans-
fer electrons between different groups. They are usually omitted in any semiempirical
context to which we adhere here (see below) and on the other hand they do not pro-
duce any qualitative difference from what follows. Again, in a semiempirical setting,
one may think that the one-electron operators Ŵ r collect all one-electron transfers
between the groups irrespective of its physical origin: kinetic energy, electron-nuclear
attraction, and electron-electron repulsion. The subsequent procedure can also be
seen as perturbation theory corresponding to breaking of the Hamiltonian into unper-
turbed part:

Ĥ0 =
∑
A

ĤA +
∑
A<B

Ŵ c
AB(1.217)

and the perturbation Ŵ r. Applying the Löwdin partition yields the following:

Ĥeff(E) = P̂ Ĥ0P̂ + P̂W rr(E)P̂

Ŵ rr(E) = Ŵ rQ̂R̂(E)Q̂Ŵ r
(1.218)

where

R̂(E) = (EQ̂ − Q̂Ĥ0Q̂)−1(1.219)

is the resolvent of the operator Ĥ0 in the ImQ̂ subspace and Q̂ = Î − P̂ is the com-
plementary projection operator. By this the total Hamiltonian acting in the total func-
tional space is projected to the subspace ImP̂ . The intergroup one-electron transfers
are replaced by the virtual ones, which are included in the correction term Ŵ rr(E).

After projecting to the ImP̂ subspace with the fixed distribution of electrons among
the groups, the ground state of electrons can be sought in the class of the wave func-
tions of the GF form eq. (1.181). At this stage the GF form of the trial wave function
nevertheless remains an approximation. The reason is that the functions of the ImP̂
subspace are not the GF type functions. Although they are the some linear combina-
tions of the GFs with the fixed electron distribution {n̄α} it is by no means guaranteed
that the solution (eigenvector of the Hamiltonian Ĥeff ) is presented by a single GF
product. A single GF function must be selected among the combinations of the latter
on the basis of the variational principle. This is completely analogous to the standard
HF approximation: the exact wave function is a linear combination of eventually all
Slater determinants, but a single Slater determinant used in order to approximate the
whole expansion is to be found from the energy minimum condition for the single-
determinant class of trial functions.

The single GF function, as previously, must be found from the system of intercon-
nected “self-consistency” eq. (1.193) for the separate groups:

ĤA
eff(E)ΦA

0 = EA(E)ΦA
0

ĤA
eff(E) = P̂ ĤAP̂ +

∑
B �=A

〈ΦB
0 | P̂ ŴBAP̂ | ΦB

0 〉

P̂ ŴBAP̂ = P̂ Ŵ c
BAP̂ + P̂ Ŵ rr

BA(E)P̂

(1.220)
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The expectation values of the intergroup Coulomb operators are the same as in the
original GF case (see Section 1.5.6). The situation with the expectation values 〈ΦB

0 |
P̂ Ŵ rr

BAP̂ | ΦB
0 〉 is somewhat more complicated: the operator P̂ Ŵ rr

BAP̂ has the form:

P̂ Ŵ rr
BAP̂ =

∑
aa′∈A,
bb′∈B

wr
abw

r
a′b′(a

+bR̂(E)b′+a′ + b+aR̂(E)a′+b′)(1.221)

Averaging it over the ground state of the B-th group ΦB
0 yields the following one-

electron operator acting on the electron quantum numbers of the A-th group:〈〈
P̂ Ŵ rr

BAP̂
〉〉

B
=

∑
aa′∈A

∑
bb′∈B

{
wr

abw
r
a′b′

(
a+
〈〈

bR̂(E)b′+
〉〉

B
a′

+ a
〈〈

b+R̂(E)b′
〉〉

B
a′+

)}(1.222)

One can check that despite their asymmetric appearance the operators 〈〈P̂ Ŵ rr
BAP̂ 〉〉B

of eq. (1.222) are Hermitian. The expectation values 〈〈bR̂(E)b′+〉〉B and 〈〈b+R̂(E)
b′〉〉B will be considered in more detail.

At this point we arrive at the theory with the energy dependent effective Hamilto-
nian. This construct reminds us of a version of the perturbation theory known as the
Brillouin-Wigner perturbation theory not used in this book (for more details see [58]).
The disadvantage of the above result is the energy dependence of all effective Hamil-
tonians, which implies an iterative solution procedure that is hardly justified in the
present context so that we replace the energy dependence in the right side by estimat-
ing the required quantities at the ground state energy of the Hamiltonian Ĥ0. This
will allow us to cope easily with the otherwise problematic terms in eq. (1.222).

1.7.2. Variable separation and hybrid modeling

The construct leading to the approximate separating electronic variables developed
above may seem to be too cumbersome. However, it is a necessary element of the
entire picture as, in a strict sense, the quantum description in terms of wave function
is only possible for the entire universe, as the variables of the particles not included
in the consideration explicitly, affect the result anyway. By contrast the topic of this
book devoted to hybrid methods assumes the existence of a part of the complex sys-
tem itself to be treated classically. The steps toward approximate separation of the
electronic variables using the group functions and Löwdin partitioning undertaken
in the previous section will be continued in this section where we, using the gen-
eral formalism of the group functions and effective Hamiltonian, shall perform an
approximate separation of electronic variables in the molecular Hamiltonian and pass
to the effective Hamiltonian for its “interesting” or at least quantally treated part.
Next, averaging the effective Hamiltonian over the ground state of the chemically
inert (and thus possibly classically tractable) part results in formulae representing the
PES of a molecular system, containing contributions from chemically active and inert
parts in the form leading to more or less standard QM/MM treatment. The junction



78 Andrei L. Tchougréeff

between the QM and MM parts appears as a contribution from the chemically inert
system which renormalizes parameters of the electronic Hamiltonian for the chemi-
cally active part and of those of the chemically active part which renormalize param-
eters of the classically treated inert part of the molecular system.

To reach this, we finalize the separation of electronic variables restricting ourselves
to two groups only: one explicitly treated by quantum mechanical (quantum chem-
ical) methods and another whose explicit treatment is classical, although implicitly
assuming the existence of some “underlying” quantum electronic structure.

1.7.2.1. Defining subsystems and related basic quantities

Now we pass to the formal derivations of a hybrid method. We assume that the
orbitals forming the basis for the entire molecular system may be ascribed either
to the chemically active part of the molecular system (reactive or R-states) or to the
chemically inactive rest of the system (medium or M-states). In the present context,
the orbitals are not necessarily the basis AO, but any set of their orthonormal lin-
ear combinations thought to be distributed between the subsystems. The numbers of
electrons in the R-system (chemically active subsystem) NR and in the M-system
(chemically inactive subsystem) NM = Ne − NR, respectively, are good quantum
numbers at least in the low energy range. We also assume that the orbital basis in both
the systems is formed by the strictly local orbitals proposed in [59]. The strictly local
orbitals are orthonormalized linear combinations of the AOs centered on a single
atom. In that sense they are the classical hybrid orbitals (HO):

|t(A)〉 =
∑
τ∈A

ht
τ (A) |τ〉(1.223)

where the expansion coefficients ht
τ (A) are defined by a procedure discussed later.

In a degenerate case, when the expansion coefficients are equal to 0s and 1s, the HOs
in eq. (1.223) are the original AOs.

The electronic Hamiltonian for the whole system is now a sum of subsystem
Hamiltonians and of their interaction which is taken to comprise the terms of two
types – the Coulomb Ŵ c and the resonance (electron transfer) Ŵ r interactions:

Ĥ = ĤR + ĤM + Ŵ(1.224)

The Hamiltonian for the M-system is a sum of the free M-system Hamiltonian Ĥ0
M

and of the attraction of electrons in the M-system to the cores of the R-system VR.
Analogous subdividing is true for the R-system. On the other hand the interaction
terms further subdivide to:

Ŵ = Ŵ r + Ŵ c,

Ŵ r =
∑
r∈R,
m∈M

wrm(r+m + m+r)

Ŵ c =
∑

rr′∈R,
mm′∈M

(rr′ || mm′)r+m+m′r′
(1.225)
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where

(rr′ || mm′) = (rr′ | mm′) − (rm′ | mr′)(1.226)

The Coulomb interaction matrix elements of the form (rr′ | r′m′) and/or
(rm | m m′) corresponding to one electron transfers as previously are absorbed
in the one-electron term Ŵ r; those of the form (rm | rm) corresponding to two-
electron transfers between the subsystems are assumed to produce a minor effect and
are omitted for the sake of simplicity. It is worth mentioning that in the case of only
two electron groups (R- and M-systems) precautions concerning the Coulomb matrix
elements involving more than two groups formulated in the previous section are not
necessary any more and the Hamiltonian defined by eqs. (1.224), (1.225) is fairly
general.

The “exact” wave function of the system is represented by a generalized group
function (GGF) where numbers of electrons in subsystems are not fixed:

Ψk =
∑

n

∑
ρ,µ

Ck
ρµ(n)ΦR

ρ (n) ∧ ΦM
µ (Ne − n)(1.227)

where ΦR
ρ (n) is the ρ-th n-electron wave function built upon the orbitals ascribed to

the R-system, and ΦM
µ (N −n) is the µ-th (N −n)-electron wave function built upon

the orbitals ascribed to the M-system.
The electron variables related to the R- and M-systems entering the wave func-

tions of the complex system in eq. (1.227) are entangled. Separating them is reached
by projecting the wave function of the eq. (1.227) of the entire system on the
subspace of the GF of the eq. (1.216). This basically repeats the moves done in
the previous section in a narrower context: here we are going to pay more atten-
tion to the resolvent term Ŵ rr and to setting conditions on the subsystem wave
functions.

The intuitive idea of molecular system, comprising the R- and M-systems of which
the R-system is one whose electronic structure is strongly dependent on the geome-
try of molecular system, whereas the electronic structure of the M-system does not
change in a wide range of the geometry variation, must be formalized in certain
Ansatz for the electronic wave function. First of all, as previously, we assume the
GF character of the function which guarantees that the numbers of electrons in the R-
and M-systems must be constant (NR and NM = Ne − NR are good quantum num-
bers) at least for low energies. This assumption is generally common for the validity
of the entire GF approximation. Further assumptions concern the properties of the
multipliers in the GF for a complex system. So, lower energy electronic excitations
touch only the R-system whereas the excitations of the M-system have much higher
energy. This guarantees that under all chemical transformations happening to the R-
system the electronic state of the M-system – medium – remains basically the same:
no intersection of the different electronic terms of the medium happens. An addi-
tional limitation on the state of the M-system, as it can represent an inert medium,
is a requirement that no unpaired electrons are located in it. By contrast no a priori
restriction upon the electronic wave function of the R-system is set.
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Defining the subsystems of the complex system by distributing the orbitals in two
subsets allows us to consistently define other quantities characterizing the complex
system. For any atom A we can write:

PA = PM
A + PR

A

PR
A =

∑
r∈A∩R

〈〈
r+r

〉〉
R

PM
A =

∑
m∈A∩M

〈〈
m+m

〉〉
M

(1.228)

where the expectation values

〈〈. . .〉〉R = 〈ΦR
0 | . . . | ΦR

0 〉(1.229)

〈〈. . .〉〉M = 〈ΦM
0 | . . . | ΦM

0 〉
are calculated over the ground states of the corresponding subsystems. This treatment
allows us to naturally define a frontier atom as one which bears orbitals belonging to
different subsystems. For them the above definitions of electron densities ascribed
to subsystems are nontrivial. To proceed further with the frontier atoms we also dis-
tribute the core charge of an atom A between the R- and M-systems according to [60]:

ZA = ZM
A + ZR

A(1.230)

Formally it applies to any atom, but it is nontrivial only for the frontier ones. The
condition which specifies the distribution of the core charge ZA between the R- and
M-systems is that the cores of the R-system must be as much as possible screened by
the electrons of the R-system i.e. the effective Hamiltonian Ĥeff

M must be as close as
possible to the Hamiltonian of the free M-system Ĥ0

M . This reduces to the electron
counting rules based on the concept of the formal oxidation state (see [60] for details).
With this we arrive at the possibility of distributing not only the electronic density,
but also the total effective charges between the R- and M-systems. This is done by
the formulae:

QR
A = PR

A − ZR
A

QM
A = PM

A − ZM
A

QA = QR
A + QM

A

The requirements of the description of the electronic structure formulated above can
be satisfied by using the N -electron functions in the GF approximation of the partic-
ular form:

Ψρ = ΦR
ρ ∧ ΦM

0(1.231)

where ΦR
ρ is the ρ-th NR-electron wave function of the R-system, and ΦM

0 is the
ground state wave function of NM electrons in the M-system. (We foresee here
that not only the ground state of the R-system but also some low-energy excited
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states being incidentally – according to assumption – the low energy excitation of
the entire system may be of interest to us). The difference of the wave functions
eq. (1.231) from the general wave functions eqs. (1.214) and (1.227) consists not
only in the elimination of superposition of the states with different distributions of
electrons between the R- and M-systems (summation over n in eq. (1.227) is replaced
by one term n = NR) but also in replacing all possible electronic states of the M-
system by one state (summation over µ is replaced by µ = 0). To obtain this form
from the exact wave function requires two sequential Löwdin partitioning procedures:
the first one to the subspace of the states with a fixed number of electrons in the
subsystems – just repeats in a simplified form of the derivation performed above;
however, the second one, to the states with the ground state wave function of the free
M -subsystem as the multiplier, is somewhat more involved.

The summation over n is eliminated by the projection operator P̂ and its comple-
mentary projection operator Q̂ = Î − P̂ . The operator P̂ projects to the N -electron
states with NR electrons in the R-system. By acting on the states of eq. (1.227) it cuts
off all the terms with electron distributions different from the required one. The gen-
eral technique with the projection operator P̂ in the previous section leads to the
effective Hamiltonian with the intersubsystem electron hopping Ŵ r projected out:

Ĥeff(E) = P̂ ĤRP̂ + P̂ ĤM P̂ + P̂ Ŵ cP̂ + P̂ Ŵ rr(E)P̂

Ŵ rr(E) = Ŵ rQ̂(E − Q̂Ĥ0Q̂)−1Q̂Ŵ r
(1.232)

and the unperturbed Hamiltonian

Ĥ0 = ĤR + ĤM + Ŵ c(1.233)

commuting with the operator N̂R of the number of particles in the R-system (and/or
equivalently with N̂M since N̂ = N̂M + N̂R, [N̂, Ĥ0] = 0). By this the exact
Hamiltonian acting in the entire space of N -electron functions is projected to the
subspace ImP̂ and the intersubsystem electron transfers which broke the separation
of electronic variables are taken into account by the effective interaction Ŵ rr(E)
containing the resolvent of the operator Ĥ0 in the subspace ImQ̂.

1.7.2.2. Effective Hamiltonian for the R-system

As mentioned earlier, it is highly desirable to get rid of the energy dependence of the
effective Hamiltonians describing the subsystems. In order to do so we reconsider the
general derivation of an effective Hamiltonian and specify it for the R-system.

To get the effective Hamiltonian for the R-system which is necessary to calculate
ΦR

ρ and the corresponding ground and excited state energies, we consider contribu-
tions to the effective Hamiltonian eq. (1.232). It is important from the point of view of
the further separation of the Hamiltonians into unperturbed parts and perturbations.
The bare Hamiltonians for the R-system ĤR and for the M-system ĤM defined by
eq. (1.224) on the basis of attribution of the fermi-operators to the R- and M-systems
turn out to be not a good starting point for developing a perturbational picture as the
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Hamiltonians thus defined contain large one-electron terms describing the attraction
of electrons to the unscreened atomic cores in an “alien” subsystem:

ĤM = Ĥ0
M (q) + VR(q)

ĤR = Ĥ0
R(q) + VM (q)

VM = −e2
∑
A

ZM
A

|r − RA|
= −

∑
A
rr′

r+r′WA
rr′ZM

A

VR = −e2
∑
A

ZR
A

|r − RA|
= −

∑
A

mm′

m+m′WA
mm′ZR

A

(1.234)

The real physical situation is much better described by the bare operators where
expectation values of the Coulomb operator: 〈〈Ŵ c〉〉R and 〈〈Ŵ c〉〉M ensure the
screening of the “alien” core charges in the effective Hamiltonians eq. (1.224):

δV̂M = VM +
〈〈

Ŵ c
〉〉

M
,

δV̂R = VR +
〈〈

Ŵ c
〉〉

R

Ĥeff
M = Ĥ0

M + δV̂R +
〈〈

Ŵ rr
〉〉

R

Ĥeff
R = Ĥ0

R + δV̂M +
〈〈

Ŵ rr
〉〉

M

(1.235)

Using the definitions of the bare Hamiltonians in eq. (1.234) and of the effective
Hamiltonians for the subsystems in eq. (1.235), we get an alternative break down of
the effective Hamiltonian for the R-system:

Ĥeff
R = Ĥ0

R + δṼM(1.236)

and analogously for the M-system:

Ĥeff
M = Ĥ0

M + δṼR(1.237)

In the above expressions:

δṼM = δV̂M + 〈〈Ŵ rr〉〉R
δṼR = δV̂R + 〈〈Ŵ rr〉〉M

(1.238)

which must be considered as perturbations to the operators of the free subsystems.
In the frame of the target hybrid QM/MM procedure, only the electronic structure

of the R-system is calculated explicitly. For this reason, we consider its effective
Hamiltonian eq. (1.235) in more detail. It contains the operator terms coming from
(1) the Coulomb interaction of the effective charges in the M-system with electrons in
the R-system δV̂M and (2) from the resonance interaction of the R- and M-systems.
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The expectation value of the Coulomb interaction between electrons of the subsys-
tems over the ground state of the M-system is most easy to find:

〈〈Ŵ c〉〉M = 〈ΦM
0 | Ŵ c | ΦM

0 〉(1.239)

Inserting the explicit form of the Coulomb interaction operator yields:

〈〈Ŵ c〉〉M =
∑
rr′

r+r′[
∑
mm′

(rr′ || mm′)〈〈m+m′〉〉M ]

δV̂M =
∑

rr′∈R

{ ∑
mm′∈M

(rr′||mm′)
〈〈

m+m′〉〉
M

− WA
rr′ZA

M

}
r+r′

(1.240)

One-electron transfers between the subsystems finally contribute to the effective
Hamiltonian the following energy dependent term:

Ŵ rr(E) =
∑

rmr′m′
wrmwr′m′ × [r+mR̂(E)m′+r′ + m+rR̂(E)r′+m′](1.241)

The resolvent R̂(E) entering it can be written as:

R̂(E) =
∑

i∈ImQ̂

|i〉〈i|
E − Ei

.(1.242)

The above resolvent operator R̂(E) refers to the operator Ĥ0 including only the
Coulomb interaction between the subsystems. Its poles Ei are those eigenvalues of
Ĥ0 which differ from those in the subspace Im P̂ by transfers of one electron between
the M- and R-systems. We denote these states as |ρ → µ〉 or |µ → ρ〉 with respect to
the direction of the transfers. The energies in the expression in eq. (1.242) are defined
by the ionization potentials Iµ, Iρ and electron affinities Aρ, Aµ of the subsystems:

Ei =
{

Iµ − Aρ − gµρ

Iρ − Aµ − gρµ

and by the quantities gµρ = gρµ which are the Coulomb interactions of an electron
and a hole in the R- and M-systems. The contribution to the effective Hamiltonian
for the R-system appears after averaging eq. (1.241) over the ground state of the
M-system:

〈〈Ŵ rr(E)〉〉M =
∑
rr′

∑
mm′

wrmwr′m′×

×
{
r+〈〈mR̂(E)m′+〉〉M r′ + r〈〈m′R̂(E)m+〉〉M r′+

}(1.243)

The idea of chemical nonactivity of the M-system assumes among other features
that the energies of the states with electrons transferred between the subsystems (the
poles of the resolvent eq. (1.242)) are much larger than the energies of the complex
system which are of interest to us. For that reason in order to estimate the effective
Hamiltonian eq. (1.232) one may set E = 0. By this we immediately arrive at the
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Raleigh-Schrödinger perturbation theory and get rid of the energy dependence of the
Hamiltonian as desired. Then the expression eq. (1.243) takes the form:

〈〈Ŵ rr〉〉M =
∑
rr′

∑
mm′

wrmwr′m′×

×

⎧⎨⎩ ∑
ρ∈ImOR(NR+1)

r+ |ρ〉〈ρ| r′G(adv)
mm′ (Aρ) +

+
∑

ρ∈ImOR(NR−1)

r |ρ〉〈ρ| r′+G
(ret)
mm′ (Iρ)

⎫⎬⎭
(1.244)

where G(ret)(ε) and G(adv)(ε) are the advanced and retarded one-electron Green’s
function of the M-system, respectively, written in the basis of one-electron states of
the M-system [39, 61–64]. The cases when such corrections assume crucial impor-
tance will be considered later.

The approximate ground state of the form in eq. (1.231) in the ImP̂ subspace is
sought in the self consistent approximate form

Ψ0 = ΦR
0 ∧ ΦM

0(1.245)

where the functions ΦR
0 and ΦM

0 satisfy the system of interconnected eigenvalue
equations with the effective Hamiltonians for the respective subsystems:

Ĥeff
R ΦR

0 = ERΦR
0

Ĥeff
M ΦM

0 = EMΦM
0

Ĥeff
R = P̂ ĤRP̂ + 〈ΦM

0 | P̂ ŴRMP̂ | ΦM
0 〉

Ĥeff
M = P̂ ĤM P̂ + 〈ΦR

0 | P̂ ŴRMP̂ | ΦR
0 〉

P̂ ŴRMP̂ = P̂ Ŵ cP̂ + P̂ Ŵ rr(E = 0)P̂

(1.246)

Averaging the interaction operators in eq. (1.246) – they are both two-electronic ones
– over the ground states of each subsystem does not touch the fermi-operators of the
other subsystem. The averaging of the two-electron operators P̂ Ŵ cP̂ and P̂ Ŵ rrP̂
yields the one-electron corrections to the bare subsystem Hamiltonians. The wave
functions ΦR

0 and ΦM
0 are calculated in the presence of each other. The effective

operator Ĥeff
R describes the electronic structure of the R-system in the presence of

the medium, whereas Ĥeff
M describes the medium in the presence of the R-system.

1.7.2.3. Electronic structure and spectrum of R-system

Wave function of electrons in quantum R-system ΦR
0 satisfies the Schrödinger equa-

tion with the effective Hamiltonian Ĥeff
R eq. (1.246), which is obtained by averaging

the interaction operators in eq. (1.232) over the ground state of the M-system, i.e.
over ΦM

0 , and acts on the quantum numbers (variables) of electrons in the R-system.
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In the frame of the hybrid methods it must be computed by a QM method. The
Schrödinger equation with the effective Hamiltonian Ĥeff

R has multiple solutions,
which describe excited states of the R-system provided the M-system is frozen in
its ground state. Electronic energy of the system in the state expressed by the wave
function eq. (1.231), has the form [29, 30]:

Eρ = ER
ρ + EM(1.247)

where

ER
ρ =

〈
ΦR

ρ

∣∣∣Ĥeff
R

∣∣∣ΦR
ρ

〉
; EM =

〈
ΦM

0

∣∣∣ĤM

∣∣∣ΦM
0

〉
(1.248)

In the given expression the characteristics of the subsystems enter asymmetrically.
The quantities ER

ρ are the electronic energies of the R-system, i.e. the eigenvalues
of its effective Hamiltonian. The quantity EM is the expectation value of the bare
Hamiltonian HM , containing the nonscreened potential induced by the nuclei of the
R-system although the averaging must be performed over ΦM

0 – eigenfunction of
the effective Hamiltonian for the M-system, where the core’s potential induced by
the R-system is screened by its electrons and it cannot be interpreted as the electronic
or any other energy of the M-system. These inconsistencies will be addressed later.
Despite them and irrespective of the value of EM the differences ER

ρ − ER
0 can

be considered as estimates for the energies of the excited states localized in the R-
system.

1.7.2.4. Electronic structure of M-system in QM/MM methods

The description of the electronic structure of the complex molecular system given
by the system eq. (1.246) is perfectly sufficient when it goes about the hybrid
QM/QM methods, when both the parts of the complex system are described by some
QM methods. In the case of the hybrid methods in a narrow sense i.e. of the QM/MM
methods, further refinements are necessary. The problem is that the description pro-
vided by eq. (1.246) suffers from the need to calculate the expectation values in these
expressions over the wave function ΦM

0 i.e. over the solution of the self-consistency
equations eq. (1.246) in the presence of the R-system. This result does not seem to
be particularly attractive since the functions ΦM

0 are not known and are not supposed
to be calculated in the frame of the MM procedure. Thus the theory must be refor-
mulated in a spirit of the theory of intermolecular interactions [67] and to express
necessary quantities in terms of the observable characteristics of free parts of the
complex system.

The reformulation of the theory of interaction between the R- and M-systems in
terms of observables pertinent to the M-system assumes certain procedure for eval-
uating either the wave functions ΦM

0 or directly the necessary expectation values
taken over it. To do so, we notice that according to eq. (1.235) the effective Hamilto-
nian Ĥeff

M for the M-system in the presence of R-system, defining ΦM
0 is close to the

Hamiltonian Ĥ0
M for the free M-system. The assumption that the M-system is inert

implies that its characteristic excitation energies are large, thus the reduced interac-
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tions δV̂R and δṼR treated as perturbations can be thought to be small ones with
respect to characteristic excitation energies of the Hamiltonian H0

M . Then we can
write for the wave function ΦM

0 in the first order of the perturbation theory:

∣∣ΦM
0

〉
=
∣∣ΦM

00

〉
−
∑
µ�=0

∣∣ΦM
0µ

〉 〈
ΦM

0µ

∣∣∣δṼR

∣∣∣ΦM
00

〉
EM

0µ − EM
00

(1.249)

where ΦM
00 is the ground state eigenfunction of the Hamiltonian Ĥ0

M for the free
M-system, ΦM

0µ are the eigenfunctions of its excited states EM
0µ and EM

00 are the cor-
responding eigenvalues. Employing eq. (1.249) yields, according to Section 3.8, the
one-electron densities in the M-system perturbed by the R-system:

〈〈m+m′〉〉M = 〈ΦM
00 | m+m′ | ΦM

00〉︸ ︷︷ ︸
=〈〈m+m′〉〉(0)

M

−(1.250)

− 2
∑
µ�=0

〈ΦM
00 |m+m′|ΦM

0µ〉
〈
ΦM

0µ

∣∣∣δṼR

∣∣∣ΦM
00

〉
EM

0µ − EM
00

where 〈〈m+m′〉〉(0)M is the density matrix element for the free M-system. These val-
ues have to be used when estimating the effective Hamiltonian for the R-electrons
eq. (1.235) and for the energy of the entire system.

1.7.2.5. Potential energy surface for combined system

Having obtained a sufficient impression of the electronic structure of the medium
(M-system) we can address the PES of the complex system. From the point of view
of substantiation of the hybrid methods, it is the main problem [65]. The entire PES
U(q) of the molecular system is the sum of its electronic energy E0(q) given by
eq. (1.247) and of the Coulomb repulsion U(q) of nuclei (or cores):

U(q) = E0(q) + U(q)(1.251)

Employing the distribution eq. (1.230) of the nuclear (core) charges between the sub-
systems eq. (1.251) the repulsive contribution to the energy can be written:

U(q) = URM + URR + UMM,

URM =
∑
A,B

ZR
AZM

B ΓAB,

UMM =
1
2

∑
A,B

ZM
A ZM

B ΓAB,

URR =
1
2

∑
A,B

ZR
AZR

BΓAB

(1.252)

In the ZDO approximation (see below) common for semiempirical methods one can
set:
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ΓAB = (1 − δAB)γAB(1.253)

which formally excludes the interaction of the fractions of the core (or nuclear)
charges attributed to the different subsystem (ΓAA = 0). The same applies to nuclear
charges provided γAB are set R−1

AB in the above definition.
To get the PES of a complex system we supply the electronic energy E0(q) with the

sum of the core repulsions eq. (1.252) which yields the required PES of the complex
system:

U =

= URR+ (1)

+ 〈ΦR
0

∣∣H0
R

∣∣ΦR
0 〉 + 〈〈Ŵ rr〉〉+ (2)

+ 〈〈Ŵ c〉〉 + 〈ΦR
0 |VM |ΦR

0 〉+ (3)

+ 〈ΦM
0 |VR|ΦM

0 〉 + URM + (4)

+ 〈ΦM
0

∣∣∣Ĥ0
M

∣∣∣ΦM
0 〉 + UMM (5)

(1.254)

This expression is the starting point for further analysis. In it the sum of rows (2) and
(3) is nothing but the expectation value 〈〈Heff

R 〉〉R of the effective Hamiltonian for the
R-system eq. (1.235) over its ground state. This is the quantity normally calculated by
the QM modeling packages. It comprises a significant fraction of the intersubsystem
interaction, but only a fraction: namely the interaction of electrons of the R-system
with the entire charge distribution of the M-system. By contrast the sum of the rows
(3) and (4) represents the total energy of the Coulomb interaction Ecoul between the
charge distributions of the subsystems (in the ZDO approximation the interaction of
the charge distributions reduces to the interaction of the effective charges). Row (4)
does not depend on the wave function of electrons of the R-system. It (as also row
(1) – core repulsion in the R-system) can be added to the effective Hamiltonian for
the R-system without changing the (ground state) electronic wave function. At the
same time the row (4) represents a strong interaction of the cores of the R-system
with the charge distribution (effective charges) of the M-system. The interactions
thus distributed do not provide any basis for systematization. Below we shall regroup
them in order to obtain a more physical picture of the PES of a complex system.

Now with the precision up to the second order in the small perturbations we can
write the estimate for the energy of the M-system:

〈ΦM
0

∣∣∣Ĥ0
M

∣∣∣ΦM
0 〉 =

〈
ΦM

00

∣∣∣Ĥ0
M

∣∣∣ΦM
00

〉
︸ ︷︷ ︸

=EM
00

+

+
∑
µ�=0

〈
ΦM

00

∣∣∣δṼ R
∣∣∣ΦM

0µ

〉〈
ΦM

0µ

∣∣∣δṼ R
∣∣∣ΦM

00

〉
EM

0µ − EM
00

(1.255)
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Inserting the estimates for the densities 〈〈m+m′〉〉M obtained above using perturba-
tion theory in the expression for the average Coulomb interaction between the elec-
tronic distributions of the subsystems we get:

U =

URR+ (1)

+ 〈ΦR
0

∣∣H0
R

∣∣ΦR
0 〉 + 〈〈Ŵ rr〉〉(0) + (2)

+ 〈〈Ŵ c〉〉(0) + 〈ΦR
0 |VM |ΦR

0 〉+ (3)

+ 〈〈VR〉〉(0) + URM + (4)

+ EM
00 (q) + UMM + (5)

−
∑
µ�=0

〈
ΦM

00

∣∣∣δṼ R
∣∣∣ΦM

0µ

〉〈
ΦM

0µ

∣∣∣δṼ R
∣∣∣ΦM

00

〉
EM

0µ − EM
00

(6)

(1.256)

This allows some interpretation. Row (1) is the core or nuclear repulsion in the R-
system. It is a c-number which does not affect the wave function of the R-system. The
sum of the rows (2) – (4) represents the expectation value of the effective Hamiltonian
for the R-system (including other c-numbers not affecting the wave functions of the
R-system) obtained using the electronic distribution of the free M-system. Row (5)
is nothing but the PES of the free M-system (the sum of its electronic ground state
energy and of the repulsion of the respective parts of the cores). One can hope that
this part can be parametrized in the MM form (see below). Finally, row (6) is the
second order correction to the energy of the M-system appearing due to the electronic
polarization in the M-system due to interaction with the R-system. Employing for the
sake of simplicity only the operator δV̂R:

δV̂R =
∑

mm′∈M

{ ∑
rr′∈R

(rr′||mm′)
〈〈

r+r′
〉〉

R
− WA

mm′ZA
R

}
m+m′ ≈

≈
∑
m∈B

m+m
∑
r∈A

γABQA

(1.257)

and the approximate equality (equivalent to using the ZDO scheme for the two-center
Coulomb integrals – see below) we get from row (6) the correction to the energy of
the Coulomb interaction of the effective charges in the R-system:∑

AA′
QR

AQR
A′
∑
BB′

γABγA′B′
∑

m∈B
m′∈B′

ΠM
mmm′m′(0)(1.258)
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describing the weakening of their interaction due to interaction between the polariza-
tions induced by these charges in the M-system. The polarization propagator of the
free M-system entering the answer is defined as:

ΠM
mnkl(ω) =

∑
µ�=0

〈ΦM
0

∣∣m+n
∣∣ΦM

µ 〉(ω − εµ)−1〈ΦM
µ

∣∣k+l
∣∣ΦM

0 〉(1.259)

This correction must be included if the variation of the electronic density in the M-
system of the complex system as compared to the free M-system is not considered
explicitly (see below).

The above comprises the derivation of the expression for the PES of the complex
system which is not only free from the necessity to recalculate the wave function
of the classical subsystem in each point, but formally not requiring any wave func-
tion of the M-system at all, since the result is expressed in terms of the generalized
observables – one-electron Green’s functions and the polarization propagator of the
free M-system. Reality is of course more harsh as the necessary quantities must be
known for a system we know too little about, except the initial assumption that its
orbitals do exist. Section 3.5 will be devoted to reducing this uncertainty.

The obtained explicit form will be used to analyze the strengths and weaknesses
of the existing hybrid methods and pave routes to new ones.

1.7.2.6. Dispersion correction to PES of complex system

Estimates of the electronic energy of the complex system employed in the expres-
sions eqs. (1.254), (1.256) for its PES can be further improved. For this let us notice
that the solutions of the self consistent system eq. (1.246) are used as multipliers in
the basis functions eq. (1.216) of the subspace ImP̂ . It turns out that the effective
Hamiltonian Heff eq. (1.232) has nonvanishing matrix elements between the ground
state of eq. (1.246) and the basis product states of the subspace Im P̂ , differing from
it by two multipliers simultaneously: by the wave function for the R-system and by
that for the M-system (ΦR

ρ ∧ ΦM
µ , ρ, µ 	= 0). Indeed:〈

ΦR
0 ∧ ΦM

0

∣∣∣ĤR + ĤM + ŴRM

∣∣∣ΦR
0 ∧ ΦM

µ

〉
=〈

ΦR
0 ∧ ΦM

0

∣∣∣ĤR + ĤM + ŴRM

∣∣∣ΦR
ρ ∧ ΦM

0

〉
= 0

(1.260)

whereas 〈
ΦR

0 ∧ ΦM
0

∣∣∣ĤR + ĤM + ŴRM

∣∣∣ΦR
ρ ∧ ΦM

µ

〉
	= 0(1.261)

These matrix elements result in an additional energy correction which can be taken
into account by the moves similar to those used when we took into account the inter-
actions of the states with the fixed electron distribution with the states with the charge
transfers between the subsystems. As previously, we consider the projection operator
P on the “single configuration” ground state of the complex system:

P =
∣∣ΦR

0 ∧ ΦM
0 〉〈ΦR

0 ∧ ΦM
0

∣∣(1.262)
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and the complementary projection operatorQ = 1−P on the subspace orthogonal to
it. Inserting the projection operators P and Q into general expressions for the effec-
tive Hamiltonian acting in the one-dimensional subspace ImP , yields the expression

Heff(ω) = PĤeffP + PĤeffQR(ω)QĤeffP ,

R(ω) = (ωQ−QĤeffQ)−1

The first term equals the energy E0 multiplied by the ground state projection opera-
tor P . The second gives the correction to it. Different terms in Ĥeff behave differently
under this projection. Taking into account that P projects to the product of the eigen-
states of the operators Ĥeff

R and Ĥeff
M eq. (1.246) one can see that:

PĤeffQ = PWRMQ(1.263)

where

WRM = ŴRM − 〈〈ŴRM〉〉R − 〈〈ŴRM〉〉M(1.264)

is the operator of reduced interaction of the R- and M-systems where:

WRM = Vc + Vrr(1.265)
Vc = Ŵ c − 〈〈Ŵ c〉〉R − 〈〈Ŵ c〉〉M
Vrr = Ŵ rr − 〈〈Ŵ rr〉〉R − 〈〈Ŵ rr〉〉M

where the expectation values of the interaction operators calculated for the ground
states of the respective subsystems are subtracted (i.e. the interactions are reduced by
their expectation values). With these notions the correction acquires the form:

PWRMR(ω)WRMP(1.266)

As before the idea of inertness of the M-system is formalized by the assumption that
the excitation energies in it are large compared to the excitation energies in the R-
system, which is of interest to us. For this reason one can guess that the dependence
of the resolvent on ω is weak and that the values of ω in the interesting energy range
are much smaller than the resolvent poles which are all lying not lower than the first
excitation energy in the M-system. These notions allow us to replace the resolvent
R(ω) by its value at ω = 0 (by this the electronic dynamic effects in the M-system
are excluded):

R(0) = −
∑

ρ,µ�=0

∣∣ΦR
ρ ∧ ΦM

µ

〉 〈
ΦR

ρ ∧ ΦM
µ

∣∣
ER

ρ + EM
µ

(1.267)

where ER
ρ and EM

µ are excitation energies in the R- and M-systems. Following [30]
and [67] we get

R(0) =
∑

ρ,µ�=0

∣∣ΦR
ρ ∧ ΦM

µ

〉 〈
ΦR

ρ ∧ ΦM
µ

∣∣
ER

ρ + EM
µ

=

=
2
π

∑
ρ,µ�=0

∣∣ΦR
ρ ∧ ΦM

µ

〉 〈
ΦR

ρ ∧ ΦM
µ

∣∣ ∞∫
0

du
ER

ρ EM
µ(

(ER
ρ )2 + u2

) (
(EM

µ )2 + u2
)(1.268)
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Restricting ourselves for the simplicity in eq. (1.264) by the reduced Coulomb
operator

Vc =
∑

mm′∈M
rr′∈R

(rr′||mm′)
{
r+r′m+m′−(1.269)

−r+r′
〈〈

m+m′〉〉
M

− m+m′ 〈〈r+r′
〉〉

R

}
we get after averaging over the ground state eq. (1.245) the following correction to
the energy of the complex system:

PVcRVcP =
2
π

∑
rr′∈R
pp′∈R

∑
mm′∈M
nn′∈M

(rr′||mm′) (pp′||nn′) ×(1.270)

×
∞∫
0

duΠR
rr′pp′(iu)ΠM

mm′nn′(iu)

which is nothing but the dispersion interaction between the subsystems. Here

ΠR
rstu(ω) =

∑
ρ�=0

〈ΦR
0

∣∣r+s
∣∣ΦR

ρ 〉(ω − ερ)−1〈ΦR
ρ

∣∣t+u
∣∣ΦR

0 〉(1.271)

is the polarization propagator of the R-system [30] whereas that for the M-system is
defined above by eq. (1.259).

In this chapter we reviewed briefly the general theoretical techniques to be used
throughout the rest of the book. Some of them have a general application, others
are of relatively rare use. Using the Löwdin partition for separating electronic vari-
ables and deriving the GF form of the trial wave function is most probably original.
Using it we derived general formulae for the PES of a complex molecular system
comprising a chemically transforming part of a system to be treated using quantum
chemistry and a chemically inert part which can be treated using molecular mechan-
ics. Applying the general formalism of separating electron variables related to the
two systems resulted in a consistent description of the PES of the combined system.
It is dominated by the sum of the QM and MM contributions. The quantities usually
referred to as “junctions” between the QM and MM parts of the combined system are
consistently derived. It turned out that the junctions manifest themselves in renormal-
izations of the electronic Hamiltonian for the QC system. Respective modifications of
the MM potential are at this point expected to appear only indirectly, due to variations
of the one-electron density matrix of the M-system. These theoretical expressions
will be used in the subsequent Chapter, where it will be employed for analysis of
the meaning of the approximations and prescriptions used by different authors while
constructing the hybrid QM/MM methods and paving the routes to new ones.
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2

MODELS OF MOLECULAR STRUCTURE:
HYBRID PERSPECTIVE

Abstract In this chapter we provide a hybrid perspective of the methods of molecular modeling
present in the literature. The widespread viewpoint is that hybrid modeling is a rather spe-
cific, restricted field in the otherwise universal modeling realm of quantum chemistry. From
this perspective, classical models of molecular potential known as Molecular Mechan-
ics seem a completely foreign subject that has to be artificially attached to the quantum
description. This presupposes the problems of the process of developing quantum-classical
junctions. We take a different view of this area, based on the general scheme of variable
separation as presented in the previous chapter. On that basis we analyze the entire realm of
molecular modeling and arrive at a conclusion that basically all modeling methods employ –
although largely implicitly – the electron variable separation. This forms the hybrid per-
spective of molecular modeling mentioned above. Based on it, we present a short review
of the methods of quantum chemistry, including a description of the unsolved problems of
semi-empirical quantum chemistry and suggest solutions to these problems, on the basis
of the patterns of variable separations which are alternative to those accepted in traditional
semi-empirical quantum chemistry. Finally we use the general scheme of variable separa-
tion to classify the existing methods of hybrid molecular modeling (in the narrow sense) and
clarify the origins of the problems these methods face. Some ways of solving or avoiding
these problems are suggested.

The theoretical tools of quantum chemistry briefly described in the previous chap-
ter are numerously implemented, sometimes explicitly and sometimes implicitly, in
ab initio, density functional (DFT), and semi-empirical theories of quantum chem-
istry and in the computer program suits based upon them. It is usually believed that
the difference between the methods stems from different approximations used for
the one- and two-electron matrix elements of the molecular Hamiltonian eq. (1.177)
employed throughout the calculation. However, this type of classification is not par-
ticularly suitable in the context of hybrid methods where attention must be drawn to
the way of separating the entire molecular system (eventually – the universe itself)
into parts, of which some are treated explicitly on a quantum mechanical/chemical
level, while others are considered classically and the rest is not addressed at all. That
general formulation allows us to cover both the traditional quantum chemistry meth-
ods based on the wave functions and the DFT-based methods, which generally claim
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that using the wave function can be avoided due to the Hohenberg-Kohn “existence
theorem”. Another aspect of the description of the modeling methods given in this
chapter is that of elucidating the true (minimal) set of variables involved in these
methods. This helps to establish interrelations between different methods and rec-
ognize the way in which the variables characteristic of one group of methods (say
QM ones) correspond to those characteristic of another group of the methods (say
classical or hybrid ones). Such an approach is in line with our aim of not giving a
general description of all existing computational techniques at the prescription level,
but rather to present a view of both their actual hybrid nature and potential “hybridiz-
ability” i.e. the possibility to use them with other “higher” or “lower” level methods.

Modeling systems which are complex, i.e. comprise nonuniform, strongly interact-
ing parts, are almost as old as quantum chemistry itself. The boundaries of this area
may seem very uncertain and flexible. Despite its modern appearance, the true history
of hybrid modeling dates back to very early times. The basic reasons for that are quite
obvious as in those old times, only small parts of interesting systems could be treated
even by the simplest methods of quantum chemistry. The lessons of particular impor-
tance for us to learn are the ways of physical reasoning used by the researchers of
those times for singling out the subsystems and the tools employed to set the border
conditions upon the parts singled out. When singling out a physically relevant subsys-
tem, the seemingly old fashioned concept of “chromophore” is, in fact, very useful.
Incidentally, this concept was widely used in the early QC methods. According to
the contemporary IUPAC official definition, the chromophore is an atom, or group
of atoms, in the molecule that gives color to the molecule (sic!?) [1]. Nevertheless,
this unusual definition unites two important aspects. One is related to the system’s
response to an external perturbation (by electromagnetic field): the absorption spec-
trum is a “scientific” expression for color. By this, the concept of chromophore is
related to the experimental behavior of molecular systems. Another aspect relates to
the structure of the system, understood as a localization of the excited states control-
ling the tentative response to the external perturbation of certain parts of the molecule.
Examples of chromophores are well known from textbooks.

In the modern theory of electronic structure, the concept of chromophore is formal-
ized in McWeeny’s concept of the electronic group. Within this theory, the approxi-
mate system’s electronic wave function, as we know it, is taken as an antisymmetrized
product of multipliers (group functions) which can be made rather local when physi-
cally referring to isolated elements of molecular electronic structure. These elements
– electronic groups – are physically identified either as conjugated π-systems or
something else. Of course, these groups are not totally isolated and describing exci-
tations (remember the group stands for a chromophore) as localized in only one of
them is an idealization. Nevertheless, the effective Hamiltonian technique described
in Section 1.7.1 can be employed to reduce manifestations of the intergroup inter-
actions to renormalization terms in the effective Hamiltonians for the local groups
rather than delocalization of the excited states over the entire molecular system. This
allows us to interpret the response of the system to external perturbations in terms of
excitations localized in the groups. The significance of hybrid modeling is that the
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chromophores are treated using quantum mechanics, whereas the rest of the system,
which seems to be not of great interest, is assumed to be possibly tractable with the
use of classical models. The reason of course in not only in the “interest” but also in
the physical possibility to single out a part of the system in such a way that in the
spectrum of the entire system its lower-energy (or again “interesting”) part belongs
to a chromophore, whereas the rest of the system remains in its ground electronic
state – the only one accessible in the considered experiment whose results are to be
interpreted or predicted. Such cases were intuitively quite clear to the researchers of
previous days, and the most physically powerful approximate theories of chemistry
seem to have been developed in this way. In subsequent sections, we concentrate on
the physical conditions that allowed us to single out chromophores/electron groups
specific for different, well-known methods. By this we want to demonstrate that the
basic features characteristic of the hybrid methods have been widely in use through-
out the entire history of quantum chemistry. With this in mind, one can consider the
various classes of contemporary methods of molecular modeling.

2.1. AB INITIO METHODS

Modeling molecular structures by ab initio QC methods is based on as complete a
description of electronic structures as possible.1 The many-electron wave functions
for the ground state (eigenvector) of a system |Φ0〉 and its corresponding energy
(eigenvalue) E0 = 〈Φ0|Ĥe|Φ0〉 are to be calculated for each nuclear configuration.
For this it is necessary to specify a set of orbitals (basis functions – AOs), number
of electrons in the system and nuclear charges. All subsequent modeling is computer
work which effectively implies calculating the matrix components h(1), h(2) of the
electronic Hamiltonian, for the set of selected basis functions. Parameters of the basis
sets are orbital exponents α, and basis contraction coefficients – if any. An impressive
amount of work has been done till now in developing the rules for selecting the basis
sets for different atoms of the Periodic Table as adjusted for efficiency in solving
specific problems.

The basic flaws of using restricted basis sets in the ab initio context are well known
in the literature. Following [3] restriction of the orbital basis taking place in the ab
initio is the main source of errors. They range from the fundamental ones (the Heisen-
berg commutation relations are broken in the finite basis set theories – see e.g. [4])
through somewhat practical concerns (the Hellmann-Feynman theorem in its electro-
static form is not valid in the finite basis – see e.g. [5]) up to very practical problems
known, for example, as the basis set superposition error (BSSE), which is numeri-
cally shown to almost eliminate (at least for the HFR wave function) by extending
the basis. Numerous attempts at estimating the corresponding error date back to [6,7]
which reduced them basically to analysis of whether the convergence of the HFR
calculation was dependent on the basis completeness. For obtaining the systematic

1Sources on ab initio methods are numerous. Probably the most uptodate for the
time being is [2].
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precision estimates, the schemes of the basis states construction converging eventu-
ally to the complete ones, have been proposed [8, 9].

In the G2 and G3 [10, 11] theories, the Møller-Plesset perturbation theories of the
2-nd and 4-th orders are used to estimate the consequences of extending orbital basis
sets by including the diffuse and polarization functions. These attempts, however, do
not allow one to eliminate a systematic error of about 6 millihartree per electronic
pair, which, in the frame of the G2 and G3 theories, bears the pompous name of
“higher level correlation” of unknown nature. These latter are parametrized in the
form:

−Anβ − B(nβ − nα);−Cnβ − D(nβ − nα)

where the expansion coefficients A, B, C, D are obtained by fitting the results of cal-
culations to the experimentally known values of formation energy. It is characteristic
of these corrections that, despite some extension of the basis sets in the G3 theory
as compared to the G2 theory, the order of the “higher level correlation” remains the
same, whereas diminishing of the absolute and mean square deviations of the calcu-
lated (with the higher level corrections) results from the experimental data is reached
by further detalization of the corrections form (in plain words: by a larger number of
fitting parameters).

Similar corrections have been considered in papers [12, 13]. They have the form:

aσnσ + aπnπ + apair(nσ + nπ + npair)

where nσ, nπ, npair are the numbers of σ-, π-bonds and lone pairs, respectively, and
aσ, aπ, apair – coefficients specific for each combination of the basis set used and
the level of the explicit consideration of electron correlation.

A more sequential approach to the analysis of the systematic error of ab initio
methods has been proposed in [14]. The same set of molecules as in [10] has been
analyzed there. For this set the series of calculations using the basis sets aug-cc-pVxZ
containing both polarization and diffuse functions with the number of exponents x in
their respective radial parts up to x = 6 (single zeta x = 1, double zeta – DZ –
x = 2, triple zeta – TZ – x = 3, etc.) and with the account of correlation effects in
the range of methods from MP2 up to CCSD(T) had been performed and then fitted
to the formulae [15–18]:

E(x) = ECBS + b exp(−cx)

E(x) = ECBS + b exp(−(x − 1)) + c exp(−(x − 1)2)
(2.1)

in order to define the coefficients b and c and then to get the value ECBS (CBS –
complete basis set) in the “complete basis” by extrapolation (here x stands for the
“richness” of the basis set: 1 for single zeta, 2 for double zeta, etc.).

Results of [14] have shown that for the test set of G2 [10] the mean absolute devi-
ation of the CBS extrapolated atomization energies from the experimental ones is
ca. 0.5 kcal/mole, whereas in the G2 theory itself the mean absolute deviation is 1.4
kcal/mole. However, in addition to the average deviation, the G2 theory contains also
a systematic error, which does not appear in the CBS limit. Thus one may assume
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that the “higher level correlation” are in fact the corrections to the finiteness of the
employed basis set. Nevertheless, the form of the extrapolation formulae used in [14]
is absolutely arbitrary and is justified by the final result only.

A rather more justified theoretical basis exists for the estimates of the corrections
for the incompleteness of the angular parts of the orbital basis. It has been shown
in [19,20] that the correction to the energy of an atom in the second order perturbation
theory is

E2,l = − 45
256

(l +
1
2
)−4{1 − 19

8
(l +

1
2
)−2 + O(l−4)}

where l is the value of the azimuthal quantum number for which the angular wave
functions are not already included in the AO basis. Using these formulae the precision
of 10−4 a.u. for the ground state of the He atom has been reached in [21] by setting
lmax = 6. Analogous formulae:

Elmax = ECBS +
B

(lmax + 0.5)4
+

C

(lmax + 0.5)6

Elmax = ECBS +
B

(lmax + d)m
+

C

(lmax + d)m+1
+

D

(lmax + d)m+2

(2.2)

when applied in [22, 23] for estimating the CBS of the correlation energy in the
MP2 approximation at the analogous methodology (fitting the results obtained in the
sequence of increasing basis sets) gave the best agreement [24] with m = 1, d = 1,
D = 0. However, as it can be concluded from [14] the estimates of the CBS limit
obtained by extrapolating over the sequence of angular and radial parts of the AOs
are considered to be interchangeable i.e. leading to the same value of ECBS, rather,
by construction, these two extrapolation schemes estimate the energy contribution
from different parts of the orthogonal complement to the finite-dimensional L0 in the
complete L. As for AOs, the basis spanning L0 is the product of the functions of the
radial and angular parts, respectively, neither of which is complete. The extension of
either of the basis sets of the above multiplier functions does not yield a complete
basis set. Thus the similar numerical estimates of ECBS obtained using eqs. (2.1) and
(2.2) indicate a rather similar level of underestimation of the true value of energy
characteristic of the complete basis by both extrapolation procedures.

Further analysis performed in [27] allowed authors to establish the convergence
specifically of the correlation energy with respect to the basis size in the form:

Ecorr(x) = Ecorr
CBS +

b

x3
(2.3)

which integrates the contribution of the radial and angular parts omitted from the
basis set. It has been also shown that the HFR energy converges exponentially with
x, thus indicating the specific effect of the basis restriction on the capacity of a cal-
culation procedure to reproduce electron correlations.

In the ab initio setting, as one used to study the effects of the finite basis set, the
HFR approximation is used to build up (may be in some effective sense) only initial
estimates for ρ(1) and ρ(2) which have to be further improved by various methods of
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taking into account electron correlations. Among them the configuration interaction
in the complete active space (CAS) [28], Møller-Plesset perturbation theory (MPn) of
order n, coupled clusters’ [29, 30] methods must be mentioned as being most widely
used. In fact, any reasonable result within the ab initio QC requires at least minimal
involvement of electron correlation. In other words in the ab initio setting the cumu-
lant of two-electron density matrix χ is never close enough to zero to be neglected.
All the technical tricks invented to go beyond the HFR calculation scheme by using
different forms of the trial wave function or various perturbative procedures represent
in fact attempts to estimate more or less decently the second term of eq. (1.202) – the
cumulant χ of the two-particle density matrix departing from the HFR solution. This
allows us to pose a question on the nature of the correlations primarily addressed
in the ab initio setting since in other contexts (see below) some important part of
the correlation – dynamical correlation – is absorbed either by empirical parameters
(HFR-based semiempirics) or by the specific form of the energy functional taken as
a function of ρ(1) only (DFT methods). As shown in [25, 26] the slow convergence
of the QC procedures with respect to orbital basis and particularly with the maximal
azimuthal quantum number of the AOs involved, is intimately related to the intrinsic
weakness of the CI expansion built upon a restricted basis of AOs as a tool for treat-
ing the very short range features of the electronic wave function known as electronic
cusp. According to the so-called “cusp condition” (see e.g. [5]) the wave function of
two electrons in close vicinity of each other when all other interactions (with nuclei
and other electrons) can be neglected and only their Coulomb repulsion is important,
is one of the interelectron separation r12:

Ψm
l (r12) ∼

{
rl
12

(
1 +

r12

2 (l + 1)

)
+ O(rl+2

12 )
}

Ylm(θ, ϕ)(2.4)

where angular variables θ, ϕ describe the rotational motion (with the total angular
momentum l and its projection m) of two electrons under consideration around the
common center of mass. The standard form of the cusp condition present in the liter-
ature (see e.g. [5]) is the simplest one for l = 0:

Ψm
l (r12) ∼

(
1 +

1
2
r12 + O(r2

12)
)

(2.5)

which is the only one representing true cusp (at higher values of l the two-electron
density at r12 = 0 has only higher derivatives discontinuous). For any wave function
constructed from the spin-orbitals, there is no explicit dependence on the electron-
electron distances so that the cusp conditions are not generally fulfilled. On the other
hand, it is more or less clear that the deviation from the exact form (one with the
cusp condition) of the wave function takes place in the area which nonnegligeably
contributes to the total energy since the Coulomb repulsion has the singularity at
r12 = 0. Thus the total energy can be expected to improve significantly if this type
of correlation is taken into account explicitly, which has basically been known since
the work of Hylleraas [31] on the helium atom. Incidentally, reproducing the simplest
cusp for l = 0 is particularly difficult in the finite basis set as it requires reproducing
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a non-smooth function (with the different derivatives on the left and right sides of
the zero). To approach the correct cusp behavior, one needs a very large number of
harmonics in the AOs basis set to simulate it. It leads to extremely high computa-
tional costs for medium and large size systems due to unpleasant scalability of the
required computational resources: M4 ÷ M7 (where M is the dimension of a space
spanned by basis orbitals). On the other hand it is difficult to ascribe to the contribu-
tion of the cusp areas any clear chemical significance except some contribution to the
total (or correlation) energy: no chemical process touches this range of interelectron
separations.

A general theoretical point of view on the separation of electronic variables from
the first glance has not much to do with the ab initio setting as the latter is usually
positioned as the “exact” one. Nevertheless the technique developed in the previous
chapter allows us pose several statements concerning the true status of the ab initio
theories. Indeed, as we mentioned previously, a precise description in terms of the
wave function is, strictly speaking, possible for the entire universe. For this reason,
when an ab initio calculation is set, it is tacitly assumed that all other electrons are
somehow excluded. The techniques described in the previous chapter allow us to do
so. First of all we notice that selecting an M -dimensional subspace of orbitals and
setting an N -electronic calculation in it actually means that (i) some projection oper-
ator cuts out a carrier subspace of dimensionality M from the complete infinitely
dimensional L2(R3) Hilbert space of orbitals. (ii) This projection operator induces a
projection P̂ also in the space of wave functions of all electrons in the world such that
only those functions which correspond to N electrons residing in the selected carrier
subspace are in the image ImP̂ of this second projection operator. The whole story
greatly resembles the GF picture with two groups where one group is that of N elec-
trons in the carrier space and the other is that of all other electrons in the world resid-
ing in the orthogonal complement to the selected carrier space. Obviously nobody
considers the “rest of the world” group explicitly in the usual ab initio calculation,
but in any case the disentanglement of the electrons included in the consideration
from those excluded from it can/must be formalized in the corresponding partition
procedure which results in the effective Hamiltonian of the form:

Ĥeff
ab initio(E) = P̂ ĤeP̂ + P̂ ĤeQ̂(EQ̂ − Q̂ĤeQ̂)−1Q̂ĤeP̂(2.6)

(Q̂ = Î − P̂ ). The eigenvalues of this effective Hamiltonian coincide by construc-
tion with those of the eigenvalues of the exact Hamiltonian Ĥe. Nevertheless all the
ab initio procedures reduce to seeking the eigenvalues of the first term P̂ ĤeP̂ effec-
tively calculating the matrix elements involved in it only. It is necessary to say that
under these circumstances – namely under the explicit presence of one more term
in truly exact expression of the effective Hamiltonian – the possibility of getting a
sensible answer by considering, only one term and not taking any precaution con-
cerning the second one seems to be at least shortsighted: everything is supposed to
be done “exactly”, but as only a fraction of the whole is taken into account, the result
is not supposed to be “correct” as no counterpoise is provided. As one can see, the
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attempts in literature to analyze and eventually overcome the restrictions imposed by
using the finite basis sets are developed from the direction opposite to that suggested
by the general theory of variable separation, i.e. not analyzing the general expression
for the effective Hamiltonian eq. (2.6) but trying to estimate the limit “from inside”.
It seems, however, that an attempt to obtain estimates on the basis of the general
formula would be at least interesting.

When considering ab initio methods as a part of a more general hybrid technique
one has to remember that no counterpoise is built in the former to overcome its inher-
ent limitations. Combining this – “exact” method – with any inevitably empirical
classical scheme for the environment raises the question of the status of the result.
We shall address this problem later when reviewing the corresponding hybrid tech-
niques.

2.2. PSEUDOPOTENTIAL METHODS AND VALENCE APPROXIMATION

Theories in a way explicitly exploiting the concept of separating electronic variables
into groups, but tending to stay in the general ab initio context, deserve our partic-
ular attention. These are the pseudopotential theory and the valence approximation
closely related to it, although used far beyond the scope of the ab initio setting. The
idea behind this approach is simple and natural: the number of electrons involved in
any chemical process is restricted from above by that of those residing in the partially
filled atomic shells of all the atoms composing the system. The physical reason for
this is of course the obvious fact that on one hand the electrons occupying the deep
shells of the atoms do not take part in chemical events and on the other hand, the
AOs from the atomic shells with a higher energy, not occupied in atoms themselves,
are not readily populated when molecules are formed. By this setting the quantum
chemical problem reduces to that for the valence electrons only in a limited subspace
of valence orbitals. This approach is commonly termed valence approximation. How-
ever, the electrons occupying core orbitals affect those residing in the valence sub-
space, which has to be taken into account. This is done with the help of the concept
of the pseudopotential.

The very first formulation of the pseudopotential idea is almost as old as quan-
tum chemistry itself. It belongs to Hans Hellmann [32–35] who proposed to use the
potential energy for an electron in the valence shell of an atom in the form:

VH = −Zc

r
+

A exp(−κr)
r

(2.7)

where Zc is the quantity known as core charge (see below); A and κ are some con-
stants and the purpose of the second (pseudopotential) term is to keep the valence
orbitals orthogonal to the core orbitals although these latter are not considered explic-
itly. Further development along these lines brought numerous refinements to the sim-
ple picture proposed by Hellmann.

Although historically pseudopotentials appear in numerous disguises on which we
do not dwell here, the modern derivation of the pseudopotential theory [36] is based
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on the GF technique. It starts from representing the wave function of a molecular
system in the form of the antisymmetrized product:

Ψ = Φcore ∧ Φvalence(2.8)

and assuming the HFR form of the wave function for the “classical” subsystem of a
complex molecular system – the core. (In a given setting even a single atom some-
times can be considered to be complex enough). The many-electron nonrelativistic
Hamiltonian of a given molecule with Nc + Nv electrons has the standard form of
eqs. (1.27) and (1.177). An assumption is that the orbitals defining the carrier space
for the atomic core and the atomic valence shell appear as a result of solving the corre-
sponding Hartree-Fock problem. This is the reason to further assume that potentially
important one-electron transfers between the core and valence shell are effectively
eliminated due to the Brillouin theorem [4]. This allows one to neglect them and to
restrict the treatment (at this point) to only Coulomb interactions. The one-electron
density entering this equation in the Hartree-Fock approximation has the form of a
sum eq. (1.144) over the occupied orbitals. Then the linearity allows one to rewrite
the Coulomb and exchange operators entering the Hartree-Fock problem as sums of
contributions coming separately from the core and valence states:

ρ(1) = ρ
(1)
c + ρ

(1)
v

ρ
(1)
HFc(x; x′) =

Nc∑
i=1

φ∗
i (x)φi(x′)

Ĵc = Ĵ [ρ(1)
HFc]φ(x) = e2

∫
dx′ ρ

(1)
HFc(x

′; x′)
|r− r′| φ(x)

K̂c = K̂[ρ(1)
HFc]φ(x) = e2

∫
dx′φ(x′)

ρ
(1)
HFc(x; x′)
|r − r′|

(2.9)

where the summation in the expression for ρ
(1)
HFc extends to the core orbitals and anal-

ogous definitions are introduced for the Coulomb and exchange operators induced by
the electron density residing in the valence orbitals.

Up to this point nothing changes. The next assumption extends the above treatment
of atoms to molecules. Within it the molecular orbitals – linear combinations of the
atomic core orbitals with zero overlap – are taken to be the molecular core orbitals
and are assumed to be filled. This allows one to write

Ĵc =
∑

α

∑
cα∈α

Ĵcα ; K̂c =
∑

α

∑
cα∈α

K̂cα(2.10)

where α runs over the atoms and cα runs over the core orbitals of the α-th atom, so
that the molecular core Coulomb and exchange operators become sums of the corre-
sponding atomic core operators. At this point, the core and valence orbitals cease to
be solutions of the Hartree-Fock problem and the necessary properties (the Brillouin
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theorem) are postulated by assumption. This allows one to make the next move and to
regroup the core part of the electron-electron interactions with the nuclear attraction
potentials so that:

− Zα

|Rα − r| +
∑
cα∈α

(
Ĵcα + K̂cα

)
→ − Zeff

α

|Rα − r| + V̂ ECP
α(2.11)

where V ECP
α is an effective core potential of atom α, and Zeff

α = Zα − N core
α (Nc =∑

α N core
α where N core

α is the number of electrons residing in the core of the α-th
atom). By this the molecular Hartree-Fock equation in the effective core potential
(ECP) formulation becomes:{

−1
2
∇2 −

∑
α

Zeff
α

|Rα − r| +
∑
α

V̂ ECP
α

}
φk(x)+

+
(
Ĵv + K̂v

)
φk(x) = εkφk(x).

(2.12)

This equation is a starting point for developing a great number of further pseudopo-
tential methods. They can be grouped into two major sets: the pseudopotential (PP)
and model potential (MP) methods, according to the basic form of the V̂ ECP

α opera-
tors used. Both of them have been designed to avoid explicit treatment of the atomic
core orbitals, which is achieved by shifting the energies of the core orbitals so that
they do not appear as occupied solutions of the corresponding ECP Hartree-Fock
equation. The two approaches are based on two different equations: the Phillips-
Kleinman equation for PP and the Huzinaga-Cantu equation for MP setting respec-
tively. In the PP picture the shift is done in such a way that the core orbitals become
degenerate with the valence orbital. By contrast, in the MP picture the core orbitals
are shifted to be of higher energy than the valence ones. Two corresponding contri-
butions to pseudopotentials have the general form:

PK(PP) : V̂ ECP
PP =

∑
c

(εv − εc)|ψc〉〈ψc|

HC(MP) : V̂ ECP
MP = −2

∑
c

εc|ψc〉〈ψc|
(2.13)

It can be shown that the Huzinaga-Cantu equation, and thus the MP setting, can
be used for molecules, provided a reasonable approximation for the core orbitals
is known. It is normally true, as the concept of the atomic core is multiply confirmed
by all electron calculations on smaller molecules and there is no reason to think that
this picture will change in the case of larger ones.

Since in current molecular modeling tasks the Gaussian orbitals or their linear com-
binations are used, one can guess that they provide the explicit form of the core states.
Inserting the Gaussians in the expressions for the Coulomb and exchange superop-
erators yields numerous approximate forms of the pseudopotentials, which can be
exemplified by the formulae employed in the ab initio model potential (AIMP) [36]:∑

cα∈α

Ĵcα −→ 1
|Rα − r|

∑
cα∈α

Ck exp(−βk(Rα − r)2)(2.14)
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The coefficients Ck and exponents βk are fitted rather than calculated from the cor-
responding Gaussian AO exponents and contraction coefficients of the atomic core
orbitals whose effect they are assumed to represent. By contrast, the core exchange
contribution to the pseudopotential is explicitly calculated over the Gaussian AOs and
represented by its spectral expansion on the basis of the primitive Gaussians.

Further development evolves around the idea of taking into account the core
polarizability. In general theory this corresponds to eq. (1.258). In the pseudopotential
setting, this feature is reflected by adding corresponding terms to pseudopotentials.
This resembles (and in fact coincides with) by its origin, the formulae describing the
polarization of the M -system, but the result is represented by the classical looking
terms. For example, the pseudopotential:∑

l

{
−Z − N

r
+ Al

exp(−κr)
r

}
Ωl −

αd

2(r2 + d2)2
− αq

2(r2 + d2)3
(2.15)

where Ωl is the operator projecting to the subshell with the azimuthal quantum num-
ber l, αd and αq are the dipole and quadrupole polarizabilities of the core respectively,
and d is the radius of the core, has been proposed in [37]. This corresponds to taking
into account the expectation values of the diagonal part of eq. (1.258). The opera-
tors Ωl take care of the fact that the pseudopotential is different for subshells of the
valence shell corresponding to different values of the angular momentum. The basic
reason is quite clear: the valence orbitals must be orthogonal to the core orbitals.
However, the orthogonality conditions formulate differently for the orbitals with dif-
ferent values of l: the 2s-function must be orthogonal to the filled 1s-core orbitals
of which the pseudopotential term takes care, whereas the 2p-functions are automati-
cally orthogonal to the 1s2-core by symmetry. Further details and many examples of
pseudopotentials can be found in [38].

Further uses of pseudopotentials are numerous. The most obvious (and rather
widely known ones) are to continue with the PP or MP Hamiltonians for a widely
understood combination of the core and valence shells and to apply standard ab initio
techniques to electrons in the valence subspace only. We do no elaborate further on
this as the hybrid nature of the pseudopotential methods is rather obvious from the
above and its more specific applications in a narrower QM/MM hybrid context will
be described later.

2.3. HARTREE-FOCK-ROOTHAAN BASED SEMIEMPIRICAL
METHODS

In the previous section we briefly described the ab initio QC methods and the prob-
lems arising when they are applied to the modeling of complex systems. These prob-
lems cannot be considered as merely technical ones: even if the computer power is
sufficient and the required solution of the many electron problem can be obtained by
brute force, the problem of the status of the result produced by the uncertainty intro-
duced by poorly defined junction between the quantum and classical regions may still
be important. Pragmatically, however, the resource requirements may have already
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become prohibitively high for using the ab initio QC techniques as a tool for massive
PES modeling. In this situation, the semi-empirical methods can again come into play
as they have, 40 years after the pioneering works of Pople and Beveridge [39] were
published, in which the CNDO and INDO parametrization were developed. However
to put the whole thing in a correct (from our point of view) perspective we must
mention even earlier attempts to model properties of molecular systems on the basis
of analyzing the electronic structure of their “important” chromophore: namely the
π-electron subsystems treated by the Hückel [40] and Pariser-Parr-Pople (PPP) [41]
methods. They are particularly remarkable from the point of view of hybrid model-
ing as we shall see. As these methods were developed when computing capacities
were quite limited, they had to profit in full from Young’s recommendation [43] that
“The purpose of any mathematical theory is to reduce the amount of calculation in
any specific problem”. The conceptual basis for that theoretical development was the
wide use of the chromophore concept introduced by organic chemists.

2.3.1. π-approximation

It was observed very early that among the colored organic compounds (which are
generally not very common) the most widely found are those which contain multiple
double bonds separated by single bonds. Later it was realized that such an electronic
structure predominantly leads to the planar geometry of the molecule under study,
which in turn allows one to classify the orbitals into the σ- and π-ones, the symmet-
ric and the antisymmetric respectively, under reflection in the mentioned plane. The
excitations responsible for the observed color touch the electrons in the (antisym-
metric) π-states. This results in the π-electronic approximation, which is in many
respects archetypal for the entire field of hybrid modeling. The essence of the π-
approximation of the electronic structure of a polyatomic molecule can be described
as the approximation considering explicitly only the electrons populating the π-states
formed by the 2pz-AOs of carbon atoms (or heteroatoms like nitrogen, oxygen, etc.)
of the molecule. Clearly such an approach allows one to reduce the dimensionality
of the problem significantly. In the case of carotenoid molecules (substituted lin-
ear polyenes – an important object of studies by theoretical chemists in the 30s and
incidentally an important organic pigment) of about thirty carbon atoms in the main
conjugation chain going to the π-approximation significantly reduces the amount of
numerical work: the overall number of valence orbitals in such a system amounts to
200 of which only 30 are treated explicitly and the reduction of numerical work as
estimated from the scaling of a standard diagonalization procedure which is N3 is
quite sizable. Obviously, such a treatment must be approximate and these approxi-
mations were implemented in a series of effective Hamiltonians for the π -electronic
chromophore of which the Hückel Hamiltonian was the simplest:

HHückel = −
∑
a,σ

αaa+
σ aσ −

∑
b,σ

βb(r+bσ lbσ + h.c.),(2.16)
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where the Fermi operators r+bσ and lbσ refer to the creation and annihilation of an
electron on the AOs at the right and left ends of the b-th bond, respectively. The
summation in the first sum extends to all atoms bearing π-AOs and describes the
attraction of electrons to the core of the sp2-hybridized carbon (or hetero-) atom.
Summation in the second sum is extended to all “bonds” i.e. pairs of atoms which are
considered to be immediate neighbors in the system of conjugate bonds and describes
one-electron hopping between the π-orbitals. Due to different summation schemes in
the two sums, the operators in these two may create/destroy electrons in the same
π-AOs. As one can see, only the one-electron terms appear here and also in a very
reduced form: only the orbitals centered on the nearest neighbor atoms are involved.
Even this simple picture allows one to understand and numerically reproduce numer-
ous empirical facts known from chemistry. Further refinement was to include the
Coulomb interaction of electrons in the π-system into consideration explicitly. This
resulted in the Pariser-Parr-Pople (PPP) Hamiltonian which has the form:

HPPP = HHückel + γ0

∑
a

a+
α a+

β aβaα +
1
2

∑
a�=a′

∑
στ

γaa′a+
σ a′+τ a′τaσ,(2.17)

which basically reduces to adding a model Coulomb interaction term in the ZDO
approximation (the first term represents repulsion of electrons with different projec-
tion of spin occupying the same π-orbital a, the second describes repulsion of elec-
trons located on π-AOs a 	= a′ – see below) to the Hückel π-electron Hamiltonian.

The approximate character of the theories based on singling out π-electrons was
obvious from the very beginning. On the other hand, the methods employing π-
electron Hamiltonians were enormously successful. This raised significant interest in
substantiation of the π-electron theories by including them in a more general context.
The sequential theory was first proposed by Lycos and Parr [44] who used the group
function formalism. The formal transition to the reduced description using the π-
electrons was substantiated by assuming the wave function of all electrons of the
system to have the form of the antisymmetrized product of the wave function of
π-electrons Π and that for electrons in the σ-core Σ:

Ψ = Π ∧ Σ(2.18)

This form of the wave function fixes (among other things) the number of elec-
trons in the π-system. In variance with the general theory, the one-electron trans-
fers between the subsystems (π- and σ-ones taking respectively the parts of R- and
M-systems of the general theory) are vanishing due to the symmetry selection rules:

wσπ = 0(2.19)

After that, it was suggested that it is possible to think that the wave function Π is
found by applying the variational principle to the energy functional Eπ:

Eπ = 〈Π|Hπ|Π〉(2.20)

and Hπ itself is either taken in one of the possible semiempirical forms or is somehow
derived from more general principles. The latter approach would have required some
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detailed knowledge of the σ-core wave function Σ not available at that time. Yet it
had already been realized that the GF form eq. (2.18) of the wave function is an
approximation even if the electron transfers between the groups are truly absent (by
symmetry). Even in this case the most general form of the wave function for the
complex system comprising the σ- and π-subsystems (in agreement with a general
theory) is:

Ψ = C1Π1 ∧ Σ1 + C2Π2 ∧ Σ2 + · · ·(2.21)

which physically corresponds to the interaction of mutually induced polarizations
i.e. to dispersion interaction between the subsystems and to renormalization of the
Coulomb interaction between electrons in the π-subsystem.

The π-electron approximation, as used to develop a prototype of the hybrid
QM/MM setting, can also be dated to the early period. Yet in the year 1937 in the
paper by Lennard-Jones [45] a primitive hybrid QM/MM construct had been pro-
posed. This was necessary for describing details of the relation between the electronic
structure and geometry of conjugated systems. The latter was presented by the inter-
atomic distances between nearest neighbor atoms: those between which the electron
hopping is taken into account in the π-electron Hamiltonian eqs. (2.16) and (2.17).
The total energy of the conjugate molecule then appears as a sum of the energies of
the σ- and π-subsystems:

E = Eπ + Eσ(2.22)

In this case the energy of the π-subsystem described by the Hückel Hamiltonian
eq. (2.16) can be presented as

Eπ = −4
∑

b

βbPb(2.23)

where as in eq. (2.16) the summation goes over the nearest neighbor bonds and their
orders Pb are the simplest characteristics of the electronic structure condencing the
information covered in the wave function:

Pb = 〈Π|r+bσ lbσ|Π〉(2.24)

Here the π-system is treated with a very simple, but still quantum mechanical method:
e.g. by the Hückel Hamiltonian and MO LCAO approximation (which in the partic-
ular case of the Hückel Hamiltonian gives the exact answer). No explicit interaction,
i.e. junction, between the subsystems was assumed at that time; however, the effects
of the geometry of the classically moving nuclei were very naturally reproduced by a
linear dependence of the one-electron hopping matrix elements of the bond length:

βb = β0 + β′(rb − r0)(2.25)

the constants β0 and β′ describe the hopping integral and its derivative with respect
to interatomic distance. By this relation the dependence of the effective Hamiltonian
for the quantum part of the complex system on the classical part is modeled. On the
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other hand, the characteristics of the σ-core also depend on molecular geometry. The
natural idea was to represent its energy by a quadratic function of the bond lengths
(harmonic approximation):

Eσ =
Kσ

2

∑
b

(rb − r0)2(2.26)

where the summation is extended to all bonds between nearest neighbor atoms. Here
and above, r0 refers to some reasonable, but hypothetical geometry (bond length)
which would occur in a system with no π-electrons; Kσ is the second derivative of
the σ-core energy at that hypothetical geometry and serves as the elasticity constant
for the σ-core. These parameters were originally fit to reproduce IR-spectral and
structural experiments. The latter allowed Coulson and Longe-Higgins to rationalise
the entire diversity of the geometry data on conjugated molecules in terms of the
famous “bond-order – bond-length” rule:

rb = r0 − ωPb(2.27)

where P is the matrix element of the one-electron density matrix in the π-subsystem
and

ω =
2β′

Kσ

The theories based upon the π-electron approximation turned out to be very suc-
cessful in describing both the spectral and structural data. Additionally the descrip-
tion of the VIS-UV electronic spectra must be mentioned which, however, requires
considering at least the PPP Hamiltonian to incorporate the effects of the Coulomb
repulsion of electrons in the π-subsystem. In this context, the problem of deriving
and independently estimating the parameters of the effective π-electronic Hamiltoni-
ans had been addressed by K. Freed in a series of papers [46–49]. There the general
method of deriving the effective multiparticle Hamiltonian for the valence shell [50]
is applied to sequential derivation for the π-subsystems. Freed’s method is based
on the general representation of the effective Hamiltonian for the subsystem in the
form of the Löwdin partitioned Hamiltonian. Toward this end, the entire space of the
orbitals in accord with the general theory is classified into three subspaces: the core
ones (c) to be treated as fully occupied, the valence ones (v) to be treated explicitly,
and the excited ones (e) to be assumed to be always empty. The projection oper-
ator P is taken so that the Im P subspace is one where the numbers of electrons
are fixed in the above c-, v-, and e-subspaces. The orthogonal projection operator
Q = 1 − P is then that which projects to the subspaces where the numbers of elec-
trons in these subspaces differ from the original one. Then the resolvent part of the
exact effective Hamiltonian eq. (1.133) is estimated by expanding it in the vicinity
of some arbitrary one-electron Hamiltonian (not directly related to that of the prob-
lem) commuting, however, with the operators of electron numbers in the introduced
subspaces. This allows us to get numerical estimates of the parameters of the PPP
Hamiltonian departing from an ab initio Hamiltonian, which are satisfactorily close
to those obtained empirically.
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2.3.2. All-valence semiempirical methods

The π-approximation, which allowed one to address only planar “organic” molecules
with the required rigor, seemed to be very restrictive. Further evolvement of quan-
tum chemistry turned out to be strongly dependent on such an external factor as
the progress of computer power. Increasing availability of computational resources
allowed one to diagonalize matrices of larger dimensionality and opened the possi-
bility of significantly extending the carrier subspace in which the quantum chemical
problem is solved to that spanned by the valence AOs of all atoms comprising the
molecular system. The assumption in the all-valence semiempirical methods is that
the core electrons completely screen the corresponding (integer) part of the nuclear
charge so that e.g. for the second row atoms where the cores are formed by the filled
1s2-shells the effective core charges are:

Zc = Z − 2

In contrast to the pseudopotential methods where the Hartree-Fock method is used
to construct the subset of orbitals spanning the core and valence carrier subspaces,
whereas the calculation in the valence subspace can be performed at any level of
correlation accounting, for the overwhelming majority of the semi-empirical meth-
ods, the electronic structure of the valence shell is described by a single determinant
(HFR) wave function eq. (1.142).

Nowadays there exists an extensive sector of semiempirical methods differing
by expedients of parametrizations of the HFR approximation in the valence basis,
although principles of parametrization may differ as stipulated by the need to repro-
duce different experimental characteristics. The general description of all these meth-
ods can be summed up as attempts to construct an acceptable parametrization for as
wide a selection as possible of chemical elements and possibly to compensate by that
parametrization the inherent flaws of the HFR MO LCAO paradigm used to repre-
sent the molecular electronic structure. Of course, the practical implementations of
this simple idea may deviate in details from the described setting. Nevertheless, the
semiempirical methods are necessary for modeling complex systems and seem to be
flexible enough in terms of “hybridizability” with the classical methods mentioned
above. At least no conceptual problems appear like in case when someone is trying to
hybridize rigorously understood ab initio methodologies with lower level methods.

The procedure of developing a semi-empirical parametrization can be generally
formalized in terms of eq. (1.197). A set of experimental energies E(CqΓS) (here
the notation eq. (1.197) is extended to cover different chemical compositions C, and
molecular geometries q) is given. When a response to an external field is to be repro-
duced, the latter can be included in the coordinate set q. Developing a parametrization
means finding a certain (sub)set of the method parameters ω (orbital exponents, vari-
ous energy parameters, expressions fitting molecular integrals etc.) which minimizes
the norm of the deviation vector δEω with the components E(CqΓS)−E(CqΓS|ω)
numbered by the tuples CqΓS:

min
ω

(δEω|M |δEω)
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which is calculated with some positively (semi)definite metric matrix M . In this
context the parameters ω refer to the parameters of semi-empirical Fock operators
(see below), since the theoretical energies and electronic structure variables (ESVs)
are calculated using the HFR approximation; i.e. the electronic structure of any
molecular system within the semiempirical methods is described by a single Slater
determinant.

Quite a number of enterprises of this sort were very successful, leading to the
whole family of semi-empirical procedures used largely for describing the ground
state of “organic” molecules, [51]. The situation with “inorganic” molecules, partic-
ularly those containing “metals” (what distinguishes a metal atom from a nonmetal
one from the point of view of QC?) and, even more, transition metals, is much more
sophisticated and will be discussed in due prescription.

2.3.2.1. Methods without interaction

Various schemes of parametrization are traditionally organized in groups according to
the subsets of the two-electron integrals taken into consideration. Taking the ab initio
setting as a precise starting point for developing further approximations, one may
think that semi-empirical methods develop by omitting computationally demand-
ing two-electron integrals in the carrier subspace spanned by valence AOs of the
atoms composing the molecule with the pseudopotential reducing to the complete
screening of electron-nuclear attraction by the core electrons. Historically the devel-
opment was just the opposite of the logical structure described above. Among the
earliest attempts to extend the parametrized HFR approach developed and tested on
the example of conjugated organic molecules to the systems not possessing the planar
geometry (symmetry), the Mulliken-Wolfsberg-Helmholtz method (MWH) [52] and
the extended Hückel theory (EHT) [53] can be mentioned. These simple methods of
the semi-empirical family completely ignore the electron-electron interaction matrix
elements by setting:

h(2) ≡ 0

Such a setting might seem to be very poor. However, the methods of this type are
capable of qualitatively correct reproducing the overall form of the MOs, and fre-
quently their relative position on the energy scale and some chemical trends while
going from one element to another in a series of similar compounds. The reasons
for that success (as compared to the seeming weakness of the basic assumptions) of
the “methods without interaction” can be understood if one takes a somewhat dif-
ferent perspective of them. In fact the MWH or EHT procedures can be considered
the final diagonalization in the series of the iterative diagonalizations required to
solve the Hartree-Fock-Roothaan equations eq. (1.143). The diagonalization in these
methods can be thought to be performed for the Fock operator dependent on the
already converged density, so that if someone is in a position to directly parametrize
its matrix elements – without performing the iteration procedure which ultimately
serves namely this purpose – the result may be quite acceptable. The parametrization
schemes used in this context were as follows – the diagonal matrix elements of the
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Fock operator in the basis of AOs were set equal to ionization potential characteristic
for the AO at hand:

Fµµ = h(1)
µµ = −Iµ

The off-diagonal ones were defined by the relation:

Fµν = h(1)
µν = −k

2
(Iµ + Iν)Sµν

where Sµν is the overlap integral between the basis AOs. In the context of the “theo-
ries without interaction” some other forms were proposed for the off-diagonal matrix
elements of the Fock operator [54], but they did not give any decisive improvement
in performance. Directly addressing the experimental quantities such as ionization
potentials was decisive for the level of success achieved by these methods.

The self-consistent nature of the Fock operator is sometimes modeled in the meth-
ods without interaction by the schemes relating the ionization potentials of each AO
with the overall electronic population (or effective charge) of a given atom and some-
times with the orbital populations of the AOs centered on the considered atom. This
generally leads to the expressions of the form [55]:

Fµµ = AµQ2 + BµQ + Cµ

where the AO specific constants Aµ, Bµ, and Cµ are fitted to reproduce the exper-
imental ionization potentials. However, despite considerable success in their time,
these methods are largely only of historical interest in our days.

2.3.2.2. ZDO methods

Further development of the semiempirical methods can be described as a significant
extension in terms of two-electron contribution to the energy. It has been done by
the so-called zero differential overlap (ZDO) approximation. Yet in the 50s, in order
to reduce the computational problems while estimating the electron-electron inte-
grals, Mulliken suggested the replacement of the products of AOs appearing under
the integral sign in the definition of the overlap integral (the differential overlap) by
the following expression:

χ∗
µ(r)χν(r) =

χ2
µ(r) + χ2

ν(r)
2

Sµν(2.28)

This allowed one to approximate the four-orbital integrals of electron-electron inter-
action by much simpler expressions:

(µν|κλ) =
SµνSκλ

4
[(µµ|κκ) + (νν|λλ) + (νν|κκ) + (µµ|λλ)](2.29)

The simplification is achieved due to the fact that for an integral on the left side,
which may potentially involve AOs coming from four different centers and cannot be
easily calculated at least for the Slater-type AOs, representation on the right is given
in terms of no more than two-center quantities, which can be easily calculated for the
Slater functions.



Hybrid Methods of Molecular Modeling 113

The Mulliken approximation can be used in a slightly different way, which has
actually been done. The first step when solving the Hartree-Fock equation eq. (1.149)
may be going to the basis of the symmetrically orthogonalized AOs (applying the
Löwdin transformation S− 1

2 to the set of the AOs). The orthogonal basis thus
obtained is commonly denoted as the λ-basis and due to the variational property
of the symmetrically orthogonalized AOs these latter {λχµ} have the largest possi-
ble overlap with the original (nonorthogonal) AOs {χµ} which up to a certain point
allows one to use the same subscripts for labeling AOs and OAOs. In the notation
introduced previously

λχµ = ϕµ

so we shall use them on an equal footing, depending on the convenience in that or
any other situation. In the λ-basis the Hartree-Fock problem acquires the form:

λFλu = ελu(2.30)
λF = S− 1

2 FS− 1
2

λu = S− 1
2 u

In the above equalities the basis functions are orthogonal (OAOs):〈
λχµ|λχν

〉
= 〈ϕµ|ϕν〉 = δµν

Now, if the differential overlaps of the original AO basis are approximated by the
formula eq. (2.28), it turns out that applying the Löwdin transformation S− 1

2 to the
set of the AOs makes the products i.e. the differential overlaps of the symmetrically
orthogonal OAOs vanishing:

λχµ(r)λχν(r) = ϕµ(r)ϕν(r) = 0

for µ 	= ν. If these relations for the OAOs differential overlaps are inserted in the
formulae for the two-electron integrals, their values on the basis of the OAOs {ϕµ}
shall follow the condition:

(µν|κλ) = δµνδκλ(µµ|κκ)

This makes the major part of the two-electron integrals disappear, drastically
simplifying the whole setting and thus serving the basis for the subsequent devel-
opment, which took about thirty years. The idea was to treat the original AOs
coming with atoms when a molecule’s model is constructed as already symmetri-
cally orthogonalized. It is a serious approximation; however, it had been studied
theoretically [56, 57] and tested numerically [58–60] and it had been shown that the
matrix elements defined with respect to the formally OAO basis set possessed some
useful characteristics. First of all [56] the two-electron matrix elements are “transfer-
able” up to the second order with respect to interatomic overlaps in the original AO
basis, which can be assumed to be small. Next it had been shown (both theoretically
and numerically) [57–60] that the two-electron matrix elements which are falling
out in the Mulliken approximation are indeed small in the OAO basis. On the other
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hand, the conceptual problem is that, taking the basis AOs as implicitly orthogonal
means that the AOs themselves lose their individuality: the OAOs of the same atom
are obviously different in different chemical environments in different molecules
and even for different molecular geometries. This is however ignored. The idea of
employing original basis AOs as implicit OAOs had been numerously implemented
and we review these implementations below.

CNDO methods. The simplest among the methods developed within the ZDO
paradigm was the CNDO method, which uses the Complete Neglect of Differential
Overlap so that

χ∗
µ(r)χν(r) = 0 for all µ 	= ν(2.31)

The parameters used to construct the model Fock operator’s matrix elements in the
OAOs basis set are as follows:

Fµµ = − χ0
µ + [QM − Pµµ]γMM +

∑
K �=M

QKγMK(2.32)

Fµκ = βMKSµκ − PµκγMK

where QM stands for the effective charge of the atom M :

QM = PM − ZM = 2
∑
µ∈M

Pµµ − ZM(2.33)

PM is the electronic population of the atom M ; χ0
µ is the Pauling’s electronegativity

specific for the subshell (s-, p- etc.) to which the orbital µ belongs, and βMK is the
strength of the resonance interaction characteristic for the pair of atoms (chemical
elements) M and K . Practical implementation goes further and sets

βMK =
1
2
(β0

M + β0
K)(2.34)

where β0
M and β0

K are the characteristic parameters for the respective atoms. The
two-center electron-electron Coulomb interaction integrals are set to be:

(µµ|κκ) = γMK = γMK(RMK)(2.35)

for the OAOs µ and κ centered at atoms M and K , and

(µµ|κκ) = γKK

if both OAOs µ and κ are centered at the atom K . The parameters γKK are set specific
according to the atomic type (chemical nature) of K , whereas for γMK , numerous
functional forms have been proposed. Among them the Klopman-Ohno form is one
of the most widely used

γMK(R) =
e2√

R2 + R2
0MK

with

R0MK =
e2

2

(
1

γMM
+

1
γKK

)
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although the Mataga-Nishimoto form

γMK(R) =
e2

R + R0MK

with

R0MK =
e2

2

(
1

γMM
+

1
γKK

)
is also used as is the original setting by Pople and Segal [39]:

γMK(R) = (sMsM |sKsK)

where by sM and sK the s-AOs of the valence shells centered on the respective atoms
are meant. In this latter case the deviation of the above integral from the Coulomb
law is indirectly controlled by the Slater orbital exponents ζM and ζK .

The intraatomic electron-electron interaction integrals are usually estimated fol-
lowing the rule:

γKK = IPK − EAK(2.36)

where IPK and EAK are respectively the ionization potential and electron affinity of
the atom K . The same experimental quantities serve also as a source for parametriz-
ing the diagonal matrix elements of the Fock operator in terms of the Pauling elec-
tronegativity

χ0
κ =

1
2

(IPK + EAK)(2.37)

where the ionization potential and the electron affinity on the right are understood as
those characteristic for the subshell (s-, p- etc.) to which the orbital κ belongs. Further
analysis allows us to single out more fundamental parameters of the semiempirical
Fockian than the Pauling electronegativity. Indeed, assuming the CNDO approxima-
tion for an isolated atom one can write:

IPK = − UKK − (ZK − 1)γKK(2.38)
EAK = − UKK − ZKγKK

in terms of the effective quantity UKK parametrize the attraction of a single electron
placed to the κ-th AO to the core of the K-th atom where this AO is centered. Clearly
the parameter UKK is subshell specific.

Some conceptual and technical difficulties of the ZDO-based methods while defin-
ing the one-electron integrals/parameters by eq. (2.34) come as a contrast to the ease
of coping with the two-electron integrals. It basically indicates that the ZDO approx-
imation is not taken too seriously, but only as a plausible argument allowing one to
reduce the number of two-electron integrals. On the other hand, using eq. (2.34) for
parametrizing one-electron matrix elements allows one to reproduce the most impor-
tant spatial (directional) characteristics of chemical bonds dating back to Pauling’s
principle of optimal (maximal) overlap, which ultimately determines the mutual ori-
entation of chemical bonds (see below).
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So far we were concerned with the electronic (quantum) part of the energy in the
CNDO approximation. The classical part of the energy describing the interactions
between the cores, which are not treated explicitly in the CNDO methods, takes the
form:

ZMZKγMK(R)(2.39)

Combined with the electron-electron and electron-core interaction terms allows one,
in this setting, to rewrite the Coulomb contribution to the molecular energy in the
form:

1
2

∑
M �=K

QMQKγMK(R)(2.40)

corresponding to the interaction of the effective atomic charges.

INDO methods. Applying the above (CNDO) treatment to the intraatomic Coulomb
integrals results in the evanescence of some of them. Specifically, the intraatomic
exchange integrals of the form (µκ|µκ) all become zero. As a result, it is not pos-
sible to distinguish the different electronic states in the atomic valence shells on the
Hartree-Fock level of theory. Also for the open shell molecules (organic radicals) the
spin densities did not appear correctly, which precluded the correct description of
their ESR spectra, which was important from the point of view of experiment inter-
pretation. This promoted the further development of the HFR-based semiempirical
methods along the line of releasing the strictness of the ZDO approximation and by
this, allowing for a more detailed description of the Coulomb interaction integrals.
In the intermediate neglect of differential overlap (INDO) group of methods all the
intraatomic parameters of Coulomb interaction stipulated by the spherical symmetry
are included for the sp-shells of the second row atoms. Formally they can appear if
the differential overlap for AOs centered on the same atom is not set equal to zero, but
maybe one simply should not take the ZDO approximation too seriously: finally the
generalized Ruedenberg-Mulliken approximation which leads to eq. (2.28) by con-
struction can be used for products of the AOs centered at different atoms. Keeping
the intraatomic differential overlaps results in five independent parameters F 0(ss),
F 0(sp), F 0(pp), G1(sp), and F 2(pp) which suffice to express all two-electron inte-
grals in the sp-shells in their terms. These quantities are known as the Slater-Condon
parameters [61]. It is possible in principle to get their estimates from the experimen-
tal electronic spectra of atoms and their ions. For the third row atoms the problem
of whether it is worth including 3d-orbitals into the valence basis set arises. A deci-
sive conclusion has not been achieved; however, it is clear that in this situation the
number of even one-center two-electron parameters strongly increases. The spectral
data necessary to estimate all of them (to find the parameters F k(dd) one needs to
know the energy of states with two electrons in the d-subshell of the valence shell
which may not be easily available for an atom having in its ground state the empty
d-subshell) are not always readily accessible.
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Using the Slater-Condon parameters all symmetry allowable two-electron one-
center integrals, which brought about a modification of the matrix elements of the
Fock operator, are taken into account. This allows one to write down the matrix ele-
ments of the effective Fock operator:

Fµµ = Uµµ +
∑
λ∈M
λ�=µ

Pλλ (2 (λλ|µµ) − (λµ|µλ)) +
∑

K �=M

QKγMK(2.41)

Fµκ = βMKSµκ − PµκγMK ; µ ∈ M ; κ ∈ K

Fµλ = 3Pµλ (λµ|µλ) − Pµλ (λλ|µµ) ; µ, λ ∈ M

where e.g.:

(ss|pp) = F 0(sp); (sp|ps) =
1
3
G1(sp); etc.(2.42)

also in the INDO context. Two-center molecular integrals in the INDO setting are
parametrized analogously to the CNDO method.

NDDO methods. In the NDDO (neglect of the diatomic differential overlap) fam-
ily of approximations, two-center Coulomb interaction integrals are further retained
in the model. Following the formulation, the differential overlap is set to zero, cal-
culating the two-electron integrals only if the AOs involved in one are centered on
different atoms. The differential overlap of the AOs centered on one atom is not
excluded as in the INDO formulation, but is used to substantiate the retention of the
two-electron integrals describing the interactions of the corresponding hybrid densi-
ties centered on different atoms (two-center). One can check that the transformation
properties of these differential overlaps under spatial rotations coincide with those
of the components of the corresponding point multipoles. It has been shown more
than 50 years ago [62, 63] that the multipole expansions can adequately reproduce
these electron repulsion integrals. This gave W. Thiel and M.J.S. Dewar [64] the idea
of not calculating the two-center integrals of the form (µν|κλ)MK where the AOs
χµ, χν are centered on the atom M , and the AOs χκ, χλ on the atom K explicitly,
but to represent them as energies of interactions of certain fictitious charge distribu-
tions mimicking necessary multipole momenta. For example, the hybrid sp-density
transforming as a dipole is represented by a pair of charges ± e

2 placed on the respec-
tive axis. The two-electron matrix elements are then set to be equal to the interaction
energies of these fictitious charges, which are assumed to interact by a semiempirical
potential. The most popular semiempirical potential adopted in the MNDO method
is [65, 66]:

fl1l2(R) = [R2 + (ρl1 + ρl2)
2]−1/2(2.43)

It depends on the type of interaction (indices l1 and l2 correspond to the 2l1- and
2l2-poles located on atoms M and K , respectively).

The drawback of this approach is that it makes the integrals non-invariant with
respect to rotations of the coordinate frame. The source of invariance is that the fic-
titious charge configurations have non-vanishing higher multipole momenta due to



118 Andrei L. Tchougréeff

the fact that the charge distributions described above are not point multipoles and
their respective potentials contain contributions of higher multipoles. In real cal-
culations, this non-invariance is masked by evaluating corresponding terms in the
diatomic coordinate frame (rotations of the molecule induce rotation of the diatomic
coordinate frame and the integrals are calculated identically for all orientations of the
molecule).

In the NDDO scheme, two-center contributions involve also the “penetration”
effects defined in [56] as the difference between the potential induced on the AOs of
the atom M by the nucleus of atom K and by the electron distribution around atom
K . The corresponding integrals are taken to be proportional to two-center Coulomb
integrals:

ViiK = −ZK(ii|ss)MK

VijK = −ZK(ij|ss)MK

Further enlarging the set of Coulomb integrals has been done in the Fenske-Hall
method practiced more or less widely in the 1970s and 1980s. It takes into account
all possible two-electron integrals, but calculates them using the Mulliken approxima-
tion eq. (2.29). Nevertheless no decisive success has been achieved in this direction.

2.3.2.3. Modified ZDO methods

Neither of the “pure” parametrizations based on both the levels of the ZDO treat-
ment described above was particularly successful in reproducing molecular geome-
tries or the thermochemistry even of “organic” substances. To solve this problem,
M.S.J. Dewar and his coworkers adopted the idea of loading the missing information
on the core-core repulsion term. In the hybrid perspective, this move corresponds to
reparametrizing the classical part of the hybrid energy and reloading possible incon-
sistencies of the HFR/ZDO scheme upon the parameters of the classical contribution
to the energy. This resulted in a series of “modified” ZDO methods. The major part
of the forms of the core-core repulsion used in the modified methods developed by
Dewar may be characterized as those where, at shorter interatomic separations, the
repulsion is somewhat stronger than that given by the electron-electron repulsion inte-
grals characteristic of these types of atoms at the given separations. This is logical as
in the ZDO methods the two-center Coulomb integrals are parametrized to flow to the
average of their one-center values i.e. to a finite quantity, although the nuclear repul-
sion obviously diverges. The earliest methods of this series were based on the INDO
approximation and are known by the name of modified INDO (MINDO) methods.
For example, in the MINDO/3 method [67] the core-core repulsion is parametrized
in the form:

EAB = ZAZB{γAB(RAB) + [
e2

RAB
− γAB(RAB)] exp(−αABRAB)}

This helped to build a robust tool for modeling thermochemistry and molecular struc-
ture of “organic” molecules yet in the 70s. The MINDO/3 parametrization covers H,
B, C, N, O, F, Si, P, S, and Cl atoms, although for some atomic pairs the αAB and
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βAB parameters had not been fitted. The reason for this is the rapid increase of the
number of parameters indexed by pairs of atoms. That was one of the reasons why
the idea of using the parameters indexed by atomic pairs had been abandoned in the
semiempirical QC context (see, however, below). Also the Slater exponents for AOs
had been included in the parametrization scheme as free adjustable parameters.

The MNDO (modified NDDO) parametrization [64] involves the core-core repul-
sion in the form:

EAB = ZAZB(ss|ss)AB{1 + exp(−αARAB) + exp(−αBRAB)}

EXH = ZXZH(ss|ss)XH{1 +
exp(−αARXH)

RXH
+ exp(−αHRXH)}

for an arbitrary pair of atoms and for a pair involving a hydrogen atom, respectively.
The MNDO method has been parametrized for the elements H, B, C, N, O, F, Al,
Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, and Pb. The parameters of the MNDO method are
indexed by the atoms only so that the resonance interactions take the original CNDO
form. Thus the overall potential number of parameters is significantly reduced as
compared to the MINDO/3 scheme.

The methods of the NDDO family were further developed, which resulted in two
quite successful parametrizations for “organic” species [68, 69] known as the Austin
Model (AM1) and Parametrized Model (PM3) and further, PM5 and SAM1 (semi-ab
initio model) parametrizations [74, 75].

The AM1 and PM3 parametrizations can be characterized as the MNDO ones with
the core-core energy terms further modified:

V = V MNDO +
ZAZB

RAB

∑
k

{akA exp(−bkA(RAB − ckA)2) +

+ akB exp(−bkB(RAB − ckB)2)}

with sum over k ranging from two to four of the terms depending on the sort of
atoms involved. These modifications became necessary due to incurable failures of
the MNDO method to correctly reproduce certain interatomic distances. The neces-
sary result has been achieved by explicitly adding Gaussian terms to make these dis-
tances correct. Parameters of the Gaussians entering the above expression are fit to
reproduce “by brute force” the interatomic separations which do not appear correctly
from the otherwise MNDO calculation. This results in certain unpleasant features
of the AM1 and the PM3 methods. For example, being capable of reproducing the
O-H bondlength in water molecule, it fails to do the same in the water dimer (and
in higher clusters). The reason is simple: the Gaussian terms force the minimum of
the potential well to appear at the characteristic intramolecular O-H distance, which
distorts the intermolecular geometry in the dimer [70]. The AM1 method has been
parametrized for the elements: H, B, C, N, O, F, A1, Si, P, S, Cl, Zn, Ge, Br, I, and Hg.
The PM3 method evolves along the same formula as AM1, but instead of the manual
tuning of the parameters performed throughout developing the AM1 scheme, PM3
uses a minimization of the weighted sum of the deviations between the calculated



120 Andrei L. Tchougréeff

and experimental values of the quantities of interest. In this sense the parameters’
search procedure employed to find the PM3 set is “automatic”. However, the opti-
mized penalty functional is non-linear with respect to parameters to be found and
thus has multiple minima and also depends on the assignment of the weights done
throughout the calculation. The PM3 method has been parametrized for the elements:
H, Li, C, N, O, F, Mg, A1, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te,
I, Hg, Tl, Pb, Bi, Po, and At. However, due to the “automatism” in some cases, the
values of the fitted parameters do not follow the intuitive monotonous series along
the rows of the Periodic Table. E.g. the parameters for phosphorus fall out from the
monotonous sequence along the row. More recent analysis indicates that this hap-
pens due to the fact that experimental values for phosphorus compounds used in the
parametrization turned out to be wrong by 140 kcal/mole.

The SAM1 parametrization [74] further extends the number of two-electron inte-
grals included in the treatment. They are calculated first for the AOs taken as in
the STO-3G Gaussian basis set, but then scaled using the distance dependent func-
tions containing adjustable parameters. The SAM1 method has been parametrized
for the elements H, Li, C, N, O, F, Si, P, S, Cl, Fe, Cu, Br, and I. Unfortu-
nately, this parametrization was never thoroughly published and studied. The same
applies to the PM5 method [75] which is implemented only by a commercial soft-
ware, without adequate explanation.2 Further refinement of the system of correcting
Gaussian contributions to the interatomic interaction functions has been proposed
in [71].

2.3.3. Miscellanea. Further development

The schemes briefly reviewed above do not exhaust the variety of ways of devel-
oping semi-empirical schemes which are presented in the literature. First of all it
must be mentioned that the schemes described so far were parametrized against the
geometry-thermochemistry data and due to this are capable of reproducing only this
type of experimental data. As for spectral information, semiempirical parametriza-
tions designed to reproduce it had been developed within the ZDO approximation.
Among them the spectral version of CNDO by Jaffé et al. – the CNDO/S parametriza-
tion based on even earlier spectral parametrization of the PPP method – and the
INDO/S, also called ZINDO by M. Zerner [81] must be mentioned. The spectral
parametrizations differ in construction because the description of the excited and
ionized states involves not the single-determinant, but a many-configuration wave
function. This automatically requires reparametrization, since some part of corre-
lation, which in the thermochemical parametrizations was loaded upon parameters,
explicitly appears in the spectrally oriented methods which employ restricted CI wave
function to describe excited states of the systems. Specifically the CNDO/S scheme

2During the preparation of the final version of this book a comprehensive paper
[295] describing development of the PM6 semiempirical parameterization for 70
atoms appeared from print.
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was quite successful for organic molecules, whereas the ZINDO (INDO/S) scheme
described to some extent the spectra of the transition metal complexes (see below).

The HFR-based, semiempirical methods described so far were additionally using
the ZDO approximation for either all or at least a good fraction of integrals and thus
were taking the AOs as implicitly orthonormalized. There exists a group of meth-
ods attempting to account for the nonorthogonality of the AO basis. The SINDO1
method [73] was designed along this line. Its parametrization employs the rules of
selecting nonvanishing two-electron matrix elements, which coincide with those of
the INDO scheme, but treats the overlap between AOs centered on different atoms
explicitly. The Fock operator constructed in the nonorthogonal basis is transformed
to the orthogonal one by applying an approximate expansion of the S− 1

2 matrix:

S− 1
2 = (1 + σ)−

1
2 = 1 − 1

2
σ +

3
8
σ2 − ...

σij ∼ (1 − δij)

The resulting parametrization extends to H, Li, Be, B, C, N, O, F, Na, Mg, A1, Si, P,
S, Cl, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn atoms. There are also other attempts
to cope with the orbital basis nonorthogonality at a more advanced and explicit level.
This is realized in the CNDO-S2 [72] and PRDDO [147] methods.

Significant progress in developing semi-empirical models with overlap have been
achieved only recently in the orthogonalization model n (OMn) methods by W.
Thiel’s group [76, 77]. The main differences from the previous methods of treat-
ing the nonorthogonality of the AOs basis in the OMn methods are (i) significant
modification of the resonance integral:

βMN
µν =

1
2
(βM

µ + βN
ν )
√

RMN exp(−(αM
µ + αN

ν )R2
MN )(2.44)

where αM
µ , αL

λ , βM
µ , βL

λ are atom and subshell dependent adjustable parameters and
(ii) explicit inclusion of the core nonorthogonality effects into the effective Fock
operator for the valence subspace by setting:

FMN
µν → Fµν +

∑
C

Vµν,C(ECP)(2.45)

Vµν,C(ECP) =
∑
γ∈C

(SµγGγν + GµγSγν − SµγFγγSγν)

where γ runs over the core orbitals of an atom C 	= M, N and G’s are given by
eq. (2.44). Otherwise as usual for the second order (in σ) correction to the one-
electron orbital-orbital hopping is introduced

λHMN
µν = βMN

µν −
∑
α∈A

[
1
2
(SµαMαν + MµαSαν) −(2.46)

− 1
8
Sµα(Hµµ + Hνν − 2Hαα)Sαν

]
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for the OAO basis. These improvements allowed many problems of the traditional
semi-empirical methods to be solved. In cases where nonorthogonality is important
(stereo-discrimination) significant improvements have been achieved. However, in
other important cases, additional work will be necessary (see below).

2.3.4. Unsolved problems or “Holy Grails” of the HFR-based semiempirics

The methods described so far were largely targeted toward “organic” molecules.
Despite the considerable success of semi-empirical methods (the author suspects that
the major part of real life modeling work performed outside the academic commu-
nity is done using semiempirical methods) some important items remain inaccessi-
ble. Among them one might mention the following (as formulated in [120] with some
additions):
1. rotation barriers and relative stability of conformations of organic molecules;
2. pyramidal geometry of nitrogen atom in its compounds;
3. hydrogen bonds;
4. weak van der Waal’s interactions;
5. molecules containing phosphorus;
6. transition metal compounds;
7. major part of true chemical transformations involving bond breaking and forming;
8. catalytic reactions.

Some of these features have got the somewhat exaggerated name of “Holy Grails”
of semiempirical theory. The author has managed to find at least two Holy Grails in
the Internet: among them the linearly scaling semiempirical methods which are not
mentioned in the above list and those capable of treating transition metal complexes
which are. Although the topic of this book is still not listed among them, this makes
the whole picture somewhat more prospective: perhaps many problems have similar
solutions. Before attempting to solve these problems in the context of the theory of
hybrid methods, it makes sense to begin with the analysis of the fundamental sources
of the problems the HFR based semiempirics faces when applied to the mentioned
objects. We address first the transition metal compounds, which are attractive to first
year chemistry students because of their bright colors, attributable to the open d-shell
chromophores.

The highly specific behavior of transition metal complexes has prompted numerous
attempts to access this “Holy Grail” of the semi-empirical theory – the description of
TMCs. From the point of view of the standard HFR-based semiempirical theory, the
main obstacle is the number of integrals involving the d-AOs of the metal atoms to be
taken into consideration. The attempts to cope with these problems have been docu-
mented from the early days of the development of semiempirical quantum chemistry.
In the 1970s, Clack and coworkers [78–80] proposed to extend the CNDO and INDO
parametrizations by Pople and Beveridge [39] to transition elements. Now this is an
extensive sector of semiempirical methods, differing by expedients of parametriza-
tions of the HFR approximation in the valence basis. These are, for example, in
methods of ZINDO/1, SAM1, MNDO(d), PM3(tm), PM3∗ etc. [74,81–86]. From the
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point of view of the number of two-electron integrals involved, the modern NDDO-
type methods must be quite successful. For example, PM3(tm) [87] represents an
extension of the PM3 set to the transition metal atoms designed with the purpose
of describing TMCs. The data to be fitted throughout the parametrization procedure
are the molecular geometries as determined by X-ray technique. Similar ideas were
employed while developing the MNDO/d parametrization [88]. Its main purpose was,
however, to improve the description of the second row elements by including the
vacant d-shells in the valence set. The resulting MNDO/d method contains parame-
ters for the following elements (beyond those already present in MNDO): Na, Mg,
Al, Si, P, S, Cl, Br, I, Zn, Cd and Hg. The calculations carried out in [89] show, how-
ever, that the method is not capable of reproducing even very simple characteristics
in a series of TMCs having a similar structure, though other authors [85,90] state that
in some cases, reasonable estimates of geometrical characteristics may, nevertheless
be achieved. This situation can be understood by a thorough consideration of the sets
of objects chosen for analysis in different works. In [89] authors study a uniform set
of about 30 Ni2+ complexes with the ligands linked through nitrogen donor atoms.
The analysis performed there clearly shows that the PM3(tm) method fails for these
Ni2+ complexes. On the other hand, in [85,90] the authors try to explore a compara-
ble number of complexes, although much more dispersed over the range of classes,
which include compounds of the first and second transition row atom, high-spin and
low-spin ones, those having “ionic” and “covalent” bonds, etc. For that reason in the
test sets [85, 90] the problematic classes are represented by a couple of examples
each and seem to be completely isolated exceptions. This can serve as an example of
how trying to test the method on a wide and apparently “random” selection of objects
may lead to a hazy picture due to the absence of clear criteria of any adequate classi-
fication of the chosen set. Basically, the problem of the semiempirical description of
TMCs has remained unsolved for decades and the most problematic feature escaping
a robust modeling is the ground state spin and its dependence on geometry changes.

The 40 years of futile attempts to construct a reasonable description of the TMCs
certainly calls for an explanation. We shall show that the reason is the HFR approx-
imation built into the computation scheme of semiempirical methods. Indeed, the
calculated energies E(CqΓS|ω) are the linear functionals of the density matrices
eq. (1.199). When the cumulants of the two-electron density come into play, the
energies E(CqΓS|ω) and the deviations δEω become quadratic functionals of the
one-electron density matrices and remain the linear functionals of the cumulant (the
same as the previous linear functional of the two-electron density matrix). The HFR
approximation is nothing but the restriction of the corresponding functionals to their
quadratic parts in the one-electron density matrix and dropping the cumulant - depen-
dent contribution completely. By this, two states having wave functions yielding the
same one-electron density matrices but different two-electron density matrices are
deemed to have the same energy. Despite the somewhat difficult terminology it is
a very simple thing. Let us assume that we want to fit some experimental data to
the model
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f(x, y) = ax + by

y = x2 + z

f(x, z) = ax + bx2 + bz

(2.47)

linear in x and y. Quantitatively a simplified model

f0(x) = ax + bx2(2.48)

may not be that bad, if z is small. But qualitatively the approximate model eq. (2.48)
cannot distinguish experimental points which have the same value of x and differ by
the value of z only. The capacity of a theoretical method to reproduce such features
is intimately related to the (grammatically) correct treatment of the cumulant of the
two-electron density matrix. If there is no z as in eq. (2.48) nothing can help. This
is precisely the situation one might face while treating the electronic structure of the
TMC’s most important characteristic, which is the sophisticated structure of the low
energy spectrum of their partially filled d-shell. It can be easily understood that the
cumulant of the two-particle density matrix serves to distinguish the different many-
electron states in the d-shells.

Let us consider a two-orbital two-electron model system with the orbitals a and b
which can be understood as notation for one-dimensional irreducible representations
of the point group of a TMC. In this case, it is easy to see that the corresponding
singlet and triplet states 1B and 3B (Γ = B, S = 0, 1) are given respectively by:

Ψ1B (x1, x2) =
1

2
(α(s1)β(s2) − β(s1)α(s2))(a(r1)b(r2) + b(r1)a(r2))

Ψ3B (x1, x2) =
1

2
(α(s1)β(s2) + β(s1)α(s2))(a(r1)b(r2) − b(r1)a(r2))

(2.49)

Performing the integration according to eq. (1.199) we immediately see that irre-
spective of the total spin of these states, the exact one-electron density matrices are:

ρ
(1)
BS(x, x′) =

1
2
(α∗(s)α(s′) + β∗(s)β(s′))(a∗(r)a(r′) + b∗(r)b(r′))(2.50)

and do not depend on the total spin. This result has been well-known for decades and
appears in textbooks [91, 92]. Obviously, the HFR approximate two-electron den-
sity matrices coming from the one-electron densities eq. (2.50) give a wrong result
since the exact two electron density matrices calculated according to their definition
eq. (1.199) from the wave functions eq. (2.49) are really different:

ρ
(2)

B(0
1)

(x1x2, x
′
1x

′
2) =

1
4

(α∗(s1)β∗(s2) ∓ β∗(s1)α∗(s2)) (α(s′1)β(s′2) ∓ β(s′1)α(s′2))×

(a∗(r1)b∗(r2) ± b∗(r1)a∗(r2)) (a(r′1)b(r
′
2) ± b(r′1)a(r′2))

(2.51)

with the upper sign corresponding to S = 0 and the lower one to S = 1. The physical
consequences of this difference are well known: it is responsible for the validity of the
first Hund’s rule, stating that in an atom the term of a higher spin has a lower energy
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(under other equal conditions). In a more complex situation than that of two electrons
each occupying its orbital, one can expect much more sophisticated interconnections
between the total spin and two-electron densities than those demonstrated above. The
general statement which follows from the theorem given in [93, 94] is that no one-
electron density can depend on the permutation symmetry properties and thus on
the total spin of the wave function. For that reason, the difference between states of
different total spin is concentrated in the cumulant. If there is no cumulant in a theory,
there is no possibility of describing this difference.

This simple example shows clearly that in the case of TMCs, the data E(CqΓS)
related to a set of states of different spin with the same number of d-electrons having
to be reproduced in different ligand environments, is precisely the situation one faces
in the model eq. (2.48). The HFR theory in its simplest form is, however, the case
in eq. (2.48) and it does not provide any quantity to which this difference between
these energies can be somehow ascribed. The problem is not in that or another type
of the Coulomb exchange integrals whether appearing or not in the parameterization
scheme, but in their density matrix cumulant counterpart. Even in the case of the HFR
the density matrix provides a multiplier to be combined with that or another integral
ultimately responsible for the energy difference between the states of the different
total spin, but in the absence of the component of the two-electron cumulant dual to
this integral, this difference remains zero. This explains to some extent the failure of
almost 40 years of attempts to squeeze the TMCs into the semiempirical HFR theory
by extending the variety of the two-electron integrals included in the parametrization.
The real situation is somewhat more complex. In fact, during the period when the
Hartree-Fock theory was the only available tool, it was realized that in some cases
one can reproduce correctly the energies of different spin states staying within the
single-determinant picture. For example the Sz = 1 component of the above triplet
3B state can be presented as a single determinant function:

Ψ3B1(x1, x2) =
1√
2
α(s1)α(s2)(a(r1)b(r2) − b(r1)a(r2))

The Coulomb interaction energy in this state can be calculated according to general
rules and it is obviously equal to that of the Sz = 0 component of the same triplet.
The one-electron density matrices for the two spin components are of course dif-
ferent, but only in the case of the full one-electron density matrices in the basis of
four involved spin-orbitals. If one restricts oneself to the spatial part of the density
matrix it again turns out that two equal (spatial!) density matrices produce different
energies if they are obtained from different multiplets and produce the same energy
if they are obtained from the different components of the same multiplet state. It
is worth noticing that the Coulomb integrals coming from the “Hartree” part of the
self energy eqs. (1.145) and (1.147) appear in the answer with the same numerical
coefficients independent either of the total spin or the total spin projection and these
are the exchange integrals whose numerical coefficients distinguish the states of the
different total spin. Surely, it was the integration over the spin variables which took
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care of the correct numerical coefficient at the exchange integral in these two situa-
tions. They absorbed the necessary features of the exact two-electron density matrix
cumulants which are different for different values of the total spin. One may ask to
what extent analogous moves can be generalized. How far can we get by avoiding
the explicit consideration of the cumulant or equivalently of considering truly many
configuration wave functions. The answer is twofold and in a way contradictory. On
the one hand, for any number of spatial orbitals M and for any number of electrons
N and for any value of the total spin S conforming previous two values, it is possible
to construct states described by the Young tableaux i.e. belonging to the row υ of the
representation Υ of the group U(M) of the unitary M × M matrices. This represen-
tation has the rank N i.e. the corresponding tableau contains N boxes arranged in no
more than two columns of the length not larger than M , such that the first column
is by 2S boxes longer than the second one. This shape is called the Young pattern
and defines an irreducible representation Υ of the group U(M). This representation
is degenerate and its rows are numbered by distributing integers – in the present con-
text the subscripts distinguishing OAOs in the basis – from 1 to M in the above N
boxes in such a way that they do not decrease along the rows of each tableau and
increase in each column. Under this rule, some numbers may appear twice in a two-
column tableau representing a doubly occupied spatial orbital, while those appearing
once represent singly occupied orbitals. Such tableaux represent states transforming
according to the row υ of the representation Υ. They are some linear combinations of
the N -electron Slater determinants possessing the total spin specified by the Young
pattern. For each of the states |Υυ〉 represented by the Young tableau with the Young
pattern Υ and the filling υ the expectation value of the Coulomb interaction of elec-
trons is expressed through the Coulomb and exchange integrals with respect to the
orbitals involved in the construction of the states represented by the Young tableaux:

Coulomb/Hartree
∑
ij

(ii|jj)
〈
EΥ

iiE
Υ
jj − δijEΥ

ii

〉
Υυ

+

exchange
∑
ij

(ij|ji)
〈
EΥ

ijE
Υ
ji − EΥ

ii

〉
Υυ

(2.52)

The operators EΥ
ij (ij = 1 ÷ M ) are the generators of the group U(M) in the space

of the irreducible representation Υ whose matrix elements between the tableaux υ
and υ′ can be calculated on purely algebraic grounds. The diagonal generators EΥ

ii

are also diagonal in the matrix representation and their matrix elements 〈EΥ
ii〉Υυ =

〈Υυ|EΥ
ii |Υυ〉 are equal to the occupation number (2, 1 or 0) of the i-th orbital in the

Young tableau Υυ. From this we see that the Hartree part of the Coulomb energy is
uniquely defined by the occupation numbers of the spatial orbitals i.e. by the spatial
density only.

For a given set of orbital occupation numbers there may exist sets of Young
tableaux differing only by the positions of the orbital indices in the tableaux. The
generators EΥ

ij (raising ones if i > j and lowering ones if j > i) are by definition off-
diagonal elements of the spatial one-electron density matrix. The expectation values
of their products entering eq. (2.52) are uniquely defined by the occupation numbers
of the orbitals in the tableau, by their mutual positions in the tableau, and by the total
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spin. In this case one can say that for given M, N, S uniquely defining the repre-
sentation Υ of the group U(M) and for the row υ of the latter defined by a specific
location of the orbital indices in the tableau, a “Hartree-Fock-like” energy functional
can be written, whose electron-electron interaction part is given by eq. (2.52). It can
be optimized with respect to the expansion coefficients of the involved orbitals over
the AO’s basis. It is easy to check that the positions of the orbital indices in the
tableaux really matter. For example, for two Young tableaux states:

|Υυ〉 =
∣∣∣∣ 1 2

3 4

〉
; |Υυ′〉 =

∣∣∣∣ 1 3
2 4

〉
(2.53)

both representing (different) singlet states of four electrons in four orbitals, the
exchange parts of the corresponding energy functionals, respectively, are [95]:

Υυ : (12|21) + (34|43) − 1

2
((13|31) + (14|41) + (23|32) + (24|42))

Υυ′ : −(12|21) − (34|43) +
1

2
((13|31) + (14|41) + (23|32) + (24|42))

(2.54)

On the other hand, one can easily conclude that for a pair of Young tableaux Υυ
and Υυ′ for which ni = nj = 1 and the difference is only the positions of the
orbitals i and j in the tableaux the operators EΥ

ijE
Υ
ji entering as multipliers of the

(ij|ji) exchange integrals in the exact Hamiltonian yield also an off-diagonal matrix
element in the FCI:

〈Υυ|H |Υυ′〉 =
√

3
2

(−(13|31) + (14|41) + (23|32)− (24|42)) 	= 0,(2.55)

which requires at least a 2 × 2 diagonalization for obtaining the energy correctly.
Unless there is an additional symmetry relation (in the above example it suffices
that exchange integrals (13|31), (14|41) and (23|32), (24|42) are pair-wisely equal)
which makes some of the integrals entering the above expressions equal and by this
allows the diagonalization to be feasible on the purely symmetry grounds yielding
the energy expression which is linear in the Coulomb and exchange integrals, there is
no way to avoid at least a square root irrationality in the answer. Sometimes, in highly
symmetric systems like atoms, it is possible: for example, in a half-filled p-shell (con-
figuration p3) the energies of all states can be expressed through the Coulomb and
exchange integrals as these latter themselves are the linear combinations of only two
Slater-Condon parameters F0 and F2 of which only F2 contributes to the exchange
integrals between the atomic p-functions. However, as one can make sure by con-
sidering the tables of the dn state energies in [96, 97] at n ≥ 3 there appear pairs
of states having the same total spin (Young pattern) and also the same total angular
momentum. Thus true 2 × 2 diagonalization yielding the square root irrationality in
the expressions for the respective energies is required. From another angle it means
that the cumulant of the two-electron density matrix cannot be recovered by simple,
symmetry-based manipulations.

The situation clearly becomes less favorable in lower symmetries where the terms
of the same spin and symmetry span the subspaces of dimensionalities higher than
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two. For example, in an octahedral environment, the LS states of d4- (d6-) configu-
ration span up to seven-dimensional spaces of many-electronic states [98]. Clearly,
at an arbitrarily low symmetry, the problem of linearly expressing the exact energy
of many-electronic terms through the Coulomb and exchange integrals cannot be
solved.

Very similar reasoning applies to the attempts to treat the TMCs with open d-shells,
based on density functional theory (DFT), whatever the champions of this other-
wise decent theory say. Methods of DFT originate from the Xα method originally
proposed by Slater [99] on the basis of a statistical description of atomic electron
structure within the Thomas-Fermi theory [100, 101]. The fundamental idea of the
DFT-based methods consists first of all in approximate treatment of the electron-
electron interaction energy which is represented as:

〈Vee〉 = EH + Exc

Exc = Ex + Ec

The “classical” part of the interaction energy – the Hartree energy:

EH =
1
2

∑
σσ′

∫
ρ(1)(rσ, rσ)ρ(1)(r′σ′, r′σ′)

|r − r′| drdr′(2.56)

is taken exactly, whereas the exchange and correlation parts:

Ex = −1
2

∑
σ

∫
ρ(1)(rσ, r′σ)ρ(1)(r′σ, rσ)

|r − r′| drdr′(2.57)

Ec = −1
2

∑
σσ′

∫
χ(rσ, rσ; r′σ′, r′σ′)

|r − r′| drdr′(2.58)

whose precise definitions eqs. (2.57) and (2.58) consistent with the theoretical setting
given by eqs. (1.197) and (1.202), are assumed to be functionals of the one-electron
density only (diagonal of the one-electron density matrix in the coordinate represen-
tation).

The main aim of the DFT paradigm is to reduce the whole electronic structure
theory to a single quantity: one-electron density – the diagonal part of the one-
electron density matrix. If it had been possible, it would have considerably simplify
the life. Pragmatic methods pertaining to the DFT realm are based on the use of the
Hohenberg-Kohn “existence theorems” [102,103] which state, first, the existence of a
universal one-to-one correspondence between one-electron external potential and the
one-electron density in the sense that not only does the one-electron potential acting
upon a given number of electrons uniquely define the ground state of such a system
i.e. its wave function and thus the one-electron density – which is trivial – but also
that, for each given density, integrating to a given number of electrons a one-electron
potential yielding that given density is uniquely defined.

Two further hypotheses are an important complement to the theorems cited above.
One is the locality hypothesis, and the other is the Kohn-Sham representation of the
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single determinant reference state in terms of orbitals. The locality has been seriously
questioned by Nesbet in recent papers [104,105]; however, it remains the only practi-
cally implemented solution for the DFT. The single determinant form of the reference
state in its turn guarantees that all the expectation values of the electron-electron inter-
action appearing in this context are in fact calculated with the two-electron density
given by the determinant term in eq. (1.202) with no cumulant. It particularly applies
to the “hybrid” (the word is used in a sense different from its use in the present book)
functionals, calculating a certain part of the exchange energy with the formulae of
the single determinant Hartree-Fock method eq. (2.57). In that respect the situation
is analogous to that in the HFR-based semi-empirical methods. In terms of the “data-
fit” model of eq. (2.48) the DFT methods can be understood as those with the fitting
model of the form:

f̃0(x) = ax + g(x)

using maybe a very sophisticated function g(x) instead of bx2 to mimic the indepen-
dent variable y. Irrespective to how much refined g(x) is used the resulting model
will not be able to distinguish the data which differ only by the value of the inde-
pendent variable z (see above) and have the same values of x. However, the relative
energies of the states differing by the cumulant of the two-electron density matrix
must be correctly reproduced to obtain a satisfactory description of the spectra (rel-
ative energies of the states) of the TMCs’ d-shells. In this context it is possible to
say that the DFT-based methods take into account electron correlations in the same
sense, as all (even the elementary) semiempirical QC methods do. If these latter
are parametrized to reproduce some experimental characteristics of molecules, the
parameters of these methods implicitly take correlation into account. By this it may
be possible to achieve quantitative agreement with a narrow segment of experimental
data, but not with those which require reproducing qualitative manifestations of cor-
relations. The latter can be simulated neither by semiempirical methods nor by the
DFT-based methods. Therefore, the advantages of the DFT-based methods are are
primarily observed for trivial TMCs where the correlations in the open d-shell repre-
senting a problem for single determinant methods are actually absent (as in d0- or d10-
complexes or in the complexes of the second and third transition row or in carbonyls
or other organometallic compounds cited in abundance in [106]). Despite that, during
the past decades, DFT based methods have received a wide circulation in calculations
of TMCs’ electronic structure [106–110]. It is, first of all, due to the widespread use
of extended basis sets, allowing one to improve the quality of the calculated elec-
tronic density, and, second, due to the development of successful (so called – hybrid)
parametrizations for the exchange-correlation functionals (see above). It is generally
believed that the DFT-based methods give, in the case of TMCs, more reliable results
than the HFR non-empirical methods and that their accuracy is comparable to that
which can be achieved after taking into account perturbation theory corrections to
the HFR at the MP2 or some limited CI level [110–112].

Remarkably enough, the counter-example eq. (2.49) is well known in the DFT con-
text, and it brought the author [106, 113] to the conclusion that the theory employing
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the local spin density approximation for the exchange energy is valid only for the sin-
gle determinant wave function. That is precisely what other people meant by saying
that the DFT (at least in its original form) does not apply to TMCs at all, which also
may be an exaggeration.

The prescription proposed in [113] to solve this problem is to apply the Slater sum
rules, allowing one to express the energy of a singlet state with two electrons occu-
pying two different orbitals by linearly combining the diagonal matrix elements of
the energy over the single-determinant states not having specific spin. These rules
are of course a specific case of the old Roothaan prescription for the Hartree-Fock
treatment of open shells [114] which in turn is a special case of the above formula
using the expectation values of the generator products over the Young tableaux states
for small values of M, N, S. The problem is that in the case of TMCs the Roothaan
solution is expected to be capable of yielding the energy values of the states of open
d-shells. It is not, however, the case. For the p-shell the solution [114] worked well –
all operators projecting the Young tableau states to the rows of the irreducible repre-
sentations of the SO(3) group – the states with definite angular momentum produced
a new state and by this the Hamiltonian matrix turned out to be diagonalized purely
by symmetry based moves. It turned out, however, that for the d-shells even in free
ions neither the solution [114] nor its extension [115] of constructing the two-electron
density matrix work for a major part of the atomic electronic terms of the transition
metal ions and multiple states appear requiring the explicit diagonalization of the
Hamiltonian matrix blocks. This moment is crucial – it is not possible to get rid of
the irrationality (square root) in the expression for the energy by linearly combining
the parameters of the Hamiltonian. The example of such a possibility, given in [109],
applies only to the case explicitly considered in that paper: that of the d2 configura-
tion, for which as one can see from [96, 97] the energies of all terms can be linearly
expressed through the Racah parameters. Obviously the situation is going to dete-
riorate when the symmetry is not high enough: in this case the number of different
symmetry labels simply does not suffice to distinguish all the states coming from the
Young tableaux with the given set of orbital occupation numbers.

In this context another suggestion by Gunnarsson and Lundqvist [116] and von
Barth [117], known also at an early stage of the development of the DFT technique
of employing different functionals to describe different spin or symmetry states,
deserves attention. In other words, the simplified model for the data fit eq. (2.48)
changes to:

f̃ΓS
0 (x) = ax + gΓS(x)

where gΓS(x) represent exchange-correlation functionals specific for each ΓS. Like
the model f0(x) the model f̃ΓS

0 (x) cannot distinguish experimental points with equal
values of x differing by the values of z if they belong to the same spin and symmetry,
but the difference in z which distinguishes one set of ΓS from another one is implic-
itly built into the functional. One can expect, however, that using the Young tableaux
Υυ to label the permutation symmetry, predefined relations between the orbital occu-
pation numbers and total spin on the one hand and the two-electron density cumulant
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on the other hand can allow one to construct in the future an exhaustive classification
of the allowable exchange functionals of the one-electron density.

Turning back to the traditional HFR-based semiempirics, it may be mentioned that
the considerations similar to those given above apply when it concerns problems
which hardly fit into the traditional HFR-based semiempirical context. It concerns
the formation and cleavage of chemical bonds (H2 dissociation being the archetypal
example), catalytic action, etc. In all these cases the very structure of the HFR approx-
imation precludes the correct description since the correlations become not only
“strong”, but also “nontrivial”: the cases with similar x’s, but different z’s require to
be uniformly reproduced to correctly describe these interesting situations.

That does not mean that a valid semiempirical parametrization based on the HFR
MO LCAO scheme cannot be built for a certain narrow class of compounds or even
for a specific purpose. It is done for example in [86] even for iron(II) porphyrins. But
in a more general case there is no way to arrive at any definite conclusion [118] about
the validity of a semi-empirical parametrization relying on the HFR approximation.
On the other hand we have to mention that the semiempirical method ZINDO/1 [119]
which allows for some true correlation by taking into account the configuration inter-
action may be considered a prospective setting for further parametrization, provided
the HFR solution required by this method as a zero approximation can be obtained.
This will be discussed in more detail later.

After that long explanation of why the HFR-based methods do not work, some
people might be interested in why they nevertheless do work in many cases. The rea-
son can be understood by inspecting the exact expression for the energy eq. (1.213)
given in terms of the exact and thus unknown, but still one-electron Green’s func-
tion for the system under consideration. It means that the form of the ground state
energy accepted in the HFR-based semiempirics is in fact grammatically correct. If
one manages to figure out a good approximation to the exact one-electron Green’s
function, then, to the extent of the range where the adopted approximation is valid,
the corresponding parametrization will work. The problems must be expected at the
borders between the areas where that or another approximation is stable: good candi-
dates to the rôles of such borderlines are the situations when the ground state of the
system – that over which the Green’s function is by definition an expectation value –
changes. Then an approximation good enough to represent a Green’s function being
an expectation value over one ground state is not a good one for doing similar work
with another ground state and explicit addressing of nontrivial correlations becomes
necessary.

Finalizing the brief review of the HFR-based semiempirical methods of quantum
chemistry, we notice first of all that being themselves examples of general hybrid
paradigm of separate treatment of different electron groups, they provide enough flex-
ibility for being used in the hybrid schemes in a narrow sense, in which they are of
special interest to us. Their parameters can be modified if necessary and other vari-
ations can possibly be introduced. The HFR-based methods of quantum chemistry
are rather successful although not universal. In this context a program of developing
a next generation NDDO-based semiempirical MO technique has been put forward
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in [120]. Among the lines tentatively bringing this “generation next” methods into
reality are:
1. including orthogonalization corrections tentatively improving performance of the

methods for rotation barriers, conformational equilibria, structural details and
many other aspects.

2. extending the basis set with d orbitals for elements heavier than silicon, and maybe
even for some first-row elements.

3. paying more attention to the magnitudes of the one-electron energies of the atomic
orbitals, and perhaps even fixing them at the spectroscopic values.

4. using effective core potentials should improve performance for heavier elements.
5. including dispersion forces.

In our opinion, although development along these lines is highly desirable, the
key problems not solved in the semi-empirical context for decades will not be
solved. Among these problems we mention a topic addressed in this book as an exam-
ple: developing a technique to access one of the “Holy Grails” of semi-empirical
theory [120] – transition metal complexes – and eventually include it in a classical
context, which will require, as we shall see, much more elaborate treatment of the
wave function than simply including nonorthogonality into the otherwise HFR treat-
ment or anything of this sort.

2.4. NON-HARTREE-FOCK SEMIEMPIRICAL QUANTUM CHEMISTRY

In the previous section we described existing HFR-based semiempirical methods and
demonstrated their hybrid nature in a wide sense. We have also shown that for cer-
tain physical situations the semiempirical methods may become invalid due to the
necessity to explicitly address nontrivial electronic correlations manifesting them-
selves either in numerous Slater determinants to be included in the consideration
or in nonvanishing matrix elements of the cumulant of two-electron density matrix
whose presence must be somehow reproduced in the calculation.

The standard prescription in this situation would be to apply the ab initio methods
and to attempt to take into account missing correlations in their framework. This
is, however, possible only for the systems of very modest size due to the M5 ÷
M7 scalability of the correlated ab initio methods already mentioned. Using DFT
methods in the situation when explicit correlations are necessary may be completely
wrong, due to the structural deficiency of this class of methods, which precludes
any treatment of nontrivial parts of correlations, requiring multiconfigurational wave
function.

Our account of the cumulant properties indicates, however, another possibility: to
develop a local correlated theory such that the correlations are taken into account only
for some specific electronic groups of the entire system (chromophores) while the rest
is treated on a noncorrelated level. The cumulant being a local quantity restricted to
only one group can be then economically estimated by some appropriate method. Of
course such an approach would require parametrization of the semiempirical method
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to avoid double counting of correlations in parameters (dynamic i.e. trivial correla-
tion), but it is a reasonable price to pay.

A semiempirical method can be developed for the arbitrary form of the trial wave
function of electrons, which is predefined by the specific class of molecules to be
described and by the physical properties and/or effects which have to be reproduced
within its framework. Two characteristic examples will be considered in this section.
One is the strictly local geminal (SLG) wave function; the other is the somewhat
less specified wave function of the GF form selected to describe transition metal
complexes.

Strictly local geminals are two-electron wave functions of full CI constructed in
the basis of two one-electron states centered on the atoms between which the bond is
formed. This wave function has the correct asymptotic behavior under the bond cleav-
age. In this relation it has to be noticed that the dominance of the HFR approximation
in constructing the computational methods is largely accidental: a priori it is not clear
what is preferable: to take into account first the one-electron transfers between the
AOs of the different atoms which lead to delocalization of the one-electron states and
to the incorrect description of the homolytic cleavage of the σ-bonds, or to concen-
trate first on taking into account pair correlations of electrons at least within the bonds
and by this to assure the physically correct asymptotic behavior under the homolytic
cleavage and then to take into account the missing one-electron transfers as correc-
tions.

One more achievement along the geminal way may be that the HFR based semiem-
pirics scales as N3 with the increase of the size of the system. Working in the basis
of strictly local HOs in the SLG framework opens up the prospect of obtaining the
linearly scaling semiempirical method.

We have already mentioned that the HFR lacks the cumulant of the two-electron
density matrix. As we have shown above, it is indispensable for describing the mul-
tiplet structure of central transition metal ion. The specific form of the wave function
allowing for it will be used in the semiempirical context for constructing a method tar-
geted at the transition metal complexes (TMCs). It will be described in Section 2.4.2.

2.4.1. Linear scaling semiempirics for “organic” molecules
2.4.1.1. Historical precedent. PCILO method

An early example implementing the general approach: to take into account first the
intrabond correlation, is presented by the PCILO – perturbational configuration inter-
action of localized orbitals method [121, 122]. As one of its authors, J.-P. Malrieu
mentions in [122], the PCILO method opposes the majority of the QC methods in
all the fundamental concepts. In contrast to the majority of the methods based on
the variational principle, the PCILO method is based on estimating the energy by
perturbation theory. Also, the majority of the QC methods use one-electron HFR
approximation, at least as an intermediate construct, whereas the PCILO is claimed
to addresses directly the N -electron wave function and takes into account all surviv-
ing matrix elements of the electron-electron interactions. In contrast with other QC
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methods based largely on delocalized one-electron states (MO) the PCILO employs
exclusively local one-electron states.

All these statements, although correct in principle, are not precise from the tech-
nical point of view. For example, the zero approximate wave function in the PCILO
method is a one-electron approximate function constructed from the bond wave func-
tions determined by an a posteriori localization procedure from an HFR function.
Thus the bond orbitals appear after a unitary transformation of the canonical MOs,
which correspond to some more or less arbitrary localization criteria [123–125].

The basic general conclusion to be derived from the experience of applying the
PCILO method is the demonstration of the fact that a major part of the theoretical
intuition based on the picture of the electronic structure, as it appears from the HFR
approximation, does not constitute mandatory element of the theory. The PCILO
approach constructively proves the existence of a method adequately describing the
relative energetics of organic molecules but not leading to concepts counter-intuitive
for chemistry, like the idea of the obligatory and exclusive rôle of delocalized canoni-
cal MOs. The key feature here is of course the return to the concept of chemical bond
intuitively clear to all chemists. A shortcoming is the nonvariational character of the
energy estimate, which reduces the proving power of the results. Using the perturba-
tion theory for electron correlation energy is not well-founded as the matrix elements
of Coulomb interaction responsible for admixing the excited configurations in the
basis of local one-electron states are not small, compared to the corresponding excita-
tion energy. In this context it would be interesting to construct a method which would
not be opposed to the traditional QC methods in that many positions simultaneously.

2.4.1.2. The SLG approximation

The PCILO method bears all the characteristic features of the GF approach described
by eq. (1.181). The main difference (incidentally, not improving but deteriorating the
quality of description of electronic structure) is that the configuration interaction in
the bond functions is taken into account as a perturbation. Meanwhile, it can be taken
into account variationally in the zero order. To do so it has been proposed to consider
the wave function of the form of the antisymmetrized product of strictly localized
geminals [126]. In the framework of this method, the set of strictly local orbitals
is divided into subsets, each ascribed to a separate chemical bond or electron lone
pair. For each such subset a two-electron wave function – geminal—is formed and
expressed as a linear combination of two-electron Slater determinants written with
respect to the basis of orbitals ascribed to the considered subset. The amplitudes of the
geminal expansion with respect to these determinants are found from the variational
principle. This construct is obviously a specific case of the GF approximation. Each
group corresponds to the two-electron bond or to a lone pair (LP). Such a choice is
supported in [126] by the following arguments: (1) chemical bonds have a relatively
small number of internal degrees of freedom as compared to the entire molecule,
(2) global molecular properties (energy, dipole moment, etc.) for certain classes of
molecules can be represented with acceptable accuracy as sums of bond increments
(additive scheme [127, 128]) and moreover for certain properties, the increments of
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separate bonds possess the property of transferability from one molecule to another
in the scope of a wide enough class of molecules.

The limitations of the picture, based exclusively on two-electron groups while
addressing a general N -electron system, are obvious. In some systems, the collec-
tive character of behavior of electrons is a significant part of the general picture. The
simplest example of such a behavior is provided by benzene molecule, where the
system of π-electrons requires considering a six-electron group in addition to two-
electron ones, which can be singled out in the σ-core. Another example is provided by
the EHCF theory described in Section 2.4.2 which employs the d-shell containing nd

electrons as one of the groups. With these caveats, the idea of SLG is very reasonable.
Implementations of the SLG approach at the ab initio level are reviewed in [126].

This approach had been tested on a relatively narrow range of the simplest molecules.
The results obtained do not permit to make a definitive conclusion concerning the
applicability of this method to larger molecules. As for the orbitals used in the imple-
mentation [126] they are obtained by a posteriori localization of canonical MOs. This
then requires applying the hardly formalizable procedure of ‘tail’ cutting, which also
cannot give any hope on the transferability of such states. A significant amount of
work on geminal-based ab initio models has been performed also by I. R /oeggen [129]
who developed a series of extended geminal models EXGEMn with n = 0 ÷ 7 with
the ultimate aim of applying this approach to the treatment of intermolecular interac-
tions.

2.4.1.3. Semiempirical implementations of SLG wave function

In this section, we consider a family of semiempirical implementations of the anti-
symmetrized product of the strictly local geminals (SLG). Quite naturally, this
approach applies only to compounds (largely organic) with well localized two-center
two-electron bonds. It had been originally developed for an old-fashioned MINDO/3
type of parametrization of the molecular Hamiltonian and then extended to the more
contemporary NDDO family of parametrizations. First, the description of the wave
function is given in detail and then the energy functional is described and analyzed. Its
variation provides the equilibrium values of the electronic structure variables (ESVs)
relevant for this method.

Constructing the SLG trial wave function according to [130–133] requires the fol-
lowing moves. First, the one-electron basis of the strictly local hybrid orbitals (HOs)
must be constructed [134]. These orbitals are obtained by an orthogonal transfor-
mation of the s and p valence AOs for each “heavy” (non-hydrogen) atom. These
transformations are represented by 4 × 4 orthogonal matrices hA ∈ O(4) for each
heavy atom A. For each pair of atoms connected by a single bond with number m,
two such HOs are selected |rm〉, |lm〉 referring to the right and left ends of this bond,
respectively. The expression for the corresponding electron annihilation operators is
written in terms of the similar operators for AOs:

tmσ =
∑

i∈Tm

ht
mi(Tm)aiσ(2.59)
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where notation Tm (Rm or Lm) refers to the “right” and “left” atoms of the m-th
bond. The superscript can be ascribed a numerical value, t (=±1) used below to
refer to r and l. It is assumed that in variance with other methods using the HOs,
those of the present method are determined on the basis of the variational principle
for the electronic energy, like other variables determining the wave function, i.e. from
the energy minimum condition.

Chemical bonds and lone pairs are described by singlet two-electron functions –
geminals [135] taken in the form originally proposed by Weinbaum [136]. Using the
second quantization notation they are written as:

g+
m = umr+mαr+mβ + vml+mαl+mβ + wm(r+mαl+mβ + l+mαr+mβ)(2.60)

for chemical bonds and:

g+
m = r+mαr+mβ(2.61)

for lone pairs. The normalization condition imposed on the amplitudes of thus defined
geminals reads:

u2
m + v2

m + 2w2
m = 1(2.62)

The geminals defined in the carrier space spanned by HOs constructed by the above
formulae are termed to be strictly local geminals (SLG).

The wave function of electrons in the molecule is then taken as the antisym-
metrized product of the geminals given by eqs. (2.60), (2.61):

|Φ〉 =
∏
m

g+
m|0〉(2.63)

The Hamiltonian for a molecular system in a general semiempirical approximation
can be represented as a sum of one- and two-center contributions:

H =
∑
A

HA +
1
2

∑
A �=B

HAB(2.64)

In the second quantization representation related to the HOs eq. (2.59) we get the
one-center contributions:

HA =
∑

m∈A,σ

(
δtmtm′ U

t
m −

∑
B �=A

V A
tmtm′B

)
t+mσtm′σ−

−
∑

m1<m2

∑
σ

βA
m1m2

(
t+m1σtm2σ + h.c.

)
+

+ 1
2

∑
m1,m2,

m3,m4∈A

∑
στ

(tm1tm2 | tm3tm4)
A

t+m1σt+m3τ tm4τ tm2σ

(2.65)

and the two-center ones:
HAB = −

∑
m1∈A,m2∈B

∑
σ

βAB
m1m2

(
t+m1σtm2σ + h.c.

)
+

+
∑

m1,m2∈A,
m3,m4∈B

∑
((tm1tm2 | tm3tm4)

AB ∑
στ

t+m1σt+m3τ tm4τ tm2σ
(2.66)



Hybrid Methods of Molecular Modeling 137

where h.c. stands for the hermitean conjugated terms and it is assumed in each sum
that the HOs |tmi〉 belong pairwise to atoms A and B.

Using the expansions of the HOs over the basis of AOs in eq. (2.59), we get the
molecular integrals in the HOs basis as linear combinations of those in the AOs basis.
The parameter U t

m, describes the attraction of an electron placed at the HO |tm〉 to
the core of that atom where the HO is centered:

U t
m =

∑
i∈A

(h(A)t
mi)

2UA
ii(2.67)

The subscript i enumerates the s- and p-AOs of a heavy atom A. Using the O(4)
matrix hA it can be expressed in terms of the weight of the s-orbital only:

UA
tmtm

= UA
pp + (UA

ss − UA
pp)(h

A
ms)

2(2.68)

The SLG form of the wave function significantly reduces the number of necessary
integrals describing the electron repulsion on one atom. We express them through the
integrals in the AO basis. These are the repulsion of two electrons occupying one HO
|tm〉:

(tmtm | tmtm) =
∑
i

(ht
mi)

4(ii | ii)+

+ 2
∑
i<j

(ht
mih

t
mj)

2[(ii | jj) + 2(ij | ij)](2.69)

The integrals describing the Coulomb repulsion of electrons in two HOs centered at
the same atom appear only in the form of the reduced repulsion integrals for pairs of
HOs |tm〉 and |t′m〉 centered at the same atom:

gTk

tkt′m
= 2(tktk|t′mt′m)Tk − (tkt′m|t′mtk)Tk(2.70)

(Tm = T ′
m). In the sp-shell they can be expressed using only the s-weights of the

HOs:

(tmtm | tmtm)A = CA
1 + CA

2 (hA
ms)2 + CA

3 (hA
ms)4

gA
tkt′m

= 2(tktk | t′mt′m)A − (tkt′m | t′mtk)A =

= CA
4 + CA

5 [(hA
ms)2 + (hA

ks)
2] + CA

3 (hA
msh

A
ks)

2

(2.71)

where Cn are the linear combinations [137] of the five independent Slater-Condon
parameters (see [61]) characterizing the Coulomb interactions in the valence sp-shell:

CA
1 = FA

0 (pp) + 4FA
2 (pp)

CA
2 = 2FA

0 (sp) + 4GA
1 (sp) − 2FA

0 (pp) − 8FA
2 (pp)

CA
3 = FA

0 (ss) − 2FA
0 (sp) − 4GA

1 (sp) + CA
1

CA
4 = 2FA

0 (pp) − 7FA
2 (pp)

CA
5 = 2FA

0 (sp) − GA
1 (sp) − 2FA

0 (pp) + 7FA
2 (pp)

(2.72)

From eqs. (2.68) and (2.71) one can see that the one-center molecular integrals do
not depend on the orientations of the HOs.
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Now we turn to the two-center contributions to the molecular Hamiltonian. The
resonance integral describing the one-electron transfer between the HOs can be writ-
ten through the resonance integrals for the AOs:

βAB
t1m1t2m2

=
∑
i∈A

∑
j∈B

ht1
m1i(A)ht2

mj(B)βAB
ij(2.73)

The attraction of an electron occupying an HO centered on atom A to the cores of
atom B takes the form:

V A
tmtm,B =

∑
i,j∈A

V A
ij,Bht

mi(A)ht
mj(A)(2.74)

The Coulomb matrix elements for the HOs localized on different atoms A and B have
the form:

(tm1tm1 | t′m2
t′m2

)AB =
∑

i,j∈A
k,l∈B

(ij | kl)AB ×(2.75)

× ht
m1i(A)ht

m1j(A)ht′
m2k(B)ht′

m2l(B)

If the atoms A and B are connected by a multiple bond, additional two-electron
matrix elements are necessary:

(tm1t
′
m2

| t̄′m2
t̄m1)

AB =
∑

i,j∈A
k,l∈B

(ij | kl)AB ×(2.76)

× h
tm1
m1i(A)h

t′m2
m2j(A)h

t̄′m2
m2k(B)ht̄m1

m1l(B)

where t̄ = l for t = r and t̄ = r for t = l.
Due to the fact that the SLG wave function belongs to the GF approximation (Sec-

tion 1.7), it is subject to numerous selection rules characteristic of GF. Their explicit
form can be easily obtained using the second quantization formalism. Since the oper-
ators of electron creation on the right and left HOs satisfy usual anticommutation
relations for orthogonal basis and the number of particle operators have the usual
form:

n̂t
m =

∑
σ

t+mσtmσ(2.77)

the expectation values of the products of Fermi operators defining one-electron den-
sities over the SLG wave function have the form:

P tt′
m = 〈0|gmt+mσt′mσg+

m|0〉
P rr

m = u2
m + w2

m, P ll
m = v2

m + w2
m

P rl
m = P lr

m = (um + vm)wm

(2.78)

where t and t′ correspond to the right and left ends of the bond and to the Fermi
operators r and l, respectively. Applying the Coulson definition of effective charges
to the SLG wave function yields them in the form:
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QA = 2
∑

tm∈A

P tt
m − ZA(2.79)

For the expectation values of the Fermi operator products defining matrix elements
of the two-electron density we have:〈

Φ
∣∣t+m1σt′+m2τ t′m3τ tm4σ

∣∣Φ〉 = δm1m2δm3m4δm1m3(1 − δστ )Γtt′
m1

+

+ (1 − δm1m2)[δm1m4δm2m3 − δm1m3δm2m4δστ ]P tt
m1

P t′t′
m2

Γtt′
m = 〈0|gmt+mβt′+mαt′mαtmβg+

m|0〉

(2.80)

Intrageminal elements of the two-electron density matrix easily write through the
amplitudes of the corresponding geminal:

Γrr
m = 〈0|gmr+mβr+mαrmαrmβg+

m|0〉 = u2
m

Γll
m = 〈0|gml+mβ l+mαlmαlmβg+

m|0〉 = v2
m

Γlr
m = Γrl

m = 〈0|gmr+mαl+mβ lmβrmαg+
m|0〉 = w2

m

(2.81)

whereas the intergeminal elements of the two-electron density matrix are the products
of the matrix elements of the one-electron densities.

The SLG energy can be rewritten as a function of the intrabond matrix elements of
spinless one- and two-electron density matrices. However, some regrouping of terms
makes the picture more clear. Using the above expressions for the density matrix
elements, one can easily write the equation for electronic energy. The contributions
from the one-center terms 〈Φ|HA|Φ〉 have the form:

Eattr = 2
∑
A

∑
m

(U t
m −

∑
B �=A

V A
tmtmB)P tt

m(2.82)

– attraction to the cores;

ECoul =
∑
A

∑
m∈A

[
(tmtm | tmtm)Γtt

m +(2.83)

+ 2
∑

m1<m2

gA
tm1 tm2

P
tm1 tm1
m1 P

tm2 tm2
m2

]
– one-center electron-electron repulsion.

The resonance contribution to the energy of each bond is proportional to the off-
diagonal element of the one-electron density matrix known as the Coulson bond order
between the HOs of the m-th geminal P rl

m eq. (2.78):

Eres = −4
∑
m

βRmLm

rmlm
P rl

m(2.84)

From this we see that the structure of the wave function allows the transfer of elec-
trons between the one-electron states only within a geminal and the possible delocal-
ization of electrons between the geminals is not taken into account.
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Now we turn to an analysis of the two-center Coulomb contributions to the energy.
They can be written as follows:

Erep = 2
∑

A<B

∑
tm1∈A

∑
t′m2

∈B

(tm1tm1 | t′m2
t′m2

)AB×

× [2(1 − δm1m2)P tt
m1

P t′t′
m2

+ δm1m2Γrl
m1

]
(2.85)

In the NDDO Hamiltonian the exchange interaction between electrons of two gemi-
nals involved in one multiple bond contributes to the electronic energy:

Emb = −4
∑

tm1<t′m2
∈A

(tm1t
′
m2

| t̄′m2
t̄m1)

ABP rl
m1

P rl
m2

(2.86)

Electronic energy in the semiempirical SLG approximation is thus represented as a
sum of five contributions:

ESLG
el = Eattr + Ecoul + Eres + Erep + Emb(2.87)

To simplify the interpretation of the energy in the SLG approximation, we further
regroup the individual terms and rewrite them as:

Etotal =
∑
A

EA +
∑
A<B

EAB

EA =
∑

tm∈A

[2U t
mP tt

m + (tmtm|tmtm)TmΓtt
m] + 2

∑
tkt′m∈A

k<m

gTk

tkt′m
P tt

k P t′t′
m

Ebond
RmLm

= 2γRmLm [Γrl
m − 2P rr

m P ll
m] − 4βRmLm

rmlm
P rl

m

Enonbond
AB = QAQBγAB + ZAZBDAB

(2.88)

(for the bonded atoms the contribution of nonbonding interactions Enonbond
RmLm

also
must be included). We see that in this form certain energy contributions further reduce
to Coulomb interaction of effective atomic charges residing on the atoms. In addition
to the molecular integrals the function DAB enters into the expression for the total
energy eq. (2.88), which describes the difference of the core-core repulsion of the
atoms A and B from the corresponding Coulomb repulsion in the MINDO/3 and
NDDO approximations.

The above form of the total energy, which is somewhat close to the MM energy
(see below) with interactions between bonded and non-bonded atoms treated differ-
ently, closely relates it to that given in [138] in the context of analysis of a variety of
additive schemes of molecular energy. The electronic (and total) energy of the molec-
ular system in the SLG approximation therefore depends on the electronic structure
variables (ESVs) of two types: (i) on M triples of amplitudes um, vm and wm defin-
ing the bond geminals according to eq. (2.60) through elements of density matrices
eqs. (2.78), (2.81) and (ii) on the O(4) matrices hA defining hybridized orbitals. The
latter enter the theory indirectly – through the molecular integrals. The total num-
ber of independent variables defining the amplitudes equals 2M (M is the number
of chemical bonds) due to normalization condition eq. (2.62) imposed on the gem-
inal amplitudes. The total number of variables defining the hybridization equals 6L
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(L is the number of heavy atoms). This result appears as follows. The hA matrices,
as we noticed, belong to the group of 4 × 4 orthogonal matrices O(4). This group
however, has a rather sophisticated structure, which is not of particular interest to us.
However, two close hybridization matrices h and h′ can be obtained by multiplying
any of these two matrices by an SO(4) matrix, i.e. an orthogonal matrix with unit
determinant. For the minimum search it is enough to be able to locally vary the sys-
tems of the hybrids. To describe the variation it suffice to have the matrices of the
SO(4) group which is a six-parametric one. We use parametric representation of the
SO(4) group based on six subsequent Jacobi rotations in two-dimensional subspaces
of a four-dimensional space spanned by the AOs residing at each heavy atom (see
below). Therefore, six parameters are the corresponding angles of Jacobi rotations.
The determination of the ESVs is performed by using a variational principle by a
series of iterations. The first step is calculation of geminal amplitudes by diagonaliz-
ing 3×3 effective bond Hamiltonians for each geminal representing a chemical bond.
The next step is a series of energy minimizations with respect to sextuples of param-
eters defining SO(4) transformations for each heavy atom. These minimizations are
performed using analytical gradients of the energy with respect to the Jacobi angles.
The alternating diagonalizations and minimizations are performed until convergence.
The number of iterations remains approximately constant with the increase of the size
of the molecular system. By this only the time per iteration changes with the size of
the system and thus the linear scalability of the entire procedure is achieved.

The above scheme of determining the optimal wave function of the SLG approx-
imation, together with optimizing the corresponding energy functional with respect
to the nuclear coordinates, has been implemented and tested for a range of semiem-
pirical Hamiltonians on a series of examples: largely organic molecules containing
the atoms of the second row: carbon, nitrogen, oxygen, fluorine (and, of course,
hydrogen). The results are briefly discussed in the subsequent sections.

Method SLG-MINDO/3. The first semiempirical implementation of the SLG
method was undertaken using the well known MINDO/3 [67] parametrization,
which is known to satisfactorily reproduce energy characteristics (thermochemistry)
and geometry parameters with the HFR (SCF) trial wave function. In the frame of the
MINDO/3 approximation, the matrix elements of attraction to “other” cores and two-
center matrix elements of Coulomb interaction do not depend on the orbital quantum
number l, i.e. they coincide for the s- and p-AOs and can be expressed through the
single two-center integral γAB and the core charges ZB for all HOs. Incidentally the
energy contribution eq. (2.86) of the two-center exchange interactions in multiple
bonds also vanishes. This simplifies the formulae for the energy to some extent.

The reparameterization reduces to a minor variation of the resonance parameters
of the MINDO/3 set. Using the adjusted parameters, we calculated the characteris-
tics of electronic structure (effective charges and bond orders), molecular geometries,
and heats of formation of the test set of “organic” compounds containing hydrogen,
carbon, nitrogen, and oxygen atoms. The test set has been borrowed from the papers
devoted to parametrization of the HFR-based semiempirical methods MNDO [64],
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Table 2.1. Parameters βAB of the SLG- and SCF-MINDO/3 methods.

A B βAB (SLG) βAB (SCF)

H H 0.243007 0.244770
H C 0.316049 0.315011
H N 0.356416 0.360776
H O 0.414559 0.417759
C C 0.428097 0.419907
C N 0.426086 0.410886
C O 0.486514 0.464514
N N 0.379342 0.377342
O O 0.659407 0.659407

AM1 [68], and PM3 [69]. The obtained parameters βAB of the SLG-MINDO/3
method as compared to analogous parameters of the SCF-MINDO/3 method are
given in Table 2.1.

In order not to overload the text we do not give here the extensive tables [130,140]
of the calculated and experimental heats of formation and present the results of statis-
tical analysis of these data. It is performed using the empirical distribution function
for the errors [141]. The latter is constructed in the assumption that the deviation of
the heat of formation of some molecules, calculated by the SLG-MINDO/3 method
from its experimental value – the error – is a random variable. Constructing the graph
of the empirical distribution function for this random quantity in the normal scale
allows us to check the hypothesis of normality of the distribution of the errors (it is
commonly believed that the random errors must be normally distributed) and to find
the parameters of this distribution. It has been shown that for the test set (40 heats
of formation for molecules containing H, C, N, and O atoms and single and mul-
tiple bonds) the errors of the SCF-MINDO/3 method are normally distributed with
acceptable accuracy (the empirical distribution function is linear in the normal scale).
At the same time, for the SLG-MINDO/3 method, the same test set seems to be less
uniform (the linearity of the empirical distribution function in the normal scale is
much worse). Nevertheless it turns out that the statistical parameters of this function
(the average a which is the measure of the systematic error of the method and mean
square deviation σ) in the case of the SLG-MINDO/3 are somewhat smaller (σ =
10.98 kcal/mole and a = −1.57 kcal/mole), than the corresponding values for the
SCF-MINDO/3 method (σ = 12.01 kcal/mole and a = −4.45 kcal/mole).

Using the adjusted parameters βAB given in Table 2.1, we studied the optimal
geometry structures of several simplest molecules. It turned out that the H-H bond
length is larger by 0.01 Å than the experimental value. The internuclear separations
C-H in methane, calculated by the SLG-MINDO/3 method, coincide with the experi-
ment up to 0.001 Å. Meanwhile the calculated C-C bondlength in ethane turns out to
be 1.512 Å. This is much smaller than the experimental value of 1.536 Å. It has to be
noticed, however, that the SCF-MINDO/3 method yields for the C-C bond in ethane



Hybrid Methods of Molecular Modeling 143

the value of 1.474 Å. For propane and higher homologues, the deviation between the
calculated and the experimental values is smaller.

As one can see, the SLG-MINDO/3 in general improves the description of molecu-
lar geometry as compared to the SCF-MINDO/3 method. Obvious deterioration takes
place only for the ammonia molecule (particularly for the valence angle). However,
in other cases, transition to the SLG wave function improves the values of the valence
angles. This is seen in the example of the hydrogen peroxide molecule.

The SCF-MINDO/3 method significantly shortens the lengths of the single bonds
between nonhydrogen atoms. In the case of the C-C bond, switching to the SLG
wave function does not rectify this shortcoming completely, although it noticeably
improves the situation. In the case of the bonds containing the heteroatoms, this leads
to the improvement of the agreement with the experiment. This is related to the fact
that for these bonds the contribution of the covalent configuration into geminal (w2

m)
turns out to be rather large and the account of the intrabond correlation becomes
important for correct description of the electronic structure at the semi-empirical
level.

Methods of the SLG-NDDO family. Despite some success attained by the concerted
use of the MINDO/3 parametrization and the SLG form of the trial wave function,
some problems have not been solved by this approach. The heats of formation for
unsaturated organic compounds turn out to be strongly underestimated, whereas those
for the branched compounds are strongly overestimated; the lengths of the bonds
between the atoms bearing LPs are systematically underestimated and the valence
angles are reproduced unsatisfactorily. These shortcomings (inherent as it will be
seen for the MINDO/3 parametrization) have been partially lifted in the frame of the
HFR based methods with the NDDO parametrization. So it is interesting to consider
semiempirical schemes based on the SLG trial wave function using the three most
widespread NDDO parametrizations of the Hamiltonian – MNDO [64], AM1 [68],
and PM3 [69]. It has been done in our work [142].

The SLG-MINDO/3 and SCF-MINDO/3 methods have approximately the same
accuracy while calculating the heats of formation of organic compounds. Signifi-
cant deviations from the experiment (for both wave functions) are observed for the
branched compounds. The heats of formation are significantly overestimated for both
types of wave functions. It is clear that the intrabond correlation has not much to do
with this defect. The NDDO parametrization partially rectifies this by a more detailed
account of two-center integrals.

In our paper [133] we have performed calculations of the heats of formation using
all three parametrizations (MNDO, AM1, PM3) and both types of the variation wave
function (SLG and SCF). Empirical functions of distribution of errors in the heats
of formation [141] for the SLG-MNDO and SCF-MNDO methods are remarkably
close to the normal one. That means that the errors of these two methods, at least
in the considered data set, are random. In the case of the SLG-MNDO method,
the systematic error practically disappears for the most probable value of the error
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a = −0.5 kcal/mole, whereas for the SCF-MNDO method this value amounts to ca.
−3 kcal/mole.

An example of the performance of the SLG-NDDO scheme on a qualitative level
is provided by the cyclobutane molecule. The experimental structure is nonplanar
with one of the carbon atoms going out by 27◦ of the plane formed by three other
atoms. Reproducing its correct structure is believed to be a complex problem. For
example, analysis performed in [139] shows that in the ab initio setting, the correct
structure is accessible only with large basis sets containing the polarization functions.
In the SCF-NDDO methods, the nonplanar geometry of the cyclobutane molecule is
not reproduced either. Switching to one of the SLG-NDDO methods yields the CCCC
angle close to the experimental. Analogously the SLG function allows us to reproduce
the torsional angle in the hydrogen peroxide molecule – a problem not solved in the
frame of the SCF-NDDO methods [140].

Linear scaling of SLG based semiempirical methods. As mentioned above, semiem-
pirical quantum chemistry of large molecules faces the important problem of con-
structing calculation procedures with the growth of computational costs linear in
N (N characterizes the size of the system). Solving this problem requires applying
that or some other approach to the separation of electronic variables. The standard
way of doing this assumed in quantum chemistry is the HFR approximation for the
wave function of the ground state of electrons. The requirements for computational
resources of the HFR procedure grow as N3 and hence the latter cannot be consid-
ered a basis for constructing methods linear in N . Moreover, the HFR approximation
requires an additional account of correlation to become useful for describing bond
cleavage. In the literature, different means are proposed to significantly reduce com-
putational costs without reducing the quality of the obtained results. The first way is
to smooth the dependence of computational costs on the size of the system. These
approaches usually exploit the localization of electronic degree of freedom, based on
the “principle of nearsightedness” [143]. It should be stressed that the use of local
one-electron basis states can significantly reduce computational costs [144]. In this
context direct determination of localized Hartree-Fock orbitals can be especially use-
ful and viable [145]. Significant acceleration of computation can be achieved by using
pseudodiagonalization procedures [146] or by special choice of the trial electronic
wave function [132, 133, 147, 148] alternative to the standard HFR form.

To demonstrate the computational capacities of the SLG-MINDO/3 method we
carried out calculations (for the fixed geometry) for a series of normal, saturated
hydrocarbons ranging from CH4 to C20H42 by the SLG-MINDO/3 and SCF-
MINDO/3 methods. It has been shown that the dependence of computation time
on the system size is essentially non-linear in the case of the HFR approximation
and is practically linear for the geminal approach. The SLG-MINDO/3 procedure is
faster than the SCF-MINDO/3 one even for the simplest hydrocarbons. In the case
of the normal hydrocarbon C20H42 (its semiempirical calculation uses 122 basis
functions) the computation time for two methods differs 30 times in favor of the SLG
approach.
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Even greater advance has been reached by the SLG-NDDO procedures, using the
multipole representation of the Coulomb interaction between the atoms. To make the
scheme truly linearly scaling, it is necessary to neglect interactions between very dis-
tant atoms. Cut-off procedures of that sort are justified only for local states. In the
SLG method it is particularly well substantiated because one-electron states forming
carrier spaces are atom-centered. The dependence of the required computation time
on the system’s size n for the multipole SLG-NDDO method, where all interactions
between atoms separated by more than 20 Å are totally neglected, is unequivocally
linear for the systems for up to 9000 atoms. It is important that the cut-off procedure
leads to a very small modification of the calculated heat of formation (less than 0.03
kcal/mol per CH2 fragment). Of course, in the case of more polar molecules with sig-
nificant effective atomic charges, the charge-charge interactions beyond 20 Å should
be explicitly considered to obtain the same accuracy.

In this section we have considered a family of semiempirical methods of analysis
of the electronic structure of molecules, using the trial wave function in the form
of the antisymmetrized product of strictly local geminals. The studies performed on
these methods allow us to conclude that:

• wave function of the SLG approximation is comparable in quality to the SCF wave
function for the characteristic intramolecular interatomic separations, but in vari-
ance with the SCF, it has a correct asymptotic behavior under bond cleavage;

• minor modification of the pair resonance parameters βAB for the SLG-MINDO/3
and of βA

s , βA
p for the SLG-NDDO methods allowed us to reach a better agreement

on the heat of formation calculated by these methods with experiment than it is
possible for the corresponding HFR-based methods;

• the SLG function allowed us to set the calculation in terms of the intuitive concepts
of bonds, lone pairs and their respective polarities, hybridizations and other intu-
itively clear concepts common for other areas of computational chemistry, e.g. for
MM, with the hope of using this method as a starting point for the hybrid QM/MM
methods.

• using the SLG approximation for the wave function together with a parametriza-
tion of the NDDO type, but with truly point atomic multipoles and reasonable
cut-off of the long-range two-electron Coulomb terms, allowed us to reach O(N)
scaling of the entire computational scheme.

2.4.2. Semiempirical method for transition metal complexes with open d-shells

Transition metal complexes (TMCs) represent another, somewhat better known,
“Holy Grail” of the semiempirical theory. The HFR-based semiempirical methods
and the DFT-based methods suffer from structure deficiency, which does not allow it
to reproduce relative energies of electronic states of different spin multiplicity within
their respective frameworks without serious ad hoc assumptions.

The difficulties arise precisely when modeling is to be applied to molecules involv-
ing transition metal atoms, mainly of the second half of the first transition row. Even
among the TMCs formed by these atoms, the problems seem not to be uniformly
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distributed; the reason is that the standard chemical nomenclature does not provide
an adequate classification. In the case of metal carbonyls or metals of the second or
even third transition row, the DFT methods are very effective. However, turning to
open d-shell compounds of the first transition row metals raises many problems. On
the other hand, intuitive distinction in the behavior of two types of the metal com-
pounds is clear to any chemist. In a row of isoelectronic species Ni(CO)4, Co(CO)−4 ,
Ni(CN)2−4 , Fe(CO)2−4 they readily recognize “not a family member”, but probably
fail to give a reason.

2.4.2.1. Physical picture of TMCs electronic structure

Further analysis is based on the idea that the characteristic experimental behavior
of different classes of compounds and the suitability of those or other models used
to describe this behavior is ultimately related to the extent to which chromophores
responsible for the observed behavior and physically present in the molecular system
are reflected in these models by adequate electron groups. The TMCs of interest, can
be physically characterized as those bearing the d-shell chromophores. (The analogy
between the chromophore concept and McWeeny’s theory for the special case of
TMCs has also been noticed early in a remarkable work [149]). The basic features
in the electronic structure of TMCs of interest, distinguishing these compounds from
others, are the following:
1. These molecules contain strongly correlated electrons in the partially filled valence

d-shell of the transition metal central atom.
2. The overall charge transfer between the d-shell of transition metal atom and its

ligand environment is small.
3. The low-energy spectrum is spanned by excited states of the partially filled d-shell

(d-d-spectrum) and it is rather dense.
These properties of the d-shell chromophore (group) prove the necessity for a spe-

cial description of d-electrons of transition metal atoms in TMCs with an explicit
account for the effects of electron correlations in it. Therefore, during the time of
QC development (more than three quarters of a century) there was a period when
two directions based on two different zero approximations of electronic structure of
molecular systems coexisted. This reproduced the division of chemistry into organic
and inorganic and took into account the specificity of the molecules related to these
classical fields. The organic QC was then limited to the Hückel method [40], the ele-
mentary version of the HFR MO LCAO approximation. As it is discussed above, the
HFR is not very reliable when it describes TMCs with open d-shells. The descrip-
tion of inorganic compounds – mainly TMCs – within the QC of that time was based
on the crystal field theory (CFT) [96, 150, 151]. The latter provided a qualitatively
correct description of electronic structure, magnetism and optical absorption spectra
of TMCs by explicitly addressing the d-shell chromophore. So the CFT is used by
spectroscopists and allows one to interpret and systematize experimental data related
to the spectra of the d-shell chromophores. This can be considered a strong experi-
mental support to use the CFT as a theoretical construct for describing TMCs. Our
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goal here is to include it in the general hybrid context and that is what we shall do in
the next sections.

The crystal field theory. The basics of the CFT were introduced in the classical work
by Bethe [150] devoted to the description of splitting atomic terms in crystal environ-
ments of various symmetry. The splitting pattern itself is established by considering
the reduction in the symmetry of atomic wave functions while the spatial symmetry
of the system goes down from the spherical (in the case of a free atom) to that of a
point group of the crystal environment. It is widely described in inorganic chemistry
textbooks (see e.g. [152]).

In quantum mechanics the splitting of electronic terms is described by using the
degenerate version of the perturbation theory. The Hamiltonian for electrons in the
atom in the crystal environment acquires the form:

H = H0 + Vcf(2.89)

where H0 is the Hamiltonian for electrons in the d-shell of a free transition metal ion,
which includes the kinetic energy of electrons and potential energy of the interaction
of these electrons among themselves and with the metal nucleus, and Vcf is the effec-
tive potential of the crystal environment. In the basis of the atomic functions with the
angular parts taken in the form of spherical harmonics, the matrix elements of this
operator can be estimated with an assumption concerning the nature of this potential.
The simplest possibility is to use the model of an isolated transition metal ion sur-
rounded by point charges – the ionic model. As a rule, in this case only the charges
in the first coordination sphere are taken into account. In this case the operator Vcf

has the form [96, 97]:

Vcf (r) =
N∑

k=1

qk

|r − Rk|
(2.90)

where r is the electron radius vector and Rk is the radius vector of the point charge
eqk. The matrix elements eq. (2.90) in the basis of the one-electron wave functions
can be expressed in terms of the radial integrals Fk(R) [96, 97]

Fk(R) = R−(k+1)

R∫
0

rkR2
nl(r)r

2dr + Rk

∞∫
R

r−(k+1)R2
nl(r)r

2dr(2.91)

dependent on the radial parts Rnl(r) of the atomic d-functions:

Vmm′ =
∑
L

QLV L
mm′ ; V L

mm′ = Fk(RL)Y m−m′
k (θL, φL)Amm′

k(2.92)

Here QL is the effective charge of the atom L of the ligand; (RL, θL, φL) are the
spherical coordinates of the ligand atom L (the transition metal atom is located in the
center of the coordinate frame). Functions Fk(RL) depend on the distance RL from
the metal atom to the atom L; Y m−m′

k (θL, φL) are the spherical functions with the
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phases defined following Condon and Shortley [61], which are also given in Section
1.5.1.3; quantities Amm′

k , k = 0, 2, 4, are numerical coefficients tabulated in [97].
The matrix elements V L

µν relative to the cubic harmonics can be obtained from V L
mm′

by a unitary transformation from the spherical harmonics basis |m〉 to that of the
cubic harmonics |µ〉.

In the simplest and widespread case of the octahedral environment there is only
one parameter ∆ ≡ 10Dq, equal to the difference of the energies of the t2g- and
eg-orbitals (the classification goes along the irreducible representations of the Oh –
octahedron – group to which the L = 2 – D – representation of the SO(3) group
splits under symmetry reduction) of the metal ion:

∆ = ε(eg) − ε(t2g) =
5
3
qF4(R)(2.93)

where R is the distance between the central atom and the point charge located in any
of the vertices of the octahedron.

The energies of the d-d-excitations in this model are obtained by diagonalizing the
matrix of the Hamiltonian constructed in the basis of nd-electronic wave functions
(nd is the number of d-electrons). Matrix elements of the Hamiltonian are expressed
through the parameters describing the crystal field and those of the Coulomb repul-
sion of d-electrons, which are Slater-Condon parameters F k, k = 0, 2, 4, or the Racah
parameters A, B, and C. In the simplest version of the CFT these quantities are
considered empirical parameters and determined by fitting the calculated excitation
energies to the experimental ones.

Although the CFT gives a description of the characteristic properties of TMCs at
the phenomenological level since the fundamental features of their electronic struc-
ture are fixed within the structure of this theory, this approach does not provide any
predictive force due to the presence of empirical parameters, which are specific for
each compound. Obtaining independent estimates of its parameters (strength of the
crystal field) remains its constant problem. All subsequent development of the CFT
was centered around this [153]. Within the standard CFT it, however, has no solu-
tion, due to the oversimplified description of the transition metal ion’s environment
(ligands): the CFT employs the ionic model of the environment and calculates the
splitting of the initial term of the free metal ion as if it were a pure electrostatic effect.
The symmetry is perfectly reproduced even by this simple scheme, but the chemical
specific of the environment is completely lost. It is therefore not surprising that the
heaviest strike upon the CFT from the (semi)quantitative side was given by TMC
spectroscopy in the 1930s. Spectroscopic experiments allowed one to range different
ligands according to the strengths of the crystal fields induced by them (parameter ∆
or 10Dq) to the so-called spectrochemical series [96, 97, 151, 159]:

F− < OH− < Cl− < Br− <
1
2
Ox2− < H2O < SCN− <(2.94)

< NH3, py <
1
2
En < CN− < CO.
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From it one can see that the crystal fields are systematically weaker for charged
species than for the uncharged ones with the extremal example of CO inducing the
strongest crystal field, but bearing neither charge nor even noticeable dipole moment.
Therefore the relative strengths observed in the experiment cannot be explained by
the ionic model of the environment. These observations clearly indicate that purely
electrostatic effects may be only of minor significance in determining the strength of
the effective crystal field felt by the d-shell. Early attempts to get better estimates led
to the ligand field theory (LFT) [96, 151]. In its simplest version it is assumed that
it is enough to consider the valence shell of the metal ion, containing 3d-, 4s-, and
4p-orbitals and to include one lone pair (LP) orbital per donor atom:

ψa(egc) = −xegφ(dz2) +
yeg√
12

(2χz + 2χ−z − χx − χ−x − χy − χ−y)

ψb(egc) = yeg φ(dz2) +
xeg√
12

(2χz + 2χ−z − χx − χ−x − χy − χ−y)

ψa(egy) = −xegφ(dx2−y2) +
yeg

2
(χx + χ−x − χy − χ−y)

ψb(egy) = yeg φ(dx2−y2) +
xeg

2
(χx + χ−x − χy − χ−y)

ψa(a1g) = −xa1gφ(4s) +
ya1g√

6
(χx + χy + χz + χ−x + χ−y + χ−z)

ψb(a1g) = ya1gφ(4s) +
xa1g√

6
(χx + χy + χz + χ−x + χ−y + χ−z)

ψa(t1uγ) = −xt1uφ(4pγ) +
yt1u√

2
(χγ − χ−γ)

ψb(t1uγ) = yt1uφ(4pγ) +
xt1u√

2
(χγ − χ−γ)

(2.95)

By this the environment is considered more realistically: the one electron states
of the surrounding atoms are explicitly taken into consideration. In the symmetric
environment assumed in eq. (2.95) the d-orbitals of the t2g-symmetry do not get any
admixture, whereas those of the eg-symmetry are shifted upwards due to the said
admixture:

E∗
d = Hdd +

| Hdλ |2
Hdd − Hλλ

(2.96)

where Hdd, Hλλ, Hdλ are matrix elements of the one-electron Hamiltonian of the
two-level model. Within such a setting, only qualitative explanations can be obtained.
First of all, it is not clear where to get the values of Hλλ, which are presumably
affected by the details of the composition and structure of the ligands. Next, apply-
ing a general HFR-based picture opens a Pandora’s box: why not to apply the same
approximation to the entire complex, which is better substantiated, but, as we know,
can bring a disastrous result.



150 Andrei L. Tchougréeff

The LFT has been further formalized within the angular overlap model (AOM)
[153, 154] with the additional observation that different ligands (or more precisely –
donor atoms) contribute to the effective crystal ligand field almost independently of
each other, although this is in strong contradiction with the generally delocalized
HFR picture and that each ligand when interacting with a given transition metal ion
can be characterized by a relatively small number of parameters (AOM parameters)
describing its contribution to the total effective field felt by the d-shell. The angular
overlap model of the LFT is briefly described in the following section.

Angular overlap model. The angular overlap model (AOM) as a semiempirical
method for estimating the parameters of the CFT going beyond the simple ionic
model has been developed by Schäffer and Jørgensen [154–158] (see also a review
in [159]). The difference between AOM and the classical CFT is how the potential
of the effective field induced by ligands is parametrized. In the AOM it is assumed
that the energy of the d-orbitals in the complex changes, as compared to their atomic
values, due to overlap with the σ- and π-orbitals of the ligands (the last option is
not included in eq. (2.95)). Due to this variance with the classical CFT, it is assumed
that there is a certain set of one-electron states on the ligands. In addition, instead
of the multipolar expansion of the crystal field over the spherical harmonics [159], a
cellular expansion [157, 158, 160] is used in the AOM for the potential of the crystal
environment Vcf and its matrix elements are given by:

Vµν =
∑

l

vl
µν =

∑
l

(vl
µν)stat +

∑
l

(vl
µν)dyn(2.97)

where µ, ν are the d-functions of the metal. Summation is extended to all “cells”
[160], which are not, however, clearly defined. The cellular contributions to the
matrix element of the crystal field vl

µν are related to the cellular parameters el
λλ′

by the geometry-based formula:

vl
µν =

∑
λλ′

Rl+
µλel

λλ′Rl
λ′ν(2.98)

Coefficients Rl
λµ form an orthogonal matrix Rl transforming the d-orbitals under

rotation of the laboratory coordinate frame (LCF) to the local coordinate frame
related to the ligand l and constructed such that its Oz axis is going through the
metal atom and the ligand atom (DCF – diatomic coordinate frame). The pertur-
bation caused by the ligand has a matrix representation el

λλ′ in the DCF with
λ = σ, π(x), π(y), δ(xy), δ(x2 − y2). These quantities are considered parameters
of the AOM.

Simple estimates for the cellular potentials can be extracted from the MO LCAO
method in the two-level model eq. (2.96). If one considers the interaction of the type
λ (λ = σ, π, δ) between the d-orbital of the metal φd and the orbital φλ, representing
a mixture of the orbitals of the ligand and corresponding by local symmetry s- and
p-orbitals of the metal and taking into account that according to the definition of the
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cellular potentials E∗
d = 〈φd | νl

λ | φd〉, one gets the following expression for the
energy of the antibonding MO of predominantly d-character and thus for νl

λ:

E∗
d = νl

λ = Hdd +
| Hdλ |2

Hdd − Hλλ
(2.99)

Successful application of the AOM parametrization scheme for interpretation of the
electronic spectroscopy data based on the values extracted from experiment [159]
demonstrates that the general parametrization scheme eq. (2.99) implied by the AOM,
most probably reflects some general features of the electronic structure of the good
fraction of TMCs. However, numerical estimates of its parameters according to for-
mula eq. (2.99) were not particularly successful. As a result the AOM requires for its
application large parameter sets (for the cells) specific for each pair of metal - ligand,
which makes the parametrization boundless. The AOM parameters remain empirical
quantities just as the 10Dqs were in the original CFT.

The problem of estimating crystal field parameters can be solved by considering
the CFT/LFT as a special case of the effective Hamiltonian theory for one group
of electrons of the entire N -electronic system in the presence of other groups of
electrons. The standard CFT ignores all electrons outside the d-shell and takes into
account only the symmetry of the external field and the electron-electron interaction
inside the d-shell. The LFT acts in a similar way: only the d-shell and electrons in it
are considered, although the orbitals used for it are not precisely the atomic d-states,
but some orbitals of the same symmetry and of predominantly d-character having
an uncontrollable contribution from some poorly defined states of the environment.
This of course allows one to improve the overall description by giving additional
degrees of freedom, but in fact this move is somewhat similar to the recommendation
to extend the quantum subsystem: the boundary conditions and/or parameters for the
LP states involved are not set in the LFT and it is not clear how this can be done. The
problem is solved by sequential deduction of the effective Hamiltonian for the d-shell,
carried out in [161]. It is based on the representation of the wave function of a TMC
in the form of an antisymmetrized product of group functions of d-electrons and other
(valence) electrons of a complex. As a result, the rest of the system from the point
of view of the CFT is explicitly taken into consideration and allows one to express
the CFT (LFTs or AOMs) parameters through the characteristics of the electronic
structure of the environment of the metal ion. We shall characterize the effective
Hamiltonian of the crystal field (EHCF) method and the numerical results obtained
within its framework.

2.4.2.2. Effective Hamiltonian of the crystal field (EHCF)

In this section we construct a semiempirical method for describing the electronic
structure of the TMCs, which allows us to calculate the d-d-spectra for a wide variety
of TMCs of different types. The TMCs’ electronic wave function formalizing the
CFT ionic model has a fixed number of electrons in the d-shell. In the EHCF method
it is used as a zero approximation and the electron transfers between the d-shell and
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the ligands are treated as perturbations. Following the standard semiempirical setting
we restrict the AO basis for all atoms of the TMC by the valence orbitals. All the AOs
of the TMC are then separated into two subsets of which one (the d-system) contains
3d-orbitals of the transition metal atom, and the other (the “ligand subsystem”, or
the l-system) contains the 4s- and 4p-orbitals of the transition metal atom and the
valence AOs of all ligand atoms.

Formally the theory evolves as follows. The low-energy d-d-spectrum of the TMC
can be obtained if the Hamiltonian is rewritten in the form:

H = Hd + Hl + W c + W r(2.100)

where Hd is the Hamiltonian for d-electrons, Hl is the Hamiltonian for the ligand
system, W c is the Coulomb interaction, and W r is the resonance interaction oper-
ators. Exact wave functions of the system described by the Hamiltonian eq. (2.100)
can be represented as a superposition of the functions, corresponding to different dis-
tributions of N valence electrons over two subsystems with natural identification of
the d-shell with the R-system and of the rest with the M-system

Ψ =
∑

n1n2

∑
i

Ci(n1n2)Φi(n1n2)

n1 + n2 = N
(2.101)

(n1 and n2 are the numbers of electrons in the subsystems). On the basis of the physi-
cal concepts described above, one can assume that the main contribution to the ground
state wave function is provided by the functions with the number of d-electrons cor-
responding to the valence state of the metal atom in the TMC. As an approximate
form of the trial wave function for the description of the TMCs, it is reasonable to
take a function from the subspace with the fixed number of the d-electrons nd (by this
the specific type of the TMCs subject to our consideration is formalized; these are the
so-called Werner complexes). Contributions of the functions with different numbers
of d-electrons will be taken into account as described in Chapter 1 i.e. using Löwdin
partitioning.

As in the general theory the operator W c commutes with the operators of numbers
of particles in the d- and l-systems. In the Hamiltonian eq. (2.100) only the term W r

mixes the states with a different distribution of electrons between subsystems. The
Heff(E) for the TMC can be written in the form:

Heff = PH0P + W rr

H0 = Hd + Hl + W c

W rr = PW rQ(EQ − QH0Q)−1QW rP
(2.102)

The electronic wave function for the n-th state of the complex is written then as
the antisymmetrized product of the wave functions of the electron groups introduced
above:

Ψn = Φd
n ∧ Φl(2.103)

The EHCF theory can be applied by assuming Φd
n to be a full CI function for nd

electrons in the d-shell, and Φl to be a HFR single determinant ground state for the
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l-system. This reflects the main feature of the electronic structure of the TMC, that is
the presence of the strongly correlated d-shell with low energy excitations localized
in it and of relatively inert (i.e. having rather high excitation energies) ligands.

We have restricted ourselves to the case of complexes for which the excitation
energies in the l-system are much higher than the excitation energy in the d-shell of
the metal. In these complexes the number of valence electrons in the ligand subsystem
is even and thus the ground state of the l-system can be approximated by a single
Slater determinant Φl with zero total spin. Then the wave function Ψn acquires the
form of eq. (1.245):

Φn =
∑

k

cn
k |ndSσΓγk 〉 ∧ Φl = Φd

n ∧ Φl(2.104)

In this case the spin and symmetry of the function eq. (2.104) coincide with the
spin and symmetry of the wave functions of the d-system Φd

n. An assumption that the
functions Φd

n and Φl satisfy the strong orthogonality condition of eq. (1.185) together
with the variational principle yields a pair of the coupled equations for the functional
multipliers:

Heff
d Φd

n = Ed
nΦd

n

Heff
l Φl = ElΦl

(2.105)

which repeats eq. (1.246) with a correction for notation. Effective Hamiltonians for
the subsystems have the form:

Heff
d = Hd + 〈Φl |W c + W rr|Φl〉

Heff
l = Hl + 〈Φd

n |W c + W rr|Φd
n〉

(2.106)

According to the previous notes for obtaining the estimates of the parameters of the
effective crystal field, we need a rather precise description of the electronic structure
of the l-system. A simple algorithm for solving the system of eq. (2.105) proposed
in [161] reduces to solving the equation for Φl in a semiempirical HFR approximation
and in calculating the corresponding one-electron density matrix, orbital energies,
and MO LCAO coefficients. They are used for constructing Heff

d as shown below.
In the described model, in agreement with eq. (1.247), the energies of the low lying

excited states of the entire complex are identified with the energies of the excited
states of the d-system as it should be in the CFT. However, in variance with the CFT
(and the LFT), this approach explicitly takes into account the electronic structure of
the ligand environment. The excited states of the l-system do not appear in this set-
ting explicitly. According to the general theory, projecting them out leads to reducing
(effective screening) Coulomb interactions between the electrons in the R-system. In
this case the part of the R-system is taken by the d-shell. Reduction of the effective
electron-electron repulsion in it is widely known from inorganic chemistry textbooks
under the name of nephelauxetic effect. This beautiful Greek word means that the
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cloud (nephelon) of d-electrons extends when the ion becomes a central one in a
complex rather than a free one. Then the average electron-electron separation in it
increases whereas the average Coulomb repulsion decreases. Numerically the mag-
nitude of this effect is usually expressed by a ratio B/B0 < 1, where B is one of the
Racah parameters in the complex and B0 is its value in the free ion. The mechanism
of extension is believed to be the formation of delocalized MOs of predominantly d-
character, but having some contribution from the ligand states (LFT). In this theory,
the delocalization of the d-states due to mixing with the ligand states is included in the
effective crystal field. Thus one may expect that the nephelauxetic series (that of the
ligands with decreasing B/B0) has to be similar to the spectrochemical series (that
of increasing 10Dq – see above). This however does not happen. On the other hand
the general theory allows for reducing the electron-electron interaction in the d-shell
due to interference between induced polarizations in the d- and l-systems. The latter
is not included explicitly in the EHCF treatment, but is present in the general theory.
Incidentally the nephelauxetic series is known to go parallel to the polarizability of
the donor atoms [159].

Effective Hamiltonian for the l-system. Further formal development of the theory
evolves as follows. Expression for Heff

l has the form:

Heff
l = Hl + 〈〈W c〉〉d + 〈〈W rr〉〉d(2.107)

where symbol 〈〈. . .〉〉d stands for averaging over the state of the d-shell. We assume
that Hl is written in one of the approximations of the ZDO family. Following the
remarks given in Chapter 1 for calculating the effective Hamiltonian for the d-shell,
it is necessary to know the spectrum of the operator H0 in the subspace Im Q which
is defined by the orbital energies of the l-system. These energies must be calculated
without the d-system, i.e. with the complete screening of the part of the core charge
of the metal atom by d-electrons but without effective resonance interaction. For that
reason when calculating the electronic structure variables of the l-system for using
them in a calculation of the effective Hamiltonian for the d-system in eq. (2.107) it
is necessary to drop the term 〈〈V rr〉〉d. Then in the second quantization form the
Hamiltonian for the l-system reads:

Hl =
∑
m,σ

(Umm −
∑
L

VML)m+
σ mσ +

+
∑
L

∑
l∈L,σ

(Ull −
∑

L′ �=L

VLL′ − VLM )l+σ lσ +

+
∑
ml,σ

βml(m+
σ lσ + h.c.) +

∑
ll′,σ

βll′ l
+
σ l′σ +

+
1
2

∑
ll′,σ+

l′′l′′′, τ

(ll′ | l′′l′′′)l+σ l′′+τ l′′′τ l′σ;

(2.108)
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here l+σ (lσ) are the creation (annihilation) operators of an electron with the spin
projection σ on an l-AO. The first term in eq. (2.108) describes the interaction of
the 4s- and 4p-electrons of the metal (m = 4s, 4px, 4py, 4pz) with the metal core
(parameters Umm < 0) and the ligand atom cores (parameters VML > 0). The second
term describes the interaction of the ligand electrons with the ligand cores (parame-
ters Ull < 0), with the cores of the other ligand atoms (parameters VLL′ > 0) and
with the metal core (parameter VLM > 0). The third and fourth terms describe the
resonance interactions in the ligand subsystem (parameters βml < 0 and βll′ < 0).
The last term describes the Coulomb interactions between electrons ((ll′ | l′′l′′′) are
the corresponding two-electron integrals).

The term 〈〈V c〉〉d describes the Coulomb interaction of electrons of the l-system
with the electron density in the d-shell. It reduces to renormalization of the one-
electron parameters of the bare Hamiltonian Hl according to the formulae [161]:

U eff
ii = Uii +

nd

5

∑
µ

gµi(2.109)

V eff
LM = VLM − e2ndF0(RL)

This expression has a simple physical meaning, being in agreement with the solu-
tions for separating the core charge of the frontier atoms in the hybrid methods. In
agreement with eq. (2.109) the attraction of electrons on the 4s- and 4p-orbitals of the
metal atom to its core is screened by the Coulomb interaction with d-electrons. The
second term in the right hand part of eq. (2.109) in both cases describes the screening
of the core charge of the metal by d-electrons, as a result of which the attraction of
electrons on the orbitals of the ligands to the metal core also weakens. We see that
for the theory of the TMC, constructing such a separation of the entire system into
subsystems is characteristic and the strong Coulomb intersubsystem interactions are
minimized. Due to the screening of a part of the metal core charge by the d-electrons
the total charge of the metal atom from the point of view of the l-system turns out to
be equal to its formal oxidation degree (2 or 3). If one turns to the total charge of the
d-system itself, the latter turns out to be vanishing in agreement with the prescription
of Section 1.7.

Effective Hamiltonian for the d-system. Now we consider the expression for Heff
d :

Heff
d = Hd + 〈〈W c〉〉l + 〈〈W rr〉〉l(2.110)

where 〈〈. . .〉〉l stands for the averaging over the ground state of the l-system. The
bare Hamiltonian for d-electrons of TMCs Hd has the form:

Hd = Udd

∑
µσ

d+
µσdµσ +

∑
µνσ

V core
µν d+

µσdνσ+

+
1
2

∑
µνρη

∑
στ

(µν | ρη)d+
ρτd+

µσdνσdητ

(2.111)

where d+
µσ(dµσ) are the creation (annihilation) operators for an electron on the µ-th

d-orbital with the spin projection σ; Udd is the core attraction parameter of the
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d-electrons; V core
µν is the matrix element of the operator of interaction of d-electrons

with the ligand atom cores; and (µν | ρη) is the two electron integral of the Coulomb
interaction.

According to eq. (1.246) it is necessary to average the operators W c and W rr with
the function of the ground state of the l-system Φl. For 〈〈W c〉〉l we get an expression:

〈〈W c〉〉l = 〈〈W c
1 〉〉l + 〈〈W c

2 〉〉l =

=
∑
µ

∑
i

gµiPiin̂µ +
∑

µ,ν,σ

∑
L

V L
µνPLLd+

µσdνσ
(2.112)

The first term in this expression describes the shifts of the d-levels coming from
the interactions of d-electrons with electrons on the 4s- and 4p-orbitals of the metal
atom. The second term represents the interaction of d-electrons with electrons on the
valence orbitals of the ligands. The sum of the first and the second terms in eq. (2.111)
has the form of the operator of the crystal field induced by the effective charges
located on the ligand atoms.

The resonance operator W r has the form:

W r = −
∑

σ

∑
µ,j

βµj(d+
µσ ljσ + l+jσdµσ)(2.113)

where j is the number of MO in the l-system, βµj is the resonance integral between
the µ-th d-orbital and j-th l-MO. Using the general formula eq. (1.244) including the
retarded and (ret) advanced (adv) Green’s function of the l-system [162, 163]:

Gret
ii (z) = 〈Φl|li(F eff

l − z)−1l+i |Φl〉
Gadv

ii (z) = −〈Φl|l+i (F eff
l − z)−1li|Φl〉

(2.114)

(here F eff
l is the effective one-electron Fock operator for the l-system corresponding

to the Hamiltonian Heff
l ) and following the HFR approximation accepted for the l-

system its Green’s function takes the form of eq. (1.209):

G( adv
ret )(x, x′; E) =

N∑
i=1

φ∗
i (x)φi(x′)

E − εi ± iδ
(2.115)

After summation over the spin projection σ we get:

〈〈W rr〉〉l =
∑

µ,ν,σ
W cov

µν d+
µσdνσ − 2

∑
µj

β2
µj

n2
j

∆Ejµ
(2.116)

where
W cov

µν = −
∑
i

βµiβνi[Gret
ii (Id) + Gadv

ii (Ad)](2.117)

and retarded and advanced Green’s functions are taken at the Id, Ad values of their
respective arguments (corresponding to the electron extraction from the d-shell and
its addition to it, respectively). The poles of the Green’s function for the l-system
represent the values of the ionization potential Ii and the electron affinity Ai related
to the i-th l-MO filled or vacant, respectively. Taking into account that the extracted
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(added) electron is transferred to the atom (from the atom) of transition metal, not
to (from) infinity, the ionization potentials and electron affinities of the l-system are
shifted by the energy gdi of Coulomb interaction between an electron and a hole
placed in the metal d-shell and to the i-th l-MO:

Ii = −εi − gdi

Ai = −εi + gdi
(2.118)

where εi is the energy of the i-th MO of the l-system.
Finally the effective Hamiltonian for the d-shell Heff

d acquires the form:

Heff
d = C +

∑
µ,ν,σ

U eff
µν d+

µσdνσ +
1
2

∑
µνρη

∑
στ

(µν | ρη)d+
µσd+

ρτdητdνσ

where C is the constant from eq. (2.116) and effective parameters contain corrections
from the Coulomb and resonance interactions of the d-shell with the l-system:

U eff
µν = δµνUdd + W atom

µν + W ion
µν + W cov

µν(2.119)

Here

W atom
µν = δµν

∑
i∈s,p

gµiPii(2.120)

The ionic contribution W ion
µν equals:

W ion
µν =

∑
L

QLV L
µν(2.121)

and the resonance (or covalent) contribution W cov
µν equals

W cov
µν = −

(MO)∑
j

βµjβνj

(
(1 − nj)2

∆Edj
−

n2
j

∆Ejd

)
(2.122)

where nj = 0, 1 is the occupation number for the j-th MO of the l-system; ∆Edj

(∆Ejd) is the energy for excitation of an electron from the d-orbital (from the j-th
MO) to the j-th MO (to the d-orbital):

∆Edj = Id + εj − gdj

∆Ejd = −εj − Ad − gdj
(2.123)

With this, the construction of the EHCF method has been completed.

2.4.2.3. Semiempirical implementations of the EHCF paradigm

In the context of the EHCF construct described in the previous section, the problem
of semiempirical modeling of TMCs’ electronic structure is seen in a perspective
that is somewhat different from that of the standard HFR MO LCAO-based setting.
The EHCF provides a framework which implicitly contains the crucial element of the
theory: the nonvanishing cumulant of the two-electron density matrix related to the
d-shell. Instead of hardly systematizeable attempts to catch qualitative features of
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the electronic structure by a more or less sophisticated parametrization for the transi-
tion metal atoms, it is now possible to check in a systematic way the value of different
parametrization schemes already developed in the “organic” context for the purpose
of estimating the quantities necessary to calculate the crystal field according to pre-
scriptions given by the EHCF theory eqs. (2.120) and (2.122). The many-electron
states in the d-shell of the metal ion in the complex are described by the FCI with
the effective Hamiltonian for the d-subsystem (Heff

d ) with the matrix elements which
are estimated using any “organic” semiempirical scheme. In such a formulation, the
EHCF method was parametrized for calculations of various complexes of metals
of the first transition row, with mono- and polyatomic ligands. In [161, 166–168]
the parameters for the compounds with donor atoms C, N, O, F, Cl and for doubly
and triply charged ions of V, Cr, Mn, Fe, Co, Ni and Cu are described. In fact only
the parameters scaling the resonance interaction (one-electron hopping) between the
d-shells and the donor atoms were adjusted. These parameters do not depend on the
details of the chemical structure of the ligands; rather they are characteristic for each
pair of metal-donor atom. The dependence of the exerted effective field on details of
geometry and chemical composition of the ligands is to be reproduced in the frame
of a standard HFR-based semiempirical procedure. We exemplify this by only one
instance of the octahedral complex MnCl4−6 . One parameter (βMnCl) has to be fit-
ted to get the data given in Table 2.2. Using this value, the spectrum of the MnCl2−4
complex is reproduced at its geometry as shown in Table 2.3.

Further evaluations [164,165] have demonstrated the applicability of the fitted sys-
tem of parameters for calculations of the electronic structure and spectra of numer-
ous complexes of divalent cations using merely the CNDO parametrization for the
l-system. In [140,169] the EHCF method is also extended for calculations of the lig-
ands by the INDO, MINDO/3, and SINDO/1 parametrizations. In all calculations the
experimental multiplicity (spin) and spatial symmetry of the corresponding ground
states were reproduced correctly. The summit of this approach has been reached
in [170] by calculations on the cis-[Fe(NCS)2(bipy)2] complex. Its molecular geom-
etry is known both for the HS and LS isomers of the said compound. The calculation

Table 2.2. Calculated and experimental d-d transition energies in octahedral MnCl4−6 com-

plex.

Etheorcm−1 Eexpcm−1

6A1g →4 T1g 18510 18500
→4 T2g 21520 22000

→4 A1g,4 Eg 23590 23590
→4 T2g(D) 26460 26750
→4 Eg(D) 28065 28065
→4 T1g(P ) 32630 36500
→4 A2g(F ) 38140 38400
→4 T1g(F ) 39140 40650
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Table 2.3. Calculated and experimental d-d transition energies in octahedral MnCl2−4 com-

plex. Parameter βMnCl is fitted for the MnCl4−6 complex.

Etheorcm−1 Eexpcm−1

6A1 →4 T1 21102 21250
→4 T2 22446 22235

→4 A1,
4 E 23020 23020

→4 T2(D) 25996 26080
→4 E(D) 26709 26710
→4 T1(P ) 30195 27770
→4 A2(F ) 36444 33300
→4 T1(F ) 36706 34500

→4 T2 37732 36650

Table 2.4. Calculated and experimental d-d transition energies in spin-active [Fe(bipy)2
(NCS)2] complex.

Etheorcm−1 Eexpcm−1

1A1 →3 T1g 9930 10400
1A1 →1 T1g 17930 18500

5T2g →5 Eg 10900 11900
5T2g →3 T1g 10700
5T2g →1 A1g 10900

for both reproduces the respective ground state spins and the spectra of low lying d-d-
excitations in a remarkable agreement with experimental data as shown in Table 2.4.
Another good example is the treatment of metal porphyrins using the EHCF method.
As already mentioned above, for the decades the ab initio methods fail to reproduce
the experimental ground state of Fe(II) porphyrine. It is really a complex case since
it is an intermediate spin (S = 1 – i.e. neither HS nor LS) and spatially degenerate
state (3E). However, applying even very sophisticated methods (including CASPT2
which is considered to be a method of choice for TMCs in the ab initio area) has
not yet led to the desired success. According to [171] the HS forms are ground states
and the possibility of getting a correct result is rather low, as the gap mounts up to
1 eV in favor of the HS state. Meanwhile the EHCF method in its simplest setting
(CNDO type of parametrization employed for the l-system) yields the experimental
ground state 3E without any further adjustment of parameters. This indicates that in
fact the problem is not purely numerical inaccuracy of the ab initio methods, but cer-
tain structural elements of the theory, which prevent them from obtaining the correct
result. Certainly some important configurations are missing in the CASPT2 setting
of [171].
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2.5. CLASSICAL MODELS OF MOLECULAR STRUCTURE:
MOLECULAR MECHANICS

The quantum chemical methods of modeling molecular PES reviewed above do so by
directly addressing the electronic structure of the corresponding molecular systems;
so the main topic of our discussion was to cover existing methods of doing that. The
traditional methods (even simple semiempirical ones) are, however, computationally
too demanding to be routinely used for getting PES in the MC or MD contexts. As for
those using non-HFR semiempirics, there is not enough experience as yet. This raised
the demand for more economical tools for direct modeling of PESs. Such a demand
is satisfied by Molecular Mechanics (MM). At first glance, MM seems to ignore the
electronic structure of the molecular system under study. Even in the respective com-
munity quantum mechanical models are considered excessively complex and super-
fluous, compared to the problems to be solved. Another important, but not explic-
itly formulated reason is that the standard QC does not provide a transparent link
to intuitively clear concepts of chemistry. According to the current paradigm bonds,
valencies, and other characteristics have to appear “by themselves” from the num-
bers produced by QC program suits. Unfortunately, even a big number of numbers
is unable to replace real understanding. In fact MM implicitly takes the electronic
structure into account in a different way, in terms different from those of quantum
chemistry, rather pertinent to theoretical chemistry: not in terms of MOs or electron
densities, but in terms of chemical bonds. Of course, such a picture can be valid only
if the bonds themselves are well defined, which again implies certain assumptions
concerning molecular electronic structure. We shall turn to this problem later, in con-
nection with MM targeted to coordination compounds. On the other hand, as MM is
an indispensable component of hybrid methods we review them briefly now.

2.5.1. Force fields of molecular mechanics

Molecular mechanics [172,173] is a versatile and currently very popular tool in labo-
ratory and industrial practice. It remains the most practical way of modeling PES for
large molecules. Molecular mechanics has as its origin the analysis of the vibrational
spectra similar to that described in Chapter 1. The similarity between the behavior of
quantum and classical harmonic oscillators stimulated the early works on modeling
the vibrational spectra of (organic) molecules in terms of their dynamical matrices,
defined as those of the second derivatives of the PES in the vicinity of local min-
ima written in terms of the mass weighted Cartesian shifts of atoms. This construct
was (and remains) very successful as it allows one to establish a relation between the
vibrational frequencies observed in different types of experiments (IR-absorption and
Raman scattering) with the eigenvalues of the dynamical matrices and through the lat-
ter with molecular potentials (PES). The MM, however, goes somewhat further and
postulates a special general pattern that PES of at least “organic” molecules should
obey. This pattern implies the intuitively (but only intuitively – see above) trans-
parent picture of molecular electronic structure expressed in terms of characteristic
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chemical bonds and groups. In a strict sense MM is only possible if distinguishable
and regularly behaving bonds exist in the molecules and these bonds migrate from
one molecule to another within a wide class of the latter without changing too much
(are transferable or observable in Ruedenberg’s terminology). The basic assumption
of MM is a hypothesis of a possible direct parametrization of the molecular PES in
the form of a sum of transferable bonding and non-bonding potentials as well as some
additional cross terms:

E = Eb + Eang + Etors + Eimp + Ecross + Enb(2.124)

Each of them is a more or less simple or by contrast sophisticated, but explicit, func-
tion of natural nuclear coordinates i.e. bond lengths, valence and torsion angles. Only
nonbonding terms are defined as functions of all internuclear separations. The point
is, of course, not the possibility of migration between Cartesian coordinates of atoms
(nuclei) and some internal molecular coordinates, but the inherent dependence of
energy, on bond lengths, etc. Among the terms entering the above expression, the
energies of bond stretching Eb, energies of valence angle bending Eang , and ener-
gies of torsion interactions Etors and Eimp (the precise meaning of these terms is
explained below) pertain to the bonding contributions. In the case of stretching and
bending energies, the additional guess of the Hook-law-like dependence of these con-
tributions on geometry parameters is usually accepted. The geometry variables used
in definitions of the bonding energy contributions are the deviations of bond lengths
(l − l0) and of the valence angles (α − α0) from some ideal values l0 and α0, which
are parameters of specific implementations of the general MM approach:

Eb =
1
2

∑
Kl(l − l0)2(2.125)

Eang =
1
2

∑
Kα(α − α0)2

The elasticity constants Kl and Kα also pertain to the parameter sets. Sometimes (and
in modern implementations of MM – quite frequently) the elasticity constants Kl and
Kα themselves can be taken to be dependent on geometry, by which anharmonicity
effects are taken into account. The summations in the above expression for the bond
stretching and angle bending force fields extend respectively to all pairs of atoms
connected by a chemical bond or to all triples of consequently bonded atoms with
the angle understood as one with the vertex in the middle atom of the triple measured
between the “directions” of the bonds connecting the vertex with the end atoms of
the triple. The values l0, α0, Kl, and Kα are assumed to be specific for the MM
atomic types (see below) involved in the formation of the respective bonds. One more
aspect relates to the quantities l0 and α0. In the literature, these pair- or triple-specific
quantities are sometimes referred to as equilibrium ones. This is of course misleading:
there is no specific molecule where the l0 value is the true equilibrium distance or
α0 is a true valence angle, unless this did not happen by accident. By contrast, the
equilibrium distances in different molecules appear by optimizing the overall energy
expression eq. (2.124): they deviate from the l0, α0 values to the extent stipulated



162 Andrei L. Tchougréeff

by the interference of all other contributions to the energy. The l0 quantity might
be thought to be the equilibrium length of the individual bond between the atoms
of given types, which clearly does not exist, as the type definitions themselves are
largely based on the bonding environment of the atom at hand. Moreover, the ideal
values l0 and α0 (and the elasticity constants and other parameters of the current MM
methods) are in fact sensitive to the details of the nonbonding and cross interactions
accepted in each specific implementation of the method.

Usually the harmonic approximation with some anharmonicity corrections suffice
to describe the energy dependence on the interatomic separations of the bonded atoms
in the vicinity of the minimum PES. Nevertheless, sometimes, when it attempts either
to simultaneously reproduce molecular geometries and the heats formation or simply
to cover a wider range of molecular geometries where anharmonicity effects become
more pronounced, the bond stretching energy terms are taken in the form:

Eb =
∑

D0[e−α(l−l0) − 1]2(2.126)

known as the Morse potential. One may think that it allows a greater flexibility in
parametrization than the simple harmonic function as each bond is characterized by
three parameters rather than two. However, it is an illusion, as using the Morse func-
tion requires a larger data set to be reproduced so that the D0 parameters are fixed by
the data on “bond energies” and parameter α, the only one free so far, is in fact fixed
by the relation:

Kl = 2D0α
2(2.127)

The higher anharmonicity constants are all proportional to D0α
n for the correspond-

ing value of n. The Morse potential is usually thought to be too “rigid” in the sense
that the dissociation energy limit D0 is approached too fast. Another point to be
mentioned is that the small interatomic separation limit is not correct for the Morse
potential. It takes a finite value for the zero bondlength. Although it may be very
large and not accessible in the optimization setting, the incorrect potential behavior
at the zero distance may affect the results obtained in the MC and/or MD contexts if
no precaution is taken.

Further energy contributions defined in terms of bonds are the so-called torsion
and improper torsion contributions:

Etors =
1
2

∑∑
n

Vn(1 + cos[n(φ + ψ)])(2.128)

Eimp =
1
2

∑
Kimpδ

2 =
1
2

∑
K ′

impd
2

In the first expression, the summation is extended to the quadruples of sequentially
bonded atoms ABCD and the energy constants Vn are specific for the quadruples of
the types of the atoms involved. The torsion angle is that between the planes ABC and
BCD. The n = 1 term describes a rotation which is periodic by 360◦, the n = 2 term
is periodic by 180◦, the n = 3 term is periodic by 120◦ and so on. The Vn constants
determine the contribution of atoms A and D to the barrier of rotation around the
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B-C bond. Depending on the situation, some of these Vn constants may be zero. In
the second expression, the summation extends to quadruples of atoms where three of
them are linked by the fourth, forming a vertex. In this case the angle δ is the one
between a bond and the plane formed, whereas the distance d is the one between
the vertex atom and the plane formed by the other three atoms of the quadruple.
Numerical values of the constants (and even their dimensions) Kimp and K ′

imp, of
course, differ.

One can easily imagine that the cross terms in eq. (2.124) are numerous and not
always well defined. However, they significantly affect the actual values of the bond-
defined parameters of the force fields throughout the general parameter fitting pro-
cedure and for that reason these terms are used for the purpose of classification of
the force fields [174]. Class I force fields are those which do not contain any cross
terms. A Class II force field allows for anharmonic terms (e.g. through the use of
Morse potentials or of the polynomial of the stretching potential – in practice, terms
up to the 6-th power in bond-length variation are used) and explicitly accounts for the
coupling between coordinates. Examples of cross terms are

Estr/bend = kABC(αABC − α0
ABC)[(lAB − l0AB)+

+ (lBC − l0BC)]

Estr/str = kABC(lAB − l0AB)(lBC − l0BC)

Ebend/bend = kABCD(αABC − α0
ABC)(αBCD − α0

BCD)

Estr/tors = kABCD(lAB − l0AB) cos(nϕABCD)

Ebend/tors = kABCD(αABC − α0
ABC) cos(nϕABCD)

Ebend/tors/bend = kABCD(αABC − α0
ABC)(αBCD − α0

BCD)×
× cos(nϕABCD)

(2.129)

The presence of these higher cross-terms tend to improve the ability of the force
field to predict the properties of unusual systems (such as those which are highly
strained) and also to enhance its ability to reproduce vibrational spectra. It must be
noticed, however, that any of the cross terms listed above have been proven to be
truly of the form in which they are written. No attempts have been reported to derive
that or any other form of the coupling between different geometry distortions and to
estimate the corresponding constants from some independent point of view. The class
III force field will also take into account further features such as electronegativity and
hyperconjugation. We shall turn to these problems later.

The next group of the energy contributions are the terms collected under the name
of interactions of the nonbonded atoms (nonbonding interactions). Historically, the
most important among them is the van der Waals interaction of the nonbonded atoms,
as the first MM potentials were developed for nonpolar species like alkanes. Normally
it is taken in the form:

EvdW =
∑

ε

[(
d0

dij

)12

− 2
(

d0

dij

)6
]

(2.130)
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called the Lennard-Jones potential, where dij are the interatomic distances. The sum-
mation in the above expression is assumed to extend to all pairs of atoms separated
by more than three sequential bonds. The parameters d0 and ε are set on the atomic
type basis. For pairs of atoms of different types, they are usually obtained according
to the Lorentz–Berthelot combination rules:

d0 = dAB
0 =

1
2
(dAA

0 + dBB
0 )

ε = εAB =
√

εAAεBB

An alternative form of the van der Waals interaction is represented by the Bucking-
ham (exp-6) potential:

EvdW =
∑

ε

[
6

ζ − 6
exp ζ

(
1 − dij

d0

)
− ζ

ζ − 6

(
d0

dij

)6
]

(2.131)

where ζ is a free parameter. Its use is twofold. Setting ζ = 12 results in the Lon-
don form of the long-range attraction part of the vdW potential (∼d−6

ij ); setting
ζ = 13.772 makes the second derivative of the potential in its minimum equal to its
Lennard-Jones value with no clear argument in favor of any choice. Both Lennard-
Jones and Buckingham forms are widely used in MM studies, although sometimes
other models of the van der Waals interactions are employed as well.

Next in the list, but of course not of lesser importance among the interactions
between nonbonded atoms, is the Coulomb interaction of effective charges residing
on atoms in the molecule:

ECoul =
∑ qiqj

εdij
(2.132)

The summation extends here to all pairs of atoms (including the bonded ones). In
practice the dielectric permittivity ε, sometimes also dependent on the interatomic
separation, is used, although this kind of treatment lacks any serious theoretical sup-
port. The most sophisticated problem while treating the Coulomb interactions in the
above form is where the values of the effective charges have to be taken from. A
number of procedures have been proposed in the literature to select effective charges
or more generally to parametrize electrostatic properties of molecules in terms of
point charges, dipoles, etc. For example, some molecules being highly symmetric
do not bear say charge, or dipole, or quadrupole momenta. However, methane, for
example, bears some noticeable octupole momentum. Its magnitude can be repro-
duced by setting charges of 0.14ē on each of the hydrogen atoms and the quadruple
of this with the opposite sign on the carbon atom. It must be observed that charges
thus derived have no physical significance. In molecules like methane the octupolar
moment appears largely due to hybridization (quantum mechanical superposition)
between the one-electronic sp-states on the carbon atom. The Mulliken charges or
even more the Coulson charges residing on the hydrogens (see below) are micro-
scopic as compared to the above estimate and thus give only a minor contribution to
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the observed octupolar momentum of methane. In this sense the octupolar momentum
of methane is largely a manifestation of the quantum behavior of electrons.

In some cases the electrostatic potential induced by a given molecule is attempted
to be reproduced by a set of point charges (or di- and higher multipoles) distributed
in the molecule. The practical implementations of this approach, useful for solving
some specific problems, are designed to fit the potentials obtained from an ab initio
distribution of electrons in a finite number of points “outside” the molecule. Of course
one can fit the potential in some points to the model containing the atom-centered
charges as used in the expression for the Coulomb energy. It is not, however, clear
whether the total Coulomb energy of the defined point charges has anything to do
with that of the real (continuous) molecular charge distribution. The same question
applies also to the local multipole models of molecular charge distributions derived
from fitting molecular electrostatic potential.

An alternative to the above approach is the distributed multipole model, which is a
natural generalization of the older concept of effective charges in quantum chemistry.
It is based on the observation that the product of two Gaussian functions centered in
different points of the real 3-dimensional space (in fact on different nuclei) is itself a
Gaussian centered somewhere on a straight line connecting the two original centers.
By virtue of this, any product of basis one-electron functions represented by their
expansion over the atom-centered Gaussians itself becomes a collection of charge
distributions placed in different points in the space. On the other hand, the entire
Coulomb energy of a molecular system in the ab initio context can be rewritten in
the form of interacting multipoles as the two-electron integrals can be recast in this
form (interacting multipoles). If the two basis functions involved in the definition of
the above density are centered on the same atom, the corresponding multipoles are
centered at the corresponding atoms as well. Otherwise some points in the space, not
having a clear physical sense, are involved as the points where the said multipoles are
located. The entire picture, however, is consistent. The problem with it is the clear
lack of transferability: different basis sets produce different location points for the
“space” multipoles as the location points depend on the Gaussian exponents. Also
the multipoles derived from analysis of an ab initio electron distribution cannot be
believed to go from one molecule to another without change. On the other hand,
the picture where the significant part of energy is represented by “classical” force
fields (multipole-multipole interactions), although not always atom-centered, looks
intellectually very attractive.

All the tricks that are used to avoid calculating the electronic wave function
throughout describing the electronic distribution in molecules in the MM context,
face the same fundamental problem: the charges (as well as higher multipoles in
understanding that a point charge is the electric monopole) are not stable quantities
and tend to vary from one molecule to another, even if the same types of atoms are
involved. In the general context there is no problem as we are used to thinking that
this type of behavior is something one should expect. Varying the electronic distri-
bution when going from one molecule to another is commonly used for explaining
many chemical phenomena. Nevertheless, this redistribution is of a quantum nature



166 Andrei L. Tchougréeff

and addressing it is not welcome in the MM context. This brings the necessity of
developing simple schemes of estimating the charges. A simple one dates back to
Gasteiger and Marsili [175] which is characterized as a partial equalization of orbital
electronegativity. It starts from the Pauling and Mulliken orbital electronegativity, the
definition of which is widely used throughout semi-empirical quantum chemistry (see
above):

χ0
A =

1
2
(IPA + EAA)(2.133)

Later Rappé and Goddard [176] suggested equilibrating not the electronegativity, but
something like a chemical potential of electrons at each atom, although the method
itself is called the “charge equilibration method”. Toward this end, the energy of the
electrostatic interaction in the molecule is represented as a function of the effective
charges in it in the form:

ECoul(q1, ..., qN ) =
∑
A

(v0
A + χ0

AqA) +
1
2

∑
AB

qAqBJAB(2.134)

with the electronegativities χ0
A defined just above, the two-center interaction JAB

taken as Coulomb functions of the interatomic separation e2R−1
AB for A 	= B, (by

this the above expression becomes geometry dependent) and with JAA equal to
IPA − EAA, which coincides with the estimate of the γAA parameter in the CNDO
approximation eq. (2.36). Later it was realized that at larger distances it makes sense
to use the CNDO estimate also for the two-center interaction and to set JAB = γAB .
The effective charges then appear by minimizing the Coulomb energy with respect to
qA, A = 1 ÷ N with a charge conservation condition:

δ
∑

qA = 0(2.135)

This is equivalent to the system of equations:

∂

∂qA
ECoul(q1, ..., qN ) − µ

∂

∂qA

∑
qA = 0(2.136) ∑

qA − Q = 0

where the Lagrange multiplier µ takes care for the charge conservation condition.
The first (set of) equation(s) yields the set of relations:

χ0
A + JAAqA +

∑
B �=A

JABqB = µ(2.137)

to be held for each atom A. The left side of each equation can be interpreted as a
definition of the chemical potential of the electron at the A atom. In the equilibrium
it has a single value for the entire molecular system i.e. for all A’s as any intensive
quantity should. Solving the above system of linear equations yields the necessary
effective charges. Due to the coincidences with the CNDO estimates used through-
out, one may hope that the results thus obtained are somehow close to the CNDO
estimates of effective charges, known to be reasonable.
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2.5.2. Current development and need for extensions

The simple setting characteristic of MM facilitates its wide use and a wealth of imple-
mentations, differing in the exact set of parametric forms of the force fields employed
for modeling the molecular PES and the particular values of the parameters used. We
briefly review the force fields known during the last few decades.

• AMBER (Assisted model building with energy refinement) [177] is the name of
a molecular mechanics program. It was parametrized specifically for proteins and
nucleic acids. AMBER uses diagonal bond stretching terms harmonic in displace-
ments, the improper torsion terms, and van der Waals nonbonding terms, together
with a sophisticated electrostatic treatment employing the charges extracted from
fitting the molecular electrostatic potential. No cross terms are included. An option
of using a “united atom” e.g. to represent CH2 moiety by one point mass is pro-
vided. Results are very good for the target species, proteins and nucleic acids, but
can be somewhat erratic for other systems.

• CHARMM (Chemistry at Harvard macromolecular mechanics) [178] is the name
of a molecular mechanics program. It was originally devised for proteins and
nucleic acids. It has been by now applied to a range of biomolecules and for
studying molecular dynamics, solvation, crystal packing, vibrational analysis, and
QM/MM studies. CHARMM uses diagonal bonding terms harmonic in displace-
ments, the improper torsion terms and an electrostatic term.

• CFF (consistent force field) [179] was developed to yield consistent accuracy
of results for conformations, vibrational spectra, strain energy, and vibrational
enthalpy of proteins. There are several variations of this, such as the Urey-Bradley
version (UBCFF), a valence version (see below), and Lynghy CFF. The quantum
mechanically parametrized force field (QMFF) was designed to simulate ab initio
results. CFF93 is a rescaling of QMFF to reproduce experimental results. These
force fields use the diagonal bond stretching terms up to fourth power in dis-
placement and the harmonic improper torsion term. A 6–9 form of the potential
is employed for the van der Waals forces together with the electrostatic term to
represent nonbonding interaction. A rich variety of cross terms (in fact all those
listed above) is foreseen.

• CHEAT (Carbohydrate hydroxyls represented by external atoms) [180] is a force
field designed specifically for modeling carbohydrates.

• COSMIC [181] method uses only harmonic potential with respect to displace-
ments in the diagonal force fields. Neither improper torsion nor cross terms are
included. The nonbonding interactions are the sum of van der Waals interactions
represented by the Morse potential and the charge-based Coulomb energy.

• CVFF [182] is the valence version of CFF. It uses only harmonic expansion with
respect to displacements in the diagonal force fields and reduces cross terms selec-
tion to some extent.

• DREIDING [183] is an all-purpose organic or bio-organic molecular force field. It
has been most widely used for large biomolecular systems. It uses either harmonic
or Morse potential for the bond stretching, and the second power polynomials in
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cosines of the corresponding angles to represent the valence angle bending and
out-of-plane bending force fields. The nonbonding interactions are represented by
either 6–12 or exp-6 van der Waals and by the charge based electrostatic term. No
cross terms are included.

• EAS (Engler, Andose, Schleyer) [184] is quite an old force field designed to model
alkanes exclusively. The harmonic potential is used for the bond stretching and
cubic anharmonic for the valence angle bending. No out of plane, electrostatic
or cross terms are included. The nonbonded interactions are represented by the
Buchingham potential.

• ECEPP (Empirical conformational energy program for peptides) [185] is the name
of both a computer program and the force field. No flexibility of the valence bonds
and angles is assumed at all, so that the corresponding geometry parameters are
kept fixed and do not take part in the geometry optimization. The van der Waals
term of the 6–12 form and an electrostatic term based on charges are used to repre-
sent nonbonding interactions. A 10–12 term describes hydrogen bonds necessary
for peptide chemistry.

• EFF (Empirical force field) [186] has been designed just for modeling hydrocar-
bons. It uses the quartic anharmonic potential for the bond stretching, and the cubic
anharmonic for the valence angle bending. No out of plane or electrostatic terms
are involved, although the cross terms, except torsion-torsion and bend-torsion
ones, are included.

• ESFF has been designed to be universal [187]. The Morse potential is employed
for bond stretching, the potential quadratic in the cosine of the valence angles for
their bending and the harmonic potential for the out of plane force field. The 6–9
with the charge based electrostatic potential is used for nonbonding interactions.
No cross terms are involved.

• GROMOS (Groningen molecular simulation) [188] is the name of both a force
field and the program implementing this force field. It is used for studying the
dynamics of molecular motion in bulk liquids. It is also used for modeling
biomolecules. The harmonic potentials are used for the stretching, bending and
out of plane (improper torsion) force fields. Nonbonded interactions are modeled
by the 6–12 van der Waals and charge based electrostatic terms. No cross terms
are involved.

• MMn with n = 1−4 is the series of subsequently developed general-purpose
organic force fields [189–191]. All methods of the MMn family use the
Buchingham potential for the van der Waals forces. The specific of MMn is
occasional employing of the bond dipole based electrostatic energy contribution
instead of the charge-based models (see below).

MM2 [189] uses cubic anharmonic potential to represent the bond stretching, up
to sixth power expansion for the valence angle bending, and harmonic field for
the out-of-plane deformations. The stretch-bending cross term is included.

The MM3 method [190] is parametrized for as much as 153 atomic types even-
tually covering almost all chemical elements in common use. The quartic
anharmonic potential is used for the bond stretching, sixth power expansion
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is used for the valence angle bending, and harmonic field for the out-of-plane
deformations. The stretch-bending, bending-bending and stretch-torsion cross
terms are included. Electrostatic is optionally charge- or bond-dipole based.

The MM4 method [191] is still under development in terms of extending the num-
ber of chemical elements it is parametrized for. The initial published results
are encouraging. It uses the sixth power expansion, both for the stretching and
for the bending and the improper torsion representation for the out-of-plane
deformations. The idea of using the bond-dipole based electrostatic term is
abandoned in the MM4 whereas the whole collection of the cross terms is
included.

Several important extensions were based on the MM2 platform. Among them the
MMP2 designed to incorporate the effects of the conjugate π-systems upon the
molecular geometry and torsion barriers must be mentioned. MMX and MMa are
variations of MM2.

• MMFF [192] is the molecular force field developed by Merck Inc. It is a
general-purpose method, particularly useful for organic molecules. MMFF94
was originally intended for molecular dynamics simulations, but is also engaged
in geometry optimization. It uses quartic anharmonic terms for bond stretching,
cubic anharmonic term for angle bending and harmonic out of plane potential.
The nonbonded interactions are represented by an unusual 7–14 potential together
with the charge based electrostatic term. The stretch-bending cross term is added.

• MMGK (Molecular mechanics with Gillespie-Kepert terms) [193] is designed for
application to coordination compounds. It is based on CHARMM, but an addi-
tional term describing repulsion of some effective interaction centers placed on
the coordination bonds is added.

• MOMEC [194] is a force field designed for describing transition metal coordina-
tion compounds. It was originally parametrized using harmonic potentials for the
stretching, bending and out of plane terms, but the nonbonded interaction is repre-
sented by solely exp-6 potential. The metal complex specificity is reflected by the
coordination shape maintained by the nonbond interactions between ligands (kind
of a point on a sphere model). No cross terms are involved.

• OPLS (optimized potentials for liquid simulation) [195] is designed for modeling
bulk liquids. It is also used for modeling the molecular dynamics of biomolecules.
It uses harmonic potentials for the stretching and bending. Improper torsion term
is used for out of plane forces. Nonbonding contribution is provided by the 6–12
potential and the charge based electrostatics. No cross terms are involved.

• SHAPES [196] is a force field designed for transition metal complexes. It involves
the harmonic potential for the stretching, Fourier term for the valence angle bend-
ing and improper torsion for the out of plane energies. Nonbonding contributions
are represented by the 6–12 and charge based electrostatic terms. No cross terms
are involved.

• Tripos [197] is a force field constructed at Tripos Inc. for inclusion in the Alchemy
and SYBYL programs. It uses harmonic potentials for the stretching, bending, and
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out of plane energies. Nonbonding interactions are represented by the 6–12 and
charge based electrostatic terms. No cross terms are involved.

• UFF stands for universal force field [176]. This is the next most elaborate force
field parametrization in terms of the number of atomic types: 126, eventually cov-
ering all Periodic Table known at the time of construction (1992). UFF is most
widely used for systems containing inorganic elements. It uses harmonic or Morse
potential for the stretching, Fourier representation for the bending and improper
torsion for the out of plane terms. An electrostatic term was not originally included
in the UFF. The literature accompanying one piece of software recommends using
charges obtained with the charge equilibrate method. Independent studies have
found the accuracy of results to be significantly better without charges.

• YETI [198] is a force field designed for the accurate representation of nonbonded
interactions. It is most often used for modeling interactions between biomolecules
and small substrate molecules. The molecular geometry optimization for the com-
ponent molecules is not previewed so that it has been obtained from some other
source, such as AMBER. Then YETI is used to model the docking.

At this point one can conclude that the real picture drawn by the MM methods
is much more obscure than the appealing simplicity of its initial formulation. First
of all we have to notice that to acquire acceptable quality the MM models require a
refined view of atoms in a molecule. In the MM setting it is formalized in the con-
cept of atomic “type”. The atomic type is not just the nuclear charge – i.e. atomic
number supplied by some set of parameters uniquely characterized by this number,
but in addition to that the information on the hybridization of an atom and its spe-
cific surrounding is loaded upon the concept of the type. For example, in one of the
most widespread MM force fields, the MM2 by Allinger and coworkers [173], 71
atomic types are defined for 28 different nuclei. One of the types is reserved for
representing lone pairs, but, for example, 15 different types of carbon atoms are
distinguished. In the AMBER force field specifically targeted on the proteins and
nucleic acids [177] even finer detalization of carbon atomic types is used. Obviously,
it would be desirable if some theoretical reasons are given to somehow restrict or at
least systematize this diversity. Also the diversity of the functional forms of the force
fields used in different methods seems to need some systematization. For the small
displacements the harmonic approximation may be suitable, but for larger displace-
ments a theoretically substantiated form of the potential may be helpful for reducing
the number of parameters (see below).

Another problem directly related to the number of atomic types involved is that of
actual construction of the parameters’ system, provided some guess concerning the
form of the force fields is accepted. A simple estimate given in [199] on the example
of the MM2 type of parametrization specifying 71 atomic types shows the number
of van der Waals parameters to be 142, the number of different stretching parame-
ters to be about 900, and that for the bending parameters, about 27000. Finally the
number of the torsion parameters tends to exceed one million. This clearly indicates
that the amount of available experimental data of the accuracy required to obtain
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that many parameters simply does not exist. The task of emulating the raw data
using some higher level quantum chemistry technique and then fitting them to the
selected functional form of the force field does not seem to be reasonably set either.
What would probably help is a theory setting the restriction both on the form of
the force field and on the limits of the physically allowable values of parameters or,
even better, giving some a priori estimates for them on the basis of some theoretical
systematization of the atomic types. The numbers given above can be used to pro-
vide a characteristic estimate of the usefulness of this theory: the number of van der
Waals parameters is significantly smaller than that for the bond stretching parame-
ters, although the parameters for both the interactions are indexed by pairs of atomic
types. This happens due to the possibility of using the combination rules cited above
to assign the van der Waals parameters to pairs of atoms of different types. For that
reason, only the parameters for each atomic type are needed to evaluate the inter-
action energy for the pair of atoms of different types. The ultimate criterion for the
validity of such a rule is of course the quality of results obtained by using it; how-
ever, there are theoretical reasons to think that these rules can be tried. It would be
very attractive if a hint allowing one to treat the bending parameters a priori ascribed
to triples of atomic types as being specific only for the type of the atom at the apex
of the valence angle. By this the number would be reduced drastically – from ca.
27000 to ca. 70. It is clear that a theory substantiating such a reduction is highly
desirable.

Another piece of theoretical reasoning in this realm can start from considering
the transferability concept. The term transferability, when applied to the system of
MM parameters, refers to the fact that a good parameter system applies to a set of
molecules which is large enough and has no necessity to be further adjusted. The MM
setting itself does not give any explanation to this important fact: the transferability
is taken for granted. The contradictory nature of this hypothesis in its naı̈ve form is
obvious: the transferability of the parameters of the molecular potential is restricted
by the diversity of the atomic types, for which no restriction is set so far. It is thus not
clear whether the parameter sets already defined are transferable enough or a further
refined distinction of the narrower atomic types will be necessary.

The low computational costs of the MM methods brought to it a considerable
appeal throughout the research community. It is particularly true for those who work
largely on applications and are not greatly concerned with the soundness of the the-
oretical basis, but more with the price/gain ratio. Due to the large degree of uncer-
tainty characteristic of the very basic concepts of MM theory, its further development
is rather complicated although desirable. However, too much pragmatism turns out
in fact to be not really pragmatic. The reason is of course that very narrow problem
setting makes the result to be of low value since it does not apply to anything beyond
the scope of the initial setting. This perhaps too general notion is applicable in the
case of MM modeling when we address the attempts to extend the traditional MM
to more and more complex objects. Among them, the MM treatments of chemical
reactivity and those of the coordination compounds must be mentioned. The latter
further subdivides into two major classes: coordination compounds of nontransition
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elements – like alkali and alkaline earth metals or elements like Sn, Sb, and P, and
another class represented by the complexes of transition metals with open d-shells
occupied by nonbonding electrons.

In the literature [176, 194, 200–204] various MM constructions are presented as
effective methods for modeling PES of an arbitrary molecular system. However, in
the case of coordination compounds, it is not possible to single out transferable two-
center bonds involving the central atom. The number of bonds formed by them (the
coordination number) may itself be variable and these variabilities themselves may
require the modeling. In [201] an extensive summary of the results of calculations
on coordination compounds of a wide variety of metals by the MM methods (as
of 1993) is given. During the following decade, much subsequent work, quoted in
reviews [194, 205, 206], were performed, in which PES of special classes of metal
complexes was parametrized by some MM-like force fields. As it can be seen from a
more recent review [203] the conceptual problems manifest themselves in extremely
cumbersome and awkward sets of force fields when metal atoms are involved, as
compared to traditional ‘organic’ systems of force fields. For example, it becomes
necessary to introduce a double set of optimal valence angles for octahedral (or plane
squared) complexes to ensure these characteristic molecular shapes are reproduced
in the calculation as are the relative energies of the cis- and trans-isomers [194,201].
The number of other parameters also grows rapidly, and it is difficult either to assign
a clear physical sense to all of them, or restrict the reasonable interval of their values
and thus separate probable ones from the improbable.

The only possibility of introducing some order in this area is to consider the phys-
ical mechanisms responsible for bonding. Among the physical processes leading to
the bond formation between central atoms and organic ligands bearing donor atoms,
we first of all notice a strong electrostatic interaction between the formal charge of
the central atom and effective charges in the ligands. These interactions are classical.
It may create an impression that the standard MM supplied by Coulomb interaction
between effective charges might be sufficient to describe coordination compounds.
This idea is however misleading. An important peculiarity is that the charge distri-
butions taking part in these interactions are predetermined by the quantum behavior
of electrons in the field induced by nuclei and other electrons. The quantum behav-
ior of the latter spans three types of interactions. The first is the polarization of the
ligands by the point (formal) charge of the central ion with the charges in the lig-
ands. The second is the redistribution of the electron density between the ligands
and the central ion, which reduces to netto transfer of electronic density from the
ligands to the central ion which diminishes its effective charge as compared to its
formal charge. This redistribution according to [207] could be taken into account by
the method of “equilibration of effective electronegativities” [175]. Meanwhile the
equations [175] ignore the presence of off-diagonal elements in the one-electron den-
sity matrix in the basis of AOs i.e. of the bond orders which are basically responsible
for the bond formation which is the third type of interaction involved. If the quan-
tum chemistry models of previous sections are thoroughly considered, one can find
that the off diagonal matrix elements of the one-electron density were responsible
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for the bonding: the corresponding energy contribution decreases when the inter-
atomic separation decreases. By this the models restricted to effective charges ignore
the quantum mechanics as applied to electrons, as they ascribe to the latter the Kol-
mogorov type of statistics (operating with electron densities is equivalent to summing
of probabilities of independent elementary events in order to obtain the probability of
the complex event) instead of quantum (summing of probability amplitudes of inde-
pendent elementary events and obtaining the probabilities as the squared sum of the
amplitudes). The importance of the off-diagonal elements of the one-electron density
matrices taken in the basis of some one-center orbitals is the formal manifestation of
the quantum behavior of electrons in the present context. They do not have any clas-
sical interpretation and at the same time reflect the basic characteristic of the chem-
ical bonding. Whether in the Hückel method and in other HFR-based semiempirical
theories, or in the SLG-based treatments, the energy terms responsible for bonding
(attraction) between atoms are proportional to the off-diagonal matrix elements of
the density taken between the one-electron states residing on the respective atoms.
They appear as a pure consequence of the quantum character of electronic motion
in molecular systems, i.e., of the necessity to describe the probabilities as squares
of the sums of the probability amplitudes rather than sums of the probabilities. This
feature is ignored by the ionic models of the electronic structure of the coordination
compounds and also by more refined methods based on the concept of equilibration
of effective electronegativities. In the HFR approximation the Coulson bond order
(i.e. the off-diagonal matrix element of the one-electron density in the HO basis)
of the two-center two-electron bonds can be expressed through the diagonal matrix
elements of the one-electron density. This suggests that under certain conditions the
off-diagonal elements of the density implicitly present in the bond-stretching terms
and thus the bond stretching force fields can be constructed on the basis of the charges
only, but this option has not been so far explored to the best of the author’s knowledge.
In subsequent chapters of this book we shall present possible theoretical reasoning,
which allows us to tentatively construct a theory underlying the MM treatment and
on its basis to give certain hints concerning the further possible refinements of the
MM itself and its extensions towards coordination compounds.

As for hybrid modeling, the problem of the foundations of MM is seen from a
somewhat different perspective. A priori there is no limitation for employing that
or any other MM scheme as a classical component of a hybrid model. In practice,
however, different MM schemes behave differently when tailored to a QM treated
part. Indeed, it is not clear how to handle the bond-dipole based electrostatic energy
employed in the MM2 and MM3 schemes, if some bond must be broken, as their
ends are expected to be treated by different methods. It applies even more to the
schemes with charge equilibration. We shall try to describe the problems created by
these inconsistencies as related to the current hybrid methods in the next section, with
the analysis of the current state of the art, from the point of view of the general theory
of electron variables separation.
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2.6. HYBRID METHODS OF MODELING COMPLEX MOLECULAR
SYSTEMS

After showing in the previous sections that the real place of the hybrid schemes in
quantum chemistry is much more important than one may think, as almost every
quantum chemistry method developed so far is hybrid explicitly or implicitly, we
turn to a description of the existing hybrid methods understood in the narrow sense:
namely, those where a part of a system is described by a quantum chemistry method
and other parts by MM methods described in previous sections.

Chemical transformation is local. When molecules taking part in it contain hun-
dreds and thousands of atoms, each elementary chemical step touches only their small
fragments: one or two bonds are broken or formed by a single act. This kind of behav-
ior, which obviously allows all preparative organic, inorganic and organometallic
chemistry to exist, is also the basis for the hybrid QM/MM techniques present in the
literature. Since the seminal work by Warshell and Levitt [208], the hybrid QM/MM
schemes of calculating large molecular systems acquired an increasing popularity.
There is a big variety of hybrid approaches described in the literature [209–218].
Even more, numerous cases of separating electronic variables like π-electron mod-
els or even taking into account only valence electrons in semiempirical methods,
can be considered as special cases of hybrid schemes, as they also bear the family
marks of the QM/MM approach, namely, (i) the separation of the system into parts,
and (ii) treating these parts on quantum or classical levels, respectively. In such a
broad sense, several other problems in the area of computational chemistry seem to
be related to the QM/MM context: these are the problems of embedding in the clus-
ter calculations on solids and their surfaces, with special attention to adsorption and
catalysis problems; the problem of description of solute/solvent effects for reactions
in condensed media. Also a great variety of different specific schemes referred to
as “protocols” implemented in different computational packages are normally con-
sidered only from the point of view of their practical feasibility and their fit for a
particular applied purpose, rather than in a context of their exact placement among
other approximate methods and of the evaluation of the relative precision of that or
any other approximation.

In the present section, we employ the theoretical framework developed above to
rationalise the state of art in the field of hybrid QM/MM modeling as found in
the literature. As we have already mentioned, the idea of treating the chemically
transforming part at the quantum mechanical level and the rest at that of molecular
mechanics is very naturally based on the whole set of experimental data of synthetic
chemistry. It is not reflected in the standard QC techniques. More formally, this idea
is expressed in the assumption that the PES of molecular systems of interest (say,
of chemically transforming large molecules) can be presented as a sum of quantum
chemistry and molecular mechanics contributions. (The origins of this approach date
back to the theory of conjugated hydrocarbons presenting the energy as a sum of
the π-electron energy and of the σ-frame energy respectively, either calculated by
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quantum chemistry (Hückel) methods or taken in the harmonic approximation [45].
Obviously, this approach is prototypical of the modern QM/MM techniques).

It is instructive to see what classifications of the QM/MM schemes are developed
in the literature. First of all such classifications are based on the types of quantum
chemistry and molecular mechanics schemes used. Such a classification is implied
by K. Morokuma and his coworkers. As it does not address any internal character-
istic features of the obtained hybrid methods, it is rather nomenclature than classi-
fication. There are no fundamental restrictions upon the choice of the QM scheme
in the hybrid method and in fact almost all of them can be found in the literature:
ab initio [219–222, 246], DFT [223–229], and semiempirical [211, 230–232] ones
are widely used as in standard quantum chemistry contexts. Remarkably enough, the
semiempirical methods still keep their stronghold on the QM/MM context, although
in the pure QC studies they have almost completely yielded their place to the ab
initio and DFT methods. This is largely a fashion effect rather than the result of a
thorough estimation of the real value of the semiempirical methods. In the hybrid
context the use of ab initio methods by contrast seems quite strange as in the absence
of any general theory of the former, the status of the combination of ab initio QM
with purely empirical MM contribution is not clear. The form of wave function usu-
ally employed for the QM is the HFR, although methods based on the valence bond
approximation are also known [210, 221, 233]. Clearly, using the HFR picture and
describing the electronic structure of molecular system in terms of delocalized MOs
eventually extended to the entire molecular system is in contradiction with the idea of
singling out a “chemically interesting” subsystem or chromophore. Thinking about a
QM/MM procedure as of one approximating the “exact” QC approach faces a seri-
ous problem: when the molecular system is extended, its MOs become very different
from those of the QM. The choice of the MM scheme can also be quite important
as it affects the structure of bonding terms near (or, in some schemes, on) the border
between the QM and MM parts and the electrostatic polarization of the QM part by
the MM-treated environment depends on the charge scheme employed in the MM
procedure. Practically, it is more convenient to work with the force field with elec-
trostatics based on the atomic charges rather than with those using the bond dipole
scheme as the latter can cause significant errors in the description of polar species,
particularly if a polar bond is to be broken when a system is divided into parts. This
notion has led the authors of [234] to employ the MM3 force field [190] to replace
the bond dipoles with potential-derived atomic point charges. If the force field con-
tains many cross terms coupling bonding force fields (like in the MM3 force field)
it may cause additional problems when constructing the junction between the quan-
tally and classically treated parts of the complex system. Some words should be said
about ionic force fields using formal ionic charges and employing electrostatic and
short-range force fields. These force fields are widely used when treating metal com-
plexes. In the case of these force fields, short-range interactions arising from the
MM charges cannot be separated from long-range interactions [218]. This leads to
incorrect electrostatic potentials felt by the quantum part so the most popular choice
(especially in the description of covalently bound QM/MM systems) is the valence
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force fields. Different implementations use different force fields: for example, the
MM3 force field [190] is used in [234, 235], the CHARMM force field [178] is used
in [209, 236], the AMBER force field [177] is used in [237, 238].

From the point of view of general theory described in Section 1.7.2 the relevant
classification of QM/MM methods should be based on an assessment of the level to
which the key elements of this theory are treated in that or any other specific hybrid
scheme. The authors of [234] made a step in this direction and proposed a classifica-
tion of hybrid schemes based on the interaction between the quantum and classical
fragments. Such a classification of the QM/MM schemes is much more informative.
It is built around the hypothetical representation of the total energy of the complex
system comprising the quantitatively and classically treated subsystems in the form:

Etot = EQM + EMM + EQM/MM,(2.138)

which is taken for granted. In the above expression EQM stands for the energy of
the quantum system, EMM is that of the classical system treated using MM, and
EQM/MM stands for the subsystem interaction known in the context of the QM/MM
methods as the quantum-classical junction. The idea of the classification on the basis
of eq. (2.138) seems easy, but it implies two important problems: first, eq. (2.138)
cannot be ascribed any sense unless the border between the quantum and classical
parts is set in a noncontradictory manner. Second, though representing the energy
by eq. (2.138) seems very natural it contradicts quantum mechanics: the interactions
in quantum mechanics modify the states of both interacting parties, including the
classical one. This problem is addressed in detail later.

The origin of eq. (2.138) is well known: the Hamiltonian for the complex system
comprising two parts can be (and had been) written in analogous form:

Htot = HQM + HMM + HQM/MM(2.139)

long ago [277]. However, in the quantum realm, the Hamiltonian and the energy are
not the same thing: the energy is an expectation value of the Hamiltonian over the rel-
evant wave function, describing the state of the system. As it has been shown in Sec-
tion 1.7.2 reasonable assumption about the form of the wave function of the complex
system requires significant work. The psychological aspect of this situation is that the
simplest, but the most fundamental problems, are not worked out. The most funda-
mental aspect not well designed in the standard hybrid techniques is the composition
of the system. Computational chemistry in general requires that the composition of
the model is uniquely defined. However, even this requirement is sometimes not fully
satisfied. This is most obvious in the case of geometry-based procedures of singling
out the quantum subsystem. Under this setting the intersubsystem border is under-
stood as a closed surface in the physical three-dimensional space (there is a selection
of prescriptions of how to set this border) and the electrons inside it are to be treated
by means of quantum mechanics and of those outside it nothing is known at all.
This construct tacitly assumes that the electronic variables in this problem are their
spatial coordinates. This (coordinate) representation is inconsistent with the quan-
tum chemistry used to describe the quantum system: the latter universally uses for
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variables describing electrons not the three-dimensional coordinates in the physical
space, but the occupation numbers of the one-electron states, the expansion coeffi-
cients of the one-electron states over some basis, CI amplitudes, etc. The orbitals
used always extend beyond the geometrically set border; also, the electrons occupy-
ing similar, although nonspecified orbitals outside the “quantum” subsystem defined
on the geometry, grounds penetrate the latter. In the solute-solvent context [239,240]
when there is no chemical bond between the quantum and classical parts of the sys-
tem, all this might be acceptable, although nobody has ever given any estimate of the
amount of error introduced by these procedures. The situation becomes worse in the
contexts of modeling enzymatic or heterogenous reactions. Authors of [234] notice
that if the border is set in the coordinate space and from the geometry reasons, it
may be necessary to break a chemical bond between a classical subsystem X and the
quantum part Y; the composition of Y (and of X too) is not uniquely defined as there
are at least three possibilities: the cation Y+, the anion Y−, and the radical Y·. As
previously, the number of electrons in the geometrically separated quantum system is
not well defined i.e. it is not a good quantum number (strongly fluctuating), and in the
last case (of the radical) also the spin projection (and thus the spin itself) of the quan-
tum subsystem is not defined. From the general theoretical point of view everything
is quite obvious: the geometry based separation of the complex system into parts con-
tradicts the basic principles of quantum mechanics. At the molecular scale of lengths
it makes no sense to talk about any “borders” in the coordinate space, as they cannot
separate anything – the de Broglie wave lengths of electrons involved are comparable
with the size of say the cavity in the continual insulator model of the solvent-solute
interaction. When it comes to breaking the bonds on the geometry grounds, the situ-
ation becomes even more severe as the geometry based constructs must be judged by
comparing the de Broglie lengths not with intermolecular but with the intramolecular
scale of lengths, which results in an even less favorable estimate. In plain words one
can say that the geometry based separation in parts guarantees that the number of
electrons in the quantum subsystem is poorly defined. At the same time, no quantum
chemical method so far developed can deal with a noninteger number of electrons.
In a general theoretical setting it is not impossible: in the superconductivity theory
one manipulates with the wave functions of undefined number of electrons and in the
grand canonical ensemble setting the number of particles is not fixed either. The only
problem is that the QC methods employed to describe the quantum parts in the hybrid
methods deal neither with the Bardeen-Cooper-Shrieffer functions of superconduc-
tors nor with the grand canonical ensemble, but by contrast require the number of
electrons to be integer and fixed. This point is so obvious that no method descrip-
tion has ever mentioned that. But the geometry based singling out of the quantum
subsystem does not guarantee that it is satisfied – in fact, just the opposite.

Anticipation of serious trouble coming from indefiniteness of the chemical com-
position (which obviously includes the number of electrons or equivalently the total
charges) of the subsystems led to the suggestion that seemed at the first glance to
solve all problems at once by filling the cut bonds with atoms (usually hydrogens)
or more complex groups artificially added to the quantum system. This allows one
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to keep the number of electrons in the quantum subsystem fixed at some reasonable
value. However the cost of this remedy is rather high: one definiteness is paid by
another indefiniteness, namely by that of the number and type of nuclei in the quan-
tum system. Within such a setting, the QC calculation is performed for a subsystem
whose chemical composition does not coincide with that of the quantum subsystem
it is assumed to represent. This inevitably leads to serious artefacts and potentially
to errors.

With the above reservations we turn back to the interaction based classification of
the hybrid QM/MM methods which allows us to distinguish the mechanical embed-
ding, polarization embedding etc. We shall consider them subsequently.

2.6.1. Mechanical embedding: IMOMM, IMOMO, ONIOM, etc

Examples of this type of modeling are the IMOMM [213] and IMOMO [241]
schemes developed by Morokuma with coworkers when both QM and MM sys-
tems are not polarized by each other and their interaction is represented by classical
force fields only. In fact, mechanical embedding does not assume any explicit inter-
action between the subsystems treated by classical and quantum chemical methods.
The simplest model for implementation is the so-called “subtractive scheme” imple-
mented for example in [241, 242]. In the framework of these schemes some part of
the system is assigned to be treated at a quantum level on geometry grounds. If the
QM fragment acquires dangling bonds under this singling out, they are saturated by
some groups (hydrogens, methyl groups etc.). This forms the so-called model system.
Then the entire system is calculated by an MM method of choice (or, more generally,
by whatever lower-level method, may be even by a QM one of say smaller basis set
or lower correlation account or by a semiempirical one with a less developed sys-
tem of molecular integrals) and the hybrid total energy is then obtained by adding
the QM (higher-level) calculated energy of the model subsystem and subtracting the
MM calculated energy of the model subsystem. The expression for the total energy
in the simplest case of two (quantum and classical) subsystems reads:

Etot = Elow(real) + Ehigh(model) − Elow(model),(2.140)

where “high” and “low” refer to the levels of approximation while “real” and
“model”, basically to the size of the calculated system. The above expression
obscures the need for explicit formulation of the properties of the boundary between
subsystems. The simplest implementation of this scheme is provided by the IMOMM
methodology [213]. The analogous IMOMO scheme is the procedure of combining
two QM (MO-based) methods. These approaches combining two subsystems are
called two-layered [243]. The subtractive approach combining more than two regions
(i.e., including some intermediate buffer subsystems) is called ONIOM [243]. The
expression for the total energy in the ONIOM scheme is written analogously to
eq. (2.140):
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Etot = Elow(real) + Ehigh(S − model) − Emed(S − model)+
+ Emed(I − model) − Elow(I − model),

where “med” corresponds to some medium level of approximation, while the nota-
tions S-model and I-model correspond to the small and intermediate sizes of the
model systems, respectively.

Expression eq. (2.140) stipulates that the interactions between quantitatively and
classically treated subsystems are somehow included in the difference of the energy
of the model system calculated by the higher- and lower-level methods. Obviously
it is not the true interaction of the subsystems treated at different levels, but just an
interpolation. In this context it makes no sense to discuss physical contributions to the
intersubsystem interactions such as the electrostatic polarization of the QM region by
the MM-treated environment (and vice versa) or anything else of that sort. Clearly, the
description of a reaction center or a chromophore requiring truly quantum descrip-
tion by MM can be quite problematic. The errors in this approach vary irregularly
while the geometry changes: the MM schemes can describe perfectly the system near
the equilibrium and totally fail near the transition state (saddle point). Also, as it is
discussed in its proper place (Section 2.5) the MM itself is not developed enough to
cover all classes of molecules, which produces additional uncertainty in the energy
estimates. Saturation of broken bonds by hydrogens (or other groups) in an uncon-
trollable manner affects the results of electronic structure calculations. To level out
these effects, the model system is suggested to be chosen to be large enough, which
makes the procedure both expensive and obscure. In fact, the validation of the sub-
tractive scheme is based on a more or less accidental compensation of errors. While
using the ONIOM scheme it is explicitly prescribed by its authors [243] to estimate
the errors in energy incurred by transition from a model molecule to a more realistic
one and to use that pair of high-/low-level methods for which these errors are close
enough.

The accuracy of the “subtractive” hybrid schemes i.e., mechanical embedding, can
be evaluated by an analysis of the characteristic numerical examples. The problems
caused by the ad hoc way of construction of this method are clearly seen when it fails.
In most cases, the failures can be seen on rather simple molecular objects which are
used as tests for those or other hybrid schemes. For example, an application of the
IMOMM method to analyse the conformational properties of cis-butane, performed
in [235], shows that marking two terminal carbon atoms of the molecule as QM leads
to valence angles of 129.9◦, while the same quantity obtained by pure QM calculation
yields 117◦ and the pure MM calculation gives the value 116.1◦ for these angles.
We see that in this case the transition to the hybrid QM/MM procedure destroys
even the results of pure MM calculations, which are by themselves quite acceptable.
Problems also arise when multilayered schemes are used. For example, the energy
of the reaction of the oxidative addition of H2 to Pt(P(t-Bu)3)2 calculated within
the B3LYP:HF:MM3 scheme is by 7.9 kcal/mol smaller than that calculated by the
B3LYP:HF:HF method [243]. It turns out that the choice of the description for the
third layer (the most inert and the most distant from the reaction center of the system)
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rather than of the second one, turns out to be crucial for the description of the energy
of this reaction, which is itself estimated to be ∼4 kcal/mol [243]. It demonstrates the
complete failure of this scheme of junction construction.

2.6.2. Polarization embedding

Further elaboration of the hybrid models stipulated by the necessity to model chemi-
cal processes in polar solvents or in the protein environment of enzymes, or in oxide-
based matrices of zeolites, requires the polarization of the QM subsystem by the
charges residing on the MM atoms of the classically treated solvent, or protein, or
oxide matrix. This polarization is described by renormalizing the one-electron part of
the effective Hamiltonian for the QM subsystem:

hpol
µν = hµν −

∑
M

qMV M
µν(2.141)

where summation over M is extended to the atoms in the MM (classical) subsystem,
qM is its effective charge and V M

µν is the matrix element of the Coulomb potential
induced by the unit charge located at the atom M between the one-electron states µ
and ν in the quantum system. Obviously the terms of this type appear in the general
expression of eq. (1.258) for the effective Hamiltonian for the R-system. This type
of modeling is quite common in the literature [209,244]. A general objection against
this type of treatment is that it violates the principle that actio should be equal to
reactio [245] since no effect on the part of the QM system upon the MM system
is assumed in eq. (2.141). Employing effective MM charges in the hybrid QM/MM
schemes of the polarization embedding in terms of the classification [234] raises sev-
eral problems. First of all, it is the source from where the MM charges are expected
to come. Generally, as mentioned in the MM Section 2.5, the effective charges may
appear from procedures of fitting molecular potential i.e. PES to some form includ-
ing the Coulomb interaction of the effective charges. For example in the atom-atomic
schemes describing crystals of unsaturated hydrocarbons (such as benzene) the effec-
tive charges residing on the carbon (hydrogen) atoms amount to ±0.153.ē. This value
is exaggerated and cannot be reproduced by any semiempirical QC methods, which
are generally known to produce the charges correctly to the extent that the experi-
mental dipole moments are decently reproduced. A correct setting should probably
include the QC precalculated effective charges to be located on the MM atoms with
the hope of reproducing the result of the QC calculation.

2.6.3. Link atoms, capping atoms, etc

While taking into account the polarization of the quantum subsystem by the charges
residing in its classical part, the (mostly the hydrogen) atoms, recklessly used to sat-
urate the bonds broken when the model system is cut from the whole, acquire much
more importance. The atom saturating the bond broken when a border is set on geom-
etry grounds is called the link atom. Since the early times of quantum chemistry and
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even now, it is very common to make the molecular problem tractable by neglect-
ing polyatomic and presumably chemically nonactive substituents, replacing them
with hydrogen atoms. The QM/MM methodology takes the bulky substituents explic-
itly into account. The most straightforward way to treat covalently bound QM and
MM parts is the link atom method. This approach is implemented in the industrial
and semi-industrial packages [246–249]. The important drawback of the link atom
method (and especially of the “dummy groups” method) is introducing additional
nuclear degrees of freedom for which no reasonable equation of motion (or equiva-
lently no energy minimum condition) can be derived. Such problems and the posi-
tioning of link atoms have been addressed by numerous authors. For example, the
authors of [213] have proposed a special procedure for geometry optimization with
rigid restrictions imposed on the position of the link atom. More complex is the so-
called scaled position link atom method (SPLAM) [245]. It requires corrections to
bonding, dipole, and van-der-Waals terms to be introduced. In some cases it works
significantly better than the simple link atom method, but the status of results is still
unclear. In any case numerical estimates performed in [245] cannot be considered
as being very successful. The typical failure of this version of the QM/MM scheme
is that it gives the results which are quite close to the pure MM ones. For example,
considering the water dimer has shown that the BLYP QM method predicts the OO
distance and the HO...H angle (2.98 Å and 123◦, respectively) to be very close to
the experiment (2.98 Å and 122◦), while the MM scheme gives significantly worse
results (2.77 Å and 162◦). The SPLAM hybrid scheme gives values that almost coin-
cide with those of the MM (2.78 Å and 163◦). In this case the use of the hybrid
QM/MM approach seems to be senseless. It proves in fact that some important con-
tributions are missed in the approach of [245].

The problem of geometry optimization in the link atom schemes is sometimes
addressed by modifying the expression for the total energy of the molecular system.
It is shown in [234] that the difference between QM and MM interaction energies for
link atoms enters into the total energy and strongly depends on the link atom position
since the dependence of energy on geometry given by the QM theory and the MM
force fields are very different. Practically it leads to the collapse of the fictitious link
atom with the boundary atom (that in the MM treated region whose bond with a
QM atom had been broken). The characteristic result is that the equilibrium position
of the link atom is poorly defined and cannot be rationalized. One of the possible
prescriptions for avoiding the collapse of the link atom proposed in [234] is to use for
geometry optimization some potential energy function not coinciding with the total
energy of the molecular system:

Epot = Etot − Elink(2.142)

Such an approach also seems to be quite artificial. An example of employing it is
given in [250] (cited in [245]) where it is shown that strong deviations of the link
atom equilibrium position from the line connecting atoms forming a covalent bond
are possible and lead to serious problems. Also, the vibrational spectra calculated
with the optimization of the link atom position are much worse than those derived
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from the MM force field itself. When it comes to estimating chemically interest-
ing quantities in the QM/MM approach, the calculated proton affinity for small gas
phase aluminosilicate clusters turns out to be very sensitive to the length of the bond
between the boundary QM atom and the hydrogen link atom [251].

The link atom scheme and all the concepts which arise in this context of hybrid
modeling, turn out to be extremely contradictory as too many different aspects of the
intersubsystem junction are loaded upon them. The link atom arises as an auxiliary
tool to describe an atom on the poorly defined boundary between the subsystems. In
this setting a noncontradictive object of the general theory – the frontier atom – one
which bears hybrid orbitals ascribed to different parts of the complex system, is split
between the link atom and the boundary MM atom. The orbitals centered on the link
atom are included in the basis of the orbitals of the quantum subsystem. They are used
to mimic the behavior of the orbitals of the frontier atom. However, as it is easy to
understand, they perform this job rather poorly. The AO basis of the link (hydrogen)
atom (even if it chosen to be rich enough) has nothing to do with that of a heavy MM
atom. (We notice that within the frame of ab initio methods there is no reasonable
mechanism which could help to level out this difference). In any hybrid scheme there
are no tools to reasonably model the direction of the orbitals of the MM atom and
the proposed medications are worse than the diseases they are supposed to cure. For
example, a very artificial construct is employed: to mimic, say, the C-C bond, the
link hydrogen atom must be placed not in the point where the C atom ascribed to the
MM subsystem is placed but in some other point. In this case when the interactions
between classical and quantum subsystems are treated explicitly, the coordinates of
the link atom cannot be used to estimate the MM energy of its interactions with other
MM atoms. By this, the coordinates of the MM atom represented by a link atom are
still necessary. Then the link atom has coordinates of its own, which are excessive as
the coordinates of the MM atom of the broken bond are not dropped from the entire
set of the nuclear coordinates. This has resulted in many papers where authors attempt
to solve an unsolvable problem: how to fix (and whether it is worth fixing) the position
of a hydrogen link atom so that everything comes out more or less decently.

The combination of taking into account the polarization of the quantum subsys-
tem by the effective charges residing on the MM atoms with the link atom construct
results in further inconsistencies. They manifest themselves in a vividly discussed
dilemma: whether to include the Coulomb interaction between the charge on the MM
atom and that on the link atom representing it in the QM subsystem or to drop it com-
pletely. In this case, using eq. (2.141) for the action of external charges on the quan-
tum subsystem becomes particularly problematic. In addition to the inconsistency of
the orbital basis of the link atom with that of the MM atom which it represents in the
QM part of the complex system, the effective charge of the link atom may differ from
the effective charge of the represented MM atom. The most severe problem is that
the link atom falls into the electrostatic field of the MM atom bearing the charge qX

(and vice versa), whereas the distance between them is much smaller than the length
of the broken bond. This introduces a lot of confusion.
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Originally [209], neither electrostatic or van-der-Waals interactions between the
link atoms and the MM subsystem were taken into account. As we have demon-
strated above it is definitely wrong. Later, different prescriptions to omit some real
physical interactions and by this to compensate unphysical ones were proposed: the
authors of [252] neglect the Coulomb interactions between the QM subsystem and
the MM group closest to it, the authors of [253] force the charge on the boundary
MM atom to be zero. Such omissions of interaction terms cannot be justified and
must be considered special tricks for masking the errors caused by other inconsisten-
cies in junction construction. Another prescription [254] is shifting the values of the
charges with subsequent compensation of this perturbation by introducing fictitious
dipoles. Typically, the possibility of manipulating the interactions of the artificial
link atom is considered an advantage of the special flexibility of this approach [255].
However, the price of this flexibility is too high as it leads to complete uncertainty
in the results obtained and thus marks down any possible predictive capacity of the
QM/MM approach. These contradictions can be resolved on the basis of the general
theory. From its point of view the problem of interaction between the MM atom and
the corresponding link atom does not exist, but is replaced by that of the Coulomb
interaction between electron densities located on the frontier atom, but ascribed to
different subsystems. Then the answer is obvious:∑

rr′∈A

∑
mm′∈A

(rr′ || mm′) 〈〈m+m′〉〉M 〈〈r+r′〉〉R.(2.143)

and one has to take it into consideration rater than drop it. The problems arise as a
consequence of attempts to paint it as as a two-center interaction. In fact it is not
a two-center, but a one-center, one and is not equal to any reasonable interaction
between the boundary and link atoms. Many whimsical methods are proposed in the
literature [256] to redistribute charges in the classical subsystem so that conserving
their overall balance levels out the nonphysically strong interaction between the link
atom and that of the MM atom. These tools are implemented for example within the
“industrial” package QUASI [249].

Turning back to the intersubsystem interactions considered as a basis of the classi-
fication of the hybrid QM/MM schemes, we first address those intersubsystem junc-
tions which are represented by classical bonding terms. In this case an important
question arises: which terms should be included and which should not? The most
widespread method is to include classical bonding force fields only when at least one
MM atom is involved [209, 237]. The main general problem with such a setting is
double counting of interactions since some of them are taken into account also by a
quantum mechanical procedure. To overcome this inconsistency the authors of [252]
proposed to calculate only those improper dihedral fields of the MM subsystem from
which both outer atoms come. In general the methodologies based on deleting the
terms in the expression for the total energy of the system related to the link atoms
are very difficult to systematize. Practical implementation of these methods is very
difficult as in the framework of this scheme serious artefacts appear quite expectedly.
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The saturation of dangling bonds by hydrogen is not the only possible way
proposed in the literature. The main reason for using other types of saturating
groups/atoms is the intention to improve the description of the polarity and other
properties of the broken bond. The saturation groups known in the literature are pseu-
dohalogens [257, 258] and “dummy groups” [259].

Both the mechanical embedding and the polarization embedding type models
within the classification of [234] suffer by missing the effects of the quantum subsys-
tem on the classical one. This type of energy contribution may be crucially impor-
tant. It is precisely that which is implicitly taken into account by the Born-Onsager
solvent-solute model of continual insulator and its descendants. In these models the
solute polarizes the solvent and the polarization implicitly understood is related to
the nuclear orientational motions of the permanent dipoles of the molecules con-
stituting the solvent. More subtle effects are related to the electronic polarization
of the classical system. These effects are ignored in most of the modeling pack-
ages currently available. The practical scheme including classical treatment of the
MM system polarization is provided by [260]. This type of approaches is, however,
rarely used though the MM polarization was taken into account even in the early
scheme [208] where it had been done by using atomic polarizabilities. Here of course
the electronic polarization of the otherwise classical subsystem is meant. Even earlier
a very nice classical model of electronic polarizability was constructed [261] to be
used in calculations of the impurities in ionic crystals, to describe the response of
the surrounding ions upon the variation of the electronic distribution in the impurity
and later employed in [262] to construct a quantum-classical junction for describing
strongly ionic crystals.

The polarization of the classical subsystem by the quantum one turns out to be of
crucial importance when it goes about coordination compounds of metal ions with
high formal charges. Despite some electron back donation, the effective charge on
the metal remains rather high and thus the organic environment is expected to be
significantly polarized. The general theory is that this situation prescribes employ-
ing the adequate polarizability technique for the classical subsystem. Its use will be
demonstrated in a due course.

The classification of the hybrid QM/MM methods proposed in [234] is not com-
plete. It does not include some self-consistent schemes like [215] and does not
consider the possibility of charge transfer between subsystems [263]. The authors
of [264] have imposed a requirement of intersubsystem self-consistency on the con-
struction of a junction. It means that the charge transfer between subsystems should
be taken into account. Practical implementation of this requirement was performed by
using special iterative procedures of double (intrafragment and interfragment) self-
consistent (DSC) calculations. It leads to explicitly taking into account the electron
transfer between the subsystems (and also of the polarization of the QM subsystem).
This methodology, however, cannot be justified as the self-consistent field procedures
are separately applied to systems with strongly fluctuating numbers of electrons that
also lead to poor definition of the fragments themselves (and of their quantum num-
bers). According to the results of the previous section, the electron transfers should be
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considered virtual ones and taken into account in the perturbative fashion. This point
is confirmed numerically as the application of the DSC scheme to the iron picket-
fence porphyrine has led to improbably large intersubsystem charge transfer of 3.6
electrons [264].

2.6.4. Local SCF and analogous methods

As we see, using the geometry based division into subsystems and link atom scheme
creates many problems. The main lesson to be learned from it is that the intersub-
system boundary must be set by a method adequate for the quantum realm. This
cannot be done in the direct – coordinate – space, but only in the Hilbert space, by
selecting the subspaces of the entire orbital space and defining the quantum subsys-
tem in terms of these subspaces and developing the effective Hamiltonians acting
in these subspaces. If these subspaces are correctly chosen, the problem of defining
the subsystem’s composition in terms of electron numbers can be reasonably solved.
At the same time, the reasons for introducing the link atoms are satisfied by this con-
struct: the orbitals necessary to describe the fixed number of electrons in the quantum
subsystem appear in the model. By this, the boundary between subsystems becomes
a “grey” zone between quantum and classical subsystems. However, no excessive
nuclear coordinates appear as the orbitals to be used are assumed to be centered at
the frontier atoms of the system i.e. those which by definition bear orbitals belong-
ing to the quantum subsystem. The closest analogy is provided by the π-electron
approximation, where from this point of view, each carbon is a frontier atom. In the
general case, the planar symmetry of course does not take place and some other con-
siderations must be used to define these states: a spectacular example is provided
by a tentative “π-electronic” model of fullerenes or nanotubes which are reasonably
treated by the corresponding “π”-orbitals directed approximately along the radii of
the corresponding sphere or ellipsoid or cylinder, but require some more elaborated
procedure for their development rather simple reference to symmetry.

Models of this type are present in the literature. The simplest ones are based on the
use of local orbitals. It is the local self-consistent field (LSCF) approach [216, 231,
265, 266]. In it the chemical bonds between QM and MM regions are represented
by strictly local bond orbitals (SLBOs). The BOs can be obtained by the a posteriori
localization procedures known in the literature. The localized orbitals thus obtained
have some degree of delocalization, i.e. they have non-zero contributions of the AOs
centered on the atoms not incident to a given bond (or a lone pair) ascribed to this
particular BO. These contributions are the so-called “tails” of the localized orbitals
and neglecting them yields the strictly local BOs (SLBOs) which are used in the
LSCF scheme. The QM part of the system is described by a set of delocalized MOs
while the boundary is modeled by the frozen SLBOs.

An important assumption made in the LSCF construction is that the SLBOs are
transferable within a wide class of molecules. The frozen character of the bound-
ary SLBO causes the sensitivity of the results obtained within the LSCF scheme to
the size of the QM region. The electronic structure of the QM region is described
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by the HFR (or synonymously self consistent field i.e. SCF) procedure developed for
the modified Fock operator, which includes Coulomb and exchange interaction with
the SLBOs and Coulomb interaction with the MM charges of eq. (2.141). Technically
the problem is identified as one of defining the charge to be set at the MM atom X rep-
resented in the quantum system by some link atom. Following the solution in [216],
the effective charge of an MM atom bearing a bond to be treated at the quantum level
must be set to qX + 1 (qX is the effective charge on X in the MM setting) on the
ground that this atom supplies to the quantum subsystem one electron which must be
compensated by the corresponding core charge. In its original implementation, the
LSCF method was developed with an additional condition of fixing the positions of
the atoms of the environment and thus it was not suitable for geometry optimization.
This restriction has been lifted in [267], but this requires additional adjustment of
the force field parameters. The authors of [267] have noticed that in the framework
of the original LSCF scheme the ion-nuclei interactions are underestimated and the
variation of the overlap between boundary basis functions due to variations of the
boundary bond length is not taken into account. To correct these defects they intro-
duced the boundary bond potential of the form:

EX−Y = (A + Br + Cr2)eDr +
E

r
(2.144)

where the exponential term is introduced to mimic the overlap dependence on the
interatomic separation and the last contribution describes an interaction of effective
charges. Parameters A–E are numerically optimized. In fact, the first contribution
should describe the intrabond resonance energy and one has to consider the potential
eq. (2.144) mainly as a correction for the bonding (the overlap dependent contribu-
tion). At the same time the values of the parameters A–E obtained by the authors
[267] seem not to correspond to their declared physical meaning. The same conclu-
sion can be drawn from the energy profile for the process of the boundary bond elon-
gation – for large values of bond length the difference between the LSCF and SCF
(HFR) curves increases drastically since the nonphysically large Coulomb contribu-
tion becomes prevailing. The optimized bond lengths in the SCF and the LSCF/MM
approaches can differ significantly and also remarkably and unpredictably depend
on the details of the environment the bond is assigned to (for example, C(QM)-
N(MM) bond is by 0.024 Å longer than the bond N(QM)-C(MM) with the same
hybridization). The problems with the correction of bond description by the potential
eq. (2.144) are caused by the number and type of factors it is designed to reproduce –
the precise form of boundary orbitals is a function of geometry (see eqs. (3.141)
and (3.136) in Chapter 3), elements of the intrabond density matrices (especially, of
the two-electron ones) also depend on the geometry (see below). Also the expres-
sion for the bond energy cannot be arbitrarily postulated but must be defined from
the analysis of a particular QM expression. The angular dependence of the bond
potential is totally neglected in the potential eq. (2.144), while it appears naturally
from the derivation of intersubsystem junction due to angular dependence of reso-
nance interactions. One can see that the LSCF approach has an important drawback
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in construction: the parameters for the SLBOs should be determined from model
molecules for each new system. Construction of the extensive database of the SLBO
parameters is considered a strategy within this approach by its authors.

A careful numerical examination and comparison of the link atom and LSCF tech-
niques were performed in [255] where the CHARMm force field [178] and the AM1
method [68] as respective MM and QM procedures have been used. In the case of
the link atom procedure, two options were used: QQ – the link atom does not interact
with the MM subsystem and HQ – link atom interacts with all MM atoms. The main
conclusion of this consideration is that the LSCF and the link atom schemes are nev-
ertheless of similar quality. The error in the proton affinity induced by these schemes
is several kcal/mol. It is noteworthy that all the schemes work rather poorly as tools,
even for that simple problem of describing the conformational properties of n-butane.
The large charge on the MM atoms in the proximity of the QM subsystem (especially
on the boundary atom) cause further significant errors in the proton affinities for all
methods (especially in the case of the LSCF approach where the error can be of tens
of kcal/mol). This is not surprising as the stability and transferability of intrabond
electron densities is broken here. It proves that the simple electrostatic model is not
appropriate for these schemes and that a detailed analysis of the junction form is nec-
essary in the general case. The numerical analysis shows that the error induced by the
HQ model is smaller than that induced by the QQ model. As the HQ model explic-
itly includes unphysical interactions with the artificial link atom, it means that these
interactions partly compensate for errors in the junction construction to some uncer-
tain extent. Practically, the link atom interacts with the MM atoms even in the case of
the QQ model but this happens indirectly via the interactions of the QM subsystem
with the MM atoms. In the case of the QQ model, the non-compensated charge on the
QM subsystem (without link atom) interacts with the MM atomic charges. It causes
significant polarization of the QM subsystem, which is confirmed by numerical esti-
mates of charges in it.

The principles similar to those of the LSCF are used for junction construction
in [134] based on the fragment SCF method. Another model thoroughly elaborated
to consider the effect of motions of environment atoms on the ab initio level is that
of [268]. In the framework of this model the procedure of freezing the SLBO was
refined and the area of delocalization of SLBOs extended from two boundary atoms
to two boundary groups. At the same time an attempt to obtain numerical results
of good quality has forced these authors to introduce some very artificial proce-
dures throughout the construction of the junction. Among them we mention plac-
ing very large fictitious positive point charges on the bond. This model also requires
extensive parametrization: in order to reproduce the energetics of alanine dipeptide
and tetrapeptide, 27 parameters describing the interface between subsystems were
adjusted. Essential parametrization is quite an important problem of this model. It
would be fair to say that reproducing conformational energies for a polar system
like polypeptide is a difficult test for any computational methodology. The authors of
[268] formulate the essential requirements to the bond for which molecule can be cut:
(i) this bond should not have significant multiple bonding character, and (ii) this bond
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should be far away from the region where significant electron re-distribution occurs.
The first requirement seems to be quite reasonable if a bond is described by a single
localized orbital, while the second one reflects a lack of some contributions to the
energy, which become important if a smaller QM subsystem is chosen. The estimate
of these contributions is not possible due to intersubsystem junction in this method.

It must be realized that the terminology in the QM/MM area is rather shaky.
Many methods bear names not directly reflecting what is really done. For example,
the method based on the effective fragment potential (EFP) construction described
in [269] is in some respects close to the LSCF methodology. In this case the bound-
ary is modeled by a buffer region consisting of several localized molecular orbitals
which are obtained by a QM calculation performed for the entire system or for a sub-
set of the latter. The orbitals obtained in the calculation for the entire system are set
frozen in the EFP calculation. The orbitals of the QM part are forced to be orthogonal
to those of the buffer region and the effect of the more distant environment is repre-
sented by an EFP. The important idea of this approach is to make the distance (in the
physical space) between the QM and EFP regions large enough to make it possible
to present the corresponding intersubsystem interactions as nonbonding ones. At the
same time the freezing of the buffer one-electron states can be a source of significant
errors as the changes in polarization contributions coming from the buffer region
are neglected throughout the geometry optimization. The numerical example given
by the authors [269] is quite characteristic. They have calculated the proton affini-
ties of lysine and the H-bonded and non-H-bonded tripeptide Gly-Lys-Gly by the
QM/buffer/EFP method. If the buffer region is chosen to be formed by γ- and δ-CH2

groups of the lysine chain (i.e., quite far from the reaction center) the QM/buffer/EFP
calculation gives the value of the proton affinity to be 2.2 kcal/mol higher than the
reference QM one for all these molecules. It unequivocally testifies that these 2.2
kcal/mol constitute the error of junction construction in this case, which seems to be
quite large. Moreover, the difference between QM/buffer and QM/buffer/EFP results
in the proton affinities of lysine and non-H-bonded tripeptide Gly-Lys-Gly of only
0.2 kcal/mol, i.e. the effect of the environment described by the EFP is by an order of
magnitude smaller than the error produced by the junction.

2.6.5. Methods based on effective potentials

A further important development in junction construction is provided by the methods
invoking the concept of effective or model potentials [270, 281]. Taking into account
the modern derivation of the effective potentials based on the GF representation of
the wave function due to Seijo [36] it is natural to expect that similar treatment can
be performed for the cores of more general form than the atomic cores described in
Section 2.2. Further development of the idea of using pseudopotential theory in rela-
tion with the problem of hybrid modeling of the complex systems brings one to the
construct of the effective group potential (EGP) introduced in [271, 272] and further
developed and used in [273–275]. The general construct of the EGP evolves along the
same line as that of the effective core potential (ECP – see details above). This leads
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to the form following logically from the general theory where it is demonstrated that
the effect of the electrons not considered explicitly reduces to one-electron operator
affecting those considered explicitly used throughout the calculations:

F̂eff = ĥ + ŴEGP + Σ̂,(2.145)

ŴEGP =
∑
rr′

αrr′r+r′.

The general theory provides an explicit form for the matrix elements αrr′

(eq. (1.244)). In the EGP setting, they are considered as parameters and obtained
by fitting (following the norm of the difference between the exact and the model
Fock operators criterion) of the model Fock operator acting in the restricted subspace
of orbitals and the exact Fock operator. This procedure allows one to reproduce
the anisotropy characteristic for the inert environment: the EGP of the ammonia
molecule represented in the quantum subsystem only by its lone pair has the overall
symmetry of the C3v group, describing by this the effective interaction of electrons
in the quantum subsystem with those occupying the one-electron states of the N-H
bonds, which are not considered explicitly. An analogous picture is observed for the
case of Cp− anion of which only five π-orbitals are taken explicitly and the rest is
considered as the core. The difference with the traditional π-electron theories here is
that the π-orbitals of the Cp− units are used to represent the whole cyclopentadienyl
anions in a situation where there is no planar symmetry at all: namely to describe a
coordination compound CpIn(CO)4, which demonstrates the secondary importance
of the purely symmetry considerations for the electronic variables separation. It
is also fair to say that the idea of describing Cp complexes of metals using only
π-electrons of the ligands belongs to Shustorovich and Dyatkina [276].

If a part of the inert environment is taken by the lattice of the ionic or covalent
crystal, use of the pseudopotential theory is proposed in papers [36, 278–283]. The
source of the latter are the electrons and nuclei of the crystal, except the area taken by
the explicitly considered quantum system. This approach allows staying the ab initio
context to determine the form of the orbitals in the QM subsystem. In the pseudobond
approach [284, 285] the free valence of a QM atom is saturated with a special atom
located exactly at the position of the neighbor MM atom. The basis set and number
of electrons of this pseudoatom are set to be equal to those of the fluorine atom. The
electronic structure of the broken C-C bonds are mimicked by a special adjustment of
the effective core potential of this pseudo fluorine atom. Another approach based on
the use of effective potentials is proposed in [286]. A series of one-electron quantum
capping potentials replacing the link atom is developed by modifying conventional
effective core potentials: the spherical shielding and Pauli exchange repulsion terms
replace the dropped valence electrons. The capping potentials are adjusted to repro-
duce all-electron geometries and charge distributions. The analysis of this scheme
shows that the error induced by a capping potential is significant (especially for angu-
lar distortions) but generally smaller than that in the simple link atom scheme.

The EGP method and its analogs seem very promising for the hybrid method’s con-
struction, employing ab initio QC procedures as the QM counterpart. Nevertheless,
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due to the details of the pseudopotential-based theories construction it is not pos-
sible to prove their transferability in the case of the variation of the geometry of
the classically treated part of the complex system. In fact, transferability does not
have place, which most clearly manifests itself at the intersubsystem frontier. The
accepted procedure of defining the pseudopotentials assumes that they must be recal-
culated whenever the classical environment changes its geometry. It actually happens
already in the ECF setting where the pseudopotential is reduced to that of the filled
atomic cores and varies when the nuclear positions vary. When it comes to a more
elaborate core group (like NH bonds in ammonia molecules) changing positions of
H-atoms changes the electronic structure of these bonds and thus affects the form of
the filled orbitals of the “spectator” groups. So recalculating the electronic structure
of the environment is required whenever it may be necessary, for example, at each
step of the optimization procedure, which is not practically possible.

2.6.6. Orbital carrier spaces for quantum subsystems

Both the LSCF and pseudopotential-based methods face a similar problem through-
out their practical implementation. It includes the dependence of the orbitals ascribed
to the quantum system on the geometry of the classical system. The most transparent
example comes from the EGP treatment of the NH3 molecule. Within this setting the
NH3 molecule is described by an effective two-electron atom N# bearing an HO and
exerting the pseudopotential of the C3v symmetry reproducing the presence of the N-
H bonds. As already mentioned, variation of geometry (for example of the pyramidal-
ization angle of the NH3 molecule) changes the parameters of this pseudopotential
at least for that obvious reason that the space of orbitals treated explicitly must be
orthogonal to the occupied states not considered explicitly. Since the latter depends
on geometry, the former does the same. Even more important is the fact that the
matrix elements of effective Fockian, pertinent to the only explicitly considered lone
pair of the NH3 molecule, are expectedly dependent on the pyramidalization angle.
In the EGP setting these dependencies would require a complete recalculation of the
effective Fock operator at each move in the classical subsystem and even worse – this
recalculation has to include a quantum (HFR) treatment of the classical part, mak-
ing the whole enterprise basically senseless. A similar situation occurs in the LSCF
theory where SLBOs are geometry-dependent. Within the LSCF theory the idea has
been put forward to use extensive data bases for SLBOs in different environments, but
it does not solve the problem of the geometry dependence of SLBOs, which clearly
cannot be covered by any database. To solve this and to escape the need for construct-
ing large databases of the SLBOs required by the LSCF approach, Gao et al. proposed
the generalized hybrid orbital (GHO) method [287,288]. This approach is intended to
interpolate the shapes and orientations of the HOs residing on the frontier atoms. The
first important step in the GHO method, which will also be used in our derivation,
is dividing the hybrid orbitals into active and auxiliary ones – the former are added
to the QM subsystem. In the original LSCF approach, four orbitals of the boundary
atom are included in the self-consistent procedure. In the GHO approach, only one
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active orbital per frontier atom is included in the set of orbitals spanning the space
where the QM procedure evolves. Therefore, with the exception that the HO used
in the QM procedure is not mandatory a pure p-orbital, boundary atom in the GHO
scheme is very close to the atom in the π-electron approximation. It allows one to
fit some adequate semiempirical parameters for the boundary atoms. The possibility
of choosing reasonable and transferable semiempirical parameters for HOs of such
a defined boundary atom must rely upon a very subtle procedure of determination
of the HOs. Conversely, the GHO scheme uses some very crude assumptions [288]
about the form and the direction of HOs, based on pure geometry grounds, which are
in fact equivalent to (i) fixing the C3v symmetry of the local MM environment and
(ii) assuming that all the HO directions coincide with the directions of bonds. Practi-
cally, these conditions are satisfied only for methane molecules. Moreover, even for
these assumptions the s-/p-ratio for the active orbital is determined by incorrect for-
mula working only for equivalent active and auxiliary orbitals or for purely p active
orbital. The real structure of the HOs as a function of the geometry will be described
below and we shall see that neither of the assumptions accepted in [288] is actually
fulfilled. Neither a possible asymmetry of the geometry of the boundary atom envi-
ronment nor the chemical nature of neighboring groups are taken into account by the
GHO method. In practical implementation of [287, 288] all the HOs are determined
by directions of the bonds between the boundary atom and its three MM neighbors.
Since the s-/p-ratio and direction of the active HO in the GHO method are the func-
tions of only MM atom positions, the form of this HO may be far from being optimal,
to say nothing of its behavior with geometry variations. The non-variational form of
the HOs brought the authors of [287] to the necessity of making significant and hardly
justifiable renormalization of the Hamiltonian and the MM force field parameters to
reproduce correct bond lengths, directions of auxiliary orbitals along the correspond-
ing bonds, and the effective charges on the atoms. For example, in the case of carbon
atom the resonance parameter βs of the MNDO method had to be changed by more
than 10 eV; the MM C-C ideal bond length parameter r0 had to be changed by 0.05 Å.

2.6.7. Basic problems of hybrid methods

From the above survey it is clear that despite the attractivity of the idea of hybrid treat-
ment of the complex systems, not much is known about it from the theoretical point of
view. Moreover, the most problematic schemes of separating the system into quantum
and classical parts – link atom and mechanical embedding – are implemented in two
most widespread program suits of QC: GAMESS [247] and GAUSSIAN [248]. The
general picture of how this progress (if any) evolves in the QM/MM area resembles
the treatment of a difficult patient by symptomatic medications: each of them helps
to lift some visible signs of trouble, but results in strong side effects to be cured by
further remedies, while the overall process does not manifest any signs of improve-
ment. The general methodology of constructing hybrid modeling schemes evolves in
a completely different way. The problem is solved by including the QM/MM meth-
ods in the general context of dividing a complex system into parts. When a hybrid
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scheme is going to be constructed, the authors are expected to solve, in the same
or another manner, several key problems. First, the variables describing the complex
system must be defined; second, the parts into which the latter is to be divided must
be identified; third, the interactions between the parts must be adequately constructed.
These problems are referred to as the problems of frontier and junction construction.
They relate both to the variables describing the electronic structure of the system as
well as the nuclear coordinates describing the spatial structure of the complex sys-
tem. A wide range of intuitive solutions, not having a solid basis, are proposed in
the literature in response to these questions. However, there is no consistency among
them, or with the general theory, and it leads to many serious problems. Among them
mention must be made of uncontrollable numerical effects as well as incurable con-
tradictions. In practice, one normally notices some technical inconsistencies, which
can be overcome by setting absurd values to the junction parameters or arbitrarily
adding or omitting terms in the energy of the complex system, etc. These incon-
sistencies are cited in abundance and reviewed in this chapter. Also, the number of
solutions proposed in the literature is impressive. It is very difficult to impose any
system upon them and the proposed ones seem quite awkward. It is not the fault of
the authors of these systems: it is hardly possible to set any order to the collection of
solutions if “adding unicorn’s milk completely changes the properties of the brew”.

A hint comes from a distant area, as the problem must be solved not by separating
areas in the the direct three-dimensional coordinate space, which brings up many con-
tradictions, but by singling out subspaces in the Hilbert space. This approach is much
more natural, as QC uses, not the coordinate representation, but the representation
of the occupation numbers and these latter are the adequate set of variables so that
in their terms the separation of the system into parts can be performed sequentially.
Under this condition one may assume that the QM descriptions of different accuracy
are applied to different numbers of electrons residing in different orthogonal sub-
sets of the one-electron states. The classical example of such a method of singling
out a subsystem from a more complex system is of course the π-electron approx-
imation, known from the very early years of quantum chemistry. One can see that
such a method of dividing the system into parts satisfies the very important require-
ment that the number of particles in the subsystem is a good quantum number and
on the other hand it demonstrates that ascribing orthogonal orbitals even centered at
the same atom to different subsystems does not pose any problems: neither concep-
tual nor technical ones. It is shown above that even quantum chemistry itself can be
considered from this perspective.

The general theory of electronic structure of complex systems and their PES are
based on the tacit assumption that the basis orbitals are well defined orthonormal
functions, which can be conveniently divided into two (or more if necessary) classes.
The reality is much more tough and results in serious conceptual problems in all the
existing packages offering hybrid modelization techniques in their respective menus.
These have been addressed in the previous section. Now we address the meaning of
the results obtained so far. In fact, up to this point, we obtained the description suit-
able for any hybrid QM/QM method. Within this context, the distribution of orbitals
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between the subsystems treated by different methods is only a formal exercise. We
can follow any method and if the condition of the smallness of the fluctuations of
electron numbers in the selected subspaces is satisfied, the chosen distribution of the
orbitals and electrons between the subsystems must be considered an acceptable one.
The intersubsystem frontier in this setting is reasonably defined as a set of atoms
that bear the (hybrid) orbitals ascribed to different subsystems. As with any “math-
ematical” definition, it has an area of applicability limited by the condition that the
terms entering the definition keep their sense. It is clearly valid for the semiempiri-
cal domain where it is possible (in a noncontradictory manner) to form HOs which
are attached to a given atom. The postulated orthogonality of AOs is of course of
great help here. In the ab initio context, it would be a much more complex task
due to nonorthogonality of the original AO basis set. This problem becomes severe
with large basis sets with numerous diffuse functions. In this case, additional work
is needed. At the same time, as it also happens with mathematical definitions, some
cases we normally do not expect to also fall under them. These are of course all atoms
in the π-approximation, which turn all to be the frontier ones.

The orbitals (or better to say the exact form of the carrier spaces for the electron
groups) in the QM/QM context can be found by adjusting the form of the hybrids
centered on the frontier atoms on the basis of some more or less arbitrary criteria.
Some solutions of this sort are known in the literature. Theoretically, sound treat-
ment of this problem must be based on the variational principle so that the HOs
on the frontier atoms are determined together with other electronic variables from
the energy minimum condition. This type of approach is implemented for example
in the VB2000 program suit [289]. The situation with the hybrid methods in the
strict sense, namely with QM/MM, is more complex, as no source of flexibility is
assumed in such a setting. Nevertheless, following the instructive example of the π-
approximation, we assume that some electronic structure variables can be implied for
the classically treated part of the complex system. The classical description is here
only an approximation for the energy dependence on nuclear coordinates, which is
ultimately determined by quantum laws of electron motion in the field induced by
nuclei. Then, generalizing the auxiliary HOs by Gao [217], we can think about the
whole set of one-electron states spanning the carrier space for electrons residing in
that part of the system that is classically described. The frontier atoms in this case
are those that bear both the active and auxiliary HOs in Gao’s terminology or those
belonging to R- and M-systems in our terms. The M-system itself is then assumed to
be treated using the classical force fields. Of course, we could close our eyes to the
problem of the origin of these force fields, as it is done in the context of the MM the-
ory. In the context of the hybrid QM/MM theories, however, we need a much more
elaborated picture, which would be equivalent to (or at least a good model of) the
variational procedure of determination of the orbitals centered on the frontier atoms
mentioned above. On the other hand, it is desirable that the MM force fields are some-
how consistent with the used QM picture. One may think of the QM/MM treatment
as an approximation of the QM treatment of the specified level for the entire system.
The latter must be done by a certain QM method. Then the QM/MM description of
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the same system can be considered as one which approximates the “exact” treatment
of the whole by a hybrid procedure. This process can be continued up to the limit
when the QM system disappears and the whole system is described by an MM proce-
dure. Approaches of that sort are currently implemented in those force fields which
are parametrized against results obtained by some quantum chemistry method. It is
not, however, precisely what we want or need: if a standard QM method is used, there
is no transparent way to keep, throughout this transition, the necessary elements of
the electronic structure. Therefore we propose a way to the hybrid methods in a nar-
row sense, which, at first glance may seem to be too indirect. We propose to develop a
transition procedure, connecting an appropriate (and approximate) but still quantum
mechanical description of the M-system of the complex system to a classical and
eventually the force field type description of the latter, but allowing us to single out
the effects of the M-system’s geometry and composition on the one-electron states
of the frontier atoms, which could potentially be ascribed to the quantum subsys-
tem. This is done by setting the problem somewhat wider: as that of the sequential
derivation of the MM – a classical or rather a mechanistic – model of PES from an
appropriate quantum mechanics description. If we establish a sequence of the moves
(transformations and approximate estimates) leading from an appropriate QM theory
to a mechanistic (ultimately a force field MM) model of PES, we can exploit this
asset as follows: we can apply this sequence of moves not to the molecular system
in its entirety, but to some part of the system. For the part where these moves are
applied, we obtain the required mechanistic description and this part then becomes
the classical part of the complex system, whereas the rest remains for the quantum
description.

Analyzing the semiempirical QC methods in relation to their suitability for devel-
oping the hybrid QM/MM methods reveals certain problems. Using the HFR form of
the electron trial wave function together with the ZDO type of parametrization results
in the decomposition of the total energy of a molecular system into a sum of mono-
and diatomic increments:

Etotal =
∑
A

EA +
∑
A<B

EAB(2.146)

where A and B denote the atoms in the molecule under consideration. The increments
(in the CNDO type of parametrization) have the form [39]:

EA =
∑

µ∈A

PµµUµµ + 1
2

∑
µν∈A

(
PµµPνν − 1

2P 2
µν

)
γAA,

EAB = −
∑

µ∈A

∑
ν∈B

(
2PµνβAB

µν + 1
2P 2

µνγAB

)
+

+ (ZAZBR−1
AB − PAAVAB − PBBVBA + PAAPBBγAB)

(2.147)

where Uµµ is the energy of the orbital µ in the field of the atomic core A, −βAB
µν

is an off-diagonal element of the one-electron Hamiltonian, γAB — the two-center
two-electron Coulomb integral, VAB describes the interaction of the valence electron
of the atom A with the core of the atom B,
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PAA =
∑
µ∈A

Pµµ(2.148)

is the atomic electron population and Pµν are the matrix elements of the one-electron
density matrix which in the AO basis have the form:

Pµν = 2
∑

λ∈occ

cµλcνλ,(2.149)

as expressed in terms of the MO LCAO coefficients cµλ. The above (HFR) form of
the total energy does not provide any common ground with the MM picture. The
pairs AB in eq. (2.146) do not correspond to the bonds, but run over all possible
pairs of atoms. It is not possible to demonstrate a priori the transferability of any of
the involved quantities from one molecule to another. Moreover, the variable describ-
ing the electronic structure in approaches of this type – MO LCAO coefficients cµλ –
are not transferable. Further, even if the density matrix elements can be shown to be
transferable by massive numerical experiments, their transferability cannot be proven
by more general theoretical means. The atom-triples specific contributions to the
bending energies or atom-quadruples specific contributions to the torsion energies
cannot be transparently extracted from eqs. (2.146) and (2.147).

We can, however, specify criteria for the quantum chemical (quantum mechani-
cal) method to be compatible with the MM picture. The standard MM description
assumes the use of the local concepts such as chemical bonds and lone pairs. To be
on common ground with MM we have to use a quantum chemistry method which
expresses molecular electronic structure and electronic energy in similar local terms
and reproduces molecular properties with sufficient accuracy. The variables charac-
terizing the wave function of this method have to be transferable in a broad sense
of the term “transferability”, i.e., the form of any bond-related functions (e.g. the
bond energy dependence on interatomic separation) must also be transferable. The
electronic structure variables (ESVs) of the MO LCAO theories (expansion coeffi-
cients of MOs) are not transferable as is the whole MO LCAO picture of molecu-
lar electronic structure. The contradiction between the sufficiently local character of
chemical structure and its delocalized description in the MO LCAO based theories
is well known in the literature for almost half a century (see e.g. [290]). Many crite-
ria are proposed in the literature, which allow one to localize the canonical MOs. It
may appear that these localized orbitals can be considered as a transferable basis for
constructing QM/MM junctions. However, one notices that if the HFR derived MOs
are localized by a procedure, the overall many electron function – the corresponding
ground state Slater determinant – does not change and thus the expectation values of
the observables which reflect the degree of delocalization of the electronic structure
(for example the electron number fluctuations [291]) remain the same, irrespective of
the type of MOs used — canonical or localized ones. So, what we need is a semiem-
pirical QC method presenting the trial wave function of electrons in terms of local
objects: i.e. bonds and lone pairs. This is described in Section 2.4.

We would like to add some comments on the conceptual prerequisites for for-
mal constructions (deduction, i.e. derivation) of the mechanistic models of PES. We
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notice first that the standard MM models [173] are based on the concepts relevant
to the problems of molecular IR spectroscopy [292]. Mainly in its framework, it is
possible to think about a molecule as about a set of point masses moving under the
action of forces dependent on their relative coordinates according to harmonic law.
This approximation for the molecular PES has led to the corresponding concept of
the “molecular mechanics atom”. Its further development was guided by the wish to
load the information concerning the “force fields” – rules defining the form of the
PES – upon it. In keeping with its origin, this concept has the corresponding area of
application – rather wide, but still (as for any concept) limited. The problems, as we
could make out in the present chapter, appear when one tries to go beyond the appli-
cability area of this concept, when someone tries to load the information necessary
for describing the electronic structure elements on it, when the QM/MM methods
are being constructed. The concept of atom in MM is just not structured enough.
Putting this in a completely programmer’s manner, one may say that this “object”
does not have the “data fields” (table columns) necessary for recording this informa-
tion. However, the problem taken by the community as a technical complication is in
fact deeply conceptual. It must elaborate the concepts relevant to the problem of con-
structing hybrid QM/MM methods. Following V.A. Fock [293, 294], new concepts
arise in the theory when passing from more general and exact theories to approxi-
mate methods. Results presented in Section 2.4 show that an appropriate candidate
for the role of a more general and exact theory to be used as a starting point for con-
structing the hybrid methods is the SLG-based semiempirical QC. The reason is its
local character, which allows it to bring back into the theory such important chem-
ical concepts as “bond”, “lone pair”, and “hybridization”, which have disappeared
from the HFR based QC as its construction elements. Among these concepts, that of
the “bond” is fundamental also for the MM, but the other two look very awkward in
the frame of the MM, particularly as it applies to lone pairs frequently represented
by a separate atomic type. The concept necessary for our purposes (e.g. “atom of
deductive molecular mechanics”) will naturally arise in the course of the following
simplification of the picture of the electronic structure as compared to that which
appears in the semiempirical SLG-based QC of organic molecules.

The general scheme of the derivation of mechanistic models of PES from a QC
description of molecular electronic structure reduces to the following moves. In the
SLG based semiempirical QC there are the variables of two classes (electronic struc-
ture variables – ESV): geminal amplitudes and variables describing the HOs. ESVs
of these classes must be (approximately) estimated, although the ESVs depend on
molecular composition and geometry.

In Chapter 3 we introduce the formal construction and testing of an “intermediate”
procedure bridging QM and MM procedures. This will be a mechanistic treatment,
derived from the quantum description of the molecular system. Then this technique
will be used to define the one-electron states of the frontier atoms – the key elements
of the intersubsystem border/junction: the shapes of the one-electron states at the
frontier atoms, their electronic densities and the response of either subsystem to the
variables characterizing each subsystem.
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153. C.E. Schäffer. Pure Appl. Chem., 24, 361, 1971.
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3

DEDUCTIVE MOLECULAR MECHANICS: BRIDGING
QUANTUM AND CLASSICAL MODELS OF MOLECULAR
STRUCTURE

Abstract In the previous chapter we used the general scheme of electron variable separation to ana-
lyze current hybrid methods and suggest improvements to them. The situation in which
we find ourselves is that the variable separation technique proposed in Chapter 1 can and
should be used to sequentially construct hybrid methods by applying the GF form of the
trial wave function for the complex molecular system. The prerequisite for such an enter-
prise is that the orbitals of the system can be divided into complementary orthogonal carrier
subspaces for the quantally and classically treated subsystems of the complex system. This
prerequisite is, however, not taken for granted unless for some reason the required sub-
spaces can be defined on symmetry grounds (as in the case of π-systems in the Hückel
and other similar methods), and that is what we shall provide in this chapter. The way it
is done here may seem too indirect. It is, however, necessary to follow this route. The key
relation to be established is that between the geometry of the classically treated part of the
complex system and the orbitals spanning the carrier space for its quantally treated part.
Clearly the orbitals located on the frontier atoms are most sensitive to the geometry vari-
ations occurring in the classically treated subsystem right next to the frontier. However, to
get this dependence we need a general theory relating forms of the orbitals to the geome-
tries of the molecules. The required theory has to be constructed in terms of local quan-
tities, i.e. hybrid orbitals rather than molecular orbitals, which is what we provide in this
chapter.

3.1. MOTIVATION. MOLECULAR MECHANICS AND ADDITIVE
SCHEMES. STEREOCHEMISTRY AND VSEPR THEORY

Deductive molecular mechanics (DMM), described in detail in this chapter, is devel-
oped with the purpose of serving as a tool for deriving mechanistic models of molec-
ular energy (classical force fields) starting from a suitable quantum mechanics (QM)
description of molecular structure. The current situation within such a setting is that
despite its long history and a wealth of successful applications, the MM approach
remains, not a substantiated theory, but a vaguely defined empirical tool. It is clear
that the molecular PES can be expanded up to the second order in nuclear displace-
ments near the equilibrium geometry and this fact is often considered a general
argument in favor of the possibility of using the MM-type expansions for the total
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energy [1, 2]. This type of reasoning, however, is very questionable as the transfer-
ability of the elements of the dynamic (second derivatives) matrix between different
molecules in a wide enough class of the latter has not been proven. The transferabil-
ity of the MM force fields is in fact the real content of this approach. Nevertheless,
the reasons to treat that or any other force field as a transferable between two spe-
cific molecules or classes of molecules are either purely pragmatic or are decided on
school-wise grounds [3]. In this chapter we take a step towards quantitative analysis
of the transferability of the MM force fields.

Our derivation1 is based on the assumption that the trial wave function underlying
the MM description is one of the antisymmetrized products of strictly local geminals
(SLG) described in Section 2.4 and in [9–12]. The key feature of the underlying QM
method is its locality, recovering the concepts of chemical bonds and lone pairs on the
basis of a non-Hartree-Fock electronic trial wave function. The employed form of the
trial wave function allows us to obtain a natural representation of molecular energy in
terms of these local objects. The electronic structure variables (ESVs) in this approx-
imation become essential components of a logical framework for the transition from
the QM to an MM description as they allow construction of the potential energy sur-
faces (PES) by proper consideration of the response of the equilibrium value of ESVs
to the variations of molecular geometry and composition. In this chapter the ESVs
defining density matrix elements and basis one-electron states (hybrid orbitals – HOs)
in the SLG approximation are thoroughly analyzed. The transferability of the density
matrix elements with respect to the parameters of molecular Hamiltonian and to the
geometry variations and the linear response relations for the HOs are proven to take
place under very nonrestrictive preconditions. Special attention is paid to numerical
estimates of the ESVs’ features, giving an “experimental” support to approximate
expressions of molecular energy.

1Mathematics in this chapter is rather different from that in chapter 1 and inci-
dentally not common for the usual chemistry curriculum. It is largely based on the
Lie groups and particularly on the SO(4) group. The importance of the SO(4) group
for problems of atomic physics was discovered by V.A. Fock [4] who demonstrated
that the Schrödinger equation for the hydrogen atom possesses such a symmetry
which explains the so-called “accidental degeneracy” of its electronic spectrum – the
coincidence of the energies in the electronic shell with given principal quantum num-
ber n, irrespective of the value of the azimuthal quantum number l distinguishing
the subshells. In the heavier atoms the above symmetry does not take place so the
rôle of the SO(4) group is completely different: it is not a symmetry group for the
system any more, but the dynamical group: one spanning the whole set of accessible
hybridization states of the system, so that the energy of the system becomes a func-
tion of the element of this group. Then the problem of parametrizing – introducing
a convenient set of coordinates on this group – arises. It is done generally using the
theory of Lie groups. The sources on Lie groups are numerous and we mention only
some of them [5,6] – classical tracts on the groups of interest: the first of two more
“physical”; the second – mathematical chef- d’oeuvre. Very clear explanation is given
in [7]. As an introductory text, [8] is fine.
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An important general motivation for the search for transferability of certain
elements of molecular electronic structure is a well-known possibility to express
the numerous experimental characteristics of molecules as additive functions of
the increments of the respective characteristics attributable to the parts of these
molecules. The most striking is the precision of this approach called the “additive
scheme”. The sets of parameters describing heats of formation, dipole moments,
polarizabilities etc. in terms of atomic and/or bond increments had been developed
a long time ago, yet in the 40s and 50s of the last century. Clearly the classical
MM theory [1, 2] as we know it and as briefly described in Section 2.5 is a result of
refining these concepts in the direction of including more and more subtle effects of
geometry dependence.

A realm not directly related to the additivity concept – stereochemistry – is also
a source of data supporting our way of constructing the mechanistic model of PES.
Stereochemistry can be regarded as a qualitative tool to rationalize the spatial patterns
the atoms and groups follow when attached to each other. For a century, two funda-
mental concepts shaped this area: that of the tetrahedral carbon atom introduced by
van t’Hoff and Le Bel [13,14] and that of the pyramidal nitrogen atom. From a general
theoretical point of view, the preferable molecular shapes are ultimately controlled by
the dependence of energy on valence angles. Despite its long development history, a
common viewpoint of the origin of this angular dependence of molecular energy
has not been developed yet. On the one hand, even very simple quantum chemical
methods reproduce the observed features of molecular geometry with remarkable
precision [15]. In very general terms, it is clear that the forms of the coordination
polyhedra are controlled by the relation between the bonding (two-center) interac-
tions which favor the population of excited and ionized states of an atom under con-
sideration and the excitation and ionization energies themselves, which tend to keep
an atom in its ground (unhybridized) state [16]. Nevertheless, there exists a certain
gap between a purely theoretical, qualitative understanding of the ultimate source
of the observed stereochemical features and how these features are simulated in the
current MM force fields.The reason is that no sequential derivation has been pro-
posed to bridge the two banks of the river: general theoretical understanding on the
one hand and specific force fields of MM or empirical rules in stereochemistry on
the other. Moreover, the Gillespie scheme [17–19], designed largely for systemati-
zation of qualitative stereochemical data, ascribes the bending energy to interactions
between electron pairs residing in the valence shell of the atom of interest. This the-
oretical construct is known under the name of valence shell electronic pair repulsion
(VSEPR). According to it, the angular dependence of energy appears due to Coulomb
repulsion between electron pairs. In the literature, several attempts to reconcile this
qualitative and intellectually very attractive picture with the results of the quantum
chemical calculations can be found. These attempts, reviewed in [20], turned out to
be discouraging, however. It has been found that the energy terms responsible for
the molecular shape formation cannot be identified with the interpair Coulomb inter-
actions. This finding applies both to sp3 carbon and sp3 nitrogen stereochemistry.
In any case quantum chemistry calculations do not provide any explanation for why
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molecules have that or another stereochemistry: they simply fix the same fact by
means of yet another — now numerical — experiment. On the other hand, one can-
not ignore the enormous heuristic strength of the Nyholm-Gillespie rules ascribing
that or any other interaction strength to lone pairs and variously polar bonds.

Previous attempts to sequentially construct additive systematics for molecular
energies (which a fortiori include MM) reviewed in [20] had the following common
points: the transferability hypothesis, one-determinant approximation for the under-
lying QM wave function, and a posteriori localization of the orbitals. These features
collectively prevented authors reviewed in [20] from constructing a sequential route
from the QM description of the molecular electronic structure to any additive system-
atics. The reason is that the real derivation of any additive systematics must include
both a proof of transferability and a procedure of defining the relevant local states
(whether transferable or not). The derivation of MM from QM consists of several
steps:

• groups of electrons responsible for the observed effects on molecular energy and
geometry to be reproduced in the target MM description are to be identified;

• approximate methods sufficient for the description of selected electron groups and
reproducing the target effects are identified and formalized in the structure of the
corresponding trial wave function;

• electronic structure variables (ESVs) describing the identified groups in the above
sufficient approximation are to be selected;

• in terms of this set of ESVs, an intermediate mechanistic description (deductive
molecular mechanics – see below – DMM) of the PES is to be constructed;

• intermediate ESVs can be excluded for example in the framework of the linear
response theory (if this latter applies) or by any other relevant method in order to
get the classical (MM) model of PES.

In the subsequent sections we perform the outlined program (in different versions)
with respect to simple organic molecules.

3.2. CHARACTERISTIC FEATURES OF MOLECULAR ELECTRONIC
STRUCTURE IN SLG APPROXIMATION

Now we are ready to start the derivation of the intermediate scheme bridging quan-
tum and classical descriptions of molecular PES. The basic idea underlying the whole
derivation is that the experimental fact that the numerous MM models of molecular
PES and the VSEPR model of stereochemistry are that successful, as reported in
the literature, must have a theoretical explanation [21]. The only way to obtain such
an explanation is to perform a derivation departing from a certain form of the trial
wave function of electrons in a molecule. QM methods employing the trial wave
function of the self consistent field (or equivalently Hartree-Fock-Roothaan) approx-
imation can hardly be used to base such a derivation upon, as these methods result in
an inherently delocalized and therefore nontransferable description of the molecular
electronic structure in terms of canonical MOs. Subsequent a posteriori localization
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procedures prescribed in the literature as tools allowing one to obtain localized one-
electron states to be used as building blocks of local descriptions in fact create more
problems rather than provide solutions. First, the localization procedures are numer-
ous and the fact that they give close (but not identical) results simply makes the
choice of a unique one more difficult, as there is no clear selection criterion. Second,
irrespective of the localization procedure used the a posteriori localized one-electron
states always have some residual amplitudes on other atoms of the molecules known
as “tails”. Neither the subsequent “tail cutting” nor leaving them “as is” can hardly
be formalized or reconciled with the general requirement for transferability of the
whole picture. All these observations force us to undertake a search for an alternative
to the traditional QM methods, to be used as a starting point for deriving a mecha-
nistic description. The main criterion for such a method is that it must describe the
electronic structure in terms relevant for the target MM picture i.e. in those of bonds
and lone pairs. The method satisfying these criteria is described in Section 2.4. It uses
the geminal form of the electronic wave function [22] and strictly local HOs [23] as
the one-electron basis set to construct it. Now we are going to analyze the character-
istics of molecular electronic structures, which appear from the SLG based methods,
to fulfill the first step of our program.

3.2.1. Transferability of density matrix elements in the SLG picture

Numerical experiments performed using the SLG based semiempirical methods show
that the bond and lone pair geminals (see Section 2.4) are fairly transferable from one
molecule to another and that the electronic energy functional in this approximation
may be naturally rewritten using really local quantities, such that their local nature is
guaranteed by construction. The total molecular energy can then be recast to the form
of eq. (2.88) which represents the molecular PES as a sum of local increments. These
increments depend on the ESVs of two classes (i) those defining the hybridization
of atomic basis sets and (ii) the one- and two-electron density matrix elements char-
acteristic for each bond in the molecule. In this section we concentrate on the proof
of transferability of the electron density matrix elements as they appear in the SLG
approximation. The density matrix elements are in turn expressed through the gem-
inal amplitudes, coming from a diagonalization of the effective bond Hamiltonians.
Thus any analysis of the properties of the density ESVs starts from a description of
this latter.

3.2.1.1. Effective bond Hamiltonians

Within the original SLG approach [11, 12] and Section 2.4 the geminals are charac-
terized by the amplitudes (see eq. (2.60)) um, vm, and

√
2wm = zm, which simplifies

the normalization condition eq. (2.62) for the amplitudes to: u2
m +v2

m +z2
m = 1. The

effective Hamiltonians for each bond geminal are expressed in terms of the molec-
ular integrals in the HO basis. Obviously for a geminal expanded over three singlet
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two-electron basis configurations the optimal values of the configuration amplitudes
are the solutions of the eigenvector problem (see also [24]):⎛⎝ Rm Dm 0

Dm Cm Dm

0 Dm Lm

⎞⎠⎛⎝ um

zm

vm

⎞⎠ = εm

⎛⎝ um

zm

vm

⎞⎠(3.1)

corresponding to its lowest eigenvalue.
The matrix elements of the effective bond Hamiltonians are defined as (with the

MINDO/3 parameterization for the Hamiltonian taken for the sake of definiteness):

Rm = 2U r
m + (rmrm|rmrm)Rm − 4γRmLmP ll

m +
+ 2

∑
B �=Rm

γRmBQB + 2
∑

tm1∈Rm

m1 �=m

gRm
rmtm1

P tt
m1

Lm = 2U l
m + (lmlm|lmlm)Lm − 4γRmLmP rr

m +
+ 2

∑
B �=Lm

γLmBQB + 2
∑

tm1∈Lm
m1 �=m

gLm

lmtm1
P tt

m1

Cm = 1
2 (Rm + Lm) − ∆γm; Dm = −

√
2βRmLm

rmlm

(3.2)

where

∆γm = gm − γRmLm , gm =
1
2

∑
t∈{r,l}

(tmtm|tmtm)Tm(3.3)

The calculations of [11, 12] performed on organic compounds of different classes
(alkanes, alcohols, amines etc.) have demonstrated the remarkable stability of all the
geminal related ESVs. The values of the polarity P rr

m − P ll
m do not exceed 0.07 by

absolute value for the compounds containing carbon, nitrogen, and hydrogen atoms
(for the situation with oxygen and fluorine see below). Also the ionicity (the overall
weight of the ionic configurations u2

m + v2
m) for a rich variety of bonds has a sta-

ble value of about 0.4. The bond orders 2P rl
m all acquire values between 0.92 and

1.0. These features, though not completely unexpected, as the transferability of the
parameters of the single bonds in organic compounds is well known experimentally,
require a theoretical explanation. This is given below.

Pseudospin representation and the perturbative estimates of the bond-geminal ESVs.
To provide the required explanation, we notice that the effective Hamiltonians for
the bond geminals can be represented as a sum of the unperturbed part which, when
diagonalized yields invariant, i.e. exactly transferable, values of the ESVs, and of a
perturbation responsible for the specificity of electronic structure for different chem-
ical compositions and environments of the bond.

Pseudospin operator of the bond geminal. Let us introduce a pseudospin oper-
ator τ̂m corresponding to the pseudospin value τm = 1. The matrices of its compo-
nents in the basis of the configurations defining the geminal are given by:
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τ̂zm =

⎛⎝ 1 0 0
0 0 0
0 0 −1

⎞⎠ , τ̂+m =

⎛⎝ 0
√

2 0
0 0

√
2

0 0 0

⎞⎠
τ̂−m = (τ̂+m)†

(3.4)

The configurations corresponding to 〈τ̂zm〉 = ±1 are the ionic ones with both elec-
trons located on the same end of the chemical bond (right or left, respectively). In
terms of the pseudospin operator, the elements of the density matrices in eqs. (2.78),
(2.81) can be presented as follows:

P tt
m = 1

2 (1 + t〈τ̂zm〉), P rl
m = 1

2 〈τ̂+m〉, P lr
m = 1

2 〈τ̂−m〉

Γtt
m = 1

2 (〈τ̂2
zm〉 + t〈τ̂zm〉), Γrl

m = Γlr
m = 1

2 (1 − 〈τ̂2
zm〉)

(3.5)

The effective bond Hamiltonians also can be rewritten in terms of the pseudospin
operators. Indeed, the effective Hamiltonian eq. (3.1) for each of the bond geminals
can be presented in the form:

Ĥeff
m = Ĥeff

0m + ∆Imτ̂2
zm + ∆Pmτ̂zm

Ĥeff
0m =

⎛⎝ Cm Dm 0
Dm Cm Dm

0 Dm Cm

⎞⎠
∆Im =

1
2
(Rm + Lm) − Cm = ∆γm, ∆Pm =

1
2
(Rm − Lm)

(3.6)

with two perturbation terms. The perturbation proportional to τ̂2
zm controls the rela-

tive contribution of the ionic and covalent configurations to the bond geminal, and the
perturbation proportional to τ̂zm describes the asymmetry (polarity) of the bond. The
geminal amplitudes obtained by diagonalizing the unperturbed bond Hamiltonians
Ĥeff

0m and the density or τ̂ -type ESVs thus obtained are perfectly invariant:

u0m = v0m = w0m = 1
2 ,
(
z0m = 1√

2

)
, P tt′

0m = 1
2 , Γtt′

0m = 1
4

〈τ̂zm〉0 = 0, 〈τ̂2
zm〉0 = 1

2 , 〈τ̂+m〉0 = 〈τ̂−m〉0 = 1
(3.7)

They do not depend either on the kinds of atoms or on molecular geometry. The
unperturbed effective Hamiltonians Ĥeff

0m themselves, of course, depend on all these
parameters, so that the energies of bonds even in this simple picture are composition-
and geometry dependent, due to the corresponding dependence of the matrix ele-
ments of the Hamiltonian, but not the ESVs under consideration. The structure of the
problem squeezes the whole multidimensional manifold of matrix elements (and even
more dimensional manifold of the parameters defining the matrix elements) into two
independent quantities ∆Im and ∆Pm. One can see that the invariant values of the
ESVs eq. (3.7) are rather close to the exact SLG values which appear from numerical
experiments. These are almost independent of the particular parameterization used.
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This is also not surprising by itself, but the existence of the values of ESVs depen-
dent on absolutely nothing of course gives the explanation to this fact. Now we shall
obtain estimates of the precision to which the found transferability holds.

Perturbative estimate of ESVs with respect to noncorrelated bare Hamilto-
nian. The specificity of each bond and molecule in the approach based on the SLG
expressions for the wave function is taken into account perturbatively by using the
linear response approximation [25]. We need perturbative estimates of the expecta-
tion values of the pseudospin operators which, in their turn, give values of the den-
sity matrix elements according to eq. (3.5). According to the general theory (Section
1.3.3.2) the linear response δ〈Â〉 of an expectation value of the operator Â to the time
independent perturbation λB̂ of the Hamiltonian (λ is the parameter characterizing
the intensity of the perturbation) has the form:

δ〈Â〉 = λ〈〈Â; B̂〉〉 = λ
〈[

Ad−1

Ĥ(0) B̂, Â
]〉

(3.8)

where the zero frequency response function for the ground state is given by the
relation:

〈〈Â; B̂〉〉 = 2
∑
i�=0

〈0|Â|i〉(ε0 − εi)−1〈i|B̂|0〉(3.9)

Inserting the amplitudes u0m, v0m, and z0m of the geminals for the ground states
of the bare effective Hamiltonian and of two corresponding excited states of the
bond and two excitation energies of the effective Hamiltonian Ĥeff

0m (which are equal
to

√
2|Dm| and 2

√
2|Dm|) to the general expression for the response functions of

eq. (1.70) one can immediately check that in the case when the operators Â and B̂
are the components of the pseudospin operator or its squared z-component, only the
diagonal response functions are nonvanishing:

〈〈τ̂zm; τ̂zm〉〉 	= 0

〈〈τ̂2
zm; τ̂2

zm〉〉 	= 0
(3.10)

so that the first-order responses of the expectation values of the pseudospin operator
components to the perturbations proportional to τ̂zm and τ̂2

zm can be written as:

〈τ̂zm〉 = δ〈τ̂zm〉 =
Lm − Rm

4βRmLm

rmlm

δ〈τ̂2
zm〉 = − ∆γm

8βRmLm

rmlm

δ〈τ̂+m + τ̂−m〉 = 0

(3.11)

The last row is most important here. It demonstrates that in the linear response
approximation the off-diagonal matrix element of the one-electron density matrix
(the Coulson bond order) does not change, (i.e. is invariant even for the different
atoms forming the bond and even more to the geometry changes). This result sug-
gests the stability of the bond orders with some precision. However, this result should
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not be overemphasized. In the present form it is a consequence of the HFR type of
the two-electron wave function implied by the present treatment. As one can check,
the decomposition of the effective bond Hamiltonian eq. (3.6) is equivalent to mak-
ing the HFR approximation for its ground state. The result is that the unperturbed
part defined by eq. (3.6) yields the symmetric ground state with the total weight of
the ionic configurations equal to that of the covalent one. This coincides with the
result of the HFR approximate treatment of the symmetric bond. For this reason the
formulae for the bond-order variation and the two-electron density matrix elements
(and the HFR approximation itself) are not valid at larger interatomic separations (the
denominators in eq. (3.9) proportional to |Dm| become too small). The exact solu-
tion of the SLG problem has correct asymptotic behavior for single bonds even at
infinite interatomic separations. This attractive feature of the SLG model is lost in
the perturbative treatment based on the Hamiltonian separation of eq. (3.6) as it is in
the HFR approximation as well. This is the reason why we reconsider this problem
in a correlated setting.

Perturbation of the density matrix elements for correlated ground state. To
overcome the failure of the perturbative treatment of the ESVs describing one- and
two-electron densities described above, let us reconsider a symmetric two-electron
two-center bond. The new treatment corresponds to a different decomposition of the
effective bond Hamiltonian eq. (3.6). We assume that the contribution to the effective
bond Hamiltonian, which is proportional to τ̂2

zm, is included in the unperturbed (zero
order) Hamiltonian. The problem then reduces to diagonalizing a 2× 2 matrix. It can
be easily solved and the ESVs (elements of density matrices), as they appear from
this solution, are:

Γtt′
m =

1
4

(
1 − tt′

1
Γ(ζm)

)
, P tt

m =
1
2
, P rl

m =
ζm

2Γ(ζm)
(3.12)

where

ζm = 4βRmLm

rmlm
/∆γm, Γ(ζm) =

√
1 + ζ2

m(3.13)

Smaller interatomic separations characteristic for the real bonds correspond to the
limit ζm � 1 and the ESVs in this limit have the following asymptotic behavior:

Γtt′
0m =

1
4

(
1 − tt′

1
ζm

)
, P rl

m =
1
2

(
1 − 1

2ζ2
m

)
(3.14)

Using the separation of the effective Hamiltonian into the unperturbed part and the
perturbation, the total ionic contribution to the geminal is calculated exactly (vari-
ationally). Only the bond polarity needs to be estimated perturbatively in the linear
response approximation, but now the correlated ground state of the symmetric effec-
tive bond Hamiltonian is taken for evaluating the response function. In this context,
it is convenient to use a dimensionless bond asymmetry parameter:

µm =
Lm − Rm

∆γmΓ(ζm)
(3.15)
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instead of the original perturbation parameter ∆Pm. Inserting the necessary ground
and excited states parameters to the definition of the response function 〈〈τ̂zm; τ̂zm〉〉
one obtains:

〈τ̂zm〉 = µm
Γ(ζm) − 1
Γ(ζm) + 1

(3.16)

for the polarity of the bond between the atoms with the fixed hybridizations. It van-
ishes for infinite interatomic separation as it should for the exact wave function. The
bond ionicity i.e. the sum of the ionic contribution to the wave function and the Coul-
son bond order are not affected in the linear response approximation.

The bond polarity is given by eq. (3.16) even if the second-order correction is
considered (i.e., the contribution to the bond polarity proportional to µ2

m is absent).
The second-order corrected expectation values of the pseudospin operators defining
the bond ionicity and bond order by contrast are not vanishing and have the following
forms:

〈τ̂2
zm〉 = 〈τ̂2

zm〉c
[
1 + µ2

m

2Γ(ζm) + 1
2(Γ(ζm) + 1)

]
〈τ̂+m + τ̂−m〉 = 〈τ̂+m + τ̂−m〉c

[
1 + µ2

m

2Γ(ζm) + 1 − Γ2(ζm)
2(Γ(ζm) + 1)2

](3.17)

where the quantities with the subscript c correspond to the estimates of eq. (3.12) i.e.
with respect to the correlated ground state of the symmetrized bond Hamiltonian.

Lone pairs. An archetypal form of the two-electron group, different from the two-
center bond studied above, and incidentally much more simple in the given formula-
tion, is a lone pair. As it is mentioned in Section 2.4 the lone pair in the SLG context
is described by a degenerate geminal containing the contribution of only one ionic
configuration. For the sake of definiteness we set it to be the right-end ionic config-
uration of the corresponding degenerate bond (the amplitude um becomes equal to
unity, see eq. (2.61)). The ESVs related to the lone pair can be readily evaluated:

〈τ̂zm〉 = δ〈τ̂zm〉 = 1, δ〈τ̂2
zm〉 =

1
2

P rl
m = P lr

m = 0, Γrr
m = 1, Γll

m = Γrl
m = Γlr

m = 0
(3.18)

These quantities are perfectly invariant and transferable from one molecule to another
and basically characterize (within the accepted approximation, of course) the quali-
tative difference between the atoms of different chemical elements by the number of
lone pairs they bear.

Numerical experiments concerning the density ESVs’ transferability. The above
analytical results have been supplied by numerical estimates done to get a feeling of
the real sense of the “first” and “second” order approximations. Numerical results on
the ESVs 〈τ̂zm〉, 〈τ̂2

zm〉, and 〈τ̂+m〉 obtained by the SLG method eq. (3.1) using the
MINDO/3 parameterization and by the approximate formulae of eqs. (3.9), (3.12),
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(3.14), (3.16), and (3.17), for some characteristic bonds in small molecules were
obtained and analyzed [26]. These results show that in the case of bonds with small
polarity, all the formulae perform very well. Twenty two bonds in twelve molecules
have been considered. In the set including H2, H2O, CH4, HF, and CH3F molecules
as representative members, the values of the presumably small parameter character-
izing the relative weight of the covalent and ionic contributions in these bonds ζ−1

all fall in the range between 0.127 (for H2) and 0.355 (for the C-F bond in CH3F).
For all studied C-H bonds (primary and secondary ones as well as geminal – in the
chemical sense of this word – ones to the electronegative atom) the values of ζ−1

span the range between 0.180 and 0.187. These values of ζ−1 cover a very narrow
range of the ionicities/covalencies of the bonds under study. For example, for all stud-
ied cases the overall weights of the ionic contributions span the range between 0.361
and 0.464. The average ionicity is then 0.403 and the standard deviation over the con-
sidered data set is 0.023. This corresponds to the precision of 6%. The bond polarity
parameter µ does not exceed the value of 0.540, which is reached in the HF molecule.

The most precise approximations are given by eqs. (3.16) and (3.17) yielding
results which perfectly coincide with the exact (SLG-MINDO/3) ones even for very
polar O-H and F-H bonds. This may be qualified as using estimates of the second
order in µ, provided the bond polarity (or equivalently 〈τ̂zm〉) are linear in µ if the
orders up to the second are considered. Estimates obtained in the limit ζm � 1 by the
formulae eq. (3.12) give reasonable results for the ESVs of the bonds in not too polar
molecules at their equilibrium geometries. The bond- and atom-specific corrections
of the first and second order in ζ−1

m and µm acquire the form:

Γtt′
m =

1
4

+ δΓtt′
m , P tt′

m =
1
2

+ δP tt
m

δP tt
m =

tmµm

2
; δP rl

m = −µ2
m

4
− 1

4ζ2
m

(3.19)

δΓtt
m =

tmµm

2
− 1

4ζm
; δΓrl

m = −µ2
m

2
+

1
4ζm

The bond polarity parameter µm affects remarkably (in the first order) only the diag-
onal density matrix elements; the off-diagonal ones acquire the corrections of the
second order in µm.

The stability of the values of bond order is even more striking. In the described
data set the values of the bond orders span the range from 0.929 to 0.992 with an
average of 0.974 and standard deviation of 0.017. This corresponds to the precision
of 1.7%. Of course the high stability is explained by the validity of the above limit,
which in its turn is due to the fact that the difference between one- and two-center
electron-electron repulsion integrals (∆γm) at interatomic separations characteristic
of chemical bonding is much smaller than the resonance interaction at the same dis-
tance. The most important reason for the stability (i.e. of transferability) of the bond
orders is that they deviate from the ideally transferable value in the second order in
two small parameters ζ−1 and µ.



216 Andrei L. Tchougréeff

Further analysis allows us to single out two types of contributions to the parameter
µm. It can be broken down into a sum of a component which is, however, dependent
on the hybridization of the entering orbitals corresponding to the bond itself and the
rest describing the environment of the bond:

µm = µ0m + µ1m(3.20)

The intrinsic bond-related part is:

µ0m =
1

∆γmΓ(ζm)
[2(U l

m − U r
m) +

+ (lmlm|lmlm)Lm − (rmrm|rmrm)Rm +(3.21)

+
∑

tm1∈Lm
m1 �=m

gLm

lmtm1
nm1 −

∑
tm1∈Rm

m1 �=m

gRm
rmtm1

nm1 ]

where nm is equal to 1 for a chemical bond incident to the atom at hand and to 2 for a
lone pair at this atom. This contribution is characteristic of the pair of atoms RmLm

with given ratios of the s- and p -weights in the HOs |rm〉 and |lm〉 ascribed to the
bond at hand and clearly depending on the chemical nature of these atoms through
the specific values of atomic parameters and the numbers of lone pairs they bear.

The contribution to the bond asymmetry coming from the environment of the
bond is:

µ1m =
1

∆γmΓ(ζm)
[2

∑
B �=Lm

γLmBQB − 2
∑

B �=Rm

γRmBQB +

+ 4γRmLm〈τ̂zm〉 + 2
∑

tm1∈Lm

m1 �=m

gLm

lmtm1
tm1〈τ̂zm1〉 −(3.22)

− 2
∑

tm1∈Rm
m1 �=m

gRm
rmtm1

tm1〈τ̂zm1〉]

In the molecules with only weakly polar bonds, one can expect that the external part
µ1m is small. In the test set of molecules mentioned above, the values of µ1m do not
exceed 0.02, which is not more than 10% of the total for the asymmetry parameter
µm. In the molecules containing many polar bonds, the effect of randomly distributed
effective atomic charges almost vanishes, leading to small values of external con-
tributions to the bond polarity parameters µ1m. The only situation when one can
expect the environment to affect the characteristics of the otherwise transferable
bond, is when the bond under consideration appears in close vicinity with a few
strongly charged atoms arranged in such a way that their fields sum up to a nonzero
overall field directed along the bond. That is, clearly, one of the situations which
elaborated MM parameterizations mark as special ones, requiring specific values of
parameters.

The break up of µm into external and internal contributions according to eq. (3.20)
yields a transferable, environment-independent approximating function for the ESVs
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by substituting into eqs. (3.16) and (3.17) the internal contribution of the parame-
ter µ0m instead of its total value µm. The numerical results show that this approach
leads to the approximate ESVs perfectly coinciding with those obtained by the SLG
method itself that demonstrates the applicability of such a scheme. Comparing esti-
mates obtained with the use of the exact values of parameters µ and their intrabond
estimates µ0 allows us to single out the effects of the environment. It turns out that
in the test set, the estimates using µ and µ0 coincide up to the third decimal digit.
For example, the primary C-H bonds in the ethane and propane molecules result in
coinciding values of the ESVs estimated by using µ0. Therefore, the small differ-
ence between the ESVs of these bonds obtained by the SLG method is caused by
the slightly different environment, i.e. by the µ1 values which are equal to 0.003
and 0.006, respectively. The small magnitude of the deviations between the precise
results obtained by the SLG-MINDO/3 method and approximately estimated ESVs
can be rationalized by the smallness of their effect on the total energy of the molecule.
For example, even in the case of the polar water molecule, the approximation of the
bond ESVs by their values estimated using the µ0 value leads to an increase in the
total energy by only 0.014 kcal/mol as compared to the exact SLG calculation. This
clearly indicates that in most cases the effect of µ1 can be neglected. This is of course
a conclusion derived on the basis of numerical experiment. As such it also requires a
theoretical explanation and thus additional work to be done.

3.2.2. Mathematical description of hybridization

In the previous section we performed the first part of our program of bridging the
gap between the quantum and classical descriptions of molecular electronic structure
and molecular PES. This is reduced so far to singling out a certain class of ESVs,
namely the geminal amplitudes, or more precisely the elements of the one- and two-
electron density matrices in the basis of HOs. The equilibrium values of these ESVs
turned out to be quite stable i.e. transferable according to the numerical experiments
and to the above theoretical consideration, which demonstrated the reasons for such
behavior. Here we address another component of the whole picture, another group of
the ESVs – those describing the basis of HOs in which the transferability of the den-
sity matrix elements holds. Numerical experiments performed in the SLG-MINDO/3
approximation demonstrate that the HOs are much more sensitive to all variations of
the molecular Hamiltonian, both those induced by chemical composition and those
induced by variations of molecular geometry.

In the framework of the SLG scheme, the basis orbitals are defined by orthogonal
transformations of AOs for each atom with an sp-valence shell. The energy eq. (2.88)
is the function of the parameters defining these transformations. The 4 × 4 SO(4)
matrices hA of transformation from the AO to the HO basis are set on each heavy
atom A. In general any n × n orthogonal matrix can be presented as a product of
n(n − 1)/2 Jacobi matrices of the form
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Jij(ωij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

cosωij sin ωij

1
. . .

− sinωij cosωij

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.23)

Each of these matrices describes a rotation (by an angle ωij , i < j; j = 1 ÷ n) in
a two-dimensional subspace (plane) of the n-dimensional space. In a specific case
of the SO(3) group – that of rotations of the physical R

3 space – the matrices of
rotations around coordinate axes x, y, and z are:⎛⎝ 1 0 0

0 cosωyz sinωyz

0 −sinωyz cosωyz

⎞⎠ ;

⎛⎝ cosωxz 0 −sinωxz

0 1 0
sinωxz 0 cosωxz

⎞⎠ ;(3.24)

⎛⎝ cosωxy sin ωxy 0
−sinωxy cosωxy 0

0 0 1

⎞⎠
It is possible that the choice of three rotation axes is done in a different manner. In fact
the most widely used one differs from the above and represents an arbitrary rotation
as a product (sequential performing) of rotations around the axis z, than around y and
then around the new axis z. The corresponding angles are called the Euler angles, but
we do not use this type of parameterization of rotations in this book. In the case
of 4-dimensional orbital space, the number of necessary angular variables equals six.
Three of them (pseudorotation angles �ωb = (ωsx, ωsy, ωsz) with subscripts indicating
pairs of basis AOs mixed by the corresponding 2 × 2 Jacobi rotations) define the
structure of the HOs (s-/p-mixing) while the other three (quasirotation angles �ωl =
(ωyz,−ωxz, ωyz)) define the SO(3) matrix performing rotation of the set of four HOs
as a whole (the prefix quasi refers here to the fact that no physical body rotates under
the action of these matrices, only the system of HO’s). The SO(4) group (i.e. the
group of 4 × 4 orthogonal matrices with unit determinant) is a so-called “dynamic”
group of the manifold of the HOs of a given atom in a sense that it produces the
whole possible variety of hybridizations at each heavy atom [8] while acting on the
AOs set residing on the latter. The matrix h(A) generating the set of HOs centered
on the atom A is thus a matrix product:

h(A) = h(�ωA) = R(�ωA
l )H(�ωA

b )(3.25)

where the matrix multipliers responsible for the orientation (R) of the whole set of
the HOs at a given atom and for the hybridization (H) i.e. for the relative weights
of the s- and p-orbitals in the HOs, are themselves the products of the corresponding
Jacobi matrices:
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R(�ωl) = Jyz(ωyz)Jxz(ωxz)Jxy(ωxy)

H(�ωb) = Jsz(ωsz)Jsy(ωsy)Jsx(ωsx)
(3.26)

Generally, the transformation of orbitals caused by a pseudorotation forms a set of
HOs which is known as the hybridization pattern (like sp3, sp2 etc.) which is more
or less stable, while the set of quasirotation angles is totally non-transferable and
depends on the orientation of the molecule in space.

The mathematical description of hybridization is based on employing the algebraic
group structure of the hybrids’ manifold. Because of it, any small variation of HOs in
a vicinity of a given set of HOs given by a 4×4 orthogonal matrix h can be expressed
using another SO(4) matrix H close to the unity matrix:

H = I + δ(1)H + δ(2)H

h′ = Hh ≈ h + δ(1)h + δ(2)h

δ(1)h = δ(1)Hh, δ(2)h = δ(2)Hh

(3.27)

where the hybrids’ set h′ is close to the initial set h. In order to go further we need
the general form of matrix H and its expansion up to the second order in the vicinity
of the unity matrix. To obtain this, we address the parameterization of the SO(4)
manifold in the vicinity of the unity matrix using the following construction.

From the theory of continuous (Lie) groups it is known that their properties are
completely defined by the commutation relations between some matrices known in
this context as infinitesimal operators of the Lie group. By definition the infinitesimal
operator is a partial derivative of the matrix representing an element of the Lie group
with respect to a variable defining this element calculated for the zero values of all
variables of this type, which corresponds to taking the partial derivatives in the point
corresponding to the unity matrix which is also the unity element of the Lie group
under consideration. Obviously there are as many independent infinitesimal operators
as variables needed to define the elements of the group. On the other hand the choice
of the set of infinitesimal operators is by no means unique as selecting another set of
coordinates representing the group elements in the vicinity of the unity also defines
another set of infinitesimal operators – the partial derivatives with respect to the new
coordinates. For the SO(4) group of interest, the infinitesimal operators are defined
with respect to the above six angular variables forming the simplest coordinate map
on the SO(4) manifold:

Bγ =
∂h(�ω)
∂ωsγ

∣∣∣∣−→ω =0

=
∂H(�ωb)
∂ωsγ

∣∣∣∣−→ω b=0

and

εαβγLγ =
∂h(�ω)
∂ωαβ

∣∣∣∣−→ω =0

=
∂R(�ωl)
∂ωαβ

∣∣∣∣−→ω l=0

(3.28)

Obviously the zero values of the angular variables define the unity matrix of
the SO(4) group; εαβγ is the complete antisymmetric – Levi-Cività – tensor. The
commutation properties of the infinitesimal operators defined in this manner are
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inconvenient. On the one hand the subset Lγ obeys the commutation relations usual
for the angular momentum components

[Lα, Lβ] = εαβγLγ(3.29)

by this justifying the name of quasi-rotation angles for the �ωl variables set. Mean-
while, the set of pseudomomentum components Bγ (in fact these infinitesimal oper-
ators differ from the true momentum operators by the multiplier i) is not closed with
respect to commutation relations:

[Bα, Bβ ] = εαβγLγ(3.30)

The pseudomomentum components also do not commute with the angular (quasi-)
momentum components [8] since these commutators are equal to the respective
pseudomomentum components:

[Bα, Lβ] = [Lα, Bβ ] = εαβγBγ(3.31)

This suggests that the coordinate map eq. (3.25) reparametrizing the SO(4) manifold
is not a very good one as it does not permit to recognize the fundamental fact about the
SO(4) group that it is a direct product of two SO(3) subgroups (SO(4) = SO(3)×
SO(3)). In terms of the infinitesimal operators the direct product structure of a group
means that the infinitesimal operators of each subgroup multiplier commute with each
other. It is not necessarily so for all coordinate maps introduced into the group, but it
is possible to select some special coordinate maps where it is so. For the SO(4) group
the required commutation relations are achieved by making a coordinate transform:

ωγ± = εαβγωαβ ± ωsγ(3.32)

leading to a new set of infinitesimal operators:

Fγ =
1
2
(Lγ + Bγ) =

∂h(�ω)
∂ωγ+

, Gγ =
1
2
(Lγ − Bγ) =

∂h(�ω)
∂ωγ−

(3.33)

Their commutation relations reveal the direct product structure of the SO(4) group,
as one can check:

[Fα, Gβ ] = 0, ∀α, β, γ(3.34)

In other words, the vector operator �F commutes with the vector operator �G and each
of them forms a basis in the tangent space to the corresponding SO(3) subgroup of
the SO(4) group of interest:

[Fα, Fβ ] = εαβγFγ , [Gα, Gβ ] = εαβγGγ , ∀α, β, γ(3.35)

which means that both vector operators �F and �G are some momentum operators as
their own components conform to the characteristic commutation rules and by this
define three-dimensional rotations on the respective angle triples �ω± . The new set of
parameters (angles �ω±) lacks any clear physical meaning as it represents neither pure
rotation nor pure deformation of the system of HOs. Those conceptually important
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transformations can be recovered either by setting �ω+ = �ω−, which results in a pure
rotation, or by setting �ω+ = −�ω−, which corresponds to a pure deformation.

The coordinate map given by the variables (�ω+, �ω−) is a significant improvement
as compared to eq. (3.25). Nevertheless, an explicit expression for an h matrix in
its terms is still a clumsy combination of the trigonometric functions of two triples
of reparametrizing angles �ω±. It is known however that in the case of the SO(3)
group [8] its quaternion [27] parameterization has the advantage that the matrix ele-
ments of SO(3) rotation matrices, when expressed in terms of the components of the
normalized quaternion, are quadratic functions of these components.

As quaternions have disappeared from the common chemists’ mathematical back-
ground, we recall here the basic properties of this beautiful mathematical instrument.
Quaternions are objects having four components. The first one can be treated as a real
scalar, whereas the other three can be considered components of a three-dimensional
vector. These objects are customarily represented in a form similar to that of complex
numbers:

q = q0 + iqx + jqy + kqz = (q0, �q)

with three imaginary units i, j, k taking incidentally parts of the orts of the 3-
dimensional space. Two quaternions can be added by adding their corresponding
components (scalar and vector ones)

q = q1 + q2(3.36)
qi = q1i + q2i

They can be also multiplied generalizing the multiplication rule for complex numbers
by the following multiplication table for the orts:

� 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

(3.37)

The quaternion

q̃ = q0 − iqx − jqy − kqz = (q0,−�q)

is called conjugate to q and the norm of a quaternion is given by:

‖q‖ = (q � q̃)
1
2 =

√
q2
0 + q2

x + q2
y + q2

z(3.38)

For a pair of quaternions a and b: a = (a0,�a);b = (b0,�b), not necessarily normal-
ized, the following relation holds:

a � b = (a0b0 − (�a,�b), a0
�b + b0�a + �a ×�b)(3.39)
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The multiplication � of quaternions is associative and distributive, but not
commutative:

a � b 	= b � a(3.40)

After a short reminder of what the quaternions are, we briefly sketch how they can
be used to represent 3-dimensional rotations. Due to the obvious importance of the
capacity to describe 3-dimensional rotations of usual physical space, numerous tech-
niques or parameterizations for them have been suggested. The most widespread is of
course the representation of rotations by 3 × 3 matrices which, as mentioned above,
can be decomposed in a product of rotations around three coordinate axes. Another
natural description for a 3-dimensional rotation is by defining a rotation axis and a
rotation angle. For the rotation described by the rotation axis and the rotation angle
it is easy to construct a representation by a normalized quaternion. If ω is a rotation
angle and �l is a unit vector directed along the rotation axis (the vector of its directing
cosines) then the normalized quaternion r representing this rotation is

r =
(
cos

ω

2
,�l sin

ω

2

)
(3.41)

Any 3-dimensional vector �v can be treated as a special case of a quaternion with the
zero scalar component

v = (0, �v)(3.42)

The rotation given by the quaternion r has a formal expression:

v′ = r̃ � v � r

in terms of the quaternion product introduced above. Provided the quaternion r is
normalized one can easily see that r̃ = r−1:

v′ = r−1�v � r.

One can easily check that performing two sequential rotations described by quater-
nions r1 and r2 is equivalent to performing one rotation described by the product
quaternion

r = r1 � r2(3.43)

Performing the algebra (quaternion multiplications according to the rules eq. (3.39))
one can find that the 3 × 3 rotation matrix R corresponding to the quaternion r can
be written in the form [8, 27]:

R =

⎛⎜⎜⎝
r2
0 + r2

x − r2
y − r2

z 2(rxry − r0rz) 2(rxrz + r0ry)

2(rxry + r0rz) r2
0 − r2

x + r2
y − r2

z 2(ryrz − r0rx)

2(rxrz − r0ry) 2(ryrz + r0rx) r2
0 − r2

x − r2
y + r2

z

⎞⎟⎟⎠(3.44)

where r0, rx, ry , and rz are the components of a normalized quaternion r defining
the rotation in question. This is the announced rational (in fact quadratic) parameter-
ization of the elements of the SO(3) group (R ∈ SO(3)) by the components of the
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normalized quaternion. It is not unique as the quaternion −r obviously produces the
same matrix R as −r defines the rotation around the axis with the opposite positive
direction and by the angle ω ± 2π. By this the two quaternions define the same rota-
tion R i.e. the same element of the SO(3). The normalized quaternions obviously
form a group H

 as well (if the multiplication eq. (3.39) is considered as the group
operation) and eq. (3.44) defines a homomorphism of H

 on SO(3) with r and −r
defining the same rotation.

Our purpose is to construct an analogous parameterization for the SO(4)
group. In order to reach this goal we mention that there exists a similar homomor-
phism between the SU(2) group of 2 × 2 unitary matrices with complex elements
with the unit determinant and the SO(3) group. The correspondence establishes as
follows: for a rotation R in the three dimensional space one can choose a quaternion
representation r = (r0, �r). This quaternion is normalized and it defines a 2 × 2
matrix: (

r0 − irz −irx − ry

−irx + ry r0 + irz

)
(3.45)

It is easy to check that the rows and columns of this matrix are orthogonal and its
determinant equals unity. The independent complex matrix elements in eq. (3.45) are
known as Cayley-Klein parameters of the rotation group. Also, one can see that for
quaternions connected by the relation r = r1 � r2 the corresponding 2 × 2 matrices
are connected by the same relation with replacement of the quaternion multiplica-
tion by the usual matrix product. This establishes isomorphism between the SU(2)
group and the group of normalized quaternions H

 which can be continued to the
homomorphism on SO(3).

Now we notice that the (para)rotations by the triples of angles �ω± can be repre-
sented as (para)rotations by angles

ω± =
√∑

γ

ω2
±γ(3.46)

around axes with the directing cosines
ω±γ

ω±
, respectively. The normalized quater-

nions q and p corresponding to these pararotations have the following components:

q0 = cos
ω+

2
, qx =

ω+x

ω+
sin

ω+

2
, qy =

ω+y

ω+
sin

ω+

2
, qz =

ω+z

ω+
sin

ω+

2

p0 = cos
ω−
2

, px =
ω−x

ω−
sin

ω−
2

, py =
ω−y

ω−
sin

ω−
2

, pz =
ω−z

ω−
sin

ω−
2

(3.47)

By these quaternions q = q(�ω+) and p = p(�ω−) two SU(2) matrices can be
constructed. Each of these matrices acts in a two-dimensional space. Using a phys-
ical analogy they can be considered as respective configuration spaces for two
particles with spin 1/2 each (like an electron) [28, 29]. The basis states in these
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two-dimensional spaces can be thought as states with the spin projections ± 1
2 on

a fixed axis. For example the SU(2) matrix defined by the quaternion q = q(�ω+)
acts as: (

q0 − iqz −iqx − qy

−iqx + qy q0 + iqz

)(∣∣+ 1
2

〉∣∣− 1
2

〉)(3.48)

Constructing an SO(4) matrix in terms of two SU(2) matrices parametrized by q
and p is done as follows: each of the SU(2) matrices corresponding to q and p,
respectively, acts in a separate space of states of two particles with 1

2 -spins [28, 29].
Since the SO(4) group is a direct product of two SO(3) (or of SU(2) locally isomor-
phous to SO(3)) groups the matrix representing an element of SO(4) is the direct
(Kronecker) product of two SU(2) matrices. The space in which it acts is a direct
product of two spaces spanned by the basis states

{∣∣+ 1
2

〉
,
∣∣− 1

2

〉}
each. The configu-

ration space for the pair of spins 1
2 is spanned by four product functions:∣∣∣∣+1

2
; +

1
2

〉
;
∣∣∣∣+1

2
;−1

2

〉
;
∣∣∣∣−1

2
; +

1
2

〉
;
∣∣∣∣−1

2
;−1

2

〉
(3.49)

The direct (Kronecker) product of the SU(2) matrices representing the q- and p-
pararotations acts in this space with the notion that the q-dependent matrix eq. (3.48)
acts on the states of the first particle and the p-dependent one on the states of
the second particle in the product state. Then we form linear combinations of the
above states, which correspond to specific values of the total spin and desired spatial
symmetry. The combination which corresponds to the zero total spin of two parti-
cles transforms as a scalar i.e. (singlet) s-function. Those which correspond to the
total spin equal to unity form the basis in the three-dimensional (triplet) space of
p-functions. The coordinate (x-, y-, and z-) functions are obtained as the follow-
ing combinations of the states with the definite spin projections (the above product
states):

|s〉 = 1√
2

(∣∣+ 1
2 ;− 1

2

〉
−
∣∣− 1

2 ; + 1
2

〉)
|x〉 = i√

2

(∣∣+ 1
2 ; + 1

2

〉
−
∣∣− 1

2 ;− 1
2

〉)
|y〉 = 1√

2

(∣∣+ 1
2 ; + 1

2

〉
+
∣∣− 1

2 ;− 1
2

〉)
|z〉 = − i√

2

(∣∣+ 1
2 ;− 1

2

〉
+
∣∣− 1

2 ; + 1
2

〉)
(3.50)

Transforming the Kronecker product of the SU(2) matrices defined by q and p to
the basis of spatial s- and p-functions in eq. (3.50) yields the required SO(4) matrix:
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h =

⎛⎜⎜⎜⎜⎝
q0p0 + qxpx + qypy + qzpz q0px − qxp0 − qypz + qzpy

− q0px + qxp0 − qypz + qzpy q0p0 + qxpx − qypy − qzpz

− q0py + qxpz + qyp0 − qzpx q0pz + qxpy + qypx + qzp0

− q0pz − qxpy + qypx + qzp0 −q0py + qxpz − qyp0 + qzpx

q0py + qxpz − qyp0 − qzpx q0pz − qxpy + qypx − qzp0

− q0pz + qxpy + qypx − qzp0 q0py + qxpz + qyp0 + qzpx

q0p0 − qxpx + qypy − qzpz −q0px − qxp0 + qypz + qzpy

q0px + qxp0 + qypz + qzpy q0p0 − qxpx − qypy + qzpz

⎞⎟⎟⎟⎠
(3.51)

in terms of two normalized quaternions defined by eq. (3.47). This formula has also a
technical advantage in that it is as required a rational function of its arguments – the
quaternions’ components. Its disadvantage is that the number of variables here equals
eight although the number of independent angular variables is only six.2

The number of variables can be easily reduced in the vicinity of the unity matrix,
which is of real interest to us, without the loss of the rational character of dependence
on variables. The SO(4) matrix H close to the unity matrix I has an expansion:

H = I + δ(1)H + δ(2)H(3.52)

The unity matrix obviously corresponds to a pair of quaternions with:

q0 = p0 = 1; �q = �p = �0(3.53)

The matrix close to the unity is characterized by quaternions with small vector
parts:

|�q |, |�p | � 1(3.54)

The normalization condition for the two quaternions involved allows us to write:

q0 =
√

1 − q2
x − q2

y − q2
z ≈ 1 − 1

2
|�q |2 = 1 − 1

2
q2(3.55)

p0 =
√

1 − p2
x − p2

y − p2
z ≈ 1 − 1

2
|�p |2 = 1 − 1

2
q2

q2 =
∑

γ

q2
γ , p2 =

∑
γ

p2
γ , γ = x, y, z

By singling out the contributions eq. (3.53) up to the second order with respect to the
(small) components of the vector parts of the quaternions q and p, we obtain the first
order correction:

δ(1)H =

⎛⎜⎜⎜⎝
0 px − qx py − qy pz − qz

qx − px 0 −qz − pz qy + py

qy − py qz + pz 0 −qx − px

qz − pz −qy − py qx + px 0

⎞⎟⎟⎟⎠(3.56)

2This beautiful formula is apparently known in the community, but the author
failed to find an adequate reference.
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which is an antisymmetric matrix and the second order correction:

δ(2)H = − 1
2 (q2 + p2)I+

+

⎛⎜⎜⎝
qxpx + qypy + qzpz −qypz + qzpy

−qypz + qzpy qxpx − qypy − qzpz

qxpz − qzpx qxpy + qypx

−qxpy + qypx qxpz + qzpx

qxpz − qzpx −qxpy + qypx

qxpy + qypx qxpz + qzpx

−qxpx + qypy − qzpz qypz + qzpy

qypz + qzpy −qxpx − qypy + qzpz

⎞⎟⎟⎠
(3.57)

which is a symmetric matrix. These expressions suffice for our purposes of construct-
ing a mechanistic model of PES, which will be done below.

3.2.3. Quaternion form of the hybrid orbitals and hybridization tetrahedra

In the previous section we used quaternions to construct a convenient parameteriza-
tion of the hybridization manifold, using the fact that it can be supplied by the SO(4)
group structure. However, the strictly local HOs allow for the quaternion representa-
tion for themselves. Indeed, the quaternion was previously characterized as an entity
comprising a scalar and a 3-vector part: h = (h0,�h) = (s, �v). This notation reflects
the symmetry properties of the quaternion under spatial rotation: its first component
h0 = s does not change under spatial rotation i.e. is a scalar, whereas the vector part
�h = �v = (hx, hy, hz) expectedly transforms as a 3-vector. These are precisely the
features which can be easily found by the strictly local HOs: the coefficient of the
s-orbital in the HO’s expansion over AOs does not change under the spatial rotation
of the molecule, whereas the coefficients at the p-functions transform as if they were
the components of a 3-dimensional vector. Thus each of the HOs located at a heavy
atom and assigned to the m-th bond can be presented as a quaternion:

hm = (sm, �vm), s2
m + |�vm|2 = 1(3.58)

The HOs and thus the quaternions representing them are subject to the normalization
condition. This allows us to construct a visual picture of hybridization by using four
vector parts �hm = �vm of HO quaternions residing at a given atom. Directions of
the vectors forming the latter coincide with those of the HOs themselves, the angles
between the vectors coincide with the interhybrid angles, and the lengths of the vec-
tors are square roots of the weights of the p-states. These vectors can be assumed to
have a common origin coincident with the position of the atom (nucleus). This set
of vectors forms a hybridization tetrahedron. The formal operation giving it is the
projection of the set of HOs by:

I − |s〉〈s|(3.59)

which cuts out the scalar part (the s-orbital component) of each HO (sm, �vm)
in the quaternion representation. It can be easily recovered from the normalization
condition.
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Although they seem to be very flexible objects (the lengths of the vectors and
intervector angles are likely to be variable) the hybridization tetrahedra are in fact
subject to very strict conditions due to the orthonormality of the HOs at each given
atom. Only a three-dimensional manifold of the possible forms of the hybridization
tetrahedra spanned by the triple �ωA

b of the Jacobi angles is available. This consid-
erably reduces the freedom of choice of the shapes of the hybridization tetrahedra.
As one can easily check, the standard sp3-hybridization is naturally represented by
a perfect tetrahedron with |�vm| =

√
3/2; the sp2-hybridization is represented by a

trigonal pyramid with one of the vectors (aligned to its height) having a unit length
representing the π-orbital, and three others representing the sp2-hybrids lying in the
plane with |�vm| =

√
2/3; finally, the nonhybridized atom is represented by a tetra-

hedron formed by three perpendicular unit vectors, while the fourth one representing
the pure s HO is a zero vector. All the intermediate forms of hybridization tetrahedra
are covered by the triples �ωb of Jacobi angles. By this a coordinate map in the space
of possible hybridizations of the atoms with sp-valence shell is introduced.

Quaternion representation allows us to easily formulate various important facts
about the geometry of the systems of HOs, which become the facts concerning the
geometry of hybridization tetrahedra. The simplest is the definition of the interhybrid
angles or, in other words, of the shapes of the hybridization tetrahedra. The interhy-
brid angles θmm′ relate to the coefficients of the s-function in the corresponding HOs
through the orthonormalization conditions:

smsm′ + (�vm, �vm′) = δmm′(3.60)

by the following formula:

cos θmm′ = − sm√
1 − s2

m

sm′√
1 − s2

m′
(3.61)

A very elegant statement concerning the properties of hybridization tetrahedra
belongs to Kennedy and Schäffer [30]: in any hybridization tetrahedron two planes
formed by any two pairs of HOs are orthogonal. It can be easily proven using the
quaternion representation: for the scalar product of the vectors normal to two said
planes, the following chain of equalities holds (numeration is obviously arbitrary):

(�v1 × �v2, �v3 × �v4) =

= (�v1, �v3)(�v2, �v4) − (�v1, �v4)(�v2, �v3) =

= s1s3s2s4 − s1s4s2s3 = 0

(3.62)

General linear relations between the elements of the HOs residing on a heavy atom
as taken in the quaternion form represent some interest. The orthonormality condi-
tion for the HOs written in the quaternion form allows us to establish the shape of
the hybridization tetrahedra through eq. (3.61). On the other hand, the 4 × 4 matrix
formed by HOs expansion coefficients is orthogonal not only with respect to rows,
each representing one HO, but also with respect to columns, so that:∑

m

hmαhmα′ = δαα′(3.63)
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From this general relation one easily derives the linear dependence condition for the
vectors �vm forming hybridization tetrahedra:∑

m

sm�vm = 0(3.64)

Applying the orthogonality relation eq. (3.63) to the vector parts allows us to write:∑
m

�vm ⊗ �vm = I(3.65)

The quaternion representation of the HOs is useful also for analysis of the symme-
try properties of the energy components arising within the SLG-based semiempirical
theories. Using the quaternion notation eq. (3.58) we get for the one-center molecular
integrals:

U t
m = s2

m(Us − Up) + Up

(tmtm | tmtm) = C1 + C2s
2
m + C3s

4
m

gtkt′m = C4 + C5[s2
m + s2

k] + C3s
2
ms2

k

(3.66)

where the combinations Cn, (n = 1 ÷ 5) of the Slater-Condon parameters [31] are
defined by eq. (2.72). From the above one can easily conclude that the matrix ele-
ments entering eq. (2.88) are either invariant with respect to basis transformations
(the interatomic Coulomb interaction γAB) or can be uniquely expressed through
contributions of s-AO to the HOs (the one-center matrix elements). The only class
of molecular integrals depending on the whole structure of the HOs (including direc-
tions) within the MINDO/3 type of parameterization of the Hamiltonian is that of the
resonance integrals.

In the quaternion representation one can find that simple expressions for the first-
order variation of the structure of the HOs are derived from small quasi- and pseu-
dorotations δ�ωl and δ�ωb applied to the set of HOs at a given atom:

δ(1)s = −(δ�ωb, �v)
δ(1)�v = sδ�ωb + δ�ωl × �v

(3.67)

where × stands for the vector product of 3-vectors. Finally the formula eq. (3.51)
for the system of HOs as expanded over AOs in terms of two quaternions q and p
beautifully condenses to two quaternion multiplications [32]:

h′ = q � h � p−1(3.68)

which can be checked by directly performing the necessary algebra.

3.3. DEDUCTIVE MOLECULAR MECHANICS: FAMILY
OF APPROXIMATIONS3

At this point we have two main prerequisites for constructing a mechanistic
model of PES on the basis of the SLG-based semiempirical model of molecular elec-
tronic structure. We have performed an analysis of the ESVs used in it to describe

3Reprinted from A.L. Tchougréeff. J. Mol. Struct. (THEOCHEM), 630, 243,
2003 with permission from Elsevier.
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molecular electronic structure – those related to the geminal amplitudes/density
matrices and those describing the shapes and orientations of the sets of HOs – the
hybridization tetrahedra – in whose basis the densities are written and are shown
to be transferable. These two ESV subsets are rather different in nature and this
assumes a different treatment for these two groups in what follows. The geminal
amplitudes/density matrices have been shown to be transferable within different
orders of magnitude in small parameters. This allows for a variety of approximations
where the corrections to the transferable values to the different orders of magnitude
in different parameters are taken into account. As for the HO related ESVs, only very
general relations have been established so far.

The constructions of different approximations will be done in the sections that fol-
low on the basis of the variational principle for molecular electronic energy in the
SLG-based approximation. We shall demonstrate that this treatment leads to a mech-
anistic model which can in a sense be considered a “generic” or “deductive” form
of MM. It means that although the simple “balls-and-springs” model can hardly be
justified from any general point of view, it does not mean that any other mechanistic
model cannot be justified at all. And that is what we shall provide.

The related history can be dated back to the beginning of the last century. As it is
indicated in [33] as early as in the year 1901 a certain company advertised a model
set of wooden (i.e. rigid) tetrahedra which were designed to represent the forms
(mutual spatial arrangement) of atoms in organic molecules. A classical (mechanis-
tic) description, as opposed to the contemporary MM (if someone had pursued this
direction) could then naturally arise in terms of parameters characterizing such tetra-
hedra, rather than ball sizes and spring elasticities known nowadays. Such a descrip-
tion in principle should not be worse than a conventional “balls-and-springs”, MM
at least for the reason that atoms with bonds are to the same extent similar to balls
with springs (or sticks) as they are to the wooden tetrahedra. The QM model based
on the SLG trial wave function allows us, as it will be shown, to substantiate the
“tetrahedral” form of the MM. Indeed, a mathematical object referred to earlier as
the “hybridization tetrahedron” and used so far to visualize the shape of the HO sys-
tem residing at a given atom, can be used also for representing the energy functional
in its terms. Of course, tetrahedral shapes have been previously used in the literature
many times to visualize atoms. It is enough to mention the textbook [34]. However,
as far as we know, nobody has tried to proceed further and to ascribe any definite
energy significance to the form and relative orientation of these tetrahedra, though
the qualitative considerations of Pauling, leading to the maximal hybrid strength or
the maximal overlap [35] principles, are well known.

We are going to deduce a mechanistic model for molecular energy from the SLG-
based QM method described in Section 2.4. We shall perform transformations and
approximations, following the line mentioned above and arrive naturally at a “tetra-
hedral” representation of heavy atoms consistent with facts known from stereochem-
istry and usually interpreted in the VSEPR framework. The mechanistic model of
PES will be derived in terms of these objects.
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The derivation is based on the variational principle for energy and it naturally starts
from writing it down. The analysis of the properties of the ESVs pertinent to the SLG
approximation performed in Section 3.2.2 allows us to rewrite the energy eq. (2.88)
using our current knowledge of the transferability of the density related ESVs as
follows:

E =
∑
m

⎡⎣(2Um +
∆γm

2
− 2βRmLm

rmlm

)
+

1
2

∑
k<m

∑
tt′∈{r,l}

δTkT ′
m

gTk

tkt′m

⎤⎦+ (a)

+
∑
A<B

ZAZBDAB + (b)

+
∑
m

∑
t∈{r,l}

⎡⎣t〈τ̂zm〉(U t
m +

1
2
(tmtm|tmtm)Tm) + (c)

+
1
2

∑
k<m

∑
tt′∈{r,l}

δTkT ′
m

gTk

tkt′m
(t〈τ̂zk〉 + t′〈τ̂zm〉)

⎤⎦+ (d)

+
∑
m

⎡⎣ ∑
t∈{r,l}

1
2
(tmtm|tmtm)Tm − γRmLm

⎤⎦ δ〈τ̂2
zm〉+ (e)

+
∑
A<B

QAQBγAB +
∑
m

γRmLm〈τ̂zm〉2 + (f)

+
1
2

∑
k<m

∑
tt′∈{r,l}

δTkT ′
m

gTk

tkt′m
tt′〈τ̂zk〉〈τ̂zm〉+ (g)

−
∑
m

βRmLm

rmlm
δ〈τ̂+m + τ̂−m〉 (h)

(3.69)

The above expression is based on the MINDO/3 parameterization. If the NDDO
type of parameterization is used for the two-center Coulomb integrals the rows (e)
and (f) have to be modified accordingly (see below). The representation eq. (3.69)
allows the following family of approximate treatments for the energy. If the gemi-
nal amplitude-related ESVs (expectation values of the pseudospin operators or one-
and two-electron density matrix elements) are fixed at their transferable values – the
corresponding approximation is termed the FA i.e. the fixed amplitudes – the energy
eq. (3.69) reduces to the lines (a) and (b), which yield an expression dependent on the
molecular geometry and the hybridization ESVs only. The other lines in eq. (3.69)
reappear if corrections to the amplitude related ESVs are taken into account. This
corresponds to the tuning of the geminal amplitudes in response to the geometry
variations or chemical substitution and this family of approximations is thus called
the TA, i.e. the tuned amplitudes approximation. The simplest one in this type is that
which retains only the terms linear in 〈τ̂zm〉 ∼ µm (lines (c) and (d)) thus allowing
the bond asymmetry (polar bonds and nonvanishing effective charges). Including the
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terms linear in ζ−1
m provides the possibility to take into account the variations of two-

electron density matrices in response to geometry and environment variations (line
(e)), but including only the quadratic terms yields corrections to the bond orders (line
(h)). Further in this work we mean by the TA approximation its simplest (µm-linear)
version. Since the corrections to the bond orders appear only in the second order in
small parameters µm and ζ−1

m the FA and the simplest TA approximations may profit
from the transferable values of the bond orders.

Further components of the derivation of the mechanistic model relate to the HOs.
The latter enter the theory through the Hamiltonian matrix elements in the HO basis.
As it has been shown, the HO related ESVs also fall into two subclasses: the angu-
lar variables defining the shapes of the systems of HOs – hybridization tetrahedra
– centered at a given atom and those responsible for the orientation of this system
(or of the tetrahedron representing it) in the space. This latter set of variables (the
Jacobi angles �ωA

l ) are very flexible – their actual values depend on the orientation of
the molecule and thus can never be fixed. As for the HO related ESVs defining the
shapes of the hybridization tetrahedra (the Jacobi angles �ωA

b ) they can in principle be
fixed at certain values and then the hybridization tetrahedra so defined can be con-
sidered as rigid bodies. This type of approach will be referred as one with the fixed
hybrid orbitals (FO). This setting is used as a starting point for further analysis of the
MM atomic types, which may be considered as atoms in different hybridization states
characterized by the s-/p-weights ratios of their HOs, ultimately defined by the �ωA

b

triples – coordinates of the shapes of the hybridization tetrahedra. Alternatively one
can think about tuning the shapes of the hybrid orbitals (TO) and thus of those of the
hybridization tetrahedra. More precisely, we have to establish the relation between
the geometry and composition variations and those of the hybridization tetrahedra
deformations and rotations.

In what follows we shall consider a variety of approximate treatments of eq. (3.69)
in more detail, by allowing the fixation or tuning of each of the specified classes of
ESVs, each leading to a specific mechanistic description.

3.3.1. Fixed amplitudes fixed orbitals (FAFO) model

This is the simplest possible mechanistic model of the PES, derived from an approx-
imate treatment of energy according to eq. (3.69). The FA type of treatment implies
that the geminal amplitude-related ESV eqs. (2.78) and (2.81) are fixed at their invari-
ant values eq. (3.7). This corresponds clearly to a simplified situation where all
bonds are single ones. Within such a picture, the dependence of the energy on the
interatomic distance reduces to that of the matrix elements of the underlying QM
(MINDO/3 or NDDO) semiempirical Hamiltonian.

The FO type of treatment for the HOs implies that the weights of the s- and
p-components of the HO system at each heavy atom are fixed as the interhybrid
angles are fixed by the s-weights of HOs. This also means that the shapes of the
hybridization tetrahedra remain fixed. Selection of the s-weights or equivalently of
the �ωb triples of angles can be done in a variety of ways, each potentially producing
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a specific implementation of the FAFO model. The simplest way is to fix them at the
standard spn hybridizations with integer values of n = 1 ÷ 3. Alternatively one may
produce a series of hybridization tetrahedra by fitting the experimental data. Other
methods may also be invented. Below we analyze theoretical arguments in favor of
that or another type of deformation of a prototypical sp3 hybridization tetrahedron in
different situations. In any case, the tetrahedral shapes once found are fixed in the FO
setting and interact with each other (and with the “spheres” representing the hydro-
gen atoms). The number of bonding interactions each tetrahedron is allowed to take
part in equals to four minus the number of lone pairs residing on it i.e. the number of
bonds is determined by the usual valence rules.

Analysis of the general energy expression eq. (3.69) shows that for the MINDO/3
Hamiltonian the only HO orientation dependent contribution to the energy is the res-
onance energy of the two center bonds. In the NDDO approximation there are the
orientation-dependent Coulomb contributions, but they are much less important and
we consider them separately later.

The resonance interaction can be recast in the form of interaction between the
hybridization tetrahedra, which in its turn depends on the distance between the cen-
ters of the tetrahedra, on their mutual orientation, and on their orientation with respect
to the bond axis – that connecting the centers of the tetrahedra involved (the nuclei).
The latter can be proven by the following construction: consider the m-th two-center
bond and the 4×4 matrix of the resonance integrals between the AOs in the diatomic
coordinate frame (DCF) which is defined by setting its z-axis to be directed along the
RmLm two center bond (the bond axis):

BRmLm =

⎛⎜⎜⎜⎜⎝
βRmLm

σσ 0 0 βRmLm

σζ

0 βRmLm
ππ 0 0

0 0 βRmLm
ππ 0

βRmLm

ζσ 0 0 βRmLm

ζζ

⎞⎟⎟⎟⎟⎠(3.70)

Elements of this matrix depend only on the RmLm-interatomic separation. The reso-
nance integral βRmLm

rmlm
for the m-th bond (geminal) can be written in a concise form:

βRmLm

rmlm
= h̃Rm

m BRmLmhLm
m(3.71)

where the HOs centered on nonhydrogen atoms are taken in the DCF as well. To get
rid of the relation with the DCF we notice that the only necessary components of
the vector parts of the HO quaternions i.e. their ζ-components, have a representation
independent of the coordinate frame according to:

vTm

mζ = (�vTm
m , �eRmLm)(3.72)

Using the latter, the resonance integral can be rewritten in the form:

βRmLm

rmlm
= βRmLm

σσ sRm
m sLm

m + βRmLm

σζ sRm
m (�vLm

m , �eRmLm)+

+ βRmLm

ζσ (�vRm
m , �eRmLm)sLm

m + βRmLm
ππ (�vRm

m , �vLm
m )+

+ (βRmLm

ζζ − βRmLm
ππ )(�vRm

m , �eRmLm)(�vLm
m , �eRmLm)

(3.73)
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which is already coordinate frame-independent. Another shorthand form of the above
resonance integral is:

βRmLm

rmlm
= (sRm

m , �vRm
m )BRmLm

(
sLm

m

�vLm
m

)
(3.74)

where usual matrix multiplications are assumed and the resonance integrals’ BRmLm

matrix is rewritten according to the quaternion representation of HOs, possessing
scalar and vector parts:

BRmLm =

⎛⎜⎜⎜⎜⎝
βRmLm

σσ βRmLm

σζ �eRmLm

βRmLm

ζσ (�eRmLm)† βRmLm
ππ I +

+ (βRmLm

ζζ − βRmLm
ππ )

�eRmLm ⊗ �eRmLm

⎞⎟⎟⎟⎟⎠(3.75)

Here I stands for the 3 × 3 unit matrix acting (as does the 3 × 3 diadic product
�eRmLm ⊗ �eRmLm) on the vector parts of HOs in the quaternion form.

Multiplying the resonance integral by the quadrupled transferable spin bond order
P rl

0m = 1
2 eq. (3.14) results in the resonance energy of the m-th bond which is the

only nontrivial contribution to the molecular energy at this (FAFO) level of approx-
imate treatment of the MINDO/3 Hamiltonian using the SLG trial wave function.
Within this picture the hybridization tetrahedra interact and the interaction energy
depends on separations between centers of the tetrahedra, their mutual orientation,
with respect to the bond axis.

Going to the NDDO type of the Hamiltonian, parameterization brings additional
energy terms dependent on the mutual orientation of hybridization tetrahedra. When
the NDDO parameterization scheme for the Hamiltonian is used, the two-center
Coulomb integrals become dependent on the magnetic quantum numbers of the
AOs for which they are defined. This brings also the dependence of the two-center
Coulomb integrals in the HOs basis on the shape and the orientation of the HOs
involved. The strictly local character of one-electron basis functions forming carrier
spaces for geminals allows us to introduce point multipoles describing charge distri-
butions for atoms defined in terms of the electron densities located on the HOs. For
convenience, we write them in the units −e. The atomic charge (monopole) is then
defined according to eq. (2.79). Using this definition the HOs’ populations P tt

m can
be written as:

P tt
m =

QA + ZA

8
+ δ′P tt

m for tm ∈ A(3.76)

In this expression (in variance with the transferable value of the one-electron density
1
2

) the average spin density
QA + ZA

8
takes into account the net electron transfer

to the atom A. For this reason the deviations δ′P tt
m at each given atom satisfy the

condition: ∑
m

δ′P tt
m = 0(3.77)
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The details of electron distribution in atoms characterized by higher multipoles
(dipoles and quadrupoles) are defined by the deviations δ′P tt

m . As it has been already
mentioned the vector parts of the HOs centered at each given atom �vA

m transform as
3-vectors under the molecule/space rotations, and the hybrid densities sA

m�vA
m trans-

form as 3-vectors as well. On the other hand, the diadic products �vA
m ⊗ �vA

m under
3-dimensional rotations transform as a sum of a scalar and of the rank two tensor
of the 3-dimensional space. The values of these momenta are obtained by averaging
their standard definitions:

�µ = e�r(3.78)
D = e(3�r ⊗ �r − r2I)

over the electron density distribution around each given atom (�r have to be understood
as coordinates of electrons relative to the nucleus at hand). In the SLG approximation,
the latter is described by the HOs and their populations. Using the representation of
an HO in the quaternion form of eq. (3.58), we obtain the dipole moment of the
charge distribution on atom A to be:

�µA = 2dA
1

∑
tm∈A

P tt
msA

m�vA
m(3.79)

Inserting the HOs’ populations expressed in terms of the effective charge of the atom
and HO specific deviations, and taking into account the condition eq. (3.64) we obtain
for the dipole moment:

�µA = 2dA
1

∑
tm∈A

δ′P tt
msA

m�vA
m(3.80)

Analogously the quadrupole moment on atom A is:

DA = 6(dA
2 )2

∑
tm∈A

P tt
m(�vA

m ⊗ �vA
m − (vA

m)2I)(3.81)

which reduces to:

DA = 6(dA
2 )2

∑
tm∈A

δ′P tt
m(�vA

m ⊗ �vA
m − (vA

m)2I)(3.82)

due to the linear condition eq. (3.65). In the above expressions the characteristic
lengths dA

1 and dA
2 define the radial extent of the corresponding quantities and are

expressed through the orbital (Slater) exponents [36] (n stands for the principal quan-
tum number of the orbitals under consideration):

d1 =
2n + 1√

3
(4ζnsζnp)n+1/2

(ζns + ζnp)2n+2

d2 =

√
(2n + 1)(2n + 2)

20
ζ−1
np

(3.83)

As it has been shown long ago in [37,38] the molecular two-electron integrals can
be represented with high accuracy as energies of interactions of the corresponding
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multipole momenta. In the MNDO context, the potentials acting between the
multipoles and representing the two-center two-electron integrals are not those
known from electrostatics, but semiempirical interaction potentials selected to flow
to the one-center values of the respective integrals when the interatomic separation
vanishes. This does not seem to be very practical as noticeable deviations from the
multipole based estimates appear at the unphysical internuclear separations which
are significantly smaller than the characteristic bond lengths. For all physically
meaningful internuclear separations, the integrals can be approximated by multipole
expansions, thus yielding for the two-center contribution to the Coulomb energy:

EAB
Coul = QAG00QB + QAG01�µB − �µAG10QB −

− �µAG11�µB + QAG02DB + DAG20QB −
− �µAG12DB + DAG21�µB + DAG22DB

(3.84)

where

Gll′
αβ...µ = ∇α∇β ...∇µ︸ ︷︷ ︸

l+l′

R−1
AB(3.85)

are the derivatives of the Coulomb potential with respect to the Cartesian components
α, β, ..., µ taken l times with respect to the components of the radius vector of atom A
and l′ times with respect to the components of the radius vector of atom B necessary to
describe the interactionsof respectivemultipoles (fordetails see [39–41]).This replaces
the Coulomb interaction of effective atomic charges in row (f) in eq. (3.69) for the
nonbonded atoms,AandB. For the (singly) bonded atoms, the two-electron two-center
matrixelement involvingHOscenteredat twocentersof thebondcontributes itsproduct
by the two-electron density matrix element rather than the product of two one-electron
density matrix elements. So the corresponding contribution must be taken away from
the multipole-multipole contribution eq. (3.84) and added bond-energy term.

3.3.1.1. Local equilibrium conditions for hybridization tetrahedra and quasitorques

In the FAFO picture, when the form of the HOs is fixed, the equilibrium condition
for the hybridization tetrahedron can be written as the equilibrium condition for the
orientation of the latter. Due to the angular character of the variables involved, the
corresponding set of the energy derivatives with respect to the �ωA

l components can
be thought to be a (quasi)torque (here the prefix quasi as previously refers to the
fact that no rotation of any physical body is involved in its definition rather that of a
fictitious hybridization tetrahedron). As one can check, each (m-th) bond, incident to
the given atom A, contributes to the quasitorque the following increment:

�KRmLm
m = − 4P rl

0m

{
{�eRmLm × �vRm

m

[
βRmLm

ζσ sLm
m +

+ (βRmLm

ζζ − βRmLm
ππ )(�vLm

m , �eRmLm)
]

+(3.86)

+ βRmLm
ππ �vLm

m × �vRm
m

}
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Assuming to simplify the notations that for all the incident bonds the atom A is
the right-end atom (A = Rm) we obtain the overall quasitorque acting upon the
hybridization tetrahedron centered on the atom A and the corresponding energy min-
imum conditions with respect to orientations of all hybridization tetrahedra in the
molecule:

�KA =
∑
m

�KRmLm
m

∀A, �KA = 0
(3.87)

These equilibrium conditions are completely analogous to the equilibrium conditions
for a system of rigid bodies [42] which requires evanescence of all (quasi)torques.

Though the equilibrium conditions eq. (3.87) require that a sum of the contribu-
tions eq. (3.86) vanishes, it is of interest to consider archetypal situations when some
of these contributions vanish separately. These situations are twofold as two vector
terms eq. (3.86) sum up to give a quasitorque contribution. The first one, proportional
to �eRmLm × �vRm

m , vanishes if the HO on the right-end atom and the bond vector are
collinear. If the same holds also for the left-end atom, one can see that the vector parts
of both HOs ascribed to the bond under consideration are collinear so that the second
vector term proportional to �vLm

m × �vRm
m also vanishes. This clearly corresponds to

the equilibrium condition for two singly σ-bonded hybridization tetrahedra. A qua-
sitorque appears if an HO ascribed to the bond under consideration is not collinear
with the bond axis it is ascribed to and the quasitorque tends to align them.

An alternative equilibrium condition is possible only for a pair of HOs with vanish-
ing s-contributions. For two pure p-orbitals residing on the right- and left-end atoms
of the bond, the numerical coefficients at the first vector terms vanish if the HOs are
perpendicular to the bond axis. In this case the second vector term vanishes if two
vectors representing the pure p-orbitals are parallel. This clearly corresponds to the
picture of a π-bond between the hybridization tetrahedra. A quasitorque then appears,
tending to orient two hybridization tetrahedra in such a way that the two heights of
the unit length of two hybridization tetrahedra are parallel.

The above considerations are valid for the MINDO/3 type of the Hamiltonian
parameterization. In the NDDO setting the intrabond contribution to the quasitorque
must be modified to take into account the dependence of the two-center Coulomb
interaction integrals on the shape and orientation of the HOs on both ends of the bond.
Moreover, additional contributions to the quasitorque acting upon the hybridization
tetrahedron residing at a given atom come from all nonbonding Coulomb interactions
eq. (3.84). Their form can be easily figured out from the multipolar representation of
the nonbonded Coulomb interactions. Indeed, under the action of a 3-dimensional
rotation described by (small) angles δ�ωA

l the dipole moment centered on atom A
acquires a correction of the form:

δ�µA = δ�ωA
l × �µA(3.88)
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and the quadrupole momentum acquires a correction of the form:

δDA = 6(dA
2 )2

∑
tm∈A

δ′P tt
m((δ�ωA

l × �vA
m) ⊗ �vA

m + �vA
m ⊗ (δ�ωA

l × �vA
m)) =

(3.89)
= δΩA

l DA −DAδΩA
l

where δΩA
l stands for the 3× 3 matrix representing the vector multiplication by δ�ωA

l

from the left.
Then the contributions to the quasitorques can be found. The simplest one is the

contribution coming as an effect of the orientation of the dipole moment �µA. As the
energy contribution of all terms involving the dipole can be written as

−(�µA, �EA)(3.90)

where �EA is the electric field vector on the atom A from all sources, inserting the
dipole moment variation δ�µA gives:

−(δ�µA, �EA) = −(δ�ωA
l × �µA, �EA) = (δ�ωA

l , �µA × �EA)(3.91)

and the contribution to the quasitorque is precisely �µA × �EA. The situation with the
quadrupole is only slightly more complex and can be treated according to [43].

3.3.1.2. Global equilibrium conditions for hybridization tetrahedra

In the previous subsection we formulated the equilibrium conditions for the
hybridization tetrahedra which follow from the FAFO approximation for the molec-
ular energy eq. (3.69). They do not seem to be practical for performing calculations
as they require tedious recalculations on the scalar and vector parts of the HOs after
a step along the energy gradient eq. (3.87) is performed. An alternative would be to
use eq. (3.25) with fixed pseudorotation angles �ωA

b or in a more geometric formula-
tion with the fixed shapes of the hybridization tetrahedra. These latter are possibly
identifiable with specific atomic “types”, which produce the matrix H(�ωA

b ) with
the columns corresponding to the system of HOs at a given atom. If these HOs are
treated as quaternions, their vector parts �v

A(0)
m form the hybridization tetrahedron at

atom A. The actual orientations of these tetrahedra are defined by the interactions of
each hybridization tetrahedron with its neighbors: either other tetrahedra or spheres,
representing hydrogen atoms. For each atom the orientation of its system of HOs is
given by a rotation matrix R(�ωA

l ) eq. (3.25) according to:(
sA

m

�vA
m

)
= RA

(
sA

m

�v
A(0)
m

)
(3.92)

The 4 × 4 rotation matrices RA = R(�ωA
l ) have the following structure:

R =

⎛⎜⎜⎜⎝
1 0 0 0
0
0 R
0

⎞⎟⎟⎟⎠(3.93)
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ensuring the invariance of the scalar parts of the HOs. The vector parts of all HOs
residing at a given atom transform according to:

�vA
m = RA�vA(0)

m(3.94)

which gives the actual orientation of the hybridization tetrahedra in the molecule.
The resonance energy thus becomes a quadratic function of the components of the
normalized quaternions rA used to parametrize matrices RA. The equilibrium orien-
tation of these tetrahedra satisfies the energy minimum condition. Taking derivatives
with respect to the components of rA and including the normalization conditions
‖rA‖ = 1 by using the Lagrange multipliers ξA results in a set of 4-dimensional
linear eigenvalue problems:

ΞArA = ξArA(3.95)

which must be solved self-consistently for all nonhydrogen atoms, as matrices ΞA

depend on orientation of the hybridization tetrahedra of the atoms bonded to atom
A. The eigenvector rA corresponding to the lowest eigenvalue ξA must be taken
throughout the iteration process.

The matrix elements of ΞA can be evaluated using a fundamental fact concerning
quaternions: the rotation of the vector part of an HO according to eqs. (3.92), (3.93),
and (3.94) in the quaternion representation can be written as:

hA
m = rA � hA(0)

m � r̃A(3.96)

Then, performing the necessary algebra, we arrive at a pair of 4 × 4 matrices:

Cm =

⎛⎜⎜⎜⎜⎜⎝
0 1

2�v
Rm(0)
m × �eRmLm

1
2 (�vRm(0)

m × �eRmLm)†
(�vRm(0)

m , �eRmLm)I +
+ 1

2 (�vRm(0)
m ⊗ �eRmLm +

+�eRmLm ⊗ �v
Rm(0)
m )

⎞⎟⎟⎟⎟⎟⎠(3.97)

Dm =

⎛⎜⎜⎜⎝
0 1

2�v
Rm(0)
m × �vLm

m

1
2 (�vRm(0)

m × �vLm
m )†

(�vRm(0)
m , �vLm

m )I +
+ 1

2 (�vRm(0)
m ⊗ �vLm

m + �vLm
m ⊗ �v

Rm(0)
m )

⎞⎟⎟⎟⎠(3.98)

In their terms the sought symmetric matrix ΞA acquires the form:

ΞA = 4
∑
m

P rl
m

[(
βRmLm

ζσ sLm
m +(3.99)

+ (βRmLm

ζζ − βRmLm
ππ )(�vLm

m , �eRmLm)
)

Cm +

+ βRmLm
ππ Dm

]
This comprises the global equilibrium condition for hybridization tetrahedra in the
FAFO model. Their direct relation with the molecular shape which enters in an invari-
ant manner through the bond vectors �eRmLm is remarkable. As previously, the above
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formulae apply only if the MINDO/3 type of parameterization is assumed for the SLG
theory underlying the DMM description. If the NDDO parameterization is employed,
the corrections due to electrostatic interactions between the multipoles residing on
heavy atoms, whose orientations are dependent on those of the hybridization tetrahe-
dra, must be included.

3.3.1.3. Librations of hybridization tetrahedra

In the previous subsections we considered the equilibrium conditions for the
hybridization tetrahedra in molecules, which represent the orientation of the sys-
tems of HOs at each heavy atom with fixed weights of the s- and p-functions in
each HO or equivalently with fixed shapes of hybridization tetrahedra. In order to
have a description of the energy in the vicinity of the equilibrium, the second order
corrections to it are necessary. The terms of interest are of two types. First, these
are the terms of the second order with respect to variations of quasirotation angles
δ�ωA

l at each given atom, which describe the energy variation when the hybridiza-
tion tetrahedron of the atom at hand slightly rotates (librates) while all surrounding
hybridization tetrahedra for heavy atoms and spheres representing hydrogens remain
in their equilibrium positions. Second, there are terms of the overall second order
bilinear with respect to δ�ωRm

l and δ�ωLm

l . These terms describe the contribution to
the energy which appears when hybridization tetrahedra residing on two bonded
atoms librate simultaneously.

Due to the FAFO type of approximations used, only the resonance energy is
affected by the librations of the hybridization tetrahedra. The terms of the first type
may be obtained by inserting the second order correction (δ(2)sRm

m , δ(2)�vRm
m ) for the

right-end HOs into the expression for the resonance integral eqs. (3.73), (3.74). In
the FO approximation δ(2)sRm

m naturally vanishes. Inserting the second order cor-
rections for the HOs eqs. (3.73), (3.74) results in the second order correction to the
resonance integrals. The latter must be habitually multiplied by the quadrupled spin-
bond orders for the corresponding bonds and summed up. This procedure has been
performed in [44] and [45] for the sp3 hybridized atom with four symmetric sub-
stituents. In this case, the energy correction is a diagonal quadratic form in δ�ωRm

l

with three degenerate eigenvalues:

δ
(2)
ωlωlE = 4P rl

0 (δ�ωRm

l |GRmRm

ll |δ�ωRm

l )

GRmRm

ll = 4√
3
(βRmLm

ζσ sLm
m − βRmLm

ζζ

√
1 − (sLm

m )2)I
(3.100)

The corrections of the second type can be easily obtained if one inserts the first
order corrections (δ(1)sRm

m , δ(1)�vRm
m ) and (δ(1)sLm

m , δ(1)�vLm
m ) to eqs. (3.73), (3.74).

As previously δ(1)sRm
m = δ(1)sLm

m = 0 due to the FO approximation. After some
algebra we get:

δ
(2)
ωlωlE = 4P rl

0m

(
δ�ωRm

l |GRmLm

ll |δ�ωLm

l

)
, where

GRmLm

ll = βRmLm
ππ

(
(�vRm

m ⊗ �vLm
m ) − (�vRm

m , �vLm
m )I

)
+

+ (βRmLm

ζζ − βRmLm
ππ )(�vRm

m × �eRmLm) ⊗ (�vLm
m × �eRmLm)

(3.101)
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The terms of this type must be summed over all bonds between the heavy atoms.
The formulae eqs. (3.100), (3.101) represent the potential energy of the molecular
system as a quadratic function on small variations of the variables �ωA

l . This may
be used either in a frame of a linear response analysis of reaction of the system of
hybridization tetrahedra to various perturbations or (if the hybridization tetrahedra
are supplied by fictitious inertia momenta) as potential energy of the system of the
tetrahedra in a frame of a Car-Parinello-like [46] procedure.

The interaction of the neighbor hybridization tetrahedra is particularly simple if
the tetrahedra involved correspond to the sp3 hybridized atom with equivalent bonds.
In this case the HOs in the equilibrium are collinear with the bond vectors so that the
3 × 3 matrix in eq. (3.101) becomes:

GRmLm

ll =
3
4
βRmLm

ππ ((�eRmLm ⊗ �eRmLm) − I)(3.102)

Numerical estimates for the libration force constant can be easily done. For
the methane molecule only the term eq. (3.100) appears. With the MINDO/3
parametrization at the equilibrium geometry of methane, it amounts to 17.19 eV/rad2.
For neopentane under the same conditions the diagonal libration force constant is
21.15 eV/rad2, whereas the coefficient at the off-diagonal 3× 3 matrix block respon-
sible for coupling of librations of two neighbor carbon hybridization tetrahedra is
only 2.02 eV/rad2.

The above formulae are modified in the NDDO parametrization where the libra-
tions of the hybridization tetrahedra of nonbonded atoms also couple through the
electrostatic forces acting between corresponding multipoles.

3.3.2. Fixed amplitudes tuned orbitals (FATO) model

The deductive mechanistic model for molecular PES proposed in the previous sub-
section corresponds to the picture of the rigid (“wooden”) hybridization tetrahedra.
Within such a picture, whatever perturbations happen to a molecule may result only
in variations of the orientation of the hybridization tetrahedra representing the sys-
tems of HOs residing at each heavy atom. Meanwhile, the proposed treatment of the
hybridization manifold locally using its SO(4) group structure may be used to con-
struct another, somewhat wider (but also deductive) mechanistic representation of
molecular energy where heavy atoms are depicted as flexible (“rubber”) tetrahedra.
Analysis of results of semiempirical calculations performed by the SLG-MINDO/3
method underlying our derivation, done in [44] and above in Section 3.2.1, shows that
the hybridization related ESVs are much more sensitive to any perturbation affecting
the molecule than the ESVs related to the geminal amplitudes. This puts into the
agenda developing an approximation which allows first of all the adjustment of the
shapes of the HOs (or equivalently of the hybridization tetrahedra) to various per-
turbations. The geminal related ESVs may still be considered to be fixed at their
transferable values.
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Specificity of any semiempirical parametrization is that in the FA approxima-
tion the one-center energies EA eq. (2.88) related to the carbon atom remain
hybridization-independent (see below and [44] and [45]). This result which ulti-
mately comes from the fact that in carbon the valence shell is half filled, distinguishes
carbon among other elements. For that reason (in the FA approximation) only the
resonance contribution to the total energy depends both on orientation (as in the
FAFO model) and on the form of the hybridization tetrahedra. This considerably
simplifies the derivation in the case of carbon atoms. For that reason we consider it
separately.

3.3.2.1. FATO molecular mechanics of sp3 carbons

Pseudotorques and Local equilibrium conditions for sp3 carbons. As mentioned
previously, the only hybridization-dependent contribution to the total energy in the
case of carbon atom in the FATO approximation is still the resonance energy. So the
equilibrium conditions with respect to the shape and orientation of the hybridiza-
tion tetrahedra representing the system of HOs residing at a carbon atom A reduce
to a requirement of evanescence of the first derivatives of the resonance energy with
respect to pseudo- and quasirotation angles �ωA

b and �ωA
l of eq. (3.25). Using the expan-

sion for the resonance energy up to linear terms [45] in small pseudo- and quasirota-
tions (δ�ωA

b and δ�ωA
l ) results in the equilibrium conditions:

�NA = ∇�ωA
b
E = �0; �KA = ∇�ωA

l
E = �0(3.103)

for all atoms A, where the quasitorque �KA is defined by eq. (3.86), whereas the
pseudotorque �NA is:

�NA = − 4
∑
m∈A

P rl
0m{βRmLm

σσ �vRm
m sLm

m + βRmLm

σζ �vRm
m (�vLm

m , �eRmLm) −

− βRmLm

ζσ sRm
m sLm

m �eRmLm − βRmLm
ππ sRm

m �vLm
m −(3.104)

− (βRmLm

ζζ − βRmLm
ππ )sRm

m (�vLm
m , �eRmLm)�eRmLm}

As previously, here, for the sake of simplicity of notation, we assume that for all
bonds incident to atom A, this atom is a “right-end” atom of the bond. Though
the equilibrium conditions are rather cumbersome, for symmetric cases they can be
solved yielding obvious answers: the carbon atom in symmetric tetrahedral environ-
ment acquires the sp3 hybridization with the HOs collinear to the bonds, etc.

The analog of the global equilibrium conditions eq. (3.95) for the FAFO model can
be obtained in the FATO setting as well. To do so we notice that inserting the SO(4)
matrix parametrized by a pair of quaternions eq. (3.53) yields the resonance energy
as a bilinear function in each of the normalized quaternions qA and pA describ-
ing together the shape and orientation of the hybridization tetrahedron on atom A.
Combining this bilinear form with the normalization conditions for the quaternions:
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‖qA‖ = ‖pA‖ = 1 taken into account with use of the Lagrange multipliers θA and
υA results in a system of pairs of coupled linear equations:

ΘAqA = θApA; ΥApA = υAqA(3.105)

which must be solved consistently for all A. We do not give the explicit form
of matrices ΘA and ΥA both because they are too cumbersome and this treat-
ment of the global equilibrium cannot be generalized to atoms other than carbon,
as for other atoms one-center energies involve higher powers of the quaternion
components.

Second order corrections to the energy of sp3 carbon atom. In order to construct
the required mechanistic picture, the estimate of the restoring force which opposes
both the quasi- and pseudorotation (deformation) of the hybridization tetrahedra is
necessary. That can be obtained by a linear response procedure. For the sp3 carbon
atom in the symmetric tetrahedral environment, the related resonance energy is a
diagonal quadratic form with respect to small quasi- and pseudorotations together
with triply degenerate eigenvalues [44, 45]:

δ
(2)
ωωE = 4P rl

0m

(
(δωRm

b |GRmRm

bb |δωRm

b )+

+ (δωRm

l |GRmRm

ll |δωRm

l )
)

,

with

GRmRm

bb = 2
[(

βRmLm
σσ + 1√

3
βRmLm

ζσ

)
sLm

m −

−
(
βRmLm

σζ + 1√
3
βRmLm

ζζ

)√
1 − (sLm

m )2
]
I

(3.106)

and where GRmRm

ll is given by eq. (3.100). This is used to obtain the response
of the shape and orientation of the hybrids (δ�ωb and δ�ωl) to various perturbations
(see below). Analogous expressions can be obtained using eq. (3.53) for arbitrary
hybridization.

Further terms are necessary to describe the interaction between the shape and ori-
entation modes of two bonded tetrahedra, which appears when either of them is quasi-
or pseudorotated in the vicinity of the equilibrium. These formulae can be obtained
by considering those cross terms in the resonance integral expansion which are bilin-
ear in δ�ωRm and δ�ωLm , respectively. This result can be represented as a matrix
element:

δ(2)
ωωE = 4P rl

(
δωRm

b , δωRm

l

)(GRmLm

bb GRmLm

bl

GRmLm

lb GRmLm

ll

)(
δωLm

b

δωLm

l

)
(3.107)

of a 6 × 6 off-diagonal block where the 3 × 3 subblocks GRmLm

bb ,GRmLm

bl ,GRmLm

lb

are:
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GRmLm

bb = βRmLm
σσ �vRm

m ⊗ �vLm
m − βRmLm

σζ sRm
m �vRm

m ⊗ �eRmLm −

− βRmLm

ζσ sRm
m �eRmLm ⊗ �vLm

m + βRmLm
ππ sRm

m sLm
m I +

+ (βRmLm

ζζ − βRmLm
ππ )sRm

m sLm
m �eRmLm ⊗ �eRmLm

GRmLm

bl = −βRmLm

σζ �vRm
m ⊗ (�vLm

m × �eRmLm) − βRmLm
ππ sRm

m VLm
m +

+ (βRmLm

ζζ − βRmLm
ππ )sRm

m �eRmLm ⊗ (�vLm
m × �eRmLm)

GRmLm

lb = −βRmLm

ζσ (�vRm
m × �eRmLm) ⊗ �vLm

m + βRmLm
ππ sLm

m VRm
m +

+ (βRmLm

ζζ − βRmLm
ππ )sLm

m (�vRm
m × �eRmLm) ⊗ �eRmLm

(3.108)

Here VRm
m stands for the 3 × 3 matrix representing the vector multiplication by

�vRm
m : VRm

m �x = �vRm
m × �x; and the GRmLm

ll subblock is defined by eq. (3.101). These
subblocks couple small pseudo- and quasirotations of the hybridization tetrahedra
corresponding to the right- and left-end atoms of the bond (in the specified order)
in a bilinear fashion. Their form particularly simplifies for the sp3 carbon atom in a
symmetric environment for which we have:

GRmLm

bb = 1
4βRmLm

ππ I − 1
4

[
3βRmLm

σσ +
√

3βRmLm

σζ −
√

3βRmLm

ζσ −

− (βRmLm

ζζ − βRmLm
ππ )

]
�eRmLm ⊗ �eRmLm

GRmLm

bl = GRmLm

lb = 1
2βRmLm

ππ ERmLm

(3.109)

where ERmLm stands for the 3 × 3 matrix representing the vector multiplication by
�eRmLm : ERmLm�x = �eRmLm × �x.

For the diagonal restoring force constants related to the deformations of the
hybridization tetrahedra the following estimates can be obtained: 30.58 eV/rad2 in
CH4; 34.49 eV/rad2 in neopentane. This estimate indirectly explains the observation
extracted from the numerical experiments: the shapes of the hybridization tetrahedra
are more stable than their orientations as the diagonal force constant for deformations
is 1.5 times larger than that for rotations of the hybridization tetrahedra.

3.3.2.2. FATO molecular mechanics of nitrogen atom. Model “ammonia” molecule.

As it has already been shown, within the FA approximation, the form of the HOs
on four-coordinated carbon atom is ultimately defined by the two-center resonance
interactions. It is the SO(4) group structure of the hybrid manifold that restricts the
capacity of the HOs residing on the atom to adjust themselves to the arrangements
of the surrounding atoms (groups). In this subsection, we apply the linear response
method to estimate the shape of the hybridization tetrahedron and to analyze the stere-
ochemistry and molecular mechanics of the triply bonded nitrogen atom. Even in the
FA picture, the presence of a lone pair on the nitrogen atoms results in a significant
hybridization dependence of the one-center energy contributions eq. (2.88) which
cannot be considered a small perturbation. We consider the hybridization dependent
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parts of molecular energy in order to extract information on equilibrium shapes of
the corresponding hybridization tetrahedra. For the sake of simplicity, we restrict
ourselves with one in the ammonia molecule as this model problem retains all the
characteristic features of the general case. In order to study the ammonia molecule
we consider it as maintaining its C3v symmetry with the 3rd order axis directed along
the z-axis of the coordinate frame. The geometry is then characterized by the pyrami-
dalization angle δ equal to zero for the planar structure. The overall resonance energy
of three N-H bonds is then a function of only one of the three pseudorotation angles
ωsz and of the pyramidalization angle δ:

−
√

3P rl
[
βRmLm

σσ cosωsz + βRmLm

ζσ sin δ sinωsz +
√

2βRmLm

ζσ cos δ
]

(3.110)

It is easy to see that the minimum of the above expression with respect to both its
arguments is reached precisely for the planar configuration and for the sp2 hybridiza-
tion (δ = 0, ωsz = 0). This result comes from the (two-center) resonance energy
only.

The hybridization dependent part of the one-center energy of the nitrogen atom is:

[(Us − Up) +
1
4
(3C2 + 2C3 + 4C5)] sin 2ωsz +

1
4
C3 sin 4ωsz(3.111)

with obvious extrema: a minimum at ωsz = π
2 (no hybridization) and a maximum

at ωsz = 0 (sp2 hybridization). Characteristic values of the atomic parameters [47]
show that the contributions depending on Coulomb integrals can provide the total
variation in energy less than 0.8 eV whereas the difference of the core attraction
parameters Us and Up results in a huge amount of about 10 eV. Thus the nontrivial
equilibrium in such a system is only possible if the strong deforming potential exerted
by the contribution eq. (3.111) and tending to no hybridization is counterpoised by
other contributions. Within the FA approximation, the only counterpoise is the res-
onance energy considered here. By this, we arrive at a very simple (but internally
consistent) picture of hybridization/stereochemistry of the nitrogen atom. There exist
two contributions to the energy. One (eq. (3.111)) tends to keep the valence angles at
90◦, while another (eq. (3.110)) tends to place all substituents at the nitrogen atom
on one plane with the latter. The observed pyramidal form is a result of the interplay
between these two contributions. A pyramidalization (inversion) potential in which
no kind of interbond interaction is involved (see below) comes from the same source.

In the present setting, the equilibrium shape of the nitrogen hybridization tetrahe-
dron is given by the value of the pseudorotation angle ωsz only. In the vicinity of
the equilibrium it is reasonable to assume that the latter value arises as a result of an
action of a deforming force exerted due to the resonance interaction with hydrogens
on the otherwise nonhybridized nitrogen atom. The nonplanar form is maintained by
the reaction of the one-center energy terms proportional to the second derivative of
eq. (3.111) taken in the minimum, corresponding to nonhybridized atomic orbitals.
The total pseudotorque exerted by three symmetrical bonds equals to the derivative
of eq. (3.110) with respect to ωsz at the point corresponding to the minimum of
eq. (3.111). Finally the correction to the pseudorotation angle is:
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δωsz =
√

3P rl
0 βRmLm

σσ

2[(Us − Up) + 1
4 (3C2 + 2C3 + 4C5)]

(3.112)

which defines to a first approximation the shape of the hybridization tetrahedron of
the nitrogen atom. That raw estimate results in the numerical value of δωsz of only
ca. 0.38 rad. The equilibrium value of this pseudorotation angle is ca. 0.95 rad. That
large discrepancy is clearly due to the pseudotorque as the tetrahedron shape is deter-
mined by eq. (3.112) by the resonance interactions of the nitrogen’s s-orbital only
and for that reason does not depend on actual pyramidalization angle δ. The equilib-
rium pseudorotation angle in its turn is estimated at the equilibrium geometry, which
appears as a result of taking into account the additional deforming force exerted upon
the system of the nitrogen HOs.

Minimization of the sum of resonance eq. (3.110) and one-center eq. (3.111) ener-
gies on ωsz allows us to determine the optimal value of this pseudorotation angle as
a function of the angle δ. This minimization is possible analytically, but results in an
equation of the fourth degree in tanωsz . So, we tried to find realistic estimates for the
dependence ωsz(δ). First of all, we can determine the value of the pyramidalization
angle δ optimal for a given value of pseudorotation angle ωsz . It can be easily done by
taking the derivative of the resonance energy with respect to δ since the lone pair con-
tribution does not depend on δ explicitly. It should be noted that the relatively small
specific correction to the core-core interaction adopted in semiempirical schemes is
pyramidalization angle-dependent (the H-H nonbonding interactions depend on δ).
Also, small polarization of the N-H bonds within the TA approximation framework
modifies the energy expression. We neglect the effect of these contributions, which
allows us to obtain a simple relation:

sin ωsz =
√

2 tan δ(3.113)

which holds exactly for all geometry critical points – minima, maxima, and saddle
points and can be used as an interpolation formula for the intermediate geometries.
The relation eq. (3.113) also assumes that the HOs are directed along the bond vec-
tors. Inserting the interpolation formula eq. (3.113) into molecular energy immedi-
ately results in a pyramidalization potential of rather nontrivial form:

2(Us − Up) tan 2δ +
(

3
2C2 + C3 + 2C5

)
tan 2δ − C3 tan 4δ−

− 4P rl
√

3
[
βRmLm

σσ

√
1 − 2 tan 2δ +

√
2βRmLm

ζσ sin δ tan δ +

+
√

2βRmLm

ζσ cos δ
](3.114)

where the combinations Cn of the Slater-Condon parameters have been defined pre-
viously (eq. (2.72)). By this the existence of the pyramidalization potential is proven
by sequential derivation from a QM expression for the energy eq. (3.69) rather then
decided on a “school-wise basis” [3]. Formally, the source of this potential is a purely
quantum mechanical requirement of mutual orthogonality of HOs centered on the
nitrogen atom. Its physical nature may be characterized as the energy of excited
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configurations of the nitrogen atom admixed to its ground state by the perturbation
induced by the resonance interaction with surrounding bonded atoms. The admix-
ture coefficients (weights) of the excited atomic configurations appear as functions of
hybridization parameters, which can be explicitly written according to [16]. Neither
of these sources has anything to do with interpair Coulomb interactions.

3.3.2.3. FATO molecular mechanics of oxygen atom. Model “water” molecule.4

As mentioned previously, the qualitative difference between atomic types in the
deductive MM scheme reduces to the number of lone pairs they bear. In the previous
section we derived the existence of the pyramidalization potential at the sp3-nitrogen
atom analyzing the interplay between the deforming contribution (eq. (3.111)) pro-
duced by the lone pair and the hybridizing contribution (eq. (3.110)). In this sec-
tion we address the model “water” molecule in a similar manner in order to get the
deductive molecular mechanics of the oxygen atom. The properties of the oxygen
atom with two covalent bonds in the SLG picture are determined by the interplay
of two energy contributions similar to the case of nitrogen: (i) the one-center energy
of the atom and (ii) the resonance energy of the two covalent bonds it forms. The
hybridization/density dependent part of the one-center energy eq. (2.88) for such a
model reads:

E′ = 2
∑
m

(s2
m(Us − Up) + Up)δPm +

+
∑
m

(C1 + C2s
2
m + C3s

4
m)δΓm +

+
∑

k �=m

(C4 + C5[s2
m + s2

k] + C3s
2
ms2

k)(
δPkδPm + 1

2δPk + 1
2δPm

)
(3.115)

where we assume that the corrections δPm and δΓm are counted from their invari-
ant values characteristic for covalently bonding geminals (eq. (3.12)). In the case of
bonding geminals with m = 3, 4 δPm = δP and δΓm = δΓ correspond to their
characteristic values in oxygen compounds. These are controlled by the µ0 param-
eters for the bonds formed by the oxygen atom and by their variations around this
value which are, however, negligibly small for the purpose of our current analysis.

For the lone pairs, m = 1, 2 and δPm =
1
2

and δΓm =
3
4

(see above). The symmetry
condition for the shapes of the HOs assigned to the covalent bonds s3 = s4 = s also
holds. The one center energy, however, depends on the overall weight of the atomic
s-orbital in two lone pairs (s2

1 + s2
2) rather than on the specific distribution of the s-

character between them. This degeneracy leads to certain complications later. Adding
the resonance energy of two covalent bonds we obtain the energy of a doubly bonded
oxygen atom:

4Reprinted from A.L. Tchougréeff. J. Mol. Struct. (THEOCHEM), 632, 91, 2003
with permission of Elsevier.
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E = C3(1
2 − δP )2[1 − 2s2]2 + [2[Us − Up](1

2 − δP )+

+ 2C3(1
4 − δP 2) + 2C5(3

4 − δP − δP 2)+

+ C2(3
4 − δΓ)][1 − 2s2] − 2C3(δP + δP 2 − δΓ)s4 +

− 4
(
2βOH

σσ s + βOH
ζσ [(�v3, �e3) + (�v4, �e4)]

)
P rl

OH

(3.116)

This expression contains all the deductive molecular mechanics of a doubly bonded
oxygen (at least as it comes from the semiempirical SLG scheme). As in the case
of ammonia, the minimum of the one-center energy corresponds to s = 0, which
refers to no hybridization. The reason, as previously, is that the eq. (3.116) for the
one-center energy is dominated by the Us − Up difference, which amounts to −12
eV, whereas the contributions from intraatomic Coulomb terms (both of second and
fourth order in sm’s) entering with different signs (as in the case of nitrogen) cover
the overall variation of no more than 2 eV. Taking into account that the range of
variation of the variable s is restricted by the inequality 1 − 2s2 ≥ 0 due to the
normalization conditions allows us to conclude that the one-center energy is most
probably a function with a single minimum at s = 0.

Inserting eq. (3.67) into the expression for resonance energy we find that the min-
imum of the resonance part alone is reached when:

βOH
σσ (δ�ωb, �v3 + �v4) + βOH

ζσ s(δ�ωb, �e3 + �e4) = 0(3.117)

so that the linear configuration with:

�v3 = −�v4;�e3 = −�e4(3.118)

is obviously a solution. Thus, as in the case of an “ammonia” molecule modeling the
sp3 hybridized nitrogen atom, the actual (bent) form of the model “water” molecule
is a result of an interplay between the one- and two-center contributions to the energy.
The remarkable difference from the nitrogen case is the degeneracy i.e. the fact that
the energy depends only on the sum of the s-weights residing either in the bonding
HOs or in the lone pairs, so that the weight 1 − 2s2 of the s-orbital falling to two
lone pairs on oxygen is arbitrarily distributed between them. Thus the shape of the
hybridization tetrahedron on the oxygen atom remains undefined.

The form of the bonding HOs may be, nevertheless, specified on the basis of the
orthonormality relations for the HOs, which are consequences of the group SO(4)
structure of the hybridization manifold. According to eq. (3.61) the interhybrid angle
for the bonding HOs is given by:

cos θ34 = − s2

1 − s2
(3.119)

For symmetry reasons, the py-AO of the oxygen atom does not contribute to the lone
pair of HOs and thus its weight is equally distributed between the bonding HOs:

v3y = −v4y =
1√
2

(3.120)
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Since the overall p-weight residing in each bonding HO equals 1 − s2 the x-
components of the bonding HOs become:

v3x = v4x = −
√

1
2
− s2(3.121)

This comprises the description of the system of the HOs centered at the doubly
bonded oxygen atom.

3.3.3. Tuned amplitudes fixed orbitals (TAFO) model

A further step in developing the different possible approximation procedures for treat-
ing the energy eq. (3.69) would be one which allows us to tune the ESVs related to
the geminal amplitudes (TA) but keeps intact the shapes of hybridization tetrahe-
dra (FO). This results in a TAFO approach which a priori seems an acceptable
option for constructing a classical (mechanistic) scheme for the molecular PES.
However, a simple analysis of the above expansions allows one to conclude that
the sensitivity of two subsets of the ESVs characteristic for the underlying SLG-
MINDO/3 QM method, opposes this approximation scheme. In fact, whatever per-
turbation affects the HO-related ESVs is much stronger than the geminal related
ones. Thus, when the geminal amplitudes are expected to be affected by the envi-
ronment, the HOs are affected much more. The opposite may happen only if some
very rare special perturbation (such as completely symmetric deformation of the car-
bon tetrahedron) takes place. For that reason we do not discuss this approximation
further.

3.3.4. Tuned amplitudes tuned orbitals (TATO) model

The mechanistic model of the PES closest to the underlying QM procedure (and
eventually coincident with the latter [44]) is of course that where both classes
of ESVs are adjusted to each other and to the geometry variations. It can be
shown that the corrections to the invariant (transferable values) of the gemi-
nal related ESVs are small, though not negligible. As for the HO related ESVs
they remain as much sensitive to whatever perturbation as in the FATO class of
approximations.

In this section we consider the effects of small variations of the geminal related
ESVs upon the shapes of the hybridization tetrahedra. We take into account only the
corrections to the ESVs of the first order with respect to ζ−1 and µ. According to
this assumption the bond orders remain invariant, which considerably simplifies the
whole treatment. As the bond orders in the TATO model are kept at their transferable
values, taking into account the geminals’ tuning affects first of all the one-center
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contributions to the molecular energy. The one-center energy EA eq. (2.88) can be
rewritten:

EA = E(0) + E′ = E1 + E2 + E3, where Ei = E
(0)
i + E′

i, and

E
(0)
1 =

∑
tm∈A

U t
m, E′

1 = 2
∑

tm∈A

U t
mδP tt

m ,

(3.122)
E

(0)
2 =

1
4

∑
tm∈A

(tmtm | tmtm)Tm , E′
2 =

∑
tm∈A

(tmtm | tmtm)TmδΓtt
m,

E
(0)
3 =

1
4

∑
k �=m

∑
tt′

gTk

tkt′m
, E′

3 =
∑
k �=m

∑
tt′

gTk

tkt′m
(δP tt

k + δP t′t′
m )

in a form where the transferable expressions marked with the (0) superscript are sep-
arated from the bond-specific contributions. We also dropped the second order term
δP tt

k δP t′t′
m from E′

3 which is the one-center contribution to the energy of Coulomb
interaction of electrons residing in different geminals.

The one-center energy components have no clear correspondence in the standard
MM setting. In our approach the one-center contributions E′

i arise due to deviations
of the geminal amplitude related ESVs (δP tt

m and δΓtt
m) from their transferable values.

These deviations interfere with hybridization. The derivatives of E′
i’s with respect to

the angles �ωb and �ωl, taken at the values characteristic for the stable hybridization
tetrahedra shapes which appear in the FATO model, yield quasi- and pseudotorques
acting upon the hybridization tetrahedron. In evaluating these quantities we notice
that all the hybridization dependence which appears in the one-center terms is that of
the matrix elements of eq. (2.71). In the latter, the only source of the hybridization
dependence is that of the second and fourth powers of the coefficients of the s-orbital
in the HOs. Since they do not depend on the orientation of the hybridization tetra-
hedra, we immediately arrive at the conclusion that no quasitorques caused by the
variation of electron densities appear in the TATO setting:

�K ′
i = 0.(3.123)

For the pseudotorques the situation is different and we get:

�N ′
1 = − 4(Us − Up)

∑
tm∈A

δP tt
msm�vm

�N ′
2 = − 2

∑
tm∈A

δΓtt
m(C2 + 2C3s

2
m)sm�vm

(3.124)
�N ′

3 = − 2
∑
k �=m

∑
tt′

(C5(sm�vm + sk�vk) +

+ C3smsk(sk�vm + sm�vk)) (δP tt
k + δP t′t′

m )

These general expressions must be evaluated at characteristic points. To evaluate
the effect of single substitution at the sp3 carbon atom, the choice of a symmetric
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set of hybrids is an appropriate zero approximation. We have ∀m sm =
1
2
;�vm =

√
3

2
�eRmLm which results in the following pseudotorque contributions:

�N ′
1 = −

√
3(Us − Up)

∑
tm∈A

δP tt
m�eRmLm

�N ′
2 = −

√
3

2
(C2 +

1
2
C3)

∑
tm∈A

δΓtt
m�eRmLm(3.125)

�N ′
3 = −

√
3

2

(
C5 +

1
4
C3

) ∑
k �=m

∑
tt′

(�eRmLm + �eRkLk
)(δP tt

k + δP t′t′
m )

In the linear response approximation, the above pseudotorques give the following
pseudorotations of the hybridization tetrahedron on the atom under consideration:

δ�ωbi = −
�N ′

i

8P rl
0mGRmRm

bb

; δ�ωb =
∑

i

δ�ωbi(3.126)

These quantities ultimately define what can be related to the atom types of the stan-
dard MM setting. Indeed, the atom types in the MM differ among other features by
their preferable valence angles. In the deductive MM setting, the counterpart for the
preferred valence angles are the interhybrid angles. If a small pseudorotation δ�ωb is
applied to a hybridization tetrahedron the variation of the interhybrid angles is:

δθmm′ = − 1√
1 − s2

m − s2
m′

(
sm′(δ�ωb, �vm)

√
1 − s2

m′

1 − s2
m

+(3.127)

+ sm(δ�ωb, �vm′)

√
1 − s2

m

1 − s2
m′

)
For the symmetric sp3 tetrahedron the above expression simplifies to:

δθmm′ = −
√

3
8
(δ�ωb, �eRmLm + �eRm′Lm′ )

For the atoms of the second row the pseudotorque �N ′
1 coming from the nonuniform

distribution of electronic density in the bonds dominates the whole picture due to the
magnitude of (Us − Up). Assuming that only one HO acquires a density correction
δP rr

1 we get as a first approximation:

δθ1m = − 1
4
√

2
Us − Up

GRR
bb

δP rr
1 ∀m 	= 1

δθmm′ = −δθ1m ∀mm′ 	= 1
(3.128)

Since Us − Up < 0 the density increase (δP rr
1 > 0) at the 1st HO results in

an increase of the incident interhybrid angles and in equal decrease of the angles
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between otherwise nonperturbed HOs. All this, of course, is in agreement with the
analysis performed in [48] with the difference that HOs here are not arbitrarily
assumed to be collinear with the bonds. Numerical estimates are as follows. The
calculation on the CH3F molecule results in the value of δP rr

1 for the C-F bond gem-
inal of −0.13 (the carbon atom is meant). Using the estimate of GRR

bb performed for
the methane molecule, we get δθ1m ≈ −4◦ which is in perfect agreement with the
precise SLG-MINDO/3 calculation. With this, one can try to introduce a certain sys-
tematization in the currently chaotic picture of atomic types employed in MM. It is
reasonable to assume that the atomic type is defined by the atom’s environment and
thus by the polarities of the incident bonds or equivalently by the parameters µ0m

of these bonds. According to eq. (3.19) they define the populations of the HOs δP rr
m

assigned to each of the bonds and the ideal valence angles for types so defined.
This result allows us to readdress the Nyholm-Gillespie [17–19] idea of consid-

ering the electron pair Coulomb repulsion in the valence shell as a reason for the
observed stereochemistry. According to these authors, the interpair repulsion ener-
gies conform to the rule that the more populated the bond, the stronger it repels the
bonds incident to the same atomic vertex, which within the limit, results in the rule
that a lone pair repels other bonds and the corresponding valence angles are smaller
than the ideal tetrahedral ones. We have already shown that this result appears without
any relation to the Coulomb repulsion while analyzing the source of the pyramidal-
ization potential of nitrogen. Here as well, we see that an infinitesimal increase of
electron population at one of the HOs makes others increase the interhybrid angles
with the more populated HO. Though this is in perfect agreement with the Nyholm-
Gillespie rules, the real source of the effective interhybrid interaction has nothing to
do with the Coulomb repulsion of electron pairs.

The above consideration is in agreement also with the well known qualitative
Bent’s rules [49] which state that the weight of the s-AO increases in the HO, which
is involved in bonding with a more electropositive substituent. Indeed, electropositive
substituents would lead to the positive values of δP rr

1 and after using eqs. (3.126),
(3.67) the variation for the s-coefficient becomes:

δs1 = −3
8

Us − Up

GRR
bb

δP rr
1(3.129)

which is positive for the second row atoms (Us − Up < 0). The latter formula shows
that the Bent’s rule validity depends crucially on the sign of the Us − Up difference.
If for any reasons the opposite sign of the above factor occurs or the effect of the �N ′

1

pseudotorque is superseded by that of �N ′
2 (it has an opposite sign, but according to our

estimate is much smaller for the atoms of the second row, which is likely to change
for heavier elements) the inversion of the Bent’s rule takes place, and its modification
proposed by Frenking [50] on the base of analysis of numerical experiments acquires
a theoretical explanation.

As it has been mentioned several times, the derivations presented in this and ear-
lier sections are largely based on the MINDO type of the parametrization of the
underlying SLG-based semiempirical method. In the NDDO parametrization, the
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multipole-multipole electrostatic interactions between hybridization tetrahedra yield
not only the dependence of the energy on the mutual orientations of the hybridiza-
tion tetrahedra centered on nonbonded atoms, but also on the shapes of the tetrahedra
which define the magnitudes of the multipoles. This produces the contributions to the
pseudotorques. As in the case of quasitorques, the simplest is the one from the dipole,
residing at a given atom A. As one can check, its variation under the deformation of
the hybridization tetrahedron is given by:

δ�µA = 2d1

∑
tm∈A

δ′P tt
m

[
s2

mI − �vA
m ⊗ �vA

m

]
δ�ωA

b(3.130)

Inserting this into the energy, yields the following contribution to the pseudotorque
acting on the hybridization tetrahedron of the atom A:

�NA
Coul/dipole = −2d1

∑
tm∈A

δ′P tt
m

[
s2

mI − �vA
m ⊗ �vA

m

]
�EA(3.131)

where �EA, as previously, is the electric field from all sources acting at the point
where atom A is located. Further contributions (those from the variations of effec-
tive charges – atomic monopoles – and quadrupoles) also can be written straightfor-
wardly.

3.3.5. Relation between DMM and standard MM

The content of the deductive molecular mechanics (DMM) as formulated in [51] and
in the earlier text, is a description of the molecular energy in the form of eq. (3.69)
as a function of shapes and mutual orientations of the hybridization tetrahedra and of
geometry parameters. On the other hand, the standard MM briefly reviewed in Section
2.5 can qualify as a scheme directly parametrizing molecular energy as a function of
molecular geometry (nuclear coordinates) only. At the same time, the MM theory
implies the SLG type of the molecular electronic structure as an assembly of almost
independent two-electron two-center bonds. From the traditional MM point of view
the angular variables �ωb, �ωl describing the shapes and orientations of hybridization
tetrahedra are superfluous and must be excluded. This can be done by finding the
response of the corresponding ESVs to the variations of bond lengths and valence
angles using linear response relations between different subsets of variables pertinent
to the DMM picture. To do so, let us consider a minimum of the energy with respect
to both geometry and the ESVs. In the vicinity of an energy minimum x0, q0 it can
be expanded up to second order with respect to nuclear displacements q − q0 and
variations of the ESVs x − x0:

E = E0 +
1
2
(x − x0|∇x∇xE|x − x0) + (x − x0|∇x∇qE|q − q0) +

+ (q − q0|∇q∇xE|x − x0) +
1
2
(q − q0|∇q∇qE|q − q0)(3.132)

where linear terms disappear due to minimum conditions. For the sake of definiteness
we restrict ourselves to the FA picture. Alternatively we can think that the density
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matrix elements in the TA family of approximations are calculated by the explicit
formulae eqs. (3.16) and (3.17) or (3.14), which excludes the amplitude related ESVs
from consideration. Then the only remaining ESVs are the �ωb, �ωl angles describing
the shapes and orientations of the hybridization tetrahedra sensitive to whatever vari-
ations of molecular composition and/or geometry. Minimizing the energy eq. (3.132)
with respect to x for a given value of q leads to basic linear response relation between
the ESVs and the geometry distortions:

x − x0 = −(∇x∇xE)−1∇x∇qE|q − q0)(3.133)

which formally represents the response of ESVs to the geometry variation q − q0.

3.3.5.1. Linear response relations for hybridization ESVs

The main use of eq. (3.133) is for exclusion of the angular variables describing the
hybridization tetrahedra from the DMM mechanistic picture and for going by this to a
more standard classical MM-like description of the PES. However, before doing that,
we have to estimate the precision of the linear response relations eq. (3.133) between
geometry and hybridization variations themselves by numerical study. This has been
done in [26] on the example of elongation of C-H bonds and deformations of valence
angles in the methane molecule.

In the tetrahedral methane molecule (its parameters then correspond to subscript
0 in eqs. (3.132), (3.133)), we notice that the ∇x∇xE matrix further simplifies as
sLm

m = 1 and, therefore, simple analytical expressions become possible. Also, we
notice that the FA approximation is adequate here as, for example, even very large
elongation of one C-H bond by 0.1 Å leads to changes of the bond geminal ampli-
tudes u, v, and w not exceeding 0.003. The same applies to the expectation values of
the pseudospin (τ̂ ) operators representing the one- and two-electron density matrix
elements.

Linear response of hybridization to bond elongation. First the relation between
hybridization and elongation of the C-H bond is considered. For this we need the
mixed second order derivatives coupling the bond stretching with the hybridization
ESVs. For every C-H bond in methane we can introduce diatomic coordinate frame
with the z-axis directed along the bond and express the resonance integral related to
this bond as:

βCHm

rmlm
= βCH

σσ sm + βCH
ζσ vmζ(3.134)

where the subscript m enumerates the C-H bonds. Changing the bondlength causes
the response of the vector δ�ωl to be exactly zero (vector product of collinear vectors)
since the directions of the chemical bonds and the HOs coincide in the reference
structure of methane. Thus the variation of the resonance integral under the elonga-
tion reads:

βCHm

rmlm
= (θCH

σσ sm − θCH
ζσ vmζ)δrm(3.135)
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where the derivative of βCH
µν with respect to the interatomic distance is θCH

µν and δrm

is the variation of the length of the m-th C-H bond. In the case of methane sm = 1
2

and vmζ =
√

3
2 . Thus the response of the shape of the hybridization tetrahedron

represented by the vector δ�ωb is nonvanishing and can be written as [52]:

δ�ωb = −
√

3
4

·
√

3θCH
σσ − θCH

ζσ√
3βCH

σσ + βCH
ζσ

�emδrm(3.136)

where �em is the unit vector directed along the m-th C-H bond. The numerator cor-
responds to the block of the ∇x∇qE matrix where q is the bondlength rm and x is
�ωb. The denominator in this expression is nothing but the eigenvalue of the ∇x∇xE
matrix given by eq. (3.106) referring to variation of �ωb. Formula eq. (3.136) gives the
analytical expression for the coupling between the bond elongation and variation of
pseudorotation angles δ�ωb in methane. As one can see, the vector of angles’ variation
δ�ωb is collinear to the unit vector directed along this bond. Therefore the considered
distortion produces the following form for the matrix of small transformation of the
system of HOs (4 × 4 matrix H in eq. (3.27)):⎛⎜⎜⎝

1 −δ −δ −δ
δ 1 0 0
δ 0 1 0
δ 0 0 1

⎞⎟⎟⎠(3.137)

The linear response estimate for δ is:

δ = C1 ·
δr√
3

(3.138)

where the numerical value of the coefficient C1 is 0.2764 rad · Å−1. This form of
the transformation matrix is perfectly reproduced numerically both in the FA and TA
pictures. The linear response is a good estimate even for large distortions (deviation
from linearity is only about 1% for the bond stretching of 0.05 Å). It also turns out that
the error of the linear response approximation itself depends linearly on the variation
of the bond length. This indirectly indicates that the second order estimate in principle
suffice to perfectly describe the δ parameter obtained variationally.

Linear response of hybridization to valence angle deformation. The linear response
relations between the molecular shape and the shape of hybridization tetrahedron
are rather tricky due to the complex structure of the hybridization manifold. The
molecular shape can be characterized by a group of unit vectors with a common
origin at an atom under consideration pointing to the atoms bonded to the central
one. In the case of methane, the deformations of the coordination polyhedron defined
thus are small rotations of unit vectors �eRmLm pointing to hydrogen atoms. The
valence angle bending can be described by introducing small rotation vectors δ�ϕm,
which after applying them to vectors �eRmLm lead to new (distorted) coordination
tetrahedron:
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(�eRmLm)′ = �eRmLm + δ�ϕm × �eRmLm+

+ 1
2 (δ�ϕm ⊗ δ�ϕm − Iδ�ϕ2

m)�eRmLm =

= �eRmLm + δ�ϕm × �eRmLm + 1
2 (δ�ϕm(δ�ϕm, �eRmLm) − δ�ϕ2

m�eRmLm)

(3.139)

The small rotations δ�ϕm form an 8-dimensional space5 which decomposes to a
direct sum of two subspaces: one 3-dimensional, corresponding to rotations of the
molecule as a whole, and another 5-dimensional, corresponding to independent vari-
ations of valence angles. The former is precisely mapped on the 3-dimensional space
of quasirotations δ�ωl while the latter (5-dimensional) must be mapped on the 3-
dimensional space of pseudorotations δ�ωb corresponding to changes of the shape
of the hybridization tetrahedron [52]. General theorems of linear algebra [53] stipu-
late that under these conditions there exists a two-dimensional kernel in the space
of deformations of molecular shape which maps to the vanishing deformation of
hybridization tetrahedron. In [52] the term “hybridization incompatible” has been
coined for the deformations from this kernel. The structure of deformations lying in
the kernel is quite simple: they are produced by equal variations of opposite (spiro)
valence angles. In contrast, the variations which correspond to the increase of one
valence angle by δχ and decrease of its spiro counterpart by the same value, fall into
“coimage” of this mapping i.e. to the subspace which one-to-one maps to the space
of pseudorotations δ�ωb. The deformations in the coimage can be called “hybridiza-
tion compatible”. It is clear that only these latter variations should be considered. In
general, an arbitrary deformation {δ�ϕm|m = 1 ÷ 4} decomposes into a sum of the
pure rotation, hybridization compatible and hybridization incompatible contributions
so that both the orientation and the shape of the hybridization tetrahedron must be
adjusted.

First we consider the geometry issues. As mentioned, only the hybridization com-
patible deformations of geometry affect the shape of the hybridization tetrahedron.
On the other hand one can easily see that variation of the valence angle χmm′ with
m < m′ reduces to rotations of the involved bond vectors �eRmLm and �eRm′Lm′
around the axis orthogonal to the both coordination tetrahedron vectors:

δ�ϕm = −δχmm′

2
�eRmLm × �eRm′Lm′

|�eRmLm × �eRm′Lm′ |
; δ�ϕm′ = −δ�ϕm(3.140)

The reaction of hybridization tetrahedron on the changes of local geometry can be
considered in the linear response approximation eq. (3.133). It is clear that any varia-
tion of the valence angle is a sum of equal amounts of hybridization- compatible and
hybridization- incompatible deformations. The denominator in the linear response
relation eq. (3.133) is the same as for eq. (3.136) while the relevant block of the
∇x∇qE matrix (with q taken as a difference of two opposite valence angles) is pro-
portional to βCH

ζσ . For the methane molecule with the carbon atom put in the origin
of the coordinate frame, substitution of matrices of second derivatives for the energy

5Not 12-dimensional, as the components δ	ϕm ‖ 	eRmLm do not affect the result
and can be safely set equal to zero.
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into eq. (3.133) gives the reaction of the form of hybridization tetrahedron on the
angular distortions of molecular geometry in the form:

δ�ωb = −
βCH

ζσ√
2(
√

3βCH
σσ + βCH

ζσ )
(δχ12

�k+δχ13
�j + δχ14

�i)(3.141)

provided the parameters δχ1m describe the hybridization compatible deformations of
the coordination tetrahedron. Taking the “hybridization compatible” variation of two
appropriate spiro valence angles, we obtain for example:

δ�ωb = −
βCH

ζσ√
2(
√

3βCH
σσ + βCH

ζσ )
δχ�k(3.142)

This is the coupling between the change of the pseudorotation vector and totally
hybridization compatible deformation of valence angles. The considered distortion
produces the following HO transformation matrix (matrix H in eq. (3.27)):⎛⎜⎜⎝

1 0 0 −δ
0 1 0 0
0 0 1 0
δ 0 0 1

⎞⎟⎟⎠
where the linear response estimate for δ is:

δ = C2 · δχ(3.143)

The numerical value of the coefficient C2 is −0.20734 for the equilibrium inter-
atomic distance in methane. The above form of the HO transformation matrix is per-
fectly confirmed by our numerical experiments performed within the FA picture even
for very large distortions, which is a consequence of the mathematical structure of
the hybridization manifold described above. The numerical data show that the linear
response estimate performs very well up to improbably large distortions (the devia-
tion from the linear response estimate is smaller than 0.25% for the distortion of 0.3
rad (about 17◦)).

The smallness of the coupling coefficient C2, even for the hybridization compatible
deformations, allows us to qualitatively understand some features of the electronic
structure of strained organic molecules as it appears in the numerical experiments
performed by the SLG-based methods. In cyclopropane, a very large distortion of
the C-C-C valence angle from the tetrahedral one to the 60◦ one leads only to a
relatively small distortion of the corresponding interhybrid angle. We model this
process by strongly deforming the methane molecule. The simple estimate is based
on eq. (3.141) and runs as follows. The valence angle variation, when going from
methane to cyclopropane, is 49.5◦ (=109.5◦ − 60◦); only one half of it is hybridiza-
tion compatible; after multiplying by C2 this yields the value of the interhybrid
angle between the HOs corresponding to the “untouched” C-H bonds of 114.5◦
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(i.e. the angle variation amounts to only 5◦). From the energy minimum condition
for hydrides it follows that the C-H bonds must follow the directions of the HOs.
Numerical experiments performed using the SLG-MINDO/3 method show that if
one of the H-C-H valence angles is fixed at the cyclopropane value of 60◦, then the
energy minimum is reached when its spiro counterpart equals 115◦. This result can
be directly compared with the experimental value of the H-C-H valence angle in the
cyclopropane molecule which equals 115.1◦.

An analogous estimate can be applied to cyclobutane. In this case we consider
the distorted methane molecule with one of the valence angles fixed at 90◦. In our
model, the response of the HOs to the deformation is proportional to the deviation of
the valence angle from the tetrahedral one. The deviation of the C-C-C angle from
the tetrahedral one in cyclobutane (19.5◦) amounts to 40% of that in cyclopropane.
Therefore, we can expect that about the same ratio will be observed for the deviations
of the H-C-H valence angle from the tetrahedral one in the cyclobutane and cyclo-
propane molecules. In fact, the ratio got in the SLG-MINDO/3 numerical experiment
is about 39%.

3.3.5.2. Estimates of parameters of the standard MM force fields based on DMM

In the previous section we demonstrated numerically the validity of the linear
response approximation for the hybridization tetrahedra. Now we can use these rela-
tions to perform the announced transition from the DMM model of molecular PES
to a model dependent on molecular geometry. It is formally obtained by inserting
eq. (3.133) into eq. (3.132) which yields:

E = E0 + 1
2 (q − q0|∇q∇qE|q − q0)−

− 1
2 (q − q0|∇q∇xE(∇x∇xE)−1∇x∇qE|q − q0)

(3.144)

and the check of the validity of the linear response performed above is necessary to
be sure that this substitution is not merely a formal trick. Formula eq. (3.144) appar-
ently consists of two contributions: (i) the leading one – the second derivatives of
the energy eq. (3.69) with respect to the geometry parameters q, and (ii) a correction
appearing as a result of projecting out the ESVs related to the hybridization tetrahe-
dra. Due to the SLG form of the wave function, eq. (3.69) is naturally represented as a
sum of atom and bond increments (as in eq. (2.124)). Staying for the sake of simplic-
ity within the FA picture, we can conclude that the only geometry-dependent contri-
bution is that proportional to the resonance integrals of respective bonds. These con-
tributions depend on the natural nuclear coordinates [55]: bond lengths and valence
angles entering the definition of the standard MM force fields. This makes it sensible
to consider the geometry dependence of individual bond energies. For a pair of singly
bonded atoms, the corresponding energy is:

ERm + ELm + Ebond
RmLm

+ Enonbond
RmLm

(3.145)
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which for a symmetric bond may be rewritten as:

E = 2(Um − γRmLm) +
gm

2

(
1 − 1

Γ(ζm)

)
+

+
γRmLm

2

(
1 +

1
Γ(ζm)

)
− 2βRmLm

rmlm

ζm

Γ(ζm)
+ ZRmZLmDRmLm

(3.146)

where Um is the mean arithmetic value of the one-center electron core attraction
parameters U r

m and U l
m.

The energy curve for the C-H bond corresponding to the sp3 hybridization of the
carbon atom and to the symmetric TA picture (eq. (3.12)) has the correct qualitative
behavior for all interatomic separations. The minimum depth on this curve is approx-
imately −0.23 a.u. and can be considered as the “pure” energy of the C-H bond. It
is generally accepted in the literature that the energy of the C-H bond is approxi-
mately 0.15 a.u. The latter value is a thermodynamic one, while our value is obtained
by extracting the contributions to the energy intrinsic to this bond and excluding the
interaction between the bonds. The difference between the thermodynamic value for
the bond energy and that obtained from the SLG energy in the FA picture can be
explicitly written in a quite simple form:

1/4[Us(C) + 3Up(C) + 3gC
tt′ + 6DHH − EA(C)](3.147)

where EA(C) is the energy of the non-hybridized carbon atom. Adding this value
to the minimum of the energy curve for the C-H bond gives the value close to the
thermodynamic one, as the heats of formation are rather well reproduced within the
SLG-MINDO/3 method.

Comparing the form of the bond energy curve with the Morse potential is done by
approximating the curve of eq. (3.146) by the Morse function D0[1 − exp(−a(r −
re)/re)]2 minimizing the area between the two curves in the interval from 0.72 Å to
2.50 Å. With the parameters D0 and re fixed at the values equal to the minimum depth
and position on the curve (0.2295 a.u. and 1.078 Å) the optimal value of parameter
a is then 2.306, but with these parameters, the two curves are in fact quite different
(the area between them is almost 11% of the area between the bond energy curve and
the abscissa). If we optimize all three parameters of the Morse curve, they slightly
modify: D0 = 0.2333 a.u., re = 1.045 Å, and a = 2.295. This reduces the area
between the curves by 30%. It should be concluded that the energy profile in the TA
approximation is not particularly well reproduced by any Morse curve. On the other
hand, the analytical expressions for the molecular integrals entering eq. (3.146) are
not much more complex than the exponentials entering the Morse formula, so one
can employ this expression as one for the bond-stretching energy force field.

To estimate the parameters of the harmonic force fields that may appear from the
SLG-based semiempirical treatment, we consider the symmetric correlated single
bond, where the energy can be obtained without any reference to its environment.
In our case the derivative of the bond energy with respect to a geometry parameter q
has the form:
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∂Em

∂q
= ZRmZLm

∂DRmLm

∂q
− 2

ζm

Γ(ζm)
∂βRmLm

rmlm

∂q
−(3.148)

− 1
2

(
1 − 1

Γ(ζm)

)
∂γRmLm

∂q

where the derivatives of different ESVs with respect to geometry variables exactly
cancel each other so that the final expression for the energy derivative acquires the
form expected from the perturbative analysis of the ESVs given above. This is quite
an expectable result as the Hellmann-Feynmann theorem is valid for the functions
of the SLG approximation and for this reason the derivative of the energy equals the
expectation value of the Hamiltonian derivative with respect to the geometry parame-
ter calculated over the density matrix elements. If q is the interatomic distance, setting
the derivative equal to zero yields the equation for determining the minimum posi-
tion. Results are given in Table 3.4. In the limit ζm � 1 we recover the equilibrium
geometry condition for the FA picture. The meaning of other notation in Table 3.4
is as follows. The TAsymm refers to a TA estimate for the symmetric bond (bond
asymmetry/polarity terms omitted), while TApert refers to the perturbative inclusion
of the bond asymmetry effects to the TA picture using the µ0 parameter. All esti-
mates appear quite reasonable. At the same time, the latter one looks more promising
because it corresponds to the equilibrium interatomic separation in methane and other
hydrocarbons.

The same concepts can be used to determine the elasticity constant for bond
stretching by taking the second derivative of the energy with respect to the bond
length. In the FA picture we get:

kRmLm =

(
ZRmZLm

d2DRmLm

dr2
RmLm

− 2
∂2βRmLm

rmlm

∂r2
RmLm

−(3.149)

− 1
2

d2γRmLm

dr2
RmLm

)
r0

RmLm

We see from Table 3.4 that at least for one of the “experimental” estimates for the
stiffness of the C-H bond [54] the agreement is quite acceptable.

The deviation from other cited values may be understood as the bond stretch-
ing parameters fitted by other authors in the context of the structure oriented MM
schemes are implicitly loaded by the average effects of surrounding atoms and other
force fields including nonbonding ones. This disagreement can be partially ascribed
to the effects of the projected out Jacobi angles describing the variation of the shape of
the hybridization tetrahedron. Indeed, the off-diagonal constant coupling the stretch-
ings of two incident C-H bonds in the methane molecule can be written as:

Koff =
1

4
√

3

(
√

3θCH
σσ − θCH

ζσ )2
√

3βCH
σσ + βCH

ζσ

(3.150)

The only reason why this term appears is the deformation of the carbon hybridiza-
tion tetrahedron eq. (3.136) effectively coupling stretchings of two C-H bonds. Its
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estimated magnitude is only 0.120 mdyn/Å which is in agreement with its estimated
0.03 mdyn/Å [55] coming from fitting infrared spectra within the order of magnitude.
This estimate establishes the scale of the corresponding effects. One can see that the
DMM specific corrections to the bare estimates of the harmonic stretching constants
eq. (3.150) are small. Nevertheless, in the cases when the bare harmonic constant
vanishes (as the off-diagonal constant does) the corrections to the shape variation
allow us to solve the question of the presence of the off-diagonal terms on purely
theoretical basis.

Now we consider the valence angle bending force field as it appears from the DMM
picture. For this end the geometry variation given by the vectors eq. (3.139) must be
inserted in eq. (3.72) and the required elasticity constant can be obtained by extracting
the second order contribution in vectors δ�ϕm. In the case of hydride:

δ
(2)
�ϕm �ϕm′E = −2δmm′P rl

mβCH
ζσ ×

×
{
(�eRmLm , δ�ϕm)(δ�ϕm, �vC

m) − δ�ϕ2
m(�vC

m, �eRmLm)
}(3.151)

This formula is quite remarkable as it shows that in the FO picture there are no con-
tributions to the bending which can be attributed to any kind of interbond interaction.
The bending force field is produced solely by energies of separate chemical bonds.

Typically, in the MM framework, the increment from the bending is considered a
quadratic function of valence angles. The formula for bending eq. (3.151) can be re-
written in this form. This is obtained by substituting eq. (3.140) to the second order
expansion eq. (3.151) and significant simplifications based on vector algebra. After
that we see that the bending force field constant can be written as:

kHCH = βCH
ζσ {P rl

m (�vC
m, �eRmLm) + P rl

m′(�vC
m′ , �eRm′Lm′ )}(3.152)

i.e., as a sum of two separate single bond contributions. Moreover, it can be proven
[52] that adjusting the hybridization tetrahedron to the geometry change does not
modify eq. (3.152) in the FO picture. Inserting the values characteristic for the sp3-
hybridization yields the bare estimate for the harmonic bending constant in the form:

kHCH =
√

3
2

βCH
ζσ

From Table 3.4 one can see that the elasticity constants for bending force fields are
in good agreement with the values accepted in the literature.

3.4. WHAT IS DMM?

In the previous sections we performed a sequence of moves intended to bridge the gap
between an approximate QM description of molecular electronic structure and a clas-
sical representation of the PES of organic molecules suitable for further parametriza-
tion and simplifications in order to reach a scheme similar to molecular mechanics i.e.
classical force fields. This construct can be qualified as deductive molecular mechan-
ics (DMM) as each of its components has a transparent counterpart in the underlying
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QM description and the approximations and simplifications used can be clearly char-
acterized and formulated. From our point of view, this gives a possible explanation for
the enormous success both of the MM in describing with considerable precision even
tiny details of the molecular geometry of organic compounds and of the VSEPR in
explaining and predicting characteristic features of molecular shapes. These two suc-
cess stories made us consider them as experimental facts which require certain theo-
retical explanations. We felt that a demand for such an explanation is rather strong, as
according to [58] “the situation is scandalous: ... the method [MM] used in thousands
of laboratories throughout the world does not have any reliable quantum mechanical
derivation”. At the same time, the kind of explanation we were looking for fits the
remark by Coulson [59], mentioned in the Preface: “... any explanation why must be
given in terms of concepts which are regarded as adequate or suitable. So the expla-
nation must not be that the electronic computer shows that D(H − F) � D(H − H),
since this is not an explanation at all, but merely a confirmation of experiment”. We
can add to this that the result of any calculation is not a theoretical result at all: it is
a result of a numerical experiment and the measure of consistency (or inconsistency)
between results of different types of experiments (including those performed at the
ab initio level) is a subject of separate theoretical consideration. On the other hand,
a sequential derivation based on well defined grounds is much more useful for the
verification or falsification of a pragmatic model than numerical experiments.

We start the derivation from the proof of transferability of key quantities enter-
ing the theory. Despite its long history, the very term “transferability” remains a
somewhat vaguely defined synonym of “all the best” in parametrization schemes,
referring largely to their capacity to be used without change for any molecule in a
sufficiently wide class of similar ones. From the quantically point of view, this con-
cept has received some attention in two related areas. First we mention the estimates
of transferability given in [60] where those of the parameters of semiempirical quan-
tum chemical methods have been related to the fact that the corresponding quantities
remain the same for all molecules of similar structure up to the second order with
respect to overlap integrals between AOs residing at neighbor atoms. That allows
one to define the transferability for the quantum chemical parameters (ultimately, for
the Hamiltonian matrix elements) as invariance of some quantity to a given order
of precision with respect to a small parameter. Analogously, in [61] the problem of
constructing transferable dynamic matrices in relation to the analysis of vibrational
spectra has been considered. The stability of the dynamic matrix was analyzed with
respect to a small parameter of relative mass variation under isotope substitution in a
series of related molecules.

The importance of the transferability of the geminals has been pointed out in [62].
It was stated that the assumption of the transferability of the geminal amplitudes is
a prerequisite for that of the bond energy. However, in [62] geminal transferability
has not been proven and the authors concentrate on the statements equivalent to the
transferability of the MM bond stretching force fields. Our proof of course strongly
relies on the SLG form of the trial wave function. This may seem to be a very strong
restriction on the proposed derivation scheme. However, it is not a restriction at all if
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correctly understood. In fact, following Ruedenberg we can state that chemical bonds
are “observable” objects in chemistry, as their properties are reproducible, follow
certain more or less simple laws, etc. Using the SLG form of the wave function simply
provides an adequate formal expression for these known facts in terms of quantum
mechanics (quantum chemistry).

Under the assumptions given by eqs. (3.6), (3.7) the expectation values of the pseu-
dospin operators (and thus all the amplitude related ESVs) are invariant – transferable
– quantities in the sense that they do not depend on the environment of the bond under
consideration and even on the particular composition of the bond, i.e. on the nature
and the hybridization of the atoms connected by the bond. This is in contrast with
the HFR based QC methods where the transferability of bond properties appears as
a result of tedious analysis of numerical data. It is important that the invariance (at
the established level of precision) of the density matrix elements can be proven only
for the basis of the variationally determined HOs – a specific of the SLG proposed
approach [9–12]. In the basis of AOs the density matrix elements are not invariant
even approximately. The approximation sufficient to obtain formally these invariant
results breaks only at large interatomic separations which normally are not covered
by any MM-like approximation. This result allows us to pose further questions: to
what extent the density ESVs’ invariance may stand further improvements of the
description and whether it is possible to relate the invariance of the density matrix
elements with the transferability of the MM force fields. To answer these questions
we notice that the invariant values of ESVs can be improved by perturbative correc-
tions (the TA picture) reflecting all the diversity of chemical compositions and envi-
ronments the bond may occur in. Despite this, all the variety of perturbations is char-
acterized by two small dimensionless parameters: ζ−1

m eq. (3.13) and µm eq. (3.15).
Both parameters depend on the atoms connected by the bond, their separation, and
their hybridization. The perturbative treatment allows us to estimate the precision of
transferability. For example, using eqs. (3.14), (3.16), and (3.17) we conclude that
the bond order is the quantity transferable up to second order with respect to both
ζ−1
m and µm; the ionicity (the total weight of the ionic configurations) is transfer-

able up to second order with respect to µm and up to first order with respect to ζ−1
m ;

the bond polarity is transferable up to first order with respect to both ζ−1
m and µm.

The second order transferability of bond orders explains the success of the concept
of “single bond”, the fundamental concept shaping all chemistry and suitable for a
large variety of chemical bonds. Note that the second order transferability takes place
for bond orders also in the case when we employ the SLG bond wave function with
the correct asymptotic behavior despite the fact that the transferable numerical value
itself is obtained from the HFR wave function, which does not possess this property.
Within this picture, all specific characteristics of the force field can be loaded only
onto parameters of the (effective) Hamiltonian, which are either numbers specific
for a given atom in certain hybridization state or for a pair of such hybrid states of
atoms – ends of the bond. The force fields are basically sums of products of ESVs by
matrix elements of molecular Hamiltonian, which are geometry dependent and com-
position specific. The force fields thus obtained are expected to be the same for the
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same composition of the bond and to depend on the environment only weakly (to the
extent of the variance of the µm1 parameters). These properties are basically much
more than necessary for substantiating an MM-like description.

The local character of the orbitals used throughout the derivation is inherent for the
suggested approach and the specific form of the orbitals of interest appears as a result
of energy minimization procedure, which allows us to avoid a posteriori localizations
complemented by poorly defined “tail cutting”. The locality of the orbitals used in the
SLG picture is in sharp contrast to the standard HFR treatment leading to delocalized
orbitals.

Theoretical studies performed in this chapter can be used also for analysis of the
problems of traditional MM methods. As described in Section 2.5, the number of
parameters in MM force fields may present a considerable problem. Two aspects
are important: setting of the atomic types and assigning the force field parameters
indexed by pairs, triples, and quadruples of atomic types of the atoms involved. The
atomic types in the standard MM setting serve to refine the classification of the point
masses involved in the “balls-and-springs” picture as compared to the classification
limited to nuclear charge. The first level of this refinement in the standard MM setting
refers to the hybridization of atoms understood as standard hybridization types spn

with integer values of n. Next the immediate neighbors of a given atom may be taken
into account to produce further specialization of types. This route is eventually infi-
nite. In the DMM context the hybridization is described using three angles assembled
in the �ωb vector. These variables span the whole manifold of possible hybridizations –
shapes of the hybridization tetrahedra and eventually the spn-ones. The shapes, how-
ever, cannot be arbitrarily assigned; as we have seen in Section 3.3.4 the polarities of
the bonds incident to the given atom modify the shape of the hybridization tetrahe-
dron following Bent’s rule: the more electronegative substituent requires an HO with
smaller s-weight. The variation of the resonance integral for the given bond does not
affect the bond order in a very wide interval. Nevertheless, the increase of the reso-
nance integral affects the HO composition: the larger resonance integral, similar to
the more electronegative atom, requires an HO with a smaller s-weight. Pragmati-
cally one could begin the design of the MM types on the basis of the TATO-DMM
treatment from selecting the spn(n = 1 ÷ 3) hybridized atoms as basic types and
dividing them into subtypes according to the values of the µ0m parameters of the
incident bonds. This method eventually allows one to adequately define the atomic
types.

Another application of the DMM theory developed here may be for reducing the
number of valence angle bending parameters. The ideal values for the valence angles
are naturally identified with the interhybrid angles which are assigned as one-center
quantities characteristic for a given subtype. The elasticity constants for the bend-
ing force fields are, as shown already, assigned, not on the atomic type triples basis,
but employing a kind of “combination” of rules yielding the bending elasticity con-
stant as a sum of two contributions indexed by the types of the involved bonds i.e.
by atomic type pairs, rather than triples. This allows us to cope with the amount of
bending parameters of the order of several 104 required by the current force fields.
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It remains to find out whether a similar treatment can be developed for the torsion
force fields habitually indexed by quadruples of atomic types and thus posing most
problems in the prescription of parametrization. One can also think about follow-
ing problem setting, namely of designing a set of MINDO/3 or NDDO parameters
selected for using with the formulae of either of the approximations of the DMM
family. In this case, the entire parameter set can be indexed by the only atomic types
as no parameters indexed by pairs and even more by triples or quadruples of atomic
types are previewed in a semiempirical setting.

The obtained mechanistic picture of molecular potential takes an intermediate posi-
tion between QM methods and standard MM schemes. Though it can be used as a
standalone mechanistic model of molecular PES, the standard MM picture can be
derived from it by eliminating the auxiliary (from this point of view) angular vari-
ables describing quasi- and pseudorotation of the hybridization tetrahedra. We have
provided the exclusion of the angular variables characterizing the shapes and orienta-
tions of the hybridization tetrahedra from the mechanistic DMM model of molecular
PES. This results in a model announced in Section 3.1, which is similar to the stan-
dard MM models but is obtained by the sequential derivation from the QM (SLG)
model of molecular electronic structure. As mentioned already the transferability of
the ESVs characterizing chemical bonds in molecules and linear response relations
for hybridization of ESVs are the main components of deriving the MM theory of
molecular PESs from the corresponding QM theory. Both these features have been
mathematically derived and numerically checked in Sections 3.2.1 and 3.3.5.1

One of the motives of our analysis was the obvious success of the VSEPR model of
stereochemistry [17–19] in systematizing an enormous amount of experimental mate-
rial. That theory ascribes great significance to Coulomb bond-bond interactions to
explain the observed molecular shapes. It is be noticed that in the setting in the DMM,
molecular shapes are presented by the unit vectors �eRmLm describing the directions
of the bonds. They follow the shapes of the hybridization tetrahedra, but there is
surely some misfit due to other contributions to the energy. In the TATO model, that
would be interactions between the effective atomic charges. However, even in the
TATO model where one could expect a nontrivial effect of electron-electron inter-
actions upon the shape of the hybridization tetrahedra, only the topology of the
hybridization manifold assures the latter in carbon atoms. The situation with other
organogenic atoms significantly differs from that for carbon. In the case of nitrogen
and oxygen atoms even in the FA approximation, the one-center energy is strongly
hybridization-dependent, due to the one-electron terms describing the core attraction
of electrons in the lone pair and sensitive to the relative weights of the s- and p-AOs in
the corresponding HO. The source of this is of course the strong difference between
the core attraction parameters in the s- and p-subshells (Us and Up) with large prefer-
ence towards purely s-lone pair for atoms, which has as its source both the Coulomb
and kinetic energy of electrons in the atom. In free atoms this immediately results in
no hybridization at all for nitrogen and oxygen and in 90◦ valence angles predicted
by older theories [16] for water and ammonia with a subsequent need to explain the
observed shape of these molecules with the valence angles only slightly smaller than
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Table 3.1. DMM based estimates of the MM force field parameters as compared to those

accepted in some standard MM parameterizations.

rCH
0 kCH kHCH

Å mdyn/Å mdyn/deg

FA: 1.069 8.30 0.509
TAsymm: 1.078 7.77
TApert: 1.096 7.17

Standard MM:
[1]: 1.113 [1]: 4.5 ÷ 4.7 [56]: 0.549

[56]: 1.105 [55]: 5.31 [57]: 0.508
[57]: 1.090 [54]: 7.90 [55]: 0.493

the tetrahedral ones and both exceeding 100◦. Curiously enough, the authors of the
VSEPR model seem to overlook this result, well known for decades, and do not con-
sider it as a starting point and incidentally the limiting case of the electron pair repul-
sion and started their theory from scratch. If we reside in the FA domain we have
to admit that the only source of the observed stereochemistry can be found in the
interplay between one-center hybridization dependent terms and resonance energy.
This was clear yet to Coulson [16], but seems to acquire a formal proof only in the
proposed context.

3.5. TATO-DMM AND INTERSUBSYSTEM FRONTIER

After developing a general theory which describes the transition from a quantum
mechanical description of molecular electronic structure and PES based upon the
SLG trial wave function to the classical (mechanistic) one built in terms of the
hybridization tetrahedra and their interactions, deriving the form of the junction
between the subsystems appears to be almost a trivial exercise. As it has been men-
tioned many times the general setting for dividing a molecular system into parts is
to introduce first a basis of orbitals such that these later could be without big doubt
ascribed to that or another quantum (R-) or classical (M-) subsystems. Then the fron-
tier between the subsystems, by definition, is formed by the atoms which bear the
orbitals which belong to different subsystems. The result of the QM treatment of
the quantum system then depends on the form of the orbitals centered on the fron-
tier atoms. It must be noticed that the leading contribution to the interaction energy
between the classically and quantally treated parts of the entire molecular system is
given by the Coulomb forces between effective charges residing in the subsystems
and between the electron densities located on the same frontier atom, but ascribed to
different subsystems. These contributions are important in terms of the total energy.
However, they turn out to be too symmetric in the sense that they do not strongly
depend on or influence the precise form of the orbitals centered on the frontier atoms
and these forms (s-/p-weights ratio) are not very sensitive to the charges residing
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in the subsystems. The shapes of the orbitals on the frontier atoms are by contrast
sensitive to the local resonance contributions to the interaction and through it may
affect the local interactions in the system responsible for its chemical behavior. Two
different effects can be expected from the separation of the system into parts and
from treating one of them as being at the MM level in this setting: (i) renormal-
ization of the QM Hamiltonian parameters and (ii) imposing additional forces and
torques on the MM subsystem. We exemplify the use of the DMM technique by con-
sidering short-range contribution to intersubsystem junction construction. We start
from one special but quite characteristic case of a boundary sp3 carbon atom with
one HO pointing to the QM region (we formally assign this HO to the bond with
m = 1) and others related to the MM one (this case can be classified as the MM
boundary atom). The transition to the DMM picture is performed by setting the FA
and TO approximations for the HOs centered on this atom. It is to be recalled that
the Coulomb interaction between electrons occupying orbitals ascribed to different
subsystems reduce to interactions between one-electron densities due to the GF form
of the total wave function. The effect of the QM part on the MM part appears due
to changes of electron densities in the QM region. These affect both the one-center
energy of frontier atom and the resonance energy between the HO |r1〉 and all other
orbitals in the QM subsystem. The perturbation sets up quasi- and pseudotorques on
the hybridization tetrahedra centered at the boundary atom:

�K ′ = 2
∑
A

{(δPr1σβR1A
ζσ + δPr1ζβ

R1A
ζζ )�eR1A +

+ βR1A
ππ (δPr1ξ�e

ξ
R1A + δPr1υ�eυ

R1A)} × �vR1
1

�N ′ = −sR1
1 �vR1

1 {(P rr
1 − P ll

1 )[2Us − 2Up + C2 + C3 + 2C5] +

+ (1/2 − Γrl
1 )[C2 + 2C3(sR1

1 )2]}+

+ 2
∑
A

{(δPr1σβR1A
σσ + δPr1ζβ

R1A
σζ )�vR1

1 −

− (δPr1σβR1A
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R1A
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(3.153)

where �eξ
R1A, �eυ

R1A, and �eR1A = �eζ
R1A are the orts of the DCF defined by the R1A

pair of atoms and the quantities Cn are defined by eq. (2.72).
The variations of the one-electron densities δPr1α with α = σ, ξ, υ, ζ and the

polarity (P rr
1 − P ll

1 ) of the bond with m = 1 deserve some discussion. As it is seen
from eqs. (3.86), (3.105) each bond incident to an atom contributes an increment to
the quasitorque and to the pseudotorque acting upon its hybridization tetrahedron. In
the equilibrium these increments separately sum up to zero. We can think that the
equilibrium shape and orientation of the hybridization tetrahedron is obtained within
a TATO DMM model applied to the entire system. Then, within such a model, there
exists an atom corresponding to the left end of the bond with m = 1 having num-
ber L1 according to our previous notation. The HOs obtained in this approximation
provide an initial guess for HOs in the system including those of the atom R1, which
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are of particular interest to us. Going to the hybrid (quantum/classical) description
requires the L1R1 bond to be broken and all the orbitals centered on the atom L1

are ascribed to the QM region. The transferable (spin) bond order 1
2 takes this value

only in the basis of the HOs on both ends of this bond. Going to the AO basis on the
left end (L1) produces the initial guess for the one-electron density matrix elements
Pr1α with the subscript α = σ, ξ, υ, ζ running over the AOs of the atom L1 which
are written in the DCF defined by the axis L1R1. For all other atoms A in the QM
region A 	= L1 the initial guess for the the bond order in the TATO-DMM model is as
Pr1α = 0. Then the quantities δPr1α in eq. (3.153) must be understood as δP R1A

r1α –
the deviations of the matrix elements of the one-electron density calculated using the
QM method chosen for the purpose of treating the QM region of the complete system
by a hybrid method under consideration from the guess values defined above. These
comprise the contribution of the variation of the two-center elements of the density
matrices to quasitorques. The diagonal matrix element of the one-electron density
also deviates from its equilibrium value as determined within the TATO-DMM pro-
cedure. This value can be safely assumed to be predetermined by the value of the
parameter µ10. The quantity δP rr

1 entering eq. (3.153) is then deviation of the diago-
nal matrix element of the one-electron density calculated by the assigned QM method
from the value derived from the parameter µ10.

These additional pseudo- and quasitorques produce the pseudo- and quasirotations
of the hybridization tetrahedron of the boundary atom R1. In the linear response
approximation, it corresponds to the treatment of the corresponding pseudo- and qua-
sitorques by the (∇2

�ωE)−1 matrix which is simple (diagonal in the basis of the δ�ωb

and δ�ωl variables) in the case of symmetric hydride:

δ�ωb = −
�N ′

4P rl(βσσ + βζσ/
√

3)

δ�ωl = −
√

3 �K ′

8P rlβζσ

(3.154)

and can be used for estimates also in the general case. Therefore, the hybridization
tetrahedron acquires a new shape and orientation which are inconsistent with those
of the hybridization tetrahedra centered at the neighbor MM atoms and with their
positions. This produces additional classical forces and torques acting on the MM
neighbors of the boundary atom at hand. The forces are directed along the �eRmLm

vectors and stem from two sources: the variation of the shape of the hybridization
tetrahedron:

fbm = 1
2(βσσ+βζσ/

√
3)

({−θRmLm
σσ sLm

m �vRm
m − θRmLm

σζ vLm

mζ �vRm
m +

+ θRmLm

ζσ sRm
m sLm

m �eRmLm + θRmLm
ππ sRm

m �vLm
m +

+ (θRmLm

ζζ − θRmLm
ππ )sRm

m vLm

mζ �eLmRm}, �N ′)

(3.155)
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and the variation of its orientation:

flm =
√

3
4βζσ

({−θRmLm

ζσ sLm
m �eRmLm × �vRm

m − θRmLm
ππ �vLm

m × �vRm
m −

− (θRmLm

ζζ − θRmLm
ππ )vLm

mζ �eRmLm × �vRm
m }, �K ′)

(3.156)

Analogously, torques acting upon the atoms Lm (the left-end atom for the m-th bond)
with m ≥ 2, which are neighboring to the boundary from the MM side, arise due to
variation of the shape of the hybridization tetrahedron:

�tbm = − 1
2(βσσ+βζσ/

√
3)
{βRmLm

σζ (�eRmLm × �vLm
m )(�vRm

m , �N ′)−

− sRm
m [βRmLm

ζσ sLm
m + (βRmLm

ζζ − βRmLm
ππ )vLm

mζ ]�eRmLm × �N ′ −

− (βRmLm

ζζ − βRmLm
ππ )sRm

m (�eRmLm × �vLm
m )(�eRmLm , �N ′)}

(3.157)

and of its orientation:

�tlm = −
√

3
4βζσ

{βRmLm

ζσ sLm
m (�vRm

m ⊗ �eRmLm − vRm

mζ I)+

+ (βRmLm

ζζ − βRmLm
ππ )[vLm

mζ (�vRm
m ⊗ �eRmLm − vRm

mζ I)+

+ (�eRmLm × �vLm
m ) ⊗ (�eRmLm × �vRm

m )]} �K ′

(3.158)

The MM subsystem in its turn also affects the parameters of the QM subsystem
as any geometry variation in the MM subsystem induces changes in pseudo- and
quasirotation angles defining hybridization of the frontier atom. The corrections to
the QM one-center Hamiltonian parameters (in the linear approximation) are:

δU r
1 = 2(Us − Up)sR1

1 (δ�ωb, �v
R1
1 )

δ(r1r1 | r1r1)R1 = 2(C2s
R1
1 + 2C3(sR1

1 )3)(δ�ωb, �v
R1
1 )

(3.159)

The resonance integrals in the QM subsystem are also modified. In the respective
DCFs the corrections can be expressed as:

δβR1A
r1σ = βR1A

σσ δ(1)sR1
1 + βR1A

ζσ δ(1)vR1
1ζ

δβR1A
r1ζ = βR1A

σζ δ(1)sR1
1 + βR1A

ζζ δ(1)vR1
1ζ

(3.160)
δβR1A

r1ξ = βR1A
ππ δ(1)vR1

1ξ

δβR1A
r1υ = βR1A

ππ δ(1)vR1
1υ

where the variations of the HOs in response to the geometry variations are given by
eq. (3.67).

The formulae given above can be illustrated by numerical estimates of the magni-
tude of the renormalization of the QM parameters and changes in the DMM forces
and torques appearing in the vicinity of an sp3 carbon atom located on the intersub-
system frontier. The changes in the QM one-center Hamiltonian parameters due to
elongation of one of the MM bonds incident to the frontier carbon atom are:
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∂U1

∂r2
= −1.162

eV
Å

;
∂(t1t1|t1t1)

∂r2
= 0.537

eV
Å

(3.161)

while the effects due to change of the bond angle between two MM bonds incident to
the frontier carbon atom are given by:

∂U1

∂χ23
= 0.755

eV
rad

;
∂(t1t1|t1t1)

∂χ23
= −0.349

eV
rad

(3.162)

On the other hand the changes in the one- and two-electron densities on the HO
centered on the frontier atom lead to the following forces and torques acting on the
MM atoms immediately bound to the frontier carbon atom:

fbm = [−2.225δP rr
m + 0.465δΓrr

m ]
eV
Å

�tbm = [2.891δP rr
m − 0.604δΓrr

m ]
�em × �e1

|�em × �e1|
eV
rad

(3.163)

The numerical estimates show that in the case of variational determination of orbitals,
the effect of the frontier (besides electrostatic, van-der-Waals etc. contributions) can
be considered as a relatively weak perturbation.

Similar constructs apply to any kind of possible frontier atom. We consider a spe-
cial case when the frontier atom serving as the QM/MM junction is the sp3 nitrogen
atom supplying its lone pair to the QM subsystem. Such a setting seems to be quite
natural as the basicity or the nucleophilicity functions of the nitrogen atom are both
due to interaction of its lone pair with acceptor orbitals. This interaction is naturally
to be treated by some kind of QM technique while leaving the rest of the nitrogen
neighbors in the MM region.

The one- and two-electron density matrix elements for the QM residing HO
are evaluated by the corresponding (QM) procedure, thus invoking the TA type of
description for this HO. When the lone pair is involved in the QM subsystem, the
corresponding density matrix elements depart from their invariant values (P rr

4 	= 1,
Γrr

4 	= 1). On the other hand, the density matrix elements assigned to HOs of the MM
region are fixed at their invariant values according to the FA setting. The nonvanish-
ing intersystem two-electron densities reduce to the products of the corresponding
one-electron density matrix elements and the interaction reduces to Coulomb inter-
action of the densities, a consequence of neglect of one-electron transfers between
subsystems. With these assumptions we get the corrected hybridization-dependent
one-center energy for the frontier nitrogen atom:

[(1 + 2δP rr
4 )(Us − Up + C5 + C3/2) + (3/4 + δΓrr

4 )C2] sin 2ωsz +

+ (1/4 + δΓrr
4 − δP rr

4 )C3 sin 4ωsz

(3.164)

In the case of δP rr
4 = δΓrr

4 = 0 this expression reduces to eq. (3.111). In practice,
variation of the one- and two-electron densities on the lone pair (δP rr

4 , δΓrr
4 < 0)

leads to modification of the nitrogen pyramid. Numerical estimates show that the
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correction to pyramidalization momentum (the energy derivative with respect to
pyramidalization angle δ) is:

[−45.020δP rr
4 + 8.424δΓrr

4 ]
eV
rad

(3.165)

The derivatives of the energy correction (of the terms proportional to δP rr
4 and δΓrr

4 )
with respect to the angles �ωb, �ωl yield additional quasi- and pseudotorques ( �K ′

4 and
�N ′

4, respectively) acting upon the hybridization tetrahedron of the frontier nitrogen
atom:

�K ′
4 = 0

�N ′
4 = −2sN

4 �vN
4 [δP rr

4 {2Us − 2Up + C3 + 2C5 − 2C3(sN
4 )2}+

+ δΓrr
4 {C2 + 2(sN

4 )2}]

(3.166)

The quasitorque induced by the small variations of the one-center ESVs is vanishing,
thus resulting in no quasirotation of the hybridization tetrahedron. At the same time
the pseudotorque appears due to the involvement of the frontier atom in the density
redistribution within the QM part of the complex system. This contribution to the QM
induced pseudotorque is collinear to the QM residing HO (m = 4).

In the QM part of the system, the variation of the bond orders can also take
place. In variance with the pure SLG picture [11, 12] used here as the QM method
underlying the MM part of the system, the atoms in the QM part of the combined
system may have off-diagonal elements of the one-electron density matrix between
orbitals ascribed to the QM subsystem. The latter are obviously the (Coulson) bond
orders for the QM part of the system. The corresponding contribution to the energy
reads:

E′
res = −2

∑
A

∑
µ

Pr4µβNA
r4µ(3.167)

where Pr4µ are the elements of the one-electron density matrix (spin bond orders)
between the r4-th HO for the lone pair assigned to the QM subsystem and the µ-th
AO in the QM system centered on whatever atom A within the latter. The resonance
integrals between the lone pair HO residing on the frontier atom and the AOs on any
atom in the QM region are functions of six independent angles (�ωb and �ωl) defining
the shape of the hybridization tetrahedron on the nitrogen atom and its orientation.
They take the following form (in the corresponding DCF):

βNA
r4σ = βNA

σσ sN
4 + βNA

ζσ vN
4ζ

βNA
r4ζ = βNA

σζ sN
4 + βNA

ζζ vN
4ζ(3.168)

βNA
r4ξ = βNA

ππ vN
4ξ, βNA

r4υ = βNA
ππ vN

4υ

Taking into account the values of the components of the vector part of the HO with
respect to the DCF:
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vN
4ζ = (�vN

4 , �eNA)

vN
4ξ = (�vN

4 , �eξ
NA)(3.169)

vN
4υ = (�vN

4 , �eυ
NA)

and the expressions (3.67) for the variations of the HO coefficients with respect to
pseudo- and quasirotation angles (�ωb and �ωl) we get explicit form for the resonance
contribution to the pseudo- and quasitorque at the frontier atom:

�N ′
res = 2

∑
A

{(Pr4σβNA
σσ + Pr4ζβ

NA
σζ )�vN

4 −

− (Pr4σβNA
ζσ + Pr4ζβ

NA
ζζ )sN

4 �eNA −

− βNA
ππ sN

4 (Pr4ξ�e
ξ
NA + Pr4υ�eυ

NA)},

�K ′
res = 2

∑
A

{(Pr4σβNA
ζσ + Pr4ζβ

NA
ζζ )�eNA +

+ βNA
ππ (Pr4ξ�e

ξ
NA + Pr4υ�eυ

NA)} × �vN
4

(3.170)

where �eξ
NA, �eυ

NA, and �eNA = �eζ
NA are the orts of the DCF defined by the NA pair

of atoms.
The total pseudo- and quasitorques which appear due to quantum behavior of elec-

trons in the QM region then become:

�N ′ = �N ′
4 + �N ′

res

�K ′ = �K ′
res

(3.171)

Finally, in the linear response approximation, they produce, after being multiplied by
the (∇2

�ωE)−1 matrix eq. (3.133), the pseudo- and quasirotations of the hybridization
tetrahedron on the frontier atom N . The corrections to the pseudo- and quasirotation
angles of the hybridization tetrahedron result both in a new form and the orientation
of the latter. By this it becomes inconsistent with the positions of the atoms bonded to
the frontier atom from the MM side of the system. Multiplying the angular corrections
by the (∇�ω∇�ϕm

E)† matrix results in a torque acting upon the Tm atom of the m-th
bond incident to the frontier atom N on the MM side. Also, the additional one- and
two-electron densities on the frontier atom give additional forces acting upon its MM
neighbors. They can be easily obtained if the variations of the quasi- and pseudorota-
tion angles are multiplied by the mixed second derivatives matrix (∇�ω∇rNTm

E)†.
These forces are directed along the respective �eNTm vectors. This comprises the
effect (forces and torques) exerted by the QM subsystem upon the atoms attached
to the frontier one on the side of the MM system due to changes of hybridization of
the frontier atom.

On the other hand, any deformation in the MM system results in the variation of the
pseudo- and quasirotation angles. The shifts of the positions of the MM neighbors of
frontier atoms, result in quasi- and pseudotorques acting upon the hybridization tetra-
hedron of the frontier nitrogen. In its turn, this produces variations of both one-center
parameters corresponding to the QM residing HO and of the resonance parameters
for the QM residing HO and all other orbitals in the QM region. The variation of the
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one-center matrix elements of the Hamiltonian corresponding to the QM HO is:

δU r
4 = 2(Us − Up)sN

4 δ(1)sN
4 = 2(Us − Up)sN

4 (δ�ωb, �v
N
4 )

δ(r4r4 | r4r4)N = 2C2s
N
4 δ(1)sN

4 + 4C3(sN
4 )3δ(1)sN

4 =

= 2[C2s
N
4 + 2C3(sN

4 )3](δ�ωb, �v
N
4 )

(3.172)

The numerical estimate for the modifications of parameters described by eq. (3.172)
are:

δU r
4 � −9.53δωsz eV

δ(r4r4 | r4r4)N � −1.22δωsz eV
(3.173)

The modification of the QM resonance integrals to which the HO at hand is
involved is somewhat more complex. It nevertheless uses the same (DCF) represen-
tation of the resonance integrals as previously:

δβNA
r4σ = βNA

σσ δ(1)sN
4 + βNA

ζσ δ(1)vN
4ζ

δβNA
r4ζ = βNA

σζ δ(1)sN
4 + βNA

ζζ δ(1)vN
4ζ(3.174)

δβNA
r4ξ = βNA

ππ δ(1)vN
4ξ

δβNA
r4υ = βNA

ππ δvN
4υ

If these variations are taken into account in the calculations on the QM part of the
complex system, the effect of the MM system on the parameters of the effective
Hamiltonian for the QM part turns out to be taken into account in the first order.
It should be stressed that changes in the hybridization of the frontier atom due to
participation of one orbital in the QM subsystem are not taken into account in any
of the existing QM/MM schemes. This effect is not very large, so the first-order
correction for taking it into account seems to be adequate.

3.6. CONCLUSION

The hybrid QM/MM modeling is quite promising for the study of large molecules
especially in the rapidly growing field of computational biochemistry. Covalent bond-
ing between the QM and MM parts is especially important as it arises naturally while
modeling enzymatic catalysis. At the same time, this case is the most complex one
as the boundary between subsystems cannot be well defined on an intuitive level
and the construction of the intersubsystem junction is not straightforward. Many ad
hoc prescriptions of doing that are proposed in the literature. We have addressed the
state-of-the-art in this field in a somewhat critical manner, with special attention to
the problems arising during the QM/MM modeling described in Chapter 2. Neverthe-
less, the sequential derivations of QM/MM junctions have been shown to be possible
using simple physical principles which in our opinion govern the sequential construc-
tion of all possible hybrid QM/MM schemes. These principles assume the existence
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of the quantum chemical description underlying the MM one. The SLG trial wave
function was taken for constructing the required description. It gives a way of deter-
mining the hybrid orbitals centered on the frontier atoms, based on the derivation
of the MM description from the QM (SLG) one. The deductive MM derived in this
chapter can be of course used as a standalone tool for an economical description of
PES of organic molecules, taking into account important details of molecular elec-
tronic structure. Its use in the context of hybrid methods allows one to determine the
effects of the MM subsystem on the QM one (renormalization of parameters) and of
the QM subsystem on the MM one (torques and forces acting on the MM atoms).
Explicit expressions are obtained for frontier sp3 carbon and nitrogen atoms. Numer-
ical estimates obtained illustrate these general points.
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4

SYNTHESIS: HYBRID MOLECULAR MODELS
FOR COORDINATION COMPOUNDS

Abstract In the last chapter of this book, we employ the general methods developed in the previous
chapters in the context of a specific class of molecular systems known as coordination
compounds. The simplest statement about this class of systems is negative: it is poorly
describable by transitional (classical) MM methods. The reasons are twofold and manifest
themselves differently for different subclasses of coordination compounds. The first is the
non-directional character of coordination bonds and their unsaturability. This feature is
common to all types of coordination centers that manifest a wide variety of coordination
numbers and coordination polyhedra. The second important source of problems relates to
the coordination compounds of transition metal ions with open d-shells. In this case, the
situation is that each of the multiple electronic states available for the open d-shell produces
corresponding PES which all lie in a narrow energy interval and may intersect due to their
sophisticated dependence on molecular geometry. This produces a picture in which a unique
PES usually assumed in the classical MM models does not exist, but a bunch of them
is present, all of which must be uniformly treated. As a result of these two sources of
problems, the material of this chapter is divided into two parts. In the first we consider the
factors responsible for the “unspecific” behavior – a group of electrons occupying three-
dimensionally delocalized orbitals of the central atom (ion) of the complex and its close
vicinity. This produces a mechanistic picture of PES of coordination compounds capable of
reproducing the effects of ligand mutual influence. In the second we address the transition
metal complexes with open d-shells. We apply the general hybrid methodology to develop
a true QM/MM scheme of including sufficiently quantum subsystem (the d-shell) in the
general classical (MM treated) environment.

In this (final) chapter of the book we apply the principles and methods developed
in previous chapters for hybrid modeling of the electronic structure of “organic”
molecules and methods of constructing intersubsystem junctions to develop analo-
gous constructs for coordination compounds including transition and nontransition
metal complexes. Molecular modeling of coordination compounds (CC), reproduc-
ing characteristic features of their stereochemistry and electronic structure, is in high
demand in the context of studies and development of various industrial and labora-
tory processes. Ion extraction, ion exchange, isotope separation, and neutralization
of nuclear waste are just a few examples. Of particular interest are the structure and
reactivity of metal-containing enzymes. Solving these academic and technological
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problems requires modeling methods allowing massive simulations of PES of CCs in
a wide range of molecular geometries including (in the case of, say, coordination
processes) internuclear separations, corresponding to dissociation of coordination
bonds between central atoms and ligand donor atoms.

Some fundamental features related to the interplay between composition and struc-
ture are characteristic of CCs. They are united under the name of ligand influence
effects. Only a very superficial description of this circle of phenomena is given here.
Let us imagine a symmetric (octahedral) complex of composition ML6. Its geometri-
cal structure is characterized by the values of the metal-ligand separations. If the lig-
ands L are polyatomic ones, the separation between the central and the ligand donor
atoms is meant. Transition from the ML6 to the ML5X composition is termed substi-
tution of one of the ligands L by another ligand X (monosubstitution). It obviously
reduces the local symmetry from the octahedral one to the tetragonal. The possible
geometry variations are limited to potential increase/decrease of the equatorial bond
lengths accompanying the decrease/increase of that of the bond in the trans-position
to the substituent with all possible combinations of the increases and decreases and
may be violations of the strictly planar placement of the equatorial ligands around
the central atom. Nature appears to be very sophisticated even in this restricted play-
ground. Yet in the 1920s it was observed [1] that in square planar Pt(II) and the
octahedral Pt(IV) complexes the trans-position (the more remote – axial – one) to
the substituent is much more sensitive to the characteristics of the substituent than
the cis-positions (the closer – equatorial – ones). The only manifestations of this sen-
sitivity known at those earlier times were the rates of the ligand-exchange reactions.
It turned out that the ligands occurred in trans-positions to the ligands X, which are
“stronger trans-effectors”, exchange much easier than those in the trans-positions
to the X’s, which are weaker trans-effectors. It must be remembered that no struc-
tural data on bond lengths were available then on the compounds of the complexity
at hand. So it was not surprising that any kind of possible cis-effect was first assumed
as a hypothesis. With the passage of time it has been discovered that (i) the effects of
this sort are not specific for the Pt complexes, but occur in a much wider range of the
compounds and are not even restricted to the transition metal complexes; (ii) a wider
availability of the X-ray techniques has allowed one to establish important struc-
tural manifestations of the ligands’ influence. The general picture became, however,
not clearer but in some respects more obscure. First of all the structural cis-effects
were unequivocally established. At the same time, no specific cis-effectors had been
found. It was shown that a stronger trans-effector in addition to causing the elon-
gation of the bond in the trans-position to the substituent also causes a somewhat
smaller shortening of cis-bonds and vice versa: a weaker trans-effector causes elon-
gation of the cis-bonds. It was also found that the ligand influence takes place also
in the compounds of nontransition metals and even nonmetals like alkali and alkali
earth metals, P(V), As(V), Sb(V), S(VI), Se(VI), Sn(IV) etc. In the domain of CCs
of nontransition elements the ligand influence turned out to have much more diverse
manifestations which depend on the nature of the central atom and the substituents.

Another important manifestation of the ligand influence is the thermochemistry
of the isomers of the CCs. The problem of isomerism of the CCs was a crucial
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point in the whole construction of the coordination theory by Werner in the first two
decades of the twentieth century. The possibility of isolating two (and not more than
two) distinct species of identical composition ML4X2 (together with other observa-
tions of this sort) allowed him to argue in favor of the octahedral arrangement of the
molecules or atoms nowadays called ligands around the central atom. The heats of
formation may differ for the cis- and trans-ML4X2 species, sometimes quite signifi-
cantly (so that in some cases only one isomer can be observed) and, depending on M,
L, and X, either of the trans- and cis-forms may become more stable.

That wide range of geometry patterns and varieties of the modes of geometry-
composition interplays present in CCs could be thought to be inaccessible for any
classical (MM) technique in principle. The main concern is the non-monotonic char-
acter of the interactions to be assumed at least to somehow mimic the observed
features of the ligand influence. However, the practical need for modeling PES of
systems with metal ions in an efficient method makes it necessary to formulate a
corresponding problem, as that of the search for an effective method of modeling.

In the previous chapters, we developed an approach which can be used to put the
process of developing mechanistic descriptions of PES (i.e. of developing MM force
fields) on a rational basis. Deductive molecular mechanics [2–4] (DMM) allows us
to develop a form of the MM force fields to analyze the form of the electronic wave
function relevant to the physical picture of the electronic structure of the considered
class of molecules. In this chapter we apply the previously developed DMM approach
to analytical derivation of the QM based form of the force fields involving the non-
transition metal atoms.

The main advantages of the classical (MM) schemes are their low cost and high
efficiency in the prediction of molecular geometry for organic compounds without
significant electron correlation. Their principal disadvantage is an intrinsic inability
to consider uniformly the situations when electronic structures differ significantly.
The above theory explains the reason: estimates or interpolations of ESVs fail if
the structure becomes so different that the ESVs useful in one area of the nuclear
configuration space become useless in other areas. The QM procedures, if correctly
used, are potentially capable of describing different types of electronic structures.
The concerted exploitation of the advantages of both the (quantum and classical)
approaches can be achieved by hybrid QM/MM schemes, providing another way to
bypass the bottleneck of Mn-scalability. The theory of such schemes was the main
topic of Chapter 1. The QM/MM schemes describe some relatively small part of the
system by an appropriate quantum chemical (QM or QC) method while the rest (rel-
atively inert environment) is covered by classical force fields (molecular mechanics –
MM). The practical usefulness and general validity of these approaches is based on
the chemically and physically motivated observation: chemical transformations usu-
ally affect only a small part of the whole system (reaction center) while the rôle
of the surrounding groups and molecules reduces to modification of the PES due
for example to some polarization or steric strains. This situation is characteristic for
chemical reactions of biological interest (especially, for catalysis by enzymes), when
the chemical transformation touches only a restricted region of a molecule so that
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the electronic structure changes require a thorough correlation account for being ade-
quately described. The situation in TMCs with multiple electronic states accessible
in experiment, but localized in the restricted area in the d-shell, calls for a kind of
QM/MM technique as well. Of course the TMCs could be treated by some standard
QM/MM technique used with the additional prescription – try to extend the quantum
subsystem as much as possible – in mind. This is not interesting, however. In what
follows we shall try to employ an opposite approach to TMCs: reduce the quantum
subsystem as much as possible and on the basis of our previous studies, make steps
towards constructing a hybrid method targeted at the TMCs, but taking as much as
possible the surrounding of the central (transition metal) atom into the classically
treated subsystem. In this way we shall discover how to cope with the problems of
the metal targeted MM force fields known from the literature.

The fundamental reasons for the difficulties faced by the MM methods when metal
(both transition and nontransition) complexes are involved can be understood if one
does not consider the MM as a purely empirical scheme (as it is frequently done),
but think about them as of some reflection of specific features of molecular electronic
structure, formalized by the form of the trial wave function of that class of com-
pounds where such a parameterization might be possible. As shown in Chapter 3,
organic compounds for which the MM methods are known to demonstrate signif-
icant successes can be described by the QC method, which directly leads to local
and transferable two-center bonds. It is shown in Chapter 3 that the derivation of the
MM method from the QC description is possible due to a common background of
the MM and SLG description, which consists in the physical presence of two-center,
two-electron bonds in organic molecules (in strict terms of Section 1.7 – numbers of
electrons in each of the geminals weakly fluctuate).

To cope with the problems of a mechanistic description of CC, we will first ana-
lyze three basic questions: the nature of the differences in behavior between central
atoms on the one hand and organogenic atoms on the other hand, which results in
limitations for the MM techniques when applied to molecules of CC. Getting an idea
of the source of these differences tentatively allows us to address further questions:
developing an adequate MM-like scheme for CCs of nontransition metals and non-
metals which will be able to reproduce fine structural features of the mutual ligand
influence characteristic for this class of molecules. Next we turn to the most complex
problem – developing a hybrid modeling technique which would allow us to cover
complexes of transition metals with open d-shells.

4.1. CHARACTERISTIC FEATURES OF THE ELECTRONIC
STRUCTURE OF COORDINATION COMPOUNDS

The difference in chemical behavior between metals and nonmetals is intuitively clear
to any chemist. Theoretical chemistry describes this diversity in terms of different
types of chemical bonds. They are portrayed in textbooks as being nonpolar cova-
lent, polar covalent, ionic, dative, donor-acceptor, coordination, and so on. Chemists
ascribe specific bonds to the above types without a clear explanation of the grounds
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used for their classification. (A characteristic example: what is the difference between
the polar covalent and donor-acceptor bond; or what is the ionic bond if it is known
that the system of charged particles cannot have any equilibrium according to the
Earnshow theorem?) In our days, any classification of this type is generally consid-
ered obsolete: numbers jumping out by myriads from QC programs, but they do not
provide a qualitative understanding of physically different pictures described by the-
oreticians of previous days. Some solid bond classification may, however, be impor-
tant not only from the pedagogical point of view: from the MM experience, we know
that constructing a mechanistic description is not equally easy for different classes
of compounds containing bonds of different types. For purely “organic” molecules
with well-defined two-center two-electron bonds, numerous empirical parameteriza-
tions have been developed successfully [5–7]. Corresponding efforts, when applied
to metal containing compounds and hydrogen bonds, did not give completely satis-
factory results until now [8–10]. Of course, a good number of works have appeared,
which parametrize PES of some well-defined classes of metal containing compounds,
but some questions important from the practical point of view remain unanswered.

A remarkable systematization of chemical bonds is given in [11], which we repro-
duce here in the form of a Table 4.1.

According to it, the bond types known from theoretical chemistry are placed in
relation to characteristics of the electronic structure of different classes of chemical
species, and the delocalization pattern of the involved one-electron states is taken to
be crucial. The first comment on this classification is based upon our vision of the
electronic structure of “organic” compounds. In the Table these bonds are termed
as “valence” ones and the corresponding MOs are considered to be localized. If the
true MO picture based on the HFR model of electronic structure is employed, the
corresponding MOs in CH4 or NH+

4 are in fact delocalized at least by symmetry: the

Table 4.1. Chemical bonds classification by electronic structure and properties [11].

Bond type Electronic structure Compounds
example

Typical properties

Valence MOs are localized
between pairs of
atoms and occupied
by two paired
electrons

CH4 NH+
4

Diamond
C2H4

Distinct character of bond
energy, dipole moments,
frequencies, polarizabilities, etc.

Orbital MOs are delocalized
in one or two
dimensions

Benzene
Graphite

There are no distinct
characteristics; conductivity,
cycles, aromaticity

Coordination MOs are delocalized
in space —
three-dimensional

CuCl2−4
CoCl2
(crystal)

There are no distinct
characteristics; variable
coordination number and
magnetic moment, strong
mutual influence of ligands
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states belonging to one- and three-dimensional representations of the Td point group
are by construction delocalized in three dimensions (vide infra). This conclusion
is, however, valid only in the frame of the HFR treatment of molecular electronic
structure. Alternative approximations, and among them first of all the SLG-based
methods described in Section 2.4, restore the local picture of one-electron states and
of the bonding itself in the above examples in contrast to that provided by the HFR.
With the replacement of the MOs by the local HOs, the bonds of the valence type
mentioned in Table 4.1 can be attributed to the situations when the SLG-type wave
function gives a dominant contribution to the exact one.

The bonds of the orbital type are attributed in Table 4.1 to the one- and two-
dimensional delocalization of MOs. The molecules which can be covered by this
description are characterized in chemical terms as polyconjugate organic molecules
such as polyenes, aromatic molecules and others of this type (with the limiting case
of graphite). Among the characteristic properties of these systems one can mention
a far reaching transfer of the substituent influence through the system of delocalized
molecular orbitals. This seems to be very reasonable. Finally, in [11] the absence of
the characteristicity of the bonds and corresponding vibrational frequencies is related
to the three-dimensional delocalization of orbitals in the complexes. These features
are exemplified by the metal-ligand bonds in transition metal complexes and the char-
acteristic properties of these bonds mentioned in this respect are the optical spectra
and magnetic moment, that distinguish them from all other compounds. These exam-
ples deserve some additional comment. Although magnetic and optical properties
characteristic of TMCs really require the d- or f-states of the metal atom for their
description, the noncharacteristicity of the bonds, their poor directionality and unsat-
urabilty apply equally to the bonds in CCs of nontransition metals as well (for exam-
ple, alkali or alkali earth metals). On the other hand, the presence of one-electron
states with strong angular dependence (d or f) more likely opposes the nonspecificity
or at least poor directionality. In fact the presence of the orbitals with a strong angu-
lar dependence leads to quite expectable strong susceptibility of the transition metal
ions to the angular characteristics of the coordination polyhedron. However, this sus-
ceptibility may have nothing to do with bonding. It is more likely the response of
nonbonding electrons in the d-shell to a relatively weak perturbation. Meanwhile, the
flexibility of the coordination polyhedra is more easily explained by the dominance
of the angle independent s-AOs of the metal ion in forming the metal-ligand bonds.
This property of the s-AO does not represent, however, any specificity of transition
or rare earth elements.

At first glance, it may even seem that all the characteristics of the complexes listed
in Table 4.1 – formation and cleavage of the coordination bonds, mutual influence of
the ligands, charge redistribution, dependence of magnetic properties on tiny details
of molecular geometry and composition – have too much of the quantum origin so
that no mechanistic model of these properties is possible. This point of view seems
to be however an opposite extreme. Finally the MM is quite a flexible tool, not lim-
iting in any way the sophistication of the force fields to be used or the number of
particles involved in the interaction, or other characteristics of the model. Moreover,
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as shown previously, it is possible to imagine and successfully construct more gen-
eral mechanistic models of molecular potentials (PES) than the “balls-and-springs”
models accepted in standard MM. The models built remain mechanistic ones, but
they naturally take into account important features of the electronic structure, which
in a standard formulation would require innumerable parameterizations for more and
more tricky force fields, whose form remains without any fundamental basis. Our
plan is to construct first a hybrid QM/MM model of CCs and identify its basic fea-
tures. Then, on the basis of this model, we shall try to separate characteristic situ-
ations when quantum description becomes unavoidable from those where one can
hope to build some noniterative and more “mechanistic” model. Then we present
several such models at different levels of numerical elaboration.

4.2. HYBRID AND CLASSICAL MODELS OF COORDINATION
COMPOUNDS OF NONTRANSITION METALS

In this section we apply our methodology of constructing hybrid models of molecular
electronic structure to the case of coordination compounds. Our main tool will be the
SLG/HFR hybrid scheme described below. It will be used to formalize the difference
between the “organic” and “inorganic” parts of the coordination compound molecule.
After it is done the ESVs relevant for the most problematic “inorganic” part will be
selected and reasonably approximated.

4.2.1. SLG analysis of dative bonding1

Before describing the CCs with multiple ligands we consider an intermediate situa-
tion between purely “organic” or valence bonding and “coordination” bonding occur-
ring in the “ionic” compounds of metal atoms. It describes so-called “dative bonding”
of organic donor molecules with metal ions using lone pairs of their donor atoms and
deriving a mechanistic model for this type of interaction. This will be a first step
towards understanding the donor-acceptor interactions in CCs with multiple ligands.

The derivation of “organic” DMM performed in the previous chapter used the
assumption that the single bond is close to the symmetric one described by the HFR
two-electron function. This led to the approximation eq. (3.12) for the density matrix
elements of the bond geminals. The infinite bond-length asymptotic wave function
of two electrons forming a single bond between two atoms is the singlet with two
electrons with equal probability residing one by one on either end of this bond. This
describes the homolytic cleavage of a covalent nonpolar σ-bond. Dative bonds in the
case of the infinite bond elongation by contrast flow to the ionic limit eq. (2.61).
This prevents us from using the approximation eq. (3.12) for the geminal amplitude
ESVs since they correspond to the wave function with different asymptotic behavior.

1Reprinted from A.L. Tchougréeff. Deductive molecular mechanics as applied
to develop QM/MM picture of dative and coordination bonds. J. Mol. Struct.
(THEOCHEM), 632, 91, 2003 with permission of Elsevier.
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Our immediate purpose is to obtain estimates for the amplitude ESVs in the ionic
limit. In a more general context we notice that forming dative bonds with some elec-
tron accepting atoms i.e. those which provide an empty orbital with the energy low
enough to be partially populated, is the simplest archetypal example of the quantum-
classical frontier. Considering these cases in a hybrid perspective, one may think that
the lone pair of a donor atom is lent to the QM subsystem of a complex system. All the
covalent bonds of the donor atoms, which existed prior to the complexation/donation,
remain in the classical domain. For that reason, our immediate purpose is to identify
the effect produced by forming a dative bond by a donor atom upon its MM charac-
teristics and more generally the stereochemistry of donor atoms in complexes.

The geminal wave functions in eq. (2.60) in the SLG approximation are by defi-
nition obtained by diagonalizing the effective Hamiltonian for the m-th bond. These
latter are as previously given by eq. (3.1) which can be recast to the form:

Heff
m = H0

m + H ′
m

H0
m =

⎛⎝a 0 0
0 b 0
0 0 c

⎞⎠ ; H ′
m = d

⎛⎝ 0 1 0
1 0 1
0 1 0

⎞⎠(4.1)

with

a = Rm

b =
1
2
(Rm + Lm) − ∆γm

c = Lm

d = −
√

2βRmLm

rmlm

(4.2)

where the quantities Rm, Lm, ∆γm are defined by eq. (3.2).
The ground state of Heff

m acquired by this bond in the limit of the infinite inter-
atomic separation is controlled by the relative position of the diagonal elements of
H0

m on the energy scale. If the lowest diagonal matrix element of H0
m belongs to

the covalent configuration, the asymptotic ground state is also the covalent one (the
“organic” case studied previously). An alternative situation occurs if the lowest diago-
nal matrix element of H0

m belongs to one of the ionic configurations. This is possible,
provided:

0 <
1
2
(Lm − Rm) − ∆γm(4.3)

In this inequality all quantities depend on interatomic distance. For this reason the
character of the bond may (as it is well known, see [12] for the recent analysis of this
situation in similar terms) change in the prescription of its formation or cleavage. The
critical distance given by the relation:

∆γm(rc
RmLm

) =
1
2
(Lm(rc

RmLm
) − Rm(rc

RmLm
))(4.4)

separates the regions characterized by different physical regimes: at distances shorter
than the critical one, independently turning the resonance interaction off yields the
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wave function coinciding with the covalent configuration; at longer distances, turning
the resonance interaction off leads to the ionic wave function. The latter is the lone
pair wave function eq. (2.61). This consideration allows us to make precise the defini-
tion of dative bonds in the following manner. Instead of speaking about polar covalent
vs. ionic bonds it might make sense to speak respectively of the (polar) covalent vs.
dative regimes of maybe the same bond. Then the dative bonds are those whose wave
function flows to the single ionic configuration if the resonance is turned off at the
actual experimental interatomic separation. For the dative bond geminal namely the
ionic function must be used as a zero approximation for constructing the estimates
for the density ESVs.

4.2.1.1. Density ESVs in the ionic limit

The implementation of the DMM approach constructed in Sections 3.3.1 and 3.3.2
was based on the fact that for the geminals having the covalent wave function as
their asymptotic limit, the related ESVs can be taken as transferable quantities. It is
remarkable that the discussed quantities do not themselves pertain to this limit; by
contrast, they are better described by the symmetric MO functions, but still the cova-
lent limit wave function is a good starting point for developing the “organic” DMM
theory. In its frame it is shown that the (Coulson) bond orders 2P rl

m can be set equal
to 1 which is equivalent to the well-known picture of the localized single bonds in
organic molecules. For a considerable range of the bond-lengths around equilibrium
the above transferable value of the bond-order remains invariant (transferable) up to
the second order in a small parameter and the interatomic distance dependence of the
bond energy is dominated by that of the resonance (one-electron hopping) integrals
between the left-end and right-end HOs ascribed to the bond. In the “dative” regime
the ionic configuration corresponding to accommodating both bond electrons on (for
the sake of definiteness) the right-end atom is the asymptotic wave function for the
separated acceptor and donor molecules. This differs significantly from the “organic”
situation so that the results of Sections 3.3.1 and 3.3.2 cannot be directly employed.

As mentioned previously, the density ESVs must be obtained from the effective
bond Hamiltonian eq. (4.1). In terms of the geminal amplitudes, the ESVs are given
by eq. (2.78). To get the required direct estimates of the ESVs, we use again the
projection operator technique. In terms of the geminal amplitudes (subject to the
normalization condition) the projection operator upon the ground state of a geminal
has the form:

P =

⎛⎝ u2 uz uv
uz z2 zv
uv zv v2

⎞⎠(4.5)

The zero approximate operator P0 projecting on the ionic limit ground state cor-
responds to u = 1; z = v = 0. To ensure the correct (ionic) limit of a general
one-dimensional projection operator in a three-dimensional space, we apply the
prescription of eqs. (1.107) and (1.104) with the notion that dim ImP0 = 1 and
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dim Im(1 − P0) = 2. In this case the matrix block V consists of one row and two
columns:

V =
(
x, y

)
(4.6)

so that x and y are two real independent parameters. Clearly the one-times-one matrix
can be easily inverted and this results in the following operator projecting to the
ground state:

P =
1

1 + x2 + y2

⎛⎝ 1 x y
x x2 xy
y xy y2

⎞⎠(4.7)

The idempotence P2 = P is checked immediately as well as the fact that SpP = 1.
The Schrödinger equation for the projection operator P eq. (1.95) reads:

HP = PH(4.8)

can be recast to a system of nonlinear equations for x and y (details are given in [13]):

x =
d

(a − b)
(
1 + y − x2

)
y =

d

(a − c)
x (1 − y)

⎫⎪⎬⎪⎭(4.9)

xy =
d

(b − c)
(
x2 − y − y2

)
The last relation for the product xy is not an independent equation but it must be
inserted into that for y and the system becomes one for x and y. Solving this system
will be equivalent to solving the original 3×3 eigenvalue problem for the effective
bond Hamiltonian. In a perturbative manner we get for the first order approximation:

x =
d

(a − b)
; y = 0

Identifying the matrix elements of the projection operators eqs. (4.5) and (4.7) estab-
lishes the relation between two parameterizations of the three-dimensional projection
operators and produces explicit forms for the ESVs eq. (2.78) in terms of x:

Prr ≈ 1 − x2

2
; Pll ≈

x2

2
; Prl ≈

x√
2

Γrr ≈ 1 − x2; Γrl ≈
x2

2
δPrr ≈ 1

2
− x2

2
; δΓrr ≈ 3

4
− x2

(4.10)

The variable x thus describes the deviation of the bond falling in the dative regime
from pure ionicity. An alternative to this kind of treatment could be one using LCAOs.
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The argument in favor is that limiting wave function for the dative bond is that of the
doubly occupied HO – i.e. a HFR one.

4.2.1.2. Bond energy in the ionic limit

In the previous section we obtained the geminal amplitude-related ESVs for the bond-
ing geminal in the “dative” regime. We see that the key estimate used previously
to construct the “organic” DMM becomes invalid: the geminal related ESVs in the
dative regime are not even approximately transferable numbers. By contrast, the val-
ues of all density matrix elements are at least linearly dependent on the resonance
integral between the donor HO and the acceptor orbital. Together with approximately
exponential distance dependence of the resonance integral, this produces a strongly
anharmonic potential characteristic for large interatomic separations. The energy of
the geminal in the ionic limit (dative regime) can be easily found:

Ebond
DA ≈ − 8β2

DA

(εA
m − εD

m) − 2∆γm

(
1 +

γDA

(εA
m − εD

m) − 2∆γm

)
(4.11)

This is a natural form of the perturbative estimate of the resonance energy known
from the theory. An estimate of this type is employed in the SIBFA [14] method.

4.2.1.3. Bonding contribution in the DMM description of dative bonds

As it is seen from the perturbative estimates, the density ESVs are not transferable and
are rather sophisticated functions of those ESVs which define the shape and orienta-
tion of the hybridization tetrahedron on the donor atom. At this stage, it is possible to
develop a mechanistic description which retains the variable x to keep track of details
of the electronic structure. This picture is also suitable for constructing the QM/MM
junctions. According to the perturbative estimates for the solutions of eq. (4.9) the
equilibrium value of the y variable is always by one order of magnitude in βDA

smaller than x. Since only the combinations xy and y2 enter in the expression of the
projection operator and thus in that for the energy, we may set y = 0 without causing
too large an error in energy and by this further simplify the projection operator in
eq. (4.7). Using this approximation, the energy of the dative bond becomes:

Ebond
DA ≈ − 2

√
2x

1 + x2
(βDA − γDAx)(4.12)

where x must be treated as an independent variable. It must be included in the gen-
eral energy optimization procedure together with other ESVs and geometry variables.
This form must be used either instead of the energy of a covalent bond with constant
(transferable) spin bond-orders characteristic of the usual covalent bonds or of the
perturbative bond energy estimate. Though they are still rather sophisticated func-
tions of the internuclear separation and of the shape and orientation of the hybridiza-
tion tetrahedra residing on the donor atoms, they can be easily calculated as they
require only elementary functions for their evaluation [74] and have correct asymp-
totic behavior at infinite internuclear separation.
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4.2.2. Qualitative picture of the DMM force fields at donor atoms

In the previous section we presented a derivation of the DMM force fields describ-
ing the interactions: stretching of a dative bond formed by a donor atom bearing a
lone pair with a metal (or hydrogen or more generally – any acceptor) atom. This
derivation resulted in rather complicated formulae where all the terms depend on
details of hybridization of the donor atom through the resonance integrals βDA. One
may foresee further situations: (i) the shape of the hybridization tetrahedron is, to
a large extent, defined by the shape of the ligand molecule itself; (ii) the shape of
the hybridization tetrahedron is rather flexible and its variation in the prescription of
the formation of the dative bond is significant. We shall see that both situations are
realized in practice.

4.2.2.1. Donor-acceptor interactions of the model “ammonia” molecule

When the dative bond is formed by an sp3-nitrogen atom, the shape of its hybridiza-
tion tetrahedron changes only to a small extent. This can be understood on the basis
of the linear dependency condition of eq. (3.64). Three covalent bonds formed by the
nitrogen atom largely predefine the norm and the directions of three vector parts �vm

of the four HOs residing on the atom. The fourth one is fixed by the cited linear con-
dition. In this case the dependence of the dative bond energy on geometry parameters
can be obtained from an analysis of the perturbative estimate eq. (4.11). In the latter
expression the molecular geometry dependence is dominated by the square of the res-
onance integral. Assuming, as in the previous section, that the acceptor is represented
only by its empty s-orbital we get, as in the case of a hydrogen atom, a significant
simplification for the resonance integral responsible for the dative bonding:

βDA = βDA
σσ s1 + βDA

ζσ (�v1, �e1)(4.13)

The relative orientation of the acceptor atom and the donor atom hybridization tetra-
hedron enters through the scalar product of the vector part of the lone pair involved in
the formation of the dative bond (�v1) and the dative bond vector (�e1) which is a unit
vector directed along the line connecting the donor and acceptor atoms. The maxi-
mum of the above expression is obviously reached when �v1 ‖ �e1 and whatever escape
from this line producing a “lone-pair misdirection” can be thought to contribute to
the MM force field for the A-D-X angles bending (where X stands for whatever atom
covalently bound to the donor atom on the ligand – MM treated – side). It must be
noticed, however, that the corresponding contribution is by no means the leading one
in terms of energetics. Indeed, the contribution of the dative bonding to the “misdirect
potential” is scaled down by a small equilibrium value of x eqs. (4.7) and (4.10) —
spin bond order of the dative bond. At the same time the general context of the dative
bonding allows one to expect that a local dipole moment �µD resides on the donor
molecule and the ion-dipole energy term:

QAe(�µD, �e1)
r2
DA

(4.14)
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where QA is the effective charge of the acceptor atom (close to its formal ionic
charge) and rDA, the donor-acceptor interatomic separation, is larger than the dative
bonding contribution. For symmetry reasons (we refer here to a model C3v symmet-
ric “ammonia” molecule) one may expect that �v1 ‖ �µD and thus the resulting force
field tend to align �µD and �e1 and act to prevent the lone-pair misdirection, but do not
have too much relation to the direction of the lone pair itself.

4.2.2.2. Donor-acceptor interactions of the model “water” molecule

Now let us consider what happens when the model “water” molecule described in
Section 3.3.2.3 forms an additional “dative” bond with an atom containing one empty
s-orbital. The linear response approximation previously employed in the DMM
framework cannot be used in the present case as the matrix of the energy second
derivatives with respect to variations δ�ωb and δ�ωl is degenerate (and thus cannot be
inverted) due to invariance of the energy with respect to the deformations of the oxy-
gen hybridization tetrahedron between approximate sp2 and sp3 hybridization of the
lone pairs mentioned in Section 3.3.2.3 Therefore we try to extract the information on
the shape of the oxygen hybridization tetrahedron with an extra dative bond directly
from the structure of the SO(4) hybridization manifold. This is an analog for the
degenerate perturbation theory for the energy considered as a function of the set of
hybridization parameters �ωb and �ωl.

To start with, we assume that the HO with m = 1 will be used for the dative bond.
For it we use the estimates eq. (4.10) for the density ESVs. This may be termed as a
“harmonic” approximation in terms of the ESV x. The energy of the dative bond is
then given by

Ebond
OA ≈ −2

√
2
(
βOAx − γOAx2

)
(4.15)

With these definitions we get a correction for the one-center energy of the “water”
oxygen atom due to partial electron density transfer to the acceptor orbital:

∆E′ = −(s2
1(Us − Up) + Up + (C1 + C2s

2
1 + C3s

4
1)−

−
(
C4 + C5[1 − 2s2] + C3s

2
1[1 − 2s2 − s2

1]
)
)x2 +

+ 2
(
C4 + C5[s2

1 + s2] + C3s
2
1s

2
)(

δP +
1
2

)
x2

(4.16)

This contribution lifts the degeneracy of the one-center energy with respect to the
distribution of the s-weight between the two lone pairs. Physically ∆E′ is the energy
required to extract an amount of electron density proportional to x2 from the oxygen
lone pair with the weight of the s-function equal to s2

1. The larger it is, the larger
is the s-weight of the HO involved. This is in agreement with the estimates of the
ionization potential of the water molecule performed both in the semiempirical SLG
approximation [15] and with independent ones which clearly indicate that the first
ionized state of the water molecule is the 2Π state, which corresponds to extracting
an electron from the π-orbital with no s-contribution.
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The formulae eqs. (4.15) and (4.16) present together a specific DMM force field
for the dative bond formed by the doubly covalently bonded oxygen atom (water,
alcohol, simple ether). It is so because the cited equations represent the energy com-
ponents in terms of the parameters of the semiempirical QM Hamiltonian and of the
ESVs characterizing the covalent and dative bond on the one hand and the shape and
orientation of the hybridization tetrahedron residing on the oxygen atom on the other
hand. As a prescription, the sum of eqs. (4.15) and (4.16) must be added to the total
DMM energy and the latter must be optimized also with respect to x and s1 as well
as to all other ESVs at each value of the geometry parameters. A simplified treatment
with fixed values of δP and s is also possible. A remarkable feature of this approach
is that it remains valid both at very large and short separations between the donor
and acceptor atoms, which allows it to cover uniformly the regions normally treated
by different methods: by QM at short distances and by standard MM force field for
nonbonded atoms at longer ones.

Now we are equipped to study the shape of the hybridization tetrahedron on the
oxygen donor atom in the presence of the dative bond. The structure of the SO(4)
hybridization manifold does not pose enough restriction on its flexibility. We have to
remember in this context that in the case of quadruply bonded carbon or triply bonded
nitrogen atoms, the structure of the hybridization manifold fixes the tetrahedral form
of the model “methane” or “ammonia” molecules through the linear dependence rela-
tion eq. (3.64). In the case of the doubly bonded oxygen, the two vector parts (�v3 and
�v4) defined by the covalent interactions with the hydrogen atoms do not suffice to
determine the other two. We assume that the perturbation incurred by the dative bond
formation does not change the overall s-weight (2s2) of the covalent bonding HOs
since it would result in a too large energy increase of the “water” molecule due to the
response of the bonding HOs to the change of the s/p-ratio. Physically it would cor-
respond to an attempt to extract some electron density from an O-H bonding orbital.
The energy of the model “water” molecule is independent of the actual value of s1

which controls the distribution of the s-weight between two lone pairs residing on
the oxygen atom. The latter can access only a restricted range of values:

0 ≤ s2
1 ≤ 1 − 2s2; s2

2 = 1 − 2s2 − s2
1(4.17)

The limiting values of s2
1 correspond either to the pure p-character of the dative bond

HO (s2
1 = 0) pointing normally to the “water” molecular plane or to approximately

sp2 HO directed along the C2 axis of the “water” molecule. The hybridization man-
ifold structure allows for the determination of the direction of the HO lend for the
dative bonding for each specific value of s1. According to eq. (3.61) we have:

cos θ13 = cos θ14 = − s1s√
1 − s2

1

√
1 − s2

(4.18)

With the fixed value of s this defines the projection of the dative bonding HO (m = 1)
on the C2 axis (x); the rest of the p-weight comes from the z-component of the HO:

v1x = −
√

2s1s√
1 − 2s2

; v1y = 0; v1z =

√
1 − s2

1

1 − 2s2
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Thus the datively bonding HO expectedly stays in the mirror plane (which is per-
pendicular to the molecular plane) of the “water” molecule. For the acceptor ion the
going out of this plane results in the corresponding restoring force. The values of
the components of the vector part of the dative bonding HO thus obtained must be
inserted in the eq. (4.13) for the resonance integral. Analysis of the one-center term
eq. (4.16) describing the energy response of the oxygen hybridization tetrahedron to
the formation of the dative bond leads to the conclusion that for the dative bond the
energy minimum is reached if the pure p-HO is involved in its formation. This result
can be easily understood as the resistance to the bond formation (the coefficient at
the x2) is larger for the larger s-contribution to the bonding HO. We arrive at an
interesting situation, different from that for the sp3 nitrogen dative bond. In the case
of “water” oxygen we expect that the bond-related force field opposes the electro-
static (ion-dipole) forces which tend to place the acceptor atom on the C2 axis which
coincides with the direction of the effective dipole moment of the “water” molecule.

In order to numerically test the above derivations we performed a series of the
SLG-MNDO calculations on a simple model of a complex of the Li+ ion with H2O,
where the cation has been represented by a single s-orbital with the standard MNDO
parametrization for lithium. The calculations have been performed for the Li-O sepa-
ration of 2.14 Å characteristic for Li+ complexes with ethers [16]. In agreement with
the above estimates, we found first of all that the approximations of the ionic limit
(dative regime) are valid for this model system. In all cases, the equilibrium value of
x does not exceed 0.3, which can be shown to be a safe estimate for the validity of
the ionic limit expansions (neglecting terms higher than x2). This ESV reaches its
maximum for the “π”-coordination of the lithium ion to the water molecule. Never-
theless, the energy of this configuration is not minimal, but maximal. By contrast, the
minimal energy is reached for the planar configuration at the oxygen atom although
the Li-O bond order is minimal for this situation. This demonstrates the dominance
of the electrostatic forces in shaping the molecular geometry of the model complex.

All these conclusions may seem to be too exotic. Nevertheless, experimental facts
suggest that the above treatment may be valid. For example, the authors of [16] report
the possibility of competition between σ- and π-coordination of ether molecules on
the basis of the analysis of the structures of crown-ether complexes of alkali and
alkali earth ions. It turns out that the singly charged alkali ions acquire a nonpla-
nar coordination geometry at least with one of the ether oxygen atoms in the crown
ether complex more easily than the doubly charged alkali earth ions. For the latter,
the planar trigonal geometry of the ether donor oxygen is definitely preferred. This
is the trend one would expect on the basis of the relative strength of the ion-dipole
interactions of singly and doubly charged ions. This trend becomes even more pro-
nounced if the low-charge acceptors are addressed. In the interaction of the water
molecule with electroneutral metal clusters, the adsorption geometry varies from σ-
to π-coordination depending on the nature of the metal [17].

To conclude this section, we notice that the described discrepancy between the
molecular geometry at the oxygen donor atom and the shape of its hybridization tetra-
hedron is characteristic only for the ionic limit of the dative bond. If the additional
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(“coordination”) bond reaches the covalent regime characteristic, for example, of the
protonation of water molecule (formation of the H3O+ cation) there is no such uncer-
tainty and as in the isoelectronic case of ammonia, the pyramidal C3v geometry is the
equilibrium one and the misalignment between the bond and HO directions does not
exceed a couple of degrees as usual [18].

In this section we have analyzed the behavior of the SLG approximation at the fron-
tier of its applicability area. Being originally designed for treating the systems with
well-defined localized two-center bonds it is employed here for analysis of dative
(donor-acceptor) bonds and CCs of metal ions. The major result acquired in this way
is that we have developed a DMM description for the dative bonds formed by amine
nitrogen and ether oxygen atoms. It turned out that the DMM of the dative bonds dif-
fers from that of the usual covalent bonds in that the ESVs corresponding to the bond
orders are strongly distance dependent. Such a situation is sometimes described in
the MM context [19] by referring to Pauling’s bond-length–bond-order logarithmic
relation [20]. Here we propose a sequential description for such a situation, based
on the standard QM technique. This treatment allowed us to analyze the known flex-
ibility of the coordination mode of the ether oxygen to acceptors and to rational-
ize the observed dependence of the coordination trends on the charge of the metal
cation.

4.3. QUALITATIVE PICTURE OF BONDING IN METAL COMPLEXES

In the previous section we developed the DMM methodology and derived formulae
for the energy (force fields) for interactions of donor atoms with acceptors. A sim-
plified representation of the acceptor with a single s-orbital was used there. Here we
consider the metal-ligand interactions from a different point of view – that of the
metal. The metal ion in a CC acquires some density not from one but from many lone
pairs of the ligating donor atoms. Constructing a mechanistic or at least an economic
QM description for such a case would possibly help to rationalize terms of interligand
interaction force fields, which are sometimes included in the standard MM picture to
assure proper description of the metal CC.

The analysis performed in the previous section was based on a somewhat over-
correlated model of the electronic structure of the dative bond. One of the two ionic
configurations, namely, the one with two electrons on the acceptor orbital, was sup-
pressed by setting the ESVs y (or v – in the SLG formulation) equal to zero. This
is of course an approximation. It, however, allowed us to stress an important feature
missing in all mechanistic models of either coordination or dative bonding, namely
the off-diagonal elements of the one-electron density matrix (proportional to the
ESV x) being primarily responsible for the variation of the shape of the hybridiza-
tion tetrahedra on the donor atom and by this, for the effect of the quantum system
upon the bonding in the classically treated part of the complex molecule. The charge
variability turns out to be thus a higher order effect as compared to the chemical
bond formation. From the point of view of energy calculation, these higher order
effects are very important as they modify the strong and slowly decaying Coulomb
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interaction although the ESV x is itself exponentially decaying and multiplies by
the exponentially decaying of the resonance integral (see above). The general pic-
ture thus appears as follows – at larger separations, where the resonance interaction
(one-electron hopping) is negligibly weak, one can approximate the only important
Coulomb interaction as one between a central atom (ion) bearing its formal (integer)
charge with the effective charges (multipoles) in the ligands, which may be modified
due to polarization by the field of the central atom. At shorter distances, the resonance
(one-electron hopping) becomes significant; it contributes to the energy both directly
as the resonance (bonding) energy and indirectly by modifying the effective charges
of the donor and central atoms. It must be realized that the “classical” schemes of
the charge redistribution like the “electronegativity equilibration” scheme (see above
Section 2.5) do not work here since the adequate variables (the off-diagonal den-
sity matrix elements) are missing in them. Incidentally, it is reported [21] that these
schemes turn out to be numerically unstable when applied to metal CC.

We see that the charge variability appears due to two types of interactions almost
equally important in the case of metal ions binding by donor ligands: one is due to
polarization of the ligands by the point metal ion and by the charges residing in other
ligands as well; another is due to electron transfers from the donor atoms to the ions’
empty shells (Lewis acid-base interactions). Remarkably, neither of them has any-
thing to do with the “flow of electrical fluid” tacitly assumed in the electronegativity
equilibration models. The importance of the former mechanism has been recently
stressed in [22]. The same concept has been used while developing the COSMOS
MM force field [19] employed later for analysis of the behavior of the Zn2+ com-
pound with nitrogen containing ligands [31]. The authors [22] mention, however,
that the charge redistribution due to electron transfers, i.e. resonance, is not impor-
tant. This may be true for the class of objects the cited authors actually consider:
the crown ether complexes of the Cs+ or Mg2+ ions, where the results of quantum
chemical analysis reveal a negligibly weak transfer of electronic density from the
oxygen donor atoms to the metal ions (though the calculated extent of this trans-
fer is known to be “method dependent“). But there is no contradiction: the second
order quantity – the charge transfer – may be small, but the first order quantity – the
Coulson bond order – may remain important. In any case, such a picture with a neg-
ligibly small charge transfer, is not generally valid for all metals as some of them are
much stronger Lewis acids than heavy alkali cations. For example, our older calcula-
tions on the charge distribution in the transition metal complexes revealed a general
trend that the formally divalent transition metal cations bear an effective charge of
about one unit charge, whereas for the trivalent cations, the effective charge is less
than two unit charges [23]. Even in the less pronounced case of the Mg2+ ions coor-
dinated through oxygens in xylose isomerase, the effective charge obtained on Mg
within the PM3 semiempirical calculation [24] is close to unity. A similar picture has
been reported in [25] for Zn2+ complexes with imidazole. The remarkable role of
the charge redistribution in close vicinity of the Ln3+ cations, which does not reduce
only to the polarization of the surrounding ligands, has been reported in [26]. Thus the
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overall picture appears to be too confusing to hope that it can be disentangled by a
combination of locally successful ad hoc solutions.

Polarization of the surrounding by the metal ion (either formal or effective) charge
can be fit into the electronegativity equilibration scheme by ascribing new electroneg-
ativities to the atoms in the “external” field induced by the ion. However, it must be
realized that neither of the characteristic “quantum” features of polarizability, such
as the alternating polarity law [27] can be reproduced by classical methods.

The above qualitative consideration explains to some extent the reasons why metal
ions (both with and without open d-shell) stay away from the general MM picture
based on the concept of localized transferable two-center bonds. The physical regime
prevents metal-ligand bonds from being saturable, directional (see above and [11]),
and transferable, which are important components of the standard MM picture. To be
more precise, the metal-ligand bonds lack directionality at the metal center, though
the directionality at donor atoms exists and the corresponding force fields are known
as energies related to “misdirect” of lone pairs. These characteristics represent, in
our opinion, the reasons why, despite numerous attempts present in the literature (for
review see e.g. [8, 28]) the PES of metal CCs are not easily covered by the MM-
like schemes. Describing the contributions to the energy of a CC requires a narrowly
targeted model of its electronic structure. The general methodology will however be
the same as that accepted previously in Section 3.1.

The physical picture of the metal-ligand bonding given above is presented largely
by negative statements. The metal-ligand bonds are nontransferable, nonlocalized,
nondirectional at the metal site and directional only on the ligand side. Thus the trial
wave function for the metal complexes is generally not that of the SLG eq. (2.63). On
the other hand, the SLG form of the wave function seems to be fine for the free lig-
ands. This brings us to the situation we are already familiar with: that which requires
different methods of description to be applied to different parts of a molecule. The
physically substantiated picture of the metal CC can be formalized by assuming the
following (GF) form of the trial electronic wave function:

Ψ = ΦCLS ∧ ΦSLG(4.19)

where ∧ stands as previously for the antisymmetrized product of the electronic
functions; ΦSLG is the product of the bonding geminals eq. (2.60) in the “organic”
part of the complex; and ΦCLS is a group function invoked to describe the metal
ion with its closest environment hereinafter referred to as the closest ligand
shell (CLS).

A possible approximation to be used for the ΦCLS function can be chosen con-
sidering two ideas. In contrast to the directionality and saturability characteristic for
“organic” covalent bonds, those formed by metal ions do not possess these properties.
Thus there is no need to invoke the HO formation on the metal ion. At the infinite
separation limit, the ΦCLS wave function must flow to the antisymmetrized prod-
uct of the lone pair geminals of eq. (2.61). The latter is in fact a single determinant
function with all lone pair HOs doubly filled. With these arguments, we arrive at the
conclusion that the single determinant (HFR) wave function is an appropriate form
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of the ΦCLS function. It is to be constructed in the carrier space spanned by the lone
pair HOs, defined by the Jacobi angles on the donor atoms, and by the valence AOs
of the central ion. The number of electrons in ΦCLS equals that in all the lone pairs
involved, as the central ion is assumed to provide only its vacant orbitals.

The ΦCLS thus constructed was tacitly assumed by Van Vleck and Owen [29, 30,
32]. This allowed them to describe qualitatively the covalency effects in otherwise
“ionic” CCs. The MOs of a CCs were constructed as LCAOs of atomic 4s- and 4p-
orbitals of the central ion (of the fourth row) with the symmetrized functions of the
ligands. If one takes only the ligand σ-orbitals directed along the local axes joining
the central ion and the ligand donor atoms, then in the octahedral environment one
obtains the bonding (ψb) and antibonding (ψa) MOs of the a1g and t1u symmetries
and nonbonding MOs of the eg symmetry with respect to the Oh group [30]:

ψa(egc) =
1√
12

(2χz + 2χ−z − χx − χ−x − χy − χ−y)

ψa(egs) =
1
2
(χx + χ−x − χy − χ−y)

ψa(a1g) = −xa1gφ(4s) +
ya1g√

6
(χx + χy + χz + χ−x + χ−y + χ−z)

ψb(a1g) = ya1gφ(4s) +
xa1g√

6
(χx + χy + χz + χ−x + χ−y + χ−z)

ψa(t1uγ) = −xt1uφ(4pγ) +
yt1u√

2
(χγ − χ−γ)

ψb(t1uγ) = yt1uφ(4pγ) +
xt1u√

2
(χγ − χ−γ)

(4.20)

As in eq. (2.95) here χγ , χ−γ are directed along the γ axis (γ = x, y, z) of the
Cartesian coordinate system centered at the metal atom in the positive and nega-
tive direction respectively. Coefficients xΓ and yΓ =

√
1 − x2

Γ describe the mixing
between the metal AOs with the ligand orbitals and are to be determined from the sec-
ular equations of the HFR MO LCAO method with the effective Fock operator for the
CLS group. This can be applied also for the nontransition elements. In this case the d-
functions are not present in the MOs expansion in variance with eq. (2.95). We make
an additional reservation concerning the specifics of the electronic structure of the
TMCs with open d-shells where unpaired electrons may possibly reside and which
are responsible for numerous manifestations of electron correlations in the magnetic
properties and optical spectra of these compounds. As mentioned previously, these
electrons are better treated as nonbonding ones and for this reason we suggest the
d-shells be excluded from the zero-order treatment of the CLS in the TMCs with the
open d-shells. This reduces the number of the parameters of the electronic structure
of the octahedral complexes to be determined to only two: xa1g and xt1u which turn
out to contain all the necessary information. We shall explore this setting first and
turn to the complexes with open d-shells in the last section of this chapter.
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4.4. HYBRID MODEL FOR COORDINATION COMPOUNDS

4.4.1. Reducing the number of ESVs for CLS

To get an economical description of the ESVs relevant to the ΦCLS function we
notice that the standard HFR wave function (without symmetry constraints) implies
the MO expansion coefficients over the specified orbital basis set to be the ESVs.
This representation may be obtained by diagonalizing the matrix of the effective
Fock operator in the specified carrier space. In a QM/MM context, and eventually for
constructing a useful DMM description, economical selection of ESVs is desirable.
Indeed, the dimension of the carrier subspace we are interested in is NM + NLP,
where NM(=4) is the number of valence orbitals on the metal ion and NLP(=6)
(in the simplest case of a single LP per each of six donor atoms in an octahedral
complex) is the number of LPs on the attached donor atoms. The number of the
ESVs in the MO representation is then (NM + NLP)2, which is the number of the
MO expansion coefficients. In the case of complexes with coordination number six,
NM + NLP = 10, which yields 100 ESVs. These variables are, however, subject to
(NM + NLP)(NM + NLP + 1)/2 orthonormalization conditions. These conditions
are very difficult to use explicitly to reduce “the number of numbers” to be com-
puted (it may be possible by introducing (NM + NLP)(NM + NLP − 1)/2 Jacobi
angles). Even thus reduced number of variables (=45) is superfluous. The reason is
that the single determinant wave function is determined up to the subspace of the
filled orbitals. Any unitary transformation applied separately to the filled and (of
course) to the empty orbitals does not change the wave function. The numbers of
variables necessary to describe these irrelevant transformations are equal, respec-
tively, to NM(NM − 1)/2 and NLP(NLP − 1)/2. For this reason, the true number
of independent variables necessary to describe the single determinant function with
NLP doubly filled and NM empty orbitals is only NM ×NLP(=24). The actual con-
struction of this reduced set of variables is possible by eqs. (1.104)–(1.107). Taking
the product of the lone pair geminals (the ionic asymptotic wave function) as a zero
approximation for the ΦCLS function, we set the operator P0 projecting to the sub-
space lone pair HOs (dim Im P0 = NLP) as a starting point for constructing the
parametrization of the subspace of the filled orbitals according to eq. (1.104). The
projection operator P eq. (1.104) is in its turn the one-electron density entering the
effective bond Hamiltonians eq. (3.2) for the bonding geminals and the semiempiri-
cal SLG energy expression eq. (3.69). Matrices V are obviously NLP ×NM matrices
organizing in a single entity the relevant ESVs describing the HFR ΦCLS function
and ensure the correct asymptotic behavior: if a ligand goes to infinity the corre-
sponding row in the matrix V vanishes. One may check that in this case the cor-
responding off-diagonal matrix elements in the projection operator P remain zero
and the diagonal ones remain unity as they were in the zero approximate projection
operator P0.
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4.4.2. Effective Hamilton and Fock operators and DMM energy of the CLS

Now let us turn to the contribution of the closest surrounding of the metal ion in the
complex which consists of the metal centered AOs and the donor atoms’ lone pair
HOs to the energy. For the fixed set of HOs the bond geminals (and other more gen-
eral electron groups if any) included in ΦSLG affect the effective Hamiltonian acting
in the CLS carrier subspace only through the one-electron densities P tt′

m residing in
the HOs ascribed to the bonds. The same applies to the effect of the ΦCLS function
upon the effective Hamiltonians for the bond geminals: only the one-electron den-
sities in the lone pair HOs and in the metal AOs enter the expressions for the bond
effective Hamiltonians. In that respect, the form of the effective Hamiltonians for the
bond geminals eq. (4.1) does not change when the product of the LP functions in
eq. (2.61) is replaced by ΦCLS. The energy of the “organic” part of the complex is
described by eq. (3.69) with the only variance that in the intraatomic intergeminal
Coulomb terms (proportional to gtmt′

k
) for the donor atoms whose LPs interact with

the metal, the densities must be taken as diagonal matrix elements of the projection
operator P instead of unity values characteristic for LPs in a pure “organic” envi-
ronment (diagonal matrix elements of the P0 projection operator). The same values
must be used in eq. (2.79) for calculating the effective charges residing on the donor
atoms.

We notice that the combination of methods which arises in the present context
of metal complexes with organic ligands is very much the same as in the SLG/SCF
setting for the π-electronic approximation as described in [33, 34]. Here as well, the
“organic” part is described by numerous effective Hamiltonians for the isolated bonds
and the π-system – by the effective Fock operator. Moreover, in the setting pertain-
ing to the complexes, one may expect an even subtler situation when numerous HFR
treated groups of electrons must be considered, e.g. when pyridine ligands with delo-
calized π-system lend their lone pairs used for the complex formation to the HFR
treated CLS group. The one-electron part of the effective group Hamiltonian can be
presented as

heff = heff
0 + h′(4.21)

where h′ describes the one-electron transfers (resonance) between the LP HOs and
the metal valence AOs. The effective operator heff

0 can be defined as one commuting
with the unperturbed projection operator P0. This representation of the one-electron
part of the Hamilton (Fock) operator stresses the possibility of the coordination bond
formation. For the metal AOs the matrix elements of heff

0 are particularly simple:

(
heff

0

)
µµ

= UM
µµ+

∑
B �=M,F

γMBQB +
∑
F

γMF

(
2

∑
r∈SLG∩F

Prr − ZF

)
(4.22)

µ = s, p; the first summation extends to all atoms in the complex except the donor
atoms involved in the resonance interaction with the metal atom (termed here as
frontier atoms — F ) and the metal atom itself. The second summation extends to
those HOs on the frontier (donor) atoms which are responsible for the bond formation
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in the “organic” part of the complex. The diagonal matrix elements of heff
0 for the

m-th LP HOs residing on the F -th frontier atom have a form similar to that of the
effective two-electron bond Hamiltonian eq. (3.2) with the obvious variance that the
matrix elements of heff

0 are of the one-electron operator:(
heff

0

)F

lmlm
= U l

m +
∑

B �=F

γMBQB + 2
∑

tm1∈SLG∩F

gF
lmtm1

P tt
m1

+

+
∑
F ′

γFF ′

(
2

∑
r∈SLG∩F ′

Prr − ZF ′

)
− γMF ZM

(4.23)

By this the one-electron part of the effective Fockian in the CLS carrier subspace is
completely defined.

Now we address the average Coulomb interaction entering the Fock operator and
the energy. It has the standard HFR form for the metal orbitals:

Σss[P ] = gssPss + 2gsp

∑
p

Ppp + 2
∑
F

γMF

∑
r∈CLS∩F

Prr;

Σpp[P ] = gppPpp + 2gspPss + 2gpp′
∑

p′ �=p

Pp′p′ + 2
∑
F

γMF

∑
r∈CLS∩F

Prr

(4.24)

where the Coulomb parameters gss, gsp, gpp and gpp′ relevant for the HFR description
of the sp-shell of a metal atom have been introduced [35]. The Coulomb interactions
between electrons in the LPs reduce to a standard contribution of the form:

Σlmlm [P ] = (lmlm|lmlm)F P ll
m + 2

∑
tm1∈CLS∩F

gF
lmtm1

P tt
m1

+

+ 2γMF

(
Pss +

∑
p

Ppp

)
+ 2

∑
F ′

γFF ′
∑

r∈CLS∩F ′
Prr

(4.25)

The latter expression flows to the same value as in the SLG approximation for the
free ligand, as for the LPs the following (HFR-type) relation naturally holds:

Γll
m = (P ll

m)2(4.26)

The HFR approximation implies also the off-diagonal matrix elements of the
Coulomb mean field. They have the form:

Σµlm [P ] = −γMF Pµlm(4.27)

By this the energy operator for the electronic group describing the properties of the
metal ion and its closest surrounding is defined.

The energy corresponding to the single determinant wave function with the occu-
pied subspace Im P is given by [36, 37]:

ECLS = 2
(
SpheffP + Sp PΣ[P ]

)
(4.28)

where heff is the one-electron part of the effective Hamiltonian which contains also
the mean Coulomb field induced by electrons from other electron groups (in our
case – with those in the bond geminals of the “organic” part of the complex) in the
CLS and Σ[P ] is the average (mean-field) Coulomb electron-electron interaction of
electrons described by the ΦCLS function.
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Finally we address possible approximations to the energy of the metal ion with its
closest surrounding on the basis of eqs. (1.104) and (4.28). Inserting the series eq.
(1.104) in eq. (4.28) and cutting the expansion at a particular overall order in V and
V + results in approximation for the energy in the form of a polynomial with respect
to the set of the ESVs characterizing the CLS electron group. The terms of odd overall
order obviously correspond to the bond orders that appear between the LPs on the
donor atoms and the metal ion. The necessity to take into account the variability of
the metal-donor bond orders has been demonstrated recently in [31] in the context of
an MM study. The terms of even overall order correspond to electron density transfers
from LPs to metal ion. While considering the dative bond from the point of view of
a single donor atom, we were restricting ourselves with the harmonic approximation
relative to the corresponding parameter x. In the case of a metal complex, it may
be insufficient since the first terms responsible for the interactions between electrons
transferred from the donor atoms to the metal appear only in the fourth order with
respect to V . On the other hand, the Coulomb interactions between the donor atoms
themselves change in the second order in V . The amount of this variation may be
about a couple of electron volts and can cause significant deviations from the “points-
on-a-sphere” or any other model operating with interligand force fields which do not
depend on the interaction with a “third” body – the central ion.

The general picture of the electronic structure of the CLS can be obtained with
certain precision in terms of the 6 × 4 matrices V departing from the limit of sep-
arated metal and ligands. However, for our purpose of constructing a mechanistic
model of metal complexes, it is more convenient to start from another unperturbed
state: namely, that of a symmetric complex and to consider the effects of different
perturbations. It is substantiated by the well-known archetypal symmetric polyhedra
such as octahedra or tetrahedra in the stereochemistry of CCs. We describe a symmet-
ric equilibrium configuration of an ML6 complex and use it as the starting point for
describing subtler effects of the substitution upon molecular geometry. To obtain this
starting point, we have to solve the Hartree-Fock problem for the CLS of an octahe-
dral CC. This approach has the advantage that for the octahedral symmetry, the MOs
are completely described by two parameters equivalent to the coefficients xa1 and
xt1u mentioned above in eq. (4.20). This problem can be equivalently reformulated
directly in terms of the density matrix, which will be done for the sake of uniformity.

In the octahedral geometry, the orbitals of each entering symmetry appear no more
than twice. For that reason, the problem of defining variables xa1 and xt1u (or their
equivalents – see below) reduces to diagonalization of the 2 × 2 Fockian blocks cor-
responding to the respective irreducible representations Γ:

FΓ =
(

aΓ bΓ

bΓ cΓ

)
(4.29)

The exact definition of the matrix elements of the Fockian for an HFR-treated group
of electrons in the presence of other groups is given in [13] and [33] (and above).

The one-electron density matrix corresponding to the solution of the Hartree-Fock
problem in the CLS is, like any Hartree-Fock density matrix, an operator (matrix) P
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projecting to the occupied MOs:

P = x2
a1

∣∣a0
1〉〈a0

1

∣∣+ y2
a1

|s〉〈s| + xa1ya1

(∣∣s〉〈a0
1

∣∣+ ∣∣a0
1〉〈s

∣∣) +

+
∑

γ=c,s

∣∣e0
gγ
〉 〈

e0
gγ
∣∣+ ∑

γ=x,y,z

[
x2

t1u

∣∣t01uγ
〉 〈

t01uγ
∣∣ +

+ y2
t1u

|pγ〉〈pγ | + xt1uyt1u

(
|pγ〉

〈
t01uγ

∣∣+ ∣∣t01uγ
〉
〈pγ |

)](4.30)

where the quantities xΓ, yΓ are defined after eq. (4.32) and the orbitals with the super-
script “0” refer to the symmetry adapted combinations of the LP HOs χγ in the right
hand side of eq. (4.20). The above expression can be further simplified by noticing
that the normalization condition for the quantities xΓ, yΓ can be absorbed in a ratio-
nal function of another (single) electronic structure variable for each Γ. Indeed, an
operator projecting onto one-dimensional subspace of two-dimensional space has the
form:

PΓ =
(

x2
Γ xΓyΓ

xΓyΓ y2
Γ

)
=

1
1 + v2

Γ

(
1 vΓ

vΓ v2
Γ

)
The projection operator eq. (4.30) is a direct sum of the 2 × 2 projectors with the
appropriate values of vΓ (in particular veg = 0) taken in the required number of
instances (one for each row γ of the irreducible representation Γ). The projection
operator eq. (4.30) is one for the 12-electron complex. In a 14-electron complex, the
Pa1 in the direct sum has to be replaced by the 2 × 2 identity matrix, thus reducing
the number of ESVs to only one: vt1u .

Inserting the ground state projection operator in the Hartree-Fock expression for
the energy of the CLS electron group we get:

ECLS =
(
2 SpheffP + Sp PΣ[P ]

)
, provided(4.31)

FCLS = heff + Σ[P ]

where heff is the one-electron part of the Fock operator and Σ[P ] is the self-energy
part representing the electrostatic field induced by electrons in the CLS group upon
each other. By this we arrive at an explicit expression for the energy in terms of the
ESVs vΓ. This is the closed expression for the energy required by the DMM method-
ology (the molecular geometry enters through the respective dependence of the Fock-
ian matrix elements). Moreover, it is the rational function of the ESVs involved. This
expression can be efficiently searched with respect to the relevant variables yielding
the equilibrium geometry and corresponding electronic structure.

It is possible, however, to obtain analytical estimates for the equilibrium values of
ESVs, which possess rather interesting properties. The simplest analytical expression
representing the solution can be written for the product xΓyΓ which is expressed
through the single parameter ζΓ:

ζΓ =
bΓ

cΓ − aΓ
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condensing all the necessary information:

x2
Γy2

Γ =
1
4

(
1 − 1

1 + ζ2
Γ

)
(4.32)

If one is interested in the complex formation, then the limit ζΓ � 1 has to be consid-
ered for long interatomic distances. In this case:

x2
Γy2

Γ ≈ 1
4
ζ2
Γ

The opposite limit ζΓ � 1 describes the situation close to the equilibrium. In it the
following estimate holds:

x2
Γy2

Γ ≈ 1
4

(
1 − 1

ζ2
Γ

)
(4.33)

These results, known for decades, have never been considered from the point of view
of possible transferability of the off-diagonal density among different molecules as
far as we know. This latter property is however a key to constructing any mechanistic
model of PES as shown in [38] and in Chapter 3.

The situation described by eq. (4.33) differs in an important respect from the anal-
ogous results of [39] described in Section 3.2.1 for isolated two-center two-electron
bonds characteristic of organic species. In the “organic” domain, the transferability
of the off-diagonal element of the one-electron density matrix immediately brings up
the transferability of the corresponding Coulson bond-order directly involved in the
expression for the bond energy. The formula eq. (4.33), however, applies to the den-
sity matrix element in the basis of the symmetry adapted linear combinations of the
LP HOs. They are not related to individual M − L bonds, which are not even “observ-
able” elements of the molecular electronic structure in the sense proposed by Rue-
denberg [40] (in opposition with the two-center two-electron bonds in “organics”).
By contrast, the stable (up to the second order in the presumably small parameters
ζ−1
Γ ) values of the one-electron density matrix elements refer to a completely differ-

ent element of the construction: to the three-dimensionally delocalized CLS group of
electrons whose ESVs themselves possess necessary transferability properties which
make them an “observable” component of the molecular electronic structure in the
sense of [40]. The pragmatic outcome of this might be the replacing, in the vicinity of
the equilibrium of the ESVs, either by the transferable value of vΓ = 1 (Γ = a1, t1u)
or by inserting the estimates eq. (4.33) and by this arriving at the PES as a function of
the nuclear coordinates only. The described result applies however to the octahedral
complexes only. The major task is to make this treatment useful for the analysis of
the molecules of lower symmetry, which will be done in subsequent sections.

4.4.3. Numerical results on metal-ligand resonance interaction

The theory developed above serves largely to reformulate the results of the otherwise
very old and traditional HFR-based treatment of the CLS known from many sources
and textbooks to the form suitable for subsequent use in the context of DMM and
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hybrid QM/MM treatments. The problem setting is that the reduced DMM and/or
QM/MM treatments are intended to reproduce the results of HFR-based semiempir-
ical calculations of the CCs. In order to get a feeling of the real numerical results
to be reproduced by the target reduced scheme, we consider octahedral complexes
formed by metal ions with vacant valence s, p-AO’s (like K+, Ca2+, Fe2+) and six
monodentate ligands each bearing one lone pair. According to semiempirical calcu-
lations, which are the reference points here, the effective charges of divalent cations
do not exceed +1.1, which corresponds to the overall density transfer to the metal
ion not exceeding 0.9ē, which amounts to only 0.15ē of transfer per donor atom.
This corresponds to the λ and/or ζ values of the orders of 10−2 which can be safely
treated in a low order approximation. One can also notice that in the ab initio context
the effective (Mulliken) charge of a divalent cation is even larger (reaching almost
two with a precision of several per cent) so that the transfers from the donor atoms to
the metal ions are even smaller than in the semiempirical treatment. This allows us
to conclude that the simple perturbative estimates can be well acceptable. We stress
once again that using a purely ionic model cannot provide any explanation for the
mutual ligand influence. All its tiny features are the consequences of the electronic
structure variations and ultimately of the wave-like behavior of electrons in molecules
and for this reason the variables responsible for the latter, e.g. one-electron density
matrices, must be retained in the theory. On the other hand, the smallness of the elec-
tron transfer allows us to keep only the lower powers in all expansions where the
corresponding terms appear.

4.5. MECHANISTIC MODEL FOR STEREOCHEMISTRY
OF COMPLEXES OF NONTRANSITION ELEMENTS

Now we can continue by constructing a mechanistic model of stereochemistry of
CCs, which is able to reproduce the features of ligand influence. Before plunging
into this, we explain what is expected to be constructed here from the theory. As we
have mentioned many times, our main concerns are numerosity of the parameters
necessary for the mechanistic description of (metal) CCs and, related to it, sophisti-
cation of the mutual ligand influence effects, which ultimately requires that amount
of parameters to be introduced to get an acceptable description, which makes the
entire enterprise eventually senseless. Our purpose is to theoretically derive DMM-
like and MM-like descriptions covering metal complexes and by this to give an expla-
nation and introduce systematization to this diversity. There is no chance to construct
such a theory from scratch. Fortunately, Levin and Dyachkov (LD) have performed
an exhaustive qualitative analysis of the interplay between substitutions and defor-
mations, i.e. of the ligand influence in CCs of both transition and non-transition
elements [41] with donor ligands for the most widespread coordination polyhedra:
octahedron, tetrahedron, and planar square. Analysis performed in [41] on the basis of
eq. (4.20) used as a zero approximation, reduces to qualitative reasoning on the prop-
erties of the solutions of the MO LCAO method in the restricted basis of functions.
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Formally the model [41] is a specific case of applying the theory of perturbations of
MOs to their special class of eq. (4.20).

The construction of the LD theory of the ligand influence evolves in terms of two
key objects: the electron-vibration (vibronic) interaction operator and the substitution
operator. The vibronic interaction in the present context is the formal expression for
the effect of the system Hamiltonian (Fockian) dependence on the molecular geom-
etry taken in the lower – linear approximation with respect to geometry variations.
It describes coupling between the electronic wave function (or electron density) and
molecular geometry.

The substitution operator HS is defined by LD relative to a symmetric (octahedral)
molecule ML6. The substitution operator is somewhat more tricky. By definition it is
the difference between the operator related to a substituted complex MLnXYZ... and
its symmetric prototype:

HS = HMLnXYZ... − HML6(4.34)

This definition, if taken literally, brings several questions. First, the electronic Hamil-
tonians entering eq. (4.34) are the functions of the nuclear coordinates of the respec-
tive complexes and thus their difference is a strongly singular operator. This concern
is lifted by going to the representation eq. (4.19) for the wave function and by con-
sidering the above definition in the sense of the effective Hamiltonian for the CLS
subsystem. In this case we deal with the matrix representation of the corresponding
Hamiltonians written with respect to the same set of orbitals. By this the dependence
of the Hamiltonians on the chemical composition of the species involved condenses
in the matrices of the same dimensionality, which can be manipulated irrespective of
their origin. The second question is how to sequentially define the orbitals χγ to be
used to construct the MOs eq. (4.20) in a polyatomic system like a CC with organic
ligands. Using our previous results we can conclude that for the ligands themselves
(“organic” part) the SLG form of the trial wave function must be a relevant approxi-
mation. We performed a comparative study of electronic structures of simple amines
and ethers on one hand and their polycyclic counterparts on the other, by the semiem-
pirical SLG-MNDO method. The calculation results given in [13] show that the rel-
evant parameters of electronic structure (the bond orders, electron densities on the
bonding orbitals of the donor atoms, and the weights of the s-functions in the lone
pairs), the low-molecular amines and ethers and their cyclic polyanalogs, are fairly
close. So we can assume that the σ-orbitals χγ required for the Levin-Dyachkov
construction can be extracted from an SLG based procedure for free ligands with a
subsequent slight modification occurring throughout the complexation process. Our
calculations on cyclic chelating ligands have been performed at more or less arbitrary
conformation of the molecule at hand (NH3, Me3N, Et3N, MeEtNH, 18ane(N)6). We
found that the dispersion of the equilibrium values of all ESVs related to donor atoms
entering the cyclic chelating ligands is always smaller than the dispersion of the anal-
ogous values in a series of ethers or amines ranging from water or ammonia to the cor-
responding alkyl di- or trisubstitutes, respectively. Thus the SLG form (together with
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its semiempirical implementation) seems to be a relevant approximation for treating
free chelating agents like crown ethers or cyclic polyamines.

4.5.1. Perturbative analysis of the DMM model of CLS and its relation to LD
theory of ligand influence

Now let us consider what is going to happen to the above DMM picture under
the variation of composition (chemical substitution) and/or geometry, both reduc-
ing the symmetry of the CLS. An interplay between these two types of perturbation
is the main concern in the LD theory of ligand influence.

4.5.1.1. DMM on nonsymmetrical coordination compounds

Any Fock operator can be represented as a sum of the symmetric one and of a pertur-
bation which includes both the dependence of the matrix elements on nuclear shifts
from the equilibrium positions and the transition to a less symmetric environment
due to the substitution. To pursue this, we first introduce some notations. Let h′

be the supervector of the first derivatives of the matrix of the Fock operator with
respect to nuclear shifts δq counted from a symmetrical equilibrium configuration.
By a supervector, we understand here a vector whose components numbered by the
nuclear Cartesian shifts are themselves 10× 10 matrices of the first derivatives of the
Fock operator, with respect to the latter. Then the scalar product of the vector of all
nuclear shifts |δq) and of the supervector h′ yields a 10×10 matrix of the corrections
to the Fockian linear in the nuclear shifts:

(h′ | δq) =
∑

i

∂h

∂qi
δqi(4.35)

(Here we introduce the notation (· · · | . . . ) for the scalar product of vectors whose
components are numbered by the Cartesian shifts of the nuclei). Next, let h′′ be the
supermatrix of the second derivatives of the matrix of the Fock operator with respect
to the same shifts. As previously, we refer here to the supermatrix indexed by the pairs
of nuclear shifts in order to stress that the elements of this matrix are themselves the
10×10 matrices of the corresponding second derivatives of the Fock operator with
respect to the shifts. The contribution of the second order in the nuclear shifts can be
given the form of the (super)matrix average over the vector of the nuclear shifts:

(δq |h′′| δq) =
∑
ij

∂2h

∂qi∂qj
δqiδqj(4.36)

Supplying this with the 10 × 10 matrix of the substitution operator

hS = FCLS
S = FCLS

MLnXYZ...
− FCLS

ML6
(4.37)

we get the “bare” perturbation of the effective Fock operator in the CLS carrier
space as:

(h′ | δq) +
1
2

(δq |h′′| δq) + hS(4.38)
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This does not form the entire (“dressed”) perturbation because, in case the electron
density changes to the first order in the above perturbation, the Fock operator acquires
additional perturbation through the variation of its self-energy part, which leads to the
self-consistent perturbation. Thus the perturbed Fock operator can be written as:

F = F0[P0] + (h′ | δq) +
1
2

(δq |h′′| δq) + hS + Σ[∆P ](4.39)

Here ∆P stands for the correction to the unperturbed projection operator P0 to the
occupied MOs, which in the case of the octahedral complexes is given by eq. (4.30).
This serves as a prerequisite for performing the two remaining steps of the prescrip-
tion of Section 3.1 of constructing a DMM description of CCs of arbitrary (low)
symmetry and of the linear response theory based on it and leading to a strictly mech-
anistic description of this class of molecules.

To proceed further, we look at the perturbed density matrix. It was assumed to have
the form

P = P0 + ∆P = P0 +
∑
n>0

P (n)
(4.40)

where the correction ∆P can be expanded in terms of the matrices V satisfying the
conditions:

P0V = 0; V P0 = V ; (1 − P0)V P0 = V ;
P0V

+ = V +; P0V
+(1 − P0) = V +; V +P0 = 0

as follows [37]:

P (1) = V + V +

P (2) = V V + − V +V

P (3) = −V V +V − V +V V +

P (4) = V +V V +V − V V +V V +

which can be continued. The matrices V are 4×6 matrices for 12-electron complexes
and 3×7 matrices for 14-electron complexes, which organize into a single entity inde-
pendent ESV’s of the problem – the first order transition densities between the occu-
pied and empty MOs of the unperturbed problem. One can check that only the even
terms of the above expansion contribute to the effective charges residing on the atoms
(orbital populations) of the CLS.

Inserting the expansion eq. (4.40) rewritten in terms of matrices V in the energy
expression eq. (4.31) with the perturbed Fock operator eq. (4.39) yields a DMM
model of the CC of an arbitrary symmetry since the transition densities V take
account of all possible perturbations of the electronic structure, keeping the CLS a
separate entity. The series eq. (4.40) in fact appears by expanding the closed expres-
sion for the projection operator:

P = (P0 + V )(1 + V +V )−1(P0 + V +)

which involves the inversion of a 10 × 10 matrix and nowadays is not a great com-
putational problem. On the other hand, it is possible to restrict oneself to a certain
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power in the expansion of eq. (4.40), getting to the polynomial model of the elec-
tronic structure of required accuracy.

It is easy to analyze the above model keeping the terms of the total order not higher
than two in δq and V simultaneously and taking into account that under the spur sign
the argument of the self-energy part Σ of the Fock operator can be interchanged with
the matrix multiplier [37]. Using these moves we arrive at:

ECLS = 2 Sp[h0P0] + Sp[P0Σ(P0)]︸ ︷︷ ︸
=E0

+2 Sp[F0 (V + V +)] +

+ 2 Sp[(h′ | δq)P0] + 2 Sp[(h′ | δq) (V + V +)] +

+ Sp[(V + V +)Σ(V + V +)] +

+ Sp[(δq |h′′| δq)P0] + 2 Sp[F0 (V V + − V +V )]

(4.41)

At the equilibrium the terms linear in δq and V + V + vanish so that the electronic
energy becomes:

ECLS = E0 + 2Sp[
(
h′ | δq

) (
V + V +

)
] + Sp[

(
V + V +

)
Σ(V + V +)]+

+ Sp[
(
δq
∣∣h′′∣∣ δq)P0] + 2 Sp[F0

(
V V + − V +V

)
]

(4.42)

which is a quadratic form with respect to the nuclear shifts and the ESVs V . The
expectation value of the second derivatives of the one-electron part of the Fock oper-
ator with the operator P0 projecting to the occupied MOs of the unperturbed system:

(δq |2 Sp[h′′P0]| δq) = (δq |D0| δq)
is nothing but the bare harmonic potential of the symmetric complex with the
dynamic matrix D0 acting on the nuclear shifts. Analogously the second order energy
corrections with respect to V – the variation of ESVs describing one-electron density
matrix:

2 Sp[F0

(
V V + − V +V

)
]+Sp[

(
V + V +

)
Σ(V +V +)] =

1
2
〈〈V |Λ|V 〉〉(4.43)

turns out to be the quadratic form giving the electronic energy as a function of the
variation of the one electron density matrix. The quantity Λ can be considered a
superoperator (supermatrix) acting in the space of the 10 × 10 matrices taken as
elements of a linear space (the Liouville space). The supermatrix Λ has four indices
running through one-electron states in the carrier space of the CLS group. Then the
formula

〈〈A | B〉〉 = Sp
(
A+B

)
defines a scalar product in the Liouville space, which ultimately permits the notation
used in eq. (4.43). The next move consists in forming a direct sum of the Liouville
space of the matrices V which can be expanded over the basis formed by the matrix
unities |b〉〈a| with a and b running over all basis states of the CLS carrier space and of
the space spanned by the nuclear shifts. Extending the definition of the scalar product
to this new space allows us to rewrite the spurs in eqs. (4.41) and (4.42) as scalar
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products in this new vector space. Then the two types of perturbations introduced
above couple by the bilinear term:

2 Sp[(h′ | δq)
(
V + V +

)
] = 〈〈V |h′ |δq) + (δq|h′ |V 〉〉 .(4.44)

This is nothing but the electron-vibration interaction in the chosen notation. The
quantity h′ is the three index supervector; acting on the vector of nuclear shifts they
form the scalar product (. . . | . . .) giving a 10 × 10 matrix, next forming a Liouville
scalar product with matrix V . On the other hand, acting on the variations V of the
density matrix by forming the Liouville scalar product h′ produces a vector to be
convoluted with that of nuclear shifts δq. With use of this set of variables the energy
in the vicinity of the symmetric equilibrium point becomes:

ECLS = E0 +
1
2

(δq 〈〈V
∣∣∣∣D0 h′

h′ Λ

∣∣∣∣ δq)
V 〉〉(4.45)

which is a quadratic form with respect to both the nuclear shifts and the ESVs. The
substitution operator gives additional terms which also can be recast into the form of
the scalar products in the Liouville space:

hS = w + w+

2 Sp[hS (V + V +)] = 〈〈V | w〉〉 + 〈〈w | V 〉〉
(4.46)

With this notation the energy of the CLS becomes:

ECLS = E0 + 〈〈V | w〉〉 + 〈〈w | V 〉〉 +(4.47)

+
1
2

(δq 〈〈V
∣∣∣∣D0 h′

h′ Λ

∣∣∣∣ δq)
V 〉〉

This can be treated as the minimal order of the DMM picture for the PES of the
CCs of nontransition elements. It perfectly condenses all the necessary elements of
the LD theory of the ligand influence and of the theory of vibronic interactions. The
specificity of the “class” of compounds is fixed by the presence of the CLS group. The
specificity of a “subclass” within this class is controlled by the number of electrons
in the CLS which defines the specific form of the quantities P0 and Λ. Both the
geometry and the electronic structure of the substituted or/and deformed complex
can be obtained (in the “harmonic” approximation) by taking derivatives of the above
expression with respect to δq and V and setting these former equal to zero. Doing that,
we see that the fixed deformation |δq) and the substitution w result in the modification
of the electronic structure as compared to the symmetric undeformed complex. The
amount of the modification necessary to bring the system to the new equilibrium is
given by the formula:

|V 〉〉 = Λ−1[|h′ |δq) + |w〉〉](4.48)

It is remarkable that the supermatrix Λ−1 is nothing [42] but the polarization propa-
gator Π for the CLS subsystem calculated for the symmetric molecule. With this we
get:

V = Π[|h′ |δq) + |w〉〉](4.49)
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This performs the announced program of obtaining a closed expression for the energy
of the CC (or at least of its CLS) in terms of its geometry and electronic structure
variables.

4.5.1.2. PES of coordination compound as derived from DMM

Now we can turn to deriving a true mechanistic (MM-like) model for CCs of non-
transition element by excluding the ESVs V . Inserting eq. (4.49) in eq. (4.47) we get
for the energy:

1
2

[(δq |D| δq) + (δq| 〈〈h′ |Π| h′〉〉 |δq) + 〈〈w |Π| w〉〉+(4.50)

(δq| 〈〈h′ |Π |w〉〉) + (〈〈w |Π |h′〉〉 |δq)]
This expression contains in a condensed form all the results which are obtained in
detail in [41], namely the theory of ligand influence which can be considered as one
describing a response of molecular geometry to the chemical substitution. For exam-
ple, optimizing the above expression with respect to |δq) yields the response of the
complex geometry to the substitution of the ligands. One easily gets the close expres-
sion for it:

|δq) = −D−1 |〈〈h′ |Π| w〉〉)(4.51)

Different ligands are characterized by their specific contributions to the Fock oper-
ator for the CLS group. In the simplest approximation adopted in [41] the ligand is
characterized by its diagonal matrix element in the Fock operator, which is a true
parameter of the model. The semiempirical SLG theory as applied to isolated ligands
allows us to estimate these quantities related to the LPs and even provides formu-
lae describing their dependence on the deformations of the “organic” bonds incident
to the donor atom. However, it is important to mention that replacing one ligand by
another in a CC (local perturbation) produces a nonlocal effect in the sense that it
does not necessarily decrease with the distance from the perturbation location (as it
will be described below).

The MM-like model of complexes of nontransition elements requires even less
than is given by eq. (4.50): only the first and the second term in the first row. They
represent the bare harmonic dependence of the energy on the nuclear shifts and the
renormalizations of the respective harmonic constants due to adjustment of the elec-
tronic structure to these shifts:

D = D0 + 〈〈h′ |Π| h′〉〉(4.52)

As mentioned previously, the specifics of the central atoms in CCs are determined
by the structure of the supermatrix Π, which is in its turn predefined by the structure
of the carrier space of the CLS group and by the number of electrons in it. Indeed,
the supermatrix Π of the polarization propagator is particularly simple in the basis of
the eigenstates of the Fock operator F0. Its matrix elements then are:

Πii′jj′ =
δii′δjj′

εi − εj
(4.53)
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where the subscripts ii′ run over all occupied MOs and the subscripts jj′ run over
the vacant ones. In this basis the elements Vji of the matrix V and of its conjugate
by definition represent the transition densities between the i-th occupied and the j-
th empty MO. They are numerical coefficients at the matrix unities |j〉 〈i| being the
basis vectors of the Liouville space. In terms of the Liouville space the superoperator
Π can be written:

Π =
∑

i∈occ
j∈vac

| i → j〉〉 〈〈i → j |
εi − εj

(4.54)

(| i → j〉〉 is the Liouville space notation for the matrix unity |j〉 〈i|) which allows the
straightforward use of the scalar product formulae with the notion that:

〈〈i → j|i′ → j′〉〉 = 〈i|i′〉 〈j|j′〉 = δii′δjj′(4.55)

The simplest approximate description of Π corresponds to what is known as the fron-
tier orbitals approximation, where only the highest occupied and lowest unoccupied
MOs (HOMO and LUMO, respectively) are involved. Within it one gets:

Πhh′ll′ = −δhh′δll′ (εH − εL)−1(4.56)

where subscripts hh′ run over the orbitals in the HOMO manifold (they may be
degenerate in the highly symmetric case) and ll′ do the same in the possibly degen-
erate LUMO manifold.

The given formulae contain all the necessary results, but cannot be easily qualita-
tively interpreted. The necessary interpretation has been done by Levin and Dyachkov
and is based on clarifying the interplay of the effects produced by substitution
and vibronic operators upon the solution of the Hückel-like problem in the 10-
dimensional orbital carrier space using symmetry considerations. This will be done
in the next section.

4.5.1.3. Symmetry adapted formulation

Using the variables introduced in the previous sections, the symmetry analysis of [41]
can be reformulated as follows. The deformation of the molecule of a CC |δq) is a
vector with the components referring to the individual nuclear shifts:

|δq) =
∑

i

δqi |i)(4.57)

For a symmetric (say, octahedral) molecule, it may be rewritten using the symmetry
adapted nuclear shifts:

|δq) =
⊕
Γγ

δqΓγ |Γγ)(4.58)

where Γ and γ refer respectively to the irreducible representation of the symmetry
group and its row (in the case of a degenerate irreducible representation). In an octa-
hedral complex, if only the shifts leading to the M − L (M − X) bond lengths varia-
tion are concerned, the symmetry classification suffices to label all possible collective
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shifts which can be either of a1g, eg, or t1u symmetry. They can be explicitly written
through the nuclear shifts of the individual ligands according to:∣∣a1g

)
=

1√
6

[
|xLx

) −
∣∣xL−x

)
+
∣∣yLy

)
−
∣∣yL−y

)
+ |zLz

) −
∣∣zL−z

)]
(4.59)

|egs) =
1

2

[
|xLx

) −
∣∣xL−x

)
−
∣∣yLy

)
+
∣∣yL−y

)]
|egc) =

1

2
√

3

[
2 |zLz

) − 2
∣∣zL−z

)
− |xLx

) +
∣∣xL−x

)
−
∣∣yLy

)
+
∣∣yL−y

)]
|t1uγ) =

1√
2

[∣∣γLγ

)
+
∣∣γL−γ

)]
The meaning of the notation for the individual nuclear shifts is that

∣∣γL±γ

)
represents

a unit shift in the positive direction along the γ axis of the ligand located at the ±γ
semiaxis of the coordinate frame.

A remarkable feature is that the derivative of the one-electron part of the Fock
operator with respect to the symmetry adapted nuclear shift δqΓγ (an operator acting
on the one-electron states in the CLS carrier space) itself transforms according to the
irreducible representation Γ and its row γ. That means that applying the deformation
|Γγ) to a complex results in a perturbation of the Fock operator having the same
symmetry Γγ. This allows us to write the vibronic operator in a symmetry-adapted
form:

(h′ | δq) =
∑
Γγ

δqΓγ
(
h′

Γγ | Γγ
)

(4.60)

Finally, the substitution operator can be expanded as a sum of symmetry-adapted
components. For example, in the octahedral complex, single substitution ML6 →
ML5X results in the substitution operator:

hS = 1√
6
hS

a1g
+ 1√

3
hS

egc + 1√
2
hS

t1uz(4.61)

As we see, for the symmetric system all the elements of the present picture are
classified according to irreducible representations of the relevant symmetry group –
Oh. For example, the energies defining the polarization propagator depend on ΓH and
ΓL, but not on the rows γH and γL of the involved irreducible representations. Using
the symmetry notation for the polarization propagator allows us to realize its rôle as a
selection mechanism for interference of different perturbations. As mentioned, in the
frontier orbitals approximation, the only energy parameter is the energy gap εH − εL.
The polarization propagator thus acquires the form

Π = − (εH − εL)−1
∑

γH,γL

|γH → γL〉〉 〈〈γH → γL |(4.62)

It is obvious that the superoperator Π acts as a projection operator in the Liouville
space, cutting out those components of the 10× 10 transition density matrices which
mix γH state with the γL state, which is only possible if the symmetries of the pertur-
bations of both the symmetry of deformation Γdef and the symmetry of substitution
ΓS satisfy the selection rule:
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Γdef , ΓS ⊂ ΓH ⊗ ΓL(4.63)

i.e. both enter the expansion of the tensor product of the irreducible representations
of the frontier orbitals.

4.5.2. Applications
4.5.2.1. Off-diagonal elastic constants for stretching of bonds incident to the central

atom

Up to this point, our main concern was to reformulate the results of the LD ligand
influence theory in the DMM form. Its main content was the symmetry-based analysis
of the possible interplay between two types of perturbation: substitution and defor-
mation, controlled by the selection rules incorporated in the polarization propagator
of the CLS. The mechanism of this interplay can be simply formulated as follows:
substitution produces perturbations of different symmetries which are supposed to
induce transition densities of the same symmetries. In the frontier orbital approxima-
tion, only those densities among all possible ones can actually appear, which have the
symmetry which enters into decomposition of the tensor product ΓH ⊗ΓL to the irre-
ducible representations. These survived transition densities then induce the geometry
deformations of the same symmetry.

The deformation (nuclear shifts) may play the same rôle as substitution. Inducing
a deformation of some symmetry leads to the appearance of the transition densities
of the corresponding symmetry. The same selection rule as that for the substitution
makes only the symmetry component entering into decomposition of the tensor prod-
uct ΓH ⊗ ΓL to survive and to induce the deformation of the same symmetry. For
example: the z-shift of the apical ligand expands as:

|zLz) =
[

1√
6
|a1g) +

1√
3
|egc) +

1√
2
|t1uz)

]
(4.64)

Thus it may produce the transitional densities of the a1g , egc, and t1uz symmetries.
At this point selection rules pertinent to the frontier orbitals approximation enter: for
the 12-electron complexes the symmetries of the frontier orbitals are ΓH = eg and
ΓL = a1g , the tensor product ΓH⊗ΓL = eg ⊗a1g = eg contains only the irreducible
representation eg so that the selection rules allow only the density component of the
egc symmetry to appear. In its turn this density induces additional deformation of
the same symmetry. That means that in the frontier orbitals approximation, only the
elastic constant for the vibration modes of the symmetry eg is renormalized. This
result is to be understood in terms of individual nuclear shifts of the ligands in the
trans- and cis-positions relative to the apical one. They, respectively, are:∣∣zL−z

)
= −

[
1√
6
|a1g) +

1√
3
|egc) −

1√
2
|t1uz)

]
(4.65)

|xLx) =
[

1√
6
|a1g) −

1
2
√

3
|egc) +

1
2
|egs) −

1√
2
|t1ux)

]
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Combining all this we obtain for the off-diagonal constant, coupling the individual
shifts of the ligands in the trans-positions to each other, as:

1
3

(
egc

∣∣∣〈〈h′
egc |Π| h′

egc

〉〉∣∣∣ egc
)

(4.66)

and for the off-diagonal constant coupling the individual shifts of the ligands in the
cis-positions to each other we get

−1
6

(
egc

∣∣∣〈〈h′
egc |Π| h′

egc

〉〉∣∣∣ egc
)

(4.67)

By contrast, for the 14-electron complexes (nontransition nonmetals) the symme-
tries of the frontier orbitals are: ΓH = a1g and ΓL = t1u and the tensor product
ΓH ⊗ ΓL = a1g ⊗ t1u = t1u so that only the transition density corresponding to
the representation t1u survive. Analogous moves allow us to conclude that the off-
diagonal elastic constant for stretching the trans-bonds has the form:

−1
2
(
t1uz

∣∣〈〈h′
t1uz |Π| h′

t1uz

〉〉∣∣ t1uz
)

(4.68)

whereas that for the cis-bonds vanishes.
This allows us to make some predictions concerning the off-diagonal elastic con-

stants, depending on the electron count in their CLS. Due to the different symmetry
properties of the polarization propagator in these two cases (and according to the LD
picture which ultimately explains the qualitative difference in the stereochemistry of
the 12- and 14-electron complexes) the off-diagonal constant coupling the shifts of
the ligands in the trans- and cis-positions to each other in the 12-electron case is
expected to have a different sign. The sign of the off-diagonal coupling of the trans-
positioned ligands in the 14-electron case is expected to be the same as that for the
cis-positioned ligands in the 12-electron case, whereas the coupling of the shifts of
the cis-positioned ligands in the 14-electron case is expected to be small.

4.5.2.2. Medium range off-diagonal elastic constants

In the previous section we obtained some estimates for the off-diagonal harmonic
terms coupling the stretchings of different M − L bonds incident to the central atom.
The employed treatment can be extended to other types of off-diagonal terms. They
originate as well from the h′Πh′ term in the general energy expression. The tra-
ditional MM picture tends to avoid the appearance of such off-diagonal terms and
tries to represent the energy as a sum of force fields attributed to local elements of
the molecular structure such as bonds, etc. This implies the strictly local charac-
ter of the underlying electronic structure. It is also easy to understand from a prag-
matic point of view, as including long-range type-specific terms in addition to those
already introduced makes the entire parametrization too complicated. On the other
hand, if the electronic structure is physically formed not by local elements such as
two-center bonds, this must be reflected in the corresponding force fields. Inciden-
tally, the CCs possess delocalized structure elements – the CLS – where one-electron
states are extended over all atoms forming it. In such a situation, one has to expect
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some medium range off-diagonal harmonic couplings i.e. specific effective coupling
between the deformations occurring at the separations usually not included in the
MM-like consideration. Using this technique, it is possible to get estimates of such
“off-diagonal” elements of the harmonic molecular potential, mediated by the metal
atom, the very existence of which in the PES expansion is difficult to imagine, if only
not to follow an non-informative idea that “all must be included“. As an illustrative
example, we consider a model two-coordinated linear compound, for which chem-
ical examples are provided by those of Cu+, Ag+, or Hg2+. In the context of the
standard MM analysis, it is assumed that the interactions between the atoms sepa-
rated by more than three bonds are not specific and must be taken into account as
nonbonded “fields” using the Lennard-Jones potentials. Meanwhile, using the tech-
nique presented above, it can be easily shown that in the case of the above metal
complexes, there are specific interactions of noticeable magnitude which, according
to the standard scheme, must be classified as the 1–5 interactions (those between the
atoms separated by four bonds).

Let us consider a (metal) ion bearing as previously four vacant (one s and three p)
orbitals. As previously, we assume that ligand molecules are represented by one LP
each. In the case of linear coordination (z-axis is the molecular axis) and assuming
that in the equilibrium state the LPs are directed along the bonds between the donor
atoms and the metal atom, the symmetry adapted combinations of the LPs have the
form: ∣∣∣a(0)

±

〉
=

1√
2

(|u〉 ± |l〉)(4.69)

According to [43] (see also Section 2.4.1) the LP HOs |u〉 and |l〉 (upper and lower
positions on the z-axis relative to the central atom) are composed of s- and p-orbitals
of the donor atom which are directed along the unit vectors �eu and �el:

|u〉 = s |su〉 +
√

1 − s2 |p�eu
〉(4.70)

|l〉 = s |sl〉 +
√

1 − s2
∣∣∣p�e

l

〉
(with the obvious sense of s as of a coefficient of the s-orbital in the expansion of
the corresponding HO). Using these definitions and the symmetry considerations, it
is easy to identify nonvanishing matrix elements of the Fock operator acting in the
CLS: 〈

σ |h| a(0)
+

〉
=

√
2
(
βDM

σσ s + βDM
ζσ

√
1 − s2

)
	= 0〈

ζ |h| a(0)
−

〉
=

√
2
(
βDM

σζ s + βDM
ζζ

√
1 − s2

)
	= 0

(4.71)

where βDM
σσ , βDM

ζσ , βDM
σζ , and βDM

ζζ are the resonance (one-electron hopping) inte-
grals in the diatomic coordinate frame for the pair metal-donor atoms and where we
denote by σ and ζ respectively the s- and p-states of the metal and donor atoms,
having the σ symmetry with respect to the molecular axis (linear coordination).
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The nontrivial one-electron eigenstates of the effective Fock operator for this CLS
have the form:

occupied : |a+〉 = y+ |σ〉 + x+

∣∣∣a(0)
+

〉
, |a−〉 = y− |ζ〉 + x−

∣∣∣a(0)
−

〉
empty :

∣∣a∗
+

〉
= −x+ |σ〉 + y+

∣∣∣a(0)
+

〉
,
∣∣a∗

−
〉

= −x− |ζ〉 + y−

∣∣∣a(0)
−

〉(4.72)

Two more states of the π-symmetry (|ξ〉 and |υ〉) on the metal ion remain unchanged
as in the free metal ion and both are empty. The frontier orbitals here are the |a−〉
(HOMO) and those in the π-manifold (|ξ〉 and |υ〉 – LUMO).

Now let us assume that the LPs belong to polyatomic ligands. Then a valence
angle MDX with a vertex at a donor atom D is one of the geometry variables of the
molecules in the standard MM setting. We shall estimate the magnitude of the indi-
rect (CLS mediated) interactions between variations of these valence angles. Further
consideration evolves as follows. We assume that the LPs are rigidly attached to the
ligands. Then changing the valence angle MDX by δχu (δχl) yields the correspond-
ing nonvanishing angle between the vector �eu (�el) and the molecular axis. It turns
on the resonance interaction between this LP and the |ξ〉 state of the metal atom (we
assume that either the ligand LPs or the metal atom itself stays in the (ξζ) plane).
The corresponding matrix elements are:

〈ξ |h|u〉 = βDM
ππ

√
1 − s2 sin δχu

〈ξ |h| l〉 = βDM
ππ

√
1 − s2 sin δχl

(4.73)

where βDM
ππ is the resonance (one-electron hopping) parameter for the pair of states

of the metal and donor atoms, which have π-symmetry with respect to the molecular
axis. The derivatives of these matrix elements (and of the Fock operator itself) with
respect to δχu and δχl are:〈

ξ
∣∣∣ ∂h
∂χu

∣∣∣ u〉∣∣∣
δχr=0

=
〈
ξ
∣∣∣ ∂h
∂χl

∣∣∣ l〉∣∣∣
δχl=0

= βDM
ππ

√
1 − s2

〈
ξ
∣∣∣ ∂h
∂χl

∣∣∣ u〉 =
〈
ξ
∣∣∣ ∂h
∂χu

∣∣∣ l〉 = 0
(4.74)

The deformation coordinates |δχu) and |δχl) apparently transform according to the
ξ-th row of the representation π and can be further combined into the symmetric and
antisymmetric adapted coordinates with respect to the symmetry plane perpendicular
to the molecular axis:

|δχ+) =
1
2

(|δχu) + |δχl))

|δχ−) =
1
2

(|δχu) − |δχl))
(4.75)

The individual deformation coordinates recover from the relations:
|δχu) = (|δχ+) + |δχ−))
|δχl) = (|δχ+) − |δχ−))(4.76)

Assembling the relevant terms (those producing the antisymmetric ξ-transition den-
sities in the CLS) we get for the off-diagonal interaction of two valence angles the
following expression:
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Kδχuδχl

K ∝
β2

ππx2
−
(
1 − s2

)
4 (εp − εL)

(4.77)

whose numerical value can be estimated as follows: for the sp3 of the donor atoms
s2 = 1

4 , the weight x2
− of the antisymmetric combination of the ligand LP states in

the corresponding HOMO can be safely estimated as 2
3 so that with the energy gap

(εp − εL) of about 5 eV and the same value of βππ we arrive at the estimate for K
of 0.7 eV/rad2 which can be treated as, if not a large, at least a noticeable specific
contribution of the 1–5 type.

4.5.3. Discussion

It is a widespread point of view in the MM community that the MM represents a
“practical” alternative to standard quantum chemical treatments of molecular struc-
ture. On this basis, the quantum mechanical models are taken as excessively complex
and superfluous, compared to the problems to be solved. The problem, however, is
that in the absence of such models, it is difficult to estimate to what extent each
specific problem possibly fits into some MM scheme or by contrast requires some
essentially quantum mechanical approach to be solved. On the other hand, practical
needs stipulate the interest in developing some MM-like models for wider classes of
molecules as compared to “organic” ones, for which the standard MM treatment is
by many examples proved to be valid. The key point is that behind any “classical”
MM picture, there is always a fairly quantum view of molecular electronic structure.
As it has been shown in [13] and Chapter 3, it is possible to imagine and success-
fully construct more general mechanistic models of molecular potentials (PES) than
the usually accepted “balls-and-springs” models of the standard MM. The deriva-
tion in [13] and Chapter 3 is based on the concept of electron group dating back
to McWeeny [37] and on the “observability” of these groups introduced by Rue-
denberg [40]. In these terms one can state that classical MM of organic molecules
implies that two-electron groups describing bonds are “observable” i.e. well defined
stable groups spanning the molecular electronic structure. Then the moves described
in Section 3.1 result in a fairly mechanistic picture of interacting atomic tetrahedra
representing the sets of orthogonal HOs which can be further reduced to the standard
MM with the externally i.e. independently defined force field parameters. The prob-
lems faced when extending any MM-like description to another class of molecules
is the lack of understanding of the pertinent electronic group structure of the wave
functions characteristic of the new classes of compounds to be included in the MM
domain. In this section we employ the representation of the electronic structure of
CCs in the form of the GF product and develop a mechanistic picture of their PES
involving some necessary elements of the electronic structure description through
the ESVs vΓ and V . This approach can be qualified as deductive molecular mechan-
ics (DMM) of the CLS group of electrons specific for the octahedral environment.
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For other types of coordination, an analogous picture can be developed, which may
be useful provided the electronic structure of the molecule at hand can be described
using the corresponding CLS group. Then, using the perturbation theory, the ESVs
have been excluded from consideration, thus yielding the estimates for the parameters
of the force fields of a more traditional form.

The models thus built remain mechanistic ones, but they naturally take into account
those important features of the electronic structure, which in a standard formulation,
would require innumerable parameterizations for more and more tricky force fields,
whose form remains without any fundamental basis. For example, off-diagonal elastic
constants obtained thus do not assume the angular dependent form like

K ∼ sin 2θ(4.78)

proposed in [8] (θ stands for the valence angle between the bonds incident to the cen-
tral ion), but suggest the existence of some more or less stable ratio between the
constants describing the coupling of the cis- and trans-positioned ligands. Also, the
estimates obtained allow us to relate the sign and other characteristics of these off-
diagonal constants with the chemical nature of the central atom, which is a complex
problem even for classical MM.

This analysis shows the weakness of all tentative attempts to include metals
in “classical” MM. Within the classically looking picture, possible influence is
attributed to charge redistributions among other possibilities. In fact, the charge vari-
ations are the quantities of the second order in the ESVs V, whereas the energy in the
DMM picture depends on the first power of V. This affects the entire structure of the
theory, where the polarization propagator supermatrix becomes the key player defin-
ing the generalized elastic properties of molecular electronic structure, expressed in
terms of the ESVs V in the harmonic approximation. Of course this treatment is
parallel to the random phase approximation (see e.g. [37]). It is also fair to say that
polarization propagators were in use when analyzing the substitution effects in the
CCs at an early stage of these studies [44–46]. However, in these papers the polar-
ization propagator was used within the reactivity indices paradigm: i.e. to estimate
some elements of the density matrices considered as “indices of influence” rather than
the molecular energy/geometry itself. The general vibronic approach of [47] adopted
in [41] stresses the possibility of explicit expression for the PES of substituted com-
pounds, but does not underline the importance of the polarization propagator.

4.6. INCORPORATING D-METALS INTO MOLECULAR MECHANICS.
MODELS OF SPIN-ACTIVE COMPOUNDS

Finally we arrive at the promised hybrid QM/MM construct intended to extend an
MM-like treatment to transition metal complexes (TMCs). Despite the fact that in the
literature [8, 48–53] various MM constructions are considered as effective methods
for modeling PES of TMCs, it is noteworthy that in the case of TMCs the very basic
characteristics of electronic structure comprising the basis of MM may be questioned.
An important feature specific for the TMCs is the presence of the partially filled
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d-shell on the metal ion, which produces a variety of electronic states on the complex
of different total spin and spatial symmetry in a relatively narrow energy range close
to the ground state energy. Geometry dependence of these energies may be rather
confusing, which results in the existence of the areas in the nuclear coordinate space
where the PESs belonging to different electronic terms closely approach each other
and even intersect, leading to experimentally observed spin transitions [54–57] or
Jahn-Teller distortions [47]. Thus, the very problem of including the transition met-
als in the MM context implies a certain contradiction: if several close in energy (or
even crossing) electronic terms are present, there is no object for the MM model-
ing in a strict sense, since there is no unique PES of such a molecule. Indeed, as
it is mentioned in [58, 64] and in Chapter 3, the physical pre-condition for success-
ful construction and use of MM theories for common organic molecules is that their
electronic excited states are well separated from the respective ground states on the
energy scale. Only one quantum state of their electronic system is experimentally
observed in ‘organics’ at ambient conditions and the MM (in fact a classical) descrip-
tion becomes valid. The behavior of the metal valence d-shell is sufficiently quantum:
several electronic states may appear in a narrow energy range close to its ground state
and this quantum feature requires special care, not reducible to a simple adjustment of
the form and parameters of force fields, no matter how sophisticated they are. These
features of the electronic structure of TMCs can be clearly observed in many cases.
The results on blue copper proteins with approximately trigonal-bipyramidal coor-
dination of the copper ion as reviewed in [52] may serve as one of the most recent
examples. The Cu2+ cation is a Jahn-Teller ion due to the spatial degeneracy of its
respective 2Eg and 2T2g ground state terms in the octahedral and tetrahedral environ-
ments. The latter Jahn-Teller instability is inherited also by the trigonal bipyramidal
environment, where the ground state is 2E due to the electron count in the d-shell
of the Cu2+ cation. Clearly the spatial degeneracy of the ground state is the limit-
ing case of the closeness of electronic terms on the energy scale. This degeneracy
is lifted when the molecular geometry deviates from the symmetrical arrangement
and this is the content of the Jahn-Teller theorem (see for details [47]; an original
and concise proof is given in [59]). Technically the Jahn-Teller instability manifests
itself in the presence of multiple minima on the PES, having a close total energy. It
must be understood, however, that these minima arise as a result of the sufficiently
quantum behavior of the d-shell of the Cu2+ cation which, as it has been noticed
previously, in a certain sense prevents the use of the classical MM picture. Otherwise
one should try to develop an artificial force field with multiple minima. This is, how-
ever, wrong: the true picture is a result of superposition of multiple PESs for different
electronic states, which may be simple by itself, whereas the complexity comes from
their superposition.

A plausible way out of this situation has been proposed by R. Deeth ([60] and
references therein). In order to handle quantum behavior of the d-shell he sug-
gested adding the ligand filed stabilization energy (LFSE) term to the MM energy
eq. (2.124). The LFSE in [60] is taken as a sum of the orbital energies of the d-
orbitals, calculated in the angular overlap approximation (AOM – see Section 2.4.2.1)
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whose parameters are assumed to be linearly dependent on the internuclear separation
between the metal and donor atoms. Applying such a model apparently eases many
complications inherent to the MM of TMCs since the LFSE is a purely quantum con-
tribution to the energy. The Jahn-Teller effect in Cu2+ compounds must be perfectly
covered within such a setting. On the other hand, the LFSE is by construction a sum
of one-electron energy contributions, whereas the energy of the d-shell is greatly
dependent on the two-electron Coulomb interactions, particularly for relative ener-
gies of the states of different total spins and spatial symmetries. Bringing the latter
into the MM context requires a much more developed and refined theory than that
of [60], which will be explained below.

Turning in this context to the main topic of our interest, namely, modeling of the
spin active TMCs, we notice that the above considerations apply to them to a large
extent. The change of the spin state of a complex takes place when at least two elec-
tronic states (differing by the value of the total spin) have their respective minima at
quite similar geometries of the complex at hand so that their respective total energies
become equal at some intermediate geometry. As in the case of the Jahn-Teller Cu2+

or Co2+ cations in that of the spin-active ions (e.g. d6 Fe2+) the unique PES of the
complex does not exist and at least two of them (the low-spin – LS – for S = 0
and the high-spin – HS – for S = 2) must be considered. Previously the MM force
fields using different parameter sets for different spin states of the central atom were
in use [61], but due to the absence of a predictive force they are considered to be
obsolete now. However, the basic principles of their construction do not differ from
those force fields which explicitly use different parameter sets for axial and equatorial
ligands in the Cu2+ complexes [8] as the latter are well designed to imitate, by means
of a classical potential, sufficiently quantum features of the TMC’s electronic struc-
ture. Thus one can expect different sets of parameters for four-coordinate complexes
of the Ni2+ ion, which must be tetrahedral in the triplet states and square planar in
the singlet states. In this respect example [62] is very remarkable. The authors try to
construct the MM potential capable of describing transformation between the square
pyramidal and two trigonal bipyramidal forms of the pentacoordinate [Ni(acac)2py]
complex (acac stands for acetylacetone, py – for pyridine ligands). To do so, a spe-
cially designed force field is employed, which depends on the L–Ni–L′ angle and
possesses two minima at 90◦ and 120◦ separated by a barrier higher than 5 eV
(500 kJ/mole). This clearly indicates some problems which can be revealed by a
simple analysis: the trigonal bipyramidal forms of the complex are obviously [63]
triplet (two d-levels degenerate in the trigonal field filled by two electrons) whereas
the square pyramidal form may well be singlet. This spin switch has to take place
somewhere along the rearrangement reaction coordinate but it can by no means be
described by the pure MM picture. Clearly, any approach employing the LFSE is not
capable of describing such a low-symmetric and potentially correlation-dependent
situation. However, the idea of employing LFSE is correct: the energy of the d-shell
must be taken into account. The EHCF method described in Section 2.4.2 is capable
of reproducing even tiny affects of its geometry dependence and distinguishes states
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of different spin and symmetry, which is not possible in the ultimately one-electron
LFSE model.

4.6.1. EHCF vs. LFT and AOM

The success of the EHCF method (Section 2.4.2) in reproducing the crystal field from
geometry data and ligand electronic structure as described by the semiempirical QC
procedure, poses a question about the possible relation between the EHCF method
and the successful parametrization scheme for the LFT, the already mentioned AOM.
As it has been noticed, the ionic model of CFT yields the estimates of the crystal field
parameters of very low quality. In order to overcome this shortcoming and also to take
into account the diversity of the ligands in chemistry, the AOM is used for parametriz-
ing the effective crystal field. Its main drawback (as in the case of the ionic model)
is that it is not possible to obtain independently estimates of its parameters theoret-
ically. As it will be shown, a local version of the EHCF method EHCF(L) derived
and tested in [58] and [64] represents an effective tool allowing us to independently
estimate the AOM parameters with precision. The derivation reduces to two uni-
tary transformations applied to the orbitals involved in the EHCF construct. The first
one is from the basis of canonical MOs (CMOs) of the l-system used in eq. (2.122)
to the basis of localized one-electron states representing characteristic features of
the ligand electronic structure — such as the presence of lone pairs on the donor
atoms.

The EHCF theory [65] relates the dominating covalent contribution to the effective
crystal field to the properties of the delocalized canonical MO of the l-system. Fol-
lowing the calculations presented in [65–69] the covalent contribution yields about
80–90% to the splitting of the d-electrons eq. (2.122). The remaining 10–20% is pro-
vided by the Coulomb interactions with the effective charges on the ligand atoms.

We concentrate on the expression for the covalent part of the crystal field W cov
µν

and transform it to the form coinciding with the AOM and relate the parameters of
the latter with the electronic structure of the ligands. To do so, we perform a uni-
tary transformation of the canonical MOs of the l-system |l〉 – the eigenstates of
the Fock operator – to the localized MO |L〉 separately for the occupied and vacant
canonical MO:

|L〉 =
∑

l

|l〉 〈l | L〉(4.79)

Summation over l in eq. (4.79) is extended to either only occupied or only vacant
MOs. Here 〈l | L〉 are the coefficients of the l-th canonical MO in the expansion of the
L-th local MO. The expansion coefficients of the localized MOs over the canonical
MOs are the invariants of the molecular electronic structure as they do not change
under the rotation of the coordinate frame. Expansion of the LMOs over AOs has the
form:

〈α | L〉 =
∑

l

〈α | l〉〈l | L〉(4.80)
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where 〈α | L〉 is the coefficient of the α-th AO in the expansion of the L-th LMO. In
the literature, a variety of methods of localization is present. They are all in principle
suitable for finding the coefficients 〈l | L〉. In [64] we used the method based on the
max Ψ4 procedure [70], which is technically most feasible.

The maxΨ4 procedure yields states which are strongly localized. Those that are
localized largely on the donor atoms can be identified with the LPs. In the frame of the
accepted method of localization the main contribution to the LPs is provided by the
orbitals of the donor atom (∼93% come from the s- and p-AO of the donor atom), 4s-
and 4p-AOs of the metal give ∼5%. The contribution of other AOs does not exceed
2%. Also, the LPs are well localized in energy. In the case of the [Fe(py)6]2+ all
the contributions to the LPs of pyridine fall into four energy intervals not wider than
0.1 a.u. each giving respectively 14%, 19%, 30%, and 29% (totally 92 %) of the LP
weight. In the case of the [Co(NH3)6]2+ and [Fe(H2O)6]2+ complexes 94% of the
LP weight falls into two such intervals (16% and 78%, respectively).

In the basis of the LMOs the resonance integrals take the form:

βµL =
∑

l

〈l | L〉βµl(4.81)

Inserting βµl into the expression for W cov
µν eq. (2.122) (the resonance integrals βµl

and βµL refer correspondingly to the basis sets formed by canonical and localized
MOs) we get:

W cov
µν =

∑
LL′

βµLβνL′{Gret
LL′(Id) + Gadv

LL′(Ad)}(4.82)

The unitary transformation from the basis of the CMOs to the basis of the LMOs of
the l-system does not change the covalent contribution to the effective crystal field.
According to numerical estimates the resonance integrals βµL between d-AO and
LPs of the donor atoms by 10÷100 times overcomes the resonance integrals between
d-AO and any other LMOs and thus dominates the resonance interaction of the d- and
l-systems. So, as it has been shown in [71], restricting the summation in eq. (4.82)
by the sum of diagonal elements (L′ = L) over only the LPs results in error in the
estimated splitting of the d-levels of 0.1 eV. This precision is comparable to that of
the EHCF method itself. This estimate is described by the formula:

W cov
µν =

∑
Λ

∑
L∈Λ

βµLβνLGadv
LL (Ad)(4.83)

where Λ enumerates the ligands and subscript L, the LPs located on the donor atoms
of the Λ-th ligand and it is taken into account that due to the fact that only the occu-
pied LMOs contribute to the LPs, only the advanced Green’s function enters into the
answer. By this we arrive at the local formulation of the EHCF theory – EHCF(L).

Now we are in a position to establish the relation between the AOM and EHCF.
According to the AOM ([72] and Section 2.4.2.1) the crystal field is the sum of the
static and dynamic contributions:

Vµν = 〈dµ|V |dν〉 = (Vµν)stat + (Vµν)dyn(4.84)
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On the other hand, the matrix elements of the crystal field in the AOM are expressed
in terms of the cellular expansion of eq. (2.97). The relation between the EHCF and
the AOM is that the matrix elements defined by the eqs. (2.97), (2.121), (4.83), and
(4.84) must be equal. We identify the Coulomb contribution of the EHCF eq. (2.121)
with the static contribution of the AOM and the covalent contribution W cov

µν of the
EHCF method eq. (4.83) with the dynamic contribution to the AOM. Next we identify
the subscript l (for the cells) with the subscript Λ (for the ligands). Accordingly we
can rewrite eq. (4.83) as

W cov
µν =

∑
Λ

(vΛ
µν)dyn(4.85)

where we set

(vΛ
µν)dyn =

∑
L∈Λ

βµLβνLGadv
LL (Ad)(4.86)

and analogously for the static contribution:

(vΛ
µν)stat =

∑
L∈Λ

QLV L
µν(4.87)

Now we find the covalent (dynamic) contribution to the AOM parameters el
λλ′ .

Inverting the relation between the matrix of the contribution vΛ to the crystal field
and the matrix of the AOM parameters eΛ – this is the second unitary transformation
of the two mentioned in the beginning of this section – we get:

RΛvΛRΛ+ = eΛ(4.88)

Separating the dynamic and static contributions we get:

RΛ(vΛ)dynRΛ+ = (eΛ)dyn

RΛ(vΛ)statRΛ+ = (eΛ)stat

(4.89)

where from:

(eΛ
λλ′)dyn =

∑
µν

RΛ
λµ[

∑
L∈Λ

βΛ
µLGadv

LL (Ad)ΛβΛ+
νL ]RΛ+

νλ′(4.90)

where βΛ
µL is the resonance integral between the L-th LMO and µ-th d-AO of the

metal in the laboratory coordinate frame. We express them through the components
of the vector of the resonance integrals between the d-AOs of the metal and the L-th
LMO tL in the diatomic coordinate frame (DCF):

tLλ =
∑

µ

RµλβLµ(4.91)

so that eq. (4.90) takes the invariant form:

eΛ
λλ′ =

∑
L∈Λ

tLλGadv
LL (Ad)tL+

λ′(4.92)
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The advanced Green’s function Gadv
LL (ε) for the local state L in eq. (4.83) is given by

Gadv
LL (ε) = −

∑
l

nl |〈l | L〉|2

ε − (gdl − εl)
(4.93)

where gdl is the interaction energy between d-electron and the electron on the l-th
MO, and εl is the energy of the l-th CMO of the l-system in the TMC.

Formula eq. (4.92) defines the AOM parameters in terms of the quantities which
can be calculated in the frame of the local version of the EHCF – EHCF(L) – method.
The matrix of the AOM parameters eΛ is determined by the form of the vector of the
resonance integrals tL, L ∈ Λ in the DCF. Using the quaternion notation (sL, �vL) in
eq. (3.58) for the expansion of the LP over AOs of the donor atom (here we accept that
each donor atom contributes one s- and three p-AOs to the basis of the AOs of the
complex) we easily express the vector tLλ through the resonance integrals between
d-AOs of the metal and the AOs of the donor atom βµα in the same DCF (µ =
z2, x2 − y2, xz, xy, yz α = σ, ξ, υ, ζ):

tLσ = sLβz2σ + (�e, �vL)βz2ζ

tLπx = (�eξ, �vL)βxz,ξ

tLπy = (�eυ, �vL)βyz,υ

(4.94)

where �e is the unit vector directed from the donor atom to the metal atom (the z ort
of the DCF), and vectors �eξ and �eυ (the x- and y-orts of the DCF). The integrals of
the δ-symmetry do not appear if only the d-orbitals are not included into the basis
of the ligand AOs. In this notation, it is obvious that the coefficient of the s-function
in the LP expansion is invariant under the spatial rotations. The coefficients LMO-AO
for the p-AO in the DCF �vL are not invariants of the molecular electronic structure.
However, they can be expressed in terms of the invariant 3-vector of the coefficients of
the p-AO contributions to the LP �v

(0)
L in some ligand-fixed coordinate frame (LFCF).

It does not coincide either with the laboratory frame or with the DCF, but is rigidly
attached to the ligand, like a system of principal axes of its inertia tensor. However,
any other frame fixed at the ligand is acceptable. Then the relation between �vL and
�v

(0)
L takes the form:

�vL = RΛ�v
(0)
L(4.95)

where RΛ is the rotation matrix superimposing the DCF with the LFCF fixed at
the ligand Λ. Equation (4.95) thus transforms invariant expansion coefficients of the
LPs in the LFCF to the analogous coefficients in the DCF defined by the complex
geometry. With these precautions the entire picture remains invariant with respect to
rotations of the molecule as a whole.

Now we restrict our consideration to those complexes where each donor atom bears
a single LP. We consider the geometries where the z axis of the LFCF coincides with
the z axis of the diatomic coordinate frame and the x- and y-axes in the two systems
are parallel. Under these assumptions the components tLλ of the vector tL differ from
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zero only for λ = σ. The component tLσ of the vector tL for each LP has the form
of eq. (4.94). If the ligand rotates around the donor atom so that θ is the polar angle
between the z axes of the DCF and the LFCF, and φ is the azimuthal angle between
the projection of the z axis of the LFCF on the xy-plane of the DCF and the x axis
of the LFCF, the following holds:

tLσ = sLβz2σ + �v
(0)
Lz βz2ζ cos θ + �v

(0)
Lxβxzξ sin θ cosφ+

+�v
(0)
Ly βyzυ sin θ sinφ

(4.96)

Taking into account all the above, we can write down the expression for the AOM
parameter eσ of the ligand Λ as a function of the polar and azimuthal angles θ and φ
of the ligand Λ relative to the axis z directed from the donor atom to the metal atom:

eΛ
σ = (tLσ )2Gadv

LL (Ad)(4.97)

where L denotes the LP of the ligand Λ. In eq. (4.97) the resonance integrals βz2σ

and βz2ζ in the DCF depend only on the separation between the metal and donor
atoms. The contributions of the different MOs of the l-system to the LP are fixed by
the electronic structure of the l-system and reflected by the Green’s function in the
right-hand side.

In [71] the parameters eσ = eσσ and eπ = eππ have been found following
eq. (4.97). The results indicate acceptable agreement between the calculated and
experimental values of the 10Dq parameters for octahedral complexes [Ni(NH3)6]2+

and [Co(NH3)6]2+. The agreement in terms of 10Dq both with the experiment and
with the EHCF calculation taken to be precise for the purpose of testing the local
version of the EHCF is in the range of 1000 cm−1, which is of the order of the error
of the EHCF method itself.

An important feature of the EHCF(L) theory is that it allows us to estimate the
crystal field in terms of the local ESVs of the ligands. This can be done for arbitrary
geometry of the complex, which is a prerequisite for developing a hybrid QM/MM
method.

4.6.2. Hybrid EHCF/MM method

In this section we finally arrive at the construction mentioned in the introduction to
this chapter: the hybrid method allowing us to incorporate the transition metal ions in
the otherwise classical MM context. This is done using the local version of the EHCF
method. The EHCF methodology allows us to perform systematic calculations of the
crystal field for various ligand environments. The results of these calculations are in
fair agreement with the experimental data, particularly with respect to the spin multi-
plicity of the ground states of the complexes. In their respective simple versions, the
EHCF/X methods treat the electronic structure of the ligands within a semiempirical
approximation X. These methods are not, however, well suited to conduct the system-
atic studies on PES of TMCs. Further application of the EHCF methodology would
be to develop a method for the calculation of PESs of TMCs. To do so we notice that
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the CNDO or INDO parameterizations for the ligands are probably accurate enough
for the charge distribution in the ligands and the orbital energies at fixed experimental
geometries, although they do not suit for geometry optimizations (or more generally
for searching PES) of TMC. Nevertheless, the EHCF method can be adapted for the
PES search in a more general framework of the hybrid QM/MM methodology. This
finally allows us to “incorporate” a quantum description of TMC into the “classi-
cal” methodology of MM and provide the necessary flexibility for quantum/classical
junction (see below).

The EHCF formalism allows us to separate electronic variables in the d-shell,
which require correlated and quantum description from the electrons in the rest of the
complex. Then the EHCF assumes the HFR approximation for the electronic wave
function of the l-system in order to establish the necessary parameters of the elec-
tronic structure. According to [37] (see also Section 1.7.2) the total electronic energy
of the n-th state of a system with the wave function of eq. (2.103) is

En = Eeff
d (n) + El(4.98)

where Eeff
d (n) is the energy of the n-th state of the effective Hamiltonian for the d-

shell in the crystal field. For estimating the total energy En for the complex in n-th
state in [64] we proposed the replacement of the energy of ligands El by its EMM

estimate calculated in some MM approximation. Then the expression for the PES of
the state n becomes:

En = Eeff
d (n) + EMM(4.99)

This coincides with the prescription of Section 1.7.2 and eq. (1.256) provided one
can notice that in row (1) the core-core energy of the latter equation totally vanishes
for the d-shell and in row (6) the renormalization of the Coulomb interaction in the
d-shell due to its interaction with the polarization in the environment is omitted at the
EHCF stage. In addition, to be in close relation to the general QM/MM scheme as
derived in Chapter 1, eq. (4.99) is also a very natural and intuitively transparent way
of combining MM and EHCF [64], allowing us to calculate energies of low-energy
electronic states of the d-shell Eeff

d (n) and the ligand energy EMM for different
nuclear configurations of TMC. This allows us to obtain approximate PES for various
electronic states of the d-shell of TMC in a single setting.

The proposed approach is a family member of the general QM/MM techniques
(see Section 2.6), which were invented with the general purpose of treating differ-
ent parts of the polyatomic systems at different levels of theory. The general setting
of this theory is discussed in detail in the previous chapters of this book. The main
difference between the standard QM/MM technique as employed for treating TMCs
and the present one is that the majority of them require as a desirable feature, the
possibility to extend the subsystem to be treated on a quantum level as much as pos-
sible. This is considered a medication against the uncontrollable errors introduced
by incautious cutting of the entire electronic system, in parts treated by QM and MM
techniques respectively. The hybrid EHCF/MM technique uses an opposite approach:
it tries not to extend, but to reduce the QM subsystem as much as possible, just to the
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size which is responsible for the truly quantum behavior of the systems under study.
The intersubsystem frontier is then treated in such a way that the interactions between
the quantally and classically treated parts are sequentially taken into account. As the
true quantum effects – the low-energy excited states in TMCs, – are localized phys-
ically in the d-shell, we restrict the true quantum description to these latter. This is
related to the very understanding of the concept of “quantum” relevant to the present
problem, which we have already mentioned at the beginning: in organic chemistry,
one normally deals with the ground state PES only, which on the energy scale is well
separated from the lowest excited state. This is the deepest physical reason why the
classical (MM) description is possible for organics. The TMCs differ from that pic-
ture due to the existence of the low-energy excitations in the d-shell accessible in
experiment, and this is the reason why it must be treated on a quantum level.

The technical problem is of course to develop an adequate form of the intersubsys-
tem junction for the case when the quantum system is represented by the d-shell. This
is done using the EHCF(L) technique described above. In the EHCF(L), the effective
crystal field in agreement with the general theory of Section 1.7.2 is given in terms
of the l-system Green’s function. The natural way to go further with this technique is
to apply the perturbation theory to obtain estimates of the l-system Green’s function
entering eqs. (4.83) and/or (4.92). That is what we shall do now.

The bare Green’s function for the l-system in the state when the metal is taken out
has the block-diagonal form:

Gl
00 =

⊕
Λ

GΛ
0(4.100)

Nonvanishing blocks GΛ
0 correspond to separate ligands Λ containing the unper-

turbed diagonal Green’s function matrix elements (GΛ
0 (ε))adv

LL corresponding to the
LP L located on the ligand Λ:

(GΛ
0 (ε))adv

LL = lim
δ→0+

∑
l∈Λ

∣∣〈l | L〉Λ
∣∣2 nl

ε − ε
(0)
Λl + iδ

(4.101)

where 〈l | L〉Λ are the same expansion coefficients as in eq. (2.122) but for the LP
of the separate ligand Λ, and ε

(0)
Λl is the l-th MO energy of that same free ligand.

Then eq. (4.83) contains the Green’s function (GΛ
0 (ε))adv

LL of the free ligand and the
summations in eq. (4.83) are performed over the separate ligands Λ and their LPs
indexed by subscript L.

The Coulomb interaction between the ligands themselves and between each of
them and the metal ion when turned on, does not break the block diagonal structure
of the bare Green’s function Gl

00. The approximate Green’s function for the l-system
conserves the form of eq. (4.100), but the poles now must be equal to the orbital
energies of the ligand molecules in the Coulomb field induced by the central ion and
by other ligands (Λ′ 	= Λ) rather than to those of the free ligands.

The simplest description of the effect of the central ion on the surrounding ligands
reduces to that of the Coulomb field affecting the positions of the poles of the Green’s
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function (orbital energies) of the free ligand. According to [73], the effect of the
Coulomb field upon the orbital energies is represented by:

(GΛ)−1 = (GΛ
0 )−1 − Σ(f)(4.102)

where GΛ
0 is the Green’s function for the free ligand and the self-energy term Σ(f)

is due to the external Coulomb field. The perturbed Green’s function GΛ within the
first order has the same form as GΛ

0 but its poles are shifted by diagonal elements of
the self-energy matrix Σ(f)

ll :

εl = ε
(0)
l + Σ(f)

ll

Σ(f)
ll ≈

∑
A∈Λ ρlAδhA

(4.103)

where ρlA is the partial electron density of the l-th CMO of the ligand Λ on the A-th
atom of the ligand:

ρlA =
∑
α∈A

|〈l | α〉|2(4.104)

where 〈l | α〉 are the l-th MO LCAO coefficients of the free ligand, and the core
Hamiltonian perturbation δhA is:

δhA = −e2

⎛⎜⎜⎝(ZM − nd)
RA

+
∑
Λ′ �=Λ
A′∈Λ′

QA′

RAA′

⎞⎟⎟⎠(4.105)

The atomic quantities δhA are equal to the perturbations δhαα of the corresponding
core Hamiltonian matrix elements in the ligand AO basis. This is so because within
the CNDO approximation [74] accepted in [58], for the description of the l-system,
the quantities δhαα are the same for all α ∈ A.

According to Section 1.7.2 the polarization effects in the ligand sphere must be
taken into account as well. For this, the metal ion is considered as a point charge equal
to its oxidation degree. This setting coincides with the sparkle model [75]. Within
models of that type, semi-empirical HFR calculation is performed for the ligands of
the complex placed in the electrostatic field induced by the central ion with its for-
mal charge (’sparkle’). Within models of this family, the electron distribution changes
when the ligand molecules are put into the field. We model this by using the molecular
polarizability rather than by equilibration of effective atomic electronegativities (see
Section 2.5). The preference of the latter models is their greater theoretical sound-
ness as the wave-like behavior of electrons is retained in the structure of the atomic
mutual polarizability matrices (see below) although it is lost in the equilibration
schemes.

According to the polarizability definition, the difference between the effective
charge on the atom A in the complex and that in the free ligand is:

δQA=QA − Q0
A =

∑
B

ΠABδhB =

=
∑
B

ΠAB(δh0
B +

∑
C �=B

ΓACδQC)(4.106)
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where ΠAB is the atomic mutual polarizability and δh0
A is that defined by eq. (4.105).

The above expression takes into account the renormalization of the field felt by a
given atom, which appears due to the variation in all the charges located on other
atoms. In the vector notation, this acquires the form:

δQ = Q − Q0 = Π(δh0 + ΓδQ)(4.107)

where the components of vectors and matrices are indexed by atoms. Resolving the
last equation for δQ yields:

δQ = (1 − ΠΓ)−1Πδh0

δQ = Πδh0 +
∞∑

n=1
(ΠΓ)nΠδh0 =

∞∑
n=1

δQ(n)(4.108)

Though procedures for inverting matrices of the dimensionality equal to the num-
ber of atoms are admitted in modern MM schemes (see again Section 2.5) using
the electronegativity equilibration and directed to the systems with significant charge
redistribution as described in [76] we consider such a procedure to be too resource
consuming and restrict ourselves by several lower orders with respect to Π in
the expansion. Then the term Πδh0 corresponds to the first order perturbation by the
Coulomb field induced by the metal ion and bare (non-polarized) ligand charges. The
second order term corresponds to the perturbation due to the Coulomb field induced
by the mutually polarized (up to the first order) charges:

δQ(1) = Πδh0,

δQ(2) = ΠΓΠδh0(4.109)

The charges thus obtained are used for calculating the Σ(f)
ll term and for renormaliz-

ing the orbital energies by eq. (4.103).
To complete the picture, calculating mutual polarizabilities relevant to the EHCF/

MM context can be found in [77]. The atom-atom mutual polarizability matrix Π has
a block-diagonal form:

Π =
⊕
Λ

ΠΛ(4.110)

where Λ enumerates the ligands.
To evaluate ΠΛ we consider first the mutual atomic orbital polarizabilities ΠΛ(0)

αβ :

ΠΛ(0)
αβ =

δPαα

δhββ
(4.111)

where α, β enumerate AOs. Corresponding mutual atomic polarizabilities ΠΛ(0)
AB are:

ΠΛ(0)
AB =

δQA

δhB
(4.112)
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where A, B enumerate atoms. Turning to the difference δPαα of the electron density
on the αth AO of atom A and renormalizing δhββ accordingly to eq. (4.106) results
in:

δPαα =
∑

B �=A

∑
β∈B

ΠΛ(0)
αβ δhββ =

∑
B �=A

∑
β∈B

ΠΛ(0)
αβ (δh0

ββ +
∑
µ

γ̃αµδPµµ)

δQ = ΠΛ(0)(δh0 + γ̃δQ)
(4.113)

where γ̃αµ is intraligand (Λ) two-electron Coulomb integral that in the CNDO
approximation has the form:

γ̃αβ = (1 − δαβ)γαβ + δαβγαα/2(4.114)

The coefficient one-half at the diagonal interaction element in the above expression
reflects the fact that in the HFR approximation for the closed electron shell system,
only that half of the electron density residing at the α-th AO contributes to the energy
shift at the same AO, which corresponds to the opposite electron spin projection.
Then the expression for the renormalized mutual atomic polarizability matrix ΠΛ

can be obtained:

ΠΛ = (1 − γ̃ΠΛ(0))
−1

ΠΛ(0)(4.115)

The calculation according to eq. (4.115) involves inversion of the matrix but only of
the dimensionality equal to the number of atoms in the ligand Λ.

Finally, according to the general formulae given, say, in [27], the matrix element
of the bare orbital mutual polarizability entering eq. (4.111) is given by:

ΠΛ(0)
αβ = 4

∑
k∈occ

∑
l∈vac

clαclβckαckβ

εk − εl

ΠΛ(0)
AB =

∑
a∈A

∑
β∈B

ΠΛ(0)
αβ

(4.116)

where α, β are the AO’s indices, k, εk and l, εl are, respectively, the occupied and
vacant MO’s indices and orbital energies, and clα are the MO LCAO coefficients for
the free molecule of the ligand Λ.

This is the method for constructing the renormalized polarizability matrix ΠΛ

for the ligand Λ. The form of the total matrix Π for the whole TMC is given
by eq. (4.110). Using this matrix, we can obtain renormalized atomic charges by
eq. (4.108). This model can be called the perturbative sparkle (PS) model. Specif-
ically, PSn approximation level of the PS model stands for using the n-th order
charge corrections by the series eq. (4.108), while PS itself stands for the exact
expression with the inverse matrix in the second row of the same equation. Then,
eqs. (4.106)–(4.109) comprise the perturbative form of the sparkle model of the
l-system’s electronic structure. The proposed procedure improves the junction
between the EHCF(L) method, playing the role of the QM procedure and the MM
part, as shown below, where details of the calculations performed within this approx-
imation are given. This illustrates the implementation of the general prescription for
taking into account charge redistribution in the M-system of the complex system
given in Section 1.7.2
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Appropriate test objects for this approach are the spin-active TMCs. Spin iso-
merism i.e. existence of the same complex in different spin states under different
conditions (temperature and/or pressure) is observed in d4–d8 compounds of the first
transition row metals. They are most pronounced for the iron(II) complexes with
nitrogen donor atoms. In their case the lengths of the Fe-N bonds change by more
than 10% of the bond length in the low-spin (LS) complex. The local version of the
EHCF method, combined with various MM techniques, was implemented and used
for the analysis of the molecular geometries of complexes of iron (II) [58, 77, 78].
The satisfactory agreement in the description of complexes geometry with different
spin is achieved only when the effect of the electrostatic field of the metal ion on
the ligands has been taken into account through the electrostatic polarization of the
ligands within perturbative sparkle model. Two aspects are important here: first, the
ECF/MM approach based on eq. (4.99) allows the use of a single MM potential for
the ligands for all electronic states of the metal center. The “different ionic radii” for
the ions of the different spin states have clearly become obsolete. Second, the MM
potentials for transition metal atoms extracted from structural data on TMCs cannot
be used directly in eq. (4.99) as they include implicitly, effects of the d-shells. This
means that the problem is somehow reloaded on fitting the parameters of a single set
relative to metal ions of each chemical sort. The harmonic approximation does not
suffice for the MM part of the energy. Thus for the Fe-N bond stretching force field,
some potential with a finite dissociation limit must be used. Estimates of parame-
ters of the crystal field for a series of complexes of iron (II) and cobalt (II) (both
LS and HS ground states) were obtained. Totally, 35 six-coordinated iron complexes
with mono- and polydentate ligands, containing both aliphatic and aromatic donor
nitrogen atoms (mixed complexes with different types of donor nitrogen atoms and
different spin isomers of one complex are included in this number) and ten cobalt
complexes also with different types of donor nitrogen atoms and with coordination
numbers ranging from four to six have been considered. Deviations of calculated
bond lengths Fe-N and Co-N from the experimental values are quite well described
by the normal distribution. The parameters of that distribution were the following:
the mean value (average deviation over the data set): µ = 0.037 Å and the mean
square deviation σ = 0.054 Å in the case of Fe(II) complexes, and the mean value,
µ = 0.017 Å and σ = 0.044 Å in the case of Co(II) complexes. The above values
seem to be quite acceptable for the entire set of data. They however somehow mask
an inherent bias of the proposed approach. In the iron(II) complexes the distances
for the HS complexes are systematically underestimated, whereas those in the LS
and the Fe-N bond lengths come out slightly overestimated. The parameters of the
fit of the empirical distribution function of deviations restricted to the LS complexes
are µ = 0.011 Å and σ = 0.034 Å and those restricted to the HS complexes are
µ = −0.023 Å and σ = 0.054 Å. The reason seems to be in the inherent “stiffness”
of the Morse potential. In order to avoid this, another MM bond stretching potential
for metal-ligand bonds in Fe(II) complexes had been tested:

ENR(r) =
a

r
+

b

r5
+

c

r9
(4.117)
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This form was originally proposed by Nı́ketić and Rasmussen (NR) in their version of
the CFF force field [79]. The NR potential can be characterized as a softer potential
than the Morse one in the following sense. Two potentials are both three-parametric
so that a one-to-one correspondence can be established between them by proclaiming
the potentials of the two forms to be equivalent if the well depth, minimum position,
and elasticity constants KNR and KM expressed through the a, b, and c parameters
of the NR potential eq. (4.117) or the D0 and α parameters of the Morse potential,
respectively, coincide:

r4
0 =

−5b −
√

25b2 − 36ac

2a
(4.118)

D0 =
a

r0
+

b

r5
0

+
c

r9
0

(4.119)

KNR =
a

r3
0

+
15b

r7
0

+
45c

r11
0

KM = D0α
2

One can see that ENR(r) < EMorse(r) for all values; r > r0 so that the NR potential
approaches the asymptotic slower than the Morse potential. One may identify the a
parameter value with the Coulomb interaction of some effective charges. These effec-
tive values in Fe(II) complexes with nitrogen-containing ligands are QFe = 1.757 ē
and QN = −0.293 ē; the latter is close to the real CNDO charges on the donor atoms
obtained in the EHCF calculations [65].

Using the NR potential equivalent to the Morse potential fitted in [77] allows us to
level out the quality of description of the LS and HS complexes of Fe2+.

4.6.3. Discussion

In this section we try to demonstrate that the problems faced by most empirical and
MM techniques, when applied to modeling TMCs, have deep roots in the specific
features of the electronic structure of the latter and in approximations which tacitly
drop the necessary elements of the theory required to reproduce these features of
the former. Of course, the EHCF approach, the success story of which is described
in detail in Section 2.4.2 is not completely isolated from other methods. In general,
various CAS techniques must be mentioned in relation to it. The characteristic fea-
ture uniting these two otherwise very different approaches is the selection of a small
subset of one-electron states, followed by performing adequately complete corre-
lation calculation restricted to this smaller subset. The general problem with such
approaches is that usually it is taken for granted that the HFR MO LCAO is a good
source for obtaining the states to be used in the correlated calculation. Two pitfalls
can be expected and actually occur on this route. The first is that in the TMCs the
HFR MO LCAOs can be difficult to obtain or those obtained are of a poor quality.
The second is that even if the MO LCAOs are obtained correctly, they provide too
delocalized a picture of electron distribution. In terms first proposed by J.-P. Mal-
rieu [80] and then extensively used by P. Fulde [81], it is equivalent to saying that in
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the HFR solution for the TMC, the number of electrons in the d-shell that fluctuate
too much may be the correct average (integer) value. In both cases, the limited CI
(CAS) techniques are applied to improve a very poor zero approximation. With the
input supplied by the HFR approximation, taking only five MOs of appropriate sym-
metry to model the d-shell may be too naı̈ve since the number of states to be included
in the CI formation to reduce the excessive fluctuations can be much larger. Going to
the one-electron states obtained from the canonical MO LCAOs by some localization
technique may be useful, but numerically expensive. The EHCF here advantageously
uses the fact that the exact wave function of the TMCs most probably corresponds to
very high localization of electrons in the d-shell, which enables taking their delocal-
ization into account as a perturbation. Among other approaches based on a similar
vision of the situation in TMCs, [82] and [83] must be mentioned.

Another group of approaches can be described as an attempt at using the DFT to
evaluate the parameters of the CFT/LFT theory. In this respect, [84] and [85] must
be mentioned. The latter in a sense follows the same line as the old semiempirical
implementation [86] where the MOs for the TMC molecule are first obtained by
an approximate HFR-like procedure and then a CI is done in some restricted sub-
space of the latter. In some sense, this approach is also similar to the EHCF model,
with the general difference that the one-electron states used to construct the complete
CFT/LFT manifold are taken “as is” from the KS calculation. In this case, one can
expect some difficulties while selecting the MOs to be introduced into the set of those
to be used in constructing the CI (it is not obvious whether simple energy/symmetry
criteria allow one to select the necessary manifold of the KS orbitals to reproduce
the states in the d-shell; and what can be done when the symmetry is low?) Also, the
degree of delocalization of the KS orbitals may interfere with the evaluation of the
CFT/LFT parameters from the results of the DFT calculation. It seems that this is
precisely what happened in [85] where the values of the Racah parameters turned out
to be strongly underestimated as compared to the values known to fit the experiment
within the CFT/LFT model, indicating by this the excess delocalization of the KS
orbitals as compared to that necessary to reproduce the experimental data.

Generally one can notice that almost every review on computational chemistry
of TMCs starts from a sort of “triple denial” of the old CFT/LFT approaches as
being pertinent to something which was happening “once upon a time“. Our point of
view on the CFT/LFT picture is absolutely different. It more or less corresponds to
that given in the brilliant introduction to [84]. The clear-cut conclusion to be derived
from there and also from our experience and derivation is that the CFT/LFT picture
keeps track of the very physical picture of the low-energy spectrum of the TMCs.
Whatever discrepancy there may be between the results obtained by QC methods,
however refined they may be, and those appearing from the CFT/LFT must be con-
sidered failures of the QC rather than “age effects” of the CFT/LFT. It is the purpose
of a QC study to reproduce results obtained within the CFT/LFT paradigm and it is
not easily reachable and in many cases has not been reached yet. This idea was the
leading one in our studies on TMCs from the very beginning and its adequate formal
representation in terms of the group functions and the Löwdin partition technique



330 Andrei L. Tchougréeff

provided a crucial step forward, which allowed the numerical implementation of
the EHCF method [65]. It immediately solved the problem of constructing a semi-
empirical description of the TMCs, which has remained unsolved for 30 years. The
cost of this was rejecting the HFR form of the wave function of the TMC, which, in
the present context, cannot be considered as a big loss. The further development of
this approach and realizing its deeper relation to the general QM/MM setting helped
in evolving the corresponding EHCF/MM hybrid scheme. The latter is in relation to
those proposed by Deeth [60] and Berne [87]. Both involve the d-shell energy as an
additional contribution to that of the MM scheme and use the AOM model with inter-
polated parameters to estimate the latter. In the case of the approach [60] there are
two main problems. The first is that the AOM parameters involved are assumed to
depend only on the interatomic separation between the metal and donor atoms. This
is obviously an oversimplification as from eq. (4.92) it is clear that the lone pair ori-
entation is of crucial importance. This is taken into account in the EHCF/MM method
and in the SIBFA-LF method [88] as well. The second major flaw is the absence of
any correlation in describing the d-shell in [60]. This precludes a correct description
of the switch between different spin states of the open d-shell, although in some sit-
uations, different spin states can be described uniformly. This is also corrected in the
EHCF/MM method.
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63. M.B. Darkhovskii and A.L. Tchougréeff. Unpublished.
64. M.B. Darkhovskii and A.L. Tchougréeff. Khim. Fiz., 18(1), 73, 1999.
65. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Theor. Chim. Acta, 83, 389, 1992.
66. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Zh. Fiz. Khim., 68(7), 1256, 1994.
67. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Zh. Fiz. Khim., 68(7), 1264, 1994.
68. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Int. J. Quant. Chem., 57, 663, 1996.
69. A.V. Soudackov, A.L. Tchougréeff and I.A. Misurkin. Int. J. Quant. Chem., 58, 161, 1996.
70. P.G. Perkins and J.J.P. Stewart. J. Chem. Soc. Faraday Trans.(II), 78, 285, 1982.
71. M.B. Darkhovskii and A.L. Tchougréeff. Zh. Fiz. Khim. 74, 360, 2000; Russ. J. Phys. Chem.,

74, 296, 2000.
72. M. Gerloch and R.G. Wooley. Prog. Inorg. Chem., 31, 371, 1983.
73. A.A. Abrikosov, L.P. Gor’kov and I.Y. Dzyaloshinskii. Quantum Field Theoretical Methods in

Statistical Physics, Pergamon, Oxford, 1965.
74. J.A. Pople and D.L. Beveridge. Approximate Molecular Orbital Theory, McGraw-Hill, New York,

1970.
75. A.V.M. de Andrade, N.B. da Costa Jr., A.M. Simas and G.F. de Sá. Chem. Phys. Lett., 227, 349,
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CONCLUSION. REMAINING PROBLEMS

In this book we have developed a general theory of hybrid methods of molecular
modeling of complex molecular systems, including the QM/MM ones. Nowadays
the term theory is somewhat diluted: it frequently applies to assemblies of formulae,
used together for performing calculations. This method of doing things caused many
doubts many years ago, not only in chemistry. Yet at the dawn of the computer era
(1956!) one of the leading experts in operation research qualified it in the follow-
ing words: ‘Mechanitis is the occupational disease of one who is so impressed with
modern computing machinery that he believes that a mathematical problem, which
he can neither solve nor even formulate, can readily be answered, once he has access
to a sufficiently expensive machine’ [1]. We prefer, therefore, the more old-fashioned
understanding of ‘theory’ – as of the sequential derivation starting from some general
principles, applying various approximations (and trying to estimate their precision)
and arriving by this to the formulae which may be used for calculation, but first of all
for qualitative analysis. This probably can serve as a remedy against mechanitis.

Two general elements of the theory presented in this book were the derivation
of the GF form of the approximate trial wave function for electrons in the modeled
molecular system and the derivation of the mechanistic models of PES based on
the GF representation. Although the specific forms of the wave functions of groups
and thus the electronic structure variables either classically approximated or quan-
tally treated may be very different from those considered in this book, the general
methodology given here is completely universal. It can be applied to whatever class
of molecular systems for developing a theory on the basis of the modeling methods
described in this book. It has to be understood that diversity of chemistry is first of all
the diversity of types of the specific forms of group multipliers in the GF functions
representing both the diversity of the observed types of chemical behavior and also a
diversity of the sets of ESVs adequately describing this behavior.

A couple of immediate targets for applying the general methodology proposed in
this book can be indicated, based on an analysis of the literature. The first candidate
might be the valence bond approach to the analysis of stereochemistry of compounds
of heavy transition metals (e.g. tungsten) proposed in a series of works [2–4]. It
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is based on the concepts of bonding and of hybridization of s- and d-AOs of the
metal atom in different ligand environments. These works explore a physical sit-
uation different from that in “first-row” TMC, but similar to the “organic” model.
Bonding in these compounds may be qualified as covalent and the entire setting
as “organometallic” due to direct involvement of the d-orbitals in valence bond
formation, which establishes corresponding conditions for possible hybridization
schemes. Although in works [2–4] the correct stereochemistry is loaded upon the
overlap between the potentially nonorthogonal HOs, it must be equally possible to
reproduce it with some one-center energy of an sd-hybridized transition metal atom
and orthogonal hybrids. A further object of interest may be the (deductive) molecular
mechanics of metallocenes, which can be developed analogously to that of octahedral
coordination compounds, but, of course, the symmetry based considerations must be
modified accordingly.

The general perspective may be formulated as that of addressing the diversity of
the conceivable types of wave functions of various electron groups, which is by no
means restricted by those already analyzed or only mentioned in the present book.
Some collection of those not considered here can be found e.g. in [5], but even it
should not be thought to exhaust the possible diversity. An analysis of the possible
forms of electronic group functions is very promising. One can foresee that extending
it to groups representing the chemically active parts of molecular systems – reaction
centers as proposed in [6] characteristic of that or an other chemical transformation,
can provide an inexhaustible source of chemical imagination and pave the way to a
true qualitative understanding of chemistry.
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Ab initio model potential (AIMP),
104–105

Ab initio QC methods, for molecular
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assumptions, 101–102

electron correlations, role of, 99–100

orbital carrier spaces in, 97–98

separation of electronic variables, 101

systematic error, of ab initio methods,
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complete neglect of differential
overlap (CNDO) method, 114

intermediate neglect of differential
overlap (INDO) group of methods,
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methods without interaction, 111,
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modified ZDO methods, 118–120

neglect of diatomic differential overlap
(NDDO) method, 117, 118

procedure of developing semi-
empirical parametrization,
110, 111

zero differential overlap (ZDO)
approximation, 112–116

Angular overlap model (AOM)

of TMC, 150, 151, 317–321

AO basis sets

density matrix elements in, 262

Fock operator, matrix representation
in, 47

Gaussian type, 43, 44

hydrogen-like AOs, 41, 42

nonorthogonality of, 121

orthogonal, 113, 114

orthogonal transformations of, 217,
218

Slater type, 42, 43

Assisted model building with energy
refinement (AMBER), 167

Austin Model (AM1), 119

Basis set superposition error (BSSE), 97

Bent’s rule, 251, 263

Bond energy curve, 258

Bond energy, in ionic limit, 285

Bond ionicity, 214

“Bond-order–bond–length” rule, 109

Bond polarity, 213–215

Bond-stretching force field, 258

Born-Onsager solvent-solute model, 184

Born-Oppenheimer approximation,
12, 13

Boundary atom, 266, 267

Bra-ket notation, 15, 16

Buchingham potential, 164

Carbohydrate hydroxyls represented by
external atoms (CHEAT), 167

Cayley-Klein parameters, 223
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Chemical bonds, classification by elec-
tronic structure and properties,
279

Chemistry at Harvard macromolecular
mechanics (CHARMM), 167

Chromophore, concept of, 96
Class II force fields, 163
Closest ligand shell (CLS), 292

effective Hamilton and Fock operators
and DMM energy of, 295–299

electronic structure, 297
perturbative analysis of DMM model

of, 302–309
for symmetric molecule, 305, 306

CNDO/S parametrization, 120
Complete basis set (CBS), of correlation

energy in MP2 approximation, 99
Consistent force field (CFF), 167
Coordination compounds (CC)

characteristic features of, 278–281
Coulomb interactions in, 290, 291

metal-ligand resonance interaction,
299, 300

metal ion in, 290
problem of isomerism, 276, 277

Core charge, 102, 110
Correlation energy, with respect to basis

size, 99
COSMIC method, 167
Coulomb contributions, to molecular

energy, 116, 140
Coulomb energy, 235
Coulomb interactions

of effective charges, 164
between electrons

in LPs, 296
of M-system, 82, 83
of R-system, 87–89

intraatomic parameters of, 116
nonbonded, 236
π-subsystem, 108
in valence sp-shell, 137

Coulomb repulsion, 100
of d-electrons, 148
electrons in p-subsystem, 109
of nuclei, in combined system, 86

Coulson bond order, 139, 291
Coulson charges, 164

Crystal field theory (CFT), 147–150

Cusp condition, 100

CVFF, 167

Dative bonds, 281–283

energy of, 285, 287

DCF. See Diatomic coordinate frame

De Broglie wave lengths of electrons,
177

Deductive molecular mechanics (DMM),
205

application of, 263, 264

FAFO model, 231–240

FATO model, 240–248

and standard MM, 252–260

TAFO model, 248

TATO model, 248–252, 264–272

MM force field parameters, 265

molecular PES, 264

SLG bond wave function, 262

transferability of, 261

of nonsymmetrical coordination
compounds, 302–306

PES of coordination compound as
derived from, 306, 307

Density ESVs, in ionic limit, 283–285

Density functional theory (DFT),
128–130

Density matrix

and electron correlations, 69

elements, transferability of, 206

for correlated ground state, 213, 214

effective bond Hamiltonians, 209,
210

ESVs’ transferability, 214–217

perturbative estimate of ESVs, 212,
213

pseudospin representation, 210–212

one-electron, 46, 51, 71, 73, 91, 126,
139

reduced, 68–71

two-electron, 100, 124, 126, 129, 139,
157

Differential overlaps, of OAOs, 113, 114

DMM. See Deductive molecular
mechanics
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Donor-acceptor interactions
of model “ammonia” molecule, 286,

287
of model “water” molecule, 287–290

DREIDING force field, 167, 168

EAS (Engler, Andose, Schleyer) model,
168

Effective bond Hamiltonians
for bond geminals, 210

Effective fragment potential (EFP)
construction, 188

Effective Hamiltonian of crystal field
(EHCF), 151–154

implications, semiempirical, 157–159
Eigenvalue/eigenvector problem

generalized matrix, 18
and Hatree-Fock problem, 47
for operator, 27

Eigenvector problem, solutions of, 210
Electron density matrix elements,

transferability of, 209
matrix elements, definition of, 210

ground state perturbation of, 213
π-Electronic approximation, 106–109
Electronic energy

of complex system, 89–91
Hartree-Fock estimate for, 50
M-system, 85
in semiempirical SLG approximation,

140
Electronic Hamiltonian

calculation of matrix components, 97
effective π, 109
energy dependence of, 77
GF trial wave function, 66
in LD theory, 301
for nuclear motions, 12, 13
for subsystems, 78

for R-system, 81–85, 87, 88
Electronic structure representation, 38

AO basis sets, 41–44
FCI approach, 44, 45
Green’s functions, 71

molecular orbitals, 72
one-electron, 73

Hartree-Fock approximation, 45–52
one-electron basis, 39

second quantization formalism, 54–57

Slater determinants, 39–41

unitary group formalism, 57–62

reduced density matrices

electron correlations, 69, 70

energy value, 69

GF approximation, 70, 71

spin-orbital occupation numbers, 68

Electronic structure variables (ESV’s),
135, 206, 208

bond geminal

pseudospin operator of, 210–212

HO basis, 217

hybridization, mathematical descrip-
tion of, 219

lone pair, 214

SLG-MINDO/3 method and
approximately, 217

transferability of, 214, 215

Electronic variables, scheme for
separation

GF approximation

electronic wave functions, 75

orbitals, 74, 75

hybrid modeling

dispersion correction to PES, 89–91

effective Hamiltonian for R-system,
81–84

electronic Hamiltonian, 78, 79

electronic structure and spectrum of
R-system, 84, 85

electronic structure of M-system,
85, 86

hybrid orbitals, 78

PES, 86–89

subsystems, defining, 79–81

Löwdin partition procedure, 75–77

Empirical conformational energy
program for peptides (ECEPP),
168

Empirical force field (EFF), 168

Energy contributions, defined in terms
of bonds, 162

ESVs. See Electronic structure variables

Extended Hückel theory (EHT), 111

Extrapolation formulae, in ab initio
method, 99
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FAFO. See Fixed amplitudes fixed
orbitals

FATO. See Fixed amplitudes tuned
orbitals

FCI. See Full configuration interaction

Fenske-Hall method, 118

Fermi operators, 107, 138, 139

Finite basis set theories, 97

Fixed amplitudes fixed orbitals model

hybridization tetrahedron

global equilibrium conditions for,
237, 239

librations of, 239, 240

local equilibrium conditions for,
235–237

MINDO/3 Hamiltonian, 233

NDDO approximation, 232

PES, mechanistic model of, 231

Fixed amplitudes tuned orbitals

of nitrogen atom, 243–246

of oxygen atom

model “water” molecule, 246–248

properties of, 246

of sp3 carbons, 241

pseudotorques and local equilibrium
conditions, 241

second order corrections, 242

Fixed hybrid orbitals (FO), 231

Fock operator, 117, 121, 293–299,
302–304, 306, 308, 317

in basis of eigenvectors, 51

of CLS, 295–299, 303

nontrivial one-electron eigenstates
of effective, 312

constructed in nonorthogonal basis,
121

derivatives of matrix of, 302, 304,
308

diagonal matrix elements of, 111

eigenstates of, 317

for l-system, 156

matrix representation, 47

model, 189

parameters of semi-empirical, 111,
112

perturbed, 303, 308

self-consistent nature of, 112

in terms of Pauling electronegativity,
115

unperturbed, 49–51
Fock space, 54
Freed’s method, 109
Frontier atom, hybridization of, 268
Frontier carbon atom, 269
Frontier nitrogen atom, 269, 270
Full configuration interaction (FCI)

and wave function approximation, 44,
45

GAMESS, 191
G2 and G3 theories, 98
GAUSSIAN, 191
Gaussian orbitals, 104, 105
Geminal wave functions, 282, 283, 294
Generalized hybrid orbital (GHO)

method, 190
Generalized matrix eigenvalue problem,

18
GF approximation, 70, 71
Green’s functions, 71

of l-system, 156
one-electron, 72

in energy domain, 73
M-system, 84, 89

one-particle, 73
representation of, 72, 73

Groningen molecular simulation
(GROMOS), 168

Group function (GF) approximation,
61

Hamiltonian matrix, 97
effective, 101, 106–108
of CLS, 295–299
for d-system, 155–157
ground state, 282
for l-system, 154, 155
for m-th bond, 282
effective of crystal field (EHCF),

151–154
Hückel, 106–108
for molecular system, 136
transformation of, 35, 36

Hamiltonian matrix elements, HO basis,
231
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Harmonic approximation, 6
Harmonic stretching constants, 260
Hartree energy, 128
Hartree-Fock approximation, 45, 47,

103, 104, 113
for CLS, 297, 298
eigenvalue/eigenvector problem, 47
electronic energy, 50, 51
equation, 46

for projection operator, 48, 49
solutions of, 47

Fock operator, 49, 50
ground state energy, 51, 52
occupied spin orbitals, 48
one-electron density matrix, 46, 47
projection operator formulation, 48,

49, 51
for perturbative treatment of, 51, 52

treatment of open shells, 130
trial wave function in, 46

“Hartree-Fock-like” energy functional,
127

Hartree-Fock orbitals, localized, 144
Hartree-Fock-Roothaan based

semiempirical methods, 131
all-valence semiempirical methods,

110–120
π-approximation, 106–109
CNDO/S parametrization, 120–122
unsolved problems of, 122–132
ZINDO (INDO/S) scheme, 120–122

Hartree-Fock-Roothaan (HFR)
approximation, 99, 213
wave function, 262

Hellmann-Feynmann theorem, 97, 259
Hermitean operator, eigenvectors and

eigenvalues of, 15
Hohenberg-Kohn “existence theorems,”

128
HOMO manifold, 307, 312, 313
HOs. See Hybrid orbitals
Hund’s rule, 124
Hybrid EHCF/MM method, 321–328
Hybridization tetrahedron, 286
Hybrid molecular modeling, 174–178

problems with, 191–196
Hybrid orbitals, 78

bonding, 247, 248

hybridization tetrahedron, 226
one-electron basis of, 135–139
orthonormality condition for,

227–229, 247
Hybrid QM/MM methods

atoms, types, 180–185
effective or model potentials method,

188–190
electronic structure, of M-system, 85,

86
local SCF and analogous methods,

185–188
mechanical embedding, 178–180
orbital carrier spaces, concept of, 190,

191
and π-electron approximation, 108
polarization embedding, 180

IMOMM methodology, 178
Intraatomic electron-electron interaction

integrals, estimation, 115
Ion-dipole energy, 286
Ionic limit

bond energy, 285
density ESVs, 283–285

Jacobi matrices, 217, 218
Jahn-Teller distortions, 315
Jahn-Teller effect, in Cu2+ compounds,

316

Kohn-Sham representation, 128, 129
Kronecker product, transformation, 224,

225

Lagrange multipliers’ method, 18
Lennard-Jones potentials, 164, 311
Levin and Dyachkov (LD) theory, 300,

301
Lewis acid-base interactions, 291
Lie groups, theory of, 219
Ligand field theory (LFT), 149, 150,

153, 154
for determining parameters, 329
for determining spin and symmetry of

crystal field, 317–321
Ligand filed stabilization energy

(LFSE), 315, 316
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Linear scaling semiempirics, for organic
molecules, 133–145

Linear variational method, for wave
functions

Liouville scalar product, 305
Liouville space, 304, 305, 307
Lorentz-Berthelot combination rules,

164
Löwdin orthogonalization, 41
Löwdin partitioned Hamiltonian, 109
Löwdin partition technique, 37, 38
LUMO manifold, 307, 312, 313

Many-electron wave functions
for ground state, 97
Slater determinants

atomic orbitals approximation, 40
Löwdin orthogonalization, 41
N-tuple of spin-orbitals, 39, 40

Maximal overlap principles, 229
Metal complexes, qualitative features

of bonding in, 290–293
Metal-ligand bonding, 292
Metal-ligand resonance interaction, 299,

300
MINDO/3 method, 118, 119
MINDO/3 parameterization, 230
MMFF force field, 169
MM force field parameters, DMM based

estimates, 265
MM force fields transferability, 206
MMn family, 168, 169
MNDO/d parametrization, 123
MNDO (modified NDDO)

parametrization, 119
MO. See Molecular orbitals
Model potential (MP) methods, 104,

105
MO LCAO coefficients, 47, 48
Molecular dynamics, 9
Molecular electronic energy

SLG-based approximation
ESVs pertinent to, 230
maximal overlap principles, 229

Molecular electronic structure. See also
Electronic structure representation

ESVs, analysis of, 228, 229
QM description of, 208

SLG approximation of
density matrix elements, transfer-

ability of, 209
quantum and classical descriptions

of, 208
transferability of, 207

Molecular mechanics (MM)
advantages of, 277
concept of atom in, 196
developments, 167–173
force fields, 160–166
incorporation of d-metals into,

314–330
relation with DMM

deformations, structure of, 255
for hybridization ESVs, 253
of hybridization to bond elongation,

253
hybridization to valence angle

deformation, 254
molecular geometry, angular

distortions of, 256
molecular PES, 257, 258

Molecular mechanics with Gillespie-
Kepert terms (MMGK), 169

Molecular modeling
ab initio methods, 97–102
Hartree-Fock-Roothaan based

semiempirical methods
all-valence semiempirical methods,

110–120
π-approximation, 106–109
CNDO/S parametrization, 120–122
unsolved problems of, 122–132
ZINDO (INDO/S) scheme, 120–122

non-Hartree-Fock semiempirical
method

linear scaling semiempirics for
organic molecules, 133–145

semiempirical method for transition
metal complexes with open
d-shells, 145–159

Molecular orbitals
eigenvalue/eigenvector problem, 47
ground state energy, 51–53

Molecular system
electronic structure (See Electronic

structure representation)
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dispersion correction to, 89–91
subsystem

electronic Hamiltonian for, 78,
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“exact” wave function of, 79
expectation values, 80
M-system, electronic structure, 85,

86
R-system, electronic structure, 84,
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thermodynamical quantities, 5–8

MOMEC force field, 169
Monte-Carlo procedure, 10
Morse potential, 162, 168
Mulliken approximation, 113
Mulliken charges, 164
Mulliken orbital electronegativity, 166
Mulliken-Wolfsberg-Helmholtz method

(MWH), 111

NDDO approximation, 232
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Non-Hartree-Fock electronic trial wave

function, 206

Non-Hartree-Fock semiempirical
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linear scaling semiempirics for organic
molecules, 133–145

semiempirical method for transition
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d-shells, 145–159
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DMM force fields, 286–290
SLG analysis, 281–285

mechanistic model for stereochemistry
of, 300–314

Nuclear displacements, 252
Nuclear wave function, 12
Nyholm-Gillespie rules, 208

Octahedral environment, 148
Off-diagonal coupling constant, 259

Off-diagonal elastic constants, 309–310
medium range, 310–313

One-electron density matrix
and electronic energy, 51
in Hartree-Fock approximation, 46,

47
and one-electron Green’s function, 73

One-electron hopping matrix elements,
of bond, 108, 121

One-electron operators, expectation
values, 68

ONIOM scheme, 178, 179
Optimized potentials for liquid

simulation (OPLS), 169
Orbital carrier spaces

in ab initio method, 97, 98
concept of, 190, 191

Orthogonalization model n (OMn)
methods, 121

Orthogonal projection operator, 109

Parametrized Model (PM3), 119, 120,
123

Pariser-Parr-Pople (PPP) Hamiltonian,
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Partition function
definition, 10
general expression, 4
for ideal gas of polyatomic molecules,

6, 7
and molecular electronic structure

theory, 13, 14
Pauling orbital electronegativity, 114,

115, 166
Pauling’s principle of optimal (maximal)

overlap, 115, 116
Perturbational configuration interaction

of localized orbitals (PCILO)
method, 133, 134

Perturbation methods
for solving Schrödinger equation, 19

degenerate case, 25–29
eigenvectors and eigenvalues,

Schrödinger equation, 20
linear response, 23–25
nondegenerate case, 21–23

PES. See Potential energy surfaces
Phillips-Kleinman equation, for PP, 104
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Polarization propagator, 308
Potential energy, local minima, 5
Potential energy surfaces

mechanistic model of, 207
minima of, 5, 6
of molecular systems, 10, 11

Born-Oppenheimer construct, 12
nuclear motions, 13
quantum and classical descriptions of,

208

Projection operators, 29
and eigenvalue/eigenvector problem,

30, 31

hermiticity and idempotency, 30
Pseudomomentum components, 220
Pseudopotential theory, 102–105

Pseudotorques, 249

QM. See Quantum mechanics
QM/MM schemes, 277, 278
QM one-center Hamiltonian parameters,

268
Quantum chemistry (QC)

electronic structure representation,
38

AO basis sets, 41–44
FCI approach, 44, 45

Hartree-Fock approximation, 45–52
one-electron basis, 39
second quantization formalism,

54–57

Slater determinants, 39–41
unitary group formalism, 57–62

non-Hartree-Fock semiempirical, 132

PCILO method, 133, 134
SLG wave function, 135–145

Quantum mechanical techniques

perturbation methods (See
Perturbation methods)

Ritz method
based on trial wave function, 17

generalized matrix eigenvalue
problem, 18, 19

variational principle

bracket notation, 15, 16
of Hamiltonian, 16
statement, 14

Quantum mechanics
alternative representations of

projection operators, 29–31, 33, 34
resolvent, 31, 32, 34, 35
wave operator, 35, 36

derivation of MM from, 208
Quasi-rotation angles, 220
Quasitorque, 235
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components of, 221, 223
HOs, 226, 227
normalization condition for, 225, 226
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226

Racah parameters, 130, 148
Rayleigh-Schrödinger perturbation

theory
eigenvectors and eigenvalues of

perturbed Schrödinger equation,
20

second order correction, 22, 23
unperturbed problem, 21

wave function, 22
Ruedenberg-Mulliken approximation,

116

SAM1 (semi-ab initio method)
parametrization, 120

Schrödinger equation, 284
electronic, 12, 13
nuclear, 12, 13
for projection operators, 284
resolvent of Hermitian operator, 31
quantum mechanical tools for solving

perturbational methods, 19–29
Ritz method, 16–19
variational principle, 14–16

Second quantization formalism
electronic structre

electronic Hamiltonian in, 56, 57
electron states in terms of Fermi

operators, 55, 56
Fock space, linear operators in, 54

Semiempirical method, for transition
metal complexes with open
d-shells, 145–159

Semiempirical theories, SLG-based, 228
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SHAPES force filed, 169
SINDO1 method, 121
Slater-Condon parameters, 116, 117,

137, 148, 228
Slater determinants

of N electrons, 39, 40, 44, 45
as trial wave function, 46

Slater functions, 112
Slater sum rules, 130
SLG. See Strictly local geminals
SLG-type wave function, 280, 292, 301
Spectrochemical series, 148
Spin-active compounds, 314–330
Spin bond order, 233
Spin-orbitals

coordinate representation, 68
indices of, 68, 71
occupation number and second

quantization representation,
68, 72

orthonormalized functions, 39
SPLAM hybrid scheme, 181
sp3-nitrogen atom, 286, 287
Strictly local bond orbitals (SLBOs),

185–187, 190
Strictly local geminal (SLG) wave

function, 133
analysis of dative bonding, 281–285
approximation, 134, 135, 140, 141
linear scaling methods, 144, 145
semiempirical implementations of,

135–141
using MINDO/3 parametrization,

141–143
using NDDO parametrization, 143,

144
Symmetrized bond Hamiltonian, 214
Symmetry selection rules, 107
Systematic error, of ab initio methods,

98, 99

TAFO. See Tuned amplitudes fixed
orbitals

TATO. See Tuned amplitudes tuned
orbitals model

Thomas-Fermi theory, 128
Transition metal complexes (TMC)

description of, 122–128

semi empirical method for, with
open-d-shells

angular overlap model (AOM), 150,
151

crystal field theory (CFT), 147–150
effective Hamiltonian for d-system,

155–157
effective Hamiltonian for l-system,

154, 155
effective Hamiltonian of crystal field

(EHCF), 151–154
implementations of EHCF

paradigm, 157–159
physical properties, 146, 147

Trial wave function, 17, 18, 278, 292,
333

Tripos force field, 169, 170
Tuned amplitudes fixed orbitals, 248
Tuned amplitudes (TA) approximation,

230
Tuned amplitudes tuned orbitals model

bond orders in, 248
electron densities, variation of, 249
pseudotorque contributions, 250

Two-center Coulomb integrals, 230
Two-electron operators, expectation

values of, 68

Unitary group formalism, 57–62
Universal force field (UFF), 170

Valence approximation, 102–105
Valence shell electronic pair repulsion,

207
Van der Waals interaction, of nonbonded

atoms, 163
Van der Waals parameters, 171
Van-Vleck transformation, 35, 36
Variational principle, 107
VSEPR. See Valence shell electronic

pair repulsion

“Water” molecule model, 287–290
Wave functions, of molecular system,

12. See also Molecular modeling
of CLS, 292
of π-electrons, 107, 108
geminal, 282, 283, 294
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of TMCs, 329, 330
trial, 17, 18, 278, 292, 333
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Young tableaux, 126

ZDO approximation, 107
ZINDO (INDO/S) scheme, 121




