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Preface

In the second edition of Regression Methods in Biostatistics: Linear, Logistic,
Survival, and Repeated Measures Models, we have substantially revised and
expanded the core chapters of the first edition, and added two new chapters. The first
of these, Chap. 9, on strengthening causal inference, introduces potential outcomes,
average causal effects, and two primary methods for estimating these effects, what
we call potential outcomes estimation and inverse probability weighting. It also
covers propensity scores in detail, then more briefly discusses time-dependent
exposures, controlled and natural direct effects, instrumental variables, and principal
stratification. The second, Chap. 11, on missing data, explains why this is a problem,
classifies missingness by mechanism, and discusses the shortcomings of some
simple approaches. Its focus is on three primary approaches for dealing with missing
data: maximum likelihood estimation, multiple imputation, and inverse weighting,
and lays out in detail when each of these approaches is most appropriate.

Among the core chapters of the first edition, Chap. 5, on logistic regression, has
substantial new sections on models for ordinal and multinomial outcomes, as well
as exact logistic regression. Chapter 6, on survival analysis, has an in-depth new
section on competing risks, as well as new coverage of interval censoring and left
truncation. Chapter 7, on repeated measures analysis, introduces recently developed
methods for distinguishing between- and within-cluster effects, and for estimating
the effects of fixed and time-dependent covariates (TDCs) on change. Chapter 8,
on generalized linear models, adds coverage of negative binomial as well as zero-
inflated and zero-truncated models for counts. Chapters 4–8 all now cover restricted
cubic splines, take a new approach to mediation, and provide methods for sample
size, power, and detectable effect calculation. Chapter 10, on predictor selection, has
expanded coverage of developing and assessing models for prediction, as well as a
new section on directed acyclic graphs. Our summary in Chap. 13 includes a new
discussion of multiple comparisons and updated coverage of software packages.
All Stata examples have been updated. As before, Stata, SAS, and Excel datasets
and Stata do-files for most examples are provided on the website for the book,
http://www.biostat.ucsf.edu/vgsm. We also posted implementations
of analyses for time-dependent exposures too complicated for inclusion in the text.
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viii Preface

At UCSF, we have used the first edition for a two-quarter course on regression
methods for clinical researchers and epidemiologists, the first quarter covering linear
and logistic models and predictor selection, and the second covering survival and
repeated measures analysis. The new chapter on strengthening causal inference is
the basis of new quarter-long course, and the new missing data chapter will play an
important role in a more advanced quarter-long course next year. The new breadth
of coverage of the second edition should make it more widely useful in year-long
biostatistics courses for students like ours, MPH students, and for masters-level
courses in biostatistics.

Finally, we gratefully acknowledge the very important contributions made by
Professors Joseph Hogan of Brown University, Michael Hudgens of the University
of North Carolina, Barbara McKnight of the University of Washington, and Maya
Peterson of the University of California, Berkeley, who generously provided
detailed, insightful reviews of the two new chapters. Any remaining errors and
shortcomings are of course entirely ours.

San Francisco, CA, USA Eric Vittinghoff
David V. Glidden

Stephen C. Shiboski
Charles E. McCulloch



Preface to the First Edition

The primary biostatistical tools in modern medical research are single-outcome,
multiple-predictor methods: multiple linear regression for continuous outcomes,
logistic regression for binary outcomes, and the Cox proportional hazards model
for time-to-event outcomes. More recently, generalized linear models (GLMs) and
regression methods for repeated outcomes have come into widespread use in the
medical research literature. Applying these methods and interpreting the results
require some introduction. However, introductory statistics courses have no time
to spend on such topics and hence they are often relegated to a third or fourth course
in a sequence. Books tend to have either very brief coverage or to be treatments of
a single topic and more theoretical than the typical researcher wants or needs.

Our goal in writing this book was to provide an accessible introduction to
multipredictor methods, emphasizing their proper use and interpretation. We feel
strongly that this can only be accomplished by illustrating the techniques using a
variety of real data sets. We have incorporated as little theory as feasible. Further,
we have tried to keep the book relatively short and to the point. Our hope in
doing so is that the important issues and similarities between the methods, rather
than their differences, will come through. We hope this book will be attractive to
medical researchers needing familiarity with these methods and to students studying
statistics who would like to see them applied to real data. The methods we describe
are, of course, the same as those used in a variety of fields, so non-medical readers
will find this book useful if they can extrapolate from the predominantly medical
examples.

A prerequisite for the book is a good first course in statistics or biostatistics or
an understanding of the basic tools: paired and independent samples t-tests, simple
linear regression and one-way analysis of variance (ANOVA), contingency tables
and �2 (chi-square) analyses, Kaplan–Meier curves, and the logrank test.

We also think it is important for researchers to know how to interpret the
output of a modern statistical package. Accordingly, we illustrate a number of the
analyses with output from the Stata statistics package. There are a number of other
packages that can perform these analyses, but we have chosen this one because of
its accessibility and widespread use in biostatistics and epidemiology.
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x Preface to the First Edition

We begin the book with a chapter introducing our viewpoint and style of
presentation and the big picture as to the use of multipredictor methods. Chapter 2
presents descriptive numerical and graphical techniques for multipredictor settings
and emphasizes choice of technique based on the nature of the variables. Chapter 3
briefly reviews the statistical methods we consider prerequisites for the book.

We then make the transition in Chap. 4 to multipredictor regression methods,
beginning with the linear regression model. This chapter also covers confounding,
mediation, interaction, and model checking in the most detail. In Chap. 5, we turn
to binary outcomes and the logistic model, noting the similarities to the linear
model. Ties to simpler, contingency table methods are also noted. Chapter 6 covers
survival outcomes, giving clear indications as to why such techniques are necessary,
but again emphasizing similarities in model building and interpretation with the
previous chapters. Chapter 7 looks at the accommodation of correlated data in both
linear and logistic models. Chapter 8 extends Chap. 5, giving an overview of GLMs.

In the second edition, new sections of Chaps. 4–8 deal with pooled and exact
logistic regression (Chap. 5), competing risks (Chap. 6), and time-varying predictors
and separating between and within cluster information (Chap. 7). Chapters 4–8, also
now conclude with short sections on calculating sample size, power, and minimum
detectable effects.

The next three chapters, two of them new in the second edition, cover broader
issues. Chapter 9 looks more closely at making causal inferences, using the models
discussed in Chaps. 4–8, as well as alternatives including propensity scores and
instrumental variables. Chapter 10 deals with predictor selection, with expanded
treatment of methods for prediction problems. Chapter 11 considers missing data
and methods for dealing with it, including maximum likelihood models, multiple
imputation, and complete case analysis, the problematic default.

Finally, Chap. 12 is a brief introduction to the analysis of complex surveys.
The text closes with a summary, Chap. 13, attempting to put each of the previous
chapters in context. Too often it is hard to see the forest for the trees of each of the
individual methods. Our goal in this final chapter is to provide guidance as to how
to choose among the methods presented in the book and also to realize when they
will not suffice and other techniques need to be considered.

San Francisco, CA, USA Eric Vittinghoff
David V. Glidden

Stephen C. Shiboski
Charles E. McCulloch
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Chapter 1
Introduction

The book describes a family of statistical techniques that we call multipredictor
regression modeling. This family is useful in situations where there are multiple
measured factors (also called predictors, covariates, or independent variables) to
be related to a single outcome (also called the response or dependent variable). The
applications of these techniques are diverse, including those where we are interested
in prediction, isolating the effect of a single predictor, or understanding multiple
predictors. We begin with an example.

1.1 Example: Treatment of Back Pain

Korff et al. (1994) studied the success of various approaches to treatment for back
pain. Some physicians treat back pain more aggressively, with prescription pain
medication and extended bed rest, while others recommend an earlier resumption
of activity and manage pain with over-the-counter medications. The investigators
classified the aggressiveness of a sample of 44 physicians in treating back pain
as low, medium, or high, and then followed 1,071 of their back pain patients for
two years. In the analysis, the classification of treatment aggressiveness was related
to patient outcomes, including cost, activity limitation, pain intensity, and time to
resumption of full activity.

The primary focus of the study was on a single categorical predictor, the
aggressiveness of treatment. Thus for a continuous outcome like cost, we might
think of an analysis of variance (ANOVA), while for a categorical outcome we
might consider a contingency table analysis and a �2-test. However, these simple
analyses would be incorrect at the very least because they would fail to recognize
that multiple patients were clustered within physician practice and that there were
repeated outcome measures on patients.

Looking beyond the clustering and repeated measures (which are covered in
Chap. 7), what if physicians with more aggressive approaches to back pain also

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 1,
© Springer Science+Business Media, LLC 2004, 2012

1



2 1 Introduction

tended to have older patients? If older patients recover more slowly (regardless
of treatment), then even if differences in treatment aggressiveness have no
effect, the age imbalance would nonetheless make for poorer outcomes in the
patients of physicians in the high-aggressiveness category. Hence, it would be
misleading to judge the effect of treatment aggressiveness without correcting for
the imbalances between the physician groups in patient age and, potentially, other
prognostic factors—that is, to judge without controlling for confounding. This
can be accomplished using a model which relates study outcomes to age and
other prognostic factors as well as the aggressiveness of treatment. In a sense,
multipredictor regression analysis allows us to examine the effect of treatment
aggressiveness while holding the other factors constant.

1.2 The Family of Multipredictor Regression Methods

Multipredictor regression modeling is a family of methods for relating multiple
predictors to an outcome, with each member of the family suitable for a different
type of outcome. The cost outcome, for example, is a numerical measure and for
our purposes can be taken as continuous. This outcome could be analyzed using the
linear regression model, though we also show in Chap. 8 why a generalized linear
model (GLM) might be a better choice.

Perhaps the simplest outcome in the back pain study is the yes/no indicator of
moderate-to-severe activity limitation; a subject’s activities are limited by back pain
or not. Such a categorical variable is termed binary because it can only take on
two values. This type of outcome is analyzed using the logistic regression model,
presented in Chap. 5.

In contrast, pain intensity was measured on a scale of ten equally spaced values.
The variable is numerical and could be treated as continuous, although there were
many tied values. Alternatively, it could be analyzed as a categorical variable, with
the different values treated as ordered categories, using the proportional-odds or
continuation-ratio models, both extensions of the logistic model and briefly covered
in Chap. 5.

Another potential outcome might be time to resumption of full activity. This
variable is also continuous, but what if a patient had not yet resumed full activity at
the end of the follow-up period of two years? Then the time to resumption of full
activity would only be known to exceed two years. When outcomes are known only
to be greater than a given value (like two years), the variable is said to be right-
censored—a common feature of time-to-event data. This type of outcome can be
analyzed using the Cox proportional hazards model, the primary topic of Chap. 6.

Furthermore, in the back pain example, study outcomes were measured on
groups, or clusters, of patients with the same physician, and on multiple occasions
for each patient. To analyze such hierarchical or longitudinal outcomes, we need
to use extensions of the basic family of regression modeling techniques suitable for
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repeated measures data, described in Chap. 7. Related extensions are also required
to analyze data from complex surveys, briefly covered in Chap. 12.

The various regression modeling approaches, while differing in important
statistical details, also share important similarities. Numeric, binary, and categorical
predictors are accommodated by all members of the family, and are handled in a
similar way: on some scale, the systematic part of the outcome is modeled as a
linear function of the predictor values and corresponding regression coefficients.
The different techniques all yield estimates of these coefficients that summarize the
results of the analysis and have important statistical properties in common. This
leads to unified methods for selecting predictors and modeling their effects, as well
as for making inferences to the population represented in the sample. Finally, all the
models can be applied to the same broad classes of practical questions involving
multiple predictors.

1.3 Motivation for Multipredictor Regression

Multipredictor regression can be a powerful tool for addressing three important
practical questions. These questions, which provide the framework for our discus-
sion of predictor selection in Chap. 10, include prediction, isolating the effect of a
single predictor, and understanding multiple predictors.

1.3.1 Prediction

How can we identify which patients with back pain will have moderate-to-severe
limitation of activity? Multipredictor regression is a powerful and general tool for
using multiple measured predictors to make useful predictions for future obser-
vations. In this example, the outcome is binary and thus a multipredictor logistic
regression model could be used to estimate the predicted probability of limitation
for any possible combination of the observed predictors. These estimates could then
be used to classify patients as likely to experience limitation or not. Similarly, if
our interest was future costs, a continuous variable, we could use a linear regression
model to predict the costs associated with new observations characterized by various
values of the predictors. In developing models for this purpose, we need to avoid
over-fitting, and to validate their predictiveness in actual practice.

1.3.2 Isolating the Effect of a Single Predictor

In settings where multiple, related predictors contribute to study outcomes, it
will be important to consider multiple predictors even when a single predictor
is of interest. In the von Korff study, the primary predictor of interest was how
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aggressively a physician treated back pain. But incorporation of other predictors was
necessary to minimize confounding, so that we could plausibly consider a causal
interpretation of the estimated effects of the aggressiveness of treatment. Estimating
causal effects from observational data is difficult, and sometimes requires special
methods, including potential outcomes estimation and propensity scores. These
approaches depend on the assumption that there are no unmeasured confounders.
Causal estimation using instrumental variables depends on different but equally
stringent assumptions. We consider these specialized methods in Chap. 9.

1.3.3 Understanding Multiple Predictors

Multipredictor regression can also be used when our aim is to identify multiple
independent predictors of a study outcome—independent in the sense that they
appear to have an effect over and above other measured variables. Especially in
this context, we may need to consider other complexities of how predictors jointly
influence the outcome. For example, the effect of injuries on activity limitation
may in part operate through their effect on pain; in this view, pain mediates the
effect of injury and should not be adjusted for, at least initially. Alternatively,
suppose that among patients with mild or moderate pain, younger age predicts more
rapid recovery, but among those with severe pain, age makes little difference. The
effects of both age and pain severity will both potentially be misrepresented if this
interaction is not taken into account. Fortunately, all the multipredictor regression
methods discussed in this book easily handle interactions, as well as mediation and
confounding, using essentially identical techniques. Though certainly not foolproof,
multipredictor models are well suited to examining the complexities of how multiple
predictors are associated with an outcome of interest.

1.4 Guide to the Book

This text attempts to provide practical guidance for regression analysis. We inter-
weave real data examples from the biomedical literature in the hope of capturing the
reader’s interest and making the statistics as easy to grasp as possible. Theoretical
details are kept to a minimum, since it is usually not necessary to understand
the theory to use these methods appropriately. We avoid formulas and keep
mathematical notation to a minimum, instead emphasizing selection of appropriate
methods and careful interpretation of the results.

This book grew out a two-quarter sequence in multipredictor methods for
physicians beginning a career in clinical research, with a focus on techniques
appropriate to their research projects. For these students, mathematical explication
is an ineffective way to teach these methods. Hence our reliance on real-world
examples and heuristic explanations.
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Our students take the course in the second quarter of their research training.
A beginning course in biostatistics is assumed and some understanding of epidemio-
logic concepts is clearly helpful. However, Chap. 3 presents a review of topics from
a first biostatistics course, and we explain epidemiologic concepts in some detail
throughout the book.

Although theoretical details are minimized, we do discuss techniques of practical
utility that some would consider advanced. We treat extensions of basic multi-
predictor methods for repeated measures and hierarchical data, for data arising
from complex surveys, and for the broader class of generalized linear models, of
which logistic regression is the most familiar example. In addition, we consider
alternative approaches to estimating the causal effects of an exposure or treatment
from observational data, including propensity scores and instrumental variables. We
address model checking as well as model selection in considerable detail, including
specialized methods for avoiding over-fitting in selecting prediction models. And
we consider how missing data arise, and the conditions under which maximum
likelihood methods for repeated measures as well as multiple imputation of the
missing values can successfully deal with it.

The orientation of this book is to parametric methods, in which the systematic
part of the model is a simple function of the predictors, and substantial assumptions
are made about the distribution of the outcome. In our view, parametric methods
are usually flexible and robust enough, and we show how model adequacy can
be checked. The Cox proportional hazards model covered in Chap. 6 is a semi-
parametric method which makes few assumptions about an important component
of the systematic part of the model, but retains most of the efficiency and
many of the advantages of fully parametric models. Generalized additive models,
briefly reviewed in Chap. 5, go an additional step in this direction. However,
fully nonparametric regression methods in our view entail losses in efficiency
and ease of interpretation which make them less useful to researchers. We do
recommend a popular bivariate nonparametric regression method, LOWESS, but
only for exploratory data analysis.

Our approach is also to encourage exploratory data analysis as well as thoughtful
interpretation of results. We discourage focusing solely on P -values, which have an
important place in statistics but also important limitations. In particular, P -values
measure the strength of the evidence for an effect, but not its size. Furthermore, they
can be misleading when data-driven model selection has been carried out. In our
view, data analysis profits from considering the estimated effects, using confidence
intervals (CIs) to quantify their precision. In prediction problems, P -values are a
poor guide to prediction error, the proper focus of interest, and over-reliance of
them can lead to over-fitting.

We recommend that readers begin with Chap. 2, on exploratory methods. Since
Chap. 3 is largely a review, students may want to focus only on unfamiliar
material. Chapter 4, on multipredictor regression methods for continuous outcomes,
introduces most of the important themes of the book, which are then revisited in
later chapters, and so is essential reading. Similarly, Chap. 9 covers causal inference,
Chap. 10 addresses predictor selection, and Chap. 11 deals with missing data, all
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topics common to the entire family of regression techniques. Chapters 5 and 6
cover regression methods specialized for binary and time-to-event outcomes, while
Chaps. 7, 8, and 12 cover extensions of these methods for repeated measures, counts,
and other special types of outcomes, and complex surveys. Readers may want
to study these chapters as the need arises. Finally, Chap. 13 reprises the themes
considered in the earlier chapters and is recommended for all readers.

For interested readers, Stata code and selected datasets used in examples and
problems, plus errata, are posted on the website for this book:

http://www.biostat.ucsf.edu/vgsm

http://www.biostat.ucsf.edu/vgsm


Chapter 2
Exploratory and Descriptive Methods

Before beginning any sort of statistical analysis, it is imperative to take a preliminary
look at the data with three main goals in mind: first, to check for errors and
anomalies; second, to understand the distribution of each of the variables on its own;
and third, to begin to understand the nature and strength of relationships among
variables. Errors should, of course, be corrected, since even a small percentage
of erroneous data values can drastically influence the results. Understanding the
distribution of the variables, especially the outcomes, is crucial to choosing the
appropriate multipredictor regression method. Finally, understanding the nature and
strength of relationships is the first step in building a more formal statistical model
from which to draw conclusions.

2.1 Data Checking

Procedures for data checking should be implemented before data entry begins, to
head off future headaches. Many data entry programs have the capability to screen
for egregious errors, including values that are out the expected range or of the
wrong “type.” If this is not possible, then we recommend regular checking for data
problems as the database is constructed.

Here are two examples we have encountered recently. First, some values of a
variable defined as a proportion were inadvertently entered as percentages (i.e., 100
times larger than they should have been). Although they made up less than 3% of the
values, the analysis was completely invalidated. Fortunately, this simple error was
easily corrected once discovered. A second example involved patients with a heart
anomaly. Those whose diagnostic score was poor enough (i.e., exceeded a numerical
threshold) were to be classified according to the type of anomaly. Data checks
revealed missing classifications for patients whose diagnostic score exceeded the
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threshold, as well as classifications for patients whose score did not, complicating
planned analyses. Had the data been screened as they were collected, this problem
with study procedures could have been avoided.

2.2 Types of Data

The proper description of data depends on the nature of the measurement. The key
distinction for statistical analysis is between numerical and categorical variables.
The number of diagnostic tests ordered is a numerical variable, while the gender
of a person is categorical. Systolic blood pressure (SBP) is numerical, whereas the
type of surgery is categorical.

A secondary but sometimes important distinction within numerical variables is
whether the variable can take on a whole continuum or just a discrete set of values.
So SBP would be continuous, while number of diagnostic tests ordered would be
discrete. Cost of a hospitalization would be continuous, whereas number of mice
able to successfully navigate a maze would be discrete. More generally,

Definition: A numerical variable taking on a continuum of values is called continuous and
one that only takes on a discrete set of values is called discrete.

A secondary distinction sometimes made with regard to categorical variables
is whether the categories are ordered or unordered. So, for example, categories
of annual household income (<$20,000, $20,000–$40,000, $40,000–$100,000,
>$100,000) would be ordered, while marital status (single, married, divorced,
widowed) would be unordered. More exactly,

Definition: A categorical variable is ordinal if the categories can be logically ordered from
smallest to largest in a sense meaningful for the question at hand (we need to rule out silly
orders like alphabetical); otherwise it is unordered or nominal.

Some overlap between types is possible. For example, we may break a numerical
variable (such as exact annual income in dollars and cents) into ranges or categories.
Conversely, we may treat a categorical variable as a numerical score, for example,
by assigning values one to five to the ordinal responses Poor, Fair, Good, Very Good,
and Excellent.

Most of the analysis methods we will describe for numerical scores (e.g., linear
regression or t-tests) have interpretations based on average scores. So assigning
scores to a categorical variable is effective if average scores are readily interpretable.
This may well be the case for scoring the categories Poor through Excellent as 1
through 5: an average value of 3.5 is between Good and Very Good. It might be a less
effective strategy ordinal categorical variables such as the modified Rankin Scale,
a scale used to assess disability following a stroke. For that scale, 0 represents no
symptoms, 1 and 2 slight disability, 3 and 4 moderate disability, 5 severe disability,
and 6 is dead. Consider two sets of three patients, the first set with scores of 0, 6,
and 6 and the second with scores of 4, 4, and 4. Both have averages of 4, but the
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first set would generally be considered as having worse outcomes since two of the
patients died. In such a case, summarizing with the average, and hence treating the
variable as numeric, may not be appropriate.

In the following sections, we present each of the descriptive and exploratory
methods according to the types of variables involved.

2.3 One-Variable Descriptions

We begin by describing techniques useful for examining a single variable at a time.
These are useful for uncovering mistakes or extreme values in the data and for
assessing distributional shape.

2.3.1 Numerical Variables

We can describe the distribution of numerical variables using either numerical or
graphical techniques.

2.3.1.1 Example: Systolic Blood Pressure

The western collaborative group study (WCGS) was a large epidemiological study
designed to investigate the association between the “type A” behavior pattern and
coronary heart disease (CHD) (Rosenman et al. 1964). We will revisit this study
later in the book, focusing on the primary outcome, but for now we want to explore
the distribution of SBP.

2.3.1.2 Numerical Description

As a first step, we obtain basic descriptive statistics for SBP. Table 2.1 gives detailed
summary statistics for the SBP variable, sbp. Several features of the output are
worth consideration. The largest and smallest values should be scanned for outlying
or incorrect values, and the mean (or median) and standard deviation should be
assessed as general measures of the location and spread of the data. Secondary
features are the skewness and kurtosis, though these are usually more easily assessed
by the graphical means described in the next section. Another assessment of
skewness is a large difference between the mean and median. In right-skewed data,
the mean is quite a bit larger than the median, while in left-skewed data, the mean
is much smaller than the median. Of note, in this dataset, the largest observation is
more than six standard deviations above the mean!



10 2 Exploratory and Descriptive Methods

Table 2.1 Numerical description of systolic blood pressure

. summarize sbp, detail

systolic BP
-------------------------------------------------------------

Percentiles Smallest
1% 104 98
5% 110 100

10% 112 100 Obs 3154
25% 120 100 Sum of Wgt. 3154

50% 126 Mean 128.6328
Largest Std. Dev. 15.11773

75% 136 210
90% 148 210 Variance 228.5458
95% 156 212 Skewness 1.204397
99% 176 230 Kurtosis 5.792465

2.3.1.3 Graphical Description

Graphs are often the quickest and most effective way to get a sense of the data.
For numerical data, three basic graphs are most useful: the histogram, boxplot,
and normal quantile–quantile (or Q–Q) plot. Each is useful for different purposes.
The histogram easily conveys information about the location, spread, and shape of
the frequency distribution of the data. The boxplot is a schematic identifying key
features of the distribution. Finally, the normal Q–Q plot facilitates comparison of
the shape of the distribution of the data to a normal (or bell-shaped) distribution.

The histogram displays the frequency of data points falling into various ranges as
a bar chart. Figure 2.1 shows a histogram of the SBP data from WCGS. Generated
using an earlier version of Stata, the default histogram uses five intervals and labels
axes with the minimum and maximum values only. In this figure, we can see that
most of the measurements are in the range of about 100 to 150, with a few extreme
values around 200. The percentage of observations in the first interval is about
47.4%.

However, this is not a particularly well-constructed histogram. With over 3,000
data points, we can use more intervals to increase the definition of the histogram and
avoid grouping the data so coarsely. Using only five intervals, the first two including
almost all the data, makes for a loss of information, since we only know the value of
the data in those large “bins” to the limits of the interval (in the case of the first bin,
between 98 and 125), and learn nothing about how the data are distributed within
those intervals. Also, our preference is to provide more interpretable axis labeling.
Figure 2.2 shows a modified histogram generated using the current version of Stata
that provides much better definition as to the shape of the frequency distribution
of SBP.

The key with a histogram is to use a sufficient number of intervals to define the
shape of the distribution clearly and not lose much information, without using so
many as to leave gaps, give the histogram a ragged shape, and defeat the goal of
summarization. With 3,000 data points, we can afford quite a few bins. A rough
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Fig. 2.2 Histogram of the systolic blood pressure data using 15 intervals

rule of thumb is to choose the number of bins to be about 1C 3:3 log10.n/; (Sturges
1926) where n is the sample size (so this would suggest 12 or 13 bins for the WCGS
data). More than 20 or so are rarely needed. Figure 2.2 uses 15 bins and provides a
clear definition of the shape as well as a fair bit of detail.
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Fig. 2.3 Boxplot of the systolic blood pressure data

A boxplot represents a compromise between a histogram and a numerical sum-
mary. The boxplot in Fig. 2.3 graphically displays information from the summary
in Table 2.1, specifically the minimum, maximum, and 25th, 50th (median), and
75th percentiles. This retains many of the advantages of a graphical display while
still providing fairly precise numerical summaries. The “box” displays the 25th and
75th percentiles (the lower and upper edges of the box) and the median (the line
across the middle of the box). Extending from the box are the “whiskers” (this
colorful terminology is due to the legendary statistician John Tukey, who liked to
coin new terms). The bottom whisker extends to the minimum data value, 98, but
the maximum is above the upper whisker. This is because Stata uses an algorithm to
try to determine if observations are “outliers,” that is, values a large distance away
from the main portion of the data. Data points considered outliers (they can be in
either the upper or lower range of the data) are plotted with symbols and the whisker
only extends to the most extreme observation not considered an outlier.

Boxplots convey a wealth of information about the distribution of the variable:

• Location, as measured by the median
• Spread, as measured by the height of the box (this is called the interquartile range

or IQR)
• Range of the observations
• Presence of outliers
• Some information about shape

This last point bears further explanation. If the median is located toward the
bottom of the box, then the data are right-skewed toward larger values. That is, the
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Fig. 2.4 Normal Q–Q plot of the systolic blood pressure data

distance between the median and the 75th percentile is greater than that between
the median and the 25th percentile. Likewise, right-skewness will be indicated if the
upper whisker is longer than the lower whisker or if there are more outliers in the
upper range. Both the boxplot and the histogram show evidence for right-skewness
in the SBP data. If the direction of the inequality is reversed (more outliers on
the lower end, longer lower whisker, median toward the top of the box), then the
distribution is left-skewed.

Our final graphical technique, the normal Q–Q plot, is useful for comparing
the frequency distribution of the data to a normal distribution. Since it is easy to
distinguish lines that are straight from ones that are not, a normal Q–Q plot is
constructed so that the data points fall along an approximately straight line when
the data are from a normal distribution, and deviate systematically from a straight
line when the data are from other distributions. Figure 2.4 shows the Q–Q plot for
the SBP data. The line of the data points shows a distinct curvature, indicating the
data are from a nonnormal distribution.

The shape and direction of the curvature can be used to diagnose the deviation
from normality. Upward curvature, as in Fig. 2.4, is indicative of right-skewness,
while downward curvature is indicative of left-skewness. The other two common
patterns are S-shaped. An S-shape as in Fig. 2.5 indicates a heavy-tailed distribu-
tion, while an S-shape like that in Fig. 2.6 is indicative of a light-tailed distribution.

Heavy- and light-tailed are always in reference to a hypothetical normal distri-
bution with the same spread. A heavy-tailed distribution has more observations in
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Fig. 2.5 Normal Q–Q plot of data from a heavy-tailed distribution
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Fig. 2.6 Normal Q–Q plot of data from a light-tailed distribution

the middle of the distribution and way out in the tails, and fewer a modest way
from the middle (simply having more in the tails would just mean a larger spread).
Light-tailed means the reverse: fewer in the middle and far out tails and more in
the mid-range. Heavy-tailed distributions are generally more worrisome than light-
tailed since they are more likely to include outliers.
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Table 2.2 Effect of a log10
transformation

Value Difference log10 value Difference

0.01 0.09 �2 1
0.1 0.9 �1 1
1 9 0 1
10 90 1 1
100 900 2 1
1,000 – 3 –
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Fig. 2.7 Histograms of systolic blood pressure and its natural logarithm

2.3.1.4 Transformations of Data

A number of the techniques we describe in this book require the assumption of
approximate normality or, at least, work better when the data are not highly skewed
or heavy-tailed, and do not include extreme outliers. A common method for dealing
with these problems is to transform such variables. For example, instead of the
measured values of SBP, we might instead use the logarithm of SBP. We first
consider why this works and then some of the advantages and disadvantages of
transformations.

Transformations affect the distribution of values of a variable because they em-
phasize differences in a certain range of the data, while de-emphasizing differences
in others. Consider a table of transformed values, as displayed in Table 2.2. On the
original scale the difference between 0.01 and 0.1 is 0.09, but on the log10 scale,
the difference is 1. In contrast, the difference between 100 and 1,000 on the original
scale is 900, but this difference is also 1 on the log10 scale. So a log transformation
de-emphasizes differences at the upper end of the scale and emphasizes those at the
lower end. This holds for the natural log as well as log10 transformation. The effect
can readily be seen in Fig. 2.7, which displays histograms of SBP on the original
scale and after natural log transformation.

The log-transformed data is distinctly less right-skewed, even though some
skewness is still evident. Essentially, we are viewing the data on a different scale
of measurement.

There are a couple of other reasons to consider transforming variables, as we will
see in later sections and chapters: transformations can simplify the relationships
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Table 2.3 Frequencies of behavior patterns

tabulate behpat
behavioral |
pattern (4 |

level) | Freq. Percent Cum.
------------+-----------------------------------

A1 | 264 8.37 8.37
A2 | 1325 42.01 50.38
B3 | 1216 38.55 88.93
B4 | 349 11.07 100.00

------------+-----------------------------------
Total | 3154 100.00

between variables (e.g., by making a curvilinear relationship linear), can remove
interactions, and can equalize variances across subgroups that previously had
unequal variances.

A primary objection to the use of transformations is that they make the data less
interpretable. After all, who thinks about medical costs in log dollars? In situations
where there is good reason to stay with the original scale of measurement (e.g.,
dollars), we may prefer alternatives to transformation including GLMs and weighted
analyses. Or we may appeal to the robustness of normality-based techniques: many
perform extremely well even when used with data exhibiting fairly serious violations
of the assumptions.

In other situations, with a bit of work, it is straightforward to express the results
on the original scale when the analysis has been conducted on a transformed scale.
For example, Sect. 4.7.5 gives the details for log transformations in linear regression.

A compromise when the goal is, for example, to test for differences between
two arms in a clinical trial is to plan ahead to present basic descriptive statistics
in the original scale, but perform tests on a transformed scale more appropriate for
statistical analysis. After all, a difference on the transformed scale is still a difference
between the two arms.

Finally, we remind the reader that different scales of measurement just take a bit
of getting used to: consider pH.

2.3.2 Categorical Variables

Categorical variables require a different approach, since they are less amenable to
graphical analyses and because common statistical summaries, such as mean and
standard deviation, are inapplicable. Instead we use tabular descriptions. Table 2.3
gives the frequencies, percents, and cumulative percents for each of the behavior
pattern categories for the WCGS data. Note that cumulative percentages are really
only useful with ordinal categorical data (why?).

When tables are generated by the computer, there is usually little latitude in the
details. However, when tables are constructed by hand, thought should be given
to their layout; Ehrenberg (1981) is recommended reading. Three easy-to-follow
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Table 2.4 Characteristics of top medical schools

School Rank
NIH research
($10 millions)

Tuition
($ thousands)

Average
MCAT

Harvard 1 68 30 11.1
Johns Hopkins 2 31 29 11.2
Duke 3 16 31 11.6

Penn 4(Tie) 33 32 11.7
Washington U. 4(Tie) 25 33 12.0
Columbia 6 24 33 11.7

UCSF 7 24 20 11.4
Yale 8 22 30 11.1
Stanford 9(Tie) 19 30 11.1
Michigan 9(Tie) 20 29 11.0

Source: US News and World Report (http://www.usnews.com, 12/6/01)

suggestions from that article are to arrange the categories in a meaningful way (e.g.,
not alphabetically), report numbers to two effective digits, and to leave a gap every
three or four rows to make it easier to read across the table. Table 2.4 illustrates these
concepts. With the table arranged in order of the rankings, it is easy to see values
that do not follow the pattern predicted by rank, for example, out-of-state tuition.

2.4 Two-Variable Descriptions

Most of the rest of this book is about the relationships among variables. An example
from the WCGS is whether behavior pattern is related to SBP. In investigating the
relationships between variables, it is often useful to distinguish the role that the
variables play in an analysis.

2.4.1 Outcome Versus Predictor Variables

A key distinction is whether a variable is being predicted by the remaining variables,
or whether it is being used to make the prediction. The variable singled out to
be predicted from the remaining variables we will call the outcome variable;
alternate and interchangeable names are response variable or dependent variable.
The variables used to make the prediction will be called predictor variables. Al-
ternate and equivalent terms are covariates and independent variables. We slightly
prefer the outcome/predictor combination, since the term response conveys a cause-
and-effect interpretation, which may be inappropriate, and dependent/independent
is confusing with regard to the notion of statistical independence. (“Independent
variables do not have to be independent” is a true statement!).

http://www.usnews.com
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Table 2.5 Correlation coefficient for systolic blood pressure and weight

. correlate sbp weight (obs=3154)

| sbp weight
-------------+------------------

sbp | 1.0000
weight | 0.2532 1.0000

In the WCGS example, we might hypothesize that change in behavior pattern
(which is potentially modifiable) might cause change in SBP. This would lead us to
consider SBP as the outcome and behavior pattern as the predictor.

2.4.2 Continuous Outcome Variable

As before, it is useful to consider the nature of the outcome and predictor variables
in order to choose the appropriate descriptive technique. We begin with continuous
outcome variables, first with a continuous predictor and then with a categorical
predictor.

2.4.2.1 Continuous Predictor

When both the predictor and outcome variables are continuous, the typical
numerical description is a correlation coefficient and its graphical counterpart is a
scatterplot. Again considering the WCGS study, we will investigate the relationship
between SBP and weight.

Table 2.5 shows the Stata command and output for the correlation coefficient,
while Fig. 2.8 shows a scatterplot. Both the graph and the numerical summary
confirm the same thing: there is a weak association between the two variables,
as measured by the correlation of 0.25. The graph conveys important additional
information. In particular, there are quite a few outliers, including an especially
anomalous data point with high blood pressure and the lowest weight in the dataset.

The Pearson correlation coefficient r , more fully described in Sect. 3.2, is a scale-
free measure of association that does not depend on the units in which either SBP
or weight is measured. The correlation coefficient varies between –1 and 1, and
correlations of absolute value 0.7 or larger are considered strong associations in
many contexts. In fields where data are typically noisy, including our SBP example,
much smaller correlations may be considered meaningful.

It is important to keep in mind that the Pearson correlation coefficient only
measures the strength of the linear relationship between two variables. To determine
whether the correlation coefficient is a reasonable numerical summary of the
association, a graphical tool that helps to assess linearity in the scatterplot is a
scatterplot smoother. Figure 2.9 shows a scatterplot smooth superimposed on the
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Fig. 2.8 Scatterplot of systolic blood pressure versus weight
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Fig. 2.9 LOWESS smooth of systolic blood pressure versus weight

graph of SBP versus weight. The figure was generated by the Stata command
lowess sbp weight, bw(0.25) (with a few embellishments to make it
look nicer). This uses the LOWESS technique to draw a smooth (but not necessarily
straight) line representing the average value of the variable on the y-axis as a
function of the variable on the x-axis. LOWESS is short for LOcally WEighted
Scatterplot Smoother. The bw(0.25) option specifies that for estimation of the
height of the curve at each point, 25% of the data nearest that point should be used.
This is all just a fancy way of drawing a flexible curve through a cloud of points.
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Table 2.6 Summary data for systolic blood pressure by behavior pattern

. bysort behpat: summarize sbp

-------------------------------------------------------------------------------
-> behpat = A1

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 264 129.2462 15.29221 100 200

-------------------------------------------------------------------------------
-> behpat = A2

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 1325 129.8891 15.77085 100 212

-------------------------------------------------------------------------------
-> behpat = B3

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 1216 127.5551 14.78795 98 230

-------------------------------------------------------------------------------
-> behpat = B4

Variable | Obs Mean Std. Dev. Min Max
-------------+-----------------------------------------------------

sbp | 349 127.1547 13.10125 102 178

Figure 2.9 shows that the relationship between SBP and weight is very close to
linear. The small upward bend at the far left of the graph is mostly due to the outlying
observation at the lowest weight and is a warning as to the instability of LOWESS
(or any scatterplot smoother) at the edges of the data.

Choice of bandwidth is somewhat subjective. Small bandwidths like 0.05 often
give very bumpy curves, which are hard to interpret. At the other extreme,
bandwidths too close to one force the curve to be practically a straight line, obviating
the advantage of using a scatterplot smoother. See Problem 2.6.

2.4.2.2 Categorical Predictor

With a continuous outcome and a categorical predictor, the usual strategy is to apply
the same numerical or graphical methods used for one-variable descriptions of a
continuous outcome, but to do so separately within each category of the predictor.
As an example, we describe the distribution of SBP in WCGS, within levels of
behavior pattern. Table 2.6 shows the most direct way of doing this in Stata.
Alternatively, the table command can be used to make a more compact display,
with command options controlling which statistics are listed. The results are shown
in Table 2.7.

Side-by-side boxplots, as shown in Fig. 2.10, are an excellent graphical tool for
examining the distribution of SBP in each of the behavior pattern categories and
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Table 2.7 Descriptive statistics for systolic blood pressure by behavior pattern

. table behpat, contents(mean sbp sd sbp min sbp max sbp)

----------------------------------------------------------
Behaviora |
l Pattern | mean(sbp) sd(sbp) min(sbp) max(sbp)
----------+-----------------------------------------------

A1 | 129.2462 15.29221 100 200
A2 | 129.8891 15.77085 100 212
B3 | 127.5551 14.78795 98 230
B4 | 127.1547 13.10125 102 178

----------------------------------------------------------
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Fig. 2.10 Boxplots of systolic blood pressure by behavior pattern

making comparisons among them. The four boxplots are quite similar. They each
have about the same median, interquartile range, and a slight right-skewness. At
least on the basis of this figure, there appears to be little relationship between SBP
and behavior pattern.

2.4.3 Categorical Outcome Variable

With a categorical outcome variable, the typical method is to tabulate the outcome
within levels of the predictor variable. To do so first requires breaking any
continuous predictors into categories. Suppose, for example, we wished to treat
behavior pattern as the outcome variable and weight as the predictor. We might first
divide weight into four categories:�140 pounds,>140–170,>170–200, and>200.
As with histograms, we need enough categories to avoid loss of information, without
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Table 2.8 Behavior pattern by weight category

. tabulate behpat wghtcat, column

behavioral |
pattern (4 | wghtcat

level) | < 140 140-170 170-200 > 200 | Total
-----------+--------------------------------------------+----------

A1 | 20 125 98 21 | 264
| 8.62 8.13 8.37 9.86 | 8.37

-----------+--------------------------------------------+----------
A2 | 100 612 514 99 | 1325

| 43.10 39.79 43.89 46.48 | 42.01
-----------+--------------------------------------------+----------

B3 | 90 610 443 73 | 1216
| 38.79 39.66 37.83 34.27 | 38.55

-----------+--------------------------------------------+----------
B4 | 22 191 116 20 | 349

| 9.48 12.42 9.91 9.39 | 11.07
-----------+--------------------------------------------+----------

Total | 232 1538 1171 213 | 3154
| 100.00 100.00 100.00 100.00 | 100.00

defining categories that include too few observations. Familiar clinical categories are
often useful (e.g., glucose <110, 110–125, >125). In Table 2.8, we have requested
percentages for each column to facilitate the comparison of the percentages in each
behavior pattern between the weight categories. Row percentages or percentages out
of the total of 3,154 could also have been requested.

In choosing cutoff points for categorical variables, it is entirely fair to look at the
distribution of that variable to try to obtain, for example, roughly equal sample sizes
in each of the categories. Splitting the data into 3; 4; 5; or 10 groups of equal size
is a common approach. However, fishing for cutpoints that prove a point is an easy
way to arrive at misleading conclusions.

A different strategy with a categorical outcome and a continuous predictor is to
“turn the problem around” and treat the continuous variable as the outcome, using
the methods of the previous section. If the only goal is to determine whether the
two variables are associated, this may suffice. But when the categorical variable
is clearly the outcome, this may lead to awkward models and hard-to-interpret
conclusions.

2.5 Multivariable Descriptions

Description of more than two or three variables simultaneously quickly becomes
difficult. One approach is to look at pairwise associations, e.g., for categorical
variables, looking at a series of two-way tables, taking each pair of variables in
turn. If a number of the variables are continuous, a correlation matrix (giving all the
pairwise correlations) or a scatterplot matrix (giving all the pairwise plots) can be
generated. Table 2.9 and Fig. 2.11 show these for the variables SBP, age, weight,
and height.The correlation matrix shows that SBP is very weakly correlated with
age and weight and essentially uncorrelated with height.
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Table 2.9 Correlation matrix for systolic blood pressure, age, weight, and height

. correlate sbp age weight height (obs=3154)

| sbp age weight height
-------------+------------------------------------

sbp | 1.0000
age | 0.1657 1.0000

weight | 0.2532 -0.0344 1.0000
height | 0.0184 -0.0954 0.5329 1.0000
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Fig. 2.11 Scatterplot matrix of systolic blood pressure, age, weight, and height

The scatterplot matrix supports the correlation calculation. If one of the variables
is clearly the outcome variable, it is useful to list this variable first in the
command. That way the first row of the matrix shows the outcome variable on the
y-axis, plotted against each of the predictor variables on the x-axis. The matrix
of scatterplots for these four variables additionally displays the modest positive
correlation between weight and height, indicating the people come in all sizes and
shapes!

Multi-way tables that go beyond pairwise relationships can be generated with
multiple categorical variables. For example, Table 2.10 shows whether or not the
subject had a coronary event (chd69), by behavior pattern within weight category.
Options in the Stata command are used to obtain the row and column totals. With
some study, it is possible to extract information from this three-way table, but it is
more difficult than with a one- or two-way table. An advantage of a three-way table
is the ability to assess interaction, the topic of Sect. 4.6. That is, is the relationship
between CHD and behavior pattern the same for each weight category?
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Table 2.10 CHD events and behavior pattern by weight category

. table chd69 behpat wghtcat, row col

----------------------------------------------------------------------------------

| wghtcat and behavioral pattern (4 level)

| ------------- < 140 ------------- ------------ 140-170 ------------

CHD event | A1 A2 B3 B4 Total A1 A2 B3 B4 Total

----------+-----------------------------------------------------------------------

no | 18 93 84 22 217 115 559 582 184 1,440

yes | 2 7 6 15 10 53 28 7 98

|

Total | 20 100 90 22 232 125 612 610 191 1,538

----------------------------------------------------------------------------------

----------------------------------------------------------------------------------

| wghtcat and behavioral pattern (4 level)

| ------------ 170-200 ------------ ------------- > 200 -------------

CHD event | A1 A2 B3 B4 Total A1 A2 B3 B4 Total

----------+-----------------------------------------------------------------------

no | 81 438 422 108 1,049 20 87 67 17 191

yes | 17 76 21 8 122 1 12 6 3 22

|

Total | 98 514 443 116 1,171 21 99 73 20 213

----------------------------------------------------------------------------------
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Fig. 2.12 Scatterplot of SBP versus weight by behavior pattern

Analogous graphical displays are also possible. For example, we could look at the
relationship between SBP and weight separately by behavior pattern, as displayed in
Fig. 2.12. This indicates that the relationship seems to be the same for each behavior
pattern, indicating a lack of interaction.
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2.6 Summary

Exploratory summaries and graphs are a crucial first step in any data analysis.
They provide an opportunity to uncover unusual or anomalous data points which
may affect the analysis. Summaries and graphs uncover properties of the data (for
instance, skewness) which are useful for informing which model families may fit the
data best. Finally, exploring the strength of relationships between variables through
graphs provides compelling summaries of the relationships as well as guidance for
building regression models.

2.7 Problems

Problem 2.1. Classify each of the following variables as numerical or categorical.
Then further classify the numerical variables as continuous or discrete, and the
categorical variables as ordinal or nominal.

(1) Gender
(2) Race
(3) Age (in years)
(4) Age in categories (0–20, 21–35, 36–45, 45–60, 60–85, 85+)
(5) Zipcode
(6) Toxicity (mild, moderate, life-threatening, dead)
(7) Number of hospitalizations in the past year
(8) Change in HIV-RNA
(9) Weeks on treatment

(10) Treatment (placebo versus estrogen)

Problem 2.2. Generate pseudo-random data from a normal distribution using a
computer program or statistics package. In Stata, this can be done using the
generate command and the function invnorm(uniform()). Now generate a
normal Q–Q plot for these data. Do this for several samples of size 10, 50, and 200.
How well do the Q–Q plots approximate straight lines? This is valuable practice for
judging how well an actual dataset can be expected to approximate a straight line.

Problem 2.3. Generate pseudo-random samples of size 50 from a normal distri-
bution (see Problem 2.2 for how to do this in Stata). Construct histograms of the
data using 5, 7, and 15 bins. What do you notice? Do the shapes look like a normal
distribution?

Problem 2.4. Warfarin is a drug used to prevent blood clots, for example in patients
with irregular heartbeat and after heart surgery. However, too much warfarin can
cause unusual bleeding or bruising, so calibration of the dose is important. A study
contrasting calibration times (in hours) in two ethnic groups had the following
results. For the sample of 19 Caucasians, the times were 2, 4, 6, 7, 8, 9, 10, 10,



26 2 Exploratory and Descriptive Methods

12, 14, 16, 19, 21, 24, 26, 30, 35, 44, and 70; for the 18 Asian–Americans, the times
were 2, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9, 10, 12, 19, and 32.

(1) Display the data numerically to compare the two ethnic groups.
(2) Display the data graphically to compare the two ethnic groups.
(3) Describe the distribution of the data within ethnic group.
(4) Log transform the data and repeat the graphical display. How do the displays

with and without log transformation compare?
(5) Can you think of other variables you might want to adjust to help understand

the ethnic differences better?

Problem 2.5. The timing of various stages in the contraction of the heart,
determined by electro-cardiogram (EKG), can be used to diagnose heart problems.
A commonly measured time interval in the contraction of the ventricles is the so-
called QRS wave. A study was conducted to see if longer QRS times were related to
the ability to induce rapid heart rhythms (called inducible ventricular tachycardia or
IVT), which have been associated with adverse outcomes. In a study of 53 subjects,
the 18 with IVT had QRS times (in milliseconds) of 70, 75, 86, 90, 96, 102, 110,
114, 116, 117, 120, 130, 136, 142, 145, 152, 170, and 182. The 35 patients without
IVT had QRS times of 40, 50, 65, 70, 76, 78, 80, 82, 85, 88, 88, 89, 90, 94, 95, 96,
98, 98, 100, 102, 105, 107, 109, 110, 114, 115, 120, 125, 130, 135, 138, 150, 165,
170, and 180.

(1) Display the data numerically to help understand whether QRS time is related to
IVT.

(2) Display the data graphically to help understand whether QRS time is related to
IVT.

(3) QRS time is commonly considered as abnormal if the value is greater than
120 ms. Generate a numerical display to help understand if abnormal QRS is
related to IVT.

(4) What are the advantages and disadvantages of treating QRS as binary (above
120 ms) instead of continuous?

Problem 2.6. Using the WCGS dataset, generate a LOWESS (or equivalent)
scatterplot smooth of SBP versus weight, comparable to Fig. 2.9. Next try the plot
with bandwidths of 0.05, 0.15, and 0.50. How do they compare? Which is most
useful for judging the linearity or lack of linearity of the relationship? The WCGS
data are available at http://www.biostat.ucsf.edu/vgsm.

http://www.biostat.ucsf.edu/vgsm


Chapter 3
Basic Statistical Methods

Statistical analyses involving multiple predictors are generalizations of simpler
techniques developed for investigating associations between outcomes and single
predictors. Although many of these should be familiar from basic statistics courses,
we review some of the key ideas and methods here as background for the methods
covered in the rest of the book and to introduce some basic notation.

Sections 3.1–3.3 review basic methods for continuous outcomes, including the
t-test and one-way ANOVA, the correlation coefficient and the linear regression
model for a single predictor. Section 3.4 focuses on contingency table methods
for investigating associations between binary outcomes and categorical predictors,
including a discussion of basic measures of association. Section 3.5 introduces
descriptive methods for survival time outcomes, including Kaplan–Meier survival
curves and the logrank test. In Sect. 3.6, we introduce the use of the bootstrap as
a method to obtain CIs for estimates in situations where traditional methods are
inappropriate. Finally, Sect. 3.7 discusses the importance of properly interpreting
negative findings from statistical analyses, focusing on the use of point estimates
and CIs rather than P -values.

3.1 t-Test and Analysis of Variance

The t-test and one-way ANOVA are basic tools for assessing the statistical
significance of differences between the average values of a continuous outcome
across two or more samples. Both the t-test and one-way ANOVA can be seen as
methods for assessing the association of a categorical predictor—binary in the case
of the t-test, with more than two levels in the case of one-way ANOVA—with a
continuous outcome. Both are based in statistical theory for normally distributed
outcomes, but work well for many other types of data; and both turn out to be special
cases of linear regression models.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 3,
© Springer Science+Business Media, LLC 2004, 2012
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Table 3.1 t -Test of difference in average glucose by exercise

. t-test glucose if diabetes == 0, by(exercise)

Two-sample t-test with equal variances

----------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+------------------------------------------------------------------

no | 1191 97.36104 .2868131 9.898169 96.79833 97.92376
yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786

---------+------------------------------------------------------------------
combined | 2032 96.66043 .2162628 9.74863 96.23631 97.08455
---------+------------------------------------------------------------------

diff | 1.692789 .4375862 .8346243 2.550954
----------------------------------------------------------------------------
Degrees of freedom: 2030

Ho: mean(no) - mean(yes) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8685 t = 3.8685 t = 3.8685

P < t = 0.9999 P > |t| = 0.0001 P > t = 0.0001

3.1.1 t-Test

The basic t-test is used in comparing two independent samples. The t-statistic on
which the test is based is the difference between the two sample averages, divided by
the standard error of that difference. The t-test is designed to work in small samples,
whereas Z-tests are not. Table 3.1 shows the result of a t-test comparing average
fasting glucose levels among women without diabetes, according to exercise. This
is the first of many examples in Chaps. 3 and 4 using data from the heart and
estrogen/progestin study (HERS), a clinical trial of hormone therapy (HT) for
prevention of recurrent heart attacks and death among 2,763 post-menopausal
women with existing coronary heart disease (CHD) (Hulley et al. 1998). Average
glucose is 97.4 mg/dL among the 1,191 women who do not exercise as compared
to 95.7 mg/dL among the 841 women who do. The difference of 1.7 mg/dL is
statistically significant (P D 0:0001) in the two-sided test shown in the column
headed Ha: diff != 0 (!= is Stata notation for “not equal to.”) The P -value
gives the probability—under the null hypothesis that mean glucose levels are the
same in the two populations being compared—of observing a t-statistic more
extreme, or larger in absolute value, than the observed value.

3.1.2 One- and Two-Sided Hypothesis Tests

In clinical research, unlike some other areas of science, two-sided hypothesis tests
are almost always used. In the two-sided t-test, we are testing the null hypothesis
(Ho) of equal population means against the alternative hypothesis (Ha) that the one
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mean is either smaller or larger than the other. The two-sided test is appropriate, for
example, when a new treatment might turn out to be beneficial or to have adverse
effects.

In contrast, only one of these alternatives is considered in a one-sided test. As a
result, the smaller of the one-sided P -values is half the magnitude of the two-sided
P -value. The resulting advantage of the one-sided test is that at a given significance
level, less evidence in favor of the alternative hypothesis is required to reject the
null. For example, using a one-sided test in a sample of 100 observations, we would
declare statistical significance at the 5% level if the t-statistic exceeds 1.66; using
a two-sided test it would need to exceed 1.98 (in absolute value). A direct benefit
is that a somewhat smaller sample size is required when a study is designed to be
analyzed using a one-sided test.

Use of a one-sided test is sometimes motivated by prior information that makes
only one of the alternatives of interest. An example might be in testing an existing
treatment known to be safe for evidence of benefit on a new endpoint. One-sided
tests are also used in noninferiority trials comparing a new to a standard treatment;
in this setting the alternative hypothesis is that the new treatment performs almost as
well or better than the standard treatment, as against the null hypothesis of clearly
performing worse.

However, in part because they make it possible to reject the null hypothesis on
weaker evidence, one-sided tests are not commonly used in clinical research. Even
in noninferiority trials where one-sided tests are clearly appropriate, a standard text
on the conduct of clinical trials (Friedman et al.1998) recommends that the tests be
carried out at a significance level of 2.5%. Thus to claim noninferiority, the same
strength of evidence would be required as in a two-sided test. Furthermore, Fleiss
(1988) argues that the other alternative ought generally to be of interest, and that
in treatment trials adverse effects can rarely be ruled out with sufficient certainty to
justify a one-sided test. We endorse this conservative view, and recommend using
two-sided tests unless a one-sided test is strongly motivated by specific reasons.

The Stata t-test command gives P -values for both one-sided test as
well as the two-sided test. In Table 3.1, the one-sided P -value on the right
(Ha: diff > 0) gives the probability (again, under the null hypothesis) of
observing a t-statistic larger than the observed value, while the one on the left
(Ha: diff < 0) gives the probability of observing one that is smaller. In this
example, there is strong evidence (P D 0:0001) that the mean glucose level is
higher in the population of women who do not exercise, as compared to those who
do, and essentially no evidence (P D 1:0) that it is smaller.

3.1.3 Paired t-Test

The paired t-test is for use in settings where individuals or observations are linked
across the two samples. Examples include measurements taken at two time points on
the same individuals, or on other naturally linked pairs, as in a clinical trial where
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one eye is treated and the other serves as a control. In this case, the two samples
are not independent and failure to take account of the pairwise relationships wastes
information and is potentially erroneous.

The paired t-test procedure first computes the pairwise differences for each
individual or linked pair. In the first example, this is the change in the outcome
from the first time point to the second, and in the second, the difference between the
outcomes for the treated and control eyes. Then a t-test is used to assess whether the
population mean of these paired differences differs from zero. An increase in power
results because between-individual variability is eliminated in the first step. The
paired t-test is also implemented using the t-test command in Stata. The more
complicated case where we want to examine the influence of some other factor on
within-individual changes is covered in Sect. 7.3.

3.1.4 One-Way Analysis of Variance

Suppose that we need to compare sample averages across the arms of a clinical
trial with multiple treatments, or more generally across more than two independent
samples. For this purpose, one-way ANOVA and the F -test take the place of
the t-test. The F -test, presented in more detail in Sect. 4.3, assesses the null
hypothesis that the mean value of the outcome is the same across all the populations
sampled from, against the alternative that the means differ in at least two of the
populations. For example, the one-way ANOVA shown in Table 3.2, the F -test for
Between groups (P D 0:0371), suggests that mean SBP differs by ethnicity in
the population represented in the HERS cohort.

3.1.5 Pairwise Comparisons in ANOVA

The statistically significant F -test in the one-way ANOVA indicates the overall
importance of ethnicity for predicting SBP. In addition, Stata implements the
Bonferroni, Scheffé, and Sidak procedures for assessing the statistical significance
of all possible pairwise differences between groups, without inflation of the overall
or family-wise type-I error rate (FER), which can arise from testing multiple null
hypotheses. These and other methods for controlling the FER are discussed in
Sects. 4.3.4 and 13.4.1. All three methods implemented in the oneway command
show that the difference in average SBP between the African American and white
groups is statistically significant after correction for multiple comparisons, but that
the other pairwise differences are not; we show the Scheffé result.
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Table 3.2 One-way ANOVA assessing differences in SBP by ethnicity

. oneway sbp ethnicity, tabulate scheffe

| Summary of systolic blood pressure
ethnicity | Mean Std. Dev. Freq.

------------+------------------------------------
White | 134.78376 18.831686 2451

Afr Amer | 138.23394 19.992518 218
Other | 135.18085 21.259767 94

------------+------------------------------------
Total | 135.06949 19.027807 2763

Analysis of Variance
Source SS df MS F Prob > F

------------------------------------------------------------------------
Between groups 2384.26992 2 1192.13496 3.30 0.0371
Within groups 997618.388 2760 361.455938

------------------------------------------------------------------------
Total 1000002.66 2762 362.057443

Comparison of systolic blood pressure by ethnicity
(Scheffe)

Row Mean-|
Col Mean | White Afr-Amer
---------+----------------------
Afr-Amer | 3.45018

| 0.037
Other | .397089 -3.05309

| 0.980 0.429

3.1.6 Multi-way ANOVA and ANCOVA

Multi-way ANOVA is an extension of the one-way procedure to deal simultaneously
with more than one categorical predictor, while analysis of covariance (ANCOVA)
is commonly defined as an extension of ANOVA that includes continuous as well
as categorical predictors. The t- and F -tests retain their central importance in
these procedures. However, one-way ANOVA and the t-test implicitly estimate
the different population means by the sample averages; in contrast, the population
means in multi-way ANOVA and ANCOVA are usually modeled. Thus these
procedures are most easily understood as multipredictor linear regression models,
which are covered in Chap. 4.

3.1.7 Robustness to Violations of Normality Assumption

The t- and F -tests are fairly robust to violations of the normality assumption,
especially in larger samples. By robust we mean that the type-I error rate, or
probability of rejecting the null hypothesis when it holds, is not seriously affected.
They are primarily sensitive to outliers, which tend to decrease efficiency and make
it harder to detect real differences between groups. Thus the effect is conservative,
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in the sense of making it more likely that we will accept the null hypothesis when
some real difference exists.

Large samples reduce sensitivity of the t-test to the assumption that the outcome
is normally distributed because the distribution of the difference between the sample
averages, which directly underlies the test, converges to a normal distribution even
when the outcome itself has some other distribution. If violations of the normality
assumption are mild to moderate, samples of 50–100 may be large enough, in
particular with equal group sizes, but considerably larger samples might be needed
with severe violations. Analogous large-sample behavior holds for the regression
coefficients estimated in multipredictor linear models as well as the other regression
models that are the primary topic of this book.

3.1.8 Nonparametric Alternatives

One commonly recommended solution for violations of the normality assumption
is to use nonparametric Wilcoxon rank-sum or Kruskal–Wallis tests rather than the
t-test or one-way ANOVA. Two other nonparametric methods are discussed below
in Sect. 3.2 on the correlation coefficient.

While they avoid specific parametric distributional (i.e., normality) assumptions,
these methods are not assumption-free. For example, the Wilcoxon and Kruskal–
Wallis tests are based on the assumption that the outcome distributions being
compared differ in location (mean and/or median) but not in scale (variance) or
shape, as might be captured by a histogram, and can give misleading results if these
assumptions are violated. Furthermore, these two tests do not provide an inter-
pretable measure of the strength of the association. More generally, nonparametric
methods sometimes result in loss of efficiency, and do not easily accommodate
multiple predictors, unlike the regression methods which are the focus of this book.

Nonparametric tests are most useful for unadjusted between-group comparisons
where the P -value is of primary interest, in particular for variables with skewed
distributions that cannot be normalized by transformation, or outliers that must be
retained for substantive reasons.

3.1.9 Equal Variance Assumption

When sample sizes are unequal, the t-test is less robust to violations of the
assumption of equal variance across samples than to violations of normality.
Violations of this assumption can seriously affect the type-I error rate, not always
in a conservative direction, and large samples do not make the test any more robust.
In contrast, the overall F -test in ANOVA loses efficiency, but the type-I error rate
is generally not increased. However, subsequent pairwise comparisons using t-tests
remain vulnerable.
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Table 3.3 t -Test allowing for unequal variances

. t-test glucose if diabetes == 0, by(exercise) unequal

Two-sample t-test with unequal variances

----------------------------------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
---------+------------------------------------------------------------------

no | 1191 97.36104 .2868131 9.898169 96.79833 97.92376
yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786

---------+------------------------------------------------------------------
combined | 2032 96.66043 .2162628 9.74863 96.23631 97.08455
---------+------------------------------------------------------------------

diff | 1.692789 .4341096 .8413954 2.544183
----------------------------------------------------------------------------
Satterthwaite’s degrees of freedom: 1858.33

Ho: mean(no) - mean(yes) = diff = 0

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8995 t = 3.8995 t = 3.8995

P < t = 1.0000 P > |t| = 0.0001 P > t = 0.0000

In the two-sample case, this problem is easily addressed using a version of the
t-test for unequal variances. This is based on a modified estimate of the standard
error of the difference in sample averages. In the analysis shown in Table 3.1, the
standard deviation of glucose is 9.9 mg/dL among women who do not exercise,
as compared to 9.5 mg/dL among the women who do. In this case, the re-analysis
allowing for unequal variances, shown in Table 3.3, gives qualitatively the same
result (P D 0:0001). We recommend systematic use of this version of the t-test,
since the increase in robustness comes at very little cost in efficiency. Analogous
extensions of ANOVA in which the variance is allowed to vary by group are also
possible, though not implemented in the Stata one-way or anova commands.

3.2 Correlation Coefficient

The Pearson correlation coefficient r is a scale-free measure of linear association
between two variables x and y, and is defined as follows:

r.x; y/ D Cov.x; y/

SD.x/SD.y/

D
Pn

iD1.xi � Nx/.yi � Ny/=.n� 1/pPn
iD1.xi � Nx/2=.n� 1/

pPn
iD1.yi � Ny/2=.n � 1/

: (3.1)

In (3.1), Cov.x; y/ is the sample covariance of x and y, Nx and Ny are their sample
means, SD.x/ and SD.y/ their standard deviations, and n is the sample size. The
covariance reflects the degree to which observations on the two variables differ from
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their respective means in the same degree and direction. Dividing Cov.x; y/ by the
standard deviations of x and y in (3.1) gives the correlation r.x; y/, which is scale-
free in the sense that it always takes on values between –1 and 1 and does not vary
with the units of measurement used for either variable (Problem 3.2).

The correlation coefficient is a measure of linear association, in a sense that will
become clearer in Sect. 3.3 on the simple linear model. Values of r near zero denote
the absence of linear association, while values near 1 mean that x and y increase
almost in lockstep, their paired values in a scatterplot falling close to a straight line
with positive slope. Correlations between –1 and zero mean that y tends to decrease
as x increases. Note that powerful nonlinear associations between x and y—for
example, if y is proportional to x2—are often consistent with correlations near zero;
in the example, this can happen if Nx � 0.

3.2.1 Spearman Rank Correlation Coefficient

Like the t-test (and the coefficients of the linear regression model described below),
the correlation coefficient is sensitive to outliers. In this case, a robust alternative is
the Spearman correlation coefficient, which is equivalent to the Pearson coefficient
applied to the ranks of x and y. This measure of correlation also takes on values
between –1 and 1. By rank, we mean position in the ordered sequence of the values
of a variable; if x takes on values 1.2, 0.5, 18.3, and 2.7, then the ranks of these
values are 2, 1, 4, and 3, respectively. Thus the rank of the outlier 18.3 is only 1 unit
larger than the rank of the next largest value 2.7, the same distance that separates the
ranks of any two sequential values of x, thus depriving the outlier of undue influence
in estimating the correlation between x and y. Ties are handled by computing
the average rank of the tied values. Ranks are used in a range of nonparametric
methods, in no small part because of their robustness when the data include outliers.
Their disadvantage is that any information contained in the measured values of the
outcome beyond the ranks is lost.

3.2.2 Kendall’s �

Another rank-based alternative to Pearson’s correlation coefficient is Kendall’s � ,
defined as the difference in the number of concordant and discordant pairs of data
points, as a proportion of the number of evaluable pairs. In the absence of ties, the
pair of data points (xi ; yi ) and (xj ; yj ) for observations i and j is concordant if
xi > xj and yi > yj , or if xi < xj and yi < yj , and discordant otherwise. It is
easy to see that we need only know the ranks of the x and y values, not their actual
values, to evaluate the conditions for concordance. If the numbers of concordant
and discordant pairs are about equal, then � � 0; essentially this means that the fact
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that xi > xj gives little information about whether yi > yj . But as the proportion
of concordant pairs grows, � approaches 1, reflecting the fact that the ordering of
the x pairs is highly associated with the ordering of the y pairs. Conversely, if most
pairs are discordant, then � approaches –1; again, the orderings of the x and y pairs
are highly associated. Kendall’s � is sometimes used as a measure of correlation for
time-to-event outcomes.

3.3 Simple Linear Regression Model

Here we present the simple linear regression model with a continuous outcome and
a single continuous predictor variable.

3.3.1 Systematic Part of the Model

The main purpose of this model is to determine how the average value of the
continuous outcome y varies with the value of a single predictor x. The average
values of the outcome are assumed to lie on a “regression line” or “line of means.”
Figure 3.1 shows values of baseline SBP by age in the HERS trial of hormone
therapy. To make the idea of a line of means more concrete, the square symbols in
the plot show the average SBP within each decile of age. Naturally, there is some
noise in these local means, although much less than in the raw data. Moreover, the
continuous regression line, assumed to be linear, captures the increasing trend rather
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Fig. 3.1 Linear regression model for SBP and age
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well. Its slope represents the systematic dependence of the outcome on the predictor,
and is thus usually the focus of interest.

The formula for the regression line is simple and has interpretable parameters:

EŒyjx� D average value of SBP for a given age

D ˇ0 C ˇ1age
D 105:7C 0:44age: (3.2)

In (3.2), EŒyjx� is shorthand for the Expected or average value of the outcome y
at a given value of the predictor x. ˇ1 gives the slope of the regression line, and
is interpretable as the change in average SBP for a one-year increase in age. The
estimate of ˇ1 from the sample shown in the plot suggests that among women with
heart disease, average SBP increases 0.44 mmHg for each one-year increase in age.
This estimate is the best fitting value in a sense explained below in Sect. 3.3.4.

It is also easy to see that the estimate of the intercept parameter ˇ0D 105:7
gives the average value of the outcome when age is zero. While not meaningless
in this case, these data obviously provide no direct information about SBP at age
zero. This illustrates the more general point that while regression models are often
approximately true within the range of the observed data, extrapolation is usually
risky. “Centering” the predictor by subtracting off a value within the range of
the data can resolve this problem. One reasonable choice in this example would
be the sample average age of 67; then the centered age variable would have value
zero for women at age 67, and the new intercept, 135.2 mmHg, estimates average
SBP among women this age. The slope estimate is unaffected by centering the
age variable.

3.3.2 Random Part of the Model

It is also clear from Fig. 3.1 that at any given age, SBP varies considerably.
Possible sources of this variability include measurement error, diurnal patterns,
and a potentially broad range of unmeasured determinants of SBP, including the
immediate circumstances when the measurement was made. These factors are
combined in an error term ", so that for observation i

SBPi D mean SBP for subjects of agei C errori

D ˇ0 C ˇ1agei C "i : (3.3)

The statistical assumptions of the linear regression model concern the distribution of
". Specifically, we assume that "i � i.i.d N .0; �2" /, meaning that " is independently
and identically distributed and has a
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• Normal distribution
• Mean zero at every value of age
• Constant variance �2" at every value of age
• Values that are statistically independent

In Sect. 4.7, we will see that the first assumption may sometimes be relaxed. The
second assumption is important to checking whether the relationship between a nu-
merical predictor and the outcome is linear, as assumed in (3.2), (3.3), and Fig. 3.1;
violations can be examined and repaired using methods also introduced in Sect. 4.7.
The third assumption, of constant variance, is sometimes called homoscedasticity;
data which violate this assumption are called heteroscedastic, and can be dealt with
using methods also discussed in Sect. 4.7 as well as Chap. 8. Chapters 7 and 12
introduce methods for data where the fourth assumption, of independence, does
not hold. Some examples include samples with repeated measures on individuals,
cluster samples where patients are selected from within a sample of physician
practices, and complex survey samples such as the national health and nutrition
examination survey (NHANES).

3.3.3 Assumptions About the Predictor

In contrast to the outcome, no distributional assumptions are made about the
predictor in the linear regression model. In the case of the linear model with a single
continuous predictor, we do not assume that the predictor has a normal distribution,
although we will see in Sect. 4.7 that outlying values of the predictor can cause
trouble in some circumstances. In addition, binary, categorical, and discrete numeric
variables including counts are easily accommodated as predictors in these models.

Although we do not need to make assumptions about the distribution of the
predictor, these models do perform better when it is relatively variable. For example,
it would be more difficult to estimate the age trend in average SBP if the sample were
limited to women aged 65–70. For binary and categorical predictors, the analogous
limitation is that the subgroups defined by the predictor should not be too small. The
impact of the variability of the predictor, or lack of it, is reflected in the standard
error of the regression coefficient, as shown below in Sect. 3.3.7.

Finally, when we want to assess the relationship of the outcome with the true
values of the predictor, we effectively assume that the predictors are measured
without error. This is often not very realistic, and the effects of violations are the
subject of ongoing statistical research. Random measurement errors unrelated to the
outcome result in attenuation of estimated slope coefficients toward zero, sometimes
called regression dilution bias (Frost and Thompson 2000). Despite some loss
of efficiency, reasonable estimation is often possible in the presence of mild-to-
moderate error in the measurement of the predictors. Moreover, for prediction of
new outcomes, values of the predictor measured with error may suffice.
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Table 3.4 OLS regression of SBP on age

. reg SBP age

Source | SS df MS Number of obs = 276
-------------+------------------------------ F( 1, 274) = 5.58

Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200

-------------+------------------------------ Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761

----------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | .4405286 .186455 2.36 0.019 .0734621 .8075952

_cons | 105.713 12.40238 8.52 0.000 81.2969 130.129
----------------------------------------------------------------------------

3.3.4 Ordinary Least Squares Estimation

The model (3.3) refers to the population of women with heart disease from which the
sample shown in Fig. 3.1 was drawn. The regression line in the figure is an estimate
of the population regression line that was found using ordinary least squares (OLS).
Of all the lines that could be drawn though the scatterplot of the data to represent
the trend in SBP with increasing age, the OLS estimate minimizes the sum of the
squared vertical differences between the data points and the line.

Since the regression line is uniquely determined by ˇ0 and ˇ1, the intercept
and slope parameters, fitting the regression model amounts to finding estimates
Ǒ
0 and Ǒ1 which meet the OLS criterion. In addition to being easy to compute, these

OLS estimates have desirable statistical properties. If model assumptions hold, Ǒ0
and Ǒ1 are unbiased estimates of the population parameters.

Definition: An estimate is unbiased if, over many repeated samples drawn from the
population, the average value of the estimates based on the different samples would equal
the population value of the parameter being estimated.

OLS estimates are also minimally variable and well behaved in large samples
when the distributional assumptions concerning " are not precisely met. However,
a drawback of the OLS estimation criterion is sensitivity to outliers, which arises
from squaring the vertical differences (Problem 3.1). Section 4.7 will show how to
diagnose and deal with influential points.

Table 3.4 shows Stata results for an OLS regression of SBP on age. The estimate
of ˇ1, the slope coefficient (Coef.) for age, is 0.44 mmHg per year, and the
intercept estimate Ǒ0 is 105.7 mmHg ( cons).
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3.3.5 Fitted Values and Residuals

The OLS estimates Ǒ0 and Ǒ1 in turn determine the fitted value Oy corresponding to
every data point:

Oyi D Ǒ0 C Ǒ1xi : (3.4)

It should be plain that the fitted value Oyi lies on the estimated regression line at the
point where x D xi . For a woman at the average age of 67, the fitted value is

105:713C 0:4405286� 67 D 135:2 mmHg: (3.5)

The residuals are defined as the difference between observed and fitted values of the
outcome:

ri D yi � Oyi : (3.6)

The residuals are the sample analog of ", the error term introduced earlier in
Sect. 3.3, and as such are particularly important in fitting the model, in estimating
the variability of the parameter estimates, and in checking model assumptions and
fit (Sect. 4.7).

3.3.6 Sums of Squares

Various sums of squares are central to understanding OLS estimation and to reading
the Stata regression model output in Table 3.4. First is the total sum of squares
(TSS):

TSS D
nX

iD1
.yi � Ny/2; (3.7)

where Ny is the sample average of the outcome y. TSS captures the total variability
of the outcome about its mean. In Table 3.4, TSSD 109,171 and appears in the row
and column labeled Total and SS (for Sum of Squares), respectively.

In an OLS model, TSS is split into two components. The first is the model sum
of squares (MSS), or the part of the variability of the outcome about its mean that
can be accounted for by the model:

MSS D
nX

iD1
. Oyi � Ny/2: (3.8)

The second component of outcome variability, the part that cannot be accounted for
by the model, is the residual sum of squares (RSS):

RSS D
nX

iD1
.yi � Oyi /2: (3.9)
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By definition, RSS is minimized by the fitted regression line. In Table 3.4, MSS
and RSS appear in the rows labeled Model and Residual of the SS column. The
identity TSSDMSSC RSS is a central property of OLS, but more difficult to prove
than it may seem.

3.3.7 Standard Errors of the Regression Coefficients

MSS and RSS also play an important role in estimating the standard errors of Ǒ0 and
Ǒ
1 and in testing the null hypothesis of central interest,H0: ˇ1 D 0. These standard

errors depend on the variance of "—that is, the variance of the outcome about the
regression line—which is estimated in our single predictor model by

OVar."/ D O�2yjx D RSS=.n � 2/: (3.10)

In Table 3.4, O�2
yjx equals 390.5, and appears in the column and row labeled MS (for

Mean Square) and Residual, respectively.
The variance of Ǒ1 is estimated by

OVar. Ǒ1/ D
O�2
yjx

.n � 1/ O�2x
; (3.11)

where O�2x is the sample variance of the predictor x. The square root of the variance
of an estimate is referred to as its standard error, or SE( Ǒ). In Table 3.4, the
standard error of the estimated slope coefficient for age, found in the column
labeled Std.Err., is approximately 0.186.

From the numerator and denominator of (3.11), it is clear that the variance of the
slope estimate increases with the residual outcome variance not explained by the
model, but decreases with larger sample size and with the variance of the predictor
(as we pointed out earlier in Sect. 3.3.3). In our example of SBP and age, estimation
of the trend in age is helped by the relatively large age range in the sample. It
should also be intuitively clear that the precision of the slope estimate is increased
in samples where the data are tightly clustered about the regression line—in other
words, if the residual variance of the outcome is small. Figure 3.1 shows that this is
not the case with our example; SBP varies widely about the regression line at every
value of age.

3.3.8 Hypothesis Tests and Confidence Intervals

When the outcome is normally distributed, the parameter estimates Ǒ0 and Ǒ1 have
a normal distribution, and the ratio of the slope estimate to its standard error has
a t-distribution with n � 2 degrees of freedom. This leads directly to a test of
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the null hypothesis of no slope: that is, H0: ˇ1 D 0, or in substantive terms, no
systematic relationship between predictor and outcome. In Table 3.4, the t-statistic
and corresponding P -value for age are shown in the columns labeled t and
P>|t|. In the example, we are able to reject the null hypothesis that SBP does
not change with age at the usual 5% level of significance (P D 0:019).

The t-distribution also leads to 95% CIs for the population parameter ˇ1,
shown in Table 3.4 in the columns labeled [95% Conf. Interval]. The
confidence interval does not include 0, in accord with the result of the t-test of
the null hypothesis. Under the assumptions of the model, a CI computed this
way would, on average, include the population value of the parameter in 95 of
100 random samples. In a more intuitive interpretation, we could exclude with
95% confidence age trends in SBP smaller than 0.07 mmHg/year or larger than
0.81 mmHg/year.

3.3.8.1 Relationship Between Hypothesis Tests and Confidence Intervals

Hypothesis tests and CIs provide overlapping information about the parameter
or association being assessed. Common ground is that when a two-sided test is
statistically significant at P < 0:05, then the corresponding 95% CI will exclude
the null parameter value. However, the P -value, especially if it is small, does give
a more direct sense of the strength of the evidence against the null hypothesis.
Likewise, only the confidence interval provides information about the range of
parameter values that are consistent with the data. In Sect. 3.7 below, we argue
that CIs are particularly important in the interpretation of negative findings—that
is, cases where the null hypothesis is not rejected. Both the P -value and the CI
are important for understanding statistical results in depth, and getting beyond the
simple question of whether or not an association is statistically significant. This
overlapping relationship between hypothesis tests and CIs holds in many settings in
addition to linear regression.

3.3.8.2 Hypothesis Tests and Confidence Intervals in Large Samples

The hypothesis tests and CIs in this section follow from basic statistical theory for
data with normally distributed outcomes. However, linear regression models are
commonly used with outcomes that are at best approximately normal, even after
transformation. Fortunately, in large samples the t-tests and CIs for Ǒ0 and Ǒ1 are
valid even when the underlying outcome is not normal. How large a sample is
required depends on how far and in what way the outcome departs from normality. If
the outcome is uniformly distributed, meaning that every value in its range is equally
likely, then the t-tests and CIs may be valid with as few as 30–50 observations.
However, with long-tailed outcomes, samples of at least 100 and sometimes much
larger may be required for hypothesis tests and CIs to be valid.
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3.3.9 Slope, Correlation Coefficient, and R2

The slope coefficient ˇ1 in a simple linear model is systematically related to the
Pearson correlation coefficient r , reviewed in Sect. 3.2:

r D ˇ1�x=�y; (3.12)

where �x and �y are the standard deviations of the predictor and outcome,
respectively. Thus we can get r from ˇ1 by factoring out the scales on which x and
y are measured (Problem 3.3), scales which are reflected in the standard deviations.
Furthermore, the t-test of H0: ˇ1 D 0 is equivalent to a test of H0: r D 0.

However, the correlation coefficient is not simply interchangeable with the slope
coefficient in a simple linear model. In particular, the slope coefficient distinguishes
the roles of the predictor x and outcome y, with differing assumptions applying to
each, and would change if those roles were reversed, but r.x; y/ D r.y; x/. Note
that reversing the roles of predictor and outcome becomes even more problematic
with multipredictor models. In addition, the slope coefficient ˇ1 depends on the
units in which both predictor and outcome are measured, so that if either or both
were measured in different units, ˇ1 would change. For example, our estimate of the
age trend in SBP would be 4.4 mmHg per decade if age were measured in ten-year
units. While both versions are interpretable, this dependence on the scale of both
predictor and outcome can make it difficult to assess the strength of the association.
In addition, the dependence on scale would make it hard to judge whether age is a
stronger predictor of SBP than other variables. From this point of view, the scale-
free correlation coefficient r is easier to interpret.

The correlation coefficient r and thus the slope coefficient ˇ1 are also systemati-
cally related to the coefficient of determination R2

R2 D r2 D MSS

TSS
: (3.13)

R2 is interpretable as the proportion of the total variability of the outcome (TSS)
that is accounted for by the model (MSS). As such, it is useful for comparing
models (Sect. 10.2). In Table 3.4, the value of R-squared is only 0.0200, which
you can easily verify is equal to MSS/TSS D 2,179/109,171. This shows that age
only explains a very small proportion of the variability of SBP, even though it is a
statistically significant predictor in a sample of moderate size.

3.4 Contingency Table Methods for Binary Outcomes

In Chap. 2, we reviewed exploratory techniques for categorical outcome variables.
We expand that review here to include contingency table methods for assessing
associations between binary outcomes and categorical predictors.
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Table 3.5 Two-by-two contingency table for CHD and arcus

. cs chd69 arcus, or

| arcus senilis |
| Exposed Unexposed | Total

-----------------+-----------------------+----------
Cases | 102 153 | 255

Noncases | 839 2058 | 2897
-----------------+-----------------------+----------

Total | 941 2211 | 3152
| |

Risk | .1083953 .0691995 | .080901
| |
| Point estimate | [95% Conf. Interval]
|-----------------------+----------------------

Risk difference | .0391959 | .0166915 .0617003
Risk ratio | 1.566419 | 1.233865 1.988603

Attr. frac. ex. | .3616011 | .1895387 .4971343
Attr. frac. pop | .1446404 |

Odds ratio | 1.63528 | 1.257732 2.126197 (Cornfield)
+----------------------------------------------

chi2(1) = 13.64 Pr>chi2 = 0.0002

3.4.1 Measures of Risk and Association for Binary Outcomes

In the WCGS (Rosenman et al. 1964) of CHD introduced in Chap. 2, an association
of interest to the original investigators was the relationship between CHD risk
and the presence/absence of corneal arcus senilis among participants upon entry
into the study. Because each participant could be unambiguously classified as
having developed CHD or not during the ten-year course of the study, the indicator
variable that takes on the value one or zero according to whether or not participants
developed the disease is a legitimate binary outcome for the analysis. Corneal arcus
is a whitish annular deposit around the iris that occurs in a small percentage of
older adults, and is thought to be related to serum cholesterol level. Table 3.5
presents the results of a basic two-by-two table analysis for this example. The
results were obtained using the cs command in Stata, which provides a number of
useful quantities in addition to a simple crosstabulation of the binary CHD outcome
chd69 with the binary indicator of the presence of arcus.

The Risk estimates (0.108 and 0.069) summarize outcome risk for individuals
with and without arcus and are simply the observed proportions of individuals with
CHD in these groups at the baseline visit of the study. The output also includes
several standard epidemiological measures of association between outcome risk
and the predictor variable, along with corresponding 95% CIs. These are numerical
comparisons of the risk estimates between the two groups defined by the predictor.

The Risk difference or excess risk is defined as the difference between the
estimated risk in the groups defined by the predictor. For the table, we can verify
that the risk difference is

0:1084� 0:0692 D 0:039
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The Risk ratio or relative risk is the ratio of these risks—for the example in
the table,

0:1084=0:0692D 1:57:

The Odds ratio is the ratio between the corresponding odds in the two groups.
The odds of an outcome occurring are computed as the probability of occurrence
divided by the complementary probability that the event does not occur. Since
the denominators of these two probabilities are identical, the odds can be also be
calculated as the ratio of the number of outcomes to nonoutcomes. Frequently used
in games of chance, “even odds” obtains when these two probabilities are equal.

In Table 3.5, the odds of CHD occurrence in the two arcus groups are 0:1084=
.1 � 0:1084/ D 102=839 and 0:0692=.1� 0:0692/ D 153=2058, respectively. The
ratio of these two numbers yields the estimated odds ratio (1:635) comparing the
odds of CHD occurrence among participants with arcus to the odds of those without
this condition. Although the odds ratio is somewhat less intuitive as a risk measure
than the risk difference and relative risk, we will see that it has properties that make
it useful in a wide range of study designs, and (in Chap. 5) that it is fundamental in
the definition and interpretation of the logistic regression model.

Finally, note that Table 3.5 provides two auxiliary summary measures of
attributable risk (i.e., Attr. frac. ex. and Attr. frac. pop), which
estimate the fraction of outcomes which can be attributed to the predictor in the
subgroup with the predictor (sometimes referred to as “exposed” individuals) and
in the overall population, respectively. Although these measures can easily be
estimated from the data in the table, their validity and interpretability depends on
a number of factors, including study design and the causal connections between
measured and unmeasured predictors and the outcome. See Rothman and Greenland
(1998) for further discussion of these measures.

In the last example, we saw that the observed outcome proportions for groups de-
fined by different values of a predictor are the fundamental components of the three
summary measures of association: the excess risk, relative risk, and odds ratio. To
discuss these further, it will be useful to have symbolic definitions. Following the no-
tation introduced in Sect. 3.3 for a continuous outcome measure, we will denote the
binary outcome variable CHD by y, and let the values 1 and 0 represent individuals
with and without the outcome, respectively. We will symbolize the outcome proba-
bility for an individual associated with a particular value x of a single predictor as

P.x/ D Pr.y D 1jx/
and estimate this using the proportion of individuals with the outcome yD 1
among all those in the sample with the value x of the predictor. For example, P.0/
and P.1/ symbolize the outcome probability or risk associated with two levels of
the binary predictor arcus in Table 3.5 (where we follow the usual convention
that individuals possessing the characteristic have the values xD 1, and individuals
without the characteristic have xD 0). The following equation defines all three
summary risk measures introduced above using this notation:
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ER D P.1/� P.0/
RR D P.1/=P.0/

OR D P.1/= Œ1 � P.1/�
P.0/= Œ1 � P.0/� ; (3.14)

where ER, RR, and OR denote the excess risk, relative risk, and odds ratio,
respectively.

Like the correlation coefficient, these measures provide a convenient single
number summary of the direction and magnitude of the association. The major
distinction between them is that the ER is a measure of the difference in risk
between the two groups (with no difference indicated by a value of zero), while both
the RR and OR compare the risks in relative terms (with no difference indicate by
a value of one). Note that because the component risks range between zero and one,
the ER can take on values between �1 and 1. By contrast, the RR and OR range
between 0 and1.

Relative measures are appealing because they are dimensionless, and convey a
clear impression of how outcome risk is increased/decreased by exposure. The RR
in particular is favored by epidemiologists because of its interpretability as a ratio of
risks. However, relative measures are less desirable when the goal is to convey the
“importance” of a particular risk in absolute terms: In the example, the estimated
RR for the risk of CHD is approximately 1.6 times higher for men with arcus. The
ER tells us that this corresponds to a 4% difference in absolute risk. Note that if the
risk of the outcome were ten times lower in both groups, we would have the same
estimatedRR, but the correspondingER would also be ten times smaller (or 0.4%).

A further feature of the RR worth remembering is that its maximum value is
constrained by the level of risk in the comparison group. For example, if Pr.0/D 0:5,
RR � 2 must hold. The OR has the advantages of a relative measure, and in
addition is not constrained by the level of the risk in the reference group. However,
being based on the odds of the outcome rather than the probability, theOR lacks the
intuitive interpretation of RR. The only exception is when the outcome risk is quite
small. For such rare outcomes, the OR closely approximates the RR and can be
interpreted similarly. (This property can be seen from the above definition by noting
that if outcome risk is close to zero, then Œ1� Pr.0/� and Œ1� Pr.1/� will both be ap-
proximately one.) Unfortunately, the odds ratio is often inappropriately reported as a
relative risk even when this condition is not met (Holcomb et al. 2001). Because the
value of the OR is always more extreme than the value of the RR (except when both
equal one), this can be misleading. For these reasons, we recommend that the mea-
sure of association reported in research findings be that actually used in the analysis.

A final important property of all three measures of association introduced
above is that their interpretation depends on the underlying study design. In the
WCGS example, the outcome risks represent the incidence proportion of CHD
over the entire duration of the study (approximately ten years). The measures
of association in the table should be interpreted accordingly. By contrast, the
sexually transmitted infection example mentioned at the beginning of this chapter
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referred to a cross-sectional sample. Outcome risk in this setting is measured by the
prevalence of the outcome among the groups defined by the predictor. In this case,
the terms “prevalence odds,” “prevalence ratio,” and “excess prevalence” provide
unambiguous alternative labels for OR, RR, and ER, respectively.

The relative merits of the ER, RR, and OR are discussed at length in most
epidemiology textbooks (e.g., Rothman and Greenland 1998). For our purposes,
they are equally valid and the choice is dependent on the nature and goals of the
research investigation. In fact, for prospective and cross-sectional study designs, we
will see that we can freely convert between measures. (Case-control designs are a
special case which will be covered in Sect. 5.3.) However, from the standpoint of
regression modeling, we will see in Chap. 5 that the OR has clear advantages.

3.4.2 Tests of Association in Contingency Tables

Addressing the research question posed in the example presented in Table 3.5
involves more than simply summarizing the degree of the observed association
between CHD and arcus. We would also like to account for uncertainty in our
estimates before concluding that the association reflects more than just a chance
finding in this particular sample of individuals. The 95% CIs associated with the
measures of association in the table help in this regard. For example, the fact that the
confidence interval for the odds ratio excludes the value 1.0 allows us to conclude
that the true value for this measure is greater than one, and indicates a statistically
significant positive association between the presence of arcus and CHD occurrence.
This corresponds to testing the null hypothesis that the true odds ratio is equal to
one, with the alternative hypothesis being that this odds ratio is different than one.
The fact that the value of one is excluded from the CI corresponds to rejection of this
hypothesis at the 5% significance level. Of course, establishing the possible causal
connection between these two variables is a more complex issue.

The �2 (chi-squared) test of association is an alternative way to make inferences
about an observed association. Note that the result of this test (presented in
Table 3.5) agrees with the conclusions drawn for the 95% CIs for the various mea-
sures of association. The statistic addresses the null hypothesis of no association,
and is computed using the squared differences between the observed proportions
of individuals in each cell of the two-way table and the corresponding proportions
that would be expected if the null hypothesis were true. Large values of the statistic
indicate departure from this hypothesis, and the associated P -value is computed
using the �2 distribution with degrees of freedom specified. The �2 statistic for a
two-by-two table is less appealing as a measure of association than the alternative
measures discussed above. However, in cases where predictors have more than two
levels (as discussed below) and a single summary measure of association cannot
be calculated, the �2 statistic is useful as a global indicator of whether or not an
association may be present.
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Table 3.6 Female partner’s HIV status by AIDS diagnosis of male partner

. cs hivp aids, or exact

| AIDS diag. in male |
| [1=yes/0=no] |
| Exposed Unexposed | Total

-----------------+-----------------------+----------
Cases | 3 4 | 7

Noncases | 2 22 | 24
-----------------+-----------------------+----------

Total | 5 26 | 31
| |

Risk | .6 .1538462 | .2258065
| |
| Point estimate | [95% Conf. Interval]
|-----------------------+----------------------

Risk difference | .4461538 | -.0050928 .8974005
Risk ratio | 3.9 | 1.233644 12.32933

Attr. frac. ex. | .7435897 | .1893933 .9188926
Attr. frac. pop | .3186813 |

Odds ratio | 8.25 | 1.200901 57.1864 (Cornfield)
+----------------------------------------------

1-sided Fisher’s exact P = 0.0619
2-sided Fisher’s exact P = 0.0619

The validity of the �2 test is dependent on available sample size; like many
commonly used statistical tests, the validity of the reference �2 distribution for
the test statistic is approximate, with the approximation improving with increasing
number of observations. Consequently, for small sample sizes, approximate P -
values and associated inferences may be unreliable. An alternative in these cases
is to base inferences on exact methods. Table 3.6 presents an example from a cross-
sectional study of sexual transmission of human immunodeficiency virus (HIV) in
monogamous female partners of males infected from contaminated blood products
(O’Brien et al. 1994). The outcome of this study was HIV status of the female
partner at recruitment. Males were known to have been infected first (via medical
records) and exposure of females was limited to contact with male partners. The
available sample size (n D 31) was limited by the availability of couples meeting
the strict eligibility criteria.

Table 3.6 addresses the hypothesis that more rapid disease progression in the
males (as indicated by an AIDS diagnosis occurring at or before the time of
recruitment of the couple) is associated with sexual transmission of HIV to the
female (represented by the binary indicator hivp). In addition to observed counts,
the table includes proportions of the outcome by AIDS diagnosis in the male
partners, and the measures of association described above. The table also presents
the results of Fisher’s exact test. Similar to the �2 test, the Fisher test addresses
the hypothesis of independence of outcome and predictor. However, the P -value is
computed exactly, conditioning on the observed marginal totals. The P -value for
the �2 test applied to the data in Table 3.6 (not shown) is 0.029. Similarly, the lower
95% confidence limits for the RR and OR exclude the value one, also indicating
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Table 3.7 CHD events by age in WCGS cohort

. tabulate chd69 agec, col chi2

| agec
CHD event | 35-40 41-45 46-50 51-55 56-60 | Total

-----------+------------------------------------------------------+---------
no | 512 1,036 680 463 206 | 2,897

| 94.29 94.96 90.67 87.69 85.12 | 91.85
-----------+------------------------------------------------------+---------

yes | 31 55 70 65 36 | 257
| 5.71 5.04 9.33 12.31 14.88 | 8.15

-----------+------------------------------------------------------+---------
Total | 543 1,091 750 528 242 | 3,154

| 100.00 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(4) = 46.6534 Pr = 0.000

a statistically significant association. By contrast, the (two-sided) P -value for the
Fisher’s exact test for Table 3.6 is 0.062, indicating failure to reject the hypothesis
of independence at the 5% level.

A commonly cited rule-of-thumb is that the Fisher’s exact test should be used
whenever any of the expected cell counts are less than 5. Note that Fisher’s exact
test applies to tables formed by variables with more than two categories. Although
it can almost always be used in place of the �2 test, the associated computations can
be lengthy for large sample sizes, especially for tables with dimensions larger than
2� 2. Given the increased speed of modern desktop computers and the availability
of more computationally efficient algorithms, we recommend using the exact
P -value whenever it can easily be computed (i.e., in a matter of minutes) or is
provided, and especially in cases where either actual or expected minimum cell
counts are less than 5.

3.4.3 Predictors with Multiple Categories

In the WCGS study discussed above, one potentially important predictor of CHD
risk is age at entry into the study. Despite the fact that this can be considered as a
continuous variable for the purpose of analyses, we might begin investigating the
relationship by grouping age into multiple categories and summarizing CHD risk
in the resulting groups. Table 3.7 shows the results obtained by dividing subjects
into five-year age intervals using a constructed five-level categorical variable AGEC.
With the exception of the first two columns, the estimated percentages of individuals
with CHD in the second row of the table clearly increase with increasing age. In
addition, the accompanying �2 test indicates that age and CHD risk are associated.

As mentioned above, the conclusion of association based on the �2 test does not
reveal anything about the nature of the relationship between these variables. More
insight could be gained by computing measures of association between age and
CHD risk. However, unlike the two-by-two table case, the fact that age is represented
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Table 3.8 Odds ratios for CHD events by age group

. tabodds chd69 agec, or

---------------------------------------------------------------------------
agec | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
35-40 | 1.000000 . . . .
41-45 | 0.876822 0.32 0.5692 0.557454 1.379156
46-50 | 1.700190 5.74 0.0166 1.095789 2.637958
51-55 | 2.318679 14.28 0.0002 1.479779 3.633160
56-60 | 2.886314 18.00 0.0000 1.728069 4.820876

---------------------------------------------------------------------------
Test of homogeneity (equal odds): chi2(4) = 46.64

Pr>chi2 = 0.0000

Score test for trend of odds: chi2(1) = 40.76
Pr>chi2 = 0.0000

with five levels means that a single measure will not suffice here. In fact, odds ratios
can be computed to compare any two age groups. For example, the ER, RR, and
OR comparing CHD risk in 56 to 60-year-olds with that in 35 to 40-year-olds are
calculated by applying the formulas in (3.14) as follows:

ER D .36=242/� .31=543/D 0:092

RR D 36=242

31=543
D 2:606

OR D
36=242

206=242

31=543

512=543

D 2:886: (3.15)

The results in Table 3.8 further reinforce our observation that CHD risk is
increasing with increasing age. The odds ratios in the table are all computed
using the youngest age group as the reference category. The pattern of increase in
estimated odds ratios mirrors that seen in Table 3.7. Note that each odds ratio in the
table is accompanied by a 95% confidence interval and associated hypothesis test. In
addition, two global tests providing additional information are provided: The Test
of homogeneity addresses the null hypothesis that odds ratios do not differ
across age categories. In this case, the P -value indicates rejection, confirming the
observed difference in the odds ratios mentioned above. Since age can be viewed as
a continuous variable, and the categorical version considered here is ordinal, more
specific alternatives to nonhomogeneity of odds are of greater scientific interest.
The Score test for trend in Table 3.8 addresses the alternative hypothesis
that there is a linear trend in the odds of CHD with increasing age categories. The
statistically significant results indicate support for this hypothesis, and represent a
stronger conclusion than nonhomogeneity. Note that this test is not applicable to
nominal categorical variables.

Despite the useful information gained from the analysis in Tables 3.7 and 3.8,
we may be concerned that our conclusions depend on the arbitrary choice of
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grouping age into five categories. Increasing the number of age categories may
provide more information on how risk varies with age, but will also reduce the
number of individuals in each category and lead to more variable estimates of risk
in each group. This dilemma is one of the primary motivations for introducing a
regression model for the dependence of outcome risk on a continuous predictor
variable. Another motivation (which will be explored briefly below and more fully
in Chap. 5) arises when we consider the joint effects on risk of multiple (categorical
and/or continuous) predictor variables.

3.4.4 Analyses Involving Multiple Categorical Predictors

A common feature of observational clinical and epidemiological studies is that
investigators do not experimentally control the distributions of characteristics of
interest among participants in the sample. Unlike randomized trials in which random
allocation serves to balance the distributions of characteristics across treatment
arms, observational data are usually characterized by differing distributions across
subgroups defined by predictors of primary interest. For example, observational
studies of the relationship between dietary factors and cancer typically adjust for
age since it is frequently related to both diet and cancer risk. A fundamental part
of drawing inferences regarding the relationship between the outcome and key
predictors in observational studies is to consider the potential influence of these
other characteristics. This topic will be covered in detail for regression models in
Chaps. 4–6, 9, and 10. Here we give a brief introduction for binary outcomes and
categorical predictors.

Consider the cross-tabulation of a binary indicator 20-year mortality and self-
reported smoking presented in Table 3.9. These data represent women participating
in a health survey in Whickham, England, in 1972–1974 (Vanderpump et al. 1996).
Deaths were ascertained via follow-up of participants over a 20-year period. The
results indicate a statistically significant negative association between smoking and
mortality (where Cases denote deceased women).

Before concluding that this somewhat unintuitive inverse relationship between
smoking and mortality may reflect a real association in the population being studied,
we need to consider the possibility that it may be due to the influence of other
characteristics of women in the sample. The standard approach for controlling for
the influence of additional categorical predictors in contingency tables is via a
stratified analysis, where a relationship of interest is examined in subgroups defined
by a additional variable (or variables).

Table 3.10 presents the same analysis stratified by a three-level categorical
variable agegrp representing three categories of participant age (as ascertained
in the original survey). The age-specific odds ratios and associated 95% CIs
indicate a positive (but not statistically significant) association between smoking
and vital status in two of the three age groups. The crude odds ratio repro-
duces the result obtained in Table 3.9, while the age-adjusted (M-H combined,
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Table 3.9 Twenty-year vital status by smoking behavior

. cs vstatus smoker [freq = nn], or

| smoker |
| Exposed Unexposed | Total

-----------------+-----------------------+---------
Cases | 139 230 | 369

Noncases | 443 502 | 945
-----------------+-----------------------+---------

Total | 582 732 | 1314
| |

Risk | .2388316 .3142077 | .2808219
| |
| Point estimate | [95% Conf. Interval]
|-----------------------+---------------------

Risk difference | -.075376 | -.1236536 -.0270985
Risk ratio | .7601076 | .6347365 .9102415

Prev. frac. ex. | .2398924 | .0897585 .3652635
Prev. frac. pop | .1062537 |

Odds ratio | .6848366 | .5354784 .8758683 (Cornfield)
+---------------------------------------------

chi2(1) = 9.12 Pr>chi2 = 0.0025

Table 3.10 Twenty-year vital status by smoking behavior, stratified by age
. cs vstatus smoker [freq = nn], or by(agegrp)

agegrp | OR [95% Conf. Interval] M-H Weight
-----------------+----------------------------------------------

18-44 | 1.776666 .8727834 3.615113 5.568471 (Cornfield)
45-64 | 1.320359 .8728567 1.997089 19.55856 (Cornfield)

64+ | 1.018182 .4240727 2.43359 4.772727 (Cornfield)
-----------------+----------------------------------------------

Crude | .6848366 .5354784 .8758683
M-H combined | 1.357106 .9710409 1.896662

----------------------------------------------------------------
Test of homogeneity (M-H) chi2(2) = 0.945 Pr>chi2 = 0.6234

Test that combined OR = 1:
Mantel--Haenszel chi2(1) = 3.24

Pr>chi2 = 0.0719

or Mantel–Haenszel) estimate is computed via a weighted average of the age-
specific estimates, where the stratum-specific weights are given in the right table
margin (M-H Weight). Because this estimate is based on separate estimates made
in each age stratum, the weighted average adjusts for the influence of age.

Comparison of the crude estimate with the adjusted estimate reveals that
adjusting for age reverses the direction (and alters the significance) of the unadjusted
result. Considering that none of the stratum-specific estimates indicate reduced risk
associated with smoking, the crude estimate is surprising. This seemingly paradox-
ical result is often referred to as Simpson’s paradox. To aid in further interpretation,
Table 3.10 also includes results from two hypothesis tests of properties of the
stratum-specific and combined odds ratios. The test of homogeneity addresses the
null hypothesis that the three age-specific odds ratios are identical. Rejection of
this hypothesis would provide evidence that the stratum-specific odds ratios differ,
and may indicate a differential effect of smoking on mortality across different age
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groups. This phenomenon is also known as interaction or effect modification. In this
case, the results indicate that the data do not support rejecting the null hypothesis in
favor of the alternative hypothesis of differing age-specific odds ratios. We conclude
that there is no strong evidence of interaction and that the age-specific odds ratios
are similar. However, note that if we base the analysis in Table 3.10 on the relative
risk rather than the odds ratio, the P -value for the test of homogeneity equals 0.045,
indicating the presence of interaction. This illustrates that the presence or absence
of statistical interaction may reflect our choice to work with a particular measure of
association rather than some underlying causal phenomenon.

The second test result presented in Table 3.10 addresses the null hypothesis
that the true age-adjusted (“combined”) odds ratio for the association between vital
status and smoking is different than one. This hypothesis is meaningful if we have
already failed to reject the hypothesis of homogeneity. In this case, we have already
concluded that we do not have strong evidence that the age-specific odds ratios
differ, and the results of the test for an age-adjusted association indicate failure
to reject the null hypothesis at the 5% significance level. We conclude that the
observed unadjusted negative association between vital status and smoking is at
least partially explained by age adjustment. In fact, adjusting for age results in a
positive association between smoking and vital status, that is more in accordance
with our expectations that smokers may experience more health problems.

The results of the Whickham example are an instance of a more general
phenomenon in observational studies known as confounding. In the example, the
seemingly paradoxical finding of a positive association (albeit not statistically
significant) after adjustment for age can be explained by differences between age
groups in the proportion of women who were smokers (women in the intermediate
age group were more likely to smoke than women in the other groups), and the fact
that mortality was much higher in the older women. Of course, other measured or
unmeasured factors may also influence the relationship between smoking and vital
status. A complete analysis would consider these. Also, it would be a good idea to
consider alternate measures of age and smoking if available (e.g., treating them as
continuous variables in a regression model). The phenomena of confounding and
interaction will be discussed extensively in the regression context in the remaining
chapters of the book.

3.4.5 Collapsibility of Standard Measures of Association

Following the discussion in the previous section, it is tempting to conclude that
in situations where interaction can be ruled out, the presence of confounding can
be assessed via observed differences between the crude and adjusted measures of
association obtained from the Mantel–Haenszel approach for stratified contingency
tables. Conversely, agreement between the stratum-specific estimates and the crude
(unadjusted) estimate would seem to imply a lack of confounding.
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There are two primary issues to consider when assessing absence/presence of
confounding based on comparing unadjusted and adjusted association measures: the
first is that because confounding is fundamentally tied to the causal interpretation
given the associations involved, its presence can never be confirmed solely on
statistical grounds. In the Whickam example from Table 3.10, interpreting age as a
confounder of the smoking–mortality association as measured by odds ratios seems
plausible. However, in many situations, the direction of the causal link between
a risk factor and a suspected confounder is less clear. In these settings, observed
differences between crude and adjusted association measures may reflect causal
relationships other than confounding. Section 4.5 provides examples of mediation
of the causal effects of an exposure variable on an outcome by an intermediate
variable, and points out that this cannot be distinguished from confounding solely
by observing differences between crude and adjusted measures of association.

The second issue is that different measures of association may exhibit different
properties with respect to adjustment and pooling across strata, and these properties
complicate simple interpretation of observed differences between pooled and
adjusted measures. Intuitively, we might expect that in the absence of confounding
and interaction, the association between a binary outcome and a single binary
predictor at levels defined by a third categorical predictor would be homogeneous,
and that the observed association in the strata would equal the crude association
from the pooled table ignoring the third variable. A measure of association with
this property is called strictly collapsible. Both the risk difference and the relative
risk are collapsible in this sense. However, the odds ratio is not strictly collapsible.
In some situations, the crude odds ratio may differ from the corresponding stratum
specific and adjusted measures even when confounding is demonstrably absent.

Noncollapsibility of the odds ratio is illustrated in Table 3.11, in which the odds
ratios measuring the association between a binary outcome variable Y and a binary
predictor X are equal in strata defined by a third binary variable Z, and also equal
to the adjusted measure. Yet, the crude odds ratio ignoring Z is different from the
stratum specific measures, even though there is no marginal association between X
and Z (i.e., confounding cannot be present). Note that both the crude and adjusted
odds ratios are valid measures in this example. The crude measure is interpreted as
the marginal odds ratio for the association between Y and X , while the adjusted
measure is interpreted as the conditional odds ratio for a fixed value of Z.

We will see in Chap. 5 that noncollapsibility is also manifested in logistic
regression models for binary outcomes, where regression coefficients have a log
odds ratio interpretation, and in proportional hazards regression models for survival
outcomes (Chap. 6), with coefficients interpretable as log hazard ratios. Note that
in the case of rare outcomes, the close correspondence between odds ratios and
relative risks noted above minimizes this distinction, and these cases analyses
based on either measure will agree closely. Chapter 9 is entirely devoted to the
topic of making valid causal inferences using data from observational studies, and
provides a framework for understanding confounding that further clarifies the issues
raised here.
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Table 3.11 Example illustrating inequality of the odds ratio for the association between a binary
outcome Y and a binary predictor X when stratified by a binary variable Z versus pooled across
values of Z

. tabulate Y X if Z==0

| X
Y | 0 1 | Total

-----------+----------------------+----------
0 | 20 10 | 30
1 | 25 25 | 50

-----------+----------------------+----------
Total | 45 35 | 80

. tabulate Y X if Z==1

| X
Y | 0 1 | Total

-----------+----------------------+----------
0 | 25 25 | 50
1 | 10 20 | 30

-----------+----------------------+----------
Total | 35 45 | 80

. cs Y X, or by(Z)

Z | OR [95% Conf. Interval] M-H Weight
-----------------+----------------------------------------------

0 | 2 .7897239 5.05171 3.125 (Cornfield)
1 | 2 .7897239 5.05171 3.125 (Cornfield)

-----------------+----------------------------------------------
Crude | 1.653061 .8873163 3.079631

M-H combined | 2 1.028901 3.887644
----------------------------------------------------------------
Test of homogeneity (M-H) chi2(1) = 0.000 Pr>chi2 = 1.0000

Test that combined OR = 1:
Mantel-Haenszel chi2(1) = 4.18

Pr>chi2 = 0.0409

3.5 Basic Methods for Survival Analysis

In the previous section, we considered binary outcomes—that is, whether or not
an event has occurred. Survival data represent an extension in which we take into
account the time until the event occurs—or until the end of follow-up, if the event
has not yet occurred at that point. These more complex outcomes are studied using
techniques collectively known as survival analysis. The term reflects the origin of
these methods in demographic studies of life expectancy.

3.5.1 Right Censoring

To illustrate the special characteristics of survival data, we consider a study of
6-mercaptopurine (6-MP) as maintenance therapy for children in remission from
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Table 3.12 Weeks in remission among leukemia patients

Placebo: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,
12,15,17 22,23

6-MP: 6,6,6,6*,7,9*,10,10*,11*,13,16,17*,
19*,20*,22,23,25*,32*,32*,34*,35*

acute lymphoblastic leukemia (ALL) (Freireich et al. 1963). Forty-two patients
achieved remission from induction therapy and were then randomized in equal
numbers to 6-MP or placebo. The survival time studied was from randomization
until relapse. At the time of the analysis, all 21 patients in the placebo group had
relapsed, whereas only 9 of 21 patients in the 6-MP group had.

One crucial characteristic of these survival times is that for the 12 patients in the
6-MP group who remained in remission at the time of the analysis, the exact time
to relapse was unobserved; it was only known to exceed the follow-up time. For
example, one patient had only been under observation for six weeks, so we only
know that the relapse time is longer than that. Such a survival time is said to be
right-censored—“right” because on a graph the relapse time would lie somewhere
to the right of the censoring time of six weeks.

Definition: A survival time is said to be right-censored at time t if it is only known to be
greater than t .

Table 3.12 displays follow-up times in the leukemia study. Asterisks mark the right-
censored remission times.

Because of the censoring, we could not validly estimate the effects of 6-MP on
time to relapse simply by comparing average follow-up times in the two groups (say,
with a t-test). This simple approach would not work because the right-censored
follow-up times in the 6-MP group are shorter, possibly much shorter, than the
actual unobserved times to relapse for these patients. Furthermore, five of the right-
censored values in the 6-MP group exceed the largest follow-up time in the placebo
group; to ignore this would be throwing away valuable evidence for the effectiveness
of the treatment. Survival analysis makes it possible to analyze right-censored data
like these without bias or losing information contained in the length of the follow-up
times.

3.5.2 Kaplan–Meier Estimator of the Survival Function

Suppose we would like to describe the probability of remaining in remission during
each of the first ten weeks of the leukemia study. This probability is called the
survival function.

Definition: The survival function at time t , denoted S.t/, is the probability of being event-
free at t ; equivalently, the probability that the survival time is greater than t .
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Table 3.13 Follow-up table for placebo patients in the leukemia study

Week of No. No. No. Conditional prob. Survival
follow-up followed relapsed censored of remission function

1 21 2 0 19/21 D 0.91 0.91
2 19 2 0 17/19 D 0.90 0.90 � 0.91 D 0.81
3 17 1 0 16/17 D 0.94 0.94 � 0.81 D 0.76
4 16 2 0 14/16 D 0.88 0.88 � 0.76 D 0.67
5 14 2 0 12/14 D 0.86 0.86 � 0.67 D 0.57
6 12 0 0 12/12 D 1.00 1.00 � 0.57 D 0.57
7 12 0 0 12/12 D 1.00 1.00 � 0.57 D 0.57
8 12 4 0 8/12 D 0.67 0.67 � 0.57 D 0.38
9 8 0 0 8/8 D 1.00 1.00 � 0.38 D 0.38
10 8 0 0 8/8 D 1.00 1.00 � 0.38 D 0.38

We will first show how the survival function can be estimated for the 21 placebo
patients. Because there is no right-censoring in the placebo group, we could simply
estimate the survival function by the sample proportion in remission for each week.
However, we will use a more complicated method because it accommodates right-
censored data. This method depends on writing the survival function in any given
week as a chain of conditional probabilities.

In Table 3.13 the placebo data are summarized by consecutive one-week
intervals. The number of subjects who remain both in remission and in follow-up at
the start of the week is given in the second column. The third and fourth columns
list the numbers who relapse and who are censored during the week, respectively.
Since none are censored, the number in follow-up is reduced only during weeks
when a patient relapses. From the table, we see that in the first week, 19 of 21
patients remained in remission, so a natural estimate of the probability of being in
remission in the first week is 19=21 D 0:91. In the second week, 2 of the 19 placebo
patients still in remission in the first week relapsed, and the remaining 17 remained
in remission. Thus the probability of not relapsing in the second week, conditional
on not having relapsed in the first, is estimated by 17=19 D 0:90. It follows that
the overall probability of remaining in remission in the second week is estimated
by 19=21 � 17=19 D 17=21 D 0:81. Likewise, the probability of remaining in
remission in the third week is estimated by 19=21�17=19�16=17D 16=21D 0:76.
In this case where there is no censoring, our chain of conditional probabilities
reduces to the overall sample proportion in remission at the end of every week.
You can easily verify that after ten weeks, the survival function estimate given by the
chain of conditional probabilities is equal to the sample proportion still in remission.

Now we show how the survival function estimate based on the chain of
conditional probabilities accommodates the censoring in the 6-MP group, as shown
in Table 3.14. The problem we have to address is that two 6-MP subjects are
censored prior to week 10. Since it is unknown whether they would have relapsed
before the end of that week, we can no longer estimate the survival function at week
10 by the sample proportion still in remission at that point.
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Table 3.14 Follow-up table for 6-MP patients in the leukemia study

Week of No. No. No. Condition. prob. Survival
follow-up followed relapsed censored of remission function

1 21 0 0 21/21 D 1.00 1.00
2 21 0 0 21/21 D 1.00 1.00 � 1.00 D 1.00
3 21 0 0 21/21 D 1.00 1.00 � 1.00 D 1.00
4 21 0 0 21/21 D 1.00 1.00 � 1.00 D 1.00
5 21 0 0 21/21 D 1.00 1.00 � 1.00 D 1.00
6 21 3 1 18/21 D 0.86 0.86 � 1.00 D 0.86
7 17 1 0 16/17 D 0.94 0.94 � 0.86 D 0.81
8 16 0 0 16/16 D 1.00 1.00 � 0.81 D 0.81
9 16 0 0 16/16 D 1.00 1.00 � 0.81 D 0.81
10 16 0 1 16/16 D 1.00 1.00 � 0.81 D 0.81

The rows of Table 3.14 for weeks 6 and 7 show how the method works with
right-censored data. In week 6, three patients are observed to relapse, and one is
censored (by assumption at the end of the week). Thus the probability of remaining
in remission in week 6, conditional on having remained in remission in week 5,
is 18=21 D 0:86. Then we estimate the probability of remaining in remission
in week 7, conditional on having remained in remission in week 6, as 16=17: in
short, the patient censored during week 6 has disappeared from the denominator,
and does not contribute to the calculations for any subsequent week. Using this
method for dealing with the censored observations, the conditional probabilities
can still be estimated. As a result, we obtain a valid estimate of the probability of
remaining in remission at the end of week 10, even though it is unknown whether the
two censored patients remained in remission at that time. This approach allows us
to extrapolate the survival experience of censored observation by those followed
longer. This method requires modification in the case of competing risks data
(Sect. 6.5) where cumulative incidence functions define the probability of failure
in the presence of other causes of failure.

In essence, we have estimated the survival functions in the placebo and 6-MP
groups using the well-known Kaplan–Meier estimator to deal with right censoring.
In this example, the follow-up times have been grouped into weeks, but the method
also applies to cases where they are observed more exactly. In Sect. 6.6.4, we
examine the important assumption of independent censoring which underlies these
procedures.

3.5.3 Interpretation of Kaplan–Meier Curves

Plots of the Kaplan–Meier estimates of S.t/ for the 6-MP and placebo groups in the
leukemia study are shown in Fig. 3.2. Note that the curves drop at observed relapse
times and are flat in the intervening periods. As a result, we can infer periods of
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Fig. 3.2 Survival curves by treatment for leukemia patients

high risk, when the survival curve descends rapidly, as well as periods of lower risk,
when it remains relatively flat. In particular, placebo patients appear to be at high
risk of relapse in the first five weeks.

In addition, the estimated survival function for the 6-MP group is above
the placebo curve over the entire follow-up period, giving evidence for higher
probability of remaining in remission, or equivalently longer times in remission and
lower risk of relapse in patients treated with 6-MP. In Sect. 3.5.6 below, we show
how to test the null hypothesis that the survival functions are the same in the two
groups.

3.5.4 Median Survival

The Kaplan–Meier results may also be used to obtain estimates of the median
survival time, defined as the time at which half the relevant population has
experienced the outcome event. In the absence of censoring, with every survival
time observed exactly, the median survival time could be simply estimated by the
sample median of survival times: that is, the earliest time at which half the study
participants have experienced the event. From Table 3.13, we can see that median
time to relapse is eight weeks in the placebo group—the first week in which at least
half the sample (12=21) have relapsed.

In the presence of censoring, however, we need to use the Kaplan–Meier estimate
OS.t/ to estimate the median. In this case, the median survival time is estimated by

the earliest time at which the Kaplan–Meier curve dips below 0.50. In the leukemia
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example, Fig. 3.2 shows that estimated median time to relapse is 23 weeks for 6-MP
group, as compared to eight weeks for placebo—more evidence for the effectiveness
of 6-MP as maintenance therapy for ALL.

By extension, other quantiles of the distribution of survival times can be obtained
from the Kaplan–Meier estimate OS.t/. The pth quantile is estimated as the earliest
time at which the Kaplan–Meier curve drops below 1 � p. For instance, the lower
quartile (i.e., the 0.25 quantile) is the earliest time at which the curve drops below
1 � 0:25 D 0:75. The lower quartiles for the 6-MP and placebo groups are 13 and
4 weeks, respectively. However, a limitation of the Kaplan–Meier estimate is that
when the curve does not reach 1 � p, the pth percentile cannot be estimated. For
example, Fig. 3.2 makes it clear that for the 6-MP group, quantiles of the distribution
of remission times larger than the 0:6th cannot be estimated using the Kaplan–Meier
method.

Note that while we can estimate the median and other quantiles of the distribution
of survival times using the Kaplan–Meier results, we are unable to estimate the
mean of the distribution in the typical case, as in the 6-MP group, where the longest
follow-up time is censored (Problem 3.7).

A final note: graphs are useful for giving overall impressions of the survival
function, but it is difficult to read quantities from them (e.g., median survival time
or OS.t/ for some particular t). To obtain precise values, the results in Tables 3.13
and 3.14 can be printed in Stata using the sts list and stsci commands.

3.5.5 Cumulative Event Function

Another useful summary of survival data is the probability of having experienced
the outcome event by time t . In terms of our leukemia example, this would mean
estimating the probability of having relapsed by the end of each week of the study.

Definition: The cumulative event function at time t , denoted F.t/, is the probability that the
event has occurred by time t , or equivalently, the probability that the survival time is less
than or equal to t . Note that F.t/ D 1� S.t/.

The cumulative event function is estimated by the complement of the Kaplan–
Meier estimate of the survival function: that is, OF .t/D 1 � OS.t/. If t has the
same value � for all study participants, then F.�/ is interpretable as the outcome
risk discussed in Sect. 3.4 on contingency table methods for binary outcomes.
The cumulative event plots shown in Fig. 3.3 are also easily obtained in Stata by
specifying the failure option.

Note that parametric methods can also be used to estimate survival distributions,
as well as quantities that are not immediately available from the Kaplan–Meier
approach (e.g., the mean and specified quantiles). However, because they rest on
explicit assumptions about the form of these distributions, they are somewhat less
robust than the methods presented here. For example, the mean can be poorly
estimated in situations where a large proportion of the data are censored, with the
result that the right tail of the survival function is only “known” by extrapolation.
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Fig. 3.3 Cumulative event curves by treatment for leukemia patients

3.5.6 Comparing Groups Using the Logrank Test

The Kaplan–Meier estimator provides an interpretable description of the survival
experience of two treatment groups in the study of 6-MP as maintenance therapy
for ALL. With those descriptions in hand, how do we go on to formally test for
differences in relapse between the treatments?

The primary tool for the comparison of the survival experience of two or
more groups is the logrank test. The null hypothesis for this test is that the
survival distributions being compared are equal at all follow-up times. In the
leukemia example, this implies that the population survival curves for 6-MP and
placebo coincide. The alternative hypothesis is that the two survival curves differ
at one or more points in time. Like the Kaplan–Meier estimator, the logrank test
accommodates right-censoring. It works by comparing observed numbers of events
in each group to the number expected if the survival functions were the same.
The comparison accounts for differences in length of follow-up in calculating the
expected numbers of events. Results are shown in Table 3.15.

There are a total of 30 events in the sample, 21 in the placebo group and 9
in the 6-MP group. The column labeled Events expected gives the expected
number of events in the two groups under the null hypothesis of equal survival
functions. In the leukemia data, average follow-up was considerably shorter in the
placebo group and hence fewer events would be expected in that group. Clearly there
were many more events than expected among placebo participants, and many fewer
than expected in the 6-MP group. The resulting �2 statistic of 16.8 is statistically
significant (P < 0:00005), in accord with our earlier impression that 6-MP is
effective maintenance therapy for patients with ALL.
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Table 3.15 Logrank test for leukemia example

Logrank test for equality of survival functions
------------------------------------------------

| Events Events
group | observed expected
--------+-------------------------
6 MP | 9 19.25
Placebo | 21 10.75
--------+-------------------------
Total | 30 30.00

chi2(1) = 16.79
Pr>chi2 = 0.0000

The logrank test is easily generalized to the comparison of more than two groups.
The logrank test statistic for K > 2 groups follows an approximate �2 distribution
with K � 1 degrees of freedom. In this more general case, the null hypothesis is

H0 W S1.t/ D : : : D SK.t/ for all t (3.16)

where Sk.t/ is the survival function for the kth group at time t . In analogy to the
F -test discussed in Sect. 4.3.3, the alternative hypothesis is that some or all of the
survival curves differ at one or more points in time.

When the null hypothesis is rejected, visual inspection of the Kaplan–Meier
plots can help to determine where the important differences arise. Another common
procedure for understanding group differences is to conduct pairwise logrank tests.
This requires cautious interpretation; see Sect. 4.3.4 for approaches to handling
potential difficulties with multiple comparisons.

If there are more than two groups which are defined by ordered categories (e.g.,
disease stage) or categories based on a numerical variable (e.g., number of positive
nodes), then a trend test based on the logrank is available. In Stata, this is obtained
by using the trend option for the command sts test.

Like some other nonparametric methods reviewed earlier in this chapter, and
as its name implies, the logrank test only uses information about the ranks
of the survival times rather than their actual values. The semi-parametric Cox
proportional hazards model covered in Chap. 6 also works this way. In every
instance, the nonparametric approach reduces the need for making restrictive and
sometimes hard-to-verify assumptions, with a view toward making estimates more
robust.

There is an extensive literature on testing differences in survival between groups.
These tests have varying levels of similarity to the logrank test. The most popular
are extensions of the Wilcoxon test for censored data; these tests can be viewed
as a weighted versions of the logrank test. Such weighting can make sense, for
example, if early events are judged to be particularly important. However, in the
absence of compelling and prespecified reasons, we recommend the logrank test as
a default test.
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Chapter 6 covers censoring and other types of missing data in greater depth, and
also presents more comprehensive methods of analysis for survival data, including
the multipredictor Cox proportional hazards regression model.

3.6 Bootstrap Confidence Intervals

Bootstrapping is a widely applicable method for obtaining standard errors and CIs
in cases where approximate methods for computing valid CIs have been developed
but not conveniently implemented in statistical packages; other situations where
development of such methods has turned out to be intractable; and datasets where
the assumptions underlying the established methods are badly enough violated that
the resulting CIs would be unreliable.

In general, standard errors and CIs reflect the sampling distribution of statistics
of interest, such as regression coefficient estimates: that is, their relative frequency
if we repeatedly drew independent samples of the same size from the source
population, and recalculated the statistics in each new sample. In standard problems
such as linear regression, the sampling distribution of the regression coefficient
estimates is well known on theoretical grounds, provided the data meet underlying
assumptions.

Bootstrap procedures approximate the sampling distribution of statistics of
interest by a resampling procedure. Specifically, the actual sample is treated as if
it were the source population, and bootstrap samples are repeatedly drawn from
it. Bootstrap samples of the same size as the actual sample—a key determinant of
precision—are obtained by resampling with replacement, so that in a given bootstrap
sample some observations appear more than once, some once, and some not at
all. We use the sample to represent the population and hence resampling from the
actual data mimics drawing repeated samples from the source population. Then,
from each of a large number of bootstrap samples, the statistics of interest are
computed. For example, if our focus was on the difference between the coefficient
estimates for a predictor of interest before and after adjustment for a covariate,
the two models would be estimated in each bootstrap sample, and the difference
between the two coefficient estimates tabulated across samples. The result would
be the bootstrap distribution of the difference, which can in turn be regarded as an
estimate of its actual sampling distribution. CIs for the statistic of interest would
then be computed from the bootstrap distribution. Stata calculates bootstrap CIs
using three procedures:

• Normal approximation: If the bootstrap distribution of the statistic of interest
is reasonably normal, it may be enough to compute its standard deviation, then
compute a conventional CI centered on the observed statistic, simply substituting
the bootstrap SD for the usual model-based standard error of the statistic. The
bootstrap SD is a relatively stable estimate of the standard error, since it is
based on the complete set of bootstrap samples, so a relatively small number
of bootstrap samples may suffice. However, we often resort to the bootstrap
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Table 3.16 Bootstrap confidence interval for association of age with SBP

. reg SBP age

Source | SS df MS Number of obs = 276
-------------+----------------------------- F( 1, 274) = 5.58

Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200

-------------+----------------------------- Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761

----------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | .4405286 .186455 2.36 0.019 .0734621 .8075952

_cons | 105.713 12.40238 8.52 0.000 81.2969 130.129
----------------------------------------------------------------------------

. bootstrap ‘"reg SBP age"’ _b, reps(1000)

command: reg SBP age
statistics: b_age = _b[age]

Bootstrap statistics Number of obs = 276
Replications = 1000

----------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+--------------------------------------------------------------

b_age | 1000 .4405287 -.0078003 .1744795 .0981403 .782917 (N)
| .0655767 .7631486 (P)
| .0840077 .7690148 (BC)

----------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

precisely because the sampling distribution of the statistic of interest is unlikely
to be normal, particularly in the tails. Thus this method is less reliable for
constructing CIs than for estimating the standard error of the statistic.

• Percentile Method: The CI for the statistic of interest is constructed from the
relevant quantiles of the bootstrap distribution. Because the extreme percentiles
of a sample are very noisy estimates of the corresponding percentiles of a
population distribution, a much larger number of bootstrap samples is required.
If 1,000 samples were used, then a 95% CI for the statistic of interest would span
the 25th to 975th largest bootstrap estimates.

• Bias-Corrected Percentile Method: The percentile-based confidence interval is
shifted to account for bias, as evidenced by a difference between the observed
statistic and the median of the bootstrap estimates. Again, a relatively large
number of bootstrap samples is required.

Table 3.16 shows Stata output for the simple linear regression model for SBP shown
earlier in Table 3.4, now with a bootstrap CI. In this instance, all three bootstrap
results are fairly consistent with the parametric 95% CI (0.73–0.81 mmHg). See
Sects. 4.5.4, 5.5.1, 6.6.1, and 7.9.1 for other examples where bootstrap CIs are
computed.
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3.7 Interpretation of Negative Findings

Confidence intervals obtained either by standard parametric methods or by the
bootstrap play a particularly important role when the data do not enable us to reject
a null hypothesis of interest. It is easy to overstate such negative findings. Recall
that P > 0:05 does not prove the null hypothesis; it only indicates that the observed
result could have arisen by chance, not that it necessarily did. A negative result
worth discussing is best interpreted in terms of the point estimate and CI. In the
following example, we can distinguish four possible cases, in increasing order of
the strength of the negative finding. Suppose that a 20% reduction risk of recurrent
heart attacks would justify the risks and costs of a possible new treatment, but that
a risk reduction of only 5% would not meet this standard. The four cases are:

• The estimated risk reduction was large enough to be substantively important, but
the CI spanned the null value and was thus too wide to provide strong evidence
for effectiveness. Example: treatment reduced recurrence risk an estimated 20%
(95% CI –1% to 37%). In this case, we might conclude that the study gives
inconclusive evidence for the potential importance of the treatment; but it would
be also important to note that the CI includes effects too small to be worthwhile.

• The estimated risk reduction was too small to be important, but the CI extended
to values that could be important. Example: treatment reduced recurrence risk an
estimated 5% (95% CI –15% to 22%). In this case the point estimate provides
little support for the importance of the treatment, but the CI does not clearly rule
out a potentially important effect.

• The estimated risk reduction was too small to be important, and while the CI
did not include the null (i.e., P < 0:05), it did exclude values that could be
important. Example: treatment reduced recurrence risk an estimated 3% (95%
CI: 1% to 5%). In this case, we can definitively say that the treatment does not
have a clinically important benefit, even though we can also rule out no effect.

• The estimated risk reduction was too small to be important, and the CI both
included the null and excluded values that could be important. Example:
treatment reduced recurrence risk an estimated 1% (95% CI –2% to 4%). Again,
we can definitively say that the treatment does not have a clinically important
benefit.

This approach using the point estimate and CI is preferable to interpretations
based on ex post facto power calculations, which are driven by assumptions about
the true effect size, and often inappropriately based on treating the observed effect
size as if it were the true population value (Hoenig and Heisey 2001). A variant of
this approach is to suggest that with a larger sample, the observed effect would have
been statistically significant. But of course the CI for most negative findings tells us
that the true effect size may well be nil or worse, which a larger sample might also
firmly establish. In contrast to these problematic interpretations, the point estimate
and CI can together be used to summarize what the data at hand have to tell us about
the strength of the association and the precision of our information about it.
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3.8 Further Notes and References

Among the best introductory statistics books are Freedman et al. (1991), Devore
and Peck (1986), and Pagano and Gavreau (1993). Consult these for more complete
coverage of basic statistical inference, ANOVA, and linear regression. Good
references on methods for the analysis of contingency tables include Fleiss et al.
(2003) and Jewell (2004). Two applied survival analysis texts with a biomedical
orientation are Miller et al. (1981) and Marubini and Valsecchi (1995). Finally, for
a review of bootstrap methods, see Efron and Tibshirani (1986, 1993).

3.9 Problems

Problem 3.1. An alternative to OLS is least absolute deviation (LAD) regression,
in which the regression line is selected to minimize the sum of the absolute vertical
differences (rather than squared differences) between the line and the data. Explain
how this might reduce sensitivity to outliers.

Problem 3.2. To create a new age variable age10 in units of ten years, we would
divide the original variable age (in years) by ten, so that a woman of age 67 would
have age10 D 6.7. Similarly, the standard deviation of age10 is changed by the
same factor: that is, the SD of age is 6.38, so the SD of age10 is 0.638. Suppose
we want to estimate the effect of age in SD units, as is commonly done. How do we
compute the new variable and what is its SD?

Problem 3.3. Using (3.12) and a statistical analysis program, demonstrate with
your own data that the slope coefficient in a univariate linear model with continuous
predictor and outcome is a rescaled transformation of the sample correlation
between predictor and outcome.

Problem 3.4. The correlation coefficient is a measure of linear association. Sup-
pose x takes on values evenly over the range from –10 to 10, and that EŒyjx� D x2.
In this case, the correlation of x and y is zero, even though there is clearly
a systematic relationship. What does this suggest about the need to test model
assumptions? Using a statistical package, generate a random sample of 100 values
of x uniformly distributed on [–10, 10], compute EŒyjx� for each value of x, add
randomly generated standard normal errors to get the 100 values of y, and check the
sample correlation of x and y.

Problem 3.5. Verify the estimates for the excess risk, relative risk, and odds ratio
for the HIV example presented in Table 3.6.
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Problem 3.6. The data presented below are from a case-control study of
esophageal cancer. (The study and data are described in more detail in Sect. 5.3.)

. tabulate case ditob

Case |
status |

(1=case, | tobacco
0=control) | 0-9 g/day 10+ g/day | Total
-----------+----------------------+----------

0 | 255 520 | 775
1 | 9 191 | 200

-----------+----------------------+----------
Total | 264 711 | 975

The rows (labeled according to Case status) represent 200 cancer cases
and 775 cancer-free controls selected from the same population as the cases.
The columns represent a binary indicator of reported consumption of more than
ten grams of tobacco per day.

Compute the odds ratio comparing the risk of cancer in individuals who report
consuming more than ten grams of tobacco per day with the corresponding risk in
the group reporting less or no consumption. Next, compute the odds ratio comparing
the proportion of individuals reporting higher levels of consumption among cases
with that among the controls. Comment.

Problem 3.7. Suppose we could estimate the value of the survival function S.t/
for every possible survival time from t D 0 onward. Clearly S.t/! 0 as t becomes
large. It can be shown that the mean survival time is equal to the area under this
“complete” survival curve. Why are we unable to estimate mean survival from the
Kaplan–Meier result when the largest follow-up time is censored? To gain insight,
contrast the survival curves for the 6-MP and placebo groups in Fig. 3.2.

Problem 3.8. In the leukemia study, the probability of being relapse-free at 20
weeks, conditional on being relapse-free at 10 weeks, can be estimated by the
Kaplan–Meier estimate for 20 weeks, divided by the corresponding estimate for 10
weeks. In the placebo group, those estimates are 0.38 and 0.10, respectively. Verify
that the estimated conditional probability of remission at week 20, conditional on
being in remission at week 10, is 0.25. In the 6-MP group, estimated probabilities of
remaining in remission are 0.81, 0.63, and 0.45 at 10, 20, and 30 weeks, respectively.
Use these values to estimate the probabilities of remaining in remission at 20 and
30 weeks, conditional on being in remission at 10 weeks.

3.10 Learning Objectives

(1) Be familiar with the t-test (including versions for paired and unequal-variance
data), one-way ANOVA, the correlation coefficient r , and some nonparametric
alternatives.
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(2) Describe the assumptions and mechanics of the simple linear model for
continuous outcomes, and interpret the results.

(3) Define the basic measures of association (i.e., excess risk, relative risk, and odds
ratio) for binary outcomes.

(4) Be familiar with standard contingency table approaches to evaluating associa-
tions between binary outcomes and categorical predictors, including the �2 test
and the Mantel–Haenszel approach to estimating odds ratios adjusted for the
confounding influence of additional predictors.

(5) Define right-censoring.
(6) Interpret Kaplan–Meier survival and cumulative event curves.
(7) Calculate median survival from an estimated survival curve.
(8) Interpret the results of a logrank test.



Chapter 4
Linear Regression

Post-menopausal women who exercise less tend to have lower bone mineral density
(BMD), putting them at increased risk for fractures. But they also tend to be older,
frailer, and heavier, which may explain the association between exercise and BMD.
People whose diet is high fat on average have higher low-density lipoprotein (LDL)
cholesterol, a risk factor for CHD. But they are also more likely to smoke and be
overweight, factors which are also strongly associated with CHD risk. Increasing
body mass index (BMI) predicts higher levels of hemoglobin HbA1c , a marker
for poor control of glucose levels; however, older age and ethnic background also
predict higherHbA1c .

These are all examples of potentially complex relationships in observational data
where a continuous outcome of interest, such as BMD, SBP, and HbA1c , is related
to a risk factor in analyses that do not take account of other factors. But in each case
the risk factor of interest is associated with a number of other factors, or potential
confounders, which also predict the outcome. So the simple association we observe
between the factor of interest and the outcome may be explained by the other factors.

Similarly, in experiments, including clinical trials, factors other than treatment
may need to be taken into account. If the randomization is properly implemented,
treatment assignment is on average not associated with any prognostic variable,
so confounding is usually not an issue. However, in stratified and other complex
study designs, multipredictor analysis is used to ensure that CIs, hypothesis tests,
and P -values are valid. For example, it is now standard practice to account for
clinical center in the analysis of multisite clinical trials, often using the random
effects methodology to be introduced in Chap. 7. And with continuous outcomes,
stratifying on a strong predictor in both design and analysis can account for a
substantial proportion of outcome variability, increasing the efficiency of the study.
Multipredictor analysis may also be used when baseline differences are apparent
between the randomized groups, to account for potential confounding of treatment
assignment.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 4,
© Springer Science+Business Media, LLC 2004, 2012
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Another way the predictor–outcome relationship can depend on other factors
is that an association may not be the same in all parts of the population. For
example, hormone therapy (HT) has a smaller beneficial effect on LDL levels among
postmenopausal women who are also taking statins, and its effect on BMD may
be greater in younger postmenopausal women. These are examples of interaction,
where the association of a factor of primary interest with an outcome is modified by
another factor.

The problem of sorting out complex relationships is not restricted to continuous
outcomes; the same issues arise with the binary outcomes covered in Chap. 5,
survival times in Chap. 6, and repeated measures in Chap. 7. A general statistical
approach to these problems is needed.

The topic of this chapter is the multipredictor linear regression model, a flexible
and widely used tool for assessing the joint relationships of multiple predictors
with a continuous outcome variable. We begin by illustrating some basic ideas
in a simple example (Sect. 4.1). Then in Sect. 4.2, we present the assumptions of
the multipredictor linear regression model and show how the simple linear model
reviewed in Chap. 3 is extended to accommodate multiple predictors. Section 4.3
shows how categorical predictors with multiple levels are coded and interpreted.
Sections 4.4–4.6 describe how multipredictor regression models can be used to deal
with confounding, mediation, and interaction, respectively. Section 4.7 introduces
some simple methods for assessing the fit of the model to the data and how well the
data conform to the underlying assumptions of the model. Section 4.8 introduces
sample size, power, and minimum detectable effect calculations for the multiple
linear model. In Chap. 9, we use a potential outcomes view of causal effects to show
how and under what conditions multipredictor regression models might be used to
estimate them, and in Chap. 10 we discuss the difficult problem of which variables
and how many to include in a multipredictor model.

4.1 Example: Exercise and Glucose

Glucose levels above 125 mg/dL are diagnostic of diabetes, while levels in the range
from 100 to 125 mg/dL signal increased risk of progressing to this serious and
increasingly widespread condition. So it is of interest to determine whether exercise,
a modifiable lifestyle factor, would help people reduce their glucose levels and thus
avoid diabetes.

To answer this question definitively would require a randomized clinical trial,
a difficult and expensive undertaking. As a result, research questions like this are
often initially looked at using observational data. But this is complicated by the fact
that people who exercise differ in many ways from those who do not, and some of
the other differences might explain any unadjusted association between exercise and
glucose level.

Table 4.1 shows a simple linear model using a measure of exercise to predict
baseline glucose levels among 2,032 participants without diabetes in the HERS
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Table 4.1 Unadjusted regression of glucose on exercise

. regress glucose exercise if diabetes == 0

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 1, 2030) = 14.97

Model | 1412.50418 1 1412.50418 Prob > F = 0.0001
Residual | 191605.195 2030 94.3867954 R-squared = 0.0073

-------------+------------------------------ Adj R-squared = 0.0068
Total | 193017.699 2031 95.0357946 Root MSE = 9.7153

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exercise | -1.692789 .4375862 -3.87 0.000 -2.550954 -.8346243

_cons | 97.36104 .2815138 345.85 0.000 96.80896 97.91313
------------------------------------------------------------------------------

clinical trial of hormone therapy (HT) (Hulley et al. 1998). Women with diabetes
are excluded because the research question is whether exercise might help to prevent
progression to diabetes among women at risk, and because the causal determinants
of glucose may be different in that group. Furthermore, glucose levels are far more
variable among diabetics, a violation of the assumption of homoscedasticity, as we
show in Sect. 4.7.3 below. The coefficient estimate (Coef.) for exercise shows
that average baseline glucose levels were about 1.7 mg/dL lower among women who
exercised at least three times a week than among women who exercised less. This
difference is statistically significant (t D �3:87; P < 0:0005).

However, women who exercise are slightly younger, a little more likely to use
alcohol, and in particular have lower average BMI, all factors associated with
glucose levels. This implies that the lower average glucose we observe among
women who exercise could be due at least in part to differences in these other
predictors. Under these conditions, it is important that our estimate of the difference
in average glucose levels associated with exercise be “adjusted” for the effects
of these potential confounders of the unadjusted association. Ideally, adjustment
using a multipredictor regression model provides an estimate of the causal effect
of exercise on average glucose levels, by holding the other variables constant. In
Chap. 9, the rationale for estimation of causal effects using multipredictor regression
models is explained in more detail.

From Table 4.2, we see that in a multiple regression model that also includes—
that is, adjusts for—age, alcohol use (drinkany), and BMI, average glucose is
estimated to be only about 1 mg/dL lower among women who exercise (95% CI 0.1–
1.8, P D 0:027), holding the other three factors constant. The multipredictor model
also shows that average glucose levels are about 0.7 mg/dL higher among alcohol
users than among nonusers. Average levels also increase by about 0.5 mg/dL per unit
increase in BMI, and by 0.06 mg/dL for each additional year of age. Each of these
associations is statistically significant after adjustment for the other predictors in
the model. Furthermore, the association of each of the four predictors with glucose
levels is adjusted for the effects of the other three, in the sense of taking account of
its correlation with the other predictors and their adjusted associations with glucose
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Table 4.2 Adjusted regression of glucose on exercise

. regress glucose exercise age drinkany BMI if diabetes == 0

Source | SS df MS Number of obs = 2028
-------------+------------------------------ F( 4, 2023) = 39.22

Model | 13828.8486 4 3457.21214 Prob > F = 0.0000
Residual | 178319.973 2023 88.1463042 R-squared = 0.0720

-------------+------------------------------ Adj R-squared = 0.0701
Total | 192148.822 2027 94.7946828 Root MSE = 9.3886

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
exercise | -.950441 .42873 -2.22 0.027 -1.791239 -.1096426

age | .0635495 .0313911 2.02 0.043 .0019872 .1251118
drinkany | .6802641 .4219569 1.61 0.107 -.1472513 1.50778

BMI | .489242 .0415528 11.77 0.000 .4077512 .5707328
_cons | 78.96239 2.592844 30.45 0.000 73.87747 84.04732

------------------------------------------------------------------------------

levels. In summary, the multipredictor model for glucose levels shows that the
unadjusted association between exercise and glucose is partly but not completely
explained by BMI, age, and alcohol use, and that exercise remains a statistically
significant predictor of glucose levels after adjustment for these three other factors—
that is, when they are held constant by the multipredictor regression model.

Still, we have been careful to retain the language of association rather than cause
and effect, and in Chaps. 9 and 10 will suggest that adjustment for additional poten-
tial confounders would be needed before we could consider a causal interpretation
of the result.

4.2 Multiple Linear Regression Model

Confounding thus motivates models in which the average value of the outcome is
allowed to depend on multiple predictors instead of just one. Many basic elements
of the multiple linear model carry over from the simple linear model, which was
reviewed in Sect. 3.3. In Sect. 9.1, we show how this model is potentially suited to
estimating causal relationships between predictors and outcomes.

4.2.1 Systematic Part of the Model

For the simple linear model with a single predictor, the regression line is defined by

EŒyjx� D average value of outcome y given predictor value x

D ˇ0 C ˇ1x: (4.1)
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In the multiple regression model, this generalizes to

EŒyjx� D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇpxp; (4.2)

where x represents the collection of p predictors x1; x2; : : : xp in the model, and
ˇ1; ˇ2; : : : ˇp are the corresponding regression coefficients.

The right-hand side of model (4.2) has a relatively simple form, a linear
combination of the predictors and coefficients. Analogous linear combinations of
predictors and coefficients, often referred to as the linear predictor, are used in
all the other regression models covered in this book. Despite the simple form of
(4.2), the multipredictor linear regression model is a flexible tool, and with the
elaborations to be introduced later in this chapter, usually allows us to represent with
considerable realism how the average value of the outcome varies systematically
with the predictors. In Sect. 4.7, we will consider methods for examining the
adequacy of this part of the model and for improving it.

4.2.1.1 Interpretation of Adjusted Regression Coefficients

In (4.2), the coefficient ˇj ; j D 1; � � � ; p gives the change in EŒyjx� for an increase
of one unit in predictor xj , holding other factors in the model constant; each of the
estimates is adjusted for the effects of all the other predictors. As in the simple linear
model, the intercept ˇ0 gives the value of EŒyjx� when all the predictors are equal to
zero; “centering” of the continuous predictors can make the intercept interpretable.
If confounding has been persuasively ruled out, we may be willing to interpret the
adjusted coefficient estimates as representing causal effects.

4.2.2 Random Part of the Model

As before, individual observations of the outcome yi are modeled as varying by an
error term "i about an average determined by their predictor values xi :

yi D EŒyi jxi �C "i
D ˇ0 C ˇ1x1i C ˇ2x2i C � � � C ˇpxpi C "i ; (4.3)

where xj i is the value of predictor variable xj for observation i . We again assume
that "i � i.i.d N .0; �2" /; that is, " is normally distributed with mean zero and the
same standard deviation �" at every value of x, and that its values are statistically
independent.
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4.2.2.1 Fitted Values, Sums of Squares, and Variance Estimators

From (4.2), it is clear that the fitted values Oyi , defined for the simple linear model in
(3.4), now depend on all p predictors and the corresponding regression coefficient
estimates, rather than just one predictor and two coefficients. The resulting sums of
squares and variance estimators introduced in Sect. 3.3 are otherwise unchanged in
the multipredictor model.

In the glucose example, the residual standard deviation, shown as Root MSE,
declines from 9.7 in the unadjusted model (Table 4.1) to 9.4 in the model adjusting
for age, alcohol use, and BMI (Table 4.2).

4.2.2.2 Variance of Adjusted Regression Coefficients

Including multiple predictors does affect the variance of Ǒj , which now depends on
an additional factor rj , the multiple correlation of xj with the other predictors in the
model. Specifically,

Var. Ǒj / D
�2
yjx

.n � 1/�2xj .1 � r2j /
; (4.4)

where, as before, �2
yjx is the residual variance of the outcome and �2xj is the variance

of xj ; rj is equivalent to r D pR2 from a multiple linear model in which xj is
regressed on all the other predictors. The term 1=.1� r2j / is known as the variance

inflation factor, since Var. Ǒj / is increased to the extent that xj is correlated with
other predictors in the model.

However, inclusion of other predictors, especially powerful ones, also tends to
decrease �2

yjx, the residual or unexplained variance of the outcome. Thus, the overall

impact of including other predictors on Var. Ǒj / depends on both the correlation of
xj with the other predictors and how much additional variability they explain. In the
glucose example, the standard error of the coefficient estimate for exercise declines
slightly, from 0.44 to 0.43, after adjustment for age, alcohol use, and BMI. This
reflects the reduction in residual standard deviation previously described, as well as
a variance inflation factor in the adjusted model of only 1.03.

4.2.2.3 t-Tests and Confidence Intervals

The t-tests of the null hypothesis H0: ˇj D 0 and CIs for ˇj carry over almost
unchanged for each of the ˇs estimated by the model, only using (4.4) rather than
(3.11) to compute the standard error of the regression coefficient, and comparing the
t-statistic to a t-distribution with n � .p C 1/ degrees of freedom (p is the number
of predictors in the model, and an extra degree of freedom is used in estimation of
the intercept ˇ0).
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However, there is a substantial difference in interpretation, since the results are
now adjusted for other predictors. Thus in rejecting the null hypothesis H0: ˇj D
0 we would be making the stronger claim that, in the population, xj predicts y,
holding the other factors in the model constant. Similarly, the CI for ˇj refers to the
parameter which takes account of the other p � 1 predictors in the model.

We have just seen that Var. Ǒj /may not be increased by adjustment. However, in
Sect. 4.4 we will see that including other predictors in order to control confounding
commonly has the effect of attenuating the unadjusted estimate of the association
of xj with y. This reflects the fact that the population parameter being estimated
in the adjusted model is often closer to zero than the parameter estimated in the
unadjusted model, since some of the unadjusted association is explained by other
predictors. If this is the case, then even if Var. Ǒj / is unchanged, it may be more
difficult to reject H0: ˇj D 0 in the adjusted model. In the glucose example, the
adjusted coefficient estimate for exercise is considerably smaller than the unadjusted
estimate. As a result the t-statistic is reduced from�3.87 to�2.22—still statistically
significant, but less highly so.

4.2.3 Generalization of R2 and r

The coefficient of determination R2DMSS / TSS retains its interpretation as the
proportion of the total variability of the outcome that can be accounted for by the
predictor variables. Under the model, the fitted values summarize all the information
that the predictors supply about the outcome. Thus, the multiple correlation
coefficient r D pR2 now represents the correlation between the outcome y and the
fitted values Oy. It is easy to confirm this identity by extracting the fitted values from
a regression model and computing their correlation with the outcome (Problem 4.3).
In the glucose example, R2 increases from less than 1% in the unadjusted model to
7% after inclusion of age, alcohol use, and BMI, a substantial increase in relative if
not absolute terms.

4.2.4 Standardized Regression Coefficients

In Sect. 3.3.9, we saw that the slope coefficient ˇ1 in a simple linear model is
systematically related to the Pearson correlation coefficient (3.12); specifically,
r D ˇ1�x=�y , where �x and �y are the standard deviations of the predictor and
outcome. Moreover, we pointed out that the scale-free correlation coefficient makes
it easier to compare the strength of association between the outcome and various
predictors across single-predictor models. In the context of a multipredictor model,
standardized regression coefficients play this role. Obtained using the beta option
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to the regress command in Stata, the standardized regression coefficient ˇsj for
predictor xj is defined in analogy to (3.12) as

ˇsj D ˇj �xj =�y; (4.5)

where �xj and �y are the standard deviations of predictor xj and the outcome y.
These standardized coefficient estimates are what would be obtained from the
regression if the outcome and all the predictors were first rescaled to have standard
deviation 1. Thus, they give the change in standard deviation units in the average
value of y per standard deviation increase in the predictor. Standardized coefficients
make it easy to compare the strength of association of different continuous
predictors with the outcome within the same model.

For binary predictors, however, the unstandardized regression coefficients may
be more directly interpretable than the standardized estimates, since the unstandard-
ized coefficients for such predictors simply estimate the differences in the average
value of the outcome between the two groups defined by the predictor, holding the
other predictors in the model constant.

4.3 Categorical Predictors

In Chap. 3, the simple regression model was introduced with a single continuous
predictor. However, predictors in both simple and multipredictor regression models
can be binary, categorical, or discrete numeric, as well as continuous numeric.

4.3.1 Binary Predictors

The exercise variable in the model for LDL levels shown in Table 4.1 is an example
of a binary predictor. A good way to code such a variable is as an indicator or dummy
variable, taking the value 1 for the group with the characteristic of interest, and 0
for the group without the characteristic. With this coding, the regression coefficient
corresponding to this variable has a straightforward interpretation as the increase or
decrease in average outcome levels in the group with the characteristic, with respect
to the reference group.

To see this, consider the simple regression model for average glucose values:

EŒglucosejx� D ˇ0 C ˇ1exercise: (4.6)

With the indicator coding of exercise (1 D yes, 0 D no), the average value of
glucose is ˇ0Cˇ1 among women who do exercise, and ˇ0 among the rest. It follows
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directly that ˇ1 is the difference in average glucose levels between the two groups.
This is consistent with our more general definition of ˇj as the change in EŒyjx� for
a one-unit increase in xj . Furthermore, the t-test of the null hypothesisH0: ˇ1 D 0
is a test of whether the between-group difference in average glucose levels differs
from zero. In fact, this unadjusted model is equivalent to a t-test comparing glucose
levels in women who do and do not exercise. A final point: when coded this way, the
average value of the exercise variable gives the proportion of women who exercise.

A commonly used alternative coding for binary variables is (1 D yes, 2D no).
With this coding, the coefficient ˇ1 retains its interpretation as the between-group
difference in average glucose levels, but now among women who do not exercise as
compared to those who do, a less intuitive way to think of the difference. Further-
more, with this coding the coefficient ˇ0 has no straightforward interpretation, and
the average value of the binary variable is not equal to the proportion of the sample
in either group. However, overall model fit, including fitted values of the outcome,
standard errors, and P -values, are the same with either coding (Problem 4.1).

4.3.2 Multilevel Categorical Predictors

The 2,763 women in the HERS cohort also responded to a question about how
physically active they considered themselves compared to other women their age.
The five-level response variable physact ranged from “much less active” to
“much more active,” and was coded in order from 1 to 5. This is an example of
an ordinal variable, as described in Chap. 2, with categories that are meaningfully
ordered, but separated by increments that may not be accurately reflected in the
numerical codes used to represent them. For example, responses “much less active”
and “somewhat less active” may represent a larger difference in physical activity
than “somewhat less active” and “about as active.”

Multilevel categorical variables can also be nominal, in the sense that there is
no intrinsic ordering in the categories. Examples include ethnicity, marital status,
occupation, and geographic region. With nominal variables, it is even clearer that
the numeric codes often used to represent the variable in the database cannot be
treated like the values of a numeric variable such as glucose.

Categories are usually set up to be mutually exclusive and exhaustive, so that
every member of the population falls into one and only one category. In that case,
both ordinal and nominal categories define subgroups of the population.

Both types of categorical variables are easily accommodated in multipredictor
linear and other regression models, using indicator or dummy variables. As with
binary variables, where two categories are represented in the model by a single
indicator variable, categorical variables withK � 2 levels are represented byK � 1
indicators, one for each of level of the variable except a baseline or reference level.
Suppose level 1 is chosen as the baseline level. Then, for k D 2; 3; : : : ; K , indicator
variable k has value 1 for observations belonging to the category k, and 0 for
observations belonging to any of the other categories. Note that for K D 2, this
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Table 4.3 Coding of indicators for a multilevel categorical variable

Indicator variables

physact 2.physact 3.physact 4.physact 5.physact

Much less active 0 0 0 0
Somewhat less active 1 0 0 0
About as active 0 1 0 0
Somewhat more active 0 0 1 0
Much more active 0 0 0 1

also describes the binary case, in which the “no” response defines the baseline or
reference group and the indicator variable takes on value 1 only for the “yes” group.

Stata automatically defines indicator variables using i. variable prefix. By
default, it uses the level with the lowest value as the reference group, although this
is easily modified using a variable prefix of the form ibk, where k is the code of the
alternative baseline category. Following the Stata convention for the naming of the
four indicator variables, Table 4.3 shows the values of the four indicator variables
corresponding to the five response levels of physact. Each level of physact is
defined by a unique pattern in the four indicator variables.

Furthermore, the corresponding ˇs have a straightforward interpretation. For the
moment, consider a simple regression model in which the five levels of physact
are the only predictors. Then,

EŒglucosejx� D ˇ0 C ˇ22:physactC � � � C ˇ55:physact: (4.7)

For clarity, the ˇs in (4.7) are indexed in accord with the levels of physact, so ˇ1
does not appear in the model. Letting the four indicators take on values of 0 or 1 as
appropriate for the five groups defined by physact, we obtain

EŒglucosejx� D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

ˇ0 physact = 1
ˇ0 C ˇ2 physact = 2
ˇ0 C ˇ3 physact = 3
ˇ0 C ˇ4 physact = 4
ˇ0 C ˇ5 physact = 5:

(4.8)

From (4.8), it is clear that the intercept ˇ0 gives the value of EŒglucosejx� in
the reference or much less active group (physactD 1). Then it is just a matter of
subtracting the first line of (4.8) from the second to see that ˇ2 gives the difference in
the average glucose in the somewhat less active group (physactD 2) as compared
to the much less active group. Accordingly, the t-test of H0: ˇ2 D 0 is a test of
whether average glucose levels are the same in the much less and somewhat less
active groups (physact = 1 and 2). And similarly for ˇ3; ˇ4, and ˇ5.

Four other points are to be made from (4.8).

• Without other predictors, or covariates, the model is equivalent to a one-way
ANOVA (Problem 4.9). Also, the model is said to be saturated and the population



4.3 Categorical Predictors 79

group means would be estimated under model (4.8) by the sample averages. With
covariates, the estimated means for each group would be adjusted for between-
group differences in the covariates included in the model.

• The parameters of the model can be manipulated to give the estimated mean
in any group, using (4.8), or to give the estimated differences between any two
groups. For instance, the difference in average outcome levels between the much
more and somewhat more active groups is equal to ˇ5-ˇ4 (why?). All regression
packages make it straightforward to estimate and test hypotheses about these
contrasts. This implies that choice of reference group is in some sense arbitrary.
While a particular choice may be best for ease of presentation, possibly because
contrasts with the selected reference group are of primary interest, alternative
reference groups result in essentially the same model.

• The five estimated group means can take on almost any pattern with respect to
each other, in either the adjusted or unadjusted model. In contrast, if physact
were treated as a score with integer values 1 through 5, the estimated means
would be constrained to lie on a straight regression line.

Table 4.4 shows results for the model with physact treated as a categorical
variable, again using data for women without diabetes in HERS. In the regression
output, Ǒ0 is found in the column and row labeled Coef. and cons; we see
that average glucose in the much less active group is approximately 98.4 mg/dL.
The differences between the reference group and the two most active groups are
statistically significant; for instance, the average glucose level in the much more
active group (5.physact) is 3.3 mg/dL lower than in the much less active group
(t D �2:92, P D 0:003).

Using (4.8), the first lincom command after the regression computes the
estimated mean in the somewhat less active group, equal to the sum of Ǒ0 ( cons)
and Ǒ2 (2.physact), or 97.6 mg/dL (95% CI 96.5–98.6 mg/dL). The margins
command is then used to estimate the mean level in all five groups.

We can also use the lincom command to assess pairwise differences between
two groups when neither is the referent. For example, the second lincom result
in Table 4.4 shows that average glucose is 2.1 mg/dL lower in among women in
the much more active (physact = 5) group as compared to those who are about
as active (physact = 3), and that this difference is statistically significant (t D
�2:86, P D 0:004).

The newer command contrastfphysact 0 0 �1 0 1g is also used to
compare groups 3 and 5. The contrast coefficients correspond in order to the five
levels of physact. The two nonzero coefficients, �1 for group 3 and 1 for group
5, directly reflect the lincom command, and the three zeroes correspond to the
omitted groups. The effects option is needed to obtain the estimated between-
group difference and 95% confidence interval supplied by default by the lincom
command. We explain contrasts in more detail in Sect. 4.3.5 below.
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Table 4.4 Regression of physical activity on glucose

. regress glucose i.physact if diabetes == 0

Source | SS df MS Number of obs = 2032

-------------+------------------------------ F( 4, 2027) = 4.43

Model | 1673.09022 4 418.272554 Prob > F = 0.0014

Residual | 191344.609 2027 94.3979322 R-squared = 0.0087

-------------+------------------------------ Adj R-squared = 0.0067

Total | 193017.699 2031 95.0357946 Root MSE = 9.7159

------------------------------------------------------------------------------

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

physact |

2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719

3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629

4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.451595

5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116

|

_cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626

------------------------------------------------------------------------------

. lincom _cons + 2.physact

( 1) 2.physact + _cons = 0

------------------------------------------------------------------------------

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | 97.56211 .5414437 180.19 0.000 96.50027 98.62396

------------------------------------------------------------------------------

. margins physact

Adjusted predictions Number of obs = 2032

Model VCE : OLS

Expression : Linear prediction, predict()

------------------------------------------------------------------------------

| Delta-method

| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

physact |

1 | 98.42056 .9392676 104.78 0.000 96.57963 100.2615

2 | 97.56211 .5414437 180.19 0.000 96.5009 98.62332

3 | 97.19436 .3742409 259.71 0.000 96.46086 97.92786

4 | 95.98671 .3734108 257.05 0.000 95.25483 96.71858

5 | 95.14286 .6120416 155.45 0.000 93.94328 96.34244

------------------------------------------------------------------------------

. lincom 5.physact - 3.physact

( 1) - 3.physact + 5.physact = 0

------------------------------------------------------------------------------

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

(1) | -2.051505 .717392 -2.86 0.004 -3.458407 -.6446024

------------------------------------------------------------------------------
(continued)
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Table 4.4 (continued)

. contrast {physact 0 0 -1 0 1}, effects

Contrasts of marginal linear predictions

Margins : asbalanced

------------------------------------------------

| df F P>F

-------------+----------------------------------

physact | 1 8.18 0.0043

------------------------------------------------

------------------------------------------------------------------------------

| Contrast Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

physact |

(1) | -2.051505 .717392 -2.86 0.004 -3.458407 -.6446024

------------------------------------------------------------------------------

Table 4.5 Overall physical activity effects on glucose
. quietly regress glucose i.physact if diabetes == 0

. testparm i.physact
F( 4, 2027) = 4.43

Prob > F = 0.0014

. contrast physact
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact | 4 4.43 0.0014
------------------------------------------------

4.3.3 The F -Test

Although every pairwise contrast between levels of a categorical predictor is readily
available, the t-tests for these multiple comparisons provide no overall evaluation
of the importance of the categorical variable, or more precisely a single test of the
null hypothesis that the mean level of the outcome is the same at all levels of this
predictor. In the example, this is equivalent to a test of whether any of the four
coefficients corresponding to physact differ from zero. The testparm result in
Table 4.5 (F.4; 2027/D 4:43; P D 0:0014) shows that glucose levels clearly differ
among the groups defined by physact. The same result is also obtained using the
contrast command.

4.3.4 Multiple Pairwise Comparisons Between Categories

When the focus is on the difference between a single prespecified pair of subgroups,
the overall F -test is of limited interest and the t-test for the single contrast between
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those subgroups can be used without inflation of the type-I error rate. All levels of
the categorical predictor should still be retained in the analysis, however, because
residual variance can be reduced, sometimes substantially, by splitting out the
remaining groups. Furthermore, this avoids combining the remaining subgroups
with either of the prespecified groups, focusing the contrast on the comparison of
interest.

However, it is frequently of interest to examine multiple pairwise differences
between levels of a categorical predictor, especially when the overall F -test
is statistically significant, and in some cases even when it is not. Examples
include comparisons between treatments in a clinical trial with more than one
active treatment arm, or in longitudinal data, to be discussed in Chap. 7, when
between-treatment differences are evaluated at multiple points in time. We also
discuss the implications of multiple comparisons for model selection in Sect. 10.3.2,
and more broadly in Sect. 13.4.1.

For this case, various methods are available for controlling the familywise error
rate (FER) for the wider set of comparisons being made. These methods differ
in the trade-off made between power and the breadth of the circumstances under
which the type-I error rate is protected. One of the most straightforward is Fisher’s
least significant difference (LSD) procedure, in which the pairwise comparisons are
carried out using t-tests at the nominal type-I error rate, but only if the overall F -
test is statistically significant; otherwise the null hypothesis is accepted for all the
pairwise comparisons. This protects the FER under the complete null hypothesis
that all the group-specific population means are the same. However, it is subject to
inflation of the FER under partial null hypotheses—that is, when there are some
real population differences between subgroups.

More conservative procedures that protect the FER under partial null hypotheses
include setting the level of the pairwise tests required to declare statistical signifi-
cance equal to ˛=k (Bonferroni) or 1�.1�˛/1=k (Sidak), where ˛ is the desired FER
and k is the number of preplanned comparisons to be made. The Sidak correction
is slightly more liberal for small values of k, but otherwise equivalent. The Scheffé
method is another, although very conservative, method in which differences can be
declared statistically significant only when the overall F -test is also statistically
significant. The Tukey honestly significant difference (HSD) and Tukey–Kramer
methods are more powerful than the Bonferroni, Sidak, or Scheffé approaches and
also perform well under partial null hypotheses.

As noted in Sect. 3.1.5, the Bonferroni, Sidak, and Scheffé procedures are
available with the oneway ANOVA in Stata. In addition, beginning with Version
12, the contrast and margins postestimation commands implement analogous
pairwise comparisons for all regression models discussed in this book, with
control of FER using the Bonferroni, Sidak, and Scheffé procedures available
via the mcompare option. These new commands have extensive capabilities for
postestimation hypothesis testing, a few of which are illustrated below, and many
others beyond the scope of this book. In Table 4.5, we obtained Bonferroni-corrected
comparisons with the reference level of physact using the command contrast
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Table 4.6 Bonferroni-corrected physical activity effects

. regress glucose i.physact if diabetes == 0

Source | SS df MS Number of obs = 2032

-------------+------------------------------ F( 4, 2027) = 4.43

Model | 1673.09022 4 418.272554 Prob > F = 0.0014

Residual | 191344.609 2027 94.3979322 R-squared = 0.0087

-------------+------------------------------ Adj R-squared = 0.0067

Total | 193017.699 2031 95.0357946 Root MSE = 9.7159

------------------------------------------------------------------------------

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

physact |

2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719

3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629

4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.451595

5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116

|

_cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626

------------------------------------------------------------------------------

. contrast physact, mcompare(bonferroni) effects

Contrasts of marginal linear predictions

Margins : asbalanced

------------------------------------------------

| df F P>F

-------------+----------------------------------

physact | 4 4.43 0.0014

------------------------------------------------

Note: Bonferroni-adjusted p-values are reported

for tests on individual contrasts only.

---------------------------

| Number of

| Comparisons

-------------+-------------

physact | 4

---------------------------

------------------------------------------------------------------------------

| Bonferroni Bonferroni

| Contrast Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

physact |

(2 vs base) | -.8584489 1.084152 -0.79 1.000 -3.56876 1.851862

(3 vs base) | -1.226199 1.011079 -1.21 0.901 -3.753832 1.301434

(4 vs base) | -2.433855 1.010772 -2.41 0.065 -4.96072 .093011

(5 vs base) | -3.277704 1.121079 -2.92 0.014 -6.080331 -.4750759

------------------------------------------------------------------------------

physact, compare(bonferroni). Note that while the estimates and overall
F -test are unchanged, the P -values for the pairwise comparisons are larger and the
CIs wider than in the regression output (Table 4.6).

A special case arises when only comparisons with a single reference group
are of interest, as might arise in a clinical trial with multiple treatments and a
single placebo control. In this situation, Dunnett’s test achieves better power than
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alternatives designed for all pairwise comparisons, while still protecting the FER
under partial null hypotheses. It also illustrates the general principle that controlling
the FER for a smaller number of contrasts is less costly in terms of power, so that
it makes sense to control only for the contrasts of interest. Compare this approach
to Scheffé’s, which controls the FER for all possible contrasts but at a considerable
expense in power.

The previous alternatives provide simultaneous inference on all the pairwise
comparisons considered. Various step-down and step-up multiple-stage testing pro-
cedures attempt to improve power using testing of cleverly sequenced hypotheses
that only continues as long as the test results are statistically significant. The Duncan
and Student-Newman-Keuls procedures fall in this class. However, neither protects
the FER under partial null hypotheses.

4.3.5 Testing for Trend Across Categories

The coefficient estimates for the categories of physact shown in Table 4.4
decrease in order, suggesting that mean glucose levels are characterized by a linear
trend across the levels of physact. Tests for linear trend are best performed using
a contrast in the coefficients corresponding to the various levels of the categorical
predictor.

Definition: A contrast is a weighted sum of the regression coefficients of the form a1ˇ1 C
a2ˇ2 C � � � C apˇp in which the weights, or contrast coefficients, sum to zero: that is,
a1 C a2 C � � � C ap D 0.

The contrasts used to test for trend can be motivated as linear regressions of the
adjusted means for each category on the categorical variable, treated as a continuous
predictor, after centering and possibly rescaling the numeric codes used for each
category. The resulting contrast coefficients used to test for linear trend have a
simple pattern: they are

• Integer-valued
• Evenly spaced
• Symmetric about zero

Using integers is just a convenience. Underlying the even spacing is the assumption
that the “distances” between adjacent categories are all the same; below, we briefly
outline how this assumption can be relaxed. Symmetry about zero implies that they
also sum to zero, as required.

To make this specific, the contrast coefficients that we would use to test for trend
across the five levels of physact are �2, �1, 0, 1, and 2. More generally, when
the number of levels is odd, the contrast coefficients are sequential integers (spacing
of one), and by symmetry, the middle category has coefficient 0 and drops out.
Thus for three categories, the coefficients are �1, 0, and 1, and for seven, follow
in order from �3 to 3. When the number of levels is even, a spacing of two is the
smallest that gives integer-valued contrast coefficients, and none of the categories
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Table 4.7 Trend test in a model omitting the intercept

. regress glucose ibn.physact if diabetes == 0, noconstant

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 5, 2027) =40227.86

Model | 18987135.4 5 3797427.08 Prob > F = 0.0000
Residual | 191344.609 2027 94.3979322 R-squared = 0.9900

-------------+------------------------------ Adj R-squared = 0.9900
Total | 19178480 2032 9438.22835 Root MSE = 9.7159

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
physact |

1 | 98.42056 .9392676 104.78 0.000 96.57853 100.2626
2 | 97.56211 .5414437 180.19 0.000 96.50027 98.62396
3 | 97.19436 .3742409 259.71 0.000 96.46043 97.9283
4 | 95.98671 .3734108 257.05 0.000 95.2544 96.71902
5 | 95.14286 .6120416 155.45 0.000 93.94256 96.34315

------------------------------------------------------------------------------

. * Tests for linear trend

. test -2*1.physact - 2.physact + 4.physact + 2*5.physact = 0
( 1) - 2*1bn.physact - 2.physact + 4.physact + 2*5.physact = 0

F( 1, 2027) = 12.11
Prob > F = 0.0005

. contrast {physact -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact | 1 12.11 0.0005
------------------------------------------------

. contrast q(1).physact, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact | 1 12.11 0.0005
------------------------------------------------

are omitted. Thus with four categories, the contrast coefficients are�3,�1, 1, and 3,
and with six, they are �5, �3, �1, 1, 3, and 5. So it is easy to figure out the contrast
coefficients for any number of categories.

Table 4.7 shows a linear regression of glucose levels on physical activity, omitting
the intercept, which we obtain by specifying ibn.physact in the regress
command, in combination with the option noconstant. In this model, the group
means for levels 1–5 of physact are given by ˇ1; ˇ2; ˇ3; ˇ4 and ˇ5, rather than by
(4.8). The test command calculates the contrast using the contrast coefficients�2,
�1, 0, 1, and 2, then compares it to the null value of zero; again, ˇ3, corresponding
to the middle category, drops out. The result (F.1; 2027/ D 12:11; P D 0:0005)
leaves little doubt that there is a declining trend in mean glucose with increasing
levels of physical activity.
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Table 4.7 also shows two other methods for obtaining the test for linear trend. The
first, using the command contrastfphysact �2 �1 0 1 2g, incorporates
the contrast coefficients for the five categories directly, in the same order as the levels
of physact; this approach was also used to contrast levels 3 and 5 of physact
in Table 4.4.

The second method uses the so-called contrast operator q(1). Including (1)
as part of the operator specifies the test for linear trend; the default is to provide
additional tests for quadratic, cubic, and quartic trends, plus a joint test for all four
patterns. In both commands, the noeffects option prevents Stata from printing
the numeric values of the contrasts, which are uninterpretable in this case.

The q. contrast operator treats the ordered categories as evenly spaced, regardless
of the coding of the categorical variable. This assumption can be relaxed using the
p. operator instead, in combination with a coding for the categorical variable that
reflects the hypothesized spacing. For example, if we hypothesized spacings of 2,
1, 1, and 2 units between the categories of the physical activity variable, coding
the levels as 1, 3, 4, 5, and 7, then testing for linear trend using the command
contrast p(1).physact, noeffects would obtain the appropriate test.

Of course, the default in Stata and other statistical packages is to include the
intercept in almost all regression models; in the Cox model, introduced in Chap. 6,
the baseline hazard plays this role. When an intercept is included in the model, one
level of the categorical variable must generally serve as the reference category and
be omitted from the model. This default form of the model was laid out Table 4.3
and (4.8), and is obtained simply by specifying i.physact in the regress
command.

Fortunately, we can easily adapt the integer-valued, evenly-spaced, symmetric,
zero-sum contrast coefficients to the default form of the model with an intercept,
simply by dropping the coefficient corresponding to the omitted reference category.
To see why this works, and why the intercept does not figure in the contrast, we
evaluate the contrast in the regression coefficients specifying the means for each
level of physact, as shown in (4.8):

0 D �2ˇ0 � .ˇ0 C ˇ2/C .ˇ0 C ˇ4/C 2.ˇ0 C ˇ5/
D �ˇ2 C ˇ4 C 2ˇ5 (4.9)

In (4.9), the mean for level three of physact, ˇ0 C ˇ3, is omitted because the
contrast coefficient a3 D 0, and ˇ0 disappears because the contrast coefficients sum
to zero. Table 4.8 summarizes the resulting contrasts used to test for trend when the
categorical variable has 3–6 levels and the lowest category is treated as the reference.

Table 4.9 shows the test for trend in glucose levels across the levels of physact,
based on the default form of the model including an intercept. The trend test result
is exactly the same as in Table 4.7, whether we use test or either version of the
contrast command to obtain it.
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Table 4.8 Trend contrasts
for models with an intercept

Number of
categories Linear contrast

3 ˇ3 D 0

4 �ˇ2 C ˇ3 C 3ˇ4 D 0

5 �ˇ2 C ˇ4 C 2ˇ5 D 0

6 �3ˇ2 � ˇ3 C ˇ4 C 3ˇ5 C 5ˇ6 D 0

Table 4.9 Trend test in a model including the intercept

. regress glucose i.physact if diabetes == 0

Source | SS df MS Number of obs = 2032
-------------+------------------------------ F( 4, 2027) = 4.43

Model | 1673.09022 4 418.272554 Prob > F = 0.0014
Residual | 191344.609 2027 94.3979322 R-squared = 0.0087

-------------+------------------------------ Adj R-squared = 0.0067
Total | 193017.699 2031 95.0357946 Root MSE = 9.7159

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
physact |

2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719
3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629
4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.451595
5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116

|
_cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626

------------------------------------------------------------------------------

. * Tests for linear trend

. test -2.physact + 4.physact + 2*5.physact = 0
( 1) - 2.physact + 4.physact + 2*5.physact = 0

F( 1, 2027) = 12.11
Prob > F = 0.0005

. contrast {physact -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact | 1 12.11 0.0005
------------------------------------------------

. contrast q(1).physact, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact | 1 12.11 0.0005
------------------------------------------------

A few more details about these trend tests are worth noting:

• In (4.9), we showed why ˇ0 does not figure in the contrasts in Table 4.8. By
extension, the effects of any adjustment variables held constant by the model
would also drop out.
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• If a different reference category is used, we simply drop that component of the
contrast rather than the first. For example, suppose we specified level two as
the reference category for physact using ib2.physact in the regress
command. Then the appropriate contrast would be �2ˇ1 C ˇ4 C 2ˇ5 D 0. If
we specified level three as the reference category, using ib3.physact, the
contrast would be�2ˇ1�ˇ2Cˇ4C2ˇ5 D 0. The trend test results are unaffected
by changing the reference category.

• As compared to a simpler approach in which the categorical variable is treated as
a continuous predictor, using the categorical version of the model in conjunction
with contrasts to test for trend can be more efficient when there is both trend and
departure from it, a problem we examine next. This occurs because the model
captures the departures from linear trend, reducing the residual variance, and
thus making regression effects easier to detect.

• These contrasts are valid for the other models in this book, including logistic,
survival, repeated measures, and GLMs. In GLMs and Cox models, treating a
multilevel predictor as categorical rather than continuous achieves no efficiency
gain of the kind sometimes seen in linear models. Nonetheless, in such cases,
treating the predictor as categorical rather than continuous should achieve at least
somewhat better fit.

• Similar contrasts are available for assessing quadratic, cubic, and quartic trends
across categories, now easily accessible using the contrast command with the
q. and p. contrast operators.

4.3.5.1 Departures from Linear Trend

The pattern in average glucose across the levels of a categorical variable could be
characterized by both a linear trend and a departure from trend. After demonstrating
a statistically significant trend as in Table 4.7 or 4.9, it is easy to test for such a
departure. One method for doing this uses a model in which the categorical variable
is treated both as continuous and categorical. In this set-up, the continuous version
accounts for the trend, while the categorical version captures departure from it.
Thus, in Table 4.10 the F -test for the overall effect of physact as a categorical
variable (F.3; 2027/ D 0:26; P D 0:85) shows that there is little evidence for
departures from a linear trend in this case.

Table 4.10 Testing for departure from linear trend

. quietly regress glucose physact i.physact if diabetes == 0
note: 5.physact omitted because of collinearity

. testparm i.physact
F( 3, 2027) = 0.26

Prob > F = 0.8511
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Table 4.11 Testing for departure from linear trend

. quietly regress glucose i.physact if diabetes == 0

. contrast q(2/4).physact, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

physact |
(quadratic) | 1 0.11 0.7411

(cubic) | 1 0.01 0.9415
(quartic) | 1 0.49 0.4859

Joint | 3 0.26 0.8511
|

Residual | 2027
------------------------------------------------

Two additional comments about the model in Table 4.10:

• The omission of an additional category of physcat is expected, in fact
necessary for the test for departure from trend to work. For this to occur,
physact must precede i.physact in the regression command; with the
reverse ordering, Stata would omit physact as continuous instead.

• This model is only useful for testing from departure from trend. Neither the
coefficient nor the t-test for the effect of physact as continuous is interpretable.
Estimation of the effects of the categorical variable as well as the test for trend
must be carried out as in Table 4.7 or 4.9, using a model including the categorical
version of the predictor only.

We can obtain exactly the same result from the original model including
physact only as a categorical variable, using the contrast operator q(2/4).
physact. This assesses evidence for quadratic, cubic, and quartic trends, as well as
evidence for all three jointly. Because we omitted the test for linear trend, the 3
degree-of-freedom joint test is equivalent to the first approach using physact
as both continuous and categorical. Note that the specific form of the contrast
operator depends on the number of levels: for example, we would need to use
contrast q(2/3).physact if physact had four levels, and contrast
q(2/5).physact if it had six (Table 4.11).

4.4 Confounding

In Table 4.1, the unadjusted coefficient for exercise estimates the difference in
mean glucose levels between two subgroups of the population of women with heart
disease. But this comparison ignores other ways in which those subgroups may
differ. In other words, the analysis does not take account of confounding of the
association we see. Although the unadjusted coefficient may be useful for describing
differences between subgroups, it would be risky to infer any causal connection
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between exercise and glucose on this basis. In contrast, the adjusted coefficient for
exercise in Table 4.2 takes account of the fact that women who exercise also
have lower BMI and are slightly younger and more likely to report alcohol use, all
factors which are associated with differences in glucose levels.

While this adjusted model is clearly rudimentary, the underlying premise of
multipredictor regression analysis of observational data is that with a sufficiently
refined model (and good enough data), we can estimate causal effects, free or almost
free of confounding. In Chap. 9, we use the concept of potential outcomes to define
causal effects more precisely, and to show when multipredictor models can be used
to estimate them in the presence of confounding, and when they cannot.

To summarize briefly, the overall point of Chap. 9 is that to assess confounding
we first need a hypothesized causal framework. In particular, the potential con-
founder should be plausible as a cause of both the predictor of interest and the
outcome, or as a proxy for such a cause. Within this hypothesized framework, the
data provide support for confounding if we find that:

• The potential confounder is associated with the predictor of interest, and also
independently associated with the outcome.

• The coefficient for the effect of the primary predictor on the outcome changes
when we add the potential confounder to the model. Note, however, that analo-
gous changes are also seen in logistic, Cox, and some other models, discussed
in Chaps. 5, 6, and 8, when nonconfounders associated with the outcome but not
the predictor of interest are added to the model.

4.4.1 Range of Confounding Patterns

Confounders often explain some of the association of a predictor of interest with
the outcome, so that the adjusted effect, which may have a causal interpretation,
is often weaker than the unadjusted effect. We saw this pattern in the estimate for
the effect of exercise on glucose levels after adjustment for age, alcohol use, and
BMI. However, qualitatively different patterns can arise. We now consider a small
hypothetical example where E , the exposure of primary interest, is binary and coded
0 and 1, and the potential confounder,C, is continuous. At one extreme, the effect of
a factor of interest may be completely confounded by a second variable. In the upper
left panel of Fig. 4.1, E is shown to be strongly associated with y in unadjusted
analysis, as represented in the scatterplot. However, the upper right panel shows
that the unadjusted difference in y can be entirely explained by the continuous
covariate C. The regression lines for C are the same for both groups defined by
E ; in other words, there is no association with E after adjustment for C.

At the other extreme, we may find little or no association in unadjusted analysis,
because it is masked or negatively confounded by another predictor. The lower
panels of Fig. 4.1 show this pattern. On the left, there is clearly no association
between the binary predictor E and y, but on the right the regression lines for C
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Fig. 4.1 Complete and negative confounding patterns

are very distinct for the groups defined by E . In short, the association between E
and y is unmasked by adjustment for C. Negative confounding can occur under the
following circumstances:

• The predictors are inversely correlated, but have regression coefficients with the
same sign.

• The two predictors are positively correlated, but have regression coefficients with
the opposite sign.

The example shown in the lower panels of Fig. 4.1 is of the second kind.

4.4.2 Confounding Is Difficult to Rule Out

The problem of confounding can be more resistant to multipredictor regression
modeling than the example in Table 4.12 might suggest. We assumed in that example
that the model included all confounders of the effect of BMI on LDL. Of course,
the multipredictor linear model (4.2) can (within limits imposed by sample size)
include more than a few predictors, giving us considerable freedom to model the
effects of other causal factors. Nonetheless, for the multipredictor linear model
to control confounding successfully and estimate causal effects without bias, all
potential confounders must have been:

• Recognized and assessed by design in the study
• Measured without error
• Accurately represented in the systematic part of the model
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Table 4.12 Unadjusted and adjusted regressions of LDL on BMI

. regress LDL bmi

Source | SS df MS Number of obs = 2747
-------------+------------------------------ F( 1, 2745) = 10.14

Model | 14446.0223 1 14446.0223 Prob > F = 0.0015
Residual | 3910928.63 2745 1424.74631 R-squared = 0.0037

-------------+------------------------------ Adj R-squared = 0.0033
Total | 3925374.66 2746 1429.48822 Root MSE = 37.746

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .4151123 .1303648 3.18 0.001 .1594894 .6707353

_cons | 133.1913 3.7939 35.11 0.000 125.7521 140.6305
------------------------------------------------------------------------------

. regress LDL bmi age nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 5, 2739) = 5.97

Model | 42279.1877 5 8455.83753 Prob > F = 0.0000
Residual | 3881903.3 2739 1417.27028 R-squared = 0.0108

-------------+------------------------------ Adj R-squared = 0.0090
Total | 3924182.49 2744 1430.09566 Root MSE = 37.647

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .3591038 .1341047 2.68 0.007 .0961472 .6220605
age | -.1897166 .1130776 -1.68 0.094 -.4114426 .0320095

nonwhite | 5.219436 2.323673 2.25 0.025 .6631081 9.775764
smoking | 4.750738 2.210391 2.15 0.032 .4165363 9.08494
drinkany | -2.722354 1.498854 -1.82 0.069 -5.661351 .2166444

_cons | 147.3153 9.256449 15.91 0.000 129.165 165.4656
------------------------------------------------------------------------------

Logically, of course, it is not possible to show that all confounders have been
measured, and in some cases it may be clear that they have not. Furthermore, the
hypothetical causal framework may be uncertain, especially in the early stages of an
investigating a research question. Also, measurement error in predictors is common;
this may arise in some cases because the study has only measured proxies for the
causal variables which actually confound a predictor of interest. Finally, Sect. 4.7
will show that accurate modeling of systematic relationships cannot be taken for
granted.

4.4.3 Adjusted Versus Unadjusted Ǒs

Uncontrolled confounding induces bias in unadjusted (or inadequately adjusted)
estimates of the causal effects that are commonly the focus of our attention.
This suggests that unadjusted parameter estimates are always biased and adjusted
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estimates less so. But there is a sense in which this is misleading. In fact the two
estimate different population quantities. The observed difference in average glucose
levels between women who do and do not exercise is clearly interpretable, although
it almost surely does not have a causal interpretation. Thus, it should not be expected
to have the same value as the causal parameter.

4.4.4 Example: BMI and LDL

We turn to a relatively simple example, again using data from the HERS cohort. BMI
and LDL cholesterol are both established heart disease risk factors. It is reasonable
to hypothesize that higher BMI leads to higher LDL in some causal sense, to be
made more specific in Chap. 9. An unadjusted model for BMI and LDL is shown in
Table 4.12. The unadjusted estimate shows that average LDL increases .42 mg/dL
per unit increase in BMI (95% CI: 0.16–0.67 mg/dL, P D 0:001). However, age,
ethnicity (nonwhite), smoking, and alcohol use (drinkany) may confound this
unadjusted association. These covariates may either represent determinants of LDL
or be proxies for such determinants, and are correlated with but almost surely not
caused by BMI, and so may confound the BMI–LDL relationship. After adjustment
for these four demographic and lifestyle factors, the estimated increase in average
LDL is 0.36 mg/dL per unit increase in BMI, an association that remains highly
statistically significant (P D 0:007). In addition, average LDL is estimated to
be 5.2 mg/dL higher among nonwhite women, after adjustment for between-group
differences in BMI, age, smoking, and alcohol use. The association of smoking with
higher LDL is also statistically significant, and there is some evidence for lower
LDL among older women and those who use alcohol.

In this example, smoking is a negative confounder, because women with higher
BMI are less likely to smoke, but both are associated with higher LDL. Negative
confounding is further evidenced by the fact that the adjusted coefficient for BMI is
larger (0.36 versus 0.32 mg/dL) in the fully adjusted model shown in Table 4.12 than
in a model adjusted for age, nonwhite, and drinkany but not for smoking
(reduced model not shown).

The covariates in the adjusted model shown in Table 4.12 can all be shown to
meet sample diagnostic criteria for potential confounding of the effect of BMI.
For example, LDL is 5.2 mg/dL higher and average BMI 1.7 kg/m2 higher among
nonwhite women, and the adjusted effect of BMI is 13% smaller than the unadjusted
estimate. Note that while the associations of ethnicity with both BMI and LDL are
statistically significant in this example, ethnicity might still meaningfully confound
BMI even if the differences were not nominally significant. Evidence for this would
still be provided by the substantial (�10%) change in the coefficient for BMI after
adjustment for ethnicity, according to a useful (albeit ultimately arbitrary) rule of
thumb (Greenland 1989). Recommendations for inclusion of potential confounders
in multipredictor regression models are given in Chap. 10.
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Fig. 4.2 Unadjusted and adjusted regression lines

Figure 4.2 shows the unadjusted regression line for LDL and BMI, together with
the adjusted lines specific to the white and nonwhite women, holding the other
variables constant at their respective means. Two comments about Fig. 4.2:

• Some of the upward slope of the unadjusted regression line reflects the fact
that women with higher BMI are more likely to be nonwhite, younger, and not
to use alcohol—all factors associated with higher LDL. Despite the negative
confounding by smoking, when these all these effects are accounted for using
the multipredictor regression model, the slope for BMI is attenuated.

• The adjusted regression lines for white and nonwhite women are parallel, both
with the same slope of 0.36 mg/dL per unit increase in BMI. Similar patterns
are assumed to hold for adjusted regression lines specific to subgroups defined
by smoking and alcohol use. Accordingly, the lines are separated by a vertical
distance of 5.2 mg/dL at every value of BMI—the adjusted difference in average
LDL by ethnicity. This pattern reflects the fact that the model does not allow
for interaction between BMI and ethnicity. We assume that the slope for BMI
is the same in both ethnic groups, and, equivalently, that the difference in LDL
due to ethnicity is the same at every value of BMI. Testing the no-interaction
assumption will be examined in Sect. 4.6 below.

4.5 Mediation

In the adjusted model for LDL shown in Table 4.12, we assumed that age,
race/ethnicity, smoking, and alcohol use might confound the effect of BMI, because
they affect both BMI and LDL levels, or are proxies for factors that do. However,
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if the primary predictor is a cause of one of the covariates, which in turn affects the
outcome, this would be an instance of mediation. For example, statin drugs reduce
low-density LDL cholesterol levels, which in turn appear to reduce risk of heart
attack; in this model, reductions in LDL mediate the protective effect of statins.

Thus a potential mediator, like a potential confounder, must make sense in terms
of a hypothetical causal framework. In particular, it should be plausible as an effect
of the predictor of interest and as a cause of the outcome, or as a proxy for the
true intermediary factor. Within this framework, the data support mediation if we
find that:

• The potential mediator is associated with the predictor of interest and with the
outcome, controlling for the predictor of interest.

• The coefficient for the effect of the primary predictor on the outcome changes
when we add the potential mediator to the model. However, as with confounders,
analogous changes are also seen in logistic, Cox, and some other models when
nonmediators associated with the outcome but not the predictor of interest are
added to the model.

Thus mediators behave like confounders in regression models, and can only be
distinguished by the hypothesized causal framework—the data have little to tell us
about the direction of the causal effects.

4.5.1 Indirect Effects via the Mediator

The effect of the primary predictor on the mediator, and of the mediator on the
outcome, together comprise the hypothesized indirect causal pathway via the me-
diator. If the models used to estimate these effects adequately control confounding
of both relationships, then the two effects may together have a causal interpretation
as the indirect effect of the primary predictor; additional assumptions underlying
this interpretation are discussed in Sect. 9.6. Accordingly, primary evidence for the
indirect effect via the mediator is given by a test of the effect of the primary predictor
on the mediator, in combination with a second test of the effect of the mediator on
the outcome. The overall null hypothesis of no indirect effect is rejected only if both
underlying null hypotheses are rejected at the nominal ˛ level, preventing inflation
of the type-I error rate.

4.5.2 Overall and Direct Effects

If the indirect pathway exists, and confounding has been controlled, then the
coefficient for the primary predictor before adjustment for the mediator has a causal
interpretation as the overall effect of the primary predictor on the outcome. The
coefficient adjusted for the mediator is interpretable as the so-called direct effect
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of the primary predictor via other pathways that do not involve the mediator.
Finally, the difference between overall and direct effects of the primary predictor
is interpretable as the indirect effect.

Tests for the difference between the overall and direct effects can also be used
to assess mediation. However, these tests are complicated by the need to compare
coefficient estimates for the primary predictor from two different models, but
estimated using the same data. As a result, the two estimates are correlated, which
must be taken into account. Surprisingly, these tests are less powerful in some cases
than the joint test of the indirect pathway just discussed.

It is important to note that these interpretations may hold only under additional
conditions in the generalized linear and Cox models discussed in Chaps. 5, 6, and 8.
In particular, tests for the difference between the overall and direct effects can give
false-positive results, because the collapsibility issue first introduced in Sect. 3.4.5.
As we have already pointed out, in these models the coefficient for the primary
predictor will generally change if a powerful predictor is added to the model. This
holds even if the new covariate is not associated with the primary predictor, implying
that it plays no mediating role.

4.5.3 Percent Explained

The relative difference between the overall and direct effects is sometimes referred
to as the percent explained (PE) and used as an additional summary measure of
the indirect effect. Direct estimation of PE rests on the assumption that the primary
predictor and mediator do not interact (Robins and Greenland 1992; Freedman et al.
1992). This assumption can be checked using methods explained in Sect. 4.6, and
possibly relaxed (Li et al. 2001; Vansteelandt 2009; VanderWeele 2009) as discussed
briefly in Sect. 9.6. Testing and CI estimation for PE are even more complicated and
problematic than for the difference between the overall and direct effects of the
primary predictor.

4.5.4 Example: BMI, Exercise, and Glucose

We examined the extent to which the effects of BMI on glucose levels might be
mediated through its effects on likelihood of exercise. Although exercise may in
some cases affect BMI, in HERS exercise was weakly associated (P D 0:06) with
a small increase in BMI over the first year of the study. As a result, we would
argue that in this population of older women with established heart disease, BMI
mainly affects likelihood of exercise, with very little feedback. Thus, mediation
of the effects of BMI by exercise makes sense in terms of a hypothesized causal
framework. We recognize that our simple models might not completely control
confounding of the relationships among BMI, exercise, and glucose, and could be
improved with expert input.
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To assess mediation of the effects of BMI by exercise, we assessed both links
in the hypothesized indirect pathway. Specifically, we first used a logistic model
(Chap. 5) to assess the independent effects of BMI on likelihood of exercise,
adjusting for age, race/ethnicity, smoking, alcohol use, and poor or fair self-reported
health. Results in Table 4.13 show that each kg/m2 increase in BMI is associated
with an 8% decrease in the odds of exercise (95% CI 4–10%, P < 0:0005).
In addition, the linear model for glucose levels establishes the second link in the
indirect pathway, showing that exercise is independently associated with a decrease
in average glucose of about 1 mg/dL (95% CI 0.1–1.9,P D 0:027). So the proposed
mediator is associated with both the primary predictor and independently with the
outcome. Since both null hypotheses are rejected at the nominal 2-sided 5% level,
there is evidence for the indirect causal pathway via exercise.

On the other hand, the coefficient for BMI is only slightly attenuated when
exercise is added to the model, from 0.50 to 0.49 mg/dL per kg/m2 increase in BMI.
We manipulated regression results stored as so-called scalars to calculate PE as
.0:5025557� 0:4859684/=0:5025557� 100 D 3:3%. Thus, while our joint test of
the indirect pathway shows that we can rule out chance at the nominal 5% level,
only a very small part of the effect of BMI on glucose levels appears to be mediated
by its effects on likelihood of exercising.

4.5.5 Pitfalls in Evaluating Mediation

Evaluating mediation, in particular estimating direct effects and PE, has many
potential difficulties. In particular, bias can arise from uncontrolled confounding
of the association between the mediator and the outcome (Robins and Greenland
1992; Cole and Hernán 2002)—even in clinical trials where the primary predictor
is randomized treatment assignment. In observational data, we obviously need to
control confounding of the effects of the primary predictor as well. Additional
difficulties arise if a confounder of the mediator/outcome relationship is affected
by treatment, and thus a causal intermediate (Petersen et al. 2006). We briefly cover
these issues in Sect. 9.6.

4.5.5.1 Temporality

In addition, it is often difficult to infer causal direction in cross-sectional data. Lon-
gitudinal data may provide stronger support for the hypothesized indirect pathway
by showing that changes or differences in the predictor of interest are associated
with subsequent changes in the mediator, which in turn predict the outcome still
later in time. However, if these changes all occur more or less simultaneously, and
between sequential longitudinal observations, the temporal ordering can easily be
obscured. Furthermore, as discussed in Sect. 6.3.1, longitudinal analyses set up to
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Table 4.13 Indirect pathway from BMI to glucose levels via exercise

. * Overall effect of BMI on glucose, adjusting for age and alcohol use

. regress glucose BMI age10 nonwhite smoking drinkany poorfair if diabetes == 0

Source | SS df MS Number of obs = 2025
-------------+------------------------------ F( 6, 2018) = 25.48

Model | 13529.786 6 2254.96434 Prob > F = 0.0000
Residual | 178590.143 2018 88.4985842 R-squared = 0.0704

-------------+------------------------------ Adj R-squared = 0.0677
Total | 192119.929 2024 94.9209135 Root MSE = 9.4074

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .5025557 .0414832 12.11 0.000 .4212013 .5839102

age10 | .7093964 .3259568 2.18 0.030 .0701494 1.348643
nonwhite | .8801519 .7610825 1.16 0.248 -.6124377 2.372741
smoking | .1812593 .6135155 0.30 0.768 -1.021931 1.384449
drinkany | .7137293 .4305044 1.66 0.097 -.1305502 1.558009
poorfair | -.2052528 .5394217 -0.38 0.704 -1.263134 .8526288

_cons | 77.63278 2.687214 28.89 0.000 72.36278 82.90279
------------------------------------------------------------------------------
. * Store coefficient for BMI as estimate of overall effect
. scalar overall = _b[BMI]

. * First link: logistic model for BMI effect on exercise

. logistic exercise BMI age10 nonwhite smoking drinkany poorfair if diabetes == 0

Logistic regression Number of obs = 2025
LR chi2(6) = 158.56
Prob > chi2 = 0.0000

Log likelihood = -1294.4669 Pseudo R2 = 0.0577
------------------------------------------------------------------------------

exercise | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

BMI | .9235428 .0093154 -7.89 0.000 .9054643 .9419822
age10 | .8171735 .0600467 -2.75 0.006 .7075662 .9437597

nonwhite | .8012592 .1416865 -1.25 0.210 .5665721 1.133159
smoking | .3012331 .0470011 -7.69 0.000 .2218658 .4089921
drinkany | .9159856 .0883199 -0.91 0.363 .758255 1.106527
poorfair | .523097 .0671846 -5.05 0.000 .406684 .6728331

------------------------------------------------------------------------------

. * Second link: fully adjusted model for effect of exercise on glucose levels

. regress glucose BMI age10 nonwhite smoking drinkany poorfair exercise ///
if diabetes == 0

Source | SS df MS Number of obs = 2025
-------------+------------------------------ F( 7, 2017) = 22.59

Model | 13964.2063 7 1994.88661 Prob > F = 0.0000
Residual | 178155.723 2017 88.3270811 R-squared = 0.0727

-------------+------------------------------ Adj R-squared = 0.0695
Total | 192119.929 2024 94.9209135 Root MSE = 9.3982

(continued)
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Table 4.13 (continued)

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMI | .4859684 .0421125 11.54 0.000 .4033798 .568557

age10 | .6655835 .3262395 2.04 0.041 .0257819 1.305385
nonwhite | .8315359 .7606607 1.09 0.274 -.6602267 2.323299
smoking | -.0612536 .6225991 -0.10 0.922 -1.282258 1.159751
drinkany | .6954023 .4301665 1.62 0.106 -.1482147 1.539019
poorfair | -.3387946 .5422525 -0.62 0.532 -1.402228 .724639
exercise | -.9762492 .4402026 -2.22 0.027 -1.839548 -.1129499

_cons | 78.86342 2.74136 28.77 0.000 73.48723 84.23961
------------------------------------------------------------------------------
. * Store coefficient for BMI as estimate of direct effect, and calculate PE
. scalar direct = _b[BMI]
. scalar PE = round((overall-direct)/overall*100, 0.1)
. scalar list PE

PE = 3.3

examine such temporal patterns can be misleading if the mediator also potentially
confounds the association between the primary predictor and outcome (Hernán et al.
2001).

4.5.5.2 Problems with PE

Finally, while PE is a popular and relatively interpretable measure of mediation,
CIs for this measure can be wide and unreliable if the overall effect of the
primary predictor is weak or noisily estimated. In addition, while PE is nominally a
percentage, values outside the interval from 0% to 100% are possible. In particular,
this occurs if the direct and indirect effects of the primary predictor are in opposite
directions—for instance, if a treatment has both beneficial and adverse effects on
the outcome, via different pathways. Even when PE is between 0% and 100%,
confidence bounds are commonly outside this range. In addition, Molenberghs
et al. (2002) show that estimates of PE are also influenced by the precision of
measurements of both the mediator and outcome, potentially leading to highly
misleading results.

4.6 Interaction

In Sect. 4.4, we gave examples in which a multipredictor linear model might be used
to reduce or eliminate confounding of the effects of a primary predictor. So far, we
have made the assumption that causal effect of the primary predictor was the same
within strata defined by the covariates. However, this may not hold. In this section,
we show how to use regression to model the resulting interaction, so that we can
estimate causal effects that differ according to the level of a covariate. Interaction
is also referred to as effect modification or moderation, and must be distinguished
from both confounding and mediation (Baron and Kenny 1986).
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Table 4.14 Model for interaction of HT and statins

Group HT statins HT#statins EŒLDLjx�
1 0 0 0 ˇ0
2 1 0 0 ˇ0 C ˇ1
3 0 1 0 ˇ0 C ˇ2
4 1 1 1 ˇ0 C ˇ1 C ˇ2 C ˇ3

4.6.1 Example: Hormone Therapy and Statin Use

As an example of interaction, we examine whether the effect of HT on LDL
cholesterol differs according to baseline statin use, using data from HERS. To do
this, a constructed interaction variable is useful. Suppose both assignment to HT
and use of statins at baseline are coded using indicator variables. Then, the product
of these two variables is also an indicator, equal to one only for the subgroup of
women who reported using statins at baseline and were randomly assigned to HT,
and zero for everyone else. Now, consider the regression model

EŒLDLjx� D ˇ0 C ˇ1HTC ˇ2statinsC ˇ3HT#statins; (4.10)

where HT is the indicator of assignment to HT, statins the indicator of
baseline statin use, and HT#statins the interaction term, which Stata calculates
automatically.

Table 4.14 shows the values of (4.10) for each of the four groups of women
defined by HT and statins. The difference in EŒyjx� between groups 1 and 2 is
ˇ1, the effect of HT among women not using statins. Similarly, the difference in
EŒyjx� between groups 3 and 4 is ˇ1 C ˇ3, the effect of HT among statin users.
So the interaction term ˇ3 gives the difference in treatment effects in these two
groups. Accordingly, a t-test ofH0: ˇ3 D 0 is a test for the equality of the effects of
HT among statin users as compared to nonusers. Note that both overall and within
the strata defined by baseline statin use, we can assume that the groups randomly
assigned to HT and placebo are comparable.

Taking analogous differences between groups 1 and 3 or 2 and 4 would show that
ˇ2 gives the difference in average LDL among statin users as compared to nonusers
among women assigned to placebo, while ˇ2 C ˇ3 gives the analogous difference
among women assigned to HT. However, women were not randomized to statin
use, so unbiased estimation of the causal effects of statin use would require careful
adjustment for confounding by indication—that is, for the prognostic factors that
lead physicians to prescribe this treatment.

Table 4.15 shows that there is some evidence for a smaller effect of HT
on LDL among women reporting statin use at study baseline. The command
i.HT##i.statins instructs Stata to include both so-called main effects,
shown as 1.HT and 1.statins in the output, as well as the interaction term
HT#statins, which it calculates only for the purposes of running the regression
and does not retain in the data.
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Table 4.15 Interaction of hormone therapy and statin use

. reg LDL1 i.HT##i.statins

Source | SS df MS Number of obs = 2608
-------------+------------------------------ F( 3, 2604) = 52.68

Model | 227141.021 3 75713.6735 Prob > F = 0.0000
Residual | 3742707.78 2604 1437.29177 R-squared = 0.0572

-------------+------------------------------ Adj R-squared = 0.0561
Total | 3969848.8 2607 1522.76517 Root MSE = 37.912

------------------------------------------------------------------------------
LDL1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.HT | -17.72836 1.870629 -9.48 0.000 -21.39643 -14.06029

1.statins | -13.80912 2.15213 -6.42 0.000 -18.02918 -9.589065
|

HT#statins |
1 1 | 6.244416 3.076489 2.03 0.042 .2118042 12.27703

|
_cons | 145.1567 1.325549 109.51 0.000 142.5575 147.756

------------------------------------------------------------------------------

. lincom 1.HT + 1.HT#1.statins
( 1) 1.HT + 1.HT#1.statins = 0

------------------------------------------------------------------------------
LDL1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -11.48394 2.442444 -4.70 0.000 -16.27327 -6.694615

------------------------------------------------------------------------------

The coefficient for HT, or Ǒ1, shows that among women who did not report
statin use at baseline, average cholesterol at the first annual HERS visit was almost
18 mg/dL lower in the HT arm than in placebo, a statistically significant subgroup
treatment effect.

To obtain the estimate of the effect of HT among baseline statin users, we sum
the coefficients for HT and HT#statins (that is, Ǒ1 C Ǒ3) using the lincom
command. Note that in contrast to the regress command itself, where we used ##
to obtain both main effects and interaction term, in the lincom command we used
a single # to specify the interaction term only. The result shows that the treatment
effect among baseline statin users was only �11.5 mg/dL, although this was also
statistically significant. The difference ( Ǒ3) of 6.2 mg/dL between the two treatment
effects was also statistically significant (t D 2:03; P D 0:042). Finally, the results
for variable statins indicate that among women assigned to placebo, baseline
statin use is a statistically significant predictor of LDL levels at the first annual
visit.

Finally, we note that in the lincom command shown in Table 4.15, we have to
specify the values of each variable—in this case, 1 and 1—to which the interaction
term applies. If either of the two main effects is a multicategory predictor, then the
interaction would also have more than one level. For example, if we wanted to assess
interaction between HT and level of physical activity, we would use the commands
shown in Table 4.16. The testparm command is used to obtain a global test of the
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Table 4.16 Interaction of hormone therapy and physical activity

. regress LDL1 i.HT##i.physact

Source | SS df MS Number of obs = 2608
-------------+------------------------------ F( 9, 2598) = 12.19

Model | 160857.353 9 17873.0393 Prob > F = 0.0000
Residual | 3808991.44 2598 1466.1245 R-squared = 0.0405

-------------+------------------------------ Adj R-squared = 0.0372
Total | 3969848.8 2607 1522.76517 Root MSE = 38.29

------------------------------------------------------------------------------
LDL1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.HT | -4.973552 5.810288 -0.86 0.392 -16.36681 6.419711

|
physact |

2 | 4.386916 4.612377 0.95 0.342 -4.65739 13.43122
3 | 6.96232 4.338071 1.60 0.109 -1.544106 15.46875
4 | 8.797315 4.378699 2.01 0.045 .2112231 17.38341
5 | 6.793914 5.040489 1.35 0.178 -3.089867 16.67769

|
HT#physact |

1 2 | -6.714054 6.799605 -0.99 0.324 -20.04725 6.619138
1 3 | -10.71075 6.367042 -1.68 0.093 -23.19573 1.774244
1 4 | -13.15391 6.411071 -2.05 0.040 -25.72523 -.5825811
1 5 | -12.96408 7.314865 -1.77 0.076 -27.30763 1.379473

|
_cons | 133.4211 3.928472 33.96 0.000 125.7178 141.1243

------------------------------------------------------------------------------

. testparm i.HT#i.physact
F( 4, 2598) = 1.42

Prob > F = 0.2258

. contrast HT#physact
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df F P>F
-------------+----------------------------------

HT#physact | 4 1.42 0.2258
------------------------------------------------

interaction, which is not statistically significant, despite nearly significant P -values
for the interaction terms for HT and levels 3, 4, and 5 of physical activity. The
contrast command gives an equivalent result.

4.6.2 Example: BMI and Statin Use

Similar approaches can be used to assess modification of the effects of continuous
predictors. For example, the association between BMI and baseline LDL cholesterol
levels was shown in Sect. 4.4.4 to be statistically significant after adjustment for
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demographics and lifestyle factors. However, treatment with statins may modify
this association, possibly by interrupting the causal pathway between higher BMI
and increased LDL. This would imply that BMI is less strongly associated with
increased average LDL among statin users than among nonusers.

In examining this interaction, centering BMI about its mean value of 28.6 kg/m2

makes the parameter estimate for statin use more interpretable, as shown below.
Then, to implement the analysis, we would first compute BMIc, the new centered
BMI variable. Note that because statins is an indicator variable coded 1 for
users and 0 for nonusers, the interaction variablestatins#c.BMIc automatically
made by Stata is by definition equal to BMIc in statin users, but equal to zero
for nonusers. We then fit a multipredictor regression model including all these
three predictors, as well as the potential confounders adjusted for previously. The
resulting model for baseline LDL is

EŒLDLjx� D ˇ0 C ˇ1statinsC ˇ2BMIcC ˇ3statins#c.BMIc
Cˇ4ageC ˇ5nonwhiteC ˇ6smokingC ˇ7drinkany: (4.11)

Thus, among women who do not use statins,

EŒLDLjx� D ˇ0 C ˇ2BMIc
Cˇ4ageC ˇ5nonwhiteC ˇ6smokingC ˇ7drinkany; (4.12)

and the slope associated with BMIc in this group is ˇ2. In contrast, among statin
users

EŒLDLjx� D ˇ0 C ˇ1statinsC ˇ2BMIcC ˇ3statins#c.BMIc
Cˇ4ageC ˇ5nonwhiteC ˇ6smokingC ˇ7drinkany

D ˇ0 C ˇ1 C .ˇ2 C ˇ3/BMIc
Cˇ4ageC ˇ5nonwhiteC ˇ6smokingC ˇ7drinkany: (4.13)

In this group, the slope associated with BMI is ˇ2 C ˇ3; so clearly the interaction
parameter ˇ3 gives the difference between the two slopes. The model also posits
that the difference in average LDL between statin users and nonusers depends on
BMI. Subtracting (4.12) from (4.13), the difference in average LDL in statin users
as compared to nonusers is ˇ1 C ˇ3BMIc.

Table 4.17 shows the results of the interaction model for statin use and BMI. The
estimated coefficients have the following interpretations:

• statins: Among women with BMIc = 0, or equivalently, with BMI =
28.6 kg/m2, statin use was associated with LDL levels that were more than
16 mg/dL lower on average. Note that if we had not first centered BMI, this
coefficient would be an estimate of the statin effect in women with BMI = 0.
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Table 4.17 Interaction model for BMI and statin use

. regress LDL i.statins##c.BMIc age nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 7, 2737) = 22.85

Model | 216681.484 7 30954.4978 Prob > F = 0.0000
Residual | 3707501 2737 1354.58568 R-squared = 0.0552

-------------+------------------------------ Adj R-squared = 0.0528
Total | 3924182.49 2744 1430.09566 Root MSE = 36.805

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.statins | -16.25301 1.468788 -11.07 0.000 -19.13305 -13.37296

BMIc | .5821275 .160095 3.64 0.000 .2682082 .8960468
|

statins#|
c.BMIc |

1 | -.701947 .2693752 -2.61 0.009 -1.230146 -.1737478
|

age | -.1728526 .1105696 -1.56 0.118 -.3896608 .0439556
nonwhite | 4.072767 2.275126 1.79 0.074 -.3883704 8.533903
smoking | 3.109819 2.16704 1.44 0.151 -1.139381 7.359019
drinkany | -2.075282 1.466581 -1.42 0.157 -4.950999 .8004355

_cons | 162.4052 7.583312 21.42 0.000 147.5356 177.2748
------------------------------------------------------------------------------

. lincom BMIc + 1.statins#c.BMIc
( 1) BMIc + 1.statins#c.BMIc = 0

------------------------------------------------------------------------------
LDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | -.1198195 .2206807 -0.54 0.587 -.5525371 .3128981

------------------------------------------------------------------------------

• BMIc: Among women who do not use statins, the increase in average LDL is
0.58 mg/dL per unit increase in BMI. The association is statistically significant
(t=3.64, P < 0:0005).

• statins#c.BMIc: The slopes for the average change in LDL per unit increase
in BMI differ by approximately �0.70 mg/dL according to baseline statin use.
That is, the increase in average LDL associated with increases in BMI is much
less rapid among women who use statins. Moreover, the interaction is statistically
significant (t D �2:61; P D 0:009).

• lincom is used to estimate the slope for BMI among statin users, equal to the
sum of the slope among nonusers plus the estimated difference in slopes. The
estimate of �0.12 mg/dL per unit increase in BMI is not statistically significant
(t D �0:54; P D 0:59), but the 95% CI (�0.55 to 0.31 mg/dL per unit increase
in BMI) is fairly wide.

Figure 4.3 shows the estimated regression lines in the two groups, demonstrating
that the parallel lines assumption is no longer constrained to hold in the interaction
model. In summary, the analysis suggests that the adverse effect of higher BMI on
LDL may be blocked by statin use.
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Fig. 4.3 Stratum-specific regression lines

4.6.3 Interaction and Scale

Interaction models are often distinguished from simpler additive models which do
not include interaction terms. Moreover, the simpler additive model is generally
treated as the default in predictor selection, with an interaction term being added
only if there is more-or-less persuasive evidence that it is needed. It is important to
recognize, however, that the need for interaction terms is dependent on the scale on
which the outcome is measured (or, in the models discussed in later chapters, the
scale on which its mean is modeled).

In Sects. 4.7.2 and 4.7.3 below we examine changes of the scale on which the
outcome is measured to address violations of the linear model assumptions of
normality and constant variance. Log transformation of the outcome, among the
most commonly used changes of scale, effectively means modeling the average
value of the outcome on a relative rather than absolute scale, as we show in
Sect. 4.7.5 below. Similarly, in the analysis of before-and-after measurements of a
response to treatment, we have the option of modeling percent rather than absolute
change from baseline.

The issue of the dependence of interaction on scale arises in a similar but subtly
different way with the other models discussed later in this book. For example, in
logistic regression (Chap. 5) the logit transformation of EŒY jx� is modeled, while in
some generalized linear models (GLMs; Chap. 8), including the widely used Poisson
model, the log of EŒY jx� is modeled. Note that modeling EŒlog.Y /jx�, as we might
do in a linear model, is different from modeling log.EŒY jx�/ in the Poisson model.
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Table 4.18 Interaction model for HT effects on absolute change in LDL

. regress LDLch HT##c.cLDL0

Source | SS df MS Number of obs = 2597
-------------+------------------------------ F( 3, 2593) = 258.81

Model | 721218.969 3 240406.323 Prob > F = 0.0000
Residual | 2408575.51 2593 928.876015 R-squared = 0.2304

-------------+------------------------------ Adj R-squared = 0.2295
Total | 3129794.48 2596 1205.62191 Root MSE = 30.477

------------------------------------------------------------------------------
LDLch | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.HT | -15.47703 1.196246 -12.94 0.000 -17.82273 -13.13134
cLDL0 | -.3477064 .0225169 -15.44 0.000 -.3918593 -.3035534

|
HT#c.cLDL0 |

1 | -.0786871 .0316365 -2.49 0.013 -.1407226 -.0166517
|

_cons | -4.888737 .8408392 -5.81 0.000 -6.537522 -3.239953
------------------------------------------------------------------------------

The need to model interaction depends on outcome scale because the simpler
additive model can only hold exactly on one such scale, and may be an acceptable
approximation on some scales but not others. This is in contrast to confounding; if C
confounds E , then it does so on every outcome scale. In the case of the linear model,
the dependence of interaction on scale means that transformation of the outcome
will sometimes succeed in eliminating an interaction.

4.6.4 Example: Hormone Therapy and Baseline LDL

The effect of HT on LDL cholesterol in the HERS trial was dependent on baseline
values of LDL, with larger reductions seen among women with higher baseline
values. An interaction model for absolute change in LDL from baseline to the first
annual visit is shown in Table 4.18. Note that baseline LDL is centered in this model
in order to make the coefficient for hormone therapy (HT) easier to interpret.

The coefficients in the model have the following interpretations:

• HT: Among women with the average baseline LDL level of 135 mg/dL, the effect
of HT is to lower LDL an average of 15.5 mg/dL over the first year of the study.

• cLDL0: Among women assigned to placebo, each mg/dL increase in baseline
LDL is associated with a 0.35 mg/dL greater decrease in LDL over the first year.
That is, women with higher baseline LDL experience greater decreases in the
absence of treatment; this is in part due to regression to the mean and in part to
greater likelihood of starting use of statins.

• HT#c.cLDL0: The effect of HT is to lower LDL an additional 0.08 mg/dL for
each additional mg/dL in baseline LDL. In short, larger treatment effects are
seen among women with higher baseline values. The interaction is statistically
significant (P D 0:013).
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Table 4.19 Interaction model for HT effects on percent change in LDL

. regress LDLpctch HT##c.cLDL0

Source | SS df MS Number of obs = 2597
-------------+------------------------------ F( 3, 2593) = 165.33

Model | 233394.163 3 77798.0542 Prob > F = 0.0000
Residual | 1220171.82 2593 470.563756 R-squared = 0.1606

-------------+------------------------------ Adj R-squared = 0.1596
Total | 1453565.98 2596 559.925263 Root MSE = 21.692

------------------------------------------------------------------------------
LDLpctch | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
1.HT | -10.79035 .8514335 -12.67 0.000 -12.45991 -9.120789
cLDL0 | -.2162436 .0160265 -13.49 0.000 -.2476697 -.1848176

|
HT#c.cLDL0 |

1 | .0218767 .0225175 0.97 0.331 -.0222773 .0660307
|

_cons | -1.284976 .5984713 -2.15 0.032 -2.458506 -.1114456
------------------------------------------------------------------------------

Inasmuch as the reduction in LDL caused by HT appears to be greater in
proportion to baseline LDL, it is reasonable to ask whether the HT effect on percent
change in LDL might be constant across baseline LDL levels. In that case, modeling
an interaction between HT and the baseline value would not be necessary. This
turns out to be the case, as shown in Table 4.19. In particular, the interaction term
HT#c.cLDL0 is no longer statistically significantly (P D 0:331) and could be
dropped from the model. Note that the coefficient for HT now estimates the average
percent change in LDL due to treatment, among women at the average baseline
level. In summary, analyzing percent rather than absolute change in LDL eliminates
the interaction between HT and baseline LDL.

4.6.5 Details

There are several other more general points to be made about dealing with
interaction in multipredictor regression models.

• Interactions between two multilevel categorical predictors require extra care in
coding and interpretation. Simple computation of interaction terms involving a
categorical predictor will almost always give mistaken results. In contrast, the
i. and ## operators in Stata will handle this situation. However, suppose one
of the predictors has four levels and the other three levels. Then the interaction
is modeled using an extra .4�1/.3�1/ D 6 indicator variables. Many different
patterns are subsumed by the alternative hypothesis of interaction, only a few
of which may be of interest or biologically plausible; moreover, the F -test for
interaction may have low power.
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• Interactions between two continuous variables are also tricky, especially if
the two predictors are highly correlated. Both main effects in this case are
hard to interpret. “Centering” of both variables on their respective sample
means (Problem 4.6) resolves the interpretative problem only in part, since the
coefficient for each predictor still refers only to the case where the value of other
predictor is at its sample mean. Both the linearity of the interaction effect and the
need for higher order interactions would need to be checked.

• In examining interactions, it is not enough to show that the predictor of primary
interest has a statistically significant association with the outcome in a subgroup,
especially when it is not a statistically significant predictor overall. So-called
subgroup analysis of this kind can severely inflate the type-I error rate, and
has a justifiably bad reputation in the analysis of clinical trials. Showing that
the subgroup-specific regression coefficients are statistically different by testing
for interaction sets the bar higher, is less prone to type-I error, and thus more
persuasive (Brookes et al. 2001).

• Methods have been developed (Gail and Simon 1985) for assessing qualitative
interaction, in which the sign of the coefficient for the predictor of interest differs
across subgroups. This was nearly the case in the interaction of BMI and statin
use. A more specific alternative of this kind is often easier to detect.

• Interaction can be hard to detect if the interacting variables are highly correlated.
For example, it would be difficult to assess the interaction between two types of
exposure if they occurred together either little or most of the time. This was not
the case in the second HERS example, because statin use was reported by 36%
of the cohort at baseline, and was uncorrelated with assignment to HT by virtue
of randomization. However, in an observational cohort it might be much less
common for women to report use of both medications. In that case, oversampling
of dual users might be used if the interaction were of sufficient interest.

4.7 Checking Model Assumptions and Fit

In the simple linear model (4.1) as well as the multipredictor linear model (4.2), it
has been assumed so far that EŒyjx� changes linearly with each continuous predictor,
and that the error term " has a normal distribution with mean zero and constant
variance for every value of the predictors. We have also implicitly assumed that
model results are not unduly driven by any small subset of observations. Violations
of these assumptions have the potential to bias regression coefficient estimates and
undermine the validity of CIs and P -values.

In this section, we show how to assess the validity of the linearity assumption
for continuous predictors and suggest modifications to the model which can make
it more reasonable. We also discuss assessments of normality, how to transform
the outcome in order to make this assumption approximately hold, and discuss
conditions under which it may be relaxed. We then discuss departures from the
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assumption of constant variance and methods for addressing them. Many of these
procedures rely heavily on the transformations of both predictor and outcome that
were introduced in Chap. 2. Finally, we show how to deal with influential points.
Throughout, we emphasize the severity of departures, since model assumptions
rarely hold exactly, and small departures are often benign, especially in large data
sets. Nonetheless, careful attention to meeting model assumptions can prevent us
from being seriously misled, and sometimes increase the efficiency of our analysis
into the bargain.

4.7.1 Linearity

In modeling the effect of BMI on LDL, we have assumed that the regression
is a straight line. However, this may not be an adequate representation of the
true relationship. For example, we might find that average LDL stops increasing,
or increases more slowly, among women with BMI in the upper reaches of its
range—a ceiling effect. Analogously, the inverse relationship between BMI and
HDL (“good”) cholesterol may depart from linearity, with floor effects among very
heavy women.

4.7.1.1 Component-Plus-Residual Plots

In unadjusted analysis, checks for departures from linearity could be carried out
using LOWESS, the nonparametric scatterplot smoother introduced in Chap. 2. This
smoother approximates the regression line under the weaker assumption that it is
smooth but not necessarily linear, with the degree of smoothness under our control,
via the bandwidth. If the linear fit were satisfactory, the LOWESS curve would be
close to the model regression line; that is, the nonparametric estimate found under
the weaker assumption of smoothness would agree with the estimate found when
linearity is assumed.

However, the direct approach of adding a LOWESS smooth to a scatterplot of
predictor versus outcome is only effective for simple linear models with a single
continuous predictor. For multipredictor regression models, the analogous plot
would have to accommodatepC1 dimensions, where p is the number of predictors
in the model—hard to imagine even for p D 2. Moreover, nonparametric smoothers
work less well in higher dimensions.

Fortunately, the residuals from a regression model make it possible to examine
the linearity of the adjusted association between a given predictor and the outcome,
after taking account of the other predictors in the model. The basic idea is to plot
the residuals versus each continuous predictor in the model; then a nonparametric
smoother is used to detect departures from a linear trend in the average value of the
residuals across the values of the predictor. This is a residual versus predictor (RVP)
plot, obtained in Stata using the rvpplot command.
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Fig. 4.4 CPR plots for multiple regressions of LDL and HDL on BMI

However, for doing this check in Stata, we recommend the closely related
component plus residual (CPR) plot, mainly because the cprplot command
allows LOWESS smooths, which we find more informative and easier to control
than the smooths available with rvpplot. Rather than the residuals of the RVP
plot, the residuals plus the component of the fitted values due to BMI are plotted
and smoothed against BMI.

Figure 4.4 shows CPR plots for multipredictor regression models for LDL and
HDL, each adjusting the estimated effect of BMI for age, ethnicity, smoking, and
alcohol use, with solid lines representing the linear fits for BMI, and the dashed
lines the LOWESS smooths of the plotted component-plus-residuals (CPRs) against
BMI. If the linear fits for BMI were satisfactory, then there would be no nonlinear
pattern across values of BMI in the CPRs. For LDL, shown on the left, the linear
and LOWESS fits agree quite well, but for HDL, there is a substantial divergence.
Thus the linearity assumption is rather clearly met by BMI in the model for LDL,
but not in the model for HDL.

The curvature in the relationship between BMI and HDL can be approximated by
adding a quadratic term in BMI to the multipredictor linear model. The fitted model
is shown in Table 4.20.

For interpretability, we centered the linear term BMIc on the sample mean of
28.6 kg/m2 before calculating the quadratic term, BMIc2, and also centered age.
The linear and quadratic terms in centered BMI are both clearly needed (P <

0:0005). In this model, the intercept 47.6 estimates expected HDL for a 67-year
old, white nonsmoking abstainer with BMI D 28.6 kg/m2. The BMIc coefficient
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Table 4.20 Linear plus quadratic model for effect of BMI on HDL

. regress HDL BMIc BMIc2 agec nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 6, 2738) = 39.99

Model | 38474.0925 6 6412.34874 Prob > F = 0.0000
Residual | 439006.42 2738 160.338356 R-squared = 0.0806

-------------+------------------------------ Adj R-squared = 0.0786
Total | 477480.512 2744 174.008933 Root MSE = 12.662

------------------------------------------------------------------------------
HDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMIc | -.5272063 .0507626 -10.39 0.000 -.6267432 -.4276693
BMIc2 | .0242527 .0053231 4.56 0.000 .013815 .0346904
agec | .1893209 .0380347 4.98 0.000 .1147414 .2639005

nonwhite | 2.494766 .7815733 3.19 0.001 .9622325 4.027299
smoking | -2.070298 .7449086 -2.78 0.005 -3.530938 -.6096584
drinkany | 4.345096 .5041409 8.62 0.000 3.356561 5.333631

_cons | 47.86615 .3794279 126.15 0.000 47.12215 48.61014
------------------------------------------------------------------------------

estimate of �0.53 estimates the decrease in average HDL per unit increase in BMI,
at the point where BMID 28.6 kg/m2, while the coefficient for BMIc2 captures the
(upward) curvature of the regression line.

A CPR plot for the relationship between BMI and HDL in this model is shown
in Fig. 4.5. Except at the extremes of the range of BMI, where the LOWESS smooth
would usually be unreliable, the quadratic fit is clearly an improvement on the
simpler model.

4.7.1.2 Smooth Transformations of the Predictors

In the example of HDL and BMI, the departure from linearity was approximately
addressed by adding a quadratic term in BMI to the model. This solution is often
useful when the regression line estimated by the LOWESS smooth is convex or
concave, and especially if the line becomes steeper at either side of the CPR plot.

However, other transformations of the predictor may sometimes be more suc-
cessful and should be considered. Figure 4.6 shows some of the predictor trans-
formations commonly used to linearize the association between the predictor and
the outcome. The upper left panel shows the typical curvature captured by adding
a quadratic term in the predictor to the model. On the upper right, both quadratic
and cubic terms have been included; in general, such higher order polynomial
transformations are useful for S-shapes. A drawback is that these lines often fit
badly in the tails of the predictor distribution, especially if the data there are sparse.
As in the HDL example in Table 4.20, lower order terms are generally retained in
polynomial models: specifically, we would include the linear term along with the
quadratic term in the upper left panel, as well as with the quadratic plus cubic terms
on the upper right.
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Fig. 4.5 CPR plot for HDL model with linear and quadratic terms in BMI
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Fig. 4.6 Linearizing predictor transformations

The lower panels of Fig. 4.6 show the log and square root transformations,
which are useful in situations where the regression line increases more slowly
with increasing values of the predictor, as we might expect in cases of floor or
ceiling effects, and more generally where the slope becomes less steep. Each of
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these transformations would work just as well for modeling the mirror image
of the nonlinear shape, reversed top-to-bottom. In Sect. 4.7.5 below, we discuss
interpretation of the regression coefficients for a log-transformed predictor.

Comparison of the LOWESS smooth in CPR plots with the transformations in
Fig. 4.6 can help identify the best candidate transformations. After the revised model
is estimated, repeating the diagnostic using a new CPR plot then provides an initial
check on the adequacy of the transformation: there should be no remaining pattern
in the residuals, and the smooth should be close to the linear fit.

In cases where a quadratic or quadratic plus cubic term is added to the model,
we can use t- or F -tests to evaluate the statistical significance of the addition to
the model. This works because the original model is “nested” in the final model,
in the sense that the predictors in the smaller model are a subset of those in the
larger model. In other cases, for example, when we substitute the log-transformed
for the untransformed predictor, the original and final models are not nested, so this
testing procedure does not apply, although alternatives are available (Vuong 1989).
In both cases, however, we can check whether R2 improves substantially with the
transformation.

4.7.1.3 Restricted Cubic Splines

Improving on the flexibility of polynomial transformations but with better behavior
in the tails, restricted cubic splines are now implemented in Stata and other
packages. This transformation requires selecting a small number of knots, or
cutpoints, usually placed at symmetric percentiles of the predictor distribution.
If there are k knots, the predictor is represented in the model by k � 1 spline
variables. The effect of the predictor on the mean of the outcome is then modeled as
cubic polynomials in the intervals between knots (achieving flexibility), is smooth at
each knot (avoiding unrealistic sharp bends), but is constrained to be linear beyond
the extreme knots (improving behavior in the tails). Suppose that in the model for
the effect of BMI on HDL, we represent BMI by a restricted cubic spline with the
default five knots. The results are shown in Table 4.21.

A primary advantage of restricted cubic splines is that the first of the k�1 spline
variables is just the untransformed predictor, so that all nonlinearity is captured by
the other k � 2 variables. This affords a straightforward statistical test for departure
from linearity, analogous to the tests for the contribution of quadratic and cubic
terms in a polynomial model. The first F -test in Table 4.21 for the joint effect
of the nonlinear components BMIsp2, BMIsp3, and BMIsp4 confirms that the
departure from linearity is important, despite the large t-test P -values. The second
F -test confirms the overall importance of BMI for predicting HDL.

Another big advantage of restricted cubic splines is that graphical diagnostics
for nonlinearity are considerably more difficult with the logistic, Cox, repeated
measures, and GLMs presented in later chapters. However, departures from linearity
can be conveniently assessed and modeled using restricted cubic splines in all of
these settings.
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Table 4.21 Restricted cubic spline model for effect of BMI on HDL

. mkspline BMIsp = BMI, cubic

. regress HDL BMIsp1 BMIsp2 BMIsp3 BMIsp4 age10 nonwhite smoking drinkany

Source | SS df MS Number of obs = 2745
-------------+------------------------------ F( 8, 2736) = 30.35

Model | 38913.5934 8 4864.19917 Prob > F = 0.0000
Residual | 438566.919 2736 160.294926 R-squared = 0.0815

-------------+------------------------------ Adj R-squared = 0.0788
Total | 477480.512 2744 174.008933 Root MSE = 12.661

------------------------------------------------------------------------------
HDL | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
BMIsp1 | -1.008258 .2823244 -3.57 0.000 -1.561849 -.4546676
BMIsp2 | 1.139488 2.424866 0.47 0.638 -3.615266 5.894242
BMIsp3 | -.4761041 9.557886 -0.05 0.960 -19.21751 18.2653
BMIsp4 | -1.757718 11.21143 -0.16 0.875 -23.74145 20.22601
age10 | 1.882574 .3807256 4.94 0.000 1.136035 2.629113

nonwhite | 2.469817 .7823079 3.16 0.002 .9358431 4.003791
smoking | -2.097091 .7452066 -2.81 0.005 -3.558315 -.6358663
drinkany | 4.376239 .5041816 8.68 0.000 3.387624 5.364854

_cons | 62.2474 6.939817 8.97 0.000 48.63959 75.85521
------------------------------------------------------------------------------

. * test for departure from linearity

. test BMIsp2 BMIsp3 BMIsp4
F( 3, 2736) = 7.84

Prob > F = 0.0000

. * test for overall effect of BMI

. test BMIsp1 BMIsp2 BMIsp3 BMIsp4
F( 4, 2736) = 27.67

Prob > F = 0.0000

The primary disadvantage of restricted cubic splines is that the numeric re-
sults for BMIsp1, BMIsp2, BMIsp3, and BMIsp4 in Table 4.21 are un-
interpretable. The resulting fit can only be adequately represented graphically,
as in Fig. 4.7. The adjustrcspline command, part of the downloadable
postrcspline package, can also be used to plot restricted cubic spline fits with
CIs, for logistic and GLMs as well as standard linear models.

In addition, spline fits can be sensitive to the number of knots (Stone 1986).
The flexibility of the fit increases with the number and placement of the knots, just
as LOWESS smooths become more flexible with smaller bandwidths. In Stata, the
default number is 5, but with datasets with fewer than 100 observations, 4 or 3 knots
may work better. More than 5 knots are seldom necessary in large datasets unless
the response to the predictor is unusually complicated. Plotting the fitted regression
line is useful for judging the plausibility of the fit.

4.7.1.4 Categorizing the Predictor

Another transformation useful in exploratory analysis is to categorize the continuous
predictor, either at cutpoints selected a priori or at percentiles that ensure adequate
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Fig. 4.7 HDL model with restricted cubic spline and categorical transformations of BMI

representation in each category. Then the model is estimated using indicators for all
but the reference category of the transformed predictor, as in the physact example
in Sect. 4.3. This method models the association between the ordinal categories and
the outcome as a step function, also shown in Fig. 4.7. Although this approach is
unrealistic in not providing a smooth estimate of the regression line, and also less
efficient, it has the advantage of flexibility, in that each step can be of any height.
Such transformations are also easy to understand, especially when the categories
are defined by familiar clinical cutpoints. In contrast, smooth transformations,
including polynomials and restricted cubic splines, are harder to motivate, present,
and interpret.

4.7.1.5 Nonlinearity, Interaction, and Covariate Overlap

Apparent nonlinearity can sometimes mask interactions. For example, suppose that
both the average value of a continuous predictor and its effect on the outcome differ
across subgroups defined by a binary covariate. If we fail to model the interaction,
the effect of the continuous predictor will appear nonlinear, even if its effects are
completely linear within each subgroup. Furthermore, we show in Sect. 9.2.3 that
unless there is considerable overlap in the values of the continuous predictor in the
two subgroups—Fig. 9.1 is an extreme example—it can be difficult to distinguish
non-linearity from effect modification by the covariate. This illustrates the diffi-
culty of identifying a reasonably accurate model, especially if the sample size is
small-to-moderate.
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4.7.2 Normality

In Sect. 4.1, we stated that in the multipredictor linear model, the error term
" is assumed to have a normal distribution. Confidence intervals for regression
coefficients and related hypothesis tests are based on the assumption that the
coefficient estimates have a normal distribution. If " has a normal distribution, and
other assumptions of the multipredictor linear model are met, then ordinary least
squares estimates of the regression coefficients can be shown to have a normal
distribution, as required.

However, it can be shown that the regression coefficients are approximately
normal in larger samples even if " does not have a normal distribution. In that case,
characterizing the distribution of the residuals is helpful for assessing whether the
sample is large enough to trust the confidence intervals and hypothesis tests, since
larger samples are required for this approximation to hold when departures from the
normality of the errors are relatively serious. As with the t-test reviewed in Sect. 3.1,
outliers are the principal worry with such departures, with the potential to erode the
power of the model to detect real effects.

4.7.2.1 Residual Plots

Various graphical methods introduced in Chap. 2 are useful for assessing the
normality of ". In using these tools, it is important to distinguish between
the distribution of the outcome y and the distribution of the residuals, which
are the sample analogue of ". The point here is that the residuals may be normally
distributed when y is not, and conversely. Since our assumptions concern the
distribution of ", it is important to apply the diagnostic tools to the residuals rather
than to the outcome variable itself.

Figure 4.8 shows four useful graphical tools for assessing the normality of
the residuals, in this case from our multipredictor regression model for LDL.
In the upper panels, the histogram and boxplot both suggest a somewhat long tail on
the right. The lower left panel presents a nonparametric estimate of the distribution
of the residuals obtained using the kdensity, normal command in Stata. For
comparison, the dashed line in that panel shows the normal distribution with the
same mean and standard deviation. Comparing these two curves suggests some
skewing to the right, with a long right and short left tail; but overall the shapes
are quite close. Finally, as explained in Chap. 2, the upward curvature of the normal
Q–Q plot on the lower right is also diagnostic of right skewness.

Interpretation of the results shown in Fig. 4.8 depends on the sample size.
With 2,763 observations, there is little reason for concern about the moderate
right skewness. Given such a large data set, the distribution of the parameter
estimates is likely to be well approximated by the normal, despite the mild departure
from normality in the residuals. However, in a small data set, with 50 or fewer
observations, the long right tail might be reason for concern, in part because it could
make parameter estimates less precise and tests less powerful.
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Fig. 4.8 Residuals with untransformed LDL

4.7.2.2 Testing for Departures from Normality

Various statistical tests are available for assessing the normality of the residuals,
but have the drawback of being sensitive to sample size, often failing to reject the
null hypothesis of normality in small samples where meeting this assumption is
most important, and conversely rejecting it even for small violations in large data
sets where inferences are relatively robust to departures from normality. For this
reason, we do not recommend use of these tests; instead, the graphical methods just
described should be used to judge the potential seriousness of the violation in the
light of the sample size.

4.7.2.3 Normalizing Transformations of the Outcome

Transforming the outcome is often successful for reducing the skewness of residu-
als. The rationale is that the more extreme values of the outcome are usually the ones
with large residuals (defined as ri D yi � Oyi ); if we can “pull in” the outcome values
in the tail of the distribution toward the center, then the corresponding residuals are
likely to be smaller too.

One such transformation is to replace the outcome y with log .y/. A constant can
be added to an outcome variable with negative or zero values, so that all values are
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Fig. 4.9 Residuals with log-transformed LDL

positive, although this may complicate interpretation. The log transformation is now
conventionally used to analyze viral load in studies of HIV and hepatitis infections,
triglyceride levels in studies of cardiovascular disease, and in many other contexts.
Figure 4.9 shows that after log transformation of LDL, there is no more evidence
of right skewness; in fact, there is slight evidence of too long a tail on the left.
It should also be noted that there is no qualitative change in inferences for BMI.
In Sect. 4.7.5 below, we discuss interpretation of regression coefficients in models
where the outcome is log transformed.

Power transformations are a flexible alternative to the log transformation. In this
case, y is replaced by yk . Smaller values of k “pull in” the right tail more strongly.
As an example, square (k D 1=2) and cube (k D 1=3) root transformations were
commonly used in analyzing CD4 lymphocyte counts in studies of HIV infection,
since the distribution is very long tailed on the right. Adding a constant so that
all values of the outcome are nonnegative will sometimes be necessary in this
case too. The ladder command in Stata systematically searches for the power
transformation of the outcome which is closest to normality, providing Q–Q plots
for each candidate.

A more difficult problem arises if both tails of the distribution of the residuals
are too long, since neither log nor fractional power transformations will fix both
tails. In this case one solution is the rank transformation, in which each outcome
is replaced by its rank in the ordering of all the outcomes, as in the computation
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of the Spearman correlation coefficient (Sect. 3.2); this does not achieve normality
but may reduce the loss of power. Another possibility is trimming the tails; for
example, “Winsorizing” the outcome involves replacing outcome values more than
2 or 3 standard deviations from the average by that limiting value.

4.7.2.4 Alternatives to Transformation: Bootstrap and GLMs

Some outcome variables cannot be satisfactorily normalized by transformation, or
there may be compelling reasons to analyze them on the original scale. Bootstrap
CIs, as introduced in Sects. 3.6 and 4.5.4, are a useful alternative, implemented for
most Stata procedures. We recommend use of percentile-based intervals, obtained
using the estat bootstrap postestimation command, preferably based on 500
or more bootstrap samples, rather than the default of 50. These should be more
reliable than the default intervals provided by the vce(bootstrap) option,
which are based on the assumption that the coefficient estimate is normally
distributed and use only the bootstrap estimate of the standard error.

Another good alternative is provided by the GLMs discussed in Chap. 8, in
particular the gamma model, suitable for some badly skewed variables. Second-line
options include dichotomizing the outcome, with analysis using logistic models, or
categorizing the outcome into at least 3 ordered categories, then using proportional-
odds or continuation-ratio models (Ananth and Kleinbaum 1997; Greenland 1994),
as briefly described in Chap. 5.

4.7.3 Constant Variance

An additional assumption concerning " is homoscedasticity, meaning that its
variance �2" is constant across observations. When this assumption is violated,
the validity of CIs and P -values can be affected. In particular, between-group
contrasts can be misleading if �2" differs substantially across the subgroups being
compared, and the subgroups differ in size. Furthermore, in contrast to violations of
the assumption that the residuals are normally distributed, heteroscedasticity is no
less a problem in large samples than in small ones. Finally, while violations do not
make the coefficient estimates biased, some precision can be lost.

4.7.3.1 Residual Plots

Diagnostics for violations of the constant variance assumption also use the RVP
plots used to check linearity of response to continuous predictors, as well as
analogously defined residual versus fitted (RVF) plots. If the constant variance
assumption is met, then the vertical spread of the residuals should be similar across
the ranges of the predictors and fitted values; in contrast, heteroscedasticity is
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Fig. 4.10 Checking for constant residual variance

signaled by horizontal funnel shapes. Since the residuals of the LDL analysis gave
no evidence of trouble, we examined the residuals from the companion model for
HDL, which was shown in Sect. 4.7.1 to need a quadratic term in BMI to meet the
linearity assumption.

Figure 4.10 shows scatterplots of the residuals of the regression of HDL on BMI
and its square, as well as age, ethnicity, smoking, and alcohol use. The plot against
BMI shows somewhat wider range on the left, although this may partly be due to
the fact that there are more observations on the left, and so more likely a few large
residuals purely by chance. This evidence for nonconstant variance is mirrored in
the slightly wider spread on the right in the facing plot of the residuals against the
fitted values.

4.7.3.2 Subsample Variances

Constancy of variance across levels of categorical predictor can be checked by
comparing the sample variance of the residuals for each category. In this example,
the variance was essentially identical across groups defined by ethnicity, smoking,
and alcohol use. In contrast, in our analysis of the influence of exercise on glucose
levels in Sect. 4.1, violation of the assumption of constant variance was one of
several motivations for excluding women with diabetes. If they had been included,
the variance of the residuals would have varied between this group of 734 women
and the remainder of the HERS cohort by a factor of 26 (2,332 versus 90). Even after
log transformation of glucose, the variance would still have differed by a factor of
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10 (0.097 versus 0.0094). This pattern reflects the fact that diabetes is characterized
by loss of control over glucose levels, and also variation in the use of medications
that control them. These large differentials in residual variance would call into
question inferences drawn from comparisons between women with and without
diabetes.

4.7.3.3 Testing for Departures from Constant Variance

Statistical methods available for testing the assumption of homoscedasticity share
the sensitivity to sample size described earlier for tests of normality. The resulting
potential for giving false reassurance in small samples leads us to recommend
against the use of these formal tests. Instead, we need to examine the severity of
the violation.

4.7.3.4 When Departures May Cause Trouble

Violations of the assumption of constant variance should be addressed in cases
where the variance of the residuals:

• Changes by a factor of 2 or more across the range of the fitted values of
a continuous predictor, judging from the LOWESS smooth of the squared
residuals.

• Differs by a factor of 2 or more between subgroups that differ in size by a factor
of 2 or more.

• Differs by a factor of 3 or more between subgroups that differ in size by a factor
of less than 2.

Note that smaller differences in the standard deviation of the residuals would give
reason for transformation.

4.7.3.5 Variance-Stabilizing Outcome Transformations

In simple cases where multiple predictors do not need to be taken into account, we
could use t-tests with the unequal option to compare subgroups, allowing for the
unequal variances. However, multipredictor modeling is often crucial; furthermore,
use of a t-test with unequal variances would not address smooth dependence of �2"
either on EŒyjx� or on a continuous predictor. In that case, nonconstant variance
can sometimes be addressed using a variance-stabilizing transformation of the
outcome, including the log and square root transformations. As shown in Fig. 4.11,
log transformation of HDL reduces, though it does not completely eliminate, the
evidence for nonconstant variance we found in Fig. 4.10. However, in this case our
qualitative conclusions would be unchanged by log transformation of HDL.
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Fig. 4.11 Rechecking constant variance after log-transforming HDL

4.7.3.6 Robust Standard Errors

So-called robust or “sandwich” standard errors (Huber 1967), available with
many Stata regression procedures using the option vce(robust), are another
convenient means of dealing with nonconstant residual variance. This method
will provide more reliable inferences when the constant-variance assumption is
violated, provided the model for EŒyjx� is approximately correct. However, some
caution is warranted in using these standard errors in smaller samples. In extensive
simulations, Long and Ervin (2000) show that robust standard errors can be too
small in samples as large as 250 observations. They find that a more conservative
alternative developed by MacKinnon and White (1985) has the best properties;
this can be specified using the option vce(hc3) with the regress command.
Table 4.22 shows linear models for glucose levels, successively estimated using
model-based, robust, and HC3 standard errors. While the very large difference
in glucose levels according to diabetes status is unambiguous, even in this small
sample, the robust standard errors are considerably larger. Moreover, evidence for
the adverse effect of BMI appears considerably weaker with the more conservative
robust SEs.

4.7.3.7 GLMs

GLMs are another important alternative when transformation of the outcome fails to
rectify substantial violations of the assumption of constant variance. For example,
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Table 4.22 Models with conventional, robust, and HC3 standard errors

. regress glucose diabetes BMI age drinkany
Source | SS df MS Number of obs = 137

-------------+------------------------------ F( 4, 132) = 37.43
Model | 84874.7167 4 21218.6792 Prob > F = 0.0000

Residual | 74823.7504 132 566.846594 R-squared = 0.5315
-------------+------------------------------ Adj R-squared = 0.5173

Total | 159698.467 136 1174.25343 Root MSE = 23.809

------------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
diabetes | 50.64445 4.585857 11.04 0.000 41.57318 59.71573

BMI | 1.033281 .3662364 2.82 0.006 .3088297 1.757733
......

------------------------------------------------------------------------------

. regress glucose diabetes BMI age drinkany, vce(robust)
Linear regression Number of obs = 137

F( 4, 132) = 19.32
Prob > F = 0.0000
R-squared = 0.5315
Root MSE = 23.809

------------------------------------------------------------------------------
| Robust

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

diabetes | 50.64445 6.527487 7.76 0.000 37.73244 63.55647
BMI | 1.033281 .4967385 2.08 0.039 .0506837 2.015879

......
------------------------------------------------------------------------------

. regress glucose diabetes BMI age drinkany, vce(hc3)
Linear regression Number of obs = 137

F( 4, 132) = 17.96
Prob > F = 0.0000
R-squared = 0.5315
Root MSE = 23.809

------------------------------------------------------------------------------
| Robust HC3

glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

diabetes | 50.64445 6.715182 7.54 0.000 37.36116 63.92775
BMI | 1.033281 .5244014 1.97 0.051 -.0040363 2.070599

......
------------------------------------------------------------------------------

Poisson and negative binomial models have now mostly taken the place of linear
models for count outcomes using the variance-stabilizing square root transforma-
tion. In GLMs, including the logistic model (Chap. 5), the variance of the outcome is
modeled as a function of its mean (Table 8.8); in the Poisson model, for example, the
variance is assumed equal to the mean. Furthermore, the mean-variance assumption
can be relaxed using variants of these models allowing for so-called overdispersion,
or using robust standard errors, as just described.



124 4 Linear Regression

4.7.4 Outlying, High Leverage, and Influential Points

We have already pointed out that outlying observations with relatively large
residuals can cause trouble, in part by inflating the variance of coefficient estimates,
making it harder to detect statistically significant effects. In this section, we consider
high-leverage points, which could be described as x-outliers, since they tend to
have extreme values of one or more predictors, or represent an unusual combination
of predictor values. The importance of high-leverage points is that they are also
potentially influential, in the sense that one or more of the coefficient estimates
would change by an unduly large amount if the influential points were omitted
from the data set. This can happen when a high-leverage point also has a large
residual.

Definition: High leverage points are x-outliers with the potential to exert undue influence
on regression coefficient estimates. Influential points are points that have exerted undue
influence on the regression coefficient estimates.

Ultimately, our concern is that changes in coefficient estimates resulting from
the omission of one or a few influential points could qualitatively affect the conclu-
sions drawn from the analysis. This could arise if associations that were clearly
statistically significant become clearly nonsignificant, or vice versa, including
interaction and quadratic terms, or if associations change substantially in magnitude
or direction. We would have good reason to mistrust substantive conclusions that
were dependent on a few observations in this way. Similarly, in regression models
oriented to prediction of future outcomes (Sect. 10.1), prediction error might be
substantially affected.

Outlying, high leverage, and influential points are illustrated in Fig. 4.12. In all
three of these small samples (n D 26), a problematic data point, marked with
an X, is included. The solid and dashed lines in each plot show the regression
lines estimated with and without the point, as a graphical measure of influence.
The sample shown on the upper left includes an outlier with a very large positive
residual. However, the leverage of the outlier is minimal, because it is in the center
of the distribution of x. Accordingly, the slope estimate is unaffected by omission
of this data point, Note that the point is influential for the intercept estimate, but this
parameter may be of less direct interest.

In the upper right panel, the point at the extreme right has high leverage, but
because this data point is fairly consistent with the prediction based on the other
25 data points, its influence is limited, and the estimated slope and its statistical
significance are almost unchanged by omission of the high-leverage point. Certainly
our qualitative interpretation of the slope would be unaffected.

In contrast, the point at the extreme right in the lower left panel has the same
leverage as the point in the upper right panel, but in this case its influence is very
strong, moving the slope estimate by more than 2 standard errors. The slope remains
positive and statistically significant in this instance, so our qualitative interpretation
would be similar, but in some circumstances omission of such a data point could
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Fig. 4.12 Outlying, high-leverage, and influential points

make a nonsignificant result highly statistically significant, or vice versa. In part,
this reflects the small sample size, since a high leverage point is has a better chance
of outweighing a relatively small number of other observations.

4.7.4.1 DFBETAs

To check for sensitivity of the conclusions of an analysis to a small number of high-
leverage observations, we first need to identify potentially influential points. Of the
various statistics for quantifying influence that have been defined, we recommend
using DFBETA statistics, which quantify how much each of the coefficients would
change if each observation were omitted from the data set. In linear regression,
these statistics are exact; for logistic and Cox models, accurate approximations
are available. DFBETA statistics are in standard error units—effectively on the
same scale as the t-statistic, which is equal to Ǒ divided by its standard error.
If the analysis is focused on one predictor of primary interest, then clearly the
DFBETAs for that predictor are of central concern.

Boxplots are convenient for identifying a small set of extreme outliers among the
DFBETA values for each predictor. DFBETAs often have a very small interquartile
range, so that a substantial set of observations may lie beyond the whiskers of the
plot. Thus, we need to look for a small number of extreme values that are set off
from the rest. Figure 4.13 shows boxplots of the DFBETA statistics for the single
predictor in the three data sets shown in Fig. 4.12. These plots clearly indicate the
single influential point.
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If a small set of observations meeting diagnostic criteria for undue influence
is identified, the accuracy of those data points should first be checked and clearly
erroneous observations corrected, or if this is impossible, deleted. Then if any of
the apparently influential points are retained, a final step is sensitivity analyses in
which the final model is rerun omitting some or all of the retained influential points.
For example, suppose we have identified ten influential points that are not due to
data errors, and that these include two observations with absolute DFBETAs greater
than 2, three observations with values between 1 and 2, and five more with values
between 0.5 and 1. Then, a convenient ad hoc procedure would be to delete the
two worst observations, then the worst five, and finally all ten potentially influential
points. In each model, we would check whether the important conclusions of the
analysis were affected. In prediction models, sensitivity would be assessed in terms
of estimated prediction error (Sect. 10.1). In summary, we emphasize the underlying
theme of sensitivity to the omission of a small number of points, relative to sample
size; if we omit 10% or 20% of the data and the conclusions change, this would
probably not indicate undue sensitivity.

Figure 4.14 above shows boxplots of DFBETAs for the multiple regression of
LDL on BMI, age, ethnicity, smoking, and alcohol use. As compared to the clearly
influential point shown in Fig. 4.13, the largest DFBETAs are much less extreme.
Examination of the four observations with DFBETAs > 0:2 identified women with
high LDL values between 346 and 393 mg/dL.

The sensitivity of model results to the omission of these four points is sum-
marized in Table 4.23. The changes are mostly minor, in particular, for BMI,
the predictor of primary interest. The P -values for ethnicity and smoking shift
from nominally statistically significant to borderline significant, but these are not
variables of primary interest and in any case our conclusions should not be unduly
influenced by small shifts of this kind.
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Fig. 4.14 DFBETAs for LDL model

Table 4.23 Sensitivity of LDL model to omission of four most influential points

All observations Omitting four observations

Predictor variable Ǒ 95% CI P -Value Ǒ 95% CI P -Value

BMI 0.36 0.10, 0.62 0.007 0.34 0.08, 0.60 0.010
Age �1.89 �4.11, 0.32 0.090 �1.86 �4.03, 0.31 0.090
Nonwhite 5.22 0.66, 9.78 0.025 4.19 �0.27, 8.66 0.066
Smoking 4.75 0.42, 9.08 0.032 3.78 �0.47, 8.03 0.081
Alcohol use �2.72 �5.66, 0.22 0.069 �2.64 �5.51, 0.23 0.072

A weakness of these procedures is that DFBETAs capture the influence of
omitting one observation at a time, but do not tell us how the omission of various
sets of points, some of which may have small DFBETAs, will affect our conclusions.
Unfortunately, user-friendly diagnostics for checking sensitivity to omission of sets
of observations have not been developed, in part because the computational burden
is too great.

4.7.4.2 Addressing Influential Points

If substantive conclusions are qualitatively affected by omission of influential
points in the sensitivity analysis, this should be reported. In addition, it is often
worthwhile to consider in substantive terms why these points have high leverage and
are influential. For example, the western collaborative group study (WCGS) data
include an influential point with an extreme but accurately recorded cholesterol level
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of 645 mg/dL, which resulted from familial hypercholesterolemia, a rare condition.
For research questions concerning the effects of cholesterol levels in the usual range
determined by common risk factors, it would be reasonable to delete this point. But
in many circumstances, deletion of influential points is hard to justify.

In that case, it may also be worth considering a more complex model that
better accommodates the influential points. In Fig. 4.12, for example, a quadratic
term would almost certainly reduce the influence of the observation causing
trouble. Alternatively, interaction terms might accommodate influential data points
characterized by an unusual combination of two predictor values. Nonetheless,
changing the model in such a substantial way to accommodate one or a few data
points should be undertaken with caution, with attention to the plausibility of
the modified model, and the results clearly presented as data driven, sensitive to
influential points, and hypothesis generating.

4.7.5 Interpretation of Results for Log Transformed Variables

In Sect. 4.7, we discussed log-transforming predictors to achieve linearity, and
proposed log transformation of the outcome as a means of normalizing the residuals
or stabilizing their variance. Even if substantive interpretation and P -values are
often not much changed, these transformations have a substantial effect on the
estimated regression coefficients and their literal interpretation.

For both predictors and outcomes, log transformation changes the focus from
absolute to relative or percentage change. Recall that for a predictor and outcome
on their measured scale, the regression coefficient is interpretable as the change in
the average value of the outcome for every unit increase in the predictor; for both
predictor and outcome, we mean change on the measured, or absolute, scale.

4.7.5.1 Log Transformation of the Predictor

First consider log transformation of the predictor. In this case, the regression
coefficient multiplied by log.1:01/ can be interpreted as the change in the aver-
age value of the outcome for every 1% increase in the predictor. This is valid
whether we use the natural log or logarithms with other bases. In a linear model
using the natural log (ln) transformation of weight to predict SBP, the estimated
coefficient for ln weight is 3.004517. Thus, we estimate that average SBP increases
3:004517� ln.1:01/ � 0:03mmHg for each 1% increase in weight. Similarly, if we
multiply Ǒ by ln.1:05/ or ln.1:1/we obtain the estimates that average SBP increases
0.15 mmHg for each 5% increase in weight and 0.29 mmHg for each 10% increase.

Within limits, we can approximate these results without using a calculator.
Specifically, if the predictor is natural log-transformed, we can estimate the increase
in the average value of the outcome per 1% increase in the predictor simply
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by Ǒ=100. This follows because ln.1:01/ � 0:01. But this shortcut is not valid
for logarithms with other bases, and analogous calculations for larger percentage
increases in the predictor get progressively less accurate and should not be attempted
by this means.

4.7.5.2 Log Transformation of the Outcome

Similarly, with natural log transformation of the outcome, 100.e Ǒ � 1/ is inter-
pretable as the percentage increase in the average value of the outcome per unit
increase in the predictor. If base-10 logs were used to transform the outcome, then

100.10
Ǒ�1/ has this interpretation. The coefficient for BMI in a linear model for the

natural log transformation of triglyceride (TGL) is 0.0133487, so the model predicts
a 100.e0:0133487 � 1/ D 1:34% increase in TGL per unit increase in BMI.

Again, we can approximate these results without a calculator under some
circumstances. When the outcome is natural log transformed, we can approximate
the percentage change in the average value of the outcome per unit increase in the
predictor by 100 Ǒ. But this is acceptably accurate only if Ǒ is smaller than 0.1 in
absolute value, and is again not valid using log transformations with other bases.

4.7.5.3 Log Transformation of Both Predictor and Outcome

If both predictor and outcome are transformed using natural logs, then
100.e Ǒ ln.1:01/� 1/ can be interpreted as the percentage increase in the average value
of the outcome per 1% increase in the predictor. With the log10 transformation,

100.10
Ǒ log10.1:01/ � 1/ has this interpretation. In this case, the back-of-the-envelope

approximation for the percent increase in outcome for each 1% increase in the
predictor is simply Ǒ; this is accurate if both predictor and outcome are natural log
transformed and Ǒ is smaller than 0.1 in absolute value.

4.7.6 When to Use Transformations

Our graphical diagnostics for linearity, normality, and constant variance do not
provide clearcut decision rules analogous to P < 0:05, and we do not recommend
formal statistical tests in this context. Furthermore, addressing these violations will
in many cases involve using transformations of predictors or outcomes that may
make the results harder to interpret. A natural criterion for assessing the necessity for
transformation is whether important substantive results differ qualitatively before
and after transformation. If not, it may be reasonable not to use the transformations.
Our example using BMI and diabetes to predict HDL is probably a case in point:
while log transformation of HDL corrected departures from both normality and
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constant variance, the conclusions were unchanged. But if substantial differences
do arise, then using transformed variables to meet model assumptions more closely
helps us to avoid misleading results.

4.8 Sample Size, Power, and Detectable Effects

Section 4.2.2 presented the t-test of the null hypothesis ˇj D 0, in which we
compare Ǒj =SE. Ǒj ) to the t-distribution with n� .pC 1/ degrees of freedom. This
test leads directly to methods for estimating sample size and power for analyses
using the linear model. Suppose we would like to calculate the sample size that
would provide power of � to reject ˇj D 0 in a two-sided test with type-I error rate
˛, under the alternative hypothesis ˇj D ˇaj , assuming for now that ˇaj > 0. We
begin with an expression for power, relying on the large-sample equivalence of the
t and standard normalZ-distributions:

� D P
h
j Ǒj j=SE. Ǒj / > z1�˛=2

i

� P
h Ǒ

j =SE. Ǒj / > z1�˛=2
i

D P
h
. Ǒj � ˇaj /=SE. Ǒj / > z1�˛=2 � ˇaj =SE. Ǒj /

i

D 1 �˚
h
z1�˛=2 � ˇaj =SE. Ǒj /

i

D ˚
h
ˇaj =SE. Ǒj / � z1�˛=2

i
: (4.14)

In (4.14), j � j denotes absolute value; z1�˛=2 is the 1 � ˛=2 quantile of the standard
normal distribution (1.96 for a two-sided test with type-I error rate of 5%); and
˚.�/ is the cumulative distribution function for a standard normal variate Z, so
that ˚.z1�˛=2/ D P.Z � z1�˛=2/ D 1 � ˛=2. The first approximation in (4.14)
holds because if ˇj is positive, P. Ǒj =SE. Ǒj / < z˛=2/ � 0. The second step is

simple algebra. The third follows because . Ǒj � ˇaj /=SE. Ǒj / has an approximate
Z-distribution in large samples, and the fourth because of the symmetry of the
Z-distribution about zero. Using (4.4) (with n in place of n�1) to evaluate SE. Ǒj /,
then applying the inverse transformation ˚�1 to both sides of (4.14), and solving
for n gives

n D
.z1�˛=2 C z� /2�2yjx
.ˇaj �xj /

2.1 � �2j /
: (4.15)

In (4.15), z� is the quantile of the standard normal distribution for power (0.84 for
80% power, 1.28 for 90%), �2

yjx is the residual variance of the outcome, �xj is the
standard deviation ofXj , and �j is its multiple correlation with the other covariates.
The variance inflation factor 1=.1 � �2j / in (4.15) accounts for the potential loss of
precision due to the inclusion of other predictors in the model (Hsieh et al. 1998).
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In some problems, including secondary analyses of existing data, n is fixed. In
that case, (4.15) can be solved to calculate power, if we specify ˇaj :

� D 1 � ˚
�

z1�˛=2 � jˇaj j�xj
q
n.1 � �2j /=�yjx

�

: (4.16)

Similarly, we can calculate the minimum detectable effect—that is, the smallest
value of ˇaj for which a sample of size n would provide power of � to reject the
null hypothesis ˇj D 0 in a two-sided test with type-I error of ˛. The minimum
detectable effect is

˙ ˇaj D
.z1�˛=2 C z� /�yjx
�xj

q
n.1 � �2j /

: (4.17)

Some additional points:

• When Xj is binary with prevalence fj , �xj D
p
fj .1 � fj / in (4.15)–(4.17).

• When Xj is continuous with standard deviation �xj , it is important to recognize
that sample size, power, and minimum detectable effects do not depend in any
real way on the units in whichXj is measured. This is most clearly seen in (4.17).
Suppose Xj is usually measured in grams. Changing the unit to milligrams
increases �xj by a factor of 1,000, and shrinks ˇaj by the same factor. But of
course the effect on the outcome of a 1-milligram increase in the predictor is
1,000 times smaller than the effect of a 1-gram increase. One way to avoid
confusion is to consider the minimum detectable effect size for a one standard
deviation change in Xj ; which is often a reasonable-sized change to consider.
That effect size is obtained by setting �xj D 1 in (4.17).

• If ˇaj < 0 under the alternative, we have to use jˇaj j in (4.16) to get the correct
result. It follows that the negative of the value given by (4.17) is also a valid
solution for the minimum detectable effect.

• Because they are based on the standard normal distribution, (4.15)–(4.17) are
only approximate. Exact solutions involve the noncentral t-distribution and
iterative calculations. Numerous packages supply these estimates for small
as well as large sample sizes; the sampsi and sampsi reg commands in
Stata work for binary and continuous predictors respectively. An approximate
correction is to add 2 to the estimate of n provided by (4.15) for tests with ˛
of 5%, and add 4 with ˛ of 1% (Snedecor and Cochran 1989, page 104). The
correction can be important when n < 50 and especially when n < 25.

• Sample size (4.15) and minimum detectable effect (4.17) calculations simplify
considerably when we specify ˛ D 0:05 and � D 0:8, ˇaj is the effect of a one
standard deviation increase in continuous xj , and we do not need to penalize for
covariate adjustment. In that standard case,

n D 7:849� �2yjx=.ˇ
a
j /
2: (4.18)



132 4 Linear Regression

For the minimum detectable effect, we have

˙ ˇaj D 2:802 � �yjx=
p
n: (4.19)

For 90% power, substitute 10.51 for 7.849 and 3.242 for 2.802.
• Similarly, for a 2-arm clinical trial with equal allocation to arms, so that ˇaj is the

between-group difference in means and s2xj D 0:25, we can calculate

n D 4 � 7:849 � �2yjx=.ˇ
a
j /
2: (4.20)

For the minimum detectable effect, we have

˙ ˇaj D 2 � 2:802 � �yjx=
p
n: (4.21)

• Power calculations using (4.16) simplify analogously, but still require a statistical
calculator or computer package to evaluate the normal cumulative distribution
function ˚.�/.

• The Stata commands sampsi and sampsi reg can also be used to compute
power, but not minimum detectable effects.

• In using sample size calculators that do not allow for covariate adjustment,
including the sampsi and sampsi reg commands, the unadjusted sample
size estimate should be inflated by 1=.1��2j /; similarly, the minimum detectable

effect estimate should be inflated by
q
1=.1� �2j /. To calculate power, use

n.1 � �2j / in place of n as an input.
• For the linear model, the proposed adjustment may be conservative, since

adjustment for covariates will also reduce the residual variance �2
yjx, to some

extent offsetting the loss of precision due to the correlation �j between Xj and
the other covariates. This is particularly relevant in calculations for stratified
randomized trials with continuous outcomes, since the stratification factor may
account for a large proportion of the variance of the outcome, but is in expectation
uncorrelated with treatment assignment.

To illustrate these calculations, suppose we are planning a randomized trial with
equal allocation to active treatment and control (f D 0:5) to assess the effect of
a new lipid-lowering agent on LDL levels. From pilot data, the residual standard
deviation �yjx for LDL is expected to be � 38 mg/dL, and we hypothesize that the
agent will lower average LDL levels about 40 mg/dL. Because this is a clinical trial,
it is unlikely that we will need to adjust for covariates, so we can assume �j D 0.
The sample size must provide 80% power in a two-sided test with ˛ of 5%.

We first calculate the sample size using the sampsi command in Stata, then
using its capacity as a calculator to evaluate (4.15). Table 4.24 shows the results.
In using sampsi, any values of the means for populations 1 and 2 that differ by
40 mg/dL would give the same answer, so for convenience we used 0 and 40. With
the Snedecor and Cochran correction, using Stata to evaluate (4.15) gives about the
same result as sampsi.
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Table 4.24 Sample size calculations for a small clinical trial

. sampsi 0 40, sd1(38) alpha(0.05) power(0.8)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 0
m2 = 40

sd1 = 38
sd2 = 38

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 15
n2 = 15

. * solution using Snedecor and Cochran correction

. display (invnormal(.975)+invnormal(.8))ˆ2*38ˆ2/(40ˆ2*0.5*(1-0.5))+2
30.334456

When the predictor of interest is continuous, we can use the downloadable
sampsi reg command in Stata. Suppose, for example, that we would like to
estimate the power of a study with 485 participants to detect an effect of higher
BMI on SBP, controlling for age, race/ethnicity, smoking, alcohol use, and physical
activity levels. From pilot data, we estimate that �yjx� 18:5mmHg, �x � 5:5 kg/m2,
and �j � 0:33. We hypothesize that average SBP increases 0.5 mmHg for every
kg/m2 increase in BMI—that is, ˇaj D 0:5. What is the power of the study to detect
this effect of BMI on SBP in a two-sided test with ˛ of 5%?

Table 4.25 shows results of the computation using sampsi reg in Stata, as
well as a direct implementation of (4.16). Since sampsi reg does not allow for
the adjustment based on the variance inflation factor, we first deflate the available
sample size by 1 � �2j . The two estimates of power are in close agreement.

4.8.1 Calculations Using Standard Errors Based
on Published Data

Equations (4.15)–(4.17) depend on �yjx, �xj , and �j , for which it may be hard
to obtain estimates. However, the derivation using (4.4) suggests a solution.
Suppose an estimate QSE. Ǒj / for the standard error of Ǒj is available, based on a
multiple linear regression model with appropriate covariates and estimated using Qn
observations. For example, we could compute QSE. Ǒj / from a published article as
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Table 4.25 Power calculation for independent effect of BMI on SBP

. display 485*(1-.33ˆ2)
432.1835
. sampsi_reg, alt(0.5) n1(432.1835) s(power) sx(5.5) sd1(18.5)

Estimate power for linear regression
Test Ho: Alt. Slope = Null Slope, usually Null Slope is 0

Assumptions:
Alpha = 0.0500 (two-sided)

N = 432.1835
Null Slope = 0.0000
Alt Slope = 0.5000

Residual sd = 18.5000
SD of X’s = 5.5000

Estimated power:
Power = .86934271

. display 1-normal(invnormal(0.975)-0.5*5.5*sqrt(485*(1-.33ˆ2))/18.5)

.8708243

the width of the 95% CI for Ǒj , divided by 2z:975 � 3:92. Care must taken to ensure
that the hypothesized value of ˇaj corresponds to the same measurement scale for
Xj as in the source article. Then, (4.15) can be simplified as

n D
.z1�˛=2 C z� /2 Qn

h QSE. Ǒj /
i2

.ˇaj /
2

: (4.22)

Similarly, power in a new sample of size n is given by

� D 1 �˚
h
z1�˛=2 � jˇaj j=Œ

p Qn=n QSE. Ǒj /�
i
: (4.23)

Finally, the minimum detectable effect in a new sample of size n can be obtained as

˙ ˇaj D .z1�˛=2 C z� /
p
Qn=n QSE. Ǒj /: (4.24)

As an example, we could use the multiple linear model in Table 4.2 to obtain
sample size, power, and minimum detectable effect estimates for a new study of the
effect of BMI on glucose levels in nondiabetic women. Based on the HERS data
with Qn D 2028, QSE. Ǒj / D .0:5707328� 0:4077512/=3:92� 0:0415528. Suppose
we hypothesize that glucose levels increase 0.5 mg/dL for each kg/m2 increase in
BMI, so ˇaj D 0:5.

In Table 4.26, we first use (4.22) to estimate that a new sample of 147 participants
would provide 90% power in a 2-sided test with ˛ of 5% to detect the hypothesized
increase in glucose of 0.5 mg/dL for each kg/m2 increase in BMI. Then, using (4.23),
we find that a sample of 200 participants would provide almost 97% power to detect
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Table 4.26 Calculations based on regression output

. * sample size for a new study providing 90% power

. display (invnormal(.975)+invnormal(.9))ˆ2*2028*0.0415528ˆ2/0.5ˆ2
147.17185

. * power in a new study with 200 participants

. display 1-normal(invnormal(0.975)-0.5/(sqrt(2028/200)*0.0415528))

.96552967

. * minimum effect detectable with 80% power in a new study with 100 participants

. display (invnormal(.975)+invnormal(.8))*sqrt(2028/100)*0.0415528

.5242496

the hypothesized effect. Finally, using (4.24) suggests that a smaller sample of 100
participants would provide 80% power to detect a minimum effect of 0.52 mg/dL
for each kg/m2 increase in BMI.

4.9 Summary

The multipredictor linear model is a straightforward extension of the simple linear
model for continuous outcomes. Inclusion of multiple predictors in the model makes
it possible to adjust for confounding variables, examine mediation, check for and
model interactions, and increase efficiency, especially in experiments, by accounting
for design factors. To avoid misleading conclusions, it is important to check
assumptions, including normality of the residuals, especially in small samples;
transformations of the outcome, bootstrapping, and GLMs can be used to address
violations. Nonconstant variance of the residuals is a potentially serious concern
even in large samples, but can be resolved using robust standard errors. As with the
models discussed in later chapters, nonlinear effects of continuous predictors can be
accommodated using predictor transformations, including restricted cubic splines,
and interactions modeled using product terms. Finally, it is important to recognize
outcomes for which linear regression is not appropriate; these include binary, time-
to-event, count, and repeated measures or clustered outcomes, and are addressed in
subsequent chapters.

4.10 Further Notes and References

For more detailed information on the linear regression model, first-rate books
include Weisberg (1985) and Draper and Smith (1981). A standard book on
regression diagnostics is Belsey et al. (1980), while Cleveland (1985) covers
graphical methods for model checking in detail. See Breiman (2001) for a skeptical
view of the sensitivity of the methods presented here for detecting lack of fit.
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4.10.1 Generalized Additive Models

Methods have also been developed for fitting linear as well as logistic (Chap. 5)
and other GLMs (Chap. 8) in which the adjusted response to each predictor can be
flexibly modeled as a smooth (piecewise cubic rather than piecewise linear) spline,
or alternatively using a LOWESS curve. In both cases, the degree of smoothness
is under the control of the analyst. Known as generalized additive models (Hastie
and Tibshirani 1986, 1999), implementations in the R statistical package make
it easy to model and test the statistical significance of departures from linearity.
Implementations in R of smooth spline transformations of predictors are also
available for the Cox model, discussed in Chap. 6.

4.11 Problems

Problem 4.1. Using the WCGS data for middle-aged men at risk for heart disease,
fit a multipredictor model for total cholesterol (chol) that includes the binary
predictor arcus, which is coded 1 for the group with arcus senilis, a milky ring
in the iris associated with high cholesterol levels, and 0 for the reference group.
Save the fitted values. Now refit the model with the code for the reference group
changed to 2. Compare the coefficients, standard errors, P -values, and fitted values
from the two models. The WCGS data are available at http://www.biostat.ucsf.edu/
vgsm.

Problem 4.2. Using (4.2), show that ˇj gives the difference in EŒyjx� for a one-unit
increase in xj , no matter what the values of xj or the other predictors. Hint: Write
the value of (4.2) for xj D x and then for xj D x C 1, for arbitrary (unspecified)
values of the other predictors, all of which are held fixed, and subtract the first value
from the second.

Problem 4.3. Using the WCGS data referenced in Problem 4.1, extract the fitted
values from the multipredictor linear regression model for cholesterol and show
that the square of the sample correlation between the fitted values and the outcome
variable is equal to R2. In Stata, the following code saves the predicted values from
the regression model in Table 4.2 to a new variable yhat:

. regress glucose exercise BMI smoking drinkany

. predict yhat

Then use the pwcorr and display commands to get the correlation between
yhat and the predictor and square it.

Problem 4.4. Use the test command in Stata or an equivalent command in
another statistical package to show that F D t2 for a pairwise contrast between
any other level of a categorical predictor and the reference group used in the model.

http://www.biostat.ucsf.edu/vgsm
http://www.biostat.ucsf.edu/vgsm
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Problem 4.5. In the model including an interaction between BMI and statin use,
define a second new BMI variable so that estimates for BMI specific to women who
do and do not use statins can be obtained directly from the regression coefficients,
rather than having to compute sums of the coefficients for one of these groups.
Define the values of the new BMI variable in the two groups, and then write down
the regression equations analogous to (4.11)–(4.13). Explain why the statin use
variable needs to be included in this model.

Problem 4.6. If we “center” age—that is, replace it with a new variable defined as
the deviation in age from the sample mean, what would be the interpretation of the
intercept in the model for SBP (3.2)? If BMI had not been centered, how would the
interpretation of the statin use variable change in the model in Sect. 4.6.2 allowing
for interaction in predicting LDL?

Problem 4.7. Consider the associations between exercise and glucose levels
among women without diabetes. What are the interpretations of the coefficient for
exercise:

• In a simple linear model for glucose levels.
• In a multipredictor linear regression model for glucose adjusting for all known

confounders of the exercise association.

Suppose factor X had been identified as a mediator of the exercise/glucose
association. What would be the interpretation of the exercise coefficient in a
multipredictor regression model that also adjusted for factor X, supposing that the
exercise coefficient remained statistically significantly different from zero?

Problem 4.8. Suppose that in a clinical trial of the effects of a new treatment on
glucose levels, the randomization is stratified on diabetes, an important predictor
of this outcome. By virtue of randomization, the treatment is uncorrelated with
diabetes. Using (4.4), explain why including diabetes in the analysis should provide
a more efficient estimate of the treatment effect. Would it be a good idea to check
for interaction between treatment and diabetes in this analysis? Why?

Problem 4.9. Using Stata (or another statistical package) and the WCGS data
set referenced above in Problem 4.1 (or your own data set), verify that you get
equivalent results from:

• A t-test and a simple linear model with one binary predictor.
• One-way ANOVA and a linear model with one multilevel categorical predictor.

Problem 4.10. What is the difference between showing that an interaction is
statistically significant and showing that an association is statistically significant in
one group but not in the other? Describe a pattern where the second condition holds
but there would clearly be no interaction. Is that pattern of substantive interest?

Problem 4.11. Consider a predictor of interest for an important outcome in your
field of expertise. Are there other predictors that might be hypothesized a priori to
interact with the predictor of interest? Why?
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Problem 4.12. Suppose you have used a restricted cubic spline to model a non-
linear response to your predictor of primary interest, similar to one of the models
for HDL in Fig. 4.7. Figure out how to use the spline basis variables, which in
Stata would be made by the mkspline command, and corresponding regression
coefficients to plot the shape of the response estimated by the regression model.

Problem 4.13. Consider a right-skewed outcome variable that could be adequately
normalized using an unfamiliar fractional power transformation (say, the cube root).
A simpler alternative is just to dichotomize the variable. Why would you expect this
to be a costly choice in terms of efficiency? Now consider birth weights. Why might
analysis of an indicator of low birth weight be worth the loss of efficiency in this
case?

Problem 4.14. Suppose you fit a model with an influential point. With the point,
the association of interest is just statistically significant, and without it, it is clearly
not. What would you do?

4.12 Learning Objectives

(1) Describe situations in which multipredictor analysis is needed. Given an
analysis situation, decide if linear regression is appropriate.

(2) Translate research questions appropriate for a regression model into specific
questions about the coefficients of the model.

(3) Use linear regression models to test hypotheses about relationships between
variables, including confounding, mediation, and interaction.

(4) Describe the linear regression model, its key assumptions, and their implica-
tions.

(5) Explain why the estimates are called least squares estimates.
(6) Define regression line, fitted value, residual, and influence.
(7) State the relationships between:

• Correlation and regression coefficients
• The two-sample t-test and a regression model with one binary predictor
• ANOVA and a regression model with categorical predictors

(8) Know how a statistical package is used to estimate the parameters in a regres-
sion model and make diagnostic plots to assess how well model assumptions
are met.

(9) Interpret regression model output including regression coefficient estimates,
hypothesis tests, CIs, and statistics which quantify the fit of the model.

(10) Interpret regression coefficients when the predictor, outcome, or both are log
transformed.



Chapter 5
Logistic Regression

Patients testing positive for a sexually transmitted disease at a clinic are compared
to patients with negative tests to investigate the effectiveness of a new barrier
contraceptive. One-month mortality following coronary artery bypass graft surgery
is compared in groups of patients receiving different dosages of beta blockers. Many
clinical and epidemiological studies generate outcomes which take on one of two
possible values, reflecting presence/absence of a condition or characteristic at a
particular time, or indicating whether a response occurred within a defined period of
observation. In addition to evaluating a predictor of primary interest, it is important
to investigate the importance of additional variables that may influence the observed
association and therefore alter our inferences about the nature of the relationship. In
evaluating the effect of contraceptive use in the first example, it would be clearly
important to control for age in addition to behaviors potentially linked to infection
risk. In the second example, a number of demographic and clinical variables may be
related to both the mortality outcome and treatment regime. Both of these examples
are characterized by binary outcomes and multiple predictors, some of which are
continuous.

Methods for investigating associations involving binary outcomes using contin-
gency table methods were briefly covered in Sect. 3.4. Although these techniques are
useful for exploratory investigations, and in situations where the number of predictor
variables of interest is limited, they can be cumbersome when multiple predictors
are being considered. Further, they are not well suited to situations where predictor
variables may take on a large number of possible values (e.g., continuous measure-
ments). Similar to the way linear regression techniques expanded our arsenal of
tools to investigate continuous outcomes, the logistic regression model generalizes
contingency table methods for binary outcomes. In this chapter, we cover the
use of the logistic model to analyze data arising in clinical and epidemiological
studies. Because the basic structure of the logistic model mirrors that of the linear
regression model, many of the techniques for model construction, interpretation,
and assessment will be familiar from Chap. 4.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 5,
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5.1 Single Predictor Models

Recall the example in Sect. 3.4 investigating the association between CHD and
age for the WCGS. Table 5.1 summarizes the observed proportions (P ) of CHD
diagnoses for five categories of age, along with the estimated risk difference (RD),
relative risk (RR), and odds ratio (OR). The last three measures are computed
according to procedures described in Sect. 3.4, using the youngest age group as
the baseline category. The estimates show a tendency for increased risk of CHD
with increasing age. Although this information provides a useful summary of the
relationship between CHD risk and age, the choice of five-year categories for age is
arbitrary. A regression representation of the relationship would provide an attractive
alternative and obviate the need to choose categories of age.

Recall that in standard linear regression, we modeled the average of a continuous
outcome variable y as a function of a single continuous predictor x using a linear
relationship of the form

E Œyjx� D ˇ0 C ˇ1x:
We might be tempted to use the same model for a binary outcome variable. First,
note that if we follow convention and code the values of a binary outcome as one for
those experiencing the outcome and zero for everyone else, the observed proportion
of outcomes among individuals characterized by a particular value of x is simply
the mean (or “expected value”) of the binary outcome in this group. In the notation
introduced in Sect. 3.4, we symbolize this quantity by P.x/. The linear model for
our binary outcome might then be expressed as

P.x/ D E Œyjx� D ˇ0 C ˇ1x: (5.1)

This has exactly the same form as the linear regression model; the expected value of
the outcome is modeled as a linear function of the predictor. Further, changes in the
outcome associated with specified changes in the predictor x have a risk difference
interpretation: For example, if x is a binary predictor taking on the values 0 or 1, the
effect of increasing x one unit is to add an increment ˇ1 to the outcome. From (5.1),

P.1/� P.0/ D ˇ1:
Referring back to Definition (3.14) in Sect. 3.4, we see that this is the risk difference
associated with a unit increase in x. Models with this property are often referred to
as additive risk models (Clayton and Hills 1993).

Table 5.1 CHD for five age categories in the WCGS sample

Age group P 1� P RD RR OR

35–40 0:057 0:943 0.000 1.000 1.000
41–45 0:050 0:950 �0.007 0.883 0.877
46–50 0:093 0:907 0.036 1.635 1.700
51–55 0:123 0:877 0.066 2.156 2.319
56–60 0:149 0:851 0.092 2.606 2.886
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There are several limitations with the linear model (5.1) as a basis for regression
analysis of binary outcomes. First, the statistical machinery which allowed us to use
this linear model to make inferences about the strength of relationship in Chap. 4
required that the outcome variable follow an approximate normal distribution.
For a binary outcome, this assumption is clearly incorrect. Second, the outcome
in the above model represents a probability or risk. Thus, any estimates of the
regression coefficients must constrain the estimated probability to lie between zero
and one for the model to make sense. The first of these problems is statistical,
and addressing it would require generalizing the linear model to accommodate a
distribution appropriate for binary outcomes. The second problem is numerical.
To ensure sensible estimates, our estimation procedure would have to satisfy the
constraints mentioned.

Another issue is that in many settings, it seems implausible that outcome risk
would change in a strictly linear fashion for the entire range of possible values of
a continuous predictor x. Consider a study examining the likelihood of a toxicity
response to varying levels of a treatment. We would not expect the relationship
between likelihood of toxicity and dose to be strictly linear throughout the range
of possible doses. In particular, the likelihood of toxicity should be zero in the
absence of treatment and increase to a maximum level, possibly corresponding to
the proportion of the sample susceptible to the toxic effect, with increasing dose.

Figure 5.1 presents four hypothetical models linking the probability P.x/ of a
binary outcome to a continuous predictor x. In addition to the linear model (a),
there is the exponential model (b) that constrains risk to increase exponentially
with x, the “step function” model (c) that allows irregular (but piecewise-constant)
change in risk with increasing values of x, and the smooth S-shaped curve in (d)
known as the logistic model. The exponential model is also known as log linear
because it specifies that the logarithm of the outcome risk is linear in x. It presents
a problem similar to that noted for the linear model above: Namely, that risk is not
obviously constrained to be less than one for large values of ˇ0Cˇ1x. The outcome
probabilities for model (c) simply represent the estimated proportion of positive
outcomes in each group specified by the categories of x, and has the desirable
properties that risks are clearly constrained to fall in the interval Œ0; 1�, and that the
nature of the increase in the interval can be flexibly represented by different “step”
heights. However, it lacks smoothness, a property that is biologically plausible in
many instances. In addition, the choice of break points delineating the changes
in risk is subjective. By contrast, the logistic model allows for a smooth change
in risk throughout the range of x, and has the property that risk increases slowly
up to a “threshold” range of x, followed by a more rapid increase and a subsequent
leveling off of risk. This shape is consistent with many dose-response relationships
(illustrated by the toxicity example from the previous paragraph). As we will see
later in this chapter, all of these models represent valid alternatives for assessing
how risk of a binary outcome changes with the value of a continuous predictor.
However, most of our focus will be on the logistic model.
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Fig. 5.1 Risk models for a binary outcome and continuous predictor (a) Linear (b) Exponential
(c) Step function (d) Logistic

In addition to a certain degree of biological plausibility, the logistic model
does not pose the numerical difficulties associated with the linear and log-linear
models, and has a number of other appealing properties that will be described in
more detail below. For these reasons, it is by far the most widely used model for
binary outcomes in clinical and epidemiological applications, and forms the basis
of logistic regression modeling. However, adoption of the logistic model still implies
strong assumptions about the relationship between outcome risk and the predictor.
In fact, expressed on a transformed scale, the model prescribes a linear relationship
between the logarithm of the odds of the outcome and the predictor.

The logistic model plotted in Fig. 5.1d is defined by the equation

P.x/ D exp.ˇ0 C ˇ1x/
1C exp.ˇ0 C ˇ1x/ : (5.2)

In terms of the odds of the outcome associated with the predictor x, the model can
also be expressed as

P.x/

1 � P.x/ D exp.ˇ0 C ˇ1x/: (5.3)
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Consider again the simple case where x takes on the values 0 or 1. From the last
equation, the ratio of the odds for these two values of x are

P.1/= Œ1 � P.1/�
P.0/= Œ1 � P.0/� D exp.ˇ1/: (5.4)

Expressed in this form, we see that the logistic model specifies that the ratio of
the odds associated with these two values of x is given by the factor exp.ˇ1/.
Equivalently, the odds for x D 1 are obtained by multiplying the odds for x D 0

by this factor. Because of this property, the logistic model is an example of a
multiplicative risk model (Clayton and Hills 1993). (Note that the log-linear model
is also multiplicative in this sense, but is based on the outcome risks rather than the
odds.)

Although not easily interpretable in the form given in (5.2) and (5.3), expressed
as the logarithm of the outcome odds (as given in (5.3)), the model becomes linear
in the predictor

log

�
P.x/

1 � P.x/
�

D ˇ0 C ˇ1x: (5.5)

This model states that the log odds of the outcome is linearly related to x, with
intercept coefficientˇ0 and slope coefficientˇ1 (i.e., the logistic model is an additive
model when expressed on the log odds scale). The logarithm of the outcome odds is
also frequently referred to as the logit transformation of the outcome probability.

In the language introduced in Chaps. 3 and 4, (5.2), (5.3), and (5.5) define the
systematic part of the logistic regression model, linking the average P.x/ of the
outcome variable y to the predictor x. The random part of the model specifies
the distribution of the outcome variable yi , conditional on the observed value xi
of the predictor (where the subscript i denotes the value for a particular subject).
For binary outcomes, this distribution is called the binomial distribution and is
completely specified by the mean of yi conditional on the value xi . To summarize,
the logistic model makes the following assumptions about the outcome yi :

(1) yi follows a Binomial distribution.
(2) The mean E Œyjx� D P.x/ is given by the logistic function (5.2).
(3) Values of the outcome are statistically independent.

These assumptions closely parallel those associated with the linear regression
(in Sect. 3.3), the primary difference being the use of the binomial distribution for
the outcome y. Note that the assumption of constant variance of y across different
values of x is not required for the logistic model. Another difference is that the
random aspect of the logistic model is not included as an additive term in the
regression equation. However, it is still an integral part of estimation and inference
regarding model coefficients. (This is discussed further in Sect. 5.6.)

As we will see in the rest of this chapter, both of the alternative expressions (5.2)
and (5.5) for the logistic model are useful: the linear logistic form (5.5) is the basis
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Table 5.2 Logistic model for the relationship between CHD and age

. logistic chd69 age, coef

Logit estimates Number of obs = 3154
LR chi2(1) = 42.89
Prob > chi2 = 0.0000

Log likelihood = -869.17806 Pseudo R2 = 0.0241

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | .0744226 .0113024 6.58 0.000 .0522703 .0965748

_cons | -5.939516 .549322 -10.81 0.000 -7.016167 -4.862865
----------------------------------------------------------------------------

for regression modeling, while the (nonlinear) logistic form (5.2) is useful when
we want to express the outcome on its original scale (e.g., to estimate outcome risk
associated with a particular value of x).

One of the most significant benefits of the linear logistic formulation (5.5) is
that the regression coefficients are interpreted as log odds ratios. These can be
expressed as odds ratios via simple exponentiation (as demonstrated above in (5.4)),
providing a direct generalization of odds ratio methods for frequency tables to the
regression setting. This property follows directly from the definition of the model,
and is demonstrated in the next section. Finally, we note that there are a number
of alternative regression models for binary outcomes that share similar properties
to the logistic model. Although none of these comes close to the logistic model in
terms of popularity, they offer useful alternatives in some situations. Some of these
will be discussed in Sect. 5.5.

5.1.1 Interpretation of Regression Coefficients

Table 5.2 shows the fit of the logistic model (5.5) for the relationship between CHD
risk and age in the WCGS study. The coefficient labeled cons in the table is
the intercept (ˇ0), and the coefficient labeled age is the slope (ˇ1) of the fitted
logistic model. Since the outcome for the model is the log odds of CHD risk, and
the relationship with age is linear, the slope coefficient ˇ1 gives the change in the
log odds of chd69 associated with a one-year increase in age. We can verify this
by using the formula for the model (5.5) and the estimated coefficients to calculate
the difference in risk between a 56- and a 55-year-old individual:

log

�
P.56/

1 � P.56/
�

� log

�
P.55/

1 � P.55/
�

D .�5:940C 0:074 � 56/� .�5:940C 0:074 � 55/ D 0:074:
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This is just the coefficient ˇ1 as expected; performing the same calculation on an
arbitrary one-year age increase would produce the same result (as shown at the end
of this section). The corresponding odds ratio for any one-year increase in age can
then be computed by simple exponentiation:

exp.0:074/ D 1:077:

This odds ratio indicates a small (approximately 8%) but statistically significant
increase in the odds of CHD for each one-year age increase. We can estimate the
(clinically more relevant) odds ratio associated with a ten-year increase in age the
same way, yielding:

exp.0:074 � 10/ D 2:105:
Following the same approach we can use (5.5) to calculate the log odds ratio and
odds ratio for an arbitrary� unit increase in a predictor x as follows:

log

" P.xC�/
1�P.xC�/

P.x/

1�P.x/

#

D ˇ1�;
P.xC�/
1�P.xC�/

P.x/

1�P.x/
D exp.ˇ1�/: (5.6)

In addition to computing odds ratios, the estimated coefficients can be used in the
logistic function representation of (5.2) to estimate the probability of having CHD
during study follow-up for a individual with any specified age. For a 55-year-old
individual:

P.55/ D exp.�5:940C 0:074 � 55/
1C exp.�5:940C 0:074 � 55/ :

Of course, such an estimate only makes sense for ages near the values used in fitting
the model.

The output in Table 5.2 also gives standard errors and 95% CIs for the model
coefficients. The interpretation of these is the same as for the linear regression
model. The fact that the interval for the coefficient of age excludes zero indicates
statistically significant evidence that the true coefficient is different than zero.
Similar to linear regression, the ratio of the coefficients to their standard errors forms
the Wald (z) test statistic for the hypothesis that the true coefficients are different
than zero. This statistic is assumed to approximately follow a normal distribution,
and the associated P-value and 95% confidence intervals rely on this assumption. As
introduced in Sect. 3.6, bootstrap confidence intervals are useful when the accuracy
of this approximation is questionable. The logarithm of the likelihood for the fitted
model along with a likelihood ratio (LR) statistic LR chi2(1) and associated
P -value (Prob > chi2) are also provided. Maximum likelihood is the standard
method of estimating parameters from logistic regression models, and is based
on finding the estimates which maximize the joint probability (or likelihood—see
Sect. 5.6) for the observed data under the chosen model.
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Table 5.3 Effects of age differences of 1 and 10 years, by reference age

Age (x) P.x/ P.x C 1/ odds.x/ odds.x C 1/ OR RR ER

40 0.049 0.053 0.052 0.056 1.077 1.073 0.004
50 0.098 0.105 0.109 0.117 1.077 1.069 0.007
60 0.186 0.198 0.229 0.247 1.077 1.062 0.012

Age (x) P.x/ P.x C 10/ odds.x/ odds.x C 10/ OR RR ER

40 0.049 0.098 0.052 0.109 2.105 1.996 0.049
50 0.098 0.186 0.109 0.229 2.105 1.899 0.088
60 0.186 0.325 0.229 0.482 2.105 1.746 0.139

The LR statistic given in the table compares the likelihood from the fitted model
with the corresponding model excluding age, and addresses the hypothesis that
there is no (linear) relationship between age and the log odds of CHD occurrence.
The associated P -value is obtained from the �2 distribution with one degree of
freedom (corresponding to the single predictor used in the model). LR tests are
covered in more detail in Sect. 5.2.1. Note that the Pseudo R2 value in the table
is intended to provide a measure paralleling that used in linear regression models,
and is related to the LR statistic.

As an additional illustration of the properties of the logistic model, Table 5.3
presents a number of quantities calculated directly from the coefficients in Table 5.2
and (5.2) and (5.5). For the ages 40, 50, and 60, the table gives the estimated
response probabilities and odds. These are also calculated for one- and ten-year
age increases so that corresponding odds ratios can be computed. As prescribed by
the model, the odds ratios associated with a fixed increment change in age remain
constant across the age range. Estimates of RR and ER are also computed for one-
and ten-year age increments to illustrate that the fitted logistic model can be used
to estimate a wide variety of quantities in addition to odds ratios. Note that the
estimated values of ER and RR are not constant with increasing age (because the
model does not restrict them to be so). Note also that although measures such as
ER and RR can be computed from the logistic model, the resulting estimates will
not in general correspond to those obtained from a regression model defined on a
scale on whichER orRR is assumed constant. We will return to this topic when we
consider alternative binary regression approaches in Sect. 5.5, and again in Sect. 9.3,
where we consider use of the logistic model to estimate response probabilities
for binary predictors representing contrasting exposure scenarios in the context of
causal inference.

5.1.2 Categorical Predictors

Similar to the conventional linear regression model, the logistic model (5.5) is
equally valid for categorical risk factors. For example, we can use it to look again
at the relationship between CHD risk and the binary predictor arcus senilis as
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Table 5.4 Logistic model for CHD and arcus senilis

. logistic chd69 i.arcus

Logistic regression Number of obs = 3152
LR chi2(1) = 12.98
Prob > chi2 = 0.0003

Log likelihood = -879.10783 Pseudo R2 = 0.0073

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.arcus | 1.63528 .2195035 3.66 0.000 1.257 2.127399

----------------------------------------------------------------------------

shown in Table 5.4. The regression output in Table 5.4 summarizes the model
fit in terms of the odds ratio for the included predictor, and does not include
estimates of the regression coefficients. In particular, the model intercept is omitted.
This is the default option in many statistical packages such as Stata. Specifying the
coef option as illustrated in Table 5.2 provides coefficient estimates, including
the intercept. Note also that the estimated odds ratio, P -value for the Wald test
that the true value the odds ratio is one (or, equivalently that the coefficient is
zero), and corresponding 95% CI are virtually the same as the results obtained in
Table 3.5. Because arcus is a binary predictor (coded as one for individuals with
the condition and zero otherwise), entering it directly into the model as if it were a
continuous measurement produces the desired result: the coefficient represents the
log odds ratio associated with a one-unit increase in the predictor. (In this case,
only one, single unit increase is possible by definition.) For two-level categorical
variables with levels coded other than zero or one, care must be taken so that they
are appropriately treated as categories (and not continuous measurements) by the
model-fitting software.

Categorical risk factors with multiple levels are treated similarly to the procedure
introduced in Sect. 4.3 for linear regression. In this way, we can repeat the analysis
in Table 5.1, dividing study participants into five age groups and taking the youngest
group as the reference. In order to estimate odds ratios for each of the four
older age groups compared to the youngest group, we need to construct four
indicator variables corresponding to the levels of the categorical variable encoding
the age groups. Stata does this automatically via the i. prefix for the categorical
predictor agec, as shown in Table 5.5. This variable is constructed with categories
corresponding to the age divisions shown in Table 5.1.

Note that the estimated odds ratios appear to be identical to those in the table.
In fact, because we are estimating a parameter for each age category except the
youngest (reference) group, we are not imposing any restrictions on the parameters
(i.e., the logistic assumption does not come into play as it does for continuous
predictors). Thus, we would expect the estimated odds ratios to be identical to those
estimated using the contingency table approach.

The LR test for this model compares the likelihood for the model with four
indicator variables for age with that from the corresponding model with no
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Table 5.5 Logistic Model for CHD and age as a categorical factor

. logistic chd69 i.agec
Logistic regression Number of obs = 3154

LR chi2(4) = 44.95
Prob > chi2 = 0.0000

Log likelihood = -868.14866 Pseudo R2 = 0.0252
----------------------------------------------------------------------------

chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

agec |
1 | .8768215 .2025406 -0.57 0.569 .5575563 1.378903
2 | 1.70019 .3800504 2.37 0.018 1.097046 2.634935
3 | 2.318679 .5274963 3.70 0.000 1.484545 3.621494
4 | 2.886314 .7462298 4.10 0.000 1.738895 4.790864

----------------------------------------------------------------------------
. testparm i.agec

chi2( 4) = 44.08
Prob > chi2 = 0.0000

. contrast agec, mcompare(sidak) eform effects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

agec | 4 44.08 0.0000
------------------------------------------------
Note: Sidak-adjusted p-values are reported for

tests on individual contrasts only.
---------------------------

| Number of
| Comparisons

-------------+-------------
agec | 4

---------------------------
----------------------------------------------------------------------------

| Sidak Sidak
| exp(b) Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
agec |

(1 vs base) | .8768215 .2025406 -0.57 0.966 .493201 1.558829
(2 vs base) | 1.70019 .3800504 2.37 0.068 .9742722 2.966979
(3 vs base) | 2.318679 .5274963 3.70 0.001 1.315633 4.086453
(4 vs base) | 2.886314 .7462298 4.10 0.000 1.515851 5.495795
---------------------------------------------------------------------------

. * Tests for linear trend

. test -1.agec + 3.agec + 2*4.agec = 0
( 1) - [chd69]1.agec + [chd69]3.agec + 2*[chd69]4.agec = 0

chi2( 1) = 31.45
Prob > chi2 = 0.0000

. contrast {agec -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

agec | 1 31.45 0.0000
------------------------------------------------

. contrast q(1).agec, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

agec | 1 31.45 0.0000
------------------------------------------------
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predictors. In contrast to the individual Wald tests provided for each level of
age, the LR test examines the overall effect of age represented as a five-level
predictor. The results indicate that inclusion of age affords a statistically significant
improvement in the fit of the model.

The table also includes output from the Stata testparm and contrast
commands, used here to test the global hypothesis that the coefficients for the four
older age categories are all equal to zero. This hypothesis is identical to the one
addressed by the LR test in this case, and the resulting Wald chi2 test statistic is
quite similar to the LR statistic. The correspondence between these two tests is also
discussed in Sects. 5.2.1 and 10.4.2.

We note that caution should be exercised in interpretation of significance results
for individual Wald tests for categorical predictors with multiple levels, especially in
cases where the overall hypothesis test is not statistically significant. As discussed in
Sect. 4.3.4, the mcompare option allows for control of the familywise Type-1 error
rate (FER) in making multiple pairwise comparisons, using Bonferroni, Sidak, and
Scheffé procedures. In this case, we used the contrast command with option
mcompare(sidak) to obtain more conservative P -values and CIs for the age
effects (the odds-ratios are unchanged).

An additional test of interest in this example is evaluation of the presence of
linear trend in the log odds of CHD with increasing age category. This test is
implemented exactly as described for linear regression models in Sect. 4.3.5, using
the contrast coefficients given in Table 4.8; the test is also obtained using both
contrast commands introduced in Table 4.9. The result shown in Table 5.5 is
quite significant, indicating evidence for a linear trend in the log odds of disease
with increasing category of age, and confirming our impression of a regular increase
in odds ratios with increasing age. The methods presented there for evaluating
departure from linearity are also directly applicable to the logistic model.

Estimating regression coefficients for levels of a categorical predictor often
involves specification of an appropriate reference category, especially for nominal
categorical predictors. For the example in Table 5.5, this was chosen automatically
by Stata as the age category with the smallest numerical label. (A similar procedure
is followed by most major statistical packages.) Since age can be considered as
ordinal, it makes sense in this case to preserve the ordering of the categories,
especially if assessing trends in outcome odds with increasing age is of interest.
However, in cases where a reference group different from the default is of interest,
most statistics packages (including Stata and SAS) have methods for changing the
default. For example, using ib2.agec rather than i.agec in the logistic
command in Table 5.5 will result in the second age category being used as
the reference. Alternatively, the model can be re-fit using a recoded version of
the predictor. Note that it is also possible to compute odds ratios comparing
arbitrary groups from the coefficients obtained using the default reference group.
For example, the odds ratio comparing the fourth age group in Table 5.5 to the third
can be shown to be 2:88

2:32
D 1:24. (This calculation is left as an exercise.)

Another important consideration in selecting a reference group for a categorical
predictor are the sample sizes in each category. As a general rule, when individuals
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are unevenly distributed across categories it is desirable to avoid making the smallest
group the reference category. This is because standard errors of coefficients for
other categories will be inflated due to the small sample size in the reference
group.

A final issue that arises in fitting models with ordinal categorical predictors
formed based on an underlying continuous measurement is the choice of how many
categories, and how these should be defined. In the example in Table 5.5, the choice
of five-year age groups was somewhat arbitrary. In many cases, categories will
correspond to pre-existing hypotheses or be suggested by convention (e.g., ten-year
age categories in summaries of cancer rates). In the absence of such information,
a good practice is to choose categories of equal size based on quantiles of the
distribution of the underlying measure.

How many categories a given model will support depends on the overall sample
size as well as the distribution of outcomes in the resulting groups. In the WCGS
sample, a logistic model including a coefficient for each unique age (assigning
the youngest age as the reference group) yields reasonable estimates and standard
errors. There are 266 individuals in the smallest group. (A much simpler model
that fits the data adequately can also be constructed using the methods discussed
in Sect. 5.4.1.) Care must be taken in defining categories to ensure that there are
adequate numbers in the subgroups (possibly by collapsing categories). In general,
avoid categorizations that result in categories that are homogeneous with respect to
the outcome or that contain fewer than ten observations. Problems that arise when
this is not the case are discussed in Sect. 5.4.4.

5.2 Multipredictor Models

Clinical and epidemiological studies of binary outcomes typically focus on the
potential effects of multiple predictors. When these are categorical and few in
number, contingency table techniques suffice for data analyses. However, for
larger numbers of potential predictors and/or when some are continuous mea-
surements, regression methods have a number of advantages. For example, the
WCGS study measured a number of potential predictors of CHD, including total
serum cholesterol, diastolic and SBP, smoking, age, body size, and behavior
pattern. The investigators recognized that these variables all may contribute to
outcome risk in addition to being potentially associated with each other, and
that in assessment of the influence of a selected predictor, it might be important
to control for the potential confounding influence of others. Because there are
a number of candidate predictors, some of which can be viewed as continuous
measurements, multiple regression techniques are very appealing in analyzing
such data.

The logistic regression model for multiple predictor variables is a direct gener-
alization of the version for a single predictor introduced above (5.5). For a binary
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Table 5.6 Multiple logistic model for CHD risk

. logistic chd69 age chol bmi sbp i.smoke if chol<645, coef

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80
Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | .0644476 .0119073 5.41 0.000 .0411097 .0877855

chol | .0107413 .0015172 7.08 0.000 .0077675 .013715
bmi | .0574361 .0263549 2.18 0.029 .0057814 .1090907
sbp | .0192938 .0040909 4.72 0.000 .0112759 .0273117

1.smoke | .6344778 .1401836 4.53 0.000 .3597231 .9092325
_cons | -12.31099 .977256 -12.60 0.000 -14.22638 -10.3956

----------------------------------------------------------------------------

outcome y, and p predictors x1; x2; � � � ; xp , the systematic part of the model is
defined as follows:

log

�
P.x1; x2; � � � ; xp/

1 � P.x1; x2; � � � ; xp/
�

D ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇpxp: (5.7)

This can be re-expressed in terms of the outcome probability as follows:

P.x1; x2; � � � ; xp/ D exp.ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇpxp/
1C exp.ˇ0 C ˇ1x1 C ˇ2x2 C � � � C ˇpxp/ : (5.8)

As with standard multiple linear regression, the predictors may include continuous
and categorical variables. The multiple-predictor version of the logistic model is
based on the same assumptions underlying the single predictor version. (These are
presented in Sect. 5.1.) In addition, it assumes that multiple predictors are related
to the outcome in an additive fashion on the log odds scale. The interpretation of
the regression coefficients is a direct generalization of that for the simple logistic
model:

• For a given predictor xj , the coefficient ˇj gives the change in log odds of the
outcome associated with a unit increase in xj , for arbitrary fixed values for the
predictors x1; � � � ; xj�1; xjC1; � � � ; xp .

• The exponentiated regression coefficient exp.ˇj / represents the odds ratio
associated with a one unit change in xj .

Table 5.6 presents the results of fitting a logistic regression model examining the
impact on CHD risk of age, cholesterol (mg/dL), SBP (mmHg), BMI (computed
as weight in kilograms divided by the square of height in meters), and a binary
indicator of whether or not the participant smokes cigarettes, using data from
the WCGS sample. This model is of interest because it addresses the question
of whether a select group of established risk factors for CHD are independent
predictors for the WCGS study.
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Twelve observations were dropped from the analysis in Table 5.6 because of
missing cholesterol values. An additional observation was dropped (via the if
statement in the regress command) because of an unusually high cholesterol
value (645 mg/dL) that is clearly an outlier. Note that all predictors are entered
as continuous measurements in the model. The coefficient for any one of these
(e.g., chol) gives the log odds ratio (change in the log odds) of CHD for a unit
increase in the predictor, adjusted for the presence of the others. The small size
of the coefficients for these measures reflects the fact that a unit increase on the
measurement scale is a very small change, and does not translate to a substantial
change in the log odds.

Log odds ratios associated with larger increases are easily computed as described
in Sect. 5.1. The 95% CIs for coefficients of all included predictors exclude zero,
indicating that each is a statistically significant independent predictor of outcome
risk (as measured by the log odds). Of course, additional assessment of this model
would be required before it is adopted as a “final” representation of outcome risk for
this study. In particular, we would want to evaluate whether the linearity assumption
is met for continuous predictors, evaluate whether additional confounding variables
should be adjusted for, and check for possible interactions. These topics are
discussed in more detail below.

As an example of an application of the fitted model in Table 5.6, consider
calculating the log odds of developing CHD within ten years for a 60-year-old
smoker, with 253 mg/dL of total cholesterol, SBP of 136 mmHg, and a BMI of 25.
Applying (5.7) with the estimated coefficients from Table 5.6,

log

�
P.60; 253; 136; 25; 1/

1 � P.60; 253; 136; 25; 1/
�

D �12:311C :0644 � 60C :0107 � 253

C:0193 � 136C :0574 � 25C :6345 � 1
D �1:046:

A similar calculation gives the corresponding log odds for a similar individual
of age 50:

log

�
P.50; 253; 136; 25; 1/

1 � P.50; 253; 136; 25; 1/
�

D �12:311C :0644 � 50C :0107 � 253

C:0193 � 136C :0574 � 25C :6345 � 1
D �1:690:

Finally, the difference between these gives the log odds ratio for CHD associated
with a ten year increase in age for individuals with the specified values of all of the
included predictors:

�1:046� .�1:690/ D 0:644:



5.2 Multipredictor Models 153

Table 5.7 Multiple logistic model with rescaled predictors

. logistic chd69 age_10 chol_50 bmi_10 sbp_50 i.smoke if chol<645

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80
Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_10 | 1.904989 .2268333 5.41 0.000 1.508471 2.405735

chol_50 | 1.710974 .1297977 7.08 0.000 1.474584 1.985259
bmi_10 | 1.775995 .4680613 2.18 0.029 1.059518 2.976973
sbp_50 | 2.623972 .5367142 4.72 0.000 1.757326 3.918016

1.smoke | 1.886037 .2643914 4.53 0.000 1.432933 2.482417
----------------------------------------------------------------------------

Closer inspection reveals that this result is just ten times the coefficient for age in
Table 5.6. In addition, we see that we could repeat the above calculations for any
ten-year increase in age, and for any fixed values of the other predictors and obtain
the same result. Thus, the formula (5.6) for computing log odds ratios for arbitrary
increases in a single predictor applies here as well. The odds ratio for a ten-year
increase in age (adjusted for the other included predictors) is given simply by

exp.0:0644 � 10/ D exp.:644/ D 1:90:

Interpretation of regression coefficients for categorical predictors also follow that
given for single predictor logistic models. For example, the coefficient (0:634) for
the binary predictor variable smoke in Table 5.6 is the log odds ratio comparing
smokers to nonsmokers for fixed values of age, chol, sbp, and bmi. The
corresponding odds ratio

exp.0:634/ D 1:89
measures the proportionate increase in the odds of developing CHD for smokers
compared to nonsmokers adjusted for age, cholesterol, SBP, and BMI.

The estimated coefficients for the first four predictors in Table 5.6 are all very
close to zero, reflecting the continuous nature of these variables and the fact that a
unit change in any one of them does not translate to a large increase in the estimated
log odds of CHD. As shown above, we can easily calculate odds ratios associated
with clinically more meaningful increases in these predictors. An easier approach
is to decide on the degree of change that we would like the estimates to reflect
and fit a model based on predictors rescaled to reflect these decisions. For example,
if we would like the model to produce odds ratios for ten-year increases in age,
we should represent age as the rescaled predictor age 10 D age=10. Table 5.7
shows the estimated odds ratios from the model including rescaled versions of the
first four predictors in Table 5.6. (The numbers after the underscores in the variable
names indicate the magnitude of the scaling.) We also “centered” these predictors
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before scaling them by subtracting of the mean value for each. (Centering predictors
is discussed in Sects. 3.3.1 and 4.6.) Note that the log-likelihood and Wald test
statistics for this model are identical to their counterparts in Table 5.6.

5.2.1 Likelihood Ratio Tests

In Sect. 5.1, we briefly introduced the concept of the likelihood, and the LR test for
logistic models. The likelihood for a given model is interpreted as the joint probabil-
ity of the observed outcomes expressed as a function of the chosen regression model.
The model coefficients are unknown quantities and are estimated by maximizing
this probability (hence the name maximum-likelihood estimation). For numerical
reasons, maximum-likelihood estimation in statistical software is usually based on
the logarithm of the likelihood. An important property of likelihoods from nested
models (i.e., models in which predictors from one are a subset of those contained in
the other) is that the maximized value of the likelihood from the larger model will
always be at least as large as that for the smaller model.

Although the numerical value of the likelihood (or log-likelihood) for a single
model does not have a particularly useful interpretation, the LR statistic assessing
the difference in likelihoods from two nested models is a valuable tool in model
assessment (analogous to theF tests introduced in Sect. 4.3.3). It is especially useful
when investigating the contribution of more than one predictor, or for predictors
with multiple levels.

For example, consider assessment of the contribution of self-reported behavior
pattern to the model summarized in Table 5.7. In the WCGS study, investigators
were interested in “type A” behavior as an independent risk factor for CHD.
Behavior was classified as either type A or type B, with each type subdivided into
two further levels A1, A2, B3, and B4 (coded as 1, 2, 3, and 4, respectively). The
expanded model addresses the question of whether behavior pattern contributes to
CHD risk when other established risk factors are accounted for.

Table 5.8 displays the results of including the four-level categorical variable
behpat in the model from Table 5.7. The natural coding of the variable results in
type A1 behavior being taken as the reference level. Examination of the coefficients
and associated 95% CIs for the remaining indicators reveals that although the second
category of type A behavior appears not to differ from the reference level, both
categories of type B behavior do display statistically significant differences, and are
associated with lower outcome risk.

The LR statistic is computed as twice the difference between log likelihoods from
the two models, and can be referred to the �2 distribution for significance testing.
Because the likelihood for the larger model must be larger than the likelihood for the
smaller (nested) model, the difference will always be positive. Twice the difference
between the log likelihood for the model including behpat (Table 5.8) and that for
the model excluding this variable (Table 5.6) is

2 � Œ�794:81 � .�807:19/� D 24:76:
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Table 5.8 Logistic model for WCGS behavior pattern

. logistic chd69 age_10 chol_50 sbp_50 bmi_10 i.smoke i.behpat if chol<645

Logistic regression Number of obs = 3141
LR chi2(8) = 184.57
Prob > chi2 = 0.0000

Log likelihood = -794.81 Pseudo R2 = 0.1040

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_10 | 1.83375 .2198681 5.06 0.000 1.449707 2.319529

chol_50 | 1.704097 .1301391 6.98 0.000 1.467201 1.979243
sbp_50 | 2.463504 .5086518 4.37 0.000 1.643621 3.692369
bmi_10 | 1.739415 .4620341 2.08 0.037 1.033479 2.927551

1.smoke | 1.830672 .2583097 4.29 0.000 1.38837 2.413882
|

behpat |
2 | 1.068257 .2363271 0.30 0.765 .6924157 1.648103
3 | .5141593 .1245593 -2.75 0.006 .3198064 .8266243
4 | .572071 .1826117 -1.75 0.080 .3060107 1.069457

----------------------------------------------------------------------------
. estimates store mod1

Table 5.9 Likelihood ratio test for four-level WCGS behavior pattern

. lrtest mod1

likelihood-ratio test LR chi2(3) = 24.76
(Assumption: . nested in mod1) Prob > chi2 = 0.0000

This value follows a �2 distribution, with degrees of freedom equal to the number
of additional variables present in the larger model (three in this case). Statistical
packages like Stata can often be used to compute the LR test directly by first fitting
the larger model (in Table 5.8), and saving the likelihood in the user-defined variable
(in this case, in the variable mod1 created in the last line of the table). Next, the
reduced model eliminating behpat is fit, followed by a command to evaluate the
LR test as displayed in the Table 5.9. (See Table 5.6 for the full regression output for
this model.) The result agrees with the calculation above, and the associatedP -value
indicates that collectively, the four-level categorical representation of behavior
pattern makes a statistically significant independent contribution to the model.

The similarity between the two odds ratios for type A (the reference level and
the second indicator for type A2 behavior) and type B (the indicators representing
types B3 and B4 behavior) in Table 5.8 suggests that a single binary indicator
distinguishing the A and B patterns might suffice. Note that the logistic model that
represents behavior pattern as a two-level indicator (with type B behavior as the
reference category) is actually nested within the model in Table 5.8. (The model
including the two-level representation is a special case of the four-level version
when the coefficients for the two levels of type B and type A behavior, respectively,
are identical.) Table 5.10 displays the fitted model and LR test results for this
reduced model including the two-level binary indicator dibpat. The fact that the
difference between the likelihoods for the two models is not statistically significant
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Table 5.10 Likelihood ratio test for two-level WCGS behavior pattern

. logistic chd69 age_10 chol_50 sbp_50 bmi_10 i.smoke i.dibpat if chol<645

Logistic regression Number of obs = 3141
LR chi2(6) = 184.34
Prob > chi2 = 0.0000

Log likelihood = -794.92603 Pseudo R2 = 0.1039

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_10 | 1.830252 .2190623 5.05 0.000 1.44754 2.314147

chol_50 | 1.702406 .1299562 6.97 0.000 1.465835 1.977157
sbp_50 | 2.467919 .5084377 4.38 0.000 1.648039 3.695681
bmi_10 | 1.732349 .4596114 2.07 0.038 1.029917 2.913859

1.smoke | 1.829163 .2580698 4.28 0.000 1.387265 2.411822
1.dibpat | 2.006855 .2897341 4.82 0.000 1.512259 2.663212

----------------------------------------------------------------------------
. lrtest mod1

likelihood-ratio test LR chi2(2) = 0.23
(Assumption: . nested in mod1) Prob > chi2 = 0.8904

confirms our suspicion that modeling the effect of behavior pattern as a two-level
predictor is sufficient to capture the contribution of this variable.

As demonstrated above, the LR test is a very useful tool in comparing nested
logistic regression models. Note that alternate tests based on Wald statistics can
also be used, as illustrated in Tables 4.4 and 5.5. In moderate to large samples,
the results from the LR and Wald tests for the effects of single predictors will
agree quite closely. However, in smaller samples the results of these two tests may
differ substantially. In general, the LR test is more reliable than the Wald test, and
is preferred when both are available. Finally, note that because the likelihood is
computed based on the observations used to fit the model, it is important to ensure
that the same observations are included in each candidate model considered in LR
testing. This was accomplished in the examples by insuring that the fitted models
excluded 12 observations with missing values for cholesterol, and another with an
outlying value of 645. Likelihoods from models fit on differing sets of observations
are not comparable. A more complete discussion of the concepts of likelihood and
maximum-likelihood estimation is given in Sect. 5.6.

5.2.2 Confounding

A common goal of multiple logistic regression modeling is to investigate the
association between a primary predictor and the outcome, accounting for the
possible mediating or confounding influence of additional measured predictors.
For example, in evaluating the observed association between behavior pattern
(considered in the previous section) and CHD risk, it is important to consider
the effects of additional variables that might be related to both behavior and
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Table 5.11 Logistic model for type A behavior pattern and selected predictors

. logistic dibpat age_10 chol_50 sbp_50 bmi_10 i.smoke

Logistic regression Number of obs = 3141
LR chi2(5) = 53.80
Prob > chi2 = 0.0000

Log likelihood = -2150.1739 Pseudo R2 = 0.0124

----------------------------------------------------------------------------
dibpat | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_10 | 1.324032 .0881552 4.22 0.000 1.16205 1.508594

chol_50 | 1.084241 .0464136 1.89 0.059 .9969839 1.179135
sbp_50 | 1.461247 .1876433 2.95 0.003 1.136104 1.879442
bmi_10 | 1.123846 .1672474 0.78 0.433 .8395252 1.504459

1.smoke | 1.26933 .0930786 3.25 0.001 1.099403 1.465522
----------------------------------------------------------------------------

CHD occurrence. Recall from Chap. 4 that regression models can account for
potential confounding or mediation influences of such variables by considering the
adjusted and unadjusted associations between the outcome and predictor of primary
interest. In this section, we briefly review these issues in the logistic regression
context.

Consider again the assessment of behavior pattern as a predictor of CHD in the
WCGS example considered in the previous section. In the analysis summarized in
Table 5.10, we concluded that a two-level indicator (dibpat) distinguishing type
A and B behaviors adequately captures the effects of this variable on CHD (in place
of a more complex, four-level summary of behavior). The discussion in Chap. 9 will
suggest that we should consider the possible causal relationships of the additional
variables in the model with both the outcome and behavior pattern before making
any conclusions about the possible causal connection between behavior type and the
outcome.

Recall the discussion of confounding and mediation presented in Sects. 4.4 and
4.5. To be a confounder of an association of primary interest, a variable must be
associated with both the outcome and the primary predictor. From Table 5.10, all of
the predictors in addition to dibpat are independently associated with the CHD
outcome. Since dibpat is a binary indicator, we can examine its association with
these predictors via logistic regression as well. Table 5.11 presents the resulting
model. With the exception of BMI (bmi 10), all appear to be associated with
behavior pattern. In deciding which variables to adjust for in summarizing the CHD-
behavior pattern association, it is worth considering the possible causal relationships
to help identify or distinguish variables with confounding influence from those that
could be potential mediators or effect modifiers.

Causal connections are likely to be very complex. For example, age can be
considered as a possible confounder of the relationship between behavior type and
CHD. However, BMI, cholesterol, SBP (hypertension), and smoking could either
exert a confounding influence or be viewed as mediating variables in the pathway
between behavior and CHD. The unadjusted odds ratio (95% CI) for the association
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between type A behavior and CHD is 2.36 (1.79, 3.10). By contrast, the adjusted
odds ratio in Table 5.10 is 2.01 (95% CI 1.51, 2.66). Note that dropping any of the
additional predictors from the model singly results in little change to the estimated
OR for type A behavior (less than 5%). Thus if any of these variables acts as a
mediator, the influence appears to be weak. This suggests that the influence of type
A behavior on CHD may act partially through another unmeasured pathway. (Or
that this characterization of behavior is itself mediated through other unmeasured
behavioral characteristics.) In this case, adjustment for the other variables is
appropriate if they are considered as confounders. However, if they (with the
possible exception of age) are regarded as mediators, then the effect assessed on
the adjusted model can be viewed as an estimate of the direct effect of behavior
not mediated through the pathways mediated by these variables. See Sects. 9.6 and
10.2 for further discussion of these issues. Of course, before concluding that we
have adequately modeled the relationship between behavior pattern and CHD we
need to account for possible interactions between included predictors (Sect. 5.2.4),
and conduct diagnostic assessments of the model fit including nonlinearity in
relationships with continuous predictors (Sect. 5.4).

5.2.3 Mediation

As an example of assessment of mediation in the context of a binary outcome,
we consider an example from the FIT study, a randomized trial investigating the
effect of a treatment for reducing spinal fracture risk in postmenopausal women with
prior history of fracture due to osteoporosis (Black et al. 1996b). We are interested
in evaluating possible mediation of treatment effects through changes in bone
mineral density (BMD). A finding that much of the beneficial effect of treatment
operated through this pathway would be of practical interest in development of
future treatments.

Table 5.12 presents two logistic regression models for the effect of randomized
treatment assignment on a binary indicator of spinal fracture occurrence. The first
model gives the marginal effect of assignment to treatment in the entire sample of
5,470 women. Assuming that randomization was effective, the unadjusted odds ratio
for treatment in this model represents an intention to treat estimate of the effective-
ness of treatment assignment. The second model in the table includes predictors
for change in BMD (in standard deviation units) between follow-up and baseline,
baseline level of BMD (also in standard deviation units), baseline smoking status
(former and current smokers compared to nonsmokers as the reference category),
and a binary indicator of a history of previous spinal fracture (frac base). Age
(in years) is also included as a restricted cubic spline with three knots. Note that
since the follow-up level of BMD reflects changes that occurred postrandomiza-
tion, these baseline measures represent potential confounders of the association
between change in BMD and new fracture occurrence. As discussed in Sect. 4.5,
interpretation of the apparent attenuation of the effect of treatment in this model
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Table 5.12 Logistic regression estimation of marginal and direct effect of treatment assignment
on new fracture risk in the FIT study example

*** Marginal treatment effect ***
. logistic frac_new i.treat

Logistic regression Number of obs = 5470
LR chi2(1) = 32.05
Prob > chi2 = 0.0000

Log likelihood = -1163.5889 Pseudo R2 = 0.0136

---------------------------------------------------------------------------
frac_new | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+-------------------------------------------------------------
1.treat | .5052736 .0624452 -5.52 0.000 .3965785 .64376

---------------------------------------------------------------------------

*** Direct treatment effect not mediated by change in BMD ***
. logistic frac_new i.treat bmd_diff bmd_base i.frac_base i.smoking age_spl*

Logistic regression Number of obs = 5339
LR chi2(8) = 311.04
Prob > chi2 = 0.0000

Log likelihood = -982.6019 Pseudo R2 = 0.1366

---------------------------------------------------------------------------
frac_new | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+-------------------------------------------------------------
1.treat | .5966412 .0829632 -3.71 0.000 .4543112 .7835616

bmd_diff | .7062953 .0505978 -4.85 0.000 .6137729 .8127648
bmd_base | .6885569 .0412505 -6.23 0.000 .6122735 .7743444

1.frac_base | 3.428229 .4569538 9.24 0.000 2.640048 4.451719
|

smoking |
1 | 1.141699 .1555701 0.97 0.331 .8741083 1.491207
2 | 1.379136 .2722494 1.63 0.103 .9366451 2.030669

|
age_spl1 | 1.123983 .0413332 3.18 0.001 1.045822 1.207986
age_spl2 | .9476609 .0329655 -1.55 0.122 .8852031 1.014526

---------------------------------------------------------------------------

relative to the first (unadjusted) model requires assumptions about the causal nature
of the relationships represented. In this example, a plausible interpretation is that
treatment effects are mediated through treatment-induced changes in BMD.

Following the approach introduced in Sect. 4.5, we can assess whether the
conditions for mediation are met by fitting two models: the first, a linear regression
for the dependence of change in BMD on treatment assignment; the second, a
logistic regression of the dependence of the outcome on change in BMD. In both
cases, we adjust for the possible confounders displayed in Table 5.12. Both models
yield highly significant results for the Wald tests of the coefficients representing
the key components of the mediating relationships. Further, there is no evidence
for interaction between treatment assignment and change in BMD. This, and the
observed attenuation in the estimated effect of treatment in the second model in
Table 5.12 provides evidence for the possible mediating role of change in BMD.

As also discussed in Sect. 4.5, it may also be of interest to make separate
estimates of the direct and indirect components of the overall effect of treatment
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assignment on fracture risk, and to estimate the proportion of the treatment effect
explained (PTE) by the mediating influence of changes in BMD. Similar to the
examples presented in that section, the odds ratio of 0.597 for treatment assignment
in the second model shown in Table 5.12 can be interpreted as an estimate of the
direct effect of treatment not mediated through effects on BMD.

By contrast to the results presented in Sect. 4.5, decomposing the relationships
between outcome, treatment, and a mediator into overall, indirect, and direct effect
components poses additional difficulties in the context of logistic regression models.
This results from the use of the odds ratio as a measure of association, as discussed in
Sect. 3.4.4. (A similar phenomenon occurs for the Cox regression model introduced
in the next chapter.) Performing analyses using an alternative binary regression
model based on relative risks rather than odds ratios (see Sect. 5.5.3) avoids
this difficulty. Chapter 9 presents further discussion of this topic, including an
introduction to more general techniques for assessment of mediation based on causal
inference methods. In particular, these methods allow estimation of the causal direct
effect of treatment, not mediated through the mediating variable. This estimate will
generally differ from the regression estimate described here and has a clearer causal
interpretation, especially when additional confounding variables play a role.

5.2.4 Interaction

Recall from Chap. 4 that an interaction between two predictors in a regression model
means that the degree of association between each predictor and the outcome varies
according to levels of the other predictor. The mechanics of fitting logistic regression
models including interaction terms is quite similar to standard linear regression (see
Sect. 4.6). For example, to fit an interaction between two continuous predictors x1
and x2, we include the product x1x2 as an additional predictor in a model containing
x1 and x2 as shown in (5.9):

log

�
P.x1; x2; x1 � x2/
1 � P.x1; x2; x1x2/

�

D ˇ0 C ˇ1x1 C ˇ2x2 C ˇ3x1 � x2: (5.9)

Fitting interactions between categorical predictors and between continuous and
categorical predictors also follows the procedures outlined in Chap. 4. However,
because of the log odds ratio interpretation of regression coefficients in the logistic
model, interpreting results of interactions is somewhat different. We review several
examples below.

For an illustrative example of a two-way interaction between two binary indicator
variables from the WCGS study, consider the regression model presented in
Table 5.13. The fitted model includes the indicator arcus for arcus senilis (defined
in Sect. 3.4), a binary indicator bage 50 for participants over the age of 50, and the
product between them, bage 50#arcus, made automatically by the ## operator
in the logistic command. The research question addressed is whether the
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Table 5.13 Logistic model for interaction between arcus and age as a categorical predictor

. logistic chd69 i.bage_50##i.arcus, coef

Logistic regression Number of obs = 3152
LR chi2(3) = 40.33
Prob > chi2 = 0.0000

Log likelihood = -865.43251 Pseudo R2 = 0.0228
---------------------------------------------------------------------------

chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+------------------------------------------------------------

1.bage_50 | .8932677 .1721239 5.19 0.000 .5559111 1.230624
1.arcus | .6479628 .1788637 3.62 0.000 .2973964 .9985293

|
bage_50#arcus |

1 1 | -.5920552 .2722269 -2.17 0.030 -1.12561 -.0585002
|

_cons | -2.882853 .1089261 -26.47 0.000 -3.096344 -2.669362
---------------------------------------------------------------------------

association between arcus and CHD is age dependent. The statistically significant
result of the Wald test for the coefficient associated with the product of the indicators
for age and arcus indicates that an interaction is present. This means that we cannot
interpret the coefficient for arcus as a log odds ratio without specifying whether
or not the participant is older than 50. (A similar result holds for the interpretation
of bage 50.)

The procedure for obtaining the component odds ratios is similar to the meth-
ods for obtaining main and interaction effects for linear regression models, and
is straightforward using the regression model. If we represent 1.arcus and
1.bage 50 as x1 and x2 in (5.9), we can compute the log odds for any combination
of values of these predictors using coefficients from Table 5.13. For example, the
log odds of CHD occurrence for an individual over 50 years old without arcus is
given by

log

�
P.0; 1; 0/

1 � P.0; 1; 0/
�

D ˇ0 C ˇ2
D �2:883C 0:893 D �1:990:

Similarly, the log odds for an individual between 39 and 49 years old without arcus is

log

�
P.0; 0; 0/

1 � P.0; 0; 0/
�

D ˇ0:

With these results, we see that the five expressions below define the component log
odds ratios in the example:

log

�
P.1; 0; 0/

1� P.1; 0; 0/
�

� log

�
P.0; 0; 0/

1 � P.0; 0; 0/
�

D ˇ1 D 0:648

log

�
P.1; 1; 1/

1� P.1; 1; 1/
�

� log

�
P.0; 1; 0/

1 � P.0; 1; 0/
�

D ˇ1 C ˇ3 D 0:056
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Table 5.14 Component odds ratios for arcus-age interaction model

Odds ratio Groups compared

exp.ˇ1/ D 1:91 Arcus vs. no arcus, age 39–49
exp.ˇ1 C ˇ3/ D 1:06 Arcus vs. no arcus, age 50–59
exp.ˇ2/ D 2:44 Age 50–59 vs. age 39–49, no arcus
exp.ˇ2 C ˇ3/ D 1:35 Age 50–59 vs. age 39–49, arcus
exp.ˇ1 C ˇ2 C ˇ3/ D 2:58 Arcus and age 50–59 vs. no arcus and ages 39–49

Table 5.15 Example odds ratio for arcus-age interaction model

. lincom 1.bage_50 + 1.bage_50#1.arcus

( 1) [chd69]1.bage_50 + [chd69]1.bage_50#1.arcus = 0
----------------------------------------------------------------------------

chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

(1) | 1.351497 .2850372 1.43 0.153 .8939071 2.043325
----------------------------------------------------------------------------

log

�
P.0; 1; 0/

1� P.0; 1; 0/
�

� log

�
P.0; 0; 0/

1 � P.0; 0; 0/
�

D ˇ2 D 0:893

log

�
P.1; 1; 1/

1� P.1; 1; 1/
�

� log

�
P.1; 0; 0/

1 � P.1; 0; 0/
�

D ˇ2 C ˇ3 D 0:301

log

�
P.1; 1; 1/

1� P.1; 1; 1/
�

� log

�
P.0; 0; 0/

1 � P.0; 0; 0/
�

D ˇ1 C ˇ2 C ˇ3 D 0:949: (5.10)

The corresponding odds ratios are then easily calculated by exponentiation, as
shown in Table 5.14.

Referring back to Table 5.13, we see that all of the component odds ratios aren’t
immediately obvious from standard regression output. However, the log odds ratio
and associated 95% CIs for arcus among individuals in the younger age group
and for older individuals among those without arcus can be read directly. This is
because when we set either variable to zero (the reference level), the interaction
term evaluates to zero and is eliminated. Estimated log odds ratios corresponding to
the nonreference levels of these variables involve the interaction term, and differ
from their counterparts by the value of its coefficient (–0.592). Standard errors
and 95% CIs for these estimates require additional calculations that cannot be
completed without further information about the fitted model. Fortunately, many
statistical packages have facilities that greatly simplify these calculations. Table 5.15
illustrates the use of the lincom command in Stata to compute the odds ratio
comparing the odds of CHD in individuals of age 50 and over with the odds among
those under 50, among individuals with arcus.

By specifying the correct combination of coefficients (corresponding to those in
Table 5.14), the output in the Table 5.15 provides the desired odds ratio estimate
along with the 95% CI. Results of the accompanying hypothesis test that the
underlying log odds ratio is zero are also provided.
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Table 5.16 Logistic model for interaction between arcus and age as continuous

. logistic chd69 i.arcus##c.age, coef

Logistic regression Number of obs = 3152
LR chi2(3) = 53.33
Prob > chi2 = 0.0000

Log likelihood = -858.93362 Pseudo R2 = 0.0301

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.arcus | 2.754185 1.140118 2.42 0.016 .5195952 4.988774

age | .089647 .0148904 6.02 0.000 .0604623 .1188317
|

arcus#c.age |
1 | -.0498298 .0233431 -2.13 0.033 -.0955814 -.0040782

|
_cons | -6.788086 .7179977 -9.45 0.000 -8.195335 -5.380836

----------------------------------------------------------------------------

Interactions between a continuous and categorical variable are handled in a
similar fashion to those involving binary predictors. In the previous example, the
categorization of age was somewhat arbitrary. In fact, because age was represented
by two categories, essentially the same results could have been obtained using
frequency table techniques (as illustrated in Table 3.9). A more complete assessment
of the interaction can be obtained by considering age as a continuous variable
(previously considered in Table 5.2). For example, this would allow us to investigate
whether increase in CHD risk with increasing age differs in individuals with and
without arcus. The logistic model addressing this question is displayed in Table 5.16.

Note the use of the ## operator in Stata, introduced in Sect. 4.6, which instructs
the program to include an interaction term between the two variables. This is
accomplished by inclusion of the product of arcus and age (arcus#c.age) as
well as the individual predictors age and 1.arcus. For a fixed age (e.g., 55),
the log odds ratio associated with having arcus is calculated as follows, using the
estimated coefficients from Table 5.16:

log

�
P.1; 55; 55/

1 � P.1; 55; 55/
�

� log

�
P.0; 55; 0/

1 � P.0; 55; 0/
�

D .�6:788C 2:754C .0:090� 0:050/� 55/� .�6:788C 0:090 � 55/
D .2:754� 0:050 � 55/ D 0:014:

We see that this corresponds to an odds ratio of exp.0:014/ D 1:01, which is similar
to that calculated for the corresponding age group in Table 5.14. We can obtain this
estimate and its 95% CI directly as shown in Table 5.17.

Note that because age is represented as a continuous variable, its value must be
specified in interpreting the effect of arcus on the log odds of CHD risk. Similarly,
among individuals with arcus, log odds ratios can be computed for any specified
increase in age. Figure 5.2 displays the estimated log odds as a function of age,
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Table 5.17 Logistic model for interaction between arcus and age as a continuous predictor

. lincom 1.arcus + 55*1.arcus#c.age

( 1) [chd69]1.arcus + 55*[chd69]1.arcus#c.age = 0

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
(1) | 1.013637 .2062336 0.07 0.947 .6802954 1.510313

----------------------------------------------------------------------------
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Fig. 5.2 Log odds of CHD and age for individuals with and without arcus senilis

separately for individuals with and without arcus. The equations for these two lines
can be obtained directly from the coefficients in Table 5.16 and are printed below
for individuals with and without arcus, respectively:

log

�
P.age/

1 � P.age/
�

D .�6:788C 2:754/C .0:090� 0:050/� age

D �4:034C 0:040 � age:

and

log

�
P.age/

1 � P.age/
�

D �6:788C 0:0896 � age:

Figure 5.2 displays the results obtained above, indicating that CHD risk is higher
for younger participants with arcus. However, older participants with arcus seem to
be at somewhat lower risk than those without arcus. Of course, further interpretation



5.2 Multipredictor Models 165

of these equations should be preceded by thorough checking of the linearity of the
relationship between age and the log odds of the outcome, including whether more
complicated, higher-order interaction terms are needed.

Recall the discussion in Sect. 5.1 where we motivated the logistic model as an
example of a multiplicative risk model (see (5.4)). By contrast, the risk difference
model (introduced in (5.1) and discussed further in Sect. 5.5.3) is an example of an
additive risk model. In addition to defining two distinct ways in which a predictor
can act to modify outcome risk, this distinction turns out to be very important in the
context of interaction: For a specified outcome and predictor pair, it is possible to
have interaction under the multiplicative model and not under the additive model,
and vice versa.

For example, if we fit the additive risk model to the data from the age/arcus
example in Table 5.16, the Wald test P -value for inclusion of the product term
(age 50arcus) is 0.15. (The corresponding value from the logistic model was
0.03.) The implications of this are that we should not necessarily regard interaction
as mirroring a biological mechanism, but rather as a property of the data and model
being fit. In the example, we would want to account for the interaction if we were
using the logistic model but not necessarily if we were analyzing the WCGS data
using the additive model. The additive regression model is described further in
Sect. 5.5.3. Also, see Clayton and Hills (1993) and Jewell (2004) for more detailed
discussions of the distinction between multiplicative and additive interaction.

5.2.5 Prediction

Frequently, the goal of fitting a logistic model is to predict risk of the binary outcome
given a set of risk factors. Recall that in Sect. 5.2.1, we fit a logistic model for the
CHD outcome in the WCGS sample, using age, cholesterol level, systolic blood
pressure, BMI, a binary indicator of current cigarette smoking (with nonsmokers
composing the reference group), and an indicator of type A behavior as predictors.
Table 5.10 summarizes the results. Table 5.18 presents an expanded version of
this model that includes two additional predictors bmichol and bmisbp for the
interactions between BMI and serum cholesterol level and BMI and SBP (both
centered and scaled as described in Sect. 5.2). These were both found to make
statistically significant contributions to the model in further analyses investigating
two way interactions between the original predictors in Table 5.10.

As shown in Sect. 5.2, the estimated coefficients from the model in Table 5.18
can be used directly in the logistic formula (5.8) to compute the log odds (or the
corresponding probability) of CHD for an arbitrary individual by specifying the
desired values for the predictors. Table 5.19 displays a few such predictions (labeled
prchd) for five individuals in the WCGS sample (obtained using the predict
command in Stata).
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Table 5.18 Expanded logistic model for CHD events

. logistic chd69 age_10 chol_50 sbp_50 bmi_10 smoke dibpat bmichol bmisbp,
coef

Logistic regression Number of obs = 3141
LR chi2(8) = 198.15
Prob > chi2 = 0.0000

Log likelihood = -788.01957 Pseudo R2 = 0.1117

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_10 | .5949713 .1201092 4.95 0.000 .3595615 .830381

chol_50 | .5757131 .07779 7.40 0.000 .4232474 .7281787
sbp_50 | 1.019647 .2066014 4.94 0.000 .6147159 1.424579
bmi_10 | 1.048839 .2998176 3.50 0.000 .4612074 1.636471
smoke | .6061929 .1410533 4.30 0.000 .3297335 .8826523
dibpat | .7234267 .1448996 4.99 0.000 .4394288 1.007425

bmichol | -.8896932 .2746471 -3.24 0.001 -1.427992 -.3513948
bmisbp | -1.503455 .631815 -2.38 0.017 -2.74179 -.2651208
_cons | -3.416061 .1504717 -22.70 0.000 -3.71098 -3.121142

----------------------------------------------------------------------------

Table 5.19 Sample predictions from the logistic model in Table 5.18

+---------------------------------------------------------------------+
| chd69 age chol sbp bmi smoke dibpat prchd |
|---------------------------------------------------------------------|

1. | no 49 225 110 19.78795 smoker A1,A2 .0433952 |
2. | no 42 177 154 22.9551 smoker A1,A2 .0708145 |
3. | no 42 181 110 23.62529 nonsmoker B3,B4 .0082533 |
4. | no 41 132 124 23.109 smoker B3,B4 .0089318 |
5. | yes 59 255 144 21.52041 smoker B3,B4 .1926046 |

|---------------------------------------------------------------------|

5.2.6 Prediction Accuracy

In some applications, we may be interested in using a logistic regression model
as a tool to classify outcomes of newly observed individuals based on values of
measured predictors. For the WCGS example just considered, this may involve
deciding on treatment strategy based on prognosis as measured by the predicted
probability from the logistic model in Table 5.18. Similar to the goals of developing
diagnostic tests for detecting diseases, this approach requires us to choose a cut-off
or threshold value of the predicted outcome probability above which treatment
would be initiated. A fundamental consideration in choosing this threshold is in
evaluating the degree of misclassification of outcomes incurred by the choice. For
a binary outcome, misclassification can be quantified by calculating the proportion
of individuals incorrectly classified as either having the outcome or not. These are
known as the false-positive and false-negative rates, respectively, and are standard
measures of prediction error in the logistic regression context. Rather than state
prediction performance in terms of misclassification, the following complementary
measures are frequently used in assessment of prediction rules for binary outcomes:
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Fig. 5.3 ROC curve for logistic prediction of CHD events

Sensitivity The proportion of individuals with the outcome that are correctly
classified, calculated as the complement of the false-negative rate.

Specificity The proportion of individuals without the outcome that are correctly
classified, calculated as the complement of the false-positive rate.

As the threshold value of a prediction rule varies between zero and one,
these quantities can be calculated and compared to evaluate overall performance.
A receiver operating characteristic (ROC) curve plots the sensitivity against the
false-positive rate (i.e., one minus the specificity) for a range of thresholds to help
visualize test performance. Figure 5.3 shows the ROC curve for the current example
(obtained using the lroc command in Stata), along with a diagonal reference line,
usually interpreted as representing the ROC curve for a test that is no better than the
flip of a coin.

ROC curves for tests with overall good performance (i.e., low misclassification
rates for both positive and negative outcomes) will lie close to the left and topmost
margins of the plot. In Fig. 5.3, a test with a sensitivity of around 75% is close to
optimal in this sense. (The threshold value corresponding to a sensitivity of 0.75
and a specificity of 0.64 in Fig. 5.3 is about 0.07.) Note that in most practical
situations, assessment of test performance has a subjective component: The cost
of misclassifying an individual as positive may be deemed more serious than the
alternative situation, or vice versa. These considerations weigh into evaluation of
test results. The area under an ROC curve (also known as the C-statistic) provides an
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overall measure of classification accuracy, with the value of one representing perfect
accuracy. In the present case, the value of 0.754 does not indicate very impressive
performance.

A clear limitation with the example above is that the individuals used to
evaluate the performance are the same as those used to fit the model on which the
classification rule is based. Alternative techniques that do not share this limitation
include cross-validation and learning set/test set validation (both described in
Sect. 10.1). Finally, note that although logistic regression is a valid approach for
development of prediction tools, alternative techniques are available. Classification
trees are an example of a larger class of tree-based methods, and involve fewer
modeling assumptions than the logistic approach. See Goldman et al. (1996) for an
example of their application in a clinical context. Prediction is discussed in greater
detail in Sect. 10.1.

5.3 Case-Control Studies

In situations where binary outcomes are rare or difficult to observe, it is not always
feasible to collect a large enough sample to investigate the relationship between the
outcome and predictors of interest. Consider the problem of evaluating dietary risk
factors for stomach cancer. Because this disease is relatively rare (accounting for
approximately 2% of annual cancer deaths in the United States), only a very large
cross-sectional or prospective sample would include sufficient numbers of cases
to evaluate associations with predictors of interest. Case-control studies address
this problem by recruiting a fixed number of individuals with the outcome of
interest (the cases) and a number of comparable control individuals free of the
outcome. Retrospective histories of predictor variables of interest are then collected
via questionnaire after recruitment.

A well-known example of a case-control study is the Ille-et-Vilaine study of
cancer conducted in France between 1972 and 1974. It includes 200 cases and
775 comparable controls, and was designed to investigate alcohol, diet, and tobacco
consumption as risk factors for esophageal cancer in men. This is known as an
unmatched study since cases and controls were sampled separately in predetermined
numbers. An alternative type of case-control study is based on matching a fixed
number of controls to each sampled case based on selected characteristics. Methods
for matched studies are different and will be covered briefly below in Sect. 5.3.1.

Because the overall proportion of individuals is fixed by design in a case-control
study (e.g., 200=995, or approximately five controls per case for Ille-et-Vilaine),
it is not meaningful to make direct comparisons of outcome risk (estimated as the
proportion of individuals with the outcome) between groups defined by predictor
variables, as is conventional in studies where participants are not sampled based
on their outcome status. Rather, analyses are based on the distribution of predictors
variables compared across case/control status. At first glance, this approach does not
seem to address the fundamental question of whether or not the predictor is asso-
ciated with increased risk of developing the outcome. For example, observing that



5.3 Case-Control Studies 169

Table 5.20 Odds ratio for smoking and esophageal cancer

. tabodds case ditob, or

---------------------------------------------------------------------------
ditob | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
0-9 g/day | 1.000000 . . . .
10+ g/day | 10.407051 64.89 0.0000 5.119049 21.157585

---------------------------------------------------------------------------

. tabodds ditob case, or

---------------------------------------------------------------------------
case | Odds Ratio chi2 P>chi2 [95% Conf. Interval]

-------------+-------------------------------------------------------------
0 | 1.000000 . . . .
1 | 10.407051 64.89 0.0000 5.119049 21.157585

---------------------------------------------------------------------------

self-reported alcohol consumption differed between cases and controls in Ille-et-
Vilaine does not seemingly translate into a clear statement about esophageal cancer
risk associated with alcohol use. Further, application of conventional measures of
association to settings where the role of the outcome and predictor are reversed
seemingly leads to unintuitive results. For example, observing that individuals with
esophageal cancer risk are twice as likely (in terms of the relative risk) as cancer-
free individuals to report a specified degree of alcohol consumption does not state
the association in a way that makes the possible causal connection clear.

Recall that our definitions of the relative risk, risk difference, and odds ratios
in Chap. 3 were stated in terms of the outcome probabilities. This limits their
usefulness in retrospective settings such as case-control studies. However, it is
a unique property of the odds ratio that it retains its validity as a measure of
outcome risk, even for case-control sampling. To demonstrate this for a simple
example, Table 5.20 presents odds ratios for the Ille-et-Vilaine study estimated
using the tabodds procedure in Stata. The first part of the table gives the odds
of the binary case-control status indicator case compared in two groups defined
by the binary indicator ditob of moderate to heavy level of smoking (10C
grams/day of tobacco smoked), and the second part gives the corresponding odds
ratio comparing moderate-to-heavy level of smoking between cases and controls.
The estimated odds ratios are identical. This property does not hold for the risk
difference and relative risk.

We can also demonstrate this property directly using the definition of the odds
ratio. Table 5.21 presents a hypothetical 2 � 2 table for a binary outcome and
predictor in terms of the frequencies of n individuals in the four possible cross-
categorizations (labeled a, b, c, and d ). We estimate the outcome probability among
individuals with and without the predictor with the proportions a=.a C c/ and
b=.b C d/, respectively, and the corresponding odds of the outcome as

a=.aC c/
c=.aC c/ and

b=.b C d/
d=.b C d/: (5.11)

The resulting odds ratio is then ad=bc.
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Table 5.21 Outcome by
predictor status for a
case-control study

Predictor

Outcome Yes No Total

Yes a b aC b

No c d c C d

Total aC c b C d n

Similarly, we can estimate the exposure probability among individuals with and
without the outcome as a=.a C b/ and c=.c C d/, and the corresponding odds as
above. It is easy to verify that the odds ratio based on these is also ad=bc. This
property of the odds ratios is central to the wide use of case-control studies, and
suggests that logistic regression may be applicable as well. The additional fact that
the odds ratio approximates the relative risk for rare outcomes (e.g., many forms of
cancer) increases its appeal.

Recall that in the logistic regression model, the intercept coefficient ˇ0 is
interpreted as the “baseline” log odds of outcome risk obtained when no predictors
are included in the model (or, equivalently, when all predictors take on the value
zero). As we have stated above, this quantity cannot be meaningfully estimated
from case-control studies. As a result, the intercept coefficient in logistic regression
models for case-control data can not be interpreted as providing an estimate of
baseline risk in the population from which the sample was drawn. It is a remarkable
fact that the logistic model is nonetheless directly applicable to data from case-
control studies, and that estimated regression coefficients for included predictors
provide valid estimates of log odds ratios, sharing the interpretation from other
study types. Note that the logistic is the only binary regression model with this
property.

A primary hypothesis underlying the Ille-et-Vilaine study was that alcohol
consumption was related to esophageal cancer. Alcohol consumption was measured
in average total daily consumption in grams, estimated directly from questionnaire
responses on a number of different types of alcoholic beverages. The investigators
recognized that age and smoking were potential confounding influences, and should
be accounted for in assessing the association between alcohol consumption and
cancer risk. (Dietary factors were also considered, but are not discussed here.)

Table 5.22 presents the results of a logistic regression model fit to these data,
including a four-level categorization alcgp of average daily alcohol consump-
tion and controlling for the dichotomous indicator ditob of moderate-to-heavy
smoking (introduced above) and age (in years) as a continuous predictor. The
lowest level of alcohol consumption (0–39 g/day) is taken as the reference category,
and the three included indicators represent 40–79, 80–119, and 120+ g/day,
respectively. The results indicate a clear increase in cancer risk with increasing
alcohol consumption, and that this effect is evident when age and smoking are
accounted for.

Estimated odds ratios in Table 5.22 are larger than 1.0, and the associated 95%
CIs exclude 1.0, indicating that each of the predictors is associated with statistically
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Table 5.22 Logistic model for alcohol consumption and esophageal cancer

. logistic case i.alcgp i.ditob age

Logistic regression Number of obs = 975
LR chi2(5) = 280.80
Prob > chi2 = 0.0000

Log likelihood = -354.34556 Pseudo R2 = 0.2838

----------------------------------------------------------------------------
case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
alcgp |

2 | 4.063502 1.024363 5.56 0.000 2.47926 6.66007
3 | 7.526931 2.138602 7.10 0.000 4.312895 13.13612
4 | 32.07349 11.58611 9.60 0.000 15.80015 65.10752

|
1.ditob | 7.375744 2.732364 5.39 0.000 3.56842 15.24529

age | 1.068417 .0087666 8.07 0.000 1.051372 1.085738
----------------------------------------------------------------------------

significant increases in risk of esophageal cancer. Further, since esophageal cancer
is relatively rare in the general population on which this study was conducted,
interpreting the odds ratios as estimated relative risks is approximately correct.

A single summary of the contribution of alcohol consumption to a model
including age and smoking can be obtained by fitting the same model excluding the
indicators for alcohol, and performing a likelihood ratio test, as shown in Table 5.23.
This procedure assumes that the full model including alcohol in Table 5.22 is fit first,
and the model log likelihood is stored for future reference as mod1 (in the second
line of the output in Table 5.23). The results indicate a substantial contribution of
the categorical summary alcgp of alcohol consumption to the overall fit of the
model as summarized by the large log LR statistic (128.7). Further analyses might
investigate the relationship between alcohol, smoking, and the log odds of cancer
risk in more detail, possibly including these variables as continuous measures. We
would naturally want to evaluate the linearity assumption implicit in including the
variables (and age) in this form as well.

5.3.1 Matched Case-Control Studies

Consider the issues that would arise in designing a case-control study investigating
esophageal cancer in a different population than Ille-et-Vilaine, possibly focusing
on exposures other than alcohol as potential risk factors: We certainly would like
to take into account known confounding factors such as those considered above
as part of our design. If there are many such variables, we may be concerned
that they will not be well represented in our chosen sample, and/or that analyses
accounting for their influence may be overly complex. If we could recruit study
subjects accounting for their profiles for these suspected confounders, we might be
able to avoid some of these difficulties. This is the rationale for matching. We can
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Table 5.23 Likelihood ratio test for contribution of alcgrp

. quietly logistic case i.alcgp i.ditob age

. est store mod1

. logistic case i.ditob age

Logistic regression Number of obs = 975
LR chi2(2) = 152.11
Prob > chi2 = 0.0000

Log likelihood = -418.68894 Pseudo R2 = 0.1537

----------------------------------------------------------------------------
case | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.ditob | 9.463852 3.362354 6.33 0.000 4.716825 18.9883

age | 1.055568 .0073642 7.75 0.000 1.041232 1.0701
----------------------------------------------------------------------------
. lrtest mod1

likelihood-ratio test LR chi2(3) = 128.69
(Assumption: . nested in mod1) Prob > chi2 = 0.0000

build in control for confounding by incorporating knowledge of known confounders
into the design of the study. By matching cases with controls that have the same
values of these variables, we ensure control for confounding by comparing cases
and controls within strata defined by the matching factors. In one of the simplest
matched designs, disease cases are paired with controls into matched sets having
similar values of the matching variables.

Because cases and controls within matched sets are sampled together based on
shared values of the matching variables, the structure of the overall sample differs
from that of an unmatched study. If we were to try to account for the sampling design
via a standard logistic model that accounted for the matched sets with indicator
variables, the number of parameters would frequently be too large for reliable
estimation. For example, in a matched pair study with 200 matched pairs, as many
as 199 parameters would be needed to account for the matching criteria. Clearly
another regression approach is called for.

Regression modeling for matched data is based on a modification of the
maximum-likelihood estimation approach used for the conventional logistic model
(and described in more detail in Sect. 5.6). The conditional logistic regression model
avoids estimating parameters accounting for the matching via conditioning. The
parameters for predictors in this model have the log odds ratio interpretation familiar
from the standard logistic model. The result is that we can conduct regression
analyses exactly as before. However, the variables used in matching are controlled
for automatically and not used directly in modeling. The clogit command in Stata
provides a very convenient way to fit conditional logistic regression models. Most
major statistical packages have similar facilities.

Matching is not always a good idea and should never be undertaken lightly.
Effective matching (in cases where matching variables are strong confounders) can
yield more precise estimates of the disease/exposure relationship. However, in cases
where the matching variables do not actually confound the relationship between
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the exposure of interest and the outcome, the matching can lead to estimates with
decreased precision relative to those obtained from an unmatched study. Further,
satisfying matching criteria can be difficult and may result in a loss of cases. Good
basic references for statistical analysis of data from matched case-control studies
include Breslow and Day (1984) and Jewell (2004).

5.4 Checking Model Assumptions and Fit

Section 4.7 presented a number of techniques for assessing model fit and assump-
tions for linear regression models. Here, we cover many of the same topics for
logistic models. Fortunately, many of the issues and techniques are similar and the
methods from linear models apply more or less directly. One simplification of model
assessment for binary outcomes is that no checks of distributional assumptions
analogous to normally distributed residuals and constant variance are required.
This is because the probability distribution for binary outcomes has a simple form
that does not include a separate variance parameter. All required parameters are
included in the model for the relationship between the log odds of the outcome
and the predictors as described in Sects. 5.1 and 5.2. By contrast, construction and
interpretation of graphical methods of assessment are more complex because of
the nature of residuals from logistic models. We focus here on issues that differ
from the approaches discussed in Sect. 4.7. We also note that additional issues
arise in assessment of models for repeated or longitudinal binary outcomes such as
those introduced in Chap. 7, due to the nature of the assumed dependence between
outcomes.

5.4.1 Linearity

In Table 5.2, we fit a simple logistic regression model relating CHD risk and age for
the WCGS data. In addition to providing a simple description of the relationship,
the model makes it easy to compute the log odds associated with an arbitrary value
of age. However, as in simple linear regression (Sect. 4.7), the uncritical adoption
of the assumption that variables are linearly related to the outcome can lead to
biased estimates and incorrect inferences. LOWESS scatterplot smoothing methods
(introduced in Chap. 2) offer an exploratory approach to assessing the form of
relationship between the log odds of the outcome and age that obviates the need to
impose a particular parametric form. In the case of binary outcomes, these average
the outcome proportions (or the corresponding log odds) over groups whose size is
specified the bandwidth of the selected smoothing method. Figure 5.4 displays the
log odds estimated by LOWESS (obtained using the lowess command in Stata
with the logit option) along with the linear logistic fit. The latter is represented
by the dashed line, obtained by simply plotting the log odds estimated by the model
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Fig. 5.4 Assessing linearity in the relationship between CHD risk and age

for all the (3,154) individuals in the sample. The smoothed estimated is given by the
dotted line. The plotted points are the empirical log odds of the outcome for each of
the unique values of age observed in the sample.

Although not conclusive, the results indicate that the linear logistic model fits the
data reasonably well. However, the smoothed estimate suggests an initial decrease in
the log odds of CHD risk for ages less than 42, followed by a fairly regular increase.
The decrease might be due to elevated CHD risk among younger participants. In
fact, 7% of the 39-year-olds (nD 266) in the study had CHD compared to 4%
of the 40-year-old participants. The initial decline in the smoothed estimate is
clearly influenced by the observed 2% rate of CHD among the 42-year-olds as well.
A reasonable approach to evaluating this further would be to test for particular
departures from linearity by adding polynomial terms in age or using restricted
cubic splines (similar to the approach described in Sect. 4.10). Table 5.24 displays
results from a model including a quadratic term in age (centered to reduce possible
collinearity with the linear term). The Wald test statistic clearly indicates that the
addition of this term does not afford a statistically significant improvement in the fit
over the linear model. We can conclude that the linear model is adequate.

If the role of age in modeling is primarily as an adjustment factor, we would
also want to examine whether the assumption of linearity impacts inferences about
other predictors. Adoption of the linear form is acceptable if no impacts are seen,
but predictions of outcome risk based on the linear model may yield biased results
for ages not well represented in the data. Diagnostics for checking linearity in
the context of multiple predictor models are somewhat less well developed for
logistic models than for linear models. For example, tools like the component plus
residual (CPR) plots presented in Sect. 4.7 are not generally available. However,
the techniques presented here in combination with LR comparisons of models are
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Table 5.24 Logistic model incorporating a quadratic effect of age

. logistic chd69 age agesq, coef

Logistic regression Number of obs = 3154
LR chi2(2) = 42.96
Prob > chi2 = 0.0000

Log likelihood = -869.14333 Pseudo R2 = 0.0241

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | .0769963 .0150015 5.13 0.000 .0475938 .1063987

agesq | -.0005543 .0021066 -0.26 0.792 -.0046831 .0035745
_cons | -6.04301 .678737 -8.90 0.000 -7.37331 -4.71271

----------------------------------------------------------------------------

usually sufficient to diagnose and correct nonlinearity problems. The increased
availability of nonparametric regression approaches for binary regression (discussed
briefly in Sect. 5.5) is rapidly expanding the arsenal of available tools in this area.

5.4.2 Outlying and Influential Points

Similar to the definition of residuals for linear regression (in Sect. 4.7), standardized
Pearson residuals for logistic regression models are based on comparing observed
values of the outcome variable with predictions from a fitted model. However,
because outcomes in logistic models are binary, the values of these residuals cluster
in two groups corresponding to the two values of the outcome. This makes graphical
displays of residuals more difficult to interpret than in the linear regression case. An
exception occurs when there are relatively few unique covariate patterns in the data
(e.g., when predictors are categorical) and residuals and predictions can be grouped.

Figure 5.5 shows standardized Pearson residuals for the model in Table 5.18,
plotted against the ordered observation number for the individual subjects. This
index plot allows observations with unusually large residuals relative to other
observations to be identified and investigated as potential outliers. The grouping
of residuals based on outcome status is evident from the plot. In this case, although
a number of observations have fairly large residuals (i.e., greater than two), none
appear to be indicative of outlying observations. A number of other plots based on
residuals are possible. In our experience, these are less useful in general than the
investigation of influential points discussed in the next paragraph.

Diagnostic techniques for identifying influential observations in logistic
regression models are also quite similar in definition and interpretation to their
counterparts for linear regression. Most statistical packages that feature logistic
regression allow computation of influence statistics that measure how much
the estimated coefficients for a fitted model would change if the observation were
deleted. Figure 5.6 shows influence statistics (often called DFBETA values) for the
model in Table 5.18, plotted against the estimated outcome probabilities.



176 5 Logistic Regression

−
2

0
2

4
6

8
S

ta
nd

ar
di

ze
d 

P
ea

rs
on

 R
es

id
ua

ls

0 1000 2000 3000
Observation Number

Fig. 5.5 Standardized pearson residuals for logistic model in Table 5.18

0
.1

.2
.3

.4
D

F
B

E
T

A

0 .2 .4 .6
Predicted Probability of CHD

Fig. 5.6 Influence statistics for logistic model in Table 5.18

Two observations appear to have more influence than the rest. The most extreme
observation is for an individual who is a nonsmoker with CHD, characterized by
below average cholesterol (188) and a very high BMI value (39). Deletion of either
observation (or both) resulted in no noticeable changes to model coefficients. Since
there is no reason to suspect that any of the data are incorrect, both observations
were retained.
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Table 5.25 Link test for logistic model in Table 5.18

. linktest

Logit estimates Number of obs = 3141
LR chi2(2) = 200.40
Prob > chi2 = 0.0000

Log likelihood = -786.89258 Pseudo R2 = 0.1130

----------------------------------------------------------------------------
chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
_hat | .5646788 .306056 1.85 0.065 -.0351799 1.164538

_hatsq | -.1002356 .0688901 -1.46 0.146 -.2352576 .0347865
_cons | -.3983753 .3230497 -1.23 0.218 -1.031541 .2347904

----------------------------------------------------------------------------

5.4.3 Model Adequacy

The techniques discussed above address potential nonlinearity in the relationship
between the log odds of the outcome and the predictor, but implicitly assume that the
logistic model is correct. Recall from Sect. 4.7 that transformations of the outcome
variable can be used to ensure that the distribution of the errors in a regression model
are normally distributed. In a similar way, we can investigate the adequacy of the
logistic model.

5.4.3.1 Specification Tests

A simple (and rather crude) approach to evaluating whether a given logistic model
provides an adequate description of the data is through the use of a specification test.
The linktest procedure in Stata is an example. Table 5.25 presents the results
of applying linktest immediately after fitting the model in Table 5.18. This test
involves fitting a second model, using the estimated right-hand side (i.e., the linear
predictor) from the previously fitted model as a predictor. We would expect that
the Wald test result for this predictor (labeled hat) to be statistically significant
if the original model provided a reasonable fit. The model fit by linktest also
includes the square of this predictor (labeled hatsq). The Wald test for inclusion
of the latter variable is used to evaluate the hypothesis that the model is adequate;
that is, the inclusion of the squared linear predictor should not improve prediction if
the original model was adequate. Rejection indicates that the model is inadequate,
and that an alternative binary regression model should be considered. Inadequacy
may reflect the fact that even though important predictors are included and modeled
correctly, the logistic model is not an appropriate representation of the relationship
between outcome and predictors. It may also indicate that important predictors
have been omitted, or are represented incorrectly in the model. The test can not
distinguish between these two alternative explanations. It also does not suggest what
alternate model form might be preferable.
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In the example, the P -value for the Wald test for the predictor hatsq does not
provide strong evidence of inadequacy of the logistic model. However, the fact that
the P -value for the predictor hat in Table 5.25 is also not very small provides
some indication that the overall fit may not be very good. (This is consistent with
the large residuals noted in Sect. 5.4.2.)

Possible alternatives to the logistic model were discussed in Sect. 5.1, and
will be covered in more detail in Sect. 5.5. Because these typically involve the
use of specialized methods of estimation and result in coefficients with different
interpretations, they are rarely used in practice. Fortunately, differences between
results from alternative models are often small, and the logistic model applies in
a very wide range of problems involving binary outcomes. Problems with fit can
frequently be addressed using judicious selection and appropriate transformations
of predictors.

5.4.3.2 Goodness of Fit Tests

Another approach to assessing model adequacy is provided by goodness of fit
tests. The Hosmer–Lemeshow test is an example of this approach applicable to
binary regression models such as the logistic. The test works by forming groups
of the ordered, estimated outcome probabilities (e.g., ten equal-size groups based
on deciles of the distribution of the outcome probabilities) and evaluating the
concordance of the expected outcome frequencies in these groups with their em-
pirical counterparts. The underlying hypothesis is that the estimated and observed
frequencies agree. Thus, a statistically significant finding (i.e., rejection) indicates
lack of fit. A nonsignificant finding rules out gross lack of fit.

Table 5.26 displays results of the Hosmer–Lemeshow test for the regression
model fitted in Table 5.18. The table option requests that the observed and
expected frequencies of the binary outcome (ones and zeros) for the requested
groups be printed as well. The nonsignificant results do not indicate evidence for
gross lack of fit. Increasing the number of groups to 20 yields a larger P -value
(0.35), illustrating the sensitivity of the test to the number of groups chosen, and
raising the possibility that judicious choice of group size may allow an investigator
to choose the number of groups resulting in the most favorable P -value. To avoid
this subjectivity, ten groups are generally recommended.

The Hosmer–Lemeshow test has a number of serious limitations. First, it is not
sensitive to a number of sources of lack of fit such as misspecification of the model,
and lacks power in these situations as a consequence. Further, the results of the test
depend on the number of groups specified as well as the distribution of predictor
values within these groups. Finally, the test can be very sensitive to fairly small fit
discrepancies in large samples. Thus, a significant result may not signal a serious fit
problem in such cases. Similarly, failure to find a statistically significant result does
not necessarily mean that the model fits the data well. This test is most useful as a
very crude way to screen for fit problems, and should not be taken as a definitive
diagnostic of a “good” fit. Use in conjunction with a specification test (such as
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Table 5.26 Hosmer–Lemeshow goodness of fit test

. lfit, group(10) table

Logistic model for chd69, goodness of fit test

(Table collapsed on quantiles of estimated probabilities)
+--------------------------------------------------------+
| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
|-------+--------+-------+-------+-------+-------+-------|
| 1 | 0.0160 | 1 | 3.3 | 314 | 311.7 | 315 |
| 2 | 0.0251 | 6 | 6.5 | 308 | 307.5 | 314 |
| 3 | 0.0344 | 11 | 9.3 | 303 | 304.7 | 314 |
| 4 | 0.0450 | 12 | 12.5 | 302 | 301.5 | 314 |
| 5 | 0.0575 | 18 | 16.0 | 296 | 298.0 | 314 |
|-------+--------+-------+-------+-------+-------+-------|
| 6 | 0.0728 | 10 | 20.4 | 304 | 293.6 | 314 |
| 7 | 0.0963 | 28 | 26.5 | 286 | 287.5 | 314 |
| 8 | 0.1268 | 44 | 34.7 | 270 | 279.3 | 314 |
| 9 | 0.1791 | 50 | 46.7 | 264 | 267.3 | 314 |
| 10 | 0.5996 | 76 | 80.3 | 238 | 233.7 | 314 |
+--------------------------------------------------------+

number of observations = 3141
number of groups = 10

Hosmer--Lemeshow chi2(8) = 11.36
Prob > chi2 = 0.1824

the one described above) may provide a bit broader screen to detect problems.
However, results of either approach should not be relied on to guarantee model fit
in the absence of supplementary investigations, including diagnostic assessment of
residuals and influential observations.

5.4.4 Technical Issues in Logistic Model Fitting

In some cases, measures of association for binary outcomes such as odds ratios
and relative risks take on the value zero, or are infinite. This happens when sub-
groups formed by the predictors are homogeneous with respect to outcome status.
This translates to estimation problems in regression models, where parameters are
typically represented as the logarithm of the underlying association measures.

Table 5.27 presents an example from the WCGS study using a four-level
categorization of cholesterol level (0–150, 151–200, 201–250, and 251C) as a
predictor of CHD outcome. Note the missing odds ratio estimates and the note
explaining that “0.cholc dropped and 89 obs not used.” Examination of the data
reveals that there are no observed CHD cases among the 89 individuals with
cholesterol in the default reference category (0–150 mg/dL). Because the odds of
CHD are zero for this group, it is not possible to estimate valid odds ratios for the
other categories. Choosing an alternate reference group allows valid estimates to be
made. However, the odds ratio of zero for the lowest category still causes a fitting
issue: the log odds ratio is infinite, and the parameter can not be estimated.

The problem raised in this example can be addressed by choosing a different
categorization of cholesterol. However, this approach changes the interpretation of
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Table 5.27 Logistic model for CHD and categorized cholesterol level

. logistic chd69 i.cholc
note: 0.cholc != 0 predicts failure perfectly

0.cholc dropped and 89 obs not used

note: 3.cholc omitted because of collinearity

Logistic regression Number of obs = 3053
LR chi2(2) = 52.77
Prob > chi2 = 0.0000

Log likelihood = -855.50635 Pseudo R2 = 0.0299

----------------------------------------------------------------------------
chd69 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
cholc |

0 | (empty)
1 | .2884527 .0574556 -6.24 0.000 .1952214 .4262082
2 | .4514053 .0642673 -5.59 0.000 .3414914 .5966966
3 | (omitted)

----------------------------------------------------------------------------

the categorized variable, and will not work in all cases. In small samples, frequently
no amount of regrouping or recategorizing will eliminate these issues. In these
situations, exact logistic regression methods (discussed in Sect. 5.5.4) should be
considered. When exact methods are not computationally feasible, the penalized
maximum likelihood approach proposed by Firth (1993) provides another possible
alternative. This is available for Stata in a downloadable, user-defined module
entitled firthlogit. We recommend that a statistician be consulted to diagnose the
exact nature of the problem and suggest appropriate solutions.

Another issue to consider in fitting logistic regression models with multiple
predictors is deciding how many predictors is appropriate. Fitting too many
predictors can result in biased estimates and incorrect inferences. The severity
of these problems is directly related to the sample size, the number of observed
outcomes, and the distribution of outcomes over the included predictors. Chapter 10
discusses model building strategies in detail, and Sect. 10.4.2 provides guidelines
for selection of appropriate number of predictors.

5.5 Alternative Strategies for Binary Outcomes

A review of current clinical and epidemiological research studies involving binary
outcomes will reveal that the overwhelming majority of regression analyses are
based on the logistic model. In some instances, specific knowledge about a disease-
exposure relationship may suggest a different model. Alternatively, it may be
desirable to summarize observed associations using measures such as the relative
risk or risk difference in preference to the odds ratio. Because the logistic model
yields only the latter, there are situations where alternative regression approaches
may be preferred. Finally, diagnostic evaluations may lead to the conclusion that
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the logistic model is simply not right for a particular data set. In this section,
we review some examples of alternative approaches to binary regression. We also
briefly discuss models for categorical outcomes with more than two levels.

5.5.1 Infectious Disease Transmission Models

Recall the CDC transmission study data discussed in Sect. 3.4 (O’Brien et al. 1994).
The goal of this study was to investigate risk factors for sexual transmission of HIV
in susceptible female partners of previously infected males. Although the outcomes
were restricted to prevalent HIV serostatus measured at enrollment, the infection
dates of the male partners were approximately known from transfusion records. In
addition, self-reported information on number of unprotected sexual contacts was
also collected. These data pertain to contacts that occurred between the time of
infection of the male partner and the time of enrollment. (Note that monogamy was
an eligibility criterion, to reduce the possibility of infection from other sources.)

Unlike many chronic diseases, the mechanism of acquisition of many infectious
diseases is well understood. In these cases, simple probabilistic transmission models
linking outcomes with exposures are frequently used to quantify infection risk.
One of the most basic such models links the cumulative probability of escaping
infection following a series of exposed contacts. The model assumes that each
contact carries an identical risk 	 of infection, and that outcomes of successive
contacts are independent. Under these assumptions, the chance of escaping infection
following k contacts is

.1 � 	/k;
with the complementary probability of being infected following k contacts given by

P.k/ D 1 � .1 � 	/k:

This model corresponds well to the observed data from the CDC study: each female
partner can be characterized by the binary infection status and the reported number
of exposed contacts k (the predictor), with the outcome probability given above.
This suggests that a binary regression approach linking these two variables would
be ideal for estimating the per-contact transmission probability 	. Unfortunately,
the logistic model does not provide a direct estimate. By contrast, an alternative
transformation of P.k/, known as the complementary log–log, provides a model
with a more appealing structure:

logf� log Œ1 � P.k/�g D log Œ� log.1 � 	/�C log.k/: (5.12)

This model is similar to the familiar linear model

logf� log Œ1 � P.x/�g D ˇ0 C ˇ1x; (5.13)
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Table 5.28 Complementary log–log regression model for per-contact risk

. glm hivp, family(binomial) link(cloglog) offset(logcontacts)

Generalized linear models No. of obs = 31
Optimization : ML: Newton-Raphson Residual df = 30

Scale parameter = 1
Deviance = 40.8340195 (1/df) Deviance = 1.361134
Pearson = 84.90572493 (1/df) Pearson = 2.830191

Variance function: V(u) = u*(1-u) [Bernoulli]
Link function : g(u) = ln(-ln(1-u)) [Complementary log-log]
Standard errors : OIM

Log likelihood = -20.41700975 AIC = 1.381743
BIC = -62.18559663

----------------------------------------------------------------------------
hivp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
_cons | -7.033126 .3803284 -18.49 0.000 -7.778556 -6.287696

logcontacts | (offset)
----------------------------------------------------------------------------

. bootstrap "glm hivp, family(binomial) link(cloglog) offset(logcontacts)"
_b _se, reps(1000)

command: glm hivp, family(binomial) link(cloglog) offset(logcontacts)
statistics: b_cons = [hivp]_b[_cons]

Bootstrap statistics Number of obs = 31
Replications = 1000

----------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+--------------------------------------------------------------

b_cons | 1000 -7.033126 -.0629388 1.163788 -8.216878 -6.296359
----------------------------------------------------------------------------

where the intercept coefficient ˇ0 D log Œ� log.1 � 	/�, but includes the predictor
x D log.k/ as a fixed offset, with corresponding coefficient ˇ1 D 1 as specified by
model (5.12). Predictors with fixed coefficients are referred to as offsets, and can be
easily accommodated by standard statistical software packages. (Part of the model
evaluation procedure in this case may include checking whether this is reasonable
in terms of fit.) Similar to the logistic model, an inverse transformation allows us to
represent this model on the probability scale as follows:

P.x/ D 1 � exp Œ� exp.ˇ0 C ˇ1x/� ; (5.14)

Table 5.28 shows the results of fitting model (5.12) using the generalized linear
model estimation program glm in Stata, which we explain in greater detail in
Chap. 8. Note that the logarithm of the number of contacts logcontacts appears
as an offset, and no coefficient for this predictor was estimated.

An additional calculation inverting the complementary log–log transform of the
intercept cons provides the estimate of 	:

	 D 1 � exp Œ� exp.�7:033/� D 0:0009:
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The approximate 95% CI (0.0004, 0.0019) can be obtained via a similar calculation
applied to confidence limits given in the regression output. Because of the small
sample size (n D 31), the approximate CIs may not be reliable. For comparison,
Table 5.28 also gives bias-corrected 95% bootstrap CIs (calculated using 1,000
bootstrap samples) for the same model. The bias-corrected CI (0.0003, 0.0018) for
the parameter 	 can be obtained from the interval for the intercept coefficient ˇ0
(represented by b cons in the table) via the calculation used for the approximate
interval. The lower bound of this interval is only slightly more conservative than
the approximate interval, but otherwise they are remarkably similar. The bootstrap
interval should still be considered a better summary of uncertainty about 	.

Clearly, model (5.12) is very simple, and a number of the underlying assumptions
are questionable (e.g., that the per-contact risk 	 is constant). However, it is a useful
“null” model to which more complex alternatives may be compared. Further, the pa-
rameter 	 is an important ingredient in more complex mathematical epidemic mod-
els. This model is also interesting because it is an example of a proportional hazards
model. These arise frequently in studies where controlling for duration of follow-up
is an important consideration in data analyses, and are the subject of the next chapter.
Finally, model (5.13) and the conventional logistic model are examples of the family
of GLMs that includes most of the regression models considered in this book.

5.5.2 Pooled Logistic Regression

The MIRA study was a randomized trial designed to investigate the effectiveness
of diaphragms as a means of prevention of sexual transmission of HIV in women
in sub-Saharan Africa (Padian et al. 2007). Here, we consider data on 1,000
randomly selected individuals participating in a substudy investigating risk factors
for infection with herpes simplex virus type 2 (HSV-2), conducted among women
testing negative for infection at enrollment (de Bruyn et al. 2011). The study
design is characterized by visits at three month intervals following enrollment, with
infection outcome and predictor information collected at each. HSV-2 infection
can occur at most once, so individual outcomes can be summarized by a binary
indicator of whether or not infection has occurred during follow-up. Also, the
interval of infection occurrence is informative about the possible time of infection.
For example, individuals at higher risk for infection at any time during follow-
up may also tend to be infected earlier. Direct application of the logistic model
described in previous sections would not account for this, or the fact that multiple
observations of both predictors and outcomes are available. Methods for regression
analysis of survival outcomes (as discussed in Chap. 6) based on precisely measured
times of outcome occurrence also don’t apply unless we make an assumption
about the actual occurrence times of infections (e.g., the midpoint of the interval
between visits). Pooled logistic regression provides a hybrid approach that avoids
such assumptions, and also allows the information on outcome occurrence collected
in multiple study visits to be used appropriately.



184 5 Logistic Regression

Table 5.29 Example data from MIRA study

. list id mos hsv2 age stihx newparts if id==2 | id==54

+---------------------------------------------+
| id mos hsv2 agecat stihx newparts |
|---------------------------------------------|

4. | 2 3 0 1 0 0 |
5. | 2 6 0 1 0 0 |
6. | 2 9 0 1 0 0 |
7. | 2 12 0 1 0 1 |
8. | 2 15 0 1 0 0 |

|---------------------------------------------|
9. | 2 18 0 1 0 0 |

10. | 2 21 0 1 0 0 |
11. | 2 24 0 1 0 0 |

409. | 54 3 0 2 0 1 |
410. | 54 6 0 2 0 1 |
411. | 54 9 1 2 0 0 |

+---------------------------------------------+

Table 5.29 illustrates observations of key study variables for two selected partici-
pants from the MIRA study. In addition to indicators of outcome occurrence hsv2,
each individual contributes observations of predictors that are fixed (agecat,
a categorical representation of age at enrollment; stihx, a binary indicator of
self-reported history of prior sexually transmitted infections) or time varying
(newparts, a binary indicator of self report of recent new sexual partners). In
addition to outcome and predictor values, the follow-up duration (mos) is recorded
as the number of months elapsed since enrollment. The first individual remained
uninfected for all study visits, and provides measures of the HSV-2 outcome and
fixed and time-varying predictors for each interval. The actual time of infection is
said to be right censored at the time of the last visit. The second individual was
first observed to be infected at the fifth visit (12 months), and was removed from
observation for treatment thereafter. The time of infection in this case is censored
into the interval between the fourth and fifth visits. This data structure is typical
for application of the pooled logistic model, and also shares features with survival
data that are the subject of the next chapter. We would like the analysis to assess the
association between predictors and outcome occurrence, and also account for the
duration of follow-up.

Table 5.30 displays the results of fitting a logistic regression model to the data
partially shown in Table 5.29. Because we want to make as few assumptions as
possible about how infection risk varies with duration of follow-up, the model
uses a restricted cubic spline (discussed in Chap. 4) with three knots to account
for the effects of time. The estimated odds ratios for the spline predictors (spl1
and spl2), together with the intercept odds (not shown) can be regarded as the
“baseline” infection odds that applies to individuals with the additional predictors
of interest set to zero. The significant result for the testparm command, which
evaluates the Wald test for the hypothesis that both spline coefficients equal zero,
indicates that accounting for time variation via a spline results in a significantly
improved fit to the data relative to a model including only an intercept term. The
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Table 5.30 Pooled logistic regression model for MIRA study example

. logistic hsv2 spl* i.agecat i.stihx newparts

Logistic regression Number of obs = 6069
LR chi2(6) = 33.69
Prob > chi2 = 0.0000

Log likelihood = -509.18109 Pseudo R2 = 0.0320

----------------------------------------------------------------------------
hsv2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
spl1 | .9256021 .0379368 -1.89 0.059 .8541555 1.003025
spl2 | 1.035493 .0556198 0.65 0.516 .9320218 1.15045

|
agecat |

2 | .6090384 .1369677 -2.20 0.027 .3919372 .946396
3 | .5522162 .2213153 -1.48 0.138 .2517489 1.211297

|
1.stihx | 1.92962 .4938946 2.57 0.010 1.168431 3.186695

newparts | 1.826313 .4372661 2.52 0.012 1.142288 2.919945
----------------------------------------------------------------------------

. testparm spl*

( 1) [hsv2]spl1 = 0
( 2) [hsv2]spl2 = 0

chi2( 2) = 10.59
Prob > chi2 = 0.0050

odds ratios for the additional predictors are interpreted similarly to the conventional
logistic model studied in previous sections. For example, increased age is associated
with decreased odds of infection relative to the youngest age group. Also, report
of a recent new partner is associated with an approximate doubling of infection
odds. As discussed previously, the form of the model specifies that the predictors
act to increase or decrease baseline infection odds by fixed increments. This is
an example of a proportional odds model. For outcomes that are rare, the odds
ratios closely approximate relative hazards estimated from the closely related
proportional hazards model that is discussed in the next chapter.

Although the pooled logistic regression model is widely applicable and easy
to fit, it suffers from several disadvantages relative to the regression methods for
survival data that are the subject of Chap. 6: First, it requires explicit modeling of
the effects of time in the analysis, a feature not shared with the Cox proportional
hazards regression model. Second, because event times are not known precisely,
the causal links between time-varying predictors and event occurrence are less clear
than in settings where such information is completely observed. Finally, in situations
with missed and/or irregularly spaced intervals the estimates are susceptible to bias
because of the need to make assumptions about the behavior of predictors and
outcomes in unobserved periods of follow-up. Despite these issues, this approach is
becoming increasingly popular for longitudinal data of the type described here, and,
as discussed in Chap. 9, is commonly used in applications of regression to causal
inference. More information about the approach, including a comparison to the Cox
proportional hazards model is included in D’Agostino et al. (1990).
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5.5.3 Regression Models Based on Risk Differences
and Relative Risks

A recent study of prevalent human T-cell leukemia/lymphoma virus (HTLV)
infection in infants born to mothers in the United Kingdom identified a number
of factors associated with infection, including the parent’s country of birth and
ethnicity of the mother (Ades et al. 2000). The authors found that a regression model
based on risk differences provided a better fit to the data than the logistic model, and
reported their results accordingly.

Recall the linear regression model defined in (5.1) that relates risk for a binary
outcome to a single predictor x:

P.x/ D ˇ0 C ˇ1x:

As noted in Sect. 5.1, the coefficient ˇ1 measures the risk difference associated with
a unit increase in x. This model is often referred to as the “additive risk model”
because the effect of any unit increase in the predictor x is to add an increment ˇ1
to the outcome risk. This was the model employed in the HTLV example. Although
it provides a valid alternative to logistic regression, it is important to keep in mind
the potential problems with fitting and interpretation (raised in Sect. 5.1).

As discussed in Sect. 3.4, the odds ratio is known to approximate the relative risk
in the rare outcome setting. Consequently, odds ratios are frequently reported as
relative risks in research findings. Unfortunately, this practice is not limited to rare
outcomes, and has been the subject of considerable debate in the research literature
(Holcomb et al. 2001). This has led many investigators to advocate that regression
models based on the relative risk be used in preference to the logistic model (other
than in case-control designs where standard regression approaches other than the
logistic model do not directly apply). This is possible using the following regression
model:

log ŒP.x/� D ˇ0 C ˇ1x: (5.15)

This is the log linear model discussed in Sect. 5.1. The regression coefficient ˇ1 has
the interpretation of the logarithm of the relative risk associated with a unit increase
in x. Analogous to the procedure for obtaining odds ratios from logistic models,
exponentiated coefficients yield relative risk estimates in this case. Although this
model can be fitted with many standard software packages, numerical difficulties
may arise because of the constraint that the sum of terms on the right-hand side
must be no greater than zero for the results to make sense (due to the constraint
that the outcome probability P.x/ must lie in the interval Œ0; 1�). In such cases,
treating the observed binary responses as if they were distributed according to the
Poisson distribution, and using estimation methods for GLMs (Chap. 8) generally
yields very similar log relative risk estimates. If robust variances are used to estimate
variability, the resulting inferences have been shown to yield results very similar
to the conventional binomial estimation procedure and to avoid the associated
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Table 5.31 Generalized linear models for CHD risk (P ) and age (x)

Model ˇ1 (95% CI) Log-likelihood P.55/

P.x/ 0:005.0:004; 0:007/ �869.96 0.129
log ŒP.x/�� Binomial 0:067.0:047; 0:087/ �869.24 0.136
log ŒP.x/�� Poisson 0:067.0:048; 0:087/ �881.86 0.136
logf� log Œ1� P.x/�g 0:071.0:050; 0:092/ �869.21 0.136
logfP.x/= Œ1� P.x/�g 0:074.0:052; 0:097/ �869.18 0.136

convergence problems with the latter (Zou 2004; Yelland et al. 2011). The Poisson
approach is generally recommended in cases where relative risk estimates are
desired and the log binomial model fails to converge.

Alternative approaches for obtaining adjusted relative risks from odds ratios
estimated using logistic regression have been proposed in the literature (Zhang and
Yu 1998). These are based on simple transformations of the estimated coefficients
similar to the illustrative calculations demonstrated in Sect. 5.1.1. Unfortunately,
such calculations can produce incorrect estimates for models including multiple
predictors and should be avoided in favor of fitting appropriately defined regression
models as described above (McNutt et al. 2003).

Table 5.31 presents the results of fitting five alternative GLMs for the relationship
between CHD and age using the WCGS data. (Results were obtained with the Stata
GLMs procedureglm, also applied in Table 5.28.) These correspond to the binomial
regression models considered in this section (i.e., (5.1), (5.2), (5.13), and (5.15))
and the alternative Poisson regression approach. Results for the intercept parameter
ˇ0 are similar. Note that the estimated regression coefficients cannot be directly
compared because the models are based on different representations of the outcome.
However, since all of them are based on the same number of parameters, comparison
of the likelihoods provides a cursory look at how well they describe the data in
relative terms. Although the likelihood for the logistic model is slightly larger,
there is very little overall difference between the models. Similarly, the estimated
coefficients for the log, complementary log–log, and logit models are remarkably
similar. (The coefficients for the risk difference model differ because the outcome is
modeled without transformation.) Finally, the estimated probabilities for a 55-year-
old individual (P.55/) are also quite similar. Based on these results, there would be
no particular reason to prefer any alternatives over the logistic model.

The results in Table 5.31 illustrate that a variety of models other than the
logistic may be appropriate for a given problem. We note that additional binary
regression models also exist that are useful in other contexts. For example, the probit
model is used in the context of instrumental variable methods for binary outcomes
in Sect. 9.7. However, given the ease of interpretation, wide use, and software
availability of the logistic model, it is by far the most common choice in practice. In
general, we advocate fitting the logistic model unless another model is preferable on
scientific grounds. Lack of fit can often be dealt with via the techniques discussed in
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Sect. 4.7, obviating the need to investigate alternative model formulations. Finally,
note that the approaches discussed here are not directly applicable to data from case-
control studies (Scott and Wild 1997).

5.5.4 Exact Logistic Regression

Recall the HIV transmission example considered in Tables 3.6 and 5.28. The
dataset contains binary outcomes for 31 monogamous female sexual partners of
males previously infected with HIV. With so few observations, the reliability of
statistical inference relying on conventional statistical procedures such as the Wald
and �2 test is questionable. The Fisher’s exact test, discussed in Sect. 3.4 provides a
useful alternative for outcome–predictor comparisons addressable using a two-by-
two table. However, this approach limits inference to problems involving a single
categorical predictor. The exact logistic regression model allows exact inferences to
be applied in the regression setting, including models with continuous predictors.

In the example presented in Table 3.6, interest focuses on the possible association
between presence of an AIDS diagnosis in the male partner and transmission to the
female partner. In Table 5.28, we considered a specialized model linking the degree
of sexual contact measured by the logarithm number of contacts reported by each
partnership to transmission risk. In Table 5.32, we show the results of fitting both
standard and exact logistic regression models to these data using Stata, including
both the logarithm of the number of contacts and the indicator of AIDS diagnosis
as predictors. Although no exact procedure is available to fit the GLM considered in
Table 5.32, there is still interest in examining whether the observed effect of AIDS
diagnosis from Table 3.6 is influenced by controlling for degree of exposure to infec-
tion. The estimated odds ratios from the two models are comparable. However, the
degree of precision for the estimated effect of AIDS appears to be overstated in the
standard logistic model. Note that in place of the Wald test results, the exact logistic
reports columns labeled Suff. and 2*Pr(Suff.). These are based on sufficient
statistics for each predictor in the model conditional on the values of the other
predictor(s). Exact inference is based directly on these conditional distributions. If
interest focuses on a particular predictor in a model (e.g., AIDS) it is possible to
restrict inference to that variable, resulting in some computational savings.

Computational procedures for exact logistic regression are intensive, and fre-
quently it will be unfeasible to fit models with multiple continuous covariates,
even for datasets as small as considered in the above example. For this reason,
the exact approach is recommended for small samples (typically less than 100),
especially when P-values from standard asymptotic approaches such as the Wald
test are in the range of plausible significance. Exact logistic regression can also
be useful in situations where standard models fail to yield valid estimates, such as
those discussed in Sect. 5.4.4. Finally, note that most of the procedures discussed for
model assessment and postestimation inference that are applicable for the standard
logistic model are not available for exact logistic regression.
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Table 5.32 Conventional and exact logistic regression models for transmission risk in female
partner for the CDC example

. logistic hivp logcontacts i.aids

Logistic regression Number of obs = 31
LR chi2(2) = 4.38
Prob > chi2 = 0.1119

Log likelihood = -14.368496 Pseudo R2 = 0.1323

----------------------------------------------------------------------------
hivp | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
logcontacts | 1.183255 .3653485 0.54 0.586 .6460355 2.167206

1.aids | 8.091292 8.64643 1.96 0.050 .9963591 65.70824
----------------------------------------------------------------------------

. exlogistic hivp logcontacts aids

Exact logistic regression Number of obs = 31
Model score = 4.855402
Pr >= score = 0.0813

---------------------------------------------------------------------------
hivp | Odds Ratio Suff. 2*Pr(Suff.) [95% Conf. Interval]

-------------+-------------------------------------------------------------
logcontacts | 1.169055 35.86 0.6319 .6776411 2.229598

aids | 8.085458 3 0.1547 .5835864 492.6288
---------------------------------------------------------------------------

5.5.5 Nonparametric Binary Regression

The examples of alternative techniques for binary regression considered above
represent only a small subset of the available possibilities for estimating the
relationship between a binary outcome and a predictor variable. The goal of
nonparametric regression methods is to provide estimates of this relationship based
on minimal assumptions about its form.

Recall the assessment of linearity for the logistic model for the relationship
between CHD and age in the WCGS data in Sect. 5.4.1. The smoothed LOWESS
estimate displayed in Fig. 5.4 is an example of a nonparametric logistic regression
model for this relationship. Although the assumption that the predictor is related to
the disease outcome in an additive fashion via the log odds is retained, this technique
allowed us to relax the assumption that the relationship is linear by assuming
only that the change in CHD risk with age has a certain degree of smoothness.
This can prove very useful in exploring the form of the relationship between
outcome and predictor, but does not yield readily interpretable parameter estimates
or generalize easily to models including more than one predictor. The class of gen-
eralized additive models provide an extension to the LOWESS technique, allowing
multiple predictors to be fit simultaneously, each of which can be represented as a
smooth function (Hastie and Tibshirani 1999). Although very useful in evaluating
outcome–predictor relationships, these models are frequently difficult to fit and
interpret.
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Methods for significance testing, CIs, and model evaluation are less well
developed for nonparametric alternatives than for conventional logistic regression.
In addition, decisions about degree of smoothness and interpretation of resulting es-
timates is often very complex. Finally, practical implementations of nonparametric
binary regression that handle multiple predictors are not widely available in standard
statistical packages. For these reasons, we recommend that flexible parametric
approaches be used in accounting for nonlinearities in the relationship between
predictor and outcome, and that nonparametric alternatives be used primarily for
exploratory purposes.

Classification trees (Breiman et al. 1984) are another popular approach to
nonparametric binary regression. As discussed in Sect. 5.2.5, these lack the linear
and additive structure shared by other approaches, and have been used to develop
prediction tools for using measured characteristics to correctly distinguish binary
outcomes. However, classification trees can also be used to explore complex
relationships between multiple predictors and a binary response. Because they do
not yield estimates of association parameters, interpretation of the contribution of
individual predictors to the outcome risk is complex. However, like the nonparamet-
ric regression approaches discussed above, they are very useful tools in exploratory
analyses and can be very helpful in discovering and interpreting interaction.

5.5.6 More Than Two Outcome Levels

Research studies frequently yield outcomes that have multiple categories. (See
Chap. 2 for definitions of categorical variable types.) Consider the back pain
example introduced in Sect. 1.1, where pain intensity was measured on an ordered,
ten-point scale. In addition to the ordinal categorical outcome just considered,
nominal categorical outcome measures are also commonplace in clinical research.
For example, the outcome in a study of cancer outcomes by cell type is a nominal
categorical variable. Both type of outcomes can be investigated using contingency
table methods. The limitations of these when multiple predictors are involved are
clear. For certain questions, considering a binary representation might also be
reasonable. For example, to investigate factors that distinguish patients suffering
from severe pain from all others in the pain example. In this case, logistic regression
is an appropriate tool to consider. However, there is clearly information lost in
reducing ten levels down to two. In the remainder of this section we briefly review
regression methods for nominal and ordinal categorical outcomes.

5.5.6.1 Ordinal Categorical Outcomes

The proportional odds model is a commonly used generalization of the logistic
model that accommodates a multilevel categorical response with ordered categories.
Rather that modeling the probability of response in a particular category, this model
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is based on the cumulative probability that the response is not greater than a chosen
category. The dependence of this response on predictors is identical to the form of
the logistic model. For the back pain example, (assuming a ten-level response and a
single predictor x), the form of this model for a response probability of severity no
greater than 5 is given by

log

�
Pr.y � 5/
Pr.y > 5/

�

D ˛5 � ˇx:

A similar expression applies to all ten levels of the response. (We assume that the
levels of the response are coded 1; 2; : : : ; 10.)

Note that the intercept parameter ˛5 is unique to this response level, and
represents the probability of a response of no more than 5 among individuals with
x D 0. Because the response is expressed as a cumulative probability, the intercept
coefficients are constrained as ˛1 � ˛2 � � � � � ˛10. The coefficient ˇ is interpreted
as the log odds ratio associated with a unit increase in x, assumed to be constant
across response levels. (i.e., response levels are parallel, each with slope ˇ.) This
assumption amounts to a strong restriction on the effect of the predictor on the
response, and needs to be validated.

Note that there are many alternatives to the proportional odds model, including
the continuation ratio model. We refer the reader to the references provided below
for additional information on these.

5.5.6.2 Nominal Categorical Outcomes

When there is no natural ordering implicit in a categorical response, or when the
assumptions implicit in the models above do not apply to an ordinal outcome,
the multinomial logistic model (also known as the polytomous logistic model) can
be used for regression analyses. For a single predictor x, the model specifies that
each response level follows a logistic regression model for x, with a selected level
specified as the reference. The regression coefficients for each level are unique; so
for the pain example the model would include nine intercept and slope coefficients.
For level 5, and specifying the first level as the reference category, the model would
take the form

log

�
Pr.y D 5/
Pr.y D 1/

�

D ˛5 C ˇ5x:

Notice that when there are more than two outcome levels, the two levels specified
in the model are not binary alternatives. The outcome then represents a log relative
risk rather than a log odds. Thus, the coefficient ˇ5 represents the change in the
log relative risk for level 5 (relative to the reference level 1) associated with a unit
increase in x. The exponentiated value of this coefficient is interpreted as a relative
risk ratio rather than an odds ratio. Because this model does not involve the restric-
tions implicit in the proportional odds model, it is an attractive alternative when the
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proportional odds assumption is not satisfied. However, because of the potentially
large number of parameters and the flexibility of choice for the reference group, the
multinomial logistic model can be challenging to interpret.

The models outlined here represent a few of those available for analyzing
categorical responses. For further information on these and other models, including
examples and a description of available software resources, see Ananth and
Kleinbaum (1997) and Greenland (1994).

5.6 Likelihood

One of the common themes uniting methods presented in this book is the principle
of using observed data to estimate unknown quantities of interest. The majority
of the methods presented are regression models relating outcome and predictor
variables measured on a sample of individuals. The principal unknown quantities
in the models are the regression parameters. Once these are estimated, inferences
can be made about the true values of these parameters and related quantities of
interest such as predicted outcomes. All available information about the parameters
is contained in the observed data. A standard approach to estimating parameters
in models like the ones covered here is known as maximum likelihood estimation.
Although not required for applications, a basic understanding of this topic helps in
unifying the concepts underlying estimation and inference in most of the regression
models covered in this book. Here, we provide a brief discussion of some of the key
ideas in the binary regression context.

The likelihood associated with a set of independent observations of an outcome
is just the product of their respective probabilities of occurrence under the assumed
model relating outcomes to predictors. Because this represents the joint probability
of observing all of the outcomes in the sample, the likelihood can then be interpreted
as a measure of support provided for the model by the data. The maximum-
likelihood estimate of the parameter(s) is the value for the parameter(s) that yields
the maximum value of the likelihood for the observed data.

To take a very simple example from the binary outcome context, consider
the problem of estimating the prevalence of HIV for the sample of 31 female
partners of previously infected males from the CDC transmission study considered
in the examples presented above and in Sect. 3.4. The assumed model is that the
actual prevalence in the target population is represented by a constant that we can
symbolize by P (similar to the definition introduced earlier in this chapter). We
can think of P as the probability that a randomly sampled individual will test
positive. The corresponding probability of observing a negative is 1� P . However,
P is unknown. The observed data consist of the 31 indicators of HIV status, and
the likelihood, as defined above, is just the product of the individual outcome
probabilities:

P7 � .1 � P/23:
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Fig. 5.7 Likelihood function for HIV prevalence

The likelihood is formed as the product of the individual outcome probabilities
because these are independent events. It is a function of the unknown constant
P , with the observed infection indicators providing the number of positive and
negative individuals. Figure 5.7 presents a plot of this function for a range of
values for P . The maximum-likelihood estimator of P is just the value of P
that maximizes the likelihood function. This value is indicated in the figure. The
maximum can be found easily in this example using calculus. Not surprisingly,
it corresponds exactly to the intuitive estimate of the actual prevalence of HIV-
positive individuals in the sample of 31: Because there are seven such individuals
in the sample, the estimated prevalence is 0.226. For more complicated models
(e.g., regression models with multiple predictors) computing the maximum typically
involves iterative calculations on a computer.

Likelihood functions for binary regression models are defined following the
procedure used above, but the outcome probabilityP for each individual is replaced
with the form defined by the logistic model (5.2). To take another example from the
CDC study, consider a regression model relating HIV status of the female partners
to a binary indicator of presence of an AIDS diagnosis in the male. (This example
was already considered in Sect. 3.4.) Following our conventional notation, we will
represent the outcome as Y and the predictor as x. The observed data now include
both Y and the binary predictor x for each individual in the sample. The likelihood
takes exactly the same form as in the last example, except the constantP is replaced
with the expression for the logistic model, substituting in each individual’s value of
the predictor (i.e., xi for the ith individual):

31Y

iD1

�
exp.ˇ0 C ˇ1xi /

1C exp.ˇ0 C ˇ1xi /
�Yi
�

�

1 � exp.ˇ0 C ˇ1xi /
1C exp.ˇ0 C ˇ1xi /

�1�Yi
:
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Fig. 5.8 Likelihood function
for a two-parameter logistic
model

Since both Y and x (the indicator of AIDS status) are observed, the only
unknown quantities are the regression parameters ˇ0 and ˇ1. These are generally
estimated using an iterative maximization algorithm. Figure 5.8 presents a plot of
the logarithm of this function for a range of values for P . Because the likelihood
function depends on two unknown parameters, it has the form of a “surface” when
plotted in three dimensions. The two-dimensional figure represents the contours
of this surface as seen from above. The maximum value is indicated, and the
corresponding maximum-likelihood estimates for ˇ0 and ˇ1 are –1.705 and 2.110,
respectively.

Because likelihoods are formed from the product of outcome probabilities for
all individuals in a sample, the numerical value of a given likelihood depends on
the sample size and is not particularly interpretable by itself. However, comparing
likelihoods from nested models is a direct way to evaluate improvements in fit. This
is the basis of the LR test.

Finally, we note that although the discussion here is limited to the binary outcome
context, estimation methods for most of the regression models presented in this
book are likelihood based. For example, least squares estimation and F -testing for
comparing nested models in linear regression and analysis of variance models are
examples of likelihood methods. Further, likelihood methods are fundamental to the
family of GLMs discussed in Chap. 9.

5.7 Sample Size, Power, and Detectable Effects

Section 4.8 provides formulas for calculating sample size, power, and minimum
detectable effects for the linear model. Analogous results hold for the logistic model.
To compute the sample size that will provide power of � in two-sided tests with
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type-1 error of ˛ to reject the null hypothesis ˇj D 0 for the effect of a predictor
Xj , accounting for the loss of precision due to multiple predictors, we can use

n D .z1�˛=2 C z� /2

.ˇaj �xj /
2p.1 � p/

�
1 � �2j

� ; (5.16)

where ˇaj is the hypothesized value of ˇj under the alternative, z1�˛=2 and z� are the
quantiles of the standard normal distribution corresponding to the specified type-1
error and power, �xj is the standard deviation ofXj and �j is its multiple correlation
with the other covariates, and p is the marginal prevalence of the outcome (Hsieh
et al. 1998; Hsieh and Lavori 2000). For problems with predetermined n, power is
given by

� D 1 � ˚
"

z1�˛=2 � jˇaj j�xj
r

np.1 � p/
�
1 � �2j

�
#

(5.17)

and the minimum detectable effect (on the log-odds scale) by

˙ ˇaj D
z1�˛=2 C z�

�xj

r

np.1 � p/
�
1 � �2j

� : (5.18)

Some additional points:

• When Xj is binary with prevalence fj , �xj D
p
fj .1 � fj / in (5.16)–(5.18).

• When Xj is continuous with standard deviation �xj , it is important to recognize
that sample size, power, and minimum detectable effects do not depend in any
real way on the units in whichXj is measured. This is most clearly seen in (6.26).
Suppose Xj is usually measured in grams. Changing the unit to milligrams
increases �xj by a factor of 1,000, and shrinks ˇaj by the same factor. But of
course the effect on the outcome of a 1-mg increase in the predictor is 1,000
times smaller than the effect of a 1-g increase. One way to avoid confusion is to
consider the minimum detectable effect size for a one standard deviation change
in Xj ; which is often a reasonable-sized change to consider. That effect size is
obtained by setting �xj D 1 in (5.18).

• Sample size (5.16) and minimum detectable effect (5.18) calculations simplify
considerably when we specify ˛ D 0:05 and � D 0:8, ˇaj is the effect of a one
standard deviation increase in continuous xj , and we do not need to penalize for
covariate adjustment. In that standard case,

n D 7:849

.ˇaj /
2p.1 � p/ : (5.19)
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For the minimum detectable effect, we have

˙ ˇaj D
2:802

p
np.1 � p/ : (5.20)

For 90% power, substitute 10.51 for 7.849 and 3.242 for 2.802.
• Similarly, for a 2-arm clinical trial with equal allocation to arms, so that ˇaj is the

log odds-ratio for treatment and s2xj D 0:25, we can calculate

n D 4 � 7:849

.ˇaj /
2p.1 � p/ : (5.21)

For the minimum detectable effect, we have

˙ ˇaj D 2 �
2:802

p
np.1 � p/ : (5.22)

• Power calculations using (5.17) simplify analogously, but still require a statistical
calculator or computer package to evaluate the normal cumulative distribution
function ˚.�/.

• As in calculations for the linear model, we need to use jˇaj j in (5.17) if ˇaj < 0. It
follows that the negative of the value given by (5.18) is also a valid solution for
the minimum detectable effect.

• These computations are valid for unmatched case-control studies, in which p,
the sample prevalence of the outcome, is controlled by design. However, special
methods are required for matched case-control studies.

• Sample size and power (but not minimum detectable effects) can be calculated
using the sampsi command in Stata as well as many other statistical packages.
Alternatively, (5.16)–(5.18) can easily be programmed in Stata, R, or Excel, or
evaluated by hand if values of z1�˛=2, z� , and ˚.�/ are available.

• The use of the factor 1S��2j to account for covariate adjustment carries over from
linear to logistic models. However, there is no analog to the reduction in residual
variance that can result from including covariates in linear models, so that the
adjustment to these calculations using 1 � �2j is less likely to be conservative.

• The sampsi command does not incorporate the factor 1 � �2j for covariate
adjustment. An unadjusted estimate of n should be inflated by 1=.1 � �2j /;
similarly the unadjusted minimum detectable effect estimate should be inflated

by
q
1=.1� �2j /. To calculate power, use n.1 � �2j / in place of n as an input.

• For logistic models with a continuous predictor, sampsi can be made to work
by reversing the role of predictor and outcome, as we show in an example below.

• These calculations were derived in Chap. 4 from the Wald test of ˇj D 0.
Calculations based on the more reliable LR test (Self and Mauritsen 1992) have
been implemented in the Egret statistical package.
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• In Sect. 4.8, we showed how the standard error SE. Ǒj / plays a central role in
sample size, power, and minimum detectable effect calculations for regression
problems. SE. Ǒj / is a large-sample approximation for the logistic model, and
more exact small-sample computations using the noncentral t-distribution do not
carry over from the linear model. Simulations of power may be a more reliable
guide when the calculated or available sample size is small.

• Equations (5.16)–(5.18) are based on the assumption that the conditional mean
of the outcome does not vary strongly across observations, which would hold
if Xj is a relatively weak predictor, or equivalently if jˇaj j is small. Methods
based on simulation avoid this simplification and perform slightly better in some
circumstances (Vittinghoff et al. 2009). However, errors from these sources are
usually small compared to errors arising from uncertainty about the required
inputs.

• The alternative calculations (4.22)–(4.24) presented in Sect. 4.8, which use an
estimate QSE. Ǒj / based on published results for an appropriately adjusted model
using Qn observations, carry over directly. There we showed that

n D
.z1�˛=2 C z� /2 Qn

h QSE. Ǒj /
i2

.ˇaj /
2

: (5.23)

Similarly, power in a new sample of size n is given by

� D 1 � ˚
h
z1�˛=2 � jˇaj j=Œ

p
Qn=n QSE. Ǒj /�

i
: (5.24)

Finally, the minimum detectable effect in a new sample of size n can be
obtained as

˙ ˇaj D .z1�˛=2 C z� /
p Qn=n QSE. Ǒj /: (5.25)

In implementing these calculations, care must be taken to obtain the SE of
the regression coefficient ˇj , not the SE of the odds ratio eˇj . Since results

are usually available only for the odds ratio, this can computed as QSE. Ǒj / D
log.UL=LL/=3:92, where UL and LL are the upper and lower 95% confidence
bounds for the odds ratio. We must also ensure that Xj is measured on the same
scale as in the published results.

To illustrate these methods, we first use the sampsi command to estimate the
sample size providing 80% power in two-sided tests with ˛ of 5% for a clinical trial
of a new technique hypothesized to reduce the incidence of an adverse postsurgical
outcome from 15% to 5%. We specify the proportion with the outcome in each
group, which are equivalent to the means of a continuous outcome. By omitting
the sd1 option, we signal that the outcome is binary, with SD determined under
the statistical model as

p
p.1 � p/. With equal allocation to treatment and control,

the r() option, which specifies the ratio of the sizes of the groups being compared,
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Table 5.33 Sample size calculation for randomized trial

. sampsi 0.05 0.15, power(0.8)

Estimated sample size for two-sample comparison of proportions

Test Ho: p1 = p2, where p1 is the proportion in population 1
and p2 is the proportion in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

p1 = 0.0500
p2 = 0.1500

n2/n1 = 1.00

Estimated required sample sizes:

n1 = 160
n2 = 160

. display log((0.05/0.95)/(0.15/0.85))
-1.2098379

. display (invnormal(0.975)+invnormal(.8))ˆ2/((-1.2098379)ˆ2*0.25*0.075*
(1-0.075)) 309.17921

can be left at the default value of 1. In addition, we can safely assume that
�j D 0, so no adjustment for covariates is likely to be necessary in a randomized
trial.

Table 5.33 shows the results. The sampsi command estimates that we need
160 participants per group. We also used (5.16) to estimate sample size. For that
calculation, ˇaj , the hypothesized log-odds ratio for the effect of the new technique,
is log.0:05=0:95/=.0:15=0:85/ � �1:2098. With equal allocation (f D 0:5) to
treatment and control, �2x D f .1 � f / D 0:25, and the marginal prevalence p of
the outcome� 7:5%. This gives an overall sample size estimate of 309.

Now, suppose we would like to estimate the sample size that will provide 80%
power in two-sided tests with ˛ of 5% to detect an independent association of SBP
with CHD, adjusting for age, smoking, BMI, cholesterol levels, and behavioral
patterns, as suggested by the results in Table 5.10. From pilot data, we estimate
that the prevalence of CHD in the new sample of high risk men will be 30%, that
SBP will be approximately 5 mmHg higher among the men with CHD, that the
within-group SD of SBP will be 15 mmHg, and finally that �j � 0.33. To do this
computation using the sampsi command, we reverse the role of the outcome and
predictor, so f is now the prevalence of CHD. Pre-calculation of the local variable
ratio is required because the r() option will not allow the fractional input 3/7.

Table 5.34 first shows the calculation using the sampsi command, with
the adjustment using the variance inflation factor then carried out based on the
unadjusted results. In addition, we computed the sample size using (5.16), relying
on the fact that ˇj �x , the log-odds per SD increase in SBP, is approximately equal
to the standardized (in SDs) difference in mean SBP between the subgroups with
and without CHD. The two sample size estimates are close.
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Table 5.34 Sample size calculation for the effect of SBP on risk of CHD

. display 3/7

. 42857143

. sampsi 0 5, sd1(15) r(.42857143) power(0.8)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 0
m2 = 5

sd1 = 15
sd2 = 15

n2/n1 = 0.43

Estimated required sample sizes:

n1 = 236
n2 = 102

. display (236+102)/(1-0.33ˆ2) 379.30648

. display (invnormal(.975)+invnormal(0.8))ˆ2/((5/15)ˆ2*.3*.7*(1-.33ˆ2))
377.48913

5.8 Summary

The logistic regression model extends frequency table techniques for investigating
the association between a binary outcome and categorical predictor to include
continuous predictors and allow simultaneous consideration of multiple (continuous
and categorical) predictors.

Modeling techniques for logistic regression mirror those for linear regression,
allowing many of the concepts and methods learned in Chap. 4 to be applied directly
to studies involving binary outcomes. However, interpretation of logistic regression
models is slightly more complex due to the model’s nonlinear relationship between
outcome risk and predictors. In particular, regression coefficients need to be
transformed to be interpretable as odds ratios.

Although a powerful and useful tool, there are a number of situations where
logistic regression is not the best method for analyzing binary outcome data. As we
have seen in several examples, when attention is restricted to one or a few categorical
predictors, regression techniques are not needed. In other situations, an alternative
binary regression model linked to alternate measures of association such as relative
risks or risk differences may be preferred. We refer readers to Chap. 6 for methods
appropriate for regression analysis for event time outcomes. Although we have
provided a brief illustration in Sect. 5.5.2 of how logistic regression can be used to
investigate the effects of predictors on binary outcomes that are duration dependent,
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we refer readers to Chap. 9 for a more complete coverage of regression methods for
event time outcomes. Finally, we note that when analysis focuses on causal inference
about the effect of a particular binary predictor representing a treatment or exposure,
the methods covered in Chap. 9 are generally preferred.

5.9 Further Notes and References

There are a number of excellent textbooks on logistic regression, including Breslow
and Day (1984), Hosmer and Lemeshow (2000), Kleinbaum (2002), and Collett
(2003). All of these provide more details and cover a broader range of topics
than provided here. Although we have focused on Stata in our example analyses,
most modern statistical software packages provide extensive facilities for fitting
and interpretation of logistic models, including R, SAS, S-PLUS, and SPSS. More
extensive facilities for exact logistic regression and contingency table methods are
available in the programs StatXact and LogXact.

Throughout this chapter, we have concentrated on analysis of data where the
outcomes and predictors were measured without substantial error and missing
observations were not considered a major problem. In many studies, we cannot
assume that this is the case. There is an extensive literature on the impacts of
misclassified outcomes and measurement error in predictors in the context of
logistic regression (Carroll et al. 1995; Magder and Hughes, 1997).

Missing data are an issue in most studies involving binary outcomes, and arise
through a variety of mechanisms. When relatively few observations are involved,
the problem can be handled via the default procedure in most available software
programs (i.e., to eliminate any observations with one or more missing values
among the predictors). The validity of this approach rests on the assumption that
the individuals dropped from the analysis are “missing completely at random.”
However, when a substantial fraction of observations involve missing values,
more care is required. In addition to the obvious problem of the reduction in
power incurred by dropping observations there are substantial concerns that the
results based on the remaining complete data may be biased. There are a number
of approaches to handling missing observations, including sensitivity analyses,
imputation, and modified maximum likelihood estimation methods. (See Jewell
2004 for a more complete discussion.) These tend to be complex to apply and are
not generally well represented in standard software.

5.10 Problems

Problem 5.1. Verify that the numerical average (mean) of the following sample of
25 binary outcomes equals the proportion of positive outcomes (ones) in the sample:

.1; 0; 0; 0; 1; 0; 0; 0; 1; 1; 0; 0; 0; 1; 1; 1; 0; 0; 1; 1; 1; 0; 1; 0; 0/
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Table 5.35 Logistic model for CHD and age

. logistic chd69 i.agec, coef

Logistic regression Number of obs = 3154
LR chi2(4) = 44.95
Prob > chi2 = 0.0000

Log likelihood = -868.14866 Pseudo R2 = 0.0252
----------------------------------------------------------------------------

chd69 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

agec |
1 | -.1314518 .2309941 -0.57 0.569 -.5841919 .3212882
2 | .5307399 .2235341 2.37 0.018 .0926211 .9688586
3 | .8409976 .2274986 3.70 0.000 .3951085 1.286887
4 | 1.05998 .2585408 4.10 0.000 .5532496 1.566711

|
_cons | -2.804337 .1849627 -15.16 0.000 -3.166858 -2.441817

----------------------------------------------------------------------------

Problem 5.2. Use the regression coefficients from the logistic model presented in
Table 5.2 in the logistic formula (5.2) to estimate the quantities in Table 5.3 for a
65-year-old individual. Use additional calculations to add a new section to Table 5.3
for an age increment of five years.

Problem 5.3. Perform the basic algebra necessary to verify the properties of the
logistic regression coefficient ˇ1 stated in (5.6).

Problem 5.4. The output in the Table 5.35 provides the regression coefficients
corresponding to the model fitted in Table 5.5. Use the coefficients and calculations
similar to those illustrated in Sect. 5.1.1 to compute the log odds ratio comparing
CHD risk in the fourth age category (4.agec) with the third (3.agec). Also,
compute the odds ratio for this comparison. Comment on how we might obtain an
estimated standard error and 95% CI for this quantity.

Problem 5.5. For the fitted logistic regression model in Table 5.6, calculate the log
odds for a 60-year-old smoker with cholesterol, SBP, and BMI values of 250 mg/dL,
150 mmHg, and 20, respectively. Now calculate the log odds for an individual with
a cholesterol level of 200 mg/dL, holding the values of the other predictors fixed.
Use these two calculations to estimate an odds ratio associated with a 50 mg/dL
increase in cholesterol. Repeat the above calculations for a 70-year-old individual
with identical values of the other predictors. Comment on any differences between
the two estimated odds ratios.

Problem 5.6. Use the regression output in Table 5.16 and a calculation similar to
that presented in (5.11) to compute the odds ratio comparing the odds of CHD in a
55-year-old individual with arcus to the corresponding odds for a 40-year-old who
also has arcus.

Problem 5.7. Use the WCGS data set to fit the regression model presented in
Table 5.18. Perform the Hosmer–Lemeshow goodness of fit test for the following
number of groups: 10, 15, 20, and 25. Comment on the differences. The data set is
available at http://www.biostat.ucsf.edu/vgsm.

http://www.biostat.ucsf.edu/vgsm
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Problem 5.8. Verify that the odds ratio formed from the two odds presented in
(5.11) is given by ad=bc. Verify that the same odds ratio is obtained if the two
component odds are computed based on the probability of exposure conditional on
outcome status.

Problem 5.9. Compute the approximate 95% CI for the following per-contact
infection risk based on the intercept coefficient and associated standard errors given
in Table 5.28:

1 � exp Œ� exp.�7:033/� :

5.11 Learning Objectives

(1) Describe situations in which logistic regression analysis is needed.
(2) Translate research questions appropriate for a logistic regression model into

specific questions about model parameters.
(3) Use logistic regression models to test hypotheses about relationships between a

binary outcome variable and a continuous or categorical predictor.
(4) Describe the logistic regression model, its key assumptions, and their implica-

tions.
(5) State the relationships between:

• Odds ratios and logistic regression coefficients.
• A two� two table analysis of the association between a binary outcome and

single categorical predictor and a logistic regression model for the same
variables.

(6) Know how a statistical package is used to fit a logistic regression model to
continuous and categorical predictors.

(7) Interpret logistic regression model output, including:

• Regression parameter estimates, hypothesis tests, CIs.
• Statistics which quantify the fit of the model.



Chapter 6
Survival Analysis

Children receiving a kidney transplant may be followed to identify predictors of
mortality. Specifically, is mortality risk lower in recipients of kidneys obtained from
a living donor? If so, is this effect explained by the time the transplanted kidney is
in transport or how well the donor and recipient match on characteristics that affect
immune response? Similarly, HIV-infected subjects may be followed to assess the
effects of a new form of therapy on incidence of opportunistic infections. Or patients
with liver cirrhosis may be followed to assess whether liver biopsy results predict
mortality.

The common interest in these studies is to examine predictors of time to an event.
The special feature of the survival analysis methods presented in this chapter is that
they take time directly into account: in our examples, time to transplant rejection,
incidence of opportunistic infections, or death from liver failure. Basic tools for the
analysis of such time-to-event data were reviewed in Sect. 3.5. This chapter covers
multipredictor regression techniques for the analysis of outcomes of this kind.

6.1 Survival Data

6.1.1 Why Linear and Logistic Regression Would not Work

In Sect. 3.5, we saw that a defining characteristic of survival data is right-censoring:

Definition: A survival time is said to be right-censored at time t if it is only known to be
greater than t .

Because of right-censoring, survival times cannot simply be analyzed as continuous
outcomes. But survival data also involve an outcome event, so why is logistic
regression not applicable? The reason is variable lengths of follow-up. In Chap. 5,
the logistic model was used to study CHD events among men in the WCGS
(Rosenman et al. 1964). But in that study, the investigators were able to determine

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 6,
© Springer Science+Business Media, LLC 2004, 2012
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whether each one of the study participants experienced the outcome event at any
time in the well-defined 10-year follow-up period; follow-up was constant across
participants.

In contrast, follow-up times were quite variable in ACTG 019 (Volberding et al.
1990), a randomized double-blind placebo-controlled clinical trial of zidovudine
(ZDV) for prevention of AIDS and death among patients with HIV infection.
Between April 1987 and July 1989, 453 patients were randomized to ZDV and
428 to placebo. When the data were analyzed in July 1989, some had been in
the study for less than a month, while others had been observed for more than 2
years. Simply applying logistic regression to the binary indicator of mortality in
this example would ignore the broad variation between patients in length of follow-
up. Regression adjustment for duration of follow-up would address this partially,
but impose unnecessary assumptions about the relationship between event risk and
duration. Although the pooled logistic regression model introduced in Sect. 5.5.2
addresses some of these concerns, that approach is more appropriate when follow-up
and event time information is restricted to intervals corresponding to regular study
visits. The concepts and methods introduced in this chapter offer a more complete
approach to regression for survival data including observations of actual event times.

6.1.2 Hazard Function

In Sect. 3.5, we introduced the survival function and its complement, the cumulative
event function, as useful summaries of the distribution of a survival time.

Definition: The survival function at time t , denoted S.t/, is the probability of being event-
free at t . The cumulative event function at time t , denoted F.t/ D 1 � S.t/, is the
complementary probability that the event has occurred by time t .

Another useful summary is the hazard function h.t/.

Definition: The hazard function h.t/ is the short-term event rate for subjects who have not
yet experienced the outcome event.

The hazard function is systematically related to both the survival and cumulative
event functions.

Table 6.1 shows mortality rates for children who have recently undergone kidney
transplantation, on each of the first ten days after surgery, using data from the united
network for organ sharing (UNOS). At the beginning of fifth day after surgery, for
example, 9,651 children remained alive and in the study, and of these, 3 died during
the next 24 h, yielding an estimated death rate of 0.31 deaths per 1,000 subjects
per day. From the rightmost column of the table, it appears that the mortality rate
declines over the first 10 days, although the estimates spike on days 8 and 10.
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Table 6.1 Mortality among pediatric kidney transplant recipients

Days since No. in No. No. Death rate per
transplant follow-up died censored 1,000 subject-days

1 9,750 7 14 7/9,750 � 1,000 D 0.72
2 9,729 5 8 5/9,729 � 1,000 D 0.51
3 9,716 5 12 5/9,716 � 1,000 D 0.51
4 9,699 7 41 7/9,699 � 1,000 D 0.72
5 9,651 3 54 3/9,651 � 1,000 D 0.31
6 9,594 2 57 2/9,594 � 1,000 D 0.21
7 9,535 0 50 0/9,535 � 1,000 D 0.00
8 9,485 4 49 4/9,485 � 1,000 D 0.42
9 9,432 1 49 1/9,432 � 1,000 D 0.11
10 9,382 3 28 3/9,382 � 1,000 D 0.32
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Fig. 6.1 Mortality rate for pediatric kidney transplant recipients

In Fig. 6.1, daily death rates, smoothed by LOWESS, are used to estimate
the mortality hazard for a much longer time period, the first 12 years after
transplantation. The mortality hazard declines rapidly over the course of the first
2 years, reaching a plateau approximately 3 years after transplantation.

6.1.3 Hazard Ratio

We now compare the hazard functions for children whose transplanted kidney was
provided by a living donor, commonly a family member, and those for whom the
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Fig. 6.2 Smoothed mortality rates for recipients by kidney donor type

Table 6.2 Smoothed death
rates (per 1,000 days) by
donor type

Years since Smoothed rates Death
transplantation Cadaveric Living rate ratio

0.25 0.235 0.098 2.40
0.50 0.193 0.082 2.36
1.00 0.138 0.061 2.27
2.00 0.088 0.038 2.30
3.00 0.061 0.027 2.25
4.00 0.063 0.026 2.37
5.00 0.065 0.032 2.03

source was recently deceased. Figure 6.2 shows LOWESS-smoothed death rates for
the recipients of kidneys from living and recently deceased donors. The mortality
rate is considerably lower among the recipients of kidneys from living donors at all
time points, but the curves are similar in shape.

Table 6.2 gives the values of the LOWESS-smoothed death rates shown in
Fig. 6.2 for selected time points, which estimate the hazard functions in each group,
as well as the death rate ratio, an estimate of the hazard ratio. We could write the
hazard ratio as

HR.t/ D hc.t/=hl.t/; (6.1)

where hc.t/ is the hazard function in the recipients of kidneys from cadaveric
donors, and hl.t/ is the corresponding hazard function in the reference group, the
recipients of kidneys from living donors.
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6.1.4 Proportional Hazards Assumption

The results in Table 6.2 show that while the mortality hazards decline over time
in both groups of pediatric kidney transplant recipients, the hazard ratio is roughly
constant. In other words, the hazard in the comparison group is a constant proportion
of the hazard in the reference group.

Definition: Under the proportional hazards assumption, the hazard ratio does not vary with
time. That is, HR.t / � HR.

Provided the hazards are proportional in this sense, the effect of donor source
on post-transplant mortality risk can be summarized by a single number. This
simplification is useful, but not necessary for the Cox proportional hazards model
described in the next section. We can generalize the model by including an
interaction between the predictor and time; this allows the hazard ratio for that
predictor to change with time. In Sect. 6.4.2, we show how this strategy can be
used to check and model nonproportional hazards with respect to a variable. This
is implemented using time dependent covariates (TDCs), an extension of the basic
Cox model introduced in Sect. 6.3.1.

6.2 Cox Proportional Hazards Model

The Cox proportional hazards regression model is a flexible tool for assessing the
relationship of multiple predictors to a right-censored, time-to-event outcome, and
has much in common with linear and logistic models. To understand how the Cox
model works, we first consider the broader class of proportional hazards models.

6.2.1 Proportional Hazards Models

In the linear model for continuous outcomes, covered in Chaps. 4 and 10, the linear
predictor ˇ1x1 C : : : C ˇpxp , which captures the effects of predictors, is linked
directly to the conditional mean of the outcome, EŒyjx�:

EŒyjx� D ˇ0 C ˇ1x1 C : : :C ˇpxp: (6.2)

In the logistic model for binary outcomes, covered in Chap. 5, the linear predictor is
linked to the conditional mean through the logit transformation:

log
p.x/

1 � p.x/ D ˇ0 C ˇ1x1 C : : :C ˇpxp: (6.3)
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In (6.3), p.x/ D EŒyjx� is the probability of the outcome event for a observation
with predictor values x D .x1; : : : ; xp/.

In proportional hazards regression models, the linear predictor is linked through
the log-transformation to the hazard ratio introduced in Sect. 6.1.3. If the hazard
ratio obeys the proportional hazards assumption, and thus does not depend on time,
we can write

log ŒHR.x/� D log
h.t jx/
h0.t/

D ˇ1x1 C : : :C ˇpxp: (6.4)

In (6.4), h.t jx/ is the hazard at time t for an observation with covariate value
x, and h0.t/ is the baseline hazard function, defined as the hazard at time t for
observations with all predictors equal to zero. As with the intercept in linear and
logistic regression, this may mean that the baseline hazard does not apply to any
possible observation, and argues for centering continuous predictors.

Solving (6.4) for h.t jx/ gives

h.t jx/ D h0.t/ exp.ˇ1x1 C : : :C ˇpxp/
D h0.t/HR.x/: (6.5)

Note that exponentiating the linear predictor ensures that HR.x/ cannot be negative,
as required. Furthermore, taking the log of both sides of (6.5), we obtain

logŒh.t jx/� D logŒh0.t/�C ˇ1x1 C : : :C ˇpxp: (6.6)

This shows that the log baseline hazard plays the role of the intercept in other
regression models, though in this case it can change over time. Furthermore, (6.6)
defines a log-linear model, which implies that the log of the hazard is assumed to
change linearly with any continuous predictors.

Note also that (6.5) defines a multiplicative model, in the sense that the predictor
effects act to multiply the baseline hazard. This is like the logistic model, where
the linear predictor acts multiplicatively on the baseline odds. In contrast, (6.2)
shows that in the linear model the predictor effects are additive with respect to the
intercept ˇ0.

6.2.2 Parametric Versus Semi-parametric Models

We have two options in dealing with the baseline hazard h0.t/. One is to model it
with a parametric function. For instance, the exponential survival model specifies
that the hazard is a constant while the Weibull regression model has a hazard which
is a polynomial in time. In both of these models, the baseline hazard h0.t/ is
specified by a small number of additional parameters, which are estimated along
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Table 6.3 Cox model for type of donor

stcox i.txtype

No. of subjects = 9750 Number of obs = 9750
No. of failures = 461
Time at risk = 38004.90961

LR chi2(1) = 44.82
Log-likelihood = -3952.3735 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.txtype | 1.879674 .1801323 6.59 0.000 1.557795 2.26806

----------------------------------------------------------------------------

with ˇ1; ˇ2; : : : ; ˇp . If the baseline hazard is specified correctly, this approach is
efficient, handles right-censoring as well as more complicated censoring schemes
with ease, and makes it simple (though still risky) to extrapolate beyond the data.
Of course the adequacy of the model for the baseline hazard has to be checked.

In contrast to parametric models, the Cox model, or Cox proportional hazards
model, does not require us to specify a parametric form for the baseline hazard,
h0.t/. Because we still specify (6.4) as the model for the log-hazard ratio, the
Cox model is considered semi-parametric. Nonetheless, estimation of the regression
parameters ˇ1; ˇ2; : : : ; ˇp is done without having to estimate the baseline hazard
function. Note that estimates of this function can be useful in summarizing hazards
associated with particular predictor values, and can be obtained once the regression
parameters are estimated (Kalbfleisch and Prentice 1980). The Cox model is more
robust than parametric proportional hazards models because it is not vulnerable to
misspecification of the baseline hazard. Furthermore, the robustness is commonly
achieved with little loss of precision in the estimated predictor effects.

6.2.2.1 Proportionality and Multiplicativity

Figure 6.2 and the summary statistics in Table 6.2 showed that the two mortality
hazards for pediatric recipients of kidney transplants from living and recently
deceased donors were very nearly proportional over time, in the sense that the
ratio of the LOWESS-smoothed death rates was approximately constant. So the
Cox model appears appropriate for these data, because the proportional hazards
assumption appears to be met for this important predictor. Table 6.3 shows the
unadjusted Cox model hazard ratio estimate for txtype, a binary indicator
identifying the group receiving transplants from recently deceased donors. The
estimated hazard ratio of 1.9 (95% CI 1.6–2.3 P < 0:0005) is consistent with
the estimates shown in Table 6.2, and suggests that receiving a transplant from a
recently deceased donor roughly doubles the mortality risk at every point over the
12 years of follow-up.
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Fig. 6.3 Hazard functions for 6-, 11-, and 21-year-old transplant recipients

Another important determinant of mortality after kidney transplant is the age
of the recipient. Using results from a Cox model with age as continuous (results
not shown), Fig. 6.3 shows fitted hazards for 6-, 11-, and 21-year-olds. The hazards
for the three groups differ proportionally. However, it is important to point out that
the perfect proportionality of the hazard functions plotted in Fig. 6.3 is imposed
under the fitted model, like the perfectly parallel regression lines for the additive
linear model without interaction terms shown in Fig. 4.2. This is in contrast to
the apparently proportional relationship between the independently smoothed death
rates in Fig. 6.2, which are based only on the data.

While the hazard ratio is assumed to be constant over time in the basic Cox
model, under this multiplicative model the between-group differences in the hazard
can easily be shown to depend on h0.t/ and thus on time. This is reflected in the fact
that the hazard functions in Fig. 6.3 are considerably farther apart immediately after
transplant when the baseline hazard is higher.

6.2.2.2 DPCA Study of Primary Biliary Cirrhosis

To illustrate interpretation of Cox model results, we consider a cohort of 312
participants in a placebo-controlled clinical trial of D-penicillamine (DPCA) for
primary biliary cirrhosis (PBC) (Dickson et al. 1989). PBC destroys bile ducts in
the liver, causing bile to accumulate. Tissue damage is progressive and ultimately
leads to liver failure. Time from diagnosis to end-stage liver disease ranges from
a few months to 20 years. During the approximate 10-year follow-up period, 125
study participants died.
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Table 6.4 Cox model for treatment and bilirubin

stcox i.rx bilirubin

No. of subjects = 312 Number of obs = 312
No. of failures = 125
Time at risk = 1713.853528

LR chi2(2) = 85.79
Log-likelihood = -597.08411 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.rx | .8181612 .1500579 -1.09 0.274 .5711117 1.172078

bilirubin | 1.163459 .0154566 11.40 0.000 1.133556 1.194151
----------------------------------------------------------------------------

Predicting survival in PBC patients is important for clinical decision making. The
investigators collected data on age as well as baseline laboratory values and clinical
signs including serum bilirubin levels, enlargement of the liver (hepatomegaly),
accumulation of water in the legs (edema), and visible veins in the chest and
shoulders (spiders)—all signs of liver damage.

In the sections that follow, we will illustrate use of the Cox model for testing and
interpretation. This will present a series of largely unrelated models. The objective
will not be to illustrate a model selection strategy.

6.2.3 Hazard Ratios, Risk, and Survival Times

Table 6.4 displays a Cox model for the effects of treatment with DPCA (rx) and
bilirubin (bilirubin) on mortality risk in the PBC cohort.

The hazard ratio for treatment, 0.82, means that estimated short-term mortality
risk among patients assigned to DPCA was 82% of the risk in the placebo group.
This ratio is assumed to be constant over the 10 years of follow-up. Likewise, the
hazard ratio for bilirubin levels means that for each mg/dL increase in bilirubin,
short-term risk is increased by a factor of 1.16.

More broadly, (6.6) implies that in a model with predictors x1; x2; : : : ; xp ,
coefficient ˇj is the increase in the log-hazard ratio for a one-unit increase in
predictor xj , holding the values of the other predictors constant. It follows that
exp.ˇj / is the hazard ratio for a one-unit increase in xj . Below, we show how this
applies to continuous as well as binary and categorical predictors. Furthermore, for
predictors with hazard ratios less than 1 (ˇ < 0), increasing values of the predictors
are associated with lower risk and longer survival times. Conversely, when hazard
ratios are greater than 1 (ˇ > 0), increasing values of the predictor are associated
with increased risk and shorter survival times. In using the term risk in this context,
it is important to keep in mind the definition of the hazard as a short-term rate
and distinguish risk in this sense from cumulative risk over a defined follow-up
period.
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Table 6.5 Cox model for treatment and bilirubin showing coefficients

stcox i.rx bilirubin, nohr
LR chi2(2) = 85.79

Log-likelihood = -597.08411 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.rx | -.2006959 .1834088 -1.09 0.274 -.5601705 .1587787

bilirubin | .1513976 .0132851 11.40 0.000 .1253594 .1774358
----------------------------------------------------------------------------

6.2.4 Hypothesis Tests and Confidence Intervals

In the Cox model, as in the logistic model, the estimated coefficients have an
approximate normal distribution when there are adequate numbers of events in the
sample. The normal approximation is better for the coefficient estimates than for the
hazard ratios, so hypothesis tests and confidence intervals are based on calculations
involving the coefficients and their standard errors. If there are fewer than 15–25
events, the normal approximation is suspect and bootstrap CIs may work better;
see Sect. 6.6.1. Table 6.5 displays the Cox model for the effects of DPCA and
bilirubin on mortality risk with results on the coefficient rather than the hazard ratio
scale.

For each predictor in the model, Wald Z-tests are the default used by Stata to test
the null hypothesisH0: ˇ D 0, or equivalently that the hazard ratio equals 1. Under
the null, the ratio of the coefficient estimate to its standard error tends to a standard
normal, or Z, distribution with mean 0 and standard deviation 1. In Table 6.5, the
Z-statistics and associatedP -values for rx and bilirubin appear in the columns
headed |z| and P > |z|, respectively. The evidence for the efficacy of DPCA is
not persuasive (P D 0:27), but there is strong evidence that bilirubin levels are
associated with mortality risk (P < 0:0005). You can verify that the test results in
Table 6.4 are identical to those in Table 6.5 and refer to the Z-test involving the
actual coefficients and their standard errors, and not to a Z-test involving the ratio
of the hazard ratio to its standard error (Problem 6.1).

Since Cox regression is a likelihood-based method, tests for predictors can also
be obtained using the LR tests introduced in Sect. 5.2.1 for the logistic regression
model. The procedure is the same in this setting, comparing twice the difference
in log-likelihoods for nested models to a �2 distribution with degrees of freedom
equal to the between-model difference in the number of parameters. For instance, to
obtain an LR test of the null hypothesis that the hazard ratio for treatment is 1, we
would compare the log-likelihood for the model in Table 6.4 to the log-likelihood
for a model with bilirubin as the only predictor. These log-likelihoods are –
597.1 and –597.7, yielding a LR test statistic of 2Œ.�597:1/�.�597:7/�D 1:2, with
an associated p-value of 0.27.

In this case, the Wald and LR results are essentially identical. In most situations,
these tests give results which are similar but not exactly the same. The results
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be will closest when the sample size is large or the estimated hazard ratio is
near 1. However, in datasets with few events, the LR test gives more accurate
p-values, and so is recommended in that context. As noted in Sect. 10.4.2, qualitative
discrepancies between the two test results may indicate that the model includes too
many predictors for the number of events.

A 95% CI for each ˇ is obtained by computing Ǒ˙ 1.96SE( Ǒ). Stata and other
packages usually make it possible to compute CIs with other significance, or ˛,
levels. In Stata, this can be done by using the level() option.

In turn, CIs for the hazard ratios are obtained by exponentiating the upper and
lower limits of the CIs for the coefficients, again because the normal approximation
is better on the coefficient scale. From Table 6.4, the CI for rx, the indicator for
treatment with DPCA, shows that the data are consistent with risk reductions as
large as 43%, but also with risk increases of 17%. It is also clear that the increase in
risk associated with each mg/dL increase in bilirubin is rather precisely estimated
(95% CI for the hazard ratio 1.13–1.19).

You can also verify that the CIs in Table 6.4 are not equal to the estimated
hazard ratio plus or minus 1.96 times its standard error (Problem 6.1). For rx,
that calculation would yield (0.52–1.11) rather than (0.57–1.17). In reasonably large
samples like this one, the two intervals are usually very similar. However, since the
intervals based on exponentiating the confidence limits for the coefficients are more
accurate in small samples, they are the ones used in Stata.

6.2.5 Binary Predictors

Binary predictors can be coded as 1 and 0 and entered as numeric predictors, as
opposed to categorical. For example, we could code rx as 1 for the DPCA arm and
0 for placebo. Then the exponentiated coefficient gives the hazard ratio for treatment
versus placebo (and retains its literal interpretation as the hazard ratio for a one-
unit increase in the predictor). Some alternative codings, (e.g., placebo D 1 and
treatment D 2) would give the same results in this instance, but would complicate
interpretation in the presence of an interaction involving the binary predictor. This
would also make the baseline hazard harder to interpret; in the DPCA example, the
baseline hazard would not refer to either the placebo or the treatment group. Thus,
if binary predictors are treated as numeric, we recommend the 0/1 coding in this
context as well (Problem 6.2).

6.2.6 Multilevel Categorical Predictors

Patients in the PBC study underwent a liver biopsy to determine their level of
tissue damage. The scores ranged from 1 to 4, with increasing values reflecting
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Table 6.6 Categorical fit for histology

. stcox i.histol

Cox regression -- Breslow method for ties

No. of subjects = 312 Number of obs = 312
No. of failures = 125
Time at risk = 1713.853528

LR chi2(3) = 52.72
Log-likelihood = -613.62114 Prob > chi2 = 0.0000
----------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

histol |
2 | 4.987976 5.143153 1.56 0.119 .6610611 37.63631
3 | 8.580321 8.685371 2.12 0.034 1.179996 62.39165
4 | 21.38031 21.57046 3.04 0.002 2.959663 154.4493

----------------------------------------------------------------------------

testparm i.histol
( 1) 2.histol = 0
( 2) 3.histol = 0
( 3) 4.histol = 0

chi2( 3) = 43.90
Prob > chi2 = 0.0000

lincom -3.histol + 4.histol, hr
( 1) - 3.histol + 4.histol = 0

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
(1) | 2.491785 .4923268 4.62 0.000 1.691727 3.67021

---------------------------------------------------------------------------

greater damage. When we model a multiple category variable, a series of new
variables are created to represent group membership with one group serving as
the reference. Results are shown in Table 6.6. By default, Stata has chosen the
group with the lowest score as the reference category. Estimated hazard ratios with
respect to the reference group are 5.0, 8.6, and 21.4 for the groups with ratings
of 2, 3, and 4, respectively, suggesting a steady increase in the hazard with higher
ratings.

In addition to the default comparisons with the selected reference group, pairwise
comparisons between any two categories can be obtained using the lincom
command, as shown in Table 6.6 for groups 3 and 4. The hazard in group 4 is 2.5
times higher than in group 3 (95% CI 1.7–3.7, P < 0:0001).

6.2.6.1 Categories with No Events

In our example, the default reference category is sensible and does not cause
problems. However, categories may sometimes include no events, because the
group is small or cumulative risk is low. Hazard ratios with respect to a reference
category with no events are infinite, and the accompanying hypothesis tests and
CIs are hard to interpret. In this case, selecting an alternative reference group can
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correct the problem, although the hazard ratio, Wald test, and CI for the category
without events, with respect to the new reference category, will remain difficult to
interpret.

6.2.6.2 Global Hypothesis Tests

As in logistic models, global hypothesis tests for the overall effect of a multilevel
categorical predictor can be conducted using Wald or likelihood ratio (LR) �2 tests,
with degrees of freedom equal to the number of categories minus 1. The Wald test
result (�2 D 43:9; P < 0:00005), obtained using the testparm command, is
displayed in Table 6.6. The LR test result (�2 D 52:7; P < 0:00005) also appears in
the upper right corner of the table. Note that if covariates were included in the model,
this default Stata output would refer to a test of the overall effect of all covariates
in the model, not just histology; thus a LR test focused on the overall effect
of histology would require combining the results of models with and without
this predictor. Finally, a logrank test, as in Sect. 3.5.6, is available; this yields a �2

of 53.8 (P < 0:0001). The tests agree closely and all show that the groups with
different histology scores do not have equal survival.

The statistical significance of pairwise comparisons should be interpreted with
caution, especially if the global hypothesis test is not statistically significant, as
discussed in Sect. 4.3.4. With a large number of categories, multiple comparisons
can lead to inflation of the familywise type-I error rate (FER); Bonferonni,
Sidak, and Scheffé adjustments are implemented in the contrast command, as
explained in Sect. 4.3.4. In addition, some comparisons may lack power due to small
numbers in either of the categories being compared.

6.2.6.3 Ordinal Predictors and Tests for Trend

The histology score is ordinal, suggesting a more specific question: does the log
mortality hazard increase linearly with higher histology ratings? This question
can be addressed using tests for trend across categories like those introduced in
Sect. 4.3.5. Note that these tests, like other hypothesis tests for the Cox model, are
conducted using the coefficients and their standard errors, rather than the relative
hazards. Thus for the Cox model, these linear trend tests assess log-linearity of the
hazard ratios. From Table 4.8, the trend test for a four-category variable such as
histol is

� ˇ2 C ˇ3 C 3ˇ4 D 0: (6.7)

In Stata, the test for linear trend can be obtained using the test or contrast
commands—see Sect. 4.3.5 for an explanation of use of contrast command. The
three equivalent tests presented in Table 6.7 confirm an increasing linear trend across
the four histologic categories (�2 D 10:23; P D 0:0014).
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Table 6.7 Linear trend test for histology

test -1*2.histol + 3.histol +3*4.histol=0
( 1) - 2.histol + 3.histol + 3*4.histol = 0

chi2( 1) = 10.23
Prob > chi2 = 0.0014

contrast {histol -3 -1 1 3}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

histol | 1 10.23 0.0014
------------------------------------------------

contrast q(1).histol, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

histol | 1 10.23 0.0014
------------------------------------------------

Table 6.8 Test of departure from linear trend

. quietly stcox histol i.histol

. testparm i.histol
( 1) 2.histol = 0
( 2) 3.histol = 0

chi2( 2) = 1.24
Prob > chi2 = 0.5385

. contrast q(2/3).histol, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

histol |
(quadratic) | 1 0.44 0.5085

(cubic) | 1 1.15 0.2832
Joint | 2 1.24 0.5385

------------------------------------------------

It is also possible to check whether the linear trend adequately captures the
pattern of the coefficients across categories, or whether there are also important
departures from this trend. To do this, we use a model with both categorical and
log-linear terms for histol. Then a Wald test for the joint effect of the categorical
terms, obtained using the testparm command, can be used to assess the departure
from log-linearity. We also implement this test using the contrast command; see
Sect. 4.3.5 for the rationale for these tests.

The result (�2D 1:24; P D 0:54) suggests that a linear trend across categories is
an adequate description of the association between histology score and mortality
risk. However, it is not uncommon for both trend and departure from trend to be
statistically significant, signaling a more complex pattern in risk (Table 6.8).
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Table 6.9 Cox model for age in 1-year units

stcox age
LR chi2(1) = 20.51

Log-likelihood = -629.72592 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age | 1.04081 .0091713 4.54 0.000 1.022989 1.058941

----------------------------------------------------------------------------

6.2.7 Continuous Predictors

Age at enrollment of participants in the PBC study was recorded in years. The Cox
model shown in Table 6.9 shows that the hazard ratio for a 1-year increase in age is
1.04 (95% CI 1.02–1.06, P < 0:0005). The hazard ratio for continuous predictors
is affected by the scale of measurement. In the PBC study, ages range from 26 to 78;
thus, a 1-year difference in age is small compared to the range of values. A 5-year
increase in age might provide a more clinically interpretable result (Problem 6.5).

Using (6.5), we can write down the ratio of the hazards for any two patients who
differ in age by k years—that is, for a patient at age x C k compared with another
at age x:

h0.t/ exp.ˇ.x C k//
h0.t/ exp.ˇx/

D exp.ˇ.x C k//
exp.ˇx/

D exp.ˇ.x C k/ � ˇx/
D exp.ˇk/: (6.8)

Thus a k-unit change in a predictor multiplies the hazard by exp.ˇk/, no matter
what reference value x is considered.

Applying (6.8), with Ǒ D log.1:04081/ being the log of the hazard ratio for age
from Table 6.9, the hazard ratio for an increase in age of 5 years is exp. Ǒ5/ D 1:22.
The same transformation can be applied to the confidence limits for age giving a
95% CI for a 5-year increase in age of 1.12–1.33. Equivalently, we could raise the
hazard ratio estimate for an increase of one unit to the fifth power, that is, Œexp.ˇ/�k ,
and apply the same operation to the confidence limits (Problem 6.6).

The hazard ratio for a five-unit change can also be obtained by defining a new
variable age5 equal to age in years divided by 5. The Cox model for age5 appears
in Table 6.10. Note that the Wald and LR test results are identical in Tables 6.9 and
6.10; changes in the scale of a continuous variable do not affect these tests.

Hazard ratios can be interpreted in terms of percent changes in risk. It is easy to
see from Table 6.9 that estimated mortality risk among PBC patients increases about
4% for every year increase in age. We could also compute the percent increase risk
associated with larger increases in age. A k-unit increase in the predictor implies a
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Table 6.10 Cox model for age in 5-year units

stcox age5
LR chi2(1) = 20.51

Log-likelihood = -629.72592 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age5 | 1.221397 .0538127 4.54 0.000 1.120352 1.331556

----------------------------------------------------------------------------

Table 6.11 Unadjusted Cox model for bilirubin

stcox bilirubin
LR chi2(1) = 84.59

Log-likelihood = -597.6845 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bilirubin | 1.160509 .0151044 11.44 0.000 1.131279 1.190494

----------------------------------------------------------------------------

100.exp Ǒk�1/% change in risk. Note that this is the back transformation presented
in Sect. 4.7.5 for linear regression models with log-transformed outcomes. Using the
log of the hazard ratio estimate from Table 6.9 in place of Ǒ, this calculation gives
22% for the increase in mortality risk associated with a 5-year increase in age, a
result we could get more directly from Table 6.10.

6.2.8 Confounding

The definition of confounding in Sect. 4.4 is not specific to the linear regression
model. The conceptual issues and statistical framework for dealing with confound-
ing are similar across all regression models and discussed in more depth in Chap. 9.
To illustrate regression adjustment to control confounding in the Cox model, we
examined the association between bilirubin levels and survival among patients in
the DPCA trial. We first fit the simple Cox model which appears in Table 6.11. For
each one-point increase in baseline bilirubin, the hazard is increased by 16%.

However, patients with higher bilirubin may also be more likely to have
hepatomegaly, edema, or spiders—other signs of liver damage which are correlated
with elevated bilirubin levels but not mediators of its effects, and all associated with
higher mortality risk. Table 6.12 shows the estimated effect of bilirubin on mortality
risk adjusted for hepatomegaly, edema, and spiders.

The adjusted hazard ratio for a one-point increase in bilirubin is 1.12 (95% CI
1.09–1.15, P < 0:0005). This coefficient represents the effect of a one-unit change
in bilirubin while holding edema, hepatomegaly, and spiders constant. The other
predictors, which may reflect other aspects of PBC-associated damage to the liver,
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Table 6.12 Adjusted Cox model for bilirubin

stcox bilirubin i.edema i.hepatom i.spiders

LR chi2(4) = 118.82
Log-likelihood = -580.56805 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bilirubin | 1.118276 .0166316 7.52 0.000 1.086149 1.151353

1.edema | 2.126428 .4724983 3.40 0.001 1.375661 3.286927
1.hepatom | 2.050617 .434457 3.39 0.001 1.353765 3.106173
1.spiders | 1.474788 .28727 1.99 0.046 1.00676 2.160393

----------------------------------------------------------------------------

account for a modest proportion of the unadjusted effect of bilirubin, and clearly
contribute independent information about mortality risk. The attenuation of the
unadjusted hazard ratio for bilirubin in the adjusted model is typical of confounding.

6.2.9 Mediation

Mediation can also be addressed with the Cox model, using the strategies outlined in
Sect. 5.2.3. Here, we use data from the FIT trial Black et al. 1996b, which showed
that treatment with alendronate can reduce the risk of fracture in the spine. The
relative hazard of fracture of participants on alendronate was 0.52 compared with
placebo with a 95% CI from 0.41 to 0.66 (p < 0:001). Measures of BMD were also
increased by alendronate—the placebo arm showed a 0.8% decrease from baseline
while the treated group had a 3.8% increase in BMD from baseline, yielding a net
increase in BMD due to alendronate of 4.5% with 95% CI from 4.2% to 4.8%. We
can reject a null hypothesis that change in BMD is equal for the two arms (p <

0:001). This raises the natural question as to whether the reduction in fracture risk is
mediated, or captured by, the observed changes in BMD. Whenever we approach an
analysis of mediation, a causal role of the primary predictor is implied. Hence, we
should believe that the association between the primary predictor and the possible
mediator is a causal one. Here, we have a randomized trial and can comfortably
make such an assumption.

As we showed in Sect. 5.2.3, we establish mediation by requiring an association
between the predictor of interest (treatment by alendronate in this example) with the
mediator (BMD here) and the outcome (time to fracture here). The statistical test to
establish mediation requires that we test each of these associations at the 0.05 level.
Both null hypotheses are rejected with p < 0:01, establishing that BMD plays some
mediating role in the effect of alendronate on fracture risk.

A fuller picture emerges when we examine the magnitude of the direct effect of
alendronate on fracture risk. We can approach this by examining hazard ratios for
treatment group in a Cox model which includes an adjustment for BMD. Because
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Table 6.13 Cox model for FIT data assessing mediating value of changes in BMD due to
alendronate

. stcox i.treat i.smoking age bmd_diff bmd_base, strata(frac_base)

No. of subjects = 5324 Number of obs = 5324
No. of failures = 294
Time at risk = 20494.62287

LR chi2(6) = 123.14
Log-likelihood = -1911.6879 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.treat | .6237068 .082513 -3.57 0.000 .4812505 .8083319

|
smoking |

1 | 1.107652 .1422723 0.80 0.426 .8611343 1.424741
2 | 1.391522 .254672 1.81 0.071 .9720888 1.991931

|
age | 1.069186 .0116993 6.11 0.000 1.0465 1.092364

bmd_diff | .8274497 .0558578 -2.81 0.005 .724904 .9445018
bmd_base | .004533 .0082887 -2.95 0.003 .0001259 .1632403

----------------------------------------------------------------------------
Stratified by frac_base

of the possibility of confounding between the outcome and the mediator, we
recommend including potential confounders of the outcome/mediator relationship
in a Cox model which examines direct effects. Table 6.13 fits a Cox model to the
risk of a spinal fracture to examining the mediating value of change in BMD after
adjustment for baseline BMD, smoking, age, and history of fractures at baseline.
The latter variable used as a stratification variable in the Cox model because direct
adjustment yields an infinite hazard ratio. The Cox model shows that there is clearly
a statistically and clinically important benefit of treatment even after adjustment
for BMD.

There is a temptation to compare the effect of the treatment prior to and
after adjustment for the mediator. A model with treatment alone yields a hazard
ratio of 0.52 with 95% CI of 0.41 to 0.66. However, it is not straightforward
to compare hazard ratios for treatment across the models. Methods that compare
these coefficients directly using “proportion of the treatment effect explained” are
problematic. For instance, a variable which is strongly associated with the outcome
but not a mediator can change the coefficient for the treatment effect in a Cox model.
Hence, we do not recommend methods which calculate the “proportion of effects
explained” for examining mediation.

6.2.10 Interaction

The concept of interaction presented in Sect. 4.6 is also common to other mul-
tipredictor models. To illustrate its application to the Cox model, we examined
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Table 6.14 Cox model with interaction

stcox rx##hepatom

Log-likelihood = -619.7079 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.rx | .8365301 .2778607 -0.54 0.591 .4362622 1.604041

1.hepatom | 3.15151 .8380138 4.32 0.000 1.871444 5.30714
|

rx#hepatom |
1 1 | 1.099791 .4343044 0.24 0.810 .5071929 2.384775

----------------------------------------------------------------------------

. lincom 1.rx+1.rx#1.hepatom, hr
( 1) 1.rx + 1.rx#1.hepatom = 0

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
(1) | .9200085 .1963396 -0.39 0.696 .6055309 1.397807

----------------------------------------------------------------------------

Table 6.15 Cox model with interaction

Group rx hepatom h.t jx/
1 Placebo No h0.t/

2 DPCA No h0.t/ exp.ˇ1/
3 Placebo Yes h0.t/ exp.ˇ2/
4 DPCA Yes h0.t/ exp.ˇ1 C ˇ2 C ˇ3/

D h0.t/ exp.ˇ1/ exp.ˇ2/ exp.ˇ3/

interaction between two binary variables in the PBC data, treatment with DPCA
(rx), and the presence of liver enlargement or hepatomegaly (hepatom). This
analysis examines the hypothesis that the effect of treatment is modified by the
presence of hepatomegaly. As in linear and logistic models, interaction is handled
by including additional terms in the model. In Stata, interaction terms are created
by including the # operator between the two interacting variables. Including the ##
operator between the two variables is shorthand for the interaction term and each of
the two variables themselves. The interaction model is shown in Table 6.14.

Column 4 of Table 6.15 shows the hazard functions for the four groups defined
by treatment and hepatomegaly (Problem 6.7). The coefficients ˇ1; ˇ2, and ˇ3
correspond to the predictors rx, hepatom, and rx#hepatom, where the latter
is the interaction term. We obtain the hazard ratios of interest by dividing the hazard
functions for the different rows. Specifically, the comparison of the hazard for group
2 to the hazard for group 1 gives the effect of DPCA in the absence of hepatomegaly.
The model specifies that the ratio of these is exp.ˇ1/. In Table 6.14, the estimated
hazard ratio for rx is 0.84 (95% CI 0.44–1.60, P D 0:59).
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Similarly, the ratio of the hazard for group 4 to the hazard for group 3, or
exp.ˇ1/ exp.ˇ3/, gives the effect of DPCA in the presence of hepatomegaly. From
Table 6.14, the estimated effect is then the product of the estimated hazard ratios for
rx and rx#hepatom, or 0:84 � 1:1 D 0:92. This estimate, along with a 95% CI
(0.61–1.40) and p-value (0.70), can also be obtained using the lincom command
shown in Table 6.14.

It follows that the interaction hazard ratio exp.ˇ3/ gives the ratio of the DPCA
treatment effects among patients with and without hepatomegaly. In Table 6.14, the
estimated hazard ratio for rx#hepatom is 1.1 (95% CI 0.51–2.4, P D 0:81). The
Z-test ofH0: ˇ3 D 0 assesses the equality of the effects of DPCA in the two groups.

To interpret these negative findings fully, as discussed in Sect. 3.7, both the
point estimates and CIs need to be considered. The stratum-specific treatment effect
estimates as well as the interaction are weakly negative, in the sense that the point
estimates represent almost no effect or interaction, but the confidence limits include
fairly large effects. In view of the weak evidence for interaction, the overall—also
negative—finding for treatment with DPCA is the more sensible summary. Similar
methods can be used to obtain estimates of the effect of hepatomegaly stratified by
treatment assignment: that is, by comparing groups 3 and 1, then 4 and 2.

Interactions involving continuous or multilevel categorical predictors can also be
set up using the # and ## operators, but as Sect. 4.6 explains, care must be taken
with these more complex cases.

6.2.11 Model Building

Model building with the Cox model is similar to other regression models. Chapter 10
discusses the issues and makes recommendations. To prevent erosion of efficiency
as well as bias, models should avoid including too many predictors for the number
of observed events. A familiar guideline (Peduzzi et al. 1995, 1996; Concato et al.
1995) prescribes at least ten events per predictor. Vittinghoff and McCulloch (2007)
show that as few as five events per predictor may give consistent results in cases
where the additional covariates are needed to rule out confounding, but point out
that precision in this case may often be poor.

6.2.12 Adjusted Survival Curves for Comparing Groups

Suppose we would like to examine the survival experience of pediatric recipients of
kidney from living as compared to recently deceased donors, using the UNOS data.
Kaplan–Meier curves, introduced in Sect. 3.5.2, would be a good place to start and
are shown in Fig. 6.4.

In accord with the hazard ratio of 2.1 estimated by the unadjusted Cox model
shown in Table 6.3, the curves show superior survival in the group with living
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Fig. 6.4 Kaplan–Meier curves for transplant recipients by donor type

donors. However, there are two potentially important confounders of this effect.
First, living donors are more likely to be related and thus are closer tissue matches,
as reflected in the number of matching human leukocyte antigen (HLA) loci (range
0–6). Second, cold ischemia time (essentially the time spent in transport) is shorter
for kidneys obtained from living donors. After adjustment for these two factors, the
hazard ratio for donor type is reduced to 1.3 (95% CI 0.9–1.9, P D 0:19).

To see how adjusted survival curves might be constructed, first recall that
adjustment for these covariates implies that adjusted curves for the two groups
should differ only by donor type, with the other covariates being held constant.
Curves meeting these criteria can be obtained using the coefficient estimates from
the Cox model and an estimate of the baseline survival function, OS0.t/, based on
the Breslow baseline hazard estimate described earlier. Like the baseline hazard, the
baseline survival function refers to observations with all predictor values equal to
zero. If we assume a proportional hazard model, then a formula which links hazard
and survival functions implies, the survival function follows:

n OS0.t/
oexp. Ǒ

1x1C:::C Ǒ
pxp/

: (6.9)

That is, we raise the baseline survival to the exp. Ǒ1x1 C : : : C Ǒpxp/ power. To
evaluate (6.9), we need to specify a value for each of the predictors. In our example
with three predictors, we would need to choose and hold constant values for x2 (cold
ischemia time) and x3 (number of matching HLA loci), then generate the two curves
by varying the predictor x1 (recently deceased versus living donor).

It is conventional to use values for the adjustment variables which are close to
the “center” of the data. Thus we centered cold ischemia time at its mean value
of 10.8 h and number of matching variable HLA loci at its median, three. With
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Fig. 6.5 Adjusted survival curves for transplant recipients by donor type

this centering, the baseline hazard and survival functions now refer to observations
with cold ischemia time of 10.8 h, three matching HLA loci, and a living donor.
Then our adjusted estimate of the survival function for the group with living
donors, holding the covariates constant at the chosen values, is OS0.t/, while the

corresponding estimate for the group with recently deceased donors is f OS0.t/gexp. Ǒ
1/.

These adjusted curves, obtained in Stata using the stcurve command, are shown
in Fig. 6.5. The differences between the survival curves are, as expected, narrower
after adjustment. Note that the adjusted survival curves could also be estimated
using a stratified Cox model, as discussed in Sect. 6.3.2.

6.2.13 Predicted Survival for Specific Covariate Patterns

The estimated survival function (6.9) is also useful for making predictions for
specific covariate patterns. For example, consider predicting survival for a PBC
patient based on hepatomegaly status and bilirubin level, the two strongest predic-
tors in the model shown in Table 6.12. Figure 6.6 displays the predicted survival
curve for a PBC patient with hepatomegaly and a bilirubin level of 4.5 mg/dL.
From the curve, the median survival function for this covariate pattern is 6.3 years.
Survival probabilities at key time points can likewise be read from the plot: at 5
years, predicted survival for this covariate pattern is below 60%, and by 10 years,
it has dropped to less than 20%. However, mean survival cannot be estimated
in this case, because the longest follow-up time in the PBCA data is censored
(Sect. 3.5).
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Fig. 6.6 Predicted survival curve for PBC covariate pattern

6.3 Extensions to the Cox Model

6.3.1 Time-Dependent Covariates

So far we have only considered fixed predictors measured at study baseline, such
as bilirubin in the DPCA study. However, multiple bilirubin measurements were
made over the 10 years of follow-up, and these could provide extra prognostic
information. A special feature of the Cox model is that these valuable predictors
can be included as TDCs.

Definition: A time-dependent covariate in a Cox model is a predictor whose values may
vary with time.

In some cases, use of TDCs is critical to obtaining reasonable effect estimates.
For example, Aurora et al. (1999) followed 124 patients to study the effect of lung
transplantation on survival in children with cystic fibrosis. The natural time origin in
this study is the time of listing for transplantation, not transplantation itself, because
the children are most comparable at that point. However, waiting times for a suitable
transplant can be long, and there is considerable mortality among children on the
waiting list.

In this context, lung transplantation has to be treated as a TDC. To see this,
consider the alternative in which transplantation is modeled as a fixed binary
covariate, in effect comparing mortality risk in the group of children who undergo
transplantation during the study to risk among those who do not. This method can
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make transplantation look more protective than it really is. Here is how the artifact,
sometimes called immortal time bias (Suissa 2008), comes about:

• Because transplanted patients must survive long enough to undergo trans-
plantation, and waiting times can be long, the survival times measured from
listing forward will on average be longer in the transplanted group even if
transplantation has no protective effect.

• Because of this, children in the transplanted group are selected for better
prognosis. So the randomization assumption discussed in Sect. 9.1.4 does not
hold.

• Children are counted as having received a transplant from the time of listing
forward, in many cases well before transplantation occurs. As a result they appear
to be protected by a procedure that has not yet taken place. This illustrates the
general principle that we can get into trouble by using information from the future
to estimate current risk.

Treating transplantation as a TDC avoids this artifact. For each child, we define an
indicator of transplantationX.t/, which takes on value 0 before transplantation and
1 subsequently. For children who are not observed to undergo transplantation,X.t/
retains its original value of 0. Thus in an unadjusted model, the hazard at time t can
be written as

h.t jx/ D h0.t/ expfˇX.t/g

D
�
h0.t/ before transplantation
h0.t/ exp.ˇ/ at or after transplantation.

(6.10)

So now, all children are properly classified at t as having undergone transplantation
or not, and we avoid the artifact that comes from treating transplantation as a
fixed covariate. Note that Kalbfleisch and Prentice (1980) cite additional conditions
concerning the allocation of transplants that must be met for the randomization
assumption to hold and an unbiased estimate of the effect of transplantation to be
obtained.

The transplantation TDC is relatively simple, because it is binary and cannot
change back in value from 1 to 0. In practice, however, use of TDCs in Cox models
is often more complicated. Some additional considerations include the following:

• In most prospective studies, predictors like bilirubin will only be measured
occasionally, but we need a value at each event time. A commonly used approach
is to evaluateX.t/ using the most recent measurement before t , but this so-called
last observation carried forward (LOCF) approach is susceptible to bias; we
return to this in Chap. 11. More difficult is a two-stage approach in which we first
model the mean trajectory of the TDC for each subject. Then in the second stage
we can set X.t/ equal to its expected value at t , based on the first-stage model.
However, fitting and inference are both complicated in this procedure (Self and
Pawitan 1992; DeGruttola and Tu 1994; Wulfsohn and Tsiatis 1997; Tsiatis and
Davidian 2004).
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• While X.t/ cannot legitimately be evaluated using information from the future,
it often should be evaluated using all available information up until t . Consider
two PBC patients, one with bilirubin values of 0.8 and 3.5 at baseline and year
two, and the other with values of 2.5 and 3.5 at those times. In evaluating a
TDC for bilirubin at year two, it might not be adequate to account only for the
most recent values. A commonly used approach is to include the baseline value
as a fixed covariate along with the change since baseline as a TDC. But other
combinations of baseline and TDCs summarizing history up to t may be more
appropriate.

• Mediation can be evaluated using TDCs, extending the analysis of mediation of
the effect of alendronate on fracture by first year changes in BMD, treated as
a fixed covariate, as discussed in Sect. 6.2.9. For example, we could examine
mediation of the effects of ZDV via its effects on CD4 counts in the ACTG 019
trial by assessing both links in the hypothesized indirect pathway. Specifically,
we might use a model for repeated measures, covered in Chap. 7, to assess
ZDV effects on CD4 counts over time, and then assess the independent effects
of post-randomization CD4 values in a Cox model for AIDS-free survival,
controlling for treatment. Finally, we might informally compare the effect
estimates for ZDV before and after adjustment for post-randomization CD4
counts.

• Special methods are needed if a TDC both confounds and mediates the effects
of a time-dependent exposure or treatment. Suppose we wanted to evaluate the
overall effect of highly active anti-retroviral therapy (HAART) on progression
to AIDS, using data from an observational cohort. To avoid immortal time bias,
HAART would need to be modeled as a TDC. Now suppose we attempt to control
confounding by disease severity at treatment initiation by adjusting for time-
dependent prognostic measures including CD4 count. The problem is that the
effects of HAART on progression to AIDS are also mediated via its effects on
CD4 count, so this would adjust away some of the protective effect of treatment.
As a result, we would not obtain an estimate of the overall treatment effect. In
Sect. 9.5, we discuss a solution to this problem using IPW.

• Ideally TDCs are measured at regularly scheduled visits, so ascertainment
does not depend on prognosis. Missing visits can induce bias if the miss-
ingness is related to the value of the TDC that would have been obtained.
Likewise, ascertainment of TDCs by clinical chart review can be fraught with
pitfalls.

• In Stata, accommodating TDCs like the post-randomization CD4 counts in
the ACTG 019 example requires a specially constructed dataset with multiple
records for each unit. The stsplit and stjoin commands make this straight-
forward. In Sect. 6.4.2, we also show how the stcox option tvc accommodates
a different kind of TDC, specifically interactions between a fixed covariate and
time, which are useful in dealing with violations of the proportional hazards
assumption.
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6.3.2 Stratified Cox Model

Suppose we want to model the effect of edema (coded 1 for patients with edema and
0 for others) among patients with PBC in the DPCA cohort. Then in an unadjusted
model, the hazard for patients with edema is h.t jx/ D h0.t/ exp.ˇ/, while for
other patients it is just h0.t/. So the hazard for patients with edema is modeled
as a constant proportion exp.ˇ/ of the baseline hazard h0.t/.

However, we will show in Sect. 6.4.2 that the proportional hazards assumption
does not hold for edema. We can accommodate the violation by fitting a stratified
Cox model in which a separate baseline hazard is used for patients with and without
edema. Specifically, we let

h.t jedema D 1/ D h01.t/ (6.11)

for patients with edema, and

h.t jedema D 0/ D h00.t/ (6.12)

for other patients. Now the hazards for the two groups can differ arbitrarily.
Generalizing from edema to a stratification variable with two or more levels, and

to a model with covariates (x1; : : : ; xp), the hazard for an observation in stratum j

would have the form

h0j .t/ exp.ˇ1x1 C : : :C ˇpxp/: (6.13)

Note that in this model we assume that the effect of each of the covariates is
the same across strata; later, we examine methods for relaxing this assumption.
It is also important to point out that while the stratified, adjusted survival curves
presented in Sect. 6.2.12 above can give a clear visual impression of the effect of
the stratification variable after adjustment, current methods for the stratified Cox
model do not allow us to estimate or test the statistical significance of its effect.
Thus stratification could be used in our example to adjust for edema, but might
be less useful if edema were a predictor of primary interest. In Sect. 6.4.2, we
show how TDCs can be used to obtain valid estimates of the effects of a predictor
which violates the proportional hazards assumption. Stratification is also useful
in the analysis of stratified randomized trials. We pointed out in Sect. 10.2.6 that
we need to take account of the stratification to make valid inferences. But we
also need to avoid making an unwarranted assumption of proportional hazards for
the stratification variable that could potentially bias the treatment effect estimate.
The stratified Cox model is easy to implement in Stata as well as other statistical
packages. In ACTG 019, participants were randomized within two strata defined by
baseline CD4 count. To conduct the stratified analysis, we defined strcd4 as an
indicator coded 0 for the stratum with baseline CD4 count of 200–499 cells/mm3

and 1 for the stratum with baseline CD4 of less than 200. The stratified model for the
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Table 6.16 Cox model for treatment with ZDV, stratified by baseline CD4

stcox i.rx, strata(strcd4)
LR chi2(1) = 7.36

Log-likelihood = -276.45001 Prob > chi2 = 0.0067

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.rx | .4646665 .1362697 -2.61 0.009 .2615261 .8255963

----------------------------------------------------------------------------
Stratified by strcd4

effect of ZDV treatment (rx) is shown in Table 6.16. In this instance, the estimated
54% reduction in risk for treatment with ZDV is the same as an estimate reported
below in Sect. 6.6.3, which was adjusted for rather than stratified on CD4.

6.3.2.1 Number of Strata

Stratification is a flexible approach to adjustment for a categorical variable even
when it has a large number of levels. An example is in a multicenter randomized
trial with many centers. For stratification to work well, there do need to be a
reasonable number of events (about 5 to 7) in each stratum. When the number of
strata gets large, there can be some loss of efficiency in estimation of the treatment or
other covariate effects, since the stratified model does not “borrow strength” across
strata. Nonetheless, Glidden and Vittinghoff (2004) showed that in this situation, the
stratified Cox model performs better than an unstratified model in which the strata
are entered into the model as a nominal categorical predictor.

6.3.2.2 Interaction Between Stratum and a Predictor of Interest

In Table 6.16, the model assumes that the ZDV effect is the same in both strata.
It is possible, however, that patients with less severe HIV disease, as reflected in
higher CD4 counts, may respond better to ZDV. Such an interaction between stratum
and treatment can be examined by including a product term between the treatment
and stratum indicators. Note that in the stratified model only the product term
i.rx#strcd4 and the treatment indicator rx term are entered as predictors. The
predictor strcd4 is dropped automatically by Stata, because it has already been
incorporated as a stratification factor. In Table 6.17, we find persuasive evidence
of an effect of ZDV (rxD 1) in the higher CD4 stratum (strcd4D 0) with hazard
ratio of 0.32 (95% CI 0.14–0.74, P D 0:008). However, from the lincom result,
we derive the effect of ZDV in the lower CD4 stratum (strcd4D 1) where there
is weak evidence for a protective effect of ZDV (hazard ratio 0.71, 95% CI 0.32–
1.65, P D 0:43). There is the suggestion for interaction (hazard ratio 0.45, 95% CI
0.14–1.48,P D 0:19), given by the product term rx#strcd4, although this is not
statistically significant.
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Table 6.17 Stratified fit with interaction term

. stcox i.rx##i.strcd4, strata(strcd4)

No. of subjects = 880 Number of obs = 880
No. of failures = 55
Time at risk = 354872

LR chi2(2) = 9.14
Log-likelihood = -275.56324 Prob > chi2 = 0.0104

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.rx | .3211889 .136976 -2.66 0.008 .1392362 .7409156

1.strcd4 | (omitted)
|

rx#strcd4 |
1 1 | 2.218026 1.342113 1.32 0.188 .677501 7.261448

----------------------------------------------------------------------------
Stratified by strcd4

. lincom 1.rx+1.rx#1.strcd4, hr

( 1) 1.rx + 1.rx#1.strcd4 = 0

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
(1) | .7124052 .305808 -0.79 0.430 .307142 1.652399

----------------------------------------------------------------------------

6.3.2.3 Stratified and Adjusted Survival Curves

In Sect. 6.2.12, we presented adjusted survival curves for pediatric kidney transplant
recipients according to donor type, based on an adjusted model in which the effect of
donor type was modeled as proportional. We can also obtain adjusted survival curves
according to the levels of a stratification factor. We will show in Sect. 6.4.2 that
the effects of baseline edema on mortality risk among PBC patients in the DPCA
cohort were not proportional. Suppose we would like to compare the survival curves
according to edema, adjusting for age. As in the earlier example, we need to specify
a value for age in order to estimate the survival curves, and make a similar choice
in centering age on its mean of 50. Under the stratified Cox model, the survivor
function for a PBC subject with centered agec is given by

ŒS0j .t/�
exp.ˇagec/: (6.14)

The adjusted survival curves for the edema (j D 1) and no edema (j D 0) strata,
adjusted to age 50 (i.e., agec D 0), are therefore S01.t/ and S00.t/, respectively.
Figure 6.7 shows shorter survival in patients with edema at baseline. However,
these stratum-specific survival functions also suggest that the multiplicative effect
of edema on the mortality hazard is not constant over time. We examine this more
carefully in Sect. 6.4.2.
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Fig. 6.7 Stratified survival curves for edema adjusted for age

6.4 Checking Model Assumptions and Fit

Two basic assumptions of the Cox model are log-linearity and proportional hazards.
Just as with other regression models, these assumptions can be examined, and
extensions of the model can deal with violations and model more complex effects.

6.4.1 Log-Linearity of the Hazard Function

In Sect. 6.2.1, (6.6) specifies that each unit change in a continuous predictor has the
same effect on the log of the hazard. This implies that the hazard ratio is log-linear
in continuous predictors.

Unlike the linear model, but like the logistic, diagnostics for violations of log-
linearity using plots of residuals do not work very well for the Cox model. However,
violations of this assumption are easy to detect and accommodate with the tools
covered in Sect. 4.7.1 for the linear model. The approach is simple: attempt more
general models and examine improvements in fit.

Like other models, the Cox model can be generalized by adding polynomial
terms for the predictor in question to the model. Effect sizes and p-values are then
checked to determine whether the higher order terms are important; or the predictor
can be log-transformed and the log-likelihoods informally compared (Problem 6.4).
Alternatively, the continuous predictor can be categorized using well-chosen cut-
points; then log-linearity is checked using the methods outlined above in Sect. 6.2.2
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for assessing both trend and departures from trend in ordinal predictors. These
approaches have limitations: a susceptibility to outliers for polynomial models and
sensitivity to the number and placement of the cutpoints for categorizations.

Restricted cubic splines are an alternative approach offering flexibility with
relative parsimony. These methods, discussed in Sect. 4.7.1, lay down a series of
“knots” along the values of the predictor and fit a polynomial curve between them—
allowing for a wide variety of shapes. Consider the relationship between age and
hazard of death for the PBC dataset. Using a spline fit, we could detect a nonlinear
pattern between age and mortality. Unlike categorization of a continuous predictor,
splines are not greatly sensitive to number and placement of knots. Three to five
knots provide a great deal of flexibility. The choice of the number of knots is a
balance between the sample size and the degree of flexibility desired. A further
advantage is the similarity of implementation across diverse regression models.
First, a spline basis is derived—in Stata this uses the mkspline command. This
basis comprises k � 1 predictors, where k is the number of knots. These predictors
then take the place of the continuous variable in the regression model.

Table 6.18 uses the commands and output for splines in a Cox model. Note,
the similarity to the application of splines linear model in Sect. 4.7.1. Two test
statements appear in Table 6.18. The tests suggest strong support for an overall
effect of age on survival (given by the pD 0.0004) but find no evidence that the
spline model fits the data better than a log-linear term in age (given by the pD 0.99).
A p-value alone should not be used for model selection; hence, we compare the
log-linear and spline fits graphically to examine the magnitude of the differences.
Figure 6.8 shows the fits compared with a categorical fit placing cutpoints at the
knots. The linear and restricted spline fit agree closely, suggesting a log-linear model
fit age reasonable well.

6.4.2 Proportional Hazards

The adjusted Cox model shown in Table 6.12 shows that mortality risk is increased
about twofold in PBC patients with edema at baseline. However, Fig. 6.7 suggests
that edema may violate the proportional hazards assumption: specifically, the hazard
ratio in edema is greatest in the first few years and then diminishes. Thus the effect of
edema on the hazard is time-dependent. A transformed version of Fig. 6.7 turns out
to be more useful for examining violations of the proportional hazards assumption.

6.4.2.1 Log-Minus-Log Survival Plots

To illustrate the use of transformed survival plots for assessing proportionality for
binary or categorical predictors, we consider the treatment indicator (rx) in the
DPCA trial. This method exploits the relationship between the survival and hazard
functions. If proportional hazards hold for rx, then by (6.9)
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Table 6.18 Restricted cubic spline Cox model for the effect of age on mortality

. mkspline age_sp = age, cubic

. stcox age_sp1 age_sp2 age_sp3 age_sp4

Cox regression -- Breslow method for ties

No. of subjects = 312 Number of obs = 312
No. of failures = 125
Time at risk = 1713.853528

LR chi2(4) = 20.59
Log-likelihood = -629.68657 Prob > chi2 = 0.0004

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
age_sp1 | 1.049751 .0702359 0.73 0.468 .9207355 1.196845
age_sp2 | .9849075 .3583548 -0.04 0.967 .482713 2.009564
age_sp3 | .9746888 1.345662 -0.02 0.985 .0651166 14.5895
age_sp4 | 1.17647 2.203381 0.09 0.931 .0299493 46.21414

----------------------------------------------------------------------------

. * test for departure from linearity

. test age_sp2 age_sp3 age_sp4

( 1) age_sp2 = 0
( 2) age_sp3 = 0
( 3) age_sp4 = 0

chi2( 3) = 0.08
Prob > chi2 = 0.9943

. * test for overall effect

. test age_sp1 age_sp2 age_sp3 age_sp4

( 1) age_sp1 = 0
( 2) age_sp2 = 0
( 3) age_sp3 = 0
( 4) age_sp4 = 0

chi2( 4) = 20.54
Prob > chi2 = 0.0004

S1.t/ D ŒS0.t/�exp.ˇ/; (6.15)

where S0.t/ is the survival function for placebo patients and S1.t/ is the corre-
sponding survival function for the DPCA-treated patients. Then, the log-minus-log
transformation of (6.15) gives

logf� logŒS1.t/�g D ˇ C logf� logŒS0.t/�g: (6.16)

Thus when proportional hazards hold, the two transformed survival functions will
be a constant distance ˇ apart, where ˇ is the log of the hazard ratio for treatment
with DPCA. This approach assumes a categorical variable but can be adapted to a
continuous variable by, for instance, factoring a continuous variable into quartiles.
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Fig. 6.8 Cox model fit to PBC data using a log-linear fit, restricted cubic spline, and categorical
transformation of age
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Fig. 6.9 Log-minus-log survival plot for DPCA treatment

This result enables us to use a simple graphical method for examining the propor-
tional hazards assumption. Specifically, log-minus-log-transformed Kaplan–Meier
estimates of the survival functions for the placebo and DPCA groups are plotted
against follow-up time. In Stata, this plot is implemented in the stphplot
command. The log-minus-log survival plot for DPCA is shown in Fig. 6.9.
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Fig. 6.10 Log-minus-log survival plot for edema

In assessing the log-minus-log survival plot for evidence of nonproportional
hazards, the patterns to look for are convergence, divergence, or crossing of the
curves. Converging curves suggest that the difference between the groups decreases
with time; diverging curves suggest that differences increase with time. If the curves
show pronounced crossing, then the nonproportionality may be more important; for
example, this might indicate that treatment is harmful early on but protective later.
In Fig. 6.9, however, the curves for DPCA and placebo remain close over the entire
follow-up period and do not suggest nonproportionality.

In contrast, the log-minus-log survival plot for edema in Fig. 6.10 shows rather
clear evidence of a violation of proportionality. While there is a pronounced
difference between the groups at all time points, showing that patients with edema
have poorer survival, the difference between the groups diminishes with follow-
up. Specifically, the distances between the curves—that is, the implied log-hazard
ratios—are 4.7, 1.8, 1.1, and 1.0 at years 1, 4, 7, and 10, respectively.

6.4.2.2 Smoothing the Hazard Ratio

Log-minus-log survival plots are good diagnostic tools for violations of the propor-
tional hazards assumption. To address such a violation, however, we may need more
information about how the log-hazard ratio changes with follow-up time. We can
do this using a nonparametric, smoothed estimate of the hazard ratio against time,
analogous to the LOWESS estimates of the regression function used in diagnosing
problems in linear models in Sect. 4.7. If the smoothed estimate of the hazard ratio
is nearly constant, then the assumption of proportional hazards is approximately
satisfied. Conversely, when curvature is pronounced, the shape of the smooth line
helps us determine how to model the hazard ratio as a function of time. In Stata,
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Fig. 6.11 Smoothed estimate of log-hazard ratio for edema

the plot can be generated using the estat phtest command with the plot
option. Figure 6.11 shows the smoothed estimated plot of the hazard ratio over time
for edema. A nonconstant trend is readily apparent: the log-hazard ratio decreases
steadily over the first 4 years and then remains constant. This works by smoothing a
specialized type of residual, scaled Schoenfeld residuals, for each predictor against
time using LOWESS. The residuals appear as points in the plot. Smoothing them
against time provides a nonparametric estimate of the log-hazard ratio for that
predictor as it changes over time. An advantage of this approach is that it works
for both categorical and continuous variables.

Relatively influential points are identifiable from the plots of the Schoenfeld
residuals. DFBETA statistics, a measure of how much coefficients are changed by
the deletion of individual observations (see Sect. 4.7.4 for an illustration of their
applications in linear models), can be obtained for the Cox model in Stata by using
the predict command.

6.4.2.3 Schoenfeld Test

Schoenfeld (1980) provides a test for violation of proportional hazards which is
closely related to the diagnostic plot using LOWESS smooths of scaled Schoenfeld
residuals just described. The test assesses the correlation between the scaled
Schoenfeld residuals and time. This is equivalent to fitting a simple linear regression
model with time as the predictor and the residuals as the outcome, and the
parametric analog of smoothing the residuals against time using LOWESS. If the
hazard ratio is constant, the correlation should be zero.

The Schoenfeld tests for rx and edema are shown in Table 6.19. Positive values
of the correlation rho suggest that the log-hazard ratio increases with time and vice
versa. In accord with the graphical results, the Schoenfeld test finds strong evidence
for a declining log-hazard ratio for edema (rho D �0.36, P D 0:0001), but does
not suggest problems with rx (rho D �0.07, P D 0:5).
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Table 6.19 Schoenfeld tests of proportional hazards assumption

. estat phtest, detail

Test of proportional-hazards assumption

Time: Time
----------------------------------------------------------------

| rho chi2 df Prob>chi2
------------+---------------------------------------------------
rx | -0.05862 0.43 1 0.5129
edema | -0.36107 14.63 1 0.0001
------------+---------------------------------------------------
global test | 14.71 2 0.0006
----------------------------------------------------------------

The Schoenfeld test is most sensitive in cases where the log-hazard ratio is
linearly increasing or decreasing with time. However, because the test is based on
a linear regression model, it is sensitive to a few large residual values. Such values
should be evident on the scatterplot of the scaled Schoenfeld residuals against time.
Useful examples and discussion of the application of the Schoenfeld test appear in
Sect. 6.5 of Therneau and Grambsch (2000).

6.4.2.4 Graphical Diagnostics Versus Testing

We have described both graphical and hypothesis testing methods for examining the
proportional hazards assumption. The Schoenfeld test is widely used and gives two
easily interpretable numbers that quantify the violation of the proportional hazards
assumption. However, as pointed out in Sect. 4.7, such tests may lack power to
detect important violations in small samples, while in large samples they may find
statistically significant evidence of model violations which do not meaningfully
change the conclusions. While also lacking sensitivity in small samples, graphical
methods give extra information about the magnitude and nature of model violation,
and should be the first-line approach in examining the fit of the model.

6.4.2.5 Stratification

The stratified Cox model introduced in Sect. 6.3.2 is an attractive option for handling
binary or categorical predictors which violate the proportional hazards assumption.
We explained there that no assumption is made about the relationships between the
stratified hazard functions specific to the different levels of the predictor. Because
the resulting fit to the stratification variable is unrestricted, this is a particularly good
way to rule out confounding of a predictor of interest by a covariate that violates
the proportional hazards assumption. However, because no estimates, CIs, or
p-values are obtained for the stratification variable, this approach is less useful for
any predictor of direct interest.
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Note that we can apply this approach to a continuous variable by first categoriz-
ing it. How many categories to use involves a trade-off (Problem 6.9). Using more
strata more effectively controls confounding, but as we suggested in Sect. 6.3.2,
precision and power can suffer if the confounder is stratified too finely, because
strength is not borrowed across strata. Five or six strata generally suffice, but there
should be at least 5–7 events per stratum.

6.4.2.6 Modeling Interactions with Time

In this section, we briefly outline a widely used approach to addressing violations of
the proportional hazards assumption using interactions with time, and implemented
using TDCs, as described above in Sect. 6.3.1. We return to the edema example and
show how the declining hazard ratio can be modeled. To begin, let h1.t/ and h0.t/
denote the hazard functions for PBC patients with and without edema. Because
proportional hazards does not hold, the hazard ratio

HR.t/ D h1.t/

h0.t/
(6.17)

is a function of t . To address this, we define ˇ.t/ D logfHR.t/g as a coefficient for
edema which changes with time. This is equivalent to a hazard function of the form

h.t jedema/ D h0.t/ expfˇ.t/edemag; (6.18)

where as before edema is a 0/1 indicator of the presence of edema. This can be
modeled in one of two ways.

• We can model the log-hazard ratio for edema as a linear function of time. This
is implemented using a main effect, edema, plus an interaction term, edemat,
defined as a TDC, the product of edema and t . That is, we set

ˇ.t/edema D .ˇ0 C ˇ1t/edema
D ˇ0edemaC ˇ1tedema
D ˇ0edemaC ˇ1edemat: (6.19)

Alternatively, we could model the log-hazard ratio as linear in log time, defining
the product term with log.t/ in place of t ; this might be preferable in the edema
example, since the decline in the log-hazard ratio shown in Fig. 6.11 grows less
steep with follow-up (Sect. 4.7.1).

• We can split follow-up time into sequential periods and model the log-hazard
ratio for edema as a step function with a different value in each period. For
example, we could estimate one log-hazard ratio for edema in years 0–4, and
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another in years 5–10, again motivated by Fig. 6.11. We could do this by defining
two TDCs:

– edema04, equal to 1 during the first 4 years for patients with edema, and 0
otherwise.

– edema5on, equal to 1 during subsequent follow-up for patients with edema,
and 0 otherwise.

Then we set

ˇ.t/edema D ˇ1edema04C ˇ2edema5on: (6.20)

This approach is analogous to categorizing a continuous predictor to model
nonlinear effects (Sect. 4.7.1).

The first alternative is more realistic because it models the hazard ratio for edema as
a smooth function of time. But it is harder to implement because the TDC edemat
changes continuously for patients with edema from randomization forward; up to
one record for every distinct time at which an outcome event occurs would be
required for these patients in the “long” dataset used for the analysis in Stata,
now easily obtained using the stsplit and stjoin commands. In contrast,
the second alternative is less realistic but easier to implement, only requiring two
records for patients with edema and more than 4 years of follow-up, and one record
per patient otherwise. See Sect. 6.9 for discussion of another flexible approach.

6.5 Competing Risks Data

6.5.1 What Are Competing Risks Data?

The MrOS study (Orwoll et al. 2005) followed 5,993 men over the age 65 and
examined predictors of bone fracture and low BMD (evidence of subclinical bone
loss). At enrollment, all men underwent a dual X-ray absorptiometry (DEXA) scan
to determine their BMD and were followed for an average of 5 years for risk
of bone fracture. At the conclusion of follow-up, 531 participants had developed
fracture, 4,805 remained alive without fracture and 657 had died prior to fracture.
An important question is how well a baseline BMD measure predicts fracture risk
over the follow-up period.

There are two possible sources of incomplete follow-up: (1) the end of the
observation (due to loss to follow-up or short observation times due to staggered
entry) and (2) death. To understand why it is important to distinguish between them,
consider how our methods have handled incomplete follow-up. The approach that
has been used so far in this chapter attempts to project forward the experience of a
censored observation by representing their experience with those followed longer.
Embedded in this approach is an assumption and an objective. The assumption
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is the independent censoring assumption (see Sect. 6.6.4) that the future risk of
those whose follow-up has ended can be represented by those who are followed
longer (see Sect. 3.5.2 for a discussion of this in the context of the Kaplan–Meier
survivor function). The implicit objective is to make an extrapolation to a setting in
which the source of incomplete follow-up is eliminated. For incomplete follow-up
due to patient dropout, the assumption may be suspect but the objective is highly
relevant since we would like to estimate what would have happened if people had
been followed completely. For death, both the assumption and the objective are in
question. To extrapolate to a setting where death is not possible would be to project
a new population or the ability to extend lives—altering the underlying conditions
of the study. Instead we could acknowledge death as another possible outcome
which can cut short the observation of fracture without attempting to project
fracture experience beyond participant lifetimes. Thus, objectives and approaches
to incomplete follow-up may differ depending on whether it is due to death or the
inability of a study to retain or follow participants.

Definition: Competing risks data arise when multiple events can occur and follow-up can
end due to occurrence of one or more of those types of events, precluding observation of at
least one of the other event types.

The definition given is the most expansive possible definition. It could cover a
situation in which observations are cut short due to patient dropout or due to end-of-
study censoring. In the analysis of competing risks data, two major approaches can
be taken—one which seeks to extrapolate to a scenario in which a type of event is
not possible (typically, loss to follow-up or incomplete follow-up due to staggered
entry). We call this approach elimination. Another family of methods is based on
acknowledging and allowing for the competing risks in the analysis. This approach
will be called accommodation.

In our example, we can observe fractures, death, or losses to follow-up. The
objective of the analysis is to estimate the risk of fracture (in the presence of death)
where there is no loss to follow-up.

6.5.2 Notation for Competing Risks Data

We denote competing risks outcome data using two variables: one which denotes
the time of the first event and the other which denotes the type of event. Let

• Y : be the time of the first observed event of any type
• � D k if the kth event type occurs first

where each of the K possible types of failure are denoted by a numerical code. In
the MrOS dataset, the failure types were coded as 0: loss to follow-up, 1: fracture,
and 2: death. Using this, a participant who is followed for 18 months and dies
(prior to fracture) will have YD18 months and�D 2. Note, that this same notation
is standard for ordinary survival analysis where there are two possible events:
censoring and failure.
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6.5.3 Summaries for Competing Risk Data

Two important summaries are typically available for competing risk data: these are
analogs of the hazard and survival function.

6.5.3.1 Cause-Specific Hazard Functions

Definition: The cause-specific hazard function for event type k, hk.t/, is the short-term
rate at which subjects experience the onset of the kth event among those who have not yet
experienced the event of interest (e.g., fracture) or a competing event (e.g., death) prior to t .

A hazard function can be thought of as a short-term rate of failure. Rate functions
are ratios defined by which events get counted (in the numerator) and who is
included in the “at risk” population (in the denominator). The kth cause-specific
hazard only counts events of type k in the numerator (e.g., number of fractures). The
denominator includes follow-up for all people who could have developed the event
by time t . In the MrOS example, the cause-specific hazard function for fracture at a
given time t calculates the rate of fracture among all people who are alive, without
fracture, and uncensored prior to time t . Follow-up is counted in the denominator
(the “at risk” population) until fracture, death, or loss to follow-up. Note that the
cause-specific hazard reduces to the ordinary hazard function in the case that there
is only one type of failure.

Estimating and modeling cause-specific hazard functions is straightforward.
Simply set up the data as ordinary survival data with the kth failure type as
the only type of failure and treat competing causes (even death) as “censored.”
Counterintuitively, the cause-specific hazard function’s calculation does not make a
distinction between events which are accommodated versus those which we attempt
to eliminate. This will be in contrast to the cumulative incidence function for which
this distinction will be very important.

If the data are analyzed this way, it is possible to examine the effect of predictor
like bone-mineral density on the cause-specific hazard of fracture using a standard
Cox model-type formulation. This will be discussed further in Sect. 6.5.3.3.

6.5.3.2 Cumulative Incidence Functions

The extension of the hazard function to competing risks data is given by the cause-
specific hazard functions. The extension of the survivor function is given by what
is called the cumulative incidence function. The cumulative incidence function at
time t for the event type k is the proportion of the sample who have experienced the
kth event by time t . For instance, at 5 years the cumulative incidence estimate of
fracture is 0.080 and for death it is 0.093. This implies that after 5 years, about 8.0%
of the study population developed a fracture prior to death, that 9.3% died without
fracture and the remaining 82.7% are alive without fracture.
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Table 6.20 Deaths and fractures in the MrOS cohort

Months in No. in No. No. No. lost Pr event-
cohort follow-up fractured died to FU free

1 5,993 7 2 1 0.9985
2 5,983 7 5 0 0.9965
3 5,971 10 1 0 0.9947
4 5,960 5 3 0 0.9933
5 5.952 4 6 0 0.9917
6 5,942 8 6 1 0.9893
7 5,927 10 1 1 0.9875
8 5,915 11 4 1 0.9850
9 5,899 6 5 1 0.9831
10 5,887 4 3 1 0.9818

Definition: The cumulative incidence function for cause type k at time t , Fk.t/, is the
proportion who have developed the kth event prior to t .

The cumulative incidence function is a measure of prevalence of a particular event
at each time t for a population which started with none.

This would be easy to estimate if there are no competing causes which we plan to
eliminate. If we wanted to calculate the estimated cumulative incidence function at 1
year, we would simply count the number of people who at 1 year were alive without
fracture (n0), had experienced a fracture (n1), or had died without experiencing a
fracture (n2). The cumulative incidence of fracture at 1 year would be n1=.n0 C
n1 C n2/.

However, with incomplete follow-up, estimation requires more care. It requires
that we consider increments of time as we did in the calculation of the Kaplan–Meier
survivor estimate in Table 6.1.

Table 6.20 traces the first 10 months of the MrOS follow-up period and gives a
summary by month. The second column is the number of participants who start the
month alive, unfractured and under follow-up. The third through fifth column gives
the number of fractures, losses to follow-up and deaths in that month, respectively.
The final column is the estimated fraction of the proportion of the cohort who are
alive and free of fracture at the end of each month. This quantity can be calculated
by the Kaplan–Meier method by combining death and fracture into a single event.

Table 6.21 shows the cumulative incidence of fracture for the MrOS cohort
during the first 10 months of follow-up. The cumulative incidence function for each
month is the cumulative sum over the time-specific probabilities of a new fracture.
This probability of a new fracture in a given month is the probability that someone is
alive and fracture free at the beginning of the month (note that this is the probability
from the end of the prior month) and develops a fracture during the month. For
instance, the probability of an incident fracture in month seven is the chance of
being alive and unfractured at the end of month 6 (0.9893) times the rate of failure
in the seventh month. This rate is simply the number of fractures during the month
divided by the number of participants under follow-up during the seventh month—
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Table 6.21 Estimating the cumulative incidence of fracture in the MrOS
cohort

Months in Event-free Rate new Pr new Cum. incidence
cohort start of mo fracture fracture fracture

1 1.0000 7/5,993 0.0012 0.0012
2 0.9985 7/5,983 0.0012 0.0023
3 0.9965 10/5,971 0.0017 0.0040
4 0.9947 5/5,960 0.0008 0.0048
5 0.9933 4/5,952 0.0007 0.0055
6 0.9917 8/5,942 0.0013 0.0068
7 0.9893 10/5,927 0.0017 0.0085
8 0.9875 11/5,915 0.0018 0.0103
9 0.9850 6/5,899 0.0010 0.0113
10 0.9831 4/5,887 0.0005 0.0118
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Fig. 6.12 Cumulative incidence of fracture in the MrOS cohort

10 of out 5,927 followed. The product of these two numbers is 0.0017 and means
that about 0.17% of the cohort develops a new fracture in the seventh month. The
cumulative incidence function is the sum over all the previous months. It estimates
that the probability of developing a fracture by the end of the seventh month of the
study is 0.085. Figure 6.12 graphs the cumulative incidence of fracture in MrOS
cohort over a 6 year period.

The cumulative incidence function for the kth event at time tj , Fk.tj /, equals

Fk.tj / D Fk.tj�1/C QS.tj�1/hk.tj /; (6.21)

where QS.tj�1/ is the chance of being free of events at time tj�1 (just prior to time
tj ). In the MrOS data, it is the chance of being both alive and unfractured. This can
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be calculated by combining death and fracture into a composite and calculating
the usual Kaplan–Meier estimator of being event-free and is given by values in the
second column of Table 6.21. The hazard hk.tj / denotes the cause-specific hazard
for the kth event at time tj which is given by the values in the third column of
Table 6.21. The risk of a new event of type k at time tj is the product of the kth
cause-specific hazard at time by the cumulative incidence of the kth event at time
tj�1 and appears as a fourth column. The cumulative incidence is the total of new
events over all time periods and in the final column.

The cause-specific hazard function can be obtained by censoring competing
events. However, censoring competing causes and calculating a survival function
lead to estimates which have an awkward interpretation. It can only be interpreted as
probability of event type k if (1) all competing causes have been eliminated and (2)
the competing events can be assumed to be independent of the kth event. Note, this
is typically the assumption made with people who are lost to follow-up. However, it
would be highly speculative to extrapolate the likelihood of fracture if death could be
eliminated from the MrOS cohort and contrary to the objective of accommodating
competing causes.

From the calculations in Table 6.21 and (6.21), it is evident that the cumulative
incidence function for the kth event depends on two things—the kth cause-specific
hazard function and the Kaplan–Meier curve for remaining event-free. The event-
free curve combines those who have not had the kth event or any other event. Hence,
the cumulative chance of developing a fracture can be decreased (holding the kth
cause-specific hazard constant) by increasing the rate of other types of failures,
putting far fewer participants at risk for a fracture.

For instance, if age has no effect on the risk of fracture but does increase the
risk of death, then a comparison of the cumulative incidence function by age would
show a lower cumulative incidence of fracture among older men. This follows from
the fact that older men are less likely to develop a fracture over the follow-up period.
However, the lower number of fractures is due to the fact that fewer older men live
long enough to develop fractures. This effect, while real, happens through age’s
effect on death rather than on fracture.

In such a scenario, modeling the age effect on the cause-specific hazard of
fracture will show no effect. A model for the effect of age on the cumulative
incidence of fracture would show a lower incidence of fracture with increased age.
Both descriptions are faithful to the situation but reflect different aspects. Hence, the
analyses are complementary and we discuss regression models for both.

6.5.3.3 Cox Model for Cause-Specific Hazard Functions

One approach to allowing predictors to affect the onset of competing risks is to
model the cause-specific hazard function using proportional hazard formulation.
Covariate effects can be interpreted as ratios of cause-specific hazards. Let hk.t/
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Table 6.22 Cox model for effect of BMD on fracture risk adjusted for body weight

stset time, failure(status==1)

stcox i.bmd3 weight

No. of subjects = 5993 Number of obs = 5993
No. of failures = 531
Time at risk = 30483.46339

LR chi2(3) = 121.22
Log-likelihood = -4442.2904 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bmd3 |

2 | .4193745 .0447953 -8.14 0.000 .3401585 .5170384
3 | .3290229 .0396476 -9.23 0.000 .2598098 .4166743

weight | 1.004146 .00362 1.15 0.251 .997076 1.011266
----------------------------------------------------------------------------

be the kth cause-specific hazard and let x1; : : : ; xp be a set of predictors. The model
has the form

hk.t jx/ D h0k.t/ exp.ˇ1x1 C : : :C ˇpxp/; (6.22)

where h0k.t/ is a baseline hazard function. The model incorporates covariates into
the model just as they appear in (6.5). The only difference is the hazard ratios apply
to the kth cause-specific hazard while the interpretation of predictor effects are
identical.

Consider a model for baseline BMD as a predictor of fracture in the MrOS cohort.
The variable time in this dataset is the time to event variable Y and the type of
failure is given by status which is coded as 0 if a person is free of death and
fracture at the end of observation, 1 if the follow-up ends with fracture, and 2 if
follow-up ends with a death prior to the onset of fracture. The predictors are BMD
bmd3 categorized into levels <0.895 g/cm2, 0.895 to 1.01 g/cm2, and >1.01 g/cm2

and baseline weight (weight) measured in kilograms.
In Table 6.22, we see that compared to the group with BMD< 0.895 g/cm2, those

with BMD 0.895 to 1.01 g/cm2 and >1.01 g/cm2 have relative hazards of fracture
of 0.42 (a 58% reduction) and 0.33 (a 67% reduction) adjusting for body weight at
enrollment.

6.5.3.4 Fine–Gray model for Cause-Specific Hazard Functions

The result of the cause-specific regression in Table 6.22 shows a higher rate
of fractures with lower BMD, but what if BMD is correlated with a series of
unmeasured factors which make death more likely? If the death rate was high
enough, men with low BMD might develop fewer fractures after 2 years than high-
BMD men simply because the low-BMD men are more likely to die before fracture.
This would be apparent from a comparison of the cumulative incidence function
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Table 6.23 Fine and Gray model for effect of BMD on cumulative incidence of fracture adjusted
for body weight

stset time, failure(status==1)

stcrreg i.bmd3 weight, compete(status==2)

Competing-risks regression No. of obs = 5993
No. of subjects = 5993

Failure event : status == 1 No. failed = 531
Competing event: status == 2 No. competing = 657

No. censored = 4805

Wald chi2(3) = 119.64
Log pseudolikelihood = -4472.9261 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
| Robust

_t | SHR Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

bmd3 |
2 | .4219663 .0443983 -8.20 0.000 .3433337 .5186079
3 | .3369128 .03982 -9.20 0.000 .2672472 .4247387

|
weight | 1.004669 .0036759 1.27 0.203 .9974896 1.011899

----------------------------------------------------------------------------

but not from the cause-specific hazard function. This is the disconnect between
the hazard and cumulative incidence scale—it is helpful to have a way to describe
regression effects on the cumulative incidence scale.

The Fine and Gray model (Fine and Gray 1999) adapts the spirit of a proportional
hazards model to the cumulative incidence formulation. The idea is to model a
different kind of rate function. The kth cause-specific hazard function is the rate
of event among those who have experienced no event. For the MrOS data, this
means that those who die are no longer counted in the rate (or hazard). The type
of hazard that Fine and Gray construct retains cohort members who succumb to
the competing risk in the denominator of their rate. For the MrOS data, this can
be thought of as the rate of developing fracture among those without a previous
fracture who are not lost to follow-up and, in particular, including those who have
died. Maintaining those who die in the risk set acknowledges that someone who
succumbs to a competing risk will not develop the event of interest and does not
require the kind of extrapolation used for someone who is lost to follow-up.

Denote this new rate function for the kth type of failure as fk.t/

fk.t jx/ D f0k.t/ exp.ˇ1x1 C : : :C ˇpxp/; (6.23)

where f0k.t/ takes the place of the usual baseline (or cause-specific) hazard
function. The model incorporates covariates just as they appear in (6.22). Fitting
the Fine and Gray model in Stata is done with the stcrreg command which is
illustrated in Table 6.23.
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The result of the Fine and Gray regression in Table 6.23 shows the hazard ratios
for the model in (6.23) under the column marked “SHR” and the standard errors
are labeled as “robust” because it is calculated in a way which is not model-based.
The results are striking similar to the regression based on the cause-specific hazard
function in Table 6.22. This is not surprising—the methods differ on whether people
who die are retained in the risk set. The risk of death is not large and hence the two
approaches give very similar results.

6.6 Some Details

In this section, we discuss some useful additional topics.

6.6.1 Bootstrap Confidence Intervals

The ACTG 019 dataset includes 880 observations but only 55 failures. Stata
provides Wald-based CIs for the Cox model which require sample size which are
“large.” The effective sample size is determined by the number of failures rather than
the number of observation. Hence, it can be useful to check the validity of the Wald-
based CIs for the Cox model for ZDV treatment (rx) and baseline CD4 cell count
(cd4) using the bootstrap (Sect. 3.6). The results are reported on the coefficient
scale in Table 6.24.

The standard and bias-corrected bootstrap CIs, based on 1,000 resampled
datasets, yield very similar results, confirming that the semi-parametric model works
well in this case, even though there are only moderate numbers of events.

Table 6.24 Cox model for ZDV and CD4 with bootstrap confidence intervals

stcox i.rx cd4, vce(bootstrap, bca reps(1000) nodots seed(881) )

Cox regression -- Breslow method for ties

No. of subjects = 880 Number of obs = 880
No. of failures = 55
Time at risk = 354872

Wald chi2(2) = 32.34
Log likelihood = -314.17559 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

1.rx | .4560671 .138132 -2.59 0.010 .2518951 .8257293
cd4 | .9934464 .0013741 -4.75 0.000 .9907569 .9961432

------------------------------------------------------------------------------
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6.6.2 Prediction

Evaluating prediction error using some form of cross-validation, as described in
Sect. 10.1, is more complicated with time-to-event outcomes. Comparing observed
to expected survival times is ruled out for censored observations in the test set;
moreover, as we explained above in Sect. 6.2.13, expected—that is, mean—survival
times are usually undefined under the Cox model. Comparing the occurrence of
events in the test set with predictions based on the learning set, as with binary
outcomes analyzed using a logistic model, is relatively tractable, but complicated
by variations in follow-up time, in particular extrapolations for any follow-up times
in the test set that exceed the longest times in the learning set.

Dickson et al. (1989) give one way in which predictions based on a Cox model
can be cross-validated using a test dataset. The basic idea is to use coefficients
estimated from a development dataset to classify observations in a test dataset. To
see how this works, first note that the predictors are associated with the hazard ratio
only through what is called the linear predictor, ˇ1x1 C : : : ˇpxp , as demonstrated
in (6.5). The larger the value of the linear predictor, the larger the hazard and
the shorter survival times tend to be. Obtaining the estimated coefficients from
a development dataset, it is possible to calculate what is called a risk score,
namely Ǒ1x1 C : : : Ǒpxp , for each observation in either the development or test
datasets. The investigators grouped the patients in the development dataset into
four predicted survival categories on the basis of the risk score, with the cutpoints
determined to give approximately equal numbers of events in each category. They
then demonstrated the models ability to discriminate by calculating the Kaplan–
Meier survival curves for the test set using the groups defined by cutpoints from the
development set. The pronounced separation of the survival curves in the test set is
evidence of the ability of the model to stratify by risk.

6.6.3 Adjusting for Nonconfounding Covariates

If a covariate is strongly predictive of survival but uncorrelated with a predictor
of interest, omitting it from a Cox model will nonetheless attenuate the estimated
hazard ratio for the predictor of interest, as discussed in Sect. 10.2.6 (Gail et al.
1984; Schmoor and Schumacher 1997; Henderson and Oman 1999). Omitting
important covariates from logistic models also induces such attenuation. Although
the gain in precision is usually modest at best, it can be advantageous to include
such a prognostic factor in order to avoid the attenuation.

A compelling example is provided by ACTG 019, the randomized clinical trial of
ZDV for prevention of AIDS and death in HIV infection discussed in Sect. 6.1. As
expected in a clinical trial, there was no between-group difference in mean baseline
CD4 count, known to be an important prognostic variable. Thus by definition,
baseline CD4 count could not have confounded the effect of ZDV. However, when
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CD4 count is added to the model, the estimated reduction in risk of progression to
AIDS or death afforded by ZDV goes from 49% to 54%, an increase of about 12%.
More discussion of whether to adjust for covariates in a clinical trial is given in
Sect. 10.2.6.

6.6.4 Independent Censoring

To deal with right-censoring, we have made the assumption of independent censor-
ing. The essence of this assumption is that after adjustment for covariates, future
event risk for a censored subject does not differ from the risk among other subjects
who remain in follow-up and have the same covariate values. Under this assumption,
subjects are censored independent of their future risk.

To see how this assumption may be violated, consider a study of mortality risk
among patients followed from admission to the intensive care unit until hospital
discharge. Suppose no survival information is available after discharge, so subjects
have to be censored at that time. In general, subjects are likely to be discharged
because they have recovered and are thus at lower risk than patients who remain
hospitalized. Unless we can completely capture the differences in risk using baseline
and TDCs, the assumption of independent censoring would be violated.

Dependent censoring can also arise from informative loss to follow-up. In
prospective cohorts, it is not unlikely that prognosis for dropouts differs from that
for participants remaining in follow-up in ways that can be difficult to capture with
variables routinely ascertained.

It can also be difficult to diagnose dependent censoring definitively, because that
would require precisely the information that is missing—for example, mortality data
after discharge from the ICU. But that is a case where an experienced investigator
might recognize on substantive grounds that censoring is likely to be dependent.
Furthermore, the problem could be addressed in that study by ascertaining mortality
for a reasonable period after discharge. Similarly, losses to follow-up are best
addressed by methods to maximize study retention; but it also helps to collect as
much information about censored subjects as possible. Inverse weighting methods
can be used in situations where the dependence between failure and censoring is
explained by a series of measured variables and where a model for censoring can
be specified in terms of these measured (possibly time-dependent) covariates (see
Sect. 9.5).

6.6.5 Interval Censoring

We also assume that the time of events occurring during the study is known more
or less exactly. This is almost always the case for well-documented events like
death, hospitalization, or diagnosis of AIDS. But the timing of many events is not



250 6 Survival Analysis

observed with this level of precision. For example, in prospective cohort studies
of people at risk for HIV infection, it is common to test participants for infection
at semi-annual visits (Buchbinder et al. 1996). Thus the actual time of an incident
infection is only known up to an interval of possible values; in technical terms, it
is interval-censored between the last visit at which the participant tested negative
and the first at which the result was positive. Another example is development of
abnormal cellular changes in the cervix, which must be assessed by clinical exam.
These exams may be performed periodically, perhaps months or even years apart.
As with HIV infection, newly observed changes may have occurred at any time
since the last exam. In settings where intervals arise because of the study follow-up
schedule and are regularly spaced, pooled logistic regression Sect. 5.5.2 can be used
to handle the interval censoring. Interval censoring becomes more complex when
the time between intervals is unequal and/or vary by individual requiring specialized
methods beyond the scope of this book.

6.6.6 Left-Truncation

Survival times are measured from some initial time with more than one possible
choice of origin. In the PBC study, we defined the survival time as the time from
cohort enrollment until death. We could, instead, chose to measure survival time
from the diagnosis of disease. Diagnosis is a more meaningful event biologically
and easily aligning the time scales on this initial time will lead to more interpretable
results.

The PBC study recruited patients from a referral center and months or years
may have elapsed between diagnosis and entry into the cohort. A patient with a
rapid disease course is less likely to be enrolled simply because they may die prior
to referral to the center or prior to recruitment into the study. When this type of
selection is active, there can be an undercounting of short survival times. The setting
where some survival times are not observed because the sampling scheme tends to
miss short survival times is known as left-truncation. To avoid bias, we need to
consider the length of the period between the time origin and entry into the cohort.
We denote this truncation time by V . Staggered entry into a cohort does not imply
left-truncation; the key feature of left-truncation is the truncation time, V—there
must be some time delay between the event which defines the origin event and entry
into the cohort. For instance, if a PBC cohort was able to enroll participants at
the time of their diagnosis, truncation times would be 0 and there would be no
left-truncation. However, because patients have their diagnoses at different times,
the cohort will still exhibit staggered entry.

The nature of the incomplete data from truncation is different from censored
data. For censoring, it is incomplete because the event time falls outside of follow-
up. Truncated values outside the follow-up period are not merely incomplete;
rather, they are not observed at all. Because a left-truncated patient dies before
enrollment, they leave no trace in the study—truncation is said to result in “ghosts.”
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Fig. 6.13 Kaplan–Meier curves for the PBC data incorporating and ignoring left-truncation

Right-truncation can also arise if a study recruits based on an endpoint and people
with large event times (or who never had the event) are not recruited. An example of
right-truncation is a fecundability study that excludes couples who never conceive.

Survival analysis of risk factors can be conducted on the natural time-scale
with origin at HIV infection under an assumption of independent truncation. This
assumption is that the time of delayed entry and subsequent survival are independent
and it is satisfied when the incidence of a disease and survival post-diagnosis are
independent. Under independent truncation, the analysis uses the truncation time
V along with the time and censoring indicators .X;�/, where X is the follow-up
time relative to diagnosis. The PBC dataset does not include truncation times but we
created the truncation time disease dur for illustrative purposes.

In Stata, we introduce the censoring and truncation into the analysis using the
stset command in Stata as follows:

stset years_since_diag, failure(status) entry
(disease_dur)

Figure 6.13 graphs two survival curves based on time since diagnosis—one
which uses the stset statement to account for left-truncation and naive calculation
which ignores truncation. The estimator which ignores truncation estimates higher
post-diagnosis survival probabilities. By ignoring the truncation, the analysis fails to
account for undersampling of short survival times and, thus, overestimates survival.
The effect of ignoring truncation on hazard ratios in a Cox model is less predictable
but can often attenuate them.

Note that both survival estimators in Fig. 6.13 make drops at the same event times
but the size of the drops for the truncation-based estimator are larger at earlier time
points. This reflects the importance of short event times under left-truncation just as
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long event times are important under right-censoring. A key assumption under left-
truncation is that there is a positive probability that even the shortest failures could
make it into the sample. If they are completely excluded, only strong parametric
assumptions can account for their absence.

Fortunately, Stata can handle (independent) censoring and truncation simultane-
ously and once the stset command has been used it is possible to use the full set
of survival analysis techniques without taking further account of the nature of the
incomplete data.

6.7 Sample Size, Power, and Detectable Effects

Sections 4.8 and 5.7 provide formulas for calculating sample size, power, and
minimum detectable effects for the linear and logistic models. Analogous results
hold for the Cox model. To compute the sample size that will provide power of � in
two-sided tests with type-1 error of ˛ to reject the null hypothesis ˇj D 0 for the
effect of a predictor Xj , accounting for the loss of precision due to adjustment for
covariates, we can use

n D .z1�˛=2 C z� /2

.ˇaj �xj /
2 .1 � �2j /

; (6.24)

where ˇaj is the hypothesized value of ˇj under the alternative, z1�˛=2 and z� are the
quantiles of the standard normal distribution corresponding to the specified type-1
error and power, �xj is the standard deviation ofXj and �j is its multiple correlation
with the other covariates, and is the probability that an observation is uncensored,
so that the expected number of events d D n (Hsieh and Lavori 2000; Schmoor
et al. 2000; Bernardo et al. 2000). The variance inflation factor 1=.1� �2j / in (6.24)
accounts for the potential loss of precision due to the inclusion of other predictors
in the model (Hsieh et al. 1998). For problems with fixed values of n and  , power
is given by

� D 1 �˚
�

z1�˛=2 � jˇaj j�xj
q
n .1 � �2j /

�

: (6.25)

Finally, the minimum detectable effect (on the log-hazard scale) is

˙ ˇaj D
z1�˛=2 C z�

�xj

q
n .1 � �2j /

: (6.26)

Some additional points:

• Sample size (6.24) and minimum detectable effect (6.26) calculations simplify
considerably when we specify ˛ D 0:05 and � D 0:8, ˇaj is the effect of a one
standard deviation increase in continuous xj , and we do not need to penalize for
covariate adjustment. In that case,
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n D 7:849

.ˇaj /
2 
: (6.27)

For the minimum detectable effect, we have

˙ ˇaj D
2:802p
n 

: (6.28)

For 90% power, substitute 10.51 for 7.849 and 3.242 for 2.802.
• Similarly, for a two-arm clinical trial with equal allocation to arms, so that ˇaj is

the log-hazard ratio for treatment and s2xj D 0:25, we can calculate

n D 4 � 7:849
.ˇaj /

2 
: (6.29)

For the minimum detectable effect, we have

˙ ˇaj D
2 � 2:802p

n 
: (6.30)

• Power calculations using (6.25) simplify analogously, but still require a statistical
calculator or computer package to evaluate the normal cumulative distribution
function ˚.�/.

• Power in the Cox model is driven by the expected number of events d D n ,
with little or no independent influence of n once d is fixed. For the same reason,
early censoring has relatively little influence. Some calculators may return d
rather than n, or require d rather than n and  as inputs.

• Sample size, power, and minimum detectable effects can be calculated using the
stpower cox command in Stata as well as many other statistical packages.
Alternatively, (6.24)–(6.26) can easily be programmed in Stata, R, or Excel, or
evaluated by hand if values of z1�˛=2, z� , and ˚.�/ are available.

• When Xj is a binary predictor with prevalence fj , �xj D
p
fj .1 � fj / in

(6.24)–(6.26).
• When Xj is a continuous predictor with standard deviation �xj , it is important

to recognize that sample size, power, and minimum detectable effects do not
depend in any real way on the units in whichXj is measured. This is most clearly
seen in (6.26). Suppose Xj is usually measured in grams. Changing the unit to
milligrams increases �xj by a factor of 1,000, and shrinks ˇaj by the same factor.
But of course the effect on the outcome of a 1-mg increase in the predictor is
1,000 times smaller than the effect of a 1-g increase. One way to avoid confusion
is to consider the minimum detectable effect size for a one standard deviation
change in Xj ; which is often a reasonable-sized change to consider. That effect
size is obtained by setting �xj D 1 in (6.26).
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• As in calculations for the linear and logistic model, we need to use jˇaj j in (6.25)
if ˇaj < 0. It follows that the negative of the value given by (6.26) is also a valid
solution for the minimum detectable effect.

• The use of the factor 1��2j to account for covariate adjustment carries over from
linear to Cox models. However, there is no analog to the reduction in residual
variance that can result from including covariates in linear models, so that the
adjustment to these calculations using 1 � �2j is less likely to be conservative.

• The stpower cox command does incorporate the factor 1� �2j to account for
covariate adjustment, via the r2 option. In using sample size calculators that do
not allow for this adjustment, unadjusted estimates of n or d should be inflated by
1=.1 � �2j /; similarly the minimum detectable effect estimate should be inflated

by
q
1=.1� �2j /. To calculate power in such calculators, use n .1��2j / in place

of n as an input.
• In Sect. 4.8, we showed how the standard error SE. Ǒj / plays a central role in

sample size, power, and minimum detectable effect calculations for regression
problems. SE. Ǒj / is a large-sample approximation in Cox models, and more
exact small-sample computations using the t-distribution do not carry over from
the linear model. Simulations of power may be a more reliable guide when the
calculated or available sample size is small.

• The alternative calculations (4.15)–(4.17) presented in Sect. 4.8, which use an
estimate QSE. Ǒj / based on published results for an appropriately adjusted model
using Qn observations, carry over directly. There we showed that

n D .z1�˛=2 C z� /2 QnŒ QSE. Ǒj /�2
.ˇaj /

2
: (6.31)

Similarly, power in a new sample of size n is given by

� D 1 � ˚
h
z1�˛=2 � jˇaj j=Œ

p Qn=n QSE. Ǒj /�
i
: (6.32)

Finally, the minimum detectable effect in a new sample of size n can be obtained
as

˙ ˇaj D .z1�˛=2 C z� /
p
Qn=n QSE. Ǒj /: (6.33)

In implementing these calculations, care must be taken to obtain the SE of
the regression coefficient ˇj , not the SE of the hazard ratio eˇj . This can be
computed from a 95% CI for the hazard ratio as QSE. Ǒj / D log.UL=LL/=3:92,
where UL and LL are the upper and lower confidence bounds. We must also
ensure that Xj is measured on the same scale as in the published results.

To illustrate these calculations, we first calculate the sample size providing 80%
power in a two-sided test with ˛ of 5% to detect an effect of bilirubin levels on
survival, adjusting for the effects of hepatomegaly, edema, and spiders, as suggested
by the analysis shown previously in Table 6.12.
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Table 6.25 Sample size calculation for effect of bilirubin on mortality risk

. stpower cox, failprob(.15) hratio(1.15) sd(4.5) r2(0.2025)

Estimated sample size for Cox PH regression
Wald test, log-hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:
alpha = 0.0500 (two sided)

b1 = 0.1398
sd = 4.5000

power = 0.8000
Pr(event) = 0.1500

R2 = 0.2025

Estimated number of events and sample size:
E = 25
N = 166

. display (invnormal(.975)+invnormal(0.8))ˆ2/((log(1.15)*4.5)ˆ2*0.15*
(1-.2025)) 165.87573

The new study will have a shorter 2-year follow-up, as compared to the average
5.5 year follow-up in the DPCA Trial, with an estimated 15% cumulative mortality.
Based on the DPCA results, we estimate that �xj � 4:5mg/dL and that �j �
0:45 (so �2j D 0:2025), indicating substantial variance inflation. We hypothesize
that the hazard ratio per mg/dL increase in bilirubin level will be 1.15 (so ˇaj D
log 1:15). Table 6.25 shows results using the stpower cox command in Stata
as well as a calculation using (6.24). The two estimates are essentially identical; a
quick calculation using  D 0:15 shows that the expected number of events based
on (6.24) is 25.

The stpower cox command can also be used to calculate minimum detectable
effects. In the DPCA trial, suppose an ancillary study is being considered to evaluate
the independent association of mortality with a novel risk marker, to be measured
using stored baseline specimens. There were 125 deaths among 312 participants, so
 D 125=312 D 0:40; equivalently, d D n D 125. We hypothesize that the new
marker will be highly correlated with available prognostic measures (�j � 0:5), yet
hope that it will provide additional predictive information. Initial testing suggests
that the SD of the new marker is approximately 1.5 mg/dL. We hypothesize that
higher levels of the marker will be associated with lower risk. What hazard ratio per
mg/dL increase in the new marker will be detectable with 80% power in a two-sided
test with ˛ of 5%?

Table 6.26 shows that stpower cox and (6.26) give essentially the same
result: for the DPCA sample to provide 80% power to reject ˇj D 0, the mortality
hazard must be independently reduced by approximately 18% for each mg/dL
increase in the novel marker.
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Table 6.26 Minimum detectable effect of a novel marker

. stpower cox, n(312) failprob(.40) sd(1.5) r2(0.25) power(.8) hr

Estimated hazard ratio for Cox PH regression
Wald test, hazard metric
Ho: [b1, b2, ..., bp] = [0, b2, ..., bp]

Input parameters:
alpha = 0.0500 (two sided)

sd = 1.5000
N = 312

power = 0.8000
Pr(event) = 0.4000

R2 = 0.2500

Estimated number of events and hazard ratio:
E = 125

hratio = 0.8244

. display exp(-(invnormal(.975)+invnormal(0.8))/(1.5*sqrt(125*(1-0.25))))

.82456636

6.8 Summary

Survival data exhibit novel features including right-censoring, interval censoring,
truncation, and competing risks. The Cox proportional hazards model is suited to
the special features of survival data and summarizes the effects of covariates through
hazard ratios. The Cox model has much in common with other regression models;
in particular, issues of confounding, mediation, and interaction are dealt with in
similar ways. Specialized techniques are required to calculate predicted survival
and to examine the assumption of proportional hazards. The Cox model can be
ended to handle TDCs and stratification. Competing risks arise when other events
may preclude observing the event of interest. Extensions to the proportional hazards
model for competing risks data can be based on the cause-specific hazard function
(which models the effect of covariates directly on the event of interest) or can be
based on the Fine–Gray model (which allows for the effect of covariates which
occur through competing events). The two approaches provide complementary
perspectives on the effect of covariates in the presence of competing risks.

6.9 Further Notes and References

The Cox model has proven popular because it is computationally feasible and
flexible. Alternatives include the accelerated failure time model (Wei 1992) or the
additive hazards model (Aalen 1989). These models are less popular and statistical
techniques for them are less well developed. By contrast, there are extensively devel-
oped techniques for parametric survival regression (implemented in Stata with the
streg package). Parametric models require us to make assumptions about the form
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of the baseline hazard function and have proved less popular because the parametric
assumptions sacrifice robustness without substantial efficiency gains. Useful refer-
ences include Chap. 5 of Marubini and Valsecchi (1995) and Chap. 12 of Klein and
Moeschberger (1997).

Some more complex survival data settings are beyond the scope of chapter. For
instance, there may be more than a single event per subject, yielding clustered or
hierarchical survival data. See Wei and Glidden (1997) for an overview of possible
approaches, including analogs of the marginal and random effects models described
for repeated continuous and binary outcomes in Chap. 7. The are both available
options in Stata stcox command—the marginal by using the vce(cluster)
option and random effects by using the shared option.

Stata provides extensive capabilities for fitting and assessing Cox models. For
instance, more flexible model for time-varying hazards than those discussed in
Sect. 6.4.2.6 could be developed by treating time as continuous (using the tvc)
option in conjunction with splines. A complete suite of parametric survival analysis
methods are also provided. The flexible stset command handles complex patterns
of censoring and truncation.

Applied book-length treatments on survival analysis are available by Miller et al.
(1981) and Marubini and Valsecchi (1995). These two texts strike a nice balance
in their completeness and orientation toward biomedical applications. The texts
by Klein and Moeschberger (1997) and Therneau and Grambsch (2000) are very
complete in their coverage of tools for survival analysis in general and the Cox
model in particular Chap. 3 of Klein and Moeschberger (1997) provides a complete
discussion on left-truncation, interval censoring, and general censoring patterns.

Sometimes time-to-event data can be more effectively handled using an alterna-
tive framework. In particular, consider cohort studies in which interval-censored
outcomes are ascertained at each follow-up visit. One alternative is to use the
continuation ratio model, referenced in Chap. 5, for time to the first such event. This
can be seen as a discrete-time survival model, where the time scale is measured in
visits (or intervals). Where appropriate, another, often more powerful, alternative
is to use a logistic model for repeated binary measures, covered in Chap. 7.
A closely related issue is the handling of Finally, some time-to-event data has no
censored values. In that situation, techniques covered in Chap. 8 can provide a useful
regression framework for dealing with the skewness and heteroscedasticity such
data are likely to exhibit.

6.10 Problems

Problem 6.1. Divide the hazard ratio for bilirubin by its standard error in
Table 6.4 and compare the result to the listed value of z. Also compute a CI for
this hazard ratio by adding and subtracting 1.96 times its standard error from the
hazard ratio estimate. Are the results very different from the CI listed in the output,
which is based on computations on the coefficient scale?
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Problem 6.2. In the ACTG 019 data, treatment rx is coded ZDVD 1 and placebo
D 0. Define a new variable rxplus11 which is coded ZDV D 12 and placebo D
11; this can be done using the Stata command generate rxplus11=rx+11.
Fit a Cox model with rxplus11 as the only predictor, then fit a second Cox model
with rx as the only predictor. How do the two results compare?

Problem 6.3. Using the ACTG 019 data from Problem 6.2, recode treatment so it
is coded ZDVD 0 and placeboD 1. How do the hazard ratios, CIs, likelihood ratio
(LR), and Wald tests compare to the original coding? If any are different, how are
they different?

Problem 6.4. Using the PBC dataset, calculate the hazard ratio for values of
albumin D 2.5, 3.5, and 4.0, using albumin D 3 as the reference level as-
suming the log-hazard is linear in albumin. The PBC dataset is available at
http://www.biostat.ucsf.edu/vgsm.

Problem 6.5. For the PBC dataset, fit a model with cholesterol and bilirubin.
Interpret the results, as you would in a paper, reporting the hazard ratios for a
100 mg/dL increase in cholesterol and a 10 mg/dL increase in bilirubin. Is the
relationship between cholesterol and survival confounded by bilirubin?

Problem 6.6. Calculate a hazard ratio and CI for a 5-year increase in age by
computing the fifth power of the estimated hazard ratio and its confidence limits,
using the results for a 1-year increase in Table 6.9. Compare the result to a fit of the
Cox model using a re-scaled version of the variable.

Problem 6.7. Using the model in Table 6.14 and taking Table 6.15 as your guide,
calculate the effect of hepatomegaly among those on placebo. Then, derive and
calculate the contrast required to identify the effect of hepatomegaly among those
on DPCA. Given these, derive and fit the linear contrast to test for interaction.
How does it compare with the test of interaction for comparing the effect of DPCA
treatment across hepatomegaly that was given in Sect. 6.2.10?

Problem 6.8. For the ACTG 019 dataset, write out the Cox model allowing for an
interaction between ZDV treatment rx and the baseline CD4 cell count cd4.

(a) Express the test of the null hypothesis of no interaction between CD4 and
treatment in terms of the parameters of the model.

(b) Again using the parameters of the model, what is the hazard ratio for a ZDV-
treated subject with x CD4 cells compared with a placebo-treated subject with
x CD4 cells?

(c) Fit the model. Does there appear to be an interaction between treatment and
CD4 stratum? If so, what is the interpretation?

(d) What are the hazard ratios for ZDV as compared to placebo for patients with
500, 109, and 50 CD4 cells, respectively?

Problem 6.9. We can also control for the effect of bilirubin in the PBC mortality
data using stratification rather than adjustment. One way to categorize is to create
approximately equal-size groups. In Stata, for example, you can categorize by
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quintile of bilirubin using the command xtile cat5=bilirubin, nq(5).
Try fitting a Cox model for cholesterol stratified by bilirubin, stratified
at 2, 3, 10, and 50 levels. What is the trade-off in increasing the number of levels?
What number of levels works best? (Hint: Balance adjustment against the size of
the standard error).

Problem 6.10. Using the PBC dataset, apply the methods of Sect. 6.4.2 for examin-
ing proportional hazards to the variable hepatomegaly and interpret the results.

6.11 Learning Objectives

(1) Define right-censoring, hazard function, proportional hazards, left-truncation,
competing risks data, and TDCs.

(2) Be able to:

• Convert a predictor to a new unit scale
• Derive the hazard ratio between two groups defined by their predictor values
• Interpret hazard ratio estimates, Wald test p-values, and CIs
• Calculate and interpret the likelihood-ratio test comparing two nested Cox

models
• Detect and model interaction using the Cox model
• Detect nonproportional hazards using log-minus-log and smoothed hazard

ratio plots, and the Schoenfeld test
• Use stratification to control for a covariate with nonproportional effects

(3) Understand:

• When to use survival techniques
• Why the semi-parametric form of the Cox model is desirable
• Why the Cox model is “multiplicative”
• How the stratified Cox model relaxes the proportional hazard assumption
• How to address confounding, mediation, and interaction using a Cox model
• The difference between modeling cause-specific hazards and cumulative

incidence functions for competing risk data
• Recognize settings which are beyond the scope of this chapter, including

interval and dependent censoring, and repeated-events data



Chapter 7
Repeated Measures and Longitudinal
Data Analysis

Knee radiographs are taken yearly in order to understand the onset of osteoarthritis.
Troponin (which is an indicator of heart damage) is measured from blood samples
1, 3, and 6 days following a brain hemorrhage. Groups of patients in a urinary
incontinence trial are assembled from different treatment centers. Susceptibility to
tuberculosis is measured in family members. All of these are examples of what is
called repeated measures data or hierarchical or clustered data. Such data structures
are quite common in medical research and a multitude of other fields.

Two features of this type of data are noteworthy and significantly impact the
modes of statistical analysis. First, the outcomes are correlated across observations.
Yearly radiographs on a person are more similar to one another than to radiographs
on other people. Troponin measurements on the same person are more similar to one
another than to those on other people. And groups of patients from a single center
may yield similar responses because of treatment protocol variations from center-
to-center, the persons or machines providing the measurements, or the similarity of
individuals that choose to participate in a study at that center.

A second important feature of this type of data is that predictor variables can be
associated with different levels of a hierarchy. Consider a study of the choice of type
of surgery to treat a brain aneurysm either by clipping the base of the aneurysm or
implanting a small coil. The study is conducted by measuring the type of surgery
a patient receives from a number of surgeons at a number of different institutions.
This is thus a hierarchical dataset with multiple patients clustered within a surgeon
and multiple surgeons clustered within a hospital. Predictor variables can be specific
to any level of this hierarchy. We might be interested in the volume of operations
at the hospital, or whether it is a for-profit or not-for-profit hospital. We might be
interested in the years of experience of the surgeon or where she was trained. Or we
might be interested in how the choice of surgery type depends on the age and gender
of the patient.

Accommodation of these two features of the data, predictors specific to different
levels in the data structure, and correlated data, are the topics of the chapter.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 7,
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We begin by illustrating the basic ideas in a simple example and then describe
hierarchical models through a series of examples. In Sect. 7.4, we introduce the first
of the methods of dealing with correlation structures, namely generalized estimating
equations. Section 7.4.1 introduces an example that we use throughout the rest of
the chapter to illustrate the use of the models. Section 7.5 considers an alternative to
generalized estimating equations, called random effects modeling, and the following
sections contrast these approaches. We close with a section on power and sample
size for some repeated measures and clustered data scenarios (Sect. 7.10).

7.1 A Simple Repeated Measures Example: Fecal Fat

Lack of digestive enzymes in the intestine can cause bowel absorption problems.
This will be indicated by excess fat in the feces. Pancreatic enzyme supplements
can be given to ameliorate the problem. The data in Table 7.1 come from a study
to determine if there are differences due to the form of the supplement: a placebo
(none), a tablet, an uncoated capsule (capsule), and a coated capsule (coated).

We can think of this as either a repeated measures dataset, since there are four
measurements on each patient or, alternatively, as a hierarchical dataset, where
observations are clustered by patient. This simple example has as its only predictor
pill type, which is specific to both the person and the period of time during which
the measurement was taken. We do not have predictors at the patient level, though
it is easy to envision predictors like age or a history of irritable bowel syndrome.

We identify a continuous outcome variable, fecal fat, and a single categorical
predictor of interest, pill type. If we were to handle this analysis using the tools of
Chap. 3, the appropriate technique would be a one-way ANOVA, with an overall
F -test, or, perhaps better, a preplanned set of linear contrasts. Table 7.2 gives the
one-way ANOVA for the fecal fat example.

Following the prescription in Chap. 3, the F -test indicates (p D 0:1687) that
there are not statistically significant differences between the pill types. But this
analysis is incorrect. The assumptions of the one-way ANOVA require that all
observations be independent, whereas we have repeated measures on the same

Table 7.1 Fecal fat (g/day) for six subjects

Subject
number

Pill type Subject
AverageNone Tablet Capsule Coated

1 44.5 7.3 3.4 12.4 16.9
2 33.0 21.0 23.1 25.4 25.6
3 19.1 5.0 11.8 22.0 14.5
4 9.4 4.6 4.6 5.8 6.1
5 71.3 23.3 25.6 68.2 47.1
6 51.2 38.0 36.0 52.6 44.5
Pill type
average 38.1 16.5 17.4 31.1 25.8
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Table 7.2 One-way ANOVA for the fecal fat example

anova fecfat pilltype

Number of obs = 24 R-squared = 0.2183
Root MSE = 18.9649 Adj R-squared = 0.1010

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 2008.6017 3 669.533901 1.86 0.1687
|

pilltype | 2008.6017 3 669.533901 1.86 0.1687
|

Residual | 7193.36328 20 359.668164
-----------+----------------------------------------------------

Total | 9201.96498 23 400.085434

Table 7.3 Two-way ANOVA for the fecal fat example

anova fecfat subject pilltype

Number of obs = 24 R-squared = 0.8256
Root MSE = 10.344 Adj R-squared = 0.7326

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 7596.98166 8 949.622708 8.88 0.0002
|

subject | 5588.37996 5 1117.67599 10.45 0.0002
pilltype | 2008.6017 3 669.533901 6.26 0.0057

|
Residual | 1604.98332 15 106.998888

-----------+----------------------------------------------------
Total | 9201.96498 23 400.085434

six subjects, which are undoubtedly correlated. The one-way ANOVA would be
appropriate if we had collected data on six different subjects for each pill type.

Should we have conducted the experiment with different subjects for each pill
type? Almost certainly not. We gain precision by comparing the pill types within a
subject rather than between subjects. We just need to accommodate this fact when
we conduct the analysis. This is analogous to the gain in using a paired t-test.

In this situation, the remedy is simple: we conduct a two-way ANOVA, addi-
tionally removing the variability between subjects. Table 7.3 gives the two-way
ANOVA.

The results are now dramatically different, with pill type being highly statistically
significant. In comparing Tables 7.2 and 7.3, we can see that a large portion (about
5,588 out of 7,193 or almost 78%) of what was residual variation in Table 7.2
has been attributed to subject-to-subject variation in Table 7.3, thus sharpening the
comparison of the pill types.

This is an illustration of a very common occurrence: failure to take into account
the correlated nature of the data can have a huge impact on both the analysis strategy
and the results.
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7.1.1 Model Equations for the Fecal Fat Example

We next write down model equations appropriate for the fecal fat example to more
precisely represent the differences between the two analyses from the previous
section. The analysis in Table 7.2 follows the one-way ANOVA model from Chap. 3.

FECFATij D fecal fat measurement for person i with pill type j

D 
C PILLTYPEj C �ij ; (7.1)

where, as usual, we would assume �ij � i.i.d N .0; �2� /.
As noted above, there is no account taken of the effect of each subject. We would

expect some subjects to generally have higher values and others to generally have
lower values. To accommodate this we include a subject effect in the model, which
simultaneously raises or lowers all the measurements on that subject:

FECFATij D fecal fat measurement for person i with pill type j

D 
C SUBJECTi C PILLTYPEj C �ij ; (7.2)

with

�ij � i.i.d N .0; �2� /:

To this we add one more piece. We assume that the subject effects are also selected
from a distribution of possible subject effects: SUBJECTi � i.i.d N .0; �2subj/,
independently of �ij .

This additional piece serves two purposes. First, it captures the idea that the
subjects in our experiment are assumed to be a random sample from a larger
population of subjects to which we wish to draw inferences. Otherwise, the
conclusions from our experiment would be scientifically uninteresting, as they
would apply only to a select group of six subjects. Second, as we will examine
in detail in the next section, the inclusion of a subject effect (along with an assigned
distribution) models a correlation in the outcomes. Once we added this subject effect
to our model, we modified our analysis to accommodate it using a two-way ANOVA.

7.1.2 Correlations Within Subjects

The main reason the results in Tables 7.2 and 7.3 differ so dramatically is the failure
of the analysis in Table 7.2 to accommodate the repeated measures or correlated
nature of the data. How highly correlated are measurements within the same person?
The model given in (7.2) gives us a way to calculate this. The observations on the
same subject are modeled as correlated through their shared random subject effect.
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The larger the subject effects in relation to the error term, the larger the correlation
(relatively large subject effect means the observations on one subject are quite
different than those on another subject, but, conversely, that observations within
a subject tend to be similar). More precisely, there is a covariance between two
observations on the same subject:

cov.FECFATij ;FECFATik/ D cov.SUBJECTi ;SUBJECTi /

D var.SUBJECTi /

D �2subj: (7.3)

The first equality in (7.3) is because the 
 and pilltype terms are assumed to be
fixed constants and do not enter into the covariance calculation. The �ij terms drop
out because they are assumed to be independent of the subject effects and of each
other. The second equality is true because the covariance of any term with itself is
a variance and the last equality is just the notation for the variance of the subject
effects.

As we recall from Chap. 3, this is just one ingredient in the calculation of the
correlation. We also need to know the standard deviations for the measurements.
Model (7.2) also indicates how to calculate the variance and hence the standard
deviation:

var.FECFATij / D var.SUBJECTi /C var.�ij /

D �2subj C �2� (7.4)

so that

SD.FECFATij / D
q
�2subj C �2� ;

which is assumed to be the same for all observations. The result, (7.4), is
noteworthy by itself, since it indicates that the variability in the observations is being
decomposed into two pieces, or components, the variability due to subjects and the
residual, or error, variance.

We are now in a position to calculate the correlation as the covariance divided by
the standard deviations.

corr.FECFATij ;FECFATik/ D cov.FECFATij ;FECFATik/

SD.FECFATij /SD.FECFATik/

D �2subj
q
�2subj C �2�

q
�2subj C �2�

D �2subj

�2subj C �2�
: (7.5)
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While the methods of the calculations are not so important, the intuition and results
are. Namely that subject-to-subject variability simultaneously raises or lowers all
the observations on a subject, thus inducing a correlation, and that the variability of
an individual measurement can be separated into that due to subjects and residual
variance.

Looking at the ANOVA table in Table 7.3, we have an estimate of �2� , which
is 106.99888. But what about an estimate for �2subj‹ It would be almost correct to
calculate the variance of the subject averages in the last column of Table 7.1, but
this would be a bit too large since each subject average also has a small amount
of residual variation as well. Taking this into account (see Problem 7.1) gives an
estimate of 252.67.

Using this in (7.5) gives a correlation of 0.70D 252.67/(252.67C 107.00), not
a particularly high value. So even a moderate value of the correlation can have a
fairly dramatic effect on the analysis, which is why it is so important to recognize
repeated measures or clustered-data situations. In this instance, the analysis ignoring
the correlation led to nonsignificant results and inflated p-values. Unfortunately,
the effect of ignoring the correlation can also make the p-values appear incorrectly
small, as will be demonstrated in Sect. 7.4.4. So ignoring the correlation does not
always produce a “conservative” result.

In this example, we are mainly interested in comparing the effect of the different
pill types and the correlation within subjects must be accommodated in order to
perform a proper analysis. The correlation is more of a nuisance. In other studies,
the correlation will be the primary focus of the analysis, such as repeatability or
validation studies or in analysis of familial aggregation of a disease. In the knee
osteoarthritis example, the same radiographs were sent to different reading centers
to check consistency of results across the centers. One of the primary parameters of
interest was the correlation of readings taken on the same image.

7.1.3 Estimates of the Effects of Pill Type

What about estimating the effects of the various pill types or differences between
them? The simple averages across the bottom of Table 7.1 give the estimates of
the mean fecal fat values for each pill type. There is nothing better we can do in
this balanced-data experiment. The same is true for comparing different pill types.
For example, the best estimate of the difference between a coated capsule and an
uncoated capsule would be the simple difference in means: 31:07� 17:42 D 13:65.
That is, we do nothing different than we would with a one-way ANOVA (in
which all the observations are assumed independent). This is an important lesson
that we extend in the next section: the usual estimates based on the assumption
of independent data are often quite good. It is the estimation of the standard
errors and the tests (like the F -test) that go awry when failing to accommodate
correlated data.
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7.2 Hierarchical Data

The data structures we describe in this chapter and the analysis strategies are
designed for hierarchical data. This is a somewhat vague term, but we now attempt
a more formal definition.

Definition: Hierarchical data is data (responses or predictors) collected from or specific to
different levels within a study.

Other terminologies for the same or related ideas are repeated measures data,
longitudinal data, clustered data, and multilevel data. We next illustrate this
definition in the context of two examples.

7.2.1 Example: Treatment of Back Pain

A more complicated example of a hierarchical model was first introduced in Chap. 1.
In Korff et al. (1994), 44 primary care physicians in a large HMO were classified
according to their practice style in treating back pain management (low, moderate,
or high frequency of prescription of pain medication and bed rest). An average of 24
patients per physician were followed for 2 years (1 month, 1 year, and 2 year follow-
ups) after the index visit. Outcomes included functional measures (pain intensity,
activity limitation days, etc.), patient satisfaction (e.g., “After your visit with the
doctor, you fully understood how to take care of your back problem”), and cost.
Two possible questions are (1) Do physicians with different practice styles differ in
function, satisfaction, or cost? and (2) How much of the variability in the responses
is due to physician? In this example, there are three levels to the data structure:
physicians, patients, and visits. Predictors could be physician-level variables like
practice style and years of experience, patient-level variables like age and reason for
the back pain, and visit-level variables like time since index visit. The data set is
hierarchical because it has variables that are specific to each of the different levels
(physician, patient, or visit) of the data.

7.2.2 Example: Physician Profiling

Common methods for the assessment of individual physicians’ performance at
diabetes care were evaluated in Hofer et al. (1999). They studied 232 physicians
from three sites caring for a total of 3,642 patients, and evaluated them with regard
to their ability to control HbA1c levels (a measure of control of blood sugar levels)
and with regard to resource utilization. Various methods for obtaining physician
level predictions were compared including age- and sex-adjusted averages, the
calculation of residuals after adjusting for the case-mix of the patients, and
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hierarchical modeling. They found that the first two methods overstate the degree to
which physicians differ. This could have adverse consequences in falsely suggesting
that some physicians (especially those with small numbers of patients) are over
using resources or ineffectively treating patients.

As we will see explicitly later in the chapter, hierarchical analysis is more
effective in this situation because it “borrows strength” across physicians in order
to improve the predicted values for each physician. Said another way, we can use
knowledge of the variation between and within physicians in order to quantify the
degree of unreliability of individual physician’s averages and, especially for those
with small numbers of patients, make significant adjustments.

7.2.3 Analysis Strategies for Hierarchical Data

As has been our philosophy elsewhere in this book, the idea is use simpler statistical
methods unless more complicated ones are necessary or much more advantageous.
That raises the basic question: Do we need hierarchical models and the attendant
more complicated analyses? An important idea is the following. Observations taken
within the same subgroup in a hierarchy are often more similar to one another
than to observations in different subgroups, other things being equal. Equivalently,
data which are clustered together in the same level of the hierarchy (data on the
same physician, or on the same patient or in the same hospital) are likely to
be correlated. The usual statistical methods (multiple regression, basic ANOVA,
logistic regression, and many others) assume observations are independent. And we
have seen in Sect. 7.1 the potential pitfalls of completely ignoring the correlation.

Are there simple methods we can use that accommodate the correlated data?
Simpler approaches that get around the issue of correlation include separate analyses
for each subgroup, analyses at the highest level in the hierarchy, and analyses on
“derived” variables. Let us consider examples of each of these approaches using the
back pain example.

7.2.3.1 Analyses for Each Subgroup

Analysis for each subgroup would correspond to doing an analysis for each of the
44 doctors separately. If there were sufficient data for each doctor, this might be
effective for some questions, for example, the frequency with which patients for that
physician understood how to care for their back. For other questions it would be less
satisfactory, for example, how much more it cost to treat older patients. To answer
this question, we would need to know how to aggregate the data across doctors. For
yet other questions it would be useless. For example, comparing practice styles is
a between-physician comparison and any within-physician analysis is incapable of
addressing it.
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7.2.3.2 Analysis at the Highest Level in the Hierarchy

An analysis at the highest level of the hierarchy would proceed by first summarizing
the data to that level. As an example, consider the effect of practice style on the
cost of treatment. Cost data would be averaged across all times and patients within a
physician, giving a single average value. A simple analysis could then be performed,
comparing the average costs across the three types of physicians. And by entering
into the analysis a single number for each physician, we avoid the complication of
having correlated data points through time on the same patient or correlated data
within a physician.

There are several obvious drawbacks to this method. First, there is no allowance
for differences in patient mix between physicians. For example, if those in the
aggressive treatment group also tended to have older, higher cost patients we would
want to adjust for that difference. We could consider having additional variables
such as average age of the patients for each physician to try to accommodate this.
Or a case mix difference of another type might arise: some physicians might have
more complete follow-up data and have different proportions of data at the various
times after the index visit. Adjusting for differences of these sorts is one of the key
reasons for considering multipredictor models.

A second drawback of analysis at the highest level of the hierarchy is that some
physicians will have large numbers of patients and others will have small numbers.
Both will count equally in the analysis. This last point bears some elaboration. Some
data analysts are tempted to deal with this point by performing a weighted analysis
where the physician receives a weight proportional to the number of observations
that went into their average values or the number of patients that contributed to
the average. But this ignores the correlated nature of the data. If the data are highly
correlated within a physician then additional patients from each physician contribute
little additional information and all physicians’ averages should be weighted equally
regardless of how many patients they have. At the other extreme, if each patient
counts as an independent data point, then the averages should be weighted by the
numbers of patients.

If the data are correlated but not perfectly correlated, the proper answer is
somewhere in between these two extremes: a physician with twice as many patients
as another should receive more weight, but not twice as much. To determine
precisely how much more requires estimation of the degree of correlation within
a physician, i.e., essentially performing a hierarchical analysis.

7.2.3.3 Analysis on “Derived Variables”

A slightly more sophisticated method than simple averaging is what is sometimes
called the use of “derived variables.” The basic idea is to calculate a simple, focused
variable for each cluster or subgroup that can be used in a more straightforward
analysis. A simple and often effective example of this method is calculation of a
change score. Instead of analyzing jointly the before and after treatment values on a
subject (with a predictor variable that distinguishes them), we instead calculate the
change score.
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Here are two other examples of this methodology. In a pharmacokinetic study,
we might sample a number of subjects over time after administration of a drug and
be interested in the average value of the drug in the bloodstream and how it changes
with different doses of the drug. One strategy would be to analyze the entire data set
(all subjects and all times) but then we would need to accommodate the correlated
nature of the data across time within a person. A common alternative is to calculate,
for each person, the area under the curve (AUC) of the concentration of the drug in
the bloodstream versus time. This AUC value would then be subjected to a simpler
analysis comparing doses (e.g., a linear regression might be appropriate). In the
fecal fat example, the derived variable approach is quite effective. Suppose we were
interested in the effect of coating a capsule. We can calculate the six differences
in fecal fat measurements between the uncoated and coated capsule (one for each
person) and do a one-sample or paired t-test on the six differences. See Problem 7.5.
For the back pain example, the derived variable approach is not as successful. The
unbalanced nature of the data makes it difficult to calculate an effective derived
variable.

In summary, the use of hierarchical analysis strategies is clearly indicated in any
of three situations:

(1) When the correlation structure is of primary interest,
(2) When we wish to “borrow strength” across the levels of a hierarchy in order to

improve estimates, and
(3) When dealing with highly unbalanced correlated data.

7.3 Longitudinal Data

In longitudinal studies, we are interested in the change in the value of a variable
within a “subject” and we collect data repeatedly through time. For example, a
study of the effects of alcohol might record a measure of sleepiness before and after
administration of either alcohol or placebo. Interest is in quantifying the effect of
alcohol on the change in sleepiness. This is often a good design strategy since each
subject acts as their own control, allowing the elimination of variability in sleepiness
measurements from person-to-person or even occasion-to-occasion within a person.
For this strategy to be effective, the before and after measurements need to be at least
moderately strongly positively correlated (otherwise taking differences increases the
variability rather than reducing it).

As another example, the Study of Osteoporotic Fractures (SOF) is a longitudinal,
prospective study of osteoporosis, breast cancer, stroke, and mortality. In 1986, SOF
enrolled 9,704 women and continues to track these women with clinical visits every
two years. Data from the first seven visits are now available to the public. The data
include measures of BMD, BMI, hormones, tests of strength and function, cognitive
exams, use of medication, health habits, and much more.
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Some of the questions SOF can be used to answer are:

(1) Is change in BMD related to age at menopause? Considered more generally,
this is an analysis relating a time-invariant predictor, age at menopause, with
changes in the outcome, BMD.

(2) Is change in BMD related to change in BMI? This is an analysis relating a time-
varying predictor, BMI, with changes in the outcome, BMD. BMI varies quite
a lot between women, but also varies within a woman over time.

(3) Which participants are likely to maintain cognitive function into their 9th and
10th decades of life? This involves predicting the cognitive trajectory of each
of the participants from covariates and previously measured values of cognitive
function.

We next consider how longitudinal data can be used to answer questions like (1) and
(2) above. We deal with questions of prediction in Sect. 7.7.3.

7.3.1 Analysis Strategies for Longitudinal Data

Including a time variable (such as time since enrollment or visit number if they are
approximately equally spaced in time) as a predictor captures the idea of change
over time in the outcome. This is because the regression coefficient for a time
variable measures the change in the outcome per unit change in time, just as in
any regression. For example, if the outcome in a linear regression model was
BMD and the time variable was years since enrollment in SOF, the meaning of
the regression coefficient for time would be the change in mean BMD per year.
If the outcome in a logistic regression model was use of hypertensive medication
then the regression coefficient for time would be the change in log odds of using
hypertensive medication per year.

But suppose, as above, interest focuses not on the change in BMD overall, but
instead on whether it is related to age at menopause. Then the regression coefficient
for time will vary with age at menopause. In statistical parlance, there will be an
interaction between time and age at menopause as described in Sect. 4.6. Therefore,
to capture the association of change in outcome over time with a time-invariant
predictor, we need to include in our model an interaction term with the time variable.
For example, to assess whether age at menopause was associated with the change in
BMD, the regression model would need to include an interaction between time and
age at menopause.

To graphically investigate whether there was an interaction, we divided age at
menopause as above or below age 52 and fit a restricted cubic spline in visit with
three knots, allowing interactions between age at menopause and visit and derived
the predicted values. The commands and results are given in Table 7.4. The fitted
model was then plotted versus visit and is given in Fig. 7.1. The relationship between
BMD and visit appears curvilinear and those women with age at menopause greater
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Table 7.4 Fitting of a restricted cubic spline relating BMD to age at menopause and visit in SOF

. mkspline visit_spl=visit, cubic nknots(3)

. regress totbmd i.meno_ov visit_spl* i.meno_ov#c.visit_spl*

Source | SS df MS Number of obs = 22372
-------------+------------------------------ F( 5, 22366) = 32.64

Model | 2.82075406 5 .564150812 Prob > F = 0.0000
Residual | 386.56757 22366 .017283715 R-squared = 0.0072

-------------+------------------------------ Adj R-squared = 0.0070
Total | 389.388324 22371 .017405942 Root MSE = .13147

----------------------------------------------------------------------------
totbmd | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.meno_ov_52 | .0168294 .008409 2.00 0.045 .0003471 .0333116

visit_spl1 | -.0070843 .0011079 -6.39 0.000 -.009256 -.0049127
visit_spl2 | .0037694 .0015891 2.37 0.018 .0006546 .0068841

|
meno_ov_52#|

c.visit_spl1 |
1 | -.0001347 .0025039 -0.05 0.957 -.0050424 .0047731

|
meno_ov_52#|

c.visit_spl2 |
1 | -.0002443 .0035122 -0.07 0.945 -.0071284 .0066398

|
_cons | .7549819 .0036908 204.56 0.000 .7477477 .762216

----------------------------------------------------------------------------

. predict pred_spl
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Fig. 7.1 Plot of spline fit to SOF BMD data by age at menopause category

than 52 may have slightly higher BMD values. However, the relationship of the
change over time appears remarkably similar between the age at menopause groups,
suggesting no time by age at menopause interaction. The analysis in Table 7.4 is
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Table 7.5 Summary statistics for first- and last-born babies and the change score

summ initwght lastwght delwght

Variable | Obs Mean Std. Dev. Min Max
-------------+--------------------------------------------------------

initwght | 1000 3016.555 576.2185 815 4508
lastwght | 1000 3208.195 578.3356 1210 5018
delwght | 1000 191.64 642.3062 -1551 2700

adequate for visualizing the relationship between change in BMD over time and
age at menopause, but improper for conducting a formal statistical analysis, since it
does not accommodate the repeated measures nature of the data. We return to this
example in Sect. 7.7 after we describe appropriate analysis strategies.

7.3.2 Analyzing Change Scores

In simple situations, there is a straightforward approach to analyzing longitudinal
data—calculate the change scores (subtract the before measurement from the after
measurement) as a derived variable and perform an analysis on the changes. In the
alcohol example, we could simply perform a two-sample t-test using the change
scores as data to compare the alcohol and placebo subjects.

We consider three approaches to analysis of before/after data that are commonly
used: (1) analysis of change scores, (2) repeated measures analysis, and (3) analysis
using the after measurement as the outcome and using the baseline measurement
as a covariate (predictor). The justification for this last strategy is to “adjust for”
the baseline value before looking for differences between the groups. How do these
approaches compare?

7.3.2.1 Example: Birthweight and Birth Order

We consider an analysis of birthweights of first-born and last-born infants from
mothers (each of whom had five children) from vital statistics in Georgia. We are
interested in whether birthweights of last-born babies are different from first-born
and whether this difference depends on the age of the woman when she had her
first-born.

For the first question, we begin with the basic descriptive statistics given in
Table 7.5, where lastwght in the variable containing the last-born birthweights,
initwght indicates the first-born and delwght are the changes between last-
and first-born within a woman. These show that last-born tend to be about 191 g
heavier than first-born (the same answer is obtained whether you average the
differences or take the difference between the averages). To accommodate the
correlated data, we either perform a one-sample t-test on the differences or,
equivalently, a paired t-test of the first and last births. A paired t-test gives a
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Table 7.6 Regression of change in birthweight on centered initial age

regress delwght cinitage

Source | SS df MS Number of obs = 200
-------------+------------------------------ F( 1, 198) = 0.39

Model | 163789.382 1 163789.382 Prob > F = 0.5308
Residual | 82265156.7 198 415480.589 R-squared = 0.0020

-------------+------------------------------ Adj R-squared = -0.0031
Total | 82428946.1 199 414215.809 Root MSE = 644.58

----------------------------------------------------------------------------
delwght | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
cinitage | 8.891816 14.16195 0.63 0.531 -19.03579 36.81942

_cons | 191.64 45.57854 4.20 0.000 101.7583 281.5217
----------------------------------------------------------------------------

t-statistic of 4.21, with 199 degrees of freedom (since there are 200 mothers) with a
corresponding p-value that is approximately 0:

What about the relationship of the change in birthweight to the mother’s initial
age? For this, we conduct a simple linear regression of the change in birthweight
regressed on initial age, where we have centered initial age (cinitage) by
subtracting the mean initial age. The results are displayed in Table 7.6 with the
interpretation that each increase of one year in initial age is associated with an
additional 8.9 g difference between the first and last birthweights. This is not
statistically significant (p D 0:53). When centered age is used, the intercept term
( cons) is also the average difference.

To conduct a repeated measures analysis, the data are first reordered to have
a single column of data containing the birthweights and an additional column,
birth order, to keep track of whether it is a first, second, third, fourth, or fifth
birth. The output for the repeated measures analysis using only the first and last
births in displayed in Table 7.7, for which we leave the details to the next section.
However, many of the elements are similar to the regression analysis in Table 7.6.
The term listed under birthord#c.cinitage is the interaction of birth order
and centered initial age. It thus measures how the difference in birthweights between
first- and last-born is related to centered initial age, that is, whether the change
score is related to initial age, the same question as the regression analysis. As is
evident, the estimated coefficient is identical and the standard error is virtually the
same. They are not exactly the same because slightly different modeling techniques
are being used (regression versus GEE, short for generalized estimating equations).
The overall difference between first- and last-born is also displayed in the repeated
measures analysis (again with the same coefficient and a very similar standard error
and p-value) and is associated with the birth order term in the model. Finally, the
average for first births is displayed as the intercept (see Problem 7.7). So, at a
cost of more complication, the repeated measures analysis answers both questions
of interest.

A different sort of analysis is to conduct a multiple regression with two predictor
variables, initial age (centered) and first-born birthweight. The idea is to “adjust” the
values of last-born weight by the first-born weight and then look for an effect due
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Table 7.7 Repeated measures regression of birthweight on birth order and centered initial age

. xtgee bweight i.birthord cinitage i.birthord#c.cinitage
> if birthord==1|birthord==5, i(momid)

GEE population-averaged model Number of obs = 400
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 2
Family: Gaussian avg = 2.0
Correlation: exchangeable max = 2

Wald chi2(3) = 26.47
Scale parameter: 323645.4 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
5.birthord | 191.64 45.35007 4.23 0.000 102.7555 280.5245

cinitage | 25.13981 12.4992 2.01 0.044 .6418238 49.6378
|

birthord#|
c.cinitage |

5 | 8.891816 14.09096 0.63 0.528 -18.72596 36.50959
|

_cons | 3016.555 40.22719 74.99 0.000 2937.711 3095.399
----------------------------------------------------------------------------

Table 7.8 Regression of final birthweight on centered initial age, adjusting for first birthweight

regress lastwght cinitage initwght if birthord==5

Source | SS df MS Number of obs = 200
-------------+------------------------------ F( 2, 197) = 19.33

Model | 10961363.1 2 5480681.54 Prob > F = 0.0000
Residual | 55866154.3 197 283584.54 R-squared = 0.1640

-------------+------------------------------ Adj R-squared = 0.1555
Total | 66827517.4 199 335816.67 Root MSE = 532.53

----------------------------------------------------------------------------
lastwght | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
cinitage | 24.90948 11.81727 2.11 0.036 1.604886 48.21408
initwght | .3628564 .0660366 5.49 0.000 .232627 .4930858

_cons | 2113.619 202.7309 10.43 0.000 1713.817 2513.42
----------------------------------------------------------------------------

to initial age. Table 7.8 gives the results of that analysis, which are quite different
than the previous analyses. Now, initial age has a much larger coefficient and is
statistically significant (p D 0:036).

The intuitive explanation for why this analysis is so different starts with the
observation that the coefficient for birthweight of the first-born is approximately
0.363. So, using BWk to denote the birthweight of the kth born child, we can think
of the fitted model as

BW5 D 2113:619C :363BW1 C 24:909 Centered initial age (7.6)

or, taking BW1 to the left side of the equation,

BW5 � :363BW1 D 2113:619C 24:909 Centered initial age: (7.7)
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That is, this analysis is not purely looking at differences between last and first
birthweight since we are only subtracting off a fraction of the initial birthweight.
Since birthweights are more highly correlated with initial age than is the difference,
this stronger relationship reflects the fact that the results are close to a regression of
BW5 on initial age.

In observational studies, such as this one, using baseline values of the outcome as
a predictor is not a reliable way to check the dependence of the change in outcome
on a predictor. In randomized studies, where there should be no dependence between
treatment effects and the baseline values of the outcome, this may be a more
reasonable strategy.

7.3.2.2 When to Use Repeated Measures Analyses

In the Georgia birthweight example, we see that analysis by change scores or by
a repeated measures analysis gives virtually identical and reasonable results. The
analysis using the baseline value as a predictor is more problematic to interpret.

If the analysis of change scores is so straightforward, why consider the more
complicated repeated measures analysis? For two time points and no (or little)
missing data, there is little reason to use the repeated measures analysis. However,
in the birthweight example there are three intermediate births we have ignored that
should be included in the analysis. In the alcohol example, it would be reasonable
to measure the degree of sleepiness at numerous time points post-administration of
alcohol (or placebo) to track the speed of onset of sleepiness and when it wears
off. When there are more than two repeated measures, when the measurements are
recorded at different times and/or when there is missing data, repeated measures
analysis can more easily accommodate the data structure than attempting change
score analyses. We now consider methods for multiple time points.

7.4 Generalized Estimating Equations

There are two main methods for accommodating correlated data. The first we will
consider is a technique called generalized estimating equations, often abbreviated
GEE. A key feature of this method is the option to estimate the correlation structure
from the data without having to assume that it follows a prespecified structure.

Before embarking on an analysis, we will need to consider five aspects of the
data:

(1) What is the distributional family (for fixed values of the predictors) that is
appropriate to use for the outcome variable? Examples are the normal, binary,
and binomial families.

(2) Which predictors are we going to include in the model?
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Fig. 7.2 Plot of birthweight (g) versus birth order

(3) In what way are we going to link the predictors to the data? (Through the mean?
Through the logit of the risk? Some other way?)

(3) What correlation structure will be used or assumed temporarily in order to form
the estimates?

(4) Which variable indicates how the data are clustered?

The first three of these decisions we have been making for virtually every
method described in this book. For example, the choice between a logistic and
linear regression hinges on the distribution of the outcome variable, namely logistic
for binary outcome and linear for continuous, approximately normal outcomes.
Chapter 10 discusses the choice of predictors to include in the model (and is a focus
of much of this book) and the third has been addressed in specific contexts, e.g., the
advantage of modeling the log odds in binary data. The new questions are really the
fourth and fifth and have to do with how we will accommodate the correlations in
the data. We start by considering an example.

7.4.1 Example: Birthweight and Birth Order Revisited

We return to the Georgia birthweight example and now consider all five births.
Recall that we are interested in whether birthweight increases with birth order and
mothers’ age. Figure 7.2 shows a plot of birthweight versus birth order with both the
average birthweights for a given birth order and a LOWESS smooth superimposed.
Inspection of the plot suggests we can model the increase as a linear function.
A simple linear regression analysis of birthweight versus birth order gives a
t-statistic for the slope coefficient of 3.61, which is highly statistically significant.
But this analysis would be wrong (why?).
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Fig. 7.3 Boxplots of birthweight (g) versus birth order

Recall that the paired t-test using just the first and last births gave a t-statistic of
4.21, even more highly statistically significant. This is perhaps a bit surprising since
it discards the data from the three intermediate births.

The explanation for this apparent paradox is that the paired t-test, while using
less of the data, does take advantage of the fact that birth order is a within mother
comparison. It exploits the correlation of birthweights within a mom in order to
make a more precise comparison. Of course, an even better analysis is to use all
of the data and accommodate the correlated structure of the data, which we now
proceed to do.

7.4.1.1 Analysis

To analyze the Georgia babies dataset, we need to make the decisions outlined
above. The outcome variable is continuous, so a logical place to start is to assume
it is approximately normally distributed. Figure 7.3 shows boxplots of birthweight
by birth order, suggesting that the normality and equal variance assumptions are
reasonable. Figure 7.2 has suggested entering birth order as a linear function, which
leaves us with the accommodation of the correlation structure.

The data are correlated because five birthweights come from each mother and
hence the clustering aspect is clear, leaving us with the decision as to how to model
the correlation of measurements taken through time. Figure 7.4 gives a matrix plot
of each birthweight against each of the others while Table 7.9 gives the values of the
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Table 7.9 Correlation of birthweights for different birth orders

. corr bweight1 bweight2 bweight3 bweight4 bweight5 (obs=200)

| bweight1 bweight2 bweight3 bweight4 bweight5
-------------+---------------------------------------------

bweight1 | 1.0000
bweight2 | 0.2282 1.0000
bweight3 | 0.2950 0.4833 1.0000
bweight4 | 0.2578 0.4676 0.6185 1.0000
bweight5 | 0.3810 0.4261 0.4233 0.4642 1.0000

correlation coefficients. Correlations with the first birthweight might be a bit lower,
but the graphs suggest that a tentative assumption of all the correlations being equal
would not be far off.

7.4.2 Correlation Structures

Dealing with correlated data typically means making some type of assumption
about the form of the correlation among observations taken on the same subject,
in the same hospital, on the same mouse, etc. For the Georgia babies data set in the
previous section, we noted that assuming all the correlations to be equal might be a
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reasonable assumption. This form of correlation is termed exchangeable and means
that all correlations (except those variables with themselves) are a common value,
which is typically estimated from the data. This type of structure is suitable when
there is nothing to distinguish one member of a cluster from another (e.g., patients
within a physician) and is the genesis for its name (patients within a doctor can be
regarded as interchangeable or exchangeable). This sort of assumption is appropriate
in the absence of other data structure, such as measurements taken through time or
space.

If measurements are taken through time on the same person, it may be that
observations taken more closely in time are more highly correlated. Another
common correlation structure is the autoregressive structure, which exhibits this
feature. In the simplest form of an auto regressive process (first order or AR(1))
the correlation between observations one time unit apart is a given value �, that
between observations two time units apart �2, three time units apart �3, etc. Simple
arithmetic calculation shows this drops off rapidly to zero (e.g., 0:65 D 0:08) so this
assumption would only be appropriate if the correlation between observations taken
far apart in time was small and would not be appropriate in cases where stable
over time characteristics generated the association. For example, SBP would be
relatively stable over time for an individual. Even though observations taken more
closely together in time would be slightly more highly correlated, an exchangeable
correlation structure might come closer to the truth than an autoregressive one.

Other, less structured, assumptions can be made. In Stata, other options are
unstructured, non-stationary, and stationary. All are related to the idea of obser-
vations within a cluster being ordered, such as by time. As its name suggests, the
unstructured form estimates a separate correlation between observations taken on
each pair of “times”. The non-stationary form is similar, but assumes all correlations
for pairs separated far enough in time are zero. The stationary form assumes equal
correlation for all observations a fixed time apart and, like non-stationary, assumes
correlations far enough apart in time have correlation zero. For example, stationary
of order 2 would assume that observations taken at time points 1 and 3 would
have the same correlation as time points 2 and 4, but this might be different from
the correlation between observations taken at times 2 and 3. Also, correlations for
observations 3 or more time periods apart would be assumed to be zero.

If the correlation structure is not the focus of the analysis, it might seem that
the unstructured form is best, since it makes no assumptions about the form of
the correlation. However, there is a cost: even with a small number of time points,
we are forced to estimate quite a large number of correlations. For instance, with
measurements on five time points for each subject, there are ten separate correlations
to estimate. This can cause a decrease in the precision of the estimated parameters
of interest, or, worse yet, a failure in being able to even fit the model.

This is especially true in situations where the data are not collected at rigid times.
For example, in the Nutritional Prevention of Cancer trials (Clark et al. 1996), long-
term follow-up was attempted every six months. But the intervals varied widely
in practice and quickly were out of synchronization. Estimation of the correlations
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between all pairs of distinct times would require literally hundreds of estimated
correlations. Use of the unstructured, and, to some extent, the stationary and non-
stationary correlation assumptions should be restricted to situations where there
are large numbers of clusters, e.g., subjects, and not very many distinct pairs of
observation times.

Diagnosis and specification of the “correct” correlation structure is very difficult
in practice. One method of addressing these problems is via a working correlation
assumption and the use of “robust” standard errors, which is the next topic.

7.4.3 Working Correlation and Robust Standard Errors

Given the difficulty of specifying the “correct” correlation structure, a compromise
is possible using what are called robust standard errors. The idea is to make a
temporary or working assumption as to the correlation structure in order to form
the estimates but to properly adjust the standard errors of those estimates for the
correlation in the data. For example, we might temporarily assume the data are
independent and conduct a standard logistic regression. The estimates from the
logistic regression will be fairly good, even when used with correlated data, but
the standard errors will be incorrect, perhaps grossly so. The solution is to use the
estimates but empirically estimate their proper standard errors. Another possibility
is to make a more realistic assumption, such as an exchangeable working correlation
structure; in some circumstances a gain in efficiency may result.

Then, after the model coefficients have been estimated using the working
correlation structure, within-subject residuals are used to compute robust standard
errors for the coefficient estimates. Because these standard errors are based on the
data (the residuals) and not the assumed working correlation structure, they give
valid (robust) inferences for large sized samples as long as the other portions of the
model (distribution, link and form of predictors) are correctly specified, even if our
working correlation assumption is incorrect. Use of robust standard errors is not
quite the same as using an unstructured correlation since it bypasses the estimation
of the correlation matrix to directly obtain the standard errors. Avoiding estimation
of a large number of correlations is sometimes an advantage, though in cases where
both approaches can be used they often give similar results.

The key to the use of this methodology is to have sufficient numbers of subjects
or clusters so that the empirical estimate of the correlation is adequate. The GEE
approach, which goes hand in hand with estimation with robust standard errors, will
thus work best with relatively few time points and relatively more subjects. It is hard
to give specific guidelines, but this technique could be expected to work well with
100 subjects, each measured at 5 time points but much less well with 20 subjects,
each measured at 12 time points, especially if the times were not the same for each
subject.
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Table 7.10 Generalized estimating equations analysis using robust standard errors

. xtgee bweight birthord initage, i(momid) corr(exch) robust

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 5
Family: Gaussian avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 27.95
Scale parameter: 324458.3 Prob > chi2 = 0.000

standard errors adjusted for clustering on momid)
----------------------------------------------------------------------------

| Semi-robust
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
birthord | 46.608 10.02134 4.65 0.000 26.96653 66.24947
initage | 26.73226 10.1111 2.64 0.008 6.914877 46.54965
_cons | 2526.622 177.2781 14.25 0.000 2179.164 2874.081

----------------------------------------------------------------------------

7.4.4 Tests and Confidence Intervals

Hypothesis testing with GEE uses Wald tests, in which the estimates divided
by their robust standard errors are treated as approximately normal to form z-
statistics. Likewise, approximate 95% confidence intervals are based on normality
by calculating the estimate plus or minus 1.96 standard errors. Table 7.10 shows
the analysis with an exchangeable working correlation structure and robust standard
errors. Some comments are in order about the form of the command. xtgee is a
regression type command with numerous capabilities. In its basic form, exhibited
in Table 7.10, it performs a linear regression (link of identity) of birthweight
(bweight) on birth order (birthord) and mother’s age at first birth (initage)
with an assumed exchangeable correlation structure (corr(exch)) within mother
(i(momid)). The robust option requests the use of robust standard errors.

For comparison sake, Table 7.11 gives the analysis without robust standard
errors. There is little difference, though this is to be expected since the preliminary
look at the data suggested that the exchangeable assumption would be a reason-
able one.

Looking at the analysis with the robust standard errors, the interpretation of the
coefficient is the same as for a linear regression. With each increase of initial age of
one year, there is an associated increase in average birthweight of about 26.7 g. This
result is highly statistically significant, with a p-value of 0.008.

Lest the reader think that the analysis is impervious to the correlational
assumptions, Table 7.12 shows what happens to the estimates and standard errors
under three different correlation structures both with and without the use of robust
standard errors. As expected, the estimates are all similar (the independence
and exchangeable are equal because of the balanced nature of the data—five
observations per mom with the same values of birth order), though there are
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Table 7.11 Generalized estimating equations analysis without robust standard errors

. xtgee bweight birthord initage, i(momid) corr(exch)

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: identity Obs per group: min = 5
Family: Gaussian avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 30.87
Scale parameter: 324458.3 Prob > chi2 = 0.000

(standard errors adjusted for clustering on momid)
----------------------------------------------------------------------------

| Semi-robust
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
birthord | 46.608 9.944792 4.69 0.000 27.11657 66.09943
initage | 26.73226 8.957553 2.98 0.003 9.175783 44.28874
_cons | 2526.622 162.544 15.54 0.000 2208.042 2845.203

----------------------------------------------------------------------------

Table 7.12 Comparison of the estimated coefficients for initage and its
standard error for various forms of correlation, with and without robust standard
errors

Working Robust Coefficient Standard
correlation SE? estimate error Z-statistic p-value

Independence No 26.73 5.60 4.78 0.000
Exchangeable No 26.73 8.96 2.98 0.003
Autoregressive(1) No 27.41 7.82 3.51 0.000

Independence Yes 26.73 10.11 2.64 0.008
Exchangeable Yes 26.73 10.11 2.64 0.008
Autoregressive(1) Yes 27.41 9.69 2.83 0.005

slight variations depending on the assumed working correlation. The estimates are
unaffected by the use of robust standard errors.

However, the standard errors and hence Wald statistics and p-values are quite
different. Those using the incorrect assumptions of independence or autoregressive
structure (given in the rows without robust standard errors) are too small, yielding
Wald statistics and p-values that are incorrect. Looking at the rows corresponding to
the use of robust standard errors shows how the incorrect working assumptions of
independence or autoregressive get adjusted and now have standard errors that are
much more alike. As with any different methods of estimation slight differences do,
however, remain.

For the initage coefficient the p-values assuming independence or, to a lesser
extent, autoregressive, are falsely small, but standard errors and p-values can, in
general, be incorrect in either direction. For example, the birthorder effect has
a standard error of almost 13 assuming independence, but a standard error of about
10 under an exchangeable correlation (Table 7.11) or under a working exchangeable
correlation structure using robust standard errors (Table 7.10).
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Table 7.13 Generalized estimating equation logistic regression

. xtgee lowbrth birthord initage, i(momid) corr(exch) family(binomial) ///
> link(logit) robust ef

GEE population-averaged model Number of obs = 1000
Group variable: momid Number of groups = 200
Link: logit Obs per group: min = 5
Family: binomial avg = 5.0
Correlation: exchangeable max = 5

Wald chi2(2) = 10.64
Scale parameter: 1 Prob > chi2 = 0.0049

(standard errors adjusted for clustering on momid)
----------------------------------------------------------------------------

| Semi-robust
lowbrth | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
birthord | .9204098 .03542 -2.16 0.031 .8535413 .9925168
initage | .9148199 .0312663 -2.60 0.009 .8555464 .9781999

----------------------------------------------------------------------------

7.4.5 Use of xtgee for Clustered Logistic Regression

As mentioned above, xtgee is a very flexible command. Another of its capa-
bilities is to perform logistic regression for clustered data. We again analyze the
Georgia birthweight data but instead use as our outcome the binary variable low-
birthweight (lowbrth) which is one if the birthweight is less than 3,000 g and
zero otherwise. Since the data are binary, we adapt xtgee for logistic regression
by specifying family(binomial) and link(logit). As before, we specify
i(momid) to indicate the clustering, corr(exch) for an exchangeable working
correlation, and robust to calculate robust standard errors; also we add the option
ef to get odds ratios instead of log odds. Table 7.13 displays the analysis. The
estimated odds ratio for birth order is about 0.92, with the interpretation that the
odds of a low-birthweight baby decrease by 8% with each increase in birth order.
We see that initage is still statistically significant, but less so than in the analysis
of actual birthweight. This serves as a warning as to the loss of information possible
by unnecessarily dichotomizing a variable.

7.5 Random Effects Models

The previous section discussed the use of generalized estimating equations for the
accommodation of correlated data. This approach is limited in that

(1) It is restricted to a single level of clustering,
(2) It is not designed for inferences about the correlation structure,
(3) It does not give predicted values for each cluster or level in the hierarchy.

A different approach to this same problem is the use of what are called random
effects models.
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Fig. 7.5 Marginal versus conditional logistic models

First we need to consider two different modeling approaches that go by the names
marginal and conditional. These are two common modeling strategies with which
to incorporate correlation into a statistical model:

Marginal: Assume a model, e.g., logistic, that holds averaged over all the clusters
(sometimes called population averaged). Coefficients have the interpretation as the average
change in the response (over the entire population) for a unit change in the predictor.
Alternatively, we can think of the coefficient as the difference in the mean values of
randomly selected subjects that differ by one unit in the predictor of interest (with all the
others being the same).

Conditional: Assume a model specific to each cluster (sometimes called subject-specific).
Coefficients have the interpretation as the change in the response for each cluster in the
population for a unit change in the predictor. Alternatively, we can think of the coefficient
as representing the change within a subject when the predictor of interest is increased by
one (holding all the others constant).

In the conditional modeling approach, marginal information can be obtained by
averaging the relationship over all the clusters.

On the face of it, these would seem to be the same. But they are not. Here is
a hypothetical example. Suppose we are modeling the chance that a patient will
be able to withstand a course of chemotherapy without serious adverse reactions.
Patients have very different tolerances for chemotherapy, so the curves for individual
subjects are quite different. Those patients with high tolerances are shifted to
the right of those with low tolerances (see Fig. 7.5). The individual curves are
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subject-specific or conditional on each person. The population average or marginal
curve is the average of all the individual curves and is given by the solid line in
Fig. 7.5 and has quite a different slope than any of the individual curves. This
emphasizes that it is important to keep straight which type of model is being used
so as to be able to provide proper interpretations and comparisons.

The generalized estimating equations (GEEs) approach most always (always
when using xtgee) fits a marginal model. Random effects models typically adopt
the conditional approach.

Conditional models are usually specified by declaring one or more of the
categorical predictors in the model to be random factors. (Otherwise they are
called fixed factors.) Models with both fixed and random factors are called mixed
models.

Definition: If a distribution is assumed for the levels of a factor, it is a random factor. If
the values are fixed, unknown constants (to be estimated as model coefficients) it is a fixed
factor.

The declaration of a factor to be random has several ramifications:

• Scope of inference: Inferences can be made on a statistical basis to the population
from which the levels of the random factor have been selected.

• Incorporation of correlation in the model: Observations that share the same level
of the random effect are being modeled as correlated.

• Accuracy of estimates: Using random factors involves making extra assumptions
but gives more accurate estimates.

• Estimation method: Different estimation methods must be used.

How do we decide in practice as to which factors should be declared random
versus fixed? The decision tree in Table 7.14 may be useful in deciding whether the
factor is to be considered as fixed or random.

7.6 Re-Analysis of the Georgia Babies Data Set

For the Georgia babies dataset, a random effects assumption for the moms is quite
reasonable. We want to regard these particular moms as a sample from a larger
sample of moms. Correspondingly the moms’ effects on birthweights are easily
envisioned as being selected from a distribution of all possible moms.

Stata has a number of commands for conducting random effects analyses; we
will focus on two of them: xtmixed and xtmelogit. The first, xtmixed, fits
linear mixed models to approximately normally distributed outcomes. The latter,
xtmelogit, is for mixed models with binary outcomes.

The command syntax is somewhat different from that of xtgee because of the
need to distinguish the fixed from the random factors. The fixed effect predictors
follow the outcome variable in the commands, as is typical of regression commands.
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Table 7.14 Decision tree for deciding between fixed and random

Is it reasonable to assume levels of the factor come from a
probability distribution?

� �
No Yes

� �
Treat factor as fixed Treat factor as random

�
Where does interest lie?

� �
Only in the distribution of the
random effects

In both the distribution and the
realized values of the random
effects

�

�Estimate parameters of the distri-
bution of the random effects

Estimate parameters of the dis-
tribution of the random effects
and calculate predictors of real-
ized values of the random effects

However, the random effects are listed after two vertical bars, as displayed in
Table 7.15. The colon following the random effect indicates that the model should
include random intercepts for each level of that random effect.

The random effects model we fit is similar to that of (7.2):

BWEIGHTij D birthweight of baby j for mom i

D ˇ0 CMOMi C ˇ1BIRTHORDij C ˇ2INITAGEi C �ij ;

with

�ij � i.i.d N .0; �2� /
MOMi � i.i.d N .0; �2M /: (7.8)

Table 7.15 gives the analysis fitting this clustered-data linear regression model.
For a linear regression model, the random effects assumption is equivalent to
an exchangeable correlation structure as demonstrated in (7.5). Furthermore, for
linear models with identity link functions, the marginal and conditional models
are equivalent. Hence the random effects analysis reproduces the analysis with an
assumed exchangeable correlation structure as given in Table 7.11.
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Table 7.15 Linear mixed model analysis of the birthweight data

. xtmixed bweight birthord initage|| momid:

Mixed-effects REML regression Number of obs = 1000
Group variable: momid Number of groups = 200

Obs per group: min = 5
avg = 5.0
max = 5

Wald chi2(2) = 30.75
Log restricted-likelihood = -7649.3763 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
bweight | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
birthord | 46.608 9.951013 4.68 0.000 27.10437 66.11163
initage | 26.73226 9.002682 2.97 0.003 9.087332 44.3772
_cons | 2526.622 163.3388 15.47 0.000 2206.484 2846.761

----------------------------------------------------------------------------

----------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+----------------------------------------------
momid: Identity |

sd(_cons) | 358.1761 23.71804 314.5799 407.8142
-----------------------------+----------------------------------------------

sd(Residual) | 445.0228 11.13253 423.7297 467.3859
----------------------------------------------------------------------------
LR test versus linear regression: chibar2(01) = 209.20
Prob >= chibar2 = 0.0000

We do, however, have extra output in the random effects analysis. First, the
standard deviation of the mom effects, �M is equal to 358.1761. This is listed in
the output as sd( cons) because it is the standard deviation of the intercepts
(or constant terms) associated with each mom. The interpretation of the standard
deviation of the mom effects is that it is the standard deviation (across moms) of the
true average birthweight per mom. Second is an estimate of the residual standard
deviation of 445.0228, from which we can calculate the intramom correlation.
Using (7.5), the within mom correlation of any two birthweights is estimated
to be 358:1761=.358:1761 C 445:0228/ D 0:45. And third, a test of the null
hypothesis of whether the mom-to-mom variation can be considered to be zero,
which can be easily rejected using a N�2-test. This is given at the bottom of the Stata
output and labeled chibar2, short for chi-bar-squared, which has a p-value of
approximately 0.

7.7 Analysis of the SOF BMD Data

We return to the Study of Osteoporotic Fractures analysis of the relationship
between change in BMD over time and age at menopause (categorized as over or
under age 52) that we introduced in Sect. 7.3.1. A primary consideration is how to
handle the time variable, visit, which takes on the discrete values, 2, 4, 5, 6, and
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8. If we think of the outcome (in this case BMD) evolving smoothly over time,
we are naturally led to modeling the trajectory of change using a functional form,
for example, a linear trend over time. We would generally like to characterize the
trajectory as simply as we can while still using an adequately fitting model. This
leads to a natural “ladder” of handling a time predictor like visit, starting from
a simple (to model and interpret) linear relationship with time. But this can be
quite restrictive and we may need to move up to more flexible models to obtain
an adequate fit, for example, also including quadratic functions of time (or even
higher degree polynomials) or using a spline (flexible smooth) fit. Failing a simple
description with polynomials or splines, and in cases where the times take on a
small number of discrete values it may be most expedient to simply handle the time
variable as categorical. Moving up the “ladder,” we can test statistical significance
of the need to utilize the more complicated models.

Recall that the strategy is to include interactions of baseline variables (in this
case age at menopause over age 52) with the time variable(s) to check whether there
are interactions. Figure 7.1 makes it clear that we need to consider the possibility
of a non-linear relationship with visit, so we accommodate visit by using restricted
cubic splines. Table 7.16 gives the analysis using GEEs. Neither of the interaction
terms with the spline variables is statistically significant so there is no evidence
that age at menopause is related to change in BMD over time. The spline terms
for visit are, themselves, highly statistically significant, indicating that there are
changes in BMD over time (unrelated to age at menopause). A comparison with
a linear relationship (not shown here) indicates that it is inadequate for describing
the changes over time. Consistent with Fig. 7.1, there is a statistically significant
difference of about 0.017 between the age at menopause groups across all the visits.

7.7.1 Time Varying Predictors

Age at menopause does not change over time and so is a time-invariant or baseline
predictor and we checked for its relationship with changes in BMD by including
interactions with the time variables. We next consider the relationship of BMD
with BMI, which does change over time within a participant (as well as between
participants) and so is a time-varying predictor. How should we include it in the
model? Consider a simple model for the measurement on the i th woman at time t
with the only predictor being BMI:

BMDi t D ˇ0 C ˇ1BMIi t C �it : (7.9)

Using (7.9) at time t C 1 and subtracting (7.9) from it gives

BMDi;tC1 � BMDi t D .ˇ0 C ˇ1BMIi;tC1 C �i;tC1/ � .ˇ0 C ˇ1BMIi t C �it /
D ˇ1.BMIi;tC1 � BMIi t /C �i;tC1 � �it : (7.10)
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Table 7.16 Generalized estimating equations analysis of the SOF BMD data

. xtgee totbmd i.meno_ov_52 visit_spl* i.meno_ov_52#c.visit_spl*, ///
> i(id) robust

GEE population-averaged model Number of obs = 22372
Group variable: id Number of groups = 7004
Link: identity Obs per group: min = 1
Family: Gaussian avg = 3.2
Correlation: exchangeable max = 5

Wald chi2(5) = 2529.68
Scale parameter: .0174184 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)
----------------------------------------------------------------------------

| Semirobust
totbmd | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.meno_ov_52 | .0174495 .0040542 4.30 0.000 .0095033 .0253956

visit_spl1 | -.0088637 .0003067 -28.90 0.000 -.0094648 -.0082626
visit_spl2 | -.000053 .0004967 -0.11 0.915 -.0010265 .0009206

|
meno_ov_52#|

c.visit_spl1 |
1 | .0000433 .0006456 0.07 0.947 -.0012221 .0013086

|
meno_ov_52#|

c.visit_spl2 |
1 | -.0001972 .0010286 -0.19 0.848 -.0022132 .0018188

|
_cons | .757436 .0017974 421.40 0.000 .7539131 .760959

----------------------------------------------------------------------------

In words, the change in BMD is related to the change in BMI. The import of (7.10) is
that, if we fit a model relating the outcome to a time-varying predictor, the regression
parameter for the time-varying predictor has the interpretation as the change in the
outcome associated with a change in the predictor. That is, it is inherently able to
address a longitudinal question.

Table 7.17 gives a mixed model analysis of the relationship between BMD
and BMI. Several comments are in order. The model being fit allows for flexible
trends over visit, by using a restricted cubic spline in visit. It also allows each
participant to have their own intercept and linear trend over visits, through the
id:visit option. The cov(uns) option allows those random intercepts and
trends to have arbitrary (unstructured) standard deviations and correlations. This
is generally appropriate: the intercepts and trends are measured on completely
different scales and are unlikely to have the same standard deviation and, in practice,
they are often correlated.

The analysis indicates that there is a highly statistically significant relationship
between BMD and BMI. BMD (and perhaps BMI) are measured in units that are
unfamiliar to many and so it is difficult to interpret the value of the coefficient
for BMI in Table 7.17. It is sometimes easier to consider the changes measured
in standard deviation units, namely, the change in BMD (measured in standard
deviations of BMD) associated with a single standard deviation change in BMI. This
can be simply derived by multiplying the regression coefficient by the standard
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Table 7.17 Mixed model analysis of the SOF BMD and BMI data

. xtmixed totbmd bmi visit_spl* || id: visit, cov(uns)

Computing standard errors:

Mixed-effects REML regression Number of obs = 26829
Group variable: id Number of groups = 8468

Obs per group: min = 1
avg = 3.2
max = 5

Wald chi2(3) = 7837.49
Log restricted-likelihood = 41482.617 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
totbmd | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bmi | .0080668 .0001296 62.26 0.000 .0078128 .0083207

visit_spl1 | -.0091991 .0002191 -41.98 0.000 -.0096286 -.0087696
visit_spl2 | -.0008798 .0002741 -3.21 0.001 -.001417 -.0003425

_cons | .5538826 .0036393 152.19 0.000 .5467496 .5610156
----------------------------------------------------------------------------

----------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+----------------------------------------------
id: Unstructured |

sd(visit) | .0096978 .0001461 .0094156 .0099883
sd(_cons) | .1146832 .0009979 .112744 .1166559

corr(visit,_cons) | -.0491474 .0169775 -.0823559 -.0158298
-----------------------------+----------------------------------------------

sd(Residual) | .023423 .0001517 .0231275 .0237224
----------------------------------------------------------------------------
LR test versus linear regression: chi2(3) = 45049.07 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

deviation of BMI (which is about 4.70 for this data set) and dividing it by the
standard deviation of BMD (which is about 0.13), giving a result of 0.28. So a
change in BMD of a single standard deviation is associated with a change of 0.28
standard deviations in BMD, a practically important effect.

7.7.2 Separating Between- and Within-Cluster Information

One could just as well fit a model like (7.9) to a time-invariant predictor, in which
case it would not address a longitudinal question. A variable like BMI does vary
within an individual over time, but varies even more between individuals. This
raises the concern that the coefficient in Table 7.17 might mostly reflect differences
between individuals rather than the association of the change in BMD with the
associated change of BMI within an individual. Between individual associations
are often more susceptible to confounding.
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Table 7.18 Mixed model separating within and between person BMI

*Separate between and within person changes in BMI
bysort id: egen meanbmi=mean(bmi)
gen bmi_dev=bmi-meanbmi

xtmixed totbmd meanbmi bmi_dev visit_spl* || id: visit, cov(uns)

Mixed-effects REML regression Number of obs = 26829
Group variable: id Number of groups = 8468

Obs per group: min = 1
avg = 3.2
max = 5

Wald chi2(4) = 8282.99
Log restricted-likelihood = 41683.621 Prob > chi2 = 0.0000
----------------------------------------------------------------------------

totbmd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

meanbmi | .0130329 .0002722 47.88 0.000 .0124994 .0135664
bmi_dev | .006695 .0001454 46.04 0.000 .00641 .00698

visit_spl1 | -.0090266 .0002192 -41.17 0.000 -.0094562 -.0085969
visit_spl2 | -.001178 .0002732 -4.31 0.000 -.0017134 -.0006425

_cons | .4226782 .0072925 57.96 0.000 .4083853 .4369712
----------------------------------------------------------------------------

Fortunately there are simple ways to isolate the within individual (or more
generally within cluster) changes. The first step is to decompose the predictor into
two pieces:

BMIi t D
�
BMIi t � BMIi

�C BMIi

D BMI devit C BMIi ; (7.11)

where BMIi represents the average BMI for person i and BMI devi t is the deviation
of the BMI measurement at time t from their mean BMI. In Stata, the mean and
deviation forms of the predictor can easily be calculated using the bysort and
egen commands. Next, both of them are entered in the model as predictors. The
deviation form of the predictor represents the within-cluster association and the
mean form of the predictor represents the between-cluster association. Another
approach that works equally well is to describe the between-cluster portion of the
predictor using its baseline value and the within-cluster portion using the difference
between each value of the predictor and the baseline value. That is, use BMIi1 for
between and BMIi t �BMIi1 for within, again entering both predictors in the model.

Table 7.18 shows how to calculate the between and within forms of the predictor
and displays a portion of the output from the analysis.

Both the within and between coefficients are highly statistically significant,
though this is not surprising given the large sample size. But the between coefficient
is about 0.013 and almost twice the size of the within person coefficient, which
is about 0.007. This could easily be due to confounding at the person level. The
previous analysis reported a weighted average of these two coefficients.
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Even in situations in which confounding is not an issue, it may be of substantive
interest to conduct such a decomposition of a predictor. For example, Haas et al.
(2004) studied the influence of county level race and ethnic composition on access
to health care over and above the influence of an individual’s race or ethnicity. In
this case, interest focused on separating the county level effect (cluster-level effect)
of race and ethnicity from the individual level effects.

7.7.3 Prediction

One of the advantages of the random effects approach is the ability to generate
predicted values for each of the random effects, which we do not get to observe
directly. Returning to the Georgia babies data set, we consider obtaining predicted
values for each of the mom effects, MOMi .

First, let us consider how we might go about estimating the mom effect from
first principles. The first mom in the data set had an initial age of 15 and hence,
using the estimated coefficients from Table 7.15, has predicted values for the five
births (in grams) of 2974.2, 3020.8, 3067.4, 3114.0, and 3160.6 (for example, the
first of these is 2974:214D 2526:622C 46:608.1/C 26:732.15/) and actual values
of 3720, 3260, 3910, 3320, and 2480, respectively. Her residuals, defined as actual
minus predicted, were 745.8, 239.2, 842.6, 206.0, and �680.6 with an average of
270.6. So we might guess that this mom has babies that are, on average, about 271 g
heavier than the “average” mom.

Using software to get the predicted effect (deviation from average) for the first
mom gives 206.7, only about 76% of the raw data value. Calculation for the other
moms shows that all the predicted values are closer to zero than the raw data
predicts. Why?

Predicted values from random effects models are so-called shrinkage estimators
because they are typically less extreme than estimates based on raw data. The
shrinkage factor depends on the degree of similarity between moms and, for simple
situations, is given by

shrinkage factor D �2u
�2u C �2� =ni

; (7.12)

where ni is the sample size for the i th cluster, �2u is the between cluster variance,
and �2� is the error variance. In our case, this factor is equal to (taking the estimates
from Table 7.15)

shrinkage factor D 358:17612

358:17612C 445:02282=5

D 128; 290:1

128; 290:1C 39; 609:1 D 0:76: (7.13)
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It is instructive to consider the form of (7.12). Since all the terms in the equation
are positive, the shrinkage factor is greater than zero. Further, since the denominator
is bigger than the numerator by the factor �2� =ni ; the shrinkage factor is less than 1.
So it always operates to shrink the estimate from the raw data to some degree.

What is the magnitude of the shrinkage? If �2u is much larger than �2� =ni then
the shrinkage factor is close to 1, i.e., almost no shrinkage. This will occur when
(a) subjects are quite different (i.e., �2u is large), and/or (b) results are very accurate
and �2� is small, and/or (c) when the sample size per subject, ni ; is large. So little
shrinkage takes place when subjects are different or when answers are accurate or
when there is much data.

On the other hand, in cases where subjects are similar (and hence �2u is small)
there is little reason to believe that any individual person deviates from the overall.
Or in cases of noisy data (�2� large) or small sample sizes, random fluctuations can
make up the majority of the raw data estimate of the effect and are naturally de-
emphasized with this shrinkage approach.

The advantage of the shrinkage predictions are twofold. First, they can be shown
theoretically to give more accurate predictions than those derived from the raw
data. Second (which is related), they use the data to balance the subject-to-subject
variability, the residual variance and the sample size to come up with the best
combination of the subject-specific information and the overall data.

Examples of uses of this prediction technology include prediction for prostate
cancer screening (Brant et al. 2003) and the use of shrinkage estimators in the rating
of individual physicians (Hofer et al. 1999) in treatment of diabetes.

7.7.4 A Logistic Analysis

Turning to the binary outcome variable lowbrth, we use the Stata command
xtmelogit. This model is similar to (7.8) with the needed changes for a logistic
model for binary data. This model is:

LOWBRTHij D 1 if baby j for mom i is < 3,000 g and 0 otherwise

� Bernoulli.pij /

with

logit.pij / D ˇ0 CMOMi C ˇ1BIRTHORDij C ˇ2INITAGEi ; (7.14)

and

MOMi � i.i.d N .0; �2u /:
This analysis is given in Table 7.19 with a syntax similar to that of xtmixed.

The fixed effects are listed after the outcome and the vertical bar notation separates
the fixed effects from the random effects, again with the momid: indicating the
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Table 7.19 Random effects logistic regression analysis for the birthweight data

. xtmelogit lowbirth birthord initage|| momid:, or

Mixed-effects logistic regression Number of obs = 1000
Group variable: momid Number of groups = 200

Obs per group: min = 5
avg = 5.0
max = 5

Integration points = 7 Wald chi2(2) = 11.85
Log likelihood = -588.07113 Prob > chi2 = 0.0027

----------------------------------------------------------------------------
lowbirth | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
birthord | .8872745 .0500702 -2.12 0.034 .7943711 .9910432
initage | .8808974 .0406081 -2.75 0.006 .8047967 .9641941

----------------------------------------------------------------------------

----------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+----------------------------------------------
momid: Identity |

sd(_cons) | 1.60859 .1676556 1.31138 1.973158
----------------------------------------------------------------------------
LR test versus logistic regression: chibar2(01) = 123.21 Prob>=chibar2 = 0.0000

inclusion of random intercepts for each mother. The option or requests odds ratios
in the output table as opposed to log odds. This gives somewhat different results
than the GEE analysis, as expected, since it is fitting a conditional model. More
specifically (as predicted from Fig. 7.5), the coefficients in the conditional analysis
are slightly farther from 1 than the marginal coefficients, for example the odds ratio
for birth order is now 0.89 as compared to 0.92 in the marginal model. The tests are,
however, virtually the same, which is not unusual.

The interpretation of the birthord coefficient in the conditional model is that
the odds of a low-birthweight baby decreases by about 11% for each increase of
birth order of one for each woman.

This is opposed to the interpretation of the odds-ratio estimate from the marginal
fit given in Table 7.13 of 0.92. The interpretation in the marginal model is the
decrease in the odds (averaged across all women) is about 8% with an increase
in birth order of one.

7.8 Marginal Versus Conditional Models

The previous section has demonstrated that, for non-linear models like the logistic
model, it is important to distinguish between marginal and conditional models
since the model estimates are not expected to be equal. Conditional models
have a more mechanistic interpretation, which can sometimes be useful (being
careful, of course, to remember that many experiments do not strongly support
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mechanistic interpretations, no matter what model is fit). Marginal models have
what is sometimes called a “public health” interpretation since the conclusions only
hold averaged over the entire population of subjects.

7.9 Example: Cardiac Injury Following Brain Hemorrhage

Heart damage in patients experiencing brain hemorrhage has historically been
attributed to preexisting conditions. However, more recent evidence suggests that
the hemorrhage itself can cause heart damage through the release of norepinephrine
following the hemorrhage. To study this, Tung et al. (2004) measured cardiac
troponin, an enzyme released following heart damage, at up to three occasions
after patients were admitted to the hospital for a specific type of brain hemorrhage
(subarachnoid hemorrhage or SAH).

The primary question was whether severity of injury from the hemorrhage was
a predictor of troponin levels, as this would support the hypothesis that the SAH
caused the cardiac injury. To make a more convincing argument in this observational
study, we would like to show that severity of injury is an independent predictor,
over and above other circulatory and clinical factors that would predispose the
patient to higher troponin levels. Possible clinical predictors included age, gender,
body surface area, history of coronary artery disease (CAD), and risk factors for
CAD. Circulatory status was described using systolic blood pressure, history of
hypertension (yes/no) and left ventricular ejection fraction (LVEF), a measure of
heart function. The severity of neurological injury was graded using a subject’s
Hunt–Hess score on admission. This score is an ordered categorical variable ranging
from 1 (little or no symptoms) to 5 (severe symptoms such as deep coma).

The study involved 175 subjects with at least one troponin measurement and
between 1 and 3 visits per subject. Figure 7.6 shows the histogram of troponin
levels. They are severely skewed right with over 75% of the values equal to 0.3,
the smallest detectable value and many outlying values. For these reasons, the
variable was dichotomized as being above or below 1.0, as is labeled in the output as
CTover1. Table 7.20 lists the proportion of values above 1.0 for each of the Hunt–
Hess categories and Table 7.21 gives a more formal analysis using GEE methods,
but including only the predictor Hunt–Hess score and not using data from visits four
or greater (there were too few observations to use those later visits).

The reference group for the Hunt–Hess variable in this analysis is a score of 1,
corresponding to the least injury. So the odds of heart damage, as evidenced by
troponin values over 1, is over two times higher for a Hunt–Hess score of 2 as
compared to 1 and the odds go up monotonically with the estimated odds of heart
damage for a Hunt–Hess score of 5 being over 70 times those of a score of 1. Even
though the odds ratio of a score of 5 is poorly determined, the lower limit of the
95% CI is still over 16.

The primary goal is to assess the influence of a single predictor variable, Hunt–
Hess score, which is measured only once per subject. Since it is only measured once,
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Fig. 7.6 Histogram of cardiac troponin levels

Table 7.20 Proportion of troponin levels over 1.0 and sample size versus Hunt–Hess score

. table hunt, c(mean CTover1 n CTover1)
----------------------------------------
Initial |
Hunt--Hess | mean(CTover1) N(CTover1)
-----------+----------------------------

1 | .0318471 157
2 | .0615385 65
3 | .1269841 126
4 | .1692308 65
5 | .6818182 22

----------------------------------------

rather than repeatedly, a marginal model and the use of GEE methods is attractive.
Since we are interested in a single predictor, we will be more liberal in including
predictors for adjustment. We certainly would like to adjust for the amount of time
after the SAH occurred, as captured by the visit number, stday, since troponin
levels drop over time. We also want to adjust for fundamental differences that might
be due to age, sex, and body surface area (bsa), which may be related to troponin
levels.

In addition, we choose to adjust for preexisting conditions that might influ-
ence the troponin levels, including left ventricular ejection fraction, standardized
(lvef std), SBP (sbp), heart rate (hr), and history of hypertension (hxhtn).
Quadratic functions of left ventricular ejection fraction (lvef std2) and SBP
(sbp2) are included to model non-linear (on the logit scale) relationships.

Table 7.22 gives the output after dropping some nonstatistically significant
predictors from the model and using the xtgee command. It also gives an overall
test of whether troponin levels vary with Hunt–Hess score.
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Table 7.21 Effect of Hunt–Hess score on elevated cardiac troponin levels

. xtgee CTover1 i.hunt if stday<4, i(stnum) family(binomial) ef

GEE population-averaged model Number of obs = 434
Group variable: stnum Number of groups = 168
Link: logit Obs per group: min = 1
Family: binomial avg = 2.6
Correlation: exchangeable max = 3

Wald chi2(4) = 39.03
Scale parameter: 1 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
hunt |

2 | 2.036724 1.669731 0.87 0.386 .4084194 10.15682
3 | 4.493385 2.820396 2.39 0.017 1.313088 15.37636
4 | 6.542645 4.347658 2.83 0.005 1.778774 24.065
5 | 70.66887 52.16361 5.77 0.000 16.63111 300.286

----------------------------------------------------------------------------

Even after adjustment for a multitude of characteristics, the probability of an
elevated troponin level is associated with Hunt–Hess score. However, the picture
is a bit different as compared to the unadjusted analysis. Each of the categories
above 1 has an estimated elevated risk of troponin release, but it is not a monotonic
relationship. Also, only category 5, the most severely damaged group, is statistically
significantly different from category 1.

What is the effect of adjusting for the large number of predictors is this model?
We might be worried that CIs for some of the coefficients have gotten quite wide
due to correlations among the predictors and the Hunt–Hess score. Table 7.23 gives
the analysis after minimally adjusting for just stday.

While it is not clearly evident from the output on the odds-ratio scale, standard
errors for the log odds values are not appreciably larger in the adjusted analysis
(see Problem 7.10). The minimally adjusted and unadjusted analyses have similar
pattern of estimated odds ratios. However, both of them may have overestimated the
association with Hunt–Hess score slightly and so the adjusted analysis reported in
Table 7.22 would be preferred.

7.9.1 Bootstrap Analysis

We might also be concerned about the stability of the results reported in Table 7.22
given the modest sized dataset with a binary outcome and the large number of
predictors. This is exactly a situation in which bootstrapping can help understand
the reliability of standard errors and CIs.

Correspondingly, we conducted a bootstrap analysis and we focus on the stability
of the result for the comparison of Hunt–Hess score of 5 compared to a value of 1.
Bootstrapping is conducted for the log odds (which can be transformed easily back
to the odds scale) since that is the basis of the calculation of CIs.
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Table 7.22 Adjusted effect of Hunt–Hess score on elevated troponin levels

. xtgee CTover1 i.hunt i.stday sex lvef_std lvef_std2 hxhtn sbp sbp2 if
stday<4, i(stnum)

> family(binomial) ef

GEE population-averaged model Number of obs = 408
Group variable: stnum Number of groups = 165
Link: logit Obs per group: min = 1
Family: binomial avg = 2.5
Correlation: exchangeable max = 3

Wald chi2(12) = 44.06
Scale parameter: 1 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
hunt |

2 | 1.663476 1.334533 0.63 0.526 .3452513 8.014895
3 | 1.830886 1.211796 0.91 0.361 .5003595 6.69947
4 | 1.560879 1.241708 0.56 0.576 .3282637 7.421908
5 | 74.99009 69.48431 4.66 0.000 12.19825 461.0097

|
stday |

2 | .5258933 .2163491 -1.56 0.118 .2348112 1.177813
3 | .374303 .1753685 -2.10 0.036 .1494233 .9376232

|
sex | 8.242847 6.418324 2.71 0.007 1.791785 37.92002

lvef_std | .5438802 .1290215 -2.57 0.010 .3416472 .8658223
lvef_std2 | 1.388986 .1863399 2.45 0.014 1.067836 1.806721

hxhtn | 3.11661 1.572135 2.25 0.024 1.15959 8.376457
sbp | 1.143139 .0771871 1.98 0.048 1.001438 1.30489

sbp2 | .9995246 .0002293 -2.07 0.038 .9990753 .9999742
----------------------------------------------------------------------------

. testparm i.hunt

( 1) 2.hunt = 0
( 2) 3.hunt = 0
( 3) 4.hunt = 0
( 4) 5.hunt = 0

chi2( 4) = 23.87
Prob > chi2 = 0.0001

A complication with clustered data is what to resample. By default, bootstrapping
will resample the individual observations. However, the basis of sampling in this
example (which is common to clustered-data situations) is subjects. We thus need to
resample subjects not observations. Fortunately, this can be controlled within Stata
by using a cluster option on the bootstrap command. The analysis was run using
a robust variance estimate and independence working correlation, which improved
the stability of the estimates. Table 7.24 gives the portion of the output associated
with the Hunt–Hess scores. The bias-corrected bootstrap (using the ef option to
generate odds ratios) gives a CI for the odds ratio for a Hunt–Hess of 2 compared
to 1 of 0.23–7.91. This compares with the interval from 0.35 to 8.01 from Table
7.22 in the original analysis. For comparing a Hunt–Hess score of 5 to that of 1,
the bootstrap analysis gives a CI of 14.66–472.09 compared to 12.19–461.00. The
results are quite similar and give qualitatively the same results, giving us confidence
in our original analysis.
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Table 7.23 Effect of Hunt–Hess score on elevated troponin levels adjusting only for stday

. xtgee CTover1 i.hunt i.stday if stday<4, i(stnum) family(binomial) ef

GEE population-averaged model Number of obs = 434
Group variable: stnum Number of groups = 168
Link: logit Obs per group: min = 1
Family: binomial avg = 2.6
Correlation: exchangeable max = 3

Wald chi2(6) = 40.75
Scale parameter: 1 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
CTover1 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
hunt |

2 | 2.136339 1.711752 0.95 0.343 .4442634 10.27306
3 | 4.312505 2.68268 2.35 0.019 1.274157 14.59609
4 | 6.41448 4.228072 2.82 0.005 1.762367 23.34676
5 | 60.09793 44.25148 5.56 0.000 14.19385 254.4595

|
stday |

2 | .5564922 .1968294 -1.66 0.098 .2782224 1.113079
3 | .5170812 .2016593 -1.69 0.091 .2407654 1.110512

----------------------------------------------------------------------------

Table 7.24 Bootstrap analysis of adjusted Hunt–Hess model

. bootstrap _b, reps(1000) cluster(stnum) seed(2718):xtgee CTo i.hunt i.stday sex

> lvef_std lvef_std2 hxhtn sbp sbp2 if stday <4, i(stnum) family(bin) robust corr(inde)

. estat boot, ef

Bootstrap results Number of obs = 408

Replications = 921

(Replications based on 165 clusters in stnum)

( 1) 1b.hunt = 0

( 2) 1b.stday = 0

----------------------------------------------------------------------------

| Observed Bootstrap

CTover1 | exp(b) Bias Std. Err. [95% Conf. Interval]

-------------+--------------------------------------------------------------

1b.hunt | 1 0 0 . . (BC)

2.hunt | 1.5943809 .2109551 1.4253662 .233916 7.909329 (BC)

3.hunt | 2.2787955 .1224353 1.8531043 .461805 11.75678 (BC)

4.hunt | 2.3847466 .0586308 2.4034528 .219347 14.8611 (BC)

5.hunt | 78.628816 66.77691 99.854523 14.66172 471.0894 (BC)

1b.stday | 1 0 0 . . (BC)

2.stday | .57482247 -.0672446 .26831764 .2518986 1.369652 (BC)

3.stday | .41069747 -.0548035 .23561377 .1419608 1.170843 (BC)

----------------------------------------------------------------------------

(BC) bias-corrected confidence interval

Note: one or more parameters could not be estimated in 79 bootstrap

replicates; standard-error estimates include only complete

replications.
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7.10 Power and Sample Size for Repeated Measures Designs

Planning the sample size or calculating power for a repeated measures analysis can
be challenging, due to the need to specify the correlation structure (which can be
difficult) and because the calculations are different for different types of predictors.
We present some results here for the simple situation in which there is a single
level of clustering, observations within a cluster are equally correlated and all have
the same variability, and the sample size per cluster is the same. This serves as
the starting point for many calculations and illustrates some features of power and
sample size for repeated measures designs.

An important distinction is whether the sample size calculation is for a between-
or within-cluster predictor. A purely between-cluster predictor is one that may
vary between clusters but is constant within a cluster. A within-cluster predictor is
one that may vary within a cluster, but whose average is constant across clusters.
For example, in a longitudinal study in which the clusters are participants, the
participant’s race, age at entry to the study, and genetic information are all between-
cluster predictors. If every participant was measured at every visit, then visit would
be a purely within-cluster predictor. In practice, most predictors that vary within
a cluster are not purely within-cluster predictors; their average varies at least
somewhat across clusters. Section 7.7.2 shows how to separate a predictor into its
purely between and purely within components.

7.10.1 Between-Cluster Predictor

In the situation in which the cluster sample sizes are equal, the analysis of between-
cluster predictors are, in essence, based on the cluster level means. This realization
also serves to temper the number of between-cluster predictors that can be included
in an analysis, because the effective sample size is the number of clusters.

When the data are equally correlated, the variance of a cluster-level mean is given
by �2Œ1C .n � 1/��=n, where �2 is the variability of the outcome, � is the within-
cluster (intraclass) correlation, and n is the sample size per cluster. In contrast, when
the data are independent, the variance would be �2=n. That is, the cluster-level mean
has a variance that is larger by a factor of Œ1 C .n � 1/��. Since required sample
sizes are proportional to the variability of the measurements, the consequence is
that sample sizes must be larger by this factor, compared to an experiment using
independent data. Because of the central role this factor plays, it has been named
the design effect and is often abbreviated as DEFF, i.e., DEFF D 1C .n� 1/�. This
also gives a convenient way to do sample size calculations. Namely, a calculation is
conducted assuming independent data, then it is multiplied by the DEFF to find the
required sample size for the repeated measures design.

Here is an illustration of planning a new study, but patterned after Whelan et al.
(2004), which was a randomized controlled trial of a decision-making aid (versus
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Table 7.25 Sample size and power calculation examples

. sampsi 1.7 1.4, sd1(0.5) power(0.8)

Estimated sample size for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:
alpha = 0.0500 (two-sided)
power = 0.8000

m1 = 1.7
m2 = 1.4

sd1 = .5
sd2 = .5

n2/n1 = 1.00

Estimated required sample sizes:
n1 = 44
n2 = 44

. sampsi 1.546 1.4, sd1(0.5) n1(130)

Estimated power for two-sample comparison of means

Test Ho: m1 = m2, where m1 is the mean in population 1
and m2 is the mean in population 2

Assumptions:
alpha = 0.0500 (two-sided)

m1 = 1.546
m2 = 1.4

sd1 = .5
sd2 = .5

sample size n1 = 130
n2 = 130

n2/n1 = 1.00

Estimated power:
power = 0.6533

not) for physicians to help them counsel breast cancer patients on surgical options.
The outcome is decisional conflict and will be assessed using a numerical scale
and measures the degree to which patients are well-informed about their choices
concerning treatment for breast cancer. This is a repeated measures design because
the outcome will be measured at the patient level and there will be multiple patients
per physician. The predictor (decision aid or not) is a between-cluster (physician-
level) predictor. We use input values from Whelan et al. (2004): an average of
about 7.5 patients per physician, standard deviation of the outcome of 0.5 (measured
across patients and physicians), and an intraclass correlation, �, of 0.3.

We use the corresponding independent samples comparison (a two sample t-test),
with a detectable effect size of 0.3 and a desired power of 0.8. Using the sampsi
command as illustrated in Table 7.25 shows that 44 observations per group would be
needed. With 7.5 patients per physician, the design effect is DEFF D 1C.n�1/� D
1C .7:5� 1/0:3 D 2:95 and about 2.95(44) or about 130 patients would be needed
per treatment group, working out to about 130/7.5 or 18 physicians for each of the
two treatment groups.
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While the calculation of the required sample size for a between-cluster predictor
is not numerically difficult, in the absence of preliminary data, specifying the
intraclass correlation coefficient can be an issue. It is sometimes slightly easier
to consider the within-cluster variability in the outcome across observations and
the variability in the true cluster-level means across clusters. In the decision aid
example, this would mean considering the variation in the decisional conflict scale
across patients within a physician and the variation in the true physician level
means (i.e., the average value if an unlimited number of patients were measured
for each physician). The intraclass correlation coefficient can then be calculated
(see Sect. 7.1.2) as the ratio of the between-cluster variability and the sum of the
between- and within-cluster variances. For the decision aid example, the within-
cluster variance in the outcome is �2e D 0:175 and the between-cluster variation is
�2u D 0:075, giving an intraclass correlation coefficient of 0:3 D 0:075=.0:075C
0:175/ and an overall variance of 0:25 D 0:075 C 0:175; corresponding to the
standard deviation of 0:5 D p0:25.

The design effect can be used for power calculations, as opposed to sample
size calculations, by reducing the detectable effect size by the square root of the
design effect and using power calculations assuming independent data. Continuing
the decision aid example, suppose the effect size was 0.25 instead of 0.3 and we
have 130 patients per treatment group. How much would the power decrease? The
reduced detectable effect size would be 0:25=

p
2:95D 0:146. The power calculation

for the t-test shown in Table 7.25 gives a power of 0.65.
The calculations above have been illustrated for a single predictor and for

a numerical outcome, but the general principle extends to the other scenarios
described in the book, including different outcome types and the use of multiple
predictors. That is, for sample size, preliminary calculations are performed assum-
ing independent data, the result of which is multiplied by the design effect to find the
required sample size for the repeated measures design. For power, detectable effect
sizes are reduced by dividing by the square root of the design effect and that is used
in an independent sample size power calculation to find the power for the repeated
measures design. In the binary outcomes outcome case, the design effect can be
applied to (5.16) which also would accommodate multiple, correlated, between-
cluster predictors through the factor 1=

�
1 � �2j

�
.

7.10.2 Within-Cluster Predictor

In the typical case where the correlation within a cluster is positive and for the
same sample size and detectable effect size, power for within-cluster predictors
is higher than for between-cluster predictors; for the same power and detectable
effect size, required sample sizes are smaller. In fact, this is a common rationale
in using cluster designs such as longitudinal studies, which are often described as
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“using each person as their own control” in order to increase precision. In contrast
to between-cluster predictors, the effective sample size for purely within-cluster
predictors is the total sample size, not the number of clusters.

As with between-cluster predictors, sample size or power calculations can be
obtained by modifying the results from an independent sample size calculation.
Again, with � being the intraclass correlation coefficient, the sample size can first
be calculated assuming independent data and then reduced by the factor 1 � �.
Alternatively, if the within-cluster standard deviation is known, this can be used
directly to perform a sample size calculation, ignoring the clustered design. Going
back to the decision aid example, suppose we are interested in a within-physician
predictor, such as the age of the patient, and we divide patients according to whether
they are above or below the median value for that physician. A power of 0.8 is
desired and the detectable effect size is 0.2. Using the sampsi command indicates
that 99 observations are needed per group. But this can be reduced by 1 � � to
arrive at a final sample size of 70 per group. That would mean that we would need
an overall sample size of 140. Equivalently, we can use the within-cluster standard
deviation of 0:418 D p0:175 to directly perform a sample size calculation (see
Exercise 7.12).

For calculating power for a within-cluster predictor, the detectable effect size
is increased by multiplying it by 1=

p
1 � � and then an independent sample size

calculation is conducted. Or, if the within-cluster standard deviation is available,
this is used to directly perform the power calculation, ignoring the clustered nature
of the design.

As with the between-cluster calculations, this approach extends to other scenarios
covered in this book. That is, for sample size, preliminary calculations are performed
assuming independent data, the result of which is reduced by 1 � � to find
the required sample size for the repeated measures design. Again, in the binary
outcomes outcome case, the multiplier can be applied to (5.16) which handles
multiple, correlated, within-cluster predictors through the factor 1=.1 � �2j /. Or
the calculations are conducted using the within-cluster standard deviation, which
is smaller than the overall standard deviation. For power, detectable effect sizes are
increased by multiplying by 1=

p
1 � � and that is used in an independent sample

size power calculation to find the power for the repeated measures design. Or, the
within-cluster standard deviation is used directly to calculate the power assuming
independent samples.

7.11 Summary

The main message of this chapter has been the importance of incorporating
correlation structures into the analysis of clustered, hierarchical, longitudinal, and
repeated measures data. Failure to do so can have serious consequences. Two main
methods have been presented, GEEs and random effects models.



7.12 Further Notes and References 305

A primary advantage of the GEEs approach is the availability of the robust
variance estimate, which provides valid standard errors without having to explicitly
model the nature of the correlations within a cluster. GEEs approaches typically fit
models for estimating effects averaged across a population, called marginal models.

In contrast, mixed models incorporate correlation by introducing random effects.
This may require more careful modeling and assessment of assumptions, but yield
extra capabilities in the form of partitioning the variability, enabling calculation
of intraclass correlation coefficients, testing for the presence of clustering, and
generating predicted values of random effects. Mixed model approaches typically
fit models for estimating effects specific to a cluster (e.g., an individual) and are
conditional models.

For simple clustered-data situations, power and sample size calculations can be
based on straightforward modifications of the calculations for independent data.
These modifications depend on whether the predictor of interest is a between- or
within-cluster predictor and require knowledge of the within-cluster correlation (or
equivalent quantities).

7.12 Further Notes and References

For those readers desiring more detailed information on longitudinal and repeated
measures analyses, there are a number of book length treatments, especially for
continuous, approximately normally distributed data. Notable entries include Rau-
denbush and Bryk (2001), Goldstein (2003), Verbeke and Molenberghs (2000),
Diggle et al. (2002), Fitzmaurice et al. (2004), and McCulloch et al. (2008).
Unfortunately, many are more technical than this book.

7.12.1 Missing Data

The techniques in this chapter handle unequal sample sizes and unequal spacing
of observations in time with aplomb. However, sample sizes are often unequal and
observation times unequal because of missing outcome data. And data are often
missing for a reason related to the outcome under study. As examples, sicker patients
may not show up for follow-up visits, leading to overly optimistic estimates based
on the data present. Or those patients staying in the hospital longer may be the sicker
ones (with the better-off patients having been discharged). This might lead us to the
erroneous conclusion that longer stays in the hospital produce poorer outcomes, so
why check-in in the first place?

To a limited extent, the methods in this chapter cover the situation in which the
missing data are systematically different from the data available. If the fact that data
are missing is related to a factor in the model (i.e., more missing data for males,
which is also a factor in the model) then there is little to worry about. However, the
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methods described here do not cover the situation where the missing data are related
to predictors not in the model and can give especially misleading results if the fact
that the data are missing is related to the value of the outcome that would have been
measured.

See Chap. 11 for much more detail.

7.12.2 Computing

Stata has a wide array of clustered-data techniques. The commands xtmixed,
xtmelogit, and xtmepoisson can fit mixed models for multilevel hierarchical
data structures. The generalized estimating equations methods are limited to one
level of clustering. So, for example, they can explicitly model repeated measures
data on patients, but not repeated measures data on patients clustered within doctors.
Of course, with sufficient numbers of doctors, even the clustering of patients within
doctors could be accommodated with robust standard errors.

Other software packages can also conduct these analyses. For continuous,
approximately normally distributed data, SAS Proc MIXED can handle a multitude
of models (Littell et al. 1996) and SAS Proc GENMOD can fit models using GEEs
and, for binary data, can fit two-level clustered binary data with a technique called
alternating logistic regression (Carey et al. 1993). MLWin and HLM are two other
clustered data packages with additional capabilities.

7.13 Problems

Problem 7.1. Using the fecal fat data in Table 7.1, calculate the sample variance of
the subject averages. Subtract from this the residual variance estimate from Table
7.3 divided by four (why four?) to verify the estimate of �2subj given in the text.

Problem 7.2. Using the fecal fat data in Table 7.1, verify the F -tests displayed in
Tables 7.2 and 7.3.

Problem 7.3. From your own area of interest, describe a hierarchical dataset
including the outcome variable, predictors of interest, the hierarchical levels in the
dataset and the level at which each of the predictors is measured. Choose a dataset
for which not all of the predictors are measured at the same level of the hierarchy.

Problem 7.4. Could you successfully analyze the data from the fecal fat example
using the idea of “analysis at the highest level of the hierarchy?” Briefly say why or
why not.

Problem 7.5. For the fecal fat example of Table 7.1, analyze the difference between
capsule and coated capsules in two ways. First, use the “derived variable” approach
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to perform a paired t-test. Second, in the context of the two-way ANOVA of
Table 7.3, test the contrast of coated capsule versus capsule. How do the two
analyses compare? What differences do you note? Why do they come about? What
are the advantages and disadvantages of each?

Problem 7.6. Consider an example (like the Georgia birthweight example) with
before and after measurements on a subject. If the variability of the before and after
measurements each have variance �2 and correlation � then it is a fact that the
standard deviation of the difference is �

p
2.1� �/.

(1) The correlation of the first and last birthweights is about 0.381. Using Table 7.5,
verify the above formula (approximately).

(2) If we were to compare two groups, based on the difference scores or just the
last birthweights (say, those with initial age greater than 17 versus those not),
which analysis would have a larger variance and hence be less powerful? By
how much?

Problem 7.7. The model corresponding to the analysis for Table 7.7 has an
intercept, a dummy variable for the fifth birth, a continuous predictor of centered age
(age minus the average age), and the product of the dummy variable and centered
age.

(1) Write down a model equation.
(2) Verify that the intercept is the average for the first-born, and that the coefficient

for the dummy variable is the difference between the two groups, both of these
when age is equal to its average.

(3) Verify that the coefficient for the product measures how the change in birth-
weight from first to last birth depends on age.

Problem 7.8. Reproduce the standard error calculations in Table 7.12, but for the
coefficient of birthorder. How different are the standard errors when not using
the robust option? When using the robust option? Are any of the analyses likely to
give misleading results? If so, which ones?

Problem 7.9. Verify the calculation of the predicted values and residuals in
Sect. 7.7.3.

Problem 7.10. Using the CIs for the odds ratios for the Hunt–Hess scores in Tables
7.22 and 7.21, calculate the confidence intervals for the log-odds ratios. Show that
the width of the CIs in the adjusted analysis (Table 7.22) are not appreciably larger
than those in the unadjusted analysis (Table 7.21).

Problem 7.11. Compare the bootstrap-based CI for the comparison of study day
1 and study day 2 from Table 7.24 to the CI from the original analysis reported in
Table 7.22. Do they agree substantively? Do they lead to different conclusions?

Problem 7.12. Verify that a two independent sample t-test sample size calculation
with a standard deviation of 0.5 when reduced by the factor 1 � � D 1 � 0:3 D 0:7
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gives virtually the same answer as a direct calculation using the standard deviation
of 0.418.

7.14 Learning Objectives

(1) Recognize a hierarchical data situation and explain the consequences of
ignoring it.

(2) Decide when hierarchical models are necessary versus when simpler analyses
will suffice.

(3) Define the terms hierarchical, repeated measures, clustered, longitudinal, robust
variance estimator, working correlation structure, generalized estimating equa-
tions, fixed factor, and random factor.

(4) Interpret Stata output for GEE and random effects analyses in hierarchical
analyses for linear regression or logistic regression problems.

(5) Explain the difference between marginal and conditional models.
(6) Decide if factors should be treated as fixed or random.
(7) Explain the use of shrinkage estimators and best prediction for random factors.
(8) Perform power or sample size calculations for simple clustered-data situations.



Chapter 8
Generalized Linear Models

A new program for depression is instituted in the hopes of reducing the number
of visits each patient makes to the emergency room in the year following treat-
ment. Predictors include (among many others) treatment (yes/no), race, and drug
and alcohol usage indices. A common and minimally invasive treatment for jaundice
in newborns is exposure to light. Yet the cost of this is high, mainly because of longer
hospital stays, which are expensive. Predictors of the cost include race, gestational
age, and birthweight.

These analyses require special attention both because of the nature of the
outcome variable (counts in the depression example and costs, which are positive
and right-skewed, for the jaundice example) and because the models we would
typically employ are not as straightforward as the linear models of Chap. 4.

On the other hand, many features of constructing an analysis are the same as we
have seen previously. We have a mixture of categorical (treatment, race) and contin-
uous predictors (drug usage, alcohol usage, gestational age, birthweight). There are
the same issues of determining the goals of inference (prediction, risk estimation,
and testing of specific parameters) and winnowing down of predictors to arrive at a
final model as discussed in Chap. 10. And we can use tests and CIs in ways that are
quite similar to those for previously described analyses.

We begin this chapter by discussing the two examples in a bit more detail and
conclude with a look at how those examples, as well as a number of earlier ones,
can be subsumed under the broader rubric of generalized linear models.

8.1 Example: Treatment for Depression

A new case-management program for depression is instituted in a local hospital that
often has to care for the poor and homeless. A characteristic of this population is
that they often access the health care system by arriving in the emergency room—an
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expensive and overburdened avenue to receive treatment. Can the new treatment
reduce the number of needed visits to the emergency room as compared to standard
care? The recorded outcome variable is the number of emergency room visits for
each patient in the year following treatment.

The primary goal of the analysis is to assess the treatment program, but
emergency room usage varies greatly according to other factors. Secondary goals
included association of emergency room usage with drug or alcohol abuse and to
assess racial differences in use.

8.1.1 Statistical Issues

From a statistical perspective, we need to be concerned with the nature of the
outcome variable: in the data set that motivated this example, about one-third of the
observations are 0 (did not return to the emergency room within the year) and over
half are either 0 or 1. This is highly nonnormal and cannot be transformed to be
approximately normal—any transformation by an increasing function will merely
move the one-third of the observations that are exactly 0 to another numerical value,
but there will still be a “lump” of observations at that point consisting of one-third
of the data. For example, a commonly recommended transformation for count data
with zeros is log.y C 1/: This transformation leaves the data equal to 0 unchanged
since log.0C 1/ D 0 and moves the observations at 1 to log.1C 1/ D log.2/, not
appreciably reducing the nonnormality of the data. Over half the data take on the
two values 0 and log.2/.

Even if we can handle the nonnormal distribution, a typical linear model (as in
Chap. 4) for the mean number of emergency room visits will be untenable. The
mean number of visits must be a positive number and a linear model, especially with
continuous predictors, may, for extreme values of the covariates, predict negative
values. This is the same problem we encountered with models for the probability of
an event in Sect. 5.1.

Another bothersome aspect of the analysis is that this is a hard-to-follow,
transient population in generally poor health. It is not at all unusual to have
subjects die or be unable to be contacted for obtaining follow-up information. So
some subjects are only under observation (and hence eligible for showing up for
emergency room visits) for part of the year.

Since not all the subjects are followed for the same periods of time, it is natural
to think of a multiplicative model. In other words, if all else is equal, a subject
that is followed for twice as long as another subject will have, on average, twice
the emergency room utilization. This consideration, as well as the desire to keep
the mean response positive, leads us to consider a model for the log of the mean
response. Note that this is different from the mean of the log-transformed responses
(See Problem 8.1, also Sects. 4.7.2 and 4.7.5).
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8.1.2 Model for the Mean Response

To begin to write down the model more carefully, define Yi as the number of
emergency room visits for patient i and let EŒYi � represent the average number of
visits for a year. For the moment we will ignore the fact that the observation periods
are unequal. The model we are suggesting is

log EŒYi � D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi ; (8.1)

or equivalently (using an exponential, i.e., anti-log)

EŒYi � D expfˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi g; (8.2)

where ˇ0 is an intercept, RACEi is 1 for nonwhites and 0 for whites, TRTi is 1 for
those in the treatment group and 0 for usual care, ALCHi is a numerical measure of
alcohol usage and DRUGi is a numerical measure of drug usage. We are primarily
interested in ˇ2, the treatment effect.

Since the mean value is not likely to be exactly zero (otherwise, there is nothing
to model), using the log function is mathematically acceptable (as opposed to trying
to log transform the original counts, many of which are zero). Also, we can now
reasonably hypothesize models like (8.1) that are linear (for the log of the mean) in
ALCHi and DRUGi since the exponential in (8.2) keeps the mean value positive.

This is a model for the number of emergency room visits per year. What if the
subject is only followed for half a year? We would expect their counts to be, on
average, only half as large. A simple way around this problem is to model the mean
count per unit time instead of the mean count, irrespective of the observation time.
Let ti denote the observation time for the i th patient. Then, the mean count per unit
time is EŒYi �=ti and (8.1) can be modified to be

log .EŒYi �=ti / D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi ; (8.3)

or equivalently (using the fact that logŒY=t� D logY � log t)

log EŒYi � D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi C log ti : (8.4)

The term log ti on the right-hand side of (8.4) looks like another covariate term,
but with an important exception: there is no coefficient to estimate analogous to the
ˇ3 or ˇ4 for the alcohol and drug covariates. Thinking computationally, if we used
it as a predictor in a regression-type model, a statistical program like Stata would
automatically estimate a coefficient for it. But, by construction, we know it must
enter the equation for the mean with a coefficient of exactly 1. For this reason, it is
called an offset instead of a covariate and when we use a package like Stata, it is
designated as an offset and not a predictor.
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8.1.3 Choice of Distribution

Lastly, we turn to the nonnormality of the distribution. Typically, we describe count
data using the Poisson distribution. Directly modeling the data with a distribution
appropriate for counts recognizes the problems with discreteness of the outcomes
(e.g, the “lump” of zeros). While the Poisson distribution is hardly ever ultimately
the correct distribution to use in practice, it gives us a place to start.

We are now ready to specify a model for the data, accommodating the three
issues: nonnormality of the data, mean required to be positive, and unequal
observation times. We start with the distribution of the data. Let 	i denote the mean
rate of emergency room visits per unit time, so that the mean number of visits for
the i th patient is given by 	i ti . We then assume that Yi has a Poisson distribution
with log of the mean given by

log EŒYi � D logŒ	i ti �

D log	i C log ti

D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi C log ti : (8.5)

This shows us that the main part of the model (consisting of all the terms except for
the offset log ti ) is modeling the rate of emergency room visits per unit time:

logŒ	i � D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi ; (8.6)

or, exponentiating both sides,

	i D expfˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3ALCHi C ˇ4DRUGi g: (8.7)

8.1.4 Interpreting the Parameters

The model in (8.7) is a multiplicative one, as we saw for the Cox model in Chap. 6,
and has a similar style of interpretation. Recall that RACEi is 1 for nonwhites and
0 for whites and suppose the race coefficient is estimated to be Ǒ1 D �0:5. The
mean rate per unit time for a white person divided by that of a nonwhite (assuming
treatment group, and alcohol and drug usage indices are all the same) would be

exp fˇ0 C 0C ˇ2TRTC ˇ3ALCHC ˇ4DRUGg
exp fˇ0 � 0:5C ˇ2TRTC ˇ3ALCHC ˇ4DRUGg

D eˇ0e0eˇ2TRTeˇ3ALCHeˇ4DRUG

eˇ0e�0:5eˇ2TRTeˇ3ALCHeˇ4DRUG
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D e0

e�0:5

D e0:5 � 1:65: (8.8)

So the interpretation is that, after adjustment for treatment group and alcohol and
drug usage, whites tend to use the emergency room at a rate 1.65 that of the
nonwhites. Said another way, the average rate of usage for whites is 65% higher
than that for non-whites. Similar, multiplicative, interpretations apply to the other
coefficients.

In summary, to interpret the coefficients when modeling the log of the mean,
we need to exponentiate them and interpret them in a multiplicative or ratio
fashion. In fact, it is often good to think ahead to the desired type of interpretation.
Proportional increases in the mean response due to covariate effects are sometimes
the most natural interpretation and are easily incorporated by planning to use such a
model.

8.1.5 Further Notes

Models like the one developed in this section are often called Poisson regression
models, named after the distribution assumed for the counts. A feature of the Poisson
distribution is that the mean and variance are required to be the same. So, if the
mean number of emergency room visits per year is 1.5, for subjects with a particular
pattern of covariates, then the variance would also be 1.5 and the standard deviation
would be the square root of that or about 1.23 visits per year. Ironically, the Poisson
distribution often fails to hold in practice since the variability in the data often
exceeds that of the mean. A common solution (where appropriate) is to assume
that the variance is proportional to the mean, not exactly equal to it, and estimate
the proportionality factor, which is called the scale parameter, from the data. For
example, a scale parameter of 2.5 would mean that the variance was 2.5 times larger
than the mean and this fact would be used in calculating standard errors, hypothesis
tests, and confidence intervals. When the scale parameter is greater than 1, meaning
that the variance is larger than that assumed by the named distribution, the data
are termed overdispersed. Another solution is to choose a different distribution.
For example, the Stata package has a negative binomial (a different count data
distribution) regression routine, in which the variance is modeled as a quadratic
function of the mean.

The use of log time as an offset in model (8.5) may seem awkward. Why not just
divide each count by the observation period and analyze Yi=ti? The answer is that it
makes it harder to think about and specify the proper distribution. Instead of having
count data, for which there are a number of statistical distributions to choose from,
we would have a strange, hybrid distribution, with “fractional” counts, e.g., with an
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observation period of 0.8 of a year, we would could obtain values of 0, 1.25 (which
is 1 divided by 0.8), 2.5, 3.75, etc. With a different observation period, a different
set of values would be possible.

8.2 Example: Costs of Phototherapy

About 60% of newborns become jaundiced, i.e., the skin and whites of the eyes turn
yellow in the first few days after birth. Newborns become jaundiced because they
have an increase in bilirubin production due to increased red blood cell turnover and
because it takes a few days for their liver (which helps eliminate bilirubin) to mature.
Newborns are treated for jaundice because of the possibility of bilirubin-induced
neurological damage. What are the costs associated with this treatment and are costs
also associated with race, the gestational age of the baby, and the birthweight of
the baby?

Our outcome will be the total cost of health care for the baby during its first
month of life. Cost is a positive variable and is almost invariably highly skewed
to the right. A common remedy is to log transform the costs and then fit a multiple
regression model. This is often highly successful as log costs are often well-behaved
statistically, i.e., approximately normally distributed and homoscedastic. This is
adequate if the main goal is to test whether one or more risk factors are related
to cost.

However, if the goal is to understand the determinants of the actual cost of health
care, then it is only the mean cost that is of interest (since mean cost times the
number of newborns is the total cost to the health care system). One strategy is to
perform the analysis on the log scale and then back transform (using an exponential)
to get things back on the original cost scale.

However, since the log of the mean is not the same as the mean of the log, back-
transforming an analysis on the log scale does not directly give results interpretable
in terms of mean costs. Instead they are interpretable as models for median cost
(Goldberger 1968). The reasoning behind this is as follows. If the log costs are
approximately normally distributed, then the mean and median are the same. Since
monotonic transformations preserve medians (the log of the median value is the
median of the log values) back-transforming using exponentials gives a model for
median cost. There are methods for getting estimates of the mean via adjustments to
the back transformation (Bradu and Mundlak 1970) but there are also alternatives.

One alternative is to adopt the approach of the previous section: model the mean
and assume a reasonable distribution for the data. What choices would we need to
make for this situation?

A reasonable starting point is to observe that the mean cost must be positive.
Additive and linear models for positive quantities can cause the problem of
negative predicted values and hence multiplicative models incorporating propor-
tional changes are commonly used. For cost, this is often a more natural characteri-
zation, i.e., “low birthweight babies cost 50% more than normal birthweight babies”
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and is likely to be more stable than modeling absolute changes in cost (locations
with very different costs of care are unlikely to have the same differences in costs,
but may have the same ratio of costs). As in the previous section, that would lead to
a model for the log of the mean cost (similar to but not the same as log-transforming
cost).

8.2.1 Model for the Mean Response

More precisely, let us define Yi as the cost of health care for infant i during its first
month and let EŒYi � represent the average cost. Our model would then be

log EŒYi � D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3GAi C ˇ4BWi ; (8.9)

or equivalently (using an exponential)

EŒYi � D expfˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3GAi C ˇ4BWi g; (8.10)

where ˇ0 is an intercept, RACEi is 0 for whites and 1 for non-whites, TRTi is 1
for those receiving phototherapy and 0 for those who do not, GAi is the gestational
age of the baby, and BWi is its birthweight. We are primarily interested in ˇ2, the
phototherapy effect.

8.2.2 Choice of Distribution

The model for the mean for the jaundice example is virtually identical to that for the
depression example in Sect. 8.1.2. But the distributions need to be different since
cost is a continuous variable, while number of emergency room visits is discrete.
There is no easy way to know what distribution might be a good approximation
for such a situation, without having the data in hand. However, it is often the case
that the standard deviation in the data increases proportionally with the mean. This
situation can be diagnosed by looking at residual plots (as described in Chap. 4) or
by plotting the standard deviations calculated within subgroups of the data versus
the means for those subgroups. In such a case, a reasonable choice is the gamma
distribution, which is a flexible distribution for positive, continuous variables
that incorporates the assumption that the standard deviation is proportional to
the mean.

When we are willing to use a gamma distribution as a good approximation to the
distribution of the data, we can complete the specification of the model as follows.
We assume that Yi has a gamma distribution with mean, EŒYi �; given by

log EŒYi � D ˇ0 C ˇ1RACEi C ˇ2TRTi C ˇ3GAi C ˇ4BWi : (8.11)
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8.2.3 Interpreting the Parameters

Since the model is a model for the log of the mean, the parameters have the same
interpretation as in the previous section. For example, if Ǒ2 D 0:5 (positive since
phototherapy increases costs) then the interpretation would be that, adjusting for
race, gestational age, and birthweight, the cost associated with babies receiving
phototherapy was exp.0:5/ � 1:65 as high as those not receiving it.

8.3 Generalized Linear Models

The examples in Sects. 8.1 and 8.2 have been constructed to emphasize the similarity
of the models (compare Subsects. 8.1.4 and 8.2.3) for two very different situations.
So even with very different distributions (Poisson versus gamma) and different
statistical analyses, they have much in common.

A number of statistical packages, including Stata, have what are called gener-
alized linear model commands that are capable of fitting linear, logistic, Poisson
regression and other models. The basic idea is to let the data analyst tailor the
analysis to the data rather than having to transform or otherwise manipulate
the data to fit an analysis. This has significant advantages in situations like
the phototherapy cost example where we want to model the outcome without
transformation.

Fitting a GLM involves making a number of decisions:

(1) What is the distribution of the data (for a fixed pattern of covariates)?
(2) What function will be used to link the mean of the data to the predictors?
(3) Which predictors should be included in the model?

In the examples in the preceding sections we used Poisson and gamma distribu-
tions, we used a log function of the mean to give us a linear model in the predictors
and our choice of predictors was motivated by the subject matter. Note that choices
on the predictor side of the equation are largely independent of the first two choices.

In previous chapters, we have covered linear and logistic regression. In linear
regression, we modeled the mean directly and assumed a normal distribution.
This is using an identity link function, i.e., we modeled the mean identically,
without transforming it. In logistic regression, we modeled the log of the odds, i.e.,
log.p=Œ1�p�/, and assumed a binomial or binary outcome. If the outcome is coded
as zero for failure and one for success, then the average of the zeros and ones is p,
the probability of success. In that case, we used a logit link to link the mean, p, to
the predictors.

Generalized linear model commands give large degrees of flexibility in the choice
of each of the features of the model. For example, current capabilities in Stata are
to handle six distributions (normal, binomial, Poisson, gamma, negative binomial,
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Table 8.1 Count regression example assuming a Poisson distribution

glm shared_syr i.homeless, family(poisson) link(log) eform

Generalized linear models No. of obs = 121
Optimization : ML Residual df = 119

Scale parameter = 1
Deviance = 1511.02467 (1/df) Deviance = 12.69769
Pearson = 3586.309617 (1/df) Pearson = 30.13706

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 13.33909
Log likelihood = -805.0147598 BIC = 940.3256

----------------------------------------------------------------------------
| OIM

shared_syr | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

1.homeless | 3.270615 .3985062 9.73 0.000 2.575819 4.152825
----------------------------------------------------------------------------

and inverse gaussian), and ten link functions (including identity, log, logit, probit,
power functions).

8.3.1 Example: Risky Drug Use Behavior

Here is an example of modeling risky drug use behavior (sharing syringes) among
drug users. The outcome is the number of times the drug user shared a syringe
(shared syr) in the past month (values ranged from 0 to 60!) and we will consider
a single predictor, whether or not the drug user was homeless. Table 8.1 gives
the results assuming a Poisson distribution. The Stata command, glm, specifies
a Poisson distribution and a log link and we have specified the option eform,
which automatically exponentiates the coefficients. The output contains a number
of standard elements, including estimated coefficients, standard errors, Z-tests,
P -values, and CIs. The homeless coefficient is highly statistically significant, with
a value of about 3.27, meaning that being homeless is associated with over three
times more use of shared syringes than nonhomeless.

However, these data are highly variable and the Poisson assumption of equal
mean and variance is dubious. If we specify the vce(robust) a robust variance
estimate will be used in the calculation of the standard errors. Just as described
in Chap. 7, the robust variance estimate gives valid standard errors even when the
assumed form of the variance is incorrect, in this case that the variance is equal to
the mean.

Table 8.2 gives the result with the robust standard errors, which is not quite
statistically significant. Standard errors have increased approximately fivefold using
the vce(robust) option, so the assumption of a Poisson distribution is far from
correct. In the terminology of generalized linear models, these data are highly
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Table 8.2 Count regression example with scaled standard errors

. glm shared_syr i.homeless, family(poisson) link(log) eform vce(robust)

Generalized linear models No. of obs = 121
Optimization : ML Residual df = 119

Scale parameter = 1
Deviance = 1511.02467 (1/df) Deviance = 12.69769
Pearson = 3586.309617 (1/df) Pearson = 30.13706

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = 13.33909
Log pseudolikelihood = -805.0147598 BIC = 940.3256

----------------------------------------------------------------------------
| Robust

shared_syr | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

1.homeless | 3.270615 2.005987 1.93 0.053 .9830072 10.88184
----------------------------------------------------------------------------

overdispersed, because the variance is much larger than that assumed for a Poisson
distribution.

This example serves as a warning not to make strong assumptions, such as those
embodied in using a Poisson distribution, blindly. It is wise at least to make a
sensitivity check by using the robust variance estimator for count data as well as for
binomial data with denominators other than 1 (with binary data, with a denominator
of 1, no overdispersion is possible). Also, when there are just a few covariate
patterns and subjects can be grouped according to their covariate values, it is wise to
plot the variance within such groups versus the mean within the group to display the
variance to mean relationship graphically. The mean values for the shared syr
variable are 4.7 and 1.4 for the homeless and nonhomeless groups, respectively,
with corresponding standard deviations of 13.7 and 5.5. So the standard deviations
are roughly three times the mean, as reflected by the robust standard errors being
much larger in Table 8.2 compared to Table 8.1.

An alternative distribution for count data that allows more variability than the
Poisson is the negative binomial distribution. Table 8.3 shows the negative binomial
distribution fit. The estimated effect of being homeless is the same as the Poisson fit
and the standard errors, p-value and CI are all similar to those in Table 8.2, which
uses a robust standard error.

8.3.2 Modeling Data with Many Zeros

When analyzing count or numerical outcome data, it is not unusual to discover
a large percentage of the data being zero. For example, in a study following the
members of a health plan for use of emergency room visits, the vast majority would
be zero, with the nonzero outcomes taking on integer values. If we change the
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Table 8.3 Count regression using a negative binomial distribution

. glm shared_syr i.homeless, family(nbinomial ml) ef

Generalized linear models No. of obs = 121
Optimization : ML Residual df = 119

Scale parameter = 1
Deviance = 58.10151246 (1/df) Deviance = .488248
Pearson = 94.44640018 (1/df) Pearson = .7936672

Variance function: V(u) = u+(14.1206)uˆ2 [Neg. Binomial]
Link function : g(u) = ln(u) [Log]

AIC = 2.591876
Log likelihood = -154.8084869 BIC = -512.5976

----------------------------------------------------------------------------
| OIM

shared_syr | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

1.homeless | 3.270616 2.270502 1.71 0.088 .8389088 12.751
----------------------------------------------------------------------------
Note: Negative binomial parameter estimated via ML and treated as fixed once
estimated.

outcome to hospitalization costs, again the vast majority would be zero, but the
nonzero values would likely be positive and skewed right. For the syringe sharing
data, 78% of the outcomes are zero. How can these be handled in practice? As noted
in Sect. 8.1.1, a transformation of the outcome will not help.

A simple strategy is to build separate models for the zeros and the nonzero values.
These are sometimes called conditional, two-part or “hurdle” models, the latter
name arising because, after the outcomes “hurdle” the value of zero, a different
model is used. For the analysis of hospitalization costs, we could use a logistic
regression for the probability of the cost being zero. And for the nonzero costs,
we could fit a GLM assuming a gamma distribution or we could log transform the
outcome to try to make it approximately normally distributed. The same predictors
can be in both models or we can model each outcome with its own collection of
predictors.

For the syringe sharing data, we could use a logistic regression to model the
chance of sharing zero syringes with the predictor of being homeless. But what
model could we use for the nonzero data? It does not fit any usual count data model,
because there are no zeros allowed. Fortunately, Stata can accommodate either a
Poisson or negative binomial distribution which has been truncated to only allow
nonzero values through its ztp (zero-truncated Poisson) or ztnb (zero-truncated
negative binomial) regression commands.

Table 8.4 shows the two fits, first modeling the probability of no syringe sharing
with the predictor of being homeless and a logistic regression and then the number
of times syringes are shared, using a zero-truncated negative binomial distribution.
Because the fits provide two tests of the homeless effect based on the same data, we
could use a Bonferroni correction (see Sect. 4.3.4) and test each at a significance
level of 0.025 instead of 0.05; correspondingly, we have used the level option
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Table 8.4 Fitting a two-part model to the syringe sharing data

. gen share0=(shared_syr==0)

. logistic share0 i.homeless, level(97.5)

Logistic regression Number of obs = 124
LR chi2(1) = 3.19
Prob > chi2 = 0.0740

Log likelihood = -67.012808 Pseudo R2 = 0.0233

----------------------------------------------------------------------------
share0 | Odds Ratio Std. Err. z P>|z| [97.5% Conf. Interval]

-------------+--------------------------------------------------------------
1.homeless | .4676114 .2019848 -1.76 0.078 .1775875 1.231283

----------------------------------------------------------------------------

. ztnb shared_syr i.homeless if shared_syr>0, irr level(97.5)

Zero-truncated negative binomial regression Number of obs = 27
LR chi2(1) = 1.02

Dispersion = mean Prob > chi2 = 0.3133
Log likelihood = -91.29219 Pseudo R2 = 0.0055

----------------------------------------------------------------------------
shared_syr | IRR Std. Err. z P>|z| [97.5% Conf. Interval]

-------------+--------------------------------------------------------------
1.homeless | 2.122108 1.501492 1.06 0.288 .4345308 10.36369

-------------+--------------------------------------------------------------
/lnalpha | 1.584369 1.081463 -.8396253 4.008363

-------------+--------------------------------------------------------------
alpha | 4.876212 5.273443 .4318723 55.05666

----------------------------------------------------------------------------
Likelihood-ratio test of alpha=0: chibar2(01)= 413.32 Prob>=chibar2 = 0.000

to set the CIs to have 97.5% confidence. The logistic model estimates the odds
ratio of not sharing a needle. Perhaps easier to interpret, the homeless have odds
of sharing a needle which are a little over two times higher than the nonhomeless
(2.1385D 1/.4676). The zero-truncated regression estimate indicates that, among
those that do share needles, the homeless share syringes at a rate a little over two
times more often than the nonhomeless. Because of the Bonferroni correction, each
of the tests would require a p-value of 0.025 to be declared statistically significant
and neither is.

These two-part or zero-inflated (below) modeling approaches are especially
attractive in situations where different predictors might influence the two parts of
the model. For example, what determines whether or not someone is willing to
share needles may be quite different from what determines how frequently they
share needles when they do.

Another approach to modeling count data with many zeros is to use what
are called zero-inflated models. Rather than breaking the data into two parts,
a zero-inflated approach uses an underlying model in which two processes are
operating: first a process that generates the zeros (like the logistic regression above)
and then a count data model, such as the Poisson. This is slightly different from
the two-part model since a zero in the data could have arisen either from the zero-
generation process or from the count data process, which just happens to generate
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Table 8.5 Fitting a zero-inflated negative binomial model to the syringe sharing data

. zinb shared_syr i.homeless, inflate(i.homeless) irr level(97.5)

Zero-inflated negative binomial regression Number of obs = 121
Nonzero obs = 27
Zero obs = 94

Inflation model = logit LR chi2(1) = 1.02
Log likelihood = -154.112 Prob > chi2 = 0.3133

----------------------------------------------------------------------------
shared_syr | IRR Std. Err. z P>|z| [97.5% Conf. Interval]

-------------+--------------------------------------------------------------
shared_syr |

1.homeless | 2.122107 1.501493 1.06 0.288 .4345298 10.3637
-------------+--------------------------------------------------------------
inflate |

1.homeless | -.7708614 .7434234 -1.04 0.300 -2.437173 .8954498
_cons | .6342794 1.161001 0.55 0.585 -1.967991 3.236549

-------------+--------------------------------------------------------------
/lnalpha | 1.584377 1.08147 1.47 0.143 -.8396342 4.008387

-------------+--------------------------------------------------------------
alpha | 4.87625 5.27352 .4318685 55.05801

----------------------------------------------------------------------------

a zero. These models are more natural for some situations. For example, consider
modeling the number of open nurse anesthetist positions per hospital, similar to
the study of Merwin et al. (2009), with predictors being the log of the number of
surgeries, log of the average daily number of patients, log of the number of operating
rooms and the state in which it is located. The number of open positions could be
zero because the hospital does not hire nurse anesthetists or because they do, but
they have no open positions. Zero-inflated models can be used in situations in which
we can justify the underlying two processes or in situations in which we merely need
to accommodate the large percentage of zero outcome values.

Table 8.5 shows the results from fitting a zero-inflated negative binomial model,
where the inflate option gives the predictors for the underlying process that
generates the zeros and again we have set the level to 97.5% to accommodate the
two tests. The estimates and interpretations are very similar to the two-part fit above,
with the effect of being homeless on the count data model being identical and the
effect of being homeless on the zero model being very similar. Table 8.5 reports the
log odds of not sharing a syringe as �0:7708, which corresponds to an odds ratio of
expf�0:7708g D 0:4626, similar to Table 8.4.

8.3.3 Example: A Randomized Trial to Reduce Risk
of Fracture

Osteoporosis (roughly porous bone, from the Greek) is a condition in which bones
become weak and brittle and readily susceptible to fracture. It primarily affects
postmenopausal women and can lead to chronic pain, skeletal deformities, and
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Table 8.6 Fracture risk by fall risk and treatment group

glm numnosp ibn.trt_fall, family(poisson) offset(logyears) vce(robust) noconstant ef

Generalized linear models No. of obs = 6369

Optimization : ML Residual df = 6365

Scale parameter = 1

Deviance = 4116.885884 (1/df) Deviance = .6468006

Pearson = 8002.406864 (1/df) Pearson = 1.257252

Variance function: V(u) = u [Poisson]

Link function : g(u) = ln(u) [Log]

AIC = .9180298

Log pseudolikelihood = -2919.465795 BIC = -51635.41

----------------------------------------------------------------------------

| Robust

numnosp | IRR Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------

trt_fall |

1 | .041815 .0022419 -59.21 0.000 .0376439 .0464482

2 | .0340865 .0020225 -56.95 0.000 .0303444 .0382902

3 | .0509974 .0056819 -26.71 0.000 .0409931 .0634431

4 | .0521462 .0055934 -27.54 0.000 .042259 .0643466

logyears | (offset)

----------------------------------------------------------------------------

increased risk of death. The Fracture Intervention Trial (Black et al. 1996a) was
a randomized controlled trial among postmenopausal women that showed that
alendronate (a drug that increases bone density) was able to reduce the risk of
fracture.

Falling is a major cause of fractures, but would alendronate prevent fractures
from an event as traumatic as a fall? To answer this, women at high risk of
falling were identified by poor performance on the “Timed Up and Go” test, which
measures how long it takes to stand up from an armchair, walk 3 m, return and sit
down, and has been shown to be a predictor of the risk of falling. The effect of
alendronate on the number of nonspine fractures (numnosp) was then estimated
separately for the high and low risk of falling groups.

Women were not followed for the same amount of time, so we use an offset of log
of years in the trial (logyears). To get estimated rates for each of the groups, we
created a four level, categorical variable (trt fall) with values 1–4 representing,
respectively, the low risk/placebo, low risk/alendronate, high risk/placebo, and high
risk/alendronate groups. We use the ibn. prefix for the trt fall variable (so
there is no omitted baseline reference group) and noconstant options to force
Stata to include all four groups and to not fit a constant term.

We fit the model using the glm command, specifying a Poisson distribution,
using robust standard errors (in case of overdispersion), and reporting the results
with the eform option to directly display the yearly fracture rates. The output is
displayed in Table 8.6.
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In the low risk of falling groups, the yearly rates of fracture are much less (0.042
for the placebo group and 0.034 for the alendronate groups). These correspond to
about 4.2 and 3.4 fractures per 100 women over a year. In the high risk of falling
groups, the rates are higher and about the same as one another (about 5.1 and 5.2
fractures per 100 woman years). We wish to compare the risk difference between
the treated and untreated groups over the average followup time of 3.8 years. This
is of interest because, unlike a relative risk or odds ratio, it is easily related to the
number of fractures prevented by treatment.

To make the formal comparison, we fit a model with effects for treatment (trt),
fall risk category (fall risk), and their interaction. The margins command can
be conveniently used with the @ operator to compare the treatment groups within the
fall risk categories. The results are given in Table 8.7.

The results show that, over a period of 3.8 years, the risk associated with being
treated by alendronate in the low fall risk group is about 0.029 less than the untreated
group. In other words, in the low fall risk group, treatment with alendronate prevents
about 2.9 fractures per 100 women over a 3.8-year treatment period. However, in
the high risk group, the difference between alendronate and the placebo group is
not statistically significant and has a small estimated effect (the drug is estimated
to increase the number of fractures per 100 women over 3.8 years by about 0.4
fractures). Because the high risk group is smaller, the confidence interval is wide,
and so we cannot rule out clinically important differences.

The analysis above is appropriate if the focus is, a priori, on estimating the
treatment effects separately in the low and high risk of falling groups. In this case,
the results also suggest that there is a difference in the treatment effect in the two
groups. However, if the goal is to directly compare the treatment effects in the low
and high risk groups, a better approach is to test for the interaction between risk
of falling and treatment (see the third point in Sect. 4.6). The test of interaction
with this data in Table 8.7 does not provide strong evidence for a difference in
treatment effects, with a p-value of 0.19. This is a caution not to interpret statistical
significance of an effect in one group and lack of statistical significance in another
group as evidence for a difference in the effects in the two groups. This is especially
true with unequal sample sizes, such as in this example.

8.3.4 Relationship of Mean to Variance

The key to use of a GLM program is the specification of the relationship of the mean
to the variance. This is the main information used by the program to fit a model to
data when a distribution is specified. As noted above, this relationship can often be
assessed by residual plots or plots of subgroup standard deviations versus means.
Table 8.8 gives the assumed variance to mean relationship, distributional name, and
situations in which the common choices available in Stata would be used.



324 8 Generalized Linear Models

Table 8.7 Fracture risk treatment comparisons within fall risk categories

glm numnosp i.trt##i.fall_risk, family(poisson) offset(logyears)
vce(robust) ef

Generalized linear models No. of obs = 6369
Optimization : ML Residual df = 6365

Scale parameter = 1
Deviance = 4116.885884 (1/df) Deviance = .6468006
Pearson = 8002.406864 (1/df) Pearson = 1.257252

Variance function: V(u) = u [Poisson]
Link function : g(u) = ln(u) [Log]

AIC = .9180298
Log pseudolikelihood = -2919.465795 BIC = -51635.41
----------------------------------------------------------------------------

| Robust
numnosp | IRR Std. Err. z P>|z| [95% Conf. Interval]

--------------+-------------------------------------------------------------
1.trt | .8151755 .0651883 -2.56 0.011 .6969183 .9534993

1.fall_risk | 1.219596 .1507959 1.61 0.108 .9571279 1.55404
|

trt#fall_risk |
1 1 | 1.254364 .2183953 1.30 0.193 .8917067 1.764513

|
_cons | .041815 .0022419 -59.21 0.000 .0376439 .0464482

logyears | 1 (offset)
----------------------------------------------------------------------------

. margins r.trt@fall_risk

Contrasts of adjusted predictions
Model VCE : Robust

Expression : Predicted mean numnosp, predict()
-------------------------------------------------

| df chi2 P>chi2
--------------+----------------------------------
trt@fall_risk |

(1 vs 0) 0 | 1 6.55 0.0105
(1 vs 0) 1 | 1 0.02 0.8854

Joint | 2 6.57 0.0374
-------------------------------------------------

---------------------------------------------------------------
| Delta-method
| Contrast Std. Err. [95% Conf. Interval]

--------------+------------------------------------------------
trt@fall_risk |

(1 vs 0) 0 | -.0293294 .0114584 -.0517874 -.0068713
(1 vs 0) 1 | .0043597 .0302577 -.0549444 .0636637

---------------------------------------------------------------

8.3.5 Non-Linear Models

Not every model fits under the GLM umbrella. Use of the method depends on
finding a transformation of the mean for which the predictors enter as a linear
model, which may not always be possible. For example, in drug pharmacokinetics,
a common model for the mean concentration of a drug in blood, Y , as a function of
time, t , is:
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Table 8.8 Common distributional choices for generalized linear models in Stata

Distribution Variance to meana Sample situation

Normal Constant �2 Linear regression
Binomial �2 D n
.1� 
/ Successes out of n trials
ODb Binomial �2 / n
.1� 
/ Clustered success data
Poisson �2 D 
 Count data, variance equals mean
OD Poisson �2 / 
 Count data, variance proportional to mean
Negative binomial �2 D 
C 
2=k Count data, variance quadratic in the mean
Gamma � / 
 Continuous data, standard deviation proportional to mean
aMean is denoted by 
 and the variance by �2.
bOver-dispersed.

EŒY � D 
1 expf�	1tg C 
2 expf�	2tg: (8.12)

In addition to time, we might have other predictors such as drug dosage or gender
of the subject. However, there is no transformation that will form a linear predictor,
even without the inclusion of dose and gender effects, and so a generalized linear
model is not possible. As a consequence, more care must be taken in deciding how
to incorporate the effects of predictor variables and building regression models is
thus more complicated for nonlinear models. Software for fitting nonlinear models
is relatively common for approximately normally distributed outcomes (such as nl
in Stata) but less so for nonnormally distributed outcomes.

8.4 Sample Size for the Poisson Model

Section 5.7 provides formulas for calculating sample size, power, and minimum
detectable effects for the logistic model. Similar results hold for the Poisson model.
To compute the sample size that will provide power of � in two-sided tests with
type-1 error of ˛ to reject the null hypothesis ˇj D 0 for the effect of a predictor
Xj , accounting for the loss of precision arising from multiple predictors, we can use

n D .z1�˛=2 C z� /2�

.ˇaj �j /
2


�
1 � �2j

� ; (8.13)

where ˇaj is the hypothesized value of ˇj under the alternative, z1�˛=2 and z� are the
quantiles of the standard normal distribution corresponding to the specified type-1
error and power, �j is the multiple correlation of Xj with the other covariates, 
 is
the marginal mean of the count outcome, and � is the scale parameter introduced
in Sect. 8.3.1, defined as the ratio of variance of the outcome to 
. When Xj is
binary with prevalence fj , �xj D

p
fj .1 � fj /. For problems with predetermined

n, power is given by
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� D 1 � ˚
"

z1�˛=2 � ˇaj sxj
r

n

�
1 � �2j

�
=�

#

: (8.14)

Finally, the minimum detectable effect (on the log-mean scale) is

˙ ˇaj D
z1�˛=2 C z�

sxj

q
n
.1 � �2j /=�

: (8.15)

Some additional points:

• Sample size (8.13) and minimum detectable effect (8.15) calculations simplify
considerably when we specify ˛ D 0:05 and � D 0:8, ˇaj is the effect of a one
standard deviation increase in continuous xj , and we do not need to penalize for
covariate adjustment. However, we do assume that over-dispersion may still need
to be taken into account, via the parameter � . In that case,

n D 7:849

.ˇaj /
2
=�

: (8.16)

For the minimum detectable effect, we have

˙ ˇaj D
2:802

p
n
=�/

: (8.17)

For 90% power, substitute 10.51 for 7.849 and 3.242 for 2.802.
• Similarly, for a two-arm clinical trial with equal allocation to arms, so that ˇaj is

the log rate ratio for treatment, and s2xj D 0:25, we can calculate

n D 4 � 7:849
.ˇaj /

2
=�
: (8.18)

For the minimum detectable effect, we have

˙ ˇaj D
2 � 2:802
p
n
=�

: (8.19)

• Power calculations using (5.17) simplify analogously, but still require a statistical
calculator or computer package to evaluate the normal cumulative distribution
function ˚.�/.

• To our knowledge, these computations are not implemented in any statistical
packages. However, (8.13)–(8.15) can easily be programmed in Stata, R, or
Excel, or evaluated by hand if values of z1�˛=2, z� , and ˚.�/ are available.

• As in calculations for other models, we need to use jˇaj j in (8.13) and (8.14) if
ˇaj < 0.
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Table 8.9 Sample size calculations for trial of behavioral intervention

. display (invnormal(.975) + invnormal(.9))ˆ2 * 30 / ((log(0.5) * 0.5)ˆ2 * 7.5)
349.91719

• The severe overdispersion evident in the example in Sect. 8.3.1 underlines the
importance of obtaining a good estimate of � , the scale parameter capturing
overdispersion in (8.13)–(8.15). Note that n / � .

• The use of the variance inflation factor to account for covariate adjustment carries
over to GLMs. However, there is no analog to the reduction in residual variance,
so that the adjustment based on the variance inflation factor is less likely to be
conservative for these models.

• SE. Ǒj / is a large-sample approximation, and more exact small-sample computa-
tions using the t-distribution do not carry over from the linear model. Simulations
of power may be a more reliable guide in those circumstances.

• Equations (8.13)–(8.15) are based on the assumption that the conditional mean of
the outcome does not vary strongly across observations; methods based on more
complicated calculations or simulation avoid this simplification and perform
slightly better in some circumstances (Vittinghoff et al. 2009). However, errors
from these sources are usually small compared to errors arising from uncertainty
about the required inputs.

• The alternative calculations (4.22)–(4.24) presented in Sect. 4.8, which use an
estimate QSE. Ǒj / based on published results for an appropriately adjusted model
using Qn observations, carry over directly. However, care must be taken to obtain
the SE of the regression coefficient ˇj , not the SE of the rate-ratio eˇj . This

can computed from a 95% CI for the rate-ratio as QSE. Ǒj / D log.UL=LL/=3:92,
where UL and LL are the upper and lower bounds. We must also ensure that ˇaj
is based on the same predictor scale as in the published results.

To illustrate these calculations, suppose we are planning a randomized trial to
assess the effectiveness of a behavioral intervention for reducing syringe sharing
among drug users. Equal numbers will be allocated to the active intervention and a
wait-list control, so that fj D 0:5 and sxj D

p
0:5.1 � 0:5/ D 0:5. Because the

trial is randomized, we can assume that �j D 0. Using the data shown in Tables 8.1
and 8.2, we estimate that among the wait-list controls, 
 D 10, and � D 30. We
hypothesize that the intervention will reduce the frequency of sharing by 50%, so
that overall, 
 D 7:5 and ˇaj D log 0:5. In this case, we require power of 90% in a
two-sided test with ˛ of 5%.

Table 8.9 shows the sample size estimate of 350. This estimate has been inflated
by a factor of � D 30 to account for overdispersion of the outcome. Clearly a
naı̈ve estimate assuming equality of the mean and variance would result in a badly
underpowered trial.
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8.5 Summary

The purpose of this chapter has been to outline the topic of GLMs, a class of
models capable of handling a wide variety of analysis situations. Specification of
the generalized linear model involves making three choices:

(1) What is the distribution of the data (for a fixed pattern of covariates)? This must
be specified at least up to the variance to mean relationship.

(2) What function will be used to link the mean of the data to the predictors?
(3) Which predictors should be included in the model?

Generalized linear models are similar to linear, logistic, and Cox models in that
much of the work in specifying and assessing the predictor side of the equation is the
same no matter what distribution or link function is chosen. This can be especially
helpful when analyzing a study with a variety of different outcomes, but similar
questions as to what determines those outcomes. For example, in the depression
example we might also be interested in cost, with a virtually identical model and set
of predictors.

8.6 Further Notes and References

There are a number of book-length treatments of generalized linear models, includ-
ing Dobson (2001) and McCullagh and Nelder (1989). In Chap. 7, we extended the
logistic model to accommodate correlated data by the use of generalized estimating
equations and by including random effects. The GLMs described in this chapter can
similarly be extended and fit using the xtgee command in Stata and GENMOD
procedure in SAS, which can be used with a variety of distributions. Random
effects models can be estimated for a number distributions using the cross-sectional
time-series commands in Stata (these commands are prefixed by xt) and with the
NLMIXED procedure in SAS.

There are a number of approaches to modeling data with many zeros;
Lachenbruch (2002) provides an accessible survey. He also considers the issue
of power compared to simpler analyses. For example, in the simple two-group
comparison of Sect. 8.3.1, we could use a nonparametric test like the Wilcoxon rank
sum test. He shows that using two part or zero-inflated models, which explicitly
model zeros, will often have higher power than simpler approaches that merely
accommodate an outcome distribution with many zeros.
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8.7 Problems

Problem 8.1. We made the point in Sect. 8.1.1 that a log transformation would not
alleviate nonnormality. Yet we model the log of the mean response. Let us consider
the differences.

(1) First consider the small data set consisting of 0, 1, 0, 3, 1. What is the mean?
What is the log of the mean? What is the mean of the logs of each data point?

(2) Even if there are no zeros, these two operations are quite different. Consider the
small data set consisting of 2, 3, 32, 7, 11. What is the log of the mean? What
is the mean of the logs of the data? Why are they different?

(3) Repeat the above calculation, but using medians.

Problem 8.2. What would you need to add to model (8.5) to assess whether the
effect of the treatment was different in whites as compared to non-whites?

Problem 8.3. Suppose the coefficient for Ǒ2 in (8.6) was �0:2. Provide an inter-
pretation of the treatment effect.

Problem 8.4. For each of the following scenarios, describe the distribution of the
outcome variable (Is it discrete or approximately continuous? Is it symmetric or
skewed? Is it count data?) and which distribution(s) might be a logical choice for a
GLM.

(1) A treatment program is tested for reducing drug use among the homeless. The
outcome is injection drug use frequency in the past 90 days. The values range
from 0 to 900 with an average of 120, a median of 90, and a standard deviation
of 120. Predictors include treatment program, race (white/non-white), and sex.

(2) In a study of detection of abnormal heart sounds the values of brain natriuretic
peptide (BNP) in the plasma are measured. The outcome, BNP, is sometimes
used as a means of identifying patients who are likely to have signs and
symptoms of heart failure. The BNP values ranged from 5 to 4,000 with an
average of 450, a median of 150, and a standard deviation of 900. Predictors
include whether an abnormal heart sound is heard, race (white/non-white), and
sex.

(3) A clinical trial was conducted at four clinical centers to see if alendronate
(a bone-strengthening medication) could prevent vertebral fractures in elderly
women. The outcome is total number of vertebral fractures over the follow-up
period (intended to be 5 years for each woman). Predictors include drug versus
placebo, clinical center, and whether the woman had a previous fracture when
enrolled in the study.

Problem 8.5. For each of the scenarios outlined in Problem 8.4, write down a
preliminary model by specifying the assumed distribution, the link function, and
how the predictors are assumed to be related to the mean.
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8.8 Learning Objectives

(1) State the advantage of using a GLMs approach.
(2) Given an example, make reasonable choices for distributions, and link

functions.
(3) Given output from a GLMs routine, state whether predictors are statistically

significant and provide an interpretation of their estimated coefficients.



Chapter 9
Strengthening Causal Inference

In Chaps. 4–8, we showed how multi-predictor regression can be used to control for
confounding in observational data, with the purpose of estimating the independent
association of an exposure with an outcome. The cautious language of associations
notwithstanding, the underlying purpose is often to quantify causal relationships. In
this chapter, we explain what is meant by the average causal effect of an exposure,
and discuss the conditions under which regression might be able to estimate it.
We also show the extra steps that are needed to estimate marginal effects, which
sometimes differ from the conditional effects that regression models estimate by
default.

We then present alternatives to regression that can be used when conditions for
its successful use are not met. These include propensity scores, a robust alternative
that is particularly useful when a binary or categorical exposure is common, but the
binary or failure time outcome is not, and there are many confounders of exposure
that must be accounted for. These scores are commonly estimated using ancillary
logistic models for exposure, then incorporated in the analysis of the effect of the
exposure on the outcome by means of stratification, regression adjustment, inverse
weighting, or matching.

Regression adjustment can also fail when both the exposure and confounder
are time-dependent, the confounder affects exposure and outcome, and exposure
affects subsequent levels of the confounder. Cox and repeated measures models
accommodate time-dependent exposures and confounders, but in this context cannot
be used to estimate the overall effect of exposure. We focus on models using inverse
probability weights, and briefly describe nested new-user cohorts and G-estimation.

In estimating causal effects from observational data, we usually need to assume
that there are no unmeasured confounders—a condition that is difficult to meet and
impossible to verify. One exception is analysis using instrumental variables. How-
ever, it does require other unverifiable assumptions. We also briefly discuss an
extension of instrumental variables to clinical trials with poor adherence, and show
its connection to another approach known as principal stratification. Finally, we
point to newer developments in Sect. 9.10.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 9,
© Springer Science+Business Media, LLC 2004, 2012
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9.1 Potential Outcomes and Causal Effects

Consider the causal effect of exercise on glucose levels among post-menopausal
women, first discussed in Chap. 4. Imagine that we could observe glucose levels for
every member of this population under two conditions, with and without exercise.
In reality, of course, one of the two outcomes would be an unobservable potential
outcome or counterfactual. Nonetheless, an intuitively appealing definition of the
causal effect of exercise on glucose levels is the difference between the actual and
potential outcomes. Table 9.1 shows what this potential outcomes framework might
look like.

In Table 9.1, Y.1/ and Y.0/ represent glucose levels with (E D 1) and without
(E D 0) exercise, while the differences Y.1/ � Y.0/ are interpretable as the causal
effects of exercise on glucose levels for each woman.

9.1.1 Average Causal Effects

Potential outcomes are also central to the definition of the average causal effect
(ACE) of the exposure. At the individual level, the causal effect of exposure is
the difference between the potential outcomes with and without exposure. At the
population level, the average causal effect is the mean of these differences. For the
moment, think of the ten women in Table 9.1 as the entire population. The average
causal effect of exercise, defined as the mean of the differences Y.1/ � Y.0/, is to
lower glucose levels by 2 mg/dL.

9.1.1.1 Average Causal Effect as a Difference in Marginal Means

We can also calculate the average causal effect as the difference between the
so-called marginal means of the potential outcomes with and without exposure.
In Table 9.1, we would calculate EŒY.1/� � EŒY.0/� D 96 � 98 D �2. This will

Table 9.1 Potential
outcomes of exercise

Person Y.1/ Y.0/ Y.1/� Y.0/

1 97 99 �2
2 98 99 �1
3 99 102 �3
4 100 105 �5
5 96 95 1
6 95 98 �3
7 93 95 �2
8 94 95 �1
9 96 93 3
10 92 99 �7
Mean 96 98 �2
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be important in trying to estimate the average causal effect from observed data
including actual but not potential outcomes, and also when we consider some
other causal effect measures of interest, including the causal odds-ratio, which
are defined in terms of the marginal means EŒY.1/� and EŒY.0/�. In contrast to
EŒY.1/��EŒY.0/� D EŒY.1/�Y.0/�, some other causal measures cannot be defined
as the mean of individual effects.

9.1.2 Marginal Structural Model

In our thought experiment, we can write a marginal structural model for the
potential outcomes as

EŒY.E/� D ˇ�
0 C ˇ�

1 E ; (9.1)

where EŒY.E/� is the expected value of the potential outcome, ˇ�
0 D EŒY.0/� is the

marginal mean when E D 0, and ˇ�
1 D EŒY.1/� � EŒY.0/� is the average causal

effect of E . The marginal structural model resembles other linear models discussed
in this book, beginning with (4.2). But in contrast to those models, it is a model for
potential, not just observed outcomes. Accordingly, it can be unadjusted—exposure
is unconfounded because we see both potential outcomes for each individual. The
focus of this chapter is on obtaining valid estimates of the causal effect parameter
ˇ�
1 using observed data.

9.1.3 Fundamental Problem of Causal Inference

In the complete data shown in Table 9.1, including potential as well as actual
outcomes, EŒY.0/�D 98 and EŒY.1/�D 96, so ˇ�

1 D � 2. But in reality, of course,
each person contributes an actual but not a potential outcome. The missing potential
outcomes are sometimes called the fundamental problem of causal inference
(Holland 1986). Many causal effects of interest are defined in terms of the marginal
means, but these means are difficult to estimate from observed data on actual
outcomes only.

The problem arises because of what can be seen as selection bias. Suppose that
a confounder C affects the outcome and also influences E , which in turn determines
which potential outcome is observed. In our example, the causal direct effect of C,
as defined in Sect. 4.5, is to lower glucose levels by 4 mg/dL; in addition, 60% of
women with C D 1 exercise, as compared to 40% of those with C D 0.

C can be ignored in Table 9.1 and the marginal structural model (9.1) because
each member of the population contributes an outcome when they do exercise
(E D 1) as well as when they do not (E D 0). But this does not hold in Table 9.2,
which shows the observed outcomes. The potential outcomes are missing, so we
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Table 9.2 Observed
outcomes

Person E Y.1/ Y.0/

C D 0 1 0 – 99
2 0 – 99
3 0 – 102
4 1 100 –
5 1 96 –
Mean 98 100

C D 1 6 1 95 –
7 1 93 –
8 1 94 –
9 0 – 93
10 0 – 99
Mean 94 96

Overall mean 95.6 98.4

cannot calculate the individual causal effects and average them. Nor can we compare
the overall means of 95.6 and 98.4 in the exercise and no exercise groups, which
differ substantially from the true marginal means of 96 and 98, as shown in
Table 9.1. The difference in means is 95:6 � 98:4 D �2:8mg/dL, 40% larger than
ˇ�
1 , the average causal effect of exercise.

9.1.4 Randomization Assumption

We have just seen that bias arises because C affects E as well as Y , and thus which
potential outcome we observe. This is a violation of the so-called randomization
assumption. Technically, this assumption requires E to be independent of both
potential outcomes, Y.1/ and Y.0/. In the glucose example, randomization would
imply that exercising (or not) is independent of what glucose levels would be under
either condition. The randomization assumption is generally met in randomized
experiments, since in that setting, exposure is randomly assigned. The exposure
we observe for each individual is not affected by confounders that influence the
potential outcomes Y.1/ and Y.0/. When the randomization assumption holds,
as in a successfully conducted randomized trial, the marginal means EŒY.1/� and
EŒY.0/� can be identified or estimated using the sample means of observations with
E D 1 and E D 0, respectively, thus providing an estimate of the causal effect
ˇ�
1 . Estimation of the marginal causal effect without having to make any modeling

assumptions helps explain why experiments, including randomized clinical trials,
are the gold standard for estimating marginal causal effects.

9.1.5 Conditional Independence

In contrast, the randomization assumption will rarely if ever hold in observational
data. In our example, we know that C is a common cause of E and the potential
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Table 9.3 Potential
outcomes stratified by C Person Y.1/ Y.0/

C D 0 1 97 99
2 98 99
3 99 102
4 100 105
5 96 95
Mean 98 100

C D 1 6 95 9
7 93 95
8 94 95
9 96 93
10 92 99
Mean 94 96

Overall mean 96 98

outcomes Y.1/ and Y.0/, and E , far from being randomized, is more common
when C D 1 than when C D 0. However, observational data sometimes meet
a weaker form of the randomization assumption, specifically that exposure is
conditionally independent of the potential outcomes, given covariates. In our simple
example, C is the only confounder, so that E is conditionally independent of Y.1/
and Y.0/, given C. Or to put it another way: because there are no unmeasured
confounders, E can be seen as randomly assigned within the strata defined by C.

In our simple example, E is conditionally independent of the potential outcomes
Y.0/ and Y.1/ given C. The benefits of conditional independence can be seen by
comparing Table 9.2 and Table 9.3, which shows the complete data stratified by C. In
particular, the conditional means of the potential outcomes in Table 9.3 within the
strata defined by C are equal to the observed conditional means in Table 9.2. Thus,
when conditional independence holds, the conditional means can be estimated using
the sample means for observations with C D c and E D e.

9.1.6 Marginal and Conditional Means

The marginal means EŒY.1/� and EŒY.0/� in Table 9.3 can also be identified as
appropriately weighted averages of the within-stratum means of Y.1/ and Y.0/
in Table 9.2, which we can estimate from the observed data under conditional
independence. The weights are determined by the population prevalence of C. To
make this specific, the population prevalence of C in our simple example is 50%,
so EŒY.1/� D 0:5 � 98 C 0:5 � 94 D 96; similarly, EŒY.0/� D 0:5 � 100 C
0:5 � 96 D 98. Thus, we can calculate the marginal means EŒY.1/� and EŒY.0/�
from the observed data because conditional independence holds, and the prevalence
of C is known.
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Table 9.4 Regression model
for estimating ˇ�

1

E C EŒY jE; C� Mean

0 0 ˇ0 100 mg/dL
1 0 ˇ0 C ˇ1 98 mg/dL
0 1 ˇ0 C ˇ2 96 mg/dL
1 1 ˇ0 C ˇ1 C ˇ2 94 mg/dL

9.1.7 Potential Outcomes Estimation

In our simple example with a single binary confounder C, we were able to estimate
the marginal means EŒY.1/� and EŒY.0/� by simple weighted averages of the
conditional means within groups defined by E and C. But in more complicated
situations with many potential confounders, some of them continuous, there may
be as many subgroups defined by the confounders, sometimes called covariate
patterns, as there are observations.

In this situation, we could use a regression model to estimate the conditional
means for each covariate pattern. Then, using the model parameter estimates,
we would impute the missing potential outcome for each observation. Finally,
EŒY.1/� and EŒY.0/� would be estimated by averages of the outcomes with and
without exposure in the resulting “complete” data, including the imputed potential
outcomes. These averages would implicitly be weighted by the overall sample
distribution of the confounders included in the model.

Here is how potential outcomes estimation would work in our simple exam-
ple. We can write a two-predictor linear model for the outcome as

EŒY jE ; C� D ˇ0 C ˇ1E C ˇ2C: (9.2)

This model determines mean glucose levels in each of the four groups defined by
E and C, as shown in Table 9.4. By modeling the effect of C, regression achieves
conditional independence for E , so that estimates of the within-stratum means as
specified by (9.2) would be unbiased for the within-group means in Table 9.3.

Then in the incomplete data shown in Table 9.2, potential outcomes estimation
would work by imputing one of the four conditional means, as appropriate to
the observed value of E and C, for each of the ten missing potential outcomes.
Specifically, the imputed values of Y.1/ would be 98 for persons 1–3 and 94 for
persons 9 and 10. Then, EŒY.1/� would be estimated by the simple average

.98C 98C 98C 100C 96/C .95C 93C 94C 94C 94/
10

D 96: (9.3)

Similarly, the imputed value of Y.0/ would be 100 for persons 4 and 5 and 96 for
persons 6–8, and EŒY.0/� would be estimated by

.99C 99C 102C 100C 100/C .96C 96C 96C 93C 99/
10

D 98: (9.4)
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Finally, the causal parameter ˇ�
1 , the average causal effect of exercise, is identified

as the difference 96 � 98 D �2. In effect, we have identified the parameters
of the marginal structural model (9.1) by completing the potential outcomes
data. Implementation of potential outcomes estimation based on direct regression
adjustment as well as propensity scores is described in Sects. 9.3 and 9.4.2.

9.1.8 Inverse Probability Weighting

An alternative strategy for identifying the parameters of the marginal structural
model (9.1) uses weighting to make the observed outcomes representative of the
complete set of observed and potential outcomes. It can be shown that the weights
should be inversely proportional to the probability of observed exposure, given
confounders of the exposure–outcome relationship. Then, we can estimate EŒY.1/�
and EŒY.0/� by weighted averages of the observed outcomes with and without
exposure.

To illustrate how this works, note that in Table 9.2, the probability of exercise
in the stratum with C D 0 is 2/5. Thus, the inverse probability (IP) weight for
observations with E D 1 and C D 0 is 5/2. Similarly, the probability of exercise in
the stratum with C D 1 is 3/5, so the IP weight for observations with E D 1 and
C D 1 is 5/3. We would then estimate EŒY.1/� by the weighted average

5=2� .100C 96/C 5=3 � .95C 93C 94/
5=2 � 2C 5=3 � 3 D 96: (9.5)

For the observations with E D 0, the probability of no exercise is 3/5 in the stratum
with C D 0 and 2/5 in the stratum with C D 1. So, in this stratum the IP weights
would be 5/3 and 5/2, respectively, and we would estimate EŒY.0/� by the weighted
average

5=3 � .99C 99C 102/C 5=2 � .93C 99/
5=3 � 3C 5=2� 2 D 98: (9.6)

Calculating ˇ�
1 D 96 � 98D � 2, we have again identified the parameters of the

marginal structural model (9.1) by completing the potential outcomes data. Imple-
mentation of IP weighting in more complicated contexts with many confounders is
described in Sects. 9.4.3 and 9.5.

9.2 Regression as a Basis for Causal Inference

Our examples in Sect. 9.1 greatly simplify the problem posed by confounding, in
that all confounding effects are captured by a single binary factor C, measured with-
out error, with effects that are easily modeled. In practice, control of confounding is
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difficult to achieve. In the following sections, we first consider the conditions under
which regression modeling might succeed in achieving conditional independence
for exposure and thus unbiased estimates of its effects. In subsequent sections, we
describe alternatives that might work when those conditions are violated.

9.2.1 No Unmeasured Confounders

The assumption of no unmeasured confounders is common to most causal modeling
methods, and is crucial to achieving conditional independence of exposure from
potential outcomes. The main exception is instrumental variables, discussed in
Sect. 9.7. The issue of unmeasured confounding is particularly critical in assessing
small causal effects potentially accounted for by one or at most a few unmeasured
confounders, themselves weak enough to have escaped notice. In addition, we need
to assume that the confounders are measured more or less without error. Thus,
carefully measuring all relevant confounders is a crucial and expensive part of
observational studies.

9.2.2 Correct Model Specification

We also need to ensure that confounding effects are adequately modeled. In earlier
chapters, we presented methods for capturing nonlinearities in the effects of contin-
uous confounders and interactions, as well as for checking other model assumptions.
However, those model checks can be insensitive, especially in small samples,
potentially resulting in models that are at best only approximately right. Finally, we
require that mediators of the effect of exposure, as well as certain so-called colliders
defined in Sect. 10.2.5, are excluded from the model.

9.2.3 Overlap and the Positivity Assumption

In Sect. 9.1, causal effects were defined in terms of differences between actual and
potential outcomes for the same individuals under different exposures or treatments.
The crucial feature of that thought experiment was that each individual contributes
an actual and a potential outcome, so that the distributions of individual-level
covariates are identical for the exposed and unexposed outcomes.

At the opposite extreme, Rubin (1997) considers a hypothetical comparison of
survival rates in 40-year-old smokers with 70-year-old nonsmokers. The lack of
age overlap between smokers and nonsmokers implies that the data give essentially
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no information about the effect of smoking in either age group; to do this, we
would need smokers and nonsmokers in both age groups, because age is an
important confounder of smoking, influencing both survival and smoking rates.
Rubin’s point is that we can only hope to estimate the causal effect of an exposure
using observational data if we compare exposed and unexposed groups that are
substantively comparable.

The need for overlap between the exposed and unexposed is known as the positiv-
ity or experimental treatment assignment assumption. This assumption implies that
in every region of the data, there must be a positive probability of being exposed,
and also a positive probability of not being exposed. If this assumption holds, then
within all strata defined by covariates, there should be both treated and untreated
observations, although this may not hold in small samples. This assumption also
applies to approaches using propensity scores and inverse probability weights,
discussed below.

9.2.3.1 Restriction to Address Positivity Violations

Restriction is a primary tool for causal inference. For example, suppose that the 40-
year-old subsample included both smokers and nonsmokers, but there were almost
no smokers in the 70-year-old subsample. In this case, we could proceed by focusing
on the 40-year-olds, recognizing that the sample still provides no direct information
about the effect of smoking in 70-year-olds. Moreover, if age were the only
confounder of smoking, a simple comparison of survival rates by smoking status
within the 40-year-old subsample might have a restricted causal interpretation, as
the effect of smoking among 40-year-olds. This strategy also motivates estimating
the average treatment effect in the treated (ATT) rather than ACE when the available
data includes comparable controls for most treated observations, but also untreated
observations in a region of poor overlap and unlike the treated group.

9.2.4 Lack of Overlap and Model Misspecification

The most common alternative to restriction is regression adjustment. If there is
lack of overlap, the model essentially works by extrapolation to regions of poor
overlap. The validity of those extrapolations depends on how well we deal with
nonlinearity in the effects of continuous confounders, as well as interactions among
confounders and with exposure. However, model misspecification is particularly
hard to diagnose in regions of poor overlap, where the data are sparse.
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Fig. 9.1 Mortality risk by age in smokers and non-smokers

To illustrate this issue, we return to the example of the effects of smoking on
mortality risk, potentially confounded by age. Suppose that the age range is 40–65
among smokers and 50–80 among non-smokers, as shown in Fig. 9.1. The diamonds
and triangles along the x-axis show the age distribution of smokers and nonsmokers,
respectively, while the solid and dashed lines show their mortality risk as a function
of age.

Then, a logistic or Cox model adjusting for age as a continuous covariate
would usually provide an age-adjusted estimate of the effect of smoking on
survival. However, because age is a strong predictor of mortality risk, especially
in this age range, the estimated effect of smoking would substantially depend on
how we modeled the effect of age, and on whether or not we believed that smoking
and age interact.

Under the assumed model, the effect of age is linear, but smoking and age
interact, so that risk rises faster among nonsmokers than smokers. We could check
for nonlinearity of the age effect and interaction between age and smoking, but
would have little power to distinguish between them, except in large samples with
high-mortality. The apparently safe course would be to allow for a nonlinear effect
of the confounder age—as a result of which we would miss the effect of smoking.
With less well-understood exposures, the potential for misleading conclusions can
be substantial.

In multipredictor regression analyses, lack of overlap can be harder to detect. In
this case, there may be substantial overlap on many or most prognostic covariates, so
that the exposed and unexposed groups look fairly comparable by single measures.
Nonetheless, for some individuals with anomalous combinations of covariates, there
may be few if any truly comparable controls, so that for them the effects of exposure
are estimated essentially by extrapolation. We show in Sect. 9.4.1.3 how propensity
scores can help in detecting this kind of violation of the positivity assumption.
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9.2.5 Adequate Sample Size and Number of Events

In estimating causal effects from observational data, we generally find ourselves
between the extremes of the age and smoking example and the idealized case from
Sect. 9.1 of a single binary covariate that captures all confounding effects and is
well-represented in both exposure groups. In the usual context, more data make
causal modeling easier. Although larger samples do nothing to address the problem
of unmeasured confounders, adequate sample size is very important in deciding
whether the observational sample can support regression modeling, and if so, how
much confidence to place in the results.

In particular, larger samples, and relatively common binary or survival outcomes,
make it easier to check the assumptions underlying regression adjustment, including
linearity of the effects of powerful continuous confounders and the lack of interac-
tion with exposure, as in the example of age and smoking. Furthermore, violations
of normality and influential points are less likely to mislead us in larger samples.

A related question is whether the sample size or number of events is adequate
to adjust for all relevant confounders. In Sect. 10.2, we argue for being inclusive
when deciding which potential confounders to adjust for. Although the rule of
thumb requiring ten events per variable (EPV) in logistic and Cox regression can
sometimes be relaxed, regression adjustment for a large number of confounders is
unquestionably more reliable and convincing with bigger samples and higher EPV.
Having too few events to adjust for all relevant confounders is a principal motivation
for the use of propensity scores, as we explain in Sect. 9.4.

9.2.6 Example: Phototherapy for Neonatal Jaundice

Newman et al. (2009) studied the efficacy of phototherapy (skin exposure to light)
for the management of jaundice in a large cohort of newborn infants at twelve
Northern California Kaiser Permanente hospitals between 1995 and 2004, and
described in Table 9.5.

The infants in the original study sample, about 8% of all those born at these
hospitals from 1995 to 2004, had qualifying total serum bilirubin (TSB) levels
within 3 mg/dL of the American Academy of Pediatrics 2004 guideline threshold
for phototherapy. Bilirubin is a product of the breakdown of heme from red blood
cells, and causes jaundice at mild elevations and brain damage at very high levels.
Phototherapy makes bilirubin more soluble in water and thus easier to excrete.
The outcome of the study was a second TSB within 48 h that was over the higher
academy threshold for so-called exchange transfusion, in which the infant’s blood
is replaced to reduce TSB. Among the infants studied, 5,251 (23%) received in-
hospital phototherapy within 8 h of their qualifying TSB level, but only 187 (0.8%)
crossed the threshold for exchange transfusion within 48 h.
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Table 9.5 Characteristics of infants by receipt of phototherapy

Phototherapy

Potential confounders No Yes

of Phototherapy N % N %

Gender
Female 6,872 43 1,843 40
Male 9,275 57 2,741 60

Gestational
Age (weeks)

35 704 4 777 17
36 1,411 9 663 14
37 2,123 13 460 10
38 2,944 18 684 15
39 3,933 24 845 18
40 3,644 23 764 17
41 1,386 9 391 9

Qualifying TSB minus
AAP threshold (mg/dL)

�3 to less than �2 4,510 28 933 20
�2 to less than �1 4,127 26 889 19
�1 to less than 0 3,149 20 863 19
0 to less than 1 2,122 13 754 16
1 to less than 2 1,425 9 633 14
2 to less than 3 814 5 512 11

Age at qualifying
TSB measurement (days)

0 697 4 531 12
1 4,263 26 2,060 45
2 5,001 31 1,342 29
3 4,152 26 420 9
4 2,051 13 231 5

The investigators used multiple logistic regression to estimate the effect of
phototherapy on this endpoint. They were convinced that they had measured most
important potential confounders, although information on one potentially important
co-intervention, feeding with formula, was unavailable. In addition, while the
outcome rate was low, 187 outcomes were considered sufficient to model covariate
effects accurately. Table 9.5 suggests good overlap between the treated and untreated
samples, with at least several hundred infants in both groups in every row of the
table. This was enhanced by restricting the sample to at-risk infants with starting
TSB within 3 mg/dL of the guideline threshold for phototherapy.

We repeated their analysis, restricted to a subsample of 20,731 infants with
negative direct anti-globulin test (DAT) results, the original analysis having shown
that phototherapy was less effective in DAT-positive infants. There were 128
outcomes in the restricted sample. In unadjusted analysis, the odds of crossing the
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Table 9.6 Multiple logistic regression analysis of phototherapy effect

. logistic over_thresh i.phototherapy male ib40.gest_age##c.birth_wt ///
> ib4.qual_TSB ib2.age_days, cluster(hospital)
Logistic regression Number of obs = 20731

Wald chi2(9) = .
Prob > chi2 = .

Log pseudolikelihood = -556.91441 Pseudo R2 = 0.2849
(Std. Err. adjusted for 11 clusters in hospital)

----------------------------------------------------------------------------
| Robust

over_thresh | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------
1.photothe˜y | .1556457 .0572404 -5.06 0.000 .0757004 .320019

male | 1.396058 .3245125 1.44 0.151 .8852021 2.201732
|

gest_age |
35 | .0001092 .0004292 -2.32 0.020 4.95e-08 .2412867
36 | .001609 .0057854 -1.79 0.074 1.40e-06 1.850252
37 | .0031596 .0096163 -1.89 0.059 8.11e-06 1.230934
38 | .0169247 .0696104 -0.99 0.321 5.34e-06 53.63804
39 | .0023821 .0090549 -1.59 0.112 1.38e-06 4.097952
41 | 14.59515 35.12651 1.11 0.265 .130497 1632.362

|
birth_wt | .1056982 .111136 -2.14 0.033 .0134609 .8299667

|
gest_age#|

c.birth_wt |
35 | 33.33787 39.20356 2.98 0.003 3.326367 334.1224
36 | 14.4316 16.54287 2.33 0.020 1.526113 136.4716
37 | 10.33775 9.83796 2.45 0.014 1.600946 66.7537
38 | 4.99514 6.529896 1.23 0.219 .3853139 64.7561
39 | 7.404769 8.48014 1.75 0.080 .7846802 69.87637
41 | .3629029 .3421455 -1.08 0.282 .0571842 2.303057

|
qual_TSB |

1 | .049351 .0239477 -6.20 0.000 .0190654 .127745
2 | .1378163 .068935 -3.96 0.000 .0517052 .3673392
3 | .5232082 .173311 -1.96 0.051 .2733486 1.001457
5 | 3.988159 1.11587 4.94 0.000 2.304676 6.901366
6 | 8.252082 2.097117 8.30 0.000 5.014713 13.57941

|
age_days |

0 | 5.093211 3.017861 2.75 0.006 1.594529 16.26863
1 | 4.005234 1.203279 4.62 0.000 2.22282 7.216915
3 | .4587072 .1313356 -2.72 0.006 .2617111 .8039869
4 | .504136 .1664266 -2.07 0.038 .2639654 .9628272

----------------------------------------------------------------------------

threshold were 53% lower among infants receiving phototherapy (odds-ratio 0.47,
95% CI 0.24, 0.90, P D 0.023).

The fully adjusted model is shown in Table 9.6. In the Stata output, the categories
of qualifying TSB correspond in order to the differences between qualifying TSB
and the AAP threshold in Table 9.5; the reference category is 0 to less than 1. After
adjusting for sex, gestational age, qualifying TSB, birth weight, and age in days at
the qualifying TSB, the odds-ratio for phototherapy was 0.16 (95% CI 0.08–0.32).
The fact that the adjusted estimate suggests even stronger protection shows that the
unadjusted estimate is confounded by factors associated with higher risk of crossing
the threshold for exchange transfusion.



344 9 Strengthening Causal Inference

In the following section, we show that the odds-ratio for phototherapy based
directly on the logistic models is a conditional effect with an interesting but different
interpretation from marginal causal effects defined in terms of the overall population
means EŒY.1/� and EŒY.0/�. We then explain the additional steps needed to estimate
the marginal causal effects of phototherapy, including the marginal risk difference
and odds-ratio. In addition, we briefly consider situations in which covariate-specific
or conditional causal effects might be of equal or greater interest than marginal
effects.

9.3 Marginal Effects and Potential Outcomes Estimation

We pointed out in Sect. 9.1 that in experiments where the randomization assumption
is met, the marginal means EŒY.1/� and EŒY.0/� can be identified by within-group
sample means. In this context, we can estimate the parameters of the marginal
structural model (9.1) directly. In particular, the average causal effect ˇ�

1 can be
estimated by the difference between the within-group sample means. Similarly,
when the outcome is binary, an unadjusted logistic model for the effect of treatment
would estimate the marginal odds-ratio, as we explain below.

Thus, the familiar summary effect measures commonly used for experiments,
which are regarded as the gold standard in clinical research, estimate marginal
causal effects. Moreover, causal questions are often framed in terms of clinical
trials that might answer them. In this view, the relevant causal parameter of interest
is a marginal effect, averaged over a well-defined target population meeting the
inclusion criteria for the implicit clinical trial.

The focus of this chapter is on estimating causal effects using observational data,
in which the randomization assumption almost never holds. In that context, we may
at best meet the weaker assumption of conditional independence. When we fit fully
adjusted logistic models like those used by Newman et al. (2009) to estimate the
effect of phototherapy, we obtain estimates of the conditional, not the marginal
odds-ratio. In this section, we more carefully distinguish marginal from conditional
effects, and present methods for using the conditional results to obtain the marginal
causal effects that would be estimated by a clinical trial of phototherapy.

9.3.1 Marginal and Conditional Effects

In Sect. 9.1, we defined the average causal effect as a difference in the marginal
means of potential outcomes, including the potential as well as actual outcomes.
In the linear model (9.2) for continuous potential outcomes, the effect is directly
captured by the regression coefficient ˇ1. This effect is both marginal, because it is
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the difference in the marginal means EŒY.1/� and EŒY.0/�, and conditional, in also
capturing the difference in conditional means within the subpopulations with C D 0
and C D 1.

With binary outcomes, the marginal means EŒY.1/� and EŒY.0/� are interpretable
as outcome probabilities, and the average causal effect can still be defined as
EŒY.1/��EŒY.0/� D EŒY.1/� Y.0/�. However, the odds-ratio, not the difference in
outcome probabilities, is the natural effect measure for the logistic model, which
would most commonly be used to assess the effects of exposure on a binary
outcome. For this case, we could define a logistic marginal structural model for
the potential outcomes as

log

�
EŒY.E/�

1 � EŒY.E/�
�

D ˇ�
0 C ˇ�

1 E : (9.7)

In this case, the marginal odds-ratio is directly defined in terms of the marginal
means EŒY.1/� and EŒY.0/�—specifically, by

EŒY.1/�

1 � EŒY.1/�
� 1� EŒY.0/�

EŒY.0/�
: (9.8)

When the randomization assumption holds, as in a successfully conducted random-
ized trial, we could fit an unadjusted logistic model for the effect of exposure, and
would obtain a direct estimate of the marginal odds-ratio (9.8) by exponentiating
Ǒ�
1 . Estimates of the marginal risk difference would also be easily obtained as the

difference between the fitted outcome probabilities for the exposed and unexposed
groups.

However, in observational data, as in our simple example, we could at best meet
the assumption of conditional independence of E , after adjustment for C. We would
write the adjusted logistic model as

log

�
EŒY jE ; C�

1 � EŒY jE ; C�
�

D ˇ0 C ˇ1E C ˇ2C; (9.9)

where EŒY jE ; C� is the probability that Y D 1, given E and C. Under this model,
exp.ˇ1/, the odds-ratio for the effect of exposure E on Y , represents a conditional
effect, assumed to be the same within both strata defined by C. This conditional
odds-ratio would differ from the marginal odds-ratio (9.8) except when ˇ1D 0 or
ˇ2D 0. In practice, these differences are often small, but the conceptual difference
is important. Likewise, under (9.9), the conditional risk difference for any given
observation depends on C, unless ˇ1D 0 or ˇ2D 0; this would hold even if C were
unassociated with E . Specifically, if C D 1, the conditional risk difference is

exp.ˇ0 C ˇ1 C ˇ2/
1C exp.ˇ0 C ˇ1 C ˇ2/ �

exp.ˇ0 C ˇ2/
1C exp.ˇ0 C ˇ2/ : (9.10)
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When C D 0, the risk difference is

exp.ˇ0 C ˇ1/
1C exp.ˇ0 C ˇ1/ �

exp.ˇ0/

1C exp.ˇ0/
: (9.11)

Thus, when we use an adjusted logistic model to meet the conditional independence
assumption for E , extra steps are needed to obtain estimates of the marginal risk
difference EŒY.1/� � EŒY.0/� and odds-ratio (9.8).

9.3.2 Contrasting Conditional and Marginal Effects

In the neonatal jaundice example, conditional effects would be more to the point
when a clinician considers the potential effects of phototherapy for a particular
infant. Newman et al. (2009) estimated that the absolute reduction in risk of crossing
the threshold for exchange transfusion varied more than 200-fold among the infants
treatment with phototherapy. In this context, good estimates of conditional risk
reductions are especially useful for evidence-based clinical decision making. Note
that if confounding is controlled, conditional independence implies that these
conditional effects have a causal interpretation.

In contrast, marginal risk reductions, averaged across the target population of
newborns with qualifying TSB near the current threshold, would be useful in
assessing phototherapy treatment guidelines for exchange transfusion in the Kaiser
system overall. In this context, some variability in individual effects may be taken as
a given. More generally, marginal effect estimates are appropriate when we consider
the effects of public health interventions or changes in policy.

Conditional estimates might still have a role in evaluating interventions or
policy. In the phototherapy data, for example, Newman et al. (2009) interpreted
the wide variability in the conditional risk differences as suggesting that the current
guidelines allow for treatment of low-risk infants with too little expected benefit
from phototherapy.

9.3.3 When Marginal and Conditional Odds-Ratios Differ

In the phototherapy example, the marginal and conditional odds-ratios will prove
to be similar. However, this will not always hold. In particular, the difference will
be larger when covariate effects are stronger. For an extreme example, consider
hypothetical data in which E and C are uncorrelated, but the prevalence of the
outcome Y is only 10% in the stratum with C D 0, and 90% in the stratum with
C D 1. The conditional odds-ratio for E is more than 2.5 within both strata defined
by C, but the marginal odds-ratio is only 1.4.
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Although the marginal and conditional odds-ratios are very similar in the
phototherapy data, one of the principal findings of Newman et al. (2009) was that
conditional risk differences varied widely among infants meeting guidelines for
phototherapy. This commonly occurs in logistic models where covariates strongly
affect the odds of the outcome, even when the odds-ratio for exposure is assumed
constant—that is, not to interact with covariates.

9.3.4 Potential Outcomes Estimation

In Sect. 9.1.7, we showed how potential outcomes estimation could be used to
estimate the marginal means of a continuous outcome in our simple example with
a single binary confounder. Here, we extend this procedure to more complicated
contexts with a binary outcome and many confounders, some of them continuous,
with each observation potentially having a distinct covariate pattern.

To implement this procedure, we would fit a logistic model carefully adjusting for
all measured confounders, then obtain two fitted probabilities for each observation:
first with exposure, setting E D 1, and then without exposure, setting E D 0. Only
one of these two values of E is observed; the other is potential. In both calculations,
the covariate pattern for each observation would be held fixed, at the observed level.
Then, assuming that the overall sample proportion with each covariate pattern is
representative of the population, we can estimate EŒY.1/� by the average of the
estimated probabilities calculated after setting E D 1. Crucially, this average would
be taken over the entire sample, not just the observations with E D 1. Likewise, we
can estimate EŒY.0/� by the average of the estimated probabilities calculated after
setting E D 0, again taken over the entire sample. In turn, we can use these two
estimates to calculate the marginal risk difference or odds ratio.

Potential outcomes estimation can be implemented using a simple algorithm,
which we applied to the phototherapy data in Table 9.7. In brief, we first used the
Stata expand command to make a duplicate of each observation, then reversed the
coding of phototherapy on the duplicate data records, so that the duplicates
of the treated are coded as untreated and vice versa. In fitting the regression
model, we restricted the estimation sample to the actual observations (i.e., if
potential==0).

We then took advantage of the fact the predict postestimation command
calculates predicted values for every observation with complete predictor data,
regardless of whether they were used in estimation of the coefficients. Next,
we obtained estimates OEŒY.0/� D :00956 and OEŒY.1/� D :00164 by averaging
the predicted values for the treated and untreated observations, including the
observations introduced by the duplication. That step ensured that the distribution
of covariates was the same for both sets of predicted outcomes.

Then in a final step, we can calculate the marginal risk difference as 0:00956 �
�0:00164 D 0:0079. This amounts to fitting the marginal structural model (9.1) to
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Table 9.7 Potential outcomes estimation

. * Duplicate each observation, identifying the second as potential

. expand 2, gen(potential)
(20731 observations created)

. * Assign the opposite exposure for the potential outcome

. replace phototherapy = 1-phototherapy if potential==1
(20731 real changes made)

. * Estimate the logistic model using only the actual outcomes

. quietly logistic over_thresh i.phototherapy male i.gest_age##c.birth_wt///
> i.qual_TSB i.age_days if potential==0, cluster(hospital)

. * Obtain expected values for both actual and potential outcomes

. predict Y, pr

. * calculate EY by treatment

. tab phototherapy, sum(Y)

Phototherap | Summary of Pr(over_thresh)

y | Mean Std. Dev. Freq.
------------+------------------------------------

no | .00955488 .02960949 20731
yes | .00164365 .005798 20731

------------+------------------------------------
Total | .00559927 .02169805 41462

the complete data, with Ǒ�0 D 0:00956 and Ǒ�1 D 0:0079. We can also calculate
the marginal odds-ratio as 0:00164=.1 � 0:00164/=.0:00956=.1 � 0:00956// D
0:17. As we would expect based on Sect. 7.5, the marginal odds-ratio of 0.17 for
phototherapy is slightly closer to the null value of 1.00 than the conditional odds-
ratio of 0.16 given directly in the model output shown in Table 9.7.

The Stata margins command implements potential outcomes estimation, and
provides valid CIs for the parameters of the marginal structural model (9.1). Like
the potential outcomes estimation procedure implemented by hand in Table 9.7, the
margins command averages the expected values of the outcome under both the
actual and potential value of phototherapy, holding all other covariates fixed
at their observed values. (Note that for this Stata procedure to give the correct
marginal result, phototherapy must have been treated as a so-called factor in
the regression model, using the i.phototherapy syntax, not as a continuous
variable.)

Table 9.8 shows the results of a re-analysis of the logistic model for the effect
of phototherapy first shown in Table 9.6. The resulting estimates of EŒY.1/� and
EŒY.0/�, and accordingly of the marginal risk difference and odds-ratio, are identical
to those in Table 9.7. This also provides valid CIs for the marginal means, although
the tests of EŒY.1/� D 0 and EŒY.0/� D 0 are hard to interpret.

Table 9.9 shows direct calculation of the marginal risk difference, first using the
postestimation commandmargins,dydx(phototherapy), then using the r.
contrast operator, which gives the same result. This procedure provides a valid CI
and P -value for the marginal risk difference.
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Table 9.8 Direct estimation of marginal means

. quietly logistic over_thresh i.phototherapy male ///
> ib40.gest_age##c.birth_wt ib4.qual_TSB ib2.age_days, ///
> cluster(hospital)

. margins phototherapy
Predictive margins Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
----------------------------------------------------------------------------

| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
phototherapy |

0 | .0095549 .0009868 9.68 0.000 .0076208 .011489
1 | .0016437 .0006048 2.72 0.007 .0004582 .0028291

----------------------------------------------------------------------------

Table 9.9 Direct estimation of marginal risk difference

. margins, dydx(phototherapy)
Average marginal effects Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0079112 .0010376 -7.62 0.000 -.0099448 -.0058777
----------------------------------------------------------------------------

. margins r.phototherapy
Contrasts of predictive margins
Model VCE : Robust
Expression : Pr(over_thresh), predict()
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------
phototherapy | 1 58.14 0.0000
------------------------------------------------
--------------------------------------------------------------

| Delta-method
| Contrast Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
phototherapy |

(1 vs 0) | -.0079112 .0010376 -.0099448 -.0058777
--------------------------------------------------------------

Confidence intervals for the marginal odds-ratio can be obtained using the boot-
strap, as shown in Table 9.10. This requires a short program to calculate the marginal
odds-ratio from the margins results. Note that for this example, the bootstrap
re-sampling was by hospital, to account for clustering, as in the other analyses.
The bias-corrected percentile CI (0.09–0.36) is slightly wider than the CI for the
conditional odds-ratio shown in Table 9.7, and shifted upward, reflecting the slight
attenuation of the marginal odds-ratio.
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Table 9.10 Bootstrap confidence interval for the marginal odds-ratio

. program define marginal_OR, rclass
1. logistic over_thresh i.phototherapy male i.gest_age##c.birth_wt ///

i.qual_TSB i.age_days
2. margins phototherapy
3. matrix b = r(b)
4. scalar EY0 = b[1, 1]
5. scalar EY1 = b[1, 2]
6. * marginal odds-ratio

. return scalar marginal_OR = EY1/(1-EY1)*(1-EY0)/EY0
7. end

. bootstrap "marginal_OR" r(marginal_OR), reps(1000) cluster(hospital)
command: marginal_OR
statistic: _bs_1 = r(marginal_OR)

Bootstrap statistics Number of obs = 20731
N of clusters = 11
Replications = 1000

----------------------------------------------------------------------------
Variable | Reps Observed Bias Std. Err. [95% Conf. Interval]
-------------+--------------------------------------------------------------

_bs_1 | 1000 .1705817 .0108846 .0679137 .0373119 .3038515 (N)
| .0870933 .3547933 (P)
| .0889122 .3603035 (BC)

----------------------------------------------------------------------------
Note: N = normal

P = percentile
BC = bias-corrected

9.3.5 Marginal Effects in Longitudinal Data

So far we have focused on continuous and binary outcomes. Potential outcomes
estimation of the marginal means EŒY.1/� and EŒY.0/� carries over directly to count
outcomes that would be analyzed using Poisson or negative binomial models; in
Stata, the margins command can be used to obtain both marginal means and
rates. In contrast, extensions to repeated measures and survival outcomes are more
complicated.

9.3.5.1 Repeated Measures Outcomes

For repeated measures in a longitudinal study with regular measurement times,
we can posit analogous potential outcomes at each measurement time. Then, the
average causal effect of exposure can be defined in terms of the marginal means
specific to each time point. Marginal causal effects might vary over time point;
averaging across occasions might be appropriate as long as the variation is not too
great.

Potential outcomes estimation can sometimes be used to estimate marginal
effects in this setting. However, this straightforward approach cannot be used when
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both exposure and its confounders change over time, and the confounders mediate
part of the effect of exposure. In that setting, with what we will call time-dependent
confounder–mediators, IP weighting is one alternative for estimating marginal
effects, as we explain in Sect. 9.5.

9.3.5.2 Survival Outcomes

For survival outcomes, we can define the potential outcomes Y.1/ and Y.0/ as
failure times with and without exposure, and write marginal structural models for
the potential outcomes analogous to (9.1) and (9.7). One strategy for estimating
marginal effects in this setting uses so-called structural nested failure time models;
we briefly describe one such method, G-estimation, in Sect. 9.10.

An alternative for estimating marginal effects with survival outcomes uses IP
weighting, and is based on a proportional hazards marginal structural model similar
in form to (6.5). A primary motivation for this approach, described in Sect. 9.5, is
that it accommodates time-dependent confounder–mediators. But IP weighting has
drawbacks and difficulties, as we also explain, and more reliable methods are the
focus of ongoing statistical research.

9.3.5.3 Potential Outcomes Estimation for Cumulative Risks

With fixed exposures, and more generally in the absence of time-dependent
confounder–mediators, potential outcomes estimation can be used to estimate
marginal effects on the cumulative risk of the outcome at some fixed time point,
estimated using survival data. In cancer studies, for example, treatment effects are
often described in terms of differences in 5-year survival; in heart disease, 10-year
risk of cardiovascular events is a common benchmark. These cumulative risks can
be estimated using censored survival data.

Potential outcomes estimation can be implemented by fitting an adjusted Cox
model for the effects of exposure or treatment, controlling for confounders,
analogous to the adjusted logistic model used in the phototherapy example. Then
predicted cumulative risks at the selected time point would be obtained for each
observation under the alternative exposure or treatment histories of interest. This
is analogous to predicting the cross-sectional risk of crossing the threshold for
exchange transfusion for each infant with and without phototherapy.

One complication is these cumulative risk predictions depend on the base-line
survival function. While estimates are available from most Cox model implementa-
tions, includingstcox in Stata, implementation requires data duplication, as shown
in Table 9.6, with additional programming to obtain the baseline survival function
estimate at the selected time point. We sketch an implementation in Problem 9.5.
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9.4 Propensity Scores

As illustrated by the phototherapy example presented in Sects. 9.2 and 9.3.4,
regression methods can be used, in many cases, to estimate causal effects for
binary exposures in observational studies. The outcome in this example was fairly
rare, with only 128 cases in more than 20,000 observations, but common enough
for regression adjustment. But if the sample size had been 5,000, with only 32
outcomes, this approach would have led to unstable or biased results.

Propensity score methods address this problem by splitting the analysis into two
steps. First, the relationship of confounders with exposure is summarized using a
regression model with exposure as the outcome; any of the binary regression models
introduced in Chap. 5 can be used. The goal of this model is to estimate the influence
of the confounding variables on the probability of exposure for each individual. The
exposure probability predicted by this model is the propensity score.

It can be shown that individuals with similar propensity scores will have similar
patterns of the confounding variables. This suggests that an estimate of the effect of
the exposure on the outcome that accounts for values of the propensity score will
also account for the influence of the confounders. This is the basis for the second
step of propensity score analysis, in which we estimate the effect of exposure on
the outcome. There are several ways to use the propensity scores in the second
step, all of which resolve problems with controlling for multiple predictors. As long
as exposure is common, this has clear advantages when outcomes are rare or the
number of potential confounders is large.

Depending on how propensity scores are incorporated in the second step of the
analysis, we obtain estimates of the conditional or marginal effect of exposure. In
particular, when we stratify on or adjust for the scores, we obtain conditional effect
estimates, and have to use potential outcomes estimation to obtain marginal effect
estimates. In contrast, when the scores are used as inverse weights or for matching,
we obtain direct estimates of marginal effects.

In the remainder of this section, we describe analysis using propensity scores
more fully, and illustrate the approach using the phototherapy data set introduced
in Sect. 9.2.6. Although the phototherapy outcome is binary, the methods illustrated
apply directly to continuous, survival, and count outcomes.

9.4.1 Estimation of Propensity Scores

Model selection and specification, fitting the model, and then checking balance and
overlap are all part of estimating propensity scores.
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9.4.1.1 Model Specification

A crucial assumption of analysis using propensity scores is that the model for the
scores is correctly specified. Accordingly, care should be taken to control for the
confounders of the exposure–outcome relationship, to include interaction terms as
needed, and to model nonlinearities adequately. In moderate to large samples, any
potential confounder of the effect of exposure should be considered. For continuous
and count outcomes, it may also be valuable to include covariates associated with
the outcome but not exposure (Brookhart et al. 2006a); the rationale is to decrease
residual variance.

However, in smaller samples or if exposure is uncommon, including too many
predictors may actually exacerbate lack of overlap (Kang and Schafer 2007), and
require selecting a smaller propensity score model. Furthermore, the model used to
estimate the propensity scores should not include so-called instrumental variables
associated with exposure but lacking any independent association with the outcome
(Austin et al. 2007; Brookhart et al. 2006a). Finally, as in standard regression
adjustment, mediators of the effect of exposure, as well as so-called colliders defined
in Sect. 10.2.5, should be excluded from the propensity score model.

9.4.1.2 Propensity Score Model for Phototherapy

In the Kaiser sample of 20,731 newborns, only 128 infants crossed the threshold for
exchange transfusion, limiting the complexity of the logistic model used to estimate
the effect of phototherapy directly adjusting for confounders in Sect. 9.2.6. In
contrast, 4,584 newborns were treated with phototherapy, allowing us to develop
a relatively complicated propensity score model, as recommended by Schneeweiss
et al. (2009). Our final propensity score model used the same covariates included
in the model for crossing the exchange therapy threshold, but modeled the effect
of birth weight using a 5-knot restricted cubic spline, and included almost all
possible two-way interactions; both the nonlinearity of the birth weight effect and
the interactions were highly statistically significant. However, we excluded hospital
and year, which we will use as instrumental variables in Sect. 9.7. The Hosmer–
Lemeshow test indicated satisfactory fit for the final model (P D 0:33).

9.4.1.3 Checking Covariate Balance

A key property of good propensity scores is that the distribution of measured
confounding variables within strata defined by the scores is, on average, balanced
between the two exposure groups (Rosenbaum and Rubin 1983).

Table 9.11 shows that average values of the major confounders of phototherapy
differ much less between exposed and unexposed infants within quintiles of the
propensity score than overall, illustrating the balancing property of the scores.
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Table 9.11 Checking covariate balance

Propensity score quintile
Predictor Phototherapy Overall mean 1 2 3 4 5

Male sex No 0.57 0.55 0.53 0.59 0.62 0.62
Yes 0.60 0.51 0.52 0.58 0.64 0.60

Gestational No 38.7 38.7 38.9 38.7 38.4 37.2
Age (weeks) Yes 37.9 38.5 39.0 38.8 38.3 37.0
Birth No 3.35 3.38 3.39 3.41 3.40 3.08
Weight (kg) Yes 3.22 3.38 3.41 3.44 3.38 3.00
Qualifying TSB No 2.64 2.02 2.34 2.62 3.31 3.48
(Category #) Yes 3.17 2.25 2.33 2.52 3.35 3.55
Age (days) at No 2.16 3.31 2.33 1.74 1.53 1.22
Qualifying TSB Yes 1.51 3.36 2.31 1.68 1.57 1.12
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Fig. 9.2 Propensity scores in treated and untreated infants

9.4.1.4 Checking the Positivity Assumption

Like regression adjustment, propensity score analyses depend on the positivity
assumption, introduced in Sect. 9.2.3. Fortunately, they also make it easier to
diagnose positivity violations. Figure 9.2 shows the distribution of propensity scores
(on the log odds or logit scale) for the treated and untreated samples. In contrast to
the reassuring evidence for overlap in the rows of Table 9.5, the figure shows that
untreated infants with logit scores<�3 had very few treated counterparts. Similarly,
treated infants with logit propensity scores>1 had almost no untreated counterparts.
In the next section, we present methods for addressing this potential problem.
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Table 9.12 Numbers of infants and events

Propensity score quintile
Phototherapy Overall 1 2 3 4 5

No 113/16,147 2/3,999 8/3,715 19/3,386 28/3,010 56/2,037
Yes 15/4,584 0/150 1/432 1/757 2/1,137 11/2,108

9.4.2 Effect Estimation Using Propensity Scores

The next step in the analysis is to use propensity scores to estimate the causal effect
of exposure. The scores may be incorporated using stratification, adjustment, inverse
weighting, and matching, each with advantages and disadvantages. Stratification
and adjustment require us to use potential outcomes estimation to obtain marginal
effects. In contrast, inverse weighting and matching directly estimate marginal
effects.

9.4.2.1 Quintile of Propensity Score

Analysis using quintile of the propensity score is often a good place to start. One
advantage is that we can use contingency tables to look at the data. Table 9.12 gives
little reason for concern, although there are no events among treated infants in the
first quintile.

Next, we used quintile of the propensity scores as the only adjustment variable
in a logistic model so that we could account for clustering by hospital. In a final
step, we obtained marginal risk difference using potential outcomes estimation. In
Table 9.13, the conditional odds-ratio (0.20, 95% CI 0.10, 0.42) and marginal risk
difference (0.71%, 95% CI 0.50–0.92%) suggest slightly less protection than the
standard logistic regression model. In this case, the conditional and marginal odds-
ratios barely differ. The marginal risk difference could also be obtained using the
command margins r.phototherapy used in Table 9.9.

9.4.2.2 Restricted Cubic Splines

Modeling the propensity score as a categorical variable may result in residual
confounding. To address this possible shortcoming, we repeated this analysis
adjusting for a 5-knot restricted cubic spline in the logit propensity score. In this
analysis, we rescaled the logit scores before calculating the splines so that the
corresponding parameter estimates would appear reasonable, but this makes no
difference to the conditional or marginal estimates we obtain for the effect of
phototherapy. Again, after estimating the conditional odds-ratio, we use potential
outcomes estimation to obtain the marginal risk difference.
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Table 9.13 Analysis using propensity score quintiles

. logistic over_thresh i.phototherapy i.ps_quintile, cluster(hospital)
Logistic regression Number of obs = 20731

Wald chi2(5) = 69.35
Prob > chi2 = 0.0000

Log pseudolikelihood = -706.10698 Pseudo R2 = 0.0933
(Std. Err. adjusted for 11 clusters in hospital)

----------------------------------------------------------------------------
| Robust

over_thresh | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------
1.photothe˜y | .2015758 .0751063 -4.30 0.000 .0971146 .4184008

|
ps_quintile |

2 | 4.777587 3.700018 2.02 0.043 1.047111 21.79839
3 | 11.44334 8.659595 3.22 0.001 2.596672 50.42992
4 | 18.81359 14.75728 3.74 0.000 4.043839 87.52853
5 | 56.11242 44.62975 5.06 0.000 11.80442 266.7309

----------------------------------------------------------------------------

. * Marginal risk difference

. margins, dydx(phototherapy)
Average marginal effects Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0071373 .0010718 -6.66 0.000 -.009238 -.0050365
----------------------------------------------------------------------------

Results shown in Table 9.14 are consistent with the analysis using quintiles,
including conditional and marginal odds-ratios of 0.20 and risk difference of 0.73%
(95% CI 0.52–0.94%). There was also clear evidence for a nonlinear effect of the
propensity score, showing the need for using a spline. The marginal risk difference
could also be obtained using the command margins r.phototherapy.

9.4.3 Inverse Probability Weights

In the analyses using propensity scores as quintiles and splines, we obtain estimates
of the conditional effect of phototherapy, and then use potential outcomes estimation
to obtain marginal risk differences and odds-ratios. Another way to obtain marginal
estimates, introduced in Sect. 9.1.8, uses the propensity scores to define so-called
inverse probability (IP) weights—literally, the inverse of the estimated probabilities
of observed exposure, conditional on confounders. Using Pr.E jC/ to denote the
propensity score, IP weights are defined as 1=Pr.E jC/ for the exposed, and as
1=.1� Pr.E jC// for the unexposed.

Using IP weights creates comparable weighted samples of exposed and un-
exposed observations, sometimes called pseudo populations, both with the same
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Table 9.14 Analysis using restricted cubic splines

. gen lps100 = logit_ps*100

. mkspline lps_rcs = lps100, cubic

. logistic over_thresh i.phototherapy lps_rcs*, cluster(hospital)
Logistic regression Number of obs = 20731

Wald chi2(5) = 63.07
Prob > chi2 = 0.0000

Log pseudolikelihood = -707.00778 Pseudo R2 = 0.0922
(Std. Err. adjusted for 11 clusters in hospital)

----------------------------------------------------------------------------
| Robust

over_thresh | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------
1.photothe˜y | .1934407 .0706752 -4.50 0.000 .0945267 .3958598

lps_rcs1 | 1.017154 .010613 1.63 0.103 .9965642 1.038169
lps_rcs2 | .9824837 .0465576 -0.37 0.709 .8953419 1.078107
lps_rcs3 | 1.102977 .2458561 0.44 0.660 .7125771 1.707266
lps_rcs4 | .8289924 .2502172 -0.62 0.534 .4588069 1.49786

----------------------------------------------------------------------------
. * check non-linearity of response to propensity score
. testparm lps_rcs2-lps_rcs4

Prob > chi2 = 0.0008

. * Marginal risk difference

. margins, dydx(phototherapy)
Average marginal effects Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0073261 .0010548 -6.95 0.000 -.0093936 -.0052587
----------------------------------------------------------------------------

distribution of estimated propensity for exposure as the overall sample. Ideally,
exposure is unconfounded in the overall weighted sample—assuming no unmea-
sured confounders, correct specification of the model used to estimate the propensity
scores, and positivity.

Table 9.15 shows the analysis using IP weights. As we explained in Sect. 9.1.8,
using IP weights means that we directly obtain estimates of marginal causal effects
from the weighted model for the outcome, including the marginal odds-ratio when
the model for the outcome is logistic. Like procedures based on potential outcomes
estimation in Sect. 9.3.4, fitting the weighted model can be seen as fitting the
marginal structural model (9.1) to the complete potential outcomes data. The data
are “completed” by inverse weighting in this case, rather than by imputation of the
missing potential outcomes.

An advantage of IP weighting is that it easily accommodates survival out-
comes. If time to crossing the threshold for exchange transfusion were the outcome
in the phototherapy data, we could use an IP-weighted Cox model to obtain a direct
estimate of the marginal hazard ratio for the effect of phototherapy. In contrast,
calculation of the marginal effects on cumulative risk using the potential outcomes
approach would be complicated.
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Table 9.15 Analysis using propensity scores as IP weights

. gen iptw = phototherapy/prop_score + (1-phototherapy)/(1-prop_score)

. logistic over_thresh i.phototherapy [pweight=iptw], cluster(hospital)
Logistic regression Number of obs = 20731

Wald chi2(1) = 15.74
Prob > chi2 = 0.0001

Log pseudolikelihood = -1403.0863 Pseudo R2 = 0.0353
(Std. Err. adjusted for 11 clusters in hospital)

----------------------------------------------------------------------------
| Robust

over_thresh | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------
1.photothe˜y | .2220519 .084231 -3.97 0.000 .1055767 .4670259
----------------------------------------------------------------------------

. * Marginal risk difference

. margins, dydx(phototherapy)
Conditional marginal effects Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0072356 .0013033 -5.55 0.000 -.00979 -.0046811
----------------------------------------------------------------------------

A drawback of IP weighting is that extreme weights are fairly common, possibly
reflecting violations of the positivity assumption, and lead to highly unstable
estimates. An initial check on the weights showed that there were 91 observations
with weights of more than 20, all of them in the phototherapy group, reflecting less
than 5% estimated probability of treatment received; the largest weight was 64. In
part as a result of the large weights, this analysis gave a somewhat different and less
precise estimate of the marginal odds-ratio (0.22, 95% CI 0.11–0.47), although the
marginal risk difference (0.72%, 95% CI 0.47–0.98%) was similar to earlier results
based on the propensity score.

9.4.4 Checking for Propensity Score/Exposure Interaction

An advantage of propensity scores is that it is easy to check for interaction
between exposure and the propensity for exposure, which may be easier to detect
than interactions between exposure and covariates, and thus uncover meaningful
variability in the effects of exposure.

Table 9.16 presents an assessment of the interaction, including estimates of the
odds-ratio for phototherapy within each propensity score quintile. This analysis gave
reassuring results (P D 0:54 for interaction); although the point estimate in the
second quintile did not suggest benefit, the CI was very wide. The Mantel–Haenszel
(M–H) weights make explicit the influence of the fifth quintile in the overall
estimate.
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Table 9.16 Checking for propensity score/exposure interaction

. cc over_thresh phototherapy, by(ps_quintile)

Propensity score | OR [95% Conf. Interval] M-H Weight
-----------------+-------------------------------------------------

1 | 0 0 51.4532 .0723066 (exact)
2 | 1.075116 .0241739 8.051342 .8314444 (exact)
3 | .2344055 .0056341 1.47967 3.467053 (exact)
4 | .1876652 .0216347 .7464934 7.663371 (exact)
5 | .1855627 .0874299 .3593499 28.331 (exact)

-----------------+-------------------------------------------------
Crude | .4658365 .2521401 .8023481 (exact)

M-H combined | .2081478 .1197724 .3617317
-------------------------------------------------------------------
Test of homogeneity (Tarone) chi2(4) = 3.13 Pr>chi2 = 0.5356

In contrast to our relatively reassuring results, Kurth et al. (2006) found important
interaction between propensity for treatment with tissue-plasminogen activator
(t-PA), which dissolves blood clots, and mortality among 6,269 patients with
ischemic strokes caused by blood clots. In contrast to randomized trials showing no
benefit, they found evidence for substantial adverse effects, with harm concentrated
among patients with propensity scores of less than 5%. As in our analysis, they
estimated the effect of t-PA using logistic models incorporating the propensity score
both as continuous and categorical (using deciles rather than quintiles). But it was
only analyses using the methods we present next—restriction, matching, or using
so-called standardized mortality ratio (SMR) weights—that results were consistent
with trial findings. These alternative methods estimate the effects of exposure in
restricted target populations of possibly greater interest.

9.4.5 Addressing Positivity Violations Using Restriction

Our check on overlap of the propensity scores in Sect. 9.4.1 gave some evidence
for positivity violations. One strategy for addressing such violations is to restrict
the analysis to observations with predicted probabilities of exposure between,
say, 5% and 95% (Mortimer et al. 2005). This will exclude individuals who are
almost always or almost never exposed; in studies of treatments, this sensibly
focuses the analysis on patients for whom consensus about the value of treatment
is lacking. We re-analyzed the phototherapy data, including only infants with logit
propensity scores between �3 and 1, corresponding to propensity scores between
4.7% and 73%, as motivated by the regions of poor overlap in Fig. 9.2. This gave
reasonably similar estimates of the conditional odds-ratio (0.21 95% CI 0.10–0.44),
marginal odds-ratio (0.21) and marginal risk difference (0.79%, 95% CI 0.54–
1.04%), suggesting that positivity violations do not substantially affect our estimates
of the effect of phototherapy.
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In contrast, restriction to patients with propensity scores of at least 5% in the
analysis of the effects of t-PA among ischemic stroke patients gave results very
different from the analysis of the complete data, but consistent with randomized
trials (Kurth et al. 2006).

9.4.6 Average Treatment Effect in the Treated (ATT)

In some cases, it may make more sense to estimate the causal effect of treatment
in the treated, or ATT, defined as the average causal effect in a population with
the same distribution of propensities for exposure as the exposed individuals in
the sample. One example is the effect of smoking cessation, which only makes
sense for smokers. Of course, estimating the ATT for cessation would require
comparable nonsmoking controls, but would exclude nonsmokers who never would
have smoked and differ from smokers on many dimensions. In the ischemic stroke
example, this focuses the analysis on the relatively small group of low-risk patients
who are more commonly treated with t-PA, excluding the much larger group of
high-risk patients in whom t-PA is rarely used.

In contrast to estimating ACE, in which we average the exposure effects across
the distribution of covariates in the entire population, in estimating ATT we average
the exposure effect across the distribution of covariates among the exposed. A
secondary effect of focusing on the exposed is that it will address positivity
violations stemming from unexposed individuals with few, if any, counterparts in
the exposed sample. Propensity scores make it possible to estimate ATT in three
ways, using potential outcomes estimation restricted to the exposed subpopulation,
matching, and standardized mortality ratio weights.

9.4.6.1 Potential Outcomes Estimation

To estimate ATT using potential outcomes estimation, we used the model adjusting
for the propensity score as a restricted cubic spline. Then we used the margins
command with option subpop(phototherapy) to estimate ATT. This
could also be done using the command margins r.phototherapy,
subpop(phototherapy).

Results are shown in Table 9.17. The ATT risk difference is 1.3%, almost twice
as large as the ACE estimate of 0.73% given by the propensity score analysis
using restricted cubic splines. This suggests that pediatricians are more likely to
use phototherapy among higher risk infants with greater expected benefit.
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Table 9.17 ATT using potential outcomes estimation

. qui logistic over_thresh i.phototherapy lps_rcs*, cluster(hospital)

. * Marginal risk difference

. margins, dydx(phototherapy) subpop(phototherapy)
Average marginal effects Number of obs = 20731

Subpop. no. obs = 4584
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0133132 .0020652 -6.45 0.000 -.0173609 -.0092655
----------------------------------------------------------------------------

Table 9.18 Matching to estimate ATT

. psmatch2 phototherapy, out(over_thresh) pscore(prop_score) noreplace

----------------------------------------------------------------------------------

Variable Sample | Treated Controls Difference S.E. T-stat

-------------------------+--------------------------------------------------------

over_thresh Unmatched | .003272251 .006998204 -.003725953 .001310775 -2.84

ATT | .003272251 .016143106 -.012870855 .002043817 -6.30

-------------------------+--------------------------------------------------------

9.4.6.2 Matching

A second way to estimate ATT is to match unexposed to exposed observations on
values of the propensity score. Only exposed observations that can be matched and
unexposed observations matched to exposed observations contribute to the analysis.
As compared to matching on two or more confounders of exposure, matching on
propensity score is relatively easy, since we need only match on a single continuous
variable.

We implemented propensity score matching in the phototherapy data using the
downloadable Stata psmatch2 package. Table 9.18 shows the results. Again, the
ATT estimate of 1.3% is about twice as large as the ACE estimate, and is close to
the estimate obtained using potential outcomes estimation.

9.4.6.3 Standardized Mortality Ratio Weights

Again using Pr.E jC/ to denote the propensity score, SMR weights are defined as 1
for the exposed and Pr.E jC/=.1� Pr.E jC// for the unexposed. SMR weights create
a weighted sample of the unexposed with the same distribution of propensities for
being exposed as the exposed sample. Thus, an analysis using SMR weights, like the
matched analysis, estimates ATT. Furthermore, a logistic model using SMR weights
directly estimates the marginal odds-ratio.
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Table 9.19 Estimation of ATT using SMR weights

. gen smrw = phototherapy + (1-phototherapy)*prop_score/(1-prop_score)

. logistic over_thresh i.phototherapy [pweight=smrw], cluster(hospital)
Logistic regression Number of obs = 20731

Wald chi2(1) = 22.90
Prob > chi2 = 0.0000

Log pseudolikelihood = -506.4758 Pseudo R2 = 0.0465
(Std. Err. adjusted for 11 clusters in hospital)

----------------------------------------------------------------------------
| Robust

over_thresh | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------
1.photothe˜y | .1848805 .0652173 -4.79 0.000 .0926033 .36911
----------------------------------------------------------------------------

. * Marginal risk difference

. margins, dydx(phototherapy)
Conditional marginal effects Number of obs = 20731
Model VCE : Robust
Expression : Pr(over_thresh), predict()
dy/dx w.r.t. : 1.phototherapy
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.photothe˜y | -.0141753 .0022128 -6.41 0.000 -.0185124 -.0098382
----------------------------------------------------------------------------

Table 9.19 shows an analysis of the phototherapy data using SMR weights. In
contrast to the IP weights, which exceeded 20 for many exposed infants, the largest
SMR weight was less than 12. Like the potential outcomes and matched analyses,
the risk difference of 1.4% (95% CI 0.98–1.9%) was larger than in the overall
analysis, but the marginal odds-ratio of 0.18 (95% CI 0.09–0.37) was similar.

In summary, our propensity score analysis suggested slightly less—though
unquestionably great—protection from phototherapy than the analysis using re-
gression adjustment. In the light of restrictions imposed by the limited number
of outcomes on direct regression adjustment, the propensity score results us-
ing stratification, splines, matching, and SMR weights have somewhat greater
credibility. We have less confidence in the analysis using IP weights because of
the presence of some large weights.

9.4.7 Recommendations for Using Propensity Scores

In most cases, propensity score quintiles are a good place to start. This makes
it easy to check numbers of events, covariate balance, and interaction between
exposure and the propensity score. Using more than five categories should reduce
residual confounding, but categories with no events may be a bigger problem,
and checks for balance and interaction may be hard to interpret in all but the
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largest data sets. More generally, because categorization by quantile models the
effect of the propensity score as a step function, as shown in Fig. 4.7, this may
allow for residual confounding. As a result, we recommend an additional analysis
incorporating the propensity score as a restricted cubic spline (Kang and Schafer
2007). If the estimated exposure effects are similar to those using categories, the
simpler analysis has the advantage of being easier to understand and present. If the
results are inconsistent, the spline analysis is worth the extra trouble.

In general, we are reluctant to recommend using propensity scores as inverse
probability weights. Potential problems include loss of precision, large, influential
weights that need to be dealt with using ad hoc approaches, and difficulty obtaining
correct standard errors in some packages other than Stata. Although approaches
have been developed to address these issues, they are generally complex to
implement and still the subject of ongoing research.

Matching on propensity scores may be particularly effective in control of
confounding (Austin 2007, 2009), but can also lead to a loss of observations in
cases where matching criteria are stringent. Estimation of ATT using SMR weights
avoids that difficulty, but can entail the same difficulties as IP weights, although the
SMR weights were well-behaved in the phototherapy example. More generally, the
resulting ATT effect estimates have a special interpretation that may not always be
appropriate.

9.4.7.1 Advantages and Limitations of Propensity Scores

Propensity scores are particularly useful in analyses of uncommon binary or failure
time outcomes where there are more confounders than can realistically be adjusted
for using conventional regression adjustment. In addition, balance and covariate
overlap can be checked and improved without looking at outcomes, helping to
avoid overfitting and inflation of the type-I error rate (Rubin 2001). Sometimes these
checks may lead to restriction, estimation of ATT using matching or SMR weights,
or even to the recognition that the exposed and unexposed in the available sample
are too unlike to be usefully compared.

Despite their applicability and relative simplicity, propensity scores do have
limitations. First, there is some subjectivity in deciding whether to incorporate the
scores in the second step of the analysis by stratification, regression adjustment,
or inverse weighting. This decision can sometimes have major effects on resulting
estimates. Second, the propensity score approach involves two statistical models,
one for the relationship between the probability of exposure and predictors, and a
second for the relationship between exposure and the outcome, accounting for the
propensity scores. If either (or both) of these models is incorrect, biased estimates
of the causal effect may result.
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9.5 Time-Dependent Treatments

Estimation of average causal effects is more complicated when we consider
assessing the effects of long-term treatments on long-term outcomes. For example,
high blood pressure, or hypertension, is a risk factor for declines in kidney function,
as measured by the estimated glomerular filtration rate (eGFR). So we might be
interested in the effect of antihypertensive drugs on decline in eGFR over time.
Alternatively, patients are classified as having chronic kidney disease (CKD) when
eGFR falls to less than 60 mL/min/1.73 m2. So we might also be interested in
evaluating the efficacy of antihypertensive drugs for preventing progression to CKD.

To estimate the average causal effect of antihypertensive treatment on eGFR and
CKD, we could use longitudinal data from an observational study in which blood
pressure, antihypertensive use, and eGFR are measured regularly, and incidence of
CKD is observed. Antihypertensives will typically be started at varying times, on
the basis of clinical indications and patient preferences. We might handle this by
treating antihypertensive use as a time-dependent covariate (TDC) in one of the
longitudinal models introduced in Chap. 7 for the repeated eGFR measurements, or
in a Cox model for time to onset of CKD.

Clearly, blood pressure is a potential confounder of antihypertensive use in our
observational cohort, driving initiation of treatment as well as risk of CKD. But
because blood pressure is variable over time, we would be faced with a time-
dependent confounder. To achieve conditional independence of current treatment,
we would likely need to condition on current and possibly past blood pressure
values. Supposing that both blood pressure and antihypertensive use are measured
at frequent intervals over follow-up of the cohort, an apparent solution is to treat
them both as TDCs.

Why Time-dependent Covariates May Not Work

As a means of controlling for confounding, use of TDCs in a repeated measures
or Cox model appears reasonable, but there are difficulties with this approach. In
our example, the problem is that the prognostic variable we would use to control
for confounding is also affected by treatment. Specifically, updated blood pressure
measurements made after treatment is begun would reflect earlier treatment.
As a result, in a Cox model with TDCs capturing current blood pressure and
antihypertensive treatment, we would adjust away some part of the treatment effect,
so the hazard ratio for treatment would not estimate the overall effect of treatment
with antihypertensive medication.

In the best-known approach for dealing with time-dependent treatments,
confounding by time-dependent confounder–mediators is controlled using time-
dependent IP weights rather than TDCs. We also briefly describe two alternatives
to models using IP weights, nested cohorts of new users and G-estimation.
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9.5.1 Models Using Time-dependent IP Weights

The IP weights used in this context are time-dependent extensions of the IP weights
introduced in Sect. 9.4.3. Ideally, use of IP weights creates comparable weighted
samples of treated and untreated patients so that treatment is unassociated with
the confounders in the overall weighted sample. This also means that the causal
effect estimates provided by these models are intrinsically marginal, not conditional,
without explicit potential outcomes estimation.

The rationale for using time-dependent IP weights is that because the con-
founders are not included as covariates in the model, updated after the initiation
of treatment, we do not remove the indirect effect of treatment mediated by its
downstream effects on those confounders—but we do remove the confounding.
This is in contrast to standard approaches to mediation, in which we would add the
mediator to the model in order to estimate the direct effect of the primary predictor
via other pathways.

9.5.1.1 Inverse Probability of Censoring Weights

In addition to IP weights, inverse-probability-of-censoring (IPC) weights may be
used to reduce bias potentially stemming from so-called dependent censoring, dis-
cussed in Sect. 6.6.4. The effect of the IPC weights is to maintain the comparability
of the IPC-weighted treated and untreated samples. If the model for the IPC weights
is correct, this avoids selection bias due to dependent censoring.

Note that TDCs affected by treatment—that is, potential mediators of the
treatment effect—may have to be included in the model used to estimate the IPC
weights, in order to reduce bias from dependent censoring; baseline covariates may
not suffice for this purpose. However, using IPC weights rather than including these
mediators as TDCs has the same benefit as using IP weights rather than TDCs to
control confounding by time-dependent confounder–mediators: specifically, they
allow us to estimate the overall effect of treatment without adjusting away the
indirect effects mediated by the TDCs.

9.5.1.2 Stabilized and Final Weights

In many applications, so-called stabilized weights are used. The purpose of the
stabilization is to reduce the variability of the weights, thus increasing the precision
of the treatment effect estimate.

Stabilization of IP weights requires estimation of two models for the probability
of current treatment status, a denominator model including baseline and time-
dependent confounders, possibly including treatment history, and a numerator
model including the baseline confounders and treatment history from the denom-
inator model, but excluding other time-dependent confounders. Then the stabilized
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IP weight is calculated as the ratio of the estimated probabilities of current treatment
status from the numerator and denominator models. Analogous numerator and
denominator models are used to estimate stabilized IPC weights. In a final step,
the combined stabilized weight for each observation is calculated as the product of
the stabilized IP and IPC weights.

The rationale for this method is that the numerator of the stabilized weights is
correlated with the denominator, because the two models share predictors. Accord-
ingly, the combined weight should be less variable than the denominators alone. In
our experience, stabilization does not always substantially reduce variability, but in
cases where very large weights are a problem, this approach may be useful.

9.5.1.3 Checking for Positivity Violations

Models using IP weights require the positivity assumption, introduced in Sect. 9.2:
in this case, that at every time point, each participant must have a positive probability
of being treated, and also a positive probability of not being treated. Violations of the
positivity assumption can lead to large weights, loss of efficiency, and bias. Since the
probability of treatment is estimated in calculating the IP weights, this assumption
can be checked.

Positivity violations may sometimes be avoided by more careful development
of the models used to calculate the weights, or by restricting the analysis to
observations with predicted probabilities of current treatment status between 5%
and 95%, as in our analysis using propensity scores in Sect. 9.4.5. Again, this
will exclude participants who are almost always or almost never treated, focusing
inferences on a target population in which the risk and benefits of treatment
are unclear. Note that a stabilized weight of 20 no longer corresponds to a 5%
probability of treatment received, so care must be taken in implementing this
procedure. Petersen et al. (2010) provide in-depth guidance on responding to
violations of this crucial assumption in models using IP weights to deal with time-
dependent confounder–mediators.

9.5.1.4 Checking the Proportional Hazards Assumption

A common focus in fitting models using IP weights for time-dependent treatments is
the marginal hazard ratio for the comparison of continuous treatment for the entire
study period, compared to no treatment. In several published reports (Hernán et al.
2000; Cole et al. 2003; Fewell et al. 2004); this is modeled using a single parameter
for current treatment, under the assumption that treatment has a constant effect—
essentially the proportional hazards assumption introduced in Sect. 6.1.4.

It is important to check whether the treatment effect is in fact time-dependent,
violating the proportional hazards assumption. In our example concerning treat-
ments for hypertension and CKD, this might hold if the reduction in CKD risk
increased with duration of antihypertensive treatment. A simple model assuming
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a constant treatment effect would, under these circumstances, provide biased
estimates of the effect of continuous treatment for the entire period. The assumption
of a constant treatment effect can be checked by assessing the (possibly nonlinear)
effects of treatment duration. If the effect of treatment changes with treatment
duration, then it may make more sense to target the cumulative treatment effect.

9.5.2 Implementation

Models using IP and IPC weights to deal with time-dependent confounder–
mediators require a repeated-measures extension of the methods used to implement
a cross-sectional propensity score analysis in which the scores are incorporated as
IP weights, as shown in Sect. 9.4.2.

9.5.2.1 Repeated Measures Outcomes

For repeated measures outcomes ascertained at each study visit, the extension to
the longitudinal setting is immediate. For each participant contributing an outcome
at each visit, we would define one or more TDCs for treatment, as well as a
time-dependent combined stabilized weight dependent on the history of treatment,
the confounder–mediator, and other baseline and time-dependent confounders up
to that visit. Then, the data would be pooled across visits and analyzed using
robust standard errors to account for clustering within individuals. Covariates in
the model would include the TDCs for treatment and optionally baseline covariates;
information from other time-dependent confounders and confounder–mediators is
incorporated via the combined weight.

9.5.2.2 Survival Outcomes

For survival outcomes, the analysis would typically use pooled logistic regression
(PLR), introduced in Sect. 5.5.2, rather than the Cox model. The rationale for using
PLR is that suitable software typically accommodates time-dependent weights, in
contrast to the Cox model implementations in most statistical packages.

To implement PLR, we would first need to split the time axis into relatively short
intervals, so that information on the timing of events is not lost. For example, in
a cohort study of six years duration with a survival endpoint, the time scale might
by divided into 72 one-month intervals. Then for each participant still at risk of the
outcome in each monthly interval, we would define one or more TDCs for treatment,
a time-dependent combined stabilized weight as in the repeated measures case, and
an indicator of whether the outcome occurs in the interval. As in the Cox model,
individuals would not contribute to intervals after failure or censoring.
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Again, the data would be pooled across intervals for analysis. In contrast to
the Cox model, the baseline event rate cannot be left unspecified in PLR. Instead,
some parsimonious modeling is required; one often-workable solution is to include
interval number as a restricted cubic spline. The model would include the TDCs
for treatment and optionally baseline covariates, with information from other time-
dependent confounders and confounder–mediators incorporated via the combined
weight. Robust standard errors must be used.

9.5.2.3 Worked Example

The programming required to set up these analyses is moderately complicated and
particular to the package used. Thus, we have only outlined the implementation
here, but provide a fully annotated Stata example with a survival outcome on the
website for this book. Do-files as well as annotated code are included.

9.5.3 Drawbacks and Difficulties

Implementing a model using inverse weighting to deal with time-dependent
confounder–mediators can be complicated. In particular, there may be more
than one confounder–mediator to deal with, and many predictors of treatment
status will generally need to be taken into account. Furthermore, the appropriate
form for all five models will be unknown, although the specification must be
approximately correct for the model to provide consistent estimates. Chapters 4
and 5 provide guidance on developing good models, but power to detect model
misspecification may be low. Missing values pose additional challenges, although
not qualitatively different from more conventional survival analyses using time-
dependent covariates. Finally, very large weights reflecting positivity violations
may strongly influence the results and need to be dealt with, either by improvement
of the weights or by restriction to a subsample where the positivity assumption is
more clearly met.

The problem of estimating the effects of time-dependent treatments in the
presence of time-dependent confounder–mediators is a topic of current statistical
research, and in our view there is currently no established, straightforward solution
broadly applicable to survival as well as repeated continuous, binary, and count
outcomes. As noted in Sect. 9.4.2, more recent statistical research (Lunceford and
Davidian 2004; Kang and Schafer 2007; Schafer and Kang 2008; Freedman and
Berk 2008) has pointed out drawbacks in the use of IP weights for estimation of
causal effects. These include loss of precision when the weights are highly variable,
the potential need for ad hoc trimming of large weights, and vulnerability to bias
when the models underlying the weights are misspecified.

These considerations lead us to recommend that analysis using IP weights
be considered only for estimation of the effects of time-dependent treatments
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or exposures with time-dependent confounder–mediators—the case where special
methods are needed to obtain an estimate of the overall effect of treatment. In
the absence of time-dependent confounder–mediators, other approaches, including
other methods for using propensity scores, avoid the inefficiency and difficulties
of inverse weighting, yet often provide comparable control of confounding. In
addition, marginal rather than conditional effect estimates are often easily calculated
using potential outcomes estimation, as shown in Sect. 9.3.4.

9.5.4 Focusing on New Users

Our discussion of time-dependent treatments has implicitly assumed that we would
observe cohort participants before treatment is begun. In cases where the time-
dependent confounder is subsequently affected by treatment, we need to measure
the confounder before treatment is initiated to remove confounding. For example,
in estimating the effects of antihypertensive use on risk of developing CKD,
on-treatment blood pressure levels would be a misleading measure of baseline risk.
Likewise, our discussion of choosing an appropriate causal target assumed that the
focus would be on the effect of a treatment from initiation forward, although the
effect may vary over time. Parenthetically, we recognize that other analyses might
focus on the effect of discontinuing treatment among prevalent users, entailing a
different study design.

These considerations emphasize the importance of excluding prevalent users in
most analyses of the effect of time-dependent treatments. If this is done, estimates
of the effect of treatment are based entirely on comparisons between new users
observed to initiate treatment and appropriate controls. By focusing on new users,
we can reduce several types of bias (Ray 2003):

• Bias from time-dependent treatment effects. HT, as an example, has early adverse
effects, possibly followed by late benefit. If we assume that the treatment effect is
constant, inclusion of prevalent users places too much weight on the late effects.

• Bias from selection of survivors. This issue is clearest for surgical treatments with
perioperative mortality risk. A sample including patients recruited after surgery
will include an unrepresentative proportion of survivors, and thus put too much
weight on operative successes. Similarly, women dying from heart attacks in the
first year of hormone therapy use will almost surely be under-represented in a
cohort including prevalent users.

• Adherence bias. Placebo-controlled trials have shown that adherence to placebo
is independently associated with better outcomes in many contexts. Including
prevalent users puts too much weight on outcomes among the long-term users,
by definition better adherers to treatment.

The primary disadvantage of excluding prevalent users is loss of precision.
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9.5.5 Nested New-User Cohorts

Hernán et al. (2008) generalizes Ray’s new-user approach to time-dependent
treatments, providing an alternative to models using IP weights to deal with time-
dependent confounder–mediators of time-dependent treatments. Typically using
data from a cohort study with visits at regular intervals, a nested cohort is selected
at each sequential visit, consisting of new users who started treatment in the
interval since the last visit, and controls who remain untreated up through that visit.
Follow-up for the new users begins at the time of treatment initiation, and for
controls at the average time of initiation among the new users in the nested cohort.

In the analysis, the resulting nested cohorts are pooled. Because observations as
well as outcome events may figure in multiple cohorts, robust standard errors must
be used. Survival or repeated measures models, depending on the outcome, are then
used to control for confounders as fixed covariates, ascertained at the newly defined
beginning of follow for each nested cohort participant. This is in contrast to the
conventional Cox model with TDCs. As a result, we do not adjust away the indirect
effect of treatment mediated by its subsequent effects on the confounder–mediator.

Of course, some patients included as new users in each nested cohort cease use,
and some controls start. Hernán et al. (2008) resolve this problem by censoring
follow-up at the time of cross-over, thus focusing comparisons on new users who
continue use and controls who remain nonusers.

However, the censoring will often depend on time-dependent covariate values
at the time of censoring—that is, on potential mediators of the treatment effect.
Controlling for these confounder–mediators as TDCs might make the censoring
conditionally independent, but would also adjust away the fraction of the treatment
effect that they mediate. Thus, to estimate the overall treatment effect, we would
need to use IPC weights rather than TDCs to account for the dependent censoring.

In summary, at the cost of some programming to set up the nested cohorts, we
avoid having to model the IP weights. However, the models for the IPC weights must
be correct, and large IPC weights may impose some of the same loss of efficiency
and vulnerability to bias seen with IP weights in some applications. On the website
for this book, we provide an example of a nested new-user cohort analysis with IPC
weights, implemented in Stata and using simulated data. Do-files with annotated
code are included.

9.6 Mediation

In Sects. 4.5, 5.2.3, and 6.2.9, we presented methods for assessing the mediating
influence of predictors in regression models. Assigning a causal interpretation to
related quantities such as direct and indirect effects involves extension of potential
outcomes to include the mediating variable, and generalization of assumptions
required for valid estimates to include the relationships between the mediator,
outcome, and confounders.
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Recall the example from the FIT study presented in Table 5.12 on estimating
the effect of a treatment on new fracture risk in the presence of possible medi-
ation through observed changes in BMD level. Although the original assignment
to treatment was randomized, changes in BMD occur postrandomization. Thus,
controlling for observed change in BMD raises the possibility of confounding by
variables causally related to both change in BMD and fracture risk.

In addition to the assessment of the presence of mediating effects of changes
in BMD summarized in Table 5.12, we may also want estimates of the impact of
treatment not mediated through the BMD pathway. As introduced in Sect. 4.5, this
is an example of a direct effect of treatment. Although a logistic regression model
including treatment and change in BMD may be used to provide an estimate of this
direct effect, in the presence of additional confounding variables (e.g., the model
in Table 5.12), this will have a conditional interpretation discussed in Sect. 9.3.1.
Marginal estimates that are interpretable as a causal direct effect can be obtained
using a generalization of the potential outcomes approach described in Sect. 9.1.

The causal controlled direct effect of treatment is defined as a comparison of the
potential fracture outcomes in treated and untreated women with change in BMD
fixed at a specified level. This corresponds to the effect that would be observed if
we could randomize treatment in women known to be homogeneous in their BMD
response, and provides useful information about the effectiveness of treatment in
this context. Note that potential outcomes of women in this situation need to account
for both treatment alternatives and the specified level of change in BMD. The
potential outcome for a woman assigned treatment E and mediating variable Z is
defined as Y.E ;Z/. The controlled direct effect for a fixed value z of Z , expressed
as a causal risk difference, is then defined as

EŒY.1; z/� � EŒY.0; z/�: (9.12)

Because the potential outcomes now depend on two variables, the definitions in
Sect. 9.1 need to be extended accordingly. For example, the marginal structural
model (9.1) for the mean potential outcomes must be specified as a function of
both E and Z . The additional conditional independence assumption required for
valid estimation of related causal effects also must include observed confounding
variables C of the relationship between Z and Y . These may be distinct from
observed variables that confound the relationship between E and Y . This assumption
specifies that potential outcomes Y.E ;Z/ are independent of Z conditional on E
and C.

When the assumptions outlined above hold, estimation of controlled
direct effects can generally be accomplished using a modified version of the
potential outcomes approach described in Sect. 9.1.7. Table 9.20 illustrates the
potential outcomes approach for the example from Table 5.12. After fitting
the model linking outcomes to both the mediator and potential confounders
(and suppressing the output using the Stata prefix quietly), the margins
command estimates the treatment group-specific marginal outcome probabilities
with change in BMD fixed at zero for all women, using the margins option
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Table 9.20 Estimating the controlled direct effect of treatment in the FIT study

. quietly logistic frac_new i.treat bmd_diff bmd_base i.frac_base ///
> i.smoking age_spl*

. margins treat, at(bmd_diff==0)
Predictive margins Number of obs = 5339
Model VCE : OIM
Expression : Pr(frac_new), predict()
at : bmd_diff = 0
----------------------------------------------------------------------------

| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
treat |

0 | .0681827 .0047664 14.30 0.000 .0588408 .0775247
1 | .0430936 .004234 10.18 0.000 .0347952 .051392

----------------------------------------------------------------------------

. margins, dydx(treat) at(bmd_diff==0)
Average marginal effects Number of obs = 5339
Model VCE : OIM
Expression : Pr(frac_new), predict()
dy/dx w.r.t. : 1.treat
at : bmd_diff = 0
----------------------------------------------------------------------------

| Delta-method
| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
1.treat | -.0250891 .0065736 -3.82 0.000 -.0379731 -.0122051

----------------------------------------------------------------------------

. margins r.treat, at(bmd_diff==0)
Contrasts of predictive margins
Model VCE : OIM
Expression : Pr(frac_new), predict()
at : bmd_diff = 0
------------------------------------------------

| df chi2 P>chi2
-------------+----------------------------------

treat | 1 14.57 0.0001
------------------------------------------------
--------------------------------------------------------------

| Delta-method
| Contrast Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------
treat |

(1 vs 0) | -.0250891 .0065736 -.0379731 -.0122051
--------------------------------------------------------------

at(bmd diff==0). Then the controlled direct effect on the risk difference scale
is obtained two ways, first using dydx option, then using the r. contrast operator.

In the situation where there are observed variables that are mediators of the
relationship between the exposure and the primary mediator of treatment effects
Z , estimation of controlled direct effects may require inverse weighting methods as
described in Sect. 9.1.8. In the context of the FIT example, consider an intermediate
biological factor that results from treatment that in turn affects both changes in BMD
and fracture risk. Controlling for this variable as a confounder would effectively
remove some of the effect of treatment on changes in BMD. Omitting it would
result in residual confounding of the relationship between changes in BMD and
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fracture risk. The need for inverse weighting methods in such situations thus echoes
the motivations for their use in the context of marginal structural models for event
time outcomes introduced in Sect. 9.5. In the mediation case, inverse weights are
required for both the probability of treatment and the mediator (VanderWeele 2009).

The controlled direct effect is of limited interest in situations where the mediating
variable cannot be interpreted as amenable to control via an intervention. The
natural direct effect is an alternative measure that represents the effect of blocking
the effect of exposure on the mediator, but allowing the value of the mediator to vary
among individuals at levels that would have been observed in the absence of expo-
sure. Causal interpretation requires potential versions of the mediator corresponding
to possible exposure scenarios. The natural direct effect can then be defined as the
average causal effect among individuals with the potential mediating variable fixed
at the level indicating no exposure. Estimation of natural direct effects requires
additional assumptions beyond those required for controlled direct effects, and valid
estimates from standard regression approaches are possible only in fairly restricted
situations. Some of these methods are implemented in the downloadable Stata
package mediation. These issues also apply to decomposition of overall effects
into direct and indirect components, illustrated for linear models for continuous
outcomes in Sect. 4.5. Because methods for estimation are an area of active research,
we refer readers to recent references provided in Sect. 9.10.

9.7 Instrumental Variables

A primary assumption of most methods for estimating the causal effects of an
exposure or treatment using observational data is that there are no unmeasured
confounders. This assumption underlies regression adjustment, the primary topic of
this book, as well as propensity scores and the methods proposed for dealing with
time-dependent treatments. The assumption of no unmeasured confounders cannot
be directly verified, and arguments on substantive grounds that nothing important
has been omitted will sometimes be unconvincing.

In contrast, the method of instrumental variables (IVs) may allow us to obtain
valid estimates of causal effects when this assumption is not met. Instrumental
variables have a long history in the social sciences, are an everyday tool of
econometricians, political scientists, and sociologists, and may play an important
role in comparative effectiveness research using administrative databases with
limited confounder measurements.

For example, Hearst et al. (1986) used the draft lottery in the United States
as an IV to estimate the effect of having served in the military on mortality risk
after the Vietnam war. Not nearly enough information was available for veterans,
not to mention appropriate controls, to attempt to answer this question using
regression adjustment or propensity scores. However, draft lottery numbers had
several properties that made them useful for the analysis: having a lottery number
below the eligibility threshold was a strong determinant of military service, it was
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randomly assigned, and it did not obviously influence subsequent life course except
through its influence on service. Essentially, these are the defining characteristics of
an IV:

(1) It must be a strong predictor of exposure.
(2) Its associations with both exposure and outcome must be unconfounded, at least

conditionally on measured covariates.
(3) All of its association with the outcome must be mediated by exposure.

Clearly, we have replaced the assumption that exposure is unconfounded with the
assumption that the IV is unconfounded. But in some cases, this assumption is easier
to accept for an IV than an exposure. Examples include certain natural experiments
and treatment assignment as an IV for treatment received in clinical trials.

IVs from Natural Experiments

Well-justified IVs can come from natural experiments. The Vietnam-era draft
lottery is one example. Another is the intertwining of the pipelines of the Lambeth
Waterworks with those of the Vauxhall and Southwark; Snow (1855) recognized
that waterworks was effectively allocated at random to households. Waterworks
could have served as an IV because it strongly influenced exposure to the cholera
bacterium (assumption 1), was not associated with other cholera risk factors
(assumption 2), and could have had no effect on cholera except through its influence
on this exposure (assumption 3).

Similarly, Smith and Ebrahim (2004) show how Mendelian randomization can
also be viewed as a natural experiment in which genetic variants that influence
causal factors of interest are allocated at random. For example, Katan (1986) used
one such variable allele linked to higher cholesterol levels as an IV to assess the
possible causal effects of cholesterol on cancer risk. The allele can serve as an IV
because it influences cholesterol levels (assumption 1), is not associated with other
cancer risk factors (assumption 2) under Mendelian randomization, and presumably
has no effect on cancer risk except through its influence on cholesterol levels
(assumption 3).

Treatment Assignment as an IV

In clinical trials with excellent adherence, a simple comparison of average outcomes
in the treatment and control groups often has a straightforward interpretation as
the causal effect of treatment. However, in trials with incomplete adherence, the
treatment that participants actually receive is often affected by patient characteristics
that influence both adherence and outcomes. In this case, random treatment
assignment can be a good IV for estimating the causal effect of treatment received
rather than the effect of treatment assignment, which is generally attenuated by
nonadherence. In most trials, assumption 1 holds because treatment assignment
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is a strong determinant of treatment received. Assumption 2 holds provided the
randomization was successful. And assumption 3 holds if the trial is successfully
blinded, blocking plausible indirect causal pathways from treatment assignment to
the outcome.

For example, Permutt and Hebel (1989) used random assignment of expectant
mothers who smoked to a program encouraging them to stop smoking as an IV
for the effect of smoking on the birth weight of their newborns. This analysis
suggested that actual reductions in smoking resulted in substantially higher birth
weights. Similarly, Sommer and Zeger (1991) and later Greenland (2000) used
treatment assignment in a cluster-randomized trial as an IV to show that vitamin
A supplementation reduced mortality among children in rural Indonesia.

IVs in Comparative Effectiveness Research

One context in which IV analysis might prove useful is comparative effectiveness
research on the safety and efficacy of approved treatments. The crucial problem
for such research is confounding of treatment effects by clinical indications that
physicians use in deciding on a course of treatment. More effective treatments may
be preferentially given to sicker patients, especially if they entail costs, risks, or side
effects that are only acceptable in graver cases. However, many of the signs and
symptoms identifying these patients are not adequately captured in observational
and especially administrative databases. As a result, standard regression adjustment
is commonly unable to adjust completely for differences in prognosis between
patients given alternative treatments. The resulting treatment effect estimates are
confounded.

In contrast, IVs hold out some hope, because in principle they do not require
that all confounders be measured. Differences in practice patterns across regions,
hospitals, or physicians are one possible IV for a treatment of interest. Assumption
1 holds because the varying practice patterns can be assumed to influence or at
least reflect what treatments are used. Assumption 2 holds if practice patterns
are conditionally independent of unmeasured risk factors for the disease outcome
under consideration, given available covariates. And assumption 3 holds if practice
patterns only affect outcomes via receipt of the treatment of interest.

As an example of using variation in practice patterns, Brookhart et al. (2006b)
used physician preferences for prescribing Cox-2 inhibitors, a class of nonsteroidal
anti-inflammatory drugs (NSAIDs), as an IV in estimating the effect of these pain
relievers on gastrointestinal complications, relative to other NSAIDs.

9.7.1 Vulnerabilities

In many contexts it can be difficult to find an IV that unquestionably meets
assumptions 2 and 3. For example, in using the draft lottery as an IV for military
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service during the Vietnam war, assumption 3 could have been violated if men with
low-lottery numbers stayed in school to retain draft deferments, which could have
improved their life chances by means other than avoiding military service (Angrist
and Krueger 1992; Angrist et al. 1996).

Similarly, in the Mendelian randomization example, assumption 2 could be
violated in samples including people of different race or ethnicity, which might be
associated with both allele frequency and exposure to other cancer risk factors—
the well-known problem of population stratification. And assumption 3 could be
violated if the allele of interest affects pathways other than cholesterol levels that
are important for cancer risk, or is in so-called linkage disequilibrium and thus
correlated with other alleles that do. We could control for race/ethnicity, but direct
effects would be harder to rule out.

In the Cox-2 example, assumption 2 could be violated if physicians who are
more likely to prescribe Cox-2 inhibitors also see higher risk patients on average,
so that the association between practice style and gastrointestinal complications
is confounded by differences in patient risk. In addition, assumption 3 could be
violated if the physicians who more frequently prescribe Cox-2 inhibitors also tend
to prescribe additional protective medications, such as H2-blockers or proton pump
inhibitors. In this case, a practice style favoring Cox-2 inhibitors would have direct
effects on the outcome that are not mediated by the Cox-2 inhibitors themselves
(Hernán and Robins 2006). This issue threatens the validity our IV analysis of the
phototherapy data, reported in Sect. 9.7.6.

Several other potential problems with the use of IV for estimation of causal
effects are worth mentioning:

• IV methods are generally less efficient than direct regression adjustment, so
make most sense when unmeasured confounding of exposure is a well-justified
concern.

• The IV should be strongly associated with exposure. Weak correlation between
them makes IV effect estimators less precise. This problem is generally worse
when the measured IV is a noisy surrogate (Hernán and Robins 2006), as in
the Brookhart et al. (2006b) example.

• IV regression coefficient estimates are not unbiased in small samples. At best,
under assumptions 1–3, they are consistent—that is, the bias is negligible in large
samples.

• Weak correlation between the IV and exposure inflates any bias.
• In cases where the exposure–outcome relationship is strongly confounded, IVs

strongly associated with exposure may not exist. If a strong IV is found in this
context, assumption 3 is likely violated (Martens et al. 2006).

• With continuous exposures and outcomes, the linearity and constant variance
assumptions are important, with violations potentially inducing bias and invali-
dating CIs and P -values.
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9.7.2 Structural Equations and Instrumental Variables

Instrumental variables were originally proposed in the context of linear structural
equation models. In this section, which can be skipped without loss of continuity,
we briefly sketch the underpinnings of IV analysis.

Suppose we would like to estimate the causal effect of an exposure E on an
outcome Y , using observational data. We know that the effect of E on Y is
confounded by a measured confounder C, but also by an unmeasured confounder
U . Recall that a proposed instrumental variable I must be strongly associated with
E , its associations with both E and Y must be unconfounded, given C, and its
association with Y must completely mediated by E .

We have two linked structural equations, the first for the effect of E on Y :

Y D ˇ0 C ˇ1E C ˇ2C C �: (9.13)

Because U is omitted from this model, regressing Y on E and C would give a biased
estimate of ˇ1. So simple regression adjustment will not provide unbiased estimates
of the causal effect of E on Y . The second structural equation is for the effect of I
on E :

E D �0 C �1I C �2C C 
: (9.14)

Under our assumption that the association of I with E is unconfounded, given
C, a regression of E on I and C will provide an unbiased estimate of �1. Next,
substituting (9.14) in (9.13), we do some algebra to obtain an equation for the effect
of I on Y .

Y D ˇ0 C ˇ1.�0 C �1I C �2C C 
/C ˇ2C C �
D ˇ0 C ˇ1�0 C ˇ1�1I C .ˇ1�2 C ˇ2/C C ˇ1
C �
D 	0 C 	1I C 	2C C  : (9.15)

Under our assumption that the association of I with Y is unconfounded, given C, a
regression of Y on I and C will provide an unbiased estimate of 	1. By definition,
	1 D ˇ1�1, so we can estimate ˇ1 by O	1= O�1. This IV causal effect estimator is
implemented in the ivregress command in Stata.

9.7.3 Checking IV Assumptions

To begin, it is straightforward to assess the strength of the relationship between
the IV and exposure. For the case with continuous exposure and outcome, the
ivregress post-estimation command estat firststage provides R2 and
an F -test to help make this assessment. For other cases, this can be done using
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a linear or logistic regression, as appropriate, of the exposure on the IV as well as
confounders of this association. Here, interest would focus on the increment in R2

or pseudo-R2 for the addition of the IV to the model.
Since IV analysis is less efficient than conventional regression adjustment,

it makes sense to look at whether unmeasured confounding justifies its use.
Although we can never rule out confounding by unmeasured factors, we can
assess evidence for its existence. In particular, tests for residual confounding
of exposure are available for both continuous and binary exposures and out-
comes. When both are continuous, Stata’s ivregress post-estimation command
estat endogenous provides appropriate tests. When either or both are binary,
residual confounding of exposure can be assessed by using certain likelihood-ratio
or Wald tests. We implement these tests in Tables 9.21 and 9.22 below.

Finally, for continuous exposures and outcomes, methods exist for assessing the
validity of the IV. Called tests for overidentifying restrictions and implemented in
Stata’s ivregress post-estimation commandestat overid, these tests would
only be applicable to the examples we have considered, with a single exposure
variable of interest, if we had used more than one IV. More generally, they are
only applicable in analyses where the number of IVs is larger than the number of
exposure variables.

9.7.4 Example: Effect of Hormone Therapy on Change in LDL

To illustrate a basic IV analysis, we analyzed changes in LDL cholesterol during
the first year of the HERS trial. A simple intention-to-treat (ITT) comparison by
treatment assignment showed that average reductions in LDL were 15.6 mg/dL
larger in the HT group. We conducted an observational analysis regressing change
in LDL on HT use, the proportion of days HT was taken, simulated to depend on
unmeasured confounders associated with reductions in LDL. This analysis showed
that taking HT daily would reduce LDL by almost 22 mg/dL.

To deal with the unmeasured confounding, we used treatment assignment as an
IV to estimate the causal effect of HT use on change in LDL. Results are shown
in Table 9.21. This analysis suggests that daily HT use would reduce LDL by an
average of 17 mg/dL, more than the ITT estimate, but considerably less than the
confounded estimate.

In checking IV assumptions, the estat endogenous post-estimation com-
mand gives very strong evidence (P < 0:00005) that HT use was confounded. In
addition, estat firststage shows that the IV, treatment assignment, was very
strongly associated with the exposure, HT use. However, there was some unblinding
in HERS, because of the side effects of HT. This might violate the assumption that
the entire association of the IV with the outcome is mediated by exposure, and would
potentially bias an actual IV estimate of the effect of HT use.
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Table 9.21 IV analysis of hormone use effect on change in LDL

. ivregress 2sls ldlch (HT_use = HT)

Instrumental variables (2SLS) regression Number of obs = 2597
Wald chi2(1) = 143.00
Prob > chi2 = 0.0000
R-squared = 0.0846
Root MSE = 33.215

----------------------------------------------------------------------------
ldlch | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
HT_use | -16.99995 1.421609 -11.96 0.000 -19.78626 -14.21365
_cons | -4.66981 .9199404 -5.08 0.000 -6.47286 -2.86676

----------------------------------------------------------------------------
Instrumented: HT_use
Instruments: HT

. estat endogenous
Tests of endogeneity
Ho: variables are exogenous
Durbin (score) chi2(1) = 305.91 (p = 0.0000)
Wu-Hausman F(1,2594) = 346.355 (p = 0.0000)

. estat firststage
--------------------------------------------------------------------------

| Adjusted Partial
Variable | R-sq. R-sq. R-sq. F(1,2595) Prob > F

-------------+------------------------------------------------------------
HT_use | 0.9569 0.9569 0.9569 57650.4 0.0000

--------------------------------------------------------------------------

9.7.5 Extension to Binary Exposures and Outcomes

So far we have assumed that both the exposure E and the outcome Y are continuous,
as in the structural equations (9.13) and (9.14). In contrast, we have placed no
restrictions on the distribution of the IV. The primary tool for accommodating binary
exposures and outcomes in IV analysis is the probit model.

With a single outcome, the probit model is comparable to logistic regression,
commonly gives similar results, and is implemented in the Stata probit command.
Probit models can be thought of as arising from a latent, or unobserved, normally
distributed outcome, Y �, which follows the linear regression model:

Y � D ˇ0 C ˇ1E C ˇ2C C �; (9.16)

where E and C are defined as before, and � has a standard normal distribution.
However, we only observe the binary outcome Y , which takes on the value 1 if
Y � > 0 and 0 otherwise. For a binary exposure, the analogous probit model is

E� D �0 C �1I C �2C C 
: (9.17)

In some circumstances, the latent variable has a real interpretation. For example,
many individual alleles may contribute to an observable phenotype (Y D 1). In this
case, Y �, the sum of the allelic contributions, might be approximately normal by
the central limit theorem.
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When exposure is continuous but the outcome is binary, we substitute (9.16)
for (9.13). We then can use the Stata ivprobit command to obtain an IV
estimate of the causal effect of continuous E on binary Y , based on (9.14)
and (9.16). With binary exposure and continuous outcome, we substitute (9.17)
for (9.14), then use the downloadable cmp (conditional mixed process) command.
Finally, for binary exposure and outcome, we make both substitutions, then use the
biprobit command. In Sect. 9.7.6, we use this method to re-estimate the effect
of phototherapy on neonatal jaundice.

9.7.6 Example: Phototherapy for Neonatal Jaundice

In addition to the re-analysis using propensity scores in Sect. 9.2.6, we also
estimated the causal effect of phototherapy on neonatal jaundice using IVs. In this
analysis, we took advantage of variation in practice patterns, using hospital and year
of birth jointly as an IV for phototherapy.

The estimates obtained from the IV analysis using the bivariate probit model,
shown in Table 9.22, differ substantially from the adjusted logistic and propensity
score results. The long model output is difficult to interpret directly and thus
omitted. The likelihood ratio test of rho=0 gives evidence (P D 0:0162) for
the residual confounding of phototherapy and thus the need for IV analysis. After
fitting the model, we used the margins command to implement potential outcomes
estimation, then calculated the marginal odds-ratio and risk difference. As in the
conventionally adjusted and propensity score analyses, the marginal risk difference
can be obtained two ways.

The estimated marginal odds-ratio of 0.050 is an order of magnitude smaller than
the marginal odds-ratio of 0.18 obtained using the results in Table 9.6. Similarly,
the estimated risk difference is larger (1.8%, 95% CI 0.53–3.1%), and much less
precisely estimated than results based on standard regression adjustment (0.79%,
95% CI 0.59–1.00%; Table 9.9) or using propensity scores as a restricted cubic
spline (0.81%, 95% CI 0.61–1.0%; Table 9.14).

In a sensitivity analysis omitting the control variables in both biprobit
equations, the estimated marginal odds-ratio for phototherapy was 0.049, very close
to the adjusted IV estimate, lending support to the claim that IV analysis can control
for unmeasured confounders.

9.7.6.1 Evaluating Assumptions

In this example, phototherapy use varied substantially across hospitals and years, so
there was support for assumption 1. In addition, the IV was plausibly unconfounded,
conditional on the other strongly predictive risk factors included in the analysis
(assumption 2).

However, assumption 3, that TSB levels were unlikely to be influenced by
hospital and year except through receipt of phototherapy, was called into question
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Table 9.22 Instrumental variable analysis of phototherapy effect
. biprobit ///

> (over_thresh male i.gest_age##c.birth_wt i.qual_TSB i.age_days i.phototherapy) ///

> (phototherapy2 = i.hosp_year male i.gest_age##c.birth_wt i.qual_TSB i.age_days)

Seemingly unrelated bivariate probit Number of obs = 20731

Wald chi2(150) = 3441.26

Log likelihood = -9605.9172 Prob > chi2 = 0.0000

-------------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

--------------------+----------------------------------------------------------------

....

1.phototherapy | -1.359804 .2550643 -5.33 0.000 -1.859721 -.8598873

....

--------------------+----------------------------------------------------------------

/athrho | .4720604 .1965266 2.40 0.016 .0868753 .8572454

--------------------+----------------------------------------------------------------

rho | .4398626 .1585028 .0866574 .6948357

-------------------------------------------------------------------------------------

Likelihood-ratio test of rho=0: chi2(1) = 5.77649 Prob > chi2 = 0.0162

. * Marginal risk difference

. margins, dydx(phototherapy) predict(pmarg1)

Average marginal effects Number of obs = 20731

Model VCE : OIM

Expression : Pr(over_thresh=1), predict(pmarg1)

dy/dx w.r.t. : 1.phototherapy

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.photothe˜y | -.0181195 .0065423 -2.77 0.006 -.0309422 -.0052968

------------------------------------------------------------------------------

. * Marginal risk difference using contrast operator

. margins r.phototherapy, predict(pmarg1)

Contrasts of predictive margins

Model VCE : OIM

Expression : Pr(over_thresh=1), predict(pmarg1)

------------------------------------------------

| df chi2 P>chi2

-------------+----------------------------------

phototherapy | 1 7.67 0.0056

------------------------------------------------

--------------------------------------------------------------

| Delta-method

| Contrast Std. Err. [95% Conf. Interval]

-------------+------------------------------------------------

phototherapy |

(1 vs 0) | -.0181195 .0065423 -.0309422 -.0052968

--------------------------------------------------------------

by an unmeasured co-intervention, switching from breast feeding to formula. In
a matched case-control sample nested within the larger study (Kuzniewicz et al.
2008), use of this co-intervention was strongly correlated (r D 0:56; P < 0:001)
with use of phototherapy across Kaiser facilities. However, adjusted estimates of
the effect of phototherapy were similar with (odds-ratio 0.15, 95% CI 0.06, 0.40,
P < 0:001) and without (odds-ratio 0.14, 95% CI 0.06, 0.35, P < 0:001)
additional adjustment for the co-intervention, formula use, suggesting that the
analysis using regression adjustment may not be badly biased. However, because
the co-intervention is more common at hospitals where phototherapy is more often
used, it would make phototherapy appear even more protective than it is in the IV
analysis.
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9.7.7 Interpretation of IV Estimates

In the original IV formulation using structural equation modeling, it was assumed
that the causal effect of exposure on the outcome is constant across the population.
Under this view, the IV analysis estimates the population-wide average causal effect
of the exposure. This interpretation requires us to posit a mechanism under which
the entire population is treated, or not.

In contrast, in the potential outcomes framework, IV effect estimates are
commonly interpreted more narrowly. For example, Greenland (2000) interpreted
the causal effect of Vitamin A supplementation assessed in the Indonesian trial as
applying only to the children of families that would comply with the supplemen-
tation program, but not necessarily to children in other families. This is sometimes
called the local average treatment effect (LATE).

9.8 Trials with Incomplete Adherence to Treatment

Randomization is well known to prevent confounding of treatment in an experiment,
at least on average and in large enough samples. It follows that when adherence to
assigned treatment (as well as follow-up) is complete, then unadjusted comparisons
of outcomes in the treated and control groups provide unbiased estimates of the
causal effect of treatment.

9.8.1 Intention-to-Treat

We know, of course, that adherence to assigned treatment in clinical trials is
commonly incomplete, especially for treatments that have adverse side effects or
are freely available to controls. Setting aside the complications posed by incomplete
follow-up until Chap. 11, on missing data, incomplete adherence implies that an
unadjusted comparison of mean values of the outcome in the treated and control
groups, an intention-to-treat (ITT) analysis, only provides a consistent estimate of
the causal effect of treatment assignment, which is sometimes interpretable as the
effectiveness of a treatment program. (We note that there may be some attenuation
of the effectiveness estimate in logistic and Cox models, arising from the omission
of covariates uncorrelated with treatment assignment but strongly associated with
treatment, as noted earlier in Sects. 3.4.5, 4.4, 5.2.3, and 6.6.3). However, it does
not provide an unbiased estimate of the causal effect of treatment received.

To illustrate the difference between the causal effects of treatment assignment
and treatment received, we return to our example of exercise and glucose levels.
Now, we consider a potential outcomes experiment for the effect of treatment
assignment, with the complication that there is incomplete adherence to assigned
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Table 9.23 Potential outcomes with incomplete adherence

Potential outcomes
by treatment assignment Observed
T r.1/ T r.0/ Y.1/ Y.0/ Y.1/� Y.0/ T a T r.a/ Y

C D 0 1 0 100 105 �5 0 0 105
1 0 98 96 2 0 0 96
1 0 96 99 �3 0 0 99
0 0 102 102 0 0 0 102
0 0 98 98 0 0 0 98

C D 1 1 0 96 94 2 0 0 94
1 0 94 96 �2 0 0 96
1 0 92 98 �6 0 0 98
1 1 95 95 0 0 1 95
1 1 93 93 0 0 1 93

Means 0.8 0.2 96.4 97.6 �1.2 0.2 97.6

C D 0 1 0 95 97 �2 1 1 95
1 0 97 100 �3 1 1 97
1 0 102 103 �1 1 1 102
0 0 99 99 0 1 0 99
0 0 101 101 0 1 0 101

C D 1 1 0 91 97 �6 1 1 91
1 0 98 95 3 1 1 98
1 0 93 96 �3 1 1 93
1 1 97 97 0 1 1 97
1 1 91 91 0 1 1 91

Means 0.8 0.2 96.4 97.6 �1.2 0.8 96.4

treatment. In Table 9.23, we represent this potential outcomes experiment, with each
member of the population contributing an outcome under assignment to exercise as
well as control.

9.8.1.1 Example: Exercise and Glucose Levels

As before, we use Y.1/ to denote outcomes under assignment to treatment, and
Y.0/ for outcomes under assignment to control. Here, we also need to distinguish
T a, the indicator for assignment to treatment, from T r.1/, the treatment received
under assignment to treatment (T a D 1), and T r.0/, the treatment received under
assignment to control (T a D 0/; we observe T r.a/, the treatment received under the
actual assignment T a D a.

Now suppose that only 80% of women exercise when assigned to it, but 20% of
women exercise even when assigned to control. We have also assumed that when
women are assigned to exercise, nonadherence is concentrated in the group with
C D 0, but when they are assigned to control, nonadherence is only seen in the
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subgroup with C D 1. As a result, T r.1/ and T r.0/ are correlated with C. We again
suppose that the causal effect of exercise is to lower glucose levels an average of
2 mg/dL, that the causal direct effect of C is to lower glucose 4 mg/dL, and that half
of women are in the subgroup with C D 1.

The supposed data are shown in Table 9.23. Keeping in mind that the potential
outcomes Y.1/ and Y.0/ are now defined in terms of treatment assignment, not
treatment received, note that there is no difference in potential outcomes for the
8 women who are nonadherent, because the treatment they receive is unaffected
by treatment assignment. Within each randomized group as well as overall, the
average difference is potential outcomes is 1.2 mg/d, 40% less than the causal effect
of exercise. This is the intention-to-treat effect of assignment to exercise.

9.8.2 As-Treated Comparisons by Treatment Received

Consider a comparison of outcomes in the trial shown in Table 9.23 according
to T r.a/, or treatment received, sometimes called an as-treated analysis. Here
we assume that each row of the table represents two participants, one assigned
to treatment, the other to control. In this context, an as-treated analysis would
amount to comparing women who exercise with those who do not, without regard
to treatment assignment.

Unless adherence to assigned treatment is perfect, this comparison would likely
be biased for the causal effect of treatment. In making this comparison, we would
lack any assurance that confounding variables would be balanced in those who
exercise as compared to those who do not. In Table 9.23, 70% of women who
exercised (T r.a/ D 1) were from the group with C D 1, as compared to only
30% of the women who did not exercise (T r.a/ D 0). As a result, the means
defined by treatment received, equal to 98.8 mg/dL for T r.a/ D 0 and 95.2 mg/dL
for T r.a/ D 0, differ by 2.6 mg/dL—failing to capture either the causal effect
of exercise or assignment to exercise. The explanation is of course that T r.a/ is
confounded by C.

Thus, as in Sect. 9.1.4, we could only hope to obtain an unbiased estimate of
the causal effect of treatment in an analysis according to treatment received by
successfully modeling the effects of C. Table 9.24 shows the data from Table 9.23
rearranged. Within strata defined by C, the differences in mean glucose levels by
T r.a/, or treatment received, accurately estimate the causal effect of exercise. Of
course, this depends on the fact that all confounding of adherence to treatment
assignment is captured by the measured covariate C. In practice, this would be a
substantial and unverifiable assumption.
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Table 9.24 Analysis by
treatment received,
controlling for C

C D 0 C D 1

T r.a/ Y T r.a/ Y

0 105 0 94
0 96 0 96
0 99 0 98
0 102 1 95
0 98 1 93
1 95 1 91
1 97 1 98
1 102 1 93
0 99 1 97
0 101 1 91

Means 100 98 96 94

9.8.3 Instrumental Variables

We saw in Sect. 9.7 that randomized treatment assignment can be used as an
instrument for treatment received, meeting all three IV assumptions in a well-
conducted trial. Following Sect. 9.7.2, the IV estimate of the causal effect of an
exposure could be calculated as an estimate of the effect of the instrument on the
outcome, divided by an estimate of the effect of the instrument on the exposure;
if blinding is preserved, C could be omitted from (9.13) to (9.15). Thus, the IV
estimate of the causal effect of treatment received is

ǑIV
1 D

ǑITT
1

OEŒT r.1/� T r.0/�
: (9.18)

The numerator of (9.18) can estimated using an unadjusted comparison by treatment
assignment, and the denominator by the difference in the proportions receiving treat-
ment among those assigned to treatment and control. In Sect. 9.8.1.1, we showed
that the ITT estimate of the effect of exercise on glucose levels is �1.2 mg/dL, and
that the proportions exercising in the groups assigned to treatment and control were
0.8 and 0.2, respectively. Thus, the IV estimate is �1:2=.0:8� 0:2/ D �2.0 mg/dL,
the causal effect of exercise on glucose levels in our example.

9.8.4 Principal Stratification

Another way to motivate (9.18) is through so-called principal stratification
(Frangakis and Rubin 2002). Under this view, there are four unobservable principal
strata in the population, defined by adherence to assigned treatment:
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(1) compliers, who comply with treatment or control as assigned
(2) always-takers, who take treatment whether assigned to treatment or control
(3) never-takers, who would not comply if assigned to treatment
(4) defiers, who would take treatment if and only if assigned to control.

In many applications, defiers are assumed not to exist, under so-called monotonicity
assumptions. The need for this assumption is made clear below. In Table 9.23, again
viewed as a potential outcomes experiment, there are 12 compliers with T r.1/ D 1

and T r.0/ D 0, four never-takers, with T r.1/ D T r.0/ D 0, and four always-takers,
with T r.1/ D T r.0/ D 1. Stratum membership is unobservable because in most
trials we only get to see each study participant under one assignment.

Using our earlier notation, and making the standard assumption that there are
no defiers, it is straightforward to check that T r.1/ D 1 for compliers as well as
always-takers and 0 for never-takers, while T r.0/ D 1 for always-takers and 0 for
compliers and never-takers. In addition, EŒT r.1/�, the proportion receiving treatment
when assigned to it, includes compliers plus always-takers, while EŒT r.0/�, the
proportion receiving treatment when assigned to control, only includes always-
takers—provided there are no defiers. In that case, EŒT r.1/�T r.0/� is the proportion
of compliers in the population. We note that more complicated estimation methods
would make it possible to relax this requirement.

Finally, the causal effect of treatment assignment, EŒY.1/ � Y.0/� equals ˇ1 for
compliers, but is 0 for always- and never-takers—because treatment received does
not vary for these groups (assuming that there are no indirect effects of treatment
assignment). Thus, under this stratification of the population, the ITT effect of
treatment assignment can be viewed as the weighted average of ˇ1, now defined
as the causal effect of treatment among compliers—sometimes referred to as the
complier-averaged casual effect, or CACE (Little and Rubin 2000)—and the null
effects among always-takers and never-takers, where the weights are given by the
proportions of the population in each subgroup. Letting P r.S D s/ denote the
proportion of the population in stratum 1 (compliers), 2 (always-takers), or 3 (never-
takers), we can write

ˇITT
1 D ˇ1Pr.S D 1/C 0 � Pr.S D 2/C 0 � Pr.S D 3/
D ˇ1EŒT r.1/� T r.0/�: (9.19)

Thus, we can use a linear model to estimate ˇITT
1 , the difference in the proportions

actually receiving treatment by arm to estimate Pr.S D 1/, and the ratio of these
two estimates to estimate ˇ1 (Problem 9.12).

In summary, for this simple case, the IV and principal stratification estimators
of the causal effect of treatment are the same. Finally, we note that principal
stratification is a more general approach, applicable in many other settings.
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9.9 Summary

In this chapter, we take one contemporary approach to understanding causation,
based on potential outcomes, only one of which is the observed outcome at the
actual level of exposure, while the others are outcomes that would be observed at
other possible levels of exposure. This led naturally to the definition of casual effects
as differences in potential outcomes, averaged across an appropriate population. We
focused on estimating average causal effects in observational studies with a single
binary exposure or treatment variable. The potential outcomes framework was also
useful for clarifying confounding and mediation, both common themes throughout
the book.

When all potential confounding variables are measured, standard regression
techniques covered in other chapters can often be used to estimate average causal
effects. For linear models this can be straightforward, but for non-linear models,
in particular the logistic model for binary outcomes, additional steps are required.
We focused on potential outcomes estimation, which can be seen as imputing
the missing potential outcome of interest, and also discussed inverse probability
weighting (IPW).

When the number of potential confounders is large but a binary or failure time
outcome is uncommon, propensity scores are a robust method for strengthening
causal inference. We showed why care must be taken in specifying the model used
to estimate the scores, in checking balance and overlap, and in deciding how to use
the scores in the estimating the causal effect of exposure—for example, as a 5-level
category or restricted cubic splines. We also showed how propensity scores can be
used to estimate average treatment effects in the treated, using potential outcomes
estimation, matching, or standardized mortality weights.

Specialized methods are frequently required to strengthen causal inference when
exposures and confounders are time-dependent. We focused on IPW as well as
nested new user designs, and will sketch an alternative, G-estimation, in Sect. 9.10.

Finally, we described instrumental variables, which, in contrast to the other
methods we discuss, can strengthen causal inference in contexts where all potential
confounding variables have not been measured. While instrumental variables do
require other substantial, unverifiable assumptions, they can be useful in randomized
trials with incomplete adherence for estimating the causal effect of treatment among
compliers, and in helping to clarify why a trial provides little or no information about
the effect of treatment in noncompliers.

9.10 Further Notes and References

Causal inference is a rapidly expanding field, and many alternate approaches to
estimation and inference are in active development. See Pearl (2009a) for an
introduction to modern causal inference, and a useful discussion distinguishing
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causal analyses from those that focus primarily on detecting associations. Pearl
(2009b) provides a book-length treatment of these issues, and also illustrates the
link between directed acyclic graph representation of causal relationships (covered
in Sect. 10.2.5) and methods for estimation of causal effects. Hernán and Robins
(2011) provide more complete coverage of many of the methods discussed here, and
give more detail on the important topic of time-dependent confounding introduced
in Sect. 9.5. Gelman and Hill (2007) also give more detail, and provide examples
using R.

Potential Outcomes Estimation

This procedure has a long history, and has been variously called standardization
(Lane and Nelder 1982; Hernán and Robins 2011), G-computation (Robins et al.
1999), and most recently regression estimation (Schafer and Kang 2008).

Exposures and Treatments

In defining causal effects, we deliberately use the term exposure in most contexts,
reserving treatment for specific cases, including the example used repeatedly in
this chapter of phototherapy for treatment of neonatal jaundice. This terminology
reflects our sense that we can reasonably consider the causal effects of exposures
even when they are difficult or impossible to manipulate. For example, the BRCA1
and BRCA2 genetic mutations have solidly established causal effects on risk of
breast and ovarian cancer. Our thought experiment makes it possible to think
about potential outcomes with and without the mutations, even though they are
unmodifiable.

Implicit Randomized Trials

In framing a causal question that we would like to answer using observational data,
it is often helpful to think of an implicit randomized trial that might provide the
answer. For example, quite different trials would be used to estimate the effect
of new use of a treatment and the effect of continuing use among current users.
If our interest is in the effect of new use, the implicit trial strongly suggests we
should focus on new and never users in the observational cohort, and exclude
prevalent users, as discussed in Sect. 9.5.4. Furthermore, as Hernán and Robins
(2011) point out, this can help avoid posing ill-defined questions about the effects
of conditions like obesity, which may reflect different sources including genetics as
well as lifestyle. In our own simple example, exercise would benefit from sharper
definition.
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Propensity Scores

Improvements of propensity score methods are a topic of active research, and a
number of alternatives addressing current problems have appeared in the scientific
literature. One potential advance is use of data adaptive methods developed for
prediction problems, as discussed in Sect. 10.1.4, to select the model for the
propensity scores. This approach may minimize confounding without overfitting.
Another promising avenue involves the use of so-called doubly robust methods,
which provide consistent results even if one of the models is misspecified. For
example, targeted maximum likelihood generalizes standard regression adjustment
for the propensity score via an iterative procedure based on considerations from the
theory of semiparametric models (Rosenblum and van der Laan 2010). The resulting
estimates can be shown to improve on conventional propensity score adjustment in
terms of bias and variance, especially in situations where one of the component
models is wrong. Of course, even doubly robust approaches have limitations when
important variables are omitted and/or when both models are misspecified (Kang
and Schafer 2007).

Time-Dependent Treatments

Seminal work on models using IP weights to deal with time-dependent confounder–
mediators of time-dependent treatments includes Robins et al. (1999); Robins et al.
(2000); and Hernán et al. (2001); Fewell et al. (2004) give more detail about
implementation of models using time-dependent IP weights in Stata. For a clear
in-depth discussion of this approach, as well as an example of implementing these
models in SAS, see Hernán et al. (2000); Ko et al. (2003) treat the repeated measures
case with an HIV example, and show how to conduct sensitivity analyses assessing
the possible influence of unmeasured confounding.

G-Estimation

An alternative for estimating the effects of time-dependent treatment with time-
dependent confounder–mediators with survival outcomes is the structural nested
failure time model (SNFTM). In contrast to proportional hazards models, including
the Cox model, in which treatment is assumed to act multiplicatively on the baseline
hazard for the untreated, this procedure is based on the accelerated failure time
(AFT) model, under which treatment is assumed to act by expanding or contracting
a baseline failure time that would be observed in the absence of treatment.

SNFTMs make use of an ancillary model for receiving treatment, assumed to
depend on measured confounders, previous treatment history, and, in this case,
one additional covariate. Specifically, using a procedure called G-estimation (not to
be confused with G-computation), potential failure times that would be observed
in the absence of treatment can be calculated under the assumed AFT model
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from the observed failure times and treatment patterns, using a candidate value
of the treatment effect parameter. These calculated potential no-treatment failure
times are then included as the additional covariate in the ancillary model for
receiving treatment. In practice, a transformation of the failure times must be used
to accommodate censoring.

The rationale for G-estimation is that under the assumption of no unmeasured
confounders, receiving treatment should not depend on the potential failure time
that would be observed in the absence of treatment, after accounting for measured
confounders and previous treatment history. Accordingly, the G-estimate of the
causal effect of treatment is the candidate AFT treatment parameter value under
which the calculated no-treatment potential failure times have no independent
association with receiving treatment in the ancillary model. Thus, the G-estimate of
the treatment effect is the value most consistent with no uncontrolled confounding
of treatment. A special algorithm is required to obtain this estimate and a CI.

Hernán et al. (2005) provide a clear explication of SNFTMs and G-estimation,
including methods for handling censored data and calculating confidence intervals.
A downloadable Stata command stgest, detailed in Sterne and Tilling (2002),
implements the procedure. Applications of SNTFMs include Robins et al. (1992);
Mark and Robins (1993), Robins and Greenland (1994), Witteman et al. (1998),
Keiding et al. (1999) and Tilling et al. (2002). As in models using IP weights, the
models for treatment as well as outcome must be correctly specified.

Mediation

Causal approaches to assessment of mediation are under active development, and a
range of solutions has been proposed. Estimation and inference for causal controlled
and natural direct effects, including conditions for valid estimation using standard
regression, are summarized in Petersen et al. (2006) and VanderWeele (2009).

Instrumental Variables

See Martens et al. (2006) for a clear explication of the roots of IV analysis in
structural equation models. Angrist et al. (1996); Heckman (1997); Martens et al.
(2006) and Hernán and Robins (2006) provide careful examinations of assumptions
in several IV analyses, pointing out reasons to question them specific to the cases
they examine, and showing the likely effects of potential violations. Hernán and
Robins (2006) discuss the conditions under which the causal effect estimated using
IVs might have wider interpretations. Greene (1998) and Chib and Hamilton (2002)
motivate the extension to binary exposures and outcomes using probit models.
Angrist and Pischke (2009) provide broad but non-technical coverage of IVs. Baum
et al. (2003) explain methods of model assessment and their implementation in
Stata.
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Trials With Incomplete Adherence

In introducing methods that can be used to estimate the causal effects of treatment
in clinical trials with incomplete adherence to assigned treatment, we have focused
on the relatively simple case of all-or-nothing adherence, and on two of the
more straightforward approaches that can be used to address it. Bellamy et al.
(2007) explain in detail the assumptions underlying these approaches, and also
describe an alternative approach using so-called structural mean models, of which
the SNFTM assumed in G-estimation is one example.

More complicated approaches are required to estimate the causal effects of
treatment in trials where adherence to assigned treatment can range from complete
to nil; examples include trials of treatments that must be taken regularly over the
course of the study, including medications, and, for that matter, exercise, as in our
example. Efron and Feldman (1991) proposed an early solution to this problem
by assuming a deterministic relationship between adherence under assignment to
placebo and active treatment. Jin and Rubin (2008) show how principal stratification
can be extended to cover this case, emphasizing how their approach clarifies the
assumptions that underlie the analysis.

Other New Developments

A number of important topics were omitted from this chapter or covered only briefly,
including applications to treatment variables that have more than two categories or
are continuous, methods for investigating the causal effects of dynamic treatments
(Van Der Laan and Petersen 2007), and causal estimation of direct and indirect
effects (Petersen et al. 2006).

9.11 Problems

Problem 9.1. In the example in Sect. 9.1.3, the overall effect of C is in part
mediated by its effect on E . We defined the direct effect of C on Y as�4 mg/dL. Use
the results in Table 9.2 to determine the overall causal effect of C on Y .

Problem 9.2. Show that in our simple example in Sect. 9.1, potential outcomes
estimation and inverse weighting are doing essentially the same thing.

Problem 9.3. Using the WGCS data, posted on the book website, estimate the
conditional odds-ratio for the effect of Type A temperament (dibpat) on CHD
(chd69) using a logistic model to adjust for age, BMI, SBP, cholesterol levels, and
smoking. Now use the margins command or data duplication to obtain estimates
of the marginal odds-ratio and absolute risk difference. Do the conditional and
marginal odds-ratios differ by much? Why or why not? Would you be willing to
interpret the resulting estimates as causal? Why or why not?
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Problem 9.4. Using the HT and statin use example in Sect. 4.6.1, show that if we
first centered the statins indicator, ˇ1 in (4.10) would be interpretable as the
average causal effect of HT. Contrast this with the interpretation of ˇ1 if statins
is used in its original form as a 0–1 indicator for statin use. Hint: Derive the
expression for the conditional effect of HT on LDL, then take the average of this
expression across the entire sample.

Problem 9.5. Using the UNOS data on the book website, estimate the marginal
effect of donor type (cadaveric vs living) on 5-year mortality risk, adjusting for
recipient age and sex, donor age (age don), HLA match (hlamat), graft status
(graf stat), and previous treatment (prev ki). Hint: Use data duplication to
estimate predicted 5-year risk for each participant with both the actual and potential
donor type. The basesurv option for stcox returns an estimate of the baseline
survival function at the observed follow-up time for each observation, whether it is
an event or censored. Isolate the observation with the largest follow-up time less
than 5 years, and use that value to calculate 5-year risk for each observation (both
actual and potential) as

F.5/ D 1 � S0.5/exp.
ij /; (9.20)

where S0.5/ is the baseline survival estimate for 5 years, and 
ij D Xijˇ is
the linear predictor estimated using the postestimation predict command for
each participant i with living (j D 1) and cadaveric (j D 0) donor. A do-file
implementing a solution is also posted as Problem 9.5 do.

Problem 9.6. Suppose that in the phototherapy example, the co-intervention of
switching to formula had been ascertained, but the overall sample is considerably
smaller, with only 32 outcome events, rather than 128. What approach would you
use for estimating the effect of phototherapy, and why?

Problem 9.7. In the propensity score analysis of the effect of phototherapy, we
found some evidence for lack of overlap between treated and untreated infants. How
would you address this problem?

Problem 9.8. Use propensity scores in combination with Cox models for time
(fu) to death, to re-evaluate the effect of donor type (txtype) on survival
following pediatric kidney transplant from Problem 9.5. Using your propensity
scores, check balance, overlap of the living and cadaveric donor groups, and
evidence for positivity violations. Implement models using quintile, decile, and a
5-knot restricted cubic spline in the propensity scores. Are the results consistent with
standard adjustment? What would you do to address evidence for lack of overlap?

Problem 9.9. Consider an analysis using an IP weighted model. How would you
check for violations of the assumption of constant treatment effects? If you found
such a violation, how could the model be modified to accommodate it? And in that
case, how would you estimate that hazard ratio for the comparison of always-on
versus always-off treatment patterns?
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Problem 9.10. Researchers at Kaiser in Northern California wanted to evaluate
the effect of use of their mail-order pharmacy service on adherence to medica-
tions. Some confounder information was available from administrative databases,
including age, sex, race/ethnicity, smoking, depression, and other co-morbidities,
and whether the medication was covered by insurance, but there was concern about
unmeasured confounders. Accordingly, they considered distance from the nearest
brick-and-mortar Kaiser pharmacy to each member’s residence as an instrument.
Consider this potential instrument in terms of its association with mail-order use,
unconfoundedness, and possible indirect effects on the outcome not mediated
by mail order use. What, if anything, could we do statistically to assess these
assumptions?

Problem 9.11. Suppose we tried to check the assumption that the entire effect of
a proposed instrument on the outcome is mediated by the exposure of interest by
regressing the outcome on exposure, the instrument, and measured confounders, on
the hypothesis that if there is no direct effect of the instrument on the outcome,
it should appear unimportant in this regression. Using a directed acyclic graph, as
described in Sect. 10.2.5, show that in the presence of unmeasured confounding
of the exposure–outcome relationship (the motivation for use of an instrumental
variable), exposure is a collider on a backdoor path between the instrument and the
outcome and thus controlling for it will induce an association between them.

Problem 9.12. Suppose we use the simple linear model

EŒY jT a� D ˇ0 C ˇITT
1 T a; (9.21)

to estimate the ITT effect of treatment assignment based on data from a randomized
trial. Show that fitting (9.21) would result in a biased estimate of the causal effect
of treatment. Specifically, show that

E
h ǑITT

1

i
D ˇ1 .E ŒT r.1/� T r.0/�/ : (9.22)

where ˇ1 is the causal effect of treatment received, and E ŒT r.1/� T r.0/� is the
expected difference in the proportions of trial participants who receive treatment in
the treatment and control groups respectively.

Problem 9.13. Consider a clinical trial in which women are randomized in equal
proportions to a paced respiration intervention for the control of perimenopausal
hot flashes, or a wait-list control. The ITT estimate of the treatment effect was a
net reduction of four hot flashes per day, after controlling for baseline frequency.
However, only 70% of women assigned to the paced respiration arm adhered to the
intervention, and about 10% of women assigned to control crossed over. Obtain the
IV estimate of the causal effect of paced respiration on hot flash frequency. Is this
estimate valid for all women, or compliers only?



394 9 Strengthening Causal Inference

Problem 9.14. Consider a placebo-controlled trial of a nitroglycerin patch to
increase bone mineral density (BMD) in women with osteoporosis. The outcome
is change in BMD from randomization to 12 months. Numbers of patches used is
available for the duration of the trial, in both groups, providing estimates of percent
compliance to treatment. Clearly, percent compliance is a postrandomization vari-
able potentially confounded by other behaviors that may be associated with changes
in BMD, including smoking, exercise, and calcium supplement use. Consider how
percent compliance could be used to estimate the causal effect of treatment received.
How can percent compliance in the placebo group be used to remove confounding?
What could invalidate this analysis?

Problem 9.15. Describe the sense in which the potential outcomes view of causal
effects can be seen a missing data problem, as described in Chap. 11, and how
potential outcomes estimation and inverse weighting can both be seen as solutions
to this problem.

9.12 Learning Objectives

(1) Define an average causal effect in terms of potential outcomes.
(2) Describe the conditions under which standard regression methods are likely to

give biased estimates of causal effects.
(3) State the conditions under which propensity scores are most useful, and under-

stand the advantages and disadvantages of various methods of incorporating the
scores in estimating the effect of exposure or treatment.

(4) Distinguish natural and controlled direct effects, and state the conditions under
which standard adjustment for a mediator does not suffice to estimate direct
effects.

(5) Describe the context in which IP weight models are particularly useful, the
assumptions on which they are based, and some problems that can arise in
implementing them.

(6) State the main assumptions of an instrumental variables analysis. Describe the
sense in which this approach replaces the unverifiable assumption that treatment
is unconfounded with the equally unverifiable assumption that the instrument is
unconfounded.



Chapter 10
Predictor Selection

Walter et al. (2001) developed a model to identify older adults at high risk of death in
the first year after hospitalization, using data collected for 2,922 patients discharged
from two hospitals in Ohio. Potential predictors included demographics, activities
of daily living (ADLs), the APACHE-II illness-severity score, and information
about the index hospitalization. A “backward” selection procedure with a restrictive
inclusion criterion was used to choose a multipredictor model, using data from
one of the two hospitals. The model was then validated using data from the other
hospital. The goal was to select a model that best predicted future events, with a view
toward identifying patients in need of more intensive monitoring and intervention.

Grodstein et al. (2001) evaluated the efficacy of hormone therapy (HT) for
secondary prevention of CHD, using observational data for 2,489 women with a
history of heart attack or documented coronary artery disease in the Nurse’s Health
Study (NHS), a prospective cohort followed from 1976 forward. In addition to
measures of the use of HT, a set of known CHD risk factors were controlled for,
including age, BMI, smoking, hypertension, LDL cholesterol levels, parental heart
disease history, diet, and physical activity. The goal of predictor selection was to
obtain a minimally confounded estimate of the effect of HT on risk of CHD events.

The Heart and Estrogen/Progestin Replacement Study (HERS), a randomized
clinical trial addressing the same research question, was conducted among 2,763
postmenopausal women with clinically evident heart disease (Hulley et al. 1998). As
in the NHS, a wide range of predictors were measured at study entry. Yet in the pre-
specified analysis of the main HERS outcome, the only predictor was treatment
assignment. The goal was to obtain a valid test of the null hypothesis as well as an
unbiased estimate of the effectiveness of assignment to HT.

Orwoll et al. (1996) examined independent predictors of axial bone mass using
data from the Study of Osteoporotic Fractures (SOF). SOF was a large (n D 9;704)
observational cohort study designed to address multiple research questions about
osteoporosis and fractures among ambulatory women aged 65 and up. Predictors
considered by Orwoll had been identified in previous studies, and included weight,
use of medications such as HT and diuretics, smoking history, alcohol and caffeine
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use, calcium intake, physical activity, and various measures of physical function
and strength. All variables that were statistically significant at P < 0:05 in models
adjusting for age were included in the final multipredictor linear regression model.
The goal was to identify all important predictors of bone mass.

In each of these examples, many more potential predictor variables had
been measured than could reasonably be included in a multivariable regression
model. The difficult problem of how to select predictors was resolved differently, to
serve three distinct inferential goals:

(1) Prediction. Here, the primary issue is minimizing prediction error rather than
causal interpretation of the predictors in the model. The prediction error of the
model selected by Walter et al. (2001) was evaluated using an independent data
set from a second hospital.

(2) Evaluating a predictor of primary interest. In pursuing this inferential goal, a
central problem in observational data is confounding, which relatively inclusive
models are more likely to minimize. Predictors necessary for face validity
as well as those that behave like confounders should be included in the
model. Randomized experiments like HERS represent a special case where the
predictor of primary interest is the intervention; confounding is not usually an
issue, but covariates are sometimes included in the model for other reasons.

(3) Identifying the important independent predictors of an outcome. This is the
most difficult of the three inferential goals, and one in which both causal
interpretation and statistical inference are most problematic. Pitfalls include
false-positive associations, the potential complexity of causal pathways, and
the difficulty of identifying a single best model. We also endorse inclusive
models in this context, and recommend a selection procedure that affords
increased protection against false-positive results. Cautious interpretation of
weak associations is key to this approach.

In summary, predictor selection is the process of choosing appropriate predictors
for inclusion in a multipredictor regression model. A good model should be substan-
tively motivated, appropriate to the inferential goal and sample size, interpretable,
and persuasive.

10.1 Prediction

In selecting a good prediction model, candidate predictors should be considered in
terms of their contribution to reducing prediction error.

Definition: Prediction error (PE) measures how well the model is able to predict the
outcome for new observations not used in developing the prediction model.
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10.1.1 Bias–Variance Trade-off and Overfitting

Inclusive models that minimize confounding may not work as well for prediction as
models with smaller numbers of predictors. This can be understood in terms of the
bias–variance trade-off. Bias in predictions is often reduced when more variables
are included in the model, provided they are measured and modeled adequately.
Moreover, the coefficients are often nearly unbiased under the assumptions com-
monly made in these analyses. But as less important covariates are added to the
model, precision may start to erode, without commensurate decreases in bias. The
larger models may be overfitted to the idiosyncrasies of the data, and, thus, more
poorly predict new, independent observations. We can minimize PE by optimizing
the bias–variance trade-off.

10.1.2 Measures of Prediction Error

For continuous outcomes,R2 is a potential measure of PE. A function of the residual
sum of squares (RSS), R2 depends on the averaged squared distance between the
predictions, or fitted values, and the observed outcomes, and so is a natural metric
for PE.

For binary outcomes, the analogous Brier score, also given by the average of the
squared distances between the predicted and observed outcomes, is not commonly
used. A much more widely used PE measure is the area under the ROC curve, or
equivalently the C-statistic, introduced in Sect. 5.2.6. The analogous PE measure
for Cox models is the C-index. The C-statistic and C-index are both measures of
discrimination—that is, how effectively the model can distinguish between events
and nonevents, or correctly order the timing of two events.

Both the C-statistic and C-index are rank-based measures, and can be insensitive
to improvements in prediction as a result (Pencina et al. 2008). To see this, note
that in calculating the C-statistic, two correctly ranked event/nonevent pairs for
which the predictions differ by five and 95 percentage points would be treated alike,
although the model much more clearly distinguishes the second pair. Likewise, in
calculating the C-index, we ignore differences between failure times as well as
between fitted risks.

In addition to discrimination, measures of calibration for logistic and Cox
models assess the agreement between fitted and observed risks. The Hosmer–
Lemeshow statistic presented in Chap. 5 measures calibration of the logistic model,
comparing fitted and observed events within deciles (or other groupings) of the
fitted risks. Analogs have been proposed for the Cox model (Parzen and Lipsitz
1999; van Houwelingen 2000). One often-used measure of calibration for the Cox
model is to compare average fitted probabilities of an event within a fixed time
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period to observed probabilities nonparametrically estimated using Kaplan–Meier
curves. For example, Cook et al. (2006) compared fitted and observed ten-year risks
for cardiovascular events within two-point intervals of the model-based risk score.

10.1.3 Optimism-Corrected Estimates of Prediction Error

To select a model that minimizes prediction error, we need an accurate estimate of
the target PE measure that does not overstate the ability of the model to predict the
outcome for new, independent observations—in brief, one that is not optimistic.

10.1.3.1 Optimism of Naı̈ve Estimates of PE

To see why optimism is an issue, consider R2, the proportion of variance explained
by a linear regression model, and a potential measure of PE. It increases with each
additional covariate, even if the added predictor provides minimal information about
the outcome. At the extreme, R2 D 1 in a model with one predictor for each
observation. This happens because the same observations are used to estimate the
model and assess its predictiveness. Selecting predictors simply to maximize R2

would almost surely result in overfitted models.

10.1.3.2 Simple Alternatives to R2

An alternative less subject to optimism is adjusted R2, which is calculated by
penalizing R2 for the number of predictors in the model. Thus, when a variable
is added, adjusted R2 increases only if the increment in R2 is larger than the
increment in the penalty. The Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC) are analogs which impose stiffer penalties for each
additional variable—specifically, penalties against minus twice the log-likelihood,
another potential measure of PE. With AIC, the penalty is 2p, where p is the number
of predictors in the model; with BIC, it is p logN , where N is the sample size.

The AIC criterion is relatively liberal, allowing for the inclusion of simple
continuous or binary predictors with P -values < 0.16. In contrast, the P -value
cutoff imposed by BIC for such predictors grows progressively stricter with sample
size, requiring P < 0:05 in samples of about 50, P < 0:01 in samples of 500,
and P < 0:009 in samples of 1,000, and, thus, leads to increasingly parsimonious
models, relative to AIC. Both measures depend on the number of additional
coefficients, and so set the bar higher for inclusion of restricted cubic splines or
multicategory predictors.

In Stata the regress command prints adjustedR2 by default, and AIC and BIC
can be obtained for linear, logistic, Cox, and other models using the postestimation
command estat ic. The best prediction model is taken to be the one that
maximizes adjusted R2, or minimizes AIC or BIC.
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10.1.3.3 Generalized Cross-Validation

In contrast to indirect, theoretically-based measures such as adjusted R2, AIC, and
BIC, more direct methods for obtaining nonoptimistic estimates of PE are based on
cross-validation, which uses distinct, independent sets of observations to estimate
the model and to evaluate PE.

10.1.3.4 Development and Validations Sets

The most straightforward example of cross-validation is the split-sample approach,
in which the parameter estimates are obtained from a so-called development set,
but then PE is evaluated in an independent validation set by comparing observed
outcomes to expected values calculated using development set parameter estimates
in combination with validation set covariate values.

In some implementations, the development and validation sets are obtained
by splitting a single data set, often with two-thirds of the observations randomly
assigned to the development set. Other implementations, as in Walter’s analysis
of posthospitalization mortality among high-risk older adults, use an independent
sample as the validation set. Precisely because the validation set is not sampled
under exactly the same circumstances, this procedure may do a better job of
forecasting the utility of the prediction model in practical use. Altman and Royston
(2000) discuss the merits of internal and external validation sets.

Splitting one data set into development and validation sets is less efficient than
the alternative discussed next, but also easier to implement, and commonly more
credible to nonstatisticians, in particular when the validation set is truly external.

10.1.3.5 h-Fold Cross-Validation

A more efficient alternative to splitting the data into development and validation
sets is h-fold cross-validation. With this method, the entire data set is used both for
development and validation of the model. The procedure works in five basic steps.

(1) The data are randomly divided into h mutually exclusive subsets of equal size.
(2) Each of the h subsets is set aside in turn, and the model is estimated using the

remaining observations.
(3) Using the parameter estimates from each of those h models, the statistics nec-

essary to calculate the target measure of PE are estimated for the corresponding
set-aside observations.

(4) A summary estimate of PE is then calculated using the statistics from all h
subsets.

(5) The h-fold procedure is repeated k times, using a new division of the data each
time, and then the k summary estimates of PE are averaged.

Values of h D 5�10 and k D 10�20 are reasonable.
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Table 10.1 Ten-fold cross-validation of the area under the ROC curve

. quietly logistic chd69 age chol sbp bmi smoke

. predict fitted, pr

. * Naive estimate of area under the ROC curve

. roctab chd69 fitted

ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]

--------------------------------------------------------
3142 0.7333 0.0156 0.70270 0.76395

. Step 1: divide data into 10 mutually exclusive subsets

. xtile group = uniform(), nq(10)

. gen cv_fitted = .

. forvalues i = 1/10 {
2.

. * Step 2: estimate model omitting each subset
qui logistic ytemp age chol sbp bmi smoke if group˜=‘i’

3. qui predict cv_fittedi, pr
4.

. * Step 3: save cross-validated statistic for each omitted subset

. qui replace cv_fitted = cv_fittedi if group==‘i’
5. qui drop cv_fittedi
6. }

.

. * Step 4: calculate cross-validated area under ROC curve

. roctab chd69 cv_fitted

ROC -Asymptotic Normal--
Obs Area Std. Err. [95% Conf. Interval]

--------------------------------------------------------
3142 0.7277 0.0158 0.69386 0.75566

Cross-validation is easy to implement in Stata. In Table 10.1, we first re-run
the logistic model for CHD risk shown in Table 5.6, save the fitted probabilities,
and calculate the naı̈ve estimate of the area under the ROC curve (ROC Area),
equivalent to the C-statistic. Then, the WCGS data are randomly divided into ten
mutually exclusive subsets, and the model is refitted ten times, omitting in turn each
of the ten subsets from the data used in estimation of the model. However, predicted
values are calculated for the entire data set; we also exploited this feature of Stata for
potential outcomes estimation in Table 9.6. The cross-validation fitted values for the
omitted subsets are collected in the new variable cv fitted, and in a final step, the
cross-validation estimate of the area under the ROC curve is calculated using these
fitted values and the observed outcomes. For clarity, we have omitted the fifth step
of repeating the procedure 10–20 times, but the additional programming is simple
enough.

As expected, the optimistic naı̈ve estimate of the area under the ROC curve
shown in Table 10.1 is larger than the cross-validated estimate. However, the
difference is small, suggesting that the simple logistic model for CHD events is
not badly overfitted.
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10.1.4 Minimizing Prediction Error Without Overfitting

A model that fits well, including all important predictors and accurately capturing
nonlinear effects as well as interactions, should provide better prediction than
a poorly specified model that excludes some important predictors, inaccurately
models the effects of others, and includes unimportant predictors.

Earlier chapters have shown how to ensure that nonlinear effects of continuous
predictors are adequately modeled, essentially by examining the relationship be-
tween predictor and outcome, using diagnostic plots or models including restricted
cubic splines or interactions. And later in this chapter, in discussing predictor
selection for the second inferential goal of evaluating the causal effect of a
primary predictor of interest, we recommend methods to ensure that all measured
confounders are included and adequately modeled, again by examining alternative
models for the outcome.

However, in this context, the danger is that examining relationships with the out-
come can easily lead to overfitting, resulting in a model that does not perform well
in external validation data. Overfitting can be minimized using four strategies:

(1) Pre-specify well-motivated predictors and how to model them
(2) Eliminate predictors without using the outcome
(3) Use the outcome, but cross-validate the target measure of PE
(4) Use the outcome, and shrink the coefficient estimates.

10.1.4.1 Pre-specifying Well-Motivated Predictors

One primary strategy for avoiding overfitting is to depend so far as possible on
a priori specification of well-motivated candidate predictors. In areas of clinical
research where prognostic factors have been thoroughly studied, expert opinion,
grounded in the literature, may provide considerable guidance, and meta-analyses
can be especially reliable measures of variable importance. This strategy would also
rely on the literature to determine how the effects of continuous covariates should
be modeled—that is, to select functional form—rather than using the data to guide
these decisions.

In some well-studied areas, this step may be sufficient to choose a good
prediction model, without the need for subsequent elimination of predictors driven
by the development data. Furthermore, while the bias–variance tradeoff may suggest
the need for parsimony, a wisely-chosen set of pre-specified predictors may often
work better in external validation data than a subset of those predictors chosen
by looking at their relationships with the outcome in the data used for model
development (Harrell 2005; Steyerberg 2009).
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10.1.4.2 Predictor Elimination Without Using the Outcome

A second-line strategy for avoiding overfitting is to eliminate candidates without
looking at predictor–outcome relationships, but taking account of the effective
sample size m, defined as the number of observations in linear regression, the
number of events in Cox regression, and the smaller of the numbers of observations
with or without the outcome in logistic models (Harrell 2005).

For example, summary variables can be chosen for predictor domains: LDL
and HDL cholesterol levels might be chosen on substantive grounds from among
the larger set of lipid measures including total cholesterol, triglycerides, and the
HDL/LDL ratio. Practical considerations may also be important. In particular,
expensive, invasive, risky, and relatively unreliable tests can be ruled out if more
practical alternatives are available. Predictors with fewer missing values in the
development data are also preferable, in particular, if missing values reflect the likely
difficulty of obtaining the measurement in practice.

Linearity would of course be a concern in modeling the effect of continuous
covariates such as LDL cholesterol. To address this issue, a related means of
outcome-free predictor elimination is to allocate spline knots based on prior
estimates of variable importance and m. Thus, if a predictor has been of primary
importance and had strongly nonlinear effects in earlier research, and m allows
it, a four- or five-knot spline may be pre-specified. In contrast, a less important
predictor or one known to have approximately linear effects can be treated more
simply. Smaller samples and fewer outcomes may also limit how flexibly we can
model continuous effects.

Principal components is a more complicated alternative for reducing the number
of parameters to be estimated without using the outcome, and has been shown to
work well in some studies (Harrell et al. 1984, 1996). This method summarizes a
large set of correlated continuous predictors by a much smaller set of uncorrelated
summary variables, or principal components, chosen to explain most of the variance
in the predictors. This simplification is achieved without reference to the outcome.

This approach does have some drawbacks. One is that the principal components
may not be substantively interpretable, which is desirable for face validity, although
not really needed for prediction. In addition, principal components capturing
the greatest variability in the predictors are not guaranteed to capture the most
variability in the outcome, although with well-chosen predictors this is likely.
Finally, this procedure does not reduce the number of underlying variables that need
to be measured, and so makes it more difficult to focus on easily-obtained predictors
with fewer missing values.

A widely used guideline suggests that at most m/10 or even m/20 candidate
predictors should be considered for inclusion in the prediction model. Note that each
component of a complicated predictor counts as an additional candidate, so that if
we pre-specify a restricted cubic spline with five knots to represent a continuous
predictor, the number of candidates increases by four, the required number of spline
basis variables. Motivated by simulation studies of the precision of predictions based
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on Cox models, this guideline is approximate, but does suggest that large samples
are necessary for developing valid prediction models, in particular, when variable
selection is required.

10.1.4.3 Model Selection Using the Outcome and Cross-Validation

In the common case where the combination of prespecification and outcome-free
predictor elimination does not adequately reduce the number of candidate predic-
tors, an effective strategy is to use exhaustive screening of all subsets of the re-
maining candidate predictors. Crucially, to avoid overfitting, this final screening step
must use cross-validation of a selected target measure of PE to help identify the most
predictive of these models. This is the approach used in most modern algorithms for
prediction model development, including the Deletion/Substitution/Addition (DSA)
algorithm (Molinaro and van der Laan 2004). In this procedure, implemented in R,
the candidate predictors, including polynomial terms and interactions, are efficiently
screened using h-fold cross-validation of a selected measure of PE.

Efficient screening is an important issue in this context. For example, even if
the number of candidate predictors has been reduced to a seemingly tractable eight,
the number of subsets of all sizes is 28 D 256. And even if an indirect optimism-
corrected measure of prediction error—adjusted R2, AIC, or BIC—is used in place
of cross-validation, this represents an onerous computing task without programs like
DSA that automate the screening.

However, screening can be made more practicable if some of the remaining
candidates are always to be included on a priori grounds. For example, if five of eight
candidate variables were to be included by default, then only 23 D 8models must be
screened. But if many models have to be screened, programming of the procedure,
including any intermediate steps, will almost surely be required. We illustrate this
approach in Sect. 10.1.6 below.

While this screening procedure should help us find a good predictive model
without overfitting, it is important to note that the cross-validated estimate of PE
for the selected model will be at least slightly optimistic, not because we use the
same data to estimate model parameters and evaluate PE—the source of optimism
in naı̈ve PE estimators—but because of the selection.

10.1.4.4 Shrinking the Coefficient Estimates

Dropping variables, on a priori or practical grounds or on the basis of a cross-
validated PE measure, is equivalent to setting their coefficients equal to zero.
An alternative approach is to shrink them only part way to zero. So-called shrinkage
procedures can be motivated on the grounds that even the weaker candidate
predictors specified a priori have some predictive value, and so should not be
excluded outright from the model. However, because their coefficients may be less
precisely estimated, better prediction may be achieved by reducing their influence.
This approach is closely related to the shrinkage estimators introduced in Sect. 7.7.3.
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In general shrinkage procedures impose penalties against the log-likelihood
in model fitting, with the degree of penalization generally optimized using
cross-validation. Le Cessie and Van Houwelingen (1992) and Verweij and Van
Houwelingen (1994) discuss applications to logistic and Cox regression. These
methods derive from ridge regression (Hoerl and Kennard 1970), which provides
slightly biased but less variable estimates in linear models when the predictors are
highly correlated. In ridge regression, the penalty is proportional to the sum of
the squared values of the regression coefficients, with the proportionality factor
commonly optimized using cross-validation. Coefficients are shrunken roughly in
inverse proportion to the variance of the corresponding predictor, but no variables
are omitted outright.

In contrast, the penalty imposed by the Least Absolute Shrinkage and Selection
Operator (LASSO) (Tibshirani 1997) is proportional to the sum of the absolute
values of the regression coefficients. Surprisingly, the result is that the LASSO can
set the coefficients for the least important predictors to zero, effectively omitting
those variables from the model, while differentially shrinking others. Thus, it is
a selection as well as a shrinkage procedure. The LASSO has been implemented
only for linear models in the Stata lars package, as so-called least angle
regression. However, the penalized package in R extends both ridge regression
and the LASSO to GLMs and Cox models, and incorporates cross-validation for
selecting the penalty factor.

10.1.5 Point Scores

Unless a continuous predictor has strong threshold effects, we can generally achieve
better prediction by keeping it continuous, modeling any nonlinearity in its effects,
and avoiding dichotomization. However, one drawback, especially if splines are
used to capture nonlinear effects, is that the predictions almost always need to be
calculated using some electronic interface, or at least a nomogram. If the prediction
model is intended for everyday clinical use, easily calculated scores assigning points
to a small set of risk factors are more likely to be adopted.

For example, the Thrombosis in Myocardial Infarction (TIMI) risk score for
predicting event-free survival in heart disease patients is simply calculated by
counting up seven risk indications, including age� 65, having� 3 CAD risk factors,
coronary stenosis, ST-segment deviation, elevated serum cardiac markers, � 2
recent angina episodes, and aspirin use in the last week (Antman et al. 2000). Each
of the underlying predictors was dichotomized and assigned one point.

At some cost in complexity, more information can be retained by splitting
continuous variables into more than two categories, with nonreference levels
assigned different numbers of points. For example, D’Agostino et al. (2000) tabulate
points assigned to each level of several multicategory predictors, and provide an
additional table for translating the summed point scores into predicted risks.
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Point systems allowing differing weights are commonly derived by rounding the
regression coefficients for each binary indicator variable, after suitable rescaling so
that each factor is assigned at least one point. In some cases, risk scores of this type
may perform nearly as well as summary scores based on the underlying coefficients.
However, considerable increases in prediction error may sometimes result (Gordon
et al. 2010).

10.1.6 Example: Risk Stratification of Patients with Heart
Disease

The Heart and Soul Study follows a prospective cohort of 1,024 adults with
established CHD, recruited from several clinical centers in the San Francisco Bay
Area in 2000–2002 (Whooley et al. 2008). Over 5,745 person-years of follow-up by
the time of analysis, 272 outcome events, a composite defined by heart attack, heart
failure, stroke, or death from cardiovascular causes, had been observed among 916
of these participants with complete baseline test data.

Starting from a wide range of baseline predictors, we developed two Cox
models for risk stratification of this moderate-to-high risk patient population. One,
requiring computer implementation, includes three continuous predictors, two of
them represented by 3-knot restricted cubic splines. The second is a point score
model. We selected Harrell’s C-index as our target PE measure, and drove final
model selection mainly by minimizing cross-validated estimates of this target.

Based on the knowledge of the investigators, an initial set of 36 candidate
predictors was identified. On practical grounds and by choosing—without using the
outcomes—the best predictor in several domains, the number was reduced to 18,
under the m/10 upper bound of 27, but still exceeding the more conservative bound
of m/20. While cut-points for dichotomizing continuous predictors, as required for
the point score, were available from the literature, less information was available
on functional form. On practical grounds, the investigators specified that the point
score should include at most 7 predictors, and preferably 5 or 6, and were reluctant
to consider larger continuous models.

Because the number of possible models was very large even before considering
the functional form of continuous predictors, we used exploratory analysis to reduce
the scope of the cross-validation screening. Specifically, using backward selection
procedures, we decided that the four clearly most powerful predictors (age, left
ventricular ejection fraction (LVEF), B-natriuretic peptide levels (BNP), and urinary
creatinine/albumin ratios (UACR), would be included in any selected model, and
that we could safely omit the four weakest (hypertension, history of heart attack,
LDL, and HDL cholesterol). The remaining candidates for inclusion in the model
included gender, BMI, current smoking, diabetes, C-reactive protein (CRP), chronic
kidney disease (CKD), detectable troponin, congestive heart failure (CHF), physical
inactivity, and poor adherence to medication.
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Table 10.2 Top-scoring prediction models

Continuous Point score
Number of C-Index (%) GOF C-Index (%) GOF
Predictors CVa Naı̈ve P -valueb CV Naı̈ve P -value

5 76.2 76.6 0.90 73.1 74.0 0.002
6 76.2 76.9 0.50 73.9 74.5 0.07
7 76.2 76.8 0.72 73.0 74.8 0.03
a Cross-validation.
b Goodness of fit test due to Parzen and Lipsitz (1999).

In addition, we selected the functional form for continuous predictors by
comparing AIC values for alternatives, in models adjusting for other powerful
covariates. On this basis, we elected to treat age as linear, dichotomized LVEF at
the established cutpoint of 50%, and used 3-knot restricted cubic splines for UACR
and BNP as well as BMI and CRP. In additional exploratory analyses using four
or five-knot splines, the cross-validated C-index decreased substantially, reflecting
overfitting.

We then programmed algorithms in Stata to perform 10-fold cross-validation
of the C-index for each of several hundred candidate continuous and point score
models. For the point-score models, we used a simple automatic algorithm for
calculating the scores based on each of the ten cross-validation development sets.

Table 10.2 shows results for 5, 6, and 7-predictor continuous and point score
models with values of the cross-validated C-index at the observed maximum.
Several comments are in order:

• The continuous models consistently do better than the point score models.
The 2%–3% point improvements in the C-index are substantial and not easily
achieved. Note that the number of parameters estimated for the continuous
models is two greater than the number of predictors, because BNP and UACR
were modeled using 3-knot splines.

• The larger models have at most slightly higher cross-validated values of the
C-index. Moreover, continuous models with more than 7 predictors did not do
substantially better than the 7-predictor model.

• The naı̈ve and cross-validated C-index values are also very close, possibly
reflecting optimism of the cross-validated estimate due to selection.

• Holding the number of predictors or parameters fixed, the C-indices for the top
5–10 models barely differed (data not shown). This illustrates that in prediction,
models containing different sets of predictors may be quite competitive.

When different models are close in terms of the cross-validated target measure
of PE, additional criteria may be used to decide between them, including cali-
bration. Despite the evidence for poor fit of the point score models, model-based
and Kaplan–Meier estimates of risk were in reasonably good agreement for the
6-predictor models, as shown in Fig. 10.1, as well as for the 7-predictor and larger
models. Results are stratified by decile of predicted risk for the continuous model,
and by point scores for the point score model.
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Fig. 10.1 Calibration of prediction models

Face validity and clinical convenience were also top priorities for the
investigators. Current smoking and diabetes are accepted and reasonably strong
cardiovascular risk factors. The best 7-predictor continuous models included either
troponin or CRP, and so would have required an extra test, without improving
discrimination or calibration. Accordingly, the investigators selected the 6-predictor
model, including age, LVEF, BNP, UACR, current smoking, and diabetes.

10.2 Evaluating a Predictor of Primary Interest

In observational data, the main problem in evaluating a predictor of primary interest
is to rule out confounding of the association between this predictor and the outcome
as persuasively as possible. Potential confounders to be considered include factors
identified in previous studies or hypothesized to matter on substantive grounds, as
well as variables that behave like confounders by the statistical measures described
in Sect. 4.4. Three classes of covariates would not be considered for inclusion in the
model: covariates which are essentially alternative measures of either the outcome
or the predictor of interest, and those hypothesized to mediate its effect. A diagram
of the proposed causal model can be useful for clarifying hypotheses about these
relationships, which can be complex, and for selecting variables for consideration.

In contrast, mediation of one confounder by another would not affect the estimate
for the primary predictor nor its interpretation. Similarly, high correlation between
pairs of adjustment of confounding variables would not necessarily be a compelling
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reason for removing one of them, if both are seen as necessary on substantive or
statistical grounds; the reason is that collinearity between confounding variables
will not affect the estimate for the primary predictor or its precision. Covariates
which are in some sense alternative measures of the outcome are not always easy
to recognize, but should usually be excluded. For example, it would be problematic
to include diabetes in a model for glucose, because diabetes is largely defined by
elevated glucose. Another example is history of a potentially recurrent outcome
like falling in a model for subsequent incidence of the outcome. In both examples,
addition of the alternative outcome measure as a predictor to the model tends to
attenuate the estimates for other, more interpretable predictors.

10.2.1 Including Predictors for Face Validity

Some variables in the hypothesized causal model may be such well-established
causal antecedents of the outcome that it makes sense to include them, essentially
to establish the face validity of the model and without regard to the strength or
statistical significance of their associations with the primary predictor and outcome
in the current data set. The risk factors controlled for in the Nurse’s Health Study
analysis of the effects of HT on CHD risk are well understood and meet this
criterion.

10.2.2 Selecting Predictors on Statistical Grounds

In many areas of research, the potential confounders of a predictor of interest
may be less well established, so that in the common case where there are many
such potential confounders, a priori selection of a reasonable subset to adjust
for is not a realistic option. However, the inclusion of too many predictors may
unacceptably inflate the standard errors of the regression coefficients, especially
in smaller samples; in logistic and Cox models bias can also be induced when
too many parameters are estimated. We discuss collinearity and the numbers of
predictors that can safely be included in Sects. 10.4.1 and 10.4.2. Because of these
potential problems, we would like to eliminate variables that are effectively not
confounders, because they demonstrate little or no independent association with the
outcome after adjustment. Similarly, hypothesized interactions that turn out not to
be important on statistical grounds would be eliminated, almost always before either
of the interacting main effects are removed.

An easily implemented method for eliminating redundant predictors on statistical
grounds is so-called backward selection. In brief, backward selection begins
with full model including all pre-specified candidate predictors, then sequentially
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eliminates the weaker candidates, at each step removing the predictor with the
largest P -value. The advantages of backward over forward and stepwise procedures
are explained in Sect. 10.4.3.

If P -value driven selection is used, we recommend a liberal criterion, to rule
out confounding more effectively: in particular, only removing variables with P -
values� 0.2 (Maldonado and Greenland 1993). A comparably effective alternative
is to retain variables if removing them changes the coefficient for the predictor
of interest by more than 10% or 15% (Greenland 1989; Mickey and Greenland
1989). These liberal criteria are particularly important in small data sets, where even
important confounders may not meet the usual P < 0:05 criterion for statistical
significance.

10.2.3 Interactions With the Predictor of Primary Interest

A potentially important check on the validity of the selected model is to assess
interactions between the primary predictor and important covariates, in particular,
those that are biologically plausible. Especially for a novel or controversial main
finding, it can add credibility to show that the association is similar across
subgroups. There is no reason for concern if the association is statistically significant
in one subgroup but not in the complementary group, provided the subgroup-
specific estimates are similar. However, if a substantial and credible interaction is
found, particularly such that the association with the predictor of interest differs
qualitatively across subgroups, then the analysis would need to take account of
this complexity. For example, Kanaya et al. (2004) found an interaction between
change in obesity and HT in predicting CHD and mortality risk which substantively
changed the interpretation of the finding. However, since such exploratory analyses
are susceptible to false-positive findings, this unexpected and hard-to-explain
interaction was cautiously interpreted.

10.2.4 Example: Incontinence as a Risk Factor for Falling

Brown et al. (2000) examined urinary incontinence as a risk factor for falling among
6,049 ambulatory, community-dwelling women in the SOF cohort also studied
by Orwoll. The hypothesis was that incontinence might cause falling because of
hasty trips to the bathroom, especially at night. But it was important to rule out
confounding by physical decline, which is strongly associated with both aging and
incontinence. The final model included all predictors which were associated with the
outcome at P < 0:2 in univariable analysis and remained statistically significant at
that level after multivariable adjustment. Alternative and more inclusive models with
different sets of predictors were also assessed. After adjustment for 12 covariates
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(age; history of nonspine fracture and falling; living alone; physical activity; use
of a cane, walker, or crutch; history of stroke or diabetes; use of two classes of
drugs; a physical performance variable; and BMD) weekly or more frequent urge
incontinence was independently associated with a 34% increase in risk of falling
(95% CI 6%–69%, P D 0:01).

In this example, falling was defined as a binary outcome, discussed in Chap. 5. In
addition, because the outcome was observed over multiple time intervals for each
SOF participant, methods presented in Chap. 7 for longitudinal repeated measures
were used. A subsequent example in Sect. 10.4.2 uses a Cox proportional hazards
model, covered in Chap. 6. In using these varied examples, we underscore the fact
that predictor selection issues are essentially the same for all the regression models
covered in this book.

10.2.5 Directed Acyclic Graphs

So-called directed acyclic graphs (DAGs) (Pearl 1995), a type of causal diagram,
are potentially useful in determining which covariates need to be included in—and
excluded from—regression models used for the second inferential goal of evaluating
the effects of a predictor of primary interest. In the following example we briefly
review the terminology and some key ideas, show how a DAG could be used to
guide predictor selection for this inferential goal, and discuss some complications
that can arise.

10.2.5.1 Example: Vitamin Use and Birth Defects

Suppose we would like to assess the causal effect of vitamin use on prevention of
birth defects. The DAG in Fig. 10.2 identifies four common causes of vitamin use
and birth defects, all of them potential confounders: pre-natal care, socioeconomic
status (SES), difficulty conceiving, and maternal genetics. Vitamin use, birth
defects, and the potential confounders are represented as nodes of the DAG, while
the causal relationships between them are represented as arrows, or directed edges.
The DAG is acyclic in the sense that no ordered sequence of arrows or directed
edges leads back to the node from which the sequence began.

The DAG in Fig. 10.2 encodes several causal assumptions:

• Pre-natal care affects both vitamin use and risk of birth defects.
• A history of difficulty conceiving affects the likelihood that expectant mothers

seek pre-natal care.
• Maternal genetics is a common cause of difficulty conceiving and birth defects.
• SES affects access to pre-natal care as well as vitamin use.
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The preceding discussion of predictor selection for the second inferential goal
suggests that we might want to control for all four hypothesized confounders of
vitamin use. But do we really need to control for all of them? Not having to ascertain
maternal genetics would save money and increase study participation, and a smaller
model would likely be more efficient statistically.

10.2.5.2 Backdoor Paths

The DAG in Fig. 10.2 can be used to identify a minimum set of covariates we need to
control for. To do this, we need to examine backdoor paths between vitamin use and
birth defects. Paths are sequences of edges connecting two nodes, without regard
to their direction. There are a total of five distinct paths connecting vitamin use
and birth defects. Only one of these begins with a directed edge from vitamin use,
specifically the path leading directly to birth defects, representing the hypothesized
causal effect of interest; this is not a backdoor path. The other four paths connecting
vitamin use and birth defects are backdoor paths, because they all include a directed
edge leading to vitamin use:

(1) Vitamin use pre-natal care! birth defects
(2) Vitamin use SES! pre-natal care! birth defects
(3) Vitamin use pre-natal care difficulty conceiving maternal genet-

ics! birth defects
(4) Vitamin use SES! pre-natal care difficulty conceiving maternal ge-

netics! birth defects

Note that this DAG includes no paths beginning with a directed edge from vitamin
use and passing through one or more nodes on the way to birth defects. Such indirect
paths via mediators would not be considered backdoor paths.
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10.2.5.3 Colliders

Pre-natal care is a so-called collider on the fourth backdoor path between vitamin
use and birth defects, because it is the common effect of SES and difficulty
conceiving. Note that pre-natal care is not a collider on any of the other three
backdoor paths; likewise none of the other covariates are colliders on any of the
four backdoor paths. Rules for determining what we need to control for treat
colliders differently from other covariates along backdoor paths between exposure
and outcome.

10.2.5.4 Blocking Backdoor Paths

Backdoor paths between exposure and outcome may be blocked or remain open.
If any of the four backdoor paths between vitamin use and birth defects remains
open, we would expect to find a statistical association between them, even if there
was no causal relationship; essentially, this is uncontrolled confounding. But if all
the backdoor paths are blocked, then we would only expect a statistical association
between vitamin use and birth defects if a causal relationship links them. Whether
any of the four backdoor paths remain open depends on whether it includes a
collider, and what we control for in the statistical model we use to estimate the
effect of vitamin use on birth defects. Specifically,

(1) A backdoor path is blocked, provided we control for at least one noncollider on
the path. Thus, we can efficiently block the first three backdoor paths between
vitamin use and birth defects by controlling for pre-natal care, because it is a
noncollider on all those paths.

(2) A backdoor path including a collider is blocked, provided we do not control for
the collider in the statistical model. Controlling for a collider induces a negative
correlation between its common causes, opening an additional backdoor path, as
shown in Fig. 10.3. To block this path, the model must control for a noncollider
on the newly opened path.

Thus, the DAGs in Figs. 10.2 and 10.3 imply that we could obtain an unbiased
estimate of the causal effect of vitamin use on birth defects using a statistical model
in which we parsimoniously controlled for pre-natal care as well as one of the other
three hypothesized confounders: SES, difficulty conceiving, or maternal genetics.

This pattern of confounding relationships, examined in a slightly simpler form
by Greenland et al. (1999), illustrates that controlling for one apparently sufficient
confounder may not be enough, if it is also a collider. Nonetheless, the solution is
simple: controlling for just one additional factor will block the new backdoor path
opened by controlling for the collider. Thus, the insight gained from the DAG might
still make it possible to increase the efficiency of our study, relative to the more
inclusive model selection strategy discussed earlier in this section.
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10.2.5.5 Vulnerability to Assumptions

This result may be vulnerable to several assumptions implicit in the DAG in
Fig. 10.2. Specifically, we may question whether

• SES affects birth defects only through its effects on pre-natal care and vitamin
use. An additional pathway may result from environmental exposures, which are
concentrated among the poor and minorities.

• Difficulty conceiving affects vitamin use only through uptake of pre-natal
care. An additional pathway could be opened by the huge market for over-
the-counter dietary supplements.

• There is no direct link between maternal genetics and SES. So-called population
stratification suggests that the prevalence of genetic factors causing birth defects
may differ by race/ethnicity. This opens a complicated causal pathway from
maternal genetics to SES, mediated by racial and class discrimination.

If these concerns are valid, then there are three additional backdoor paths we might
need to block, as shown in Fig. 10.4:

(1) Vitamin use SES! birth defects
(2) Vitamin use difficulty conceiving maternal genetics! birth defects
(3) Vitamin use SES maternal genetics! birth defects

Thus, we would need to control for pre-natal care and SES, as well as either
difficulty conceiving or maternal genetics.

10.2.5.6 Colliders We Should Not Adjust For

DAGs can also help us avoid adjusting in cases where this will induce bias. For
example, suppose we hypothesized the causal relationships in Fig. 10.5. In this
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DAG, maternal weight gain is not a confounder of vitamin use, and so does not need
to be adjusted for. As in Fig. 10.2, this depends on the absence of directed edges, in
this case from maternal weight gain to vitamin use and birth defects. Their absence
is based on substantive arguments: specifically, that most birth defects are caused
by genetics and/or toxic exposures, with no prior evidence for an independent effect
of weight gain; and that the perceptions of vitamin efficacy and inadequate diet, not
maternal weight gain, are the primary motivations for vitamin use.

However, maternal weight gain is a collider on a backdoor path involving
maternal behavioral and genetic factors, both unmeasured. Adjusting for maternal
weight gain would induce bias in this case, by opening the backdoor path; moreover,
we would be unable to block this path by adjusting for either of the two noncolliders,
because they are unmeasured. Assuming the DAG in Fig. 10.5 is correct, it could
prevent us from making this error, on the mistaken principle of adjusting for any
possible confounder, without more carefully considering causal relationships.
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Similarly, Fig. 10.6 shows stillbirths, potentially reduced by vitamin use and
increased by birth defects, as a common effect of exposure and outcome; in contrast,
a confounder is a common cause. As a collider on the backdoor path between
vitamin use and birth defects, stillbirths should not be adjusted for.

10.2.5.7 More About DAGs

The case of vitamin use and birth defects shows that using DAGs to identify
a minimum set of covariates that must be controlled for may rest on strong
assumptions that certain directed edges are absent from the DAG, assumptions that
may be easy to second-guess, especially in newer fields of research. In that case, the
safe course is to include the additional directed edges in the DAG and make sure that
the resulting backdoor paths are blocked, either by a collider that is not controlled
for in the statistical model, or by a noncollider that is.

At the same time, backdoor paths of the kind shown if Fig. 10.5 should be
interpreted with caution if evidence for the unmeasured factors is unconvincing,
or their effects are thought to be weak. In this case, leaving the backdoor path
unblocked may not induce substantial bias. Greenland (2003) shows that bias from
controlling for the common effects of exposure and outcome, as in Fig. 10.6, may
often be comparable in magnitude with bias from not controlling for a common
cause of exposure and disease. In contrast, biases from controlling for a collider as
shown in Fig. 10.5 may be smaller.

DAGs are also useful for determining whether to adjust for the baseline outcome
in analyses of pre-post change scores, as discussed in Sect. 7.3.1. Glymour et al.
(2005) use DAGs to show that if exposure affects outcome levels at baseline
(regardless of whether it affects subsequent changes), and the baseline outcome
is measured with error, then bias results from adjusting for baseline. Similarly,
so-called horse-racing bias arises if changes have already begun at baseline, and
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unmeasured causes of change affect both the baseline and follow-up outcomes. In
both cases, the baseline outcome is a collider on a backdoor path from the primary
predictor to the observed change. Since the common cause of the baseline outcome
and change is by definition unmeasured, the resulting bias cannot be removed by
adjustment.

In contrast, it is legitimate to adjust for the baseline outcome in estimating the
effect of treatment on pre-post changes in a randomized trial, even though both
outcomes are measured with error (Crager 1987). In this case, the directed edge
from treatment to the baseline outcome is absent, so there is no backdoor path from
treatment to change, with the corollary that the baseline outcome is not a collider.

In addition, Herńan et al. (2004) show how DAGs can be used to analyze the
potential for selection bias. In particular, they show that restricting study entry
according to participant characteristics is equivalent to adjusting for a collider, if
common causes link the qualifying characteristics to both exposure and outcome.
This approach also explains why informative censoring or dropout in longitudinal
studies can induce bias. In contrast to the biases analyzed by Glymour et al. (2005),
these biases can potentially be avoided by measuring and adjusting for the common
causes linking exposure, outcome, and selection.

In summary, DAGs are a useful tool for thinking through what we need to
adjust for in analyses focusing on the effect of a primary predictor, as well as
what needs to be omitted, at least at the initial stages of an analysis. At the same
time, overcomplicated DAGs should not stop progress—small biases from residual
confounding or collider bias may not result in qualitatively mistaken inferences.

10.2.6 Randomized Experiments

In clinical trials and other randomized experiments, the intervention is the predictor
of primary interest. Other predictors are, in expectation, uncorrelated with the
intervention, by virtue of randomization. Thus, in the regression model used to
analyze an experiment, covariates do not usually need to be included to rule out
confounding of assignment to the intervention. However, there are several other
reasons for including covariates in the models used to analyze experiments.

• Making valid inferences in stratified designs. Design variables in stratified de-
signs need to be included to obtain correct standard errors, CIs, and P -values. At
issue is the potential for clustering of outcomes within strata, potentially violating
the assumption of independence (Chap. 7). Thus, analyses of multicenter clinical
trials now commonly take account of clinical center, even though random and
equal allocation to treatment within center ensures that treatment is in expectation
uncorrelated with this factor. Clustering within center can arise from differences
in the populations studied and in the implementation of the intervention.

• Increasing precision and power in experiments with continuous outcomes. Ad-
justing for important baseline predictors of a continuous outcome can increase
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the precision of the treatment effect estimate by reducing the residual error;
because the covariates are in expectation uncorrelated with treatment, the
variance inflation factor described in Sect. 4.2.2 is usually negligible. However,
Beach and Meier (1989) use simulations to suggest that adjustment may on
average increase squared error of the treatment effect estimate in smaller studies
or when the selected covariates are not strongly predictive of the outcome. They
also explore the difficulties in selecting a reasonable subset of the many baseline
covariates typically measured, and conclude that adjusting for covariates which
are both imbalanced and strongly predictive of the outcome has the largest
expected effect on the statistical significance of the treatment effect estimate. We
support adjustment for important prognostic covariates in trials with continuous
endpoints, but also endorse the stipulation of Hauck et al. (1998) that the
adjusted model should be pre-specified in the study protocol, to prevent post
hoc “shopping” for the set of covariates which gives the smallest treatment effect
P -value.

• “De-attenuating” the treatment effect estimate and increasing power in exper-
iments with binary or failure time outcomes. In contrast to linear models for
continuous outcomes, omission of important but balanced predictors, including
the stratification variables mentioned previously, from a logistic (Neuhaus and
Jewell 1993; Neuhaus 1998) or Cox model (Gail et al. 1984; Schmoor and
Schumacher 1997; Henderson and Oman 1999) used to analyze binary or
failure time outcomes attenuates the treatment effect estimate. Hypothesis tests
remain valid when the null hypothesis holds (Gail et al. 1988), but power is
lost in proportion to the importance of the omitted covariates (Lagakos and
Schoenfeld 1984; Begg and Lagakos 1993). Note, however, that adjustment for
imbalanced covariates can potentially move the treatment effect estimate away
from as well as toward the null value, and can decrease both precision and
power. In their review, Hauck et al. (1998) recommend adjustment for influential
covariates in trials analyzed using logistic and Cox models. Their rationale is not
only increased efficiency, but also that the adjusted or de-attenuated treatment
effect estimates are more nearly interpretable as subject specific—in contrast to
population averaged, a distinction that we explain in Sect. 7.5. We cautiously
endorse adjustment for important covariates in trials with binary and failure time
endpoints, but only if the adjusted model can be pre-specified and adjustment is
likely to make the results more, not less convincing to the intended audience.

• Adjusting for baseline imbalances. Adjusted analyses are often conducted when
there are apparent imbalances between groups, which can arise by chance,
especially in small studies, or because of problems in implementing the ran-
domization. The treatment effect estimate can be badly biased when strongly
predictive covariates are imbalanced, even if the imbalance is not statistically sig-
nificant. It is of course not possible to pre-specify such covariates, but adjustment
is commonly undertaken in secondary analyses to demonstrate that the inferences
about the treatment effect are not qualitatively affected by any apparent baseline
imbalance. Note that the precision and statistical significance of the treatment
effect estimate can be eroded by adjustment in this case, whether the endpoint
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is continuous, binary, or a failure time. However, a difficult problem can arise
when the selection of covariates to adjust for makes a substantive difference in
interpretation, as Beach and Meier (1989) show in a re-analysis of time-to-event
data from the Chicago Breast Cancer Surgery Study (Meier et al. 1985). In this
small trial (nD 112), where the unadjusted treatment effect estimate just misses
statistical significance (P D 0:1), different sets of covariates give qualitatively
different results, with some adjusted models showing a statistically significant
treatment effect and others weakening and even reversing the direction of the
estimate.

10.3 Identifying Multiple Important Predictors

When the focus is on evaluating a predictor of primary interest, covariates are
included in order to obtain a minimally confounded estimate of the association
of the main predictor with the outcome. A good model rules out confounding
of that association as persuasively as possible. However, broadening the focus to
multiple important predictors of an outcome can make selecting a single best model
considerably more difficult.

For example, inferences about most or all of the predictors retained in the
model are now of primary interest, so overfitting and false-positive results are more
problematic, particularly for novel associations not strongly motivated a priori.
Effect modification or interaction will usually be of interest, but systematically
assessing the large number of possible interactions can easily lead to false-positive
findings, some at least not easily rejected as implausible. It may also be difficult to
choose between alternative models that each include one variable from a collinear
pair or set. Mediation is also more difficult to handle, to the extent that the overall
effect of any predictor as well as its direct and indirect effects may be of interest.
In this case, multiple, nested models may be required, as outlined in Sect. 4.4.
Especially in the earlier stages of research, modeling these complex relationships
is difficult, prone to error, and likely to be an iterative process. In some cases, a
series of models, possibly including interactions, might be necessary to give a full
and interpretable picture.

10.3.1 Ruling Out Confounding Is Still Central

In exploratory analyses to identify the important predictors of an outcome, con-
founding remains a primary concern—in this case, for any of the independent
predictors of interest. Thus, some of the same strategies useful when a single
predictor is of primary interest are likely to be useful here. In particular, relatively
large models, including variables thought necessary for face validity, are preferable.
Ideally, the model can be specified a priori. However, as in the previous section,
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small sample size and high correlation between predictors may limit the number
of variables that can be included. In this case, we recommend using backward
selection with a liberal retention criterion. We discuss these issues in more detail
in Sects. 10.4.1 and 10.4.2.

Simplifying the problem by treating each of the candidate predictors in turn as a
predictor of primary interest, using the procedures from the previous section, is not
a particularly satisfactory solution in our view. This can result in as many different
models as there are predictors of interest, especially if covariates are retained
because removing them changes the coefficient of the predictor of interest. Such
a description of the data is uneconomical and hard to reconcile with an internally
consistent causal model. Furthermore, missing values can result in the different
models being fit to different subsets of the data.

10.3.2 Cautious Interpretation Is Also Key

What principally differs in this context is that any of the associations in the final
model may require substantive interpretation, not just the association with a primary
predictor. This may justify a more conservative approach to some minor aspects of
the model; for example, poorly motivated and implausible interactions might more
readily be excluded. In addition, well-motivated choices among any set of highly
correlated predictors would need to be made.

However, we do not recommend “parsimonious” models that only include
predictors that are statistically significant at P < 0:05 or even stricter criteria,
especially with small samples, because the potential for residual confounding in
such models is substantial. At the same time, we do not recommend explicit
correction for multiple comparisons, since in an exploratory analysis it is far from
clear how many comparisons to correct for, and by how much. This is in contrast
to analyses evaluating multiple outcomes of a single treatment, as discussed in
Sect. 13.4.1, where adjustment is almost certainly needed.

A better approach is to interpret the results of a larger model cautiously, espe-
cially novel, implausible, weak, and borderline statistically significant associations,
to report model selection procedures, including the complete list of covariates
considered, and to be aware of the potential inflation of type-I error, listing this
as a limitation in published descriptions.

A more radical alternative, briefly discussed in Sect. 10.6, is to use methods
for developing prediction models, based on minimizing prediction error, often via
cross-validation. For example, the LASSO, discussed in Sect. 10.1.4, drops the
least important variables and shrinks the less precisely estimated coefficients for
others that are retained. Some of these methods provide direct measures of so-called
variable importance, the implicit focus of this inferential goal. Drawbacks often
include the lack of P -values and CIs, and the difficulty of accounting for mediating
relationships and retaining variables for face validity.
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10.3.3 Example: Risk Factors for Coronary Heart Disease

Vittinghoff et al. (2003) used multipredictor Cox models to assess the associations
between risk factors and CHD events among 2,763 postmenopausal women with
established CHD. Because of the large number (n D 361) of outcome events, it
was possible to include all previously identified risk factors that were statistically
significant atP <0:2 in unadjusted models and not judged redundant on substantive
grounds in the final multipredictor model. Among the 11 risk factors judged
to be important on both substantive and statistical grounds were six noted by
history (nonwhite ethnicity, lack of exercise, treated diabetes, angina, congestive
heart failure, � 2 previous heart attacks) and five that were measured (high blood
pressure, lipids including LDL, HDL, and Lp(a), and creatinine clearance).

For face validity and to rule out confounding, the final model also controlled
for other known or suspected CHD risk factors, including age, smoking, alcohol
use, and obesity, although these were not statistically significant in the adjusted
analysis. Mediation of obesity and diabetes, both shown to be associated with risk
in single-predictor models, was covered in the discussion section of the paper.
The model also controlled for a wide range of CHD-related medications, but
because these effects were not of direct interest and hard to interpret, estimates were
not presented. However, interactions between risk factors and relevant treatments
were examined, on the hypothesis that treatments might modify the association
between observed risk factor levels and future CHD risk; the final model included
interactions that were statistically significant at P < 0:2.

10.3.4 Allen–Cady Modified Backward Selection

Flexible predictor selection procedures, including conventional backward selection,
are known to increase the probability of making at least one type-I error. A backward
selection procedure (Allen and Cady 1982) based on a ranking of the candidate
variables by importance can be used to help avoid false-positive results, while still
reducing the number of covariates in the model. In this procedure, a set of variables
may be forced into the model, including predictors of primary interest, as well as
confounding variables thought important for face validity. The remaining candidate
variables would then be ranked in order of importance. Starting with an initial model
including all covariates in these two sets, variables in the second set would be
deleted in order of ascending importance until the first variable meeting a criterion
for retention is encountered. Then the selection procedure stops.

This procedure is special in that only the remaining variable hypothesized to
be least important is eligible for removal at each step, whereas in conventional
backward selection, any of the predictors not being forced into the model is eligible.
False-positive results are less likely because there is only one pre-specified sequence
of models, and selection stops when the first variable not meeting the criterion
for removal is encountered. In contrast, conventional stepwise procedures and
especially best subsets search over broader classes of models.
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10.4 Some Details

10.4.1 Collinearity

In Sect. 4.2, we saw that the variance of the regression coefficient estimate for
predictor xj , increases with rj , the multiple correlation between xj and the other
predictors in the model. When rj is large, the estimate of ˇj can become quite
imprecise. Consider the case where two predictors are fairly highly correlated
(r � 0:80). When both are included in the model, the precision of the estimated
coefficient for each can be severely degraded, even when both variables are
statistically significant predictors in simpler models that include one but not both.
In the model including both, an F -test for the joint effect of both variables may
be highly statistically significant, while the variable-specific t-tests are not. This
pattern indicates that the two variables jointly provide important information for
predicting the outcome, but that neither is necessary over and above the other.
With modern computers, problems in estimating the independent effects of highly
correlated predictors no longer arise from numeric inaccuracy in the computations.
Rather, the information is coming from both variables jointly, which makes them
both seem unimportant in t-tests evaluating their individual contributions.

Definition: Collinearity denotes correlation between predictors high enough to degrade
the precision of the regression coefficient estimates substantially for some or all of the
correlated predictors.

How we deal with collinear predictors depends in part on our inferential
goals. For a prediction model, inference on individual predictors is not of direct
interest. Rather, if inclusion of collinear variables decreases prediction error, then it
is legitimate to include them both. In this case, cross-validation of the target measure
of PE can be used to decide which of a collinear set of predictors to include.

Alternatively, suppose that one of two collinear variables is a predictor of primary
interest, and the other is a confounder that must be adjusted for on substantive
grounds. If the predictor of interest remains statistically significant after adjustment,
then the evidence for an independent effect is usually convincing. In small data
sets especially, it would be necessary to demonstrate that the finding is not the
result of a few influential points, and where the data do not precisely meet model
assumptions, to show that the inferences are robust, possibly using the bootstrap
methods introduced in Sect. 3.6. Alternatively, if the effects of the predictor of
interest are clearly confounded by the adjustment variable, we would also have
a clearcut result. However, in cases where neither is statistically significant after
adjustment, we may need to admit that the data are inadequate to disentangle their
effects.

In contrast, where the collinearity is between adjustment variables and does not
involve the predictor of primary interest, then inclusion of the collinear variables can
sometimes be justified. In this case, information about the underlying factor being
adjusted for may be increased, but the precision of the estimate for the predictor
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of interest is unaffected. To see this, consider evaluating the effect of diabetes on
HDL, adjusting for BMI. In Sect. 4.7, we found that a quadratic term in BMI
added significantly to the model. However, BMI and its square are clearly collinear
(r D 0:99). If instead we first “center” BMI (i.e., subtract off its sample mean
before computing its square), the collinearity disappears (r D 0:46). However, the
estimate for diabetes and its standard error are unchanged whether or not we center
BMI before computing the quadratic term. In short, collinearity between adjustment
variables is unlikely to matter.

Finally, when we are attempting to identify multiple independent predictors, an
attractive solution is to choose on substantive grounds, such as plausibility as a
causal factor. Otherwise, it may make sense to choose the predictor that is measured
more accurately or has fewer missing values. As in the case of a predictor of
primary interest, the multivariable model may sometimes provide a clear indication
of relative importance, in that one of the collinear variables remains statistically
significant after adjustment, while the others appear to be unimportant. In this case,
the usual course would be to include the statistically significant variable and drop
the others.

10.4.2 Number of Predictors

The rationale for inclusive predictor selection rules, whether we are assessing
a predictor of primary interest or multiple important independent predictors, is
to obtain minimally confounded estimates. However, this can make regression
coefficient estimates less precise, especially for highly correlated predictors. At the
extreme, model performance can be severely degraded by the inclusion of too many
predictors.

Rules of thumb have been suggested for number of predictors that can be safely
included as a function of sample size or number of events. A commonly used guide-
line prescribes at least ten observations for each predictor; with binary or survival
outcomes the analogous guideline specifies ten events per predictor (Peduzzi et al.
1995, 1996; Concato et al. 1995). The rationale is to obtain adequately precise
estimates, and in the case of the logistic and Cox models (Chaps. 5 and 6), to ensure
that the models behave properly.

Such guidelines are useful as flags for potential problems, but need not be
inflexibly applied. Their primary limitation is that the precision of coefficient
estimates depends on other factors as well as the number of observations or events
per predictor (Vittinghoff and McCulloch 2007). In particular, recall from Sect. 4.2
that the variance of an estimated regression coefficient in a linear model depends on
the residual variance of the outcome, which is generally reduced by the inclusion of
important covariates. Precision also depends on the multiple correlation between a
predictor of interest and other variables in the model. Thus, addition of covariates
that are at most weakly correlated with the primary predictor but explain substantial
outcome variance can actually improve the precision of the estimate for the predictor
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Table 10.3 Cox models for DVT-PE

Predictor RH (95% Confidence interval) P -values
variable 11-Predictor model 5-Predictor models Wald LR

HT vs. placebo 2.7 (1.4–5.2) 2.7 (1.4–5.1) 0.002 0.001
� 53 at LMP 3.6 (2.0–6.4) 3.3 (1.8–5.8) < 0.001 < 0.001
Inpatient surgery 4.3 (2.1–8.7) 4.7 (2.3–9.5) < 0.001 < 0.001
Hospitalization 5.6 (2.9–11) 6.7 (3.6–13) < 0.001 < 0.001
Hip fracture 5.9 (0.8–46) 6.6 (0.9–51) 0.09 0.18
Leg fracture 17.3 (5.1–58) 14.1 (4.2–47) < 0.001 < 0.001
Cancer 4.1 (1.7–9.7) 3.5 (1.5–8.4) 0.002 0.006
Nonfatal MI 6.0 (2.3–16) 4.4 (1.7–11) < 0.001 0.002
Stroke/TIA 0.9 (0.1–6.5) 0.9 (0.1–6.4) 0.88 0.88
Aspirin use 0.4 (0.2–0.7) 0.4 (0.2–0.6) 0.003 0.004
Statin use 0.4 (0.2–0.9) 0.4 (0.2–0.7) 0.02 0.02

of interest. In contrast, addition of just one collinear predictor can degrade its
precision unacceptably. In addition, the allowable number of predictors depends on
effect size, with larger effects being more robust to multiple adjustment than smaller
ones.

Rather than applying such rules categorically, we recommend that problems
potentially stemming from the number of predictors be assessed by checking for
high levels of correlation between a predictor of interest and other covariates,
and for large increases in the standard error of its estimated regression coefficient
when additional variables are included. For logistic and Cox models, consistency
between Wald and LR test results is another useful measure of whether there
are enough events to support the number of predictors in the model. Additional
validation of a relatively inclusive final model is provided if a more parsimonious
model with fewer predictors gives consistent results, in particular for the predictor
of interest. If problems do become apparent, a first step would be to make the
criterion for retention in backward selection more conservative, possibly P < 0.15
or P < 0.10. It would also make sense to consider omitting variables included for
face validity which do not appear to confound a predictor of primary interest.

An analysis of risk factors for deep-vein thrombosis and pulmonary em-
bolism (DVT-PE) among postmenopausal women in the HERS cohort (Grady
et al. 2000) is an example of stable results despite violation of the rule of
thumb that the number of events per predictor should be at least 10. In this
survival analysis of 47 DVT-PE events, 11 predictors were retained in the final
model, so that there were only 4.3 events per predictor. However, the largest
pairwise correlation between the selected risk factors was only 0.16 and most
were below 0.02. As shown in Table 10.3, estimates from the 11-predictor model
were consistent with those given by 5-predictor models, in accord with the
rule of thumb, which omitted the less important predictors. Although CIs were
wide for the strongest and least common risk factors, this was also true for the
5-predictor models. Finally, P -values for the Wald and LR tests based on the larger
model were highly consistent.
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10.4.3 Alternatives to Backward Selection

Some alternatives to backward selection include best subsets; sequential
(so-called greedy) procedures, including forward and stepwise selection; and
bivariate screening.

• Best subsets screens models including all possible subsets of the candidate
predictors in a user-specified range of model sizes, using a summary measure
such as adjusted R2 to compare models. This computer-intensive procedure is
implemented in SAS for some models, but not in Stata. It was also the underlying
approach of the cross-validation screening described in Sect. 10.1.6, but did
require prior simplification to reduce the computational burden.

• Forward selection begins with the null model with only the intercept, then adds
variables sequentially, at each step adding the variable that promises to make the
biggest additional contribution to the current model.

• Stepwise methods augment the forward procedure by allowing variables to be
removed if they no longer meet an inclusion criterion after other variables have
been added. Stata similarly augments backward selection by allowing variables
to re-enter after removal. As compared to best subsets, these three sequential
procedures are more vulnerable to missing good alternative models that happen
not to lie on the sequential path. This implies that plausible alternatives to models
selected by stepwise procedures should be examined.

• In bivariate screening, candidate predictors are evaluated one at a time in single-
predictor models. In some cases, all predictors that meet the screening criterion
are included in the final model; in other cases, screening is used as a first step
to reduce the number of predictors then considered in a backward, forward,
stepwise, or best subsets selection procedure. Orwoll et al. (1996) used a variant
of this procedure, including all variables statistically significant at P < 0:05 in
two-predictor models adjusting for age.

Note that only observations with complete data on all variables under consideration
are used in automated selection procedures. The resulting subset can be substantially
smaller than the data set used in the final model, and unrepresentative. When
implemented by hand, different subsets are commonly used at different steps, for
the same reason, and this can also affect results. Findings which depend on the
inclusion or exclusion of subsets of observations should be carefully checked.

10.4.3.1 Why We Prefer Backward Selection

The principal advantage of backward selection is that negatively confounded sets
of variables are less likely to be omitted from the model (Sun et al. 1999), since
the complete set is included in the initial model. Best subsets shares this advantage.
In contrast, forward and stepwise selection procedures will only include such sets
if at least one member meets the inclusion criterion in the absence of the others.
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Univariate screening will only include the complete set if all of them individually
meet the screening criterion; moreover, this difficulty is made worse if a relatively
conservative criterion is used to reduce the number of false-positive findings in an
exploratory analysis.

A disadvantage of backward selection is that initial deletions may be badly deter-
mined if the list of candidate predictors is too large for the number of observations
or events. In this case, bivariate screening with a liberal criterion can be used to
eliminate the weakest predictors; in addition, the Stata stepwise procedure allowing
variables to re-enter affords some protection against this problem. More generally,
sensitivity analyses using forward and/or stepwise in addition to backward selection
are useful for showing whether results are robust to the model selection procedure
used

10.4.4 Model Selection and Checking

Section 4.7 focused on methods for checking the linear model which make use of the
residuals from a multipredictor model rather than examining bivariate relationships.
There, we took as a given that the predictors had already been selected. However,
transformation of the outcome or of continuous predictors can affect the apparent
importance of predictors. For example, in Sect. 4.6.4 we saw that the need for
an interaction between treatment with HT and the baseline value of the outcome
LDL was eliminated by analyzing treatment effects on percent rather absolute
change from baseline. Alternatively, detection of important nonlinearities in the
model checking step can uncover associations that were masked by an initial
linear specification. As a consequence, predictor selection should be revisited after
changes of this kind are made. And then, of course, the fit of the modified model
would need to be rechecked.

10.4.5 Model Selection Complicates Inference

Underlying the CIs and P -values which play a central role in interpreting re-
gression results is the assumption that the predictors to be included in the model
were determined a priori without reference to the data at hand. In confirmatory
analyses in well-developed areas of research, including phase-III clinical trials,
prior determination of the model is feasible and important. In contrast, at earlier
stages of research, data-driven predictor selection and checking are reasonable,
often necessary, and certainly widely used. However, some of the issues raised for
inference include the following.

• The chance of at least one type-I error can greatly exceed the nominal level used
to test each term, leading to false-positive results with too-small P -values and
too-narrow CIs.
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• In small data sets, precision and power are often poor, so important predictors
may well be omitted from the model, especially if a restrictive inclusion criterion
is used. Conversely, in large data sets unimportant predictors are commonly
included, reinforcing the need for cautious interpretation of novel, implausible,
weak, and borderline statistically significant findings.

• Parameter estimates can be biased away from the null, owing to selection of
estimates that are large by chance, sometimes called testimation bias (Steyerberg
2009). This bias is greater for relatively weak predictors.

• Choices between predictors can be poorly motivated, especially between
collinear variables. Univariate screening provides no guidance for this problem.
Moreover, predictor selection is potentially sensitive to addition or deletion of a
few observations, especially when the predictors are highly correlated. Altman
and Andersen (1989) propose bootstrap methods for assessing this sensitivity.

Predictor selection driven by P -values is subject to these pitfalls whether it is
automated or implemented by hand. How seriously do these problems affect
inference for our three inferential goals?

• Prediction. In many modern prediction methods, potentially large sets of can-
didate predictors are aggressively screened, but P -values are not used as the
criterion. We implemented one such procedure in Sect. 10.1.6, and Breiman
(2001) briefly reviews other modern methods which even more aggressively
search over candidate models. However, use of GCV measures of prediction error
as a criterion for predictor selection effectively protects against both overfitting
and invalid inferences. In short, predictor selection does not adversely affect
modern procedures for this inferential goal.

• Evaluating a predictor of primary interest. Iterative model checking and selection
should likewise have relatively small effects on inference about a predictor
of primary interest, since it is included by default in all candidate models. In
fact, iterative checking and predictor selection should result in better control of
confounding, a primary aim for this inferential goal. However, when the primary
predictor is of borderline statistical significance, the issue of P -value shopping
raised in Sect. 10.2.6 needs to be conscientiously handled, and sensitivity of
results to predictor selection reported.

• Identifying multiple important predictors. Model selection most clearly compli-
cates inference for this inferential goal, since CIs and P -values for any of the
predictors are potentially of direct interest. Note that inclusion of variables for
face validity, use of a loose inclusion criterion (P < 0:2), and the Allen–Cady
procedure all reduce the potential impact of predictor selection on inference.
Nonetheless, selection procedures should only be used with prior consideration
of hypothesized relationships, careful examination of alternative models with
other sets of predictors, checks on model fit and robustness, skeptical review of
the findings for plausibility, and cautious interpretation of the results, especially
novel, borderline statistically significant, and weak associations.
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10.5 Summary

We have identified three inferential goals, and recommend predictor selection
procedures appropriate to each of them.

For prediction, we recommend identifying candidate predictors and appropriate
transformations well-supported by prior research. But in the common case where
expert opinion and the literature do not provide sufficient guidance, we recommend
exhaustive screening of candidate models to find the few models that minimize a
generalized cross-validation measure of prediction error.

For evaluating a predictor of primary interest, we recommend using DAGs
to specify hypothesized relationships between the primary predictor, potential
confounders and mediators, and the outcome; caution should be used in eliminating
variables based on any DAG that omits plausible but unestablished causal pathways.
The selected model should include all generally accepted confounders required
to ensure its face validity. Other potential confounders that turn out not to be
important on statistical grounds can optionally be removed from the model using a
backward selection procedure, but with a liberal inclusion criterion to minimize the
potential for confounding. Especially in smaller data sets, care must be taken with
the inclusion of covariates highly correlated with the predictor of interest, since
these can unduly inflate the standard errors of the estimate of its effect. Negative
findings for the primary predictor should be carefully interpreted in terms of the
point estimate and CI, as described in Sect. 3.7.

For identifying multiple important predictors of an outcome, we recommend a
procedure similar to that used for a single predictor of primary interest. A DAG
mapping out hypothesized relationships between variables can be particularly
useful. Strongly motivated covariates may be included by default to ensure the
face validity of the model. The Allen–Cady modification of the backward selection
procedure is useful for selecting from among the remaining candidate variables
while limiting false-positive results. Negative, weak, and/or borderline statistically
significant associations retained in the final model as much to control confounding
of other associations as for their intrinsic plausibility and importance should be
interpreted with particular caution.

10.6 Further Notes and References

Predictor selection is among the most controversial subjects covered in this book.
Book-length treatments include Miller (1990) and Linhart and Zucchini (1986),
while regression texts including Weisberg (1985) and Hosmer and Lemeshow
(2000) address predictor selection issues at least briefly. The central place we
ascribe to ruling out confounding in the second and third inferential goals owes
much to Rothman and Greenland (1998), a standard reference in epidemiology
that describes how substantive considerations can be brought to bear on predictor
selection.



428 10 Predictor Selection

One promising method for ensuring adequate control of confounding is more
or less exhaustive screening of candidate models with different covariate sets,
some including interactions between covariates and/or restricted cubic splines
for continuous confounders. As described in Sect. 10.1.4, these procedures use
cross-validated prediction error as a model selection criterion to avoid overfitting,
and avoid some pitfalls of P -value driven selection procedures, as discussed in
Sect. 10.4.5. However, these methods can be difficult to implement, and are a focus
of ongoing statistical research.

Both the theory and application of causal diagrams and models have been
advanced substantially in recent years (Pearl 1995; Greenland et al. 1999) and
give additional insights into situations where confounding can be ruled out a priori.
However, these more advanced methods appear to be most useful in problems where
causal pathways are more clearly understood than is our usual experience. Jewell
(2004) and Greenland and Brumback (2002) explore the connections between causal
diagrams, potential outcomes, and some model selection issues.

Chatfield (1995) reviews work on the influence of predictor selection on infer-
ence, while Buckland et al. (1997) propose using weighted averages of the results
from alternative models as a way of incorporating the extra variability introduced
by predictor selection in computing CIs. These would be particularly applicable to
the second inferential goal of evaluating a predictor of central interest.

For a sobering view of the difficulty of validly modeling causal pathways using
the procedures covered in this book and particularly this chapter, see Breiman
(2001). From this point of view, computer-intensive methods validated strictly in
terms of prediction error not only give better predictions but may also be more
reliable guides to “variable importance”—another term for our third inferential goal
of identifying important predictors, and with obvious implications for assessing a
predictor of central interest.

10.7 Problems

Problem 10.1. Characterize the following contexts for predictor selection as
prediction, evaluation of a primary predictor of interest, or identifying the important
predictors of an outcome:

• examining the effect of treatment on a secondary endpoint in an RCT
• determining which newborns should be admitted to the neonatal intensive care

unit (NICU)
• comparing a measure of treatment success between two surgical procedures for

stress incontinence using data from a large longitudinal cohort study
• identifying risk factors for incident hantavirus infection.

Problem 10.2. Consulting Stata documentation, describe how the sw: command
prefix with the lockterm1, hier, and pr() options can be used to implement
the Allen–Cady procedure.
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Problem 10.3. Think of an outcome under preliminary investigation in the area of
your expertise. Following Allen and Cady’s prescriptions, try to rank predictors of
this outcome in order of importance. Are there any variables that you would include
by default? Why?

Problem 10.4. Do any of the variables you have selected in the previous problem
potentially mediate the effects of others in your list? If so, how would this affect
your decision about what to include in the initial model? What series of models
could you use to examine mediation? (See Sect. 4.5.)

Problem 10.5. Suppose you included an indicator for diabetes in a multivariable
model estimating the independent effect of exercise on glucose. How would you
interpret the estimate for exercise? Would you want to consider interactions between
exercise and diabetes in this model? How would you deal with use of insulin and
oral hypoglycemics?

Problem 10.6. Why are univariate screening and forward selection more likely to
miss negatively confounded variables than backward deletion and best subsets?

Problem 10.7. Give an example of a “biologically plausible” relationship that has
turned out to be false. Give an example of a biologically implausible relationship
that has turned out to be true.

Problem 10.8. Suppose you were using a logistic model to examine the association
between a predictor and outcome of interest, and to rule out confounding you needed
to include one or two more predictors than would be allowed by the rule of 10 events
per variable. In comparing models with and without the two extra predictors, what
might signal that you were asking the bigger model to do too much? How would the
correlation between the extra variables and the predictor of interest influence your
thinking?

10.8 Learning Objectives

(1) Describe and implement strategies for predictor selection for

• prediction
• evaluation of a primary predictor
• identifying multiple important predictors.

(2) Use a DAG to define hypothetical relationships among confounders, mediators,
and the outcome.

(3) Be familiar with the drawbacks of predictor selection procedures.



Chapter 11
Missing Data

Missing data are a fact of life in medical research. Subjects refuse to answer
sensitive questions (e.g., questions about income or drug use), are unable to
complete an MRI exam because of metallic implants, or drop out of studies
and do not contribute further data. In each of these cases, data are “missing” or
not complete. How should this be accommodated in a data analysis? Statistical
computing packages will typically drop from the analysis all observations that are
missing any of the variables (outcomes or predictors). So, for example, a linear
regression predicting a patient’s number of emergency room visits from their age,
gender, race, income, and current drug use will drop any observation missing even
one of those variables. Analysis of data using this strategy is called complete case
analysis because it requires that the data be complete for all variables before that
observation can be used in the analysis.

Complete case analysis is simple and the default for statistical analysis pack-
ages. But it can be inefficient and lead to biased estimates. Imagine a situation
in which the first 20% of the sample is missing age information, the second 20%
is missing gender information and so on, with the last 20% missing drug use
information. Even though, in a sense, 80% of the predictor data is present, there
will be no observations left for a complete case analysis.

Further, data are often missing for a reason related to the outcome under study.
As examples, sicker patients may not show up for follow-up visits, leading to overly
optimistic estimates based on the data present. Or those patients staying in the
hospital longer may be the sicker ones (with the better-off patients having been
discharged). This might lead us to the erroneous conclusion that longer stays in
the hospital produce poorer outcomes, so why check-in in the first place? A basic
message is that we need to think carefully about why the data are missing. This may
influence how we will handle it and guide us to ways we can avoid biased estimates.

How can these drawbacks be overcome? If we could intelligently fill in the
missing data to obtain a complete dataset then we could use standard methods
without concern. Of course, we would need to account for the fact that the missing
data are estimated and not actual measured quantities in our sample. This is the
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basic idea behind multiple imputation, which we discuss in Sect. 11.5. Or perhaps,
we could use members in the sample with complete data to represent those with
missing data. For example, suppose heavy drug users tended to drop out of a study
at twice the rate of other participants. Then we could “double-count” the heavy
drug users who did not drop out of the study by weighting their contributions to the
analysis more heavily. This is the basic idea behind inverse probability weighting
(IPW) which we cover in Sect. 11.9.3. In either case, the key is to use the data on
hand, along with anything we might know about why the data are missing in order
to infer the missing data. Not surprisingly, this strategy will only work if the values
of the missing data are, to some extent, predictable from the observed data.

We begin this chapter with some simple illustrations of what can go wrong
when there is missing data. This naturally leads to consideration of why the data
are missing and some more formal classifications of the missing data process
in Sect. 11.2. We discuss some simple strategies that have been used in the
past to accommodate missing data. We then consider common missing data
scenarios: missing predictor values (with at least some of the associated outcomes
being measured) and complete (or nearly complete) predictor values, but missing
outcomes. For this latter situation, we consider three different ways in which the
data came to be missing. The two strategies mentioned above—multiple imputation
and inverse probability weighting—are then considered in more detail as principled
approaches to missing data. In Sect. 11.9.1, we also describe situations with missing
outcome data in longitudinal studies that can be addressed by using maximum-
likelihood methods like mixed models. These “automatically” infer the missing data
with the advantage of not requiring explicit modeling. Our focus throughout this
chapter is on the effect that missing data has on estimation of regression coefficients,
but missing data can also cause predictions to be biased.

11.1 Why Missing Data Can Be a Problem

To more clearly demonstrate why missing data can be a problem, we consider two
examples using the HERS study (see Sect. 3.1). In the first, we consider linear
regression of SBP on glucose level, BMI, and whether the person was Caucasian
or not using only the data from the fourth visit. For that visit 443 of the 1,871
observations had missing data for glucose. The second considers a longitudinal data
setting in which SBP is measured over two visits with the second one potentially
missing, as would happen with participants dropping out of a study.

11.1.1 Missing Predictor in Linear Regression

Standard regression of SBP on blood glucose level (glucose), whether a person is
Caucasian or not (white), and their BMI (bmi) using the 1,871 participants with
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Table 11.1 Regression of SBP using a complete case analysis

. regress sbp glucose white bmi

Source | SS df MS Number of obs = 1385
-------------+------------------------------ F( 3, 1381) = 2.69

Model | 2855.36663 3 951.788878 Prob > F = 0.0450
Residual | 488496.255 1381 353.72647 R-squared = 0.0058

-------------+------------------------------ Adj R-squared = 0.0037
Total | 491351.622 1384 355.022848 Root MSE = 18.808

----------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
glucose | .0294818 .0126344 2.33 0.020 .0046972 .0542665
white | -1.537906 1.689423 -0.91 0.363 -4.852019 1.776207

bmi | .0644021 .0934208 0.69 0.491 -.11886 .2476641
_cons | 132.716 3.29506 40.28 0.000 126.2521 139.1799

----------------------------------------------------------------------------

Table 11.2 Regression of systolic blood pressure using imputed glucose values
. regress sbp imp_glucose white bmi

Source | SS df MS Number of obs = 1750
-------------+------------------------------ F( 3, 1746) = 5.34

Model | 5766.65623 3 1922.21874 Prob > F = 0.0012
Residual | 628318.844 1746 359.861881 R-squared = 0.0091

-------------+------------------------------ Adj R-squared = 0.0074
Total | 634085.5 1749 362.541738 Root MSE = 18.97

----------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
imp_glucose | .0338782 .0122595 2.76 0.006 .0098333 .057923

white | -2.209204 1.49944 -1.47 0.141 -5.150092 .7316834
bmi | .1364681 .083551 1.63 0.103 -.0274025 .3003388

_cons | 130.385 2.937854 44.38 0.000 124.6229 136.1471
----------------------------------------------------------------------------

data for visit 4 in HERS gives the output in Table 11.1. We can see that only 1,385
subjects are used in the complete case analysis. This is because, in addition to the
443 participants missing data on glucose, there are 85 missing values for SBP, 110
missing values for BMI, and 3 missing values for white (and some overlap in the
missing data). We will concentrate on the missing glucose values to introduce the
main ideas.

Glucose values are fairly strongly related to the other predictors, so there is some
hope in filling in the missing values relatively accurately; a regression of glucose on
SBP, BMI, white, current smoking status, and whether or not a woman develops
diabetes has an R2 of 0.44. We could use this regression to generate predicted
values for 372 of the 443 of the missing glucose values—we cannot fill them all
in because there is missing data for BMI, white, and diabetes. Using the predicted
values in place of the missing glucose values, we can now use more of the data.
Table 11.2 gives the regression results, where imp glucose is equal to the actual
value of glucose when it is available and the predicted (imputed) value of glucose
when it is missing. Some of the regression coefficients are noticeably different,
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Table 11.3 Regression of systolic blood pressure using multiply imputed glucose values

. mi estimate: regress sbp glucose white bmi

Multiple-imputation estimates Imputations = 5
Linear regression Number of obs = 1750

Average RVI = 0.0106
Complete DF = 1746

DF adjustment: Small sample DF: min = 1046.77
avg = 1557.86
max = 1743.23

Model F test: Equal FMI F( 3, 1644.5) = 4.57
Within VCE type: OLS Prob > F = 0.0034

----------------------------------------------------------------------------
sbp | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
glucose | .0269531 .0116979 2.30 0.021 .0039991 .049907
white | -2.199165 1.500637 -1.47 0.143 -5.142402 .7440727

bmi | .1467563 .0836029 1.76 0.079 -.0172179 .3107305
_cons | 130.8553 2.930445 44.65 0.000 125.1077 136.6029

----------------------------------------------------------------------------

for example, the BMI coefficient has approximately doubled in size, has a smaller
standard error, and has a smaller p-value. All the standard errors are smaller. This
is an illustration of what is called single imputation, because we have filled in or
imputed the missing data a single time.

But this is not quite legitimate. In this analysis, the software does not distinguish
between the imputed glucose values and the actual measured values. So the
information content of the dataset is overestimated and standard errors may be
falsely small. A solution to this is to impute the glucose values but properly account
for the actual amount of information available. One way to do this is to use multiple
imputation which we describe in more detail in Sect. 11.5. Table 11.3 gives the
results of such an analysis.

The results are very similar to the singly imputed analysis. Because we have not
imputed a large portion of the data, the standard errors are only slightly increased
in the multiply imputed approach compared to the singly imputed. Notably, the
standard errors remain smaller than those from the complete case analysis.

Using imputation to handle the missing data for this example has had two
benefits: it may have slightly reduced a bias in the original coefficients and we have
been able to successfully utilize more of the data, thereby reducing the standard
errors. Multiple imputation is a flexible methodology and can be used to impute not
only the predictor, but also the outcomes.

11.1.2 Missing Outcome in Longitudinal Data

To illustrate the potential problems with drop out in longitudinal data, we used
the HERS study, for which there is actually very little drop out. We consider the
outcome of SBP using data only from baseline and year 1. In the complete dataset,
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Table 11.4 Analysis of HERS data using complete data and generalized estimating equations

. xtgee sbp visit bmi baseline_dm, i(pptid) corr(exch) robust

GEE population-averaged model Number of obs = 5368
Group variable: pptid Number of groups = 2761
Link: identity Obs per group: min = 1
Family: Gaussian avg = 1.9
Correlation: exchangeable max = 2

Wald chi2(3) = 67.85
Scale parameter: 357.8178 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on pptid)
----------------------------------------------------------------------------

| Semirobust
sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
visit | .2836451 .3388382 0.84 0.403 -.3804657 .9477558

bmi | .1385708 .0598246 2.32 0.021 .0213167 .255825
baseline_dm | 5.511153 .7814551 7.05 0.000 3.97953 7.042777

_cons | 129.66 1.723401 75.23 0.000 126.2822 133.0379
----------------------------------------------------------------------------

the average SBP at baseline was 135.1 and at year 1 was 135.2, so very little change
from baseline to year 1.

To quantify the change from baseline to visit 1, we used regression analyses of
SBP on visit (baseline, coded as 0, or the year 1 visit, coded as 1), BMI and whether
the participant had diabetes at baseline (yes/no). Since we have repeated measures,
we could use either GEEs (via xtgee) or mixed models (via xtmixed) to analyze
the data. Tables 11.4 and 11.5 give the results using the complete data.

The two analyses give virtually the same results. Focussing on the visit term,
there is a small and nonstatistically significant increase from baseline to year 1
(estimated to be about 0.28), consistent with the raw data.

We next simulated drop out at year 1 on the basis of either the baseline SBP or the
year 1 SBP, but keeping all the data for the baseline visit. In either case, those with
higher SBP were dropped at higher rates than those with lower SBP. In the situation
where drop out depended on baseline SBP, we “dropped” 1,461 participants at year
1 and “retained” 1,302. Those retained had average SBP at year 1 of 127.5 (range
85–196) and those dropped had average SBP 143.9 (range 93–220). So there is a
distinct difference between those dropped and retained, but there is also considerable
overlap. Importantly, in the incomplete data, the average SBP drops from 135.1 at
baseline to 127.5 at year 1, quite different from the complete data.

We, therefore, anticipate trouble with the analysis using the incomplete data since
the average SBP drops between baseline and the year 1 visit. Ideally, a technique that
handles missing data well will give results similar to the analysis of the complete
data (e.g., Table 11.4). Table 11.6 gives the regression coefficient tables for the
situation where drop out depends on SBP at baseline.

Now we see a completely different story. The generalized estimating equations
(GEEs) approach incorrectly estimates a highly statistically significant drop in SBP
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Table 11.5 Analysis of HERS data using complete data and maximum likelihood

. xtmixed sbp visit bmi baseline_dm || pptid:

Mixed-effects REML regression Number of obs = 5368
Group variable: pptid Number of groups = 2761

Obs per group: min = 1
avg = 1.9
max = 2

Wald chi2(3) = 73.13
Log restricted-likelihood = -22872.471 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
visit | .2843892 .338578 0.84 0.401 -.3792114 .9479898

bmi | .1392584 .0587622 2.37 0.018 .0240865 .2544302
baseline_dm | 5.507891 .7583126 7.26 0.000 4.021625 6.994156

_cons | 129.6413 1.677004 77.31 0.000 126.3544 132.9282
----------------------------------------------------------------------------

----------------------------------------------------------------------------
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+----------------------------------------------
pptid: Identity |

sd(_cons) | 14.40895 .2784187 13.87346 14.9651
-----------------------------+----------------------------------------------

sd(Residual) | 12.28843 .1702939 11.95916 12.62678
----------------------------------------------------------------------------
LR test vs. linear regression: chibar2(01)= 1055.76 Prob >= chibar2 = 0.0000

of 1.32 from baseline to year 1. Interestingly, the mixed model approach (which
uses maximum likelihood, or ML, to fit the model) gives estimates similar to the
complete data analysis with a small estimated increase which is not statistically
significant. For the other coefficients, the two analyses give similar results, both to
one another and to the complete data analyses.

Finally, we also simulated a dataset where drop out at year 1 depended on year
1 SBP in a fashion similar to that described above. This differs from the previous
case in that whether or not a participant was included in the dataset depended on
unobserved quantities. Table 11.7 gives the results with drop out that depends on
SBP at year 1. Now both the analyses give very severely biased estimates of the
visit effect, though other coefficients are little affected.

There are several important messages from this example. When drop out is
dependent on previous, observed values, some analysis methods such as GEEs can
give badly biased estimates whereas others such as mixed model methods, based
on maximum likelihood, are less affected. The situation when drop out depends
on unobserved values is much more serious and leads to severe bias using either
method.
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Table 11.6 Analysis of HERS data with drop out depending on baseline outcome using GEEs
and ML

. xtgee sbp visit bmi baseline_dm if miss_mar==0, i(pptid) corr(exch) robust

----------------------------------------------------------------------------
| Semirobust

sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

visit | -1.320828 .431427 -3.06 0.002 -2.166409 -.4752463
bmi | .1041894 .0622733 1.67 0.094 -.0178641 .2262428

baseline_dm | 5.787856 .813257 7.12 0.000 4.193901 7.38181
_cons | 130.5635 1.790897 72.90 0.000 127.0534 134.0736

----------------------------------------------------------------------------

. xtmixed sbp nvisit bmi baseline_dm if miss_mar==0 || pptid:

----------------------------------------------------------------------------
sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
visit | .5912612 .4179003 1.41 0.157 -.2278083 1.410331

bmi | .1084238 .0625694 1.73 0.083 -.0142101 .2310576
baseline_dm | 5.894762 .801877 7.35 0.000 4.323111 7.466412

_cons | 130.4142 1.779439 73.29 0.000 126.9266 133.9019
----------------------------------------------------------------------------

Table 11.7 Analysis of HERS data with drop out depending on unobserved outcome using GEEs
and ML

. xtgee sbp visit bmi baseline_dm if miss_nmar==0, i(pptid)corr(exch) robust

----------------------------------------------------------------------------
| Semirobust

sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--------------------------------------------------------------

visit | -9.889191 .3840043 -25.75 0.000 -10.64183 -9.136557
bmi | .0962627 .0574965 1.67 0.094 -.0164284 .2089539

baseline_dm | 4.985786 .7507309 6.64 0.000 3.514381 6.457192
_cons | 131.0006 1.656733 79.07 0.000 127.7534 134.2477

----------------------------------------------------------------------------

. xtmixed sbp visit bmi baseline_dm if miss_nmar==0 || pptid:

----------------------------------------------------------------------------
sbp | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
visit | -8.35655 .4240134 -19.71 0.000 -9.187601 -7.525499

bmi | .1043524 .0573602 1.82 0.069 -.0080715 .2167762
baseline_dm | 5.027966 .73204 6.87 0.000 3.593194 6.462738

_cons | 130.7572 1.630634 80.19 0.000 127.5613 133.9532
----------------------------------------------------------------------------

11.2 Classifications of Missing Data

The previous example has shown that the mechanism that causes the data to be
missing can be very important. It is, therefore, useful to develop categorizations of
missing data mechanisms that either are or are not likely to cause misleading results.
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To motivate some of the considerations, we use the Steroids for Corneal Ulcer
Trial (SCUT). SCUT was a randomized clinical trial to gauge the effectiveness of
a steroid treatment (steroid eye drop versus a placebo) on visual acuity (VA) in
people with bacterial corneal ulcers. The primary outcome of VA for SCUT was
measured on a scale called logmar, which is short for logarithm (base 10) of the
minimum angle of resolution. A logmar of 0 corresponds to 20/20 vision, a logmar
of 1 to 20/200 vision, and, in general, a logmar of x corresponds to a vision of
20=.20�10x/ on an eye chart. Follow-up measures were taken at 3 weeks, 3 months,
and 12 months. The predictors, all measured at the enrollment visit, are baseline VA,
ulcer location (whether it covered the center of the eye), ulcer size (in square mm),
and the type of infecting organism (gram positive versus gram negative). It is easy
to envision what the full or “complete” data would consist of for this example: all
participants have all their predictors measured at baseline and outcome information
at baseline and each of the three follow-up times.

For regression analyses, a key distinction with regard to missing information is
whether or not we have a considerable percentage of observations for which the
predictors are missing but we have a measured outcome. This is important because,
in regression analyses we typically model the distribution of the outcome variable
and treat the predictor variables as fixed (see Sect. 3.3.3). If the predictor variables
are missing for some observations (e.g., glucose values in the HERS example) then
we need a method for inferring those missing values and assumptions will have to
be made with respect to their distribution.

In the HERS example above, we used multiple imputation to build a model, tem-
porarily treating glucose as an outcome variable in a linear regression model. That
model assumes that glucose follows a normal distribution (for fixed values of the
predictors of that model). That is, we have to make a distributional assumption about
a variable that was a predictor in the original model (a regression of blood pressure
on glucose), something we did not have to do before.

In more complicated examples, with multiple missing predictors, we would have
to account for not only the distribution of each missing predictor by itself but also
the joint distribution, including aspects such as correlations between predictors. In
the not uncommon situation where the predictors with missing values consist of
nominal, ordinal, and skewed variable types, specifying a distribution for how they
are all jointly associated is a daunting task.

A simpler situation to handle is when there is little or no missing information
on the predictors and missing data are mainly in the outcome, or both outcome and
predictors are missing (as when a participant drops out of a study). In such cases,
we can focus on the outcome variable, for which we are already hypothesizing a
distribution, and categorize the missing data mechanisms relatively succinctly.

11.2.1 Mechanisms for Missing Data

Because we will want to describe the way in which the data came to be missing, it
is worthwhile to consider a formal statistical model and develop some notation.
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In that spirit, we envision a “complete” dataset, where all the data are present.
We will think of this in the context of a longitudinal cohort study with regularly
scheduled observation times, but the ideas apply more generally. Our complete
dataset would be one with all outcome and all predictors measured on each person
for each visit. Next, consider one of the variables that actually has missing data.

Let Rit be 1 if the i th participant has a measured value of the variable with
missing data at visit time t and zero if it has “become” missing. So R is a binary
indicator of whether a data value is present or not. For each variable that has missing
data, we can now classify various missing data mechanisms by how they relate to
the probability that Rit D 1: If factors are unrelated to this probability, then they
have no bearing on the missing data process.

A common practice with missing data in a longitudinal study is to look at baseline
characteristics of participants who had missing data later in the study. If variables
differ significantly between those with and those without missing data (e.g., their
age, gender, or baseline value of the outcome) then we can begin to understand
what is related to Rit D 1: For example, Splieth et al. (2005) obtained a baseline
oral health assessment of all first- and second-grade schoolchildren in a city in
Germany. They compared the oral health of children whose parents did and did not
allow them to participate in a cavity prevention program and longitudinal follow-
up. They found that the children not participating were older and had poorer dental
health compared to the participants. Failure to recognize this selective participation
would result in biased estimates of average values. The formal classification scheme
we consider next takes the idea of relating missing data to baseline covariates a step
further.

11.2.1.1 Missing Completely at Random (MCAR)

There are three common classifications of the missing data process. Data are said
to be missing completely at random (MCAR) if P.Rit D 1/ does not depend on
any of the variables. For SCUT this would mean, for example, that the probability
a logmar value at 3 months was missing was unrelated to the previous, current or
future logmar values and also unrelated to visual acuity, ulcer location, ulcer size, or
type of infecting organism. If we observed, for example, that participants with very
poor logmar values at baseline were less likely to return then we would know that
the MCAR scenario would not apply.

With X representing all the predictors and Y representing all the outcomes, this
can be formally stated as

P.Rit D 1jY;X/ D P.Rit D 1/; (11.1)

i.e., the probability of the data being missing is not associated with any part of the
data. Another way to interpret this is that knowing the values of the outcomes and
predictors would not change our estimate of the likelihood that a particular data
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value is missing. While a useful conceptual “baseline” definition, MCAR is often
not a reasonable assumption. For example, in longitudinal studies where there is
missing data, there is almost invariably more missing data later in the study. So, at
the very least, the predictor time or visit would be associated with the probability
that an observation is missing.

11.2.1.2 Covariate-Dependent Missing Completely at Random
(CD-MCAR)

A minor, but important, variation of this definition is covariate-dependent missing
completely at random (CD-MCAR), which is mainly applicable to missing outcome
data. In this situation, the probability of the outcome being missing can depend on
the predictors which are part of the statistical model but does not depend on the
other outcomes. With Xobs representing all the observed information for predictors
which will be included in our model, we would formally write this as

P .Rit D 1jY;X/ D P
�
Rit D 1jXobs

�
: (11.2)

For SCUT this would mean, for example, that the probability a logmar value
was missing was unrelated to the 3 weeks, 3 months, or 12 months logmar values
but could be related to visit, VA, ulcer location, ulcer size, or type of infecting
organism. If we observed, after accounting for differences due to the predictors, that
participants with very poor logmar values at 3 weeks were more likely to return at
3 months then we would know that the covariate-dependent MCAR scenario would
not apply.

11.2.1.3 Missing at Random (MAR)

A yet more flexible specification is that data are missing at random (MAR). This
assumption handles a variety of more plausible scenarios. In MAR, the probability
of missing data may depend not only on the covariates in the model but also on
observed outcomes.

With Yobs representing all the observed outcome information, formally this
would be written as

P .Rit D 1jY;X/ D P
�
Rit D 1jYobs;Xobs�: (11.3)

In the SCUT example, the MAR scenario would allow for people with worse VA
at 3 weeks or 3 months to be missing more frequently at 12 months and also to
depend on visit, baseline logmar, VA, ulcer location, ulcer size, or type of infecting
organism. In the HERS example, in Table 11.6, we artificially created data that
was MAR.
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11.2.1.4 Missing Not at Random (MNAR)

Finally, it may be that the probability a data value is missing depends on unobserved
quantities, for example, the outcome we would have measured were it not missing.
For instance, consider SCUT patients with identical baseline and 3 week visual
acuities. Suppose the ones whose VA did not improve are more likely to make the 3
month visit (to get checked by the doctors). Then the fact that the data are missing
would depend on the unobserved 3-month outcome. This scenario is called missing
not at random or MNAR. In the HERS example, in Table 11.7, we artificially created
data that was MNAR.

More formally, simplification of the model for P.Rit D 1jY;X/ would not be
possible as we did in, for example, (11.2). Unfortunately, but perhaps not surprising
and because MNAR depends on unobserved quantities, we cannot verify or rule out
a MNAR process from the observed data alone. Instead, if we suspect the data are
MNAR the best we can do is conduct sensitivity analyses. One way to do so is via
multiple imputation, described in Sect. 11.5.

Why are these characterizations important? Their utility is that we can now
describe more carefully when standard types of analyses can be expected to give
answers free of bias due to the missing data. We give more details and caveats
beginning in Sect. 11.5 but in essence:

• When the data are MCAR, any method of analysis will give unbiased answers.
• When the outcome data are CD-MCAR, and those covariates are included in

the statistical model, any method of analysis will give unbiased answers for
regression coefficients and predicted values. Care still needs to be taken with
calculations that average over values of the covariates (e.g., an average of the
predicted values, or estimation of marginal effects) because those may not have
the same distribution of covariate values as in the complete data.

• When the outcome data are MAR, correctly specified, likelihood-based analysis
methods (e.g., mixed models) will give unbiased answers, but other methods
(e.g., GEEs) may not.

• When the data are MNAR, any standard method of analysis may be biased.

Moving from MCAR to CD-MCAR accommodates the common situation in
which missing data depend on measured covariates. Going from CD-MCAR to
MAR allows even more elaborate dependence of the missing data—on measured
covariates and outcomes—and will therefore include missing data mechanisms
that have a higher chance of being applicable in practice. This makes likelihood-
based methods especially attractive because they can continue to give unbiased
answers even if the data are MAR. To reflect this fact, data which are MAR (or
the more stringent requirements of MCAR or CD-MCAR) are sometimes called
“ignorable”. Notably, although we postulate the MAR condition in terms of (11.3),
if we are using likelihood-based methods, we need not specify a explicit statistical
model for it, no matter how complicated the dependence might be. Instead, we can
focus on developing a model for the complete data. This avoids being distracted by
modeling a missingness mechanism which is likely to be imperfectly understood.
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11.3 Simple Approaches to Handling Missing Data

We begin our discussion of methods of addressing missing data with a number
of simple (and sometimes simplistic) methods that have been used previously. We
return to the context of the HERS and SCUT trials.

11.3.1 Include a Missing Data Category

A simple approach to completing a dataset with missing values in a categorical
predictor is to define a separate category for the missing values. In Sect. 4.3, we note
that women in the HERS cohort responded to a question about how physically active
they considered themselves compared to other women of their age. The five-level
response ranged from “much less active” to “much more active”, and was coded in
order from 1 to 5. A solution to missing data for this predictor is to define a category
designated as “missing”. Physical activity is then analyzed as a categorical variable
with six categories with all observations in the sample having a defined value for
this variable. This is appealing because it avoids imputing values to incomplete
observations but allows all observations to be used in the analysis.

Unfortunately, this can create biased estimates for other regression coefficients in
the model, even when the data are MCAR. The reason for this is that, for the subset
coded as missing, we are not adjusting for the value of physical activity, whereas
for the rest of the data we are. So regression coefficients (for predictors other than
physical activity) that are estimated from the model using the six category version
of physical activity are a blend of the coefficient before and after adjustment for
physical activity. Bias is introduced when the unadjusted and adjusted coefficients
differ and there is a sizeable percentage of observations in the missing data category.
On the other hand, if the adjusted and unadjusted coefficients are similar and the
percentage of observations in the missing data category is small, little bias will be
introduced.

11.3.2 Last Observation or Baseline Carried Forward

In SCUT, vision tends to improve rapidly in the first month as the infection is treated
and has usually stabilized by 3 months. As patients feel better, they are less likely to
return to the clinic for follow-up appointments and nearly 30% of 12 month visual
measurements are missing due to loss to follow-up.

One approach to handling a missing 12-month outcome value in the SCUT trial
is to use (or “carry forward”) a patient’s 3 month VA measure. If the 3-month value
is not available the 3-week (or, if that is missing, the baseline value) value would
be used. This approach is called last observation carried forward (LOCF) because
missing values are filled in with the last available value from the same person. This
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approach can be used with either outcomes or predictors. The LOCF approach has
the appeal of using the most proximate available VA measure to complete the data.
It has been argued that this is a conservative method because it assumes no change
in measured values for the missing data.

The method has substantial disadvantages. In SCUT, for instance, visual acuity
improves substantially from 3 weeks to 3 months. Hence, LOCF would be implau-
sible for such data and almost certainly underestimate VA if values are carried
forward, potentially leading to biased estimates. Second, a single value is substituted
for the missing value. As with single imputation, if a standard analysis is then
applied to the completed data set, this uncertain, filled-in value is treated as if it
were an actual measurement and leads to falsely precise analyses. This is a concern
whether or not carrying forward values is approximately correct, on average.

Consider a study of people initiating an experimental treatment to reduce
hypertension with repeated measures of their blood pressure, subject to missing
values. If the missing values are due to study dropout and the participants must
discontinue the experimental treatment, then we might reasonably expect that the
blood pressure values would return to pretreatment levels. This would be captured
by using the baseline value (rather than the last value prior to dropout) to fill in
missing values. This approach is termed baseline value carried forward (BCF) and
it is very similar in spirit and execution to LOCF except that a baseline value is
used to replace the missing value. While imputing using the baseline value might be
reasonable for the above example, the immediate return to baseline assumption may
not be plausible in other contexts. BCF, like LOCF, under-accounts for the variation
due to the single imputed value.

11.3.2.1 Other Single Imputation Approaches

Other approaches use information from the remainder of the data set to infer a
single value. Suppose values of a variable like income are missing in a sample.
A typical value, such as the mean or median of observed values, could be used.
While this can generate a reasonable value for a continuous value, like income, mean
values would produce an implausible value for a categorical value, like race. For
categorical variables, the method could be adapted to impute the race as the most
common answer (e.g., white) if the variable is categorical. The main advantage
of all of these “single imputation” approaches is their simplicity in generating the
imputation (substituting means, modes, or previously measured values). However,
this simplicity may reflect a lack of critical thinking about the relationship of
missing data to observed data. In the SCUT trial for example, a better imputation
for a missing 3 month VA measure might be to use the 3-week value augmented by
the expected change in VA from 3 weeks to 3 months.

With a variable such as income, it is highly possible that the value to be measured
contributes to the chance that it will not be observed, which might lead to data that
are MNAR. A better approach to imputation might use values of other covariates
such as zip code, age, and/or education to predict the missing values of income. If
those covariates were able to account for the dependence of missingness on income,
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then the data would be MAR. Thus, superior imputations will need to be informed
by a model for the data and for the mechanism which underlies the missing values.
Methods such as LOCF or BCF skip this crucial step of model development.

Furthermore, any single imputation approach that applies standard analysis
methods to the completed data set can seriously underestimate the variation in the
data set, giving standard errors that are too small and CIs which are too narrow.
These deficiencies can be corrected by applying the method of multiple imputation
which we discuss in Sect. 11.5.

11.4 Methods for Handling Missing Data

We now return to more general approaches for handling missing data. The rec-
ommended methods depend on both the pattern of missing data (drop out from
the study, missing predictors only, etc.) and the missing data mechanism. A key
distinction is whether there is missing data for the predictor variables with at least
some of those instances having observed values of the outcome. In such a case, we
recommend using multiple imputation, described in more detail in Sect. 11.5.

For situations in which the predictors are mostly complete and the issue
is data missing in the outcome variable, we divide our presentation and rec-
ommendations by the mechanism of the missing data: missing completely at
random (MCAR—Sect. 11.7), covariate- dependent missing completely at random
(CD-MCAR—Sect. 11.8) or missing at random (MAR—for hierarchical analyses
only and in Sect. 11.9). When the data are MCAR or CD-MCAR, relatively
simple approaches may suffice. For data that are MAR, several approaches are
possible.

11.5 Missing Data in the Predictors and Multiple Imputation

The first distinction in recommended analysis strategies is whether there is missing
data in the predictors (even if there is also missing data in the outcomes) and
the missing data can be assumed to be MAR. With missing predictor data, we
recommend the approach of multiple imputation, which we introduced briefly
in Sect. 11.1.2. The basic idea is not only to fill in a reasonable value for the
missing data but also to incorporate some random error. While it may seem
counterproductive to add in random error, it is a convenient device for properly
reflecting the degree of uncertainty due to the missing data. By doing it a number
of times (hence the adjective multiple in multiple imputation), we can get valid
estimates of standard errors (and hence CIs and p-values), and by averaging the
results, not have them unduly affected by the random error. It turns out, perhaps
surprisingly, that the process does not need to be repeated very many times. A typical
number is five or ten.
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Table 11.8 Regression model for imputing glucose

. regress glucose bmi csmker white sbp diabetes

Source | SS df MS Number of obs = 1355
-------------+------------------------------ F( 5, 1349) = 213.11

Model | 1019590.52 5 203918.103 Prob > F = 0.0000
Residual | 1290806.09 1349 956.861448 R-squared = 0.4413

-------------+------------------------------ Adj R-squared = 0.4392
Total | 2310396.61 1354 1706.34905 Root MSE = 30.933

----------------------------------------------------------------------------
glucose | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bmi | .4921757 .1568229 3.14 0.002 .1845325 .7998189

csmker | 1.183684 2.603247 0.45 0.649 -3.923168 6.290536
white | 9.180278 2.863755 3.21 0.001 3.562382 14.79817

sbp | .0342977 .0447849 0.77 0.444 -.0535579 .1221532
diabetes | 60.45312 1.977712 30.57 0.000 56.57339 64.33285

_cons | 69.66885 8.108395 8.59 0.000 53.76242 85.57528
----------------------------------------------------------------------------

The steps in multiple imputation are essentially as follows:

(1) Specify a probabilistic model for how to fill in the missing data.
(2) Using the model, fill in (impute) the missing data with random error.
(3) Repeat the imputation a small number of times (e.g., five) so you end up with

multiple versions of the data set, each with somewhat different values of the
imputed variable(s).

(4) For each of the imputed data sets, calculate the quantities of interest (e.g., the
regression coefficients).

(5) Average the quantity of interest across the imputed data sets.
(6) Calculate a standard error based on the average of the model-based variation

plus the variation in the calculated quantities of interest across the imputed data
sets.

The first step, of specifying the imputation model, is the most difficult and involves
building a regression model for the variable with missing data; the subject of
this entire book! The remaining steps are relatively automatic and are handled by
statistical software.

For the HERS example of Sect. 11.1.2, the variable we imputed was glucose.
Our probabilistic model was a linear regression model for glucose with predictors
of SBP, BMI, being white, current smoking status, and development of diabetes. The
standard assumption of a linear regression model is that the error terms are normally
distributed. Table 11.8 gives the output from fitting that regression equation.

Given values of BMI, current smoking status, being white, SBP, and devel-
opment of diabetes, we can use the regression equation to generate a predicted
glucose value for those with missing values. But in multiple imputation we do more.
The regression output from the table also gives the value of the root mean square
error, 30.933, which quantifies the degree of uncertainty (i.e., the error term) in the
regression equation. Under the assumptions of the linear regression model, those
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Table 11.9 Stata code for imputing glucose

mi set wide
mi register imputed glucose
mi impute reg glucose bmi csmker white sbp diabetes, add(5) rseed(271828) ///
> force
mi estimate: regress sbp glucose white bmi

errors are normally distributed, with means zero and standard deviation 30.933. So
to impute the missing values of glucose, we calculate the predicted value of glucose
and then add a normally distributed error term with standard deviation 30.933.

As an example, one of the HERS participants who had a missing glucose
measurement had a BMI of 24.68, was not a current smoker, was white, had a
SBP of 130, and was not diabetic. Using the coefficients from Table 11.8, her
predicted glucose value is 95.45. To impute a value for her, we would add a normally
distributed error term with mean zero and standard deviation 30.933. Using the
rnormal(0,30.9333) command twice in Stata to generate random normal
variables with the correct mean and standard deviation gave the values 42.98 and
�13.34. So her imputed glucose value for the first imputed data set would be
95.45C 42.98D 138.43 and would be 95:45 � 13:34 D 82:11 for the second. This
process is repeated for each of the missing glucose values and each imputed
data set.

Next, for each imputed dataset, we perform the regression of SBP on glucose,
BMI, and white. Suppose our interest lies in understanding the relationship between
SBP and BMI. We would have five estimates of the regression coefficient, each
slightly different due to the different imputed values. Averaging those five estimates
gives us our multiple imputation estimate and the standard error is calculated both
from the model-based standard errors and the variation in the coefficients from
imputed data set to imputed data set, which measures the amount of uncertainty
due to imputing the values of glucose.

Across the five imputations, the values of the coefficient for BMI were 0.145,
0.149, 0.138, 0.150, and 0.152 with an average of 0.147. The model-based standard
errors were 0.083, 0.083, 0.084, 0.083, and 0.084 with an average of 0.083. So the
estimated coefficient for BMI from the multiple imputation is 0.147 and the standard
error is slightly higher than the average of the model-based standard errors (due to
the imputation to imputation variability) and is equal to 0.084.

While no one step in the multiple imputation process is difficult, conducting the
multiple imputations and analyses and assembling the results is tedious and could
be error-prone if done manually. So programs like Stata automate the process. The
results reported in Table 11.3 were generated with the Stata code given in Table 11.9.

11.5.1 Remarks About Using Multiple Imputation

In the HERS example, we used the outcome of the original analysis (SBP) to impute
glucose. And then we turned around and used the imputed glucose value in the
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regression of SBP on glucose and the other predictors. This may seem like cheating
but is actually needed to obtain unbiased estimates (Little 1992). In fact, multiple
imputation does not distinguish the roles of outcome and predictor, but instead
regards all the variables on an equal footing. So, whenever variables are associated
with one another, it becomes important to utilize that information in the imputation
model. And it is usually the case that we include predictors (e.g., glucose) in our
modeling precisely because we expect them to be associated with the outcome. So
if those predictors are missing, it is important to use the original outcome variable
in the imputation modeling.

Multiple imputation has a long history of use in sample surveys. Many surveys
(like NHANES, the National Health and Nutrition Examination Survey) are ex-
tremely comprehensive and are released for public use. In this case, it is difficult to
predict which analyses will be undertaken, which variables will be used in analyses,
and which will be treated as outcome variables. Because multiple imputation does
not distinguish outcomes from predictors, users need not worry about the distinction
with regards how the data were imputed. Contrast this with a method like creating
a missing data category, which only works for categorical predictors. Furthermore,
the imputation algorithms may be quite complicated and difficult to implement, but
the analysis of the data is straightforward using routines like those available in Stata.
So once a multiple imputation is produced, it can be used in a variety of situations.

Because of the potential for using a multiply imputed data set for many purposes,
when imputing missing data it is important to err on the side of flexibility rather than
parsimony. If the model for imputation is overly simplistic, those assumptions will
be built into the portion of the data that has been imputed. For example in HERS,
if the relationship between glucose and BMI were non-linear, but the imputation
model assumed it to be linear, then predictions might be biased. Or if we assumed
there was no interaction between BMI and race in imputing glucose and if a later
analysis searched for interactions, interaction effects would be attenuated.

11.5.2 Approaches to Multiple Imputation

In practice, the pattern of missing data across variables can be quite different. In
the HERS example, BMI and current smoking status (yes/no) had missing data
in addition to glucose, whereas race (white versus other) had very little missing
data. With multiple missing variables, a number of complications arise. First, how
should we handle variables with distributions other than normal such as current
smoking status, which is binary? Second, if we want to impute glucose using
SBP, BMI, race, and current smoking status, what do we do about the missing
data for BMI and current smoking status? Third, once the data are filled in, how
should we update the parameter estimates? There are three main approaches for
dealing with multiple imputation across a number of variables: iterative chained
imputation, multivariate normal (MVN) imputation, and Monte Carlo Markov
chain. We describe in more detail the first two.
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11.5.2.1 Iterative Chained Equations Imputation

Using iterative chained equations (ICEs) imputation, we build regression models for
each of the variables with missing data, in turn treating them as outcome variables
and using the rest of the variables as possible predictors. For the HERS example,
in addition to the model we have already built for glucose, we would need models
for BMI and current smoking status. Because current smoking status is a binary
variable, a logical imputation model would be to use a logistic regression with
predictors of SBP, BMI, race, and glucose. From the logistic regression model,
we would get a predicted probability of being a current smoker. We would then
generate a random binary outcome with the predicted probability (which could be
done using the rbinomial command in Stata). Once the value of current smoking
was imputed, this could be used as a predictor in a regression model to impute BMI.
These regression equations are used to fill in each of the variables in turn. The whole
process is repeated a number of times to reach a “steady state” so that the results do
not depend on the order in which the variables are imputed.

An important advantage of this approach is the ability to tailor the model for
imputing each variable, both with respect to its distribution (e.g., normal, binary,
or multiple categories) as well as the inclusion of predictors, possibly with non-
linear terms and/or interactions. Currently, Stata allows regression models of the
following types via its mi impute chained command: linear regression (reg-
ular, truncated, and interval), logistic (binary, ordinal, and multinomial), Poisson,
and negative binomial. This is also its most important disadvantage: a regression
model has to be constructed for each of the variables for which there is a significant
percentage of missing data. With, say, 20 variables with missing data, the regression
modeling effort increases 20-fold, even though this may not be the scientific focus
of the analysis. These regression models need to be built with care so as not to
introduce out of range or implausible imputed values.

11.5.2.2 Multivariate Normal Imputation

A simpler to use method available in many statistical software packages is to impute
the missing data assuming all the variables follow a joint, normal distribution. While
this is invariably an incorrect assumption when there are a number of variables with
missing data, it has often been found to perform well in practice. This is because,
even though the distributional assumptions may be suspect, imputation assuming
a MVN distribution still retains the proper average values and correlations among
the variables. When the later analysis depends only on such quantities (as when the
ultimate analysis is a linear regression) this method may suffice.

For example, in Sect. 11.5.3 we wish to impute the binary predictor variable race,
which is coded as 1 for white and 0 otherwise. Recall that when a variable is coded as
0 and 1, its mean is equal to proportion of observations falling in the category coded
as 1. When imputing such a variable, MVN imputation will generate a continuous
variable in its place, but one which will have the proper mean (in the sense that the
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mean will properly reflect the proportion falling in category 1). Of course, care must
be taken when using such a variable in an analysis: since it is no longer categorical
it cannot be treated as such in a prediction equation. Software packages such as SAS
allow the user to round off to 0 or 1 to recover this aspect of the data.

Although MVN imputation often gives sensible answers, in some cases it may
be important to retain more detailed aspects of the distribution (e.g., the proportion
exceeding a threshold), and MVN imputation may lead to suspect conclusions.
Another situation in which the multivariate normal assumption is not satisfactory
is when one or more variable is a nominal categorical variable, e.g., marital status
(single and never married, married, divorced).

If most of the variables to be imputed are approximately normally distributed
and there are no nominal categorical variables, then it is probably safe to use MVN
imputation, which is often easier to implement in practice. However, if there are
nominal categorical variables, or the predictors are highly nonnormally distributed,
then iterative chained imputation is the recommended approach.

11.5.3 Multiple Imputation for HERS

We demonstrate the use of ICEs imputation and MVN imputation using the HERS
dataset and two regression analyses: regression of SBP on glucose, BMI, and race
(white or not), which has missing data on two continuous predictors (glucose and
BMI) and the regression of SBP on glucose, current smoking status (yes/no), and
race, which has missing data on a continuous predictor (glucose) and a binary
predictor (smoking status).

Using the ICE methodology, we built linear regression models for glucose and
BMI and a logistic regression model for current smoking status. We considered two
approaches to modeling: parsimonious and flexible. In the parsimonious approach,
we included the other variables in the imputation model as is. So, for example, the
parsimonious imputation model for BMI was a linear regression with predictors
of SBP, glucose, race, and current smoking status. In the flexible approach, we
included all two way interactions and quadratic versions of numerical predictors.
So, for example, the flexible imputation model for current smoking status was a
logistic regression with predictors of glucose, BMI, and SBP, the squared versions
of each of those, race and all the two way interactions such as race by BMI, race by
SBP, BMI times SBP, etc.

We compared this to the MVN approach, which assumes that SBP, glucose,
BMI, and current smoking status are MVN and imputes the values under that
assumption. Table 11.10 lists the sample sizes, regression coefficients, and p-values
for a complete case analysis and the three approaches to multiple imputation.
Similarly, Table 11.11 lists the values for a regression of SBP on glucose, race,
and current smoking status. We might expect the MVN approach to do more poorly
for this model since current smoking status is a binary variable.
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Table 11.10 HERS model fit comparisons with different multiple imputation strate-
gies: regression of SBP on glucose, race, and BMI

Parameter estimates p-values
MI method N Glucose Race BMI Glucose Race BMI

Complete case 1385 0.030 �1.54 0.06 0.02 0.36 0.49
ICE parsimony 1871 0.029 �2.52 0.13 0.02 0.09 0.11
ICE flexible 1871 0.028 �2.53 0.14 0.02 0.09 0.09
MVN 1871 0.030 �2.44 0.14 0.02 0.10 0.10

Table 11.11 HERS model fit comparisons with different multiple imputation strate-
gies: regression of SBP on glucose, race, and current smoking status

Parameter estimates p-values
MI method N Glucose Race Smoke Glucose Race Smoke

Complete case 1370 0.028 �2.04 �1.55 0.02 0.23 0.32
ICE parsimony 1871 0.032 �2.75 �0.96 0.007 0.06 0.49
ICE flexible 1871 0.032 �2.77 �0.94 0.006 0.06 0.49
MVN 1871 0.033 �2.68 �1.01 0.005 0.07 0.46

The imputation analyses differ from the complete case analyses in several
important aspects:

• The imputation methods are based on imputed versions of the complete data set
with 1,871 observations.

• For a number of the coefficients, the imputations give materially different
estimates of the coefficients compared to the complete case analysis, e.g., the
coefficient for race.

• The imputations, which use all the observed data, often have smaller p-values
than the complete case analysis.

Turning to comparisons among the various imputation methods, we observe that

• The flexible and parsimonious approaches to ICE gave virtually the same
answers.

• The MVN approach gave somewhat different answers than the two ICE ap-
proaches, but all three imputation approaches gave answers similar to one another
and somewhat different than the complete case analysis.

• The MVN approach seemed to do a creditable job even when imputing the binary
variable, race.

The example serves to illustrate both the advantages and disadvantages of
multiple imputation. It uses all the observed data while properly reflecting the fact
some of the data are missing. It may have reduced the bias in some of the regression
coefficients. It properly reflects the fact some of the data are missing but allows for
reduced standard errors and generally smaller p-values. But it came at the cost of
either having to construct a model for each of the original predictor variables (for
ICE) or hypothesize a MVN model for all the predictor variables that had substantial
missing data and led to a somewhat more complicated overall analysis.
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11.6 Deciding Which Missing Data Mechanism
May Be Applicable

The key to using multiple imputation is to build regression models to fill in
predictors or outcomes that have missing data. When the predictors have missing
data, the outcome variables will usually be part of the imputation models. In the
next few sections, we consider situations where the main missing data are outcome
data. Our recommended strategies depend on which missing data mechanism is to
be assumed so we give some guidance here as to how to choose.

As noted above, e.g., (11.2), the different missing data mechanisms are distin-
guished by dependence of the probability of the data being missing on different
quantities. In CD-MCAR dependence is on covariates and, in MAR, dependence is
on the outcome and possibly also on covariates. Distinguishing between these cases
can be done in a descriptive manner or using a more formal statistical model.

For example, in the SCUT trial and considering missing outcome (visual acuity)
data at the 3-month visit, we would calculate descriptive statistics for those with
and without missing data. If the average ulcer size, the proportion with the ulcer in
the center of the eye, or the proportion of gram positive infections (all measured at
baseline) differed between those with a missing VA measurement at 3 months and
those with it present, then we would know the data could not be considered MCAR,
but instead would be at least CD-MCAR. We could formally test the association by
conducting a t-test for ulcer size or �2 tests for whether the ulcer is in the center of
the eye or type of infection across the missingness groups.

Alternatively, we could define an indicator variableRi ; equal to 1 if the 3-month
measurement was present and zero otherwise, and conduct a logistic regression to
assess the association of missingness with the covariates. If we found that any of the
covariates is associated with missingness, it would establish that the data could not
be MCAR.

By further considering previously measured outcomes (e.g., the value of VA at 3
weeks), we can check to see if the CD-MCAR assumption is inadequate. If the VA at
3 weeks differed between the groups with 3 month VA data present and absent that
would suggest the missing data mechanism to be at least MAR. More rigorously,
if VA at 3 weeks was predictive of missing VA at 3 months in a logistic regression
model that also contained the covariates that were related to missingness then we
would know that the assumption of CD-MCAR was inadequate.

With substantial amounts of missing data, it is invariably good practice to
conduct descriptive analyses to understand to what extent the missing data are
associated with measured variables. As noted above this can help rule out simpler
mechanism such as MCAR (which rarely holds in practice) and CD-MCAR. As
noted earlier, because MNAR depends on unobserved quantities, we cannot verify
or rule out a MNAR process from the observed data alone.
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11.7 Missing Outcomes, Missing Completely at Random

We now consider datasets for which there is missing data in the outcomes but where
any missing data in the predictor variables is negligible or occurs along with missing
data in the outcome (as when a participant drops out of a study). The easiest case
to deal with is when the data are MCAR, i.e., the missing data are totally unrelated
to either the other outcomes or the predictors. In this case, ignoring the missing
data does not cause bias and simply leaving the missing data out of the analysis
properly reflects the amount of information available. In this case, complete case
analysis using any of the usual statistical analysis strategies (e.g., linear regression
or logistic regression) is the recommended strategy. It will automatically be adopted
by any of the usual statistical packages, including Stata, if you conduct the usual
analysis in the presence of missing data.

We again return to the HERS dataset and we fit a model to predict systolic
blood pressure (SBP) from BMI, race (white or not), whether the participant was
on medication to control their blood pressure (yes/no) and the interaction of BMI
and blood pressure medication. From that model, the coefficient of BMI in the on-
medication group was 0.24, with a standard error of 0.06. So with each increase in
BMI of one unit, there is an associated increase in SBP of about 0.24. However, in
the off-medication group, the coefficient is 0.52 with a standard error of 0.11. This is
not surprising as we would expect those on medication to have their blood pressure
better controlled and less associated with BMI.

We again artificially create missing data to illustrate the consequences. Using
a random mechanism, we dropped 75% of the data and refit the above model, so
the missing data mechanism is MCAR. The on-medication BMI coefficient was
0.19 with a standard error of 0.10 and the off-medication coefficient was 0.56 with
a standard error of 0.21. So, even though we have dropped 75% of the data, the
two coefficients are similar to those obtained from the full dataset, as expected.
Using GEEs gave virtually the same results, with coefficients of 0.18 and 0.56,
respectively.

11.8 Missing Outcomes, Covariate-Dependent Missing
Completely at Random

The next level of missing data occurs with data where missingness may depend on
a covariate that is in the analysis model as a predictor, but does not depend on other
variables (either other outcomes or variables not in the model), that is, covariate-
dependent missing completely at random (CD-MCAR). Under CD-MCAR, a
complete case analysis yields unbiased estimates of regression coefficients and
predictions for given values of the covariates using any of the regression methods
we have described. However, quantities that require averaging over members of the
sample may not be correct.
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Using the HERS data, as in the previous section, we again randomly dropped
75% of the data, but this time all the dropped data was from the on-medication
subgroup, which makes up about 80% of the full dataset. This missing data
mechanism would be CD-MCAR because it depends on whether the participant is
on hypertension medication or not, but not on other variables. We fit the same model
as described in the previous section and obtained an on-medication coefficient for
BMI of 0.23 with a standard error of 0.16 and an off-medication coefficient of 0.59
with a standard error of 0.12, with the coefficients again quite similar to the full
dataset.

But suppose we were interested in the average increase in SBP associated
with a one unit increase in BMI. Since the no-medication participants make up
about 80% of the cohort, the average increase is a weighted average of the two
coefficients: 0.30D 0.8(0.24)C 0.2(0.52). Being more careful with the calculations,
the exact value is actually 0.29. But in the CD-MCAR scenario, the proportion of
on-medication participants is only about 24%. And so the average increase will
be misestimated as 0.51, because the off-medication participants are weighted too
heavily.

The correctly blended average can be calculated using Stata’s margins com-
mand as shown in Table 11.12. In that table, bmi ctr is the centered value
of BMI (i.e., it has mean zero) and sbp cdmcar is SBP with values missing
due to the CD-MCAR mechanism. The margins command estimates the value of
SBP at the mean value of BMI and at one unit above the mean. Using just the
estimation sample gives an associated increase in SBP of about 0:51.D 135:1076�
134:6008/. However, using the noesample option generates an estimate for
the entire sample, recovering the proper weighting of the on- and off-medication
subgroups, and gives an estimate of about 0:30.D 133:2468 � 132:9490/, quite
close to the full data estimate.

As in the MAR scenario, for CD-MCAR the particular analysis method makes
little difference. Using GEEs gave virtually the same answers as the mixed-model
approaches reported above.

11.9 Missing Outcomes for Longitudinal Studies,
Missing at Random

Longitudinal studies with a planned observation schedule invariably have at least
some missing data. Although attempts are usually made to have participants return
for every scheduled visit (e.g., yearly), some drop out of the study, either voluntarily
or involuntarily (e.g., death), or miss visits. A consequence is that all data that would
have been collected at that visit (either outcomes or predictors) will be missing.
So use of analysis strategies to minimize bias due to missing data are essential.
For example, the Osteoarthritis Initiative, a well-conducted cohort study, enrolled
4,796 individuals, attempting to collect data yearly. After 1 year, 94% were still
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Table 11.12 Using the margins command with CD-MCAR missing data

. xtmixed sbp_cdmcar c.bmi_ctr white htnmeds htnmeds#c.bmi_ctr || pptid:

Mixed-effects REML regression Number of obs = 2291
Group variable: pptid Number of groups = 972

Obs per group: min = 1
avg = 2.4
max = 6

Wald chi2(4) = 30.08
Log restricted-likelihood = -9527.0924 Prob > chi2 = 0.0000

----------------------------------------------------------------------------
sbp_cdmcar | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
bmi_ctr | .5946715 .1249834 4.76 0.000 .3497085 .8396344
white | .6615583 2.262646 0.29 0.770 -3.773146 5.096263

htnmeds | -2.858138 .9904139 -2.89 0.004 -4.799314 -.9169625
|

htnmeds#|
c.bmi_ctr |

1 | -.3666237 .1957226 -1.87 0.061 -.750233 .0169856
|

_cons | 134.6577 2.258123 59.63 0.000 130.2318 139.0835
----------------------------------------------------------------------------
----------------------------------------------------------------------------

Random-effects parameters | Estimate Std. Err. [95% Conf. Interval]
-----------------------------+----------------------------------------------
pptid: Identity |

sd(_cons) | 14.58279 .4669968 13.69562 15.52742
-----------------------------+----------------------------------------------

sd(Residual) | 11.41371 .2233941 10.98415 11.86006
----------------------------------------------------------------------------
LR test versus linear regression: chibar2(01)=736.07 Prob >= chibar2= 0.0000

. margins, at(bmi_ctr=0) at(bmi_ctr=1)

Predictive margins Number of obs = 2291

Expression : Linear prediction, fixed portion, predict()

1._at : bmi_ctr = 0
2._at : bmi_ctr = 1

---------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+-------------------------------------------------------------
_at |
1 | 134.6008 .5746835 234.22 0.000 133.4745 135.7272
2 | 135.1076 .5946754 227.20 0.000 133.9421 136.2732

---------------------------------------------------------------------------

. margins, at(bmi_ctr=0) at(bmi_ctr=1) noesample

Predictive margins Number of obs = 9157

Expression : Linear prediction, fixed portion, predict()
1._at : bmi_ctr = 0
2._at : bmi_ctr = 1

----------------------------------------------------------------------------
| Delta-method
| Margin Std. Err. z P>|z| [95% Conf. Interval]

-------------+--------------------------------------------------------------
_at |
1 | 132.9490 .6731565 197.50 0.000 131.6297 134.2684
2 | 133.2468 .6880263 193.67 0.000 131.8983 134.5953

----------------------------------------------------------------------------
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being followed, with 6% dead or lost to follow-up and, after 2 years, 90% were still
being followed. If the data are MCAR or CD-MCAR then the analysis strategies
suggested above will work for longitudinal data. But in a longitudinal study, it
is quite possible that missingness is related to previously measured outcomes,
making the data MAR. For example, in the OAI, a patient with an MRI (magnetic
resonance image) showing advanced osteoarthritis at one visit may be less likely
to come in for the next visit, since it would entail lengthy data collection and
another MRI.

The situation of MAR represents a reasonable one for a wide variety of
missing data problems. This is a middle ground between MCAR and MNAR
for which the choice of analysis strategy can make a difference. Three general
approaches have been suggested for dealing with MAR data in longitudinal
studies: use maximum-likelihood based methods, use inverse weighting methods,
or use multiple imputation.

11.9.1 ML and MAR

In Sect. 11.1.2, we contrasted the use of generalized estimating equations and
linear mixed models in a particular example. Under a MAR situation we showed
that the generalized estimating equations approach gave biased results whereas the
linear mixed-model analysis did not. This result generalizes to the wider class of
models fit by maximum likelihood (see Sect. 5.6 for the definition of maximum
likelihood). Namely that a simple strategy for dealing with MAR data is to use
approaches wherein the models are fit by the method of maximum likelihood, such
as the random effects models described in Sect. 7.5. As long as the model is correct
in both its fixed and random components, this fitting technique leads to methods that
are not biased. A more detailed explanation as to why maximum likelihood avoids
bias with MAR data is given below in Sect. 11.10.

Commonly used approaches which use maximum likelihood include linear
mixed-model analyses (Stata xtmixed or xtreg [with the mle option]; SAS Proc
MIXED; SPSS linear mixed model routines) and random effects logistic or Poisson
regression models (Stata xtlogit, xtmelogit, xtpoisson, xtmepoisson,
and others; SAS Proc NLMIXED). The primary method for longitudinal data which
does not use maximum likelihood is GEEs (see Sect. 7.4), which is therefore subject
to bias under MAR data.

When maximum-likelihood methods are a natural analysis strategy, we generally
recommend them since they obviate the need to model the missingness mecha-
nism. And for studies that are not on a regularly scheduled visit time, it is not
clear what data should be imputed. When following a maximum-likelihood analysis
strategy and for cases where there is a significant portion of missing outcome
data, care should be taken on model diagnostics (e.g., checking for interactions
and correct specification of the variance–covariance structure). This is because the
ability of maximum likelihood to adjust for missingness depends on specifying a
correct or nearly correct model.
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11.9.2 Multiple Imputation

In a longitudinal study with MAR missing data, maximum-likelihood methods au-
tomatically correct for missing data without having to specify a model for the miss-
ingness. But multiple imputation is also a viable method, building a model to impute
the missing outcomes based on the covariates and previously measured outcomes.

There are, however, circumstances in which multiple imputation is to be rec-
ommended over maximum likelihood. If the preferred analysis strategy is GEEs
(or another, non-likelihood-based method) then multiple imputation is an attractive
strategy to deal with missing data. This is because it can reduce the bias associated
with the use of non-likelihood-based methods under MAR missing data.

So far we have assumed that, when missingness is dependent on the predictors,
these are predictors that can be included in the analysis model. This will not always
be the case, for example, if drop out in a longitudinal study depends on a mediator. In
SCUT, for example, suppose that individuals whose ulcers have cleared by three
weeks are less likely to return at 3 months since it is not as urgent for them to visit
the clinic. To properly account for missingness in an ML analysis, we would need
to include presence of an ulcer at 3 months in the model. But this will also adjust
away some of the treatment effect, which we do not wish to do. This would be an
example of a situation in which a variable (presence of an ulcer at 3 weeks) is needed
to make the MAR assumption plausible but is not useful for the analysis model.
This is another situation in which multiple imputation is an attractive approach: we
can use the mediator in the imputation model, but leave it out of the analysis
model.

11.9.3 Inverse Probability Weighting

Another family of methods which use the MAR assumption are those based on
inverse probability weighting. The basic idea is to use complete observations
to represent incomplete observations, just as we did for potential outcomes in
Subsect. 9.1.8. For instance, in the SCUT example, suppose that we could make
the assumption that the probability of missing visual acuity (VA) at the second
(3 month) visit depended only on the distance the patient lives from the clinic and
their VA at enrollment.

In that case, for patient i at visit 2

P.Ri2 D 1jY;X/ D P.Ri2 D 1jX/ (11.4)

or more specifically it is equal to P.Ri2 D 1jx1i ; x2i /, where x1i is the distance
patient i lives from the clinic and x2i is his or her VA at baseline. This sim-
plification means that we postulate covariate-dependent MCAR for the missing
outcomes.
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Suppose, for specific values of clinic distance and VA, the probability of
observing the visit 2 outcome (11.4) is equal to 1/2. Then only about half of the
patients with these values of x1i and x2i will have VA data at the second visit
and it would be reasonable to “double-count” their values to represent the missing
values. Similarly, if the probability were 1/3, we would observe only about 1/3 of the
outcomes and it would be reasonable to “triple-count” the participants for whom we
observed the outcome. In general, we would up-weight observed outcomes by one
divided by the probability of being measured, hence the name, inverse probability
weighting. This is the spirit that underlies inverse weighting methods.

Many statistical packages allow the incorporation of weights, but care must be
taken. Often, for example the weight statement in SAS, a weight of 2 would
represent 2 actual measured observations with the same value. This is distinct from
our situation in which a weight of 2 would mean we are using a single measured
value to represent itself and an unmeasured value. The weights that are needed for
inverse weighting estimation are sometimes called probability or sampling weights
and are implemented for many of the commands in Stata using the pweight
option. Using the more standard weighting as in SAS gives the correct estimate, but
incorrectly implies there is more actual measured data and hence will give standard
errors and p-values that are too small and CIs that are too narrow. For some routines,
this can be corrected by using robust standard errors.

11.9.3.1 Comments on Inverse Probability Weighting

Inverse probability estimates require that we specify or estimate the probability
of observing an outcome at 3 months. We might do this by developing a re-
gression model, like logistic regression, for the probability of a measured value
in terms of observed data (much like the propensity score method discussed in
Sect. 9.4.3). Other methods discussed in this chapter based on the MAR assumption
rely on postulating a correct model for the outcomes. For example, in the SCUT
trial, we might postulate a linear mixed-effects model for the VA measures. These
approaches use MI- or ML- based estimation and are able to avoid specifying
a model for the missing data mechanism but depend on the correctness of the
outcome model to adjust for missing data. In contrast, inverse weighting adjusts
for missing data through the weighting scheme and does not depend as strongly
on the correctness of the outcome model. Inverse weighting has been suggested in
situations using analyses such as generalized estimating equations.

We have several concerns about the use of inverse probability methods and
cannot recommend them in general. In many situations, the probability of a
measured value can be small, leading to large inverse weights. The large weight
given to a few observations means that these values significantly influence the
results, leading to unstable estimates and loss of efficiency.

If IPW is used, weights should be carefully monitored. And even if weights are
not large, inverse weighting can be notably less efficient than an analysis based on
a carefully chosen model for the complete data. In many, if not most, situations,
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a plausible model for missingness is poorly understood. It is, therefore, often
more natural to build a model for the complete data and apply methods based on
maximum likelihood.

11.10 Technical Details About Maximum Likelihood
and Data Which are Missing at Random

We have stated earlier that methods of fitting models using maximum likelihood
give valid estimates even when the data are MAR. In this section, we give some
explanation as to why that is so and contrast maximum-likelihood with multiple
imputation. The comparison rests on a particular way in which maximum likelihood
estimates can be calculated, called the Expectation–Maximization Algorithm, or
EM algorithm for short, an approach that has often been of utility in missing data
problems. The EM algorithm operates by starting with a guess as to the values
of the estimates and improves them using an expectation calculation and then
a maximization calculation. The expectation and maximization calculations are
repeated until the estimates stabilize. This gives the same answer as directly finding
the maximum of the likelihood of the observed data.

11.10.1 An Example of the EM Algorithm

Suppose we wanted to estimate the average number of emergency room visits per
person in a year for the population of people served by a particular emergency room.
But suppose we only had emergency-room (ER) data and did not know the size of
the population who might use that emergency room. If we had data for everyone,
we would just calculate the average value. But we have a problem since we do not
have a record of those who did not visit the emergency room that year, that is, those
whose outcome is equal to 0. And clearly calculating the average among those who
were seen in the emergency room will drastically overestimate the average.

If we had a preliminary estimate of the average and a probabilistic model for
how often people visit the emergency room, we could predict how many we would
expect to have a zero value. One such model is the Poisson distribution, for which
the probability of an individual visiting the ER exactly x times during the year,
P.x/; is given by the formula

P.x/ D 	xe�	

xŠ
; (11.5)

where 	 is the average number of visits per year and xŠ is “x-factorial”, e.g., 6Š D
6 � 5 � 4 � 3 � 2 � 1 D 720, and, by convention, 0Š D 1. Plugging a 0 in for x
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in (11.5), the probability of a person not visiting the ER in a year is 	0e�	

0Š
D e�	.

So, if the average is 0.1 visits per year, the probability of no visits is e�0:1 D 0:905,
and we would predict about 90.5% of the people in the population will have no
visits.

Suppose our data consist of 1,232 separate people who visited the ER. Of those
people, 1,171 visited 1 time, 57 visited twice, and 4 visited 3 times. So there
was a total of 1,171C2 � 57 C 3 � 4 D1,297 visits. We are certain that there
many people who visited 0 times, but how many? The EM algorithm works by
“filling in” the missing data (the number who visited 0 times) making the problem a
simple one.

Suppose we start with an initial guess of 0.25 visits per person per year. Then the
probability of zero visits would be e�0:25 D 0:779 and the probability of at least one
visit would be 1 � 0:779 D 0:221. That is, there should be 0:779=0:221 or 3.52 as
many people we did not see compared to how many we did see visit the ER. So we
would expect that there are 3:52�1,232D 4,337 people with zero visits. This is the
expectation step of the EM algorithm.

Next we use our data to find the maximum-likelihood estimate of the average
simply by calculating the arithmetic average using the filled in data. The total
number of visits was 1,297 and we expect there were 4,337C1,232D 5,569 people,
for an average of 1,297/5,569 D 0.233. This is the maximization step. So we can
see that our initial guess was too high and the average rate has tended lower.

With our new estimate of the average, we can calculate an updated probability
of not visiting: e�0:233 D 0:792. And now we expect that there are 0:792=0:208 or
about 3.81 times as many zero visit people as those we actually saw in the ER for a
expected number of 3.81�1,232D 4,698. So we can further update our estimate of
the average as 1,297=(4,698C 1,232)D 0.219. Repeating this process many times,
the estimate converges to 0.104. This can easily be calculated using a spreadsheet
program such as Excel.

The maximum-likelihood estimate can also be calculated directly. It corresponds
to finding the value of 	 that maximizes the quantity1

logL D 1297 log	 � 1232	� 1232 log.1 � e	/: (11.6)

Numerically calculating the maximum of (11.6) also gives the value 0.104. It is
also possible to find the maximum-likelihood estimate graphically using the Stata
commands given in Table 11.13. The resulting plot is shown in Fig. 11.1.

1Recall that the likelihood is the probability of observing the data. The probability of a specific
count for a Poisson model, conditional on being 1 or greater is given by P.x/ D 	xe�	

xŠ.1�e�	/
. The

product over the entire sample is given by L D 	˙xi e�n	

˘xi Š.1�e�	/n
, where n is the sample size,

and xi is the count for individual i . It is equivalent and easier to maximize the logarithm of
L. We can also ignore the factorial term which does not depend on 	, giving logL D ˙xi log
	� n	� n log.1� e	/.
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Table 11.13 Stata commands for plotting the log likelihood

clear
set obs 100
gen lambda=_n/10000+.1
gen logL=1297*ln(lambda)-1232*lambda-1232*ln(1-exp(-lambda))
twoway line logL lambda, ytitle("log(likelihood)") xtitle({&lambda})
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Fig. 11.1 Plot of log-likelihood versus the average rate, 	

11.10.2 The EM Algorithm Imputes the Missing Data

The example above illustrates a typical feature of the EM algorithm: using the
observed data and the probability model, the EM algorithm fills in the missing
data. The analysis of the data then proceeds using the “complete” dataset. The same
algorithm can be applied to longitudinal data with missing outcomes. In that case,
maximum likelihood is equivalent to filling in the data not observed due to, e.g.,
drop out or missed visits, using the longitudinal data mixed model. The parameter
estimates are then calculated using the complete dataset. As long as the missing data
can be reliably predicted from the observed data (which is the case if the longitudinal
data model is correct and the MAR assumption holds), the analysis based on the
complete dataset is free of bias due to missing data.

Using maximum-likelihood methods with modern computers does not appear
to explicitly handle missing data (it just requires the push of a button on a
computer). However, when viewed through the lens of the EM algorithm, it is
implicitly filling in the missing data based on the assumed probability model being
used to fit the data.
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11.10.3 ML Versus MI with Missing Outcomes

Maximum likelihood via the EM algorithm may appear to be virtually the same
as multiple imputation. Although there are similarities there are also important
differences. Perhaps the primary one is that, under MAR, maximum likelihood im-
plicitly selects the right model for filling in the missing data—no model specification
is necessary as it is in multiple imputation.

However, because maximum likelihood implicitly assumes a model for “impu-
tation” it cannot be varied. Multiple imputation gives the analyst more options. For
example, nonignorable missing data models can be used to check sensitivity to the
assumption of MAR. Or violations of the model assumptions can be checked, e.g.,
what if the assumption of a Poisson distribution was incorrect in the example above?
MI also allows the use of techniques other than ML to obtain parameter estimates
after the data are imputed.

However, if (a) the model being used for multiple imputation is the same as the
one implicitly used by ML, (b) the imputation was performed so many times that
the imputation error was negligible, and (c) once imputed, maximum likelihood was
used to find parameter estimates, then MI and ML would give the same answers.

11.11 Methods for Data that are Missing Not at Random

We have mentioned previously that standard analysis methods can be biased when
the data are MNAR. And, since it is impossible to figure out if the data are MNAR
from the observed data, the main strategies to assess the potential impact of MNAR
data are sensitivity analyses. Sensitivity analyses proceed by positing a spectrum
of MNAR models with checks as to the seriousness of the violation of the MCAR
or MAR assumptions required to qualitatively overturn the results of an analysis.
If “small” departures from MCAR or MAR lead to different conclusions then
the results are taken as tenuous. If “large” departures are required to change the
results, then more confidence can be placed in the conclusions. To be convincing,
the posited MNAR models and degree of departure from MCAR or MAR need to
be defensible in context, which tends to be highly problem specific and so it is
difficult to recommend generally applicable strategies. We describe briefly three ap-
proaches to MNAR data: pattern mixture models, multiple imputation, and selection
models.

11.11.1 Pattern Mixture Models

Consider a study of cognitive decline in which the participants who dropped out
had much higher rates of depression at baseline than those with complete data.
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We would be concerned that the data was MAR or MNAR and, especially if the
rates of decline were quite different, that we might be obtaining biased estimates.
What about more detailed comparisons of those with different degrees of missing
data?

Our approach to missing data to this point has been what is called a selection
model approach. We have thought of the observed data as arising from a two-step
process. In the first step, the complete data are generated. In the second step (via a
process we have described as MCAR, CD-MCAR, MAR, or MNAR), certain of the
data are selected for us to observe; the rest is missing.

A very different approach uses what is called a pattern mixture model. In this
approach, the data are divided into categories according to the pattern of missing
data, akin to dividing subjects into those with complete and incomplete data. For
example, consider a cohort study where everyone has a baseline observation and
there are four planned follow-up visits. Further, suppose the only missing data are
because of dropout from the study. Then there are five possible data patterns with
regard to presence or absence of data: complete data, missing only visit 5 (i.e.,
dropout after visit 4), missing visits 4 and 5 (dropout after visit 3), missing visits
3, 4, and 5, and missing visits 2, 3, 4, and 5.

We can now think about dividing up the data according to the missing data
pattern and analyzing the data from each pattern separately. The advantage of this
approach is that we do not need to think about the missing data mechanism (e.g.,
MCAR versus MAR). We immediately run in to a problem, however. Returning
to the cognitive decline example, what are we to assume about the rate of decline
for the participants for whom we only have baseline data? Because we only have a
single time point, this group contains no information about the decline over time.
If we wish to proceed, we have to make certain assumptions. For example, if we
believe the rates of decline are linear over the course of the five year study, we
might assume that the rate is the same as that for the group with data for visits 1 and
2 (for which we can estimate a linear decline). Or we might assume it is the same
as the subgroup with complete data.

If it is reasonable to make simplifying assumptions then the pattern mixture
approach is very attractive. Simply by including a categorical predictor for missing
data pattern and allowing interactions of key components with that predictor allows
the use of standard software packages to accommodate missing data. In the absence
of interaction, the analysis gives estimates of the (assumed) common effect. In the
presence of interaction, weighted estimates (weighted by the proportion in each
missing data pattern) give an estimate of the overall effect.

Unfortunately, it is often the case that there is little guidance in the data as to what
models are appropriate and strong assumptions must be made with little opportunity
to check them. Further, there are often a multitude of different missing data patterns
(it is rarely as simple as described above) which must be grouped subjectively into
a manageable, smaller number of categories, each with reasonable sample sizes.
These considerations limit the use of pattern mixture models as robust data analysis
methods. However, they can still be useful as sensitivity analyses: by varying
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the assumptions needed to fit such models, a variety of MNAR missing data
mechanisms can be accommodated. See Little (1993, 1995), and Verbeke and
Molenberghs (2000) for more in-depth discussion.

11.11.2 Multiple Imputation Under MNAR

Another possible approach to assess sensitivity of results to MNAR missingness
is to use multiple imputation but hypothesize an imputation model that allows
dependence between the probability that data are missing and the value that would
be observed if R D 1. Subak et al. (2009) give an example of a trial to encourage
weight loss in women with incontinence problems. Their primary analysis imputed
end of study values by assuming that women who dropped out of the study, on
average, lost no weight, a MNAR mechanism.

11.11.3 Joint Modeling of Outcomes and the Dropout Process

A third strategy is to directly hypothesize a joint model for the complete data and
the missing data process and use the observed data to simultaneously estimate the
parameters of both models (e.g., Diggle and Kenward 1994). Not surprisingly, it is
difficult to estimate such a model from observed data and they are highly sensitive
to the assumed form of the model, something which is not easily checked from the
observed data.

11.12 Summary

Missing data are common and many of the simple methods of handling missing
data, such as a complete case analysis (the default for most statistical analysis
programs), can give misleading results. If it is the predictor variables that are missing
in a dataset, we recommend the strategy of multiple imputation. When the main
issue is dealing with missing outcomes in a longitudinal study, maximum-likelihood
methods are often a good choice. When they are properly specified, they will give
valid inference when the data are MAR, whereas generalized estimating equation
methods may not. When the analyst needs to exclude important predictors of
missingness, in particular mediators, from the outcome model, multiple imputation,
and IPW can be useful strategies. Finally, when data are MNAR, pattern mixture
models and sensitivity analyses using multiple imputation are recommended.

All techniques for handling missing data require assumptions about how the
missing data relate to the observed data. Because the data are missing, these
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assumptions cannot be empirically verified. The assumptions are clear in mul-
tiple imputation (where we model the missing data), IPW (where we model
the probability of missingness), and pattern mixture modeling (where we must
make assumptions about covariate effects across missing data patterns). When
using maximum-likelihood-based techniques to handle missing-at-random data, the
assumptions are inherent and revolve around correct specification of the model,
including the variances and correlations in longitudinal data. Because assumptions
cannot be verified from the data on hand, it is always a good idea to try a number of
techniques of handling missing data to check sensitivity of the conclusions (Hogan
et al. 2004).

11.13 Further Notes and References

An attraction of approaching missing data through inverse probability weighting is
that it adjusts for missing data through the weighting scheme and does not depend
as strongly on the correctness of the outcome model. However, we have noted that
it can lead to unstable weights and inefficient analyses. This is an ongoing area
of research, with investigations into ways to stabilize the weights, for example,
using what is called “robit” regression instead of logistic regression to estimate the
probabilities of missingness (Kang and Schafer 2007). Another promising avenue
of research is to hedge bets between having to get the outcome or weighting models
correct, by using what are known as doubly robust methods (Kang and Schafer
2007). These can correct for missing data when either the model for the inverse
weights is correct or the regression model is correct.

The forms of multiple imputation we have illustrated are based on regression
models, but there are other alternatives. Scheuren (2005) gives a historical survey of
multiple imputation and describes other methods such as “hot deck imputation” (the
name comes from a deck of paper “cards” on which data were stored in the early
days of the Census Bureau).

Of course, missing data can also occur in situations requiring more complex
analyses. For example, there could be missing predictor information in a setting
with clustering by facility, physician, and patient. In such a case, just as described
in Chap. 7, hierarchical, repeated measures or longitudinal data models must be
used to properly impute missing values. Survival analysis is another situation for
which imputation of missing predictor information might be required. For survival
analysis, the “outcome” consists not only of follow-up time, but also whether
censoring has occurred. Both sources of information should be used for imputation,
but it is not always clear how to do so. For example, the suggestion to include
both the log of the follow-up time and the censoring indicator as predictors in
the imputation model can be too simplistic and lead to bias (White and Royston
2009).
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11.14 Problems

Problem 11.1. Give an example of a data sampling regime in your research area
that is likely to be MAR but not MCAR or CD-MCAR. Briefly explain why.

Problem 11.2. Perform a single imputation for the HERS visit 4 data and verify
the results of Table 11.2. Regress glucose on SBP, BMI, ethnicity (white/not white),
current smoking status, and diabetes status. Obtain the predicted values for glucose.
Create an imputed glucose variable which is equal to the actual glucose value if it is
not missing and equal to the predicted value if it is. Using this imputed glucose
variable, reproduce the regression of SBP on glucose, white, and BMI given in
Table 11.2.

Problem 11.3. How far off are the results when a poor imputation model is
used? Singly impute the glucose values (as in Problem 11.2) but using a regression
model that contains only current smoking status. How good is this imputation
model? Next, compare the estimated effect of glucose on SBP and its statistical
significance using this imputation model to the results in Tables 11.1 and 11.2.

Problem 11.4. With the HERS visit 4 data, use the code in Table 11.9 to impute the
glucose values. Calculate the SD among the imputed values in glucose to verify that
the SD is about 30.9. Hints: the Stata command egen sd glu imp=rowsd( ?
glucose) will calculate the standard deviation of the glucose values across the
imputed datasets. Summarize those for which the original glucose measurement
was missing.

Problem 11.5. What kind of imputation model would you use to impute missing
physical activity data in the HERS study? Recall that that variable was a response to
a question about how physically active the women considered themselves compared
to other women of their age. The five-level response ranged from “much less active”
to “much more active,” and was coded in order from 1 to 5. Briefly explain why.

Problems 11.6–11.9 use the data sets bpmisslong and bpmisswide. The
data are based on measurements of SBP in the HERS study. The data set allows us
to compare methods of analysis with complete data and under simulated missing
data. In the data sets are missing data indicators (miss mar for bpmisslong
and miss mar1 for bpmisswide) which have value 1 to flag SBP values which
should be dropped to simulate data which displays MAR missingness. In particular,
year 1 values from patients with higher baseline SBP are flagged more frequently
and hence will be simulated as missing. You can consult the course website for the
data sets and more complete documentation and details on Stata code.

Problem 11.6. Using bpmisswide,

(a) Calculate and compare the year 1 SBP (year1 sbp) for the complete data and
for patients who in the simulated missingness setting would have an available
year 1 SBP (i.e., miss year equal to 0).
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(b) Calculate and compare the change in SBP (year1 sbp - base sbp). What
is the mean change in the full sample? What is the mean change restricted
among those with available year 1 values in the simulated missingness setting
(miss year equal to 0)?

(c) Based on (a) and (b) above, how has the simulated missing data mechanism
affected estimates of mean of year 1 SBP values and change in SBP from
baseline to year 1?

Problem 11.7. Using bpmisslong, fit a GEE model with SBP as the outcome
and visit (visit) as the predictor. In Stata, the command would be xtgee sbp
visit, i(pptid) corr(exch). Compare a GEE model which uses the full
data to one restricted to nonmissing data (miss year equal to 0). What do you
conclude about GEE with MAR missingness?

Problem 11.8. Using bpmisslong, fit a mixed linear regression model with SBP
as the outcome and visit (visit) as the predictor. In Stata, the command would
be xtmixed sbp visit || pptid:. Compare the mixed model which uses
the full data to one restricted to nonmissing data (miss mar equals 0). Compare
the results with the GEE results in Problem 11.7. How do you explain the difference
in results between the GEE and a linear mixed model with MAR missing data?

Problem 11.9. Using bpmisswide,

(a) Attempt to mimic the effects of multiple imputation by performing imputation
to fill in SBP values flagged as missing in the simulated scenario. You may
choose the imputation model but it should include baseline SBP, BMI at
baseline and year 1 as well as diabetes. In Stata, it will be simplest to perform
multivariate normal-based imputations.

(b) Fit a GEE model (as in Problem 11.7) with multiple imputation. How do the
results compare to the results in Problem 11.7? Note, to fit the GEE model you
will need to convert the data from a wide to long format. In Stata, this can be
done with the mi convert command.

(c) Fit a mixed model (as in Problem 11.8) with multiple imputation. How do the
results compare to the results in Problem 11.8?

Problem 11.10. The data set multivisitsbp extends the HERS SBP data to
a series of up to six visits and borrows the set-up used in Problems 11.6–11.9 to
simulate missing data through a missing data indicator miss mar.

(a) To mimic an analysis on complete data, examine a series of models (ignoring
the missing data indicators). Fit a GEE model with terms for time (visit)
and BMI (bmi). Then, fit a series of mixed models with fixed effects terms for
time and BMI but with varying variance/covariance structures. You might try a
random slopes model along with first-, second-, and third-order autoregressive
(AR1–AR3). Do you reach similar conclusions about changes in SBP over time
(given by the coefficient for visit) in these models?
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Note: For this data, you can specify the covariance in xtmixed with
the options || pptid: visit, cov(un) for random slopes and ||
pptid:, residuals(ar 1, t(visit)) for the AR1 model, with
AR2 and AR3 defined similarly.

(b) Repeat the model fits in (a) restricted to available data (miss mar equal
to 0) under simulated missingness. Do you reach similar conclusions about
changes in SBP over time across these models? How do they compare to the
corresponding complete data results in Problem 11.10? Discuss how this might
affect choice of variance–covariance structure for mixed models with missing
data. Would you prefer a more parsimonious structure (like random intercepts)
or a richer one (like third-order autoregressive)? Explain.

11.15 Learning Objectives

(1) Define the different types of missing data mechanisms (MCAR, CD-MCAR,
MAR, MNAR).

(2) Explain why complete case analysis may lead to biased and/or inefficient
analyses.

(3) Explain the drawbacks of LOCF as an imputation method.
(4) Identify situations in which ICEs multiple imputation is to be preferred over

MVN multiple imputation.
(5) Use ICEs multiple imputation and MVN multiple imputation to analyze datasets

with missing predictor information.
(6) Explain why maximum-likelihood methods for longitudinal data can be consid-

ered methods for handling missing data.
(7) Explain how multiple imputation can be used as a sensitivity analysis when data

are MNAR.
(8) Use pattern mixture models to analyze datasets with missing outcome data.



Chapter 12
Complex Surveys

Suppose we wanted to estimate the prevalence of diabetes among adults in the US,
as well as the effects of diabetes risk factors in this broad target population,
both with minimum bias—that is, in such a way that the estimates were truly
representative of the target population. Observational cohorts that might be used for
these purposes are usually convenience samples, and are often selected from subsets
of the population at elevated risk. This would make it difficult to generalize sample
diabetes prevalence to the broader target population. We might be more comfortable
assuming that sample associations between risk factors and diabetes were valid for
the broader population, but the assumption would be hard to check (Problem 12.1).

Observational studies as well as randomized trials use convenience samples for
compelling reasons, among them reducing cost and optimizing internal validity. But
when unbiased representation of a well-defined target population is of paramount
importance, special methods for obtaining and analyzing the sample must be used.
Crucial features of such a study are

• All members of the target population must have some chance of being selected
for the sample.

• The probability of inclusion can be defined for each element of the sample.

Using data from a sample which meets these two criteria, we could in principle
compute unbiased estimates of the number and percent prevalence of diabetes cases
in the US adult population, as well as of the effects of measured diabetes risk
factors. Surveys implemented by the National Center for Health Statistics (NCHS),
including the National Health and Nutrition Examination Survey (NHANES), the
National Hospital Discharge Survey (NHDS), and the National Ambulatory Medical
Care Survey (NAMCS), are prominent examples of surveys that meet these criteria.
Data sets based on these surveys are publicly available on the NCHS website www.
cdc.gov/nchs/.

In this chapter, we give only a brief overview of the design and implementation
of these surveys, which are complicated and expensive undertakings. Our primary
purpose is to provide guidance for secondary analyses using complex survey data.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 12,
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Fortunately, Stata and other statistical packages make it straightforward and
transparent to account properly for the special features of the sampling design
in regression analyses using complex survey data.

12.1 Overview of Complex Survey Designs

To provide unbiased estimates of population parameters, complex survey data are
weighted in inverse proportion to the known probability of inclusion. In addition, to
reduce costs, a complex sampling design is often used. In many cases, this means
initially sampling clusters, known as primary sampling units (PSUs), rather than
individuals; only at some later stage are individual study participants selected. This
is in contrast to a simple random sample (SRS), in which individuals are directly
and independently sampled. Finally, complex samples are often stratified, in that
the PSUs are sampled within mutually exclusive strata of the target population.

Inverse Probability Weighting

A primary feature of complex surveys is inverse probability weighting (IPW). Intro-
duced in Sect. 11.9.3 for dealing with missing data, IPW is the way complex surveys
use well-defined probability of inclusion to obtain representative estimates, as we
explain below in Sect. 12.2.

One advantage of IPW is that it accommodates unequal probability of inclusion
in the survey sample. In part, unequal inclusion probabilities arise naturally from
variability in the size of primary and secondary clusters. In addition, subgroups
of special interest may be sampled at higher rates, so that they comprise a larger
proportion of the sample than they do of the target population. The rationale is to
ensure adequate precision of estimates both within the subgroup and in contrasting
the subgroup to other parts of the larger population, by increasing their numbers
in the sample. IPW ensures that overall estimates properly reflect the population
proportions comprised by the over-sampled subgroups.

Cluster Sampling

From Chap. 7, it should be clear that the initial sampling of clusters may affect
precision, because outcomes for the observations within a cluster are positively
correlated in most cases. The change in precision means that for many purposes
a larger sample will be required to achieve a given level of statistical certainty.
Nonetheless, the complex survey design is cost-effective, because cluster sampling
can be implemented in concentrated geographic areas, rather than having to cover
the entire area where the target population is found. Moreover, some of the
information required to define probability of inclusion need only be obtained for
the selected clusters. Especially for nationally representative samples, the savings
can be considerable.
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In multistage designs, there may be several levels of cluster sampling; for
example, counties may initially be sampled, and then census tracts within counties,
city blocks with census tracts, and households within blocks. Only at the final stage
are individual study participants sampled within households. The rationale is again
to reduce costs by making the survey easier to implement.

Stratification

An additional feature of many complex surveys is that clusters may be selected from
within mutually exclusive and exhaustive strata, usually geographic, which cover
the entire target population. To the extent that subsets of the target populations are
more similar within than across strata, this can increase the precision of estimates
of population means and totals.

Example: NHANES

NHANES is a series of complex, multistage probability samples representative of
the civilian, noninstitutionalized US population. Interviews and physical exams are
used to ascertain a wide range of demographic, risk-factor, laboratory, and disease
outcome variables. In NHANES III, conducted between 1988 and 1994, the PSUs
were primarily counties. Thirteen large PSUs were selected with certainty, and the
remaining 68 were selected with probability proportional to PSU population size,
two from each of 34 geographic strata. At the second stage of cluster sampling
in NHANES III, area segments, often composed of city or suburban blocks, were
selected. In the first half of the survey, special segments were defined for new
housing built since the 1980 census, so that no portion of the target population
would be systematically excluded; in the second half, more recent information from
the 1990 census made this unnecessary. The third stage of sampling was households,
which were carefully enumerated within the area segments. At the fourth and final
stage, survey participants were selected from within households.

At each stage, sampling rates were controlled so that the probability of inclusion
for each participant could be precisely estimated. Children and people over 65 as
well as African Americans and Mexican Americans were over-sampled. Almost
34,000 people were interviewed and of these roughly 31,000 participated in the
physical exam. Data from NHANES III have been used in many epidemiologic and
clinical investigations.

12.2 Inverse Probability Weighting

We pointed out that in selecting a representative sample, every member of the
target population has to have some chance of being included in the sample. To
put it another way, no part of the target population can be systematically excluded.
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In addition, we said that for every element of the sample, the probability of inclusion
must be known. Essentially this is what is meant by a so-called probability sample.
Analysis of such samples makes use of information about probability of inclusion
to produce unbiased estimates of the parameters of the target population.

To see how this works, consider a SRS of size 100, drawn at random from a
target population of size 100,000. In this simple case, each member of the sample
had a one-in-a-thousand chance of being included in the sample. The so-called
sampling fraction, another term for the probability of inclusion, would be 0.001 for
this sample, and constant across observations. Furthermore, we could think of each
member of the sample as representing 1,000 members of the target population. If we
wanted to estimate the percent prevalence of diabetes in the target population, the
proportion with diabetes in the sample would work fine in this case, for reasons that
we explain below. Likewise, the average age of the sample would be an unbiased
estimate of mean age in the population.

Now consider the more interesting case of estimating the number of diabetics
in the population. Suppose there were five diabetics in the sample. Since each
represents 1,000 members of the target population, an unbiased (though obviously
noisy) estimate of the population number of diabetics would be 5,000. Essentially
this would be a weighted sum of the number of the diabetics in the sample, where
each gets weight 1,000, or the number in the population that each sample participant
represents. Formally, the weight is the reciprocal of the sampling fraction of 0.001.
Note that the overall sum of these sample inverse probability weights equals the
population size.

Definition: Inverse probability weights are the reciprocal of the probability of inclusion, and
are interpretable as the number of elements in the target population which each sampled
observation represents.

Next, consider the more typical case where the probability of inclusion varies
across participants. To make this concrete, suppose that women and men both
number 100,000 in the target population, but that the sample includes 200 women
and 100 men, for sampling fractions of 0.002 and 0.001, respectively. In this sample,
each man represents 1,000 men in the population, but each woman represents only
500 women. Thus the IPW for each man in the sample would be 1,000, and for each
woman, 500.

In this case, to estimate means for the whole target population, we would need
to use weighted sample averages. These would no longer equal their unweighted
counterparts, in which men would be under represented. The formula for the
weighted average is

EwŒY � D
P

i wi yi
P

i wi
; (12.1)

where EwŒY � denotes the weighted average of the outcome variable Y , yi is the
value of Y for participant i , and wi is the corresponding probability weight.

Furthermore, if Y were a binary indicator variable coded 1D diabetic and
0D nondiabetic, then (12.1) also holds for estimating the population proportion
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with diabetes. As we pointed out in Sect. 4.3, this equivalence between averages
and proportions only holds with the 0–1 indicator coding of Y . In addition, with
this coding of Y , the weighted estimate of the total number in the population with
diabetes is simply

P
wi yi—the sum of the weights for the diabetics in the sample.

12.2.1 Accounting for Inverse Probability Weights
in the Analysis

Taking account of the IPWs, which are included in the NHANES, NHDS, NAMCS,
and other NCHS datasets, is essential for obtaining unbiased estimates. The
differences between the weighted and unweighted estimates can be considerable.
For example, the unweighted proportion with diabetes among adult respondents in
NHANES III is 7.4%, but the weighted proportion is 4.8%. The corresponding
unweighted estimate of the number of adult diabetics at the time of NHANES
III was 12.5 million, as compared to a weighted estimate of 8.1 million—not a
trivial difference for estimating the burden of disease and health services needs. All
statistical packages for complex surveys accommodate IPWs.

12.2.2 Inverse Probability Weights and Missing Data

Estimation of population parameters, in particular totals, means, and proportions,
can be quite vulnerable to missing data. The potential for bias arises because the
non-responders usually differ systematically from responders, especially when the
response of interest is sensitive. The nonresponders are not missing completely
at random (MCAR). However, we might be willing to assume that the data
are MCAR within relatively homogeneous demographic subgroups defined by
measured covariates. In the framework of Chap. 11, the data are assumed to be
CD-MCAR.

12.2.2.1 Adjustment of IPWs to Account for Unit Non-Response

In NHANES as in many complex surveys, the inverse probability weights are
adjusted to account for missing observations—so-called unit non-response—in such
a way as to minimize the potential for bias. Under the CD-MCAR assumption,
the inverse probability weights are adjusted within relatively homogeneous de-
mographic subgroups. Specifically, for each such subgroup, the weights for the
responders are inflated by a fixed factor, determined so that the adjusted weights
for the responders sum to the total of the original inverse probability weights for
both responders and non-responders. In short, the responders in the subgroup are
made to stand in for the non-responders.
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In many complex surveys, a second so-called poststratification adjustment is
made to ensure that the IPWs sum to regional totals for the target population, which
are known from the US Census.

12.2.2.2 Multiple Imputation to Account for Item Non-Response

In addition to unit non-response, we also need to be concerned about item non-
response, or missing responses on particular questions by study participants. The
recommended approach to item non-response in complex surveys is multiple
imputation (Rubin 1987, 1996); see Sect. 11.5.

12.3 Clustering and Stratification

In contrast to accounting for the inverse probability weights, which is required
mainly to avoid bias, taking account of the stratification and clustering of obser-
vations due to the complex sampling design is required solely to get the standard
errors, CIs, and P -values right, and has no effect on the point estimates. Unlike
the point estimates, standard errors accounting for the special characteristics of
a complex survey do differ from what would be obtained in standard weighted
regression routines, sometimes in ways that are crucial to the conclusions of the
analysis.

The default standard errors, CIs, andP -values provided by most survey packages
including Stata are calculated using so-called linearization. These are closely related
to the robust standard errors available with many Stata regression commands, and
thus account, as with longitudinal and hierarchical data, for clustering. In Stata,
the main difference is that in testing whether each estimated regression coefficient
differs from zero, the survey routines use a t-test with degrees of freedom equal to
the number of PSUs minus the number of strata, rather than the asymptotic Z-test
used in GEE. In addition, stratification is taken into account.

Of note, these methods for analyzing survey data do not directly extend to
random effects models, introduced in Chap. 7, which represent a different approach
to clustered data. Rabe-Hesketh and Skrondal (2006) propose a pseudo-likelihood
approach to analyzing multi-level data with a binary outcome, which is implemented
in the downloadable gllamm package for Stata.

12.3.1 Design Effects

Because of positive correlation within clusters, the standard errors of parameter
estimates from a complex survey are often (but not always) inflated as compared
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to estimates from a SRS of the same size. This inflation can be summarized by a
design effect:

Definition: The design effect is the ratio of the true variance of a parameter estimate from
a complex survey to the variance of the estimate if it were based on data from a simple
random sample.

Note that design effects can vary for different parameters estimated in the
same survey, because some predictors may be more highly concentrated and some
outcomes more highly correlated within clusters than others. Furthermore, design
effects in regression may vary with the degree to which the regression effect is
estimated by contrasting observations within as opposed to between clusters.

12.4 Example: Diabetes in NHANES

Stata makes it easy to run a regression analysis taking account of the special features
of a complex survey. Variables identifying the PSU, IPW, and stratum for each
observation are first specified using the svyset command. For our NHANES
example, the svyset command takes the form

svyset sdppsu6 [pweight = wtpfqx6], strata(sdpstra6)

The regression is then run using the usual Stata commands, in conjunction with
the svy: command prefix.

Table 12.1 shows three logistic models for prevalent diabetes estimated using
data from NHANES III. The predictors are age (per 10 years), ethnicity, and sex.
The reference group for ethnicity is whites. The odds-ratio estimates given by
unweighted logistic regression (Model 1) differ both quantitatively and qualitatively
from the results of the weighted and survey analyses (Models 2 and 3), which are
identical. In the unweighted model, women appear to be at about 20% higher risk,
but this does not hold up after accounting for probability of inclusion; similarly,
the apparently increased risk among African Americans and Mexican Americans is
smaller after accounting for the weights.

In addition, the standard errors differ across all three models, in part because
the survey model takes proper account of stratification as well as clustering within
PSUs. Note that in accommodating IPWs in Model 2, Stata by default uses robust
standard errors, which are similar to the Linearized Std. Err. estimates
given for Model 3.

We can obtain the design effect for each parameter estimate using the Stata
postestimation command estat effects, deff. In the survey logistic
model for prevalent diabetes shown in Table 12.1, the design effects are 2.7 for age,
0.93 for African American, 0.41 for Mexican American, 2.0 for other ethnicity, and
1.7 for sex. The increase in precision for the coefficient for Mexican Americans
results from the strong concentration of this subgroup in a few PSUs, so that the
comparison with whites rests primarily on within-cluster contrasts. In contrast,
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Table 12.1 Unweighted, weighted, and survey logistic models for diabetes
. * Model 1: Unweighted logistic model ignoring weights and clustering
. logit diabetes age10 aframer mexamer othereth female, or nolog

Logistic regression Number of obs = 18140
LR chi2(5) = 1148.81
Prob > chi2 = 0.0000

Log-likelihood = -4206.1375 Pseudo R2 = 0.1202
-------------------------------------------------------------------------------

Diabetes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+-----------------------------------------------------------------

age10 | 1.679618 .0284107 30.66 0.000 1.624847 1.736235
aframer | 2.160196 .1651839 10.07 0.000 1.859534 2.50947
mexamer | 2.784521 .2125535 13.42 0.000 2.39759 3.233896
othereth | 1.25516 .2297557 1.24 0.214 .8767735 1.796845

female | 1.200066 .0713788 3.07 0.002 1.068013 1.348447
-------------------------------------------------------------------------------

. * Model 2: Weighted logistic model still ignoring clustering

. logit diabetes age10 aframer mexamer othereth female [pweight = wtpfqx6], ///
or nolog

Logistic regression Number of obs = 18140
Wald chi2(5) = 523.98
Prob > chi2 = 0.0000

Log-pseudolikelihood = -28717819 Pseudo R2 = 0.1124
-------------------------------------------------------------------------------

| Robust
Diabetes | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+-----------------------------------------------------------------
age10 | 1.704453 .0420649 21.61 0.000 1.62397 1.788925

aframer | 1.823747 .1727191 6.34 0.000 1.514785 2.195726
mexamer | 1.915197 .2029156 6.13 0.000 1.556068 2.357211
othereth | 1.031416 .2386775 0.13 0.894 .6553287 1.623335

female | .9805769 .0992109 -0.19 0.846 .8041933 1.195647
-------------------------------------------------------------------------------

. * Model 3: Survey model accounting for weights,stratification,and clustering

. svy: logit diabetes age10 aframer mexamer othereth female, or nolog
(running logit on estimation sample)

Survey: Logistic regression

Number of strata = 49 Number of obs = 18140
Number of PSUs = 98 Population size = 168471391

Design df = 49
F( 5, 45) = 80.86
Prob > F = 0.0000

-------------------------------------------------------------------------------
| Linearized

Diabetes | Odds Ratio Std. Err. t P>|t| [95% Conf. Interval]
-------------+-----------------------------------------------------------------

age10 | 1.704453 .0479719 18.95 0.000 1.610726 1.803635
aframer | 1.823747 .1840181 5.96 0.000 1.48903 2.233705
mexamer | 1.915197 .1934747 6.43 0.000 1.56332 2.346276
othereth | 1.031416 .225949 0.14 0.888 .6641157 1.601857

female | .9805769 .0921775 -0.21 0.836 .811784 1.184467
-------------------------------------------------------------------------------

. estat effects, deff
------------------------------------------------

| Linearized
Diabetes | Coef. Std. Err. DEFF

-------------+----------------------------------
age10 | .5332443 .028145 2.72072

aframer | .6008932 .1009011 .933096
mexamer | .6498207 .1010208 .415208
othereth | .0309323 .2190668 1.98449

female | -.0196142 .0940033 1.67026
_cons | -5.798575 .2023545 3.05472

------------------------------------------------
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women are about half of respondents in all PSUs, so that more of the information
for the comparison with men comes from less efficient between-PSU contrasts
(Problems 12.3 and 12.4).

In summary, accounting for IPW mainly affects the point estimates and secondar-
ily the standard errors, while accounting for stratification and clustering only affects
the latter.

12.5 Some Details

12.5.1 Ignoring Secondary Levels of Clustering

We pointed out earlier that NHANES is a multistage complex survey, meaning that
area segments are selected within PSUs, then blocks with segments and households
within blocks, before individuals are finally selected. Thus clusters are nested within
clusters. For the NCHS surveys, multistage design is typical.

SUDAAN and recent versions of Stata make it possible to account more
completely for the effects of multistage cluster sampling, by specifying identifiers
for secondary sampling units (SSUs). They also accommodate so-called finite
population correction factors to account for the fact that both PSUs and SSUs
are sampled without replacement from relatively small “populations” of PSUs and
SSUs.

However, only the stratum and PSU identifiers are provided with the NHANES
data; to protect the confidentiality of survey respondents, no information is pro-
vided about area segment or block—the SSUs. Fortunately, in large samples like
NHANES, the robust sandwich standard error calculations used in svy regression
commands will properly reflect differences in the degree of correlation between
observations sampled from the same or different SSUs within each PSU.

12.5.2 Other Methods of Variance Estimation

NHANES 2000, next in the series after NHANES III, began collecting data in
1999 and continues to sample yearly, using a similar complex multistage design.
A nationally representative sample of approximately 5,000 participants is obtained
each year. Data for the first two years were available in mid-2003. Although
stratum and (psuedo) PSU identifiers have since been made available, they were
not provided in 2003, to protect the confidentiality of study participants. Other
surveys that do not provide stratum and PSU identifiers include the NHDS, and
until recently, the National Ambulatory Medical Care Survey (NAMCS).
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12.5.2.1 Relative Standard Errors

For the NHDS, constants for computing relative standard errors are provided with
the documentation, so that approximate CIs for means and proportions can be
calculated, but regression analysis is not possible.

12.5.2.2 Jackknife and Balanced Repeated Replication

Two other methods of variance estimation are implemented in Stata as well as the
SUDAAN and WESVAR packages, and are compatible with regression analyses.
The jackknife method uses a resampling procedure to estimate variability. The
complete sample is split into K groups in such a way as to reflect the complex
sampling structure but obscure geographic location, and a set of jackknife weights
corresponding to each group is provided. In the kth set, the weights for group k
are set to zero, and adjusted for the remaining groups, using adjustment methods
already described for dealing with nonresponse. The analysis is then carried out
K C 1 times, once with the original weights and once with each of the K sets of
jackknife weights. It should be clear that the group with jackknife weights equal to
zero will be omitted from that analysis. Then the variance of the overall estimates is
estimated by variability among the jackknife estimates, appropriately scaled (Rust
1985; Rust and Rao 1996).

A related method for variance estimation called balanced repeated replication
(BRR) is also implemented in Stata as well as SUDAAN and WESVAR, but is
beyond the scope of this chapter.

12.5.3 Model Checking

In addition to accounting for clustering, stratification, and inverse probability
weighting, we need to do standard model checking in regression analyses using
complex survey data. These should include checks for linearity of the effects
of continuous predictors, possibly using restricted cubic splines, and for omitted
interactions. One useful tool is the Stata postestimation command estat
gof, which extends the Hosmer–Lemeshow goodness of fit test to logistic and
probit models for binary responses in survey data.

12.5.4 Postestimation Capabilities in Stata

Other useful postestimation commands, including margins, for obtaining
average causal effects (Sect. 9.3.4), are also available. We also note that the factor
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notation used to include categorical variables, quadratic terms, and interactions
(Sects. 4.3 and 4.6) carries over without change to the Stata survey regression
commands.

12.5.5 Other Statistical Packages for Complex Surveys

In addition to Stata, three other software packages make it straightforward to carry
out descriptive as well as regression analyses using complex survey data. These
packages include

• SUDAAN (Research Triangle Institute, Research Triangle Park, NC; www.rti.
org),

• SAS (SAS Institute, Cary, NC; www.sas.com),
• WESVAR (Westat, Inc., Rockville MD; www.westat.com).

12.6 Summary

Complex surveys, unlike many convenience samples, can provide representative
estimates of the parameters of a target population. However, to obtain these
estimates and compute valid standard errors, CIs, and P -values, such surveys
have to be analyzed using methods that take account of the special features of
the design, including multistage cluster sampling, stratification, and the fact that
not all members of the population have an equal chance of being included in the
sample. A number of software packages make it straightforward to carry out multi-
predictor regression analyses using complex survey data.

12.7 Further Notes and References

For in-depth treatments of the many topics not covered in our brief overview
focusing on regression analyses, leading books about complex surveys include Levy
and Lemeshow (1999), Korn and Graubard (1999), Scheaffer (1996), Kish (1995),
and Cochran (1977). These books deal comprehensively with the design of complex
surveys and the underlying statistical theory. They also cover more specific topics
including ratio estimators, variance estimation for subpopulations, and analysis of
longitudinal surveys and using multiple surveys.

www.rti.org
www.rti.org
www.sas.com
www.westat.com
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12.8 Problems

Problem 12.1. Taking HIV infection as an example, explain why it might be more
problematic to generalize estimates of prevalence from a convenience sample than
to generalize estimates of risk factor effects. For the latter, we essentially have
to assume that there is little or no interaction between the risk factor and being
represented in the sample. Does this make sense?

Problem 12.2. Show that (12.1) reduces to the unweighted average
P
yi=n when

wi 	 w.

Problem 12.3. Judging from the logistic model shown in Table 12.1, which was
used to assess risk factors for diabetes, design effects greater than 1.0 appear to be
more common than design effects less than 1.0. Describe what would happen in
these two cases to model standard errors, CIs, and P -values, if we were to analyze
the survey data incorrectly, ignoring the clustering. In which case would we be
more likely to make a type-I error? In which case would we be likely to dismiss
an important risk factor? Can we reliably predict whether the design effect will be
greater or less than 1.0?

Problem 12.4. In contrast to the design effects in regression analyses, design
effects for means, proportions, and totals are almost always greater than 1.0. Explain
why this should be the case.

12.9 Learning Objectives

(1) Describe the rationale for and special features of a complex survey.
(2) Identify what can go wrong if the analysis of a complex survey ignores inverse

probability weights, strata, and cluster sampling.
(3) Know how to use data from NHANES III or a similar complex survey to validly

estimate the parameters of multi-predictor linear and logistic regression models,
with standard errors, CIs, and P -values that properly reflect the complex survey
design.



Chapter 13
Summary

13.1 Introduction

Our goal in writing this book was to provide researchers and students with a
practical guide to the analysis of data from research studies focusing on the relation-
ship between outcomes and multiple predictor variables. Through our experience as
coinvestigators and instructors at the University of California, San Francisco, we
have observed that students and researchers from many fields can benefit greatly
from being able to conduct their own data analyses. Mastering these skills promotes
better study designs, clearer and more informative papers and presentations, and
more focused and productive interactions with professional statisticians concerning
more advanced topics.

Despite the fundamentally mathematical foundations of statistics, the prerequi-
sites needed to acquire adequate data analysis skills are surprisingly nontechnical.
Perhaps the most important one is critical thinking. As is true with many tech-
nical fields, the key ideas underlying the methods presented here become much
clearer when applied in actual data analyses. All of them are characterized by a
common structure that mirrors the majority of research questions arising in clinical
research: the relationship between an outcome and measured explanatory variables.

In this chapter, we provide a brief review of the general approach to data analysis
developed in this book, and provide guidance on how to use it as a resource to
address particular analytical issues. We also briefly discuss a number of topics
relevant to investigators undertaking their own data analyses, including development
of analysis plans and finding help with technical questions. Finally, we discuss
briefly some advanced topics that are not covered extensively in this book, and
represent areas of current research that are relevant to many modern applications
of regression methods.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0 13,
© Springer Science+Business Media, LLC 2004, 2012
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13.2 Selecting Appropriate Statistical Methods

Selection of the right statistical tool to apply in addressing a research question is
not always easy. Despite a number of unsuccessful attempts to use concepts from
artificial intelligence in the development of algorithms to automate this process,
common sense and experience remain most important for choosing an appropriate
analysis method. In this section, we provide some general guidelines on selecting
statistical methods, with references to appropriate chapters and sections in the
book. In keeping with our overall theme, we assume that the research question and
available data involve investigating the relationship between a specified outcome
and one or multiple measured predictor variables.

The first step in most data analyses is to define clearly the candidate outcome
and predictor variable(s) and choose an appropriate analytic approach. As described
in Sect. 1.1, outcomes can generally be classified as being either numeric (e.g.,
measured characteristics such as cholesterol level or body weight) or categorical
(e.g., disease status indicators). Table 13.1 uses this classification to distinguish
the main types of outcomes considered in the book (that subsume the majority
considered in health research applications), along with the standard regression
approaches for each, and the chapters in which they are discussed. Clearly many
outcomes do not fit cleanly into the categories provided in the table. For example, the
severity score in the back pain example introduced in Chap. 1 could be considered as
either continuous or as a categorical variable with ordinal categories. In many such
cases, the decision of how to consider such variables for the purpose of analysis
will be driven by practicality (e.g., available software) and/or convention. In cases
where multiple approaches are available, it is often a good idea to try more than one
to insure that results are not sensitive to the choice.

Although the type of outcome usually dictates the choice of which regression
model to consider, further consideration of how the outcome is observed and
measured is necessary before settling on an analysis approach. A fundamental
consideration is whether individual outcomes can be viewed as independent or
not. Examples of studies with independent outcomes include diagnosis of CHD in
participants in the WCGS study (used for examples in Chaps. 2–5) and baseline
glucose levels in women participating in the HERS study (Sect. 4.2). Dependence
between outcomes can arise in a number of ways detailed in Chap. 7. These include
repeated measures of outcomes measured in the same individuals, or outcomes

Table 13.1 Outcome,
regression model, and
chapter reference

Outcome Outcome Regression Chapter
classification type model reference

Numerical Continuous Linear 4
Count Poisson model 8
Time-to-event Proportional hazards 6

Categorical Binary Logistic 5
Ordinal Proportional odds 5
Nominal Polytomous logistic 5



13.3 Planning and Executing a Data Analysis 483

on different individuals that are associated via a shared environment or genetic
relationship (e.g., disease outcomes among members of the same family). Examples
include repeated measures of fat content of feces (Sect. 7.1) and birthweights of first-
and last-born infants from the same mothers (Sect. 7.3). As described in Chap. 7,
most of the regression approaches for independent outcomes have direct analogs
applicable in the dependent outcome setting.

In addition to dependence between individual outcomes, it is also important to
consider how individuals were selected for inclusion in the study being analyzed.
Although for many studies, it is reasonable to assume that study participants in
a defined population had equal chances of being selected, in some cases these
chances are controlled by the investigator to obtain a sample with desired properties.
Examples include case-control studies for binary outcomes and complex sample
surveys. As illustrated in Sect. 5.3 and Chap. 12, regression methods for such studies
generally involve minor modifications of techniques applicable for independent
samples.

Finally, we want to stress that despite the large number of outcome types and
corresponding approaches to regression modeling covered here, the tools used for
model fitting and evaluation are quite similar in most cases. Key concepts and tech-
niques in model construction and interpretation such as accounting for confounding,
mediation, and interaction and non-linearity are shared across approaches as well.
Experience with regression modeling for different types of outcomes and study
designs will surely reinforce these points.

13.3 Planning and Executing a Data Analysis

Data analyses are usually complex and benefit from careful planning in order to
proceed in a timely and organized fashion. In our experience, few analyses are
limited to straightforward application of textbook procedures. Invariably, technical
questions arise related to data structure and/or quality, application of particular
techniques, use of software programs, and interpretation of results. In this section,
we provide some advice on several topics related to conducting an efficient analysis.

13.3.1 Analysis Plans

Before beginning a data analysis, it is useful to formulate a plan for how the work
will proceed. For randomized controlled trials, analysis plans are generally specified
in advance by the study protocol. For observational and clinical studies, preliminary
plans are often formulated at the proposal stage. However, even when existing plans
are not available to guide analyses, a clear outline of the important issues and tasks
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can aid in organizing the process. A detailed plan should include a summary of the
study design, statements of the research hypotheses, descriptions of each stage of
analysis, and clear procedures for record-keeping, data distribution, and security.

13.3.2 Choice of Software

Fortunately, there are a number of excellent software packages available that
implement the majority of techniques discussed here. Although we have used Stata
in our examples, SAS, S-PLUS, and SPSS all provide commercial alternatives that
offer many of the same facilities and run on a variety of computer platforms and
operating systems. Also, the R language for statistical computing and graphics
(R Development Core Team 2004) is freely available and includes most of the
procedures presented here. Finally, there are a number of special-purpose programs
providing methods not well-represented in the major packages, including StatXact
and LogXact (exact inference for contingency tables and logistic regression), and
SUDAAN (analysis of data from complex surveys). Frequently, multiple programs
will be used for a given analysis. For example, SAS may be used in preparation of
analysis data sets, and specific analyses conducted in Stata or R. Fortunately, there
are programs such as StatTransfer that translate data sets between common formats
used by different analysis packages, preserving important features such as variable
labels and formats.

13.3.3 Data Preparation

Perhaps the single most time consuming phase of any data analysis is preparation
of analysis-ready data sets from source data. Source data frequently reside in
relational databases or proprietary formats and must be exported and re-formatted
for specific analyses. Since particular analytic procedures rely on specific data
structures and variable definitions, sufficient time and resources should be allocated
for proper preparation and checking of analysis data sets prior to conducting
statistical analyses.

13.3.4 Record Keeping and Reproducibility of Results

An important part of a complete data analysis includes keeping files of relevant
commands and procedures used in each of the stages above. Adding comments and
explanatory text to programs and keeping text files outlining the analysis procedures
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and cataloging the important files are very useful in this regard. This information
should be kept in an identifiable place (preferably organized with other project-
specific materials) and backed up in a secure location for disaster recovery.

Because a typical data analysis involves a large number of steps, having all files
necessary to recreate results from source data can save work for revision of research
publications, and is critical in demonstrating that the results are reproducible. The
merits of making this material, including source data, public are a topic of current
debate in the scientific literature. See Sedransk et al. (2010) for a discussion of
relevant issues from the statistician’s perspective.

13.3.5 Data Security

Records from research studies often contain sensitive patient information and must
be protected from unauthorized access. Although studies generally have data secu-
rity measures in place to protect primary data sources, data analyses often involve
creation of multiple datasets that may be distributed between investigators. As a
general rule, it is a good practice to keep analysis datasets physically separate
from source data, with any variables that can be linked to participant identities
removed. Make sure that all analysis and data distribution procedures conform to
current government, institutional, and study-specific guidelines on data security and
protected health information.

13.3.6 Consulting a Statistician

As we have noted frequently in the text, there are many instances where analysis
issues arise that do not fall in the neat categories typical of many of the examples.
Complex sampling schemes, extensive missing data, unusual patterns of censor-
ing, misclassification in measured outcomes and predictors, causal inferences in
longitudinal observational studies subject to time-dependent confounding—all are
examples of situations where standard methods and attendant assumptions may
not apply without modification. Being able to recognize these circumstances is an
important step in addressing these issues. When faced with an analysis problem
that appears to fall outside of the range of techniques covered here, having access
to a professional statistician is a valuable resource. For investigators at research
institutions, the best way to insure the availability of sound statistical support is
to include a statistician as a consultant or coinvestigator in proposals. Participating
in courses or workshops on specialized statistical methods is another way to gain
access to expert advice on advanced topics.
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13.3.7 Use of Internet Resources

The Internet provides a vast and very valuable resource to assist in selection of
statistical methods and planning data analyses. Frequently, answers to questions
about particular applications and methods can quickly be found via a search using
one of the available Web search engines. Unfortunately, even judicious searches
often yield too many results to review completely. Also, the relevance of returned
results is frequently influenced by factors completely unrelated to their scientific
value. For these reasons, beginning with searches of established research resources
such as the PubMed interface to the MEDLINE index and the Current Index to
Statistics will often yield more focused searches. Many educational institutions
and private companies provide free online access to electronic scientific journals.
Also, statistical software sites frequently have online documentation and message
lists that can provide useful information on the use of particular methods. Finally,
message boards related to particular software programs and academic interests can
frequently be a good way to get answers to analysis questions. Of course, unless
the qualifications of individuals posting are known, blindly following advice can be
dangerous.

13.4 Further Notes and References

13.4.1 Multiple Hypothesis Tests

The majority of the examples and applications considered in this book can be
characterized by single outcome variables and their relationship to one or multiple
predictors. While these are representative of many of the research questions that
arise in epidemiological and medical research, we have largely ignored issues that
arise when analyses include testing multiple hypotheses. These can arise in many
contexts, including genomic studies that seek to identify important predictors of a
primary disease outcome from a potentially very large pool of candidates, and in
clinical studies investigating the effect of a treatment on multiple disease outcomes.
The primary concern in these examples is the inflation of type-I error resulting
from the occurrence of false-positive results arising from multiple hypothesis
tests. Valid inferences in these situations generally involve adjustment of P -values
from individual tests to control family-wise error rate (FER) to desired levels.

Consider a study of the use of gene expression data in the classification of two
types of acute leukemia (myeloid and lymphoblastic) (Golub et al. 1999). RNA
from bone marrow samples from 38 patients (27 lymphoblastic and 11 myeloid) was
hybridized to oligonucleotide microarrays, each containing probes for 6,817 genes.
The research questions centered on the use of genes as predictors for leukemia
type. Although some form of binary regression model relating the disease outcome
to predictors is clearly appropriate in this example, the fact that the number of
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candidate predictors greatly outnumber the observations, and that the correlation
between predictors may be quite complex (reflecting functional relationships
between genes) raises a number of difficult computational and inferential issues.
Clearly, an analysis that screened for candidate genes via independent hypothesis
tests of each would potentially yield many false-positive results if the type-I error
was fixed at the conventional 5% level.

Conventional procedures for controlling FER such as the Bonferroni correction
outlined in Sects. 3.1.5 and 4.3.4 may be quite stringent in this example, resulting
in significance levels that may rule out even associations of interest as potential
false-positive results. These concerns have led to development of multiple testing
procedures designed to control the false discovery rate (FDR), defined as the number
of false-positives relative to the total number of positives, rather than focus solely
on the former. In the example, the choice of an FDR of 5% implies that on average,
5% of genes selected as positively associated with the leukemia outcome would
represent false-positive results. This approach generally results in improved power
relative to procedures deigned to minimize FER, at the expense of an increased
likelihood of type-I errors. We refer readers to the seminal papers by Benjamini and
Hochberg (1995) and Storey (2002) for further information about FDR procedures.

Multiple testing problems also arise in studies involving the effect of a predictor
of interest on multiple outcomes. For example, randomized trials may consider more
than one primary outcome in addition to a number of secondary outcomes. This is
common in fields such as psychiatry, where treatments may influence a number
of behavioral characteristics, many of which are related. Similar issues arise in
subgroup analyses, which repeat the primary outcome in groups of individuals
defined by enrollment characteristics in an effort to identify factors that may
influence treatment efficacy. They are also a concern in safety analyses, in which
rates of occurrence of adverse events are compared between arms. In all these
situations, conventional hypothesis testing with no adjustment for multiple testing
can lead to potentially misleading conclusions about results. Results from the
Bonferroni adjustment in these situations is expected to be fairly conservative,
both because it ignores correlations between outcomes and also gives equal weight
to each. Alternative procedures tailored to prespecified ordering of hypotheses
about primary and secondary endpoints are sometimes appropriate. These issues
are discussed further in Dmitrienko et al. (2009) and Piantadosi (2005).

As discussed in Sect. 10.3, multiple comparison issues are also a concern in
regression analyses targeting the relationship between an outcome and multiple pre-
dictors, where the primary goal is to identify important predictors and characterize
their relationship to the outcome rather than construct a model that provides accurate
outcome prediction. In this case, use of formal adjustment methods is debatable.

13.4.2 Statistical Learning

In Sect. 10.1, we considered the application of regression methods in developing
clinical prediction models. These problems are typically characterized by using a
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potentially large collection of predictor variables to develop a regression model
for predicting individual patient outcomes with the aim of minimizing prediction
error. Regression methods represent just one approach in a large class of statistical
learning methods for such addressing such problems. Many of these methods are
computationally intensive, and depart radically from the familiar additive linear
structure familiar from the models presented here. We refer readers to Hastie et al.
(2009) for a book-length overview of some modern approaches being applied in
this area.
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AIC, see Akaike Information Criterion
Akaike Information Criterion, 400
Allen–Cady procedure, 420
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Analysis of variance, 30–33, 262
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ANCOVA, see analysis of covariance
ANOVA, see analysis of variance
Area under the curve, 270
As-treated comparisons, 384
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ATT, see average treatment effect in the treated
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Attributable risk, 44
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Balanced repeated replication, 478
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Baseline predictor, 289
Bayesian Information Criterion, 400

Best subsets, 420, 424
Between-cluster predictor, 301
Bias–variance trade-off, 397
BIC, see Bayesian Information Criterion
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Cause-specific hazard, 241, 244–247
CD-MCAR, see covariate-dependent missing
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right, 55, 203

Centering, 36, 107, 154, 165, 174, 208, 223,
230, 407

Change score, 106, 269, 273
N�2 test, 288
�2 test, 46–48, 146, 154, 212–213, 215–217
Classification and regression trees, 168, 190

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology
and Health, DOI 10.1007/978-1-4614-1353-0,
© Springer Science+Business Media, LLC 2004, 2012

501



502 Index

Cluster resampling, 299
Cluster sampling, 479
Clustered data, 37, 257, 261
Coefficient of determination, 42, 75
Collapsibility, 52, 96
Collinearity, 107, 174, 407, 418, 421–422
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Complete case analysis, 431
Complete null hypothesis, 82
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effects, 344
independence, 334
logistic regression model, 171
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odds-ratio, 345
risk difference, 345

Confidence intervals
bootstrap, 62–63, 99, 182, 247, 298, 349
complex surveys, 474, 479
complimentary log-log model, 183
Cox proportional hazards model, 213
linear regression model, 74–75
logistic regression model, 145, 152, 154,
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nonparametric binary models, 190
relationship to hypothesis tests, 41
simple linear model, 40
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Continuation ratio model, 119, 191
Continuous variable, 8
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Controlled direct effect, 371
Convenience sampling, 469
Correlation, 265
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multiple, 75
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Spearman, 34
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matrix, 22
structure, 279, 280, 473, 477

autoregressive, 280
exchangeable, 280, 477
nonstationary, 280
stationary, 280
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working, 281, 473

within-cluster, 470, 474
Count data, 309
Counterfactuals, 428
Covariance, 33, 265
Covariate, see predictor

balance, 353
overlap, 338

Covariate dependent MCAR, 440
Cox proportional hazards model, 61, 207–239,

422, 423, 473
CPR plot, see component plus residual plot
Cross-validation, 168, 399

development set/validation set, 399
h-fold, 399

Cumulative
event function, 59

Cumulative event function, 204
Cumulative incidence function, 241
Cutpoints, 114, 232

D
Data

checking, 7
count, 309
errors, 7

Deciles, 22
Degrees of freedom, 32, 40, 74, 107, 146, 155,

212, 215, 474
Dependent censoring, 249
Derived variable, 268, 269
Design effect, 301, 474
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Development set/validation set, 399
DFBETAs, 125–127, 175, 236
Difference score, 106, 273
Direct effect

controlled, 371
natural, 373

Discrete variable, 8
Distribution
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exponential, 208
gamma, 315
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non-normal, 312
normal, 13
Poisson, 312
Weibull, 208

Dummy variable, see indicator variable
Duncan procedure, 84
Dunnett’s test, 83

E
Effect size, 303
EM algorithm, see Expectation-Maximization

Algorithm 458
Error, 36, 73

family-wise rate, 30, 82, 215, 486
in predictors, 37
prediction, 396

Events per predictor, 180, 222
Exact
�2 test, 47
Fisher’s test, 47
logistic regression, 188

Excess risk, 43–46, 48
Excess zeros, 318
Expectation-Maximization Algorithm, 458
Exponential model, 208
Extrapolation, 339

F
F -test, 30–33, 79–82, 84–89, 113, 421
Face validity, 396, 408, 420, 423
Factor

fixed, 286
random, 286

False discovery rate, 487
False-negative rate, 166
False-positive rate, 166
Family-wise error rate, 30, 82, 215, 486
FER, see family-wise error rate
Fisher’s

exact test, 47
least significant difference, 82

Fitted values, 39, 74, 75, 119, 166
Fixed factor, 286
Floor effect, 109, 111

G
G-computation, 388
G-estimation, 351, 389
Gamma distribution, 315

GEE, see generalized estimation equations 276
GEEs, 328
Generalized additive models, 136, 189
Generalized estimating equations, 276, 281,

455, 473, 474
Generalized linear models, 119, 122, 309

choice of distribution, 312, 315, 316, 323
interpretation of parameters, 312, 316
link function, 316
mean-to-variance relationship, 323
model for mean response, 311, 315, 316
repeated measures, 328

Goodness of fit test, 178

H
Hazard, 204–205, 241, 244

baseline, 208–210, 213, 228
Breslow estimator, 209, 223
ratio, 205–206, 235

Heavy-tailed distribution, 13
Heteroscedasticity, 32, 36, 70–73, 119–123
Hierarchical data, 257, 261, 267
High leverage points, 124–125
Histogram, 10, 116
Homoscedasticity, 32, 36, 70–73, 119–123
Hosmer–Lemeshow test, 178
Hurdle model, 319
Hypothesis tests, relationship to confidence

intervals, 41

I
Identity link, 316
Ignorable missing data, 441
Imputation, 200

chained, 448
multiple, 432, 434, 474
multivariate normal, 448
single, 434

Incidence proportion, 45
Inclusion criterion, 396, 408
Independence, 29, 36, 73, 143, 192

conditional, 334
Independent censoring, 57, 249
Indicator variable, 76–77, 100, 209, 226
Infectious disease transmission models, 181
Inferential goals, 396

evaluating a predictor of primary interest,
396, 407–418

identifying multiple important predictors,
396, 418–420

prediction, 396
Influential points, 38, 124–128, 175–176, 236
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Intention to treat, 382
Interaction, 23, 52, 94, 99–108, 160–165, 190,

220–222, 229, 238–239, 271, 408,
409, 418–420

qualitative, 107
term, 100, 107

Interval censoring, 249
Intraclass correlation, 266
Inverse probability weighting, 337, 432, 456
IPW, see inverse probability weighting 456
Iterative chained imputation, 448
ITT, see intention to treat

J
Jackknife, 478

K
Kaplan–Meier estimator, 55–59, 222, 230, 233,

248
Kendall’s � , 34
Kruskal–Wallis test, 32

L
Large sample behavior, 32, 38, 41, 116, 156,

212, 213
LASSO, see least absolute shrinkage and

selection operator
LATE, see local average treatment effect
Learning set/test set, 168
Least absolute shrinkage and selection

operator, 403, 419
Left truncation, 250
Left-skewed, 13
Legression coefficient

interpretation, 73
Leverage, 124
Light-tailed distribution, 13
Likelihood, 145, 149, 192–194, 212
Likelihood ratio test, 145, 147, 154–156, 171,

174, 194, 212–213, 215, 217, 423
Line of means, 35, 109
Linear

contrast, 78, 84, 215
predictor, 73, 207–208, 248, 325
trend, 109

test for, 149, 215–216
tests for, 84–89

Linear predictor, 142, 248
Linear regression model, 473

adjustment, 70–72, 74, 89–94

attenuation, 74, 94–99
bootstrap confidence intervals, 99
confidence intervals, 74–75
confounding, 70–72, 74, 89–94
hypothesis tests, 74–75
interaction, 94, 99–108
interpretation of regression coefficients,

73
mediation, 94–99
model checking, 108–128
single predictor, 35–41, 70

Linearity, 109–115
log, 173–175, 231

Linearization, Taylor series, 474
Link

identity, 282, 316
log, 311, 312, 315
logit, 143, 316
specification test, 177

Link function, 316
Local average treatment effect, 382
Log-likelihood, see likelihood
Log-linearity, 173–175, 231
Logistic regression model, 44, 119, 122, 294,

316, 319, 422, 423, 473
adjustment, 156–160
bootstrap confidence intervals, 182
conditional, 171
confidence intervals, 162
confounding, 156–160
excess zeros, 319
for matched case-control studies, 171
interaction, 160–165
mediation, 157, 158
repeated measures, 284, 294

Logit link, 143, 316
Logrank test, 60–61, 215
Longitudinal, 270
LOWESS, 18, 109–111, 122, 173, 189,

205–206, 236
LR, see likelihood ratio
LS/TS, see development set/validation set
LSD, see Fisher’s least significant difference

M
Mallow’s Cp , 400
Mantel–Haenszel

combined odds ratio, 50
test of homogeneity, 51

MAR, see missing at random 451
Marginal

effects, 344–351
mean, 335
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model, 285, 417
odds-ratio, 345
risk difference, 346
structural model, 333, 345

Masking, 90
Matching

in case-control studies, 171
on propensity scores, 361

Matrix plot, 278
Maximum likelihood, 192–194, 455

estimation, 192, 194
MCAR, see missing completely at random 451
Mediation, 53, 94–99, 157–160, 219–220, 226,

370–373, 390, 418, 420
Missing at random, 440, 455, 473
Missing completely at random, 439, 461, 473

covariate dependent, 440
Missing data, 152, 200, 431, 473, 474

at random, 431, 440, 455
completely at random, 439, 461
generalized estimating equations, 455
ignorable, 441
informative, 431
maximum likelihood, 455
not at random, 441, 461
pattern mixture models, 462

Missing not at random, 441, 461
Mixed model, 286
MNAR, see missing not at random 451
Model

additive, 208
checking, 108–128, 173–179, 231–239
conditional, 285, 417
generalized additive, 136, 189
generalized linear, 309
marginal, 285, 417
marginal structural, 333, 345
multiplicative, 208–210, 310
nested, 113, 212
nonlinear, 324
population-averaged, 417
size, 222
specification, 338, 353
structural nested, 351, 389
subject-specific, 417
sum of squares, 39, 42, 75

Model size, 180
Multi-stage sampling, 470, 477
Multinomial logistic model, 191
Multiple

comparisons, 30, 61, 81, 83, 419, 486,
487

hypothesis tests, 486, 487
imputation, 432, 434, 474

Multiplicative model, 105, 165, 208–210, 310
risk, 143, 165

Multivariate normal imputation, 448

N
Natural direct effect, 373
Negative binomial, 122, 318

zero-inflated, 320
Negative confounding, 90, 424
Negative findings, 64, 323
Nested models, 113, 154, 156, 194, 212
New user

design, 369, 370
nested cohorts, 370

Nominal variable, 8
Non-response, 473, 474

item, 474
unit, 474

Nonlinear model, 324
Nonparametric, 32, 61, 109, 116, 209, 235
Normal distribution, 13, 31, 32, 36, 37, 40, 41,

73, 116–119, 141, 177
tests for, 117

Null hypothesis, 28–32, 40, 46, 49, 51, 58,
60–61, 74, 76, 81, 117, 212, 417

complete, 82
multiple, 30, 486
partial, 82

Number of predictors, 180, 222
Numeric variable, 37, 77

O
Odds ratio, 43–46, 48, 140, 144, 145, 147, 151,

169, 179
combined, 50

Offset, 182, 311
OLS, see ordinary least squares
One-sided tests, 28–29
Ordinal variable, 8
Ordinary least squares, 38, 116
Outliers, 12, 15, 38, 124–125, 175
Overdispersion, 313, 317
Oversampling, 107, 470, 471

P
Paired t -test, 29
Parallel lines assumption, 104, 191, 209
Parsimonious models, 419, 423
Partial null hypothesis, 82
Pattern mixture models, 462
PE, see prediction error
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Penalized estimation, 403
Percent change, 106
Plots

adjusted survival curves, 222–224
box, 12, 116, 125
component plus residual, 109–111, 113,

174
histogram, 116
Kaplan–Meier, 55–59, 59, 222, 230, 233,

248
log minus log survival, 232–235
Q-Q, 13, 116
residual vs. predictor, 109, 119
ROC, 167
scatterplot matrix, 23, 278
smoothed hazard ratio, 235–236
stratified survival curves, 230

Poisson
distribution, 312
model, 122
regression model, 316, 317
zero-inflated, 320

Polytomous logistic model, 191
Pooled

logistic regression, 183
Pooled logistic regression, 183
Population-averaged, 285, 295

model, 417
Positivity, 354, 366

assumption, 338
restriction, 339, 359

Potential outcomes, 332–337
cumulative risk estimation, 351
estimation, 336, 344–351, 360, 388
survival models, 351
trials with incomplete adherence, 382

Power, 130–135, 252–255, 301–304, 325–327
Prediction, 165–168, 248, 267, 293, 396

error, 396
Predictor

events per, 180, 222
number of, 180, 222
assumptions about, 37
baseline, 289
binary, 76–77, 213
categorical, 48–53, 76–89, 107, 213–216,

234
continuous, 35, 37, 108, 119, 217–218
events per, 422–423
measurement error, 37
multiple important, 418–420, 422
number of, 422–423
of primary interest, 228, 237, 407–418,

421, 423

selection, 395–396
Allen–Cady procedure, 420
backward, 396, 408, 420, 423, 424
best subsets, 420, 424
forward, 408, 424
number of predictors, 341, 422–423
stepwise, 408, 420, 424

time-dependent, 225–227, 238–239
time-invariant, 271, 289
time-varying, 289

Prevalence, 45
Primary sampling unit, 470–474
Principal stratification, 385
Probability

of inclusion, 107, 469–472, 474, 479
unequal, 470–472

sample, 471
weights, 457, 471–474

Product limit, see Kaplan–Meier estimator
Product term, see interaction term, 220–222,
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Propensity scores, 352–363, 389

advantages and limitations, 363
interactions with exposure, 358
inverse probability weights, 356
matching, 361
positivity violations, 359
potential outcomes estimation, 360
quintiles, 355
recommendations, 362
restricted cubic splines, 355
standardized mortality ratio weights, 361

Proportional hazards, 207–210
checking, 232–239, 366
parametric models, 208, 257
Schoenfeld test, 236–237

Proportional odds model, 119, 190
Pseudo-R2 , 146
PSU, see primary sampling unit

Q
Q-Q plot, 13, 116
Quadratic term, 111, 174
Quartiles, 22
Quintiles, 22

R
R2, 42, 75, 111–113, 146, 398

adjusted, 400
pseudo, 146

Random effects, 286
predicted, 293
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Random factor, 286
Randomization assumption, 225, 334
Rank-based methods, 32–35, 61
Receiver operator characteristic curve, 167
Reference group, 78, 213–215
Regression coefficient

change in, 125
interpretation, 36, 144, 151, 153, 160, 186,

312, 316
standardized, 290
variance, 74, 423

Regression dilution bias, 37
Regression line, 35, 39, 72, 109
Regression standardization, 388
Relative hazard, see hazard ratio
Relative risk, 43–46, 48, 140, 169–171, 179

model, 180, 186–188
Relative risk ratio, 191
Repeated measures

data, 261
models

potential outcomes estimation, 350
time-dependent treatments, 367

Repeated measures models
missing data, 431

Representative sampling, 469, 470
Reproducibility, 485
Resample, 299
Residual

sum of squares, 39
variance, 74, 422
vs predictor plot, 109
vs. predictor plot, 119

Residuals, 39, 231
Schoenfeld, 236
standardized Pearson, 175

Restriction, 339
Ridge regression, 403
Right truncation, 251
Right-skewed, 13, 116
Risk

difference, 43–46, 140, 169, 371
model, 165, 180, 186–188

ratio, 43–46
Risk difference, 323
Risk score, 248
Robust standard error, 281, 474
Robustness, 31, 32, 59, 117, 209, 257
ROC curve

see receiver operator characteristic curve,
167

RSS, see residual sum of squares
RVP plot, see residual vs. predictor plot

S
Sample size, 130, 135, 252, 255, 301, 304, 325,

327, 396, 418, 422
adjusting for covariate, 303, 304
adjusting for covariates, 130, 132, 252
number of predictors, 180, 222, 341

Sampling
case-control, 169, 172
cluster, 470, 474, 479
complex, 470, 474
convenience, 469
fraction, 472
multi-stage, 470, 477
probability, 471
representative, 469, 470
weight, 457

Scale parameter, 313
Scatterplot matrix plot, 23
Scatterplot smoother, see smoothing, LOWESS
Scheffé procedure, 30, 82
Schoenfeld

residuals, 236
test for proportional hazards, 236–237

Selection model, 462
Semi-parametric, 209
Sensitivity, 167
Shrinkage estimator, 293, 403
Sidak procedure, 30, 82
Simple random sample, 470
Simpson’s paradox, 51
Single imputation, 434
Skewness, 13, 116, 309
Smoothing, 18, 109, 111, 122, 173, 189,

205–206, 236
hazard ratio, 236

Spearman correlation coefficient, 34
Specificity, 167
Splines, 174, 184, 234, 271, 289

restricted cubic, 174, 184, 234, 355
SRS, see simple random sample
Standard errors, 40, 74, 145

complex surveys, 474, 479
relative, 477
robust, 281, 474

Standardized regression coefficient, 75–76,
290

Statistical significance
lack of, 323

Step function, 114, 141, 239
Step-down procedure, 84
Step-up procedure, 84
Stratification in complex surveys, 471–474
Stratified Cox model, 228–230, 237
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Student-Newman-Keuls procedure, 84
Subgroup analysis, 107, 268
Subject-specific, 285, 295

model, 417
Sum of squares, 39, 74

model, 39, 42, 75
residual, 39
total, 39, 42, 75

Survival
function, 55–59

Kaplan–Meier estimate, 55–59
parametric, 59

models
potential outcomes estimation, 351
time-dependent treatments, 367

time
mean, 59
median, 58
quantiles, 59

Survival function, 204
adjusted estimate, 222–224, 230
baseline, 223–224
Kaplan–Meier estimate, 222, 230, 233,

248
stratified estimate, 230

Survival models
parametric, 257

Survival time
mean, 224, 248
predicted, 224, 248

Survivor function, see survival function

T
t -distribution, 40
t -statistic, 28, 40
t -test, 27–33, 40, 74, 76, 78, 113, 421, 474

paired, 273
t -test

paired, 29
unequal variance, 32

Target population, 192, 469, 470
Taylor series linearization, 474
Tertiles, 22
Test

N�2, 288
�2, 46, 48, 212, 213, 215, 216
F , 30, 33, 79, 82, 84, 89, 113
Fisher’s exact, 47
for trend, 49, 84, 89, 149, 215, 216
goodness of fit, 178
Hosmer–Lemeshow, 178
Kruskal–Wallis, 32

likelihood ratio, 145, 147, 154, 156, 171,
174, 194, 212, 213, 215

link specification, 177
logrank, 60, 61, 215
Mantel–Haenszel, 51
multiple stage, 84
of association, 46, 48
of homogeneity, 49, 51
t , 27, 33, 40, 74, 76, 78, 89, 113, 474
Vuong’s, 113
Wald, 145, 149, 154, 156, 212, 213, 215,

216, 282
Wilcoxon, 32

censored, 61
Z, 212, 213, 222, 474

Time origin, 225, 250
Time-dependent

covariates, 225–227, 238–239, 364
treatments, 364–369, 389

Time-invariant predictor, 289
Time-varying predictor, 289
Total sum of squares, 39, 42, 75
Transformations, 15, 32, 111–115, 310

back, 128, 217, 314
outcome

log, 15, 117, 128
normalizing, 117–119, 177
power, 118
rank, 118
variance-stabilizing, 121–123, 123

predictor
categorical, 114, 115
linearizing, 111–115, 178
log, 15, 111, 128
polynomial, 111
restricted cubic splines, 113
square root, 111

smooth, 111–114
restricted cubic splines, 114

Tree-based methods, 168, 190
Trend

test for, 84–89, 149, 215–216
trend

test for, 49, 61
Truncated, 319
Truncation, 250

left, 250
right, 251

TSS, see total sum of squares
Two-part model, 319
Two-sided tests, 28–29
Type-I error, 30–32, 107, 108, 215, 396, 420,

425
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U
Unbalanced data, 270
Unbiased estimation, 38, 100, 102, 173,

174
Unequal probability of inclusion, 470
Unequal variance, 32, 36, 70–73, 119–123

V
Variable, 8

categorical, 8
continuous, 8
continuous versus discrete, 8
dependent , see variable, outcome
derived, 268, 269
discrete, 8
independent , see predictor
nominal, 8
numeric, 8
ordinal, 8
outcome, 17
predictor, 17
response, 17
transformations, 15

Variance
estimation, 74, 474–478
inflation factor, 74, 416
predictor, 74

regression coefficient, 74, 423
residual, 40, 74, 422

Vuong’s test, 113

W
Wald test, 145, 149, 154, 156, 212–213,

215–217, 282, 423
Weibull model, 208
Weight

inverse probability of censoring, 249
inverse probability, 337, 356, 365, 456

of censoring, 365
probability, 457, 471–474
sampling, 457
stabilized, 365
standardized mortality ratio, 361
time-dependent, 365

Wilcoxon test, 32
censored, 61

Winsorization, 118
Within-cluster predictor, 301
Within-subject effects, 291

Z
Z-test, 212–213, 222, 474
Zero-inflated, 320
Zero-truncated, 319
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