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Preface

In the second edition of Regression Methods in Biostatistics: Linear, Logistic,
Survival, and Repeated Measures Models, we have substantially revised and
expanded the core chapters of the first edition, and added two new chapters. The first
of these, Chap. 9, on strengthening causal inference, introduces potential outcomes,
average causal effects, and two primary methods for estimating these effects, what
we call potential outcomes estimation and inverse probability weighting. It also
covers propensity scores in detail, then more briefly discusses time-dependent
exposures, controlled and natural direct effects, instrumental variables, and principal
stratification. The second, Chap. 11, on missing data, explains why this is a problem,
classifies missingness by mechanism, and discusses the shortcomings of some
simple approaches. Its focus is on three primary approaches for dealing with missing
data: maximum likelihood estimation, multiple imputation, and inverse weighting,
and lays out in detail when each of these approaches is most appropriate.

Among the core chapters of the first edition, Chap. 5, on logistic regression, has
substantial new sections on models for ordinal and multinomial outcomes, as well
as exact logistic regression. Chapter 6, on survival analysis, has an in-depth new
section on competing risks, as well as new coverage of interval censoring and left
truncation. Chapter 7, on repeated measures analysis, introduces recently developed
methods for distinguishing between- and within-cluster effects, and for estimating
the effects of fixed and time-dependent covariates (TDCs) on change. Chapter 8,
on generalized linear models, adds coverage of negative binomial as well as zero-
inflated and zero-truncated models for counts. Chapters 4-8 all now cover restricted
cubic splines, take a new approach to mediation, and provide methods for sample
size, power, and detectable effect calculation. Chapter 10, on predictor selection, has
expanded coverage of developing and assessing models for prediction, as well as a
new section on directed acyclic graphs. Our summary in Chap. 13 includes a new
discussion of multiple comparisons and updated coverage of software packages.
All Stata examples have been updated. As before, Stata, SAS, and Excel datasets
and Stata do-files for most examples are provided on the website for the book,
http://www.biostat.ucsf.edu/vgsm. We also posted implementations
of analyses for time-dependent exposures too complicated for inclusion in the text.
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viii Preface

At UCSF, we have used the first edition for a two-quarter course on regression
methods for clinical researchers and epidemiologists, the first quarter covering linear
and logistic models and predictor selection, and the second covering survival and
repeated measures analysis. The new chapter on strengthening causal inference is
the basis of new quarter-long course, and the new missing data chapter will play an
important role in a more advanced quarter-long course next year. The new breadth
of coverage of the second edition should make it more widely useful in year-long
biostatistics courses for students like ours, MPH students, and for masters-level
courses in biostatistics.

Finally, we gratefully acknowledge the very important contributions made by
Professors Joseph Hogan of Brown University, Michael Hudgens of the University
of North Carolina, Barbara McKnight of the University of Washington, and Maya
Peterson of the University of California, Berkeley, who generously provided
detailed, insightful reviews of the two new chapters. Any remaining errors and
shortcomings are of course entirely ours.

San Francisco, CA, USA Eric Vittinghoff
David V. Glidden

Stephen C. Shiboski

Charles E. McCulloch



Preface to the First Edition

The primary biostatistical tools in modern medical research are single-outcome,
multiple-predictor methods: multiple linear regression for continuous outcomes,
logistic regression for binary outcomes, and the Cox proportional hazards model
for time-to-event outcomes. More recently, generalized linear models (GLMs) and
regression methods for repeated outcomes have come into widespread use in the
medical research literature. Applying these methods and interpreting the results
require some introduction. However, introductory statistics courses have no time
to spend on such topics and hence they are often relegated to a third or fourth course
in a sequence. Books tend to have either very brief coverage or to be treatments of
a single topic and more theoretical than the typical researcher wants or needs.

Our goal in writing this book was to provide an accessible introduction to
multipredictor methods, emphasizing their proper use and interpretation. We feel
strongly that this can only be accomplished by illustrating the techniques using a
variety of real data sets. We have incorporated as little theory as feasible. Further,
we have tried to keep the book relatively short and to the point. Our hope in
doing so is that the important issues and similarities between the methods, rather
than their differences, will come through. We hope this book will be attractive to
medical researchers needing familiarity with these methods and to students studying
statistics who would like to see them applied to real data. The methods we describe
are, of course, the same as those used in a variety of fields, so non-medical readers
will find this book useful if they can extrapolate from the predominantly medical
examples.

A prerequisite for the book is a good first course in statistics or biostatistics or
an understanding of the basic tools: paired and independent samples 7-tests, simple
linear regression and one-way analysis of variance (ANOVA), contingency tables
and y? (chi-square) analyses, Kaplan—Meier curves, and the logrank test.

We also think it is important for researchers to know how to interpret the
output of a modern statistical package. Accordingly, we illustrate a number of the
analyses with output from the Stata statistics package. There are a number of other
packages that can perform these analyses, but we have chosen this one because of
its accessibility and widespread use in biostatistics and epidemiology.

ix



X Preface to the First Edition

We begin the book with a chapter introducing our viewpoint and style of
presentation and the big picture as to the use of multipredictor methods. Chapter 2
presents descriptive numerical and graphical techniques for multipredictor settings
and emphasizes choice of technique based on the nature of the variables. Chapter 3
briefly reviews the statistical methods we consider prerequisites for the book.

We then make the transition in Chap. 4 to multipredictor regression methods,
beginning with the linear regression model. This chapter also covers confounding,
mediation, interaction, and model checking in the most detail. In Chap. 5, we turn
to binary outcomes and the logistic model, noting the similarities to the linear
model. Ties to simpler, contingency table methods are also noted. Chapter 6 covers
survival outcomes, giving clear indications as to why such techniques are necessary,
but again emphasizing similarities in model building and interpretation with the
previous chapters. Chapter 7 looks at the accommodation of correlated data in both
linear and logistic models. Chapter 8 extends Chap. 5, giving an overview of GLMs.

In the second edition, new sections of Chaps. 4-8 deal with pooled and exact
logistic regression (Chap. 5), competing risks (Chap. 6), and time-varying predictors
and separating between and within cluster information (Chap. 7). Chapters 4-8, also
now conclude with short sections on calculating sample size, power, and minimum
detectable effects.

The next three chapters, two of them new in the second edition, cover broader
issues. Chapter 9 looks more closely at making causal inferences, using the models
discussed in Chaps. 4-8, as well as alternatives including propensity scores and
instrumental variables. Chapter 10 deals with predictor selection, with expanded
treatment of methods for prediction problems. Chapter 11 considers missing data
and methods for dealing with it, including maximum likelihood models, multiple
imputation, and complete case analysis, the problematic default.

Finally, Chap. 12 is a brief introduction to the analysis of complex surveys.
The text closes with a summary, Chap. 13, attempting to put each of the previous
chapters in context. Too often it is hard to see the forest for the trees of each of the
individual methods. Our goal in this final chapter is to provide guidance as to how
to choose among the methods presented in the book and also to realize when they
will not suffice and other techniques need to be considered.

San Francisco, CA, USA Eric Vittinghoff
David V. Glidden

Stephen C. Shiboski

Charles E. McCulloch
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Chapter 1
Introduction

The book describes a family of statistical techniques that we call multipredictor
regression modeling. This family is useful in situations where there are multiple
measured factors (also called predictors, covariates, or independent variables) to
be related to a single outcome (also called the response or dependent variable). The
applications of these techniques are diverse, including those where we are interested
in prediction, isolating the effect of a single predictor, or understanding multiple
predictors. We begin with an example.

1.1 Example: Treatment of Back Pain

Korff et al. (1994) studied the success of various approaches to treatment for back
pain. Some physicians treat back pain more aggressively, with prescription pain
medication and extended bed rest, while others recommend an earlier resumption
of activity and manage pain with over-the-counter medications. The investigators
classified the aggressiveness of a sample of 44 physicians in treating back pain
as low, medium, or high, and then followed 1,071 of their back pain patients for
two years. In the analysis, the classification of treatment aggressiveness was related
to patient outcomes, including cost, activity limitation, pain intensity, and time to
resumption of full activity.

The primary focus of the study was on a single categorical predictor, the
aggressiveness of treatment. Thus for a continuous outcome like cost, we might
think of an analysis of variance (ANOVA), while for a categorical outcome we
might consider a contingency table analysis and a y>-test. However, these simple
analyses would be incorrect at the very least because they would fail to recognize
that multiple patients were clustered within physician practice and that there were
repeated outcome measures on patients.

Looking beyond the clustering and repeated measures (which are covered in
Chap. 7), what if physicians with more aggressive approaches to back pain also

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology 1
and Health, DOI 10.1007/978-1-4614-1353-0_1,
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tended to have older patients? If older patients recover more slowly (regardless
of treatment), then even if differences in treatment aggressiveness have no
effect, the age imbalance would nonetheless make for poorer outcomes in the
patients of physicians in the high-aggressiveness category. Hence, it would be
misleading to judge the effect of treatment aggressiveness without correcting for
the imbalances between the physician groups in patient age and, potentially, other
prognostic factors—that is, to judge without controlling for confounding. This
can be accomplished using a model which relates study outcomes to age and
other prognostic factors as well as the aggressiveness of treatment. In a sense,
multipredictor regression analysis allows us to examine the effect of treatment
aggressiveness while holding the other factors constant.

1.2 The Family of Multipredictor Regression Methods

Multipredictor regression modeling is a family of methods for relating multiple
predictors to an outcome, with each member of the family suitable for a different
type of outcome. The cost outcome, for example, is a numerical measure and for
our purposes can be taken as continuous. This outcome could be analyzed using the
linear regression model, though we also show in Chap. 8 why a generalized linear
model (GLM) might be a better choice.

Perhaps the simplest outcome in the back pain study is the yes/no indicator of
moderate-to-severe activity limitation; a subject’s activities are limited by back pain
or not. Such a categorical variable is termed binary because it can only take on
two values. This type of outcome is analyzed using the logistic regression model,
presented in Chap. 5.

In contrast, pain intensity was measured on a scale of ten equally spaced values.
The variable is numerical and could be treated as continuous, although there were
many tied values. Alternatively, it could be analyzed as a categorical variable, with
the different values treated as ordered categories, using the proportional-odds or
continuation-ratio models, both extensions of the logistic model and briefly covered
in Chap. 5.

Another potential outcome might be time to resumption of full activity. This
variable is also continuous, but what if a patient had not yet resumed full activity at
the end of the follow-up period of two years? Then the time to resumption of full
activity would only be known to exceed two years. When outcomes are known only
to be greater than a given value (like two years), the variable is said to be right-
censored—a common feature of time-to-event data. This type of outcome can be
analyzed using the Cox proportional hazards model, the primary topic of Chap. 6.

Furthermore, in the back pain example, study outcomes were measured on
groups, or clusters, of patients with the same physician, and on multiple occasions
for each patient. To analyze such hierarchical or longitudinal outcomes, we need
to use extensions of the basic family of regression modeling techniques suitable for
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repeated measures data, described in Chap. 7. Related extensions are also required
to analyze data from complex surveys, briefly covered in Chap. 12.

The various regression modeling approaches, while differing in important
statistical details, also share important similarities. Numeric, binary, and categorical
predictors are accommodated by all members of the family, and are handled in a
similar way: on some scale, the systematic part of the outcome is modeled as a
linear function of the predictor values and corresponding regression coefficients.
The different techniques all yield estimates of these coefficients that summarize the
results of the analysis and have important statistical properties in common. This
leads to unified methods for selecting predictors and modeling their effects, as well
as for making inferences to the population represented in the sample. Finally, all the
models can be applied to the same broad classes of practical questions involving
multiple predictors.

1.3 Motivation for Multipredictor Regression

Multipredictor regression can be a powerful tool for addressing three important
practical questions. These questions, which provide the framework for our discus-
sion of predictor selection in Chap. 10, include prediction, isolating the effect of a
single predictor, and understanding multiple predictors.

1.3.1 Prediction

How can we identify which patients with back pain will have moderate-to-severe
limitation of activity? Multipredictor regression is a powerful and general tool for
using multiple measured predictors to make useful predictions for future obser-
vations. In this example, the outcome is binary and thus a multipredictor logistic
regression model could be used to estimate the predicted probability of limitation
for any possible combination of the observed predictors. These estimates could then
be used to classify patients as likely to experience limitation or not. Similarly, if
our interest was future costs, a continuous variable, we could use a linear regression
model to predict the costs associated with new observations characterized by various
values of the predictors. In developing models for this purpose, we need to avoid
over-fitting, and to validate their predictiveness in actual practice.

1.3.2 Isolating the Effect of a Single Predictor

In settings where multiple, related predictors contribute to study outcomes, it
will be important to consider multiple predictors even when a single predictor
is of interest. In the von Korff study, the primary predictor of interest was how
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aggressively a physician treated back pain. But incorporation of other predictors was
necessary to minimize confounding, so that we could plausibly consider a causal
interpretation of the estimated effects of the aggressiveness of treatment. Estimating
causal effects from observational data is difficult, and sometimes requires special
methods, including potential outcomes estimation and propensity scores. These
approaches depend on the assumption that there are no unmeasured confounders.
Causal estimation using instrumental variables depends on different but equally
stringent assumptions. We consider these specialized methods in Chap. 9.

1.3.3 Understanding Multiple Predictors

Multipredictor regression can also be used when our aim is to identify multiple
independent predictors of a study outcome—independent in the sense that they
appear to have an effect over and above other measured variables. Especially in
this context, we may need to consider other complexities of how predictors jointly
influence the outcome. For example, the effect of injuries on activity limitation
may in part operate through their effect on pain; in this view, pain mediates the
effect of injury and should not be adjusted for, at least initially. Alternatively,
suppose that among patients with mild or moderate pain, younger age predicts more
rapid recovery, but among those with severe pain, age makes little difference. The
effects of both age and pain severity will both potentially be misrepresented if this
interaction is not taken into account. Fortunately, all the multipredictor regression
methods discussed in this book easily handle interactions, as well as mediation and
confounding, using essentially identical techniques. Though certainly not foolproof,
multipredictor models are well suited to examining the complexities of how multiple
predictors are associated with an outcome of interest.

1.4 Guide to the Book

This text attempts to provide practical guidance for regression analysis. We inter-
weave real data examples from the biomedical literature in the hope of capturing the
reader’s interest and making the statistics as easy to grasp as possible. Theoretical
details are kept to a minimum, since it is usually not necessary to understand
the theory to use these methods appropriately. We avoid formulas and keep
mathematical notation to a minimum, instead emphasizing selection of appropriate
methods and careful interpretation of the results.

This book grew out a two-quarter sequence in multipredictor methods for
physicians beginning a career in clinical research, with a focus on techniques
appropriate to their research projects. For these students, mathematical explication
is an ineffective way to teach these methods. Hence our reliance on real-world
examples and heuristic explanations.
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Our students take the course in the second quarter of their research training.
A beginning course in biostatistics is assumed and some understanding of epidemio-
logic concepts is clearly helpful. However, Chap. 3 presents a review of topics from
a first biostatistics course, and we explain epidemiologic concepts in some detail
throughout the book.

Although theoretical details are minimized, we do discuss techniques of practical
utility that some would consider advanced. We treat extensions of basic multi-
predictor methods for repeated measures and hierarchical data, for data arising
from complex surveys, and for the broader class of generalized linear models, of
which logistic regression is the most familiar example. In addition, we consider
alternative approaches to estimating the causal effects of an exposure or treatment
from observational data, including propensity scores and instrumental variables. We
address model checking as well as model selection in considerable detail, including
specialized methods for avoiding over-fitting in selecting prediction models. And
we consider how missing data arise, and the conditions under which maximum
likelihood methods for repeated measures as well as multiple imputation of the
missing values can successfully deal with it.

The orientation of this book is to parametric methods, in which the systematic
part of the model is a simple function of the predictors, and substantial assumptions
are made about the distribution of the outcome. In our view, parametric methods
are usually flexible and robust enough, and we show how model adequacy can
be checked. The Cox proportional hazards model covered in Chap.6 is a semi-
parametric method which makes few assumptions about an important component
of the systematic part of the model, but retains most of the efficiency and
many of the advantages of fully parametric models. Generalized additive models,
briefly reviewed in Chap.5, go an additional step in this direction. However,
fully nonparametric regression methods in our view entail losses in efficiency
and ease of interpretation which make them less useful to researchers. We do
recommend a popular bivariate nonparametric regression method, LOWESS, but
only for exploratory data analysis.

Our approach is also to encourage exploratory data analysis as well as thoughtful
interpretation of results. We discourage focusing solely on P-values, which have an
important place in statistics but also important limitations. In particular, P-values
measure the strength of the evidence for an effect, but not its size. Furthermore, they
can be misleading when data-driven model selection has been carried out. In our
view, data analysis profits from considering the estimated effects, using confidence
intervals (CIs) to quantify their precision. In prediction problems, P-values are a
poor guide to prediction error, the proper focus of interest, and over-reliance of
them can lead to over-fitting.

We recommend that readers begin with Chap. 2, on exploratory methods. Since
Chap.3 is largely a review, students may want to focus only on unfamiliar
material. Chapter 4, on multipredictor regression methods for continuous outcomes,
introduces most of the important themes of the book, which are then revisited in
later chapters, and so is essential reading. Similarly, Chap. 9 covers causal inference,
Chap. 10 addresses predictor selection, and Chap. 11 deals with missing data, all



6 1 Introduction

topics common to the entire family of regression techniques. Chapters 5 and 6
cover regression methods specialized for binary and time-to-event outcomes, while
Chaps. 7, 8, and 12 cover extensions of these methods for repeated measures, counts,
and other special types of outcomes, and complex surveys. Readers may want
to study these chapters as the need arises. Finally, Chap. 13 reprises the themes
considered in the earlier chapters and is recommended for all readers.

For interested readers, Stata code and selected datasets used in examples and
problems, plus errata, are posted on the website for this book:

http://www.biostat.ucsf.edu/vgsm


http://www.biostat.ucsf.edu/vgsm

Chapter 2
Exploratory and Descriptive Methods

Before beginning any sort of statistical analysis, it is imperative to take a preliminary
look at the data with three main goals in mind: first, to check for errors and
anomalies; second, to understand the distribution of each of the variables on its own;
and third, to begin to understand the nature and strength of relationships among
variables. Errors should, of course, be corrected, since even a small percentage
of erroneous data values can drastically influence the results. Understanding the
distribution of the variables, especially the outcomes, is crucial to choosing the
appropriate multipredictor regression method. Finally, understanding the nature and
strength of relationships is the first step in building a more formal statistical model
from which to draw conclusions.

2.1 Data Checking

Procedures for data checking should be implemented before data entry begins, to
head off future headaches. Many data entry programs have the capability to screen
for egregious errors, including values that are out the expected range or of the
wrong “type.” If this is not possible, then we recommend regular checking for data
problems as the database is constructed.

Here are two examples we have encountered recently. First, some values of a
variable defined as a proportion were inadvertently entered as percentages (i.e., 100
times larger than they should have been). Although they made up less than 3% of the
values, the analysis was completely invalidated. Fortunately, this simple error was
easily corrected once discovered. A second example involved patients with a heart
anomaly. Those whose diagnostic score was poor enough (i.e., exceeded a numerical
threshold) were to be classified according to the type of anomaly. Data checks
revealed missing classifications for patients whose diagnostic score exceeded the

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology 7
and Health, DOI 10.1007/978-1-4614-1353-0_2,
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threshold, as well as classifications for patients whose score did not, complicating
planned analyses. Had the data been screened as they were collected, this problem
with study procedures could have been avoided.

2.2 Types of Data

The proper description of data depends on the nature of the measurement. The key
distinction for statistical analysis is between numerical and categorical variables.
The number of diagnostic tests ordered is a numerical variable, while the gender
of a person is categorical. Systolic blood pressure (SBP) is numerical, whereas the
type of surgery is categorical.

A secondary but sometimes important distinction within numerical variables is
whether the variable can take on a whole continuum or just a discrete set of values.
So SBP would be continuous, while number of diagnostic tests ordered would be
discrete. Cost of a hospitalization would be continuous, whereas number of mice
able to successfully navigate a maze would be discrete. More generally,

Definition: A numerical variable taking on a continuum of values is called continuous and
one that only takes on a discrete set of values is called discrete.

A secondary distinction sometimes made with regard to categorical variables
is whether the categories are ordered or unordered. So, for example, categories
of annual household income (<$20,000, $20,000-$40,000, $40,000-$100,000,
>$100,000) would be ordered, while marital status (single, married, divorced,
widowed) would be unordered. More exactly,

Definition: A categorical variable is ordinal if the categories can be logically ordered from
smallest to largest in a sense meaningful for the question at hand (we need to rule out silly
orders like alphabetical); otherwise it is unordered or nominal.

Some overlap between types is possible. For example, we may break a numerical
variable (such as exact annual income in dollars and cents) into ranges or categories.
Conversely, we may treat a categorical variable as a numerical score, for example,
by assigning values one to five to the ordinal responses Poor, Fair, Good, Very Good,
and Excellent.

Most of the analysis methods we will describe for numerical scores (e.g., linear
regression or t-tests) have interpretations based on average scores. So assigning
scores to a categorical variable is effective if average scores are readily interpretable.
This may well be the case for scoring the categories Poor through Excellent as 1
through 5: an average value of 3.5 is between Good and Very Good. It might be a less
effective strategy ordinal categorical variables such as the modified Rankin Scale,
a scale used to assess disability following a stroke. For that scale, O represents no
symptoms, 1 and 2 slight disability, 3 and 4 moderate disability, 5 severe disability,
and 6 is dead. Consider two sets of three patients, the first set with scores of 0, 6,
and 6 and the second with scores of 4, 4, and 4. Both have averages of 4, but the
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first set would generally be considered as having worse outcomes since two of the
patients died. In such a case, summarizing with the average, and hence treating the
variable as numeric, may not be appropriate.

In the following sections, we present each of the descriptive and exploratory
methods according to the types of variables involved.

2.3 One-Variable Descriptions

We begin by describing techniques useful for examining a single variable at a time.
These are useful for uncovering mistakes or extreme values in the data and for
assessing distributional shape.

2.3.1 Numerical Variables

We can describe the distribution of numerical variables using either numerical or
graphical techniques.

2.3.1.1 Example: Systolic Blood Pressure

The western collaborative group study (WCGS) was a large epidemiological study
designed to investigate the association between the “type A” behavior pattern and
coronary heart disease (CHD) (Rosenman et al. 1964). We will revisit this study
later in the book, focusing on the primary outcome, but for now we want to explore
the distribution of SBP.

2.3.1.2 Numerical Description

As afirst step, we obtain basic descriptive statistics for SBP. Table 2.1 gives detailed
summary statistics for the SBP variable, sbp. Several features of the output are
worth consideration. The largest and smallest values should be scanned for outlying
or incorrect values, and the mean (or median) and standard deviation should be
assessed as general measures of the location and spread of the data. Secondary
features are the skewness and kurtosis, though these are usually more easily assessed
by the graphical means described in the next section. Another assessment of
skewness is a large difference between the mean and median. In right-skewed data,
the mean is quite a bit larger than the median, while in left-skewed data, the mean
is much smaller than the median. Of note, in this dataset, the largest observation is
more than six standard deviations above the mean!
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Table 2.1 Numerical description of systolic blood pressure

. summarize sbp, detail

systolic BP

Percentiles Smallest

1% 104 98

5% 110 100
10% 112 100 Obs 3154
25% 120 100 Sum of Wgt. 3154
50% 126 Mean 128.6328
Largest Std. Dev. 15.11773

75% 136 210
90% 148 210 Variance 228.5458
95% 156 212 Skewness 1.204397
99% 176 230 Kurtosis 5.792465

2.3.1.3 Graphical Description

Graphs are often the quickest and most effective way to get a sense of the data.
For numerical data, three basic graphs are most useful: the histogram, boxplot,
and normal quantile—quantile (or Q—Q) plot. Each is useful for different purposes.
The histogram easily conveys information about the location, spread, and shape of
the frequency distribution of the data. The boxplot is a schematic identifying key
features of the distribution. Finally, the normal Q-Q plot facilitates comparison of
the shape of the distribution of the data to a normal (or bell-shaped) distribution.

The histogram displays the frequency of data points falling into various ranges as
a bar chart. Figure 2.1 shows a histogram of the SBP data from WCGS. Generated
using an earlier version of Stata, the default histogram uses five intervals and labels
axes with the minimum and maximum values only. In this figure, we can see that
most of the measurements are in the range of about 100 to 150, with a few extreme
values around 200. The percentage of observations in the first interval is about
47.4%.

However, this is not a particularly well-constructed histogram. With over 3,000
data points, we can use more intervals to increase the definition of the histogram and
avoid grouping the data so coarsely. Using only five intervals, the first two including
almost all the data, makes for a loss of information, since we only know the value of
the data in those large “bins” to the limits of the interval (in the case of the first bin,
between 98 and 125), and learn nothing about how the data are distributed within
those intervals. Also, our preference is to provide more interpretable axis labeling.
Figure 2.2 shows a modified histogram generated using the current version of Stata
that provides much better definition as to the shape of the frequency distribution
of SBP.

The key with a histogram is to use a sufficient number of intervals to define the
shape of the distribution clearly and not lose much information, without using so
many as to leave gaps, give the histogram a ragged shape, and defeat the goal of
summarization. With 3,000 data points, we can afford quite a few bins. A rough
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Fig. 2.1 Histogram of the systolic blood pressure data
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Fig. 2.2 Histogram of the systolic blood pressure data using 15 intervals

rule of thumb is to choose the number of bins to be about 1 + 3.3 log,, (), (Sturges
1926) where n is the sample size (so this would suggest 12 or 13 bins for the WCGS
data). More than 20 or so are rarely needed. Figure 2.2 uses 15 bins and provides a
clear definition of the shape as well as a fair bit of detail.
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Fig. 2.3 Boxplot of the systolic blood pressure data

A boxplot represents a compromise between a histogram and a numerical sum-
mary. The boxplot in Fig.2.3 graphically displays information from the summary
in Table 2.1, specifically the minimum, maximum, and 25th, 50th (median), and
75th percentiles. This retains many of the advantages of a graphical display while
still providing fairly precise numerical summaries. The “box” displays the 25th and
75th percentiles (the lower and upper edges of the box) and the median (the line
across the middle of the box). Extending from the box are the “whiskers” (this
colorful terminology is due to the legendary statistician John Tukey, who liked to
coin new terms). The bottom whisker extends to the minimum data value, 98, but
the maximum is above the upper whisker. This is because Stata uses an algorithm to
try to determine if observations are “outliers,” that is, values a large distance away
from the main portion of the data. Data points considered outliers (they can be in
either the upper or lower range of the data) are plotted with symbols and the whisker
only extends to the most extreme observation not considered an outlier.

Boxplots convey a wealth of information about the distribution of the variable:

e Location, as measured by the median

* Spread, as measured by the height of the box (this is called the interquartile range
or IQR)

* Range of the observations

* Presence of outliers

* Some information about shape

This last point bears further explanation. If the median is located toward the
bottom of the box, then the data are right-skewed toward larger values. That is, the
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Fig. 2.4 Normal Q-Q plot of the systolic blood pressure data

distance between the median and the 75th percentile is greater than that between
the median and the 25th percentile. Likewise, right-skewness will be indicated if the
upper whisker is longer than the lower whisker or if there are more outliers in the
upper range. Both the boxplot and the histogram show evidence for right-skewness
in the SBP data. If the direction of the inequality is reversed (more outliers on
the lower end, longer lower whisker, median toward the top of the box), then the
distribution is left-skewed.

Our final graphical technique, the normal Q—-Q plot, is useful for comparing
the frequency distribution of the data to a normal distribution. Since it is easy to
distinguish lines that are straight from ones that are not, a normal Q-Q plot is
constructed so that the data points fall along an approximately straight line when
the data are from a normal distribution, and deviate systematically from a straight
line when the data are from other distributions. Figure 2.4 shows the Q—Q plot for
the SBP data. The line of the data points shows a distinct curvature, indicating the
data are from a nonnormal distribution.

The shape and direction of the curvature can be used to diagnose the deviation
from normality. Upward curvature, as in Fig. 2.4, is indicative of right-skewness,
while downward curvature is indicative of left-skewness. The other two common
patterns are S-shaped. An S-shape as in Fig. 2.5 indicates a heavy-tailed distribu-
tion, while an S-shape like that in Fig. 2.6 is indicative of a light-tailed distribution.

Heavy- and light-tailed are always in reference to a hypothetical normal distri-
bution with the same spread. A heavy-tailed distribution has more observations in
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Fig. 2.6 Normal Q-Q plot of data from a light-tailed distribution

the middle of the distribution and way out in the tails, and fewer a modest way
from the middle (simply having more in the tails would just mean a larger spread).
Light-tailed means the reverse: fewer in the middle and far out tails and more in
the mid-range. Heavy-tailed distributions are generally more worrisome than light-
tailed since they are more likely to include outliers.
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Table 2.2 Effect of alog,y Value Difference  log,, value  Difference
transformation
0.01 0.09 -2 1
0.1 0.9 -1 1
1 9 0 1
10 90 1 1
100 900 2 1
1,000 - 3 -
3 1 <
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Fig. 2.7 Histograms of systolic blood pressure and its natural logarithm

2.3.1.4 Transformations of Data

A number of the techniques we describe in this book require the assumption of
approximate normality or, at least, work better when the data are not highly skewed
or heavy-tailed, and do not include extreme outliers. A common method for dealing
with these problems is to transform such variables. For example, instead of the
measured values of SBP, we might instead use the logarithm of SBP. We first
consider why this works and then some of the advantages and disadvantages of
transformations.

Transformations affect the distribution of values of a variable because they em-
phasize differences in a certain range of the data, while de-emphasizing differences
in others. Consider a table of transformed values, as displayed in Table 2.2. On the
original scale the difference between 0.01 and 0.1 is 0.09, but on the log,, scale,
the difference is 1. In contrast, the difference between 100 and 1,000 on the original
scale is 900, but this difference is also 1 on the log,, scale. So a log transformation
de-emphasizes differences at the upper end of the scale and emphasizes those at the
lower end. This holds for the natural log as well as log, transformation. The effect
can readily be seen in Fig.2.7, which displays histograms of SBP on the original
scale and after natural log transformation.

The log-transformed data is distinctly less right-skewed, even though some
skewness is still evident. Essentially, we are viewing the data on a different scale
of measurement.

There are a couple of other reasons to consider transforming variables, as we will
see in later sections and chapters: transformations can simplify the relationships
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Table 2.3 Frequencies of behavior patterns
tabulate behpat

behavioral |
pattern (4 |
level) | Freq. Percent Cum.
____________ oo ________
Al | 264 8.37 8.37
A2 | 1325 42.01 50.38
B3 | 1216 38.55 88.93
B4 | 349 11.07 100.00
____________ o o oo oo
Total | 3154 100.00

between variables (e.g., by making a curvilinear relationship linear), can remove
interactions, and can equalize variances across subgroups that previously had
unequal variances.

A primary objection to the use of transformations is that they make the data less
interpretable. After all, who thinks about medical costs in log dollars? In situations
where there is good reason to stay with the original scale of measurement (e.g.,
dollars), we may prefer alternatives to transformation including GLMs and weighted
analyses. Or we may appeal to the robustness of normality-based techniques: many
perform extremely well even when used with data exhibiting fairly serious violations
of the assumptions.

In other situations, with a bit of work, it is straightforward to express the results
on the original scale when the analysis has been conducted on a transformed scale.
For example, Sect. 4.7.5 gives the details for log transformations in linear regression.

A compromise when the goal is, for example, to test for differences between
two arms in a clinical trial is to plan ahead to present basic descriptive statistics
in the original scale, but perform tests on a transformed scale more appropriate for
statistical analysis. After all, a difference on the transformed scale is still a difference
between the two arms.

Finally, we remind the reader that different scales of measurement just take a bit
of getting used to: consider pH.

2.3.2 Categorical Variables

Categorical variables require a different approach, since they are less amenable to
graphical analyses and because common statistical summaries, such as mean and
standard deviation, are inapplicable. Instead we use tabular descriptions. Table 2.3
gives the frequencies, percents, and cumulative percents for each of the behavior
pattern categories for the WCGS data. Note that cumulative percentages are really
only useful with ordinal categorical data (why?).

When tables are generated by the computer, there is usually little latitude in the
details. However, when tables are constructed by hand, thought should be given
to their layout; Ehrenberg (1981) is recommended reading. Three easy-to-follow
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Table 2.4 Characteristics of top medical schools

NIH research Tuition Average
School Rank ($10 millions) ~ ($ thousands) ~ MCAT
Harvard 1 68 30 11.1
Johns Hopkins 2 31 29 11.2
Duke 3 16 31 11.6
Penn 4(Tie) 33 32 11.7
Washington U. 4(Tie) 25 33 12.0
Columbia 6 24 33 11.7
UCSF 7 24 20 114
Yale 8 22 30 11.1
Stanford 9(Tie) 19 30 11.1
Michigan 9(Tie) 20 29 11.0

Source: US News and World Report (http://www.usnews.com, 12/6/01)

suggestions from that article are to arrange the categories in a meaningful way (e.g.,
not alphabetically), report numbers to two effective digits, and to leave a gap every
three or four rows to make it easier to read across the table. Table 2.4 illustrates these
concepts. With the table arranged in order of the rankings, it is easy to see values
that do not follow the pattern predicted by rank, for example, out-of-state tuition.

2.4 Two-Variable Descriptions

Most of the rest of this book is about the relationships among variables. An example
from the WCGS is whether behavior pattern is related to SBP. In investigating the
relationships between variables, it is often useful to distinguish the role that the
variables play in an analysis.

2.4.1 Outcome Versus Predictor Variables

A key distinction is whether a variable is being predicted by the remaining variables,
or whether it is being used to make the prediction. The variable singled out to
be predicted from the remaining variables we will call the outcome variable;
alternate and interchangeable names are response variable or dependent variable.
The variables used to make the prediction will be called predictor variables. Al-
ternate and equivalent terms are covariates and independent variables. We slightly
prefer the outcome/predictor combination, since the term response conveys a cause-
and-effect interpretation, which may be inappropriate, and dependent/independent
is confusing with regard to the notion of statistical independence. (“Independent
variables do not have to be independent” is a true statement!).


http://www.usnews.com
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Table 2.5 Correlation coefficient for systolic blood pressure and weight
. correlate sbp weight (obs=3154)
| sbp weight
_____________ e

sbp | 1.0000
weight | 0.2532 1.0000

In the WCGS example, we might hypothesize that change in behavior pattern
(which is potentially modifiable) might cause change in SBP. This would lead us to
consider SBP as the outcome and behavior pattern as the predictor.

2.4.2 Continuous Outcome Variable

As before, it is useful to consider the nature of the outcome and predictor variables
in order to choose the appropriate descriptive technique. We begin with continuous
outcome variables, first with a continuous predictor and then with a categorical
predictor.

2.4.2.1 Continuous Predictor

When both the predictor and outcome variables are continuous, the typical
numerical description is a correlation coefficient and its graphical counterpart is a
scatterplot. Again considering the WCGS study, we will investigate the relationship
between SBP and weight.

Table 2.5 shows the Stata command and output for the correlation coefficient,
while Fig.2.8 shows a scatterplot. Both the graph and the numerical summary
confirm the same thing: there is a weak association between the two variables,
as measured by the correlation of 0.25. The graph conveys important additional
information. In particular, there are quite a few outliers, including an especially
anomalous data point with high blood pressure and the lowest weight in the dataset.

The Pearson correlation coefficient r, more fully described in Sect. 3.2, is a scale-
free measure of association that does not depend on the units in which either SBP
or weight is measured. The correlation coefficient varies between —1 and 1, and
correlations of absolute value 0.7 or larger are considered strong associations in
many contexts. In fields where data are typically noisy, including our SBP example,
much smaller correlations may be considered meaningful.

It is important to keep in mind that the Pearson correlation coefficient only
measures the strength of the linear relationship between two variables. To determine
whether the correlation coefficient is a reasonable numerical summary of the
association, a graphical tool that helps to assess linearity in the scatterplot is a
scatterplot smoother. Figure2.9 shows a scatterplot smooth superimposed on the
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Fig. 2.8 Scatterplot of systolic blood pressure versus weight
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Fig. 2.9 LOWESS smooth of systolic blood pressure versus weight

graph of SBP versus weight. The figure was generated by the Stata command
lowess sbp weight, bw(0.25) (with a few embellishments to make it
look nicer). This uses the LOWESS technique to draw a smooth (but not necessarily
straight) line representing the average value of the variable on the y-axis as a
function of the variable on the x-axis. LOWESS is short for LOcally WEighted
Scatterplot Smoother. The bw (0.25) option specifies that for estimation of the
height of the curve at each point, 25% of the data nearest that point should be used.
This is all just a fancy way of drawing a flexible curve through a cloud of points.



20 2 Exploratory and Descriptive Methods

Table 2.6 Summary data for systolic blood pressure by behavior pattern

. bysort behpat: summarize sbp

sbp | 349 127.1547 13.10125 102 178

Figure 2.9 shows that the relationship between SBP and weight is very close to
linear. The small upward bend at the far left of the graph is mostly due to the outlying
observation at the lowest weight and is a warning as to the instability of LOWESS
(or any scatterplot smoother) at the edges of the data.

Choice of bandwidth is somewhat subjective. Small bandwidths like 0.05 often
give very bumpy curves, which are hard to interpret. At the other extreme,
bandwidths too close to one force the curve to be practically a straight line, obviating
the advantage of using a scatterplot smoother. See Problem 2.6.

2.4.2.2 Categorical Predictor

With a continuous outcome and a categorical predictor, the usual strategy is to apply
the same numerical or graphical methods used for one-variable descriptions of a
continuous outcome, but to do so separately within each category of the predictor.
As an example, we describe the distribution of SBP in WCGS, within levels of
behavior pattern. Table 2.6 shows the most direct way of doing this in Stata.
Alternatively, the table command can be used to make a more compact display,
with command options controlling which statistics are listed. The results are shown
in Table 2.7.

Side-by-side boxplots, as shown in Fig.2.10, are an excellent graphical tool for
examining the distribution of SBP in each of the behavior pattern categories and
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Table 2.7 Descriptive statistics for systolic blood pressure by behavior pattern

. table behpat, contents(mean sbp sd sbp min sbp max sbp)

Behaviora |
1 Pattern | mean(sbp) sd (sbp) min (sbp) max (sbp)
__________ A m o o o o
Al | 129.2462 15.29221 100 200
A2 129.8891 15.77085 100 212
B3 127.5551 14.78795 98 230
B4 127.1547 13.10125 102 178
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Fig. 2.10 Boxplots of systolic blood pressure by behavior pattern

making comparisons among them. The four boxplots are quite similar. They each
have about the same median, interquartile range, and a slight right-skewness. At
least on the basis of this figure, there appears to be little relationship between SBP
and behavior pattern.

2.4.3 Categorical Outcome Variable

With a categorical outcome variable, the typical method is to tabulate the outcome
within levels of the predictor variable. To do so first requires breaking any
continuous predictors into categories. Suppose, for example, we wished to treat
behavior pattern as the outcome variable and weight as the predictor. We might first
divide weight into four categories: <140 pounds, >140-170, >170-200, and >200.
As with histograms, we need enough categories to avoid loss of information, without
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Table 2.8 Behavior pattern by weight category

. tabulate behpat wghtcat, column

behavioral |

pattern (4 | wghtcat
level) | < 140 140-170 170-200 > 200 | Total
___________ oo o o g
Al | 20 125 98 21 | 264
| 8.62 8.13 8.37 9.86 | 8.37
___________ oo g ____
A2 | 100 612 514 99 | 1325
| 43.10 39.79 43.89 46.48 | 42.01
___________ o o o o e g
B3 | 90 610 443 73 | 1216
| 38.79 39.66 37.83 34.27 | 38.55
___________ o o o g
B4 | 22 191 116 20 | 349
| 9.48 12.42 9.91 9.39 | 11.07
___________ oo g __
Total | 232 1538 1171 213 | 3154
| 100.00 100.00 100.00 100.00 | 100.00

defining categories that include too few observations. Familiar clinical categories are
often useful (e.g., glucose <110, 110-125, >125). In Table 2.8, we have requested
percentages for each column to facilitate the comparison of the percentages in each
behavior pattern between the weight categories. Row percentages or percentages out
of the total of 3,154 could also have been requested.

In choosing cutoff points for categorical variables, it is entirely fair to look at the
distribution of that variable to try to obtain, for example, roughly equal sample sizes
in each of the categories. Splitting the data into 3, 4,5, or 10 groups of equal size
is a common approach. However, fishing for cutpoints that prove a point is an easy
way to arrive at misleading conclusions.

A different strategy with a categorical outcome and a continuous predictor is to
“turn the problem around” and treat the continuous variable as the outcome, using
the methods of the previous section. If the only goal is to determine whether the
two variables are associated, this may suffice. But when the categorical variable
is clearly the outcome, this may lead to awkward models and hard-to-interpret
conclusions.

2.5 Multivariable Descriptions

Description of more than two or three variables simultaneously quickly becomes
difficult. One approach is to look at pairwise associations, e.g., for categorical
variables, looking at a series of two-way tables, taking each pair of variables in
turn. If a number of the variables are continuous, a correlation matrix (giving all the
pairwise correlations) or a scatterplot matrix (giving all the pairwise plots) can be
generated. Table 2.9 and Fig.2.11 show these for the variables SBP, age, weight,
and height.The correlation matrix shows that SBP is very weakly correlated with
age and weight and essentially uncorrelated with height.
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Table 2.9 Correlation matrix for systolic blood pressure, age, weight, and height
. correlate sbp age weight height (obs=3154)

| sbp age weight height
_____________ T
sbp | 1.0000
age | 0.1657  1.0000
weight | 0.2532 -0.0344 1.0000
height | 0.0184 -0.0954 0.5329  1.0000
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Fig. 2.11 Scatterplot matrix of systolic blood pressure, age, weight, and height

The scatterplot matrix supports the correlation calculation. If one of the variables
is clearly the outcome variable, it is useful to list this variable first in the
command. That way the first row of the matrix shows the outcome variable on the
y-axis, plotted against each of the predictor variables on the x-axis. The matrix
of scatterplots for these four variables additionally displays the modest positive
correlation between weight and height, indicating the people come in all sizes and
shapes!

Multi-way tables that go beyond pairwise relationships can be generated with
multiple categorical variables. For example, Table 2.10 shows whether or not the
subject had a coronary event (chd69), by behavior pattern within weight category.
Options in the Stata command are used to obtain the row and column totals. With
some study, it is possible to extract information from this three-way table, but it is
more difficult than with a one- or two-way table. An advantage of a three-way table
is the ability to assess interaction, the topic of Sect.4.6. That is, is the relationship
between CHD and behavior pattern the same for each weight category?
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Table 2.10 CHD events and behavior pattern by weight category

. table chdé9 behpat wghtcat, row col

| wghtcat and behavioral pattern (4 level)

[ ettt < 140 ----mmmmmmmmm mmmem oo 140-170 ----=--=---~
CHD event | Al A2 B3 B4 Total Al A2 B3 B4 Total
,,,,,,,,,, o
no | 18 93 84 22 217 115 559 582 184 1,440
yes | 2 7 6 15 10 53 28 7 98
\
Total | 20 100 90 22 232 125 612 610 191 1,538
| wghtcat and behavioral pattern (4 level)
| mmmmeme - 170-200 --=-====-==-  —-—-————————— > 200 —------------
CHD event | Al A2 B3 B4 Total Al A2 B3 B4 Total
__________ e o .
no | 81 438 422 108 1,049 20 87 67 17 191
yes | 17 76 21 8 122 1 12 6 3 22
\
Total | 98 514 443 116 1,171 21 99 73 20 213
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Fig. 2.12 Scatterplot of SBP versus weight by behavior pattern

Analogous graphical displays are also possible. For example, we could look at the
relationship between SBP and weight separately by behavior pattern, as displayed in
Fig.2.12. This indicates that the relationship seems to be the same for each behavior
pattern, indicating a lack of interaction.
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2.6 Summary

Exploratory summaries and graphs are a crucial first step in any data analysis.
They provide an opportunity to uncover unusual or anomalous data points which
may affect the analysis. Summaries and graphs uncover properties of the data (for
instance, skewness) which are useful for informing which model families may fit the
data best. Finally, exploring the strength of relationships between variables through
graphs provides compelling summaries of the relationships as well as guidance for
building regression models.

2.7 Problems

Problem 2.1. Classify each of the following variables as numerical or categorical.
Then further classify the numerical variables as continuous or discrete, and the
categorical variables as ordinal or nominal.

(1) Gender
(2) Race
(3) Age (in years)
(4) Age in categories (0-20, 21-35, 36-45, 45-60, 6085, 85+)
(5) Zipcode
(6) Toxicity (mild, moderate, life-threatening, dead)
(7) Number of hospitalizations in the past year
(8) Change in HIV-RNA
(9) Weeks on treatment
(10) Treatment (placebo versus estrogen)

Problem 2.2. Generate pseudo-random data from a normal distribution using a
computer program or statistics package. In Stata, this can be done using the
generate command and the function invnorm (uniform () ).Now generate a
normal Q-Q plot for these data. Do this for several samples of size 10, 50, and 200.
How well do the Q—Q plots approximate straight lines? This is valuable practice for
judging how well an actual dataset can be expected to approximate a straight line.

Problem 2.3. Generate pseudo-random samples of size 50 from a normal distri-
bution (see Problem 2.2 for how to do this in Stata). Construct histograms of the
data using 5, 7, and 15 bins. What do you notice? Do the shapes look like a normal
distribution?

Problem 2.4. Warfarin is a drug used to prevent blood clots, for example in patients
with irregular heartbeat and after heart surgery. However, too much warfarin can
cause unusual bleeding or bruising, so calibration of the dose is important. A study
contrasting calibration times (in hours) in two ethnic groups had the following
results. For the sample of 19 Caucasians, the times were 2, 4, 6, 7, 8, 9, 10, 10,



26 2 Exploratory and Descriptive Methods

12,14, 16, 19, 21, 24, 26, 30, 35, 44, and 70; for the 18 Asian—Americans, the times
were2,2,3,3,4,5,5,6,6,6,7,7,8,9, 10, 12, 19, and 32.

(1) Display the data numerically to compare the two ethnic groups.

(2) Display the data graphically to compare the two ethnic groups.

(3) Describe the distribution of the data within ethnic group.

(4) Log transform the data and repeat the graphical display. How do the displays
with and without log transformation compare?

(5) Can you think of other variables you might want to adjust to help understand
the ethnic differences better?

Problem 2.5. The timing of various stages in the contraction of the heart,
determined by electro-cardiogram (EKG), can be used to diagnose heart problems.
A commonly measured time interval in the contraction of the ventricles is the so-
called QRS wave. A study was conducted to see if longer QRS times were related to
the ability to induce rapid heart rhythms (called inducible ventricular tachycardia or
IVT), which have been associated with adverse outcomes. In a study of 53 subjects,
the 18 with IVT had QRS times (in milliseconds) of 70, 75, 86, 90, 96, 102, 110,
114, 116, 117, 120, 130, 136, 142, 145, 152, 170, and 182. The 35 patients without
IVT had QRS times of 40, 50, 65, 70, 76, 78, 80, 82, 85, 88, 88, 89, 90, 94, 95, 96,
98, 98, 100, 102, 105, 107, 109, 110, 114, 115, 120, 125, 130, 135, 138, 150, 165,
170, and 180.

(1) Display the data numerically to help understand whether QRS time is related to
IVT.

(2) Display the data graphically to help understand whether QRS time is related to
IVT.

(3) QRS time is commonly considered as abnormal if the value is greater than
120 ms. Generate a numerical display to help understand if abnormal QRS is
related to IVT.

(4) What are the advantages and disadvantages of treating QRS as binary (above
120 ms) instead of continuous?

Problem 2.6. Using the WCGS dataset, generate a LOWESS (or equivalent)
scatterplot smooth of SBP versus weight, comparable to Fig.2.9. Next try the plot
with bandwidths of 0.05, 0.15, and 0.50. How do they compare? Which is most
useful for judging the linearity or lack of linearity of the relationship? The WCGS
data are available at http://www.biostat.ucsf.edu/vgsm.
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Chapter 3
Basic Statistical Methods

Statistical analyses involving multiple predictors are generalizations of simpler
techniques developed for investigating associations between outcomes and single
predictors. Although many of these should be familiar from basic statistics courses,
we review some of the key ideas and methods here as background for the methods
covered in the rest of the book and to introduce some basic notation.

Sections 3.1-3.3 review basic methods for continuous outcomes, including the
t-test and one-way ANOVA, the correlation coefficient and the linear regression
model for a single predictor. Section 3.4 focuses on contingency table methods
for investigating associations between binary outcomes and categorical predictors,
including a discussion of basic measures of association. Section 3.5 introduces
descriptive methods for survival time outcomes, including Kaplan—Meier survival
curves and the logrank test. In Sect. 3.6, we introduce the use of the bootstrap as
a method to obtain CIs for estimates in situations where traditional methods are
inappropriate. Finally, Sect.3.7 discusses the importance of properly interpreting
negative findings from statistical analyses, focusing on the use of point estimates
and CIs rather than P-values.

3.1 t-Test and Analysis of Variance

The t-test and one-way ANOVA are basic tools for assessing the statistical
significance of differences between the average values of a continuous outcome
across two or more samples. Both the 7-test and one-way ANOVA can be seen as
methods for assessing the association of a categorical predictor—binary in the case
of the ¢-test, with more than two levels in the case of one-way ANOVA—with a
continuous outcome. Both are based in statistical theory for normally distributed
outcomes, but work well for many other types of data; and both turn out to be special
cases of linear regression models.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology 27
and Health, DOI 10.1007/978-1-4614-1353-0_3,
© Springer Science+Business Media, LLC 2004, 2012
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Table 3.1 ¢-Test of difference in average glucose by exercise

. t-test glucose if diabetes == 0, by (exercise)

Two-sample t-test with equal variances

Variable | Obs Mean sStd. Err. Std. Dev. [95% Conf. Intervall]
______ mo | 1191  7.3610a 2868131  9.898169  96.79833  97.92376

yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786
combined | 2032 96.66043  .2162628  9.74863  96.23631  97.08455
a7 1.692789 4375862 5346243 2.550954

Degrees of freedom: 2030

Ho: mean(no) - mean(yes) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8685 t = 3.8685 t = 3.8685
P<t = 0.9999 P> |t| = 0.0001 P>t = 0.0001

3.1.1 t-Test

The basic ¢-test is used in comparing two independent samples. The #-statistic on
which the test is based is the difference between the two sample averages, divided by
the standard error of that difference. The 7-test is designed to work in small samples,
whereas Z-tests are not. Table 3.1 shows the result of a ¢-test comparing average
fasting glucose levels among women without diabetes, according to exercise. This
is the first of many examples in Chaps.3 and 4 using data from the heart and
estrogen/progestin study (HERS), a clinical trial of hormone therapy (HT) for
prevention of recurrent heart attacks and death among 2,763 post-menopausal
women with existing coronary heart disease (CHD) (Hulley et al. 1998). Average
glucose is 97.4 mg/dL among the 1,191 women who do not exercise as compared
to 95.7 mg/dL. among the 841 women who do. The difference of 1.7 mg/dL is
statistically significant (P = 0.0001) in the two-sided test shown in the column
headed Ha: diff != 0 (!= is Stata notation for “not equal to.”) The P-value
gives the probability—under the null hypothesis that mean glucose levels are the
same in the two populations being compared—of observing a f-statistic more
extreme, or larger in absolute value, than the observed value.

3.1.2 One- and Two-Sided Hypothesis Tests

In clinical research, unlike some other areas of science, two-sided hypothesis tests
are almost always used. In the two-sided z-test, we are testing the null hypothesis
(Ho) of equal population means against the alternative hypothesis (Ha) that the one
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mean is either smaller or larger than the other. The two-sided test is appropriate, for
example, when a new treatment might turn out to be beneficial or to have adverse
effects.

In contrast, only one of these alternatives is considered in a one-sided test. As a
result, the smaller of the one-sided P -values is half the magnitude of the two-sided
P-value. The resulting advantage of the one-sided test is that at a given significance
level, less evidence in favor of the alternative hypothesis is required to reject the
null. For example, using a one-sided test in a sample of 100 observations, we would
declare statistical significance at the 5% level if the ¢-statistic exceeds 1.66; using
a two-sided test it would need to exceed 1.98 (in absolute value). A direct benefit
is that a somewhat smaller sample size is required when a study is designed to be
analyzed using a one-sided test.

Use of a one-sided test is sometimes motivated by prior information that makes
only one of the alternatives of interest. An example might be in testing an existing
treatment known to be safe for evidence of benefit on a new endpoint. One-sided
tests are also used in noninferiority trials comparing a new to a standard treatment;
in this setting the alternative hypothesis is that the new treatment performs almost as
well or better than the standard treatment, as against the null hypothesis of clearly
performing worse.

However, in part because they make it possible to reject the null hypothesis on
weaker evidence, one-sided tests are not commonly used in clinical research. Even
in noninferiority trials where one-sided tests are clearly appropriate, a standard text
on the conduct of clinical trials (Friedman et al.1998) recommends that the tests be
carried out at a significance level of 2.5%. Thus to claim noninferiority, the same
strength of evidence would be required as in a two-sided test. Furthermore, Fleiss
(1988) argues that the other alternative ought generally to be of interest, and that
in treatment trials adverse effects can rarely be ruled out with sufficient certainty to
justify a one-sided test. We endorse this conservative view, and recommend using
two-sided tests unless a one-sided test is strongly motivated by specific reasons.

The Stata t-test command gives P-values for both one-sided test as
well as the two-sided test. In Table 3.1, the one-sided P-value on the right
(Ha: diff > 0) gives the probability (again, under the null hypothesis) of
observing a f-statistic larger than the observed value, while the one on the left
(Ha: diff < 0) gives the probability of observing one that is smaller. In this
example, there is strong evidence (P = 0.0001) that the mean glucose level is
higher in the population of women who do not exercise, as compared to those who
do, and essentially no evidence (P = 1.0) that it is smaller.

3.1.3 Paired t-Test

The paired z-test is for use in settings where individuals or observations are linked
across the two samples. Examples include measurements taken at two time points on
the same individuals, or on other naturally linked pairs, as in a clinical trial where
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one eye is treated and the other serves as a control. In this case, the two samples
are not independent and failure to take account of the pairwise relationships wastes
information and is potentially erroneous.

The paired ¢-test procedure first computes the pairwise differences for each
individual or linked pair. In the first example, this is the change in the outcome
from the first time point to the second, and in the second, the difference between the
outcomes for the treated and control eyes. Then a ¢-test is used to assess whether the
population mean of these paired differences differs from zero. An increase in power
results because between-individual variability is eliminated in the first step. The
paired z-test is also implemented using the t -test command in Stata. The more
complicated case where we want to examine the influence of some other factor on
within-individual changes is covered in Sect. 7.3.

3.1.4 One-Way Analysis of Variance

Suppose that we need to compare sample averages across the arms of a clinical
trial with multiple treatments, or more generally across more than two independent
samples. For this purpose, one-way ANOVA and the F-test take the place of
the 7-test. The F-test, presented in more detail in Sect.4.3, assesses the null
hypothesis that the mean value of the outcome is the same across all the populations
sampled from, against the alternative that the means differ in at least two of the
populations. For example, the one-way ANOVA shown in Table 3.2, the F-test for
Between groups (P =0.0371), suggests that mean SBP differs by ethnicity in
the population represented in the HERS cohort.

3.1.5 Pairwise Comparisons in ANOVA

The statistically significant F-test in the one-way ANOVA indicates the overall
importance of ethnicity for predicting SBP. In addition, Stata implements the
Bonferroni, Scheffé, and Sidak procedures for assessing the statistical significance
of all possible pairwise differences between groups, without inflation of the overall
or family-wise type-I error rate (FER), which can arise from testing multiple null
hypotheses. These and other methods for controlling the FER are discussed in
Sects.4.3.4 and 13.4.1. All three methods implemented in the oneway command
show that the difference in average SBP between the African American and white
groups is statistically significant after correction for multiple comparisons, but that
the other pairwise differences are not; we show the Scheffé result.
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Table 3.2 One-way ANOVA assessing differences in SBP by ethnicity

. oneway sbp ethnicity, tabulate scheffe

Summary of systolic blood pressure

|
ethnicity | Mean Std. Dev. Freq.
____________ PP
White | 134.78376 18.831686 2451
Afr Amer | 138.23394 19.992518 218
Other | 135.18085 21.259767 94
____________ PP
Total | 135.06949 19.027807 2763
Analysis of Variance
Source ss df MS F Prob > F
Between groups 2384.26992 2 1192.13496 3.30 0.0371
Within groups 997618.388 2760 361.455938
Total 1000002.66 2762 362.057443
Comparison of systolic blood pressure by ethnicity
(Scheffe)
Row Mean- |
Col Mean | White  Afr-Amer
_________ o oo e mmmmmmmmmmo_
Afr-Amer | 3.45018
| 0.037
Other | .397089  -3.05309
| 0.980 0.429

3.1.6 Multi-way ANOVA and ANCOVA

Multi-way ANOVA is an extension of the one-way procedure to deal simultaneously
with more than one categorical predictor, while analysis of covariance (ANCOVA)
is commonly defined as an extension of ANOVA that includes continuous as well
as categorical predictors. The - and F-tests retain their central importance in
these procedures. However, one-way ANOVA and the 7-test implicitly estimate
the different population means by the sample averages; in contrast, the population
means in multi-way ANOVA and ANCOVA are usually modeled. Thus these
procedures are most easily understood as multipredictor linear regression models,
which are covered in Chap. 4.

3.1.7 Robustness to Violations of Normality Assumption

The z- and F-tests are fairly robust to violations of the normality assumption,
especially in larger samples. By robust we mean that the type-I error rate, or
probability of rejecting the null hypothesis when it holds, is not seriously affected.
They are primarily sensitive to outliers, which tend to decrease efficiency and make
it harder to detect real differences between groups. Thus the effect is conservative,
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in the sense of making it more likely that we will accept the null hypothesis when
some real difference exists.

Large samples reduce sensitivity of the 7-test to the assumption that the outcome
is normally distributed because the distribution of the difference between the sample
averages, which directly underlies the test, converges to a normal distribution even
when the outcome itself has some other distribution. If violations of the normality
assumption are mild to moderate, samples of 50-100 may be large enough, in
particular with equal group sizes, but considerably larger samples might be needed
with severe violations. Analogous large-sample behavior holds for the regression
coefficients estimated in multipredictor linear models as well as the other regression
models that are the primary topic of this book.

3.1.8 Nonparametric Alternatives

One commonly recommended solution for violations of the normality assumption
is to use nonparametric Wilcoxon rank-sum or Kruskal-Wallis tests rather than the
t-test or one-way ANOVA. Two other nonparametric methods are discussed below
in Sect. 3.2 on the correlation coefficient.

While they avoid specific parametric distributional (i.e., normality) assumptions,
these methods are not assumption-free. For example, the Wilcoxon and Kruskal—
Wallis tests are based on the assumption that the outcome distributions being
compared differ in location (mean and/or median) but not in scale (variance) or
shape, as might be captured by a histogram, and can give misleading results if these
assumptions are violated. Furthermore, these two tests do not provide an inter-
pretable measure of the strength of the association. More generally, nonparametric
methods sometimes result in loss of efficiency, and do not easily accommodate
multiple predictors, unlike the regression methods which are the focus of this book.

Nonparametric tests are most useful for unadjusted between-group comparisons
where the P-value is of primary interest, in particular for variables with skewed
distributions that cannot be normalized by transformation, or outliers that must be
retained for substantive reasons.

3.1.9 Equal Variance Assumption

When sample sizes are unequal, the 7-test is less robust to violations of the
assumption of equal variance across samples than to violations of normality.
Violations of this assumption can seriously affect the type-I error rate, not always
in a conservative direction, and large samples do not make the test any more robust.
In contrast, the overall F'-test in ANOVA loses efficiency, but the type-I error rate
is generally not increased. However, subsequent pairwise comparisons using #-tests
remain vulnerable.
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Table 3.3 ¢-Test allowing for unequal variances

. t-test glucose if diabetes == 0, by(exercise) unequal

Two-sample t-test with unequal variances

Variable | Obs Mean sStd. Err. Std. Dev. [95% Conf. Intervall]
______ mo | 1191  7.3610a 2868131  9.898169  96.79833  97.92376

yes | 841 95.66825 .3258672 9.450148 95.02864 96.30786
combined | 2032 96.66043  .2162628  9.74863  96.23631  97.08455
a7 1.692789 4341006 8413954 2.544183

Satterthwaite’s degrees of freedom: 1858.33

Ho: mean(no) - mean(yes) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
t = 3.8995 t = 3.8995 t = 3.8995
P<t= 1.0000 P> |t| = 0.0001 P>t = 0.0000

In the two-sample case, this problem is easily addressed using a version of the
t-test for unequal variances. This is based on a modified estimate of the standard
error of the difference in sample averages. In the analysis shown in Table 3.1, the
standard deviation of glucose is 9.9 mg/dL among women who do not exercise,
as compared to 9.5 mg/dL among the women who do. In this case, the re-analysis
allowing for unequal variances, shown in Table 3.3, gives qualitatively the same
result (P = 0.0001). We recommend systematic use of this version of the 7-test,
since the increase in robustness comes at very little cost in efficiency. Analogous
extensions of ANOVA in which the variance is allowed to vary by group are also
possible, though not implemented in the Stata one -way or anova commands.

3.2 Correlation Coefficient

The Pearson correlation coefficient r is a scale-free measure of linear association
between two variables x and y, and is defined as follows:

Cov(x, y)
SD(x)SD(y)
Yisii =X =)/ (=1

— . 3.
VY ioi (i = X)2 /(=1 Yo (i — 9)2/(n— 1)

In (3.1), Cov(x, y) is the sample covariance of x and y, X and y are their sample
means, SD(x) and SD(y) their standard deviations, and » is the sample size. The
covariance reflects the degree to which observations on the two variables differ from

r(x,y) =
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their respective means in the same degree and direction. Dividing Cov(x, y) by the
standard deviations of x and y in (3.1) gives the correlation r(x, y), which is scale-
free in the sense that it always takes on values between —1 and 1 and does not vary
with the units of measurement used for either variable (Problem 3.2).

The correlation coefficient is a measure of /inear association, in a sense that will
become clearer in Sect. 3.3 on the simple linear model. Values of r near zero denote
the absence of linear association, while values near 1 mean that x and y increase
almost in lockstep, their paired values in a scatterplot falling close to a straight line
with positive slope. Correlations between —1 and zero mean that y tends to decrease
as x increases. Note that powerful nonlinear associations between x and y—for
example, if y is proportional to x>—are often consistent with correlations near zero;
in the example, this can happen if x ~ 0.

3.2.1 Spearman Rank Correlation Coefficient

Like the #-test (and the coefficients of the linear regression model described below),
the correlation coefficient is sensitive to outliers. In this case, a robust alternative is
the Spearman correlation coefficient, which is equivalent to the Pearson coefficient
applied to the ranks of x and y. This measure of correlation also takes on values
between —1 and 1. By rank, we mean position in the ordered sequence of the values
of a variable; if x takes on values 1.2, 0.5, 18.3, and 2.7, then the ranks of these
values are 2, 1, 4, and 3, respectively. Thus the rank of the outlier 18.3 is only 1 unit
larger than the rank of the next largest value 2.7, the same distance that separates the
ranks of any two sequential values of x, thus depriving the outlier of undue influence
in estimating the correlation between x and y. Ties are handled by computing
the average rank of the tied values. Ranks are used in a range of nonparametric
methods, in no small part because of their robustness when the data include outliers.
Their disadvantage is that any information contained in the measured values of the
outcome beyond the ranks is lost.

3.2.2 Kendall’s T

Another rank-based alternative to Pearson’s correlation coefficient is Kendall’s 7,
defined as the difference in the number of concordant and discordant pairs of data
points, as a proportion of the number of evaluable pairs. In the absence of ties, the
pair of data points (x;, y;) and (x;, y;) for observations i and j is concordant if
x; > xj and y; > y;,orif x; < x; and y; < y;, and discordant otherwise. It is
easy to see that we need only know the ranks of the x and y values, not their actual
values, to evaluate the conditions for concordance. If the numbers of concordant
and discordant pairs are about equal, then 7 ~ 0; essentially this means that the fact
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that x; > x; gives little information about whether y; > y;. But as the proportion
of concordant pairs grows, t approaches 1, reflecting the fact that the ordering of
the x pairs is highly associated with the ordering of the y pairs. Conversely, if most
pairs are discordant, then t approaches —1; again, the orderings of the x and y pairs
are highly associated. Kendall’s 7 is sometimes used as a measure of correlation for
time-to-event outcomes.

3.3 Simple Linear Regression Model

Here we present the simple linear regression model with a continuous outcome and
a single continuous predictor variable.

3.3.1 Systematic Part of the Model

The main purpose of this model is to determine how the average value of the
continuous outcome y varies with the value of a single predictor x. The average
values of the outcome are assumed to lie on a “regression line” or “line of means.”
Figure 3.1 shows values of baseline SBP by age in the HERS trial of hormone
therapy. To make the idea of a line of means more concrete, the square symbols in
the plot show the average SBP within each decile of age. Naturally, there is some
noise in these local means, although much less than in the raw data. Moreover, the
continuous regression line, assumed to be linear, captures the increasing trend rather

200

Systolic Blood Pressure
150

40 50 60 70 80
Age in Years

Fig. 3.1 Linear regression model for SBP and age
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well. Its slope represents the systematic dependence of the outcome on the predictor,
and is thus usually the focus of interest.
The formula for the regression line is simple and has interpretable parameters:

E[y|x] = average value of SBP for a given age

= Bo + Prage
= 105.7 + 0.44age. (3.2)

In (3.2), E[y|x] is shorthand for the Expected or average value of the outcome y
at a given value of the predictor x. B; gives the slope of the regression line, and
is interpretable as the change in average SBP for a one-year increase in age. The
estimate of §; from the sample shown in the plot suggests that among women with
heart disease, average SBP increases 0.44 mmHg for each one-year increase in age.
This estimate is the best fitting value in a sense explained below in Sect. 3.3.4.

It is also easy to see that the estimate of the intercept parameter By = 105.7
gives the average value of the outcome when age is zero. While not meaningless
in this case, these data obviously provide no direct information about SBP at age
zero. This illustrates the more general point that while regression models are often
approximately true within the range of the observed data, extrapolation is usually
risky. “Centering” the predictor by subtracting off a value within the range of
the data can resolve this problem. One reasonable choice in this example would
be the sample average age of 67; then the centered age variable would have value
zero for women at age 67, and the new intercept, 135.2 mmHg, estimates average
SBP among women this age. The slope estimate is unaffected by centering the
age variable.

3.3.2 Random Part of the Model

It is also clear from Fig.3.1 that at any given age, SBP varies considerably.
Possible sources of this variability include measurement error, diurnal patterns,
and a potentially broad range of unmeasured determinants of SBP, including the
immediate circumstances when the measurement was made. These factors are
combined in an error term &, so that for observation i

SBP; = mean SBP for subjects of age; + error;
= o + Prage; + & (3.3)

The statistical assumptions of the linear regression model concern the distribution of
e. Specifically, we assume that &; ~ i.i.d N'(0, 62), meaning that ¢ is independently
and identically distributed and has a
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* Normal distribution

e Mean zero at every value of age

« Constant variance o at every value of age
e Values that are statistically independent

In Sect. 4.7, we will see that the first assumption may sometimes be relaxed. The
second assumption is important to checking whether the relationship between a nu-
merical predictor and the outcome is linear, as assumed in (3.2), (3.3), and Fig. 3.1;
violations can be examined and repaired using methods also introduced in Sect. 4.7.
The third assumption, of constant variance, is sometimes called homoscedasticity;
data which violate this assumption are called heteroscedastic, and can be dealt with
using methods also discussed in Sect.4.7 as well as Chap. 8. Chapters 7 and 12
introduce methods for data where the fourth assumption, of independence, does
not hold. Some examples include samples with repeated measures on individuals,
cluster samples where patients are selected from within a sample of physician
practices, and complex survey samples such as the national health and nutrition
examination survey (NHANES).

3.3.3 Assumptions About the Predictor

In contrast to the outcome, no distributional assumptions are made about the
predictor in the linear regression model. In the case of the linear model with a single
continuous predictor, we do not assume that the predictor has a normal distribution,
although we will see in Sect. 4.7 that outlying values of the predictor can cause
trouble in some circumstances. In addition, binary, categorical, and discrete numeric
variables including counts are easily accommodated as predictors in these models.

Although we do not need to make assumptions about the distribution of the
predictor, these models do perform better when it is relatively variable. For example,
it would be more difficult to estimate the age trend in average SBP if the sample were
limited to women aged 65-70. For binary and categorical predictors, the analogous
limitation is that the subgroups defined by the predictor should not be too small. The
impact of the variability of the predictor, or lack of it, is reflected in the standard
error of the regression coefficient, as shown below in Sect. 3.3.7.

Finally, when we want to assess the relationship of the outcome with the true
values of the predictor, we effectively assume that the predictors are measured
without error. This is often not very realistic, and the effects of violations are the
subject of ongoing statistical research. Random measurement errors unrelated to the
outcome result in attenuation of estimated slope coefficients toward zero, sometimes
called regression dilution bias (Frost and Thompson 2000). Despite some loss
of efficiency, reasonable estimation is often possible in the presence of mild-to-
moderate error in the measurement of the predictors. Moreover, for prediction of
new outcomes, values of the predictor measured with error may suffice.
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Table 3.4 OLS regression of SBP on age
. reg SBP age

Source | sS af MS Number of obs = 276
————————————— hm e F( 1, 274) = 5.58
Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200
————————————— B T it Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761

sbp | Coef. Sstd. Err. t P>|t| [95% Conf. Interval]
_____________ o o o o ool
age | .4405286 .186455 2.36 0.019 .0734621 .8075952

cons | 105.713 12.40238 8.52 0.000 81.2969 130.129

3.3.4 Ordinary Least Squares Estimation

The model (3.3) refers to the population of women with heart disease from which the
sample shown in Fig. 3.1 was drawn. The regression line in the figure is an estimate
of the population regression line that was found using ordinary least squares (OLS).
Of all the lines that could be drawn though the scatterplot of the data to represent
the trend in SBP with increasing age, the OLS estimate minimizes the sum of the
squared vertical differences between the data points and the line.

Since the regression line is uniquely determined by B¢ and B, the intercept
and slope parameters, fitting the regression model amounts to finding estimates
,30 and ,é | which meet the OLS criterion. In addition to being easy to compute, these
OLS estimates have desirable statistical properties. If model assumptions hold, ,30
and ,3 1 are unbiased estimates of the population parameters.

Definition: An estimate is unbiased if, over many repeated samples drawn from the
population, the average value of the estimates based on the different samples would equal
the population value of the parameter being estimated.

OLS estimates are also minimally variable and well behaved in large samples
when the distributional assumptions concerning ¢ are not precisely met. However,
a drawback of the OLS estimation criterion is sensitivity to outliers, which arises
from squaring the vertical differences (Problem 3.1). Section 4.7 will show how to
diagnose and deal with influential points.

Table 3.4 shows Stata results for an OLS regression of SBP on age. The estimate
of B, the slope coefficient (Coef.) for age, is 0.44 mmHg per year, and the
intercept estimate ,30 is 105.7 mmHg (_cons).
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3.3.5 Fitted Values and Residuals

The OLS estimates ,30 and ,31 in turn determine the fitted value y corresponding to
every data point:

$i = Bo+ pixi. (3.4)

It should be plain that the fitted value y; lies on the estimated regression line at the
point where x = x;. For a woman at the average age of 67, the fitted value is

105.713 + 0.4405286 x 67 = 135.2 mmHg. (3.5)

The residuals are defined as the difference between observed and fitted values of the
outcome:

ri =yi — i. (3.6)

The residuals are the sample analog of &, the error term introduced earlier in
Sect. 3.3, and as such are particularly important in fitting the model, in estimating
the variability of the parameter estimates, and in checking model assumptions and
fit (Sect. 4.7).

3.3.6 Sums of Squares

Various sums of squares are central to understanding OLS estimation and to reading
the Stata regression model output in Table 3.4. First is the total sum of squares
(TSS):

n
TSS =) (v — )% 3.7)
i=1
where y is the sample average of the outcome y. TSS captures the total variability
of the outcome about its mean. In Table 3.4, TSS = 109,171 and appears in the row
and column labeled Total and SS (for Sum of Squares), respectively.
In an OLS model, TSS is split into two components. The first is the model sum
of squares (MSS), or the part of the variability of the outcome about its mean that
can be accounted for by the model:

MSS = (i — 7). (3.8)

i=1

The second component of outcome variability, the part that cannot be accounted for
by the model, is the residual sum of squares (RSS):

RSS = (v = 30) (3.9)

i=1
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By definition, RSS is minimized by the fitted regression line. In Table 3.4, MSS
and RSS appear in the rows labeled Model and Residual of the SS column. The
identity TSS = MSS 4 RSS is a central property of OLS, but more difficult to prove
than it may seem.

3.3.7 Standard Errors of the Regression Coefficients

MSS and RSS also play an important role in estimating the standard errors of Bo and
,3 1 and in testing the null hypothesis of central interest, Hy: 8; = 0. These standard
errors depend on the variance of e—that is, the variance of the outcome about the
regression line—which is estimated in our single predictor model by

Var(e) = 62, = RSS/(n — 2). (3.10)

2
ylx

In Table 3.4, 6}2,‘x equals 390.5, and appears in the column and row labeled MS (for
Mean Square) and Residual, respectively.
The variance of ,31 is estimated by
&2
r (R ylx

Var(B) = P (3.11)
where 67 is the sample variance of the predictor x. The square root of the variance
of an estimate is referred to as its standard error, or SE(,é). In Table 3.4, the
standard error of the estimated slope coefficient for age, found in the column
labeled Std.Err., is approximately 0.186.

From the numerator and denominator of (3.11), it is clear that the variance of the
slope estimate increases with the residual outcome variance not explained by the
model, but decreases with larger sample size and with the variance of the predictor
(as we pointed out earlier in Sect. 3.3.3). In our example of SBP and age, estimation
of the trend in age is helped by the relatively large age range in the sample. It
should also be intuitively clear that the precision of the slope estimate is increased
in samples where the data are tightly clustered about the regression line—in other
words, if the residual variance of the outcome is small. Figure 3.1 shows that this is
not the case with our example; SBP varies widely about the regression line at every
value of age.

3.3.8 Hpypothesis Tests and Confidence Intervals

When the outcome is normally distributed, the parameter estimates ,30 and ,3 1 have
a normal distribution, and the ratio of the slope estimate to its standard error has
a t-distribution with n — 2 degrees of freedom. This leads directly to a test of
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the null hypothesis of no slope: that is, Hy: 8; = 0, or in substantive terms, no
systematic relationship between predictor and outcome. In Table 3.4, the 7-statistic
and corresponding P-value for age are shown in the columns labeled t and
P>|t]|. In the example, we are able to reject the null hypothesis that SBP does
not change with age at the usual 5% level of significance (P = 0.019).

The z-distribution also leads to 95% Cls for the population parameter S,
shown in Table 3.4 in the columns labeled [95% Conf. Interval]. The
confidence interval does not include 0O, in accord with the result of the 7-test of
the null hypothesis. Under the assumptions of the model, a CI computed this
way would, on average, include the population value of the parameter in 95 of
100 random samples. In a more intuitive interpretation, we could exclude with
95% confidence age trends in SBP smaller than 0.07 mmHg/year or larger than
0.81 mmHg/year.

3.3.8.1 Relationship Between Hypothesis Tests and Confidence Intervals

Hypothesis tests and CIs provide overlapping information about the parameter
or association being assessed. Common ground is that when a two-sided test is
statistically significant at P < 0.05, then the corresponding 95% CI will exclude
the null parameter value. However, the P-value, especially if it is small, does give
a more direct sense of the strength of the evidence against the null hypothesis.
Likewise, only the confidence interval provides information about the range of
parameter values that are consistent with the data. In Sect. 3.7 below, we argue
that CIs are particularly important in the interpretation of negative findings—that
is, cases where the null hypothesis is not rejected. Both the P-value and the CI
are important for understanding statistical results in depth, and getting beyond the
simple question of whether or not an association is statistically significant. This
overlapping relationship between hypothesis tests and CIs holds in many settings in
addition to linear regression.

3.3.8.2 Hypothesis Tests and Confidence Intervals in Large Samples

The hypothesis tests and CIs in this section follow from basic statistical theory for
data with normally distributed outcomes. However, linear regression models are
commonly used with outcomes that are at best approximately normal, even after
transformation. Fortunately, in large samples the 7-tests and Cls for ,30 and ,3 1 are
valid even when the underlying outcome is not normal. How large a sample is
required depends on how far and in what way the outcome departs from normality. If
the outcome is uniformly distributed, meaning that every value in its range is equally
likely, then the z-tests and CIs may be valid with as few as 30-50 observations.
However, with long-tailed outcomes, samples of at least 100 and sometimes much
larger may be required for hypothesis tests and CIs to be valid.
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3.3.9 Slope, Correlation Coefficient, and R*

The slope coefficient B, in a simple linear model is systematically related to the
Pearson correlation coefficient r, reviewed in Sect. 3.2:

r = pioy/oy, (3.12)

where o, and o, are the standard deviations of the predictor and outcome,
respectively. Thus we can get r from §; by factoring out the scales on which x and
y are measured (Problem 3.3), scales which are reflected in the standard deviations.
Furthermore, the ¢-test of Hy: 1 = 0 is equivalent to a test of Hy: r = 0.

However, the correlation coefficient is not simply interchangeable with the slope
coefficient in a simple linear model. In particular, the slope coefficient distinguishes
the roles of the predictor x and outcome y, with differing assumptions applying to
each, and would change if those roles were reversed, but r(x, y) = r(y, x). Note
that reversing the roles of predictor and outcome becomes even more problematic
with multipredictor models. In addition, the slope coefficient 8; depends on the
units in which both predictor and outcome are measured, so that if either or both
were measured in different units, 8; would change. For example, our estimate of the
age trend in SBP would be 4.4 mmHg per decade if age were measured in ten-year
units. While both versions are interpretable, this dependence on the scale of both
predictor and outcome can make it difficult to assess the strength of the association.
In addition, the dependence on scale would make it hard to judge whether age is a
stronger predictor of SBP than other variables. From this point of view, the scale-
free correlation coefficient r is easier to interpret.

The correlation coefficient r and thus the slope coefficient 8; are also systemati-
cally related to the coefficient of determination R*

_ MSS

R2=p2= 22
" T Tss

(3.13)
R? is interpretable as the proportion of the total variability of the outcome (TSS)
that is accounted for by the model (MSS). As such, it is useful for comparing
models (Sect. 10.2). In Table 3.4, the value of R-squared is only 0.0200, which
you can easily verify is equal to MSS/TSS = 2,179/109,171. This shows that age
only explains a very small proportion of the variability of SBP, even though it is a
statistically significant predictor in a sample of moderate size.

3.4 Contingency Table Methods for Binary Outcomes

In Chap. 2, we reviewed exploratory techniques for categorical outcome variables.
We expand that review here to include contingency table methods for assessing
associations between binary outcomes and categorical predictors.
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Table 3.5 Two-by-two contingency table for CHD and arcus

. ¢s chdé9 arcus, or

arcus senilis

| Exposed  Unexposed | Total
_________________ o oo .
Cases | 102 153 | 255
Noncases | 839 2058 | 2897
_________________ o o ___
Total | 941 2211 | 3152
Risk | .1083953 .0691995 | .080901
| Point estimate | [95% Conf. Interval]
R i B T T
Risk difference | .0391959 | .o0166915 .0617003
Risk ratio | 1.566419 | 1.233865 1.988603
Attr. frac. ex. | .3616011 | .1895387 .4971343
Attr. frac. pop | .1446404 |
0dds ratio | 1.63528 | 1.257732 2.126197 (Cornfield)
o oo oo ______
chi2 (1) = 13.64 Pr>chi2 = 0.0002

3.4.1 Measures of Risk and Association for Binary Qutcomes

In the WCGS (Rosenman et al. 1964) of CHD introduced in Chap. 2, an association
of interest to the original investigators was the relationship between CHD risk
and the presence/absence of corneal arcus senilis among participants upon entry
into the study. Because each participant could be unambiguously classified as
having developed CHD or not during the ten-year course of the study, the indicator
variable that takes on the value one or zero according to whether or not participants
developed the disease is a legitimate binary outcome for the analysis. Corneal arcus
is a whitish annular deposit around the iris that occurs in a small percentage of
older adults, and is thought to be related to serum cholesterol level. Table 3.5
presents the results of a basic two-by-two table analysis for this example. The
results were obtained using the c¢s command in Stata, which provides a number of
useful quantities in addition to a simple crosstabulation of the binary CHD outcome
chdé6 9 with the binary indicator of the presence of arcus.

The Risk estimates (0.108 and 0.069) summarize outcome risk for individuals
with and without arcus and are simply the observed proportions of individuals with
CHD in these groups at the baseline visit of the study. The output also includes
several standard epidemiological measures of association between outcome risk
and the predictor variable, along with corresponding 95% CIs. These are numerical
comparisons of the risk estimates between the two groups defined by the predictor.

The Risk difference orexcess risk is defined as the difference between the
estimated risk in the groups defined by the predictor. For the table, we can verify
that the risk difference is

0.1084 — 0.0692 = 0.039
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The Risk ratio or relative risk is the ratio of these risks—for the example in
the table,

0.1084/0.0692 = 1.57.

The Odds ratio is the ratio between the corresponding odds in the two groups.
The odds of an outcome occurring are computed as the probability of occurrence
divided by the complementary probability that the event does not occur. Since
the denominators of these two probabilities are identical, the odds can be also be
calculated as the ratio of the number of outcomes to nonoutcomes. Frequently used
in games of chance, “even odds” obtains when these two probabilities are equal.

In Table 3.5, the odds of CHD occurrence in the two arcus groups are 0.1084/
(1 —0.1084) = 102/839 and 0.0692 /(1 — 0.0692) = 153/2058, respectively. The
ratio of these two numbers yields the estimated odds ratio (1.635) comparing the
odds of CHD occurrence among participants with arcus to the odds of those without
this condition. Although the odds ratio is somewhat less intuitive as a risk measure
than the risk difference and relative risk, we will see that it has properties that make
it useful in a wide range of study designs, and (in Chap. 5) that it is fundamental in
the definition and interpretation of the logistic regression model.

Finally, note that Table 3.5 provides two auxiliary summary measures of
attributable risk (i.e., Attr. frac. ex. and Attr. frac. pop), which
estimate the fraction of outcomes which can be attributed to the predictor in the
subgroup with the predictor (sometimes referred to as “exposed” individuals) and
in the overall population, respectively. Although these measures can easily be
estimated from the data in the table, their validity and interpretability depends on
a number of factors, including study design and the causal connections between
measured and unmeasured predictors and the outcome. See Rothman and Greenland
(1998) for further discussion of these measures.

In the last example, we saw that the observed outcome proportions for groups de-
fined by different values of a predictor are the fundamental components of the three
summary measures of association: the excess risk, relative risk, and odds ratio. To
discuss these further, it will be useful to have symbolic definitions. Following the no-
tation introduced in Sect. 3.3 for a continuous outcome measure, we will denote the
binary outcome variable CHD by y, and let the values 1 and O represent individuals
with and without the outcome, respectively. We will symbolize the outcome proba-
bility for an individual associated with a particular value x of a single predictor as

P(x) =Pr(y = 1|x)

and estimate this using the proportion of individuals with the outcome y =1
among all those in the sample with the value x of the predictor. For example, P (0)
and P(1) symbolize the outcome probability or risk associated with two levels of
the binary predictor arcus in Table 3.5 (where we follow the usual convention
that individuals possessing the characteristic have the values x = 1, and individuals
without the characteristic have x =0). The following equation defines all three
summary risk measures introduced above using this notation:
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ER = P(1) — P(0)
RR = P(1)/P(0)

_ P)/[1 = P)]

= ro/u-ror

(3.14)

where ER, RR, and OR denote the excess risk, relative risk, and odds ratio,
respectively.

Like the correlation coefficient, these measures provide a convenient single
number summary of the direction and magnitude of the association. The major
distinction between them is that the ER is a measure of the difference in risk
between the two groups (with no difference indicated by a value of zero), while both
the RR and OR compare the risks in relative terms (with no difference indicate by
a value of one). Note that because the component risks range between zero and one,
the ER can take on values between —1 and 1. By contrast, the RR and OR range
between 0 and oo.

Relative measures are appealing because they are dimensionless, and convey a
clear impression of how outcome risk is increased/decreased by exposure. The RR
in particular is favored by epidemiologists because of its interpretability as a ratio of
risks. However, relative measures are less desirable when the goal is to convey the
“importance” of a particular risk in absolute terms: In the example, the estimated
RR for the risk of CHD is approximately 1.6 times higher for men with arcus. The
ER tells us that this corresponds to a 4% difference in absolute risk. Note that if the
risk of the outcome were ten times lower in both groups, we would have the same
estimated RR, but the corresponding £ER would also be ten times smaller (or 0.4%).

A further feature of the RR worth remembering is that its maximum value is
constrained by the level of risk in the comparison group. For example, if Pr(0) = 0.5,
RR < 2 must hold. The OR has the advantages of a relative measure, and in
addition is not constrained by the level of the risk in the reference group. However,
being based on the odds of the outcome rather than the probability, the OR lacks the
intuitive interpretation of RR. The only exception is when the outcome risk is quite
small. For such rare outcomes, the OR closely approximates the RR and can be
interpreted similarly. (This property can be seen from the above definition by noting
that if outcome risk is close to zero, then [1 — Pr(0)] and [1 — Pr(1)] will both be ap-
proximately one.) Unfortunately, the odds ratio is often inappropriately reported as a
relative risk even when this condition is not met (Holcomb et al. 2001). Because the
value of the OR is always more extreme than the value of the RR (except when both
equal one), this can be misleading. For these reasons, we recommend that the mea-
sure of association reported in research findings be that actually used in the analysis.

A final important property of all three measures of association introduced
above is that their interpretation depends on the underlying study design. In the
WCGS example, the outcome risks represent the incidence proportion of CHD
over the entire duration of the study (approximately ten years). The measures
of association in the table should be interpreted accordingly. By contrast, the
sexually transmitted infection example mentioned at the beginning of this chapter
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referred to a cross-sectional sample. Outcome risk in this setting is measured by the
prevalence of the outcome among the groups defined by the predictor. In this case,
the terms “prevalence odds,” “prevalence ratio,” and “excess prevalence” provide
unambiguous alternative labels for OR, RR, and ER, respectively.

The relative merits of the ER, RR, and OR are discussed at length in most
epidemiology textbooks (e.g., Rothman and Greenland 1998). For our purposes,
they are equally valid and the choice is dependent on the nature and goals of the
research investigation. In fact, for prospective and cross-sectional study designs, we
will see that we can freely convert between measures. (Case-control designs are a
special case which will be covered in Sect.5.3.) However, from the standpoint of
regression modeling, we will see in Chap. 5 that the OR has clear advantages.

3.4.2 Tests of Association in Contingency Tables

Addressing the research question posed in the example presented in Table 3.5
involves more than simply summarizing the degree of the observed association
between CHD and arcus. We would also like to account for uncertainty in our
estimates before concluding that the association reflects more than just a chance
finding in this particular sample of individuals. The 95% Cls associated with the
measures of association in the table help in this regard. For example, the fact that the
confidence interval for the odds ratio excludes the value 1.0 allows us to conclude
that the true value for this measure is greater than one, and indicates a statistically
significant positive association between the presence of arcus and CHD occurrence.
This corresponds to testing the null hypothesis that the true odds ratio is equal to
one, with the alternative hypothesis being that this odds ratio is different than one.
The fact that the value of one is excluded from the CI corresponds to rejection of this
hypothesis at the 5% significance level. Of course, establishing the possible causal
connection between these two variables is a more complex issue.

The y? (chi-squared) test of association is an alternative way to make inferences
about an observed association. Note that the result of this test (presented in
Table 3.5) agrees with the conclusions drawn for the 95% CIs for the various mea-
sures of association. The statistic addresses the null hypothesis of no association,
and is computed using the squared differences between the observed proportions
of individuals in each cell of the two-way table and the corresponding proportions
that would be expected if the null hypothesis were true. Large values of the statistic
indicate departure from this hypothesis, and the associated P-value is computed
using the y? distribution with degrees of freedom specified. The y? statistic for a
two-by-two table is less appealing as a measure of association than the alternative
measures discussed above. However, in cases where predictors have more than two
levels (as discussed below) and a single summary measure of association cannot
be calculated, the y? statistic is useful as a global indicator of whether or not an
association may be present.



3.4 Contingency Table Methods for Binary Outcomes 47

Table 3.6 Female partner’s HIV status by AIDS diagnosis of male partner

. c¢s hivp aids, or exact

AIDS diag. in male
[1=yes/0=no]

| Exposed  Unexposed | Total
_________________ S m o e
Cases | 3 4 | 7
Noncases | 2 22 | 24
_________________ S m o e e femmeooC
Total 5 26 | 31
Risk .6 .1538462 | .2258065
Point estimate | [95% Conf. Intervall
_______________________ m e e
Risk difference .4461538 | -.0050928 .8974005
Risk ratio 3.9 | 1.233644 12.32933
Attr. frac. ex. .7435897 | .1893933 .9188926
Attr. frac. pop .3186813 |
Odds ratio 8.25 | 1.200901 57.1864 (Cornfield)
S m o e
1-sided Fisher’s exact P = 0.0619
2-sided Fisher’s exact P = 0.0619

The validity of the y? test is dependent on available sample size; like many
commonly used statistical tests, the validity of the reference y? distribution for
the test statistic is approximate, with the approximation improving with increasing
number of observations. Consequently, for small sample sizes, approximate P-
values and associated inferences may be unreliable. An alternative in these cases
is to base inferences on exact methods. Table 3.6 presents an example from a cross-
sectional study of sexual transmission of human immunodeficiency virus (HIV) in
monogamous female partners of males infected from contaminated blood products
(O’Brien et al. 1994). The outcome of this study was HIV status of the female
partner at recruitment. Males were known to have been infected first (via medical
records) and exposure of females was limited to contact with male partners. The
available sample size (n = 31) was limited by the availability of couples meeting
the strict eligibility criteria.

Table 3.6 addresses the hypothesis that more rapid disease progression in the
males (as indicated by an AIDS diagnosis occurring at or before the time of
recruitment of the couple) is associated with sexual transmission of HIV to the
female (represented by the binary indicator hivp). In addition to observed counts,
the table includes proportions of the outcome by AIDS diagnosis in the male
partners, and the measures of association described above. The table also presents
the results of Fisher’s exact test. Similar to the y? test, the Fisher test addresses
the hypothesis of independence of outcome and predictor. However, the P-value is
computed exactly, conditioning on the observed marginal totals. The P-value for
the y? test applied to the data in Table 3.6 (not shown) is 0.029. Similarly, the lower
95% confidence limits for the RR and OR exclude the value one, also indicating
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Table 3.7 CHD events by age in WCGS cohort

. tabulate chdé9 agec, col chi2

| agec

CHD event | 35-40 41-45 46-50 51-55 56-60 | Total
___________ U WU
no | 512 1,036 680 463 206 | 2,897
| 94.29 94.96 90.67 87.69 85.12 | 91.85
___________ oo g _______
yes | 31 55 70 65 36 | 257
| 5.71 5.04 9.33 12.31 14.88 | 8.15
___________ U U
Total | 543 1,091 750 528 242 | 3,154
| 100.00 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(4) = 46.6534 Pr = 0.000

a statistically significant association. By contrast, the (two-sided) P-value for the
Fisher’s exact test for Table 3.6 is 0.062, indicating failure to reject the hypothesis
of independence at the 5% level.

A commonly cited rule-of-thumb is that the Fisher’s exact test should be used
whenever any of the expected cell counts are less than 5. Note that Fisher’s exact
test applies to tables formed by variables with more than two categories. Although
it can almost always be used in place of the y? test, the associated computations can
be lengthy for large sample sizes, especially for tables with dimensions larger than
2 x 2. Given the increased speed of modern desktop computers and the availability
of more computationally efficient algorithms, we recommend using the exact
P-value whenever it can easily be computed (i.e., in a matter of minutes) or is
provided, and especially in cases where either actual or expected minimum cell
counts are less than 5.

3.4.3 Predictors with Multiple Categories

In the WCGS study discussed above, one potentially important predictor of CHD
risk is age at entry into the study. Despite the fact that this can be considered as a
continuous variable for the purpose of analyses, we might begin investigating the
relationship by grouping age into multiple categories and summarizing CHD risk
in the resulting groups. Table 3.7 shows the results obtained by dividing subjects
into five-year age intervals using a constructed five-level categorical variable AGEC.
With the exception of the first two columns, the estimated percentages of individuals
with CHD in the second row of the table clearly increase with increasing age. In
addition, the accompanying y? test indicates that age and CHD risk are associated.

As mentioned above, the conclusion of association based on the )(2 test does not
reveal anything about the nature of the relationship between these variables. More
insight could be gained by computing measures of association between age and
CHD risk. However, unlike the two-by-two table case, the fact that age is represented
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Table 3.8 Odds ratios for CHD events by age group
. tabodds chdé69 agec, or

agec | 0dds Ratio chi2 P>chi2 [95% Conf. Interval

_____________ s s o .

35-40 | 1.000000 . . . .

41-45 | 0.876822 0.32 0.5692 0.557454 1.379156

46-50 | 1.700190 5.74 0.0166 1.095789 2.637958

51-55 | 2.318679 14.28 0.0002 1.479779 3.633160

56-60 | 2.886314 18.00 0.0000 1.728069 4.820876
Test of homogeneity (equal odds): chi2(4) = 46 .64
Pr>chi2 = 0.0000
Score test for trend of odds: chi2 (1) = 40.76
Pr>chi2 = 0.0000

with five levels means that a single measure will not suffice here. In fact, odds ratios
can be computed to compare any two age groups. For example, the ER, RR, and
OR comparing CHD risk in 56 to 60-year-olds with that in 35 to 40-year-olds are
calculated by applying the formulas in (3.14) as follows:

ER = (36/242) — (31/543) = 0.092

36/242
©31/543

36/242
_206/242
OR = =7/543

512/543

The results in Table 3.8 further reinforce our observation that CHD risk is
increasing with increasing age. The odds ratios in the table are all computed
using the youngest age group as the reference category. The pattern of increase in
estimated odds ratios mirrors that seen in Table 3.7. Note that each odds ratio in the
table is accompanied by a 95% confidence interval and associated hypothesis test. In
addition, two global tests providing additional information are provided: The Test
of homogeneity addresses the null hypothesis that odds ratios do not differ
across age categories. In this case, the P-value indicates rejection, confirming the
observed difference in the odds ratios mentioned above. Since age can be viewed as
a continuous variable, and the categorical version considered here is ordinal, more
specific alternatives to nonhomogeneity of odds are of greater scientific interest.
The Score test for trend in Table 3.8 addresses the alternative hypothesis
that there is a linear trend in the odds of CHD with increasing age categories. The
statistically significant results indicate support for this hypothesis, and represent a
stronger conclusion than nonhomogeneity. Note that this test is not applicable to
nominal categorical variables.

Despite the useful information gained from the analysis in Tables 3.7 and 3.8,
we may be concerned that our conclusions depend on the arbitrary choice of

RR = 2.606

= 2.886. (3.15)
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grouping age into five categories. Increasing the number of age categories may
provide more information on how risk varies with age, but will also reduce the
number of individuals in each category and lead to more variable estimates of risk
in each group. This dilemma is one of the primary motivations for introducing a
regression model for the dependence of outcome risk on a continuous predictor
variable. Another motivation (which will be explored briefly below and more fully
in Chap. 5) arises when we consider the joint effects on risk of multiple (categorical
and/or continuous) predictor variables.

3.4.4 Analyses Involving Multiple Categorical Predictors

A common feature of observational clinical and epidemiological studies is that
investigators do not experimentally control the distributions of characteristics of
interest among participants in the sample. Unlike randomized trials in which random
allocation serves to balance the distributions of characteristics across treatment
arms, observational data are usually characterized by differing distributions across
subgroups defined by predictors of primary interest. For example, observational
studies of the relationship between dietary factors and cancer typically adjust for
age since it is frequently related to both diet and cancer risk. A fundamental part
of drawing inferences regarding the relationship between the outcome and key
predictors in observational studies is to consider the potential influence of these
other characteristics. This topic will be covered in detail for regression models in
Chaps. 4-6, 9, and 10. Here we give a brief introduction for binary outcomes and
categorical predictors.

Consider the cross-tabulation of a binary indicator 20-year mortality and self-
reported smoking presented in Table 3.9. These data represent women participating
in a health survey in Whickham, England, in 1972—-1974 (Vanderpump et al. 1996).
Deaths were ascertained via follow-up of participants over a 20-year period. The
results indicate a statistically significant negative association between smoking and
mortality (where Cases denote deceased women).

Before concluding that this somewhat unintuitive inverse relationship between
smoking and mortality may reflect a real association in the population being studied,
we need to consider the possibility that it may be due to the influence of other
characteristics of women in the sample. The standard approach for controlling for
the influence of additional categorical predictors in contingency tables is via a
stratified analysis, where a relationship of interest is examined in subgroups defined
by a additional variable (or variables).

Table 3.10 presents the same analysis stratified by a three-level categorical
variable agegrp representing three categories of participant age (as ascertained
in the original survey). The age-specific odds ratios and associated 95% Cls
indicate a positive (but not statistically significant) association between smoking
and vital status in two of the three age groups. The crude odds ratio repro-
duces the result obtained in Table 3.9, while the age-adjusted (M-H combined,
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Table 3.9 Twenty-year vital status by smoking behavior

cs vstatus smoker [freq = nn], or

| smoker
| Exposed  Unexposed | Total
_________________ o oo ____
Cases | 139 230 | 369
Noncases | 443 502 | 945
_________________ o oo .
Total | 582 732 | 1314
Risk | .2388316 .3142077 | .2808219
| Point estimate | [95% Conf. Intervall
R i P e T e
Risk difference | -.075376 | -.1236536 -.0270985
Risk ratio | .7601076 | .6347365 .9102415
Prev. frac. ex. | .2398924 | .0897585 .3652635
Prev. frac. pop | .1062537 |
0dds ratio | .6848366 | .5354784 .8758683 (Cornfield)
o o o o ool ____
chi2 (1) = 9.12 Pr>chi2 = 0.0025

Table 3.10 Twenty-year vital status by smoking behavior, stratified by age

cs vstatus smoker [freq = nn], or by (agegrp)

agegrp | OR [95% Conf. Intervall] M-H Weight
_________________ PP
18-44 | 1.776666 .8727834 3.615113 5.568471 (Cornfield)
45-64 | 1.320359 .8728567 1.997089 19.55856 (Cornfield)
64+ | 1.018182 .4240727 2.43359 4.772727 (Cornfield)
_________________ PP
Crude | .6848366 .5354784 .8758683
M-H combined | 1.357106 .9710409 1.896662
Test of homogeneity (M-H) chi2 (2) = 0.945 Pr>chi2 = 0.6234

Test that combined OR = 1:
Mantel--Haenszel chi2 (1) = 3.24
Pr>chi2 = 0.0719

or Mantel-Haenszel) estimate is computed via a weighted average of the age-
specific estimates, where the stratum-specific weights are given in the right table
margin (M-H Weight). Because this estimate is based on separate estimates made
in each age stratum, the weighted average adjusts for the influence of age.
Comparison of the crude estimate with the adjusted estimate reveals that
adjusting for age reverses the direction (and alters the significance) of the unadjusted
result. Considering that none of the stratum-specific estimates indicate reduced risk
associated with smoking, the crude estimate is surprising. This seemingly paradox-
ical result is often referred to as Simpson’s paradox. To aid in further interpretation,
Table 3.10 also includes results from two hypothesis tests of properties of the
stratum-specific and combined odds ratios. The test of homogeneity addresses the
null hypothesis that the three age-specific odds ratios are identical. Rejection of
this hypothesis would provide evidence that the stratum-specific odds ratios differ,
and may indicate a differential effect of smoking on mortality across different age
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groups. This phenomenon is also known as interaction or effect modification. In this
case, the results indicate that the data do not support rejecting the null hypothesis in
favor of the alternative hypothesis of differing age-specific odds ratios. We conclude
that there is no strong evidence of interaction and that the age-specific odds ratios
are similar. However, note that if we base the analysis in Table 3.10 on the relative
risk rather than the odds ratio, the P-value for the test of homogeneity equals 0.045,
indicating the presence of interaction. This illustrates that the presence or absence
of statistical interaction may reflect our choice to work with a particular measure of
association rather than some underlying causal phenomenon.

The second test result presented in Table 3.10 addresses the null hypothesis
that the true age-adjusted (“combined”) odds ratio for the association between vital
status and smoking is different than one. This hypothesis is meaningful if we have
already failed to reject the hypothesis of homogeneity. In this case, we have already
concluded that we do not have strong evidence that the age-specific odds ratios
differ, and the results of the test for an age-adjusted association indicate failure
to reject the null hypothesis at the 5% significance level. We conclude that the
observed unadjusted negative association between vital status and smoking is at
least partially explained by age adjustment. In fact, adjusting for age results in a
positive association between smoking and vital status, that is more in accordance
with our expectations that smokers may experience more health problems.

The results of the Whickham example are an instance of a more general
phenomenon in observational studies known as confounding. In the example, the
seemingly paradoxical finding of a positive association (albeit not statistically
significant) after adjustment for age can be explained by differences between age
groups in the proportion of women who were smokers (women in the intermediate
age group were more likely to smoke than women in the other groups), and the fact
that mortality was much higher in the older women. Of course, other measured or
unmeasured factors may also influence the relationship between smoking and vital
status. A complete analysis would consider these. Also, it would be a good idea to
consider alternate measures of age and smoking if available (e.g., treating them as
continuous variables in a regression model). The phenomena of confounding and
interaction will be discussed extensively in the regression context in the remaining
chapters of the book.

3.4.5 Collapsibility of Standard Measures of Association

Following the discussion in the previous section, it is tempting to conclude that
in situations where interaction can be ruled out, the presence of confounding can
be assessed via observed differences between the crude and adjusted measures of
association obtained from the Mantel-Haenszel approach for stratified contingency
tables. Conversely, agreement between the stratum-specific estimates and the crude
(unadjusted) estimate would seem to imply a lack of confounding.
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There are two primary issues to consider when assessing absence/presence of
confounding based on comparing unadjusted and adjusted association measures: the
first is that because confounding is fundamentally tied to the causal interpretation
given the associations involved, its presence can never be confirmed solely on
statistical grounds. In the Whickam example from Table 3.10, interpreting age as a
confounder of the smoking—mortality association as measured by odds ratios seems
plausible. However, in many situations, the direction of the causal link between
a risk factor and a suspected confounder is less clear. In these settings, observed
differences between crude and adjusted association measures may reflect causal
relationships other than confounding. Section 4.5 provides examples of mediation
of the causal effects of an exposure variable on an outcome by an intermediate
variable, and points out that this cannot be distinguished from confounding solely
by observing differences between crude and adjusted measures of association.

The second issue is that different measures of association may exhibit different
properties with respect to adjustment and pooling across strata, and these properties
complicate simple interpretation of observed differences between pooled and
adjusted measures. Intuitively, we might expect that in the absence of confounding
and interaction, the association between a binary outcome and a single binary
predictor at levels defined by a third categorical predictor would be homogeneous,
and that the observed association in the strata would equal the crude association
from the pooled table ignoring the third variable. A measure of association with
this property is called strictly collapsible. Both the risk difference and the relative
risk are collapsible in this sense. However, the odds ratio is not strictly collapsible.
In some situations, the crude odds ratio may differ from the corresponding stratum
specific and adjusted measures even when confounding is demonstrably absent.

Noncollapsibility of the odds ratio is illustrated in Table 3.11, in which the odds
ratios measuring the association between a binary outcome variable Y and a binary
predictor X are equal in strata defined by a third binary variable Z, and also equal
to the adjusted measure. Yet, the crude odds ratio ignoring Z is different from the
stratum specific measures, even though there is no marginal association between X
and Z (i.e., confounding cannot be present). Note that both the crude and adjusted
odds ratios are valid measures in this example. The crude measure is interpreted as
the marginal odds ratio for the association between Y and X, while the adjusted
measure is interpreted as the conditional odds ratio for a fixed value of Z.

We will see in Chap.5 that noncollapsibility is also manifested in logistic
regression models for binary outcomes, where regression coefficients have a log
odds ratio interpretation, and in proportional hazards regression models for survival
outcomes (Chap. 6), with coefficients interpretable as log hazard ratios. Note that
in the case of rare outcomes, the close correspondence between odds ratios and
relative risks noted above minimizes this distinction, and these cases analyses
based on either measure will agree closely. Chapter 9 is entirely devoted to the
topic of making valid causal inferences using data from observational studies, and
provides a framework for understanding confounding that further clarifies the issues
raised here.
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Table 3.11 Example illustrating inequality of the odds ratio for the association between a binary
outcome Y and a binary predictor X when stratified by a binary variable Z versus pooled across
values of Z

tabulate Y X if Z==0

| X
Y | 0 1 Total
___________ o o oyl .
0 | 20 10 | 30
1 25 25 | 50
___________ o o4 __
Total | 45 35 | 80
tabulate Y X if Z==1
| X
Y | 0 1 Total
___________ o ooy __
0 | 25 25 | 50
1 10 20 | 30
___________ N
Total | 35 45 | 80
cs Y X, or by(2)
Z | OR [95% Conf. Interval] M-H Weight
_________________ o oo ..
o | 2 .7897239  5.05171 3.125 (Cornfield)
1 2 .7897239  5.05171 3.125 (Cornfield)
_________________ o o o o e
Crude | 1.653061 .8873163 3.079631
M-H combined | 2 1.028901 3.887644
Test of homogeneity (M-H) chi2 (1) = 0.000 Pr>chi2 = 1.0000

Test that combined OR = 1:
Mantel-Haenszel chi2 (1) = 4.18
Pr>chi2 = 0.0409

3.5 Basic Methods for Survival Analysis

In the previous section, we considered binary outcomes—that is, whether or not
an event has occurred. Survival data represent an extension in which we take into
account the time until the event occurs—or until the end of follow-up, if the event
has not yet occurred at that point. These more complex outcomes are studied using
techniques collectively known as survival analysis. The term reflects the origin of
these methods in demographic studies of life expectancy.

3.5.1 Right Censoring

To illustrate the special characteristics of survival data, we consider a study of
6-mercaptopurine (6-MP) as maintenance therapy for children in remission from
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Table 3.12 Weeks in remission among leukemia patients
Placebo: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,
12,15,17 22,23

6-MP: 6,6,6,6%,7,9%,10,10%,11%,13,16,17x%,
19%,20%,22,23,25%,32%,32%,34%,35%

acute lymphoblastic leukemia (ALL) (Freireich et al. 1963). Forty-two patients
achieved remission from induction therapy and were then randomized in equal
numbers to 6-MP or placebo. The survival time studied was from randomization
until relapse. At the time of the analysis, all 21 patients in the placebo group had
relapsed, whereas only 9 of 21 patients in the 6-MP group had.

One crucial characteristic of these survival times is that for the 12 patients in the
6-MP group who remained in remission at the time of the analysis, the exact time
to relapse was unobserved; it was only known to exceed the follow-up time. For
example, one patient had only been under observation for six weeks, so we only
know that the relapse time is longer than that. Such a survival time is said to be
right-censored—‘‘right” because on a graph the relapse time would lie somewhere
to the right of the censoring time of six weeks.

Definition: A survival time is said to be right-censored at time ¢ if it is only known to be
greater than .

Table 3.12 displays follow-up times in the leukemia study. Asterisks mark the right-
censored remission times.

Because of the censoring, we could not validly estimate the effects of 6-MP on
time to relapse simply by comparing average follow-up times in the two groups (say,
with a 7-test). This simple approach would not work because the right-censored
follow-up times in the 6-MP group are shorter, possibly much shorter, than the
actual unobserved times to relapse for these patients. Furthermore, five of the right-
censored values in the 6-MP group exceed the largest follow-up time in the placebo
group; to ignore this would be throwing away valuable evidence for the effectiveness
of the treatment. Survival analysis makes it possible to analyze right-censored data
like these without bias or losing information contained in the length of the follow-up
times.

3.5.2 Kaplan—Meier Estimator of the Survival Function

Suppose we would like to describe the probability of remaining in remission during
each of the first ten weeks of the leukemia study. This probability is called the
survival function.

Definition: The survival function at time ¢, denoted S(¢), is the probability of being event-
free at ¢; equivalently, the probability that the survival time is greater than ¢.



56 3 Basic Statistical Methods

Table 3.13 Follow-up table for placebo patients in the leukemia study

Week of No. No. No. Conditional prob.  Survival

follow-up  followed relapsed censored of remission function

1 21 2 0 1921 =091 0.91

2 19 2 0 17/19 = 0.90 0.90 x 0.91 = 0.81
3 17 1 0 16/17 = 0.94 0.94 x 0.81 = 0.76
4 16 2 0 14/16 = 0.88 0.88 x 0.76 = 0.67
5 14 2 0 12/14 = 0.86 0.86 x 0.67 = 0.57
6 12 0 0 12/12 = 1.00 1.00 x 0.57 = 0.57
7 12 0 0 12/12 = 1.00 1.00 x 0.57 = 0.57
8 12 4 0 8/12 = 0.67 0.67 x 0.57 = 0.38
9 8 0 0 8/8 = 1.00 1.00 x 0.38 = 0.38
10 8 0 0 8/8 = 1.00 1.00 x 0.38 = 0.38

We will first show how the survival function can be estimated for the 21 placebo
patients. Because there is no right-censoring in the placebo group, we could simply
estimate the survival function by the sample proportion in remission for each week.
However, we will use a more complicated method because it accommodates right-
censored data. This method depends on writing the survival function in any given
week as a chain of conditional probabilities.

In Table 3.13 the placebo data are summarized by consecutive one-week
intervals. The number of subjects who remain both in remission and in follow-up at
the start of the week is given in the second column. The third and fourth columns
list the numbers who relapse and who are censored during the week, respectively.
Since none are censored, the number in follow-up is reduced only during weeks
when a patient relapses. From the table, we see that in the first week, 19 of 21
patients remained in remission, so a natural estimate of the probability of being in
remission in the first week is 19/21 = 0.91. In the second week, 2 of the 19 placebo
patients still in remission in the first week relapsed, and the remaining 17 remained
in remission. Thus the probability of not relapsing in the second week, conditional
on not having relapsed in the first, is estimated by 17/19 = 0.90. It follows that
the overall probability of remaining in remission in the second week is estimated
by 19/21 x 17/19 = 17/21 = 0.81. Likewise, the probability of remaining in
remission in the third week is estimated by 19/21x17/19x16/17 = 16/21 = 0.76.
In this case where there is no censoring, our chain of conditional probabilities
reduces to the overall sample proportion in remission at the end of every week.
You can easily verify that after ten weeks, the survival function estimate given by the
chain of conditional probabilities is equal to the sample proportion still in remission.

Now we show how the survival function estimate based on the chain of
conditional probabilities accommodates the censoring in the 6-MP group, as shown
in Table 3.14. The problem we have to address is that two 6-MP subjects are
censored prior to week 10. Since it is unknown whether they would have relapsed
before the end of that week, we can no longer estimate the survival function at week
10 by the sample proportion still in remission at that point.
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Table 3.14 Follow-up table for 6-MP patients in the leukemia study

Week of No. No. No. Condition. prob.  Survival

follow-up  followed relapsed censored  of remission function

1 21 0 0 21/21 = 1.00 1.00

2 21 0 0 21/21 = 1.00 1.00 x 1.00 = 1.00
3 21 0 0 21/21 = 1.00 1.00 x 1.00 = 1.00
4 21 0 0 21/21 = 1.00 1.00 x 1.00 = 1.00
5 21 0 0 21/21 = 1.00 1.00 x 1.00 = 1.00
6 21 3 1 18/21 = 0.86 0.86 x 1.00 = 0.86
7 17 1 0 16/17 = 0.94 0.94 x 0.86 = 0.81
8 16 0 0 16/16 = 1.00 1.00 x 0.81 = 0.81
9 16 0 0 16/16 = 1.00 1.00 x 0.81 = 0.81
10 16 0 1 16/16 = 1.00 1.00 x 0.81 = 0.81

The rows of Table 3.14 for weeks 6 and 7 show how the method works with
right-censored data. In week 6, three patients are observed to relapse, and one is
censored (by assumption at the end of the week). Thus the probability of remaining
in remission in week 6, conditional on having remained in remission in week 5,
is 18/21 = 0.86. Then we estimate the probability of remaining in remission
in week 7, conditional on having remained in remission in week 6, as 16/17: in
short, the patient censored during week 6 has disappeared from the denominator,
and does not contribute to the calculations for any subsequent week. Using this
method for dealing with the censored observations, the conditional probabilities
can still be estimated. As a result, we obtain a valid estimate of the probability of
remaining in remission at the end of week 10, even though it is unknown whether the
two censored patients remained in remission at that time. This approach allows us
to extrapolate the survival experience of censored observation by those followed
longer. This method requires modification in the case of competing risks data
(Sect. 6.5) where cumulative incidence functions define the probability of failure
in the presence of other causes of failure.

In essence, we have estimated the survival functions in the placebo and 6-MP
groups using the well-known Kaplan—Meier estimator to deal with right censoring.
In this example, the follow-up times have been grouped into weeks, but the method
also applies to cases where they are observed more exactly. In Sect.6.6.4, we
examine the important assumption of independent censoring which underlies these
procedures.

3.5.3 Interpretation of Kaplan—Meier Curves

Plots of the Kaplan—Meier estimates of S(¢) for the 6-MP and placebo groups in the
leukemia study are shown in Fig. 3.2. Note that the curves drop at observed relapse
times and are flat in the intervening periods. As a result, we can infer periods of
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Fig. 3.2 Survival curves by treatment for leukemia patients

high risk, when the survival curve descends rapidly, as well as periods of lower risk,
when it remains relatively flat. In particular, placebo patients appear to be at high
risk of relapse in the first five weeks.

In addition, the estimated survival function for the 6-MP group is above
the placebo curve over the entire follow-up period, giving evidence for higher
probability of remaining in remission, or equivalently longer times in remission and
lower risk of relapse in patients treated with 6-MP. In Sect. 3.5.6 below, we show
how to test the null hypothesis that the survival functions are the same in the two
groups.

3.5.4 Median Survival

The Kaplan—Meier results may also be used to obtain estimates of the median
survival time, defined as the time at which half the relevant population has
experienced the outcome event. In the absence of censoring, with every survival
time observed exactly, the median survival time could be simply estimated by the
sample median of survival times: that is, the earliest time at which half the study
participants have experienced the event. From Table 3.13, we can see that median
time to relapse is eight weeks in the placebo group—the first week in which at least
half the sample (12/21) have relapsed.

In the presence of censoring, however, we need to use the Kaplan—Meier estimate
S (¢) to estimate the median. In this case, the median survival time is estimated by
the earliest time at which the Kaplan—Meier curve dips below 0.50. In the leukemia



3.5 Basic Methods for Survival Analysis 59

example, Fig. 3.2 shows that estimated median time to relapse is 23 weeks for 6-MP
group, as compared to eight weeks for placebo—more evidence for the effectiveness
of 6-MP as maintenance therapy for ALL.

By extension, other quantiles of the distribution of survival times can be obtained
from the Kaplan—Meier estimate S (t). The pth quantile is estimated as the earliest
time at which the Kaplan—Meier curve drops below 1 — p. For instance, the lower
quartile (i.e., the 0.25 quantile) is the earliest time at which the curve drops below
1 —0.25 = 0.75. The lower quartiles for the 6-MP and placebo groups are 13 and
4 weeks, respectively. However, a limitation of the Kaplan—-Meier estimate is that
when the curve does not reach 1 — p, the pth percentile cannot be estimated. For
example, Fig. 3.2 makes it clear that for the 6-MP group, quantiles of the distribution
of remission times larger than the 0.6th cannot be estimated using the Kaplan—Meier
method.

Note that while we can estimate the median and other quantiles of the distribution
of survival times using the Kaplan—Meier results, we are unable to estimate the
mean of the distribution in the typical case, as in the 6-MP group, where the longest
follow-up time is censored (Problem 3.7).

A final note: graphs are useful for giving overall impressions of the survival
function, but it is difficult to read quantities from them (e.g., median survival time
or (t) for some particular ¢). To obtain precise values, the results in Tables 3.13
and 3.14 can be printed in Stata using the sts list and stsci commands.

3.5.5 Cumulative Event Function

Another useful summary of survival data is the probability of having experienced
the outcome event by time ¢. In terms of our leukemia example, this would mean
estimating the probability of having relapsed by the end of each week of the study.

Definition: The cumulative event function at time t, denoted F (1), is the probability that the
event has occurred by time 7, or equivalently, the probability that the survival time is less
than or equal to 7. Note that F(t) = 1 — S(¢).

The cumulative event function is estimated by the complement of the Kaplan—
Meier estimate of the survival function: that is, F tH=1- S (¢). If ¢ has the
same value 7 for all study participants, then F(7) is interpretable as the outcome
risk discussed in Sect.3.4 on contingency table methods for binary outcomes.
The cumulative event plots shown in Fig.3.3 are also easily obtained in Stata by
specifying the failure option.

Note that parametric methods can also be used to estimate survival distributions,
as well as quantities that are not immediately available from the Kaplan—Meier
approach (e.g., the mean and specified quantiles). However, because they rest on
explicit assumptions about the form of these distributions, they are somewhat less
robust than the methods presented here. For example, the mean can be poorly
estimated in situations where a large proportion of the data are censored, with the
result that the right tail of the survival function is only “known” by extrapolation.
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3.5.6 Comparing Groups Using the Logrank Test

The Kaplan—Meier estimator provides an interpretable description of the survival
experience of two treatment groups in the study of 6-MP as maintenance therapy
for ALL. With those descriptions in hand, how do we go on to formally test for
differences in relapse between the treatments?

The primary tool for the comparison of the survival experience of two or
more groups is the logrank test. The null hypothesis for this test is that the
survival distributions being compared are equal at all follow-up times. In the
leukemia example, this implies that the population survival curves for 6-MP and
placebo coincide. The alternative hypothesis is that the two survival curves differ
at one or more points in time. Like the Kaplan—Meier estimator, the logrank test
accommodates right-censoring. It works by comparing observed numbers of events
in each group to the number expected if the survival functions were the same.
The comparison accounts for differences in length of follow-up in calculating the
expected numbers of events. Results are shown in Table 3.15.

There are a total of 30 events in the sample, 21 in the placebo group and 9
in the 6-MP group. The column labeled Events expected gives the expected
number of events in the two groups under the null hypothesis of equal survival
functions. In the leukemia data, average follow-up was considerably shorter in the
placebo group and hence fewer events would be expected in that group. Clearly there
were many more events than expected among placebo participants, and many fewer
than expected in the 6-MP group. The resulting y? statistic of 16.8 is statistically
significant (P < 0.00005), in accord with our earlier impression that 6-MP is
effective maintenance therapy for patients with ALL.



3.5 Basic Methods for Survival Analysis 61

Table 3.15 Logrank test for leukemia example

Logrank test for equality of survival functions

| Events Events

group | observed expected
________ ool
6 MP | 9 19.25
Placebo | 21 10.75
________ ool
Total | 30 30.00
chi2 (1) = 16.79

Pr>chi2 = 0.0000

The logrank test is easily generalized to the comparison of more than two groups.
The logrank test statistic for K > 2 groups follows an approximate y? distribution
with K — 1 degrees of freedom. In this more general case, the null hypothesis is

Hy:S(t)=...= Sg(t) forall ¢ (3.16)

where Sy (¢) is the survival function for the kth group at time z. In analogy to the
F-test discussed in Sect. 4.3.3, the alternative hypothesis is that some or all of the
survival curves differ at one or more points in time.

When the null hypothesis is rejected, visual inspection of the Kaplan—-Meier
plots can help to determine where the important differences arise. Another common
procedure for understanding group differences is to conduct pairwise logrank tests.
This requires cautious interpretation; see Sect.4.3.4 for approaches to handling
potential difficulties with multiple comparisons.

If there are more than two groups which are defined by ordered categories (e.g.,
disease stage) or categories based on a numerical variable (e.g., number of positive
nodes), then a trend test based on the logrank is available. In Stata, this is obtained
by using the t rend option for the command sts test.

Like some other nonparametric methods reviewed earlier in this chapter, and
as its name implies, the logrank test only uses information about the ranks
of the survival times rather than their actual values. The semi-parametric Cox
proportional hazards model covered in Chap.6 also works this way. In every
instance, the nonparametric approach reduces the need for making restrictive and
sometimes hard-to-verify assumptions, with a view toward making estimates more
robust.

There is an extensive literature on testing differences in survival between groups.
These tests have varying levels of similarity to the logrank test. The most popular
are extensions of the Wilcoxon test for censored data; these tests can be viewed
as a weighted versions of the logrank test. Such weighting can make sense, for
example, if early events are judged to be particularly important. However, in the
absence of compelling and prespecified reasons, we recommend the logrank test as
a default test.
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Chapter 6 covers censoring and other types of missing data in greater depth, and
also presents more comprehensive methods of analysis for survival data, including
the multipredictor Cox proportional hazards regression model.

3.6 Bootstrap Confidence Intervals

Bootstrapping is a widely applicable method for obtaining standard errors and Cls
in cases where approximate methods for computing valid CIs have been developed
but not conveniently implemented in statistical packages; other situations where
development of such methods has turned out to be intractable; and datasets where
the assumptions underlying the established methods are badly enough violated that
the resulting CIs would be unreliable.

In general, standard errors and CIs reflect the sampling distribution of statistics
of interest, such as regression coefficient estimates: that is, their relative frequency
if we repeatedly drew independent samples of the same size from the source
population, and recalculated the statistics in each new sample. In standard problems
such as linear regression, the sampling distribution of the regression coefficient
estimates is well known on theoretical grounds, provided the data meet underlying
assumptions.

Bootstrap procedures approximate the sampling distribution of statistics of
interest by a resampling procedure. Specifically, the actual sample is treated as if
it were the source population, and bootstrap samples are repeatedly drawn from
it. Bootstrap samples of the same size as the actual sample—a key determinant of
precision—are obtained by resampling with replacement, so that in a given bootstrap
sample some observations appear more than once, some once, and some not at
all. We use the sample to represent the population and hence resampling from the
actual data mimics drawing repeated samples from the source population. Then,
from each of a large number of bootstrap samples, the statistics of interest are
computed. For example, if our focus was on the difference between the coefficient
estimates for a predictor of interest before and after adjustment for a covariate,
the two models would be estimated in each bootstrap sample, and the difference
between the two coefficient estimates tabulated across samples. The result would
be the bootstrap distribution of the difference, which can in turn be regarded as an
estimate of its actual sampling distribution. Cls for the statistic of interest would
then be computed from the bootstrap distribution. Stata calculates bootstrap Cls
using three procedures:

* Normal approximation: If the bootstrap distribution of the statistic of interest
is reasonably normal, it may be enough to compute its standard deviation, then
compute a conventional CI centered on the observed statistic, simply substituting
the bootstrap SD for the usual model-based standard error of the statistic. The
bootstrap SD is a relatively stable estimate of the standard error, since it is
based on the complete set of bootstrap samples, so a relatively small number
of bootstrap samples may suffice. However, we often resort to the bootstrap
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Table 3.16 Bootstrap confidence interval for association of age with SBP
. reg SBP age
Source | Ss af MS Number of obs = 276
————————————— o m e m oo F( 1, 274) = 5.58
Model | 2179.70702 1 2179.70702 Prob > F = 0.0188
Residual | 106991.347 274 390.47937 R-squared = 0.0200
————————————— R e it Adj R-squared = 0.0164
Total | 109171.054 275 396.985652 Root MSE = 19.761
sbp | Coef. Sstd. Err. t P>|t| [95% Conf. Interval]
_____________ b m o o e e e e
age | .4405286 .186455 2.36 0.019 .0734621 .8075952
cons | 105.713 12.40238 8.52 0.000 81.2969 130.129
bootstrap ‘"reg SBP age"’ _b, reps(1000)
command : reg SBP age
statistics: b_age = _blage]
Bootstrap statistics Number of obs = 276
Replications = 1000
Variable | Reps Observed Bias Std. Err. [95% Conf. Intervall
_____________ U
b age | 1000 .4405287 -.0078003 .1744795 .0981403  .782917  (N)
| .0655767 .7631486 (P)
| .0840077 .7690148 (BC)
Note: N = normal
P = percentile
BC = bias-corrected

precisely because the sampling distribution of the statistic of interest is unlikely
to be normal, particularly in the tails. Thus this method is less reliable for
constructing CIs than for estimating the standard error of the statistic.

Percentile Method: The CI for the statistic of interest is constructed from the
relevant quantiles of the bootstrap distribution. Because the extreme percentiles
of a sample are very noisy estimates of the corresponding percentiles of a
population distribution, a much larger number of bootstrap samples is required.
If 1,000 samples were used, then a 95% CI for the statistic of interest would span
the 25th to 975th largest bootstrap estimates.

Bias-Corrected Percentile Method: The percentile-based confidence interval is
shifted to account for bias, as evidenced by a difference between the observed
statistic and the median of the bootstrap estimates. Again, a relatively large
number of bootstrap samples is required.

Table 3.16 shows Stata output for the simple linear regression model for SBP shown
earlier in Table 3.4, now with a bootstrap CI. In this instance, all three bootstrap
results are fairly consistent with the parametric 95% CI (0.73-0.81 mmHg). See
Sects.4.5.4, 5.5.1, 6.6.1, and 7.9.1 for other examples where bootstrap CIs are
computed.
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3.7 Interpretation of Negative Findings

Confidence intervals obtained either by standard parametric methods or by the
bootstrap play a particularly important role when the data do not enable us to reject
a null hypothesis of interest. It is easy to overstate such negative findings. Recall
that P > 0.05 does not prove the null hypothesis; it only indicates that the observed
result could have arisen by chance, not that it necessarily did. A negative result
worth discussing is best interpreted in terms of the point estimate and CI. In the
following example, we can distinguish four possible cases, in increasing order of
the strength of the negative finding. Suppose that a 20% reduction risk of recurrent
heart attacks would justify the risks and costs of a possible new treatment, but that
a risk reduction of only 5% would not meet this standard. The four cases are:

e The estimated risk reduction was large enough to be substantively important, but
the CI spanned the null value and was thus too wide to provide strong evidence
for effectiveness. Example: treatment reduced recurrence risk an estimated 20%
(95% CI —1% to 37%). In this case, we might conclude that the study gives
inconclusive evidence for the potential importance of the treatment; but it would
be also important to note that the CI includes effects too small to be worthwhile.

e The estimated risk reduction was too small to be important, but the CI extended
to values that could be important. Example: treatment reduced recurrence risk an
estimated 5% (95% CI —15% to 22%). In this case the point estimate provides
little support for the importance of the treatment, but the CI does not clearly rule
out a potentially important effect.

e The estimated risk reduction was too small to be important, and while the CI
did not include the null (i.e., P < 0.05), it did exclude values that could be
important. Example: treatment reduced recurrence risk an estimated 3% (95%
CI: 1% to 5%). In this case, we can definitively say that the treatment does not
have a clinically important benefit, even though we can also rule out no effect.

e The estimated risk reduction was too small to be important, and the CI both
included the null and excluded values that could be important. Example:
treatment reduced recurrence risk an estimated 1% (95% CI —2% to 4%). Again,
we can definitively say that the treatment does not have a clinically important
benefit.

This approach using the point estimate and CI is preferable to interpretations
based on ex post facto power calculations, which are driven by assumptions about
the true effect size, and often inappropriately based on treating the observed effect
size as if it were the true population value (Hoenig and Heisey 2001). A variant of
this approach is to suggest that with a larger sample, the observed effect would have
been statistically significant. But of course the CI for most negative findings tells us
that the true effect size may well be nil or worse, which a larger sample might also
firmly establish. In contrast to these problematic interpretations, the point estimate
and CI can together be used to summarize what the data at hand have to tell us about
the strength of the association and the precision of our information about it.
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3.8 Further Notes and References

Among the best introductory statistics books are Freedman et al. (1991), Devore
and Peck (1986), and Pagano and Gavreau (1993). Consult these for more complete
coverage of basic statistical inference, ANOVA, and linear regression. Good
references on methods for the analysis of contingency tables include Fleiss et al.
(2003) and Jewell (2004). Two applied survival analysis texts with a biomedical
orientation are Miller et al. (1981) and Marubini and Valsecchi (1995). Finally, for
a review of bootstrap methods, see Efron and Tibshirani (1986, 1993).

3.9 Problems

Problem 3.1. An alternative to OLS is least absolute deviation (LAD) regression,
in which the regression line is selected to minimize the sum of the absolute vertical
differences (rather than squared differences) between the line and the data. Explain
how this might reduce sensitivity to outliers.

Problem 3.2. To create a new age variable age10 in units of ten years, we would
divide the original variable age (in years) by ten, so that a woman of age 67 would
have age10 = 6.7. Similarly, the standard deviation of age10 is changed by the
same factor: that is, the SD of age is 6.38, so the SD of age10 is 0.638. Suppose
we want to estimate the effect of age in SD units, as is commonly done. How do we
compute the new variable and what is its SD?

Problem 3.3. Using (3.12) and a statistical analysis program, demonstrate with
your own data that the slope coefficient in a univariate linear model with continuous
predictor and outcome is a rescaled transformation of the sample correlation
between predictor and outcome.

Problem 3.4. The correlation coefficient is a measure of linear association. Sup-
pose x takes on values evenly over the range from —10 to 10, and that E[y|x] = x2.
In this case, the correlation of x and y is zero, even though there is clearly
a systematic relationship. What does this suggest about the need to test model
assumptions? Using a statistical package, generate a random sample of 100 values
of x uniformly distributed on [-10, 10], compute E[y|x] for each value of x, add
randomly generated standard normal errors to get the 100 values of y, and check the
sample correlation of x and y.

Problem 3.5. Verify the estimates for the excess risk, relative risk, and odds ratio
for the HIV example presented in Table 3.6.
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Problem 3.6. The data presented below are from a case-control study of
esophageal cancer. (The study and data are described in more detail in Sect. 5.3.)

. tabulate case ditob

Case |
status
(1=case, | tobacco

O=control) | 0-9 g/day 10+ g/day | Total
___________ oo o __
0 | 255 520 | 775
1 9 191 | 200
___________ oo o4 ____
Total | 264 711 | 975

The rows (labeled according to Case status) represent 200 cancer cases
and 775 cancer-free controls selected from the same population as the cases.
The columns represent a binary indicator of reported consumption of more than
ten grams of tobacco per day.

Compute the odds ratio comparing the risk of cancer in individuals who report
consuming more than ten grams of tobacco per day with the corresponding risk in
the group reporting less or no consumption. Next, compute the odds ratio comparing
the proportion of individuals reporting higher levels of consumption among cases
with that among the controls. Comment.

Problem 3.7. Suppose we could estimate the value of the survival function S(¢)
for every possible survival time from ¢ = 0 onward. Clearly S(z) — 0 as # becomes
large. It can be shown that the mean survival time is equal to the area under this
“complete” survival curve. Why are we unable to estimate mean survival from the
Kaplan—Meier result when the largest follow-up time is censored? To gain insight,
contrast the survival curves for the 6-MP and placebo groups in Fig. 3.2.

Problem 3.8. In the leukemia study, the probability of being relapse-free at 20
weeks, conditional on being relapse-free at 10 weeks, can be estimated by the
Kaplan—Meier estimate for 20 weeks, divided by the corresponding estimate for 10
weeks. In the placebo group, those estimates are 0.38 and 0.10, respectively. Verify
that the estimated conditional probability of remission at week 20, conditional on
being in remission at week 10, is 0.25. In the 6-MP group, estimated probabilities of
remaining in remission are 0.81,0.63, and 0.45 at 10, 20, and 30 weeks, respectively.
Use these values to estimate the probabilities of remaining in remission at 20 and
30 weeks, conditional on being in remission at 10 weeks.

3.10 Learning Objectives

(1) Be familiar with the #-test (including versions for paired and unequal-variance
data), one-way ANOVA, the correlation coefficient r, and some nonparametric
alternatives.
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(2) Describe the assumptions and mechanics of the simple linear model for
continuous outcomes, and interpret the results.

(3) Define the basic measures of association (i.e., excess risk, relative risk, and odds
ratio) for binary outcomes.

(4) Be familiar with standard contingency table approaches to evaluating associa-
tions between binary outcomes and categorical predictors, including the y? test
and the Mantel-Haenszel approach to estimating odds ratios adjusted for the
confounding influence of additional predictors.

(5) Define right-censoring.

(6) Interpret Kaplan—Meier survival and cumulative event curves.

(7) Calculate median survival from an estimated survival curve.

(8) Interpret the results of a logrank test.



Chapter 4
Linear Regression

Post-menopausal women who exercise less tend to have lower bone mineral density
(BMD), putting them at increased risk for fractures. But they also tend to be older,
frailer, and heavier, which may explain the association between exercise and BMD.
People whose diet is high fat on average have higher low-density lipoprotein (LDL)
cholesterol, a risk factor for CHD. But they are also more likely to smoke and be
overweight, factors which are also strongly associated with CHD risk. Increasing
body mass index (BMI) predicts higher levels of hemoglobin HbA,., a marker
for poor control of glucose levels; however, older age and ethnic background also
predict higher HbA,.

These are all examples of potentially complex relationships in observational data
where a continuous outcome of interest, such as BMD, SBP, and HbA,., is related
to arisk factor in analyses that do not take account of other factors. But in each case
the risk factor of interest is associated with a number of other factors, or potential
confounders, which also predict the outcome. So the simple association we observe
between the factor of interest and the outcome may be explained by the other factors.

Similarly, in experiments, including clinical trials, factors other than treatment
may need to be taken into account. If the randomization is properly implemented,
treatment assignment is on average not associated with any prognostic variable,
so confounding is usually not an issue. However, in stratified and other complex
study designs, multipredictor analysis is used to ensure that CIs, hypothesis tests,
and P-values are valid. For example, it is now standard practice to account for
clinical center in the analysis of multisite clinical trials, often using the random
effects methodology to be introduced in Chap.7. And with continuous outcomes,
stratifying on a strong predictor in both design and analysis can account for a
substantial proportion of outcome variability, increasing the efficiency of the study.
Multipredictor analysis may also be used when baseline differences are apparent
between the randomized groups, to account for potential confounding of treatment
assignment.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology 69
and Health, DOI 10.1007/978-1-4614-1353-0_4,
© Springer Science+Business Media, LLC 2004, 2012
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Another way the predictor—outcome relationship can depend on other factors
is that an association may not be the same in all parts of the population. For
example, hormone therapy (HT) has a smaller beneficial effect on LDL levels among
postmenopausal women who are also taking statins, and its effect on BMD may
be greater in younger postmenopausal women. These are examples of interaction,
where the association of a factor of primary interest with an outcome is modified by
another factor.

The problem of sorting out complex relationships is not restricted to continuous
outcomes; the same issues arise with the binary outcomes covered in Chap.S5,
survival times in Chap. 6, and repeated measures in Chap.7. A general statistical
approach to these problems is needed.

The topic of this chapter is the multipredictor linear regression model, a flexible
and widely used tool for assessing the joint relationships of multiple predictors
with a continuous outcome variable. We begin by illustrating some basic ideas
in a simple example (Sect.4.1). Then in Sect.4.2, we present the assumptions of
the multipredictor linear regression model and show how the simple linear model
reviewed in Chap. 3 is extended to accommodate multiple predictors. Section 4.3
shows how categorical predictors with multiple levels are coded and interpreted.
Sections 4.4—4.6 describe how multipredictor regression models can be used to deal
with confounding, mediation, and interaction, respectively. Section 4.7 introduces
some simple methods for assessing the fit of the model to the data and how well the
data conform to the underlying assumptions of the model. Section 4.8 introduces
sample size, power, and minimum detectable effect calculations for the multiple
linear model. In Chap. 9, we use a potential outcomes view of causal effects to show
how and under what conditions multipredictor regression models might be used to
estimate them, and in Chap. 10 we discuss the difficult problem of which variables
and how many to include in a multipredictor model.

4.1 Example: Exercise and Glucose

Glucose levels above 125 mg/dL are diagnostic of diabetes, while levels in the range
from 100 to 125 mg/dL signal increased risk of progressing to this serious and
increasingly widespread condition. So it is of interest to determine whether exercise,
a modifiable lifestyle factor, would help people reduce their glucose levels and thus
avoid diabetes.

To answer this question definitively would require a randomized clinical trial,
a difficult and expensive undertaking. As a result, research questions like this are
often initially looked at using observational data. But this is complicated by the fact
that people who exercise differ in many ways from those who do not, and some of
the other differences might explain any unadjusted association between exercise and
glucose level.

Table 4.1 shows a simple linear model using a measure of exercise to predict
baseline glucose levels among 2,032 participants without diabetes in the HERS
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Table 4.1 Unadjusted regression of glucose on exercise

. regress glucose exercise if diabetes == 0
Source | sS df MS Number of obs = 2032
————————————— e F( 1, 2030) = 14.97
Model | 1412.50418 1 1412.50418 Prob > F = 0.0001
Residual | 191605.195 2030 94.3867954 R-squared = 0.0073
————————————— o Adj R-squared = 0.0068
Total | 193017.699 2031 95.0357946 Root MSE = 9.7153
glucose | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ m o m m oo e e e e
exercise | -1.692789 .4375862 -3.87 0.000 -2.550954 -.8346243
_cons | 97.36104 .2815138 345.85 0.000 96.80896 97.91313

clinical trial of hormone therapy (HT) (Hulley et al. 1998). Women with diabetes
are excluded because the research question is whether exercise might help to prevent
progression to diabetes among women at risk, and because the causal determinants
of glucose may be different in that group. Furthermore, glucose levels are far more
variable among diabetics, a violation of the assumption of homoscedasticity, as we
show in Sect. 4.7.3 below. The coefficient estimate (Coef .) for exercise shows
that average baseline glucose levels were about 1.7 mg/dL lower among women who
exercised at least three times a week than among women who exercised less. This
difference is statistically significant (+ = —3.87, P < 0.0005).

However, women who exercise are slightly younger, a little more likely to use
alcohol, and in particular have lower average BMI, all factors associated with
glucose levels. This implies that the lower average glucose we observe among
women who exercise could be due at least in part to differences in these other
predictors. Under these conditions, it is important that our estimate of the difference
in average glucose levels associated with exercise be “adjusted” for the effects
of these potential confounders of the unadjusted association. Ideally, adjustment
using a multipredictor regression model provides an estimate of the causal effect
of exercise on average glucose levels, by holding the other variables constant. In
Chap. 9, the rationale for estimation of causal effects using multipredictor regression
models is explained in more detail.

From Table 4.2, we see that in a multiple regression model that also includes—
that is, adjusts for—age, alcohol use (drinkany), and BMI, average glucose is
estimated to be only about 1 mg/dL lower among women who exercise (95% CI 0.1—
1.8, P = 0.027), holding the other three factors constant. The multipredictor model
also shows that average glucose levels are about 0.7 mg/dL higher among alcohol
users than among nonusers. Average levels also increase by about 0.5 mg/dL per unit
increase in BMI, and by 0.06 mg/dL for each additional year of age. Each of these
associations is statistically significant after adjustment for the other predictors in
the model. Furthermore, the association of each of the four predictors with glucose
levels is adjusted for the effects of the other three, in the sense of taking account of
its correlation with the other predictors and their adjusted associations with glucose
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Table 4.2 Adjusted regression of glucose on exercise

. regress glucose exercise age drinkany BMI if diabetes == 0
Source | sS df MS Number of obs = 2028
————————————— e - F( 4, 2023) = 39.22
Model | 13828.8486 4 3457.21214 Prob > F = 0.0000
Residual | 178319.973 2023 88.1463042 R-squared = 0.0720
————————————— D et e Adj R-squared = 0.0701
Total | 192148.822 2027 94.7946828 Root MSE = 9.3886
glucose | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ o o o o
exercise |  -.950441 .42873 -2.22  0.027 -1.791239  -.1096426
age | .0635495 .0313911 2.02 0.043 .0019872 .1251118
drinkany | .6802641 .4219569 1.61 0.107 -.1472513 1.50778
BMI | .489242 .0415528 11.77 0.000 .4077512 .5707328
_cons | 78.96239 2.592844 30.45 0.000 73.87747 84.04732

levels. In summary, the multipredictor model for glucose levels shows that the
unadjusted association between exercise and glucose is partly but not completely
explained by BMI, age, and alcohol use, and that exercise remains a statistically
significant predictor of glucose levels after adjustment for these three other factors—
that is, when they are held constant by the multipredictor regression model.

Still, we have been careful to retain the language of association rather than cause
and effect, and in Chaps. 9 and 10 will suggest that adjustment for additional poten-
tial confounders would be needed before we could consider a causal interpretation
of the result.

4.2 Multiple Linear Regression Model

Confounding thus motivates models in which the average value of the outcome is
allowed to depend on multiple predictors instead of just one. Many basic elements
of the multiple linear model carry over from the simple linear model, which was
reviewed in Sect. 3.3. In Sect. 9.1, we show how this model is potentially suited to
estimating causal relationships between predictors and outcomes.

4.2.1 Systematic Part of the Model

For the simple linear model with a single predictor, the regression line is defined by

E[y|x] = average value of outcome y given predictor value x

= Bo + Bix. (4.1)



4.2 Multiple Linear Regression Model 73

In the multiple regression model, this generalizes to

E[y|x] = Bo + Bix1 + Baxo + -+ Bpx,, 4.2)

where x represents the collection of p predictors x1, X3, ... x, in the model, and
B1, Ba. ... B, are the corresponding regression coefficients.

The right-hand side of model (4.2) has a relatively simple form, a linear
combination of the predictors and coefficients. Analogous linear combinations of
predictors and coefficients, often referred to as the linear predictor, are used in
all the other regression models covered in this book. Despite the simple form of
(4.2), the multipredictor linear regression model is a flexible tool, and with the
elaborations to be introduced later in this chapter, usually allows us to represent with
considerable realism how the average value of the outcome varies systematically
with the predictors. In Sect.4.7, we will consider methods for examining the
adequacy of this part of the model and for improving it.

4.2.1.1 Interpretation of Adjusted Regression Coefficients

In (4.2), the coefficient 8, j = 1,---, p gives the change in E[y|x] for an increase
of one unit in predictor x;, holding other factors in the model constant; each of the
estimates is adjusted for the effects of all the other predictors. As in the simple linear
model, the intercept Sy gives the value of E[y|x] when all the predictors are equal to
zero; “centering” of the continuous predictors can make the intercept interpretable.
If confounding has been persuasively ruled out, we may be willing to interpret the
adjusted coefficient estimates as representing causal effects.

4.2.2 Random Part of the Model

As before, individual observations of the outcome y; are modeled as varying by an
error term &; about an average determined by their predictor values x;:

yi = Blyi|xi] + &
= Bo + Bixii + Boxai + -+ Boxpi + i, (4.3)

where x; is the value of predictor variable x; for observation i. We again assume
that &; ~ i.i.d NV(0, 052); that is, € is normally distributed with mean zero and the
same standard deviation o, at every value of x, and that its values are statistically
independent.
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4.2.2.1 Fitted Values, Sums of Squares, and Variance Estimators

From (4.2), it is clear that the fitted values y;, defined for the simple linear model in
(3.4), now depend on all p predictors and the corresponding regression coefficient
estimates, rather than just one predictor and two coefficients. The resulting sums of
squares and variance estimators introduced in Sect. 3.3 are otherwise unchanged in
the multipredictor model.

In the glucose example, the residual standard deviation, shown as Root MSE,
declines from 9.7 in the unadjusted model (Table 4.1) to 9.4 in the model adjusting
for age, alcohol use, and BMI (Table 4.2).

4.2.2.2 Variance of Adjusted Regression Coefficients

Including multiple predictors does affect the variance of ,3 ;> which now depends on
an additional factor r;, the multiple correlation of x; with the other predictors in the
model. Specifically,

2

2\ Oyix
Var(B;) = (=102, (1 - r;), (4.4)

where, as before, of

of x;; r; is equivalent to r = ~/R? from a multiple linear model in which x; is
regressed on all the other predictors. The term 1/(1 — rjz) is known as the variance

x is the residual variance of the outcome and cr)%j is the variance

inflation factor, since Var(,f? ;) is increased to the extent that x; is correlated with
other predictors in the model.

However, inclusion of other predictors, especially powerful ones, also tends to
decrease of‘x, the residual or unexplained variance of the outcome. Thus, the overall

impact of including other predictors on Var(,é ;) depends on both the correlation of
x; with the other predictors and how much additional variability they explain. In the
glucose example, the standard error of the coefficient estimate for exercise declines
slightly, from 0.44 to 0.43, after adjustment for age, alcohol use, and BMI. This
reflects the reduction in residual standard deviation previously described, as well as
a variance inflation factor in the adjusted model of only 1.03.

4.2.2.3 t-Tests and Confidence Intervals

The ¢-tests of the null hypothesis Hy: B; = 0 and CIs for §; carry over almost
unchanged for each of the s estimated by the model, only using (4.4) rather than
(3.11) to compute the standard error of the regression coefficient, and comparing the
t-statistic to a z-distribution with n — (p + 1) degrees of freedom (p is the number
of predictors in the model, and an extra degree of freedom is used in estimation of
the intercept fo).
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However, there is a substantial difference in interpretation, since the results are
now adjusted for other predictors. Thus in rejecting the null hypothesis Ho: B; =
0 we would be making the stronger claim that, in the population, x; predicts y,
holding the other factors in the model constant. Similarly, the CI for B; refers to the
parameter which takes account of the other p — 1 predictors in the model.

We have just seen that Var(,é ;) may not be increased by adjustment. However, in
Sect. 4.4 we will see that including other predictors in order to control confounding
commonly has the effect of attenuating the unadjusted estimate of the association
of x; with y. This reflects the fact that the population parameter being estimated
in the adjusted model is often closer to zero than the parameter estimated in the
unadjusted model, since some of the unadjusted association is explained by other
predictors. If this is the case, then even if Var(,é ;) is unchanged, it may be more
difficult to reject Hy: B; = 0 in the adjusted model. In the glucose example, the
adjusted coefficient estimate for exercise is considerably smaller than the unadjusted
estimate. As a result the 7-statistic is reduced from —3.87 to —2.22—still statistically
significant, but less highly so.

4.2.3 Generalization of R* and r

The coefficient of determination R? =MSS / TSS retains its interpretation as the
proportion of the total variability of the outcome that can be accounted for by the
predictor variables. Under the model, the fitted values summarize all the information
that the predictors supply about the outcome. Thus, the multiple correlation
coefficient 7 = +/R2 now represents the correlation between the outcome y and the
fitted values y. It is easy to confirm this identity by extracting the fitted values from
aregression model and computing their correlation with the outcome (Problem 4.3).
In the glucose example, R? increases from less than 1% in the unadjusted model to
7% after inclusion of age, alcohol use, and BMI, a substantial increase in relative if
not absolute terms.

4.2.4 Standardized Regression Coefficients

In Sect.3.3.9, we saw that the slope coefficient §; in a simple linear model is
systematically related to the Pearson correlation coefficient (3.12); specifically,
r = Bioy/oy, where o, and o, are the standard deviations of the predictor and
outcome. Moreover, we pointed out that the scale-free correlation coefficient makes
it easier to compare the strength of association between the outcome and various
predictors across single-predictor models. In the context of a multipredictor model,
standardized regression coefficients play this role. Obtained using the beta option
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to the regress command in Stata, the standardized regression coefficient ,3} for
predictor x; is defined in analogy to (3.12) as

:Bj ZIBjO-Xj/O—yv (4’5)

where oy, and o, are the standard deviations of predictor x; and the outcome y.
These standardized coefficient estimates are what would be obtained from the
regression if the outcome and all the predictors were first rescaled to have standard
deviation 1. Thus, they give the change in standard deviation units in the average
value of y per standard deviation increase in the predictor. Standardized coefficients
make it easy to compare the strength of association of different continuous
predictors with the outcome within the same model.

For binary predictors, however, the unstandardized regression coefficients may
be more directly interpretable than the standardized estimates, since the unstandard-
ized coefficients for such predictors simply estimate the differences in the average
value of the outcome between the two groups defined by the predictor, holding the
other predictors in the model constant.

4.3 Categorical Predictors

In Chap. 3, the simple regression model was introduced with a single continuous
predictor. However, predictors in both simple and multipredictor regression models
can be binary, categorical, or discrete numeric, as well as continuous numeric.

4.3.1 Binary Predictors

The exercise variable in the model for LDL levels shown in Table 4.1 is an example
of a binary predictor. A good way to code such a variable is as an indicator or dummy
variable, taking the value 1 for the group with the characteristic of interest, and 0
for the group without the characteristic. With this coding, the regression coefficient
corresponding to this variable has a straightforward interpretation as the increase or
decrease in average outcome levels in the group with the characteristic, with respect
to the reference group.
To see this, consider the simple regression model for average glucose values:

E[glucose|x] = By + Biexercise. (4.6)

With the indicator coding of exercise (I = yes, 0 = no), the average value of
glucose is By + B1 among women who do exercise, and Sy among the rest. It follows
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directly that B, is the difference in average glucose levels between the two groups.
This is consistent with our more general definition of §; as the change in E[y|x] for
a one-unit increase in x ;. Furthermore, the ¢-test of the null hypothesis Hy: 1 = 0
is a test of whether the between-group difference in average glucose levels differs
from zero. In fact, this unadjusted model is equivalent to a ¢-test comparing glucose
levels in women who do and do not exercise. A final point: when coded this way, the
average value of the exercise variable gives the proportion of women who exercise.
A commonly used alternative coding for binary variables is (1 = yes, 2 = no).
With this coding, the coefficient 8 retains its interpretation as the between-group
difference in average glucose levels, but now among women who do not exercise as
compared to those who do, a less intuitive way to think of the difference. Further-
more, with this coding the coefficient 8y has no straightforward interpretation, and
the average value of the binary variable is not equal to the proportion of the sample
in either group. However, overall model fit, including fitted values of the outcome,
standard errors, and P-values, are the same with either coding (Problem 4.1).

4.3.2 Multilevel Categorical Predictors

The 2,763 women in the HERS cohort also responded to a question about how
physically active they considered themselves compared to other women their age.
The five-level response variable physact ranged from “much less active” to
“much more active,” and was coded in order from 1 to 5. This is an example of
an ordinal variable, as described in Chap. 2, with categories that are meaningfully
ordered, but separated by increments that may not be accurately reflected in the
numerical codes used to represent them. For example, responses “much less active”
and “somewhat less active” may represent a larger difference in physical activity
than “somewhat less active” and “about as active.”

Multilevel categorical variables can also be nominal, in the sense that there is
no intrinsic ordering in the categories. Examples include ethnicity, marital status,
occupation, and geographic region. With nominal variables, it is even clearer that
the numeric codes often used to represent the variable in the database cannot be
treated like the values of a numeric variable such as glucose.

Categories are usually set up to be mutually exclusive and exhaustive, so that
every member of the population falls into one and only one category. In that case,
both ordinal and nominal categories define subgroups of the population.

Both types of categorical variables are easily accommodated in multipredictor
linear and other regression models, using indicator or dummy variables. As with
binary variables, where two categories are represented in the model by a single
indicator variable, categorical variables with K > 2 levels are represented by K — 1
indicators, one for each of level of the variable except a baseline or reference level.
Suppose level 1 is chosen as the baseline level. Then, for k = 2,3,..., K, indicator
variable k has value 1 for observations belonging to the category k, and O for
observations belonging to any of the other categories. Note that for K = 2, this
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Table 4.3 Coding of indicators for a multilevel categorical variable

Indicator variables

physact 2.physact 3.physact

Much less active 0 0
Somewhat less active

.physact .physact

1
About as active 0
Somewhat more active 0
Much more active 0

S = O O O

5
0
0
0
0
1

S o = O

also describes the binary case, in which the “no” response defines the baseline or
reference group and the indicator variable takes on value 1 only for the “yes” group.

Stata automatically defines indicator variables using i. variable prefix. By
default, it uses the level with the lowest value as the reference group, although this
is easily modified using a variable prefix of the form ibk, where k is the code of the
alternative baseline category. Following the Stata convention for the naming of the
four indicator variables, Table 4.3 shows the values of the four indicator variables
corresponding to the five response levels of physact. Each level of physact is
defined by a unique pattern in the four indicator variables.

Furthermore, the corresponding Bs have a straightforward interpretation. For the
moment, consider a simple regression model in which the five levels of physact
are the only predictors. Then,

Elglucose|x] = By + B22.physact + --- + fs5.physact. 4.7

For clarity, the s in (4.7) are indexed in accord with the levels of physact, so f;
does not appear in the model. Letting the four indicators take on values of 0 or 1 as
appropriate for the five groups defined by physact, we obtain

Bo physact =
Po+ P>  physact =
E[glucose|x] = { Bo + B3 physact =
Bo+ B+  physact =
Bo + Bs physact =

(4.8)

[S2 BT OV I O

From (4.8), it is clear that the intercept B gives the value of E[glucose|x] in
the reference or much less active group (physact = 1). Then it is just a matter of
subtracting the first line of (4.8) from the second to see that B, gives the difference in
the average glucose in the somewhat less active group (physact = 2) as compared
to the much less active group. Accordingly, the ¢-test of Hy: B = 0 is a test of
whether average glucose levels are the same in the much less and somewhat less
active groups (physact = 1 and 2). And similarly for 3, B4, and Bs.
Four other points are to be made from (4.8).

* Without other predictors, or covariates, the model is equivalent to a one-way
ANOVA (Problem 4.9). Also, the model is said to be saturated and the population
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group means would be estimated under model (4.8) by the sample averages. With
covariates, the estimated means for each group would be adjusted for between-
group differences in the covariates included in the model.

e The parameters of the model can be manipulated to give the estimated mean
in any group, using (4.8), or to give the estimated differences between any two
groups. For instance, the difference in average outcome levels between the much
more and somewhat more active groups is equal to 85-84 (why?). All regression
packages make it straightforward to estimate and test hypotheses about these
contrasts. This implies that choice of reference group is in some sense arbitrary.
While a particular choice may be best for ease of presentation, possibly because
contrasts with the selected reference group are of primary interest, alternative
reference groups result in essentially the same model.

e The five estimated group means can take on almost any pattern with respect to
each other, in either the adjusted or unadjusted model. In contrast, if physact
were treated as a score with integer values 1 through 5, the estimated means
would be constrained to lie on a straight regression line.

Table 4.4 shows results for the model with physact treated as a categorical
variable, again using data for women without diabetes in HERS. In the regression
output, ,30 is found in the column and row labeled Coef . and _cons; we see
that average glucose in the much less active group is approximately 98.4 mg/dL.
The differences between the reference group and the two most active groups are
statistically significant; for instance, the average glucose level in the much more
active group (5 .physact) is 3.3 mg/dL lower than in the much less active group
(t =—2.92, P = 0.003).

Using (4.8), the first 1incom command after the regression computes the
estimated mean in the somewhat less active group, equal to the sum of ,30 (.cons)
and ,32 (2 .physact), or 97.6 mg/dL (95% CI 96.5-98.6 mg/dL). The margins
command is then used to estimate the mean level in all five groups.

We can also use the 1incom command to assess pairwise differences between
two groups when neither is the referent. For example, the second 1incom result
in Table 4.4 shows that average glucose is 2.1 mg/dL lower in among women in
the much more active (physact =5) group as compared to those who are about
as active (physact = 3), and that this difference is statistically significant (t =
—2.86, P = 0.004).

The newer command contrast{physact 0 0 —1 0 1} is also used to
compare groups 3 and 5. The contrast coefficients correspond in order to the five
levels of physact. The two nonzero coefficients, —1 for group 3 and 1 for group
5, directly reflect the 1incom command, and the three zeroes correspond to the
omitted groups. The ef fects option is needed to obtain the estimated between-
group difference and 95% confidence interval supplied by default by the 1incom
command. We explain contrasts in more detail in Sect. 4.3.5 below.
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Table 4.4 Regression of physical activity on glucose

regress glucose i.physact if diabetes == 0

Source | ss af Ms Number of obs = 2032
————————————— o m e m e m e F( 4, 2027) = 4.43
Model | 1673.09022 4 418.272554 Prob > F = 0.0014
Residual | 191344.609 2027 94.3979322 R-squared = 0.0087
————————————— B e Adj R-squared = 0.0067
Total | 193017.699 2031 95.0357946 Root MSE = 9.7159
glucose | Coef std. Err t P>|t| [95% Conf. Intervall
_____________ S m s f o ________
physact |
2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719
3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629
4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.451595
5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116
|
cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626

lincom _cons + 2.physact
(1) 2.physact + _cons = 0

margins physact

Adjusted predictions Number of obs = 2032
Model VCE : OLS
Expression : Linear prediction, predict()
| Delta-method
| Margin  Std. Err. z P>|z| [95% Conf. Intervall
_____________ o e e e
physact |
1 | 98.42056 .9392676 104.78 0.000 96.57963 100.2615
2 | 97.56211 .5414437 180.19 0.000 96.5009 98.62332
3 | 97.19436 .3742409 259.71 0.000 96.46086 97.92786
4 | 95.98671 .3734108 257.05 0.000 95.25483 96.71858
5 | 95.14286 .6120416 155.45 0.000 93.94328 96.34244

lincom 5.physact - 3.physact
(1) - 3.physact + 5.physact = 0

(1) | -2.051505 717392 -2.86 0.004 -3.458407 -.6446024

(continued)
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Table 4.4 (continued)

. contrast {physact 0 0 -1 0 1}, effects
Contrasts of marginal linear predictions

Margins : asbalanced
| af F P>F
_____________ S
physact | 1 8.18 0.0043
| Contrast  Std. Err t P>|t| [95% Conf
_____________ o o o o
physact |
(1) | -2.051505 717392 -2.86 0.004 -3.458407

Table 4.5 Overall physical activity effects on glucose
. quietly regress glucose i.physact if diabetes ==
. testparm i.physact

F( 4, 2027)
Prob > F

4.43
0.0014

. contrast physact
Contrasts of marginal linear predictions

Margins : asbalanced
| af F P>F
_____________ o o
physact | 4 4.43 0.0014

4.3.3 The F-Test

81

Although every pairwise contrast between levels of a categorical predictor is readily
available, the ¢-tests for these multiple comparisons provide no overall evaluation
of the importance of the categorical variable, or more precisely a single test of the
null hypothesis that the mean level of the outcome is the same at all levels of this
predictor. In the example, this is equivalent to a test of whether any of the four
coefficients corresponding to physact differ from zero. The testparmresult in
Table 4.5 (F(4,2027) = 4.43, P = 0.0014) shows that glucose levels clearly differ
among the groups defined by physact. The same result is also obtained using the

contrast command.

4.3.4 Multiple Pairwise Comparisons Between Categories

When the focus is on the difference between a single prespecified pair of subgroups,
the overall F-test is of limited interest and the 7-test for the single contrast between
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those subgroups can be used without inflation of the type-I error rate. All levels of
the categorical predictor should still be retained in the analysis, however, because
residual variance can be reduced, sometimes substantially, by splitting out the
remaining groups. Furthermore, this avoids combining the remaining subgroups
with either of the prespecified groups, focusing the contrast on the comparison of
interest.

However, it is frequently of interest to examine multiple pairwise differences
between levels of a categorical predictor, especially when the overall F-test
is statistically significant, and in some cases even when it is not. Examples
include comparisons between treatments in a clinical trial with more than one
active treatment arm, or in longitudinal data, to be discussed in Chap.7, when
between-treatment differences are evaluated at multiple points in time. We also
discuss the implications of multiple comparisons for model selection in Sect. 10.3.2,
and more broadly in Sect. 13.4.1.

For this case, various methods are available for controlling the familywise error
rate (FER) for the wider set of comparisons being made. These methods differ
in the trade-off made between power and the breadth of the circumstances under
which the type-I error rate is protected. One of the most straightforward is Fisher’s
least significant difference (LSD) procedure, in which the pairwise comparisons are
carried out using #-tests at the nominal type-I error rate, but only if the overall F-
test is statistically significant; otherwise the null hypothesis is accepted for all the
pairwise comparisons. This protects the FER under the complete null hypothesis
that all the group-specific population means are the same. However, it is subject to
inflation of the FER under partial null hypotheses—that is, when there are some
real population differences between subgroups.

More conservative procedures that protect the FER under partial null hypotheses
include setting the level of the pairwise tests required to declare statistical signifi-
cance equal to a/ k (Bonferroni) or 1—(1—a)!/* (Sidak), where « is the desired FER
and k is the number of preplanned comparisons to be made. The Sidak correction
is slightly more liberal for small values of k, but otherwise equivalent. The Scheffé
method is another, although very conservative, method in which differences can be
declared statistically significant only when the overall F-test is also statistically
significant. The Tukey honestly significant difference (HSD) and Tukey—Kramer
methods are more powerful than the Bonferroni, Sidak, or Scheffé approaches and
also perform well under partial null hypotheses.

As noted in Sect.3.1.5, the Bonferroni, Sidak, and Scheffé procedures are
available with the oneway ANOVA in Stata. In addition, beginning with Version
12, the contrast and margins postestimation commands implement analogous
pairwise comparisons for all regression models discussed in this book, with
control of FER using the Bonferroni, Sidak, and Scheffé procedures available
via the mcompare option. These new commands have extensive capabilities for
postestimation hypothesis testing, a few of which are illustrated below, and many
others beyond the scope of this book. In Table 4.5, we obtained Bonferroni-corrected
comparisons with the reference level of physact using the command contrast
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Table 4.6 Bonferroni-corrected physical activity effects

o o o o

. regress glucose i.physact if diabetes == 0
Source | ss af Ms
_____________ S
Model | 1673.09022 4 418.272554
Residual | 191344.609 2027 94.3979322
_____________ S
Total | 193017.699 2031 95.0357946
glucose | Coef std. Err t
_____________ +
physact |
2 | -.8584489 1.084152 -0.79
3 | -1.226199 1.011079 -1.21
4 | -2.433855 1.010772 -2.41
5 | -3.277704 1.121079 -2.92
|
cons | 98.42056 .9392676 104.78

. contrast physact, mcompare (bonferroni) effects
Contrasts of marginal linear predictions

Margins : asbalanced
| af F P>F
_____________ e
physact | 4 4.43 0.0014

Note: Bonferroni-adjusted p-values are reported
for tests on individual contrasts only.

Number of obs = 2032
F( 4, 2027) = 4.43
Prob > F = 0.0014
R-squared = 0.0087
Adj R-squared = 0.0067
Root MSE = 9.7159
[95% Conf. Interval
-2.984617 1.267719
-3.20906 .7566629
-4.416114 -.451595
-5.476291 -1.079116
96.57853 100.2626
Bonferroni

[95% Conf. Interval
-3.56876 1.851862
-3.753832 1.301434
-4.96072 .093011
-6.080331 -.4750759

| Number of
| Comparisons
_____________ R
physact | 4
| Bonferroni
| Contrast  Std. Err. t P>|t|
_____________ S m s f o ________
physact |
(2 vs base) | -.8584489 1.084152 -0.79 1.000
(3 vs base) | -1.226199 1.011079 -1.21 0.901
(4 vs base) | -2.433855 1.010772 -2.41 0.065
(5 vs base) | -3.277704 1.121079 -2.92 0.014
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physact, compare (bonferroni).Note that while the estimates and overall
F-test are unchanged, the P-values for the pairwise comparisons are larger and the
CIs wider than in the regression output (Table 4.6).

A special case arises when only comparisons with a single reference group
are of interest, as might arise in a clinical trial with multiple treatments and a
single placebo control. In this situation, Dunnett’s test achieves better power than
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alternatives designed for all pairwise comparisons, while still protecting the FER
under partial null hypotheses. It also illustrates the general principle that controlling
the FER for a smaller number of contrasts is less costly in terms of power, so that
it makes sense to control only for the contrasts of interest. Compare this approach
to Scheffé’s, which controls the FER for all possible contrasts but at a considerable
expense in power.

The previous alternatives provide simultaneous inference on all the pairwise
comparisons considered. Various step-down and step-up multiple-stage testing pro-
cedures attempt to improve power using testing of cleverly sequenced hypotheses
that only continues as long as the test results are statistically significant. The Duncan
and Student-Newman-Keuls procedures fall in this class. However, neither protects
the FER under partial null hypotheses.

4.3.5 Testing for Trend Across Categories

The coefficient estimates for the categories of physact shown in Table 4.4
decrease in order, suggesting that mean glucose levels are characterized by a linear
trend across the levels of physact. Tests for linear trend are best performed using
a contrast in the coefficients corresponding to the various levels of the categorical
predictor.

Definition: A contrast is a weighted sum of the regression coefficients of the form a,; +
axPs + -++ + a,B, in which the weights, or contrast coefficients, sum to zero: that is,
ai+a+---+a,=0.

The contrasts used to test for trend can be motivated as linear regressions of the
adjusted means for each category on the categorical variable, treated as a continuous
predictor, after centering and possibly rescaling the numeric codes used for each
category. The resulting contrast coefficients used to test for linear trend have a
simple pattern: they are

e Integer-valued
* Evenly spaced
e Symmetric about zero

Using integers is just a convenience. Underlying the even spacing is the assumption
that the “distances” between adjacent categories are all the same; below, we briefly
outline how this assumption can be relaxed. Symmetry about zero implies that they
also sum to zero, as required.

To make this specific, the contrast coefficients that we would use to test for trend
across the five levels of physact are —2, —1, 0, 1, and 2. More generally, when
the number of levels is odd, the contrast coefficients are sequential integers (spacing
of one), and by symmetry, the middle category has coefficient 0 and drops out.
Thus for three categories, the coefficients are —1, 0, and 1, and for seven, follow
in order from —3 to 3. When the number of levels is even, a spacing of two is the
smallest that gives integer-valued contrast coefficients, and none of the categories
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Table 4.7 Trend test in a model omitting the intercept

. regress glucose ibn.physact if diabetes == 0, noconstant
Source | sS df Ms Number of obs = 2032
————————————— e - F( 5, 2027) =40227.86
Model | 18987135.4 5 3797427.08 Prob > F = 0.0000
Residual | 191344.609 2027 94.3979322 R-squared = 0.9900
————————————— D et e Adj R-squared = 0.9900
Total | 19178480 2032 9438.22835 Root MSE = 9.7159
glucose | Coef std. Err t P>|t| [95% Conf. Interval
_____________ o o o o
physact |
1 | 98.42056 .9392676 104.78 0.000 96.57853 100.2626
2 | 97.56211 .5414437 180.19 0.000 96.50027 98.62396
3 | 97.19436 .3742409 259.71 0.000 96.46043 97.9283
4 | 95.98671 .3734108 257.05 0.000 95.2544 96.71902
5 | 95.14286 .6120416 155.45 0.000 93.94256 96.34315

. * Tests for linear trend
. test -2x1l.physact - 2.physact + 4.physact + 2%5.physact = 0

(1) - 2xlbn.physact - 2.physact + 4.physact + 2+5.physact = 0
F( 1, 2027) = 12.11
Prob > F = 0.0005

. contrast {physact -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions

Margins : asbalanced
| af F P>F
_____________ S
physact | 1 12.11 0.0005
. contrast g(l).physact, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
| af F P>F
_____________ o oo oo ____
physact | 1 12.11 0.0005

are omitted. Thus with four categories, the contrast coefficients are —3, —1, 1, and 3,
and with six, they are —5, —3, —1, 1, 3, and 5. So it is easy to figure out the contrast
coefficients for any number of categories.

Table 4.7 shows a linear regression of glucose levels on physical activity, omitting
the intercept, which we obtain by specifying ibn.physact in the regress
command, in combination with the option noconstant. In this model, the group
means for levels 1-5 of physact are given by 81, B2, B3, B4 and Bs, rather than by
(4.8). The test command calculates the contrast using the contrast coefficients —2,
—1,0, 1, and 2, then compares it to the null value of zero; again, 83, corresponding
to the middle category, drops out. The result (F(1,2027) = 12.11, P = 0.0005)
leaves little doubt that there is a declining trend in mean glucose with increasing
levels of physical activity.
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Table 4.7 also shows two other methods for obtaining the test for linear trend. The
first, using the command contrast{physact —2 —1 0 1 2}, incorporates
the contrast coefficients for the five categories directly, in the same order as the levels
of physact; this approach was also used to contrast levels 3 and 5 of physact
in Table 4.4.

The second method uses the so-called contrast operator g (1) . Including (1)
as part of the operator specifies the test for linear trend; the default is to provide
additional tests for quadratic, cubic, and quartic trends, plus a joint test for all four
patterns. In both commands, the noeffects option prevents Stata from printing
the numeric values of the contrasts, which are uninterpretable in this case.

The g. contrast operator treats the ordered categories as evenly spaced, regardless
of the coding of the categorical variable. This assumption can be relaxed using the
p . operator instead, in combination with a coding for the categorical variable that
reflects the hypothesized spacing. For example, if we hypothesized spacings of 2,
1, 1, and 2 units between the categories of the physical activity variable, coding
the levels as 1, 3, 4, 5, and 7, then testing for linear trend using the command
contrast p(1l) .physact, noeffects would obtain the appropriate test.

Of course, the default in Stata and other statistical packages is to include the
intercept in almost all regression models; in the Cox model, introduced in Chap. 6,
the baseline hazard plays this role. When an intercept is included in the model, one
level of the categorical variable must generally serve as the reference category and
be omitted from the model. This default form of the model was laid out Table 4.3
and (4.8), and is obtained simply by specifying i.physact in the regress
command.

Fortunately, we can easily adapt the integer-valued, evenly-spaced, symmetric,
zero-sum contrast coefficients to the default form of the model with an intercept,
simply by dropping the coefficient corresponding to the omitted reference category.
To see why this works, and why the intercept does not figure in the contrast, we
evaluate the contrast in the regression coefficients specifying the means for each
level of physact, as shown in (4.8):

0= =280 — (Bo + B2) + (Bo + Bs) + 2(Bo + Bs)
= P2+ Bs+ 285 4.9)

In (4.9), the mean for level three of physact, By + B3, is omitted because the
contrast coefficient a3 = 0, and B disappears because the contrast coefficients sum
to zero. Table 4.8 summarizes the resulting contrasts used to test for trend when the
categorical variable has 3—6 levels and the lowest category is treated as the reference.

Table 4.9 shows the test for trend in glucose levels across the levels of physact,
based on the default form of the model including an intercept. The trend test result
is exactly the same as in Table 4.7, whether we use test or either version of the
contrast command to obtain it.
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Table 4.8 Trend contrasts

. ; Number of
for models with an intercept categories Linear contrast
3 ﬂ3 =0
4 —B2+B3+38,=0
5 —Br+Bs+2Bs=0
6 =3B, — B3+ Bs +3Bs+ 5B =0

Table 4.9 Trend test in a model including the intercept

regress glucose i.physact if diabetes == 0
Source | sS daf MS Number of obs = 2032
————————————— e F( 4, 2027) = 4.43
Model | 1673.09022 4 418.272554 Prob > F = 0.0014
Residual | 191344.609 2027 94.3979322 R-squared = 0.0087
————————————— D et e Adj R-squared = 0.0067
Total | 193017.699 2031 95.0357946 Root MSE = 9.7159
glucose | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ o o o o
physact |
2 | -.8584489 1.084152 -0.79 0.429 -2.984617 1.267719
3 | -1.226199 1.011079 -1.21 0.225 -3.20906 .7566629
4 | -2.433855 1.010772 -2.41 0.016 -4.416114 -.451595
5 | -3.277704 1.121079 -2.92 0.003 -5.476291 -1.079116
|
cons | 98.42056 .9392676 104.78 0.000 96.57853 100.2626
* Tests for linear trend
test -2.physact + 4.physact + 2%5.physact = 0
(1) - 2.physact + 4.physact + 2*5.physact = 0
F( 1, 2027) = 12.11
Prob > F = 0.0005
contrast {physact -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
| af F P>F
,,,,,,,,,,,,, o oo ool
physact | 1 12.11 0.0005
contrast g(1l).physact, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
| af F P>F
_____________ o o oo ____
physact | 1 12.11 0.0005

A few more details about these trend tests are worth noting:

e In (4.9), we showed why By does not figure in the contrasts in Table 4.8. By
extension, the effects of any adjustment variables held constant by the model
would also drop out.
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o If a different reference category is used, we simply drop that component of the
contrast rather than the first. For example, suppose we specified level two as
the reference category for physact using ib2.physact in the regress
command. Then the appropriate contrast would be —28; + 4 + 285 = 0. If
we specified level three as the reference category, using ib3.physact, the
contrast would be =21 —f,+ B4+285 = 0. The trend test results are unaffected
by changing the reference category.

e As compared to a simpler approach in which the categorical variable is treated as
a continuous predictor, using the categorical version of the model in conjunction
with contrasts to test for trend can be more efficient when there is both trend and
departure from it, a problem we examine next. This occurs because the model
captures the departures from linear trend, reducing the residual variance, and
thus making regression effects easier to detect.

e These contrasts are valid for the other models in this book, including logistic,
survival, repeated measures, and GLMs. In GLMs and Cox models, treating a
multilevel predictor as categorical rather than continuous achieves no efficiency
gain of the kind sometimes seen in linear models. Nonetheless, in such cases,
treating the predictor as categorical rather than continuous should achieve at least
somewhat better fit.

» Similar contrasts are available for assessing quadratic, cubic, and quartic trends
across categories, now easily accessible using the cont rast command with the
g. and p. contrast operators.

4.3.5.1 Departures from Linear Trend

The pattern in average glucose across the levels of a categorical variable could be
characterized by both a linear trend and a departure from trend. After demonstrating
a statistically significant trend as in Table 4.7 or 4.9, it is easy to test for such a
departure. One method for doing this uses a model in which the categorical variable
is treated both as continuous and categorical. In this set-up, the continuous version
accounts for the trend, while the categorical version captures departure from it.
Thus, in Table 4.10 the F-test for the overall effect of physact as a categorical
variable (F(3,2027) = 0.26, P = 0.85) shows that there is little evidence for
departures from a linear trend in this case.

Table 4.10 Testing for departure from linear trend

. quietly regress glucose physact i.physact if diabetes == 0
note: 5.physact omitted because of collinearity

. testparm i.physact
F( 3, 2027)
Prob > F

0.26
0.8511
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Table 4.11 Testing for departure from linear trend

. quietly regress glucose i.physact if diabetes ==

. contrast g(2/4) .physact, noeffects
Contrasts of marginal linear predictions

Margins : asbalanced
| daf F P>F
_____________ o oo ___
physact
(quadratic) | 1 0.11 0.7411
(cubic) | 1 0.01 0.9415
(quartic) | 1 0.49 0.4859
Joint | 3 0.26 0.8511
|
Residual | 2027

Two additional comments about the model in Table 4.10:

e The omission of an additional category of physcat is expected, in fact
necessary for the test for departure from trend to work. For this to occur,
physact must precede i.physact in the regression command; with the
reverse ordering, Stata would omit physact as continuous instead.

» This model is only useful for testing from departure from trend. Neither the
coefficient nor the z-test for the effect of physact as continuous is interpretable.
Estimation of the effects of the categorical variable as well as the test for trend
must be carried out as in Table 4.7 or 4.9, using a model including the categorical
version of the predictor only.

We can obtain exactly the same result from the original model including
physact only as a categorical variable, using the contrast operator g (2/4) .
physact. This assesses evidence for quadratic, cubic, and quartic trends, as well as
evidence for all three jointly. Because we omitted the test for linear trend, the 3
degree-of-freedom joint test is equivalent to the first approach using physact
as both continuous and categorical. Note that the specific form of the contrast
operator depends on the number of levels: for example, we would need to use
contrast g(2/3) .physact if physact had four levels, and contrast
g (2/5) .physact if it had six (Table 4.11).

4.4 Confounding

In Table 4.1, the unadjusted coefficient for exercise estimates the difference in
mean glucose levels between two subgroups of the population of women with heart
disease. But this comparison ignores other ways in which those subgroups may
differ. In other words, the analysis does not take account of confounding of the
association we see. Although the unadjusted coefficient may be useful for describing
differences between subgroups, it would be risky to infer any causal connection
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between exercise and glucose on this basis. In contrast, the adjusted coefficient for
exercise in Table 4.2 takes account of the fact that women who exercise also
have lower BMI and are slightly younger and more likely to report alcohol use, all
factors which are associated with differences in glucose levels.

While this adjusted model is clearly rudimentary, the underlying premise of
multipredictor regression analysis of observational data is that with a sufficiently
refined model (and good enough data), we can estimate causal effects, free or almost
free of confounding. In Chap. 9, we use the concept of potential outcomes to define
causal effects more precisely, and to show when multipredictor models can be used
to estimate them in the presence of confounding, and when they cannot.

To summarize briefly, the overall point of Chap.9 is that to assess confounding
we first need a hypothesized causal framework. In particular, the potential con-
founder should be plausible as a cause of both the predictor of interest and the
outcome, or as a proxy for such a cause. Within this hypothesized framework, the
data provide support for confounding if we find that:

e The potential confounder is associated with the predictor of interest, and also
independently associated with the outcome.

* The coefficient for the effect of the primary predictor on the outcome changes
when we add the potential confounder to the model. Note, however, that analo-
gous changes are also seen in logistic, Cox, and some other models, discussed
in Chaps. 5, 6, and 8, when nonconfounders associated with the outcome but not
the predictor of interest are added to the model.

4.4.1 Range of Confounding Patterns

Confounders often explain some of the association of a predictor of interest with
the outcome, so that the adjusted effect, which may have a causal interpretation,
is often weaker than the unadjusted effect. We saw this pattern in the estimate for
the effect of exercise on glucose levels after adjustment for age, alcohol use, and
BMI. However, qualitatively different patterns can arise. We now consider a small
hypothetical example where £, the exposure of primary interest, is binary and coded
0 and 1, and the potential confounder, C, is continuous. At one extreme, the effect of
a factor of interest may be completely confounded by a second variable. In the upper
left panel of Fig.4.1, £ is shown to be strongly associated with y in unadjusted
analysis, as represented in the scatterplot. However, the upper right panel shows
that the unadjusted difference in y can be entirely explained by the continuous
covariate C. The regression lines for C are the same for both groups defined by
&; in other words, there is no association with &£ after adjustment for C.

At the other extreme, we may find little or no association in unadjusted analysis,
because it is masked or negatively confounded by another predictor. The lower
panels of Fig.4.1 show this pattern. On the left, there is clearly no association
between the binary predictor £ and y, but on the right the regression lines for C
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Fig. 4.1 Complete and negative confounding patterns

are very distinct for the groups defined by &£. In short, the association between £
and y is unmasked by adjustment for C. Negative confounding can occur under the
following circumstances:

e The predictors are inversely correlated, but have regression coefficients with the
same sign.

* The two predictors are positively correlated, but have regression coefficients with
the opposite sign.

The example shown in the lower panels of Fig. 4.1 is of the second kind.

4.4.2 Confounding Is Difficult to Rule Out

The problem of confounding can be more resistant to multipredictor regression
modeling than the example in Table 4.12 might suggest. We assumed in that example
that the model included all confounders of the effect of BMI on LDL. Of course,
the multipredictor linear model (4.2) can (within limits imposed by sample size)
include more than a few predictors, giving us considerable freedom to model the
effects of other causal factors. Nonetheless, for the multipredictor linear model
to control confounding successfully and estimate causal effects without bias, all
potential confounders must have been:

e Recognized and assessed by design in the study
* Measured without error
e Accurately represented in the systematic part of the model
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Table 4.12 Unadjusted and adjusted regressions of LDL on BMI

. regress LDL bmi

Source | sS df Ms Number of obs = 2747
————————————— e F( 1, 2745) = 10.14
Model | 14446.0223 1 14446.0223 Prob > F = 0.0015
Residual | 3910928.63 2745 1424.74631 R-squared = 0.0037
————————————— D et e Adj R-squared = 0.0033
Total | 3925374.66 2746 1429.48822 Root MSE = 37.746
LDL | Coef std. Err t P>|t| [95% Conf. Interval
_____________ o o o
BMI | .4151123 .1303648 3.18 0.001 .1594894 .6707353
cons | 133.1913 3.7939 35.11 0.000 125.7521 140.6305
regress LDL bmi age nonwhite smoking drinkany

Source | ss af MS Number of obs = 2745
------------- e F( 5, 2739) = 5.97
Model | 42279.1877 5 8455.83753 Prob > F = 0.0000
Residual | 3881903.3 2739 1417.27028 R-squared = 0.0108
————————————— B e Adj R-squared = 0.0090
Total | 3924182.49 2744 1430.09566 Root MSE = 37.647

LDL | Coef std. Err t P>|t| [95% Conf. Intervall
_____________ o o o
BMI | .3591038 .1341047 2.68 0.007 .0961472 .6220605

age | -.1897166 .1130776 -1.68 0.094 -.4114426 .0320095

nonwhite | 5.219436 2.323673 2.25 0.025 .6631081 9.775764
smoking | 4.750738 2.210391 2.15 0.032 .4165363 9.08494
drinkany | -2.722354 1.498854 -1.82 0.069 -5.661351 .2166444
_cons | 147.3153 9.256449 15.91 0.000 129.165 165.4656

Logically, of course, it is not possible to show that all confounders have been
measured, and in some cases it may be clear that they have not. Furthermore, the
hypothetical causal framework may be uncertain, especially in the early stages of an
investigating a research question. Also, measurement error in predictors is common;
this may arise in some cases because the study has only measured proxies for the
causal variables which actually confound a predictor of interest. Finally, Sect. 4.7
will show that accurate modeling of systematic relationships cannot be taken for
granted.

4.4.3 Adjusted Versus Unadjusted ﬁs

Uncontrolled confounding induces bias in unadjusted (or inadequately adjusted)
estimates of the causal effects that are commonly the focus of our attention.
This suggests that unadjusted parameter estimates are always biased and adjusted
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estimates less so. But there is a sense in which this is misleading. In fact the two
estimate different population quantities. The observed difference in average glucose
levels between women who do and do not exercise is clearly interpretable, although
it almost surely does not have a causal interpretation. Thus, it should not be expected
to have the same value as the causal parameter.

4.4.4 Example: BMI and LDL

We turn to a relatively simple example, again using data from the HERS cohort. BMI
and LDL cholesterol are both established heart disease risk factors. It is reasonable
to hypothesize that higher BMI leads to higher LDL in some causal sense, to be
made more specific in Chap. 9. An unadjusted model for BMI and LDL is shown in
Table 4.12. The unadjusted estimate shows that average LDL increases .42 mg/dL
per unit increase in BMI (95% CI: 0.16-0.67mg/dL, P = 0.001). However, age,
ethnicity (nonwhite), smoking, and alcohol use (drinkany) may confound this
unadjusted association. These covariates may either represent determinants of LDL
or be proxies for such determinants, and are correlated with but almost surely not
caused by BMI, and so may confound the BMI-LDL relationship. After adjustment
for these four demographic and lifestyle factors, the estimated increase in average
LDL is 0.36 mg/dL per unit increase in BMI, an association that remains highly
statistically significant (P = 0.007). In addition, average LDL is estimated to
be 5.2 mg/dL higher among nonwhite women, after adjustment for between-group
differences in BMI, age, smoking, and alcohol use. The association of smoking with
higher LDL is also statistically significant, and there is some evidence for lower
LDL among older women and those who use alcohol.

In this example, smoking is a negative confounder, because women with higher
BMI are less likely to smoke, but both are associated with higher LDL. Negative
confounding is further evidenced by the fact that the adjusted coefficient for BMI is
larger (0.36 versus 0.32 mg/dL) in the fully adjusted model shown in Table 4.12 than
in a model adjusted for age, nonwhite, and drinkany but not for smoking
(reduced model not shown).

The covariates in the adjusted model shown in Table 4.12 can all be shown to
meet sample diagnostic criteria for potential confounding of the effect of BMI.
For example, LDL is 5.2mg/dL higher and average BMI 1.7 kg/m? higher among
nonwhite women, and the adjusted effect of BMI is 13% smaller than the unadjusted
estimate. Note that while the associations of ethnicity with both BMI and LDL are
statistically significant in this example, ethnicity might still meaningfully confound
BMI even if the differences were not nominally significant. Evidence for this would
still be provided by the substantial (>10%) change in the coefficient for BMI after
adjustment for ethnicity, according to a useful (albeit ultimately arbitrary) rule of
thumb (Greenland 1989). Recommendations for inclusion of potential confounders
in multipredictor regression models are given in Chap. 10.
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Fig. 4.2 Unadjusted and adjusted regression lines

Figure 4.2 shows the unadjusted regression line for LDL and BMI, together with

the adjusted lines specific to the white and nonwhite women, holding the other
variables constant at their respective means. Two comments about Fig. 4.2:

Some of the upward slope of the unadjusted regression line reflects the fact
that women with higher BMI are more likely to be nonwhite, younger, and not
to use alcohol—all factors associated with higher LDL. Despite the negative
confounding by smoking, when these all these effects are accounted for using
the multipredictor regression model, the slope for BMI is attenuated.

The adjusted regression lines for white and nonwhite women are parallel, both
with the same slope of 0.36 mg/dL per unit increase in BMI. Similar patterns
are assumed to hold for adjusted regression lines specific to subgroups defined
by smoking and alcohol use. Accordingly, the lines are separated by a vertical
distance of 5.2 mg/dL at every value of BMI—the adjusted difference in average
LDL by ethnicity. This pattern reflects the fact that the model does not allow
for interaction between BMI and ethnicity. We assume that the slope for BMI
is the same in both ethnic groups, and, equivalently, that the difference in LDL
due to ethnicity is the same at every value of BMI. Testing the no-interaction
assumption will be examined in Sect. 4.6 below.

4.5 Mediation

In

the adjusted model for LDL shown in Table 4.12, we assumed that age,

race/ethnicity, smoking, and alcohol use might confound the effect of BMI, because
they affect both BMI and LDL levels, or are proxies for factors that do. However,
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if the primary predictor is a cause of one of the covariates, which in turn affects the
outcome, this would be an instance of mediation. For example, statin drugs reduce
low-density LDL cholesterol levels, which in turn appear to reduce risk of heart
attack; in this model, reductions in LDL mediate the protective effect of statins.

Thus a potential mediator, like a potential confounder, must make sense in terms
of a hypothetical causal framework. In particular, it should be plausible as an effect
of the predictor of interest and as a cause of the outcome, or as a proxy for the
true intermediary factor. Within this framework, the data support mediation if we
find that:

* The potential mediator is associated with the predictor of interest and with the
outcome, controlling for the predictor of interest.

* The coefficient for the effect of the primary predictor on the outcome changes
when we add the potential mediator to the model. However, as with confounders,
analogous changes are also seen in logistic, Cox, and some other models when
nonmediators associated with the outcome but not the predictor of interest are
added to the model.

Thus mediators behave like confounders in regression models, and can only be
distinguished by the hypothesized causal framework—the data have little to tell us
about the direction of the causal effects.

4.5.1 Indirect Effects via the Mediator

The effect of the primary predictor on the mediator, and of the mediator on the
outcome, together comprise the hypothesized indirect causal pathway via the me-
diator. If the models used to estimate these effects adequately control confounding
of both relationships, then the two effects may together have a causal interpretation
as the indirect effect of the primary predictor; additional assumptions underlying
this interpretation are discussed in Sect. 9.6. Accordingly, primary evidence for the
indirect effect via the mediator is given by a test of the effect of the primary predictor
on the mediator, in combination with a second test of the effect of the mediator on
the outcome. The overall null hypothesis of no indirect effect is rejected only if both
underlying null hypotheses are rejected at the nominal « level, preventing inflation
of the type-I error rate.

4.5.2 Overall and Direct Effects

If the indirect pathway exists, and confounding has been controlled, then the
coefficient for the primary predictor before adjustment for the mediator has a causal
interpretation as the overall effect of the primary predictor on the outcome. The
coefficient adjusted for the mediator is interpretable as the so-called direct effect
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of the primary predictor via other pathways that do not involve the mediator.
Finally, the difference between overall and direct effects of the primary predictor
is interpretable as the indirect effect.

Tests for the difference between the overall and direct effects can also be used
to assess mediation. However, these tests are complicated by the need to compare
coefficient estimates for the primary predictor from two different models, but
estimated using the same data. As a result, the two estimates are correlated, which
must be taken into account. Surprisingly, these tests are less powerful in some cases
than the joint test of the indirect pathway just discussed.

It is important to note that these interpretations may hold only under additional
conditions in the generalized linear and Cox models discussed in Chaps. 5, 6, and 8.
In particular, tests for the difference between the overall and direct effects can give
false-positive results, because the collapsibility issue first introduced in Sect. 3.4.5.
As we have already pointed out, in these models the coefficient for the primary
predictor will generally change if a powerful predictor is added to the model. This
holds even if the new covariate is not associated with the primary predictor, implying
that it plays no mediating role.

4.5.3 Percent Explained

The relative difference between the overall and direct effects is sometimes referred
to as the percent explained (PE) and used as an additional summary measure of
the indirect effect. Direct estimation of PE rests on the assumption that the primary
predictor and mediator do not interact (Robins and Greenland 1992; Freedman et al.
1992). This assumption can be checked using methods explained in Sect. 4.6, and
possibly relaxed (Li et al. 2001; Vansteelandt 2009; VanderWeele 2009) as discussed
briefly in Sect. 9.6. Testing and CI estimation for PE are even more complicated and
problematic than for the difference between the overall and direct effects of the
primary predictor.

4.5.4 Example: BMI, Exercise, and Glucose

We examined the extent to which the effects of BMI on glucose levels might be
mediated through its effects on likelihood of exercise. Although exercise may in
some cases affect BMI, in HERS exercise was weakly associated (P = 0.06) with
a small increase in BMI over the first year of the study. As a result, we would
argue that in this population of older women with established heart disease, BMI
mainly affects likelihood of exercise, with very little feedback. Thus, mediation
of the effects of BMI by exercise makes sense in terms of a hypothesized causal
framework. We recognize that our simple models might not completely control
confounding of the relationships among BMI, exercise, and glucose, and could be
improved with expert input.
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To assess mediation of the effects of BMI by exercise, we assessed both links
in the hypothesized indirect pathway. Specifically, we first used a logistic model
(Chap.5) to assess the independent effects of BMI on likelihood of exercise,
adjusting for age, race/ethnicity, smoking, alcohol use, and poor or fair self-reported
health. Results in Table 4.13 show that each kg/m? increase in BMI is associated
with an 8% decrease in the odds of exercise (95% CI 4-10%, P < 0.0005).
In addition, the linear model for glucose levels establishes the second link in the
indirect pathway, showing that exercise is independently associated with a decrease
in average glucose of about 1 mg/dL (95% CI 0.1-1.9, P = 0.027). So the proposed
mediator is associated with both the primary predictor and independently with the
outcome. Since both null hypotheses are rejected at the nominal 2-sided 5% level,
there is evidence for the indirect causal pathway via exercise.

On the other hand, the coefficient for BMI is only slightly attenuated when
exercise is added to the model, from 0.50 to 0.49 mg/dL per kg/m? increase in BMI.
We manipulated regression results stored as so-called scalars to calculate PE as
(0.5025557 — 0.4859684)/0.5025557 x 100 = 3.3%. Thus, while our joint test of
the indirect pathway shows that we can rule out chance at the nominal 5% level,
only a very small part of the effect of BMI on glucose levels appears to be mediated
by its effects on likelihood of exercising.

4.5.5 Pitfalls in Evaluating Mediation

Evaluating mediation, in particular estimating direct effects and PE, has many
potential difficulties. In particular, bias can arise from uncontrolled confounding
of the association between the mediator and the outcome (Robins and Greenland
1992; Cole and Hernan 2002)—even in clinical trials where the primary predictor
is randomized treatment assignment. In observational data, we obviously need to
control confounding of the effects of the primary predictor as well. Additional
difficulties arise if a confounder of the mediator/outcome relationship is affected
by treatment, and thus a causal intermediate (Petersen et al. 2006). We briefly cover
these issues in Sect. 9.6.

4.5.5.1 Temporality

In addition, it is often difficult to infer causal direction in cross-sectional data. Lon-
gitudinal data may provide stronger support for the hypothesized indirect pathway
by showing that changes or differences in the predictor of interest are associated
with subsequent changes in the mediator, which in turn predict the outcome still
later in time. However, if these changes all occur more or less simultaneously, and
between sequential longitudinal observations, the temporal ordering can easily be
obscured. Furthermore, as discussed in Sect. 6.3.1, longitudinal analyses set up to
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Table 4.13 Indirect pathway from BMI to glucose levels via exercise

* Overall effect of BMI on glucose,

adjusting for age and alcohol use

regress glucose BMI agelO nonwhite smoking drinkany poorfair if diabetes == 0
Source | ss af MS Number of obs = 2025
————————————— e - F( 6, 2018) = 25.48
Model | 13529.786 6 2254.96434 Prob > F = 0.0000
Residual | 178590.143 2018 88.4985842 R-squared = 0.0704
————————————— B e Adj R-squared = 0.0677
Total | 192119.929 2024 94.9209135 Root MSE = 9.4074
glucose | Coef std. Err t P>|t| [95% Conf. Intervall
_____________ o o o o
BMI | .5025557 .0414832 12.11 0.000 .4212013 .5839102
agelo | .7093964 .3259568 2.18 0.030 .0701494 1.348643
nonwhite | .8801519 .7610825 1.16 0.248 -.6124377 2.372741
smoking | .1812593 .6135155 0.30 0.768 -1.021931 1.384449
drinkany | 7137293 .4305044 1.66 0.097 -.1305502 1.558009
poorfair | -.2052528 .5394217 -0.38 0.704 -1.263134 .8526288
_cons | 77.63278 2.687214 28.89 0.000 72.36278 82.90279
* Store coefficient for BMI as estimate of overall effect
scalar overall = _b[BMI]
* First link: logistic model for BMI effect on exercise
logistic exercise BMI agelO nonwhite smoking drinkany poorfair if diabetes == 0
Logistic regression Number of obs = 2025
LR chi2(6) = 158.56
Prob > chi2 = 0.0000
Log likelihood = -1294.4669 Pseudo R2 = 0.0577
exercise | Odds Ratio  Std. Err z P>|z| [95% Conf. Intervall
_____________ o oo oo
BMI | .9235428  .0093154 -7.89  0.000 .9054643 .9419822
agel0 | .8171735  .0600467 -2.75  0.006 .7075662 .9437597
nonwhite | .8012592  .1416865 -1.25  0.210 .5665721 1.133159
smoking | .3012331  .0470011 -7.69  0.000 .2218658 .4089921
drinkany | .9159856  .0883199 -0.91  0.363 .758255 1.106527
poorfair | .523097  .0671846 -5.05  0.000 .406684 .6728331

* Second link: fully adjusted model for effect of exercise on glucose levels

regress glucose BMI agel0 nonwhite smoking drinkany poorfair exercise ///

if diabetes == 0
Source | ss af MS Number of obs = 2025
————————————— e F( 7, 2017) = 22.59
Model | 13964.2063 7 1994.88661 Prob > F = 0.0000
Residual | 178155.723 2017 88.3270811 R-squared = 0.0727
7777777777777 o Adj R-squared = 0.0695
Total | 192119.929 2024 94.9209135 Root MSE = 9.3982

(continued)
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Table 4.13 (continued)

glucose | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ Mmoo o o e e e e e e e e e e
BMI | .4859684 .0421125 11.54 0.000 .4033798 .568557

agelo | .6655835 .3262395 2.04 0.041 .0257819 1.305385
nonwhite | .8315359 .7606607 1.09 0.274 -.6602267 2.323299
smoking | -.0612536 .6225991 -0.10 0.922 -1.282258 1.159751
drinkany | .6954023 .4301665 1.62 0.106 -.1482147 1.539019
poorfair | -.3387946 .5422525 -0.62 0.532 -1.402228 .724639
exercise | -.9762492 .4402026 -2.22 0.027 -1.839548 -.1129499
_cons | 78.86342 2.74136 28.77 0.000 73.48723 84.23961

. * Store coefficient for BMI as estimate of direct effect, and calculate PE
. scalar direct = Db[BMI]
. scalar PE = round((overall-direct)/overallx100, 0.1)
. scalar list PE
PE = 3.3

examine such temporal patterns can be misleading if the mediator also potentially
confounds the association between the primary predictor and outcome (Hernan et al.
2001).

4.5.5.2 Problems with PE

Finally, while PE is a popular and relatively interpretable measure of mediation,
CIs for this measure can be wide and unreliable if the overall effect of the
primary predictor is weak or noisily estimated. In addition, while PE is nominally a
percentage, values outside the interval from 0% to 100% are possible. In particular,
this occurs if the direct and indirect effects of the primary predictor are in opposite
directions—for instance, if a treatment has both beneficial and adverse effects on
the outcome, via different pathways. Even when PE is between 0% and 100%,
confidence bounds are commonly outside this range. In addition, Molenberghs
et al. (2002) show that estimates of PE are also influenced by the precision of
measurements of both the mediator and outcome, potentially leading to highly
misleading results.

4.6 Interaction

In Sect. 4.4, we gave examples in which a multipredictor linear model might be used
to reduce or eliminate confounding of the effects of a primary predictor. So far, we
have made the assumption that causal effect of the primary predictor was the same
within strata defined by the covariates. However, this may not hold. In this section,
we show how to use regression to model the resulting interaction, so that we can
estimate causal effects that differ according to the level of a covariate. Interaction
is also referred to as effect modification or moderation, and must be distinguished
from both confounding and mediation (Baron and Kenny 1986).
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Table 4.14 Model for interaction of HT and statins
Group HT statins HT#statins E[LDL[x]

1 0 0 0 Bo

2 1 0 0 Bo+ B

3 0 1 0 Bo + B2

4 1 1 1 Bot+Bi+ B+ B

4.6.1 Example: Hormone Therapy and Statin Use

As an example of interaction, we examine whether the effect of HT on LDL
cholesterol differs according to baseline statin use, using data from HERS. To do
this, a constructed interaction variable is useful. Suppose both assignment to HT
and use of statins at baseline are coded using indicator variables. Then, the product
of these two variables is also an indicator, equal to one only for the subgroup of
women who reported using statins at baseline and were randomly assigned to HT,
and zero for everyone else. Now, consider the regression model

E[LDL|x] = By + B1HT + Brstatins + B3HT#statins, (4.10)

where HT is the indicator of assignment to HT, statins the indicator of
baseline statin use, and HT#stat ins the interaction term, which Stata calculates
automatically.

Table 4.14 shows the values of (4.10) for each of the four groups of women
defined by HT and statins. The difference in E[y|x] between groups 1 and 2 is
B1, the effect of HT among women not using statins. Similarly, the difference in
E[y|x] between groups 3 and 4 is B; + B3, the effect of HT among statin users.
So the interaction term B3 gives the difference in treatment effects in these two
groups. Accordingly, a t-test of Hy: B3 = 0 is a test for the equality of the effects of
HT among statin users as compared to nonusers. Note that both overall and within
the strata defined by baseline statin use, we can assume that the groups randomly
assigned to HT and placebo are comparable.

Taking analogous differences between groups 1 and 3 or 2 and 4 would show that
B gives the difference in average LDL among statin users as compared to nonusers
among women assigned to placebo, while 8, + B3 gives the analogous difference
among women assigned to HT. However, women were not randomized to statin
use, so unbiased estimation of the causal effects of statin use would require careful
adjustment for confounding by indication—that is, for the prognostic factors that
lead physicians to prescribe this treatment.

Table 4.15 shows that there is some evidence for a smaller effect of HT
on LDL among women reporting statin use at study baseline. The command
1.HT##1.statins instructs Stata to include both so-called main effects,
shown as 1.HT and 1.statins in the output, as well as the interaction term
HT#statins, which it calculates only for the purposes of running the regression
and does not retain in the data.
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Table 4.15 Interaction of hormone therapy and statin use

. reg LDL1 i.HT##i.statins

Source | sS df MS Number of obs = 2608
————————————— e F( 3, 2604) = 52.68
Model | 227141.021 3 75713.6735 Prob > F = 0.0000
Residual | 3742707.78 2604 1437.29177 R-squared = 0.0572
————————————— o Adj R-squared = 0.0561
Total | 3969848.8 2607 1522.76517 Root MSE = 37.912
LDL1 | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ m o m m oo e e e e
1.HT | -17.72836 1.870629 -9.48 0.000 -21.39643 -14.06029
l.statins | -13.80912 2.15213 -6.42 0.000 -18.02918 -9.589065

|

HT#statins |
11 | 6.244416 3.076489 2.03 0.042 .2118042 12.27703

|
cons | 145.1567 1.325549 109.51 0.000 142.5575 147.756

. lincom 1.HT + 1.HT#l.statins
(1) 1.HT + 1.HT#l.statins = 0

LDL1 | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ mmm m oo e e e e
(1) | -11.48394 2.442444 -4.70 0.000 -16.27327 -6.694615

The coefficient for HT, or ,31, shows that among women who did not report
statin use at baseline, average cholesterol at the first annual HERS visit was almost
18 mg/dL lower in the HT arm than in placebo, a statistically significant subgroup
treatment effect.

To obtain the estimate of the effect of HT among baseline statin users, we sum
the coefficients for HT and HT#statins (that is, ,31 + ,33) using the 1incom
command. Note that in contrast to the regress command itself, where we used ##
to obtain both main effects and interaction term, in the 1 incom command we used
a single # to specify the interaction term only. The result shows that the treatment
effect among baseline statin users was only —11.5mg/dL, although this was also
statistically significant. The difference (,33) of 6.2 mg/dL between the two treatment
effects was also statistically significant (f = 2.03, P = 0.042). Finally, the results
for variable statins indicate that among women assigned to placebo, baseline
statin use is a statistically significant predictor of LDL levels at the first annual
visit.

Finally, we note that in the 1 incom command shown in Table 4.15, we have to
specify the values of each variable—in this case, 1 and 1—to which the interaction
term applies. If either of the two main effects is a multicategory predictor, then the
interaction would also have more than one level. For example, if we wanted to assess
interaction between HT and level of physical activity, we would use the commands
shown in Table 4.16. The testparm command is used to obtain a global test of the
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Table 4.16 Interaction of hormone therapy and physical activity

. regress LDL1

1.HT##1.physact

Source | sS df Ms Number of obs = 2608
————————————— e - F( 9, 2598) = 12.19
Model | 160857.353 9 17873.0393 Prob > F = 0.0000
Residual | 3808991.44 2598 1466.1245 R-squared = 0.0405
————————————— D et e Adj R-squared = 0.0372
Total | 3969848.8 2607 1522.76517 Root MSE = 38.29
LDL1 | Coef std. Err t P>|t| [95% Conf. Interval
_____________ o o o o
1.HT | -4.973552 5.810288 -0.86 0.392 -16.36681 6.419711
|
physact |
2 | 4.386916 4.612377 0.95 0.342 -4.65739 13.43122
3 | 6.96232 4.338071 1.60 0.109 -1.544106 15.46875
4 | 8.797315 4.378699 2.01 0.045 .2112231 17.38341
5 | 6.793914 5.040489 1.35 0.178 -3.089867 16.67769
|
HT#physact |
12 | -6.714054 6.799605 -0.99 0.324 -20.04725 6.619138
13 | -10.71075 6.367042 -1.68 0.093 -23.19573 1.774244
14 | -13.15391 6.411071 -2.05 0.040 -25.72523 -.5825811
15 | -12.96408 7.314865 -1.77 0.076 -27.30763 1.379473
|
cons | 133.4211 3.928472 33.96 0.000 125.7178 141.1243
. testparm i.HT#i.physact
F( 4, 2598) = 1.42
Prob > F = 0.2258
. contrast HT#physact
Contrasts of marginal linear predictions
Margins : asbalanced
| af F P>F
_____________ o oo oo
HT#physact | 4 1.42 0.2258

interaction, which is not statistically significant, despite nearly significant P-values
for the interaction terms for HT and levels 3, 4, and 5 of physical activity. The
contrast command gives an equivalent result.

4.6.2 Example: BMI and Statin Use

Similar approaches can be used to assess modification of the effects of continuous
predictors. For example, the association between BMI and baseline LDL cholesterol
levels was shown in Sect.4.4.4 to be statistically significant after adjustment for



4.6 Interaction 103

demographics and lifestyle factors. However, treatment with statins may modify
this association, possibly by interrupting the causal pathway between higher BMI
and increased LDL. This would imply that BMI is less strongly associated with
increased average LDL among statin users than among nonusers.

In examining this interaction, centering BMI about its mean value of 28.6 kg/m?
makes the parameter estimate for statin use more interpretable, as shown below.
Then, to implement the analysis, we would first compute BMIc, the new centered
BMI variable. Note that because statins is an indicator variable coded 1 for
users and O for nonusers, the interaction variable stat ins#c . BMIc automatically
made by Stata is by definition equal to BMIc in statin users, but equal to zero
for nonusers. We then fit a multipredictor regression model including all these
three predictors, as well as the potential confounders adjusted for previously. The
resulting model for baseline LDL is

E[LDL|x] = Bo + Bistatins + f,BMIc + Bistatins#c.BMIc

+pBiage + fsnonwhite + Bgsmoking + f7drinkany. (4.11)

Thus, among women who do not use statins,
E[LDL|x] = By + f2BMIc
+pBsage + Bsnonwhite + Bgsmoking + B;drinkany, (4.12)

and the slope associated with BMIc in this group is ;. In contrast, among statin
users

E[LDL|x] = By + Bistatins + B,BMIc + fsstatins#c.BMIc
+pBsage + Bsnonwhite + fgsmoking + frdrinkany
= fo + B1 + (B2 + B3)BMIc
+pBiage + fsnonwhite + Bgsmoking + f7drinkany. (4.13)

In this group, the slope associated with BMI is 8, + B3; so clearly the interaction
parameter B3 gives the difference between the two slopes. The model also posits
that the difference in average LDL between statin users and nonusers depends on
BMI. Subtracting (4.12) from (4.13), the difference in average LDL in statin users
as compared to nonusers is 1 + f3BMIc.

Table 4.17 shows the results of the interaction model for statin use and BMI. The
estimated coefficients have the following interpretations:

* statins: Among women with BMIc = 0, or equivalently, with BMI =
28.6 kg/mz, statin use was associated with LDL levels that were more than
16 mg/dL lower on average. Note that if we had not first centered BMI, this
coefficient would be an estimate of the statin effect in women with BMI = 0.
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Table 4.17 Interaction model for BMI and statin use

. regress LDL i.statins##c.BMIc age nonwhite smoking drinkany

Source | sS df MS Number of obs = 2745
————————————— o m e m e m e F( 7, 2737) = 22.85
Model | 216681.484 7 30954.4978 Prob > F = 0.0000
Residual | 3707501 2737 1354.58568 R-squared = 0.0552
————————————— D et e Adj R-squared = 0.0528
Total | 3924182.49 2744 1430.09566 Root MSE = 36.805
LDL | Coef std. Err t P>|t| [95% Conf. Interval
_____________ Fm oo o e m o
1.statins | -16.25301  1.468788  -11.07  0.000 -19.13305  -13.37296
BMIc | .5821275 .160095 3.64 0.000 .2682082 .8960468

|

statins#|

c.BMIc |
1 | -.701947 .2693752 -2.61 0.009 -1.230146 -.1737478

|
age | -.1728526 .1105696 -1.56 0.118 -.3896608 .0439556
nonwhite | 4.072767 2.275126 1.79 0.074 -.3883704 8.533903
smoking | 3.109819 2.16704 1.44 0.151 -1.139381 7.359019
drinkany | -2.075282 1.466581 -1.42 0.157 -4.950999 .8004355
_cons | 162.4052 7.583312 21.42 0.000 147.5356 177.2748

lincom BMIc + 1.statins#c.BMIc
(1) BMIc + 1l.statins#c.BMIc = 0

LDL | Coef std. Err t P>|t| [95% Conf. Interval
_____________ m mm o o e e e e e
(1) | -.1198195  .2206807 -0.54  0.587 -.5525371 3128981

* BMIc: Among women who do not use statins, the increase in average LDL is
0.58 mg/dL per unit increase in BMI. The association is statistically significant
(t=3.64, P < 0.0005).

* statins#c.BMIc: The slopes for the average change in LDL per unit increase
in BMI differ by approximately —0.70 mg/dL according to baseline statin use.
That is, the increase in average LDL associated with increases in BMI is much
less rapid among women who use statins. Moreover, the interaction is statistically
significant (t = —2.61, P = 0.009).

e lincomis used to estimate the slope for BMI among statin users, equal to the
sum of the slope among nonusers plus the estimated difference in slopes. The
estimate of —0.12 mg/dL per unit increase in BMI is not statistically significant
(t = —0.54, P = 0.59), but the 95% CI (—0.55 to 0.31 mg/dL per unit increase
in BMI) is fairly wide.

Figure 4.3 shows the estimated regression lines in the two groups, demonstrating
that the parallel lines assumption is no longer constrained to hold in the interaction
model. In summary, the analysis suggests that the adverse effect of higher BMI on
LDL may be blocked by statin use.
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Fig. 4.3 Stratum-specific regression lines

4.6.3 Interaction and Scale

Interaction models are often distinguished from simpler additive models which do
not include interaction terms. Moreover, the simpler additive model is generally
treated as the default in predictor selection, with an interaction term being added
only if there is more-or-less persuasive evidence that it is needed. It is important to
recognize, however, that the need for interaction terms is dependent on the scale on
which the outcome is measured (or, in the models discussed in later chapters, the
scale on which its mean is modeled).

In Sects.4.7.2 and 4.7.3 below we examine changes of the scale on which the
outcome is measured to address violations of the linear model assumptions of
normality and constant variance. Log transformation of the outcome, among the
most commonly used changes of scale, effectively means modeling the average
value of the outcome on a relative rather than absolute scale, as we show in
Sect.4.7.5 below. Similarly, in the analysis of before-and-after measurements of a
response to treatment, we have the option of modeling percent rather than absolute
change from baseline.

The issue of the dependence of interaction on scale arises in a similar but subtly
different way with the other models discussed later in this book. For example, in
logistic regression (Chap. 5) the logit transformation of E[Y |x] is modeled, while in
some generalized linear models (GLMs; Chap. 8), including the widely used Poisson
model, the log of E[Y [x] is modeled. Note that modeling E[log(Y)|x], as we might
do in a linear model, is different from modeling log(E[Y |x]) in the Poisson model.
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Table 4.18 Interaction model for HT effects on absolute change in LDL

. regress LDLch HT##c.cLDLO

Source | sS df MS Number of obs = 2597
————————————— e F( 3, 2593) = 258.81
Model | 721218.969 3 240406.323 Prob > F = 0.0000
Residual | 2408575.51 2593 928.876015 R-squared = 0.2304
————————————— o Adj R-squared = 0.2295
Total | 3129794.48 2596 1205.62191 Root MSE = 30.477
LDLch | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ MU
1.HT | -15.47703 1.196246 -12.94 0.000 -17.82273 -13.13134
cLDLO | -.3477064 .0225169 -15.44 0.000 -.3918593 -.3035534

|

HT#c.cLDLO |
1 | -.0786871 .0316365 -2.49 0.013 -.1407226 -.0166517

|
cons | -4.888737 .8408392 -5.81 0.000 -6.537522 -3.239953

The need to model interaction depends on outcome scale because the simpler
additive model can only hold exactly on one such scale, and may be an acceptable
approximation on some scales but not others. This is in contrast to confounding; if C
confounds &, then it does so on every outcome scale. In the case of the linear model,
the dependence of interaction on scale means that transformation of the outcome
will sometimes succeed in eliminating an interaction.

4.6.4 Example: Hormone Therapy and Baseline LDL

The effect of HT on LDL cholesterol in the HERS trial was dependent on baseline
values of LDL, with larger reductions seen among women with higher baseline
values. An interaction model for absolute change in LDL from baseline to the first
annual visit is shown in Table 4.18. Note that baseline LDL is centered in this model
in order to make the coefficient for hormone therapy (HT) easier to interpret.

The coefficients in the model have the following interpretations:

* HT: Among women with the average baseline LDL level of 135 mg/dL, the effect
of HT is to lower LDL an average of 15.5 mg/dL over the first year of the study.

e cLDLO: Among women assigned to placebo, each mg/dL increase in baseline
LDL is associated with a 0.35 mg/dL greater decrease in LDL over the first year.
That is, women with higher baseline LDL experience greater decreases in the
absence of treatment; this is in part due to regression to the mean and in part to
greater likelihood of starting use of statins.

* HT#c.cLDLO: The effect of HT is to lower LDL an additional 0.08 mg/dL for
each additional mg/dL in baseline LDL. In short, larger treatment effects are
seen among women with higher baseline values. The interaction is statistically
significant (P = 0.013).
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Table 4.19 Interaction model for HT effects on percent change in LDL

. regress LDLpctch HT##c.cLDLO

Source | sS df MS Number of obs = 2597
————————————— e F( 3, 2593) = 165.33
Model | 233394.163 3 77798.0542 Prob > F = 0.0000
Residual | 1220171.82 2593 470.563756 R-squared = 0.1606
————————————— o Adj R-squared = 0.1596
Total | 1453565.98 2596 559.925263 Root MSE = 21.692
LDLpctch | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ MU
1.HT | -10.79035 .8514335 -12.67 0.000 -12.45991 -9.120789
cLDLO | -.2162436 .0160265 -13.49 0.000 -.2476697 -.1848176

|

HT#c.cLDLO |
1 .0218767 .0225175 0.97 0.331 -.0222773 .0660307

|
cons | -1.284976 .5984713 -2.15 0.032 -2.458506 -.1114456

Inasmuch as the reduction in LDL caused by HT appears to be greater in
proportion to baseline LDL, it is reasonable to ask whether the HT effect on percent
change in LDL might be constant across baseline LDL levels. In that case, modeling
an interaction between HT and the baseline value would not be necessary. This
turns out to be the case, as shown in Table 4.19. In particular, the interaction term
HT#c.cLDLO is no longer statistically significantly (P = 0.331) and could be
dropped from the model. Note that the coefficient for HT now estimates the average
percent change in LDL due to treatment, among women at the average baseline
level. In summary, analyzing percent rather than absolute change in LDL eliminates
the interaction between HT and baseline LDL.

4.6.5 Details

There are several other more general points to be made about dealing with
interaction in multipredictor regression models.

* Interactions between two multilevel categorical predictors require extra care in
coding and interpretation. Simple computation of interaction terms involving a
categorical predictor will almost always give mistaken results. In contrast, the
i. and ## operators in Stata will handle this situation. However, suppose one
of the predictors has four levels and the other three levels. Then the interaction
is modeled using an extra (4—1)(3—1) = 6 indicator variables. Many different
patterns are subsumed by the alternative hypothesis of interaction, only a few
of which may be of interest or biologically plausible; moreover, the F-test for
interaction may have low power.
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* Interactions between two continuous variables are also tricky, especially if
the two predictors are highly correlated. Both main effects in this case are
hard to interpret. “Centering” of both variables on their respective sample
means (Problem 4.6) resolves the interpretative problem only in part, since the
coefficient for each predictor still refers only to the case where the value of other
predictor is at its sample mean. Both the linearity of the interaction effect and the
need for higher order interactions would need to be checked.

e In examining interactions, it is not enough to show that the predictor of primary
interest has a statistically significant association with the outcome in a subgroup,
especially when it is not a statistically significant predictor overall. So-called
subgroup analysis of this kind can severely inflate the type-I error rate, and
has a justifiably bad reputation in the analysis of clinical trials. Showing that
the subgroup-specific regression coefficients are statistically different by testing
for interaction sets the bar higher, is less prone to type-I error, and thus more
persuasive (Brookes et al. 2001).

e Methods have been developed (Gail and Simon 1985) for assessing qualitative
interaction, in which the sign of the coefficient for the predictor of interest differs
across subgroups. This was nearly the case in the interaction of BMI and statin
use. A more specific alternative of this kind is often easier to detect.

 Interaction can be hard to detect if the interacting variables are highly correlated.
For example, it would be difficult to assess the interaction between two types of
exposure if they occurred together either little or most of the time. This was not
the case in the second HERS example, because statin use was reported by 36%
of the cohort at baseline, and was uncorrelated with assignment to HT by virtue
of randomization. However, in an observational cohort it might be much less
common for women to report use of both medications. In that case, oversampling
of dual users might be used if the interaction were of sufficient interest.

4.7 Checking Model Assumptions and Fit

In the simple linear model (4.1) as well as the multipredictor linear model (4.2), it
has been assumed so far that E[y|x] changes linearly with each continuous predictor,
and that the error term ¢ has a normal distribution with mean zero and constant
variance for every value of the predictors. We have also implicitly assumed that
model results are not unduly driven by any small subset of observations. Violations
of these assumptions have the potential to bias regression coefficient estimates and
undermine the validity of CIs and P-values.

In this section, we show how to assess the validity of the linearity assumption
for continuous predictors and suggest modifications to the model which can make
it more reasonable. We also discuss assessments of normality, how to transform
the outcome in order to make this assumption approximately hold, and discuss
conditions under which it may be relaxed. We then discuss departures from the
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assumption of constant variance and methods for addressing them. Many of these
procedures rely heavily on the transformations of both predictor and outcome that
were introduced in Chap. 2. Finally, we show how to deal with influential points.
Throughout, we emphasize the severity of departures, since model assumptions
rarely hold exactly, and small departures are often benign, especially in large data
sets. Nonetheless, careful attention to meeting model assumptions can prevent us
from being seriously misled, and sometimes increase the efficiency of our analysis
into the bargain.

4.7.1 Linearity

In modeling the effect of BMI on LDL, we have assumed that the regression
is a straight line. However, this may not be an adequate representation of the
true relationship. For example, we might find that average LDL stops increasing,
or increases more slowly, among women with BMI in the upper reaches of its
range—a ceiling effect. Analogously, the inverse relationship between BMI and
HDL (“good”) cholesterol may depart from linearity, with floor effects among very
heavy women.

4.7.1.1 Component-Plus-Residual Plots

In unadjusted analysis, checks for departures from linearity could be carried out
using LOWESS, the nonparametric scatterplot smoother introduced in Chap. 2. This
smoother approximates the regression line under the weaker assumption that it is
smooth but not necessarily linear, with the degree of smoothness under our control,
via the bandwidth. If the linear fit were satisfactory, the LOWESS curve would be
close to the model regression line; that is, the nonparametric estimate found under
the weaker assumption of smoothness would agree with the estimate found when
linearity is assumed.

However, the direct approach of adding a LOWESS smooth to a scatterplot of
predictor versus outcome is only effective for simple linear models with a single
continuous predictor. For multipredictor regression models, the analogous plot
would have to accommodate p + 1 dimensions, where p is the number of predictors
in the model—hard to imagine even for p = 2. Moreover, nonparametric smoothers
work less well in higher dimensions.

Fortunately, the residuals from a regression model make it possible to examine
the linearity of the adjusted association between a given predictor and the outcome,
after taking account of the other predictors in the model. The basic idea is to plot
the residuals versus each continuous predictor in the model; then a nonparametric
smoother is used to detect departures from a linear trend in the average value of the
residuals across the values of the predictor. This is a residual versus predictor (RVP)
plot, obtained in Stata using the rvpplot command.
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Fig. 4.4 CPR plots for multiple regressions of LDL and HDL on BMI

However, for doing this check in Stata, we recommend the closely related
component plus residual (CPR) plot, mainly because the cprplot command
allows LOWESS smooths, which we find more informative and easier to control
than the smooths available with rvpplot. Rather than the residuals of the RVP
plot, the residuals plus the component of the fitted values due to BMI are plotted
and smoothed against BMI.

Figure 4.4 shows CPR plots for multipredictor regression models for LDL and
HDL, each adjusting the estimated effect of BMI for age, ethnicity, smoking, and
alcohol use, with solid lines representing the linear fits for BMI, and the dashed
lines the LOWESS smooths of the plotted component-plus-residuals (CPRs) against
BML. If the linear fits for BMI were satisfactory, then there would be no nonlinear
pattern across values of BMI in the CPRs. For LDL, shown on the left, the linear
and LOWESS fits agree quite well, but for HDL, there is a substantial divergence.
Thus the linearity assumption is rather clearly met by BMI in the model for LDL,
but not in the model for HDL.

The curvature in the relationship between BMI and HDL can be approximated by
adding a quadratic term in BMI to the multipredictor linear model. The fitted model
is shown in Table 4.20.

For interpretability, we centered the linear term BMIc on the sample mean of
28.6 kg/m? before calculating the quadratic term, BMIc2, and also centered age.
The linear and quadratic terms in centered BMI are both clearly needed (P <
0.0005). In this model, the intercept 47.6 estimates expected HDL for a 67-year
old, white nonsmoking abstainer with BMI = 28.6 kg/m?. The BMIc coefficient
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Table 4.20 Linear plus quadratic model for effect of BMI on HDL

. regress HDL BMIc BMIc2 agec nonwhite smoking drinkany

Source | sS df MS Number of obs = 2745
————————————— e e F( 6, 2738) = 39.99
Model | 38474.0925 6 6412.34874 Prob > F = 0.0000
Residual | 439006.42 2738 160.338356 R-squared = 0.0806
————————————— D et e Adj R-squared = 0.0786
Total | 477480.512 2744 174.008933 Root MSE = 12.662

HDL | Coef. std. Err. t P>|t| [95% Conf. Interval
_____________ o m o f D ________
BMIc | -.5272063 .0507626 -10.39  0.000 -.6267432 -.4276693

BMIc2 | .0242527 .0053231 4.56  0.000 .013815 .0346904

agec | .1893209 .0380347 4.98  0.000 .1147414 .2639005
nonwhite | 2.494766 .7815733 3.19 0.001 .9622325 4.027299
smoking | -2.070298 .7449086 -2.78  0.005 -3.530938  -.6096584
drinkany | 4.345096 .5041409 8.62  0.000 3.356561 5.333631
_cons | 47.86615 .3794279  126.15  0.000 47.12215 48.61014

estimate of —0.53 estimates the decrease in average HDL per unit increase in BMI,
at the point where BMI = 28.6 kg/m?, while the coefficient for BMIc2 captures the
(upward) curvature of the regression line.

A CPR plot for the relationship between BMI and HDL in this model is shown
in Fig. 4.5. Except at the extremes of the range of BMI, where the LOWESS smooth
would usually be unreliable, the quadratic fit is clearly an improvement on the
simpler model.

4.7.1.2 Smooth Transformations of the Predictors

In the example of HDL and BMI, the departure from linearity was approximately
addressed by adding a quadratic term in BMI to the model. This solution is often
useful when the regression line estimated by the LOWESS smooth is convex or
concave, and especially if the line becomes steeper at either side of the CPR plot.

However, other transformations of the predictor may sometimes be more suc-
cessful and should be considered. Figure 4.6 shows some of the predictor trans-
formations commonly used to linearize the association between the predictor and
the outcome. The upper left panel shows the typical curvature captured by adding
a quadratic term in the predictor to the model. On the upper right, both quadratic
and cubic terms have been included; in general, such higher order polynomial
transformations are useful for S-shapes. A drawback is that these lines often fit
badly in the tails of the predictor distribution, especially if the data there are sparse.
As in the HDL example in Table 4.20, lower order terms are generally retained in
polynomial models: specifically, we would include the linear term along with the
quadratic term in the upper left panel, as well as with the quadratic plus cubic terms
on the upper right.
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The lower panels of Fig.4.6 show the log and square root transformations,
which are useful in situations where the regression line increases more slowly
with increasing values of the predictor, as we might expect in cases of floor or
ceiling effects, and more generally where the slope becomes less steep. Each of
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these transformations would work just as well for modeling the mirror image
of the nonlinear shape, reversed top-to-bottom. In Sect.4.7.5 below, we discuss
interpretation of the regression coefficients for a log-transformed predictor.

Comparison of the LOWESS smooth in CPR plots with the transformations in
Fig. 4.6 can help identify the best candidate transformations. After the revised model
is estimated, repeating the diagnostic using a new CPR plot then provides an initial
check on the adequacy of the transformation: there should be no remaining pattern
in the residuals, and the smooth should be close to the linear fit.

In cases where a quadratic or quadratic plus cubic term is added to the model,
we can use 7- or F-tests to evaluate the statistical significance of the addition to
the model. This works because the original model is “nested” in the final model,
in the sense that the predictors in the smaller model are a subset of those in the
larger model. In other cases, for example, when we substitute the log-transformed
for the untransformed predictor, the original and final models are not nested, so this
testing procedure does not apply, although alternatives are available (Vuong 1989).
In both cases, however, we can check whether R2 improves substantially with the
transformation.

4.7.1.3 Restricted Cubic Splines

Improving on the flexibility of polynomial transformations but with better behavior
in the tails, restricted cubic splines are now implemented in Stata and other
packages. This transformation requires selecting a small number of knots, or
cutpoints, usually placed at symmetric percentiles of the predictor distribution.
If there are k knots, the predictor is represented in the model by k& — 1 spline
variables. The effect of the predictor on the mean of the outcome is then modeled as
cubic polynomials in the intervals between knots (achieving flexibility), is smooth at
each knot (avoiding unrealistic sharp bends), but is constrained to be linear beyond
the extreme knots (improving behavior in the tails). Suppose that in the model for
the effect of BMI on HDL, we represent BMI by a restricted cubic spline with the
default five knots. The results are shown in Table 4.21.

A primary advantage of restricted cubic splines is that the first of the k — 1 spline
variables is just the untransformed predictor, so that all nonlinearity is captured by
the other k — 2 variables. This affords a straightforward statistical test for departure
from linearity, analogous to the tests for the contribution of quadratic and cubic
terms in a polynomial model. The first F'-test in Table 4.21 for the joint effect
of the nonlinear components BMIsp2, BMIsp3, and BMIsp4 confirms that the
departure from linearity is important, despite the large ¢-test P-values. The second
F-test confirms the overall importance of BMI for predicting HDL.

Another big advantage of restricted cubic splines is that graphical diagnostics
for nonlinearity are considerably more difficult with the logistic, Cox, repeated
measures, and GLMs presented in later chapters. However, departures from linearity
can be conveniently assessed and modeled using restricted cubic splines in all of
these settings.
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Table 4.21 Restricted cubic spline model for effect of BMI on HDL

. mkspline BMIsp = BMI, cubic
. regress HDL BMIspl BMIsp2 BMIsp3 BMIsp4 agel0 nonwhite smoking drinkany

Source | ss af MS Number of obs = 2745
————————————— oo s e mm o mm oo F( 8, 2736) = 30.35
Model | 38913.5934 8 4864.19917 Prob > F = 0.0000
Residual | 438566.919 2736 160.294926 R-squared = 0.0815
————————————— B e Adj R-squared = 0.0788
Total | 477480.512 2744 174.008933 Root MSE = 12.661

HDL | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ o o fm .
BMIspl | -1.008258 .2823244 -3.57 0.000 -1.561849 -.4546676
BMIsp2 | 1.139488 2.424866 0.47 0.638 -3.615266 5.894242
BMIsp3 | -.4761041 9.557886 -0.05 0.960 -19.21751 18.2653
BMIsp4 | -1.757718 11.21143 -0.16 0.875 -23.74145 20.22601

agell | 1.882574 .3807256 4.94 0.000 1.136035 2.629113
nonwhite | 2.469817 .7823079 3.16 0.002 .9358431 4.003791
smoking | -2.097091 .7452066 -2.81 0.005 -3.558315 -.6358663
drinkany | 4.376239 .5041816 8.68 0.000 3.387624 5.364854
_cons | 62.2474 6.939817 8.97 0.000 48.63959 75.85521

. * test for departure from linearity
. test BMIsp2 BMIsp3 BMIsp4
F( 3, 2736) = 7.84
Prob > F = 0.0000

. * test for overall effect of BMI
. test BMIspl BMIsp2 BMIsp3 BMIsp4
F( 4, 2736) = 27.67
Prob > F = 0.0000

The primary disadvantage of restricted cubic splines is that the numeric re-
sults for BMIspl, BMIsp2, BMIsp3, and BMIsp4 in Table 4.21 are un-
interpretable. The resulting fit can only be adequately represented graphically,
as in Fig.4.7. The adjustrcspline command, part of the downloadable
postrcspline package, can also be used to plot restricted cubic spline fits with
ClIs, for logistic and GLMs as well as standard linear models.

In addition, spline fits can be sensitive to the number of knots (Stone 1986).
The flexibility of the fit increases with the number and placement of the knots, just
as LOWESS smooths become more flexible with smaller bandwidths. In Stata, the
default number is 5, but with datasets with fewer than 100 observations, 4 or 3 knots
may work better. More than 5 knots are seldom necessary in large datasets unless
the response to the predictor is unusually complicated. Plotting the fitted regression
line is useful for judging the plausibility of the fit.

4.7.1.4 Categorizing the Predictor

Another transformation useful in exploratory analysis is to categorize the continuous
predictor, either at cutpoints selected a priori or at percentiles that ensure adequate
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Fig. 4.7 HDL model with restricted cubic spline and categorical transformations of BMI

representation in each category. Then the model is estimated using indicators for all
but the reference category of the transformed predictor, as in the physact example
in Sect. 4.3. This method models the association between the ordinal categories and
the outcome as a step function, also shown in Fig.4.7. Although this approach is
unrealistic in not providing a smooth estimate of the regression line, and also less
efficient, it has the advantage of flexibility, in that each step can be of any height.
Such transformations are also easy to understand, especially when the categories
are defined by familiar clinical cutpoints. In contrast, smooth transformations,
including polynomials and restricted cubic splines, are harder to motivate, present,
and interpret.

4.7.1.5 Nonlinearity, Interaction, and Covariate Overlap

Apparent nonlinearity can sometimes mask interactions. For example, suppose that
both the average value of a continuous predictor and its effect on the outcome differ
across subgroups defined by a binary covariate. If we fail to model the interaction,
the effect of the continuous predictor will appear nonlinear, even if its effects are
completely linear within each subgroup. Furthermore, we show in Sect.9.2.3 that
unless there is considerable overlap in the values of the continuous predictor in the
two subgroups—Fig. 9.1 is an extreme example—it can be difficult to distinguish
non-linearity from effect modification by the covariate. This illustrates the diffi-
culty of identifying a reasonably accurate model, especially if the sample size is
small-to-moderate.
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4.7.2 Normality

In Sect.4.1, we stated that in the multipredictor linear model, the error term
¢ is assumed to have a normal distribution. Confidence intervals for regression
coefficients and related hypothesis tests are based on the assumption that the
coefficient estimates have a normal distribution. If ¢ has a normal distribution, and
other assumptions of the multipredictor linear model are met, then ordinary least
squares estimates of the regression coefficients can be shown to have a normal
distribution, as required.

However, it can be shown that the regression coefficients are approximately
normal in larger samples even if ¢ does not have a normal distribution. In that case,
characterizing the distribution of the residuals is helpful for assessing whether the
sample is large enough to trust the confidence intervals and hypothesis tests, since
larger samples are required for this approximation to hold when departures from the
normality of the errors are relatively serious. As with the 7-test reviewed in Sect. 3.1,
outliers are the principal worry with such departures, with the potential to erode the
power of the model to detect real effects.

4.7.2.1 Residual Plots

Various graphical methods introduced in Chap.2 are useful for assessing the
normality of e. In using these tools, it is important to distinguish between
the distribution of the outcome y and the distribution of the residuals, which
are the sample analogue of ¢. The point here is that the residuals may be normally
distributed when y is not, and conversely. Since our assumptions concern the
distribution of ¢, it is important to apply the diagnostic tools to the residuals rather
than to the outcome variable itself.

Figure 4.8 shows four useful graphical tools for assessing the normality of
the residuals, in this case from our multipredictor regression model for LDL.
In the upper panels, the histogram and boxplot both suggest a somewhat long tail on
the right. The lower left panel presents a nonparametric estimate of the distribution
of the residuals obtained using the kdensity, normal command in Stata. For
comparison, the dashed line in that panel shows the normal distribution with the
same mean and standard deviation. Comparing these two curves suggests some
skewing to the right, with a long right and short left tail; but overall the shapes
are quite close. Finally, as explained in Chap. 2, the upward curvature of the normal
Q-Q plot on the lower right is also diagnostic of right skewness.

Interpretation of the results shown in Fig.4.8 depends on the sample size.
With 2,763 observations, there is little reason for concern about the moderate
right skewness. Given such a large data set, the distribution of the parameter
estimates is likely to be well approximated by the normal, despite the mild departure
from normality in the residuals. However, in a small data set, with 50 or fewer
observations, the long right tail might be reason for concern, in part because it could
make parameter estimates less precise and tests less powerful.
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Fig. 4.8 Residuals with untransformed LDL

4.7.2.2 Testing for Departures from Normality

Various statistical tests are available for assessing the normality of the residuals,
but have the drawback of being sensitive to sample size, often failing to reject the
null hypothesis of normality in small samples where meeting this assumption is
most important, and conversely rejecting it even for small violations in large data
sets where inferences are relatively robust to departures from normality. For this
reason, we do not recommend use of these tests; instead, the graphical methods just
described should be used to judge the potential seriousness of the violation in the
light of the sample size.

4.7.2.3 Normalizing Transformations of the Outcome

Transforming the outcome is often successful for reducing the skewness of residu-
als. The rationale is that the more extreme values of the outcome are usually the ones
with large residuals (defined as r; = y; — y;); if we can “pull in” the outcome values
in the tail of the distribution toward the center, then the corresponding residuals are
likely to be smaller too.

One such transformation is to replace the outcome y with log (y). A constant can
be added to an outcome variable with negative or zero values, so that all values are
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Fig. 4.9 Residuals with log-transformed LDL

positive, although this may complicate interpretation. The log transformation is now
conventionally used to analyze viral load in studies of HIV and hepatitis infections,
triglyceride levels in studies of cardiovascular disease, and in many other contexts.
Figure 4.9 shows that after log transformation of LDL, there is no more evidence
of right skewness; in fact, there is slight evidence of too long a tail on the left.
It should also be noted that there is no qualitative change in inferences for BMI.
In Sect.4.7.5 below, we discuss interpretation of regression coefficients in models
where the outcome is log transformed.

Power transformations are a flexible alternative to the log transformation. In this
case, y is replaced by y*. Smaller values of k “pull in” the right tail more strongly.
As an example, square (k = 1/2) and cube (k = 1/3) root transformations were
commonly used in analyzing CD4 lymphocyte counts in studies of HIV infection,
since the distribution is very long tailed on the right. Adding a constant so that
all values of the outcome are nonnegative will sometimes be necessary in this
case too. The 1adder command in Stata systematically searches for the power
transformation of the outcome which is closest to normality, providing Q—Q plots
for each candidate.

A more difficult problem arises if both tails of the distribution of the residuals
are too long, since neither log nor fractional power transformations will fix both
tails. In this case one solution is the rank transformation, in which each outcome
is replaced by its rank in the ordering of all the outcomes, as in the computation
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of the Spearman correlation coefficient (Sect. 3.2); this does not achieve normality
but may reduce the loss of power. Another possibility is trimming the tails; for
example, “Winsorizing” the outcome involves replacing outcome values more than
2 or 3 standard deviations from the average by that limiting value.

4.7.2.4 Alternatives to Transformation: Bootstrap and GLMs

Some outcome variables cannot be satisfactorily normalized by transformation, or
there may be compelling reasons to analyze them on the original scale. Bootstrap
CIs, as introduced in Sects. 3.6 and 4.5.4, are a useful alternative, implemented for
most Stata procedures. We recommend use of percentile-based intervals, obtained
using the estat bootstrap postestimation command, preferably based on 500
or more bootstrap samples, rather than the default of 50. These should be more
reliable than the default intervals provided by the vce (bootstrap) option,
which are based on the assumption that the coefficient estimate is normally
distributed and use only the bootstrap estimate of the standard error.

Another good alternative is provided by the GLMs discussed in Chap.8, in
particular the gamma model, suitable for some badly skewed variables. Second-line
options include dichotomizing the outcome, with analysis using logistic models, or
categorizing the outcome into at least 3 ordered categories, then using proportional-
odds or continuation-ratio models (Ananth and Kleinbaum 1997; Greenland 1994),
as briefly described in Chap. 5.

4.7.3 Constant Variance

An additional assumption concerning & is homoscedasticity, meaning that its
variance ‘7»32 is constant across observations. When this assumption is violated,
the validity of CIs and P-values can be affected. In particular, between-group
contrasts can be misleading if 052 differs substantially across the subgroups being
compared, and the subgroups differ in size. Furthermore, in contrast to violations of
the assumption that the residuals are normally distributed, heteroscedasticity is no
less a problem in large samples than in small ones. Finally, while violations do not

make the coefficient estimates biased, some precision can be lost.

4.7.3.1 Residual Plots

Diagnostics for violations of the constant variance assumption also use the RVP
plots used to check linearity of response to continuous predictors, as well as
analogously defined residual versus fitted (RVF) plots. If the constant variance
assumption is met, then the vertical spread of the residuals should be similar across
the ranges of the predictors and fitted values; in contrast, heteroscedasticity is
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Fig. 4.10 Checking for constant residual variance

signaled by horizontal funnel shapes. Since the residuals of the LDL analysis gave
no evidence of trouble, we examined the residuals from the companion model for
HDL, which was shown in Sect.4.7.1 to need a quadratic term in BMI to meet the
linearity assumption.

Figure 4.10 shows scatterplots of the residuals of the regression of HDL on BMI
and its square, as well as age, ethnicity, smoking, and alcohol use. The plot against
BMI shows somewhat wider range on the left, although this may partly be due to
the fact that there are more observations on the left, and so more likely a few large
residuals purely by chance. This evidence for nonconstant variance is mirrored in
the slightly wider spread on the right in the facing plot of the residuals against the
fitted values.

4.7.3.2 Subsample Variances

Constancy of variance across levels of categorical predictor can be checked by
comparing the sample variance of the residuals for each category. In this example,
the variance was essentially identical across groups defined by ethnicity, smoking,
and alcohol use. In contrast, in our analysis of the influence of exercise on glucose
levels in Sect.4.1, violation of the assumption of constant variance was one of
several motivations for excluding women with diabetes. If they had been included,
the variance of the residuals would have varied between this group of 734 women
and the remainder of the HERS cohort by a factor of 26 (2,332 versus 90). Even after
log transformation of glucose, the variance would still have differed by a factor of
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10 (0.097 versus 0.0094). This pattern reflects the fact that diabetes is characterized
by loss of control over glucose levels, and also variation in the use of medications
that control them. These large differentials in residual variance would call into
question inferences drawn from comparisons between women with and without
diabetes.

4.7.3.3 Testing for Departures from Constant Variance

Statistical methods available for testing the assumption of homoscedasticity share
the sensitivity to sample size described earlier for tests of normality. The resulting
potential for giving false reassurance in small samples leads us to recommend
against the use of these formal tests. Instead, we need to examine the severity of
the violation.

4.7.3.4 When Departures May Cause Trouble

Violations of the assumption of constant variance should be addressed in cases
where the variance of the residuals:

e Changes by a factor of 2 or more across the range of the fitted values of
a continuous predictor, judging from the LOWESS smooth of the squared
residuals.

» Differs by a factor of 2 or more between subgroups that differ in size by a factor
of 2 or more.

» Differs by a factor of 3 or more between subgroups that differ in size by a factor
of less than 2.

Note that smaller differences in the standard deviation of the residuals would give
reason for transformation.

4.7.3.5 Variance-Stabilizing Outcome Transformations

In simple cases where multiple predictors do not need to be taken into account, we
could use 7-tests with the unequal option to compare subgroups, allowing for the
unequal variances. However, multipredictor modeling is often crucial; furthermore,
use of a 7-test with unequal variances would not address smooth dependence of o7
either on E[y|x] or on a continuous predictor. In that case, nonconstant variance
can sometimes be addressed using a variance-stabilizing transformation of the
outcome, including the log and square root transformations. As shown in Fig.4.11,
log transformation of HDL reduces, though it does not completely eliminate, the
evidence for nonconstant variance we found in Fig. 4.10. However, in this case our
qualitative conclusions would be unchanged by log transformation of HDL.
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Fig. 4.11 Rechecking constant variance after log-transforming HDL

4.7.3.6 Robust Standard Errors

So-called robust or “sandwich” standard errors (Huber 1967), available with
many Stata regression procedures using the option vce (robust), are another
convenient means of dealing with nonconstant residual variance. This method
will provide more reliable inferences when the constant-variance assumption is
violated, provided the model for E[y|x] is approximately correct. However, some
caution is warranted in using these standard errors in smaller samples. In extensive
simulations, Long and Ervin (2000) show that robust standard errors can be too
small in samples as large as 250 observations. They find that a more conservative
alternative developed by MacKinnon and White (1985) has the best properties;
this can be specified using the option vce (hc3) with the regress command.
Table 4.22 shows linear models for glucose levels, successively estimated using
model-based, robust, and HC3 standard errors. While the very large difference
in glucose levels according to diabetes status is unambiguous, even in this small
sample, the robust standard errors are considerably larger. Moreover, evidence for
the adverse effect of BMI appears considerably weaker with the more conservative
robust SEs.

4.7.3.7 GLMs

GLMs are another important alternative when transformation of the outcome fails to
rectify substantial violations of the assumption of constant variance. For example,
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Table 4.22 Models with conventional, robust, and HC3 standard errors

. regress glucose diabetes BMI age drinkany

Source | sS df MS Number of obs = 137
------------- hmm e F( 4, 132) = 37.43
Model | 84874 .7167 4 21218.6792 Prob > F = 0.0000
Residual | 74823.7504 132 566.846594 R-squared = 0.5315
————————————— o Adj R-squared = 0.5173
Total | 159698.467 136 1174.25343 Root MSE = 23.809
glucose | Coef. std. Err. t P>|t| [95% Conf. Interval
_____________ o m o f D ________
diabetes | 50.64445 4.585857 11.04 0.000 41.57318 59.71573
BMI | 1.033281 .3662364 2.82 0.006 .3088297 1.757733

. regress glucose diabetes BMI age drinkany, vce (robust)

Linear regression Number of obs = 137
F( 4, 132) = 19.32
Prob > F = 0.0000
R-squared = 0.5315
Root MSE = 23.809

| Robust
glucose | Coef. std. Err. t P>|t| [95% Conf. Intervall
_____________ o o o o _______
diabetes | 50.64445 6.527487 7.76 0.000 37.73244 63.55647
BMI | 1.033281 .4967385 2.08 0.039 .0506837 2.015879

. regress glucose diabetes BMI age drinkany, vce (hc3)

Linear regression Number of obs = 137
F( 4, 132) = 17.96
Prob > F = 0.0000
R-squared = 0.5315
Root MSE = 23.809
| Robust HC3

glucose | Coef. std. Err. t P>|t| [95% Conf. Interval
_____________ o oo o m
diabetes | 50.64445 6.715182 7.54 0.000 37.36116 63.92775
BMI | 1.033281 .5244014 1.97 0.051 -.0040363 2.070599

Poisson and negative binomial models have now mostly taken the place of linear
models for count outcomes using the variance-stabilizing square root transforma-
tion. In GLMs, including the logistic model (Chap. 5), the variance of the outcome is
modeled as a function of its mean (Table 8.8); in the Poisson model, for example, the
variance is assumed equal to the mean. Furthermore, the mean-variance assumption
can be relaxed using variants of these models allowing for so-called overdispersion,
or using robust standard errors, as just described.
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4.7.4 Outlying, High Leverage, and Influential Points

We have already pointed out that outlying observations with relatively large
residuals can cause trouble, in part by inflating the variance of coefficient estimates,
making it harder to detect statistically significant effects. In this section, we consider
high-leverage points, which could be described as x-outliers, since they tend to
have extreme values of one or more predictors, or represent an unusual combination
of predictor values. The importance of high-leverage points is that they are also
potentially influential, in the sense that one or more of the coefficient estimates
would change by an unduly large amount if the influential points were omitted
from the data set. This can happen when a high-leverage point also has a large
residual.

Definition: High leverage points are x-outliers with the potential to exert undue influence
on regression coefficient estimates. Influential points are points that have exerted undue
influence on the regression coefficient estimates.

Ultimately, our concern is that changes in coefficient estimates resulting from
the omission of one or a few influential points could qualitatively affect the conclu-
sions drawn from the analysis. This could arise if associations that were clearly
statistically significant become clearly nonsignificant, or vice versa, including
interaction and quadratic terms, or if associations change substantially in magnitude
or direction. We would have good reason to mistrust substantive conclusions that
were dependent on a few observations in this way. Similarly, in regression models
oriented to prediction of future outcomes (Sect. 10.1), prediction error might be
substantially affected.

Outlying, high leverage, and influential points are illustrated in Fig.4.12. In all
three of these small samples (n = 26), a problematic data point, marked with
an X, is included. The solid and dashed lines in each plot show the regression
lines estimated with and without the point, as a graphical measure of influence.
The sample shown on the upper left includes an outlier with a very large positive
residual. However, the leverage of the outlier is minimal, because it is in the center
of the distribution of x. Accordingly, the slope estimate is unaffected by omission
of this data point, Note that the point is influential for the intercept estimate, but this
parameter may be of less direct interest.

In the upper right panel, the point at the extreme right has high leverage, but
because this data point is fairly consistent with the prediction based on the other
25 data points, its influence is limited, and the estimated slope and its statistical
significance are almost unchanged by omission of the high-leverage point. Certainly
our qualitative interpretation of the slope would be unaffected.

In contrast, the point at the extreme right in the lower left panel has the same
leverage as the point in the upper right panel, but in this case its influence is very
strong, moving the slope estimate by more than 2 standard errors. The slope remains
positive and statistically significant in this instance, so our qualitative interpretation
would be similar, but in some circumstances omission of such a data point could
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Fig. 4.12 Outlying, high-leverage, and influential points

make a nonsignificant result highly statistically significant, or vice versa. In part,
this reflects the small sample size, since a high leverage point is has a better chance
of outweighing a relatively small number of other observations.

4.7.4.1 DFBETAs

To check for sensitivity of the conclusions of an analysis to a small number of high-
leverage observations, we first need to identify potentially influential points. Of the
various statistics for quantifying influence that have been defined, we recommend
using DFBETA statistics, which quantify how much each of the coefficients would
change if each observation were omitted from the data set. In linear regression,
these statistics are exact; for logistic and Cox models, accurate approximations
are available. DFBETA statistics are in standard error units—effectively on the
same scale as the 7-statistic, which is equal to ,é divided by its standard error.
If the analysis is focused on one predictor of primary interest, then clearly the
DFBETAS for that predictor are of central concern.

Boxplots are convenient for identifying a small set of extreme outliers among the
DFBETA values for each predictor. DFBETASs often have a very small interquartile
range, so that a substantial set of observations may lie beyond the whiskers of the
plot. Thus, we need to look for a small number of extreme values that are set off
from the rest. Figure 4.13 shows boxplots of the DFBETA statistics for the single
predictor in the three data sets shown in Fig.4.12. These plots clearly indicate the
single influential point.
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Fig. 4.13 DFBETAs for data sets shown in Fig.4.12

If a small set of observations meeting diagnostic criteria for undue influence
is identified, the accuracy of those data points should first be checked and clearly
erroneous observations corrected, or if this is impossible, deleted. Then if any of
the apparently influential points are retained, a final step is sensitivity analyses in
which the final model is rerun omitting some or all of the retained influential points.
For example, suppose we have identified ten influential points that are not due to
data errors, and that these include two observations with absolute DFBETAs greater
than 2, three observations with values between 1 and 2, and five more with values
between 0.5 and 1. Then, a convenient ad hoc procedure would be to delete the
two worst observations, then the worst five, and finally all ten potentially influential
points. In each model, we would check whether the important conclusions of the
analysis were affected. In prediction models, sensitivity would be assessed in terms
of estimated prediction error (Sect. 10.1). In summary, we emphasize the underlying
theme of sensitivity to the omission of a small number of points, relative to sample
size; if we omit 10% or 20% of the data and the conclusions change, this would
probably not indicate undue sensitivity.

Figure 4.14 above shows boxplots of DFBETAs for the multiple regression of
LDL on BMI, age, ethnicity, smoking, and alcohol use. As compared to the clearly
influential point shown in Fig.4.13, the largest DFBETAs are much less extreme.
Examination of the four observations with DFBETAs > 0.2 identified women with
high LDL values between 346 and 393 mg/dL.

The sensitivity of model results to the omission of these four points is sum-
marized in Table 4.23. The changes are mostly minor, in particular, for BMI,
the predictor of primary interest. The P-values for ethnicity and smoking shift
from nominally statistically significant to borderline significant, but these are not
variables of primary interest and in any case our conclusions should not be unduly
influenced by small shifts of this kind.
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Fig. 4.14 DFBETAs for LDL model

Table 4.23 Sensitivity of LDL model to omission of four most influential points

All observations Omitting four observations
Predictor variable ~ f 95% CI P-Value f 95% CI P-Value
BMI 0.36 0.10, 0.62 0.007 0.34 0.08, 0.60 0.010
Age —1.89 —4.11,0.32 0.090 —1.86 —4.03, 0.31 0.090
Nonwhite 5.22 0.66,9.78 0.025 4.19 —0.27,8.66  0.066
Smoking 4.75 0.42, 9.08 0.032 3.78 —0.47, 8.03 0.081
Alcohol use —2.72 —5.66, 0.22 0.069 —2.64 —5.51,0.23 0.072

A weakness of these procedures is that DFBETAs capture the influence of
omitting one observation at a time, but do not tell us how the omission of various
sets of points, some of which may have small DFBETAs, will affect our conclusions.
Unfortunately, user-friendly diagnostics for checking sensitivity to omission of sets
of observations have not been developed, in part because the computational burden
is too great.

4.7.4.2 Addressing Influential Points

If substantive conclusions are qualitatively affected by omission of influential
points in the sensitivity analysis, this should be reported. In addition, it is often
worthwhile to consider in substantive terms why these points have high leverage and
are influential. For example, the western collaborative group study (WCGS) data
include an influential point with an extreme but accurately recorded cholesterol level
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of 645 mg/dL, which resulted from familial hypercholesterolemia, a rare condition.
For research questions concerning the effects of cholesterol levels in the usual range
determined by common risk factors, it would be reasonable to delete this point. But
in many circumstances, deletion of influential points is hard to justify.

In that case, it may also be worth considering a more complex model that
better accommodates the influential points. In Fig.4.12, for example, a quadratic
term would almost certainly reduce the influence of the observation causing
trouble. Alternatively, interaction terms might accommodate influential data points
characterized by an unusual combination of two predictor values. Nonetheless,
changing the model in such a substantial way to accommodate one or a few data
points should be undertaken with caution, with attention to the plausibility of
the modified model, and the results clearly presented as data driven, sensitive to
influential points, and hypothesis generating.

4.7.5 Interpretation of Results for Log Transformed Variables

In Sect.4.7, we discussed log-transforming predictors to achieve linearity, and
proposed log transformation of the outcome as a means of normalizing the residuals
or stabilizing their variance. Even if substantive interpretation and P-values are
often not much changed, these transformations have a substantial effect on the
estimated regression coefficients and their literal interpretation.

For both predictors and outcomes, log transformation changes the focus from
absolute to relative or percentage change. Recall that for a predictor and outcome
on their measured scale, the regression coefficient is interpretable as the change in
the average value of the outcome for every unit increase in the predictor; for both
predictor and outcome, we mean change on the measured, or absolute, scale.

4.7.5.1 Log Transformation of the Predictor

First consider log transformation of the predictor. In this case, the regression
coefficient multiplied by log(1.01) can be interpreted as the change in the aver-
age value of the outcome for every 1% increase in the predictor. This is valid
whether we use the natural log or logarithms with other bases. In a linear model
using the natural log (In) transformation of weight to predict SBP, the estimated
coefficient for In weight is 3.004517. Thus, we estimate that average SBP increases
3.004517 xIn(1.01) ~ 0.03 mmHg for each 1% increase in weight. Similarly, if we
multiply ,3 by In(1.05) or In(1.1) we obtain the estimates that average SBP increases
0.15 mmHg for each 5% increase in weight and 0.29 mmHg for each 10% increase.

Within limits, we can approximate these results without using a calculator.
Specifically, if the predictor is natural log-transformed, we can estimate the increase
in the average value of the outcome per 1% increase in the predictor simply
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by B/IOO. This follows because In(1.01) & 0.01. But this shortcut is not valid
for logarithms with other bases, and analogous calculations for larger percentage
increases in the predictor get progressively less accurate and should not be attempted
by this means.

4.7.5.2 Log Transformation of the Outcome

Similarly, with natural log transformation of the outcome, IOO(eﬂ — 1) is inter-
pretable as the percentage increase in the average value of the outcome per unit
increase in the predictor. If base-10 logs were used to transform the outcome, then

100(10# —1) has this interpretation. The coefficient for BMI in a linear model for the
natural log transformation of triglyceride (TGL) is 0.0133487, so the model predicts
a 100(e%0133%87 _ 1) = 1.34% increase in TGL per unit increase in BML.

Again, we can approximate these results without a calculator under some
circumstances. When the outcome is natural log transformed, we can approximate
the percentage change in the average value of the outcome per unit increase in the
predictor by 100,3 . But this is acceptably accurate only if ,3 is smaller than 0.1 in
absolute value, and is again not valid using log transformations with other bases.

4.7.5.3 Log Transformation of Both Predictor and Outcome

If both predictor and outcome are transformed using natural logs, then

100(ef"(1-01) _ 1) can be interpreted as the percentage increase in the average value
of the outcome per 1% increase in the predictor. With the log,, transformation,

100(103 log10(1.01) _ 1) has this interpretation. In this case, the back-of-the-envelope
approximation for the percent increase in outcome for each 1% increase in the
predictor is simply ,3; this is accurate if both predictor and outcome are natural log
transformed and ,3 is smaller than 0.1 in absolute value.

4.7.6 When to Use Transformations

Our graphical diagnostics for linearity, normality, and constant variance do not
provide clearcut decision rules analogous to P < 0.05, and we do not recommend
formal statistical tests in this context. Furthermore, addressing these violations will
in many cases involve using transformations of predictors or outcomes that may
make the results harder to interpret. A natural criterion for assessing the necessity for
transformation is whether important substantive results differ qualitatively before
and after transformation. If not, it may be reasonable not to use the transformations.
Our example using BMI and diabetes to predict HDL is probably a case in point:
while log transformation of HDL corrected departures from both normality and
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constant variance, the conclusions were unchanged. But if substantial differences
do arise, then using transformed variables to meet model assumptions more closely
helps us to avoid misleading results.

4.8 Sample Size, Power, and Detectable Effects

Section 4.2.2 presented the f-test of the null hypothesis f; = 0, in which we

compare ,3 i/ SE(,@ ;) to the ¢-distribution with n — (p 4 1) degrees of freedom. This
test leads directly to methods for estimating sample size and power for analyses
using the linear model. Suppose we would like to calculate the sample size that
would provide power of y to reject 8; = 0 in a two-sided test with type-I error rate
o, under the alternative hypothesis ; = B4, assuming for now that 8¢ > 0. We
begin with an expression for power, relying on the large-sample equivalence of the
t and standard normal Z-distributions:

y =P[IB1/SEB) > 5o
~ P [,BA,'/SE(B,») > Zl—a/Z]
= P[(B; — B/SEB)) > 21012 — B1/SEB))|
= 1= 2102 — B}/SE(B))]

@ [5?/SE(5j) - Zl—a/Z] : (4.14)

In (4.14), | - | denotes absolute value; zj—q/> is the 1 — «/2 quantile of the standard
normal distribution (1.96 for a two-sided test with type-I error rate of 5%); and
@(-) is the cumulative distribution function for a standard normal variate Z, so
that @(z1—a/2) = P(Z < z1—¢2) = 1 — /2. The first approximation in (4.14)
holds because if B; is positive, P(,éj/SE(,éj) < Zg/2) ~ 0. The second step is
simple algebra. The third follows because (,3 = ,3‘;) / SE(,BA ;) has an approximate
Z-distribution in large samples, and the fourth because of the symmetry of the
Z-distribution about zero. Using (4.4) (with n in place of n — 1) to evaluate SE(,f} i)
then applying the inverse transformation @' to both sides of (4.14), and solving
for n gives
2,2
g = G T O (4.15)
(Biox)2(1— p7)
In (4.15), z, is the quantile of the standard normal distribution for power (0.84 for
80% power, 1.28 for 90%), Uy2|x is the residual variance of the outcome, o, i is the
standard deviation of X ;, and p; is its multiple correlation with the other covariates.
The variance inflation factor 1/(1 — p?) in (4.15) accounts for the potential loss of
precision due to the inclusion of other predictors in the model (Hsieh et al. 1998).
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In some problems, including secondary analyses of existing data, n is fixed. In
that case, (4.15) can be solved to calculate power, if we specify f:

y =1 a1 = 1Bl nl1 = )/ (@16

Similarly, we can calculate the minimum detectable effect—that is, the smallest
value of ,3;‘ for which a sample of size n would provide power of y to reject the
null hypothesis 8; = 0 in a two-sided test with type-I error of «. The minimum
detectable effect is

(Zl—a/z + Zy)Uy\x

O—X‘/' \l n(l - 103)
Some additional points:

¢ When X is binary with prevalence f;, o, = / f; (1 — f;) in (4.15)—(4.17).

* When X; is continuous with standard deviation oy, it is important to recognize
that sample size, power, and minimum detectable effects do not depend in any
real way on the units in which X; is measured. This is most clearly seen in (4.17).
Suppose X; is usually measured in grams. Changing the unit to milligrams
increases Ox; by a factor of 1,000, and shrinks ,ij by the same factor. But of
course the effect on the outcome of a I-milligram increase in the predictor is
1,000 times smaller than the effect of a 1-gram increase. One way to avoid
confusion is to consider the minimum detectable effect size for a one standard
deviation change in X;, which is often a reasonable-sized change to consider.
That effect size is obtained by setting o, = 1in (4.17).

¢ If B < O under the alternative, we have to use || in (4.16) to get the correct
result. It follows that the negative of the value given by (4.17) is also a valid
solution for the minimum detectable effect.

e Because they are based on the standard normal distribution, (4.15)—(4.17) are
only approximate. Exact solutions involve the noncentral 7-distribution and
iterative calculations. Numerous packages supply these estimates for small
as well as large sample sizes; the sampsi and sampsi_reg commands in
Stata work for binary and continuous predictors respectively. An approximate
correction is to add 2 to the estimate of n provided by (4.15) for tests with «
of 5%, and add 4 with « of 1% (Snedecor and Cochran 1989, page 104). The
correction can be important when n < 50 and especially when n < 25.

e Sample size (4.15) and minimum detectable effect (4.17) calculations simplify
considerably when we specify & = 0.05 and y = 0.8, 7 is the effect of a one
standard deviation increase in continuous x;, and we do not need to penalize for
covariate adjustment. In that standard case,

+p4 = 4.17)

n=7849x07 /(B (4.18)
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For the minimum detectable effect, we have
+ B =2.802x 0y, //n. (4.19)

For 90% power, substitute 10.51 for 7.849 and 3.242 for 2.802.
e Similarly, for a 2-arm clinical trial with equal allocation to arms, so that ,3;* is the

between-group difference in means and 5.%, = 0.25, we can calculate

n=4x7849x0) /(B (4.20)
For the minimum detectable effect, we have
+ B =2x2.802 x oy / /. 4.21)

* Power calculations using (4.16) simplify analogously, but still require a statistical
calculator or computer package to evaluate the normal cumulative distribution
function @(-).

e The Stata commands sampsi and sampsi_reg can also be used to compute
power, but not minimum detectable effects.

e In using sample size calculators that do not allow for covariate adjustment,
including the sampsi and sampsi_reg commands, the unadjusted sample
size estimate should be inflated by 1/(1 —p?); similarly, the minimum detectable

effect estimate should be inflated by ,/1/(1 — ,o?). To calculate power, use
n(l — p?) in place of n as an input.

e For the linear model, the proposed adjustment may be conservative, since
adjustment for covariates will also reduce the residual variance oi‘x, to some
extent offsetting the loss of precision due to the correlation p; between X; and
the other covariates. This is particularly relevant in calculations for stratified
randomized trials with continuous outcomes, since the stratification factor may
account for a large proportion of the variance of the outcome, but is in expectation
uncorrelated with treatment assignment.

To illustrate these calculations, suppose we are planning a randomized trial with
equal allocation to active treatment and control (f = 0.5) to assess the effect of
a new lipid-lowering agent on LDL levels. From pilot data, the residual standard
deviation 0|, for LDL is expected to be ~ 38 mg/dL, and we hypothesize that the
agent will lower average LDL levels about 40 mg/dL. Because this is a clinical trial,
it is unlikely that we will need to adjust for covariates, so we can assume p; = 0.
The sample size must provide 80% power in a two-sided test with o of 5%.

We first calculate the sample size using the sampsi command in Stata, then
using its capacity as a calculator to evaluate (4.15). Table 4.24 shows the results.
In using sampsi, any values of the means for populations 1 and 2 that differ by
40 mg/dL would give the same answer, so for convenience we used 0 and 40. With
the Snedecor and Cochran correction, using Stata to evaluate (4.15) gives about the
same result as sampsi.
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Table 4.24 Sample size calculations for a small clinical trial
. sampsi 0 40, sdl1(38) alpha(0.05) power(0.8)

Estimated sample size for two-sample comparison of means

Test Ho: ml = m2, where ml is the mean in population 1
and m2 is the mean in population 2

Assumptions:
alpha = 0.0500 (two-sided)
power = 0.8000
ml = 0
m2 = 40
sdl = 38
sd2 = 38
n2/nl = 1.00

Estimated required sample sizes:
nl = 15
n2 = 15

. * solution using Snedecor and Cochran correction

. display (invnormal (.975)+invnormal(.8)) 2x3872/(4072x0.5%(1-0.5))+2
30.334456

When the predictor of interest is continuous, we can use the downloadable
sampsi_reg command in Stata. Suppose, for example, that we would like to
estimate the power of a study with 485 participants to detect an effect of higher
BMI on SBP, controlling for age, race/ethnicity, smoking, alcohol use, and physical
activity levels. From pilot data, we estimate that o, |x ~ 18.5mmHg, 0, ~ 5.5 kg/m?,
and p; ~0.33. We hypothesize that average SBP increases 0.5 mmHg for every
kg/m? increase in BMI—that is, B = 0.5. What is the power of the study to detect
this effect of BMI on SBP in a two-sided test with oz of 5%?

Table 4.25 shows results of the computation using sampsi_reg in Stata, as
well as a direct implementation of (4.16). Since sampsi_reg does not allow for
the adjustment based on the variance inflation factor, we first deflate the available
sample size by 1 — p?. The two estimates of power are in close agreement.

4.8.1 Calculations Using Standard Errors Based
on Published Data

Equations (4.15)—(4.17) depend on oy, 0y;, and p;, for which it may be hard
to obtain estimates. However, the derivation using (4 4) suggests a solution.
Suppose an estimate SE(,B ;) for the standard error of ,3 ;j is available, based on a
multiple linear regression model with approprlate covariates and estimated using 7
observations. For example, we could compute SE(,B ;) from a published article as
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Table 4.25 Power calculation for independent effect of BMI on SBP

. display 485%(1-.3372)
432.1835
. sampsi_reg, alt(0.5) nl(432.1835) s(power) sx(5.5) sdl(18.5)

Estimate power for linear regression
Test Ho: Alt. Slope = Null Slope, usually Null Slope is 0

Assumptions:
Alpha = 0.0500 (two-sided)
N = 432.1835
Null Slope = 0.0000
Alt Slope = 0.5000
Residual sd = 18.5000
SD of X's = 5.5000
Estimated power:
Power = .86934271

. display 1l-normal (invnormal (0.975)-0.5%5.5*sqrt (485 (1-.3372))/18.5)
.8708243

the width of the 95% CI for ,3 j»divided by 2z.975 ~ 3.92. Care must taken to ensure
that the hypothesized value of f} corresponds to the same measurement scale for
X as in the source article. Then, (4.15) can be simplified as

e 5% [$E)] .
" % ‘ -

Similarly, power in a new sample of size n is given by

y = 1= [z — 1B/ 1VA/nSEB) | (4.23)
Finally, the minimum detectable effect in a new sample of size n can be obtained as

+ B = (2102 + 2) Vil /nSE(B)). (4.24)

As an example, we could use the multiple linear model in Table 4.2 to obtain
sample size, power, and minimum detectable effect estimates for a new study of the
effect of BMI on glucose levels in nondiabetic women. Based on the HERS data
with 71 = 2028, SE(,éj) = (0.5707328 — 0.4077512)/3.92 ~ 0.0415528. Suppose
we hypothesize that glucose levels increase 0.5 mg/dL for each kg/m? increase in
BMLI, so ,Bj =0.5.

In Table 4.26, we first use (4.22) to estimate that a new sample of 147 participants
would provide 90% power in a 2-sided test with o of 5% to detect the hypothesized
increase in glucose of 0.5 mg/dL for each kg/m? increase in BMI. Then, using (4.23),
we find that a sample of 200 participants would provide almost 97% power to detect
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Table 4.26 Calculations based on regression output

. * sample size for a new study providing 90% power
. display (invnormal (.975)+invnormal(.9)) " 2%x2028%0.041552872/0.5"2
147.17185

. * power in a new study with 200 participants
. display 1l-normal (invnormal (0.975)-0.5/(sgrt(2028/200)%0.0415528))
.96552967

. * minimum effect detectable with 80% power in a new study with 100 participants
. display (invnormal (.975)+invnormal (.8))*sqgrt (2028/100)%0.0415528
.5242496

the hypothesized effect. Finally, using (4.24) suggests that a smaller sample of 100
participants would provide 80% power to detect a minimum effect of 0.52 mg/dL
for each kg/m? increase in BML

4.9 Summary

The multipredictor linear model is a straightforward extension of the simple linear
model for continuous outcomes. Inclusion of multiple predictors in the model makes
it possible to adjust for confounding variables, examine mediation, check for and
model interactions, and increase efficiency, especially in experiments, by accounting
for design factors. To avoid misleading conclusions, it is important to check
assumptions, including normality of the residuals, especially in small samples;
transformations of the outcome, bootstrapping, and GLMs can be used to address
violations. Nonconstant variance of the residuals is a potentially serious concern
even in large samples, but can be resolved using robust standard errors. As with the
models discussed in later chapters, nonlinear effects of continuous predictors can be
accommodated using predictor transformations, including restricted cubic splines,
and interactions modeled using product terms. Finally, it is important to recognize
outcomes for which linear regression is not appropriate; these include binary, time-
to-event, count, and repeated measures or clustered outcomes, and are addressed in
subsequent chapters.

4.10 Further Notes and References

For more detailed information on the linear regression model, first-rate books
include Weisberg (1985) and Draper and Smith (1981). A standard book on
regression diagnostics is Belsey et al. (1980), while Cleveland (1985) covers
graphical methods for model checking in detail. See Breiman (2001) for a skeptical
view of the sensitivity of the methods presented here for detecting lack of fit.
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4.10.1 Generalized Additive Models

Methods have also been developed for fitting linear as well as logistic (Chap.5)
and other GLMs (Chap. 8) in which the adjusted response to each predictor can be
flexibly modeled as a smooth (piecewise cubic rather than piecewise linear) spline,
or alternatively using a LOWESS curve. In both cases, the degree of smoothness
is under the control of the analyst. Known as generalized additive models (Hastie
and Tibshirani 1986, 1999), implementations in the R statistical package make
it easy to model and test the statistical significance of departures from linearity.
Implementations in R of smooth spline transformations of predictors are also
available for the Cox model, discussed in Chap. 6.

4.11 Problems

Problem 4.1. Using the WCGS data for middle-aged men at risk for heart disease,
fit a multipredictor model for total cholesterol (chol) that includes the binary
predictor arcus, which is coded 1 for the group with arcus senilis, a milky ring
in the iris associated with high cholesterol levels, and O for the reference group.
Save the fitted values. Now refit the model with the code for the reference group
changed to 2. Compare the coefficients, standard errors, P-values, and fitted values
from the two models. The WCGS data are available at http://www.biostat.ucsf.edu/
vgsm.

Problem 4.2. Using (4.2), show that 8; gives the difference in E[y|x] for a one-unit
increase in x;, no matter what the values of x; or the other predictors. Hint: Write
the value of (4.2) for x; = x and then for x; = x + 1, for arbitrary (unspecified)
values of the other predictors, all of which are held fixed, and subtract the first value
from the second.

Problem 4.3. Using the WCGS data referenced in Problem 4.1, extract the fitted
values from the multipredictor linear regression model for cholesterol and show
that the square of the sample correlation between the fitted values and the outcome
variable is equal to R?. In Stata, the following code saves the predicted values from
the regression model in Table 4.2 to a new variable yhat:

regress glucose exercise BMI smoking drinkany
. predict yhat

Then use the pwcorr and display commands to get the correlation between
yhat and the predictor and square it.

Problem 4.4. Use the test command in Stata or an equivalent command in
another statistical package to show that F = ¢ for a pairwise contrast between
any other level of a categorical predictor and the reference group used in the model.


http://www.biostat.ucsf.edu/vgsm
http://www.biostat.ucsf.edu/vgsm
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Problem 4.5. In the model including an interaction between BMI and statin use,
define a second new BMI variable so that estimates for BMI specific to women who
do and do not use statins can be obtained directly from the regression coefficients,
rather than having to compute sums of the coefficients for one of these groups.
Define the values of the new BMI variable in the two groups, and then write down
the regression equations analogous to (4.11)—(4.13). Explain why the statin use
variable needs to be included in this model.

Problem 4.6. If we “center” age—that is, replace it with a new variable defined as
the deviation in age from the sample mean, what would be the interpretation of the
intercept in the model for SBP (3.2)? If BMI had not been centered, how would the
interpretation of the statin use variable change in the model in Sect. 4.6.2 allowing
for interaction in predicting LDL?

Problem 4.7. Consider the associations between exercise and glucose levels
among women without diabetes. What are the interpretations of the coefficient for
exercise:

* In a simple linear model for glucose levels.
e In a multipredictor linear regression model for glucose adjusting for all known
confounders of the exercise association.

Suppose factor X had been identified as a mediator of the exercise/glucose
association. What would be the interpretation of the exercise coefficient in a
multipredictor regression model that also adjusted for factor X, supposing that the
exercise coefficient remained statistically significantly different from zero?

Problem 4.8. Suppose that in a clinical trial of the effects of a new treatment on
glucose levels, the randomization is stratified on diabetes, an important predictor
of this outcome. By virtue of randomization, the treatment is uncorrelated with
diabetes. Using (4.4), explain why including diabetes in the analysis should provide
a more efficient estimate of the treatment effect. Would it be a good idea to check
for interaction between treatment and diabetes in this analysis? Why?

Problem 4.9. Using Stata (or another statistical package) and the WCGS data
set referenced above in Problem 4.1 (or your own data set), verify that you get
equivalent results from:

e A t-test and a simple linear model with one binary predictor.
* One-way ANOVA and a linear model with one multilevel categorical predictor.

Problem 4.10. What is the difference between showing that an interaction is
statistically significant and showing that an association is statistically significant in
one group but not in the other? Describe a pattern where the second condition holds
but there would clearly be no interaction. Is that pattern of substantive interest?

Problem 4.11. Consider a predictor of interest for an important outcome in your
field of expertise. Are there other predictors that might be hypothesized a priori to
interact with the predictor of interest? Why?
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Problem 4.12. Suppose you have used a restricted cubic spline to model a non-
linear response to your predictor of primary interest, similar to one of the models
for HDL in Fig.4.7. Figure out how to use the spline basis variables, which in
Stata would be made by the mkspline command, and corresponding regression
coefficients to plot the shape of the response estimated by the regression model.

Problem 4.13. Consider a right-skewed outcome variable that could be adequately
normalized using an unfamiliar fractional power transformation (say, the cube root).
A simpler alternative is just to dichotomize the variable. Why would you expect this
to be a costly choice in terms of efficiency? Now consider birth weights. Why might
analysis of an indicator of low birth weight be worth the loss of efficiency in this
case?

Problem 4.14. Suppose you fit a model with an influential point. With the point,
the association of interest is just statistically significant, and without it, it is clearly
not. What would you do?

4.12 Learning Objectives

(1) Describe situations in which multipredictor analysis is needed. Given an
analysis situation, decide if linear regression is appropriate.

(2) Translate research questions appropriate for a regression model into specific
questions about the coefficients of the model.

(3) Use linear regression models to test hypotheses about relationships between
variables, including confounding, mediation, and interaction.

(4) Describe the linear regression model, its key assumptions, and their implica-
tions.

(5) Explain why the estimates are called least squares estimates.

(6) Define regression line, fitted value, residual, and influence.

(7) State the relationships between:

e Correlation and regression coefficients
e The two-sample 7-test and a regression model with one binary predictor
e ANOVA and a regression model with categorical predictors

(8) Know how a statistical package is used to estimate the parameters in a regres-
sion model and make diagnostic plots to assess how well model assumptions
are met.

(9) Interpret regression model output including regression coefficient estimates,
hypothesis tests, Cls, and statistics which quantify the fit of the model.

(10) Interpret regression coefficients when the predictor, outcome, or both are log
transformed.



Chapter 5
Logistic Regression

Patients testing positive for a sexually transmitted disease at a clinic are compared
to patients with negative tests to investigate the effectiveness of a new barrier
contraceptive. One-month mortality following coronary artery bypass graft surgery
is compared in groups of patients receiving different dosages of beta blockers. Many
clinical and epidemiological studies generate outcomes which take on one of two
possible values, reflecting presence/absence of a condition or characteristic at a
particular time, or indicating whether a response occurred within a defined period of
observation. In addition to evaluating a predictor of primary interest, it is important
to investigate the importance of additional variables that may influence the observed
association and therefore alter our inferences about the nature of the relationship. In
evaluating the effect of contraceptive use in the first example, it would be clearly
important to control for age in addition to behaviors potentially linked to infection
risk. In the second example, a number of demographic and clinical variables may be
related to both the mortality outcome and treatment regime. Both of these examples
are characterized by binary outcomes and multiple predictors, some of which are
continuous.

Methods for investigating associations involving binary outcomes using contin-
gency table methods were briefly covered in Sect. 3.4. Although these techniques are
useful for exploratory investigations, and in situations where the number of predictor
variables of interest is limited, they can be cumbersome when multiple predictors
are being considered. Further, they are not well suited to situations where predictor
variables may take on a large number of possible values (e.g., continuous measure-
ments). Similar to the way linear regression techniques expanded our arsenal of
tools to investigate continuous outcomes, the logistic regression model generalizes
contingency table methods for binary outcomes. In this chapter, we cover the
use of the logistic model to analyze data arising in clinical and epidemiological
studies. Because the basic structure of the logistic model mirrors that of the linear
regression model, many of the techniques for model construction, interpretation,
and assessment will be familiar from Chap. 4.

E. Vittinghoff et al., Regression Methods in Biostatistics, Statistics for Biology 139
and Health, DOI 10.1007/978-1-4614-1353-0_5,
© Springer Science+Business Media, LLC 2004, 2012
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5.1 Single Predictor Models

Recall the example in Sect.3.4 investigating the association between CHD and
age for the WCGS. Table 5.1 summarizes the observed proportions (P) of CHD
diagnoses for five categories of age, along with the estimated risk difference (RD),
relative risk (RR), and odds ratio (OR). The last three measures are computed
according to procedures described in Sect. 3.4, using the youngest age group as
the baseline category. The estimates show a tendency for increased risk of CHD
with increasing age. Although this information provides a useful summary of the
relationship between CHD risk and age, the choice of five-year categories for age is
arbitrary. A regression representation of the relationship would provide an attractive
alternative and obviate the need to choose categories of age.

Recall that in standard linear regression, we modeled the average of a continuous
outcome variable y as a function of a single continuous predictor x using a linear
relationship of the form

E[ylx] = Bo + Bix.

We might be tempted to use the same model for a binary outcome variable. First,
note that if we follow convention and code the values of a binary outcome as one for
those experiencing the outcome and zero for everyone else, the observed proportion
of outcomes among individuals characterized by a particular value of x is simply
the mean (or “expected value”) of the binary outcome in this group. In the notation
introduced in Sect. 3.4, we symbolize this quantity by P (x). The linear model for
our binary outcome might then be expressed as

P(x) =E[ylx] = Bo + prx. (5.1)

This has exactly the same form as the linear regression model; the expected value of
the outcome is modeled as a linear function of the predictor. Further, changes in the
outcome associated with specified changes in the predictor x have a risk difference
interpretation: For example, if x is a binary predictor taking on the values O or 1, the
effect of increasing x one unit is to add an increment f, to the outcome. From (5.1),

P(1)— P(0) = Bi.

Referring back to Definition (3.14) in Sect. 3.4, we see that this is the risk difference
associated with a unit increase in x. Models with this property are often referred to
as additive risk models (Clayton and Hills 1993).

Table 5.1 CHD for five age categories in the WCGS sample

Age group P 1—P RD RR OR

35-40 0.057 0.943 0.000 1.000 1.000
41-45 0.050 0.950 —0.007 0.883 0.877
46-50 0.093 0.907 0.036 1.635 1.700
51-55 0.123 0.877 0.066 2.156 2.319

56-60 0.149 0.851 0.092 2.606 2.886
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There are several limitations with the linear model (5.1) as a basis for regression
analysis of binary outcomes. First, the statistical machinery which allowed us to use
this linear model to make inferences about the strength of relationship in Chap.4
required that the outcome variable follow an approximate normal distribution.
For a binary outcome, this assumption is clearly incorrect. Second, the outcome
in the above model represents a probability or risk. Thus, any estimates of the
regression coefficients must constrain the estimated probability to lie between zero
and one for the model to make sense. The first of these problems is statistical,
and addressing it would require generalizing the linear model to accommodate a
distribution appropriate for binary outcomes. The second problem is numerical.
To ensure sensible estimates, our estimation procedure would have to satisfy the
constraints mentioned.

Another issue is that in many settings, it seems implausible that outcome risk
would change in a strictly linear fashion for the entire range of possible values of
a continuous predictor x. Consider a study examining the likelihood of a toxicity
response to varying levels of a treatment. We would not expect the relationship
between likelihood of toxicity and dose to be strictly linear throughout the range
of possible doses. In particular, the likelihood of toxicity should be zero in the
absence of treatment and increase to a maximum level, possibly corresponding to
the proportion of the sample susceptible to the toxic effect, with increasing dose.

Figure 5.1 presents four hypothetical models linking the probability P(x) of a
binary outcome to a continuous predictor x. In addition to the linear model (a),
there is the exponential model (b) that constrains risk to increase exponentially
with x, the “step function” model (c) that allows irregular (but piecewise-constant)
change in risk with increasing values of x, and the smooth S-shaped curve in (d)
known as the logistic model. The exponential model is also known as log linear
because it specifies that the logarithm of the outcome risk is linear in x. It presents
a problem similar to that noted for the linear model above: Namely, that risk is not
obviously constrained to be less than one for large values of 8y + f1x. The outcome
probabilities for model (¢) simply represent the estimated proportion of positive
outcomes in each group specified by the categories of x, and has the desirable
properties that risks are clearly constrained to fall in the interval [0, 1], and that the
nature of the increase in the interval can be flexibly represented by different “step”
heights. However, it lacks smoothness, a property that is biologically plausible in
many instances. In addition, the choice of break points delineating the changes
in risk is subjective. By contrast, the logistic model allows for a smooth change
in risk throughout the range of x, and has the property that risk increases slowly
up to a “threshold” range of x, followed by a more rapid increase and a subsequent
leveling off of risk. This shape is consistent with many dose-response relationships
(illustrated by the toxicity example from the previous paragraph). As we will see
later in this chapter, all of these models represent valid alternatives for assessing
how risk of a binary outcome changes with the value of a continuous predictor.
However, most of our focus will be on the logistic model.
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Fig. 5.1 Risk models for a binary outcome and continuous predictor (a) Linear (b) Exponential
(c) Step function (d) Logistic

In addition to a certain degree of biological plausibility, the logistic model
does not pose the numerical difficulties associated with the linear and log-linear
models, and has a number of other appealing properties that will be described in
more detail below. For these reasons, it is by far the most widely used model for
binary outcomes in clinical and epidemiological applications, and forms the basis
of logistic regression modeling. However, adoption of the logistic model still implies
strong assumptions about the relationship between outcome risk and the predictor.
In fact, expressed on a transformed scale, the model prescribes a linear relationship
between the logarithm of the odds of the outcome and the predictor.

The logistic model plotted in Fig. 5.1d is defined by the equation

 exp(Bo+ Buv)
P = T oo+ i)

5.2)

In terms of the odds of the outcome associated with the predictor x, the model can
also be expressed as

P(x)

T poy = S0+ i), (5:3)
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Consider again the simple case where x takes on the values 0 or 1. From the last
equation, the ratio of the odds for these two values of x are

P1)/[1 — P(1)]
PO)/—PO) exp(B1). (5.4)
Expressed in this form, we see that the logistic model specifies that the ratio of
the odds associated with these two values of x is given by the factor exp(B,).
Equivalently, the odds for x = 1 are obtained by multiplying the odds for x = 0
by this factor. Because of this property, the logistic model is an example of a
multiplicative risk model (Clayton and Hills 1993). (Note that the log-linear model
is also multiplicative in this sense, but is based on the outcome risks rather than the
odds.)

Although not easily interpretable in the form given in (5.2) and (5.3), expressed
as the logarithm of the outcome odds (as given in (5.3)), the model becomes linear
in the predictor

log [%} = fo + Bix. (5.5)
This model states that the log odds of the outcome is linearly related to x, with
intercept coefficient B and slope coefficient 8, (i.e., the logistic model is an additive
model when expressed on the log odds scale). The logarithm of the outcome odds is
also frequently referred to as the /logit transformation of the outcome probability.

In the language introduced in Chaps.3 and 4, (5.2), (5.3), and (5.5) define the
systematic part of the logistic regression model, linking the average P(x) of the
outcome variable y to the predictor x. The random part of the model specifies
the distribution of the outcome variable y;, conditional on the observed value X;
of the predictor (where the subscript i denotes the value for a particular subject).
For binary outcomes, this distribution is called the binomial distribution and is
completely specified by the mean of y; conditional on the value x;. To summarize,
the logistic model makes the following assumptions about the outcome y;:

(1) y; follows a Binomial distribution.
(2) The mean E [y|x] = P(x) is given by the logistic function (5.2).
(3) Values of the outcome are statistically independent.

These assumptions closely parallel those associated with the linear regression
(in Sect. 3.3), the primary difference being the use of the binomial distribution for
the outcome y. Note that the assumption of constant variance of y across different
values of x is not required for the logistic model. Another difference is that the
random aspect of the logistic model is not included as an additive term in the
regression equation. However, it is still an integral part of estimation and inference
regarding model coefficients. (This is discussed further in Sect. 5.6.)

As we will see in the rest of this chapter, both of the alternative expressions (5.2)
and (5.5) for the logistic model are useful: the linear logistic form (5.5) is the basis
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Table 5.2 Logistic model for the relationship between CHD and age
. logistic chdé9 age, coef

Logit estimates Number of obs = 3154
LR chi2 (1) = 42.89

Prob > chi2 = 0.0000

Log likelihood = -869.17806 Pseudo R2 = 0.0241
chde9 | Coef. std. Err z P>|z| [95% Conf. Interval]
_____________ o o o C o __
age | .0744226 .0113024 6.58 0.000 .0522703 .0965748

_cons | -5.939516 .549322 -10.81 0.000 -7.016167 -4.862865

for regression modeling, while the (nonlinear) logistic form (5.2) is useful when
we want to express the outcome on its original scale (e.g., to estimate outcome risk
associated with a particular value of x).

One of the most significant benefits of the linear logistic formulation (5.5) is
that the regression coefficients are interpreted as log odds ratios. These can be
expressed as odds ratios via simple exponentiation (as demonstrated above in (5.4)),
providing a direct generalization of odds ratio methods for frequency tables to the
regression setting. This property follows directly from the definition of the model,
and is demonstrated in the next section. Finally, we note that there are a number
of alternative regression models for binary outcomes that share similar properties
to the logistic model. Although none of these comes close to the logistic model in
terms of popularity, they offer useful alternatives in some situations. Some of these
will be discussed in Sect. 5.5.

5.1.1 Interpretation of Regression Coefficients

Table 5.2 shows the fit of the logistic model (5.5) for the relationship between CHD
risk and age in the WCGS study. The coefficient labeled _cons in the table is
the intercept (B), and the coefficient labeled age is the slope (B;) of the fitted
logistic model. Since the outcome for the model is the log odds of CHD risk, and
the relationship with age is linear, the slope coefficient 8; gives the change in the
log odds of chdé9 associated with a one-year increase in age. We can verify this
by using the formula for the model (5.5) and the estimated coefficients to calculate
the difference in risk between a 56- and a 55-year-old individual:

| P(56) 1 P(55)
Og[l - P<56>} B °g[1 - P(SSJ

= (=5.940 + 0.074 x 56) — (—5.940 + 0.074 x 55) = 0.074.
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This is just the coefficient B, as expected; performing the same calculation on an
arbitrary one-year age increase would produce the same result (as shown at the end
of this section). The corresponding odds ratio for any one-year increase in age can
then be computed by simple exponentiation:

exp(0.074) = 1.077.

This odds ratio indicates a small (approximately 8%) but statistically significant
increase in the odds of CHD for each one-year age increase. We can estimate the
(clinically more relevant) odds ratio associated with a ten-year increase in age the
same way, yielding:

exp(0.074 x 10) = 2.105.

Following the same approach we can use (5.5) to calculate the log odds ratio and
odds ratio for an arbitrary A unit increase in a predictor x as follows:

P(x(-i—A) P(x(-i—A)

1-P+4) | 1-P(x+4) _

o [ P) } =hA. —— =exp(Bid). (5-6)
I—P(x) 1=P(x)

In addition to computing odds ratios, the estimated coefficients can be used in the
logistic function representation of (5.2) to estimate the probability of having CHD
during study follow-up for a individual with any specified age. For a 55-year-old
individual:

exp(—5.940 + 0.074 x 55)
1 + exp(—5.940 + 0.074 x 55)

P(55) =

Of course, such an estimate only makes sense for ages near the values used in fitting
the model.

The output in Table 5.2 also gives standard errors and 95% ClIs for the model
coefficients. The interpretation of these is the same as for the linear regression
model. The fact that the interval for the coefficient of age excludes zero indicates
statistically significant evidence that the true coefficient is different than zero.
Similar to linear regression, the ratio of the coefficients to their standard errors forms
the Wald (z) test statistic for the hypothesis that the true coefficients are different
than zero. This statistic is assumed to approximately follow a normal distribution,
and the associated P-value and 95% confidence intervals rely on this assumption. As
introduced in Sect. 3.6, bootstrap confidence intervals are useful when the accuracy
of this approximation is questionable. The logarithm of the likelihood for the fitted
model along with a likelihood ratio (LR) statistic LR chi2 (1) and associated
P-value (Prob > chi?2) are also provided. Maximum likelihood is the standard
method of estimating parameters from logistic regression models, and is based
on finding the estimates which maximize the joint probability (or likelihood—see
Sect. 5.6) for the observed data under the chosen model.



146 5 Logistic Regression

Table 5.3 Effects of age differences of 1 and 10 years, by reference age
Age (x) P(x) P(x+1) odds(x) odds(x + 1) OR RR ER

40 0.049 0.053 0.052 0.056 1.077 1.073 0.004
50 0.098 0.105 0.109 0.117 1.077 1.069 0.007
60 0.186 0.198 0.229 0.247 1.077 1.062 0.012
Age (x) P(x) P(x +10) odds(x) odds(x + 10) OR RR ER

40 0.049 0.098 0.052 0.109 2.105 1.996 0.049
50 0.098 0.186 0.109 0.229 2.105 1.899 0.088
60 0.186 0.325 0.229 0.482 2.105 1.746 0.139

The LR statistic given in the table compares the likelihood from the fitted model
with the corresponding model excluding age, and addresses the hypothesis that
there is no (linear) relationship between age and the log odds of CHD occurrence.
The associated P-value is obtained from the y? distribution with one degree of
freedom (corresponding to the single predictor used in the model). LR tests are
covered in more detail in Sect.5.2.1. Note that the Pseudo R2 value in the table
is intended to provide a measure paralleling that used in linear regression models,
and is related to the LR statistic.

As an additional illustration of the properties of the logistic model, Table 5.3
presents a number of quantities calculated directly from the coefficients in Table 5.2
and (5.2) and (5.5). For the ages 40, 50, and 60, the table gives the estimated
response probabilities and odds. These are also calculated for one- and ten-year
age increases so that corresponding odds ratios can be computed. As prescribed by
the model, the odds ratios associated with a fixed increment change in age remain
constant across the age range. Estimates of RR and ER are also computed for one-
and ten-year age increments to illustrate that the fitted logistic model can be used
to estimate a wide variety of quantities in addition to odds ratios. Note that the
estimated values of ER and RR are not constant with increasing age (because the
model does not restrict them to be so). Note also that although measures such as
ER and RR can be computed from the logistic model, the resulting estimates will
not in general correspond to those obtained from a regression model defined on a
scale on which ER or RR is assumed constant. We will return to this topic when we
consider alternative binary regression approaches in Sect. 5.5, and again in Sect. 9.3,
where we consider use of the logistic model to estimate response probabilities
for binary predictors representing contrasting exposure scenarios in the context of
causal inference.

5.1.2 Categorical Predictors

Similar to the conventional linear regression model, the logistic model (5.5) is
equally valid for categorical risk factors. For example, we can use it to look again
at the relationship between CHD risk and the binary predictor arcus senilis as
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Table 5.4 Logistic model for CHD and arcus senilis

. logistic chdé9 i.arcus

Logistic regression Number of obs = 3152
LR chi2 (1) = 12.98

Prob > chi2 = 0.0003

Log likelihood = -879.10783 Pseudo R2 = 0.0073
chd69 | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ b m o m o oo e .
1l.arcus | 1.63528 .2195035 3.66 0.000 1.257 2.127399

shown in Table 5.4. The regression output in Table 5.4 summarizes the model
fit in terms of the odds ratio for the included predictor, and does not include
estimates of the regression coefficients. In particular, the model intercept is omitted.
This is the default option in many statistical packages such as Stata. Specifying the
coef option as illustrated in Table 5.2 provides coefficient estimates, including
the intercept. Note also that the estimated odds ratio, P-value for the Wald test
that the true value the odds ratio is one (or, equivalently that the coefficient is
zero), and corresponding 95% CI are virtually the same as the results obtained in
Table 3.5. Because arcus is a binary predictor (coded as one for individuals with
the condition and zero otherwise), entering it directly into the model as if it were a
continuous measurement produces the desired result: the coefficient represents the
log odds ratio associated with a one-unit increase in the predictor. (In this case,
only one, single unit increase is possible by definition.) For two-level categorical
variables with levels coded other than zero or one, care must be taken so that they
are appropriately treated as categories (and not continuous measurements) by the
model-fitting software.

Categorical risk factors with multiple levels are treated similarly to the procedure
introduced in Sect. 4.3 for linear regression. In this way, we can repeat the analysis
in Table 5.1, dividing study participants into five age groups and taking the youngest
group as the reference. In order to estimate odds ratios for each of the four
older age groups compared to the youngest group, we need to construct four
indicator variables corresponding to the levels of the categorical variable encoding
the age groups. Stata does this automatically via the i. prefix for the categorical
predictor agec, as shown in Table 5.5. This variable is constructed with categories
corresponding to the age divisions shown in Table 5.1.

Note that the estimated odds ratios appear to be identical to those in the table.
In fact, because we are estimating a parameter for each age category except the
youngest (reference) group, we are not imposing any restrictions on the parameters
(i.e., the logistic assumption does not come into play as it does for continuous
predictors). Thus, we would expect the estimated odds ratios to be identical to those
estimated using the contingency table approach.

The LR test for this model compares the likelihood for the model with four
indicator variables for age with that from the corresponding model with no
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Table 5.5 Logistic Model for CHD and age as a categorical factor
logistic chdé9 i.agec

Logistic regression Number of obs = 3154

LR chi2(4) = 44 .95

Prob > chi2 = 0.0000

Log likelihood = -868.14866 Pseudo R2 = 0.0252

chd69 | 0dds Ratio  Std. Err z P>|z| [95% Conf. Interval]

_____________ PRI
agec |

1 | .8768215 .2025406 -0.57 0.569 .5575563 1.378903

2 | 1.70019 .3800504 2.37 0.018 1.097046 2.634935

3 | 2.318679 .5274963 3.70 0.000 1.484545 3.621494

4 | 2.886314 .7462298 4.10 0.000 1.738895 4.790864

testparm i.agec
chi2 ( 4) = 44.08
Prob > chi2 = 0.0000

contrast agec, mcompare (sidak) eform effects
Contrasts of marginal linear predictions

Margins : asbalanced
| af chi2 P>chi2
_____________ PP
agec | 4 44.08 0.0000

Note: Sidak-adjusted p-values are reported for
tests on individual contrasts only.

| Number of

| Comparisons
_____________ o mmmmmmmmmmo
agec | 4
| sidak sidak
| exp (b) std. Err. z P>|z| [95% Conf. Interval]
_____________ IR
agec |
(1 vs base) | .8768215 .2025406 -0.57 0.966 .493201 1.558829
(2 vs base) | 1.70019 .3800504 2.37 0.068 .9742722 2.966979
(3 vs base) | 2.318679 .5274963 3.70 0.001 1.315633 4.086453
(4 vs base) | 2.886314 .7462298 4.10 0.000 1.515851 5.495795
* Tests for linear trend
test -l.agec + 3.agec + 2x4.agec = 0
(1) - [chde9]l.agec + [chdé69]3.agec + 2x[chde9]4.agec = 0O
chi2( 1) = 31.45
Prob > chi2 = 0.0000
contrast {agec -2 -1 0 1 2}, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
| af chi2 P>chi2
_____________ PP
agec | 1 31.45 0.0000
contrast g(l).agec, noeffects
Contrasts of marginal linear predictions
Margins : asbalanced
| af chi2 P>chi2
_____________ PP
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predictors. In contrast to the individual Wald tests provided for each level of
age, the LR test examines the overall effect of age represented as a five-level
predictor. The results indicate that inclusion of age affords a statistically significant
improvement in the fit of the model.

The table also includes output from the Stata testparm and contrast
commands, used here to test the global hypothesis that the coefficients for the four
older age categories are all equal to zero. This hypothesis is identical to the one
addressed by the LR test in this case, and the resulting Wald chi2 test statistic is
quite similar to the LR statistic. The correspondence between these two tests is also
discussed in Sects. 5.2.1 and 10.4.2.

We note that caution should be exercised in interpretation of significance results
for individual Wald tests for categorical predictors with multiple levels, especially in
cases where the overall hypothesis test is not statistically significant. As discussed in
Sect. 4.3.4, the mcompare option allows for control of the familywise Type-1 error
rate (FER) in making multiple pairwise comparisons, using Bonferroni, Sidak, and
Scheffé procedures. In this case, we used the contrast command with option
mcompare (sidak) to obtain more conservative P-values and Cls for the age
effects (the odds-ratios are unchanged).

An additional test of interest in this example is evaluation of the presence of
linear trend in the log odds of CHD with increasing age category. This test is
implemented exactly as described for linear regression models in Sect. 4.3.5, using
the contrast coefficients given in Table 4.8; the test is also obtained using both
contrast commands introduced in Table 4.9. The result shown in Table 5.5 is
quite significant, indicating evidence for a linear trend in the log odds of disease
with increasing category of age, and confirming our impression of a regular increase
in odds ratios with increasing age. The methods presented there for evaluating
departure from linearity are also directly applicable to the logistic model.

Estimating regression coefficients for levels of a categorical predictor often
involves specification of an appropriate reference category, especially for nominal
categorical predictors. For the example in Table 5.5, this was chosen automatically
by Stata as the age category with the smallest numerical label. (A similar procedure
is followed by most major statistical packages.) Since age can be considered as
ordinal, it makes sense in this case to preserve the ordering of the categories,
especially if assessing trends in outcome odds with increasing age is of interest.
However, in cases where a reference group different from the default is of interest,
most statistics packages (including Stata and SAS) have methods for changing the
default. For example, using ib2.agec rather than i.agec in the logistic
command in Table 5.5 will result in the second age category being used as
the reference. Alternatively, the model can be re-fit using a recoded version of
the predictor. Note that it is also possible to compute odds ratios comparing
arbitrary groups from the coefficients obtained using the default reference group.
For example, the odds ratio comparing the fourth age group in Table 5.5 to the third
can be shown to be % = 1.24. (This calculation is left as an exercise.)

Another important consideration in selecting a reference group for a categorical
predictor are the sample sizes in each category. As a general rule, when individuals
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are unevenly distributed across categories it is desirable to avoid making the smallest
group the reference category. This is because standard errors of coefficients for
other categories will be inflated due to the small sample size in the reference
group.

A final issue that arises in fitting models with ordinal categorical predictors
formed based on an underlying continuous measurement is the choice of how many
categories, and how these should be defined. In the example in Table 5.5, the choice
of five-year age groups was somewhat arbitrary. In many cases, categories will
correspond to pre-existing hypotheses or be suggested by convention (e.g., ten-year
age categories in summaries of cancer rates). In the absence of such information,
a good practice is to choose categories of equal size based on quantiles of the
distribution of the underlying measure.

How many categories a given model will support depends on the overall sample
size as well as the distribution of outcomes in the resulting groups. In the WCGS
sample, a logistic model including a coefficient for each unique age (assigning
the youngest age as the reference group) yields reasonable estimates and standard
errors. There are 266 individuals in the smallest group. (A much simpler model
that fits the data adequately can also be constructed using the methods discussed
in Sect.5.4.1.) Care must be taken in defining categories to ensure that there are
adequate numbers in the subgroups (possibly by collapsing categories). In general,
avoid categorizations that result in categories that are homogeneous with respect to
the outcome or that contain fewer than ten observations. Problems that arise when
this is not the case are discussed in Sect. 5.4.4.

5.2 Multipredictor Models

Clinical and epidemiological studies of binary outcomes typically focus on the
potential effects of multiple predictors. When these are categorical and few in
number, contingency table techniques suffice for data analyses. However, for
larger numbers of potential predictors and/or when some are continuous mea-
surements, regression methods have a number of advantages. For example, the
WCGS study measured a number of potential predictors of CHD, including total
serum cholesterol, diastolic and SBP, smoking, age, body size, and behavior
pattern. The investigators recognized that these variables all may contribute to
outcome risk in addition to being potentially associated with each other, and
that in assessment of the influence of a selected predictor, it might be important
to control for the potential confounding influence of others. Because there are
a number of candidate predictors, some of which can be viewed as continuous
measurements, multiple regression techniques are very appealing in analyzing
such data.

The logistic regression model for multiple predictor variables is a direct gener-
alization of the version for a single predictor introduced above (5.5). For a binary
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Table 5.6 Multiple logistic model for CHD risk
. logistic chdé9 age chol bmi sbp i.smoke if chol<645, coef

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80

Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901
chdé69 | Coef std. Err z P>|z| [95% Conf. Interval]
_____________ o o
age | .0644476  .0119073 5.41  0.000 0411097 .0877855

chol | .0107413  .0015172 7.08  0.000 .0077675 .013715

bmi | .0574361  .0263549 2.18 0.029 .0057814 .1090907

sbp | .0192938  .0040909 4.72  0.000 .0112759 .0273117

1.smoke | .6344778  .1401836 4.53  0.000 .3597231 .9092325

cons | -12.31099 .977256 -12.60 0.000 -14.22638 -10.3956
outcome y, and p predictors xi, X2,--- , X,, the systematic part of the model is

defined as follows:

10 P(XI,)CZ,"' sxp)
I_P('xlvx27”' sxp)

}= Bo + Bixi + Poxa + -+ Bpx,. (5.7
This can be re-expressed in terms of the outcome probability as follows:

exp(Bo + Bix1 + Baxa + -+ + Bpxp)

. 5.8
T+ oxpBot fa 4 povs b4 By’ D

P(-xlv-XZs"' 7-xp) ==

As with standard multiple linear regression, the predictors may include continuous
and categorical variables. The multiple-predictor version of the logistic model is
based on the same assumptions underlying the single predictor version. (These are
presented in Sect. 5.1.) In addition, it assumes that multiple predictors are related
to the outcome in an additive fashion on the log odds scale. The interpretation of
the regression coefficients is a direct generalization of that for the simple logistic
model:

* For a given predictor x;, the coefficient 8; gives the change in log odds of the
outcome associated with a unit increase in x;, for arbitrary fixed values for the
predictors X, -+, Xj—1, Xj 41, , Xp.

* The exponentiated regression coefficient exp(8;) represents the odds ratio
associated with a one unit change in x;.

Table 5.6 presents the results of fitting a logistic regression model examining the
impact on CHD risk of age, cholesterol (mg/dL), SBP (mmHg), BMI (computed
as weight in kilograms divided by the square of height in meters), and a binary
indicator of whether or not the participant smokes cigarettes, using data from
the WCGS sample. This model is of interest because it addresses the question
of whether a select group of established risk factors for CHD are independent
predictors for the WCGS study.
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Twelve observations were dropped from the analysis in Table 5.6 because of
missing cholesterol values. An additional observation was dropped (via the if
statement in the regress command) because of an unusually high cholesterol
value (645 mg/dL) that is clearly an outlier. Note that all predictors are entered
as continuous measurements in the model. The coefficient for any one of these
(e.g., chol) gives the log odds ratio (change in the log odds) of CHD for a unit
increase in the predictor, adjusted for the presence of the others. The small size
of the coefficients for these measures reflects the fact that a unit increase on the
measurement scale is a very small change, and does not translate to a substantial
change in the log odds.

Log odds ratios associated with larger increases are easily computed as described
in Sect.5.1. The 95% Cls for coefficients of all included predictors exclude zero,
indicating that each is a statistically significant independent predictor of outcome
risk (as measured by the log odds). Of course, additional assessment of this model
would be required before it is adopted as a “final” representation of outcome risk for
this study. In particular, we would want to evaluate whether the linearity assumption
is met for continuous predictors, evaluate whether additional confounding variables
should be adjusted for, and check for possible interactions. These topics are
discussed in more detail below.

As an example of an application of the fitted model in Table 5.6, consider
calculating the log odds of developing CHD within ten years for a 60-year-old
smoker, with 253 mg/dL of total cholesterol, SBP of 136 mmHg, and a BMI of 25.
Applying (5.7) with the estimated coefficients from Table 5.6,

= —12.311 4 .0644 x 60 4 .0107 x 253

| P(60,253, 136,25, 1)
1 — P(60,253,136,25, 1)
+.0193 x 136 +.0574 x 25 + .6345 x 1
= —1.046.

A similar calculation gives the corresponding log odds for a similar individual
of age 50:

= —12.311 4 .0644 x 50 + .0107 x 253

o | P(50.253.136.25. 1)
1 — P(50,253,136,25,1)
+.0193 x 136 + .0574 x 25 + .6345 x 1

= —1.690.
Finally, the difference between these gives the log odds ratio for CHD associated

with a ten year increase in age for individuals with the specified values of all of the
included predictors:

—1.046 — (—1.690) = 0.644.
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Table 5.7 Multiple logistic model with rescaled predictors
. logistic chdé69 age 10 chol 50 bmi_10 sbp 50 i.smoke if chol<645

Logistic regression Number of obs = 3141
LR chi2(5) = 159.80

Prob > chi2 = 0.0000

Log likelihood = -807.19249 Pseudo R2 = 0.0901
chd69 | 0dds Ratio  Std. Err z P>|z| [95% Conf. Interval]
_____________ b m o m o oo e .
age_ 10 | 1.904989 .2268333 5.41 0.000 1.508471 2.405735

chol_ 50 | 1.710974 .1297977 7.08 0.000 1.474584 1.985259
bmi_10 | 1.775995 .4680613 2.18 0.029 1.059518 2.976973
sbp_50 | 2.623972 .5367142 4.72 0.000 1.757326 3.918016
1.smoke | 1.886037 .2643914 4.53 0.000 1.432933 2.482417

Closer inspection reveals that this result is just ten times the coefficient for age in
Table 5.6. In addition, we see that we could repeat the above calculations for any
ten-year increase in age, and for any fixed values of the other predictors and obtain
the same result. Thus, the formula (5.6) for computing log odds ratios for arbitrary
increases in a single predictor applies here as well. The odds ratio for a ten-year
increase in age (adjusted for the other included predictors) is given simply by

exp(0.0644 x 10) = exp(.644) = 1.90.

Interpretation of regression coefficients for categorical predictors also follow that
given for single predictor logistic models. For example, the coefficient (0.634) for
the binary predictor variable smoke in Table 5.6 is the log odds ratio comparing
smokers to nonsmokers for fixed values of age, chol, sbp, and bmi. The
corresponding odds ratio

exp(0.634) = 1.89

measures the proportionate increase in the odds of developing CHD for smokers
compared to nonsmokers adjusted for age, cholesterol, SBP, and BMI.

The estimated coefficients for the first four predictors in Table 5.6 are all very
close to zero, reflecting the continuous nature of these variables and the fact that a
unit change in any one of them does not translate to a large increase in the estimated
log odds of CHD. As shown above, we can easily calculate odds ratios associated
with clinically more meaningful increases in these predictors. An easier approach
is to decide on the degree of change that we would like the estimates to reflect
and fit a model based on predictors rescaled to reflect these decisions. For example,
if we would like the model to produce odds ratios for ten-year increases in age,
we should represent age as the rescaled predictor age_ 10 = age/10. Table 5.7
shows the estimated odds ratios from the model including rescaled versions of the
first four predictors in Table 5.6. (The numbers after the underscores in the variable
names indicate the magnitude of the scaling.) We also “centered” these predictors
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before scaling them by subtracting of the mean value for each. (Centering predictors
is discussed in Sects.3.3.1 and 4.6.) Note that the log-likelihood and Wald test
statistics for this model are identical to their counterparts in Table 5.6.

5.2.1 Likelihood Ratio Tests

In Sect. 5.1, we briefly introduced the concept of the likelihood, and the LR test for
logistic models. The likelihood for a given model is interpreted as the joint probabil-
ity of the observed outcomes expressed as a function of the chosen regression model.
The model coefficients are unknown quantities and are estimated by maximizing
this probability (hence the name maximum-likelihood estimation). For numerical
reasons, maximum-likelihood estimation in statistical software is usually based on
the logarithm of the likelihood. An important property of likelihoods from nested
models (i.e., models in which predictors from one are a subset of those contained in
the other) is that the maximized value of the likelihood from the larger model will
always be at least as large as that for the smaller model.

Although the numerical value of the likelihood (or log-likelihood) for a single
model does not have a particularly useful interpretation, the LR statistic assessing
the difference in likelihoods from two nested models is a valuable tool in model
assessment (analogous to the F tests introduced in Sect. 4.3.3). It is especially useful
when investigating the contribution of more than one predictor, or for predictors
with multiple levels.

For example, consider assessment of the contribution of self-reported behavior
pattern to the model summarized in Table 5.7. In the WCGS study, investigators
were interested in “type A” behavior as an independent risk factor for CHD.
Behavior was classified as either type A or type B, with each type subdivided into
two further levels A, A,, B3, and By (coded as 1, 2, 3, and 4, respectively). The
expanded model addresses the question of whether behavior pattern contributes to
CHD risk when other established risk factors are accounted for.

Table 5.8 displays the results of including the four-level categorical variable
behpat in the model from Table 5.7. The natural coding of the variable results in
type A behavior being taken as the reference level. Examination of the coefficients
and associated 95% CIs for the remaining indicators reveals that although the second
category of type A behavior appears not to differ from the reference level, both
categories of type B behavior do display statistically significant differences, and are
associated with lower outcome risk.

The LR statistic is computed as twice the difference between log likelihoods from
the two models, and can be referred to the x> distribution for significance testing.
Because the likelihood for the larger model must be larger than the likelihood for the
smaller (nested) model, the difference will always be positive. Twice the difference
between the log likelihood for the model including behpat (Table 5.8) and that for
the model excluding this variable (Table 5.6) is

2 x [~794.81 — (—807.19)] = 24.76.
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Table 5.8 Logistic model for WCGS behavior pattern
. logistic chdé69 age 10 chol 50 sbp 50 bmi_10 i.smoke i.behpat if chol<645

Logistic regression Number of obs = 3141
LR chi2 (8) = 184.57
Prob > chi2 = 0.0000
Log likelihood = -794.81 Pseudo R2 = 0.1040
chd69 | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ b m o m o oo e .
age_ 10 | 1.83375 .2198681 5.06 0.000 1.449707 2.319529
chol_ 50 | 1.704097 .1301391 6.98 0.000 1.467201 1.979243
sbp_50 | 2.463504 .5086518 4.37 0.000 1.643621 3.692369
bmi_10 | 1.739415 .4620341 2.08 0.037 1.033479 2.927551
1.smoke | 1.830672 .2583097 4.29 0.000 1.38837 2.413882

|

behpat |
2 | 1.068257 .2363271 0.30 0.765 .6924157 1.648103
3 | .5141593 .1245593 -2.75 0.006 .3198064 .8266243
4 | .572071 .1826117 -1.75 0.080 .3060107 1.069457

. estimates store modl
Table 5.9 Likelihood ratio test for four-level WCGS behavior pattern

. lrtest modl
likelihood-ratio test LR chi2(3) = 24.76
(Assumption: . nested in modl) Prob > chi2 = 0.0000

This value follows a y? distribution, with degrees of freedom equal to the number
of additional variables present in the larger model (three in this case). Statistical
packages like Stata can often be used to compute the LR test directly by first fitting
the larger model (in Table 5.8), and saving the likelihood in the user-defined variable
(in this case, in the variable mod1 created in the last line of the table). Next, the
reduced model eliminating behpat is fit, followed by a command to evaluate the
LR test as displayed in the Table 5.9. (See Table 5.6 for the full regression output for
this model.) The result agrees with the calculation above, and the associated P-value
indicates that collectively, the four-level categorical representation of behavior
pattern makes a statistically significant independent contribution to the model.

The similarity between the two odds ratios for type A (the reference level and
the second indicator for type A, behavior) and type B (the indicators representing
types B3 and B, behavior) in Table 5.8 suggests that a single binary indicator
distinguishing the A and B patterns might suffice. Note that the logistic model that
represents behavior pattern as a two-level indicator (with type B behavior as the
reference category) is actually nested within the model in Table 5.8. (The model
including the two-level representation is a special case of the four-level version
when the coefficients for the two levels of type B and type A behavior, respectively,
are identical.) Table 5.10 displays the fitted model and LR test results for this
reduced model including the two-level binary indicator dibpat. The fact that the
difference between the likelihoods for the two models is not statistically significant
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Table 5.10 Likelihood ratio test for two-level WCGS behavior pattern
. logistic chdé69 age 10 chol 50 sbp 50 bmi_10 i.smoke i.dibpat if chol<645

Logistic regression Number of obs = 3141
LR chi2 (6) = 184.34
Prob > chi2 = 0.0000
Log likelihood = -794.92603 Pseudo R2 = 0.1039
chd69 | 0dds Ratio  Std. Err z P>|z| [95% Conf. Interval]
_____________ o o o e e e e
age_ 10 | 1.830252 .2190623 5.05 0.000 1.44754 2.314147
chol_ 50 | 1.702406 .1299562 6.97 0.000 1.465835 1.977157
sbp_50 | 2.467919 .5084377 4.38 0.000 1.648039 3.695681
bmi_10 | 1.732349 .4596114 2.07 0.038 1.029917 2.913859
1.smoke | 1.829163 .2580698 4.28 0.000 1.387265 2.411822
1.dibpat | 2.006855 .2897341 4.82 0.000 1.512259 2.663212
. lrtest modl
likelihood-ratio test LR chi2 (2) = 0.23
(Assumption: . nested in modl) Prob > chi2 = 0.8904

confirms our suspicion that modeling the effect of behavior pattern as a two-level
predictor is sufficient to capture the contribution of this variable.

As demonstrated above, the LR test is a very useful tool in comparing nested
logistic regression models. Note that alternate tests based on Wald statistics can
also be used, as illustrated in Tables 4.4 and 5.5. In moderate to large samples,
the results from the LR and Wald tests for the effects of single predictors will
agree quite closely. However, in smaller samples the results of these two tests may
differ substantially. In general, the LR test is more reliable than the Wald test, and
is preferred when both are available. Finally, note that because the likelihood is
computed based on the observations used to fit the model, it is important to ensure
that the same observations are included in each candidate model considered in LR
testing. This was accomplished in the examples by insuring that the fitted models
excluded 12 observations with missing values for cholesterol, and another with an
outlying value of 645. Likelihoods from models fit on differing sets of observations
are not comparable. A more complete discussion of the concepts of likelihood and
maximum-likelihood estimation is given in Sect. 5.6.

5.2.2 Confounding

A common goal of multiple logistic regression modeling is to investigate the
association between a primary predictor and the outcome, accounting for the
possible mediating or confounding influence of additional measured predictors.
For example, in evaluating the observed association between behavior pattern
(considered in the previous section) and CHD risk, it is important to consider
the effects of additional variables that might be related to both behavior and
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Table 5.11 Logistic model for type A behavior pattern and selected predictors
. logistic dibpat age 10 chol 50 sbp 50 bmi_10 i.smoke

Logistic regression Number of obs = 3141
LR chi2 (5) = 53.80

Prob > chi2 = 0.0000

Log likelihood = -2150.1739 Pseudo R2 = 0.0124
dibpat | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ o o o oo __
age_ 10 | 1.324032 .0881552 4.22 0.000 1.16205 1.508594

chol_ 50 | 1.084241 .0464136 1.89 0.059 .9969839 1.179135
sbp_50 | 1.461247 .1876433 2.95 0.003 1.136104 1.879442
bmi_10 | 1.123846 .1672474 0.78 0.433 .8395252 1.504459
1.smoke | 1.26933 .0930786 3.25 0.001 1.099403 1.465522

CHD occurrence. Recall from Chap.4 that regression models can account for
potential confounding or mediation influences of such variables by considering the
adjusted and unadjusted associations between the outcome and predictor of primary
interest. In this section, we briefly review these issues in the logistic regression
context.

Consider again the assessment of behavior pattern as a predictor of CHD in the
WCGS example considered in the previous section. In the analysis summarized in
Table 5.10, we concluded that a two-level indicator (dibpat) distinguishing type
A and B behaviors adequately captures the effects of this variable on CHD (in place
of a more complex, four-level summary of behavior). The discussion in Chap. 9 will
suggest that we should consider the possible causal relationships of the additional
variables in the model with both the outcome and behavior pattern before making
any conclusions about the possible causal connection between behavior type and the
outcome.

Recall the discussion of confounding and mediation presented in Sects. 4.4 and
4.5. To be a confounder of an association of primary interest, a variable must be
associated with both the outcome and the primary predictor. From Table 5.10, all of
the predictors in addition to dibpat are independently associated with the CHD
outcome. Since dibpat is a binary indicator, we can examine its association with
these predictors via logistic regression as well. Table 5.11 presents the resulting
model. With the exception of BMI (bmi_10), all appear to be associated with
behavior pattern. In deciding which variables to adjust for in summarizing the CHD-
behavior pattern association, it is worth considering the possible causal relationships
to help identify or distinguish variables with confounding influence from those that
could be potential mediators or effect modifiers.

Causal connections are likely to be very complex. For example, age can be
considered as a possible confounder of the relationship between behavior type and
CHD. However, BMI, cholesterol, SBP (hypertension), and smoking could either
exert a confounding influence or be viewed as mediating variables in the pathway
between behavior and CHD. The unadjusted odds ratio (95% CI) for the association
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between type A behavior and CHD is 2.36 (1.79, 3.10). By contrast, the adjusted
odds ratio in Table 5.10 is 2.01 (95% CI 1.51, 2.66). Note that dropping any of the
additional predictors from the model singly results in little change to the estimated
OR for type A behavior (less than 5%). Thus if any of these variables acts as a
mediator, the influence appears to be weak. This suggests that the influence of type
A behavior on CHD may act partially through another unmeasured pathway. (Or
that this characterization of behavior is itself mediated through other unmeasured
behavioral characteristics.) In this case, adjustment for the other variables is
appropriate if they are considered as confounders. However, if they (with the
possible exception of age) are regarded as mediators, then the effect assessed on
the adjusted model can be viewed as an estimate of the direct effect of behavior
not mediated through the pathways mediated by these variables. See Sects. 9.6 and
10.2 for further discussion of these issues. Of course, before concluding that we
have adequately modeled the relationship between behavior pattern and CHD we
need to account for possible interactions between included predictors (Sect. 5.2.4),
and conduct diagnostic assessments of the model fit including nonlinearity in
relationships with continuous predictors (Sect. 5.4).

5.2.3 Mediation

As an example of assessment of mediation in the context of a binary outcome,
we consider an example from the FIT study, a randomized trial investigating the
effect of a treatment for reducing spinal fracture risk in postmenopausal women with
prior history of fracture due to osteoporosis (Black et al. 1996b). We are interested
in evaluating possible mediation of treatment effects through changes in bone
mineral density (BMD). A finding that much of the beneficial effect of treatment
operated through this pathway would be of practical interest in development of
future treatments.

Table 5.12 presents two logistic regression models for the effect of randomized
treatment assignment on a binary indicator of spinal fracture occurrence. The first
model gives the marginal effect of assignment to treatment in the entire sample of
5,470 women. Assuming that randomization was effective, the unadjusted odds ratio
for treatment in this model represents an intention to treat estimate of the effective-
ness of treatment assignment. The second model in the table includes predictors
for change in BMD (in standard deviation units) between follow-up and baseline,
baseline level of BMD (also in standard deviation units), baseline smoking status
(former and current smokers compared to nonsmokers as the reference category),
and a binary indicator of a history of previous spinal fracture (frac_base). Age
(in years) is also included as a restricted cubic spline with three knots. Note that
since the follow-up level of BMD reflects changes that occurred postrandomiza-
tion, these baseline measures represent potential confounders of the association
between change in BMD and new fracture occurrence. As discussed in Sect. 4.5,
interpretation of the apparent attenuation of the effect of treatment in this model
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Table 5.12 Logistic regression estimation of marginal and direct effect of treatment assignment
on new fracture risk in the FIT study example

*%x* Marginal treatment effect xxx
logistic frac_new i.treat

Logistic regression Number of obs = 5470

LR chi2 (1) = 32.05

Prob > chi2 = 0.0000

Log likelihood = -1163.5889 Pseudo R2 = 0.0136
frac_new | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval
_____________ s s o o .
1.treat | .5052736  .0624452 -5.52  0.000  .3965785 64376

*+* Direct treatment effect not mediated by change in BMD ##**
logistic frac_new i.treat bmd_diff bmd_base i.frac_base i.smoking age_splx

Logistic regression Number of obs = 5339

LR chi2(8) = 311.04

Prob > chi2 = 0.0000

Log likelihood = -982.6019 Pseudo R2 = 0.1366
frac_new | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval

_____________ s o oo .
1l.treat .5966412 .0829632 -3.71 0.000 .4543112 .7835616
bmd_diff .7062953 .0505978 -4.85 0.000 .6137729 .8127648
bmd_base .6885569 .0412505 -6.23 0.000 .6122735 . 7743444
1.frac_base 3.428229 .4569538 9.24 0.000 2.640048 4.451719

smoking

1 1.141699 .1555701 0.97 0.331 .8741083 1.491207

2 1.379136 .2722494 1.63 0.103 .9366451 2.030669

age_spll 1.123983 .0413332 3.18 0.001 1.045822 1.207986
age_spl2 .9476609 .0329655 -1.55 0.122 .8852031 1.014526

relative to the first (unadjusted) model requires assumptions about the causal nature
of the relationships represented. In this example, a plausible interpretation is that
treatment effects are mediated through treatment-induced changes in BMD.
Following the approach introduced in Sect.4.5, we can assess whether the
conditions for mediation are met by fitting two models: the first, a linear regression
for the dependence of change in BMD on treatment assignment; the second, a
logistic regression of the dependence of the outcome on change in BMD. In both
cases, we adjust for the possible confounders displayed in Table 5.12. Both models
yield highly significant results for the Wald tests of the coefficients representing
the key components of the mediating relationships. Further, there is no evidence
for interaction between treatment assignment and change in BMD. This, and the
observed attenuation in the estimated effect of treatment in the second model in
Table 5.12 provides evidence for the possible mediating role of change in BMD.
As also discussed in Sect.4.5, it may also be of interest to make separate
estimates of the direct and indirect components of the overall effect of treatment
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assignment on fracture risk, and to estimate the proportion of the treatment effect
explained (PTE) by the mediating influence of changes in BMD. Similar to the
examples presented in that section, the odds ratio of 0.597 for treatment assignment
in the second model shown in Table 5.12 can be interpreted as an estimate of the
direct effect of treatment not mediated through effects on BMD.

By contrast to the results presented in Sect. 4.5, decomposing the relationships
between outcome, treatment, and a mediator into overall, indirect, and direct effect
components poses additional difficulties in the context of logistic regression models.
This results from the use of the odds ratio as a measure of association, as discussed in
Sect. 3.4.4. (A similar phenomenon occurs for the Cox regression model introduced
in the next chapter.) Performing analyses using an alternative binary regression
model based on relative risks rather than odds ratios (see Sect.5.5.3) avoids
this difficulty. Chapter 9 presents further discussion of this topic, including an
introduction to more general techniques for assessment of mediation based on causal
inference methods. In particular, these methods allow estimation of the causal direct
effect of treatment, not mediated through the mediating variable. This estimate will
generally differ from the regression estimate described here and has a clearer causal
interpretation, especially when additional confounding variables play a role.

5.2.4 Interaction

Recall from Chap. 4 that an interaction between two predictors in a regression model
means that the degree of association between each predictor and the outcome varies
according to levels of the other predictor. The mechanics of fitting logistic regression
models including interaction terms is quite similar to standard linear regression (see
Sect. 4.6). For example, to fit an interaction between two continuous predictors x;
and x,, we include the product x;x; as an additional predictor in a model containing
x1 and x; as shown in (5.9):

1 P(xls-stxl X xz)
1— P(xl,xz,xlxz)

} = Bo + Bix1 + Baxa + B3x1 X Xa. (5.9)

Fitting interactions between categorical predictors and between continuous and
categorical predictors also follows the procedures outlined in Chap.4. However,
because of the log odds ratio interpretation of regression coefficients in the logistic
model, interpreting results of interactions is somewhat different. We review several
examples below.

For an illustrative example of a two-way interaction between two binary indicator
variables from the WCGS study, consider the regression model presented in
Table 5.13. The fitted model includes the indicator arcus for arcus senilis (defined
in Sect. 3.4), a binary indicator bage_50 for participants over the age of 50, and the
product between them, bage_50#arcus, made automatically by the ## operator
in the logistic command. The research question addressed is whether the
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Table 5.13 Logistic model for interaction between arcus and age as a categorical predictor

. logistic chdé9 i.bage 50##i.arcus, coef

Logistic regression Number of obs = 3152
LR chi2(3) = 40.33
Prob > chi2 = 0.0000
Log likelihood = -865.43251 Pseudo R2 = 0.0228
chde9 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______________ o o o _______
1.bage_ 50 | .8932677 .1721239 5.19 0.000 .5559111 1.230624
1l.arcus | .6479628 .1788637 3.62 0.000 .2973964 .9985293

|

bage_SO0#arcus |
11 | -.5920552 .2722269 -2.17 0.030 -1.12561 -.0585002

|
cons | -2.882853 .1089261 -26.47 0.000 -3.096344 -2.669362

association between arcus and CHD is age dependent. The statistically significant
result of the Wald test for the coefficient associated with the product of the indicators
for age and arcus indicates that an interaction is present. This means that we cannot
interpret the coefficient for arcus as a log odds ratio without specifying whether
or not the participant is older than 50. (A similar result holds for the interpretation
of bage_50.)

The procedure for obtaining the component odds ratios is similar to the meth-
ods for obtaining main and interaction effects for linear regression models, and
is straightforward using the regression model. If we represent 1.arcus and
1.bage_50 as x; and x in (5.9), we can compute the log odds for any combination
of values of these predictors using coefficients from Table 5.13. For example, the
log odds of CHD occurrence for an individual over 50 years old without arcus is

given by
P(0,1,0)
1 _— =
Og[l PO, 1’0)} Bo + B2

= —2.883 + 0.893 = —1.990.

Similarly, the log odds for an individual between 39 and 49 years old without arcus is

P(0.0,0) T
2| i) <

With these results, we see that the five expressions below define the component log
odds ratios in the example:

P(1,0,0) P©0,0,00 1 .
oe [m} ~log [m} = 1 = 0.648

10[ P(1,1,1) }_ [ P(0,1,0)
gl —5 | — log

T | = = 0.056
1-P(1,1,1) 1—P(O,1,0)} P+ b
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Table 5.14 Component odds ratios for arcus-age interaction model

Odds ratio Groups compared

exp(B) = 1.91 Arcus vs. no arcus, age 39-49

exp(B1 + B3) = 1.06 Arcus vs. no arcus, age 50-59

exp(B,) = 2.44 Age 50-59 vs. age 39-49, no arcus

exp(B2 + B3) = 1.35 Age 50-59 vs. age 39-49, arcus

exp(B1 + B2 + B3) = 2.58 Arcus and age 50-59 vs. no arcus and ages 39-49

Table 5.15 Example odds ratio for arcus-age interaction model

. lincom 1.bage 50 + 1l.bage 50#1.arcus

(1) [chd69]1.bage 50 + [chd69]1.bage 50#1.arcus = 0
_______ chd69 | Odds Ratio std. Err.  z  DP>|z|  [95% Conf. Intervall
T 1 iasiasr  zes0s7z | 1.43  0.153  .e930071  2.043325
P(0,1,0) T [ P(0,0,0) 7
log| L OLO |, [ _PO00 F_ g 505
| 1 — P(0,1,0) | | 1— P(0,0,0) |
P1,1,1) T P(1,0,0) T
1 — | =1 — | = = 0.301
N TR e X e
[ P(1,1,1) ] [ P(0,0,0) ]
1 — | =1 — | = =0.949. (5.10
Og_l—P(l,l,l)_ Og_l—P(O,O,O)_ B+ B2+ B3 (5.10)

The corresponding odds ratios are then easily calculated by exponentiation, as
shown in Table 5.14.

Referring back to Table 5.13, we see that all of the component odds ratios aren’t
immediately obvious from standard regression output. However, the log odds ratio
and associated 95% ClIs for arcus among individuals in the younger age group
and for older individuals among those without arcus can be read directly. This is
because when we set either variable to zero (the reference level), the interaction
term evaluates to zero and is eliminated. Estimated log odds ratios corresponding to
the nonreference levels of these variables involve the interaction term, and differ
from their counterparts by the value of its coefficient (-0.592). Standard errors
and 95% ClIs for these estimates require additional calculations that cannot be
completed without further information about the fitted model. Fortunately, many
statistical packages have facilities that greatly simplify these calculations. Table 5.15
illustrates the use of the 1incom command in Stata to compute the odds ratio
comparing the odds of CHD in individuals of age 50 and over with the odds among
those under 50, among individuals with arcus.

By specifying the correct combination of coefficients (corresponding to those in
Table 5.14), the output in the Table 5.15 provides the desired odds ratio estimate
along with the 95% CI. Results of the accompanying hypothesis test that the
underlying log odds ratio is zero are also provided.
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Table 5.16 Logistic model for interaction between arcus and age as continuous

. logistic chdé69 i.arcus##ic.age, coef

Logistic regression Number of obs = 3152

LR chi2(3) = 53.33

Prob > chi2 = 0.0000

Log likelihood = -858.93362 Pseudo R2 = 0.0301

chdé69 | Coef std. Err z P>|z| [95% Conf. Interval]

_____________ o o o f o __

1l.arcus | 2.754185 1.140118 2.42 0.016 .5195952 4.988774

age | .089647 .0148904 6.02 0.000 .0604623 .1188317
arcus#c.age |

1 | -.0498298 .0233431 -2.13 0.033 -.0955814 -.0040782

cons | -6.788086 .7179977 -9.45 0.000 -8.195335 -5.380836

Interactions between a continuous and categorical variable are handled in a
similar fashion to those involving binary predictors. In the previous example, the
categorization of age was somewhat arbitrary. In fact, because age was represented
by two categories, essentially the same results could have been obtained using
frequency table techniques (as illustrated in Table 3.9). A more complete assessment
of the interaction can be obtained by considering age as a continuous variable
(previously considered in Table 5.2). For example, this would allow us to investigate
whether increase in CHD risk with increasing age differs in individuals with and
without arcus. The logistic model addressing this question is displayed in Table 5.16.

Note the use of the ## operator in Stata, introduced in Sect. 4.6, which instructs
the program to include an interaction term between the two variables. This is
accomplished by inclusion of the product of arcus and age (arcus#c.age) as
well as the individual predictors age and 1.arcus. For a fixed age (e.g., 55),
the log odds ratio associated with having arcus is calculated as follows, using the
estimated coefficients from Table 5.16:

P(1,55,55) P(0,55,0)
log | —————= | —log| ———+—
1— P(1,55,55) 1— P(0,55,0)

= (—6.788 + 2.754 4 (0.090 — 0.050) x 55) — (—6.788 + 0.090 x 55)
= (2.754 — 0.050 x 55) = 0.014.

We see that this corresponds to an odds ratio of exp(0.014) = 1.01, which is similar
to that calculated for the corresponding age group in Table 5.14. We can obtain this
estimate and its 95% CI directly as shown in Table 5.17.

Note that because age is represented as a continuous variable, its value must be
specified in interpreting the effect of arcus on the log odds of CHD risk. Similarly,
among individuals with arcus, log odds ratios can be computed for any specified
increase in age. Figure 5.2 displays the estimated log odds as a function of age,
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Table 5.17 Logistic model for interaction between arcus and age as a continuous predictor

. lincom l.arcus + 55+1.arcus#c.age

(1) [chd69]1.arcus + 55« [chd69]1.arcus#ic.age = 0

chd69 | 0dds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
_____________ o o C oo _____

(1) | 1.013637 .2062336 0.07 0.947 .6802954 1.510313

Logit CHD Risk

--------- arcus =0 arcus = 1

40 45 50 55 60
Age (years)

Fig. 5.2 Log odds of CHD and age for individuals with and without arcus senilis

separately for individuals with and without arcus. The equations for these two lines
can be obtained directly from the coefficients in Table 5.16 and are printed below
for individuals with and without arcus, respectively:

P
log | —£B9%)_| _ (_6788 + 2.754) + (0.090 — 0.050) x age
1 — P(age)

= —4.034 4 0.040 x age.

and

P(age)
1 = —6.788 4 0.0896 x .
og [1 ~ P(age) + age
Figure 5.2 displays the results obtained above, indicating that CHD risk is higher
for younger participants with arcus. However, older participants with arcus seem to
be at somewhat lower risk than those without arcus. Of course, further interpretation
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of these equations should be preceded by thorough checking of the linearity of the
relationship between age and the log odds of the outcome, including whether more
complicated, higher-order interaction terms are needed.

Recall the discussion in Sect.5.1 where we motivated the logistic model as an
example of a multiplicative risk model (see (5.4)). By contrast, the risk difference
model (introduced in (5.1) and discussed further in Sect. 5.5.3) is an example of an
additive risk model. In addition to defining two distinct ways in which a predictor
can act to modify outcome risk, this distinction turns out to be very important in the
context of interaction: For a specified outcome and predictor pair, it is possible to
have interaction under the multiplicative model and not under the additive model,
and vice versa.

For example, if we fit the additive risk model to the data from the age/arcus
example in Table 5.16, the Wald test P-value for inclusion of the product term
(age_50arcus) is 0.15. (The corresponding value from the logistic model was
0.03.) The implications of this are that we should not necessarily regard interaction
as mirroring a biological mechanism, but rather as a property of the data and model
being fit. In the example, we would want to account for the interaction if we were
using the logistic model but not necessarily if we were analyzing the WCGS data
using the additive model. The additive regression model is described further in
Sect. 5.5.3. Also, see Clayton and Hills (1993) and Jewell (2004) for more detailed
discussions of the distinction between multiplicative and additive interaction.

5.2.5 Prediction

Frequently, the goal of fitting a logistic model is to predict risk of the binary outcome
given a set of risk factors. Recall that in Sect.5.2.1, we fit a logistic model for the
CHD outcome in the WCGS sample, using age, cholesterol level, systolic blood
pressure, BMI, a binary indicator of current cigarette smoking (with nonsmokers
composing the reference group), and an indicator of type A behavior as predictors.
Table 5.10 summarizes the results. Table 5.18 presents an expanded version of
this model that includes two additional predictors bmichol and bmisbp for the
interactions between BMI and serum cholesterol level and BMI and SBP (both
centered and scaled as described in Sect.5.2). These were both found to make
statistically significant contributions to the model in further analyses investigating
two way interactions between the original predictors in Table 5.10.

As shown in Sect. 5.2, the estimated coefficients from the model in Table 5.18
can be used directly in the logistic formula (5.8) to compute the log odds (or the
corresponding probability) of CHD for an arbitrary individual by specifying the
desired values for the predictors. Table 5.19 displays a few such predictions (labeled
prchd) for five individuals in the WCGS sample (obtained using the predict
command in Stata).
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Table 5.18 Expanded logistic model for CHD events
logistic chdé69 age 10 chol 50 sbp 50 bmi_10 smoke dibpat bmichol bmisbp,

coef
Logistic regression Number of obs = 3141
LR chi2(8) = 198.15
Prob > chi2 = 0.0000
Log likelihood = -788.01957 Pseudo R2 = 0.1117
chd69 | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o o o o ool
age_10 | .5949713 .1201092 4.95  0.000 .3595615 .830381
chol_50 | .5757131 .07779 7.40  0.000 4232474 .7281787
sbp_50 | 1.019647 .2066014 4.94 0.000 .6147159 1.424579
bmi_10 | 1.048839 .2998176 3.50 0.000 .4612074 1.636471
smoke | .6061929 .1410533 4.30 0.000 .3297335 .8826523
dibpat | .7234267 .1448996 4.99 0.000 .4394288 1.007425
bmichol | -.8896932 .2746471  -3.24 0.001  -1.427992  -.3513948
bmisbp | -1.503455 .631815  -2.38  0.017 -2.74179  -.2651208
_cons | -3.416061 .1504717 -22.70  0.000 -3.71098  -3.121142

Table 5.19 Sample predictions from the logistic model in Table 5.18

o T T T oo oo oo +
| chdé9 age chol sbp bmi smoke  dibpat prchd |
R !
1. | no 49 225 110 19.78795 smoker Al,A2 .0433952 |
2. | no 42 177 154 22.9551 smoker Al,A2 .0708145 |
3. | no 42 181 110  23.62529 nonsmoker B3,B4 .0082533 |
4. | no 41 132 124 23.109 smoker B3,B4 .0089318 |
5. | yes 59 255 144  21.52041 smoker B3,B4 .1926046 |

5.2.6 Prediction Accuracy

In some applications, we may be interested in using a logistic regression model
as a tool to classify outcomes of newly observed individuals based on values of
measured predictors. For the WCGS example just considered, this may involve
deciding on treatment strategy based on prognosis as measured by the predicted
probability from the logistic model in Table 5.18. Similar to the goals of developing
diagnostic tests for detecting diseases, this approach requires us to choose a cut-off
or threshold value of the predicted outcome probability above which treatment
would be initiated. A fundamental consideration in choosing this threshold is in
evaluating the degree of misclassification of outcomes incurred by the choice. For
a binary outcome, misclassification can be quantified by calculating the proportion
of individuals incorrectly classified as either having the outcome or not. These are
known as the false-positive and false-negative rates, respectively, and are standard
measures of prediction error in the logistic regression context. Rather than state
prediction performance in terms of misclassification, the following complementary
measures are frequently used in assessment of prediction rules for binary outcomes:
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Fig. 5.3 ROC curve for logistic prediction of CHD events

Sensitivity The proportion of individuals with the outcome that are correctly
classified, calculated as the complement of the false-negative rate.

Specificity The proportion of individuals without the outcome that are correctly
classified, calculated as the complement of the false-positive rate.

As the threshold value of a prediction rule varies between zero and one,
these quantities can be calculated and compared to evaluate overall performance.
A receiver operating characteristic (ROC) curve plots the sensitivity against the
false-positive rate (i.e., one minus the specificity) for a range of thresholds to help
visualize test performance. Figure 5.3 shows the ROC curve for the current example
(obtained using the 1 roc command in Stata), along with a diagonal reference line,
usually interpreted as representing the ROC curve for a test that is no better than the
flip of a coin.

ROC curves for tests with overall good performance (i.e., low misclassification
rates for both positive and negative outcomes) will lie close to the left and topmost
margins of the plot. In Fig. 5.3, a test with a sensitivity of around 75% is close to
optimal in this sense. (The threshold value corresponding to a sensitivity of 0.75
and a specificity of 0.64 in Fig.5.3 is about 0.07.) Note that in most practical
situations, assessment of test performance has a subjective component: The cost
of misclassifying an individual as positive may be deemed more serious than the
alternative situation, or vice versa. These considerations weigh into evaluation of
test results. The area under an ROC curve (also known as the C-statistic) provides an
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overall measure of classification accuracy, with the value of one representing perfect
accuracy. In the present case, the value of 0.754 does not indicate very impressive
performance.

A clear limitation with the example above is that the individuals used to
evaluate the performance are the same as those used to fit the model on which the
classification rule is based. Alternative techniques that do not share this limitation
include cross-validation and learning set/test set validation (both described in
Sect. 10.1). Finally, note that although logistic regression is a valid approach for
development of prediction tools, alternative techniques are available. Classification
trees are an example of a larger class of tree-based methods, and involve fewer
modeling assumptions than the logistic approach. See Goldman et al. (1996) for an
example of their application in a clinical context. Prediction is discussed in greater
detail in Sect. 10.1.

5.3 Case-Control Studies

In situations where binary outcomes are rare or difficult to observe, it is not always
feasible to collect a large enough sample to investigate the relationship between the
outcome and predictors of interest. Consider the problem of evaluating dietary risk
factors for stomach cancer. Because this disease is relatively rare (accounting for
approximately 2% of annual cancer deaths in the United States), only a very large
cross-sectional or prospective sample would include sufficient numbers of cases
to evaluate associations with predictors of interest. Case-control studies address
this problem by recruiting a fixed number of individuals with the outcome of
interest (the cases) and a number of comparable control individuals free of the
outcome. Retrospective histories of predictor variables of interest are then collected
via questionnaire after recruitment.

A well-known example of a case-control study is the Ille-et-Vilaine study of
cancer conducted in France between 1972 and 1974. It includes 200 cases and
775 comparable controls, and was designed to investigate alcohol, diet, and tobacco
consumption as risk factors for esophageal cancer in men. This is known as an
unmatched study since cases and controls were sampled separately in predetermined
numbers. An alternative type of case-control study is based on matching a fixed
number of controls to each sampled case based on selected characteristics. Methods
for matched studies are different and will be covered briefly below in Sect.5.3.1.

Because the overall proportion of individuals is fixed by design in a case-control
study (e.g., 200/995, or approximately five controls per case for Ille-et-Vilaine),
it is not meaningful to make direct comparisons of outcome risk (estimated as the
proportion of individuals with the outcome) between groups defined by predictor
variables, as is conventional in studies where participants are not sampled based
on their outcome status. Rather, analyses are based on the distribution of predictors
variables compared across case/control status. At first glance, this approach does not
seem to address the fundamental question of whether or not the predictor is asso-
ciated with increased risk of developing the outcome. For example, observing that
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Table 5.20 Odds ratio for smoking and esophageal cancer

. tabodds case ditob, or

ditob | 0dds Ratio chi2 P>chi2 [95% Conf. Intervall
_____________ o
0-9 g/day | 1.000000 . . . .
10+ g/day | 10.407051 64.89 0.0000 5.119049 21.157585

case | 0dds Ratio chi2 P>chi2 [95% Conf. Intervall
_____________ A m o oo oo e dimeo_
0 | 1.000000 . . . .

1 | 10.407051 64.89 0.0000 5.119049 21.157585

self-reported alcohol consumption differed between cases and controls in Ille-et-
Vilaine does not seemingly translate into a clear statement about esophageal cancer
risk associated with alcohol use. Further, application of conventional measures of
association to settings where the role of the outcome and predictor are reversed
seemingly leads to unintuitive results. For example, observing that individuals with
esophageal cancer risk are twice as likely (in terms of the relative risk) as cancer-
free individuals to report a specified degree of alcohol consumption does not state
the association in a way that makes the possible causal connection clear.

Recall that our definitions of the relative risk, risk difference, and odds ratios
in Chap.3 were stated in terms of the outcome probabilities. This limits their
usefulness in retrospective settings such as case-control studies. However, it is
a unique property of the odds ratio that it retains its validity as a measure of
outcome risk, even for case-control sampling. To demonstrate this for a simple
example, Table 5.20 presents odds ratios for the Ille-et-Vilaine study estimated
using the tabodds procedure in Stata. The first part of the table gives the odds
of the binary case-control status indicator case compared in two groups defined
by the binary indicator ditob of moderate to heavy level of smoking (104
grams/day of tobacco smoked), and the second part gives the corresponding odds
ratio comparing moderate-to-heavy level of smoking between cases and controls.
The estimated odds ratios are identical. This property does not hold for the risk
difference and relative risk.

We can also demonstrate this property directly using the definition of the odds
ratio. Table 5.21 presents a hypothetical 2 x 2 table for a binary outcome and
predictor in terms of the frequencies of n individuals in the four possible cross-
categorizations (labeled a, b, ¢, and d). We estimate the outcome probability among
individuals with and without the predictor with the proportions a/(a + ¢) and
b/(b + d), respectively, and the corresponding odds of the outcome as

afate)  b/b+d)
¢/(a+c) d/(b+d)

5.11)

The resulting odds ratio is then ad /bc.
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Table 5.21 Outcome by

Predictor
predictor status for a
case-control study Outcome _ Yes No Total
Yes a b a+b
No ¢ d c+d
Total at+c b+d n

Similarly, we can estimate the exposure probability among individuals with and
without the outcome as a/(a + b) and ¢/(c + d), and the corresponding odds as
above. It is easy to verify that the odds ratio based on these is also ad/bc. This
property of the odds ratios is central to the wide use of case-control studies, and
suggests that logistic regression may be applicable as well. The additional fact that
the odds ratio approximates the relative risk for rare outcomes (e.g., many forms of
cancer) increases its appeal.

Recall that in the logistic regression model, the intercept coefficient By is
interpreted as the “baseline” log odds of outcome risk obtained when no predictors
are included in the model (or, equivalently, when all predictors take on the value
zero). As we have stated above, this quantity cannot be meaningfully estimated
from case-control studies. As a result, the intercept coefficient in logistic regression
models for case-control data can not be interpreted as providing an estimate of
baseline risk in the population from which the sample was drawn. It is a remarkable
fact that the logistic model is nonetheless directly applicable to data from case-
control studies, and that estimated regression coefficients for included predictors
provide valid estimates of log odds ratios, sharing the interpretation from other
study types. Note that the logistic is the only binary regression model with this
property.

A primary hypothesis underlying the Ille-et-Vilaine study was that alcohol
consumption was related to esophageal cancer. Alcohol consumption was measured
in average total daily consumption in grams, estimated directly from questionnaire
responses on a number of different types of alcoholic beverages. The investigators
recognized that age and smoking were potential confounding influences, and should
be accounted for in assessing the association between alcohol consumption and
cancer risk. (Dietary factors were also considered, but are not discussed here.)

Table 5.22 presents the results of a logistic regression model fit to these data,
including a four-level categorization alcgp of average daily alcohol consump-
tion and controlling for the dichotomous indicator ditob of moderate-to-heavy
smoking (introduced above) and age (in years) as a continuous predictor. The
lowest level of alcohol consumption (0-39 g/day) is taken as the reference category,
and the three included indicators represent 40-79, 80-119, and 120+ g/day,
respectively. The results indicate a clear increase in cancer risk with increasing
alcohol consumption, and that this effect is evident when age and smoking are
accounted for.

Estimated odds 