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link to the quartic Hénon-Heiles hamiltonian 363

Willox, R. & Hietarinta, J.: On the bilinear forms of
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PREFACE

On April 29, 1814 Napoleon landed on the island of Elba, surrounded with a
personal army of 1200 men. The allies, Russia, Prussia, England and Austria,
had forced him into exile after a number of very costly defeats; he was deprived
of all his titles, but could keep the title of “Emperor of Elba”. History tells us that
each morning he took long walks in the sun, reviewed his army each midday
and discussed world matters with newly appointed advisors, following the same
pattern everyday, to the great surprise of Campbell, the British officer who was
to keep an eye on him. All this made everyone believe he was settled there for
good. Napoleon once said: Elba is beautiful, but a bit small. Elba was definitely
a source of inspiration; indeed, the early morning, March 6, 1815, Metternich,
the chancellor of Austria was woken up by one of his aides with the stunning
news that Napoleon had left Elba with his 1200 men and was marching to
Paris with little resistance; A few days later he took up his throne again in
the Tuileries. In spite of his insatiable hunger for battles and expansion, he is
remembered as an important statesman. He was a pioneer in setting up much
of the legal, administrative and political machinery in large parts of continental
Europe.

We gathered here in a lovely and quaint fishing port, Marciana Marina on
the island of Elba, to celebrate one of the pioneers of integrable systems, Hirota
Sensei, and this at the occasion of his seventieth birthday. Trained as a physicist
in his home university Kyushu University, Professor Hirota earned his PhD in
’61 at Northwestern University with Professor Siegert in the field of “Quantum
Statistical mechanics”. He wrote a widely appreciated Doctoral dissertation on
“Functional Integral representation of the grand partition function”. As a young
researcher, he entered the RCA Company in Tokyo to do research on semi-
conductor plasmas. He then joined the Faculty of Science and Engineering of
Ritsumeikan University in Kyoto and then later Hiroshima National University
and Waseda University, until his recent retirement.

We are also celebrating another birthday, namely the birth, some thirty years
ago, of multisoliton solutions for the KdV equation, the representation of in-
tegrable equations as bilinear equation and Hirota’s D-operation. All this hap-
pened in the period 1971 through 1974.

Professor Hirota was led to model the Toda lattice as a non-linear network
of ladder-type LC circuits. The self-dual case led to equations very reminiscent
of the Sine-Gordon equation, with much the same features (existence of one
soliton, soliton-soliton interaction, etc)

ix



x Preface

Meanwhile, At RCA, Hirota Sensei was looking for applications of solitons
to multi-channel communication systems. As an important requirement, they
needed to be stable in the presence of a ripple. Taking a 2-soliton interaction,
letting one of them become very small, led to the stability of a 1-soliton so-
lutions. What about the stability of two solitons? Professor Hirota argued as
follows: If one wants to use the same method, one should look for three-soliton
solutions and again let one soliton become very small. In the beginning, most
naı̈ve guesses turned out to be wrong. Finally the answer came from an inge-
nious use of the Bäcklund transformation and a superposition principle, for the
sine-Gordon equation. In this way. Professor Hirota expressed the three-soliton
solution, in terms of sums of exponentials with phases linear in x and t. These
same kind of methods could then be applied to the non-linear self-dual network
equation, the Toda equation and finally to the KdV equation.

In his celebrated 1971-paper: “Exact solutions of the KdV equation for
multiple collisions of solitons”, Hirota gave the multisoliton solution to the
KdV equation in terms of the second logarithmic derivative of a determinant
of exponentials and showed most importantly that the determinant satisfies a
bilinear equation of order 4. So Hirota’s bilinear equation was born.

The story goes that Professor Scott who was visiting Japan in the summer
1971 remarked: why do you want to replace the KdV equation by a much more
complicated equation, namely the bilinear equation, which after all is 4th order?
This seemingly negative comment had striking consequences. Having written
bilinear equations for all those integrable PDE’s, Professor Hirota became very
concerned with finding simple ways to express them, which he did in a paper in
1974, where he introduced the operation, known these days as Hirota symbol
or Hirota D-operator. This amazing intuition turned out to have profound con-
sequences. Beyond being an ingenious device, it had a lasting impact onto the
field. It gave rise to the famous tau-function theory, which by now has become a
classic chapter of mathematical physics. One might say that the Hirota symbol
has become one of those tools that everyone is using without referring to it in
the bibliography, just like Schwarz’s inequality or Stokes’ theorem.

Hirota’s career is specked with striking and stunning discoveries, often based
on simple, but ingenious observations. They unleashed a great tide of energy
and activity; all hell broke loose. In the 70’s, one miracle came after the other,
the field literally exploded in the most fascinating directions that we all know
and worship. This week here in Elba will be a tribute to his work!

This NATO-sponsored workshop here in Elba was dominated by an enor-
mous wealth of subjects around integrability, ranging from geometric to analytic
questions, from Lie groups, quantum groups and W-algebras to combinatorics
and quantum field theory. We would like to thank the participants for hav-
ing delivered these interesting lectures. Also many thanks to those who have
contributed to this volume.



Preface xi

The organizing committee consisted of Professors Franklin Lambert, Frank
Nijhoff, Ludwig Faddeev and Pierre van Moerbeke. Last but not least, we would
like to express our gratitude to Professor Franklin Lambert. It was his idea to
organize the conference on this theme, he picked this wonderful spot, he was
the real engine behind this enterprise, he did an enormous amount of work.
Thank you Franklin!

Ludwig D. Faddeev
Pierre van Moerbeke
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THE CKP HIERARCHY AND THE
WDVV PREPOTENTIAL

Henrik Aratyn
Department of Physics, University of Illinois at Chicago,
845 W. Taylor St., Chicago, IL 60607-7059

Johan Van de Leur
Mathematical Institute,
University of Utrecht,
P.O. Box 80010, 3508 TA Utrecht,
The Netherlands

1 THE WDVV PREPOTENTIAL

In terms of the so-called flat coordinates x1, x2, . . . , xn a solution to the Witten–
Dijkgraaf–Verlinde–Verlinde (WDVV) equations [1, 2] is given by a prepoten-
tial F(x1, x2, . . . , xn) which satisfies the associativity relations:

n∑
δ,γ=1

∂3 F(x)

∂xα∂xβ∂xδ
ηδγ ∂3 F(x)

∂xγ ∂xω∂xρ
=

n∑
δ,γ=1

∂3 F(x)

∂xα∂xω∂xδ
ηδγ ∂3 F(x)

∂xγ ∂xβ∂xρ

(1)
together with a quasi-homogeneity condition:

n∑
α=1

(1 + μ1 − μα)xα ∂ F

∂xα
= (3 − d)F + quadratic terms. (2)

where μi , i = 1, . . . , n and d are constants.
Furthermore, expression

∂3 F(x)

∂xα∂xβ∂x1
= ηαβ (3)

defines a constant non degenerate metric: g = ∑n
α,β=1 ηαβ dxα dxβ .

As shown by Dubrovin (e.g., in reference [3]) there is an alternative de-
scription of the metric in terms of a special class of orthogonal curvilinear

1
L. Faddeev et al. (eds.),
Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 1–11.
C© 2006 Springer. Printed in the Netherlands.



2 Henrik Aratyn and Johan Van de Leur

coordinates u1, . . . , un

g =
n∑

αβ=1

ηαβ dxα dxβ =
n∑

i=1

h2
i (u)(dui )

2 (4)

called canonical coordinates. These coordinates allow to reformulate the prob-
lem in terms of the Darboux–Egoroff metric systems and corresponding
Darboux–Egoroff equations and their solutions. In the Darboux–Egoroff met-
ric the Lamé coefficients h2

i (u) are gradients of some potential and this ensures
that the so-called “rotation coefficients”

βi j = 1

h j

∂hi

∂uj
, i �= j, 1 ≤ i, j ≤ n, (5)

are symmetric βi j = β j i . The Darboux–Egoroff equations for the rotation co-
efficients are:

∂

∂uk
βi j = βikβk j , distinct i, j, k (6)

n∑
k=1

∂

∂uk
βi j = 0, i �= j. (7)

In addition to these equations one also assumes the conformal condition:
n∑

k=1

uk
∂

∂uk
βi j = −βi j . (8)

The Darboux–Egoroff equations (6)–(7) appear as compatibility equations of
a linear system:

∂
i j (u, z)

∂uk
= βik(u)
k j (u, z), i �= k (9)

n∑
k=1

∂
i j (u, z)

∂uk
= z
i j (u, z) (10)

Define the n × n matrices 
 = (
i j )1≤i, j≤n , B = (βi j )1≤i, j≤n and Vi =
[B, Eii ],where (Ei j )kl = δikδ jl . Then the linear system (9)–(10) acquires the
following form:

∂
(u, z)

∂ui
= (zEii + Vi (u)) 
(u, z), i = 1, . . . , n, (11)

n∑
k=1

∂
(u, z)

∂uk
= z
(u, z). (12)

Let, furthemore 
(u, z) have a power series expansion


(u, z) =
∞∑
j=0

z j
( j)(u) = 
(0)(u) + z
(1)(u) + z2
(2)(u) + · · · (13)
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and satisfy the “twisting” condition;


(u, z)η−1
T (u, −z) = I (14)

Equation (11) implies
∑n

k=1 uk∂
(u, z)/∂uk = (zU + [B, U ])
(u, z), with
U = ∑n

k=1 uk Ekk . For a matrix [B, U ] which is diagonalizable the conformal
condition (8) leads to

n∑
k=1

uk
∂
(u, z)

∂uk
= z

∂
(u, z)

∂z
+ 
(u, z)μ, μ = diag(μ1, . . . , μn) (15)

where μ is a constant diagonal matrix obtained by a similarity transformation
from the matrix [B, U ]. The constant diagonal elements ui entered the quasi-
homogeneity condition (2).

Define

φα(u, z) ≡
n∑

β=1



(0)
β1(u)
βα(u, z)

= φ(0)
α (u) + zφ(1)

α (u) + z2φ(2)
α (u) + z3φ(3)

α (u) + · · · (16)

then, in terms of the flat coordinates x1, . . . , xn

φ(1)
α (u) =

n∑
β=1

ηαβ xβ(u) (17)

and the prepotential is given by a closed expression (see e.g., [4] or [5]):

F = −1

2
φ

(3)
1 (u) + 1

2

n∑
δ=1

xδ(u)φ(2)
δ (u). (18)

2 THE CKP HIERARCHY

The CKP hierarchy [6] can be obtained as a reduction of the KP hierarchy,

∂

∂tn
L = [(Ln)+, L], for L = L(t, ∂) = ∂x + �(−1)∂−1

x + �(−2)∂−2
x + · · · ,

(19)
where x = t1, by assuming the extra condition

L∗ = −L . (20)

By taking the adjoint, i.e., ∗ of (19), one sees that ∂L
∂tn

= 0 for n even. Date, Jimbo,
Kashiwara, and Miwa [6], [7] construct such L’s from certain special KP wave
functions ψ(t, z) = P(t, z)e

∑
i ti zi

(recall L(t, ∂) = P(t, ∂)∂ P(t, ∂)−1), where
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one then puts all even times tn equal to 0. Recall that a KP wave function
satisfies

Lψ(t, z) = zψ(t, z),
∂ψ(t, z)

∂tn
= (Ln)+ψ(t, z), (21)

and

Res ψ(t, z)ψ∗(s, z) = 0. (22)

The special wave functions which lead to an L that satisfies (20) satisfy

ψ∗(t, z) = ψ(t̃, −z), where t̃i = (−)i+1ti . (23)

We call such a ψ a CKP wave function. Note that this implies that L(t, ∂)∗ =
−L(t̃, ∂) and that

Res ψ(t, z)ψ(s̃, −z) = 0.

One can put all even times equal to 0, but we will not do that here.
The CKP wave functions correspond to very special points in the Sato

Grassmannian, which consists of all linear spaces

W ⊂ H+ ⊕ H− = C[z] ⊕ z−1
C[[z−1]],

such that the projection on H+ has finite index. Namely, W corresponds to a
CKP wave function if for any f (z), g(z) ∈ W one has Res f (z)g(−z) = 0. The
corresponding CKP tau functions satisfy τ (t̃) = τ (t).

We will now generalize this to the multi-component case and show that
a CKP reduction of the multi-component KP hierarchy gives the Darboux–
Egoroff system. The n component KP hierarchy [8, 9] consists of the equations
in t (i)

j , 1 ≤ i ≤ n, j = 1, 2, . . .

∂

∂t (i)
j

L =
[(

L j Ci
)
+ , L

]
,

∂

∂t (i)
j

Ck =
[(

L j Ci
)
+ , Ck

]
, (24)

for the n × n-matrix pseudo-differential operators

L = ∂x + L (−1)∂−1
x + L (−2)∂−2

x + · · · ,
Ci = Eii + c(−1)

i |∂−1
x | + C (−2)

i |∂−2
x | + · · · , (25)

1 ≤ i ≤ n, where x = t (1)
1 + t (2)

1 + · · · + t (n)
1 . The corresponding wave function

has the form

�(t, z) = P(t, z) exp

(
n∑

i=1

∞∑
j=1

t (i)
j z j Eii

)
,

where P(t, z) = I + P (−1)(t)z−1 + · · · ,
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and satisfies

L�(t, z) = z�(t, z), Ci�(t, z) = �(t, z)Eii ,

∂�(t, z)

∂t (i)
j

= (L j Ci )+�(t, z) (26)

and

Res �(t, z)�∗(s, z)T = 0.

From this we deduce that L = P(t, ∂x ) ∂x P(t, ∂x )−1 and Ci = P(t, ∂x )Eii

P(t, ∂x )−1. Using this, the simplest equations in (26) are

∂�(t, z)

∂t (i)
1

= (zEii + Vi (t))�(t, z), (27)

where Vi (t) = [B(t), Eii ] with B(t) = P (−1)(t). In terms of the matrix coeffi-
cients βi j of B we obtain (6) for ui = t (i)

1 .
The Sato Grassmannian becomes vector valued, i.e.,

H+ ⊕ H− = (C[z])n ⊕ z−1(C[[z−1]])n.

The same restriction as in the 1-component case (23), viz.,

�(t, z) = �∗(t̃, −z), where t̃ i
n = (−)n+1t (i)

n .

leads to L∗(t̃) = −L(t), C∗
i (t̃) = Ci (t) and

Res �(t, z)�(s̃, −z)T = 0, (28)

which we call the multi component CKP hierarchy. But more importantly, it
also gives the restriction

βi j (t) = β j i (t̃). (29)

Such CKP wave functions correspond to points W in the Grassmannian for
which

Res f (z)T g(−z) = Res
n∑

i=1

fi (z)gi (−z) = 0

for any f (z) = ( f1(z), f2(z), . . . , fn(z))T , g(z) = (g1(z), g2(z), . . . , gn(z))T

∈ W .
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If we finally assume that L = ∂x , then �, W also satisfy

∂�(t, z)

∂x
=

n∑
i=1

∂�(t, z)

∂t (i)
1

= z�(t, z), zW ⊂ W (30)

and thus βi j satisfies (7) for ui = t (i)
1 . Now differentiating (28) n times to x for

n = 0, 1, 2, . . . and applying (30) leads to

�(t, z)�(t̃, −z)T = I.

These special points in the Grassmannian can all be constructed as follows [10].
Let G(z) be an element in GLn(C[z, z−1]) that satisfies

G(z)G(−z)T = 1, (31)

then W = G(z)H+. Clearly, any two f (z), g(z) ∈ W can be written as f (z) =
G(z)a(z), g(z) = G(z)b(z) with a(z), b(z) ∈ H+, then z f (z) = zG(z)a(z) =
G(z)za(z) ∈ W , since za(z) ∈ H+. Moreover,

Res f (z)T g(−z) = Res a(z)T G(z)T G(−z)b(−z) = Res a(z)T b(−z) = 0.

If we define M(t, z) = �(t, z)G(z), then one can prove [10, 11] that

M(t, z) = M (0)(t) + M (1)(t)z + M (2)(t)z2 + · · ·
We want to change M(t, z) a bit more. However, we only want to do that for
very special elements in this twisted loop group, i.e., to certain points of the
Grassmannian that have a basis of homogeneous elements in z. Let n = 2m
or n = 2m + 1, choose non-negative integers μi for 1 ≤ i ≤ m and define
μn+1− j = −μ j and let μm+1 = 0 if n is odd. Then take G(z) of the form

G(z) = N (z)S−1 = N z−μS−1, where μ = diag(μ1, μ2, . . . , μn)

and N = (ni j )1≤i, j≤n a constant matrix that satisfies

N T N =
n∑

j=1

(−1)μ j E j,n+1− j (32)

and

S = δn,2m+1 Em+1,m+1 +
m∑

j=1

1√
2

× (E j j + i En+1− j, j + E j,n+1− j − i En+1− j,n+1− j ).

Then [11]
n∑

i=1

∞∑
j=1

j t (i)
j

∂�(t, z)

∂t (i)
j

= z
∂�(t, z)

∂z
,
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from which one deduces that

n∑
i=1

∞∑
j=1

j t (i)
j

∂βi j

∂t (i)
j

= −βi j . (33)

Define η = (ηi j )1≤i, j≤n = ST S = ∑n
i=1 Ei,n+1−i and denote by 
(t, z) =

M(t, z)S = �(t, z)G(z)S = �(t, z)N (z), then 
(t, z) satisfies the following
relations:


(t, z) = 
(0)(t) + 
(1)(t)z + 
(2)(t)z2 + · · ·

(t, z)η−1
(t, −z)T = I

∂
(t, z)

∂t (i)
1

= (zEii + Vi (t))
(t, z)

n∑
i=1

∂
(t, z)

∂t (i)
1

= z
(t, z),

n∑
i=1

∞∑
j=1

j t (i)
j

∂
(t, z)

∂t (i)
j

= z
∂
(t, z)

∂z
+ 
(t, z)μ.

We next put t (i)
j = 0 for all i and all j > 1 and ui = t (i)

1 , then we ob-

tain the situtation of Section 1. Define φα(u, z) as in (16), then φ(1)
α (u) =∑n

γ=1 ηαγ xγ (u) and the function F(u) given by (18) satisfies the WDVV
equations.

3 AN EXAMPLE

We will now give an example of this construction, viz., the case that n =
3 (for simplicity) and μ1 = −μ3 = 2 and μ2 = 0. Hence, the point of the
Grassmannian is given by

N (z)H+ = N

⎛
⎝ z−2 0 0

0 1 0
0 0 z2

⎞
⎠ H+.

More precise, let ni = (n1i , n2i , n3i )
T and e1 = (1, 0, 0)T , e2 = (0, 1, 0)T and

e3 = (0, 0, 1)T , then this point of the Grassmannian has as basis

n1z−2, n1z−1, n1, n2, n1z, n2z, e1z2, e2z2, e3z2, e1z3, e2z3, . . . .
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Using this one can calculate in a similar way as in [12] (using the bosonfermion
correspondence or vertex operator constructions) the wave function:

�(t, z) = P(t, z) exp

(
n∑

i=1

∞∑
j=1

t (i)
j z j Eii

)
,

where Pj j (t, z) =
τ̂

(
t (k)
� − δk j (�z�)−1

)
τ̂ (t)

,

Pi j (t, z) = z−1
τ̂i j

(
t (k)
� − δk j (�z�)−1

)
τ̂ (t)

and where

τ̂ (t) = det

⎛
⎜⎜⎜⎜⎜⎜⎝

n11S2(t (1)) n11S1(t (1)) n11 0 n12 0
n21S2(t (2)) n21S1(t (2)) n21 0 n22 0
n31S2(t (3)) n31S1(t (3)) n31 0 n32 0
n11S3(t (1)) n11S2(t (1)) n11S1(t (1)) n11 n12S1(t (1)) n12

n21S3(t (2)) n21S2(t (2)) n21S1(t (2)) n21 n22S1(t (2)) n22

n31S3(t (3)) n31S2(t (3)) n31S1(t (3)) n31 n32S1(t (3)) n32

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The functions Si (x) are the elementary Schur polynomials:

S1(x) = x1, S2(x) = x2
1

2
+ x2, S3(x) = x3

1

6
+ x2x1 + x3.

The tau function τ̃i j (t) is up to the sign sign(i − j) equal to the above determi-
nant where we replace the j th row by(

ni1S1(t (i)) ni1 0 0 0 0
)
.

Next we put all higher times t (i)
j for j > 1 equal to 0 and write ui for t (i)

1 .
Then using the orthogonality-like condition (32) of the matrix N to reduce
long expressions, the wave function becomes:

�(u, z) =
(

I + 1

τ (u)

3∑
i, j=1

[(
−w

(3)
1 + w

(2)
1 (ui + u j ) − w

(1)
1 ui u j

)
z−1

+
(
w

(1)
1 ui − w

(2)
1

)
z−2

]
ni1n j1 Ei j

)
ezU ,

where, for convenience of notation, we have introduced some new “variables”

w
(k)
i = 1

k

3∑
�=1

uk
�n�i n�1,

and where

τ (u) = w
(3)
1 w

(1)
1 − w

(2)
1 w

(2)
1 .
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Note that in this way we also have determined the rotation coefficients

βi j = 1

τ (u)

(
−w

(3)
1 + w

(2)
1 (ui + u j ) − w

(1)
1 ui uj

)
ni1nj1,

which is a new solution of order 3 of the Darboux–Egoroff equations.
Recall that η = ∑3

i=1 Ei,4−i . It is now straightforward but tedious to deter-

mine the flat coordinates xα and the φ
( j)
α for j > 1. One finds that for � > 0

and p = 1, 2, 3:

φ
(�−μp)
p = τw(�+2)

p + τ1w
(�+1)
p + τ2w

(�)
p

2(� − 1)!τ
(34)

and

φ
(−2−μp)
p = δp3, φ

(−1−μp)
p = −δp3

τ1

2τ
, φ

(−μp)
p = δp3

τ2

2τ
, (35)

where

τ1 = w
(2)
1 w

(3)
1 − w

(1)
1 w

(4)
1

τ2 = w
(2)
1 w

(4)
1 − (w(3)

1 )2.

Note that (34) also holds for p = 1 and � = 1, 2, it is easy to verify that
φ

(−1)
1 = φ

(0)
1 = 0. Using (17), one has the following flat coordinates:

x1 = − τ1

2τ
,

x2 = 1

2τ

(
τw

(3)
2 + τ1w

(2)
2 + τ2w

(1)
2

)
,

x3 = 1

4τ

(
τw

(5)
1 + τ1w

(4)
1 + τ2w

(3)
1

)
. (36)

From all this it is straightforward to determine F(u), given by (18):

F = τ2

16τ 2

(
τw

(5)
1 + τ1w

(4)
1 + τ2w

(3)
1

)
− τ1

48τ 2

(
τw

(6)
1 + τ1w

(5)
1 + τ2w

(4)
1

)
− τ

96τ 2

(
τw

(7)
1 + τ1w

(6)
1 + τ2w

(5)
1

)

+ 1

8τ 2

(
τw

(3)
2 + τ1w

(2)
2 + τ2w

(1)
2

) (
τw

(4)
2 + τ1w

(3)
2 + τ2w

(2)
2

)
.

We shall not determine the explicit form of this prepotential in terms of the
canonical coordinates here, because it is quite long. However, there is a problem
even in this “simple” example. We do not know how to express the canonical



10 Henrik Aratyn and Johan Van de Leur

coordinates ui in terms of the flat ones, the xα’s and thus cannot express F
in terms of the flat coordinates. Hence we cannot determine the desired form
of F . This can be solved in the simplest example, see [12], viz. the case that
μ1 = −μn = 1 and all other μi = 0. This gives a rational prepotential F (in
terms of the flat coordinates).
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QUANTUM INVARIANCE GROUPS
OF PARTICLE ALGEBRAS

M. Arik
Boğaziçi University, Department of Physics, Bebek 80815, İstanbul, Turkey

Abstract The boson and fermion algebras as well as their various generalizations
posess invariance under quantum groups. One example is FIO (2d,R),
the fermionic inhomogenous orthogonal quantum group which is the
inhomogenous quantum invariance group of the d-dimensional fermion
algebra. Another is BISp(2d,R), the bosonic inhomogenous symplectic
quantum group which is the inhomogenous quantum invariance group
of the d-dimensional boson algebra. Complexification, sub(quantum)
groups and quantum group manifolds of these quantum groups will also
be discussed.

I am honored to present this talk in this conference dedicated to celebration of
professor Hirota’s monumental work in Bilinear Integrable Systems. This talk
is not directly related to his work in content. My hope is that it is in the same
spirit. The historical road from classical mechanics to quantum field theory is
most effectively summarized by the following steps. The first is the replacement
of the Poisson bracket

{pi , qi } = δij (1)

by the commutator

i[pi , qi ] = δij h̄. (2)

The second is the passage, via a harmonic oscillator hamiltonian, to creation
and annihilation operators which satisfy

[ai , a j ] = 0

[ai , a∗
j ] = δij (3)

so that the number operator

N =
∑

i

ai
∗ai (4)

has integer eigenvalues. The third entails the replacement of the discrete in-
dices i, j, . . . by the continuous momentum indices �p1, �p2, . . . , and interpret-
ing a∗( �p), a( �p) as creation and annihilation operators of a particle of momentum

13
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�p thus generalizing (3) to

[a( �p1), a( �p2)] = 0

[a( �p1), a∗( �p2)] = δ( �p1 − �p2). (5)

This simple procedure can be applied to bosons posessing integer spin and
additional quantum numbers. Fermions, however, require the replacement of
the commutator in (3) by the anticommutator. For the sake of clarity we will
use the discrete form (3) although all our results can be generalized to the
continuous form (5).

We start with the bosonic and fermionic particle algebras

[ci , c j ]∓ = ci c j ∓ c j ci = 0

[ci , c∗
j ]∓ = ci c

∗
j ∓ c∗

j ci = δij, i, j = 1, 2, . . . , d (6)

and look for inhomogenous linear transformations

ci → αij ⊗ c j + βij ⊗ c∗
j + γi ⊗ 1 (7)

which leave the commutation relations (6) invariant. αij, βij, γi are assumed
to belong to a possibly noncommutative ∗-Hopf algebra where the coproduct,
counit, and coinverse are respectively given by the matrix product, the identity
matrix and the matrix inverse. The (2d + 1) × (2d + 1) matrix corresponding
to the transformation (7) is given by

M =
⎛
⎝ α β γ

β∗ α∗ γ ∗

0 0 1

⎞
⎠. (8)

Here α, β, α∗, β∗, are d × d square submatrices, γ and γ ∗ are d × 1 columns.
∗ entails hermitean conjugation without taking the transpose of the subma-
trix. If the Hopf algebra A is taken to be commutative then the answer is well
known. For bosons one obtains the inhomogenous symplectic group ISp (2d,R)
which is also the linear invariance group of the classical Poisson bracket (1).
For fermions one obtains the orthogonal group O(2n,R), the inhomogenous
parameters γi (and their hermitean conjugates) being constrained to be zero.
Nonzero γi require A to be noncommutative and give rise to a matrix quantum
group [1]. What is somewhat surprising, however, is that when the condi-
tion that A is commutative is relaxed, for the bosonic case one also obtains a
quantum group which contains ISp (2d,R) as a subgroup. Thus the bosonic
inhomogenous symplectic group BISp(2d,R) (upper signs) and the fermionic
inhomogenous orthogonal group FIO (2d,R) (lower signs) are defined by [2, 3]

[γi , γ
∗
j ]∓ = δij − αikα

∗
jk ± βikβ

∗
jk

[γi , γ j ]∓ = ±βikαjk − αikβjk

[Aij, �k]∓ = 0
[Aij, Ak�]− = 0

(9)
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where Aij = (αij, α
∗
ij, βij, β

∗
ij ), �i = (γi , γ

∗
i ) and summation over repeated

indices is implied. Putting both sides of the first two equations equal to
zero gives ISp (2d,R) and GrIO(2d,R), the second one differing from the
well known IO(2d,R) by the anticommutation relations satisfied by the
inhomogenous parameters γi , γ

∗
i . Putting βij = 0 in (9) gives the quantum

groups BIU (d) and FIU (d) which are quantum group generalizations of the
well known inhomogenous group IU (d). For these quantum groups M can be
reduced to a (d + 1) × (d + 1) matrix

M =
(

α γ

0 1

)
. (10)

Comparing with the Cartan classification of semisimple Lie groups one finds
that BIU (d) and FIU (d) are type A, BISp (2d,R) is of type C and FIO (2d,R)
is of type D. FIO (2d + 1,R) which corresponds to type B can be obtained
by performing a similarity transformation on M in (8) to put it into real form
where each matrix element is hermitean. Then,

M =
(

A �

0 1

)
(11)

where for the fermionic case

[�i , � j ]+ = δij − Aik Ajk

[Aij, �k]+ = 0

[Aij, Ak�]− = 0.

These relations define FIO (2d,R) for i, j, k = 1, 2, . . . , 2d and FIO (2d +
1,R) for i, j, k = 1, 2, . . . , 2d + 1. Whether there exist generalizations corre-
sponding to exceptional types is an open question.

Finally taking α∗
ij, β

∗
ij , γ

∗
i in (9) as independent elements of A rather than as

hermitean conjugates of αij, βij, γi one obtains the “complex” quantum groups
BISp (2d, C) and FIO (2d, C). Similarly deleting the condition that Aij, � j in
(11) are hermitean, one obtains FIO (n, C) for even or odd n. Quantum sub-
groups of these can be obtained by considerations similar to the real case.

The quantum groups considered in this talk are the simplest generalizations
of Lie groups to quantum groups in the sense that the noncommutativity of the
underlying Hopf algebra is introduced only via the inhomogenous parameters
�i . When these inhomogenous parameters are set to zero one obtains a Lie group
which is the homogenous part of the inhomogenous quantum group. Another
related feature is that when the Killing–Cartan metric of the (inhomogenous)
quantum group is constructed considering the Cartan–Maurer 1-form M−1d M,
the inhomogenous parameters drop out and one obtains [4] a Riemannian man-
ifold related to a Lie group manifold. This Riemannian manifold is given by
the GL (2d,R) manifold for BISp (2d,R), a region of the GL (n,R) manifold
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for FIO (n,R) and a region of the GL (d, C) manifold for BIU (d) and FIU (d).
The regions mentioned are specified by the condition that the C∗-norm of the
matrix A in (11) is less than unity. These regions have the structure of a semi-
group. I would also like to remark that the quantum groups BISp (2d,R) and
FIO (2d,R) can be regarded as deformations of their respective particle alge-
bras, i.e., setting the homogenous parameters Aij equal to zero gives back the
respective particle algebras. In fact, the representations of A are most easily
constructed by writing the elements of A in terms of the related particle alge-
bra. Hopefully, their further consideration will give a better and more consistent
approach to interacting field theory.
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ALGEBRAIC HIROTA MAPS

Chris Athorne
Department of Mathematics, University Gardens, Glasgow, G14 9LZ

Abstract We give definitions of Hirota maps acting as intertwining operators for
representations of SLn(C). We show how these reduce to the conven-
tional (generalized) Hirota derivatives in the limit of the dimension of
the representation becoming infinite and we discuss an application to the
theory of ℘-functions associated with hyperelliptic curves of genus 2.

1 INTRODUCTION

The Hirota derivative has been with us since the early days of soliton theory.
Over the intervening years it has developed and influenced the subject to a
degree extraordinary for so simple an idea: the replacement of the Leibnitz rule
for derivations with a skew rule. The beauty of the bilinear forms of soliton
equations coupled with this hint of perversity lends to the Hirota derivative an
irresistible lure of mystery.

It is, of course, not a derivative at all, properly speaking. So the issue of its
precise nature is crucial. There are two approaches. Firstly, the operator parts
of the bilinear equations comprising soliton hierarchies have a natural role in
the theory of Kac–Moody Lie algebras [1] as actions on Schur polynomials.
Secondly, Hirota derivatives themselves can be associated with a simple invari-
ance property [2] which essentially characterizes them unambiguously as well
as allowing their extension to multilinear products.

The current paper generalizes the latter approach in two ways. Firstly we
construct a Hirota-like operator (Hirota map) acting on representations of finite-
dimensional Lie algebras almost as an intertwining operator. This allows us
to construct highest weight vectors of irreducible representations. Such irre-
ducibles are associated with polynomial functions but in the limit of infinite-
dimensional representations the Hirota map becomes the Hirota derivative act-
ing on analytic functions.

Secondly, we are able to push this procedure through for SLn(C), con-
structing Hirota maps, analyzing their actions on representations and their
infinite-dimensional limits, recovering old and new Hirota derivatives. The
Hirota derivatives of [2] can be regarded as intertwining for the Hiesenberg
algebra. The new class of Hirota derivatives are partially intertwining either

17
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Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 17–33.
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for SLn(C) or the n-dimensional Heisenberg algebra, but not, in general,
both.

As evidence for the potential usefulness of these operators we cite their
occurrence in the theory of genus 2 hyperelliptic functions.

2 BASIC DEFINITIONS

We will deal mostly with SLn(C)-modules and the action of the algebra sln(C).
By h we will mean a Cartan subalgebra with basis {h1, . . . , hn−1} (to be made
explicit shortly) and by ei j , for i �= j , nilpotent elements of the algebra associ-
ated with the roots. The roots αi j are elements of h∗ and the ei j are eigenvectors
under the adjoint action of h:

[h, e jk] = < h, α jk > e jk, ∀h ∈ h. (1)

where < ·, · > is the natural pairing between h and its dual.
Any (finite-dimensional) SLn(C) (or sln(C)) module � decomposes into a

finite number of irreducible modules each associated with a highest weight,
ω:

� =
⊕

ω

�ω. (2)

The highest weight ω is associated with a highest weight vector which is
both an eigenvector under the h action and is annihilated by the nilpotent part
of a maximal, solvable (Borel) subalgebra (which is the same for all �ω in the
decomposition).

Recall that irreducible representations of SLn(C) are associated with Young
tableaux [3]: The irreducible of highest weight ω = (ω1, . . . , ωn−1) is associ-
ated with the tableau of row lengths (

∑n−1
i=1 ωi ,

∑n−1
i=2 ωi ,

∑n−1
i=3 ωi , . . . , ωn−1).

We are going to define Hirota maps on tensor products of sln(C) modules
which are (almost) intertwining operators for the sln(C) action. But to do this we
need some explicit expressions for the ei j . These would be rather complicated in
general. However all modules appear in the decompositions of tensor products
of modules of a relatively simple kind, which we denote �N .

A basis of �N is labeled by all n-tuples, (k1, k2, . . . , kn), with positive integer
entries satisfying

n∑
i=1

ki = N . (3)

We use this label interchangeably with the basis element itself. The simplest
such module is the invariant one, �0. �1 is n-dimensional and �N itself the
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symmetric N-fold tensor product,

�N = Sym N�1. (4)

Then we can associate with �N a homogenous polynomial of degree N in
variables x1, x2, . . . , xn with suitably normalized coefficients,

f (N )(x1, x2, . . . , xn) =
∑

k1+···+kn=N

(
N

k1k2 . . . kn

)
(k1, k2, . . . , kn)xk1

1 xk2

2 . . . xkn
n ,

(5)
linear in the basis elements. From the SLn(C) action on the variables xi ,

xi �→
n∑

j=1

gi j x j , det g = 1, (6)

we obtain the sln(C) operators

Ei j ≡ xi
∂

∂x j
, i �= j, (7)

Hi j = [Ei j , E ji ] ≡ xi
∂

∂xi
− x j

∂

∂xi
, i �= j, (8)

(9)

and define the sln(C) action, which we denote ei j , on the basis elements by the
requirement

Ei j f (N )(x1, . . . , xn) = ei j f (N )(x1, . . . , xn), (10)

Hi j f (N )(x1, . . . , xn) = hi j f (N )(x1, . . . , xn). (11)

For example, let n = 3 and N = 2. Then

f (2)(x1, x2, x3) = (2, 0, 0)x2
1 + (0, 2, 0)x2

2 + (0, 0, 2)x2
3

+ 2(1, 1, 0)x1x2 + 2(0, 1, 1)x2x3 + 2(1, 0, 1)x1x3

and

E12 f (2)(x1, x2, x3) = 2(0, 2, 0)x1x2 + 2(1, 1, 0)x2
1 + 2(0, 1, 1)x1x3.

Comparison of coefficients of monomials yields actions

e12(2, 0, 0) = 2(1, 1, 0),

e12(1, 1, 0) = (0, 2, 0),

e12(1, 0, 1) = (0, 1, 1),

the others vanishing.
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This construction is slightly round the houses. After all we could simply ex-
tend the action on �1 to the symmetric tensor product without introducing the
artificial, auxiliary xi variables. However, the present approach serves both to
connect the construction with the classical approach to sl2(C) invariant theory
represented in, say, Hilbert’s classical lectures [4], where the explicit expres-
sions are reminiscent of Hirota bi- and multilinear forms, and to connect the
Hirota maps we shall define shortly with the Hirota derivative itself [5] in the
limit that N → ∞.

Quite generally for the sln(C) module �N , the ei j act thus

ei j (. . . , ki , . . . , k j , . . .) = ki (. . . , ki − 1, . . . , k j + 1, . . .). (12)

We can take a basis of h to be the set of n − 1 elements

hi = hii+1, i = 1, . . . , n − 1 (13)

whose action on basis elements of �N is

hi (k1, k2, . . . , kn) = (ki+1 − ki )(k1, k2, . . . , kn). (14)

The Hirota maps are defined on g-fold tensor products of �Ni but it is simplest
to start with the case g = 2. For i �= j ,

D
12
i j : �N1

⊗ �N2
→ �N1+1 ⊗ �N2+1 (15)

(. . . ki . . . k j . . .) ⊗ (. . . li . . . i j . . .) �→ (. . . ki + 1 . . . k j . . .)

⊗ (. . . li . . . l j + 1 . . .) − (. . . ki . . . k j + 1 . . .) ⊗ (. . . li + 1 . . . l j . . .).

It is important to note that there are, up to linear dependence, n − 1 such
D operators and that they alter the weights of the modules on which they act.
Their crucial property is the following. They commute with the ei j except when
one of their indices coincides with the first of the indices on ei j :

[D12
i j , ekl] =

⎧⎪⎨
⎪⎩

D
12
jl i = k, j �= l

D
12
li j = k, i �= l

0 otherwise.

(16)

and they commute with most of the Cartan subalgebra:

[D12
i j , hl] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D
12
i j i = l �= j − 1

−D
12
i j i − 1 = l �= j

D
12
i j j = l �= i − 1

−D
12
i j j − 1 = l �= i

0 otherwise

(17)

Consequently, if v ∈ �N1
⊗ �N2

is a highest weight vector according to some
choice of Borel subalgebra, B, there will be a subset, DB, of the Hirota operators



Algebraic Hirota Maps 21

defined above which commute with the nilpotent part of the B action, so that
D(v) ∈ �N1+1 ⊗ �N2+1 is again highest weight, with respect to B, but with a
different weight value (because of the nontrivial relations (17)). This will hold
for any of the irreducible submodules in the tensor product.

Hirota maps D
I J
i j on g-fold tensor products

D
I J
i j : �N1

⊗ · · · ⊗ �NI ⊗ · · · ⊗ �NJ ⊗ · · · ⊗ �Ng

→ �N1
⊗ · · · ⊗ �NI +1 ⊗ · · · ⊗ �NJ +1 ⊗ · · · ⊗ �Ng (18)

are defined by applying the rule (15) to the Ith and Jth terms in the tensor
product. Their commutation rules are unchanged.

In passing it should be remarked that the definition of the D
I J
i j given here is

slightly different to that given in [6]. Firstly it applies to sln(C) with n arbitrary
whereas the former held only for sl2(C). Secondly in the present definition the
tensor arguments are of arbitrary weight and only the weights of two of the
arguments are altered. In the former case a tensor product of g copies of one
module was mapped to a product of g copies of the module of higher weight.

To illustrate these ideas we give some examples from the sl2(C) and sl3(C)
theories.

3 EXAMPLES FROM sl2(C)

In the sl2(C) case life is quite simple. Irreducible modules, �N , have bases
{(N , 0), (N − 1, 1), (N − 2, 2), . . . , (0, N )} with the sl2(C) action,

e12(i, j) = i(i − 1, j + 1),

e21(i, j) = j(i + 1, j − 1),

h1(i, j) = ( j − i)(i, j),

and the single Hirota map (on 2-fold tensor products) D
12
12(i, j) abbreviated

to D,

D{(i, j) ⊗ (l, m)} = (i + 1, j) ⊗ (i, j + 1) − (i, j + 1) ⊗ (i + 1, j). (19)

Consider �N ⊗ �M with N ≥ M . Because, in this case (n = 2) only, D

commutes with the full (sl2(C)) action, it is a genuine intertwining operator
and we can write,

�N ⊗ �M
D← �N−1 ⊗ �M−1

D← · · · �N−M+1 ⊗ �1
D← �N−M ⊗ �0. (20)

For example,

�N ⊗ �M � (1, N − 1) ⊗ (0, M)
− (0, N ) ⊗ (1, M − 1)

D← (0, M − 1) ⊗ (0, N − 1)

× ∈ �N−1 ⊗ �M−1 (21)
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and

�N ⊗ �M �
(2, N − 2) ⊗ (0, M)

−2(1, N −1) ⊗ (1, M−1)
+ (0, N ) ⊗ (2, M − 2)

D
2←(0, M−2)⊗(0, N −2)∈�N−2⊗�M−2

(22)

It is clear that

�N ⊗ �M
∼= �N+M ⊕ D(�N−1 ⊗ �M−1). (23)

The weight of �N is N and its dimension N + 1. The modules �N−p ⊗ �M−p

have highest weights M + N − 2p and dimensions M + N − 2p + 1. The
dimension of �N ⊗ �M is (N + 1)(M + 1). The maps D

i give the plethysm

�N ⊗ �M
∼=

M⊕
i=0

gD
i {(0, N − i) ⊗ (0, M − i)} (24)

where g(·) denotes the action of the lie algebra on a highest weight vector to
generate an irreducible, and the identity

(N + 1)(M + 1) =
M∑

i=0

N − M + 1 + 2i (25)

expresses this decomposition in terms of dimensions.

4 EXAMPLES FROM sl3(C)

As with many issues in representation theory the general case is better rep-
resented by the sl3(C) theory. The irreducible modules, �N , have bases
{(i, j, k)|i + j + k = N } with the sl2(C) action,

e12(i, j, k) = i(i − 1, j + 1, k), e21(i, j, k) = j(i + 1, j − 1, k),
e13(i, j, k) = i(i − 1, j, k + 1), e31(i, j, k) = k(i + 1, j, k − 1),
e23(i, j, k) = j(i, j − 1, k + 1), e32(i, j, k) = k(i, j + 1, k − 1),
h1(i, j, k) = ( j − i)(i, j, k), h2(i, j, k) = (k − j)(i, j, k).

There are three Hirota maps (on 2-fold tensor products)

D
12
12(i, j, k) ⊗ (l, m, n) = (i + 1, j, k) ⊗ (l, m + 1, n)

− (i, j + 1, k) ⊗ (l + 1, m, n),

D
12
23(i, j, k) ⊗ (l, m, n) = (i, j + 1, k) ⊗ (l, m, n + 1)

− (i, j, k + 1) ⊗ (l, m + 1, n),

D
12
31(i, j, k) ⊗ (l, m, n) = (i, j, k + 1) ⊗ (l + 1, m, n)

− (i + 1, j, k) ⊗ (l, m, n + 1).
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We will choose the Borel subalgebra B = h ⊕ {e12, e23, e13}. The opera-
tor D

12
23 commutes with the nilpotent part and satisfies the following relations

on h:

[D12
23, h1] = −D

12
23, [D12

23, h2] = 0. (26)

Consequently if v ∈ �N ⊗ �M is a highest weight vector of weight (p, q) ∈
Z

2, D
12
23(v) will be a highest weight vector in �N+1 ⊗ �M+1 of weight (p +

1, q).
The module �N has weight (0, N ) but not all sl3 modules are of this type.

�1 ⊗ �1 ≡ �(0,1) ⊗ �(0,1) is a nine-dimensional module. The obvious highest
weight vector (given our choice of B, is (0, 0, 1) ⊗ (0, 0, 1) which has weight
(0, 2),

h1{(0, 0, 1) ⊗ (0, 0, 1)} = 0, (27)

h2{(0, 0, 1) ⊗ (0, 0, 1)} = 2(0, 0, 1) ⊗ (0, 0, 1),

and application of sl3 generates the six-dimensional module �(0,2) ≡ �2. �0 ⊗
�0 has a single element (0, 0, 0) ⊗ (0, 0, 0) of weight (0, 0) which is mapped
into an element of weight (0, 0) + (1, 0) = (1, 0) in �1 ⊗ �1 by D

12
23:

D
12
23{(0, 0, 0) ⊗ (0, 0, 0)} = (0, 1, 0) ⊗ (0, 0, 1) − (0, 0, 1) ⊗ (0, 1, 0). (28)

This element generates a three-dimensional irreducible module. Thus,

�(0,1) ⊗ �(0,1)
∼= �(0,2) ⊕ �(1,0), (29)

or

⊗ = ⊕
(30)

The next obvious case is �2 ⊗ �2 ≡ �(0,2) ⊗ �(0,2). The element (0, 0, 2) ⊗
(0, 0, 2) generates a �4 ≡ �(0,4) of dimension fifteen. The two high-
est weight elements in �1 ⊗ �1 are (0, 0, 1) ⊗ (0, 0, 1) mapping under
D

12
23 to (0, 1, 1) ⊗ (0, 0, 2) − (0, 0, 2) ⊗ (0, 1, 1) ∈ �2 ⊗ �2 and (0, 0, 1) ⊗

(0, 1, 0) − (0, 1, 0) ⊗ (0, 0, 1) mapping under D
12
23 to −(0, 0, 2) ⊗ (0, 2, 0) +

2(0, 1, 1) ⊗ (0, 1, 1) − (0, 2, 0) ⊗ (0, 0, 2). These elements have weights (1, 2)
and (2, 0) respectively and generate modules of dimensions fifteen and
six:

�(0,2) ⊗ �(0,2)
∼= �(0,4) ⊕ �(1,2) ⊕ �(2,0), (31)

or, diagrammatically,

⊗ = ⊕ ⊕
(32)
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By similar arguments one obtains

�(0,1) ⊗ �(0,2)
∼= �(0,3) ⊕ �(1,1), (33)

⊗ = ⊕
(34)

and

�(0,2) ⊗ �(0,3)
∼= �(0,5) ⊕ �(1,3) ⊕ �(2, 1), (35)

⊗ = ⊕ ⊕
(36)

and all other plethysms of the form �(0,N ) ⊗ �(0,M).
It is clear that the action of D23 on Young tableaux is simple: it adds a box

to the top row. In this it seems to be behaving as a very simple type of vertex
operator [7].

5 EXAMPLES FROM sl4(C)

Briefly, for sl4(C), h is three-dimensional and the choice of Borel subalgebra
spanned by h and the ei j with i < j determines exactly one Hirota map, D34.
This Hirota map augments the weight of a highest weight vector by δ = (0, 1, 0).
Thus we obtain the decompositions:

�(0,0,1) ⊗ �(0,0,1) = �(0,0,2) ⊕ �(0,1,0)

�(0,0,2) ⊗ �(0,0,2) = �(0,0,4) ⊕ �(0,1,2) ⊕ �(0,2,0)

�(0,0,3) ⊗ �(0,0,3) = �(0,0,6) ⊕ �(0,1,4) ⊕ �(0,2,2) ⊕ �(0,3,0)

Diagrammatically,

⊗ = ⊕

⊗ = ⊕ ⊕

⊗ = ⊕

⊕ ⊕
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and for this choice of Hirota map, D34, the effect is seen to be to add a single box
to each of the top two rows because the tableau associated with δ = (0, 1, 0)
is

6 THE CLASSICAL HIROTA DERIVATIVE

We will consider only the cases of sl2(C) and sl3(C) in this section since these
are the cases of direct relevance to the classical Hirota derivative and will
confine ourselves to some remarks concerning the general case. We shall also
give expressions for tensor products of order two with the understanding that
everything can be extended to arbitrary tensor products in the manner described
in earlier sections.

We start by defining a Hirota-like derivative on tensor products of homoge-
neous polynomials of the kind defined in (5). Because the Hirota map changes
the weights of modules we are led to consider a sequence of such polynomials

with degrees N ∈ Z
+. The polynomial f (N )(x, y) has coefficients

(
i+ j

i

)
(i, j)

where i + j = N . Define a D operator

(N + 1)(M + 1)D12
xy{ f (N )(x, y) ⊗ g(M)(x, y)}

= ∂x f (N+1)(x, y) ⊗ ∂yg(M+1)(x, y) − ∂y f (N+1)(x, y) ⊗ ∂x g(M+1)(x, y).

It is easy to check that

D12
xy{ f (N )(x, y) ⊗ g(M)(x, y)} = D

12
12{ f (N )(x, y) ⊗ g(M)(x, y)} (37)

where the D operator acts on the variables and the D operator acts on the
coefficients, (i, j).

We now show that we recover exactly the classical Hirota derivative when
we look at the projective variable ζ = N x/y and allow N → ∞. Then the
polynomials in x and y are replaced by analytic functions in z and the sl2(C)
action is replaced by an action of the Heisenberg algebra,

[∂z, z] = 	 (38)

where 	 is a “counting” operator.
To this end put

f (N )(x, y) = yNφ(N )(ζ ) (39)
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so that

φ(N )(ζ ) =
∑

k1+k2=N

N !

k1!K2!
(k1, k2)

ζ k1

N k1
(40)

N→∞−→
∞∑

k=0

1

k!
(k)ζ k ≡ φ(ζ ), (41)

where we have abbreviated (k1, k2) to (k) for k1 = k and k2 = N − k.
The sl2(C) action on φ(N ) is easily obtained by a change of variables:

e12 = ζ − 1

N
ζ 2 ∂

∂ζ
, (42)

e21 = N
∂

∂ζ
, (43)

h1 = −N + 2ζ
∂

∂ζ
; (44)

and as N → ∞ we define

ẽ12 = e12 → ζ, (45)

ẽ21 = 1

N
e12 → ∂

∂ζ
, (46)

h̃1 = 1

N
H1 → 	, (47)

where 	 is understood to be the “unit” derivation, e.g., 	(a ⊗ b) = 1.a ⊗ b +
a ⊗ 1.b = 2.(a ⊗ b). It effectively counts the number of entries in the tensor
product.

We also need to understand the Hirota map in this limit of infinite-
dimensional representations. Using (37) one shows that

D
12
12{yNφ(N ) ⊗ yMψ (M)} = yN∂ζφ

(N ) ⊗ yMψ (M) − yNφ(N ) ⊗ yM ∂ζψ
(M),

(48)
and assuming we may take factors of y through the tensor product in the infinite
limit we recover the identity

D{φ ⊗ ψ} = ∂ζφ ⊗ ψ − φ ⊗ ∂ζψ ≡ Dζ {φ ⊗ ψ} (49)

where D acts on the coefficients (k) in the analytic expansions of φ(ζ ) and
ψ(ζ ) and where we recognize D as the conventional Hirota derivative. More
precisely, if we symmetrize over the tensor product,

Sym Dζ (φ ⊗ ψ) = φζψ − φψζ

Sym D2
ζ (φ ⊗ ψ) = φζζψ − 2φζψζ + φψζζ
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In this limit the Hirota derivative, Dζ or D, intertwines with the Heisenberg
action:

[Dζ , ∂ζ ] = 0, [Dζ , ζ ] = 0, [Dζ , 	] = 0. (50)

This property of the classical Hirota derivative has been discussed and ex-
ploited in [8].

In verifying these relations directly one must take care that the Heisenberg
acts by derivation over tensor products. Thus, for example,

[Dζ , ζ ](φ ⊗ ψ) = Dζ (ζφ ⊗ ψ + φ ⊗ ζψ) − ζ (φζ ⊗ ψ − φ ⊗ ψζ )

= (ζφ)ζ ⊗ ψ − ζφ ⊗ ψζ + φζ ⊗ ζψ − φ ⊗ (ζψ)ζ

− ζφζ ⊗ ψ − φζ ⊗ ζψ + ζφ ⊗ ψζ + φ ⊗ ζψζ

= 0.

As an aside, it seems logical to introduce a further “Hirota operator” related
to ζ as D is related to ∂ζ , namely

Z (φ ⊗ ψ) = ζφ ⊗ ψ − φ ⊗ ζψ. (51)

This operator is also intertwining for the Heisenberg action,

[Z , ∂ζ ] = 0, [Z , ζ ] = 0, [Z , 	] = 0. (52)

but is trivialized by symmetrization. Further Dζ and Z satisfy the commutation
relation

[Dζ , Z ] = 	 (53)

Note that in [2] Hirota derivatives are taken to be differential operators
defined by the relation (in conventional notation),

Dζ (eεζ τ (ζ ) · eεζ σ (ζ )) = e2εζ Dζ (τ (ζ ) · σ (ζ )) (54)

and since eεζ is the group element generated by the infinitesimal action of ζ

we see that this is consistent with the definition given in this paper written in
terms of the group action,

g(a ⊗ b) = ga ⊗ gb (55)

so that

Dζ g = gDζ (56)

where g is any element of the full group SL2(C). Thus in addition to the
condition (54) we should also require commutation with the translation operator
eε∂ζ :

D(τ (ζ + ε) · σ (ζ + ε)) = D(τ · σ )(ζ + ε). (57)
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Moving on now to the case of sl3(C) the irreducible modules are labeled
by pairs of positive integers, (M, N ), so that there is a one-parameter family
of limits labeled by the ratio λ = M

N as both M and N tend to infinity. Actions
on polynomials in three variables become actions on analytic functions of two
variables, φ(ζ, η). The rôle of the Heisenberg in sl2(C) is now played by the
larger algebra sl2(C) ×H2 where H2 is the two-dimensional Heisenberg. The
sl2(C) action is given by

ζ∂η, η∂ζ , ζ ∂ζ − η∂η; (58)

and the H2 by

(2 + 1

λ
)η, λ∂η, −(2λ + 1)	, (2 + 1

λ
)ζ, λ∂ζ . (59)

The three Hirota maps become Hirota derivatives:

Dζ (φ ⊗ ψ) = φζ ⊗ ψ − φ ⊗ ψζ , (60)

Dη(φ ⊗ ψ) = φη ⊗ ψ − φ ⊗ ψη, (61)

Dζη(φ ⊗ ψ) = φζ ⊗ ψη − φη ⊗ ψζ . (62)

They do not commute completely with the sl2(C) ×H2 action. In fact Dζη

commutes with the sl2(C) part, but not with the H2 part:

[Dζη, η] = −Dζ , (63)

[Dζη, ζ ] = Dη; (64)

while Dζ and Dη commute with the H2 but not the sl2(C) part:

[Dζ , ζ ∂η] = Dη [Dζ , ζ ∂ζ − η∂η] = Dζ , (65)

[Dη, η∂ζ ] = Dζ [Dη, ζ ∂ζ − η∂η] = −Dη. (66)

The Hirota operator Dζη is therefore not a Hirota derivative in the sense of
[2]. Nevertheless it arises in the infinite-dimensional limit in the same way as
the conventional Hirota derivatives Dζ and Dη and plays a similar rôle in the
representation theory of two-dimensional systems, as we shall see in the next
section. For example,

Sym D2
ζη(φ ⊗ φ) =

∣∣∣∣φζζ φζη

φηζ φηη

∣∣∣∣ (67)

= φζζφηη − φ2
ηζ (68)

a common invariant appearing in, say, the Monge–Ampére equation.
In the case of infinite-dimensional limits of representations of sln(C) we will

obtain an sln−1(C) ×Hn−1 action with Hirota derivatives D1, D2, . . . , Dn−1,
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commuting with the Heisenberg part, Hn−1, and a set of “mixed” Hirota maps,
Di j , commuting with the sln−1(C) part.

7 HYPERELLIPTIC FUNCTIONS OF GENUS 2

The situation described in the previous section, the infinite-dimensional limit
of sl3(C) modules, actually occurs in a very specific and important situation [9,
10].

The family of genus 2, hyperelliptic curves,

y2 = g6x6 + 6g5x5 + 15g4x4 + 20g3x3 + 15g2x2 + 6g1x + g0 (69)

is permuted under transformations

x �→ αx + β

γ x + δ
(70)

y �→ y

(γ x + δ)3
(71)

in such a way that the coefficients gi transform as a seven-dimensional, irre-
ducible representation of SL2(C).

Variables u1 and u2 on the associated Jacobian variety are defined by the
differential relations

du1 = dx1

y1
+ dx2

y2
(72)

du2 = x1dx1

y1
+ x2dx2

y2
(73)

where (x1, y1) and (x2, y2) are a pair of (regular) points on the curve.
Under the transformation described above the pair (u1, u2) transform as a

two-dimensional, irreducible representation of SL2(C).
Three double-index objects, {℘11, ℘12, ℘22}, can be defined [11] as rational

functions in the xi and yi and satisfying integrability conditions,

∂

∂u1
℘22 = ∂

∂u2
℘12, (74)

∂

∂u1
℘12 = ∂

∂u2
℘11. (75)

Consequently the ℘i j are second derivatives, with respect to the ui , of some
scalar (SL2(C) invariant) potential and themselves form a three-dimensional
representation.
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They satisfy the following set of five fourth-order partial differential
equations,

−1

3
℘2222 + 2℘2

22 = g2g6 − 4g3g5 + 3g2
4 + g4℘22

−2g5℘12 + g6℘11 (76)

−1

3
℘2221 + 2℘22℘12 = 1

2
(g1g6 − 3g2g5 + 2g3g4) + g3℘22

−2g4℘12 + g5℘11

−1

3
℘2211 + 2

3
℘22℘11 + 4

3
℘2

12 = 1

6
(g0g6 − 9g1g5 + 8g2

3) + g2℘22

− 2g3℘12 + g4℘11

−1

3
℘2111 + 2℘21℘11 = 1

2
(g0g5 − 3g1g4 + 2g2g3) + g1℘22

−2g2℘12 + g3℘11

−1

3
℘1111 + 2℘2

11 = g0g4 − 4g1g3 + 3g2
2 + g0℘22

−2g1℘12 + g2℘11

The terms in these equations can be associated with basis elements of ir-
reducible representations of SL2(C). For example, the five four-index objects
℘2222, ℘2221 etc. are a five-dimensional representation, as are the quadratic terms
℘2

22, ℘22℘12, and so on. Likewise the terms quadratic in the gi . Schematically
we might represent the five equations (76) as

P5 ⊕ (P3 ⊗ P3)5 = (G7 ⊗ G7)5 ⊕ (G7 ⊗ P3)5, (77)

where the subscripts denote dimensions or projections onto irreducibles.
It can be further shown that

℘i j = − ∂2

∂ui ∂u j

ln σ (u1, u2)

where σ is an entire function on the Jacobian, analogous to the Weierstraß σ -
function. Consequently,

℘i j = − 1

2σ 2
Di D jσ · σ (78)

℘i jkl − 2℘i j℘kl − 2℘ik℘ jl − 2℘il℘ jk = − 1

2σ 2
Di D j Dk Dlσ · σ (79)



Algebraic Hirota Maps 31

Then, and remarkably this formulation appears explicitly in Baker’s 1907
book [11], σ satisfies the following bilinear equations:(

1

6
D4

u2
+ 1

2
g4 D2

u2
−g5 Du1

Du2
+ 1

2
g6 D2

u1
−g2g6+4g3g5−3g2

4

)
σ · σ =0(

1

3
D3

u2
Du1

+g3 D2
u2

−2g4 Du1
Du2

+g5 D2
u1

−g1g6+3g2g5−2g3g4

)
σ · σ =0(

D2
u2

D2
u1

+3g2 D2
u2

−6g3 Du1
Du2

+3g4 D2
u1

−g0g6+9g1g5−8g2
3

)
σ · σ =0(

1

3
Du2

D3
u1

+g1 D2
u2

−2g2 Du1
Du2

+g3 D2
u1

−g0g5+3g1g4−2g2g3

)
σ · σ =0(

1

6
D4

u1
+ 1

2
g0 D2

u2
−g1 Du1

Du2
+ 1

2
g2 D2

u1
−g0g4+4g1g3−3g2

2

)
σ · σ =0

(80)

But now we have a pair of conventional Hirota derivatives, Du1
and Du2

,
together with an sl2(C) action on the pair (u1, u2), that is, we have exactly a
sl2(C)× H2 action with which they commute as in the preceding section. There
is therefore an accompanying Hirota derivative of the form Du1u2

which com-
mutes with the sl2(C) action but not the H2 action. A treatment of the theory
which reflects this underlying group action is naturally formulated using Hirota
derivatives: that is, all the identities satisfied by the σ -function are expressed
via the Hirota derivatives. Not only this, but all identities can be classified ac-
cording to the irreducible representations of sl2(C) and “highest weight” iden-
tities are naturally constructed using the intertwining properties of the Hirota
derivatives.

It is also, of course, clear that there is an underlying finite-dimensional
sl3(C) action, because the curve is the canonical form of a family of projective
varieties, homogeneous of degree 6, in variables X, Y, and Z , say. But it is
not immediately clear how this collapses to the above infinite-dimensional
limit.

A specific instance, other than Eq. (76), is the quartic identity satisfied by
the ℘i j , the equation of the Kummer surface (the Jacobian variety factored by
the involution, yi �−→ −yi . The leading term is [Sym D2

u1u2
(℘ ⊗ ℘)]2 and the

remaining terms are invariants constructed in a more complex manner:

0 =

∣∣∣∣∣∣∣∣
g6 −3g5 3g4 + 2℘22 −g3 − 2℘12

−3g5 9g4 − 4℘22 −9g3 + 2℘12 3g2 + 2℘11

3g4 + 2℘22 −9g3 + 2℘12 9g2 − 4℘11 −3g1

−g3 − 2℘12 3g2 + 2℘11 −3g1 g0

∣∣∣∣∣∣∣∣
(81)

= 16(℘2
12 − ℘11℘22)2 + · · ·
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Further either of the top or bottom equations of (80) are easily seen to
be equivalent to a Boussinesq equation. The full system is then a restricted
Boussinesq equation for which a Lax pair can be written down by applying the
group action to that for the Boussinesq itself.

All these issues are discussed fully in the references [9, 10].

8 CONCLUSIONS AND FURTHER WORK

In this paper we have emphasised the relationship between the representation
theory of sln(C) and certain Hirota maps which are directly related to Hirota
derivatives in the infinite-dimensional limit. We have made no attempt to ex-
plain how these observations contribute to an understanding of the solutions
of bilinear equations. To do so it would appear to be necessary to think of
such equations as the infinite-dimensional limits of relations between generic
finite-dimensional representations, relations which are themselves open to ge-
ometric interpretation perhaps along Grassmanian lines [12]. On a related tack
it is clearly of interest to see if the Hirota derivatives Dζ , Dη, Dζη, and so
on provide useful constructions when the Heisenberg algebra is embedded in
infinite-dimensional algebras such as the Virasoro or Kac–Moody algebras.
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BOUNDARY STATES IN SUSY
SINE-GORDON MODEL

Z. Bajnok, L. Palla∗, and G. Takács

Abstract After reviewing briefly the basic concepts and problems of boundary
integrable theories we outline a boostrap solution leading to the spectrum
of boundary states in SUSY sine-Gordon model with supersymmetric
integrable boundary condition.

Keywords: Integrable field theory, field theory with boundary, bootstrap, supersym-
metry, sine-Gordon model

1 INTRODUCTION

The aim of this investigation [1] is to determine the spectrum of boundary
states and the associated reflection amplitudes in N = 1 SUSY sine-Gordon
model with supersymmetry and integrability preserving boundary conditions.
This boundary super sine-Gordon model (BSSG) is an integrable boundary
theory, therefore to put our problem into proper context we review first the
basic concepts and problems of boundary integrable theories.

The simplest way to obtain a boundary integrable theory is to take a bulk
integrable one and restrict it to the x ≤ 0 half line by imposing integrability
preserving boundary conditions at the x = 0 end [2]. Technically it means that
the action of the boundary theory is written as

S =
∞∫

−∞
dt

0∫
−∞

dxL[�(x, t)] +
∞∫

−∞
dtVB[�(x = 0, t)], (1)

where L is the Lagrangian of the (integrable) bulk theory, and the role of
the boundary potentail VB is to impose the boundary conditions. The theory
defined by this action is said to be integrable, if it admits conserved higher spin
quantities. Since the Lagrangian is a local quantity the excitations (particles)
of the original bulk theory are present also in the boundary theory, furthermore
their local interactions (S matrices) are also not effected by the boundary.

∗ Conference speaker, e-mail: palla@ludens.elte.hu

35
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Nevertheless, because the presence of the boundary, these bulk particles may
now reflect on the boundary. The integrability of the model guarantees, that the
number of particles is conserved in these reflection processes, thus they can be
characterized by the reflection amplitudes Ra

b (θ ); and a particle of type a with
rapidity θ reflecting as particle of type b is described as

Aa(θ )|B〉 = Ra
b (θ )Ab(−θ )|B〉.

The reflection factor has to satisfy three rather restricting, complicated alge-
braic equations [2] namely the boundary versions of the Yang–Baxter equation

Rc2
a2

(θ2)Sc1d2
a1c2

(θ1 + θ2)Rd1
c1

(θ1)Sb2b1

d2d1
(θ1 − θ2)

= Sc1c2
a1c2

(θ1 − θ2)Rd1
c1

(θ1)Sd2b1

c2d1
(θ1 + θ2)Rb2

d2
(θ2),

unitarity

Ra
b(θ )Rb

c(−θ ) = δa
c,

and crossing

Ra
b

(
iπ

2
− θ

)
= Sab

a′b′(2θ )Rb′
a′

(
iπ

2
+ θ

)
,

that contain as an input the bulk S matrix. Now suppose a solution of this system
of equations is found. If it has poles in the physical strip 0 ≤ �mθ ≤ π

2
that can

not be explained by the boundary version of the Coleman–Thun mechanism,
then they must be interpreted as signaling the presence of new, “excited” type of
boundary states [2]. If the pole is at θ0 then we can envisage that a particle of type
a with rapidity θ0, when reflecting on |B〉 becomes ‘bound’ to it, transforming
it into a new state |B̃〉 with energy (mass) E = ma cosh θ0. Once the existence
of this new state is established the problem of bulk particles reflecting on the
new boundary emerges. The solution of this problem is given by the bootstrap
procedure: exploiting the model’s integrability one obtains:

|B̃〉Rd
c(θ ) = Sxy

ca(θ − θ0)Rz
x (θ )Sad

yz (θ + θ0).

If this new reflection factor has poles in the physical strip that must be inter-
preted as even “higher excited” boundary states, |B̃〉, then the bootstrap must
be repeated once more to obtain the new reflection factors. This procedure
ends only—i.e., the bootstrap becomes “closed”, if in one of the new sets of
reflection amplitudes there are no new, unexplained poles.

We carry out this procedure in the BSSG model, when the Lagrangian is that
of the bulk SUSY sine-Gordon model:

L = 1

2
∂μ�∂μ� + i�̄γ μ∂μ� + m�̄� cos

β

2
� + m2

β2
cos β�,
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with � being a real scalar and � = (
ψ̄

ψ

)
a Majorana fermion fields, and when

the boundary potential is [3]

V ±
B = (±ψ̄ψ + ia∂t a − 2 f ±(�)a(ψ ∓ ψ̄) + B(�))|x=0.

The functions f and B are fixed up to two free parameters by the requirement
of integrability and supersymmetry. A surprising feature of this boundary po-
tential is the appearance of the boundary fermionic degree of freedom a(t),
which is necessary to obtain the two two parameter sets of integrable and su-
persymmetric boundary conditions corresponding to the two choices of the
signs.

The main idea is to look for the reflection amplitudes in this model in a
form where there is no mixing between the supersymmetric and other inter-
nal quantum numbers. This means an Ansatz for the reflection amplitudes as
a product of two terms one of which is the ordinary (bosonic) sine-Gordon
reflection amplitude, while the other describes the scattering of the SUSY de-
grees of freedom. These ideas are motivated on the one hand by the successful
description of the bulk scattering while on the other by the fact that the spectrum
of boundary states together with the the reflection amplitudes in the ordinary
sine-Gordon model are known [4].

2 BULK SUSY SINE-GORDON MODEL

The spectrum consists of the soliton/antisoliton multiplet, realizing supersym-
metry in a nonlocal way, and possibly a few breather multiplets (that are bound
states of a soliton with an antisoliton) upon which supersymmetry acts in the
standard way. The supersymmetric solitons are described by RSOS kinks K ε

ab(θ )
of mass M and rapidity θ , where the RSOS labels a, b take the values 0, 1

2
and

1 with |a − b| = 1/2, and describe the supersymmetric structure, while ε = ±
corresponds to topological charge ±1. The multikink states obey the nontriv-
ial “adjacency” condition. The two-particle scattering process allowed by this
condition

K ε1
ab(θ1) + K ε2

bc (θ2) → K
ε′

2
ad(θ2) + K

ε′
1

dc (θ1)

has an amplitude of the form [5, 6]:

SSUSY

(
a d
b c

∣∣∣∣θ1 − θ2

)
× SSG(θ1 − θ2, λ)

ε′
1ε

′
2

ε1ε2,

where SSUSY is identical to the S matrix of the tricritical Ising model perturbed by
the primary field of dimension 3

5
and SSG coincides with the usual sine-Gordon

S matrix (but the relation λ = 8π
β2 − 1

2
is different from the sine-Gordon case).
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SSUSY has no poles in the physical strip, thus the only poles that describe bound
states (breathers) come from the sine-Gordon part.

The bulk theory has two supersymmetry charges of opposite chirality Q and
Q̄; their algebra contains a central charge {Q, Q̄} = 2MZ, that can take the
values 0 or ±1. In the basis {K0 1

2
, K1 1

2
, K 1

2 0, K 1
2 1} the central charge and the

fermion number can be written as

Z =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠  = (−1)F =

⎛
⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

This representation of SUSY describes BPS saturated objects. The SUSY action
on breather states and the breather S matrices can be derived using the bootstrap.
It turns out that the central charge Z (as well as the topological charge T) vanishes
identically for the breathers. For further details we refer to [5, 6].

3 REFLECTIONS IN BOUNDARY SINE-GORDON MODEL

The most general reflection factor of the soliton antisoliton multiplet |s, s̄〉 on
the ground state boundary, satisfying the boundary versions of the Yang–Baxter,
unitarity and crossing equations was found by Ghoshal and Zamolodchikov [2]

R =
(

P+
0 Q0

Q0 P−
0

)
R0(u)

σ (η, u)σ (iϑ, u)

cos η cosh ϑ
=

(
P+ Q
Q P−

)
P±

0 = cos λu cosh ϑ cos η ∓ sin λu sinh ϑ sin η

Q0 = −sin λu cos λu

where u = −iθ, λ is the parameter in the bulk S matrix while η and ϑ are two
real parameters that characterize the solution.

The spectrum of excited boundary states was determined in [7, 4]. It can be
parametrized by a sequence of integers |n1, n2, . . . , nk〉, whenever the

π

2
≥ νn1

> wn2
> · · · ≥ 0 (2)

condition holds, where

νn = η

λ
− π (2n + 1)

2λ
and wk = π − η

λ
− π (2k − 1)

2λ
.

The mass of such a state is

m|n1,n2,...,nk〉 = M
∑
i odd

cos(νni ) + M
∑

i even

cos(wni ).
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νn and wk give the poles of certain reflection amplitudes, thus the condition in
(2) guarantees that these poles are in the physical strip and cannot be explained
by the boundary Coleman–Thun mechanism. The soliton/antisoliton reflection
amplitudes on excited boundaries Q|n1,n2,...,nk〉(η, ϑ, u), P±

|n1,n2,...,nk〉(η, ϑ, u) are
obtained from the ground state ones by multiplying them with appropriate CDD
factors [4]. The breather sector can be obtained again by bootstrap.

4 BOOTSTRAP IN THE BSSG MODEL

The last bit of information needed to start the bootstrap in the BSSG model is
the form of the single boundary supercharge Q̃+ or Q̃− corresponding to the
choice of sign in the boundary potential. In [3] it is shown, that

Q̃± =
∫ 0

−∞
(q(x, t) ± q̄(x, t)) dx + Q B(x = 0, t),

where q and q̄ are the local densities of Q and Q̄ and Q B is the boundary
contribution. One can argue [1], that the relation Q̃2

± = 2(H̃ ± M Z̃ ) holds
between the boundary supercharge, boundary Hamiltonian and central charge.
The action of the boundary supercharge on asymptotic states is expected to be
given by

Q̃± = Q̃ ± Q̄ + Q B, Q B = γ,

where Q, Q̄ act on the particles as in the bulk theory and γ is some unknown
function of the parameters appearing in the boundary potential. This choice is
supported by the classical considerations in [3] and also guarantees that Q̃±
commutes with the bulk S matrix.

Now according to our main idea we suppose that the reflection matrix fac-
torizes as RSUSY(θ ) × RSG(θ ). In this special form the constraints as unitarity,
boundary Yang-Baxter equation and crossing-unitarity relation [2] can be sat-
isfied separately for the two factors. Since the sine-Gordon part already fulfills
these requirements, we concentrate on the supersymmetric part.

From the RSOS nature of the bulk S-matrix it is clear that the boundary must
also have RSOS labels and the adjacency conditions between the nearest kink
and the boundary must also hold. Thus the following reflections are possible:

Kba(θ )|Ba〉 =
∑

c

Rb
ac(θ )Kbc(−θ )|Bc〉,

or in detail

Ka 1
2
(θ )|B 1

2
〉 = Ra

1
2

1
2

(θ )Ka 1
2
(−θ )|B 1

2
〉; a = 0, 1,
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and (for b �= a a, b = 0, 1)

K 1
2 a(θ )|Ba〉 = R

1
2
aa(θ )K 1

2 a(−θ )|Ba〉 + R
1
2
ab(θ )K 1

2 b(−θ )|Bb〉.
In the second process the label of the boundary state has changed, which shows
that |B0〉 and |B1〉 form a doublet. All of the constraints mentioned above fac-
torize in the sense that they give independent equations for the reflections on
the boundary |B1/2〉 and on the doublet |B0,1〉. Since the ground state boundary
is expected to be nondegenerate we assume it is a |B1/2〉 state and first con-
centrate on reflection factors off the singlet boundary |B1/2〉. For the boundary
supercharge we need the action of Q, Q̄, and  on the boundary ground state
|B1/2〉:

Q
∣∣B 1

2

〉 = 0, Q̄
∣∣B 1

2

〉 = 0, 
∣∣B 1

2

〉 = ∣∣B 1
2

〉
.

Combining this with the square of Q̃± gives the interpretation of γ : γ 2/2 is
nothing else but the ground state energy.

The solutions of the boundary Yang Baxter, crossing and unitarity conditions
for Ra

1
2

1
2

have been discussed in the literature [8, 9]; the new angle we add is

that we insist on boundary SUSY from the onset - somewhat similarly as in
[10]. The two choices Q̃± give different solutions. If the boundary supercharge
Q̃+ commutes with the reflections (BSSG+ theory) then we obtain

R0
1
2

1
2

(θ ) = R1
1
2

1
2

(θ ) = 2−θ/π i P(θ )

= 2−θ/π i
∞∏

k=1

⎡
⎢⎢⎣



(
k − θ

2π i

)


(
k − θ

2π i

)



(
k − 1

4
− θ

2π i

)


(
k + 1

4
− θ

2π i

)
/

{θ ↔ −θ}

⎤
⎥⎥⎦

If, however, it is Q̃− that commutes with the reflections (BSSG−) then the result
is

R0
1
2

1
2

(θ ) =
(

cos
ξ

2
+ i sinh

θ

2

)
K (θ − iξ )K (iπ − θ − iξ )2−θ/π i P(θ )

R1
1
2

1
2

(θ ) =
(

cos
ξ

2
+ i sinh

θ

2

)
K (θ − iξ )K (iπ − θ − iξ )2−θ/π i P(θ ),

where ξ is related to γ as γ = −2
√

M cos ξ

2
. Note that symmetry of the re-

flection under  requires R0
1
2

1
2

θ = R1
1
2

1
2

(θ ) thus in the first case (BSSG+) the

reflections also commute with the operator , while in the other case (BSSG−)
they do not. Remarkably there are no poles in the physical strip in any of these
reflection factors and they contain no free parameters.
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We start the quest for boundary states with the analysis of the complete
ground state reflection factors Ra

1
2

1
2

(θ ) × R(θ ), where the SUSY component

has one of the two forms above. Since the only poles of these reflection factors
are due to the sine-Gordon part (R) their explanation has to be similar to that
in the bosonic theory. The boundary dependent poles of R, which describe
boundary states, are located at −iθ = νn . At the position of these poles we
associate boundary bound states to the reflection amplitudes Ra

1
2

1
2

, a = 0, 1

|a, 1/2|n〉 = 1

g|1/2〉
|a,1/2|n〉

Ka 1
2
(i νn)

∣∣∣∣1

2

〉
, where

∣∣∣∣1

2

〉
≡

∣∣∣∣B 1
2

〉
,

where the g-factor is the SUSY part of the boundary coupling. The two states
(a = 0, 1) for a given n form a doublet in two senses: on the one hand it is the
K 1

2 a kinks that can scatter on it, while on the other they span a two dimensional
representation space for the boundary supercharge.

The SUSY reflection factors of K 1
2 a off |a, 1/2|n〉 can be computed from the

bootstrap principle with the result (in the case of the simpler BSSG+ theory):

R
1
2
ab(θ ) = P(θ )K (θ + iνn)K (θ − iνn)

g
1
2

b

g
1
2
a

(
δab cos

(νn

2

)
+ δa,1−b sin

(
θ

2i

))
,

having no poles in the physical strip. The full reflection factor on the
|a, 1/2|n〉 excited boundary can be obtained by multiplying this result with

the appropriate excited bosonic reflection factor: R
1
2
ab(θ ) × Q|n〉(η, ϑ, θ ) or

R
1
2
ab(θ ) × P±

|n〉(η, ϑ, θ ). The poles of these expressions that describe boundary
states come again from the sine-Gordon factor at precisely the same condition
(wm < νn) as in the non SUSY theory.

Repeating the bootstrap procedure for the next level excited states [1] made
it clear that the general boundary bound state has the structure∣∣∣∣ak . . .

1

2
, a1,

1

2

∣∣∣∣nk . . . , m1, n1

〉
or

∣∣∣∣1

2
, ak . . .

1

2
, a1,

1

2

∣∣∣∣mk, nk . . . , m1, n1

〉
,

i.e., is characterized by a sequence of integers and an RSOS sequence. This
shows that in the supersymmetric case the excited boundary states have a non-
trivial degeneracy in contrast to the bosonic theory, the degeneracy being labeled
by the RSOS sequences. The energy of the boundary states depends only on
the integers and is identical to the result obtained in the sine-Gordon model.
The associated reflection factors can be computed from successive application
of the bootstrap procedure [1]. Thus a two parameter solution of closing the
bootsrap is found in the BSSG± models.
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As open problems we mention the clarification of the relation between the
η, ϑ, γ parameters appearing in bootstrap and the ones in the boundary potential
or the pCFT description of BSSG±.
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548–564.
5. Ahn, C. (1991) Nucl. Phys. B354, pp. 57–84.
6. Hollowood, T. J. and Mavrikis, E. (1997) Nucl. Phys. B484, pp. 631–652, hep-

th/9606116.
7. Mattsson, P. and Dorey, P. (2000) J. Phys. A33, pp. 9065–9094, hep-th/0008071.
8. Chim, L. (1996) Int. J. Mod. Phys. A11, pp. 4491–4512, hep-th/9510008.
9. Ahn, C. and Koo, W. M. (1996) Nucl. Phys. B482, p. 675, hep-th/9606003.

10. Nepomechie, R. I. Supersymmetry in the boundary tricritical Ising field theory,
preprint UMTG-234, hep-th/0203123



GEOMETRY OF DISCRETE
INTEGRABILITY. THE CONSISTENCY
APPROACH

Alexander I. Bobenko∗
Institut für Mathematik, Fakultät 2, Technische Universität Berlin,
Strasse des 17. Juni 136, 10623 Berlin, Germany

1 ORIGIN AND MOTIVATION: DIFFERENTIAL GEOMETRY

Long before the theory of solitons, geometers used integrable equations to
describe various special curves, surfaces etc. At that time no relation to math-
ematical physics was known, and quite different geometries appeared in this
context (we will call them integrable) were unified by their common geometric
features:

� Integrable surfaces, curves etc. have nice geometric properties,
� Integrable geometries come with their interesting transformations

(Bäcklund–Darboux transformations) acting within the class,
� These transformations are permutable (Bianchi permutability).

Since “nice” and “interesting” can hardly be treated as mathematically for-
mulated features, let us address to the permutability property. We explain it for
the classical example of surfaces with constant negative Gaussian curvature
(K-surface) with their Bäcklund transformations.

Let F : R
2 → R

3 be a K-surface and F1,0 and F0,1 its two Bäcklund trans-
formed. The classical Bianchi permutability theorem claims that there exists
a unique K-surface F1,1 which is the Bäcklund transformed of F1,0 and F0,1.
Proceeding further this way for a given point F0,0 on the original K-surface
one obtains a Z

2 lattice Fk,� of permutable Bäcklund transformations. From the
geometric properties of the Bäcklund transformations it is easy to see [1] that
Fk,� defined this way is a discrete K-surface.

The discrete K-surfaces have the same properties and transformations as
their smooth counterparts [2]. There exist deep reasons for that. The classical
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43
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Figure 1. Surfaces and their transformations as a limit of multidimensional lattices

differential geometry of integrable surfaces may be obtained from a unifying
multidimensional discrete theory by a refinement of the coordinate mesh-size
in some of the directions.

Indeed, by refining of the coordinate mesh-size,

F : (εZ)2 → R
3 −→ F : R

2 → R
3,

discrete surface ε → 0 smooth surface

in the limit one obtains classical smooth K-surfaces from discrete K-surfaces.
Starting with an n-dimensional net of permutable Bäcklund transformations

F : (ε1Z) × · · · × (εnZ) → R
3

in the limit ε1 → 0, ε2 → 0, ε3 = · · · = εn = 1 one arrives to a smooth K-
surface with its n – 2-dimensional discrete family of permutable Bäcklund
transformations:

F : R
2 × Z

n−2 → R
3.

This simple idea is quite fruitful. In the discrete case all directions of the
multidimensional lattices appear in quite symmetric way. It leads to:

� A unification of surfaces and their transformations. Discrete surfaces and
their transformations are indistinguishable.

� A fundamental consistency principle. Due to the symmetry of the discrete
setup the same equations hold on all elementary faces of the lattice. This
leads us beyond the pure differential geometry to a new understanding of the
integrability, classification of integrable equations and derivation of the zero
curvature (Lax) representation from the first principles.

� Interesting generalizations to: n > 2-dimensional systems, quantum sys-
tems, discrete systems with the fields on various lattice elements (vertices,
edges, faces etc.).
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As it was mentioned above, all this suggests that it might be possible to de-
velop the classical differential geometry, including both the theory of surfaces
and of their transformations, as a mesh refining limit of the discrete construc-
tions. On the other hand, the good quantitative properties of approximations
delivered by the discrete differential geometry suggest that they might be put at
the basis of the practical numerical algorithms for computations in the differ-
ential geometry. However until recently there were no rigorous mathematical
statements supporting this observation.

The first step in closing this gap was made in the paper [3] where the conver-
gence of the corresponding integrable geometric numerical scheme has been
proven for nonlinear hyperbolic systems (including the K-surfaces and the
sine–Gordon equation).

Thus, summarizing we arrive at the following philosophy of discrete differ-
ential geometry: surfaces and their transformations can be obtained as a special
limit of a discrete master-theory. The latter treats the corresponding discrete
surfaces and their transformation in absolutely symmetric way. This is pos-
sible because these are merged into multidimensional nets such that their all
sublattices have the same geometric properties. The possibility of this multi-
dimensional extension results to consistency of the corresponding difference
equations characterizing the geometry. The latter is the main topic of this paper.

2 EQUATIONS ON QUAD-GRAPHS. INTEGRABILITY
AS CONSISTENCY

Traditionally discrete integrable systems were considered with fields defined
on the Z

2 lattice. One can define integrable systems on arbitrary graphs as flat
connections with the values in loop groups. However, one should not go that
far with the generalization. As we have shown in [4], there is a special class of
graphs, called quad-graphs, supporting the most fundamental properties of the
integrability theory. This notion turns out to be a proper generalization of the
Z

2 lattice as far as the integrability theory is concerned.

Definition 1 A cellular decomposition G of an oriented surface is called a
quad-graph, if all its faces are quadrilateral.

Note that if one considers an arbitrary cellular decomposition C jointly with
its dual C∗ one obtains a quad-graphD connecting by the edges the neighboring
vertices of C and C∗. Let us stress that the edges of the quad-graph D differ
from the edges of C and C∗.

For the integrable systems on quad-graphs we consider in this section the
fields z : V (D) �→ Ĉ are attached to the vertices of the graph. They are subject to
an equation Q(z1, z2, z3, z4) = 0, relating four fields sitting on the four vertices
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Figure 2. A face of the labelled quad-graph

of an arbitrary face from F(D). The Hirota equation

z4

z2
= αz3 − βz1

βz3 − αz1
(1)

is such an example. We observe that the equation carries parameters α, β which
can be naturally associated to the edges, and the opposite edges of an elementary
quadrilateral carry equal parameters (see Figure 2). At this point we specify the
setup further. The example illustrated in Figure 2 can be naturally generalized.
An integrable system on a quad-graph

Q(z1, z2, z3, z4; α, β) = 0 (2)

is parametrized by a function on the edges of the quad-graph which takes equal
values on the opposite edges of any elementary quadrilateral. We call such a
function a labelling of the quad-graph.

An elementary quadrilateral of a quad-graph can be viewed from various
directions. This implies that the system (2) is well defined on a general quad-
graph only if it possesses the rhombic symmetry, i.e., each of the equations

Q(z1, z4, z3, z2; β, α) = 0, Q(z3, z2, z1, z4; β, α) = 0

is equivalent to (2).

2.1 3D-Consistency

Now we introduce a crucial property of discrete integrable systems which later
on will be taken as a characteristic one.

Let us extend a quad–graph D into the third dimension. We take the second
copyD′ ofD and add edges connecting the corresponding vertices ofD andD′.
Elementary building blocks of so obtained “three-dimensional quad-graph” D
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Figure 3. Elementary cube

are “cubes” as shown in Figure 3. The labelling of D can be extended to D so
that the opposite edges of all elementary faces (including the “vertical” ones)
carry equal parameters (see Figure 3).

Now, the fundamental property of discrete integrable system mentioned
above is the three-dimensional consistency.

Definition 2 Consider an elementary cube, as on Figure 3. Suppose that
the values of the field z are given at the vertex z and at its three neighbors
z1, z2, and z3. Then the Eq. (2) uniquely determines the values z12, z23, and
z13. After that the same Eq. (2) delivers three a priori different values for the
value of the field z123 at the eighth vertex of the cube, coming from the faces
[z1, z12, z123, z13], [z2, z12, z123, z23], and [z3, z13, z123, z23], respectively. The
Eq.(2) is called 3D-consistent if these three values for z123 coincide for any
choice of the initial data z, z1, z2, z3.

Proposition 3 The Hirota equation

z12

z
= α2z1 − α1z2

α1z1 − α2z2

is 3D-consistent.

This can be checked by a straightforward computation. For the field at the
eighth vertex of the cube one obtains

z123 = (l21 − l12)z1z2 + (l32 − l23)z2z3 + (l13 − l31)z1z3

(l23 − l32)z1 + (l31 − l13)z2 + (l12 − l21)z3
, (3)

where li j = αi
α j

.

In [4, 5] we suggested to treat the consistency property (in the sense of
Definition 2) as the characteristic one for discrete integrable systems. Thus we
come to the central.
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Figure 4. Zero curvature representation from the consistency

Definition 4 A discrete equation is called integrable if it is consistent.

Note that this definition of the integrability is conceptually transparent and
algorithmic: for any equation it can be easily checked whether it is integrable
or not.

2.2 Zero Curvature Representation from the 3D-Consistency

Our Definition 2 of discrete integrable systems is more fundamental then
the traditional one as systems having a zero curvature representation in a
loop group. Here we demonstrate how the corresponding flat connection in
a loop group can be derived from the equation. Independently this was found
in [6].

We get rid of our symmetric notations, consider the system

Q(z1, z2, z3, z4; α, β) = 0 (4)

on the base face of the cube and choose the vertical direction to carry an
additional (spectral) parameter λ (see Figure 4).

Assume the left-hand-side of (4) is affine in each zk . This gives z4 as a
fractional–linear (Möbius) transformation z2 with the coefficients depending
on z1, z3 and α, β. One can of course freely interchange z1, . . . , z4 in this
statement. Consider now the equations on the vertical faces of the cube in
Figure 4. One gets ψ2 as a Möbius transformation of ψ1

ψ2 = L(z2, z1; α, λ)[ψ1],

with the coefficients depending of the fields z2, z1, on the parameter α in the
system (4) and on the additional parameter λ which is to be treated as the spec-
tral parameter. The mapping L(z2, z1; α, λ) is associated to the oriented edge
(z1, z2). Going from ψ1 to ψ3 in two different ways and using the arbitrariness
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of ψ1 we get

L(z3, z2; β, λ)L(z2, z1; α, λ) = L(z3, z4; α, λ)L(z4, z1; β, λ). (5)

Using the matrix representation of Möbius transformations

az + b

cz + d
= L[z], where L =

(
a b
c d

)
,

and normalizing the matrices (for example by the condition det L = 1) we
arrive at the zero curvature representation (5).

Let us apply this derivation method to the Hirota equation. Equation (1) can
be written as Q = 0 with the affine

Q(z1, z2, z3, z4; α, β) = α(z2z3 + z1z4) − β(z3z4 + z1z2).

Performing the computations as above in this case we derive the well known
zero curvature representation (5) with the matrices

L(z2, z1, α, λ) =
⎛
⎝ α −λz2

λ

z1
−α

z2

z1

⎞
⎠ (6)

for the Hirota equation.

3 CLASSIFICATION

Here we classify all integrable (in the sense of Definition 2) one-field equations
on quad-graphs satisfying some natural symmetry conditions.

We consider equations

Q(x, u, v, y; α, β) = 0, (7)

on quad-graphs. Equations are associated to elementary quadrilaterals, the fields
x, u, v, y ∈ C are assigned to the four vertices of the quadrilateral, and the
parameters α, β ∈ C are assigned to its edges. We now list more precisely the
assumptions under which we classify the equations.

1. Consistency. Equation (7) is integrable (in the sense it is 3D-consistent).
2. Linearity. The function Q(x, u, v, y; α, β) is linear in each argument (affine

linear):

Q(x, u, v, y; α, β) = a1xuvy + · · · + a16, (8)

where coefficients ai depend on α, β. This is equivalent to the condition that
Eq. (7) can be uniquely solved for any one of its arguments x, u, v, y ∈ Ĉ.
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3. Symmetry. The Eq. (7) is invariant under the group D4 of the square sym-
metries, that is function Q satisfies the symmetry properties

Q(x, u, v, y; α, β) = εQ(x, v, u, y; β, α) = σ Q(u, x, y, v; α, β) (9)

with ε, σ = ±1.
4. Tetrahedron property. The function z123 = f (z, z1, z2, z3; α1, α2, α3), ex-

isting due to the three-dimensional consistency, actually does not depend on
the variable z, that is, fx = 0. This property holds (3) for the Hirota equation
as well as for all other known integrable examples.

The proof of the classification theorem is rather involved and is given in [5].

Theorem 5 Up to common Möbius transformations of the variables z and
point transformations of the parameters α, the three-dimensionally consistent
quad-graph equations (7) with the properties (2–4) (linearity, symmetry, tetra-
hedron property) are exhausted by the following three lists Q, H, A (x = z, u =
z1, v = z2, y = z12, α = α1, β = α2).

List Q:

(Q1) α(x − v)(u − y) − β(x − u)(v − y) + δ2αβ(α − β) = 0,
(Q2) α(x − v)(u − y) − β(x − u)(v − y) + αβ(α − β)(x + u + v + y)

− αβ(α − β)(α2 − αβ + β2) = 0,
(Q3) (β2 − α2)(xy + uv) + β(α2 − 1)(xu + vy) − α(β2 − 1)(xv + uy)

− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,
(Q4) a0xuvy + a1(xuv + uvy + vyx + yxu) + a2(xy + uv) + ā2(xu + vy)

+ ā2(xv + uy) + a3(x + u + v + y) + a4 = 0,

where the coefficients ai are expressed through (α, a) and (β, b) with a2 =
r (α), b2 = r (β), r (x) = 4x3 − g2x − g3, by the following formulae:

a0 = a + b, a1 = −βa − αb, α2 = β2a + α2b,

ā2 = ab(a + b)

2(α − β)
+ β2a −

(
2α2 − g2

4

)
b,

ā2 = ab(a + b)

2(β − α)
+ α2b −

(
2β2 − g2

4

)
a,

a3 = g3

2
a0 − g2

4
a1, a4 = g2

2

16
a0 − g3a1.

List H:

(H1) (x − y)(u − v) + β − α = 0,
(H2) (x − y)(u − v) + (β − α)(x + u + v + y) + β2 − α2 = 0,
(H3) α(xu + vy) − β(xv + uy) + δ(α2 − β2) = 0.
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List A:

(A1) α(x + v)(u + y) − β(x + u)(v + y) − δ2αβ(α − β) = 0,
(A2) (β2 − α2)(xuvy + 1) + β(α2 − 1)(xv + uy) − α(β2 − 1)(xu + vy) = 0.

Remarks
1. The list A can be dropped down by allowing an extended group of Möbius

transformations, which act on the variables x, y differently than on u, v. So,
really independent equations are given by the lists Q and H.

2. In both lists Q, H the last equations are the most general ones. This means
that Eqs. (Q1)–(Q3) and (H1), (H2) may be obtained from (Q4) and (H3),
respectively, by certain degenerations and/or limit procedures. This resem-
bles the situation with the list of six Painlevé equations and the coalescences
connecting them.

3. Note that the list contains the fundamental equations only. A discrete equa-
tion which is derived as a corollary of an equation with the consistency
property usually loose this property.

4 GENERALIZATIONS: MULTIDIMENSIONAL AND
NON-COMMUTATIVE (QUANTUM) CASES

4.1 Yang–Baxter Maps

It should be mentioned, however, that to assign fields to the vertices is not
the only possibility. Another large class of two-dimensional systems on quad–
graphs build those with the fields assigned to the edges.

In this situation each elementary quadrilateral carries a map R : X 2 �→ X 2,
where X is the space where the fields take values. The question on the three–
dimensional consistency of such maps is also legitimate and, moreover, be-
gan to be studied recently. The corresponding property can be encoded in the
formula

R23 ◦ R13 ◦ R12 = R12 ◦ R13 ◦ R23, (10)

where each Ri j : X 3 �→ X 3 acts as the map R on the factors i,j of the cartesian
product X 3 and acts identically on the third factor. The maps with this property
were introduced by Drinfeld [7] under the name of “set-theoretical solutions of
the Yang-Baxter equations”, an alternative name is “Yang-Baxter maps” used
by Veselov in his recent study [8].

The problem of classification of Yang–Baxter maps, like the one achieved
in the previous section, is under current investigation.



52 Alexander I. Bobenko

4.2 Four-Dimensional Consistency of Three-Dimensional Systems

The consistency principle can be obviously generalized to an arbitrary dimen-
sion. We say that

a d–dimensional discrete equation possesses the consistency property,
if it may be imposed in a consistent way on all d–dimensional sublattices
of a (d + 1)–dimensional lattice

In the three–dimensional context there are also a priori many kinds of sys-
tems, according to where the fields are defined: on the vertices, on the edges,
or on the elementary squares of the cubic lattice. Consider three–dimensional
systems with the fields sitting on the vertices. In this case each elementary cube
carries just one equation

Q(z, z1, z2, z3, z12, z23, z13, z123) = 0, (11)

relating the fields in all its vertices. The four–dimensional consistency of such
equations is defined in the same way as in Section 2.1 for the case of one
dimension lower.

It is tempting to accept the four–dimensional consistency of equations of the
type (11) as the constructive definition of their integrability. It is important to
solve the correspondent classification problem.

We present here just one example of the equation appeared first in [9].

Proposition 6 Equation

(z1 − z3)(z2 − z123)

(z3 − z2)(z123 − z1)
= (z − z13)(z12 − z23)

(z13 − z12)(z23 − z)
. (12)

is four–dimensionally consistent.

4.3 Noncommutative (Quantum) Cases

As we have shown in [10] the consistency approach works also in the noncom-
mutative case, where the participating fields live in an arbitrary associative (not
necessary commutative) algebra A (over the field K).

In particular the noncommutative Hirota equation

yx−1 = 1 − (β/α)uv−1

(β/α) − uv−1
. (13)

belongs to this class. Now x, u, v, y ∈ A are the fields assigned to the four
vertices of the quadrilateral, and α, β ∈ K are the parameters assigned to its
edges. Note that Eq. (13) preserves the Weil commutation relations. This yields
the quantum Hirota equation studied in [11].
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Proposition 7 The noncommutative Hirota equation is 3D-consistent.

Similar to the commutative case the Lax representation can be derived from
the equation and the consistency property. It turns out that finding the zero curva-
ture representation does not hinge on the particular algebra A or on prescribing
some particular commutation rules for fields in the neighboring vertices. The
fact that some commutation relations are preserved by the evolution, is thus
conceptually separated from the integrability.
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Abstract Chaos is frequently associated with orbits homoclinic to unstable modes
of deterministic nonlinear PDEs. Bilinear Hirota method was success-
fully employed to obtain homoclinic solutions for NLS with periodic
boundaries. We propose a new method to analytically generate homo-
clinic solutions for integrable nonlinear PDEs. This approach resembles
the dressing method known in the theory of solitons. The pole posi-
tions in the dressing factor are given by the complex double points of
the Floquet spectrum associated with unstable modes of the nonlinear
equation. As an example, we reproduce first the homoclinic orbit for
NLS, and then obtain the homoclinic solution for the modified nonlinear
Schrödinger equation solvable by the Wadati–Konno–Ichikawa spectral
problem.

1 INTRODUCTION

Alongside with solitons as stable solutions of nonlinear integrable PDEs with
important applications in physics and mathematics, these equations can admit
unstable waves such as homoclinic orbits. The existence of homoclinic solutions
serves as an indicator of chaotic behavior in a perturbed deterministic nonlinear
dynamical system.

The role of homoclinic solutions in the generation of chaos was shown for
the damped-driven sine-Gordon [1, 2] and perturbed NLS [3–6] equations with
periodic boundary conditions. Extended reviews of analytical and numerical
methods in this topic are given in [7, 8]. Different approaches have been pro-
posed for derivation of homoclinic solutions for integrable PDEs: while the
bilinear Hirota method [9] was used in [3], the Bäcklund transformations were
employed in [1, 2, 5]. Up to now homoclinic structures were obtained for non-
linear equations associated with the Zakharov–Shabat spectral problem, which

55
L. Faddeev et al. (eds.),
Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 55–64.
C© 2006 Springer. Printed in the Netherlands.



56 E.V. Doktorov and V.M. Rothos

is exemplified by the linear dependence on the spectral parameter, including
the Manakov [10] and Davey–Stewartson [11] equations.

We propose here a new regular method to construct homoclinic solutions
for nonlinear integrable wave equations with periodic boundaries which makes
it possible to go beyond the Zakharov–Shabat spectral problem. It resembles
closely the dressing method [12] developed for generating soliton solutions.
In order to explain basic ideas, we first reproduce in Section 1 the known ho-
moclinic solution of NLS by our method. Then in Section 2 we consider the
modified NLS (MNLS) equation which is integrated by means of the Wadati–
Konno–Ichikawa spectral problem [13] and has important applications in non-
linear optics [14] and plasma physics [15]. It should be stressed that MNLS
provides the first example of treating the homoclinic orbits for the spectral
problem with nonlinear dependence on the spectral parameter.

2 HOMOCLINIC SOLUTIONS FOR NLS

The NLS equation

iut = uxx + 2(|u|2 − ω)u, ω ∈ Re (1)

arises as a compatibility condition for the Lax pair equations ψx = Uψ and
ψt = V ψ with the matrices U and V of the form

U = ikσ3 + i Q, Q =
(

0 u
ū 0

)
,

V = i(2k2 − Q2 + ω)σ3 + 2ik Q + σ3 Qx ,

k is a spectral parameter, ω is a real constant. We are interested in periodic
solutions of NLS (1) with a spatial period L , u(x + L , t) = u(x, t). Hence,
the Floquet theory should be applied to the spectral equation ψx = Uψ .
The fundamental matrix M(x, k) is defined as a solution of the spectral
equation with the boundary condition M(0, k) = I, I is the unit matrix. The
Floquet discriminant is defined as �(k) = trM(L , k) and the bounded eigen-
functions of the spectral problem correspond to �(k) satisfying the condition
−2 ≤ �(k) ≤ 2. The Floquet spectrum is characterized by the simple periodic
points {ks

j |�(ks
j ) = ±2, (d�/dk)ks

j
�= 0} and the double points {kd

j |�(kd
j ) =

±2, (d�/dk)ks
j
= 0, (d2�/dk2)kd

j
�= 0}. We will deal with the complex dou-

ble points indicating linearized instability of solutions of a nonlinear wave
equation because these points label the orbits homoclinic to unstable solutions.

We will consider the orbits homoclinic to the periodic plane wave solution
u0 of NLS (1) taken in the form

u0 = c exp[−2i(c2 − ω)t], (2)
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where c is a real amplitude. Simple calculation gives the fundamental matrix
as

M(x, k) =
(

cos μx + i(k/μ) sin μx i(c/μ)e−2i(c2−ω)t sin μx
i(c/μ)e2i(c2−ω)t sin μx cos μx − i(k/μ) sin μx

)
,

μ2 = c2 + k2,

and hence �(k) = 2 cos μL . Thereby, the Floquet spectrum comprises the real
axis of the k-plane (the main spectrum) and a part of the imaginary axis lying be-
tween the simple periodic points ±ic. Besides, there exists an infinite sequence
of real double points kd

n = [(nπ/L)2 − c2]1/2, c2 ≤ (nπ/L)2, n are integers,
and a finite amount of complex double points kd

j , j are integers, situated on
the imaginary axis within the interval (ic, −ic), ( jπ/L)2 < c2. In what follows
we choose c and L in such a way that we will have a single pair of complex
double points kd

1 = ±i[c2 − (π/L)2]1/2, that is a single unstable mode of the
solution.

Diagonalizing the transfer matrix M(L , k), R−1 M(L , k)R = diag(eiμL ,

eiμL ), we define the Bloch solution χ̃ = M(L , k)R of the spectral problem.
Demanding the Bloch solution to satisfy both equations of the Lax pair, we
obtain it explicitly as

χ̃ = e−i(c2−ω)tσ3

⎛
⎜⎝ 1 −μ − k

c
μ − k

c
1

⎞
⎟⎠ eiμ(x+2kt)σ3 .

In the following, it will be more convenient to work with a modified Bloch
function χ = χ̃ exp[−ikxσ3 − i(2k2 + ω)tσ3] which satisfies the equations

χx = Uχ − ikχσ3, χt = V χ − i(2k2 + ω)χσ3 (3)

and admits the asymptotic expansion started with the unit matrix, χ = I +
k−1χ (1) + O(k−2), while the potential Q is reconstructed via

Q = −[σ3, χ
(1)]. (4)

Suppose now that a solution of NLS homoclinic to the plane wave (2) can
be obtained from Eq. (4) with the Bloch function χ being a result of dressing
the Bloch function χ0 which satisfies Eq. (3) with u = u0:

χ = Dχ0. (5)

Here D(k, x, t) is the dressing factor,

D = I − k1 − k̄1

k − k̄1
P, D−1 = I + k1 − k̄1

k − k1
P, (6)
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P is a projector of rank 1, i.e., P2 = P and P = (|n〉〈n|)/〈n|n〉, 〈n| =
|n〉†, |n〉 = (n1, n2)t is a two-component vector. As regards the choice of
the pole k1 in (6), it is the point where we encounter a crucial difference from
the standard applications of the dressing method. The positions of the poles in
the dressing factors are usually taken quite arbitrary, without a reference to the
seed solution u0. Contrary, it is the seed solution u0 which determines these
poles in our case. Namely, we take the complex double points as the poles of
the dressing factors. Therefore, k1 = kd

1 .
Expanding Eq. (5) in the asymptotic series w.r.t. k−1 we obtain new solution

of NLS in terms of the old one and the dressing factor:

Q = Q0 − [σ3, D(1)], (7)

where D = I + k−1 D(1) + O(k−2). Hence, we need know the vector |n〉 to
obtain new solution Q.

Differentiating (5) w.r.t. x gives

U (k) = −D(∂x − U0(k))D−1, (8)

where U0 = U (u0). Evidently, L.H.S. of (8) is regular in points k1 and k̄1, while
R.H.S. has simple poles in these points because of the dressing factors. From
the condition of vanishing residue in the point k1 we obtain |n〉x = U0(k1)|n〉,
and, similarly, |n〉t = V0(k1)|n〉. These equations are easily integrated and we
obtain

|n〉 = e−i(c2−ω)tσ3

(
A exp(iμ1x − 2k0μ1t) − μ1−ik0

c exp(−iμ1x + 2k0μ1t)
A μ1−ik0

c exp(iμ1x − 2k0μ1t) + exp(−iμ1x + 2k0μ1t)

)
.

(9)

Here A = const, μ1 = μ(k1), k1 = ik0. Evidently, D(1) = −(k1 − k̄1)P and
hence u = u0 + 2(k1 − k̄1)P12 with P12 = (n1n̄2)/(|n1|2 + |n2|2). Inserting
here the vector |n〉 and introducing notations

A = exp(ρ + iβ), τ = σ t − ρ, φ = β − π/2,

σ = 4k0μ1, μ1 + iλ0 = ceip,

we obtain the homoclinic solution in the form

uh = cos 2p − sin p sechτ cos(2μ1x + φ) − i sin 2p tanh τ

1 + sin p sechτ cos(2μ1x + φ)
ce−2i(c2−ω)t ,

(10)

which coincides with the solution obtained in [5] by means of the Bäcklund
transformation.

It is easy to see that this solution is indeed homoclinic to the plane wave:

t → ±∞ : uh → exp(±2i p)ce−2i(c2−ω)t .
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In the case of N unstable modes the above procedure can be iterated. However,
more efficient way to deal with multiple double points will be described in the
next section.

3 HOMOCLINIC SOLUTIONS FOR MNLS

3.1 Floquet Spectrum and Bloch Solutions

The MNLS equation

iut = uxx + iα(|u|2u)x + 2(|u|2 − ω)u, (11)

α and ω are real constants, admits the Lax representation with the matrices U
and V of the form

U = i�σ3 + ik Q, �(k) = 1

α
(1 − k2), Q =

(
0 u
ū 0

)
, (12)

V = i�σ3 + 2ik�Q − ik2 Q2σ3 + kσ3 Qx + iαk Q3, �(k) = 2�2 + ω.

As for the NLS equation, we take the plane wave solution of MNLS (11)

u0 = c exp[−2i(c2 − ω)t] (13)

as a periodic solution with a spatial period L. The fundamental matrix M(x, k)
is obtained in the form

M(x, k) =

⎛
⎜⎜⎝

cos μx + i
�

μ
sin μx i

ck

μ
e−2i(c2−ω)t sin μx

i
ck

μ
e2i(c2−ω)t sin μx cos μx − i

�

μ
sin μx

⎞
⎟⎟⎠,

where μ = (�2 + c2k2)1/2. Hence, �(k) = 2 cos μL and four complex
double points k j = ±(1 − (1/2)α2c2 ± iαcl j )

1/2, l j = [1 − (1/4)α2c2 −
( jπ/cL)2]1/2, lying in four quadrants of the k-plane, correspond to each
unstable mode. We choose c and L in such a way that only the single unstable
mode exists, i.e., l2

1 > 0 and l2
j < 0 for j > 1. The linearized stability analysis

confirms that the above four complex double points k1 = (1 − (1/2)α2c2 −
iαcl1)1/2, k2 = −k1, k3 = k̄1, and k4 = −k̄1 are associated with the exponential
instability.

The Bloch function which solves both Lax equations takes a surprisingly
simple form:

χ̃0(k, x, t) = exp[−i(c2 − ω)tσ3]

⎛
⎜⎝ 1 −μ − �

ck
μ − �

ck
1

⎞
⎟⎠

× exp
[
iμ

(
x + (2� + αc2)t

)
σ3

]
.
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Now we define a modified Bloch function χ = χ̃ exp(−i�x − i�t)σ3 which
satisfies the linear equations χx = Uχ − i�χσ3, χt = V χ − i�χσ3, and
admits the asymptotic expansion χ = χ (0) + k−1χ (1) + O(k−2). Therefore, we
obtain for the plane wave potential

χ0(k, x, t) = exp[−i(c2 − ω)tσ3]

⎛
⎜⎝ 1 −μ − �

ck
μ − �

ck
1

⎞
⎟⎠

× exp[i(μ − �)(x + 2�t)σ3] exp
[
i(αμc2 − ω)tσ3

]
and the leading term of the asymptotic series χ

(0)
0 = e−(i/2)αc2(x+(3/2)αc2t)σ3 . It

should be stressed that this leading term is not a unit matrix, as for the NLS equa-
tion. The reason is that MNLS does not a canonical equation for the Wadati–
Konno–Ichikawa spectral problem and hence does not admit the standard nor-
malization of the associated Riemann–Hilbert problem [16]. Therefore, we
perform now one more transformation of the Bloch solution, φ = χ (0)−1χ , to
have the unit matrix in the asymptotic expansion: φ = I + k−1φ(1) + O(k−2).
φ satisfies the linear equations

φx = U ′φ − i�φσ3, φt = V ′φ − i�φσ3, (14)

where

U ′ = i�σ3 + ik Q′ + i

2
ασ3 Q′2, (15)

V ′ = i�σ3 + 2ik�Q′ − ik2 Q′2σ3 + kσ3 Q′
x − α

2

[
Q′, Q′

x

] − i

4
α2σ3 Q′4.

Here new potential Q′ relates with the initial one Q as

Q′ = χ (0)−1 Qχ (0). (16)

Evidently, Q′2 = Q2. Besides, φ(1) is expressed via the potential as follows:

φ(1) = α

2
σ3 Q′. (17)

3.2 Dressing

Suppose that a new solution of the linear equations (14) follows from the known
one φ0 by dressing φ = Dφ0. Here D(k, x, t) is the dressing factor:

D(k) =
(

I − k2 − k̄2

k − k̄2
P2

) (
I − k1 − k̄1

k − k̄1
P1

)
, (18)

D−1(k) =
(

I + k1 − k̄1

k − k1
P1

) (
I + k2 − k̄2

k − k2
P2

)
.
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Pj ( j = 1, 2) is a projector of rank 1, i.e., P2
j = Pj , which is represented by

means of a 2-vector |p j 〉 = (p(1)
j , p(2)

j )⊥ as

Pj = |p j 〉〈p j |
〈p j |p j 〉 , 〈p j |p j 〉 = |p(1)

j |2 + |p(2)
j |2, 〈p j | = |p j 〉|†.

As before, we take the complex double points as the poles of the dressing
factors. Therefore, four multipliers in the dressing factors (18) correspond
to four complex double points (k j = kd

j ). Expanding the relation φ = Dφ0

in the asymptotic series gives in accordance with (17) and (16) Q =
χ (0)(χ (0)−1

0 Q0χ
(0)
0 + (2/α)σ3 D(1))χ (0)−1. Because φ(k = 0) and χ

(0)−1
0 satisfy

the same equation, we get χ (0) = χ
(0)
0 D−1

0 , D0 = D(k = 0) which results in
the connection between new and old solutions of MNLS:

u = (D0)22

(D0)11

[
u0 + 2

α
exp

(
−iαc2x − 3

2
α2c4t

)
D(1)

12

]
. (19)

A successive application of both elementary multipliers in the dressing factor
(18) to the solution φ0 would not be an optimal strategy. Instead we decompose
the dressing factor into simple fractions which results into

D(k) = I −
2∑

j,l=1

1

k − k̄l
| j〉 (

S−1
)

jl 〈l|, Sl j = 〈l| j〉
k j − k̄l

, (20)

where for simplicity we right | j〉 instead of |p j 〉. Differentiating the relation
φ = Dφ0 w.r.t. x gives U ′(k) = −D(∂x − U ′

0(k))D−1. From the condition of
vanishing residues in the points k1 and k2 we obtain the equations

| j〉x = U ′
0(k j )| j〉, | j〉t = V ′

0(k j )| j〉, j = 1, 2. (21)

Note that the vector |2〉 is expressed in terms of |1〉 because of the symmetry
[16] U ′

0(k2) = U ′
0(−k1) = σ3U ′

0(k1)σ3: |2〉 = σ3|1〉. Hence,

S11 = 〈1|1〉
k1 − k̄1

= −S22, S21 = 〈2|1〉
k1 − k̄2

= 〈1|σ3|1〉
k1 + k̄1

= −S12.

As a result, we obtain D0 and D(1) entering the formula (19) in the form

D01 = 1 + 2

k̄1

(|1〉〈1|)11

S11 − S21
, D02 = 1 + 2

k̄1

(|1〉〈1|)22

S11 + S21
,

D(1) = −2

(
0 (|1〉〈1|)12(S11 − S21)−1

(|1〉〈1|)21(S11 + S21)−1 0

)
.

Because Si j are expressed in terms of the vector |1〉 (see (20)), we have
to obtain it explicitly. In the next section we will account for the explicit
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(x, t)-dependence of the vector |1〉 and justify the name “homoclinic” for the
solution (19).

3.3 Homoclinic Solution

Integrating linear equations (21), we obtain

|1〉 = exp

(
i

2
αc2xσ3

)
exp

[
−i

(
c2 − ω − 3

4
α2c4

)
tσ3

]
exp

[
1

2
(γ + iβ)

]

×
(

eiξ−τ + e−iξ+τ

[e−(τ+�)ei(ξ−λ−) − eτ+�e−i(ξ−λ+)]ei(δ/2)

)
.

Here γ and β are real integration constants, μ1 = μ(k1) = π/L , ξ = μ1(x +
2αc2t) + (1/2)β, τ = 2cμ1l1t − (1/2)γ ,

� = 1

4
log

1 + αμ1

1 − αμ1
, tan λ± = l1

μ1

c + 1
2
αc

, tan δ = αcl1

1 − 1
2
α2c2

.

Hence, the matrix elements are written as

S11 = 2eγ (A + B)(k1 − k̄1)−1, S21 = 2eγ (A − B)(k1 + k̄1)−1,

where

A(ξ, τ ) = cosh 2τ + cos 2ξ,

B(ξ, τ ) = cosh 2(τ + �) − cos(2ξ − λ+ − λ−),

and

D01 = k1

k̄1

k1 A + k̄1 B

k̄1 A + k1 B
= ei(�−δ), D02 = k1

k̄1

k̄1 A + k1 B

k1 A + k̄1 B
= e−i(�+δ),

tan
�

2
= 1

i

k1 − k̄1

k1 + k̄1

A − B

A + B
,

exp(−iαc2x) exp

(
−3

2
iα2c4t

)
D(1)

12

= − iαl1 exp(−iδ/2)

k̄1 A + k1 B

[(
e2τ + e2iξ

)
e�−iλ+ − (

e−2τ + e−2iξ
)

e−�+iλ−
]

u0.

Substituting the above formulas into (19), we obtain explicitly the homoclinic
solution of MNLS equation:

u =
{

1 − 2il1e−i(δ/2)

k̄1 A + k1 B

[(
e2τ +e2iξ

)
e�−iλ+ −(

e−2τ +e−2iξ
)

e−�+iλ−
]}

u0e−2i�.

(22)
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The solution (22) is indeed homoclinic to the plane wave because

τ → ±∞: u → u0 exp[−2i(�± + �±)],

�± = lim
τ→±∞ � = ± arctan

α2cl1μ1

2
(
1 − 1

2
α2c2

) (
1 − 1

4
α2c2

) + (αcl1)2
,

�± = ±1

2
arctan

2cl1μ1

μ2
1 − c2l2

1

.

In the α → 0 limit consisting in representing the spectral parameter k as k =
1 − 1

2
αλNLS + O(α2), where λNLS is that for the NLS equation, the solution

(22) reproduces the NLS homoclinic orbit (10).

4 CONCLUSION

We have elaborated a new method to derive homoclinic solution in time for a
soliton equation with periodic boundaries. Our method has much in common
with the well-known dressing method for generating soliton solutions, with
the important difference that the positions of poles in the dressing factor are
not arbitrary but coincide with the positions of the complex double points of
the Floquet spectrum for the seed solution of the nonlinear equation. We have
demonstrated the method on the example of the modified NLS equation which
is integrable by means of the Wadati–Konno–Ichikawa spectral problem with
the quadratic dependence on the spectral parameter. We especially stress the
distinctive role of the Bloch solution to the Lax representation. For the case of N
unstable modes in the seed solution, the only computational difficulty consists
in inverting some 2N × 2N matrix. Though we restrict our consideration to
soliton equations solvable via the quadratic bundle, it is evident that because of
a wide applicability of the dressing method, our approach is feasible to more
general class of nonlinear equations.
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There are many problems in pure and applied mathematics that can be solved
in terms of a Riemann-Hilbert (R-H problem). The list includes the remarkable
class of nonlinear integrable equations, namely nonlinear equations that can
be written as the compatibility conditions of linear equations. This class con-
tains a large variety of equations: ODE’s, PDE’s difference equations, etc.
Furthermore, the R-H problem formulation provides a powerful technique
for obtaining asymptotic results for solutions of ODE’s and PDE’s of this
class [1].

A remarkable application of this asymptotic technique is the derivation of
asymptotic for orthogonal polynomials which is related to the universality con-
jecture in one-matrix models (see [2] and [3] and reference therein). In this case
the associated rank two R-H problems are formulated on hyperelliptic Riemann
surfaces. The integrable structure of multiorthogonal polynomials and in par-
ticular biorthogonal polynomials was pointed out in [4]. Asymptotic results
for multiorthogonal polynomials necessarily involves nonhyperelliptic curves
and higher rank R-H problems, which now attract much attention, because of
their application to multimatrix models and approximation theory. Regarding
two-matrix models, some asymptotic results have been obtained for the genus
zero case (namely the analog of the one-cut case in one-matrix models) and the
corresponding genus zero nonhyperelliptic Riemann surface has been derived
in terms of the external potential [5]. Regarding approximation theory for mul-
tiple orthogonal polynomials some results have been obtained in [6], [7] and
more recently, using Riemann-Hilbert techniques in [8].

The principal aim of our investigation is to give effective and explicit solu-
tions to a class of higher rank R-H problems associated with nonhyperelliptic
curves. This article is a review of the paper [9].

The Riemann-Hilbert problem in its classical formulation consists of deriv-
ing a linear differential equation of Fuchsian type with a given set D of singular

65
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Figure 1. The contour L

points and a given monodromy representation

M : π1(CP1\D, λ0) → GL(N , C), N ≥ 2. (1)

An element γ of the group π1(CP1\D, λ0) is a loop contained in CP1\D with
initial and end point λ0, λ0 �∈ D (see Figure 1). Not all the representation (1)
can be realised as the monodromy representation of a Fuchsian system, [10,
11]. In dimension N = 2 the R-H problem is always solvable [12] for any
number of singular points. For N ≥ 3, every irreducible representation (1) can
be realised as the monodromy representation of some Fuchsian system [13, 14].
In general, among the solvable cases, the solution of the matrix R-H problem
cannot be computed analytically in terms of known special functions [15, 16].
Nevertheless, there are special cases when the R-H problem can be solved
explicitly in terms of θ -functions [17–19]. Our article discusses one of these
cases.

The method of solution proposed by Plemelj [20] consists of reducing the R-
H problem to a homogeneous boundary value problem in the complex plane for
a N × N matrix function Y (λ). For this reason, boundary value problems in the
complex plane are often referred to as R-H problems in the modern literature. In
the case under study, the boundary can be chosen in the form of a polygon line
L. Assuming that the set of points D = {λ1, . . . , λ2m+1, λ2m+2 = ∞} satisfy
the relation

Re λ1 < Re λ3 < Re λ3 < · · · < Re λm < Re λ2m+1.

the oriented polygon line L is given by the union of segments

L = [∞, λ1] ∪ [λ1, λ2] ∪ [λ2, λ3] ∪ · · · ∪ [λ2m, λ2m+1] ∪ [λ2m+1, ∞].

The line L divides the complex plane into two domains, C− and C+ (see
Figure 1). Let γ1, γ2, . . . , γ2m+2 denote the set of generators of the fundamen-
tal group π1(CP1\D, λ0), i.e., the homotopy class γk corresponds to a small
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clock-wise loop around the point λk (see Figure 1). Then the matricesM(γk) =
Mk ∈ SL(N , C), k = 1, . . . , 2m + 2, form a set of generators of the mon-
odromy group. Since the homotopy relation

γ1 ◦ γ2 ◦ . . . ◦ γ2m+2 
 λ0,

the generators Mk satisfy the cyclic relation

M∞M2m+1 . . . M1 = 1N ,

where M2m+2 = M∞. Let us construct the matrices Gk defined by

Gk = Mk Mk−1 . . . M1, k = 1, . . . , 2m + 2. (2)

The homogeneous boundary value problem is formulated as follows [20]
find the N × N matrix function Y (λ) which satisfies

(i) Y (λ) is analytic in CP1\L;
(ii) The L2-limits Y±(λ) as λ → L± satisfy the jump conditions

Y−(λ) = Y+(λ), for λ ∈ (∞, λ1)

and

Y−(λ) = Y+(λ)Gk for λ ∈ (λk , λk+1 ), k = 1, . . . , 2m + 1;

(iii) for 0 ≤ ε < 1;

Y (λ)

(
1

λ

)ε

→ 0 as λ → ∞,

Y±(λ)(λ − λk)ε → 0 as λ → λk, k = 1, . . . , 2m + 2,

over C+ or C− respectively;
(iv) Y (λ0) = 1N , λ0 ∈ C+\D.

There is always a solution of (i)–(iv) such that det Y (λ) �= 0 for λ �= D. The
analytic continuation of the solution Y (λ) along a small loop γk around λk is
determined by the matrix Mk = Gk G−1

k−1, namely

Y (γk(λ)) = Y (λ)Mk, λ ∈ C + \D, k = 1, . . . , 2m + 2.

The solution Y (λ) of the R-H problem (i)–(iv) satisfies a Fuchsian equation

dY (λ)

dλ
=

2m+1∑
k=1

Ak

λ − λk
Y (λ), (3)
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if one of the monodromy matrices is diagonalisable [10] and [11]. Without this
condition, Plemelj original argument does not go through.

The method of [20] was used by Deift, Its, Kapaev, and Zhou [17] to
solve the 2 × 2 matrix R-H problem when all the matrices G2k are diago-
nal and all the matrices G2k−1, k = 1, . . . , m + 1, are off-diagonal. The idea
of the construction in [17] is to consider a hyperelliptic covering C over CP1

which is ramified in D and uses the natural monodromy of the hyperelliptic
curve. The application of methods of finite-gap integration [21, 22] allows
to obtain a θ -functional solution for the problem depending on 2m parame-
ters. Similar results were obtained by Kitaev and Korotkin [18] by another
method.

The extension of the 2 × 2 matrix R-H problem to higher dimensional
matrices leads naturally to non-hyperelliptic curves. This fact was pointed
out by Zverovich [23], who considered the N × N problem (i)–(iv) when
all the matrices G2k are diagonal, and the nonzero entries of the matrices
G2k−1, k = 1, . . . , m + 1 are

(G2k−1)i,i−1 �= 0, i = 2, . . . , N ,

(G2k−1)1,N �= 0.

The solubility of the corresponding N × N matrix R-H problem is proved by
lifting it to a scalar problem on the N -sheeted Riemann surface CN ,m

CN ,m : = {
(λ, y), yN = q N−1(λ)p(λ)

}
, (4)

q(λ) =
m∏

j=1

(λ − λ2k), p(λ) =
m∏

j=0

(λ − λ2k+1).

Such surface can be identified with N copies (sheets) of the complex λ-plane
cut along the segments L0 = ∪m+1

k=1 [λ2k−2, λ2k] and glued together according

to the permutation rule

(
1 2 . . . N − 1 N
2 3 . . . N 1

)
, that is the first sheet is

pasted to the second, the second to the third and so on. On this surface, the
projection map (which we still denote by λ) onto CP1 is a function of degree N
and we think of y as a function of the point P ∈ CN ,m in the sense that y sends

P ∈ CN ,m into y(λ(P)). Let P (s)
0 , s = 1, . . . , N , be the points on the s-th sheet

of CN ,m having the same λ0 projection onto CP1. We define y0 := y(λ(P (1)
0 )).

Then y(λ(P (s))) = e2π i s−1
N y0.

The algebraic-geometrical approach to the R-H-problem was developed fur-
ther by Korotkin [19]. He showed that for quasi-permutation monodromy ma-
trices (in which each row and each column have only one non zero element), the
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R-H problem can be solved in terms of the Szegö kernel of a Riemann surface.
The procedure to obtain the Riemann surface from the monodromy matrices
relies on Riemann existence theorem. First, all the nonzero entries of the mon-
odromy matrices Mk are set equal to one, so that all the monodromies become
permutation matrices. Then it is proved that there is a one-to-one correspon-
dence between permutation representations of π1(CP1\D, λ0) and N-sheeted
compact Riemann surfaces realised as a ramified covering of CP1 with pro-
jection of branch points over CP1 equal to D (see e.g. [24]. In our case the
permutation representation obtained by setting equal to one all the nonzero
entries of the matrix Gk, k = 1, . . . , 2m + 2, is

γ2k−1 →
(

1 2 . . . N − 1 N
2 3 . . . N 1

)
k = 1, . . . , m + 1, (5)

γ2k →
(

1 2 . . . N − 1 N
N 1 . . . N − 2 N − 1

)
k = 1, . . . , m + 1. (6)

In this case it is straightforward to verify that the above permutation representa-
tion corresponds to the curves CN ,m . However, the Riemann existence theorem
is just an existence theorem, that is, it does not produce explicitly algebraic
equations for the coverings. Tools for the computation of families of coverings
from the permutation representation, are given in [25].

Our derivation of the solution of the R-H problem (i)–(iv), incorporates both
the method of [17], implemented for hyperelliptic curves and ideas of [19].
First we solve the so-called canonical R-H problem, namely the problem (i)–
(iv) when all the matrices G2k are set equal to the identity and all the matrices
G2k+1 are set equal to the quasi-permutation PN , where

PN =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 (−1)N−1

1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . 0 0
0 0 . . . 1 0 0
0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

More precisely the canonical R-H problem consists of finding a matrix val-
ued function X (λ) analytic in the complex plane off the segment L0 =
∪m+1

k=1 [λ2k−1, λ2k] such that

X−(λ) = X+(λ)PN , λ ∈ L0, (8)

X (λ0) = 1N , λ0 ∈ C+. (9)
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The entries of the matrix X (λ) can be expressed in terms of the Szegö kernel
with zero characteristic, S[0](P, Q), defined on CN ,m . We show that

S[0](P, Q) = 1

N

√
dλ(Q)dλ(P)

λ(P) − λ(Q)

N−1∑
k=0

(
q(λ(P))p(λ(Q))

p(λ(Q))q(λ(P))

)− k
N + N−1

2N

, (10)

where P, Q ∈ CN ,m . Then the N × N matrix X (λ) with entries

Xrs(λ) = S[0](P (s), P (r )
0 )

λ(P) − λ(Q)√
dλ(Q)dλ(P)

(11)

= 1

N

N−1∑
k=0

(
e2π i (s−r )

N N

√
q(λ)

p(λ)

p(λ0)

q(λ0)

)−k+ N−1
2

, λ0 �∈ D,

where P (s) = (λ, e2π i s−1
N y) and P (r )

0 = (λ0, e2π i r−1
N y0), r, s = 1, . . . , N , denote

the points on the s-th and r-th sheet ofCN ,m respectively, solves the R-H problem

(8). When N = 2 and 4

√
q(λ0)
p(λ0)

= 1, such formula coincides with the canonical

solution obtained in [17].
The quasi permutation matrices Gk, k = 1, . . . , 2m + 2, of our problem are

parametrised by a set of 2(N − 1)m nonzero complex constants c1, . . . , c(N−1)m

and d1, . . . , d(N−1)m as follows as

G2k−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 (−1)N−1ck
ck+m

ck
0 0 . . . 0 0

0
ck+2m

ck+m
0 . . . 0 0

. . . . . . . . . 0 0

0 0 . . .
ck+(N−2)m

ck+(N−3)m
0 0

0 0 . . . 0
1

ck+(N−2)m
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for k = 1, . . . , m and G2m+1 = PN , where PN has been defined in (7); the
diagonal matrix G2k reads

G2k = dig

(
dk, dk+m, . . . , dk+(N−2)m,

N−2∏
j=0

1

dk+ jm

)
,

for k = 1, . . . , m and G2m+2 = 1N .
The solution Y (λ), of the full R-H problem (i)–(iv), where the constant matri-

ces Gk, k = 1, . . . , 2m + 1, are parametrised by 2(N − 1)m arbitrary complex
constants, is obtained, following [19], using the Szegö kernel with nonzero
characteristics. From the relation (10), we are able to write the global solution
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Y (λ) of the R-H problem (i)–(iv) in the form

Yrs(λ) = Xrs(λ)

θ

[
δ

ε

] ⎛
⎝ P (s)∫

P (r )
0

dv; �

⎞
⎠

θ

⎛
⎝ P (s)∫

P (r )
0

dv; �

⎞
⎠

θ (0; �)

θ

[
δ

ε

]
(0; �)

, r, s = 1, . . . , N ,

(12)
where dv is the basis of normalised holomorphic differentials on CN ,m, � is

the period matrix of dv, θ
[
δ
ε

]
is the canonical θ -function with characteristics

ε and δ defined by the relations

εk+sm = 1

2π1
log

ck+sm

ck+1+sm
, s = 0, . . . , N − 2, k = 1, . . . , m − 1,

εsm = 1

2π1
log csm, s = 1, . . . , N − 1,

δk = 1

2π1
log dk, k = 1, . . . , (N − 1)m.

We remark that the genus of the curve CN ,m is equal to g = (N − 1)m and we
have introduced a set of 2m(N − 1) parameters in the monodromy matrices.
In this way, there is a one to one correspondence between the 2(N − 1)m
θ -function characteristics and 2(N − 1)m monodromy parameters.

It can be proved that detY (λ) ≡ 1 thus showing that the solution (12) is non
singular. The solution (12) exists if

θ

[
δ

ε

]
(0; �) �= 0,

that is if �δ + ε �∈ (	), where (	) is the θ -divisor in the Jacobian of the
Riemann surface. The monodromy matrices Mk = Gk G−1

k−1 can be written in
the form

Mk = C−1
k e2π1σN Ck, k = 1, . . . , 2m + 1, Ck ∈ GL(N , C), (13)

where the matrix σN reads

σN = diag

(−N + 1

2N
,
−N + 3

2N
, . . . ,

N − 3

2N
,

N − 1

2N

)
. (14)

The matrix Y (λ) has regular singularities of the following form near the
points λk

Y (λ) = Ŷk(λ)(λ − λk)σN C±
k , λ ∈ C±, k = 1, . . . , 2m + 1,
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where the matrices Ŷk(λ) are holomorphic and invertible at λ = λk, C+
k = Ck

and C−
k = Ck Gk−1, k = 1, . . . , 2m + 1.

It follows from the above expansion that dY (λ)
dλ

Y −1(λ) is meromorphic in CP1

with simple poles at λ1, λ2, . . . , λ2m+2. Therefore Y (λ) satisfies the Fuchsian
equation

dY (λ)

dλ
=

2m+1∑
k=1

Ak

λ − λk
Y (λ), (15)

where

Ak = Ak(λ1, . . . , λ2m+1|M1, . . . M2m+1) = Res[λ=λk ]

[
dY (λ)

dλ
Y (λ)

]

= Ŷk(λk)σN Ŷ −1
k (λk), k = 1, . . . , 2m + 1.

If none of the monodromy matrices depend on the position of the singular
points λk, k = 1, . . . , 2m + 1, the function Y (λ; λ1, . . . , λ2m+1) in addition to
(15) satisfies the following equations

∂

∂λk
Y (λ) =

(
Ak

λ0 − λk
− Ak

λ − λk

)
Y (λ), k = 1, . . . , 2m + 1. (16)

Compatibility condition of (15) and (16) is described by the system of
Schlesinger equations

∂

∂λ j
Ak = [Ak, A j ]

λk − λ j
− [Ak, A j ]

λ0 − λ j
, j �= k, (17)

∂

∂λk
Ak = −

2m+1∑
j �=k, j=1

(
[Ak, A j ]

λk − λ j
− [Ak, A j ]

λ0 − λ j

)
.

Thus the solution of the R-H problem (i)–(iv) leads immediately to the particular
solution (16) of the Schlesinger system (17).

The τ -function corresponding to the particular solution (16) of the
Schlesinger system, has the form

τ (λ1, . . . , λ2m+1) =
θ

[
δ

ε

]
(0; �)

θ (0; �)

×

m∏
k<i,i,k=0

(λ2k+1 − λ2i+1)
N2−1

6N

m∏
k<i,k,i=1

(λ2k − λ2i )
N2−1

6N

2m+1∏
i< j,i, j=1

(λi − λ j )
N2−1
12N

.

(18)
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We remark that the factor not containing θ
[
δ
ε

]
(0; �) in the above expression,

is related to the Bergmann projective connection of the surface. For N = 2 the
above formula coincides with the one obtained in [18].

Finally, we investigate in detail the case N = 3 and m = 1. The monodromy
matrices read

M1 =
⎛
⎝ 0 0 c1

c2

c1
0 0

0 (c2)−1 0

⎞
⎠, M2 =

⎛
⎝ 0 c1d1

c2
0

0 0 c2d2
1

c1d1d2
0 0

⎞
⎠,

M3 =
⎛
⎝ 0 0 d1d2

1
d1

0 0

0 1
d2

0

⎞
⎠, M∞ =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠,

where c1, c2, d1, d2 are nonzero constants. Then the solution of the R-H problem
(i)–(iv) is defined in terms of the Szegö kernel of the genus two Riemann
surface

C3,1 : y3 = (λ − λ1)(λ − λ2)2(λ − λ3).

The automorphism group ofC3,1 is isomorphic to the dihedral group D3. For this
reason C3,1 is a two-sheeted cover of two elliptic curves that are 3-misogynous.
As a result the solution of the R-H problem and of the Schlesinger equations
can be expressed explicitly in terms of Jacobi’ ϑ-functions. The τ -function of
the Schlesinger system reads

τ (λ1λ2, λ3)=
(

λ1 − λ3

(λ1 − λ2)(λ2 − λ3)

) 2
9

e2π i[T (δ2
1+δ1δ2+δ2

2 )+ε1δ1+ε2δ2]

×
∑3

k=2 ϑk(ε1+ε2+3T (δ1+δ2); 6T)ϑk(ε1 −ε2 +T (δ1 − δ2); 2T )

ϑ3(0; 6T )ϑ3(0; 2T )+ϑ2(0; 6T )ϑ2(0; 2T )
,

where ϑi , i = 2, 3 are the Jacobi’s ϑ-functions,

εi = 1

2π1
log ci , δi = 1

2π1
log di , i = 1, 2

and

T = i
√

3

3

F
(

1
3
, 1

3
, 1; 1 − t

)
F

(
1
3
, 2

3
, 1; t

) , t = λ3 − λ2

λ3 − λ1

Here F
(

1
3
, 1

3
, 1; 1 − t

)
and F

(
1
3
, 2

3
, 1; t

)
are two independent solutions of the

hypergeometric equation

t(1 − t)F ′′ + (1 − 2t)F ′ − 2

9
F = 0.
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The function T = T (t) is in general not single-valued. For T belonging to the
Siegel upper half space modulo the modular group �0(3) the function t = t(T )
is single-valued and reads

t = 27ϑ4
3 (0; 3T )

(ϑ4
3 (0; 3T ) − ϑ4

3 (0; T ))2

(3ϑ4
3 (0; 3T ) + ϑ4

3 (0; T ))3
.

Clearly, the above expression is automorphic under the action of the group
�0(3). From the classical theory of the hypergeometric equation it follows that
the function t = t(T ) satisfies the Schwartz equation (see for example [26])

{t, T } + ṫ2

2
V (t) = 0,

where ṫ = dt
dT , {, } is the Schwartzian derivative,

{t, T } = d

dT

ẗ

ṫ
− 1

2

(
ẗ

ṫ

)2

and the potential V (t) is given by

V (t) = 1 − β2

t2
+ 1 − γ 2

(t − 1)2
+ β2 + γ 2 − α2 − 1

t(t − 1)
, α = 1

3
, β = γ = 0.

From the function t = t(T ) it is possible to derive an expression for the solution
of the corresponding general Halphen system equivalent to the one derived in
[27] in terms of Dedekind η-function [26]. Indeed the functions

ω1 = −1

2

d

dT
ln

ṫ

t(t − 1)
, ω2 = −1

2

d

dT
ln

ṫ

t − 1
, ω3 = −1

2

d

dT
ln

ṫ

t
,

solve the general Halphen system

ω̇1 = ω2ω3 − ω1(ω2 + ω3) + R,

ω̇2 = ω1ω3 − ω2(ω1 + ω3) + R,

ω̇3 = ω1ω2 − ω1(ω1 + ω2) + R,

where

R = 1

9
(ω1 − ω2)(ω3 − ω1).
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PV I , Annali Mat. Pura Appl. 146, pp. 337–381.



76 V. Enolskii and T. Grava

16. Umemura, H. (1990) Second proof of the irreducibility of the first differential
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OF TODA FIELD THEORIES AND
THEIR REAL HAMILTONIAN FORMS
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Abstract One of the paradigms which stimulated the development of powerful
methods in mathematical physics is the Toda field theory in 1 + 1 di-
mensions. It enhanced the development of graded and Kac-Moody alge-
bras and the method of reductions in the inverse scattering method. Here
we outline the basic ideas and some of their latest developments which
allowed to relate to each TFT a family of its real Hamiltonian forms.

Keywords: Solitons, Toda field theory, Hamiltonian systems, Tau function.

1 INTRODUCTION

The famous paper by Hirota [1] started a new trend in soliton theory. It stim-
ulated both the construction of soliton solutions of new nonlinear evolution
equations (NLEE) and the development of the algebraic approach to soliton
theory via the method of the tau-functions, see [1, 2]. Special role here play
the conformal and the affine Toda field theories in 0 + 1 and 1 + 1 space-time
dimensions [3, 4, 5].

In the present paper we analyze some of the analytic and algebraic aspects
of the affine Toda field theories (ATFT) in 1 + 1 dimensions. Next we show
that the well known ATFT can be viewed just as a member in the family of real
Hamiltonian forms (RHF) of these theories. A nontrivial example of RHF for
the ATFT is given explicitly.

2 PRELIMINARIES

To each simple Lie algebra g one can relate both conformal and affine versions
of a TFT in 1 + 1 dimensions. It allows Lax representation:

[L , M] = 0 (1)
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where L and M are first order ordinary differential operators whose potentials
take values in g:

Lψ ≡
(

i
d

dx
− iqx (x, t) − λJ0

)
ψ(x, t, λ) = 0, (2)

Mψ ≡
(

i
d

dt
− 1

λ
I (x, t)

)
ψ(x, t, λ) = 0. (3)

Here q(x, t) ∈ h—the Cartan subalgebra of g, �q(x, t) = (q1, . . . , qr ) is its dual
r -component vector, r = rank g, and

J0 =
∑
α∈π

Eα, I (x, t) =
∑
α∈π

e−(α,�q) E−α. (4)

If π is the set of simple roots π = {α1, . . . , αr } of g then we get the conformal
TFT; if π is the set of admissible roots, i.e., π = {α0, α1, . . . , αr } where α0

is the minimal root of g then the corresponding TFT is the affine one. The
equations of motion in the latter case is of the form:

∂2 �q
∂x∂t

=
r∑

j=0

n jα j e
−(α j ,�q), (5)

where n j are the minimal positive integers for which
∑r

j=0 n jα j = 0.
The operators L and M are invariant with respect to the reduction groupGR �

Dh [3] where h is the Coxeter number of g. This reduction group is generated by
two elements satisfying gh

1 = g2
2 = (g1g2)2 = 1 which allow realizations both

as elements in Aut g and in Conf C. The invariance condition has the form:

Ck(U (x, t, κk(λ))) = U (x, t, λ), Ck(V (x, t, κk(λ))) = V (x, t, λ) (6)

where U (x, t, λ) = −iqx (x, t) − λJ0 and V (x, t, λ) = − 1
λ

I (x, t). Here Ck are

automorphisms of finite order of g, i.e., Ch
1 = C2

2 = (C1C2)2 = 1 while κk(λ)
are conformal mappings of the complex λ-plane. The algebraic constraint (6)
are automatically compatible with the evolution.

Lemma 1 Let g be a simple Lie algebra from one of the classical series
Ar , Br , Cr or Dr and let h be its Coxeter number and N0—the dimension
of the typical representation. Then the characteristic equation of J0 taken in
the typical representation has the form:

ζ r0 (ζ h − 1) = 0, r0 = N0 − h. (7)

Remark 2 The constant r0 = 0 for g � Ar , Cr ; r0 = 1 for g � Br and r0 = 2
for g � Dr . Solving the inverse scattering problem in the last two cases requires
special treatment of the subspaces related to ζ = 0.
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3 THE SPECTRAL PROPERTIES OF L

The reduction conditions (6) lead to rather special properties of the operator L.
Along with L we will use also the equivalent system:

L̃m(x, t, λ) ≡ i
dm

dx
+ iqx m(x, t, λ) − λ[J0, m(x, t, λ)] = 0, (8)

where m(x, t, λ) = ψ(x, t, λ)ei J0xλ. Combining the ideas of [6] with the sym-
metries of the potential (6) we can construct a set of 2h fundamental analytic
solutions (FAS) mν(x, t, λ) of (1.8) and prove that:

1. the continuous spectrum 
 of L fills up 2h rays lν passing through the origin:
λ ∈ lν : arg λ = (ν − 1)π/h;

2. mν(x, t, λ) is a FAS of (1.8) analytic with respect to λ in the sector �ν : (ν −
1)π/h ≤ arg λ ≤ νπ/h satisfying limλ→∞mν(x, t, λ) = 1;

3. to each lν one relates a subalgebra gν ⊂ g such that gν ∩ gμ = ∅ for ν = μ

mod (h) and ∪h
ν=1gν = g. The symmetry ensure that each of the subalgebras

gν is a direct sum of sl(2)-subalgebras;
4. on 
 the FAS mν(x, t, λ) satisfy

mν(x, t, λ) = mν−1(x, t, λ)Gν(x, t, λ), λ ∈ lν, (9)

Gν(x, t, λ) = e−i(λJ0x+ f (λ))t G0,ν(λ) ei(λJ0x+ f (λ))t ∈ Gν, (10)

where Gν is the subgroup with Lie algebra gν and f (λ) is determined by the
dispersion law of the NLEE: f (λ) = ∑r

k=0 E−αk /λ;
5. the FAS of (8) satisfy:

C̃1(mν(x, t, ωλ)) = mν−2(x, t, λ), λ ∈ lν−2, (11)

where C̃1 is equivalent to the Coxeter automorphism:

C̃1(X ) ≡ C−1
1 XC1, C1 = e

2π i
h Hρ , ρ = 1

2

∑
α>0

α; (12)

obviously Ch
1 = 1 and C̃1(J0) = ω−1 J0;

6. the FAS mν(x, t, λ) satisfy one of the following two involutions:

C̃2(mν(x, t, λ∗))† = C2(m−1
2h−ν+2(x, t, λ)), (13)

where C2, C2
2 = 1 is conveniently chosen Weyl group element, or

(mν(x, t, −λ∗))∗ = mh−ν+2(x, t, λ). (14)
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These relations lead to the following constraints for the sewing functions
G0,ν(λ) and the minimal set of scattering data:

C̃1(G0,ν(ωλ)) = G0,ν−2(λ), (15)

C̃2(G†
0,ν(λ∗)) = G−1

0,2h−ν+2(λ), (16)

G∗
0,ν(−λ∗) = G0,h−ν+2(λ). (17)

If L has no discrete eigenvalues the minimal set of scattering data is provided
by the coefficients of G0,1(λ), λ ∈ l1 and G0,2(λ), λ ∈ l2. All other sewing
functions G0,ν(λ) can be determined from them by applying (15), (16) or
(15), (17).

4 THE REAL HAMILTONIAN FORMS OF ATFT

The Lax representations of the ATFT models widely discussed in the literature
(see e.g., [3–5, 7] and the references therein) are related mostly to the normal
real form of the Lie algebra g. Our aim here is to:

1. generalize the ATFT to complex-valued fields �qC = �q0 + i �q1, and
2. describe the family of RHF of these ATFT models.

We also provide a tool to construct new inequivalent RHF’s of the ATFT. This
tool is a natural generalization of the one in [8] to 1 + 1-dimensional systems.
Indeed, the ATFT can be written down as an infinite-dimensional Hamiltonian
system as follows:

dqk

dt
= {qk, H}, dpk

dt
= {pk, H}, (18)

HATFT =
∫ ∞

−∞
dx

(
1

2
( �p(x, t), �p(x, t)) +

r∑
k=0

nke−(�q(x,t),αk )

)
,

where �p = d �q/dx and �q are the canonical momenta and coordinates satisfying
canonical Poisson brackets:

{qk(x, t), p j (y, t)} = δ jkδ(x − y). (19)

Next we introduce an involution C acting on the phase space M ≡
{qk(x), pk(x)}n

k=1 and satisfying:

1) C(F(pk, qk)) = F(C(pk), C(qk)),
2) C({F(pk, qk), G(pk, qk)}) = {C(F), C(G)},
3) C(H (pk, qk)) = H (pk, qk).
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It is important also that the Hamiltonian H (pk, qk) is an analytic functional of
the fields qk(x, t) and pk(x, t).

The complexification of the ATFT is rather straightforward. The resulting
complex ATFT (CATFT) can be written down as standard Hamiltonian system
with twice as many fields �qa(x, t), �pa(x, t), a = 0, 1:

�pC(x, t) = �p0(x, t) + i �p1(x, t), �qC(x, t) = �q0(x, t) + i �q1(x, t), (20)

{q0
k (x, t), p0

j (y, t)} = −{q1
k (x, t), p1

j (y, t)} = δk jδ(x − y). (21)

The densities of the corresponding Hamiltonian and symplectic form equal

HC

ATFT ≡ ReHATFT( �p0 + i �p1, �q0 + i �q1) (22)

= 1

2
( �p0, �p0) − 1

2
( �p1, �p1) +

r∑
k=0

nke−(�q0,αk ) cos((�q1, αk)),

ωC = (d �p0 ∧ id �q0 − d �p1 ∧ d �q1). (23)

The family of RHF then are obtained from the CATFT by imposing an
invariance condition with respect to the involution C̃ ≡ C ◦ ∗ where by ∗ we
denote the complex conjugation. The involution C̃ splits the phase space MC

into a direct sum MC ≡ MC
+ ⊕ MC

− where

MC

+ = M0 ⊕ iM1, MC

− = iM0 ⊕ M1, (24)

The phase space of the RHF is MR ≡ MC
+. By M0 and M1 we denote the

eigensubspaces of C, i.e., C(ua) = (−1)aua for any ua ∈ Ma .
Thus to each involution C satisfying 1)–3) one can relate a RHF of the ATFT.

Due to the condition 3) C must preserve the system of admissible roots of g;
such involutions can be constructed from the Z2-symmetries of the extended
Dynkin diagrams of g studied in [7].

Example 1 We choose g � A2r+1 and fix up the involution C by:

C(qk) = −q2r+2−k, C(pk) = −p2r+2−k, k = 1, . . . , r,

C(qr+1) = −qr+1, C(pr+1) = −pr+1. (25)

The coordinates in M± are given by:

q±
k = 1√

2
(qk ∓ q2r+2−k), p±

k = 1√
2

(pk ∓ p2r+2−k),

q−
r+1 = qr+1, p−

r+1 = pr+1, (26)
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where k = 1, . . . , r , i.e., dim M+ = 2r and dim M− = 2r + 2. Then the den-
sities HR

AFEF, ω
R

ATFT for the RHF of AFTF equal:

HR

ATFT = 1

2

r∑
k=1

p+2
k − 1

2

r+1∑
k=1

p−2
k + 2e−q+

r−1/
√

2 cos

(
q−

r−1√
2

− q−
r+1

)

+
r−1∑
k=1

2e(q+
k+1−q+

k )/
√

2 cos

(
q−

k+1 − q−
k√

2

)
+ 2eq+

1 /
√

2 cos

(
q−

1√
2

− q−
r+1

)
.

ωR

ATFT =
r∑

k=1

dp+
k ∧ dq+

k −
r+1∑
k=1

dp−
k ∧ dq−

k (27)

where �p±
k = d �q±

k /dx . If we put q−
j = 0 and p−

j = 0 we get the reduced ATFT

related to the Kac-Moody algebra D(2)
r+1 [7].

The automorphism C is dual to an automorphism C# of the corresponding
Lax pair and the Lie algebra g. In fact C̃# = −C#(X †) is a Cartan involution
of g and therefore the Lax pair of the RHF is related to a real form gR of g.
The reduction condition (13) (or (14)) picks up the real form of the related
Kac-Moody algebra.

5 DISCUSSION

Though some examples of RHF of ATFT have been known before [9], the
method proposed in [8] provides a tool for the systematic construction and clas-
sification of the RHF for any Hamiltonian system, not necessarily integrable.
It can be proved that the RHF of an integrable system is again integrable [8].
The solutions depending analytically on the initial parameters go into solutions
of the RHF. Such are, e.g., the soliton solutions derived by Hirota’s method in
[7]. Imposing the reduction conditions on these parameters one can obtain the
soliton solutions of the RHF of the ATFT. Their properties (stability, asymp-
totic dynamics etc.) however, will be different and deserve separate treatment.
The situation here is similar to the one for the Toda chain. The real Toda chain
allows only asymptotically free particles while the complex Toda chain and its
RHF contain also asymptotic bound states, see [10].

The consequences of these fact for the corresponding tau-functions has to
be investigated. It is important to find out all types of soliton solutions that the
RHF of ATFT possesses. The Z2- symmetries of the extended Dynkin diagrams
and the relevant reduction of the ATFT [7] can be used to classify all RHF of
ATFT.

Other integrable models, as e.g., the Zn-nonlinear Schrödinger equation [11]
and their RHF can be investigated along the same lines.
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CPT, Ecole Polytechnique, CNRS, UMR 7644, 91128 Palaiseau, France

Abstract We present the list of all known to date difference and q-discrete forms
of the Painlevé II equations. We show that, with the exception of two of
them, all these equations are symmetric reductions of equations with more
than one parameter and give the bilinearization of these systems. Finally
we point out the existence of another one-parameter discrete Painlevé
equation: the one-parameter d-PIII.

1 INTRODUCTION

The relation of (continuous) Painlevé equations to bilinearization goes a long
way back, to before the bilinear formalism was introduced. Having the Painlevé
property, the solutions of the Painlevé equations are meromorphic functions
[1]. This means that they can be expressed as ratios of entire functions. But,
precisely, the ansatz expressing the nonlinear variable as a ratio of entire, τ ,
functions lies at the heart of the bilinear approach. We can illustrate this in the
case of the continuous PII. We start with the equation

w′′ = 2w3 + tw + α (1)

and introduce the ansatz w = (log(F/G))′. Substituting into (1) we find that it
is possible to split it into a system of two equations:

F ′′G + FG ′′ = 2F ′G ′ (2a)

F ′′′G − FG ′′′ + 3(F ′G ′′ − F ′′G ′) = t(F ′G − FG ′) + αFG (2b)

These two equations constitute the bilinearization of PII. The bilinear approach
has been applied with success to all Painlevé equations, resulting into the

∗ Permanent address: Department of Theoretical Physics, Institute of Physics and Nuclear
Engineering, Magurele, Bucharest, Romania
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bilinear forms which can be of the utmost usefulness for constructing auto-
Bäcklund transformations and special solutions.

In the case of discrete Painlevé equations (d-P) we cannot rely on analytic-
ity arguments. However another property of d-P’s comes to the rescue of the
bilinear approach. As a matter of fact, discrete equations, integrable through
spectral methods (as is the case for the d-P’s), possess the singularity confine-
ment property [2]. This means that any spontaneously appearing singularity
disappears after some (a few) iteration steps. From a practical point of view
this means that if we try to represent the nonlinear dependent variable as a ratio
of functions which have only zeros (which would be the discrete analogue of
entire functions) only a finite number of such terms is needed. The bilinear
approach for discrete P’s was systematically introduced in [3] and has been ex-
tensively used since. The bilinearization of what we have dubbed the standard
d-P family, was given in [4]. An interesting result of feedback was given in
that paper, where using the bilinear form of discrete PVI we have obtained the
bilinearization of its continuous analogue (a result that had eluded all previous
studies). Finally the bilinear formalism is the key ingredient in the geometrical
description and classification of d-P’s in terms of affine Weyl groups [5].

One remarkable property of discrete P’s is that there are so many of them. (In
[6] we have argued that an infinite number of d-P’s may exist). Since the names
of d-P’s are based on their continuous limits and the latter are limited by the
existence of just six P’s it is natural to have more than one discrete analogue for
each continuous Painlevé equation. In a previous study [7] we have presented a
list of over 15 different forms of d-PI (and still the list is certainly incomplete).
In this paper we shall present a similar study for d-PII. We shall give the various
forms of equations already identified as the discrete analogues of PII. We shall
show that for the majority of them the PII continuous limit results from an
artificial restriction of the degrees of freedom of the equation to just one. In the
present analysis the full freedom will be restored (which allows us to identify the
genuine difference and q form of PII). The bilinearization of all these equations
will be equally obtained in full generality.

2 THE VARIOUS DISCRETE FORMS OF PAINLEVÉ II
EQUATION

As we have explained in the introduction, some equations are written as one-
parameter PII but they can, in fact, be extended to equations with a higher
number of parameters. The best example, in order to illustrate this point, is
what we call the “standard” d-PII. In full generality we have

xn+1 + xn−1 = (αn + β)xn + γ + δ(−1)n

1 − x2
n

(3)
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The presence of the (−1)n term suggests that we separate even and odd terms.
Putting Xm = x2m and Ym = x2m+1 we have

Xm+1 + Xm = Zm+1/4Ym + A

1 − Y 2
m

(4a)

Ym + Ym−1 = Zm−1/4 Xm + B

1 − X2
m

(4b)

where Zm = (2αm + β − α/2), A = γ − δ, and B = γ + δ, Thus the equation
which is a d-PII when δ = 0 requires an extra parameter for δ �= 0 and was
shown to go over to PIII at the continuous limit [8].

Equations (3) and (4) are what, in the QRT [9] terminology, are called sym-
metric and asymmetric forms. The equations we shall list below possess for the
most part degrees of freedom which would suggest an asymmetric form. Still
for better legibility we shall restrict ourselves to symmetric forms. However
in every case we shall explicitly give the number of parameters of the equa-
tion (and the way they enter) as well as the affine Weyl group under which
the equation can be classified. The way the full freedom of the equation will
be obtained is through the application of the singularity confinement criterion.
The procedure is perfectly legitimate (as we have amply explained in previous
publications [10]). In every case we start from a mapping which is integrable
in its autonomous form and use the singularity confinement criterion just for
its deautonomization. In this setting singularity confinement is a sufficient in-
tegrability criterion.

1. The first example we shall give is that of the standard d-PII. This equation
was first obtained through an orthogonal polynomial method by Periwal
and Shevitz (albeit in a zero-parameter form) in a field-theoretical model.
Simultaneously Nijhoff and Papageorgiou derived the same equation from
the similarity reduction of the discrete modified KdV equation (in a nice
parallel to what happens in the continuous case). The full form was obtained
in [11], and as we just said above (3) is

xn+1 + xn−1 = znxn + an

1 − x2
n

(5)

where zn = αn + β and an = γ + δ(−1)n . As we explained above this equa-
tion has PIII as continuous limit. Its geometrical description was given in [12]
in terms of the A(1)

3 affine Weyl group.
2. The “alternate” d-PII

zn

xn+1xn + 1
+ zn − 1

xnxn−1 + 1
= −xn + 1

xn
+ zn + μ (6)
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where zn = αn + β and μ is a constant, with no further degree of freedom.
This equation was first obtained in [13] as a contiguity of the continuous
PIII. It was studied in detail in [14] where it was shown that it possess
the property of self-duality. This means that the discrete equation govern-
ing the evolution along the parameter μ (evolution obtained through the
Schlesinger transformations) is precisely the “alternate” d-PII itself. This
observation has made possible the geometrical description of not only (6)
(which was given in [15] in terms of the affine Weyl group 2A(1)

1 ) but of all the
d-P’s.

3. The q-discrete equation

xn+1xn−1 = an(xn − bn)

xn(xn − 1)
(7)

where log an = αn + β + (−1)nγ, log bn = αn + δ − (−1)nγ (so the
quantity anbn does not exhibit any even–odd dependence) was obtained
in symmetrical form in [15] and in full freedom in [16]. This equation is one
of the few examples not possessing the property of self-duality. Its geomet-
rical description is given in terms of the affine Weyl group A(1)

2 + A(1)
1 . Its

detailed study is due to Kajiwara, Noumi, and Yamada [17].
4. Another q-discrete equation, of the same family exists:

xn+1xn−1 = an(xn − bn)

xn − 1
(8)

where log an = αn + β + (−1)nγ + j nδ + j2nζ , ( j being a cubic root of
unity), log bn = 2αn + θ − j nδ − j2nζ (so the quantity anbn does not ex-
hibit any three-fold dependence). This equation has five degrees of freedom
and its description can be given in terms of the affine Weyl group D(1)

5 . The
full form of (8) was obtained in [16] where we have argued that this mapping
is a Miura transformation of the asymmetric q-PIII, discrete PVI, equation of
Jimbo and Sakai [18].

5. A difference equation of the PIV family also exists as a d-PII when restricted
to symmetric form:

(xn+1 + xn)(xn + xn−1) = (xn + zn + kn)
(
x2

n − b2
)

xn − 2zn
(9)

The full freedom this equation is zn = αn + β + j nγ + j2nδ, kn = ζ +
(−1)nθ − 3 j nγ − 3 j2nδ, so k is a constant (as implied in [15]) only in
the “symmetric” case γ = δ = θ = 0. When all five parameters taken into
account, the description of the equation is in terms of the affine Weyl group
E (1)

6 .
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Three different equations from the q-Pv family also exist as discrete PII’s.
6. The first is

(xn+1xn − 1)(xnxn−1 − 1) = anxn

xn − bn
(10)

where an = a0λ
2n and bn = b0λ

n . The quantities a, b are related through
bn+1/bn−1 = an/an−1. This would suggest an even/odd degree of freedom
for b. However it is straightforward to absorb this extra parameter into a
trivial gauge and thus Eq. (10) has just one genuine parameter: it is a q-
discrete form of PII (something that was never before pointed out although
this equation is known for quite a few years). The geometrical description
of (10) can be given in terms of the affine Weyl group A(1)

1 + A(1)
1 . This is

also one of the few cases which are not self-dual.
7. The second equation is

(xn+1xn − 1)(xnxn−1 − 1) = an(xn − bn) (11)

(as a matter of fact this equation does not appear in the classification of
d-P’s presented in [15]: this is an ommission). The full freedom of (11) is
obtained through log an = 3αn + β, log bn = −αn + γ + j nδ + j2nζ . Its
geometrical description can be given in the framework of the affine Weyl
group A(1)

4 . In the symmetric case (δ = ζ = 0) the continuous limit of

(11) is obtained through x = (1 + εw)/
√

3, α = ε3, eβ = −8/(3
√

3), eγ =
(1 − cε3/6)

√
3/2 and at the limit ε → 0 we find (with t = nε), d2w/dt2 =

2w3 + 12tw + c.
8. Finally one last discrete PII was identified in [15] in the form

(xn+1xn − 1)(xnxn−1 − 1) = (1 − anxn)(1 − xnbn) (12)

The singularity analysis of this equation results into the following expres-
sions for a, b compatible with the confinement property: log an = αn +
β + (−1)n(nγ + δ) + i nζ + (−i)nη, log bn = αn + θ + (−1)n(nγ + κ) −
i nζ − (−i)nη. The interesting thing in this case is the presence of the term
e(−1)n(nγ+δ) (or δ → κ). One of the e(−1)nδ term can be gauged out (only
the quantity δ − κ is fixed) so the total number of parameters is 5, and the
geometry is that of the affine Weyl group E (1)

6 . However, the remaining
e(−1)nnγ

cannot be gauged out and is indeed corresponds to one of the
genuine parameters, resulting into a term ρ±n (the sign depending on the
parity of n). This is really a unique feature: we do not know of any other
example where such a term appears.

To summarize, we have eight various forms of discrete PII, where two are
genuine discrete analogues of PII, (2) and (6), and the remaining six are sym-
metric reductions of equations with more degrees of freedom. Still, as they
stand all eight constitute discretizations of PII.
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3 BILINEARIZING THE DISCRETE PII EQUATIONS

The bilinearizing ansatz, i.e., expressing the nonlinear dependent variable in
terms of τ -functions, can be guided by the singularity structure of the equation.
As we have explained in [3] one can guess the minimal number of τ -functions
necessary for the bilinearization on the basis of the various singularity patterns.
(However, it often turns out that a complete bilinearization necessitates also
the introduction of auxiliary τ -functions).

Let us present in detail the bilinearization of the standard d-PII which will
serve as a guide for the remaining cases. In the case of d-PII we have two sin-
gularity patterns, and so we expect two τ -functions to appear in the expression
of x. We start with the pattern {−1, ∞, +1}. The diverging x may be, related
to a vanishing τ -function, say F, in the denominator. In order to ensure that
xn−1 and xn+1 are respectively −1 and +1, we choose xn in the form xn =
−1 + Fn+1

Fn
p = 1 + Fn−1

Fn
q, where p, q must be expressed in terms of the second

τ -function G. We turn now to the second pattern {+1, ∞, −1} related to the van-
ishing of the τ -function G. We find, in this case, xn = 1 + Gn+1

Gn
r = −1 + Gn−1

Gn
s,

where r, s are expressed in terms of F. Combining the two expressions in terms
of F and G we find, with the appropriate choice of gauge, the following simple
expression for x:

xn = −1 + Fn+1Gn−1

FnGn
= 1 − Fn−1Gn+1

FnGn
(13)

which satisfies both singularity patterns. Thanks to this particular choice of
gauge the relative sign is such that the continuous limit of (13), obtained through
x = εw, is w = ∂t z log F

G , i.e., precisely the transformation in the case of PII

we encountered in the introduction. Since, two τ -functions are present here,
we expect d-PII to be given as a system of two bilinear relations. Equation
(13) does indeed provide the first equation of the system. By eliminating the
denominator FnGn we obtain

Fn+1Gn−1 + Fn−1Gn+1 − 2FnGn = 0 (14)

In order to obtain the second equation we rewrite d-PII as (xn+1 + xn−1)(1 −
xn)(1 + xn) = znxn + an . We use the two possible definitions of xn in terms of
F, G in order to simplify the expressions 1 − xn and 1 + xn . Next, we obtain two
equations by using these two definitions for xn+1 combined with the alternate
definition for xn−1. We obtain thus

Fn+2 Fn−1Gn−1 − Fn−2 Fn+1Gn+1 = F2
n Gn(znxn + an) (15a)

Gn−2Gn+1 Fn+1 − Gn+2Gn−1 Fn−1 = G2
n Fn(znxn + an) (15b)

Finally, we add Eq. (15a) multiplied by Gn+2 and (15b) multiplied by Fn+2.
Up to the use of the upshift of (14), a factor Fn+1Gn+1 appears in both sides of
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the resulting expression. After simplification, the remaining equation is indeed
bilinear:

Fn+2Gn−2 − Fn−2Gn+2 = zn(Fn+1Gn−1 − Fn−1Gn+1) + 2an FnGn (16)

where a symmetric expression was used for x in the R.H.S., obtained as the
arithmetic mean of the two R.H.S. of (13). Equations (14) and (16), constitute
the bilinearization of d-PII.

The bilinearization of the “alternate” d-PII was presented in [14]. Two sin-
gular patterns exist {0, ∞} and {∞, 0}. This suggests the introduction of two
τ -functions and the substitution:

xn = FnGn−1

Fn−1Gn
(17)

From the forms that appear in the denominators of the L.H.S. of (6) it is clear that
the only hope for a simplification is when there exists some relation between
numerator and denominator. This leads to the introduction of a first bilinear
condition:

Fn+1Gn−1 + Fn−1Gn+1 = zn FnGn (18)

However, even with the use of (18), the equation we obtain is quadrilinear. In
order to simplify it further we introduce a third, (auxiliary), τ -function E:

Fn+1 Fn−1 = F2
n + Gn En (19)

Using (18) and (19) we can bilinearize (6). We obtain finally

Gn En−1 − Gn−1 En = μFn Fn−1 (20)

Equations (18), (19), and (20) are the bilinear expression of alternate d-PII.
We turn now to the q-PII equations, cases (3) and (4) above. Equation (7)

has the singularity patterns {1, ∞, 0, b} and {b, 0, ∞, 1}. This suggests the
following ansatz:

xn = FnGn+1

Fn+1Gn
= 1 + an

Fn+2Gn−1

Fn+1Gn
= bn + Fn−1Gn+2

Fn+1Gn
(21)

These three different definitions of x yield two bilinear equations:

FnGn+1 = Fn+1Gn + an Fn+2Gn−1 = bn Fn+1Gn + Fn−1Gn+2 (22)

Similarly for equation (8) we have the singularity patterns {1, ∞, a, 0, b} and
{b, 0, a, ∞, 1}. By under- and overlining we mean that the values of a are not
the relevant local ones but rather the precise values taken one step backward
and forward respectively. The bilinear ansatz is

xn = Fn−1Gn+1

Fn+1Gn−1
= 1 + an

Fn+2Gn−2

Fn+1Gn−1
= bn + Fn−2Gn+2

Fn+1Gn−1
(23)
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leading to

Fn−1Gn+1 = Fn+1Gn−1 + an Fn+2Gn−2 = bn Fn+1Gn−1 + Fn−2Gn+2 (24)

and Eq. (8) is identically satisfied.
For the bilinearization of (9), case (5), we start from the singularity patterns

{−z − k, z + k, ∞, 2b}, {2z, ∞, z + k, −z − k}, {b, −b}, and {−b, b}, where
under- and overlining have to be intepreted as above. We introduce the ansätze:

xn = 2zn − Fn+1Gn−1

FnGn
= −zn − kn + Fn−2Gn+2

FnGn
= b + Mn Nn

FnGn

= −b + Mn−1 Nn+1

FnGn
(25)

and introduce two auxiliary τ -functions through

xn = zn−1 + kn−1 + Hn−1Gn+1

FnGn
= zn+1 + kn+1 + Fn−1 Kk+1

FnGn
(26)

We have thus five equations for the six τ -functions. The remaining equation
can be obtained by substituting into (9). We find

Gn+2(Fn−2 Fn+1Gn+1 + Hn FnGn)Gn+1((Fn−3 FnGn + Hn−1 Fn−1Gn−1)

= (Fn−1Gn+1 Fn−2Gn+2 + Mn Mn−1 Nn Nn+1) (27)

we remark readily that both sides are products of the form �n�n−1. This sug-
gests a separation which leads finally to the trilinear equation:

Fn−2 Fn+1Gn+1 + Hn FnGn + Mn Nn+1 Fn−1 = 0 (28)

It turns out that it is possible, introducing the appropriate combination and using
some of the five equations mentioned above, to reduce the trilinear equation to
a bilinear one:

Gn−2 Fn+2 + 2(zn + kn)FnGn = Gn+1 Hn−1 (29)

As a matter of fact, we could have obtained this equation directly if we had
introduced the ansatz:

xn = 2zn + 2kn − zn−1 − kn−1 + Fn+2Gn−2

FnGn
(30)

(but there is no way one could have guessed that this was the proper ansatz
before obtaining (29) the hard way).

For Eq. (10), case (6), we have the singularity patterns {0, ∞, b} and
{b, ∞, 0}. We thus introduce the τ -functions through

xn = Fn+1Gn−1

FnGn
= bn + Fn−1Gn+1

FnGn
(31)
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yielding a first bilinear equation

Fn+1Gn−1 = bn FnGn + Fn−1Gn+1 (32)

Substituting into the mapping (10) we find

(Fn+2Gn−1 − FnGn+1)(Fn+1Gn−2 − Fn−1Gn) = an Fn+1Gn FnGn−1 (33)

Putting an = ρnρn−1 we can separate this equation and obtain

Fn+2Gn−1 − FnGn+1 = ρn Fn+1Gn (34)

Note that, with this definition of ρn , we have bn+1/bn−1 = an/an−1 = ρn/ρn−2

so bn+1 = ρn is a constant if an appropriate gauge is used to eliminate the
spurious even–odd degree of freedom.

For case (7), Eq. (11) we have the singularity patterns {b, 1/b, ∞, 0} and

{0, ∞, 1/b, b}. This leads to the ansatz

xn = Fn−1Gn+1

FnGn
= b + Fn+2Gn−2

FnGn
(35)

and a first equation

Fn−1Gn+1 = bFnGn + Fn+2Gn−1 (36)

The second equation is obtained exactly as in the case (6) above, introducing
an = ρnρn−1 and splitting the equation obtained by a direct substitution of the
ansatz for x into the mapping. We find thus

Fn−1Gn+2 − Fn+1Gn = ρn Fn+2Gn−2 (37)

The final case we shall examine is (8), i.e., Eq. (12). The singularity patterns in
this case are {1/a, a, ∞, b, 1/b} and {1/b, b, ∞, a, 1/a}. In this case auxiliary
τ -functions, related to the central patterns {a, ∞, b} and {b, ∞, a} must be
introduced. We have in all

xn = 1

an

(
1 + Fn−2Gn+2

FnGn

)
= 1

bn

(
1 + Fn+2Gn−2

FnGn

)
(38)

= an+1

(
1 + Fn−1 Hn+1

FnGn

)
= bn−1

(
1 + Fn+1 Kn−1

FnGn

)

= bn+1

(
1 + Gn−1 Mn+1

FnGn

)
= an−1

(
1 + Gn+1 Nn−1

FnGn

)

We have thus five equations for the six τ -functions. The sixth equation can
be obtained by direct substitution into the mapping (12). Working with the
auxiliary τ -function K we find that, as in the previous cases, the equation can
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be written as a product of the form �n�n−1. We introduce anbn = ρnρn−1 and
separate obtaining the trilinear equation:

Kn FnGn + Gn−2 Fn+1Gn+1 + Fn+2Gn−2 Kn = ρnGn+2 Fn−1Gn−1 (39)

Similarly, working with any of the H ,M ,N we could have obtained equations
involving these τ -functions. On the other hand one could have dispensed al-
together with them, work with just F , G, and the auxiliary K and obtain just
three equations which fully describe (12) in terms of τ -functions.

4 CONCLUSIONS

In the preceding sections we have investigated the various forms of discrete
PII equations. Eight different equations were analyzed. We have shown that the
equations

zn

xn+1xn + 1
+ zn−1

xnxn−1 + 1
= −xn + 1

xn
+ zn + μ (40)

and

(xx+1xn − 1)(xnxn−1 − 1) = anxn

xn − bn
(41)

are indeed discrete (difference and q respectively) forms of PII. All the cases
correspond to symmetric reductions of equations with a higher number of
parameters. In two cases, (9) and (12), the discrete Painlevé equations involve
five parameters and their geometry is described by the affine Weyl group E (1)

6 .
At this point we must stress that more discrete forms of PII certainly exist, in
particular forms related to the affine Weyl groups E (1)

7 and E (1)
8 which have not

been studied in detail yet.
A final remark is in order here. As in the continuous case d-PII is not the only

one-parameter discrete Painlevé equation. As we have explained in [19] the one-
parameter PIII is a Painlevé equation in its own right (its solution introduces
a Painlevé transcendent different from the other six ones). Discrete form of
one-parameter PIII are known. No systematic search for equations that have
the one-parameter PIII as their continuous limit in the symmetric case (i.e.,
when all, or maybe only some, periodic degrees of freedom are not taken into
account). But, quite expectedly there exist difference and q-forms of genuine
one parameter PIII. The first is(

1 + an

xn + xn−1

) (
1 + an+1

xn+1 + xn

)
= 1

x2
n − b2

(42)
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with an = αn + β and b is the single constant parameter. The second one cannot
be written at all as a single component equation but only as a system:

xnxn+1 = 1 + an yn

yn(byn + 1)
(43a)

yn yn−1 = 1 + xn

bx2
n

(43b)

with log an = αn + β.
As this study clearly shows the richness of the dP’s surpasses even the most

optimistic predictions. Many more studies are certainly needed in order to
complete the exploration of this domain which was terra incognita a mere 10
years ago.
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of the Painlevé equations, Comm. Math. Phys. 220, pp. 1165–229.

6. Ohta, Y., Ramani, A., and Grammaticos, B. (2002) Elliptic discrete Painlevé equa-
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Math. Phys. 38, pp. 145–154.

19. Ramani, A., Grammaticos, B., Tamizhmani, T., and Tamizhmani, K. M. (2000) On
a transcendental equation related to Painlevé III equation and its discrete forms, J.
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ORTHOGONAL POLYNOMIALS
SATISFYING Q-DIFFERENCE
EQUATIONS

Luc Haine
Department of Mathematics, Université catholique de Louvain,
Chemin du Cyclotron 2, 1348 Louvain-la-Neuve Belgium

Abstract The Askey–Wilson polynomials are the most general orthogonal polyno-
mials, which are eigenfunctions of a second order q-difference operator.
I survey recent results aiming at constructing all orthogonal polynomials
which are eigenfunctions of a q-difference operator of an arbitrary order,
by means of the lattice Darboux transformation.

1 INTRODUCTION

The method of the Darboux transformation that was systematized by Matveev
and Salle (see [1] and references therein), is a basic tool in the theory of inte-
grable systems which generates the soliton solutions from the “vacuum”. It is
intimately related with Hirota’s bilinear method, via the theory of vertex oper-
ators, see [2, 3]. In this note, I want to explain that the method turns out to be
very useful to handle some problems in the theory of orthogonal polynomials,
going back to S. Bochner and H.L. Krall. The role of the “vacuum” will be
played by the classical orthogonal polynomials. A purely continuous version
of these problems was first considered and completely solved by Duistermaat
and Grünbaum [4]. Since then, the name “bispectral problem” is often attached
to this general area of research. In recent years, bispectral problems have been
shown to be related with various areas of mathematics, like representation
theory [5], noncommutative algebraic geometry [6] and combinatorics [7].

In 1938, H. L. Krall [8] posed the problem to find all families of orthogonal
polynomials {pn(x)}∞n=0, which are also eigenfunctions of a differential operator∑m

i=0 ai (x)(d/dx)i of an arbitrary order. In particular, he showed that the order
m must be even. When m = 2, the problem was already solved by Bochner
[9] in 1929. The only solutions are provided by the Hermite, the Laguerre, the
Jacobi and the (lesser known) Bessel polynomials. The next case in line, m = 4,
was completely solved by H. L. Krall [10] in 1940. He discovered that, besides
the previous solutions, there are three new families of orthogonal polynomials,
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which are eigenfunctions of a differential operator of order 4. The easiest way
to describe them is via their weight functions, which are obtained by adding
one or two mass points at the boundary of the interval of orthogonality of some
instances of the classical orthogonal polynomials. Namely:

e−x dx + rδ(x) on [0, ∞[, Krall-Laguerre weight,

(1 + x)βdx + rδ(x − 1) on [−1, 1], β > −1, Krall-Jacobi weight,

dx + r{δ(x + 1) + δ(x − 1) on [−1, 1], Krall-Legendre weight,

with r > 0, a free parameter, and δ(x) Dirac’s delta function.
In 1996, jointly with F.A. Grünbaum [11], I was able to fit this result within

the apparatus of the lattice Darboux transform. This paper was the source of
a renewed interest in Krall’s problem, see [12–17]. In the sequel, I denote by
N the set of positive integers, and by Z the set of non-negative integers. For
the purpose of this note, I shall only mention the following generalization of
Krall’s result:

Theorem 1 ([14, 15]) The orthogonal polynomials with weight distributions
given by

xαe−x dx + ∑
finitely many k∈Z+

rkδ
(k)(x) on [0, ∞[, α ∈ Z+,

Krall-Laguerre type weight distribution,

(1 − x)α(1 + x)βdx + ∑
finitely many k∈Z+

rkδ
(k)(x − 1) on [−1, 1],

α ∈ Z+, β > −1, or

(1 − x)α(1 + x)βdx + ∑
finitely many k∈Z+

rkδ
(k)(x − 1)

+ ∑
finitely many k∈Z+

skδ
(k)(x + 1) on [−1, 1], α, β ∈ Z+,

Krall–Jacobi type weight distribution,

where rk, sk > 0 denote arbitrary free parameters, and δ(k) denotes the k-th.
derivative of Dirac’s delta function, solve Krall’s problem, that is they are
eigenfunctions of a differential operator.

Some of the solutions described in Theorem 1 had already been found by
followers of H.L. Krall, see [18, 19–22] and references therein. However, sit-
uations involving derivatives of Dirac’s delta function were not considered in
these works. The reason might be that in these cases, there is no orthogonality
measure. My main message in this note is that by replacing in Krall’s original
problem the differential operator by a q-difference operator, the added mass
points split up and we do get an orthogonality measure. It is only in the limit
q → 1 that all the mass points accumulate at the boundary of the interval of
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orthogonality. The role of the Laguerre and the Jacobi polynomials will now
be taken up by the celebrated Askey–Wilson polynomials.

2 CHRISTOFFEL AND GERONIMUS TRANSFORMS

In the literature on orthogonal polynomials, Darboux transformations are better
known under the names of Christoffel and Geronimus transformations. In this
section, I review some basic facts about these transforms following [11, 13,
14, 17]. Consider a sequence {pn(x)}∞n=0 of monic polynomials defined by a
three-term recurrence relation

pn+1(x) = (x − bn)pn(x) − cn pn−1(x), p−1(x) = 0, p0(x) = 1, (1)

with bn, cn ∈ C, and cn �= 0, ∀n ≥ 1. A classical theorem of Favard, see [23],
asserts that, up to a non-zero constant factor, there is a unique quasi-definite
moment functional L for which the sequence pn(x), n ≥ 0, is an orthogonal
polynomial sequence (in short OPS), that is

L[pm(x)pn(x)] = 0 for m �= n and L[p2
n(x)] �= 0.

We remind the reader that given a sequence {μn}∞n=0 of complex numbers,
a moment functional L is a complex valued linear functional defined on the
vector space of all polynomials by L[xn] = μn, n = 0, 1, 2, . . . , and extended
by linearity. It is called quasi-definite if and only if all the Hankel determinants
�n = det (μi+ j )

n
i, j=0 �= 0.

We denote by J the tridiagonal Jacobi matrix

J =

⎛
⎜⎜⎜⎝

b0 1 0 0 . . .

c1 b1 1 0 . . .

0 c2 b2 1 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ .

It will be convenient to use the notations of difference operators. Denoting by
E and E−1, respectively, the customary backward and forward shift operators,
acting on a function hn by

Ehn = hn+1, n ≥ 0, E−1h0 = 0, E−1hn = hn−1, n ≥ 1,

we can write

J ≡ J (n, E) = cn E−1 + bnId + E, (2)

with Id the identity operator. With the same conventions, we introduce the lower
and upper semi-infinite matrices L and U (with two diagonals) by

L ≡ L(n, E) = αn E−1 + Id, U ≡ U (n, E) = βnId + E . (3)



100 Luc Haine

Given λ ∈ C, the so-called kernel polynomials

p∗
n(λ; x) = (x − λ)−1

[
pn+1(x) − pn+1(λ)

pn(λ)
pn(x)

]
, (4)

are defined as long as pn(λ) �= 0, ∀n. These polynomials form an OPS with
respect to the quasi-definite moment functional

L∗ = (x − λ)L, (5)

where (x − λ)L is defined on an arbitrary polynomial π (x) by (x − λ)
L[π (x)] = L[(x − λ)π (x)]. They can be obtained in terms of what is called in
[13] a Darboux transformation without free parameter and, according to [17],
should be called a Christoffel transform.

Proposition 2 ([13], [17]). Assume that pn(λ) �= 0, ∀n. Then, the matrix
J − λ Id can be uniquely factorized as a product of a lower and an upper
matrix as defined in (3). The Jacobi matrix J ∗ defined by the transform

J = λ Id + LU → J ∗ = λId + U L , (6)

gives the coefficients of the three-term recurrence relation satisfied by the kernel
polynomials (4).

In [11], we observed that if one performs an upper-lower factorization

J − λ Id = U L ,

instead of a lower-upper one, there is a free parameter in the factorization.
Indeed, solving inductively for the entries of L and U one finds

βn = cn

bn−1 − βn−1 − λ
, αn = bn−1 − βn−1 − λ, n ≥ 1,

with β0 a free parameter. In [11], we called the transform

J = λ Id + U L → J̃ = λ Id + LU, (7)

a Darboux transform with free parameter, since this version of the Darboux
process can be made to fit within the framework proposed by Matveev and
Salle [1] in the context of a doubly infinite tridiagonal matrix. According to
[17], this transform was first considered in 1940 by Ya. L. Geronimus and
should be called a Geronimus transform.

Proposition 3 ([14]). If J̃ satisfies the hypotheses of Favard’s theorem,
then the unique (up to a non-zero constant) moment functional L̃ making the
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polynomials p̃n(x) defined by x p̃ = J̃ p̃ a OPS, is given by

L̃[1] = μ0

β0
, (8)

L̃[xn(x − λ)] = μn, n ≥ 0, (9)

with μn = L[xn] and L the moment functional of the OPS formed by the
pn(x), n ≥ 0.

Proof The monic polynomials defined by the recurrence relation J̃ p̃ = x p̃
are given by p̃ = Lp. Hence xp = J p = λp + ULp = λp + Up̃, that is

pn(x) = (x − λ)−1[ p̃n+1(x) + βn p̃n(x)], ∀n ≥ 0. (10)

This shows that, up to a non-zero constant factor,

L = (x − λ)L̃, (11)

which establishes (9). From (10) with n = 0, we get x − λ = p̃1(x) + β0, which
gives

L̃[x − λ] = β0L̃[1]. (12)

From (11) we have L[1] = L̃[x − λ], which combined with (12) gives (8),
completing the proof. �

Defining for any polynomial π (x)(
1

x − λ
L

)
[π (x)] = L

[
π (x) − π (λ)

x − λ

]
, δ(x − λ)[π (x)] = π (λ),

the functional L̃ defined by (8) and (9) can be written as follows

L̃ = 1

x − λ
L + μ0

β0
δ(x − λ). (13)

3 THE ASKEY–WILSON POLYNOMIALS

I use the standard notations for basic hypergeometric series, following the book
of Gasper and Rahman [24]. In particular, I write

(a1, a2, . . . , ar ; q)k =
r∏

i=1

(ai ; q)k,

with

(a; q)k = (a; q)∞
(aqk ; q)∞

and (a; q)∞ =
∞∏

i=0

(1 − aqi ),
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for products of q-shifted factorials, where 0 < q < 1. The series expansion

rφs

[
a1, a2, . . . , ar

b1, b2, . . . , bs
; q, z

]
=

∞∑
k=0

(a1, a2, . . . , ar ; q)k

(q, b1, . . . , bs ; q)k

[
(−1)kq (k

2)
]1+s−r

zk

defines the rφs basic hypergeometric series.
The celebrated Askey–Wilson polynomials [23] are defined as follows in

terms of basic hypergeometric series

Pn(z; a, b, c, d) =4φ3

[
abcdqn−1, q−n, az, az−1

ab, ac, ad
; q, q

]
, n ≥ 0. (14)

They satisfy the three-term recurrence relation

An;a,b,c,d Pn+1(z; a, b, c, d) + Bn;a,b,c,d Pn(z; a, b, c, d)

+ Cn;a,b,c,d Pn−1(z; a, b, c, d) = (z + z−1)Pn(z; a, b, c, d), (15)

with

An;a,b,c,d = (1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
, (16)

Cn;a,b,c,d = a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
, (17)

Bn;a,b,c,d = a + a−1 − (An;a,b,c,d + Cn;a,b,c,d). (18)

The Askey–Wilson polynomials are also eigenfunctions of a second order q-
difference operator (they form, in fact, the most general class of orthogonal
polynomials with this property, see [25, 26]). This can be seen from a duality
relation that these polynomials satisfy. Putting

a′ =
√

q−1abcd, b′ = ab

a′ , c′ = ac

a′ , d ′ = ad

a′ and x = a′qn,

we have

Pn(z; a, b, c, d) = 4φ3

[
az, az−1, a′x, a′x−1

a′b′, a′c′, a′d ′ ; q, q

]
= Pm(x ; a′, b′, c′, d ′), if z = aqm, m ∈ Z+.

Hence,

Pn(aqm, a, b, c, d) = Pm(a′qn; a′, b′, c′, d ′), ∀n, m ∈ Z+. (19)

From the duality relation (19), one deduces immediately the next result.

Proposition 4 ([25]) The Askey–Wilson polynomials satisfy

A(z)Pn(qz; a, b, c, d) − [A(z) + A(z−1)]Pn(z; a, b, c, d)

+ A(z−1)Pn(q−1z; a, b, c, d) = 	n;a,b,c,d Pn(z; a, b, c, d), (20)
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with

A(z) = (1 − az)(1 − bz)(1 − cz)(1 − dz)

(1 − z2)(1 − qz2)
, (21)

	n;a,b,c,d = q−n(1 − qn)(1 − abcdqn−1). (22)

Notice from (15) that the Askey–Wilson polynomials are polynomials in z +
z−1. Putting 2x = z + z−1, one checks easily that, in order for the polynomials
to be monic in x, one must put

pn(x ; a, b, c, d) = (ab, ac, ad; q)n

2nan(abcdqn−1; q)n
Pn(z; a, b, c, d). (23)

The coefficients of the recurrence relation (1) satisfied by pn(x ; a, b, c, d) are
given by

bn = a + a−1 − (An;a,b,c,d + Cn;a,b,c,d)

2
, cn = (An−1;a,b,c,dCn;a,b,c,d)

4
(24)

We denote the associated Jacobi matrix (2) by Ja,b,c,d . It is immediate to check
from (24) that

Ja,b,c,d = a + a−1

2
Id + La,b,c,dUa,b,c,d, (25)

with

La,b,c,d(n, E) =
(

−Cn;a,b,c,d

2
E−1 + Id

)
,

Ua,b,c,d(n, E) =
(

− An;a,b,c,d

2
Id + E

)
. (26)

In the rest of the paper, I shall assume that a,b,c,d are real and that
max(|a|, |b|, |c|, |d|) < 1. Then, the Askey-Wilson polynomials are orthogonal
on the interval [−1, 1], with respect to the weight function

w(x ; a, b, c, d) = h(x, 1)h(x, −1)h(x, q
1
2 )h(x, −q

1
2 )

h(x, a)h(x, b)h(x, c)h(x, d)

dx√
1 − x2

, (27)

with h(x, α) = (αz, αz−1; q)∞. One checks easily that

w(x, aq, b, c, d) = −2a

(
x − a + a−1

2

)
w(x ; a, b, c, d). (28)

From (5), it follows that pn(x ; aq, b, c, d) are the kernel polynomials defined

in (4) associated with the OPS pn(x ; a, b, c, d), for λ = a+a−1

2
. From (25), (26)

and (6) in Proposition 2, we deduce then that Jaq,b,c,d is a Christoffel transform
of Ja,b,c,d . Precisely:
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Proposition 5

Jaq,b,c,d = a + a−1

2
Id + Ua,b,c,d La,b,c,d . (29)

In the sequel, it will be crucial to use the standard normalization for the
Askey–Wilson polynomials. I shall write the difference operator going with
the three-term recurrence relation (15) as

Ra,b,c,d ≡ Ra,b,c,d(n, E) = An;a,b,c,d E + Bn;a,b,c,dId + Cn;a,b,c,d E−1.

(30)
From (23), one computes easily that the effect of the Christoffel transform,

described in Proposition 5, on Ra,b,c,d reads

Ra,b,c,d = (a + a−1)Id + Sa,b,c,d Ta,b,c,d →
Raq,b,c,d = (a + a−1)Id + Ta,b,c,d Sa,b,c,d, (31)

with Sa,b,c,d and Ta,b,c,d the difference operators

Sa,b,c,d(n, E) = (An;a,b,c,dId − Cn;a,b,c,d E−1)
1

ϕn;a,b,c,d
, (32)

Ta,b,c,d(n, E) = ϕn;a,b,c,d(E − Id), (33)

with

ϕn;a,b,c,d = 1

q−n − abcdqn
.

4 RATIONAL DARBOUX TRANSFORMATIONS FROM
THE ASKEY–WILSON POLYNOMIALS

In this section, I sketch the main steps for constructing orthogonal polynomi-
als satisfying q-difference equations from the Askey–Wilson polyomials. The
crucial new idea is the concept of a rational Darboux transformation.

We start from the pair of equations satisfied by the Askey–Wilson polyno-
mials, normalized as in (14)

Ra,b,c,d(n, E)Pn(z; a, b, c, d) = (z + z−1)Pn(z; a, b, c, d), (34)

Ba,b,c,d(z, Dz)Pn(z; a, b, c, d) = 	n;a,b,c,d Pn(z; a, b, c, d), (35)

with Ra,b,c,d as in (30), 	n;a,b,c,d as in (22) and Ba,b,c,d(z, Dz) the second order
Askey–Wilson q-difference operator defined in (20)

Ba,b,c,d(z, Dz) = A(z)Dz − [A(z) + A(z−1)]Id + A(z−1)D−1
z , (36)
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with A(z) as in (21), and Dz and D−1
z , respectively the forward and backward

q-shift operators acting on a function h(z) by Dzh(z) = h(qz) and D−1
z h(z) =

h(q−1z).
Let us denote by

B = 〈Ra,b,c,d, 	a,b,c,d〉, (37)

the algebra of difference operators generated by Ra,b,c,d and 	a,b,c,d , with
	a,b,c,d the diagonal operator 	a,b,c,d(n, E) = 	n;a,b,c,d Id. Similarly

B′ = 〈z + z−1, Ba,b,c,d〉, (38)

will denote the algebra of q-difference operators generated by the operator of
multiplication by z + z−1 and the operator Ba,b,c,d defined in (36). Formulas
(34) and (35) serve to define an anti-isomorphism b : B → B′ between these
two algebras, given on the generators by

b(Ra,b,c,d) = z + z−1 and b(	a,b,c,d) = Ba,b,c,d, (39)

i.e., X Pn(z; a, b, c, d) = b(X )Pn(z; a, b, c, d), ∀ X ∈ B. We also need the com-
mutative subalgebras (the algebras of “functions”) of B and B′

K = 〈	a,b,c,d〉 and K′ = 〈z + z−1〉. (40)

The next theorem summarizes the technology of rational Darboux transfor-
mations. It was initiated in [27] and [28], in the context of a study of bispectral
rings of commutative differential operators (see also [29]), and was adapted
and applied to the case of difference operators in [13, 14].

Theorem 6 ([30], see also [13, 14) Let L be a constant coefficient polynomial
in Ra,b,c,d , which factorizes rationally as

L = PQ, (41)

in such a way that

P = W�−1, Q = �−1V, (42)

with V, W ∈ B, and �, � ∈ K. Let

L̃ = QP, (43)

be the Darboux transform ofL. Then, defining μ(z) = b(L) ∈ K′ and P̃ = QP ,
with P = (P0(z; a, b, c, d), P1(z; a, b, c, d), . . .)T satisfying (34) and (35), we
have

L̃P̃ = μ(z)P̃, (44)

B̃ P̃ = �� P̃, (45)
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with

B̃ = b(V )b(W )μ(z)−1. (46)

Despite the apparent simplicity of Theorem 6, it is a priori very complicated
to recognize that an operator admits a rational Darboux factorization as defined
by (41), (42). An important new idea was introduced in [15] in the context of
the Jacobi polynomials, in order to make Theorem 6 more effective. In [30],
this idea is used to deal with the case of the Askey–Wilson polynomials. The
crucial observation is that a Laurent polynomial p(qn) = ∑n

k=−m ckqkn in qn ,
is a polynomial in 	n;a,b,c,d , i.e. it belongs to K as defined in (40), if and only
if it is invariant under the involution

I (qn) = q1−n

abcd
. (47)

This is an easy exercise using the relation qn + (abcd)−1q1−n = q(abcd)−1 ×
(	n;a,b,c,d + 1 + abcd q−1), which follows from the definition (22).

Let us denote byR the algebra of difference operators of the form T (n, E) =∑m2

j=m1
h j (qn)E j , with coefficients h j (qn) rational functions in qn . We extend

the involution I to R by

(I h j )(q
n) = h j (I (qn)) and I (E j ) = E− j . (48)

A straightforward computation from (17) and (18) gives I (An;a,b,c,d) =
Cn;a,b,c,d . Using (19), this shows that the operator Ra,b,c,d in (30) is I-invariant,
that is I (Ra,b,c,d) = Ra,b,c,d . The next theorem characterizes the rational
Darboux transformations as those for which the two factors P and Q in (41)
are I-invariant operators.

Theorem 7 ([27], see also [14]) The following conditions on an operator
T ∈ R are equivalent:

(i) The operator T is I-invariant, i.e. I(T) = T;
(ii) T has the form �−1V , for some V ∈ B and some � ∈ K;

(iii) T has the form W�−1, for some W ∈ B and some � ∈ K.

Theorems 6 and 7 are the basic tools which allow us to construct orthogonal
polynomials satisfying q-difference equations, by adding mass points to some
instances of the weight function w(x ; a, b, c, d) (27) of the Askey–Wilson
polynomials.
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Theorem 8 ([27]) Let α, β ∈ Z+, m, n ∈ N and 0 < q < 1. The orthogonal
polynomials with weight functions on [−1, 1] given by

w(x ; q
m
2 +α, b, c, q

m
2 ) +

∑
finitely many k∈Z+

rkδ

(
x − q

m
2 +α+k + q− m

2 −α−k

2

)
,

with b, c, arbitrary, max(|b|, |c|) < 1, (49)

w(x ; q
m
2 +α, −q

n
2 +β, −q

n
2 , q

m
2 )

+
∑

finitely many k∈Z+

rkδ

(
x − q

m
2 +α+k + q− m

2 −α−k

2

)

+
∑

finitely many k∈Z+

skδ

(
x + q

n
2 +β+k + q− n

2 −β−k

2

)
, (50)

where rk, sk > 0 denote arbitrary free parameters, solve the q-version of Krall’s
problem, that is they are eigenfunctions of a q-difference operator.

One can show that, putting m = 1, b = −q
1
2 +β(β > −1), c = −q

1
2 in (49),

or m = n = 1 in (50), the corresponding orthogonal polynomials tend, when
q → 1, to the Krall–Jacobi type polynomials that we mentioned in Theorem
1. It is only when q → 1 that all the mass points accumulate at the boundary
±1 of the interval of orthogonality [−1, 1], giving rise to weight distributions
involving the derivatives of Dirac’s delta function.

For a more complete account of the results above as well as detailed proofs,
which involve the use of the Ismail–Rahman functions [31], I refer the reader
to my joint works with F.A. Grünbaum [26] and P. Iliev [30].

5 THE SIMPLEST EXAMPLE

In this section I shall illustrate Theorem 8 on the simplest case, constructing
explicitly the orthogonal polynomials with weight function

w(x ; q
1
2 , b, c, q

1
2 ) + rδ

(
x − q

1
2 + q− 1

2

2

)
, (51)

with r > 0 an arbitrary free parameter, b,c arbitrary, max(|b|, |c|) < 1. This
amounts to pick α = 0, m = 1, k = 0 in (49).

Formulas (13) and (28) show that these polynomials can be obtained as
the Geronimus transform (7) of Jq3/2,b,c,q1/2 , with λ = (q1/2 + q−1/2)/2. Thus,
using the normalization Rq3/2,b,c,q1/2 (30), the matrix R̃ defining the three-
term recurrence relation satisfied by the orthogonal polynomials with weight
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function (51), is given (up to conjugation by a diagonal matrix) by

Rq3/2,b,c,q1/2 = (q1/2 + q−1/2)Id + UL → R̃ = (q1/2 + q−1/2)Id + LU.

(52)

Theorem 7 is not immediately applicable to this situation, since the two
factors U and L (being respectively upper and lower matrices) cannot be
I-invariant. As explained in (31), Rq3/2,b,c,q1/2 can be obtained as a Christof-
fel transform from Rq1/2,b,c,q1/2

Rq1/2,b,c,q1/2 = (q1/2 + q−1/2)Id + Sq1/2,b,c,q1/2 Tq1/2,b,c,q1/2 →
Rq3/2,b,c,q1/2 = (q1/2 + q−1/2)Id + Tq1/2,b,c,q1/2 Sq1/2,b,c,q1/2, (53)

with Sq1/2,b,c,q1/2, Tq1/2,b,c,q1/2 as in (32) and (33)

Sq1/2,b,c,q1/2 (n, E) = (An;q1/2,b,c,q1/2 Id − Cn;q1/2,b,c,q1/2 E−1)
1

ϕn;q1/2,b,c,q1/2

,

Tq1/2,b,c,q1/2 (n, E) = ϕn;q1/2,b,c,q1/2 (E − Id),

ϕn;q1/2,b,c,q1/2 = 1

q−n − bcqn+1
.

From (52) and (53), we deduce the Darboux transformation (41), (43)

L ≡ (
Rq1/2,b,c,q1/2 − (q1/2 + q−1/2)Id

)2

= PQ → L̃ ≡ QP = (R̃ − (q1/2 + q−1/2)Id)2, (54)

with

P = Sq1/2,b,c,q1/2U, Q = LTq1/2,b,c,q1/2 . (55)

We are going to show that the Darboux transformation (54) fits within the
framework of Theorems 6 and 7, that is the two factors P and Q in (5.5) are
invariant for the involution (47), (48), with a = d = q1/2:

I (qn) = 1

bcqn
, I (E) = E−1. (56)

The tricky part is to compute the Geronimus transformation (52), which
involves a free parameter μ, linearly equivalent to r in (51). The result, which
can be easily checked, is the following

U (n, E) =
(

An;q3/2,b,c,q1/2 E − Cn;q3/2,b,c,q1/2

ψn−1

ψn
Id

)
1

ψn−1γn
, (57)

L(n, E) = ψn−1ψn

(
Id − ψn

ψn−1
E−1

)
, (58)
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with

ψn = qn

(1 − bqn+ 1
2 )(1 − cqn+ 1

2 )

(
μ + qn

(1 − qn+1)(1 − bcqn)

)
,

μ a free parameter, and γn = q−n − bcqn . The purpose of the factor ψn−1γn

in (58) and its inverse in (57) is to make the resulting operator R̃ in
(52) I-invariant, with I as in (56). To alleviate the notations, I shall write
An = An;q1/2b,c,q1/2, Cn = Cn;q1/2b,c,q1/2, ϕn = ϕn;q1/2b,c,q1/2 . With these conven-
tions, (53) is equivalent to

An;q3/2b,c,q1/2 = ϕn

ϕn+1
An+1, Cn;q3/2b,c,q1/2 = ϕn

ϕn−1
Cn. (59)

The I-invariance of P and Q in (55) is then easily checked by using

I (γn) = −γn, I (ϕn) = −ϕn−1, I (ψn) = ψn−1, I (An) = Cn,

and (59). Writing

R = Rq1/2b,c,q1/2, 	 = 	q1/2b,c,q1/2,

as predicted by Theorem 7,Q in (55) can be written asQ = �−1V, V ∈ B, � ∈
K,B =< R, 	 >,K =< 	 > as in (37), (40), with

V = ((bc − 1)2Id + 2(bc + 1)	 + 	2)(x0Id + x1	 + x2 R + x3	R + R	),

� = y1	 + y2	
2 + y3	

3 + y4	
4, (60)

and

x0 = (q − 1)

q
((b + c)(q − 1) + 2q1/2(bc − 1)) + (q + 1)2

μq3/2
,

x1 = 2(q1/2 + q−1/2),

x2 = − (q − 1)(bcq − 1)

q
− q + 1

μq
,

x3 = −1 + q + q2

q
, (61)

y1 = (q2 − 1)(q1/2 − b)(q1/2 − c)(q − bc)(bq1/2 − 1)(cq1/2 − 1)

μq3/2
,

y2 = − (q + 1)

μq

[
(b + c)(q + 1)(q2 − 2bcq − 2q + bc)

− q1/2((bc + 2)q2 − (3b2c2 + c2 + 6bc + b2 + 3)q + bc(2bc + 1))
]
,

y3 = (q + 1)(q2 + (b + c)q3/2 − 3bcq − 3q + (b + c)q1/2 + bc)

μq1/2
,

y4 = −q1/2(q + 1)

μ
. (62)
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Similarly, for P in (55), one finds P = W�−1, W ∈ B, � ∈ K, with

W = (x0Id + x1	 + x2 R + x3 R	 + 	R)�,

� = (z0Id + z1	 + z2	
2)((bc − 1)2Id + 2(bc + 1)	 + 	2), (63)

xi defined as in (61), � as in (60), (62) and

z0 = (q + 1)2(μ(bc − 1)(q − 1) + 1)

μ2q2
,

z1 = − (q + 1)2(μq2 − (μbc + μ + 1)q + μbc − 1)

μq2
, z2 = (q + 1)2

q
.

Notice that there are quite a few cancellations in the Darboux factorization
(54) of L. In fact, from (60) and (63), we finally obtain that

L = (x0Id + x1	 + x2 R + x3 R	 + 	R)(z0Id + z1	 + z2	
2)−1

× (x0Id + x1	 + x2 R + x3	R + R	).

From Theorem 5, using the anti-isomorphism b : B → B′ defined in (39), with
B′ =< z + z−1, B = Bq1/2,b,c,q1/2 > as in (38), it follows that the orthogonal
polynomials with weight function (51) are eigenfunctions of the fourth order
q-difference operator B̃ defined as in (46)

B̃ = (x0 + x1 B + x2(z + z−1) + x3(z + z−1)B + B(z + z−1))

× (x0 + x1 B + x2(z + z−1) + x3 B(z + z−1)

+ (z + z−1)B)(z + z−1 − (q1/2 + q−1/2))−2,

with eigenvalues 	̃n = z0 + z1	n;q1/2,b,c,q1/2 + z2	
2
n;q1/2,b,c,q1/2 as in (45).
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9. Bochner, S. (1929) Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29,
pp. 730–736.

10. Krall, H. L. (1940) On orthogonal polynomials satisfying a certain fourth order
differential equation, The Pennsylvania Sate College Studies, 6.
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Abstract We describe integrable discretization of coupled forms of the well-known
soliton equations such as KdV equation, modified KdV equation, sine-
Gordon equation and nonlinear Schrödinger equation.

1 INTRODUCTION

Discretization of integrable systems has been the focus of an intense activities
[1–5]. Discretization of integrable nonlinear ordinary differential equations
has been studied in [6–8]. Recent progress in integrable discrete systems has
uncovered remarkable relationships in otherwise unrelated areas of research
such as numerical algorithms [9], discrete geometry [10], cellular automaton
[11], and quantum integrable systems [12].

In a series of papers [1], we have developed a method of discretizing inte-
grable equations. The method is based on the bilinear formalism and follows
three steps. Firstly a given differential equation is transformed into the bilinear
equation by a dependent variable transformation. Secondly the bilinear equa-
tion is discretized with the help of gauge-invariance of the bilinear equation and
the integrability of the discretized bilinear equation is determined by checking
soliton solutions. Thirdly the discrete bilinear equation is transformed into a
discrete nonlinear equation in the ordinary form by an associated dependent
variable transformation.

Coupled forms of the well-known soliton equations have been proposed by
several authors [14–18]:

1. Coupled KdV eq. [14]:

∂ui

∂t
+ 6

(
M∑

k=1

uk

)
∂ui

∂x
+ ∂3ui

∂x3
= 0, for i = 1, 2, . . . , M. (1)
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2. Coupled modified KdV equation:
Type (i) [15]

∂vi

∂t
+ 6

(
M∑

k=1

v2
k

)
∂vi

∂x
+ ∂3vi

∂x3
= 0, for i = 1, 2, . . . , M, (2)

which is extended to the following form
Type (ii) [16]

∂vi

∂t
+ 3

( ∑
1≤ j<k≤M

c j,kv jvk

)
∂vi

∂x
+ ∂3vi

∂x3
= 0, for i = 1, 2, . . . , M,

(3)
where c j,k are arbitrary constants, which is extended furhter to the following
form

∂vi

∂t
+ 3

(
M∑

j,k=1

c j,kv jvk

)
∂vi

∂x
+ ∂3vi

∂x3
= 0, for i = 1, 2, . . . , M, (4)

where c j,k are arbitrary constants.
3. Coupled nonlinear Klein-Gordon (Sine-Gordon) equation [15]:⎧⎪⎪⎨

⎪⎪⎩
∂2

∂x∂y
wi − wi + 2wi

∂�

∂y
= 0, for i = 1, 2, . . . , M,

∂�

∂x
=

∑
M
j=1w

2
j ,

(5)

which is extended by introducing arbitrary constants, c j,k to⎧⎪⎪⎨
⎪⎪⎩

∂2

∂x∂y
wi − wi + 2wi

∂�

∂y
= 0, for i = 1, 2, . . . , M,

∂�

∂x
=

∑
M
j,k=1c j,kw jwk .

(6)

4. Vector nonlinear Schrödinger equation [17]:

iqt = qxx + 2‖q‖2q, (7)

which is extended to a generalized form [18] among which we choose the
following form,

i
∂

∂t
ψi + ∂2

∂x2
ψi +

(
M∑

j,k=1

c j,kψ jψ
∗
k

)
ψi = 0, (8)

with arbitrary constants c j,k satisfying the reality conditions c∗
j,k = ck, j .

We shall discretize these coupled equations in the following sections. N-soliton
solution to these M-coupled discrete equations are obtained, which will be
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published elsewhere. Here we present soliton solutions for the simplest case
N = 2 and M = 2.

2 COUPLED KdV EQUATIONS

First we transform the coupled KdV eq. (1) into the bilinear form. Let ui =
Gi/F . Then we have

Dt Gi · F

F2
+ 6

(
M∑

k=1

Gk

F

)
Dx Gi · F

F2
+ D3

x Gi · F

F2
− 3

Dx Gi · F

F2

D2
x F · F

F2
= 0,

for i = 1, 2, . . . , M,

which is decoupled to the bilinear forms{
(Dt + D3

x )G j · F = 0, for j = 1, 2, . . . , M,

D2
x F · F = 2

(∑M
j=1 G j

)
F.

(9)

A coupled differential-difference KdV Equations are obtained by discretizing
the spacial part of the bilinear eq. (9),

D3
x G · F → 1

ε
(Gn+1 Fn−1 − Gn−1 Fn+1),

D2
x F · F → 2

ε2
(Fn+1 Fn−1 − F2

n ).

We obtain ⎧⎪⎨
⎪⎩

Dt G j,n · Fn + 1
ε
(G j,n+1 Fn−1 − G j,n−1 Fn+1) = 0,

for j = 1, 2, . . . , M,

Fn+1 Fn−1 − F2
n = ε2

(∑M
j=1 G j,n

)
Fn,

(10)

which is transformed into the ordinary form

∂u j

∂t
+ 1

ε

(
1 + ε2

M∑
j=1

u j

)
(u j,n+1 − u j,n−1) = 0, (11)

for j = 1, 2, . . . , M , through the transformation G j,n = u j,n Fn .
Time-discretization of the coupled KdV equations is obtained by re-
placing the differential operator Dt G · F by the corresponding difference
operator:

Dt G · F → (Gm+1 Fm − Gm Fm+1)/δ,

where t = mδ, m being integers and δ a time-interval.
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We postulate that discretized bilinear forms are invariant under the gauge
transfomation: {

Fm
n → Fm

n exp (q0m + p0n),

Gm
n → Gm

n exp (q0m + p0n).

We find a gauge invariant discrete bilinear KdV equation⎧⎪⎪⎨
⎪⎪⎩

Gm+1
j,n Fm

n − Gm
j,n Fm+1

n + δ

ε
(Gm+1

j,n+1 Fm
n−1 − Gm

j,n−1 Fm+1
n+1 ) = 0,

for j = 1, 2 . . . , M,

Fm
n+1 Fm

n−1 − (Fm
n )2 = ε2(

∑ M
j=1Gm

j,n)Fm
n .

(12)

We introduce an auxiliary variable �m
n defined by

�m
n = Fm+1

n+1 Fm
n−1

Fm+1
n Fm

n

. (13)

We note that �m
n satisfies an identity

�m
n = Fm+1

n+1 Fm+1
n−1

(Fm+1
n )2

(Fm
n−1)2

Fm
n Fm

n−2

�m
n−1. (14)

Let Gm
j,n = um

j,n Fm
n . Then eq. (12) is transformed into the ordinary form with

the help of the identity (14)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

um+1
j,n − um

j,n + δ

ε
�m

n (um+1
j,n+1 − um

j,n−1) = 0, for j = 1, 2, . . . , M,

�m
n = 1 + ∑M

j=1 um+1
j,n

1 + ∑M
j=1 um

j,n−1

�m
n−1.

(15)

Soliton solutions to the coupled discrete KdV eq. (15) are given by um
j,n =

Gm
j,n/Fm

n where Fm
n and Gm

j,n are solutions to the bilinear form (12).
Let f m

n satisfy a bilinear form of the discrete KdV equation [5],

f m+1
n+1 f m

n − f m+1
n f m

n+1 + (δ/ε)( f m+1
n+2 f m

n−1 − f m+1
n+1 f m

n ) = 0 (16)

and a bilinear form of the Lotka-Volterra equation [5],

Ds f m
n+1 · f m

n = f m
n+2 f m

n−1 − f m
n+1 f m

n , (Ds =
M∑

j=1

D j ), (17)
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where we have introduced new variables s j , s and the bilinear operators, D j f ·
g = ∂ f

∂s j
g − f ∂g

∂s j
and Ds = ∑M

j=1 D j , respectively.

Then we find easily that Fm
n and Gm

j,n defined by{
Fm

n = f m
n+1 f m

n ,

Gm
j,n = D j f m

n+1 · f m
n ,

(18)

satisfy the coupled discrete KdV equation (12).
We have 2-soliton solutions to the equations (16) and (17), for example,

f m
n = 1 + exp η1 + exp η2 + a1,2 exp(η1 + η2), (19)

where

exp η j = b j pn
j q

m
j exp(ω j (s j + s)), (20)

q j = (1 + (δ/ε)/p j )/(1 + (δ/ε)p j ), (21)

ω j = p1 − 1/p j , for j = 1, 2, . . . , M, (22)

a j,k = (p j − pk)2/(p j pk − 1)2, for j, k = 1, 2, . . . , M, (23)

where a j and p j are arbitrary parameters.

3 COUPLED MODIFIED KdV EQUATIONS

Discretization of the coupled modified KdV equations is discussed in [4]. We
present the results. Equation (4) is transformed into the bilinear form by the
rational transformation v j = G j/F⎧⎪⎨

⎪⎩
(Dt + D3

x )G j · F = 0, for j = 1, 2, . . . , M,

D2
x F · F =

M∑
j,k=1

c j,k G j Gk,
(24)

where c j,k are arbitrary coupling constants.
Following the procedure described in the previous section we discretize eq.(24)
and obtain a discrete bilinear form:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Gm+1
j,n Fm

n − Gm
j,n Fm+1

n + δ

ε
(Gm+1

j,n+1 Fm
n−1 − Gm

j,n−1 Fm+1
n+1 ) = 0,

for j = 1, 2, . . . , M,

Fm
n+1 Fm

n−1 − (Fm
n )2 = ε2

M∑
j,k=1

c j,k Gm
j,nGm

k,n.
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The bilinear equation is transformed, by using the identity (14), into a coupled
discrete MKdV equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
vm+1

j,n − vm
j,n + δ

ε
�m

n (vm+1
j,n+1 − vm

j,n−1) = 0, for j = 1, 2, . . . , M,

�m
n = 1 + ∑M

j,k=1 vm+1
j,n vm+1

k,n

1 + ∑M
j,k=1 vm

j,n−1v
m
k,n−1

�m
n−1,

through the transformation Gm
j,n = vm

j,n Fm
n .

4 COUPLED NONLINEAR KLEIN-GORDON
(SINE-GORDON) EQUATIONS

The coupled nonlinear Klein-Gordon (Sine-Gordon) equation (6) is trans-
formed into the following bilinear form through the rational transformation

w j = G j

F ,⎧⎪⎨
⎪⎩

(Dx Dy − 1)G j · F = 0, for j = 1, 2, . . . , M,

D2
x F · F = 2

M∑
j,k=1

c j,k G j Gk .
(25)

Discretizing y(= mδ) first and then x(= nδ) we obtain

Dx DyG · F

→ (1/δ)Dx (Gm+1 · Fm − Gm · Fm+1), (26)

→ (1/δ2)(Gm+1
n+1 Fm

n − Gm+1
n Fm

n+1 − Gm
n+1 Fm+1

n + Gm
n Fm+1

n+1 ) . (27)

Taking the gauge invariance into account we tansform G F as

G F → (1/4)(Gm+1
n+1 Fm

n + Gm+1
n Fm

n+1 + Gm
n+1 Fm+1

n + Gm
n Fm+1

n+1 ). (28)

Then equation(25) is discretized as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Gm+1
j,n+1 Fm

n + Gm
j,n Fm+1

n+1 − Gm+1
j,n Fm

n+1 − Gm
j,n+1 Fm+1

n

= δ2

4
(Gm+1

j,n+1 Fm
n + Gm

j,n Fm+1
n+1 + Gm+1

j,n Fm
n+1 + Gm

j,n+1 Fm+1
n ),

for j = 1, 2, . . . , M,

Fm
n+1 Fm

n−1 − (Fm
n )2 = δ2

M∑
j,k=1

c j,k Gm
j,nGm

k,n,

(29)
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which is transformed, by using an identity similar to the identity (14), into a
coupled form of nonlinear discrete Klein-Gordon equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wm+1
j,n+1 + wm

j,n − (wm+1
j,n + wm

j,n+1)�m
n

= δ2

4
(wm+1

j,n+1 + wm
j,n + (wm+1

j,n + wm
j,n+1)�m

n ),

for j = 1, 2, . . . , M,

�m
n = 1 + δ2

∑M
j,k=1 c j,kw

m
j,nw

m
k,n

1 + δ2
∑M

j,k=1 c j,kw
m+1
j,n wm+1

k,n

�m
n−1,

(30)

through the transformation Gm
j,n = wm

j,n Fm
n .

Soliton solutions to the coupled discrete nonlinear Klein-Gordon equation (30)
are given by wm

j,n = Gm
j,n/Fm

n where Fm
n and Gm

j,n are solutions to the bilinear
form (29). N-soliton solutions to the M-coupled equations are expressed by
pfaffians, which will be published elsewhere. Here we give soliton solutions
for the simplest case, N = 2 and M = 2,

Fm
n = 1 + a20 exp(2η1) + a11 exp (η1 + η2)

+ a02 exp(2η2) + a22 exp (2η1 + 2η2),

Gm
1,n = exp η1(1 + a12 exp (2η2)),

Gm
2,n = exp η2(1 + a21 exp (2η1)),

where

exp η j = a j pn
j q

m
j ,

q j = (1 − p j − (δ/2)2(1 + p j ))/(1 − p j + (δ/2)2(1 + p j )),

a20 = δ2c11 p2
1/(p2

1 − 1)2, a02 = δ2c22 p2
2/(p2

2 − 1)2,

a11 = δ2(c12 + c21)p1 p2

2(p1 p2 − 1)2
,

a12 = a02b12, a21 = a20b12, a22 = a02a20b2
12,

b12 = (p1 − p2)2/(p1 p2 − 1)2,

a j , p j for j = 1, 2 being arbitrary parameters.

5 COUPLED NONLINEAR SCHRÖDINGER EQUATION

We consider the following form of the coupled nonlinear Schrödinger equation

i
∂

∂t
ψi + ∂2

∂x2
ψi +

(
M∑

j,k=1

c j,kψ jψ
∗
k

)
ψi = 0 , (31)
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with arbitrary constants c j,k satisfying the reality conditions c∗
j,k = ck, j where ∗

denotes complex conjugate. Equation (31) is transformed into the bilinear
form ⎧⎪⎨

⎪⎩
(i Dt + D2

x )G j · F = 0, for j = 1, 2, . . . , M,

D2
x F · F = 2

M∑
j,k=1

c j,k G j G∗
k

(32)

through the rational transformation 	i = Gi/F , for real F.
We obtain a system of semi-discrete nonlinear Schrödinger equations replac-
ing the bilinear operator, D2

x G · F → (Gn+1 Fn−1 − 2Gn Fn + Gn−1 Fn+1)/ε2

in equation (32)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

i Dt G j,n · Fn + 1

ε2
(G j,n+1 Fn−1 + G j,n−1 Fn+1 − 2G j,n Fn) = 0 ,

for j = 1, 2, . . . , M,

Fn+1 Fn−1 − F2
n = ε2

M∑
j,k=1

c j,k G j,nG∗
k,n.

(33)

Discretizing time and taking the gauge invariance of the bilinear equa-
tion into account, we obtain a system of discrete nonlinear Schrödinger
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
(
Gm+1

j,n Fm
n − Gm

j,n Fm+1
n

)
+ δ

ε2

(
Gm+1

j,n+1 Fm
n−1 + Gm

j,n−1 Fm+1
n+1 − Gm

j,n Fm+1
n − Gm+1

j,n Fm
n

) = 0,

for j = 1, 2, . . . , M,

Fm
n+1 Fm

n−1 − (Fm
n )2 = ε2

M∑
j,k=1

c j,k Gm
j,nGm ∗

k,n .

(34)

Equations (33) and (34) are transformed, by using the identity (14), into the
ordinary forms

i
∂	 j

∂t
+ 1

ε2
(	 j,n+1 + 	 j,n−1 − 2	 j,n)

+ (	 j,n+1 + 	 j,n−1)

(
M∑

j,k=1

c j,k	 j,n	
∗
j,k

)
= 0, for j = 1, 2, . . . , M,

(35)
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i(	m+1
j,n − 	m

j,n) + δ

ε2
(�m

n (	m+1
j,n+1 + 	m

j,n−1) − 	m
j,n − 	m+1

j,n ) = 0,

for j = 1, 2, · · · , M,

�m
n =

1 +
M∑

j,k=1

c j,k	
m+1
j,n 	∗m+1

k,n

1 +
M∑

j,k=1

c j,k	
m
j,n−1	

∗m
k,n−1

�m
n−1,

(36)

through the transformations 	 j,n = G j,n Fn and 	m
j,n = Gm

j,n Fm
n , respectively.

Soliton solutions to the system of discrete nonlinear Schrödinger equations (36)
are given by 	m

j,n = Gm
j,n/Fm

n where Fm
n and Gm

j,n are solutions to the bilinear
form (34). N-soliton solutions to the M-coupled equations are expressed by
pfaffians, which will be published elsewhere. Here we give soliton solutions
for the simplest case, N = 2 and M = 2,

Fm
n = 1 + a11 exp(η1 + η∗

1) + a12 exp(η1 + η∗
2) + a21 exp(η2 + η∗

1)

+ a22 exp(η2 + η∗
2) + a1212 exp(η1 + η2 + η∗

1 + η∗
2),

Gm
1,n = exp(η1)(1 + b121 exp(η2 + η∗

1) + b122 exp(η2 + η∗
2)),

Gm
2,n = exp(η2)

(
1 + b̂121 exp(η1 + η∗

1) + b̂122 exp(η1 + η∗
2)

)
,

where

exp(η j ) = c jω
m
j pn

j ,

ω j = (1 + iδ(p j − 1))/(1 − iδ(1/p j − 1)),

b121 = a21b11β12, b122 = a22b12β12,

b̂121 = a11b21β21, b̂122 = a12b22β21,

a1212 = [p1 p2 p∗
1 p∗

2[c1,1a22(b12β12 + b21β
∗
12) + c1,2a21(b11β12 + b22β

∗
21)

+ c2,1a12(b11β
∗
12 + b22β21) + c2,2a11(b12β

∗
12 + b21β21)]

− a11a22(p1 P∗
1 − p2 p∗

2)2 − a12a21(p1 p∗
2 − p2 p∗

1)2]/(p1 p2 p∗
1 p∗

2 − 1)2,

a jk = c j,k p j p∗
k /(p j p∗

k − 1)2,

b jk = [p j + p∗
k + iδ(p j − p∗

k )]/(p j p∗
k − 1),

β jk = (p j − pk)/[p j pk + 1 + iδ(p j pk − 1)].

6 CONCLUSION

Integrable discretization of coupled forms of the well-known soliton equations
such as KdV equation, modified KdV equation, sine-Gordon equation and
nonlinear Schrödinger equation is described.
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AN ADELIC W-ALGEBRA AND RANK
ONE BISPECTRAL OPERATORS

E. Horozov
Institute of Mathematics and Informatics, Bulg. Acad. of Sci., Acad.
G. Bonchev Str., Block 8, 1113 Sofia, Bulgaria

Abstract We introduce a Lie algebra which we call adelic W-algebra. It is a central
extension of the Lie algebra of the differential operators on the complex
line with rational coefficients. We construct its natural bosonic represen-
tation similar to highest weight representation. Then we show that the
rank one algebras of bispectral operators are in 1:1 correspondence with
the tau-functions in this representation.

1 INTRODUCTION

In this note we give representation-theoretic description of rank one maximal
commutative algebras of bispectral ordinary differential operators. This object
has several quite different realizations, e.g., rational solutions of KP-hierarchy
[1, 2]; the completed phase space of Calogero–Moser particle systems [3];
isomorphism classes of right ideals of the Weyl algebra [4, 5], etc. to men-
tion few of them. Wilson has described it as a subset of Sato’s Grassmannian
and has named it “adelic Grassmannian” [6]. Some of the bispectral operators
(not only rank one) were characterized in terms of representation theory of
W1+∞-algebra [7]. Here we obtain a similar result for the entire set of rank
one bispectral operators or in other words we characterize the rank one alge-
bras of bispectral differential operators in terms of representations of a suitable
infinite-dimensional Lie algebra, which will be called an adelic W-algebra. Be-
fore explaining in more details the main results we recall some of the notions
that have been mentioned above.

Bispectral operators have been introduced by F.A. Grünbaum in his work on
medical imaging [8] (see also [9]). An ordinary differential operator L(x, ∂x ) is
called bispectral if there exists an infinite-dimensional family of eigenfunctions
ψ(x, z), which are also eigenfunctions of another differential operator �(z, ∂z)
in the spectral parameter z, i.e., for which the following identities hold:

L(x, ∂x )ψ(x, z) = f (z)ψ(x, z), (1)

�(z, ∂z)ψ(x, z) = θ (x)ψ(x, z), (2)

123
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Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 123–136.
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with some nonconstant functions f (z) and θ (x). G. Wilson [6] has classified all
bispectral operators of rank one (see the next section for more details). Using
slightly different terminology than in [6], they are all operators with rational
coefficients that are Darboux transformations of operators with constant coeffi-
cients. Sato’s theory associates with each operator (or rather with the maximal
algebra of operators that commute with it) a plane in Sato’s Grassmannian.
The set of all planes corresponding to the rank one bispectral algebras of op-
erators has been called by G. Wilson an adelic Grassmannian and denoted by
Grad . Originally G. Wilson has characterized the rank one bispectral algebras
A as those whose spectral curve SpecA is rational and its singularities are only
cusps. In a different development [7] we have characterized those of bispectral
algebras whose spectral curve has only one cusp in terms of representations
of W1+∞-algebra. More precisely we have built certain bosonic highest weight
modules of W1+∞. Denote the module corresponding to the rank one case by
M0. Then the tau-functions of the bispectral operators (with the above re-
striction) lie in M0 and vice versa—all the tau functions in the module are
tau-functions of bispectral operators.

A natural question (see [7]) is if a similar result holds for the entire set of rank
one bispectral operators. The present paper gives an affirmative answer to this
question. Obviously one has first to point out a suitable generalization of the
W1+∞-algebra. The most natural candidate does the job—the algebra we look
for is a central extension of the algebra of differential operators with rational
coefficients. We call this new algebra an adelic W-algebra. Then we proceed
as in [7, 10]. We construct a bosonic representation Mad which is similar to a
highest weight representation. Our main result is the following:

Theorem 1 If an element τ ∈ Mad is a tau-function then the corresponding
plane belongs to Grad . Conversely, if W ∈ Grad then τW ∈ Mad .

Returning to the other realizations of Grad we obtain other interesting con-
nections. For example, using the fact that Grad bijectively maps onto the set
R of isomorphism classes of right ideals of the Weyl algebra A1 (cf. [4, 5]) we
obtain

Corollary 2 The isomorphism classes of the right ideals of the Weyl algebra
are in 1:1 correspondence with the tau-functions in Mad .

(Recall that the Weyl algebra A1 is the algebra of differential operators in one
variable with polynomial coefficients. Two right ideals I, J ∈ A1 are isomor-
phic iff they are isomorphic as right A1-modules.)

For other interpretations see [5, 11]. Many of the constructions in the present
paper are similar to those of [7]. The organization of the paper is the following.
Section 2 contains preliminaries on Sato’s Grassmannian, Darboux transforma-
tions, bispectral operators, W1+∞-algebra. In Section 3 we introduce the adelic
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W -algebra together with a bosonic representation Mad. In Section 4 we give a
sketch of Theorem 1. The detailed proofs will be presented elsewhere.

This paper is dedicated to Prof. R. Hirota.

2 PRELIMINARIES

Here we have collected some facts and notation needed throughout the paper.
In particular we recall Sato’s theory, Darboux transforms, and the bispectral
problem, W1+∞-algebra.

2.1 Sato’s Theory of KP-Hierarchy

In this subsection we recall some facts and notation from Sato’s theory of
KP-hierarchy [2–14] needed in the paper. We use the approach of V. Kac and
D. Peterson based on infinite wedge products (see e.g., [15]) and the survey
paper by P. van Moerbeke [16].

Consider the infinite-dimensional vector space of formal series

V =
{ ∑

k∈Z

akvk

∣∣∣ak = 0 for k � 0
}
.

Sato’s Grassmannian Gr (more precisely—its big cell) [12, 13] consists of all
subspaces (“planes”) W ⊂ V which have an admissible basis

wk = vk +
∑
i<k

wikvi , k = 0, 1, 2, . . .

Then define the fermionic Fock space F (0) consisting of formal infinite sums
of semi-infinite wedge monomials

vi0
∧ vi1

∧ · · ·
such that i0 < i1 < · · · and ik = k for k � 0. The wedge monomial

ψ0 = v0 ∧ v1 ∧ · · ·
plays a special role and is called the vaccum. The plane that corresponds to it
will be denoted by W0. There exists a well-known linear isomorphism, called
a boson-fermion correspondence:

σ: F (0) → B, (3)

(see [15]), where B = C[[t1, t2, . . .]] is the bosonic Fock space.
To any plane W ∈ Gr one naturally associates a state |W 〉 ∈ F (0) as follows

|W 〉 = w0 ∧ w1 ∧ w2 ∧ · · · ,
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where w0, w1, . . . , form an admissible basis. One of the main objects of Sato’s
theory is the tau-function of W defined as the image of |W 〉 under the boson-
fermion correspondence (3)

τW (t) = σ (|W 〉) = σ (w0 ∧ w−1 ∧ w−2 ∧ · · ·). (4)

It is a formal power series in the variables t1, t2, . . . , i.e., an element of B :=
C[[t1, t2, . . .]]. In particular the tau-function corresponding to the vacuum ψ0

is τ0 ≡ 1. Using the tau-function one can define the other important function
connected to W—the Baker or wave function

�W (t, z) = e	∞
k=1tk zk τW (t − [z−1])

τW (t)
, (5)

where [z−1] is the vector (z−1, z−2/2, . . .). Introducing the vertex operator

X (t, z) = exp

( ∞∑
k=1

tk zk

)
exp

(
−

∞∑
k=1

1

kzk

∂

∂tk

)
(6)

the above formula (5) can be written as

�W (t, z) = X (t, z)τ (t)

τ (t)
. (7)

We often use the formal series �W (x, z) = �W (t, z)|t1=x, t2=t3=···=0, which we
call again wave function. The wave function, corresponding to the vacuum is

�0(x, z) = exz.

The wave function �W (x, z) contains the whole information about W and hence
about τW , as the vectors w−k = ∂K

x �W (x, z)|x=0 form an admissible basis of
W (if we take vk = zk as a basis of V).

2.2 Darboux Transforms and Bispectral Operators

We shall recall a version of Darboux transform from [17].

Definition 3 We say that a plane W (or the corresponding wave function
�W (x, z), the tau-function τW ) is a Darboux transformation of the vacuum
(respectively—of the wave function �0(x, z), the tau-function τ0) if there exist
polynomials f (z), g(z), and differential operators P(x, ∂x ), Q(x, ∂x ) such that

�W (x, z) = 1

g(z)
P(x, ∂x )�0(x, z), (8)

�0(x, z) = 1

f (z)
Q(x, ∂x )�W (x, z). (9)
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The Darboux transformation is called polynomial if the operators P(x, ∂x ) and
Q(x, ∂x ) have rational coefficients.

Obviously

Q(x, ∂x )P(x, ∂x )�0 = g(z) f (z)�0, (10)

Denoting the polynomial g(z) f (z) by h(z) and recalling that �0 = exz we see
that

Q(x, ∂x )P(x, ∂x ) = h(∂x ).

On the other hand the wave function �W is an eigen-function of the differential
operator

L(x, ∂x ) = P(x, ∂x )Q(x, ∂x ).

Notice that the operator L is a traditional Darboux transform of the operator
h(∂x ), which justifies the terminology of the definition. We will also say that
the operator L is a polynomial Darboux transform of the operator ∂x .

We shall need a second definition of the polynomial Darboux transformation.
In the above notation let the polynomial h(∂x ) factorize as

h(∂x ) =
m∏

j=1

(∂x − λ j )
d j ,

where λ j are the different roots with multiplicities d j . Then the kernel of h(∂x )
is given by

kerh(∂x ) = ⊕m
j=1W j ,

where

W j = {eλ j x , xeλ j x , . . . , xd j −1eλ j x}.
Definition 4 The Darboux transform is polynomial iff the kernel of P has the
form

ker P = ⊕m
j=1 Kj ,

where Kj is a linear subspace of Wj .

The equivalence of the two definitions can be found in [18]. Each nonzero
element f ∈ K j will be called (after Wilson) condition supported at λ j . The
Darboux transform will be called monomial iff all the conditions are supported
at one point. Finally we recall the bispectral involution b, which in this case
maps the operators with polynomial coefficients in the x-variable into operators
with polynomial coefficients in the z-variable by the formulas

b(∂x ) = z, b(x) = ∂z,
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i.e., in this case b is the formal Fourier transform. It will be used when the
differential operators are applied to �0 as follows:

∂x�0 = z�0, x�0 = ∂z�0

We end this subsection with the following important result of G. Wilson [6]:

Theorem 5 Any polynomial Darboux transform of ∂x is a rank one bispectral
operator and vice versa.

This theorem is formulated by G. Wilson in a different terminology. See [19]
for an exposition using Darboux transforms.

Following G. Wilson we will call the set of all planes W ⊂ Gr that are
polynomial Darboux transforms of W0 the adelic Grassmannian and denote it
by Grad .

2.3 W1+∞-Algebra

In this subsection we recall the definition of W1+∞, and some of its bosonic
representations introduced in [10]. For more details see [20].

The algebra w∞ of the additional symmetries of the KP-hierarchy is iso-
morphic to the Lie algebra of regular polynomial differential operators on the
circle

w∞ ≡ D = span{zα∂β
z |α, β ∈ Z, β ≥ 0}.

It was introduced in [21, 22] and was extensively studied by many authors (see,
e.g., [23, 24], etc.). Its unique central extension is denoted by W1+∞.

Denote by c the central element of W1+∞ and by W (A) the image of A ∈ D
under the natural embeddingD ↪→ W1+∞ (as vector spaces). The algebra W1+∞
has a basis

c, J l
k = W (−zl+k∂ l

z), l, k ∈ Z, l ≥ 0.

In [10] we constructed a family of highest weight modules of W1+∞. Here
we need the most elementary one of them, for which the next theorem is an
easy exercise.

Theorem 6 The function τ0 satisfies the constraints

J l
kτ0 = 0, k ≥ 0, l ≥ 0, (11)

W
(
z−k Pk(Dz)Dl

z

)
τ0 = 0, k ≥ 0, l ≥ 0, (12)

where Pk(Dz) = ∏k−1
j=0(Dz − j), Dz = z∂z .
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The first constraint means that τ0 is a highest weight vector with highest weight
λ(J l

0) = 0 of a representation of W1+∞ in the module

M0 = span
{

J l1

k1
. . . J

lp

kp
τ0

∣∣k1 ≤ · · · ≤ kp < 0
}

. (13)

One easily checks that the central charge c = 1. The second constraint yields
that the module M0 is quasifinite, i.e., it is finite-dimensional in each level.

3 AN ADELIC W-ALGEBRA

The adelic W -algebra is a Lie algebra that we intend to introduce in analogy
with W1+∞. Most of the definitions and constructions are similar to those of
W1+∞.

Instead of the Lie algebra w∞ of regular operators on the circle we start with
the Lie algebra RD of differential operators with rational coefficients on the
complex line. We are going to use the following basis of RD:

1. zn+l∂ l
z, n ∈ Z, l ≥ 0; (14)

2. (z − a)−n+l∂ l
z, − n + l < 0, l ≥ 0, a ∈ C − {0}; (15)

Usually we shall consider the elements from RD as differential operators
with coefficients that are Laurent series in z−1 by expanding (z − a)−n+l around
infinity. We would like to construct natural representations of RD. We shall
work with the space V where vk = zk . Obviously RD acts naturally on V.
Then we can associate with each operator A ∈ RD an infinite matrix having
only finite number of diagonals below the principal one but having eventually
infinite number above it. In other words the matrix (ai, j ), associated with A,
has the property that ai, j = 0 for i − j � 0. The Lie algebra of such matrices
will be denoted by a′

∞. It can be considered as a completion of the algebra a∞
of matrices having only finite number of diagonals (see [15]). Now we explain
how to construct representations in the fermionic Fock space F (0). We recall
that in the case considered here F (0) consists of formal series of semi-infinite
wedge monomials:

zi0 ∧ zi1 ∧ zi2 ∧ · · · , (16)

with i0 < i1 < · · · and ik = k for k � 0. We can define the action of A ∈ a′
∞

by the standard definition (see [15]). First for matrices with only finite number
of entries define

r (A)(zi0 ∧ zi1 ∧ · · ·) = Azi0 ∧ zi1 ∧ · · ·
+ zi0 ∧ Azi1 ∧ · · ·

· · ·
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It is easy to check that if A ∈ a′
∞ has no entries on the main diagonal r (A) still

makes sense, the image being infinite formal series. For matrices with infinite
number of entries on the main diagonal the above definition is no longer me
aningful. For that reason we need to modify it as follows. We put

r̂ (Ei, j ) = r (Ei, j ) for i �= j or i = j > 0; (17)

r̂ (Ei,i ) = r (Ei,i ) − Id for i ≤ 0. (18)

See [15] for more details.
This defines a representation of the central extension a′

∞ ⊕ Cc. The corre-
sponding central extension of the subalgebra RD of a′

∞ will be called adelic
W-algebra. We will use the notation W ad . The terminology and the notation
are chosen to be similar to those of the adelic Grassmannian Grad . The main
result of the present paper naturally connects the two objects.

We shall describe in some more details W ad . By W (A) we shall denote the
image of the element A ∈ RD under the natural embedding RD ⊂ W ad (as
vector spaces). Then for a ∈ C, l ≥ 0, n ∈ Z put

J l
n(a) = W (−(z − a)n+l∂ l

z) (19)

For a = 0 we also shall use the notation J l
n = J l

n(0). When a is fixed the above
operators (19) together with the central charge c form a copy of W1+∞, which
we shall denote by W1+∞(a). Recall that W1+∞(a) has a grading: the elements
J l

n(a) have weight n. The elements with nonnegative grading are common for
all a. In fact the common part is much larger: for all n + l ≥ 0 the elements
J l

n(a) are common. Thus we have the following basis for W ad :

1. J l
n(0), l ≥ 0, n + l ≥ 0; (20)

2. J l
n(a), n + l < 0, a �= 0; (21)

3. c. (22)

In complete analogy to the case of W1+∞ we can construct a representation of
W ad in the Fock spaces using the vacuum. We formulate the needed properties
in the following theorem.

Theorem 7 The tau-function τ0 satisfies the following constrains

1) J l
nτ0 = 0, l ≥ 0; n ≥ 0 (23)

2) W ((z − a)−k Pk((z − a)∂z)) ((z − a)∂z)
lτ0 = 0, (24)

where Pk(u) = u(u − 1) . . . (u − k + 1).

We set

W ad
− = span{J l

n, a ∈ C, n < 0}. (25)
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Then define the W ad
− -module Mad by

Mad = span{J l1
n1

(a1) . . . J lm
nm

(am)τ0}, (26)

where n j + l j < 0 for a j �= 0 and n j < 0 for a j = 0.

Corollary 8 The vector space Mad is a space of representation of the Lie
algebra W ad.

4 PROOF OF THE MAIN RESULT

In this section we give a sketch of the prove of Theorem 1. It will be split into
two parts.

1. Assume that τ is a tau-function in the module Mad . We are going to show
that it is polynomial Darboux transform of τ0.

Let τW = uτ0 where u is an element of the universal enveloping algebra.
One can express the wave function �W (t, z) in terms of u:

�W (t, z) = X (t, z)uτ0

uτ0
|t1=x, t2=···=0. (27)

Commuting u and X (t, z) we obtain

�W = U (t, z)X (t, z)τ0

uτ0
|t1=x, t2=···=0, (28)

where

U (t, z) =
∑

bk,l,a

(
J l1

−k1
(a1) + l1 J l1−1

−k1+1,−1 − (z − a1)−k1+l1∂ l1
z

)
. . .

(
J

lp

−kp
(ap) + l p J

lp−1
−kp+1,−1 − (z − ap)−kp+l p∂

l p
z

)
(

J
lp+1

−kp+1
+ l p+1 J

lp−1
−kp+1

+ δkp+1,0δl p+1,0 − z−kp+1+l p+1∂
l p+1
z

)
· · ·

(
J

lp+r

−kp+r
+ l p+r J lr −1

−kp+r
+ δkp+r,0δl p+r,0 − z−kp+r +l p+r ∂

l p+r
z

)
.

One can prove that the element U (t, z) is equivalent to another element
where l j < n j . Now we use that

J l
−k|t1=x, t2=t3=···=0 = xkδl+1,k i f l < k. (29)

The point is that there are no differentiations but only multiplications by powers
of x. From the above formula we can derive for J l

−k(a) and for J l
−k+1,−1(a) the
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following ones:

J l
−k(a)|t1=x, t2=t3=···=0 = xkδl+1,k, (30)

J l
−k+1,−1(a)|t1=x, t2=t3=0 = 0. (31)

Both formulas follow from the expansion of the L.H.S. as infinite series and
the fact that l < k. From (27) we obtain (using also the bispectral involution)

�W = P1(x, ∂x )�0

g(z)
, (32)

where P1 is an operator with rational coefficients.
We need also to express �0(x, z) in terms of �W (x, z). The adjoint involution

a implies

�0(x, z) = P∗
2 (x, ∂x )�W

g2(z)
, (33)

which together with (32) gives the proof of the first part of the theorem.

2. Next we assume that τW is a bispectral tau-function.

To fix the notation let the Darboux transform of the corresponding wave
function �W be given by

�W (x, z) = P(x, ∂x )�0(x, z)

g(z)
(34)

�0(x, z) = Q(x, ∂x )�W (x, z)

f (z)
, (35)

where Q ◦ P = h(∂x ) with some polynomial h. Let λ1, . . . , λm be the differ-
ent points, where the conditions are supported. Then we can suppose that the
polynomial h is

h(z) =
m∏

j=0

(z − λ j )
d j.

Denote the degree of h by d. Let the number of the conditions supported at the
point λ j be r j . Then

g(z) =
m∏

j=0

(z − λ j )
r j.

Put also degg(z) = r = r1 + · · · rm . Let {�i }|i=1,...,d be the standard basis of
kerh(z), i.e.

{�i } =
m⋃

j=1

{eλ j x , . . . , xd j −1eλ j x}
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Denote by f1, . . . , fr the functions forming the kernel of the operator P, i.e,
defining the Darboux transform (34)–(35). Then

fl(x) =
d∑

i=1

al,i�i (x), l = 1, . . . , r (36)

Denote by A the matrix formed by the above coefficients, i.e.

A = (al,i ), l = 1, . . . , r, i = 1, . . . , d.

For any r-element subset I {i1, . . . , ir } ⊂ {1, . . . , d} denote by AI the fol-
lowing minor of A:

AI = (al,ik )|l, k=1,..., r .

Put � = {�i1,..., ir } and

�I (x, z) = Wr (�I , �0)

g(z)Wr (�I )
. (37)

We need the following formula from [16]:

�W (x, z) =
∑

I det AI Wr (�I )�I (x, z)∑
I det I Wr (�I )

. (38)

Notice that for any I we have

Wr (�I , �0) = ex
∑

λ j r j PI (x, ∂x ) = ex
∑

λ j r j

r∑
j=0

pI , j (x)∂ j
x exz,

where pI, j (x) are polynomials. Also we have

Wr (�I ) = ex
∑

λ j r j qI (x),

where the polynomial qI (x) = pI,r (x). Notice that the exponential factor is the
same everywhere. Then we have

�W =
∑

I detAI PI (x, ∂x )exz

g(z)
∑

I det I qI (x)
. (39)

Among the subsets I there is one that corresponds to the set of following
functions from the kernel of h(∂x ):

f̃1(x) = eλ1x , . . . , f̃r1
(x) = xr1−1eλ1x

. . . . . . . . . . . . . . . . . . . . .

f̃r−rm+1 = eλm x , . . . , f̃r = xrm−1eλr x

Denote this subset by I0. Notice that PI0
= ∑r

j=0 β j∂
j

x , where b j ∈ C, i.e., PI0

is an operator with constant coefficients. It is easy to check that PI0
≡ g(∂x ).
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Introduce the matrix A0 as follows. Let I0 = (i0
1 < i0

2 < · · · < i0
r ). Then let

A0 = (a j,iδ j,i0
k
). Now consider A as a deformation of A0:

A(ε) = ε A + (1 − ε)A0.

Obviously a j,i (ε) = a j,i if i ∈ I0 and a j,i = εa j,i otherwise.
Generically detAI

0 �= 0. We can assume that detAI
0 = 1. Using the bispectral

involution and expanding the denominator in a series in ε one obtains

�W (ε) = (1 +
∞∑
j=1

ε j Pj (z, ∂z))�0. (40)

The important fact here is that all the operators Pj (z, ∂z) ∈ W ad
− . The stan-

dard basis of W0 is given by wk = ∂k
x �0 = zk, k = 0, 1, . . . . We need to find

expression for the basis of W (ε). We have

∂k
x �W (ε) = (1 +

∞∑
j=1

ε j Pj (z, ∂z))wk .

Using the boson-fermion correspondence σ we get the tau-function τW (ε):

τW (ε) = σ
(

(1 +
∑∞

j=1
ε j Pj (z, ∂z))w0 ∧ (1 +

∑∞
j=1

ε j Pj (z, ∂z))w1 ∧ · · ·
)

= τ0 + εr (P1)τ0 + ε2

(
r (P2) + 1

2
r (P1)2 − 1

2
r (P2

1 )

)
τo + · · ·

Notice that the coefficients at the powers of ε are polynomials in r (P j
k ), applied

to τ0. Hence all of them belong to the W ad-module Mad . We shall show that
the entire series belong to it. Once again we need a formula from [16]—this
time for the tau-function. We have

τW (ε) = 1 + ∑
I �=I0

detAI (ε)�I τI

1 + ∑
I �=I0

detAI (ε)�I
,

where �I = Wr (�I )(0). Multiplying τW (ε) by the denominator, which is a
polynomial in ε we get a polynomial in ε (the numerator), which, having a finite
number of terms that belong to Mad by the above argument, itself belongs to
Mad for all ε. In particular for ε = 1 we get that τW ∈ Mad .

The case when det AI
0 = 0 easily follows from the above.
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TOROIDAL LIE ALGEBRA AND
BILINEAR IDENTITY OF THE
SELF-DUAL YANG-MILLS HIERARCHY

Saburo Kakei
Department of Mathematics, Rikkyo University, Nishi-ikebukuro,
Tokyo 171-8501, Japan

Abstract Bilinear identity associated with the self-dual Yang-Mills hierarchy is
discussed by using a fermionic representation of the toroidal Lie algebra
sl tor

2 .

1 INTRODUCTION

There have been many studies on soliton equations in higher dimensional space-
time. Among other things, the self-duality equation of the Yang-Mills model
in four-dimension plays prominent role, since it produces many integrable
equations by dimensional reduction (see [1] and the references therein). In this
sense, the self-dual Yang-Mills (SDYM) equation may be regarded as a “master
equation” for soliton-type equations.

The SDYM equation can also be treated also by Hirota’s bilinear method. To-
ward this aim, we shall take so-called “Yang’s R-gauge” or the “J-formulation”
of the SDYM [2]:

∂ȳ
(
J−1∂y J

) + ∂z̄
(
J−1∂z J

) = 0. (1)

Following the work [3], Sasa, Ohta and Matsukidaira [4] considered the gauge
field J of the form,

J = 1

f

[
1 −g
e f 2 − eg

]
, e = τ1

τ5
, f = τ2

τ5
, g = τ3

τ5
. (2)

The gauge field J of (2) solves (1) if the τ -functions satisfy the following seven
Hirota-type equations [4],

τ 2
5 + τ2τ8 − τ4τ6 = 0, (3)

Dyτ1 · τ5 = Dz̄τ4 · τ2, (4)

Dyτ2 · τ6 = Dz̄τ5 · τ3, (5)
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Dyτ4 · τ8 = Dz̄τ5 · τ7, (6)

Dzτ1 · τ5 = Dȳτ2 · τ4, (7)

Dzτ2 · τ6 = Dȳτ3 · τ5, (8)

Dzτ4 · τ8 = Dȳτ7 · τ5, (9)

where we have used Hirota derivatives,

Dn
x f (x) · g(x) = (∂x − ∂x ′)n f (x)g(x ′)|x ′=x ,

and introduced auxiliary dependent variables τ4, τ6, τ7, τ8.
Due to the integrable structure of the SDYM equation, one can generate

a hierarchy of higher order integrable equations associated with the SDYM
equation [1, 5, 6]. In the case of the KP hierarchy, there is a method to introduce
τ -function from the hierarchy structure [7]. However no general method has
been found for defining τ -functions directly from the hierarchy structure of the
SDYM. So a natural question may arise: What is the meaning of the τ -functions
in (3)–(9)?

The aim of this article is to give an answer to the question. As shown below,
we can reproduce (3)–(9) from representation theory of the toroidal Lie algebra
sl tor

2 [8]. We note that the relation between integrable hierarchies and toroidal
algebras has been discussed several authors [9–13] by using vertex operator
representations.

2 TOROIDAL LIE ALGEBRAS

We start with the definitions of (M + 1)-toroidal Lie algebras, which is the
universal central extension of (M + 1)-fold loop algebras [14, 15]. Let g be a
finite-dimensional simple Lie algebra over C. Let R be the ring of Laurent poly-
nomials of (M + 1) variables C[s±1, t±1

1 , . . . , t±1
M ]. Also assume M ≥ 0. The

module of Kähler differentials �R of R is defined with the canonical derivation
d : R → �R . As an R-module, �R is freely generated by ds, dt1, . . . , dtM . Let
·̄ : �R → �R/dR be the canonical projection. Let κ denote �R/dR. Let (·|·)
be the normalized Killing form on g. We define the Lie algebra structure on

gtor def= g ⊗ R ⊕ K by

[X ⊗ f, Y ⊗ g] = [X, Y ] ⊗ f g + (X |Y )(d f )g, [K, g
tor] = 0. (10)

This bracket defines a universal central extension of g ⊗ R[14, 15].
We have, for u = s, t1, . . . , tM , the Lie subalgebras

ĝu
def= g ⊗ C[u±1] ⊕ Cd log u, (11)
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with the brackets given by

[X ⊗ um, Y ⊗ un] = [X, Y ] ⊗ um+n + mδm+n,0(X |Y )Ku, (12)

which are isomorphic to the affine Lie algebra ĝ with the canonical central

element Ku
def= d log u. In terms of the generating series,

X (z)
def=

∑
n∈Z

X ⊗ un · z−n−1, (13)

the relation (12) is equivalent to the following operator product expansion
(OPE, in short. See, for example, [16]):

X (z)Y (w) ∼ 1

z − w
[X, Y ](w) + 1

(z − w)2
(X |Y )Ku . (14)

We prepare the generating series of gtor as follows:

Xm(z)
def=

∑
n∈Z

X ⊗ sntm · z−n−1, (15)

K s
m(z)

def=
∑
n∈Z

sntmd log s · z−n, (16)

K tk
m (z)

def=
∑
n∈Z

sntmd log tk · z−n−1, (17)

where X ∈ g, m = (m1, . . . , mM ) ∈ Z
M , tm = tm1

1 . . . tmM
M , and k = 1, . . . , M .

The relation d(sntm) = 0 can be neatly expressed by these generating series as

∂

∂z
K s

m(z) =
M∑

k=1

mk K t
m(z), (18)

and the bracket (10) as

Xm(z)Yn(w) ∼ 1

z − w
[X, Y ]m+n(w) + 1

(z − w)2
(X |Y )K s

m+n(w)

+
M∑

k=1

mk

z − w
(X |Y )K tk

m+n(w). (19)

Hereafter we consider only the sl tor
2 -case to treat the SU (2)-SDYM hierarchy.

The generators of sl2 is denoted by E, F and H as usual:

[E, F] = H, [H, E] = 2E, [H, F] = −2F. (20)

We prepare the language of the 2-component free fermions [7, 17] to construct
a fermionic representation of the affine Lie algebra ŝl2. Let A be the associative
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C-algebra generated by ψ
(α)
j , ψ

(α)∗
j ( j ∈ Z, α = 1, 2) with the relations,[

ψ
(α)
i , ψ

(β)∗
j

]
+

= δi jδαβ,
[
ψ

(α)
i , ψ

(β)
j

]
+

=
[
ψ

(α)∗
i , ψ

(β)∗
j

]
+

= 0. (21)

In terms of the generating series defined as

ψ (α)(λ) =
∑
n∈Z

ψ (α)
n λn, ψ (α)∗(λ) =

∑
n∈Z

ψ (α)∗
n λ−n, (α = 1, 2), (22)

the relation (21) are rewritten as[
ψ (α)(λ), ψ (β)∗(μ)

]
+ = δαβδ(λ/μ),[

ψ (α)(λ), ψ (β)(μ)
]
+ = [

ψ (α)∗(λ), ψ (β)∗(μ)
]
+ = 0, (23)

where δ(λ)
def= ∑

n∈Z
λn is the formal delta-function.

Consider a left A-module with a cyclic vector |vac〉 satisfying

ψ
(α)
j |vac〉 = 0 ( j < 0), ψ

(α)∗
j |vac〉 = 0, ( j ≥ 0). (24)

This A-module A|vac〉 is called the fermionic Fock space, which we denote by
F . We also consider a right A-module (the dual Fock space F∗) with a cyclic
vector 〈vac| satisfying

〈vac|ψ (α)
j = 0 ( j ≥ 0), 〈vac|ψ (α)∗

j = 0, ( j < 0). (25)

We further define the generalized vacuum vectors as

|s2, s1〉 def= � (2)
s2

� (1)
s1

|vac〉, 〈s1, s2| def= 〈vac|� (1)∗
s1

� (2)∗
s2

, (26)

� (α)
s

def=
⎧⎨
⎩

ψ (α)∗
s . . . ψ

(α)∗
−1 (s < 0),

1 (s = 0),

ψ
(α)
s−1 . . . ψ

(α)
0 (s > 0),

� (α)∗
s

def=
⎧⎨
⎩

ψ
(α)
−1 . . . ψ (α)

s (s < 0),
1 (s = 0),

ψ
(α)∗
0 . . . ψ

(α)∗
s−1 (s > 0).

There exists a unique linear map (the vacuum expectation value),

F∗ ⊗A F → C (27)

such that 〈vac| ⊗ |vac〉 → 1. For a a ∈ Awe denote by 〈vac|a|vac〉 the vacuum
expectation value of the vector 〈vac|a ⊗ |vac〉(= 〈vac| ⊗ a|vac〉) in F∗ ⊗A F .
Using the expectation value, we prepare another important notion of the normal

ordering: :ψ (α)
i ψ

(β)∗
j :

def= ψ
(α)
i ψ

(β)∗
j − 〈vac|ψ (α)

i ψ
(β)∗
j |vac〉.

Lemma 1 ([7, 17]) The operators⎧⎨
⎩

E(z) = z−1ψ (1)(z)ψ (2)∗(z),
F(z) = z−1ψ (2)(z)ψ (1)∗(z),
H (z) = z−1{:ψ (1)(z)ψ (1)∗(z) : − : ψ (2)(z)ψ (2)∗(z) :},

(28)

satisfy the OPE (14) with c = 1, i.e., give a representation of ŝl2 on the fermionic
Fock space F .
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To construct a representation of sl tor
2 , we consider the space of polynomials,

Fy
def= M⊗

k=1

(
C[y(k)

j , j ∈ N] ⊗ C[e±y(k)
0 ]

)
. (29)

We define the generating series

ϕ(k)(z)
def=

∑
n∈N

ny(k)
n zn−1, Vm(y; z)

def=
M∏

k=1

exp

[
mk

∑
n∈N

y(k)
n zn

]
, (30)

for each k = 1, . . . , M, m ∈ Z
M . Using the representation (28), We can obtain

a representation of sl tor
2 on F tor

y
def= F ⊗ Fy .

Proposition 1 The following operators satisfy the OPE (19):⎧⎪⎨
⎪⎩

Xm(z) = X (z) ⊗ Vm(z) (X = E, F, H ),

K s
m(z) = 1 ⊗ Vm(z),

K tk
m (z) = 1 ⊗ ϕ(k)(z)Vm(z).

(31)

Proof By the OPE (14) and the property Vm(z)Vn(z) = Vm+n(z), we obtain

(X (z) ⊗ Vm(z))(Y (w) ⊗ Vn(w))

∼
{

1

z − w
[X, Y ](w) + c

(z − w)2
(X |Y )

}

⊗
{

Vm(w) + ∂Vm(w)

∂w
(z − w)

}
Vn(w)

∼ 1

z − w
[X, Y ](w) ⊗ Vm+n(w) + c

(z − w)2
(X |Y ) ⊗ Vm+n(w)

+
M∑

k=1

mkc

z − w
(X |Y )ϕ(k)(w)Vm+n(w). (32)

Comparing the last line to (19), we have the desirous result. �

We will use this representation in what follows to derive the bilinear identity,
which is a generating function of Hirota-type equations.

3 DERIVATION OF THE BILINEAR IDENTITY

In this section, we set M = 1 for simplicity. We first introduce the following
operator acting on F tor

y ⊗ F tor
y′ :

�tor def=
∑
m∈Z

∑
α=1,2

∮
dλ

2π iλ
ψ (α)(λ)Vm(y; λ) ⊗ ψ (α)∗(λ)Vm(y′; λ). (33)
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Lemma 2 The operator �tor enjoys the following properties:

(i ) [�tor, sl tor
2 ⊗ 1 + 1 ⊗ sl tor

2 ] = 0, (34)

(i i ) �tor{(|s2, s1〉 ⊗ 1) ⊗ (|s2 + 1, s1 + 1〉 ⊗ 1)}
=

∑
m∈Z

{
(|s2 + 1, s1〉 ⊗ emy0 ) ⊗

(
|s2, s1 + 1〉 ⊗ e−my′

0

)
(35)

− (|s2, s1 + 1〉 ⊗ emy0 ) ⊗
(
|s2 + 1, s1〉 ⊗ e−my′

0

)}
Proof Since the representation of sl tor

2 under consideration is constructed from
Lemma 1, it is enough to show[

�tor, ψ (α)(p)ψ (β)∗(p)Vn(y; p) ⊗ 1 + 1 ⊗ ψ (α)(p)ψ (β)∗(p)Vn(y′; p)
]

= 0,

(36)
for α, β = 1, 2 and n ∈ Z. From (23), we have[

ψ (α)(p)ψ (β)∗(q), ψ (γ )(λ)
] = δβγ δ(q/λ)ψ (α)(p),[

ψ (α)(p)ψ (β)∗(q), ψ (γ )∗(λ)
] = −δαγ δ(p/λ)ψ (β)(q). (37)

These equations and the relation Vm(y; λ)Vn(y; λ) = Vm+n(y; λ) give the com-
mutativity above. �

If we translate Lemma 2 into bosonic language, then it comes out a hierarchy
of Hirota bilinear equations. To do this, we present a summary of the boson-
fermion correspondence in the two-component case. Define the operators H (α)

n

as H (α)
n

def= ∑
j∈Z

ψ
(α)
j ψ

(α)∗
j+n for n = 1, 2, . . . , α = 1, 2, which obey the canon-

ical commutation relation [H (α)
m , H (β)

n ] = mδm+n,0δαβ · 1. The operators H (α)
n

generate the Heisenberg subalgebra ( free bosons) of A, which is isomorphic
to the algebra with the basis {nx (α)

n , ∂/∂x (α)
n (α = 1, 2, n = 1, 2, . . .)}.

Lemma 3 ([7, 17]) For any |ν〉 ∈ F and s1, s2 ∈ Z, we have the following
formulas,

〈s1, s2|eH (x (1),x (2))ψ (1)(λ)|ν〉
= (−)s2λs1−1eξ (x (1),λ)〈s1 − 1, s2|eH (x (1)−[λ−1],x (2))|ν〉, (38)

〈s1, s2|eH (x (1),x (2))ψ (1)∗(λ)|ν〉
= (−)s2λ−s1e−ξ (x (1),λ)〈s1 + 1, s2|eH (x (1)+[λ−1],x (2))|ν〉, (39)

〈s1, s2|eH (x (1),x (2))ψ (2)(λ)|ν〉
= λs2−1eξ (x (2),λ)〈s1, s2 − 1|eH (x (1),x (2)−[λ−1])|ν〉, (40)

〈s1, s2|eH (x (1),x (2))ψ (2)∗(λ)|ν〉
= λ−s2e−ξ (x (2),λ)〈s1, s2 + 1|eH (x (1),x (2)+[λ−1])|ν〉, (41)
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where the “Hamiltonian” H (x (1), x (2)) is defined as

H (x (1), x (2))
def=

∑
α=1,2

∞∑
n=1

x (α)
n H (α)

n , (42)

and

ξ (x ; λ)
def=

∞∑
n=1

xnλ
n. (43)

We prepare one more lemma due to Billig [9].

Lemma 4 ([9], Proposition 3. See also [11]) Let P(m) = ∑
j≥0 m j Pj , where

Pj are differential operators that may not depend on z. If∑
m∈Z

zm P(m) f (z) = 0

for some function f (z), then

P(ε − z∂z) f (z)|z=1 = 0

as a polynomial in ε.

Now we are in position to state the bilinear identity for the SU(2)-SDYM
hierarchy. Let SLtor

2 denote a group of invertible linear transformations on F tor
y

generated by the exponential action of the elements in sl2 ⊗ R acting locally
nilpotently. Define the τ -function associated with g ∈ SLtor

2 as

τ
s ′

1,s
′
2

s2,s1 (x (1), x (2), y)
def= tor〈s ′

1, s ′
2|eH (x (1),x (2))g(y)|s2, s1〉tor, (44)

where |s2, s1〉tor def= |s2, s1〉 ⊗ 1 and tor〈s ′
1, s ′

2| def= 〈s ′
1, s ′

2| ⊗ 1. Hereafter we shall
omit the superscripts “tor” if it does not cause confusion. Since g ∈ SLtor

2 , the
τ -function (44) have the following properties [17]:

τ
s1+�+1,s2−�+1
s2+1,s1+1 = (−1)�τ s1+�,s2−�

s2,s1
, (45)(

∂

∂x (1)
j

+ ∂

∂x (2)
j

)
τ

s ′
1,s

′
2

s2,s1 = 0, (46)

i.e., the τ -function depends only on {x j
def= x (1)

j − x (2)
j } and {y j }. Since the

first one y0 of {y j } plays a special role, we will use the notation y̌ =
(y1, y2 . . .).



144 S. Kakei

Proposition 2 The τ -functions (44) associated with g ∈ SL tor
2 satisfy

(−1)s ′
2+s ′′

2

∮
dλ

2π i
λs ′

1−s ′′
1 −2eξ ((x−x ′)/2,λ)

× τ
s ′

1−1,s ′
2

s2,s1 (x − [λ−1], y − bλ)τ
s ′′

1 +1,s ′′
2

s2+1,s1+1(x ′ + [λ−1], y + bλ)

+
∮

dλ

2π i
λs ′

2−s ′′
2 −2eξ ((x ′−x)/2,λ)

× τ
s ′

1,s
′
2−1

s2,s1 (x + [λ−1], y − bλ)τ
s ′′

1 ,s ′′
2 +1

s2+1,s1+1(x ′ − [λ−1], y + bλ)

= τ
s ′

1,s
′
2

s2+1,s1
(x, y0, y̌ − b̌)τ

s ′′
1 ,s ′′

2

s2,s1+1(x ′, y0, y̌ + b̌)

− τ
s ′

1,s
′
2

s2,s1+1(x, y0, y̌ − b̌)τ
s ′′

1 ,s ′′
2

s2+1,s1
(x ′, y0, y̌ + b̌), (47)

where bλ denotes (b0, b1, b2, . . .) with the constraint b0 = −ξ (b̌, λ).

Proof Applying

〈s ′
1, s ′

2|eH (x (1),x (2))g(y) ⊗ 〈s ′′
1 , s ′′

2 |eH (x (1)′ ,x (2)′ )g(y′)

to (35) from the left and using Lemma 3, we have

(−1)s ′
2+s ′′

2

∮
dλ

2π i
λs ′

1−s ′′
1 −2eξ ((x−x ′)/2,λ)

×
∑
m∈Z

{
τ

s ′
1−1,s ′

2
s2,s1 (x − [λ−1], y − b)τ

s ′′
1 +1,s ′′

2

s2+1,s1+1(x ′ + [λ−1], y + b)
}

Vm(2b; λ)

+
∮

dλ

2π i
λs ′

2−s ′′
2 −2eξ ((x ′−x)/2,λ)

×
∑
m∈Z

{
τ

s ′
1,s

′
2−1

s2,s1 (x + [λ−1], y − b)τ
s ′′

1 ,s ′′
2 +1

s2+1,s1+1(x ′ − [λ−1], y + b)
}

Vm(2b; λ)

=
∑
m∈Z

{
τ

s ′
1,s

′
2

s2+1,s1
(x, y − b)τ

s ′′
1 ,s ′′

2

s2,s1+1(x ′, y + b)

− τ
s ′

1,s
′
2

s2,s1+1(x, y − b)τ
s ′′

1 ,s ′′
2

s2+1,s1
(x ′, y, b)

}
Vm(2b; λ). (48)

where we have replaced y → y − b, y′ → y + b. If we use Lemma 4 with

z = e2b0 , we obtain the desired result. �

Expanding (47) and applying (45), we can obtain the following Hirota-type
equations,

(τ s1,s2
s2,s1

)2 + τ
s1+1,s2

s2+1,s1
τ

s1,s2+1
s2,s1+1 − τ

s1+1,s2

s2,s1+1 τ
s1,s2+1
s2+1,s1

= 0, (49)

Dy0
τ s1+1,s2−1

s2,s1
· τ s1,s2

s2,s1
= Dy1

τ
s1+1,s2

s2,s1+1 · τ
s1+1,s2

s2+1,s1
, (50)

Dy0
τ s1−1,s2+1

s2,s1
· τ s1,s2

s2,s1
= Dy1

τ
s1,s2+1
s2,s1+1 · τ

s1,s2+1
s2+1,s1

, (51)
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which agree with (3)–(6) if we set

ȳ = y0, z = y1,

τ1 = τ
0,0
1,−1, τ2 = iτ 0,1

1,0 , τ3 = τ
−1,1
0,0 , τ4 = iτ 1,0

1,0 , (52)

τ5 = τ
0,0
0,0 , τ6 = iτ 0,1

0,1 , τ7 = τ
1,−1
0,0 , τ8 = iτ 1,0

0,1 .

If we introduce another set of variables {z j ( j = 0, 1, . . .)} that play the same
role as {y j } and set z̄ = z0, y = −z1, the corresponding τ -functions solve
(3)–(9) simultaneously. We remark that the introduction of the variables {z j }
corresponds to the symmetry of the 3-toroidal Lie algebra as mentioned in
Section 2.

To consider the reality condition for the SU (2)-gauge fields, we introduce
an anti automorphism κ as

κ(ψ (α)
n ) = ψ (α)∗

n , κ(ψ (α)∗
n ) = ψ (α)

n , (n ∈ Z, α = 1, 2), (53)

which have the following properties:

� κ2 = id,
� 〈vac|κ(g)|vac〉 = 〈vac|g|vac〉, ∀g ∈ SLtor

2 .

Using κ , we impose the following condition on g = g(y, z):

κ(g(y, z)) = g(y, z). (54)

Then we find that the τ -function (44) with x (1) = x (2) = 0 obeys

〈s ′
1, s ′

2|g(y, z)|s2, s1〉 = 〈s1, s2|g(y, z)|s ′
2, s ′

1〉, (55)

and that e, f , and g of (2) satisfies

f = − f, e = g. (56)

If we define J̃ as

J̃ =
[

ω 0
0 ω−1

]
J

[
ω 0
0 ω−1

]
, ω = 1 + i√

2
, (57)

then J̃ satisfies (1) and the reality condition J̃ = tJ̃.

4 CONCLUDING REMARKS

We have described the hierarchy structure associated with the SU(2)-SDYM
equation based on the representation theory of the toroidal Lie algebra sl tor

2 .
The hierarchy considered in the present article includes several interest-

ing equations such as a (2+1)-dimensional generalized nonlinear Schrödinger
equation. This topic is discussed in [8].
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We have restricted ourselves to the SU(2)-case, and it may be straight-
forward to generalize the results if we start with multicomponent fermions.
We will discuss this subject elsewhere.
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FROM SOLITON EQUATIONS
TO THEIR ZERO CURVATURE
FORMULATION
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1 INTRODUCTION

A key property of classical (continuous) soliton systems is the fact that they
correspond to nonlinear partial differential equations (NLPDE’s) which happen
to be expressible as the integrability condition for a system of linear equations.
Linear eigenvalue problems and associated t-evolutions have produced classes
of soliton equations [1, 2] and have led to the disclosure of major integrability
features (such as the existence of multisoliton solutions and infinite sequences
of conserved quantities).

A still open “inverse” problem is to get access to the linear system, associated
with a given soliton system, starting from the NLPDE itself. Its solution requires
a skillful decomposition of an appropriate “Bäcklund condition” into a set of
linear constraints on some new dimensionless dependent variables. Insight into
the nature of these “primary” variables can sometimes be obtained by means of
Painlevé techniques [3], or by looking for a bilinear Bäcklund transformation
(BT) acting at the level of a Hirota representation of the original NLPDE [4, 5].
Yet, from the practical point of view, these manipulations are not as “direct” as
one should wish.

Here, we present a reformulation of Hirota’s bilinear BT method capable of
producing systematically (if not algorithmically) the zero curvature formulation
of sech squared soliton systems that may be derived from a single equation in
quadratic Hirota form. The method is also shown to work for less elementary
soliton systems (such as the Lax-KdV5 equation), as it allows an elementary
and systematic search for fundamental members of multidimensional integrable
hierarchies leading (through reduction) to 1 + 1 dimensional sech squared
soliton systems.

147
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Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 147–159.
C© 2006 Springer. Printed in the Netherlands.
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We start our presentation by reformulating the Hirota procedure (and the
basic Hirota-Bäcklund ansatz) in terms of exponential polynomials (Section
2 and 3). We then apply the resulting method on 3 examples (KdV, KP, and
BKP) leading to a unified treatment of several well known 1 + 1 dimensional
soliton systems (KdV, Boussinesq, Sawada–Kotera, Ramani, Lax–KdV5). The
calculations are presented in detail in order to exhibit the elementary nature of
the procedure.

2 BILINEAR BÄCKLUND TRANSFORMATIONS

The simplest soliton equations, from “bilinear” point of view, are NLPDE’s for
a dependent variable u(x, t) which, through the bilinearizing transformation
u = 2∂2

x ln f , can be derived from a single quadratic Hirota equation of the
form (m j and n j are integer or zero, c j are constants):

F( f, f ) ≡
∑

j

c j D
m j
x D

n j
t f · f = 0, m j + n j = even, (1)

in which the D-operators are defined as follows:

Dm
x Dn

t f · g ≡ (∂x − ∂x ′)m(∂t − ∂t ′)n f (x, t)g(x ′, t ′)|x ′=x,t ′=t (2)

Equations of the form (1) are known [6] to admit solitary wave solutions:

fsol = 1 + eθ , θ = kx + ωt + τ, with
∑

j

c j k
m j ωn j = 0, (3)

as well as “two soliton solutions”:

f2 = 1 + eθ1 + eθ2 + A12eθ1+θ2, θi = ki x + ωi t + τi , (4)

with ∑
j

c j k
m j

i ω
n j

i = 0, A12 = −
∑

j c j (k1 − k2)m j (ω1 − ω2)n j∑
j c j (k1 + k2)m j (ω1 + ω2)n j

. (5)

These Hirota equations can also produce a Bäcklund transformation (BT) for
the original NLPDE if there exists a pair of bilinear equations (pi , qi , ri , si =
integer or zero, ci j = constant):

F1( f ′, f ) ≡
∑

i

ci1 D pi
x Dqi

t f ′ · f = 0 (6)

F2( f ′, f ) ≡
∑

i

ci2 Dri
x Dsi

t f ′ · f = 0 (7)

which are compatible if f satisfies Eq. (1), and which imply the relation

f −2F( f, f ) − f
′−2F( f ′, f ′) = 0. (8)
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A current, but tricky procedure to find out whether a given NLPDE admits
such a bilinear BT is to start from the Hirota representation (1) (if one can find
it) and to try to decompose the condition (8)—we call it the Hirota–Bäcklund
(HB) ansatz—into a pair of eqs. (6), (7) with the help of appropriate “exchange
formulas” [4]. One must then verify that the compatibility of the obtained
bilinear system is subject to a condition on f which is satisfied as a result of
Eq. (1).

Here we present a simpler method, based on the use of two classes of ex-
ponential polynomials (generalizations of the Bell [7] or Faá di Bruno [8]
polynomials), which will be seen to lead (in a systematic way) to the zero
curvature formulation of the given NLPDE.

3 EXPONENTIAL POLYNOMIALS AND ZERO
CURVATURE FORMULATIONS

We start our discussion by noticing that a Hirota equation of the form (1) can
be mapped by the transformation f = exp( Q

2
) onto a corresponding primary

NLPDE for Q:

E(Q) ≡
∑

j

c j Pm j x,n j t (Q) = 0, (9)

with

Pmx,nt (Q) ≡ e−Q(x,t)∂m
x ∂n

t eQ(x,t)|Qr x,st =0 if r+s=odd. (10)

The link between Eqs. (1) and (9) is the identity [9]:

f −2 Dm
x Dn

t f · f ≡ Pmx,nt (Q = 2 ln f ), m + n = even. (11)

P-polynomials and primary NLPDE’s of type (9) are easy to recognize on ac-
count of their simple partitional balance: linear (even order) terms Q px,qt , with
p + q > 2, are accompanied by nonlinear terms which correspond precisely
to the even part partitions of (p, q):

P2x (Q) = Q2x , Px,t = Qxt , P2x,2t (Q) = Q2x,2t + Q2x Q2t + 2Q2
xt ,

P3x,t (Q) = Q3x,t + 3Q2x Qxt , P4x (Q) = Q4x + 3Q2
2x , (12)

P6x (Q) = Q6x + 15Q2x Q4x + 15Q3
2x , . . .

Each polynomial carries a particular weight, determined by its order and the
dimensions of the independent variables (the dependent variable being dimen-
sionless).

We now observe that bilinear equations of the form (6) or (7) can be
mapped onto equations which are linear with respect to “binary” exponential
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polynomials Ypx,qt (v, w) defined in terms of two “mixing” variables v =
ln( f ′/ f ) and w = ln( f ′ f ):

Ypx,qt (v, w) ≡ e−y(x,t)∂ p
x ∂

q
t ey(x,t)

∣∣∣
yr x,st =

⎧⎨
⎩vr x,st if r + s = odd

wr x,st if r + s = even

(13)

Thus, making use of the two field generalization [9] of the identity (11)

( f ′ f )−1 D p
x Dq

t f ′ · f ≡ Ypx,qt (v = ln f ′/ f, w = ln f ′ f ), (14)

we find that the bilinear system (6, 7) corresponds to the following Y-system:

E1(v, w) ≡
∑

i

ci1Ypi x,qi t (v, w) = 0 (15)

E2(v, w) ≡
∑

i

ci2Yri x,si t (v, w) = 0 (16)

The map:

Q = 2 ln f = w − v, Q′ = 2 ln f ′ = w + v (17)

is also seen to transform the HB ansatz (8) into the simpler condition:

E(Q′ = w + v) − E(Q = w − v) = 0. (18)

The problem of obtaining a bilinear BT from a given F( f, f ) can therefore
be reformulated as the problem of obtaining a decomposition of the condition
(18) into a pair of Y-constraints (15, 16) which are compatible for every Q that
satisfies the primary NLPDE (9).

We shall see that this problem can be tackled systematically (if not algorith-
mically) by expressing:

E(w + v) − E(w − v) (19)

in terms of Y-polynomials and their derivatives.
An important point is the logarithmic linearizability of the aboveY-systems.

This follows from the property [9]:

Ypx,qt (v = ln ψ, w = Q + ln ψ) = ψ−1L p,q(Q)ψ, (20)

with

L p,q(Q) =
p∑

r=0

q∑
s=0

(
p

r

)(
q

s

)
Yr x,st (0, Q)∂ p−r

x ∂
q−s
t , (21)

on account of which every system (15, 16) is mapped by the transformation

w = v + Q, v = ln ψ (22)
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onto a linear system for ψ : ∑
i

ci1L pi ,qi (Q)ψ = 0 (23)

∑
i

ci2Lri ,si (Q)ψ = 0. (24)

Thus, having found a decomposition of the HB ansatz (18) into a pair of Y-
constraints, it is a straightforward matter to check whether their compatibility is
subject to a condition on Q which is satisfied as a result of Eq. (9). This enables
us to undertake a systematic search for linear equations which may provide a
zero curvature formulation of the original NLPDE.

4 KP, BKP AND THEIR REDUCTIONS

The simplest sech squared soliton system is the KdV equation:

KdV(u) ≡ ut − u3x − 6uux = 0, (25)

which, by setting u = Q2x (Q is the simplest dimensionless alternative to u) is
seen to correspond to a primary NLPDE of weight 4 (we choose the dimension
of x to be equal to 1 and define the weight of Ppx,qt (Q) as p + q dim t):

EKdV(Q) ≡ Qxt − (Q4x + 3Q2
2x ) ≡ Px,t (Q) − P4x (Q) = 0, (26)

or to the equivalent Hirota equation (Q = 2 ln f ):

(Dx Dt − D4
x ) f · f = 0. (27)

The disclosure of a Bäcklund transformation for Eq. (25) is an easy matter
which has been dealt with in [10]: it suffices to decouple the condition

CKdV(v, w) ≡ EKdV(w + v) − EKdV(w − v)

≡ 2vxt − 2v4x − 12v2xw2x = 0
(28)

into a pair of Y-constraints, and to verify that their compatibility is subject to
the condition: ∂x EKdV(Q) = 0. This is easily done by expressing CKdV(v, w)
in terms of Y-polynomials and their first order derivatives by means of the
formulas1:

v2x = ∂xYx , vxt = ∂xYt , w2x = Y2x − Y2
x ,

v3x = Y3x − 3YxY2x + 2Y3
x .

(29)

1 They follow straight away from def.(13). We write Ypx,qt instead of Ypx,qt (v, w).
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Thus, it is seen that

CKdV(v, w) = 2∂x [Yt − Y3x ] + 6Wx [Yx ,Y2x ], (30)

with Wx [ f, g] ≡ f (∂x g) − g(∂x f ), indicating that the condition (28) is satisfied
if v and w obey the system (λ = constant of weight 2):

Y2x (v, w) = λ (31)

Yt (v) = Y3x (v, w) + 3λYx (v). (32)

Its compatibility is subject to that of the equivalent system for ψ = ev (setting
w = v + Q):

ψ2x + (Q2x − λ)ψ = 0 (33)

ψt − ψ3x − 3(Q2x + λ)ψx = 0 (34)

i.e., to the condition

(Qxt − Q4x − 3Q2
2x )x = 0. (35)

Let us now consider the more challenging example of a homogeneous 1 +
2-dimensional primary NLPDE which involves a linear combination of all P-
polynomials of weight 4 that may be defined with respect to a set of independent
variables tp of weight p = 1, 2, 3, . . . (with t1 = x):

E4(Q) ≡ P4x (Q) + αPx,t3 (Q) + β P2t2 (Q) = 0. (36)

The corresponding expression:

C4(v, w) = E4(w + v) − E4(w − v) = 2v4x + 12v2xw2x + 2αvxt3 + 2βv2t2

(37)

can again be expressed in terms of Y-polynomials and their first order deriva-
tives:

C4(v, w) = 2∂x [αYt3 + Y3x ] + 2β∂t2 [Yt2 ] + 6Wx [Y2x ,Yx ]. (38)

In order to find out whether C4(v, w) can be reduced to the x-derivative of a
linear combination including all Y-polynomials of weight 3, say (a = undeter-
mined constant):

2∂x [αYt3 + Y3x + aYx,t2 ] (39)

by means of another homogeneous “auxiliary” Y-constraint, it suffices to con-
sider the only possible candidate which is a constraint of weight 2 (b = unde-
termined constant):

Yt2 + bY2x = 0. (40)
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It suggests that C4(v, w) should be rewritten in the form:

C4(v, w) = 2∂x [αYt3 + Y3x + aYx,t2 ] + 2β∂t2 [Yt2 + bY2x ] + R4(v, w),

(41)

with

R4(v, w) = 6Wx [Y2x ,Yx ] − 2a∂xYx,t2 − 2bβ∂t2Y2x (42)

or

R4(v, w) = 2Wx [3Y2x + bβYt2,Yx ] − 2(a + bβ)∂xYx,t2 (43)

on account of the identity:

∂t2Y2x ≡ ∂xYx,t2 + Wx [Yx ,Yt2 ]. (44)

It follows that the desired reduction of C4(v, w) can be obtained by means of

Eq. (40) with b = ±
√

3
β

and a = ∓√
3β.

We conclude that the HB-ansatz (18) associated with Eq. (36) is satisfied if
v and w obey the system:

Yt2 (v) ±
√

3

β
Y2x (v, w) = 0 (45)

αYt3 (v) + Y3x (v, w) ∓
√

3βYx,t2 (v, w) = 0. (46)

Its compatibility is subject to that of the equivalent system for ψ = ev (setting
w = v + Q):

ψt2 = ∓
√

3

β
(ψ2x + Q2xψ) (47)

αψt3 = −4ψ3x − 6Q2xψx − (3Q3x ∓
√

3βQxt2 )ψ, (48)

i.e., to a condition on Q which is easily seen to coincide with ∂x E4(Q). Setting
β = 3 and α = −4 we see that the system:

ψt2 = L2(Q)ψ, L2(Q) = ∂2
x + Q2x (49)

ψt3 = L3(Q)ψ, L3(Q) = ∂3
x + 3

2
Q2x∂x + 3

4
(Q3x + Qxt2 ) (50)

provides us with a zero curvature formulation of a distinguished member of the
family (36) known as the KP equation [11]

EKP(Q) ≡ P4x (Q) + 3P2t2 (Q) − 4Px,t3 (Q) = 0. (51)
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The operators L2 and L3 can be shown [12] to define a pair of Darboux covariant
t-evolutions.

As a t2-reduction of Eq. (51) we recover, as expected, the primary KdV Eq.
(26) with t = 1

4
t3. The actual “Lax pair” for KdV is obtained from Eqs. (49),

(50) by setting Qt2 = 0 and ψt2 = λψ :

L2(Q)ψ = λψ (52)

ψt3 = B(Q)ψ, B(Q) = ∂3
x + 3

2
Q2x∂x + 3

4
Q3x (53)

As a t3-reduction of Eq. (51) we obtain:

EBq(Q) ≡ P4x (Q) + 3P2t2 (Q) = 0 (54)

The Lax pair of the corresponding Boussinesq equation (u = Q2x ):

3u2t2 + u4x + 3(u2)xx = 0 (55)

is obtained from Eqs. (49, 50) by setting ψt3 = μψ (μ being a parameter of
weight 3):

L3(Q)ψ = μψ (56)

ψt2 = L2(Q)ψ (57)

As a second 1 + 2 dimensional example we consider a primary NLPDE
which involves a linear combination of all P-polynomials of weight 6 that may
be defined with respect to the subset of odd-dimensional variables t1 = x, t3,
t5, . . .

E6(Q) ≡ P6x + αPx,t5 (Q) + β P3x,t3 (Q) + γ P2t3 (Q) = 0 (58)

The corresponding HB ansatz

C6(v, w) ≡ 2v6x + 30(v2xw4x + v4xw2x ) + 30v3
2x + 90v2xw

2
2x

+ 2αvxt5 + 2βv3x,t3 + 6β(v2xwxt3 + vxt3w2x ) (59)

+ 2γ v2t3 = 0

can again be expressed in terms of Y-polynomials and their derivatives
by means of standard substitutions, and subsequently reduced to (see
Appendix):

C6(v, w) ≡ ∂x [2αYt5 − 3Y5x + 3βY2x,t3 ] + 2∂t3 [γYt3 − βY3x ]

+ ∂3
x [5Y3x + βYt3 ] − 3[5Y3x + βYt3 ](∂xY2x ) (60)

+ (9Y2x − 6Y2
x )∂x [5Y3x + βYt3 ] = 0
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If γ = −β2

5
it is possible to satisfy this condition by means of two

homogeneous Y-constraints on v and w. These constraints are:

Y3x (v, w) + β

5
Yt3 (v) = 0 (61)

αYt5 (v) − 3

2
Y5x (v, w) + 3

2
βY2x,t3 (v, w) = 0. (62)

Their compatibility is subject to that of the corresponding linear equations:

βψt3 = −5ψ3x − 15Q2xψx (63)

αψt5 = 9ψ5x + 45Q2xψ3x + 45Q3xψ2x
(64)+ (30Q4x + 45Q2

2x − 3βQxt3 )ψx ,

i.e., to a condition on Q which is easily seen to coincide with

∂x

[
P6x (Q) + αPx,t5 (Q) + β P3x,t3 (Q) − β2

5
P2t3 (Q)

]
= 0 (65)

Setting now α = 9 and β = −5 we conclude that the system:

ψt3 = ψ3x + 3Q2xψx (66)

ψt5 = ψ5x + 5Q2xψ3x + 5Q3xψ2x +
(

10

3
Q4x + 5Q2

2x + 5

3
Qxt3

)
ψx (67)

provides us with a zero curvature formulation of a distinguished member of
the family (65), the primary version of which is known as the BKP equation
[11]:

EBKP(Q) ≡ P6x (Q) + 9Px,t5 (Q) − 5P3x,t3 (Q) − 5P2t3 (Q) = 0. (68)

A t3-reduction of Eq. (68) produces a primary version of the Sawada–Kotera
equation [13]:

ESK(Q) ≡ P6x (Q) + 9Px,t5 (Q) = 0, (69)

for which a Lax pair is obtained from Eqs. (66), (67) by setting Qt3 = 0 and
ψt3 = λψ .

A t5-reduction of Eq. (68) produces a primary version of the Ramani equa-
tion:

ERam(Q) ≡ P6x (Q) − 5P3x,t3 (Q) − 5P2t3 (Q) = 0, (70)

for which a Lax pair is obtained from eqs. (66, 67) by setting ψt5 = λψ .
A slightly more subtle reduction of BKP can be obtained by noticing

that Eq. (68) corresponds to the a = − 5
9

member of the following family of
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P-equations:

Ẽ6(Q; a) ≡ Px,t5 (Q) + a P2t3 (Q) − 1

6
(1 + 3a)P6x (Q)

−1

6
(5 + 3a)P3x,t3 (Q) = 0 (71)

Each member of this family shares, by construction, the two soliton solutions
Q2 = 2 ln(1 + eθ1 + 2θ2 + AKdV

12 eθ1+θ2 ),

θi = ki x + k3
i t3 + k5

i t5 and AKdV
12 ≡

(
k1 − k2

k1 + k2

)2

, (72)

with the primary KdV-Eq. (26), as well as with a 1 + 1 dimensional NLPDE
for Qx,t5 which may be derived from the x-derivative of Eq. (71) through elim-
ination of Qx,t3 , and its derivatives, by means of Eq. (26):

Q2x,t5 = Q7x + 10Q2x Q5x + 20Q3x Q4x + 30Q2x2 Q3x . (73)

The system (26, 71) therefore provides us with a parameter family of 1 + 2
dimensional Hirota representations:[

Dx Dt3 − D4
x

]
f · f = 0 (74)[

Dx Dt5 + aD2
t3 − 1

6
(1 + 3a)D6

x − 1

6
(5 + 3a)D3

x Dt3

]
f · f = 0 (75)

of a fifth order NLPDE for u = Q2x which is known as the Lax (or KdV5)-
equation [1, 13]:

ut5 = u5x + 10uu3x + 20ux u2x + 30u2ux . (76)

A zero-curvature formulation of this NLPDE can be obtained straight away
from the representation (26, 71) in which a = − 5

9
:

EK dV (Q) ≡ Px,t3 (Q) − P4x (Q) = 0 (77)

EBK P (Q) ≡ 9Px,t5 (Q) − 5P2t3 (Q) + P6x (Q) − 5P3x,t3 (Q) = 0 (78)

The first equation of this system gives rise to the HB ansatz (28) which is
already known to be satisfied if one imposes the constraints (31,32). These
constraints, and the use of the identity

∂2
xYx ≡ Y3x − 3YxY2x + 2Y3

x , (79)

enable us to reduce the HB ansatz for Eq. (78) to the condition:

∂x

[
9Yt5 − 3

2
Y5x − 15

2
Y2x,t3 − 45

2
λY3x − 90λ2Yx

]
= 0 (80)
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It follows that the HB conditions (18) associated with the system (77, 78)
are satisfied if one imposes the constraints:

Y2x (v, w) = λ (81)

Yt3 (v) = Y3x (v, w) + 3λYx (v) (82)

Yt5 = 3

2
Y5x (v, w) + 15

2
Y2x,t3 (v, w) + 45

2
λY3x (v, w) + 90λ2Yx (v) (83)

or (setting w = v + Q and v = ln ψ):

ψ2x = (λ − Q2x )ψ (84)

ψt3 = ψ3x + 3(Q2x + λ)ψx (85)

ψt5 = 1

6
ψ5x + 5

6
ψ2x,t3 +

(
5

3
Q2x + 5

2
λ

)
ψ3x + 5

6
Q2xψt3

(86)

+
(

5

6
Q4x + 5

2
Q2

2x + 5

3
Qx,t3 + 15

2
λQ2x + 10λ2

)
ψx

Equations (84) and (85) are known to be compatible if Q solves Eq. (26).
Eliminating derivatives with respect to t3 by means of Eqs. (26) and (85) we

may replace Eq. (86) by:

ψt5 = ψ5x + 5(Q2x + λ)ψ3x + 5Q3xψ2x

+ (5Q4x + 10Q2
2x + 10λQ2x + 10λ2)ψx ,

(87)

or by (eliminating λ from this last equation by means of Eq. (84)):

ψt5 = 16L5(Q)ψ, with

L5(Q) = ∂5
x + 5

2
Q2x∂

3
x + 15

4
Q3x∂

2
x + 25

8

(
Q4x + 3

5
Q2

2x

)
∂x (88)

+ 15

16
(Q5x + 2Q2x Q3x )

The operator L5 is the fifth order B-operator obtained by Lax [1] in his con-
struction of isospectral deformations of L2. The operators L2 and L5 are also
known [12] to produce a Darboux covariant pair of t-evolutions.

A APPENDIX

The following substitution formulas follow straight from definition (13) and
the identities w4x ≡ ∂2

x w2x , v3x,t3 ≡ ∂xv2x,t3 ≡ ∂t3v3x , v5x ≡ ∂2
x v3x (notice that

expressions ∂
p
x Yx with p ≥ 2 have been avoided by making use of the identity



158 F. Lambert and J. Springael

(79), and that a, b, c, d and e are undetermined constants):

wxt = Yx,t − YxYt

w4x = a(∂2
xY2x ) + (1 − a)Y4x + (2a − 4)YxY3x + (12 − 6a)Y2

xY2x

− (3 − 3a)Y2
2x + (2a − 6)Y4

x − 2a(∂xYx )2

v3x,t3 = b(∂t3Y3x ) + c(∂xY2x,t3 ) + (1 − b − c)(∂3
xYt3 )

+ (3b + 2c)Yx [Yx (∂xYt3 ) − (∂xYx,t3 )] − (3b + c)Y2x (∂xYt3 )

+ (3b + 4c)YxYt3 (∂xYx ) − 2cYx,t3 (∂xYx ) − cYt3 (∂xY2x )

v6x = d(∂3
xY3x ) + (1 − d)(∂xY5x ) − 5(1 − d − e)[Y4x (∂xYx ) + Yx (∂xY4x )]

− (7d − 10)Y2x (∂xY3x ) + (10 − 7d − 5e)[2Y2
x (∂xY3x ) + 3Y2

2x (∂xYx )]

+ (d − 10)[Y3x (∂xY2x ) − 4YxY3x (∂xYx )]

+ (60 − 24d − 30e)Yx (Y2x − Y2
x )(∂xY2x ) − (9d + 5e)(∂xYx )(∂2

xY2x ).

+ (12d + 10e)(∂xYx )3 + (120 − 12d − 10e)Y4
x (∂xYx )

+ (36d + 30e − 180)Y2
xY2x (∂xYx )

They enable us to express 1
2
C6(v, w) as follows:

1

2
C6(v, w) = [αYt5 + (1 − d)Y5x + cY2x,t3 ]x + [γYt3 + bY3x ]t3

+ [dY3x + (β − b − c)Yt3 ]3x − Yx [5(1 − d − e)Y4x

+ (3b + 2c)Yx,t3 ]x + [(10 + 5d + 5e − 15a)Y4x

+ (3β − 2c)Yx,t3 ](∂xYx ) + [(d − 10)Y3x − cYt3 ](∂xY2x )

+Y2x [(7d + 5)Y3x − (3b + c − 3β)Yt3 ]x

+Y2
x [(5 − 14d − 10e)Y3x + (3b + 2c − 3β)Yt3 ]x (89)

+Yx [(30a − 4d − 20)Y3x + (3b + 4c − 3β)Yt3 ](∂xYx )

− (3d + 5e)Yx (∂3
xY2x ) − (9d + 5e − 15a)(∂xYx )(∂2

xY2x )

+ (24d + 30e − 15)Yx (Y2
x − Y2x )(∂xY2x )

+ (45a − 21d − 15e − 15)Y2
2x (∂xYx )

+ (30a − 12d − 10e − 15)[Y2
x (Y2

x − 3Y2x ) − (∂xYx )2](∂xYx ).

A reduction of this expression to the x-derivative of a linear combination of
Y-polynomials of weight 5, by means of a homogeneous constraint of weight
r ≤ 4, requires the simultaneous vanishing of the last 5 terms. This vanish-
ing can be obtained if one chooses: a = 1, d = 5

2
, e = − 3

2
, and b = −β. This

choice reduces C6(v, w) to the expression given in eq. (60).
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COVARIANT FORMS OF LAX
ONE-FIELD OPERATORS: FROM
ABELIAN TO NONCOMMUTATIVE

Sergey Leble
Gdaǹsk University of Technology, ul. Narutowicza 11/12, Gdaǹsk, Poland

Abstract Polynomials in differentiation operators are considered. Joint covariance
with respect to Darboux transformations of a pair of such polynomials
(Lax pair) as a function of one-field is studied. Methodically, the trans-
forms of the coefficients are equalized to Frechèt differential (first term
of the Taylor series on prolonged space) to establish the operator forms.
In the commutative (Abelian) case, as it was recently proved for the KP-
KdV Lax operators, it results in binary Bell (Faa de Bruno) differential
polynomials having natural bilinear (Hirota) representation. Now next
example of generalized Boussinesq equation with variable coefficients
is studied, the dressing chain equations for the pair are derived. For a
pair of generalized Zakharov–Shabat problems a set of integrable (non-
commutative) potentials and hence nonlinear equations are constructed
altogether with explicit dressing formulas. Some non-Abelian special
functions are introduced.

1 INTRODUCTION

Investigations of general Darboux transformation (DT) theory in the case of
differential operators

L =
n∑

k=0

ak∂
k (1)

with noncommutative coefficients was launched by papers of Matveev [1]. The
proof of a general covariance of the equation

ψt = Lψ (2)

with respect to the classic DT (the shorthands ψ ′ = ∂ψ = ψx are used through
the paper)

ψ[1] = ψ ′ − σψ, (3)

161
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incorporates the auxiliary relation

σt = ∂r + [r, σ ], r =
∑N

0
an Bn(σ ), (4)

where Bn are differential Bell (Faa de Bruno [2]) polynomials [3]. The re-
lation (4) generalizes so-called Miura map and became the identity when
σ = φ′φ−1, φ is a solution of the Eq. (2).

Such operators (1) are used in the Lax representation constructions for non-
linear problems. It opens the way to produce wide classes of solutions of the
nonlinear problem. Examples of discrete, non-Abelian, and nonlocal equations,
integrable by DT was considered in [4, 5]. Some of them were reviewed and
developed in the book [6] and intensely used nowadays [7]. The approach was
recently generalized for a wide class of polynomials of automorphism on a
differential ring [8].

A study of jointly covariant combinations introduces extra problems of the
appropriate choice of potentials on which the polynomial coefficients depend
[9]. This problem was recently discussed in [10], where a method of the
conditions account was developed. Covariant combinations of (generalized)
derivatives and potentials may be hence classified for linear problems. In two
words, having the general statement about covariant form of a linear polynomial
differential operator that determines transformation formulas for coefficients
(Darboux theorem and its Matveev’s generalizations), the consistency between
two such formulas yields the special constraints. For example, the second-order
scalar differential operator has the only place for a potential and the covariance
generate the classic Darboux transformation for it.

In scalar case such one-potential constructions have been studied in [11] and
developed for higher KdV and KP equations [12]. It was found that the result
is conveniently written via such combinations of differentiation operator and
exponential functions of the potential as Binary Bell Polynomials (BBP) [13].
The principle is reproduced and developed in the Section 2.1 of this paper to
give more explanations.

The whole construction in general (non-Abelian) case is more compli-
cated, but much more rich and promising. The theory could contain two
ingredients.

1. The first one would be non-Abelian Hirota construction in the terms of the
mentioned binary Bell polynomials. On the level of general formulation
some obstacles appears, e.g., an extension of addition formulas [13]) to the
non-Abelian case.

2. The second way relates to some generalized polynomials that could be pro-
duced as covariant combinations of operators with a faith that observations
from Abelian theory could be generalized. Namely the case we would dis-
cuss in this paper.
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Even the minimal (first order in the ∂-operator) examples of the ZS problems
with operator coefficients contains many interesting integrable models. It is seen
already from the point of view of symmetry classification [14]. So, the link to
DT covariance approach allows to hope for a realization of the main purpose–
construction of covariant functions, their classification, and use in the soliton
equations theory.

We would begin from the example, using notations from quantum mechanics
to emphasize the non-Abelian nature of the consideration. The operators ρ and
H could play the roles of density matrices and Hamiltonians, respectively,
but one also can think of them as just some operators without any particular
quantum mechanical connotations. The approach establishes the covariance
with respect to DT of rather general Lax system for the equation

−iρt = [H, h(ρ)],

where h(ρ)–analytic function, in some sense–“Abelian,” i.e., the function to
be defined by Taylor series [15]. More exactly it is shown that the following
statement takes place:

Theorem 1 Assume 〈χ | and 〈ψ | are solutions of the following (direct)
equations:

zν〈χ | = 〈χ |(ρ − νH ),

−i〈χt | = 1

ν
〈χ |h(ρ),

and |ϕ〉 stands for the conjugate pair. Here ρ, H are operators left-acting
on a “bra” vectors 〈ψ | associated with an element of a Hilbert space. The
transforms 〈ψ1|, ρ1, h(ρ)1 are defined by

〈ψ1| = 〈ψ |
(

1 + ν − μ

μ − λ
P

)
, (5)

ρ1 = TρT −1, h1(ρ) = T h(ρ)T −1, T =
(

1 + μ − ν

ν
P

)
. (6)

where P = |ϕ〉〈χ |ϕ〉〈χ |. Then the pairs are covariant:

zλ〈ψ1| = 〈ψ1|(ρ1 − λH ), − i〈ψ̇1| = 1

λ
〈ψ1|h1(ρ).

complex numbers λ, zλ are independent of t [15].

The cases f (ρ) = iρ3 and f (ρ) = iρ−1 were considered in [16], see appli-
cations in [17]. A step to further generalizations for essentially non-Abelian
functions, e.g., h(X ) = X A + AX, [A, X ] �= 0, is studied in [18]. The case
is the development of the matrix representation of the Euler top model [19].
This example of the theory is more close to the spirit of the Section 3.4, more
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achievements are demonstrated in [20], where abundant set of integrable equa-
tions is listed. The list is in a partial correspondence with [14], and give the
usual for the DT technique link to solutions via the iteration procedures or
dressing chains. One of the main results, we present in the Section 3.3, is
how the “true” non-Abelian functions appear in the context of the covariance
conditions application.

2 ONE-FIELD LAX PAIR FOR ABELIAN CASE

2.1 Covariance Equations

First we would reproduce the “Abelian” scheme, generalizing the study of the
example of the Boussinesq equation [10]. To start with the search we should
fix the number of fields. Let us consider the third-order operator (1) with co-
efficients bk, k = 0, 1, 2, 3, reserving ak for the second operator in a Lax pair.
Suppose, both operators depend on the only potential function w. The prob-
lem we consider now may be formulated as follows: To find restrictions on
the coefficients b3(t), b2(x, t), b1 = b(w, t), b0 = G(w, t) compatible with DT
transformations rules of the potential function w induced by DT for bi . The
classic DT for the third-order operator coefficients (Matveev generalization [1])
yields

b2[1] = b2 + b′
3, (7)

b1[1] = b1 + b′
2 + 3b3σ

′, (8)

b0[1] = b0 + b′
1 + σb′

2 + 3b3(σσ ′ + σ ′′), (9)

having in mind that the “elder” coefficient b3 does not transform. Note also,
that b′

3 = 0 yields invariance of the coefficient b2.
The general idea of DT form-invariance may be realized considering the

coefficients transforms to be consistent with respect to the fixed transform of
w. Generalizing the analysis of the third-order operator transformation [10], one
arrives at the equations for the functions b2(x, t), b(w, t), G(w). The covariance
of the spectral equation

b3ψxxx + b2(x, t)ψxx + b(w, t)ψx + G(w, t)ψ = λψ (10)

may be considered separately, that leads to the link between bi only. We, how-
ever, study the problem of the (10) in the context of Lax representation for some
nonlinear equation, hence the covariance of the second Lax equation is taken
into account from the very beginning. We name such principle as the “principle
of joint covariance” [9]. The second (evolution) equation of the case is

ψt = a2(t)ψxx + a1(t)ψx + wψ, (11)



Covariant Forms of Lax One-Field Operators 165

with the operator in the r.h.s. having again the form of (1). We do not consider
here a dependence of ai , bi on x for the sake of brevity, leaving this interesting
question to the next paper.

If one consider the L and A operators of the form (1), specified in Eqs. (10)
and (11). as the Lax pair equations, the DT of w implied by the covariance
of (11), should be compatible with DT formulas of both coefficients of (10)
depending on the only variable w.

a2[1] = a2 = a(x, t),

a1[1] = a1(x, t) + Da(x, t)

a0[1] = w[1] = w + a′
1 + 2a2σ

′ + σa′
2 (12)

Next important relations being in fact the identities in the DT transformation
theory [3], are the particular cases of the generalized Miura map (4):

σt = [a2(σ 2 + σx ) + a1σ + w]x (13)

for the problem (11) and, for the (10)

b3(σ 3 + 3σxσ + σxx ) + b2(σ 2 + σx )

+ b(w, t)σ + G(w) = const;
(14)

φ is a solution of both Lax equations.
Suppose now that the coefficients of the operators are analytical functions

of w together with its derivatives (or integrals) with respect to x (such functions
are named functions on prolonged space [21]). For the coefficient b0 = G(w, t)
it means

G = G(∂−1w, w, wx , . . . , ∂
−1wt , wt , wt x , . . .). (15)

The covariance condition is obtained for the Frechêt derivative (FD) of the
function G on the prolonged space, or the first terms of multidimensional Taylor
series for (15), read

G(w + a′
1 + 2a2σ

′ + σa′
2) = G(w)

+ Gwx (a′
1 + 2a2σ

′ + σa′
2)′ + · · · (16)

We shall show only the terms of further importance.
Quite similar expansion arises for the coefficient b1 = b(w, t), with which

we would start in the analogy with the expressions (8, 16). Equalizing the DT
and the expansion one obtains the condition

b′
2 + 3b3σ

′ = bw(a′
1 + 2a2σ

′ + σa′
2) + bw′(a′

1 + 2a2σ
′ + σa′

2)′ · · · (17)

This equation we name the (first) “joint covariance equation” that guarantee
the consistency between transformations of the coefficients of the Lax pair
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(10), (11). In the frame of our choice a′
2 = 0, the equation simplifies and linear

independence of the derivatives σ (n) yields two constraints

3b3 = 2bwa2,

b′
2 = bwa′

1,
(18)

or, solving the second and plugging into the first, results in

bw = 3b3/2a2,

b′
2 = 3b3a′

1/2a2.
(19)

So, if one wants to save the form of the standard DT for the variable w (potential)
the simple comparison of both transformation formulas gives for b(w) the
following connection (with arbitrary function α(t)):

b(w, t) = 3b3w/2a2 + α(t). (20)

Equalizing the expansion (16) with the transform of the b0 = G(w, t) yields:

b′
1 + σb′

2 + 3b3(σ 2/2 + σ ′)′ = Gwx (a′
1 + 2a2σ

′ + σa′
2)′

+ G∂−1wt
[a1t + 2∂−1(a2σ

′
t ) + ∂−1(σa′

2)t ] + · · · (21)

This second “joint covariance equation” also simplifies when a′
2 = 0:

3b3w
′/2a2 + σb′

2 + 3b3(∂−1σt − w)′/2a2 + 3b3σ
′′/2

= Gwx (a′
1 + 2a2σ

′)′ + G∂−1w[a1 + 2a2σ ]

+ G∂−1wt
[a1t + 2a2σt ] + . . . , (22)

when (20) is accounted. Note, that the “Miura” (13) is used in the l.h.s.
and linearizes the FD with respect to σ . Therefore, the derivatives of the
function G

Gwx = 3b3/4a2,

G∂−1wt
= 3b3/4a2

2, (23)

G∂−1w = b′
2/2a2,

are accompanied by the constraint

a1t + a2a′′
1 + a1a′

1 = 0, (24)

which have got the form of the Burgers equation after (19) account. Finally the
integration of the relation (19) gives

b2 = 3b3a1/2a2 + β(t) (25)

and the “lower” coefficient of the third-order operator is expressed by

G(w, t) = 3b3wx/2a2 + 3b3a′
1∂

−1w/2(a2)2 + 3b3∂
−1wt/2a2

2 . (26)
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Statement 2 The expressions (11, 10, 20, 26) define the covariant Lax pair
when the constraints (19, 24) are valid.

Remark We cut the Frechêt differential formulas on the level that is necessary
for the minimal flows. The account of higher terms leads to the whole hierarchy
[12].

2.2 Compatibility Condition

In the case a′
2 = 0 by which we have restricted ourselves, the Lax system (10,

11) produces the following compatibility conditions:

2a2b′
3 = 3b3a′

2,

b3t = 2a2b′
2 − 3b3a′′

1

b2t = a2b′′
2 + 2a2b′

1 + a1b′
2 − 3b3a′′

1 − 2b2a′
1 − 3b3a′

0 (27)

b1t = a2b′′
1 + a1b′

1 − b3a′′′
1 − b2a′′

1 − b1a′
1 − 3b3a′′

0 − 2b2a′
0 + 2a2b′

0

b0t = a1b′
0 + a2b′′

0 − b1a′
0 − b2a′′

0 − b3a′′′
0

In the particular case of a2 = 0 we extract at once from the first of the equalities
(27) the constraint b′

3 = 0. The direct corollary of (25) is b3t = 0. In the rest
of the equations the links (27), (25) are taken into account. Hence (24) in the
combination with the expression for b2t produce

βt = −2βa′
1. (28)

The last two equations (choice of constants b3 = 1, a2 = −1) become

αw + αt + 3a′′
1∂−1w/2 + (2β − 3a1/2)w′ + a′′′

1 + 3a1a′′
1/2 = 0

3∂−1(wt + a1w)t/4 = (α − 3w/2)w′ − w′′′/4

+ 3a1wt/4 + 3a1a′′
1∂−1w/4 + 3a1a′

1w/4 − 3a′
1w

′/4

+ (β + 3a1/4)w′′.

(29)

In the simplest case of constant coefficients (b′
2 = a′1 = 0) one goes down to

3b3(wt + a1w)t/4a2
2 = −[(3b3w/2a2 + α)w′ − b3w

′′′/4

+ 3b3a1wt/4a2
2 + (β − 3b3a1/4a2)w′′]′. (30)

This equation reduces to the standard Boussinesq equation when (b1 = a1 =
0, b3 = 1, a2 = −1) [6].

We would repeat that the results given in the Section 2 are simplified to show
more clear the algorithm of the covariant Lax pair derivation. More general
study (a′

2 �= 0) will be published elsewhere.
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2.3 Solutions. Dressing Chains for the Boussinesq Equation

The dressing formula for the zero seed potential (39) is standard and includes
the only seed solution φ, of the Lax equations with zero potential w.

ws = a′
1 + 2a2σ

′ + σa′
2 = a′

1 + 2a2 logxx φ(x, t) (31)

A next power tool to obtain solutions of nonlinear system is the dressing
chain equation: solitonic, finite-gap, and other important solutions were ob-
tained for the KdV equations reducing such chain [22]. Going to the dressing
chain, we use the scheme from [10]. We would restrict ourselves further to
the case of a2 = −1, a0 = u, b3 = 1, b2 = 0, b1 = b(u, t) = −3u/2 + α, G =
−3u′/4 + 3∂−1ut to fit the notations from [10]. The general construction is
quite similar.

The Miura equations (13), (14) also simplifies

σt = −(σ 2 + σx )x + ux (32)

for the problem (11) and

σ 3 + 3σxσ + σxx + bσ + G = const, (33)

where b = 3u/2 + α, G = −3∂−1ut/4 + 3ux/4.
Namely the Eq. (32), (33) together with the n-fold iterated DT formula (5)

un+1 = un − 2σ ′
n (34)

form the basis to produce the DT dressing chain equations.
We express the iterated potential wn from (32)

−σnt + (σ 2
n + σ ′

n)′ = u′
n (35)

and substitute it into the differentiated relation (34) to get the first dressing
chain equation

σn+1,t − σnt = (σ 2
n+1 + σ ′

n+1)′ − (σ 2
n − σ ′

n)′. (36)

Next chain equation is obtained when one plugs the potential from (35) to the
iterated (33)

σ 3
n + 3σ ′

nσn + σ ′′
n + (−3un/2 + α)σn + −3u′

n/4 + 3∂−1unt = cn. (37)

3 NON-ABELIAN CASE. ZAKHAROV–SHABAT (ZS) PROBLEM

3.1 Joint Covariance Conditions for General ZS Equations

Let us change notations for the first order (n = 1) Eq. (1) with the coefficients
from a non-Abelian differential ring A (for details of the mathematical objects
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definitions see [3]) as follows:

ψt = (J + u∂)ψ, (38)

where the operator J ∈ A does not depend on x, y, t and the potential a0 ≡
u = u(x, y, t) ∈ A is a function of all variables. The operator ∂ = ∂/∂x may
be considered as a general differentiation as in [3]. The transformed potential

ũ = u + [J, σ ], (39)

where the σ = φxφ
−1, is defined by the same formula as before, but the order

of elements is important. The covariance of the operator in (38) follows from
general transformations of the coefficients of a polynomial [6]. The coefficient
J does not transform.

Suppose the second operator of a Lax pair has the same form, but with
different entries and derivatives.

ψy = (Y + w∂)ψ, (40)

Y ∈ A where the potential w = F(u) ∈ A is a function of the potential of the
first (38) equation. The principle of joint covariance [9] hence reads

w̃ = w + [Y, σ ] = F(u + [J, σ ]), (41)

with the direct corollary

F(u) + [Y, σ ] = F(u + [J, σ ]). (42)

So, the Eq. (42) defines the function F(u), we shall name this equation
as joint covariance equation. In the case of Abelian algebra we used the
Taylor series (generalized by use of a Frechet derivative) to determine the func-
tion. Now some more generalization is necessary. Let us make some general
remarks.

An operator-valued function F(u) of an operator u in a Banach space may
be considered as a generalized Taylor series with coefficients that are expressed
in terms of Frechèt derivatives. The linear in u part of the series approximates
(in a sense of the space norm) the function

F(u) = F(0) + F ′(0)u + · · · .
The representation is not unique and the similar expression

F(u) = F(0) + u F̂ ′(0) + · · ·
may be introduced (definitions are given in Appendix). Both expressions how-
ever are not Hermitian, hence not suitable for the majority of physical models.
It means, that the class or such operator functions is too restrictive. To explain
what we have in mind, let us consider examples.
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3.2 Important Example

From a point of view of the physical modeling the following Hermitian ap-
proximation:

F(u) = F(0) + H+u + u H + · · ·, u+ = u,

is preferable. Such models could be applied to quantum theories: introduction
of this approximation is similar to “phi in quadro” (Landau-Ginzburg) model
[18]. Let us study, in which conditions the function

w = F(u) = Hu + u H, (43)

satisfy the joint covariance condition for the Lax pair (38), (40) By direct
calculation in (42) one arrives at the equality

[Y, σ ] = H [J, σ ] + [J, σ ]H. (44)

The obvious choice for arbitrary σ is Y = H 2, J = H .
The compatibility conditions for the pair of Eqs. (38) and (40) yields

uy − Hut − ut H + [u, H ]u + u[u, H ] + H 2ux + Hux H + H 2ux = 0

(45)

If the potential does not depend on t , it is reduced to the next equation:

uy + [u2, H ] + H 2ux + Hux H + H 2ux = 0, (46)

and x-independence yields the generalized Euler top equations

uy + [u2, H ] = 0, (47)

which Lax pair (38), (40) with Y = J 2, J = H was found by Manakov
[19].

3.3 Covariant Combinations of Symmetric Polynomials

The next natural example appears if one examine the link (44).

P2(H, u) = H 2u + Hu H + u H 2

The direct substitution in the covariance and compatibility equations leads
to covariant constraint that turns to the identity, if Y = H 3, J = H .

It is easy to check more general connection Y = J n, J = H connection that
leads to the covariance of the function

Pn(H, u) =
n∑

p=0

H n−pu H p.
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Such observation was exhibited in [18]. On the way of a further generalization
let us consider

f (H, u) = Hu + u H + S2u + SuS + uS2 (48)

Plugging (48) as F(u) = f (H, u) into (42), representing Y = AB + C DE
yields

A[B, σ ] + [A, σ ]B + C D[E, σ ] + C[D, σ ]E + [C, σ ]DE

= H [J, σ ] + [J, σ ]H + S2[J, σ ] + S[J, σ ]S + [J, σ ]S2.

The last expression turns to identity if A = B = J = H, C = αH, D =
αH, D = αH, S = β H , and [α, H ] = 0, [β, H ] = 0 with the link α3 = β2.

Statement 3 Darboux covariance define a class of homogeneous polynomi-
als Pn(H, u), symmetric with respect to cyclic permutations. A linear com-
bination of such polynomials

∑N
n=1 βn Pn(H, u) with the coefficients com-

muting with u, H is also covariant, if the element Y = ∑N
n=1 αn H n+1 and

α1 = β1 = 1, αn+2
n = βn+1, n �= 1.

A proof could be made by induction that is based on homogeneity of the
Pn and linearity of the constraints with respect to u. The functions FH (u) =∑∞

0 an PHn(u) satisfy the constraints if the series converges.

4 CONCLUSION

The main result of this paper is the covariant Eq. (42). See, also the example
(44). A class of potentials from [20] contains polynomials Pn(H, u) and give
alternative expressions for it. The linear combinations, introduced here could
better reproduce physical situation of interest. So, we used the compatibility
condition to find the form of integrable equation and reduction tracing the
simplifications appearing for the subclasses of covariant potentials. While doing
this we also check the invariance of the equation and heredity of the constraints.

The work is also supported by KBN grant 5P03B 040 20.

APPENDIX

Right and left Frechêt derivatives: The classic notion of a derivative of an
operator by other one is defined in a Banach space B. Two specific features in
the case of a operator-function F(u) ∈ Bu ∈ B should be taken into account: a
norm choice when a limiting procedure is made and the non-Abelian character
of expressions while the differential and difference introduced.
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Definition 3 Let a Banach space B have a structure of a differential ring. Let
F be the operator from B to B ′ defined on the open set of B. The operator is
named the left-differentiable in u0 ∈ B if there exist a linear restricted operator
L(u0), acting also from B to B’ with the property

L(u0 + h) − L(u0) = L(u0)h + α(u0, h), ‖h‖ → 0, (A1)

where ‖α(u0, h)‖/‖h‖ → 0. The operator L(u0) = F ′(u0) is referred as the
operator of the (strong) left derivative of the function F(u). The right derivative
F̂ ′(u0) could be defined by the similar expression and conditions, if one changes
Lh → hL̂ in the equality (A1).

The addition of the half of the right and left differentials

(F ′(u0)h + h F̂ ′(u0))/2 (A2)

also approximates the difference L(u0 + h) − L(u0) in the sense of the FD
definition.
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ON THE DIRICHLET BOUNDARY
PROBLEM AND HIROTA EQUATIONS
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Abstract We review the integrable structure of the Dirichlet boundary problem in
two dimensions. The solution to the Dirichlet boundary problem for sim-
plyconnected case is given through a quasiclassical tau-function, which
satisfies the Hirota equations of the dispersionless Toda hierarchy, fol-
lowing from properties of the Dirichlet Green function. We also outline a
possible generalization to the case of multiply connected domains related
to the multi support solutions of matrix models.

1 INTRODUCTION: GREEN FUNCTION
AND HADAMARD FORMULA

Solving the Dirichlet boundary problem [1], one reconstructs a harmonic func-
tion in a bounded domain from its values on the boundary. In two dimensions,
this is one of standard problems of complex analysis having close relations to
string theory and matrix models. Remarkably, it possesses a hidden integrable
structure [2]. It turns out that variation of a solution to the Dirichlet problem
under variation of the domain is described by an infinite hierarchy of non linear
partial differential equations known (in the simply-connected case) as disper-
sionless Toda hierarchy. It is a particular example of the universal hierarchy of
quasiclassical or Whitham equations introduced in [3, 4].

The quasiclassical tau-function (or its logarithm F) is the main new object
associated with a family of domains in the plane. Any domain in the complex
plane with sufficiently smooth boundary can be parametrized by its harmonic
moments and the F-function is a function of the full infinite set of the moments.
The first order derivatives of F are then moments of the complementary domain.
This gives a formal solution to the inverse potential problem, considered for a
simply connected case in [5, 6]. The second order derivatives are coefficients
of the Taylor expansion of the Dirichlet Green function and therefore they
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solve the Dirichlet boundary problem. These coefficients are constrained by
infinite number of universal (i.e. domain independent) relations which, unified
in a generating form, just constitute the dispersionless Hirota equations. For
the third order derivatives there is a nice “residue formula” which allows one
to prove [7] that F obeys the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV)
equations [8].

Let us remind the formulation of the Dirichlet problem in planar domains. Let
Dc be a domain in the complex plane bounded by one or several non intersecting
curves. It will be convenient for us to realize the Dc as a complement of another
domain, D (which in general may have more than one connected components),
and consider the Dirichlet problem in Dc. The problem is to find a harmonic
function u(z) in Dc, such that it is continuous up to the boundary ∂Dc and equals
a given function u0(ξ ) on the boundary, and it can be uniquely solved in terms
of the Dirichlet Green function G(z, ξ ):

u(z) = − 1

2π

∮
∂Dc

u0(ξ )∂nG(z, ξ )|dξ | (1)

where ∂n is the normal derivative on the boundary with respect to the second
variable, and the normal vector �n is directed inward Dc, |dξ | := dl(ξ ) is an
infinitesimal element of the length of the boundary ∂Dc.

The Dirichlet Green function is uniquely determined by the following prop-
erties [1]:

(G1) The function G(z, z′) is symmetric and harmonic everywhere in Dc (in-
cluding ∞ if Dc � ∞) in both arguments except z = z′ where G(z, z′) =
log |z − z′| + · · · as z → z′;

(G2) G(z, z′) = 0 if any of the variables z, z′ belongs to the boundary.

Note that the definition implies that G(z, z′) < 0 inside Dc. In particular,
∂nG(z, ξ ) is strictly negative for all ξ ∈ ∂Dc.

If Dc is simply-connected (the boundary has only one component), the
Dirichlet problem is equivalent to finding a bijective conformal map from Dc

onto the unit disk or any other reference domain (where the Green function is
known explicitly) which exists by virtue of the Riemann mapping theorem. Let
w(z) be such a bijective conformal map of Dc onto the complement to the unit
disk, then

G(z, z′) = log

∣∣∣∣ w(z) − w(z′)
w(z)w(z′) − 1

∣∣∣∣ (2)

where bar means complex conjugation. It is this formula which allows one
to derive the Hirota equations for the tau-function of the Dirichlet problem
in the most economic and transparent way [2]. Indeed, the Green function is
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shown to admit a representation through the logarithm of the tau-function of the
form

G(z, z′) = log

∣∣∣∣1

z
− 1

z′

∣∣∣∣ + 1

2
∇(z)∇(z′)F (3)

where ∇(z) (see (9) below) is certain differential operator with constant coeffi-
cients (depending only on the point z as a parameter) in the space of harmonic
moments. Taking into account that G(z, ∞) = − log |w(z)|, one excludes the
Green function from these relations thus obtaining a closed system of equations
for F only.

Our main tool to derive (3) is the Hadamard variational formula [9] which
gives variation of the Dirichlet Green function under small deformations of the
domain in terms of the Green function itself:

δG(z, z′) = 1

2π

∮
∂Dc

∂nG(z, ξ )∂nG(z′, ξ )δn(ξ )|dξ | . (4)

Here δn(ξ ) is the normal displaycement (with sign) of the boundary under the
deformation, counted along the normal vector at the boundary point ξ . It was
shown in [2] that this remarkable formula reflects all integrable properties of the
Dirichlet problem. An extremely simple “pictorial” derivation of the Hadamard
formula is presented in figure 1. Looking at the figure and applying (1), one
immediately gets (4).

ξ
δ

Figure 1. A “pictorial” derivation of the Hadamard formula. We consider a small
deformation of the domain, with the new boundary being depicted by the dashed line.
According to (G2) the Dirichlet Green function vanishes G(z, ξ ) = 0 if ξ belongs to
the old boundary. Then the variation δG(z, ξ ) simply equals to the new value, i.e. in
the leading order δG(z, ξ ) = −δn(ξ )∂nG(z, ξ ). Now notice that δG(z, ξ ) is a harmonic
function (the logarithmic singularity cancels since it is the same for both old and new
functions) with the boundary value −δn(ξ )∂nG(z, ξ ). Applying (1) one obtains (4)
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2 DIRICHLET PROBLEM FOR SIMPLY-CONNECTED DOMAINS
AND DISPERSIONLESS HIROTA EQUATIONS

Let D be a connected domain in the complex plane bounded by a simple analytic
curve. We consider the exterior Dirichlet problem in Dc = C\D which is the
complement of D in the whole (extended) complex plane. Without loss of
generality, we assume that D is compact and contains the point z = 0. Then Dc

is an unbounded simply-connected domain containing ∞.

2.1 Harmonic Moments and Elementary Deformations

To characterize the shape of the domain Dc we consider its moments
with respect to a complete basis of harmonic functions. The simplest ba-
sis is {z−k}, {z−k}(k ≥ 1) and the constant function. Let tk be the harmonic
moments

tk = − 1

πk

∫
Dc

z−kd2z, k = 1, 2, . . . (5)

and t k be the complex conjugated moments. The Stokes formula represents
them as contour integrals tk = 1

2π ik

∮
∂D

z−k z̄dz, providing, in particular, a regu-
larization of possibly divergent integrals (5). The moment of constant function
is infinite but its variation is always finite and opposite to the variation of the
complimentary domain D. Let t0 be the area (divided by π ) of D:

t0 = 1

π

∫
D

d2z (6)

The harmonic moments of Dc are coefficients of the Taylor expansion of the
potential

�(z) = − 2

π

∫
D

log |z − z′|d2z′ (7)

induced by the domain D filled by two-dimensional Coulomb charges with the
uniform density −1. Clearly, ∂z∂z̄�(z) = −1 if z ∈ D and vanishes otherwise,
so around the origin (recall that D � 0) the potential is −|z|2 plus a harmonic
function:

�(z) − �(0) = −|z|2 +
∑
k≥1

(
tk zk + t̄k z̄k

)
(8)

A simple calculation shows that tk are just given by (5).
The basic fact of the theory of deformations of closed analytic curves is that

the (in general complex) moments {tk, t̄k} ≡ {t±k} supplemented by the real
variable t0 form a set of local coordinates in the “moduli space” of smooth
closed curves. This means that under any small deformation of the domain the
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z

Figure 2. The elementary deformation with the base point z

set t = {t0, t±k} is subject to a small change and vice versa. For more details,
see [10, 11, 12]. The differential operators

∇(z) = ∂t0 +
∑
k≥1

(
z−k

k
∂tk + z̄−k

k
∂t̄k

)
(9)

span the complexified tangent space to the space of curves. The operator ∇(z)
has a clear geometrical meaning. To clarify it, we introduce the notion of
elementary deformation.

Fix a point z ∈ Dc and consider a special infinitesimal deformation of the
domain such that the normal displaycement of the boundary is proportional to
the gradient of the Green function at the boundary point (Figure 2):

δn(ξ ) = −ε

2
∂nG(z, ξ ) (10)

For any sufficiently smooth initial boundary this deformation is well defined as
ε → 0. We call infinitesimal deformations from this family, parametrized by
z ∈ Dc, elementary deformations. The point z is refered to as the base point of
the deformation. Note that since ∂nG < 0 (see the remark after the definition
of the Green function in the Introduction), δn for the elementary deforma-
tions is either strictly positive or strictly negative depending of the sign of
the ε.

Let δz be variation of any quantity under the elementary deformation with
the base point z. It is easy to see that δzt0 = ε, δztk = εz−k/k. Indeed,

δztk = 1

πk

∮
ξ−kδn(ξ )|dξ | = − ε

2πk

∮
ξ−k∂nG(z, ξ )|dξ | = ε

k
z−k (11)

by virtue of the Dirichlet formula (1).
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Let X = X (t) be any functional of our domain that depends on the harmonic
moments only (in what follows we are going to consider only such functionals).
The variation δz X in the leading order in ε is then given by

δz X =
∑

k

∂ X

∂tk
δztk = ε∇(z)X (12)

The right hand side suggests that for functionals X such that the series ∇(z)X
converges everywhere in Dc up to the boundary, δz X is a harmonic function of
the base point z.

Note that in [2] we used the “bump” deformation and continued it
harmonically to Dc. So it was the elementary deformation (11) δz ∝∮ |dξ |∂nG(z, ξ )δbump(ξ ) that was really used. The “bump” deformation should
be understood as a (carefully taken) limit of δz when the point z tends to the
boundary.

2.2 The Hadamard Formula as Integrability Condition

Variation of the Green function under small deformations of the domain is
known due to Hadamard, see Eq. (4). To find how the Green function changes
under small variations of the harmonic moments, we fix three points a, b, c ∈
C\D and compute δcG(a, b) by means of the Hadamard formula (4). Using
(12), one can identify the result with the action of the vector field ∇(c) on the
Green function:

∇(c)G(a, b) = − 1

4π

∮
∂D

∂nG(a, ξ )∂nG(b, ξ )∂nG(c, ξ )|dξ | (13)

Remarkably, the r.h.s. of (13) is symmetric in all three arguments:

∇(a)G(b, c) = ∇(b)G(c, a) = ∇(c)G(a, b) (14)

This is the key relation, which allows one to represent the Dirichlet problem as
an integrable hierarchy of non linear differential equations [2]. This relation is
the integrability condition of the hierarchy.

It follows from (14) (see [2] for details) that there exists a function F = F(t)
such that

G(z, z′) = log

∣∣∣∣1

z
− 1

z′

∣∣∣∣ + 1

2
∇(z)∇(z′)F (15)

The function F is (logarithm of) the tau-function of the integrable hierarchy.
In [13] it was called the tau-function of the (real analytic) curves. Existence of
such a representation of the Green function was first conjectured by Takhtajan.
This formula was first obtained in [13] (see also [12] for a detailed proof and
discussion).
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2.3 Dispersionless Hirota Equations for F

Combining (15) and (2), we obtain the relation

log

∣∣∣∣ w(z) − w(z′)
w(z)w(z′) − 1

∣∣∣∣
2

= log

∣∣∣∣1

z
− 1

z′

∣∣∣∣
2

+ ∇(z)∇(z′)F (16)

which implies an infinite hierarchy of differential equations on the function F.
It is convenient to normalize the conformal map w(z) by the conditions that
w(∞) = ∞ and ∂zw(∞) is real, so that

w(z) = z

r
+ O(1) as z → ∞ (17)

where the real number r = limz→∞ dz/dw(z) is called the (external) conformal
radius of the domain D (equivalently, it can be defined through the Green
function as log r = limz→∞(G(z, ∞) + log |z|), see [14]). Then, tending z′ →
∞ in (16), one gets

log |w(z)|2 = log |z|2 − ∂t0∇(z)F (18)

The limit z → ∞ of this equality yields a simple formula for the conformal
radius:

log r2 = ∂2
t0 F (19)

Let us now separate holomorphic and antiholomorphic parts of these equations.
To do that it is convenient to introduce holomorphic and antiholomorphic parts
of the operator ∇(z) (9):

D(z) =
∑
k≥1

z−k

k
∂tk , D̄(z̄) =

∑
k≥1

z̄−k

k
∂t̄k , (20)

Rewrite (16) in the form

log

(
w(z) − w(z′)
w(z)w(z′) − 1

)
− log

(
1

z
− 1

z′

)
−

(
1

2
∂t0 + D(z)

)
∇(z′)F

= − log

(
w(z) − w(z′)
w(z′)w(z) − 1

)
+ log

(
1

z̄
− 1

z̄′

)
+

(
1

2
∂t0 + D̄(z̄)

)
∇(z′)F

The l.h.s. is a holomorphic function of z while the r.h.s. is antiholomorphic.
Therefore, both are equal to a z-independent term which can be found from the
limit z → ∞. As a result, we obtain the equation

log

(
w(z) − w(z′)

w(z) − (w(z′))−1

)
= log

(
1 − z′

z

)
+ D(z)∇(z′)F (21)
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which, as z′ → ∞, turns into the formula for the conformal map w(z):

log w(z) = log z − 1

2
∂2

t0 F − ∂t0 D(z)F (22)

(here we used (19)). Proceeding in a similar way, one can rearrange (21) in
order to write it separately for holomorphic and antiholomorphic parts in z′:

log
w(z) − w(z′)

z − z′ = −1

2
∂2

t0 F + D(z)D(z′)F (23)

− log

(
1 − 1

w(z)w(z′)

)
= D(z)D̄(z̄′)F (24)

Writing down Eq. (23) for the pairs of points (a, b), (b, c), and (c, a) and
summing up the exponentials of the both sides of each equation one arrives at
the relation

(a − b)eD(a)D(b)F + (b − c)eD(b)D(c)F + (c − a)eD(c)D(a)F = 0 (25)

which is the dispersionless Hirota equation (for the KP part of the two-
dimensional Toda lattice hierarchy) written in the symmetric form. This equa-
tion can be regarded as a very degenerate case of the trisecant Fay identity.
It encodes the algebraic relations between the second order derivatives of the
function F. As c → ∞, we get these relations in a more explicit but less sym-
metric form:

1 − eD(a)D(b)F = D(a) − D(b)

a − b
∂t1 F (26)

which makes it clear that the totality of second derivatives Fi j := ∂ti ∂t j F are
expressed through the derivatives with one of the indices equal to unity.

More general equations of the dispersionless Toda hierarchy obtained in a
similar way by combining Eqs. (22–24) include derivatives w.r.t. t0 and t̄k :

(a − b)eD(a)D(b)F = ae−∂t0 D(a)F − be−∂t0 D(b)F (27)

1 − e−D(z)D̄(z̄)F = 1
zz̄ e∂t0 ∇(z)F (28)

These equations allow one to express the second derivatives ∂tm , ∂tn F, ∂tm ∂t̄n F
with m, n ≥ 1 through the derivatives ∂t0∂tk F, ∂t0∂t̄k F . In particular, the disper-
sionless Toda equation,

∂t1∂t̄1 F = e∂2
t0

F (29)

which follows from (28) as z → ∞, expresses ∂t1∂t̄1 F through ∂2
t0 F .

For a comprehensive exposition of Hirota equations for dispersionless KP
and Toda hierarchies we refer the reader to [15, 16].
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2.4 Integral Representation of the Tau-Function

Equation (15) allows one to obtain a representation of the tau-function as a
double integral over the domain D. Set �̃(z) := ∇(z)F . One is able to determine
this function via its variation under the elementary deformation:

δa�̃(z) = −2ε log |a−1 − z−1| + 2εG(a, z) (30)

which is read from Eq. (15) by virtue of (12). This allows one to identify �̃ with
the “modified potential” �̃(z) = �(z) − �(0) + t0 log |z|2, where � is given
by (7). Thus we can write

∇(z)F = �̃(z) = − 2

π

∫
D

log |z−1 − ζ−1|d2ζ = v0 + 2Re
∑
k>0

vk

k
z−k (31)

The last equality is to be understood as the Taylor expansion around infinity.
The coefficients vk are moments of the interior domain (the “dual” harmonic
moments) defined as

vk = 1

π

∫
D

zkd2z (k > 0), v0 = −�(0) = 2

π

∫
D

log |z|d2z (32)

From (31) it is clear that

vk = ∂tk F, k ≥ 0 (33)

In a similar manner, one obtains the integral representation of the tau-function

F = − 1

π2

∫
D

∫
D

log |z−1 − ζ−1|d2zd2ζ (34)

or

F = 1

2π

∫
D

�̃(z)d2z (35)

These formulas remain intact in the multiply-connected case (see below).

3 TOWARDS MULTIPLY-CONNECTED CASE AND
GENERALIZED HIROTA EQUATIONS

Now we are going to explain how the above picture can be generalized to the
multiply connected case. The details can be found in [17].

Let Dα, α = 0, 1, . . . , g, be a collection of g + 1 non intersecting bounded
connected domains in the complex plane with smooth boundaries ∂Dα. Set
D = ∪g

α=0Dα, so that the complement Dc = C\D becomes a multiply-connected
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D1

D0

C \ D

1

3

0

b

b

b

b

z

z

z

z
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2

3

= 0

D2

D

Figure 3. A multiply-connected domain Dc = C\D for g = 3. The domain D =
∪3

α=0Dα consists of g + 1 = 4 disconnected parts Dα with the boundaries bα . To de-
fine the complete set of harmonic moments, we also need the auxiliary points zα ∈ Dα

which should be always located inside the corresponding domains.

unbounded domain in the complex plane (see Figure 3), bα being the boundary
curves.

It is customary to associate with a planar multiply connected domain its
Schottky double, a compact Riemann surface without boundary endowed with
an antiholomorpic involution, the boundary of the initial domain being the set
of fixed points of the involution. The Schottky double of the multiply-connected
domain Dc can be thought of as two copies of Dc (“upper” and “lower” sheets of
the double) glued along the boundaries ∪g

α=0bα = ∂Dc, with points at infinity
added (∞ and ∞̄). In this set-up the holomorphic coordinate on the upper sheet
is z inherited from Dc, while the holomorphic coordinate on the other sheet is
z̄. The Schottky double of Dc with two infinities added is a compact Riemann
surface of genus g = #{Dα} − 1.

On the double, one may choose a canonical basis of cycles. The b-cycles
are just boundaries of the holes bα for α = 1, . . . , g. Note that regarded as the
oriented boundaries of Dc (not D) they have the clockwise orientation. The aα-
cycle connects the α-th hole with the 0-th one. To be more precise, fix points
ξα on the boundaries, then the aα cycle starts from ξ0, goes to ξα on the “upper”
(holomorphic) sheet of the double and goes back the same way on the “lower”
sheet, where the holomorphic coordinate is z̄.
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3.1 Tau-Function for Algebraic Domains

Comparing to the simply connected case, nothing is changed in posing the stan-
dard Dirichlet problem. The definition of the Green function and the formula
(1) for the solution of the Dirichlet problem through the Green function are the
same too. A difference is in the nature of harmonic functions. Any harmonic
function is the real part of an analytic function but in the multiply connected
case these analytic funstions are not necessarily single-valued (only their real
parts have to be single-valued).

One may still characterize the shape of a multiply connected domain by har-
monic moments. However, the set of linearly independent harmonic functions
should be extended. The complete basis of harmonic functions in the plane
with holes is described in [17].

Here we shall only say a few words about the case which requires the minimal
number of additional parameters and minimal modifications of the theory. This
is the case of algebraic domains (in the sense of [10]), or quadrature domains
[18, 19], where, roughly speaking, the space of independent harmonic moments
is finite-dimensional. For example, one may keep in mind the class of domains
with only finite number of non-vanishing moments. It is this class which is
directly related to multi-support solutions of matrix models with polynomial
potentials. Boundaries of such multiply-connected domains can be explicitly
described by algebraic equations [20].

In this case it is enough to incorporate moments with respect to g additional
harmonic functions of the form

να(z) = log

∣∣∣∣1 − zα

z

∣∣∣∣
2

, α = 1, . . . , g

where zα ∈ Dα are some marked points, one in each hole (see Figure 3). Without
loss of generality, it is convenient to put z0 = 0. The “periods” of these func-
tions are:

∮
bα

∂nνβ(z)|dz| = 4πδαβ . The independent parameters for algebraic
domains are:

t0 = 1

π

∫
D

d2z = Area(D)

π

tk = − 1

πk

∫
Dc

z−kd2z, k ≥ 1 (36)

φα = − 1

π

∫
Dc

log

∣∣∣∣1 − zα

z

∣∣∣∣
2

d2z, α = 1, . . . , g

(tk are complex numbers while t0 and φα are real). Instead of φα it is more
convenient to use

α = φα − 2 Re
∑
k>0

tk zk
α (37)
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which does not depend on the choice of zα’s. Note that in the case of a finite
number of nonvanishing moments the sum is always well defined.

Using the Hadamard formula, one again derives the “exchange relations”
(14) which imply the existence of the tau-function and the fundamental relation
(15). They have the same form as in the simply connected case. It can be shown
that taking derivatives of the tau-function with respect to the additional variables
α, one obtains the harmonic measures of boundary components and the period
matrix.

The harmonic measure ωα(z) of the boundary component bα is the harmonic
function in Dc such that it is equal to 1 on bα and vanishes on the other boundary
curves. From the general formula (1) we conclude that

ωα(z) = − 1

2π

∮
bα

∂nG(z, ζ )|dζ |, α = 1, . . . , g (38)

Being harmonic, ωα can be represented as the real part of a holomorphic
function:

ωα(z) = Wα(z) + Wα(z)

where Wα(z) are holomorphic multivalued functions in Dc. The differentials
dWα are holomorphic in Dc and purely imaginary on all boundary contours. So
they can be extended holomorphically to the lower sheet of the Schottky double
as −dWα(z). In fact this is the canonically normalized basis of holomorphic
differentials on the double. Indeed, according to the definitions,∮

aα

dWβ = 2Re

∫ ξα

ξ0

dWβ(z) = ωβ(ξα) − ωβ(ξ0) = δαβ

Then the matrix of b-periods of these differentials reads

Tαβ =
∮

bα

dWβ = − i

2

∮
bα

∂nωβdl = iπ�αβ (39)

The period matrix Tαβ is purely imaginary non degenerate matrix with positively
definite imaginary part. In addition to (15), the following relations hold:

ωα(z) = −∂α∇(z)F (40)

and

Tαβ = 2π i∂α∂β F (41)

where ∂α := ∂/∂α.
In the multiply-connected case, the suitable analog of the conformal map

w(z) (or rather of log w(z)) is the embedding of Dc into the g-dimensional
complex torus Jac, the Jacobi variety of the Schottky double. This embedding
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is given, up to an overall shift in Jac, by the Abel map z �→ W(z) :=
(W1(z), . . . , Wg(z)) where

Wα(z) =
∫ z

ξ0

dWα (42)

is the holomorphic part of the harmonic measure ωα. By virtue of (40), the Abel
map is represented through the second order derivatives of the function F:

Wα(z) − Wα(∞) =
∫ z

∞
dWα = −∂α D(z)F (43)

2ReWα(∞) = ωα(∞) = −∂t0∂α F (44)

The last formula immediately follows from (40).

3.2 Green Function and Generalized Hirota Equations

The Green function of the Dirichlet boundary problem in the multiply connected
case, can be written in terms of the prime form (see [21] for the definition and
properties) on the Schottky double (cf. (2)):

G(z, ζ ) = log

∣∣∣∣ E(z, ζ )

E(z, ζ̄ )

∣∣∣∣ (45)

Here by ζ̄ we mean the (holomorphic) coordinate of the “mirror” point on the
Schottky double, i.e. the “mirror” of ζ under the antiholomorphic involution.
Using (45) together with (15), (40) and (41) one can obtain the following
representations of the prime form in terms of the tau-function

E(z, ζ ) = (z−1 − ζ−1)e− 1
2 (D(z)−D(ζ ))2 F

i E(z, ζ̄ ) = e− 1
2 (∂t0 +D(z)+D̄(ζ̄ ))2 F (46)

i E(z, z̄) = e− 1
2 ∇2(z)F

generalizing (23), (24) in the simply-connected case.
This allows us to write the generalized Hirota equations for F in the multiply-

connected case. They follow from the Fay identities [21] and (46). In analogy to
the simply-conected case, any second order derivative of the function F w.r.t. tk
(and t̄k), Fik , is expressed through the derivatives {Fαβ} where α, β = 0, . . . , g
together with {Fαti } and their complex conjugated. To be more precise, one
can consider all second derivatives as functions of {Fαβ, Fαk} modulo certain
relations on the latter discussed in [17]; sometimes on this “small phase space”
more extra constraints arise, which can be written in the form similar to the
Hirota or WDVV equations [22].

For the detailed discussion of the generalized Hirota relations the reader is
addressed to [17]. Here we just give the simplest example of such relations, an
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analog of the dispesrionless Toda equation (2.25) for the tau-function. It reads

∂t1∂t̄1 F = θ (ω(∞) + Z)θ (ω(∞) − Z)

θ2(Z)
e∂2

t0
F

+
g∑

α,β=1

(log θ (Z)),αβ (∂α∂t1 F)(∂β∂t̄1 F) (47)

Here θ is the Riemann theta-function with the period matrix Tαβ and

(log θ (Z)),αβ := ∂2 log θ (Z)/∂ Zα∂ Zβ

The equation holds for any vector-valued parameter Z ∈ Jac. It is important to
note that the theta-functions are expressed through the second order derivatives
of F, so (47) is indeed a partial differential equation for F. For example,

θ (ω(∞)) =
∑
nα∈z

exp

(
−2π2

∑
αβ

nαnβ∂2
αβ F − 2π i

∑
α

nα∂α∂t0 F

)

4 CONCLUSION

In these notes we have reviewed the integrable structure of the Dirichlet bound-
ary problem. We have presented the simplest known to us proof of the Hadamard
variational formula and derivation of the dispersionless Hirota equations for the
simply-connected case.

We have also demonstrated how this approach can be generalized to the
case of multiply-connected domains. The main ingredients remain intact, but
the conformal map to the reference domain should be substituted by the Abel
map into Jacobian of the Schottky double of the multiply-connected domain.
Then one can write the generalization of the Hirota equations using the Fay
identities, a particular case of which leads to generalization of the dispersionless
Toda equation.

Here we have only briefly commented on the properties of the quasiclassical
tau-function of the multiply-connected solution. A detailed discussion of this
issue and many related problems, including conformal maps in the multiply-
connected case, duality transformations on the Schottky double, relation to the
multi-support solutions of the matrix models etc, can be found in [17].
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FUNCTIONAL-DIFFERENCE
DEFORMATIONS OF
DARBOUX-PÖSHL-TELLER
POTENTIALS

Vladimir B. Matveev1,2,∗
1Université de Bourgogne, Laboratoire Gevrey de Mathématique Physique
2St-Petersbourg branch of Steklov Mathematical Institut, Fontanka 27,
127011, St-Petersburg, Russia

Abstract We consider the functional-difference deformation of the Schrödinger
equation. The main goal of this article is to construct some integrable
potentials representing a natural difference deformation of the so called
two parametric Darboux-Pöshl-Teller model and to describe explicitly
the solutions of the related difference Schrödinger equation. In the limit
when the difference step tends to zero the related formulas reproduce well
known results concerning the Schrödinger operator with DPT potential.
We also describe the solutions of the difference KdV (DKdV) equation
with the nonsingular “difference DPT” initial data.

1 INTRODUCTION

In 1882 Darboux [1] proved the integrability of the following Sturm–Liouville
equation1

−y′′ +
(

n(n + 1)q2

cos2 qx
+ m(m + 1)q2

sin2 qx

)
y = λy (1)

Later in 1933 in a frame of study of the quantum theory of the two atomic
molecules Pöshl and Teller, (the creator of the US hydrogenous bomb and
neutron bomb), rediscovered [3] the hyperbolic version of (1) and proved

* The author wishes to thank Max-Planck-Institut fur Mathematik in Bonn, where this work was
mainly written, for hospitality and financial support and the organizers of the NATO ARW Work-
shop “Bilininear Integral Systems: From Classical to Quantum, From Discrete to Continuous”
where this work was reported the first time.
1 Darboux also considered and solved the equation which is an elliptic function generalization
of (1):see [2] and the concluding remarks.
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independently from Darboux the integrabilty of the equation obtained from
(1) by transformation q → iq. Darboux proposed two independent methods
for solving (1). First, taking sin2 qx as a new independent variable he reduced
(1) to Gauss hypergeometric equation and explicitely expressed the solutions
in terms of the hypergeometric functions. Next, exploring the fact that the
functions y(m, n) := cosn+1 qx sinm+1 qx represent the particular solutions of
(1) with λ = q2(m + n + 2)2, namely taking them as generating functions of
some sequence of Darboux transformations he obtained the global solution
of the same equation in terms of the elementary functions. Comparison of
these two solutions provides the nontrivial case of the reduction of the Gauss
hypergeometrical function to the elementary functions. The third representa-
tion for the solutions of the same equation in terms of Wronskian determinants
was recently obtained in [4].

In this article2 we consider the following functional-difference deformation
of the Schrödinger equation

f (x + h)v(x, h) + f (x − h) = 2 cosh(ikh) · f (x), (2)

where h is a non negative parameter. We can obviously rewrite (2) in a following
form:

h−2[v(x, h) f (x + h) + f (x − h) − 2 f (x)] = 2h−2(cosh(ikh) − 1) f (x).

(3)

Assume now that, when h → 0 the related potential v has the following
asymptotics:

v(x, h) = 1 + h2g(x) + O(h3). (4)

Under this assumption, when h → 0, the limit of (3) is exactly the Schrödinger
equation with h-independent potential g(x),

f ′′ + g(x) f (x) = −k2 f (x) (5)

In the sequel we use the following abbreviations

c(x) := cosh qx s(x) := sinh qx

Below we consider special class vnm(x, h, q) of the potentials satisfying (4):

vnm(x) : c = c(x + (n + 1)h)c(x − nh)s(x + (m + 1)h)s(x − mh)

c(x)c(x + h)s(x)s(x + h)
(6)

= vn0(x)v0m(x) (7)

2 Preliminary version of this article first appeared in [5]. Here we improved some typing errors
in [5] and added the references on some later relevant works.
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We see that in (6) the additive structure of the original DPT potentials is replaced
by the multiplicative structure.

For any C3 function l(x) a short calculation proves the following asymptotic
estimate

l(x + (n + 1)h)l(x − nh)

l(x)l(x + h)
= 1 + h2n(n + 1)

d2

dx2
log l(x) + 0(h3).

This makes obvious that the potential vnm(x), defined above, when h → 0, has
the following asymtotics

vnm(x) = 1 + h2

(
n(n + 1)q2

cosh2 qx
− m(m + 1)q2

sinh2 qx

)
+ 0(h3) (8)

Therefore the limit of (3) with v = vnm(x) is just a Schrödinger equation with
a hyperbolic Darboux-Pöshl-Teller potential

−y′′0 +
(

−n(n + 1)q2

cosh2 qx
+ m(m + 1)q2

sinh2 qx

)
y = k2 y. (9)

As their continuous limits the potentials vnm(x, h, q) are invariant with re-
spect to the transformations m → −m − 1, and n → −n − 1.

It is enough to replace c(x) and s(x) by cos qx and sin qx in order to recover
from (6) the original trigonometric Darboux potentials (1) in the limit h → 0.
Below we show that

f (x + h)vnm(x, h) + f (x − h) = 2 cosh ikh f (x), (10)

is an integrable equation and its global solution can be expressed by means of
the elementary functions. In the limit h → 0 all known results, concerning the
Schrödinger equation, are easily recovered. The cases n = 0, or m = 0 were
studied in the recent papers [6–9] using the different tools and leading to the
formulas different from ours having more complicated combinatorial struc-
ture. The Lattice specialization of the case m = 0, corresponding to the choice
h = 1, x = j, j ∈ Z was studied in [8, 9]. In these articles various interesting
connections with q-ultra spherical polynomials, Askey-Wilson polynomials
and q-spherical functions of the m = 0 case were discovered. Similar con-
nections exist also for general vnm(x) potentials. We expect to discuss them
elsewhere.

The article is organized as follows. In the second section we collected a few
results concerning the functional-difference version of the Darboux dressing
applicable to any equation of the form (2) as well as for the closely related func-
tional difference KdV equation and the related hierarchies. The related results
represent a very special case of much more general statements proved in [10].
They can also be considered as a natural functional difference extrapolation of
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the results of [11], p. 84 concerning the lattice KdV equation. Therefore, in this
part all the proofs are omitted. The third section contains the construction of
the solutions of (10) with potential vnm(x) defined in (6), based on a proper gen-
eralization of the Darboux approach for the Schrödinger equation, combined
with the results of the second section. The special solutions corresponding to
the products cm+1(x)sn+1(x), used in original Darboux construction [1], are
replaced by the appropriate products of the shifts of the same functions c and
s, playing the same role in our case. In particular, this leads to especially sim-
ple formulas for the discrete eigenvalues and bound states eigenfunctions in
the case of vn0 potentials. In the last section we explain how to get the same
potentials and their eigenfunctions from Casorati determinants by appropriate
reduction of the general determinant Darboux dressing formulae. This leads
immediately to the solution of the difference KdV equation corresponding to
vn0(x) taken as initial data.

In the concluding remarks we mention some possible developments and
extensions of the results of this article.

2 FUNCTIONAL DIFFERENCE SCHRÖDINGER AND KdV
EQUATIONS AND DARBOUX DRESSING

The functional-difference KdV equation reads

v̇(x, t) = v(x)[v(x − h) − v(x + h)]. (11)

Its Lax representation can be written as a compatibility condition of the differ-
ence Schrödinger equation:

v(x) f (x + h, t) + f (x − h, t) = λ f (x, t), (12)

and of the following evolution equation:

ḟ (x, t) = −v(x, t)v(x + h, t) f (x + 2h, t) (13)

This Lax pair is a natural functional interpolation of the lattice Lax pair used
in [11], p. 84. For the trivial solution (potential) v = 1, two important real
solutions of (12) with λ = 2 cosh βh are

f = cosh(βx + η), f = sinh(βx + η),

where η and β are two real parameters. They can be easily extended to the
solutions of the system (12)–(13):

f = e−t cosh(2βh) cosh(βx − t sinh(2βh) + η),

f = e−t cosh(2βh) sinh(βx − t sinh(2βh) + η)
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The space of the solutions of (12) is infinite dimensional since for any h-
periodic function g (i.e., g(x + h) = g(h)), g(x) f (x) is again the solution of
(12). The same is true for (13) under the assumption that g(x) is a t-independent
h periodic function of x.

Multiplying f (x) by any h-antiperiodic function p(x), (i.e., p(x ± h) =
−p(x)), for instance taking p(x) = e± iπ

h , we see that the product function
f̂ (x) := f (x)p(x) is the solution of the equation which differs from (12) only
by the different sign of λ:

v(x) f̂ (x + h) + f̂ (x − h) = −λ f̂ (x), f̂ (x) = p(x) f (x). (14)

Therefore, the spectrum of the difference Schrödinger equation is symmetric
for any given v(x).

The difference KdV equation (11) admits an infinite dimensional space of the
stationary solutions which are t-independent 2h-periodic functions of x, which
makes again certain difference with its lattice reduction, x = j ∈ Z , h = 1,
considered for instance in [11], p. 84.

2.1 Darboux Dressing

Darboux transform of an arbitrary solution f (x) of (12) generated by the fixed
solution f1(x) of the same system with λ = λ1, is defined by the formula

ψ1(x) = f (x − 2h) − σ (x) f (x) (15)

=

∣∣∣∣∣
f (x − 2h) f1(x − 2h)

f (x) f1(x)

∣∣∣∣∣
f1(x)

, (16)

σ1(x) = f1(x − 2h)

f1(x)
, (17)

where f1(x) is a fixed solution of (12) with λ = λ1.

Proposition 1 (Darboux covariance property) Darboux transform of f(x)
represents a general solution of the following equation

v1(x)ψ1(x + h) + ψ1(x − h) = λψ1(x), (18)

v1(x) = v(x)
σ1(x)

σ1(x + h)
= f1(x − 2h) f1(x + h)

f1(x) f1(x − h)
. (19)

Providing that f1(x) is also a solution of (13) and v(x) is a solution of (11),
(hence both depend also on t), v1(x, t) described by the formula (19) is a new
solution of DKdV equation.
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In other words, Darboux transform maps (12) into equation of the same
form, with the same value of spectral parameter λ, but with a new potential
constructed in terms of the initial potential v(x) and a fixed solution f1(x) of
(12). The same transformation maps the given solution of the DKdV equation
into a new solution which differs from the old one by the factor explicitely
constructed in terms of the fixed solution of the Lax system (12)–(13). One step
Darboux dressing of the trivial solution v = 1 with the generating function

f1(x, λ1) = e−t cosh(2βh) cosh(βx − t sinh(2βh) + η),

with λ1 = 2 cosh bh, obviously produces the smooth 1-soliton of the DKdV
equation:

v = cosh(β(x − 2h) − t sinh(2βh) + η) · cosh(β(x + h) − t sinh(2βh) + η)

cosh(βx − t sinh(2βh) + η) · cosh(β(x − h) − t sinh(2βh) + η)
,

representing a wave propagating with constant velocity sinh 2βh
β

.

2.2 Iterated Darboux Transform

In a sequel the notation �n(x) = �n[ f1(x), f2(x), . . . , fn(x)] will be used for
the following Casorati determinant:

�n(x) =

∣∣∣∣∣∣∣∣∣∣

f1(x − 2(n − 1)h) f2(x − 2(n − 1)h) . . . fn(x − 2(n − 1)h)

f1(x − 2(n − 2)h) f2(x − 2(n − 2)h) . . . fn(x − 2(n − 2)h)

...
...

...
...

f1(x) f2(x) . . . fn(x)

∣∣∣∣∣∣∣∣∣∣
We also use below the following notations

ψn(x) = �n+1[ f (x), f1(x), f2(x), . . . , fn(x)]

�n(x)
, (20)

Fj (x) = ψ j−1(x)| f (x)= f j (x), j = 1, 2, . . . , n. (21)

σ j (x) = Fj (x − 2h)

Fj (x)
, (22)

v(x) f j (x + h) + f j (x − h) = λ j f j (x), (23)

v(x) f (x + h) + f (x − h) = λ f (x). (24)

Proposition 2 The function ψn represents the general solution of the func-
tional difference equation

vn(x)ψn(x + h) + ψn(x − h) = λψn(x), (25)

vn(x) = v(x)
�n(x − 2h)�n(x + h)

�n(x)�n(x − h)
(26)
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Providing that v(x, t) is a solution of (11), and f j (x) are also the solutions of
(12)–(13), the RHS of (26) is again the solution of DKdV equation. In particular,
setting v(x, t) = 1 and

f2 j+1(x, t) = e−t cosh(2β2 j+1h) cosh(β2 j+1x − t sinh(2β2 j+1h) + η2 j+1),

f2 j = e−t cosh(2β2 j h) sinh(β2 j x − t sinh(2β2 j h) + η2 j ),

η j ∈ R, 0 < β1 < · · · < βn, (27)

we obtain from (26) the real nonsingular multi solitons solutions of the DKdV
equation. While substituting (27) into (26) the exponential factors in the RHS
of (27) can be omitted.

The function ψn(x) can be also represented in a following factorized form

ψn(x) = (T −2 − σn(x)) . . . (T −2 − σ1(x)) f (x, λ), (28)

where T is the shift operator : T ±k f (x) = f (x ± kh).

3 DIFFERENCE DPT POTENTIALS AND THE RELATED
SOLUTIONS OF THE DIFFERENCE SCHRÖDINGER
EQUATION

3.1 Shifted Darboux Dressing

The above version of the Darboux dressing exposed in Section 2 is convienient
in a sense that it shows how to construct the new integrable potential (or the new
solution of DKdV equation) from the given one, keeping the later as a stable
factor entering into the new potential, (or a new solution of DKdV equation).
Somehow in the sequel it will be more convienient to use the same formulas
corresponding to the result of the n-fold Darboux transform considered at the
reference point x + nh rather than at the point x. It is clear from above that the
function φ1(x) defined by the formula

φ1(x) = f (x − h) − κ1(x) f (x + h) =

∣∣∣∣ f (x − h) f1(x − h)
f (x + h) f1(x + h)

∣∣∣∣
f1(x + h)

(29)

κ1(x) = f1(x − h)

f1(x + h)
, (30)

satisfies the equation of the DS type with potential

v1(x) = v1(x + h) = v(x + h)
κ1(x)

κ1(x + h)
= v(x + h)

f1(x − h) f1(x + 2h)

f1(x + h) f1(x)
.

(31)



198 Vladimir B. Matveev

As before we will call the mapping

D f1
: f (x) → φ1(x) (32)

Darboux transformation of the solution f (x, λ) generated by f1(x, λ1). It trans-
forms the solution of the DS equation with potential v(x) to the solutions of the
DS equation with potential u1(x) with the same value of the spectral parameter
λ.

In the sequel the notation δn(x) = δn[ f1, f2, . . . , fn](x) will be used for the
following Casorati determinant:

δn(x) = �n(x + (n − 1)h)

=

∣∣∣∣∣∣∣∣∣∣

f1(x − (n − 1)h) f2(x − (n − 1)h) . . . fn(x − (n − 1)h)

f1(x − (n − 3)h) f2(x − (n − 3)h) . . . fn(x − (n − 3)h)

...
...

...
...

f1(x + (n − 1)h) f2(x + (n − 1)h) . . . fn(x + (n − 1)h)

∣∣∣∣∣∣∣∣∣∣
.

We also use below the following notations

φn(x) = δn+1[ f, f1, f2, . . . , fn](x)

δn(x + h)
, (33)

� j (x) = φ j−1(x)| f (x)= f j (x), j = 1, 2, . . . , n. (34)

κ j (x) = � j (x − h)

� j (x + h)
, (35)

v(x) f j (x + h) + f j (x − h) = λ j f j (x), (36)

v(x) f (x + h) + f (x − h) = λ f (x). (37)

Proposition 2a The function φn represents the general solution of the func-
tional difference equation

vn(x)φn(x + h) + φn(x − h) = λφn(x), (38)

vn(x) = v(x + nh)
δn(x − h)δn(x + 2h)

δn(x)δn(x + h)
(39)

Providing that v(x, t) is a solution of (11), that f j (x) are also the solutions of
(13) the RHS of (39) is again the solution of DKdV equation.

The function φn(x) can be also represented in a following factorized form

φn(x) = (T −2 − κn(x)) . . . (T −2 − κ1(x)) f (x, λ), (40)

where T is the shift operator: T ±κ f (x) = f (x ± kh).
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3.2 Potentials vnm(x) as the Result of the Multiple Darboux Transform

Here we obtain the main result of this article–global solution of the difference
Schrödinger equation

vmn(x)ψ(x + h) + ψ(x − h) = λψ(x), (41)

where vnm(x), is defined by (6) and n, m are two nonnegative integers. We
suppose also that n ≥ m. The case n < m can be treated in a same way without
any difficulties and we less this case as an easy exercise for the reader.

First we prove the following statement.

Proposition 3 The following 2 functions

F1(x, n) :=
n∏

k=0

c(x − kh), n ≥ 0 (42)

F2(x, n) :=
(

n∏
k=1

c(x + kh)

)−1

, n ≥ 1 (43)

are the solutions of (41) with m = 0, λ = λ j , j = 1, 2

λ1 := 2 cosh qh(n + 1), λ2 := 2 cosh qhn,

respectively.

Proof Substituting ψ(x) = Fj (x, n) in (41) and removing the commune fac-
tors in the LHS and in the RHS of the obtained relation, we reduce the proof
to checking the following 2 identities:

c(x + (n + 1)h) + c(x − (n + 1)h)) = 2 cosh qh(n + 1)c(x),

c(x − nh) + c(x + nh) = 2 cosh qhn c(x)

Replacing n by n − 1 we transform the first identity to the second one, which
can be trivially checked. This completes the proof. �

Remark Replacing c(x) by s(x) in the proposition proved above we obtain
the similar statement concerning the potential v0n .

Proposition 4 The following 4 functions

F1(x, n, m) = n
k=0c(x − kh)m

j=0s(x − jh),

F2(x, n, m) = (
n

k=1c(x + kh)m
j=1s(x + jh)

)−1
, m, n ≥ 1,

F3(x, n, m) = m
k=0s(x − kh)

(
n

j=1c(x + jh)
)−1

, n ≥ 1,

F4(x, n, m) = n
k=0c(x − kh)

(
m

j=1s(x + jh)
)−1

, m ≥ 1,
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are the solutions of (41) with λ = λ j , j = 1, 2, 3, 4

λ1 := 2 cosh qh(n + m + 2), λ2 := 2 cosh qh(n + m),

λ3 := 2 cosh qh(n − m − 1), λ4 := 2 cosh qh(m − n − 1),

respectively.

Proof Substituting ψ(x) = Fj (x, n, m) in (41) and removing the commune
factors in the LHS and RHS of the obtained relation, we reduce the proof to
checking the following 4 identities:

c(x + (n + 1)h)s(x + (m + 1)h) + c(x − (n + 1)h))s(x − (m + 1)h)

= λ1c(x)s(x),

c(x − nh)s(x − mh) + c(x + nh)s(x + mh) = λ2c(x)s(x)

c(x − nh)s(x + (m + 1)h) + c(x + nh)(s(x − (m + 1)h) = λ3c(x)s(x),

s(x − mh)c(x + (n + 1)h) + s(x + mh)(c(x − (n + 1)h) = λ4c(x)s(x),

Replacing n by n − 1 and m by m − 1 we transform the first identity to the
second one, which can be checked by the direct calculation. The proof of the
third and of the fourth identities is also straightforward and completes the proof
of Proposition 3. �

The special solutions listed above become particularly simple in the cases
m = 0 or n = 0, corresponding to the potentials vn0(x) or v0m(x): for these
cases they are different from the solutions given by Proposition 2 and they
correspond to the different values of spectral parameter λ.

Remark Formulas similar to those of Propositions 3 and 4 can be obtained
for the trigonometric version of the potentials vnm replacing cosh by cos in the
expressions for λ j and replacing c(x), s(x) by cos qx and sin qx respectively,
which corresponds to replace q by iq in the formulas listed above.

Now we are in a position to show that the potentials vnm(x) can be ob-
tained from the trivial starting potential v(x) = 1 by the action of the n-fold
Darboux dressing assuming that m ≤ n, (otherwise we should use an appro-
priately chosen m-fold Darboux dressing). This can be done in two steps.
First we perform the (n-m) fold consecutive Darboux dressing using the func-
tions F1(x, k, 0), k = 0, . . . , n − m − 1, as the generating functions of the con-
secutive single Darboux transforms, thus generating the potential v(n−m)0(x)
together with the general solution of the related DS equation. Next, using
F1(x, n − m + j, j), j = 0, . . . , m − 1 as a generating functions of the con-
secutive Darboux transforms we obtain the potential vnm(x) together with the
general solution of the related Schrödinger equation. Due to the Darboux-
covariance statement formulated above we only have to check that the following
proposition holds.
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Proposition 5 The potential v j0(x) is mapped to v j+1,0(x) by the Darboux
transform (32) with the generating function F1(x, j) and v jk(x) is mapped to
v j+1,k+1(x) by the DT with generating function F1(x, j, k).

Proof The proof obviously reduces to check two identities:

v j+1,0(x) = v j,0(x + h)
F1(x − h, j)F1(x + 2h, j)

F1(x + h, j)F1(x, j)
,

v j+1,k+1(x) = v j,k(x + h)
F1(x − h, j, k)F1(x + 2h, j, k)

F1(x + h, j, k)F1(x, j, k)
, (44)

following immediately from the definition of the potentials v jk(x) and the func-
tions F1(x, j), F1(x, j, k) after removing the commune factors in nominators
and denominators of the RHS of (44). �

Now the general solution of (41) in the case n ≥ m is given by the formula

φn(x) = (T −2 − κn(x)) . . . (T −2 − κ1(x)) f (x, λ) (45)

where κk(x) is defined by the formula

κk(x) = F1(x − h, k)

F1(x + h, k)
, k = 0, . . . , n − m − 1, (46)

κk(x) = F1(x − h, n − m + k, k)

F1(x + h, n − m + k, k)
, k = n − m, . . . , m − 1. (47)

The special solutions of the form F2(x, j), F3(x, j, k) represent smooth
bound state eigenfunctions exponentially decreasing at infinity. They can be
used to construct the new bound states for the same potentials.

3.3 Bound States Eigenfunctions for Difference Schrödinger
Equation with Potential vn0(x)

From the results derived above we can immediately deduce the following state-
ment

Proposition 6 Operator vn0(x)T + T −1 has 2n discrete eigenvalues:

±λ j , λ j = 2 cosh qhj, j = 1, . . . , n.

The eigenfunctions ψn, j corresponding to the eigenvalues λn− j are given by
the formulas

ψn, j = DF1(x,n−1) · DF1(x,n−2) . . . DF1(x,n− j+1) F3(x, n − j, 0),

j = 2, . . . , n − 1,
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where the operations DF1(x, j) are defined as in subsection 3.1.

ψn,0(x) = F2(x, n), ψn,1(x) = F3(x, n, 0).

The infinite dimensional subspace of eigenfunctions corresponding to the
same eigenvalue is obtained by multiplying ψn, j by any h periodic function
of x. The eigenfunctions corresponding to the eigenvalues −λ j are obviously
obtained from the eigenfunctions, corresponding to the eigenvalues λ j , multi-
plying ψn, j by exp (iπx/h).

Different formulas for the bound states eigenfunctions follows also from the
determinant representation of the general solution of (12) with potential vn0(x)
given in the last section.

One more form for the bound states eigenfunctions quite different from given
here can be found in [6].

4 GETTING vn0 POTENTIALS FROM CASORATI
DETERMINANTS

In this section we use the following solutions of (12) with

v = 1, λ = 2, 2 cosh qh, 2 cosh 2qh, . . . , 2 cosh qnh :

f1(x) = 1, f2(x) = sinh q(x + h),

f3 = cosh 2q(x + h), . . . , fn+1 = cosh nq(x + h). (48)

f (x, λ) as before denotes any solution of (12) with v = 1.
The statement formulated below provides the Casorati determinant repre-

sentation for the potentials vn0(x) and the general solution of the related DSE
equation:

Proposition 7 Potential vn0(x) can be represented in a following determinant
form

vn0(x) = �n+1(x − 2h)�n+1(x + h)

�n+1(x)�n+1(x − h)
, �n+1(x) = �n+1[ f1, . . . , fn+1](x)

(49)

The general solution of the DSE equation with the potential vn0(x) is given
by the formula

�n+2[ f, f1, . . . , fn+1](x)

�n+1[ f1, . . . , fn+1](x)
,
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The solution of DKdV equation with the initial condition v(x, 0) = vn0(x) is
given by the formula (49) where the functions f j (x, t) are defined as follows

f1(x) = 1, f2(x) = sinh[q(x + h) + t sinh qh],

f3(x) = cosh[2q(x + h) + t sinh 2qh], . . . , fn+1

= cosh[nq(x + h) + t sinh nqh],

if n is even number and ending by fn+1 = sinh[nq(x + h) + t sinh nqh] if n is
an odd number.

Proof It is clear that the formulas (6) represent the special reductions of (26)
with v(x, t) = 1 corresponding to the special choice of λ j described above and
to the particular selection of the solutions f j (x) of (12), (with v(x, t) = 1) for
which Fk defined in (42) coincide with F1(x, k) up to the x independent factor.
Assume for instance that

f1(x) = 1, f2(x) = cosh qx, f3 = cosh 2qx, . . . , fn+1 = cosh nqx.

In this case the determinant �n+1(x) can be easily computed:

�n+1(x) = 2
n(n−1)

2

∏
n+1≥ j>k≥1

(cosh q(x − 2(n − j)) − cosh q(x − 2(n − k))

Therefore for the function Fn we get the formula

Fn(x) = 2n−1
n∏

k=1

(cosh qx − cosh q(x − 2kh)) (50)

= 22n−1
n∏

k=1

sinh q(x − kh) sinh qkh. (51)

Taking into account, that sinh q(x − iπ/2q − kh) = i cosh q(x − kh), we re-
alize, that the x-dependent factor in Fn(x + iπ/2q) is given by the formula:

n∏
k=1

cosh q(x − kh) =
n∏

k=1

c(x − kh) = F1(x − h, n − 1).

In other words taking the functions f j (x) in the form

f1(x) = 1, f2(x) = sinh q(x + h), f3 = cosh 2q(x + h), . . . , fn+1

= cosh nq(x + h), (52)

if n is even number, and ending by fn+1 = sinh nq(x + h), if n is an odd number,
we obtain the relation

Fn(x) = cF1(x, n − 1), (53)
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where the RHS of (53) is defined by (42) and the LHS of the same formula
was defined in the Proposition 2a. Since the LHS and RHS of (53) are the
solutions of (12) with the same value of λ = 2 cosh qnh the related potentials
are the same. Therefore, it is clear that the related global solution of the discrete
Schödinger equation with potential vn0(x) can be written as in the Proposition
7 above. The structure of the global solution and the formula for the solution of
the difference KdV equation with the initial condition v(x, 0) = vn0(x), given
above, now follows immediately from the Proposition 2. �

Of course it is also possible to get by the reduction of Casorati determinants
the whole family of the potentials vnm(x) as it was done for the DPT potentials
in [4]. We postpone the corresponding details to a more detailed publication.

5 CONCLUSION

The difference Schrödinger equation with potential vnm(x), considered above,
merits some further investigations along the lines developed for its one para-
metric reductions [6, 7] and further lattice reductions [8, 9], considered before
and corresponding to the potentials vn0(x) and their trigonometric versions or
to their lattice restrictions.

Let us emphazise that even in this reduced case our formulas for the solutions
of the related DSE equation are different from given in the aforementioned
works and have more simple combinatorial structure.

New family of integrable functional-difference deformations of the
Schrödinger equation with Darboux-Pöschl-Teller potentials was recently con-
structed by P. Gaillard following the same strategy as in this article [12]. He
considered the functional difference equation with the diagonal term

g(x) f (x + 2h) + f (x − 2h) + b(x) f (x) = λ f (x). (54)

For g = gm,n(x), b = bm,n(x), m, n ∈ Z,

gm,n(x) = c(x − mh)c(x − (m − 1)h)c(x + (m + 1)h)c(x + (m + 2)h)

c(x)c(x + 2h)(c(x + h))2

·s(x − nh)s(x − (n − 1)h)s(x + (n + 1)h)s(x + (n + 2)h)

s(x)s(x + 2h)(s(x + h))2
,

bm,n(x) = 2s(mh)s((m + 1)h)c(nh)c((n + 1)h)

c(x − h)c(x + h)

− 2c(mh)c((m + 1)h)s(nh)s((n + 1)h)

s(x − h)s(x + h)
,
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the general solution of (54) can be obtained along the same lines as above
although some calculations become much longer.

We propose to call the model considered in this article by DDPT-I model
(Difference Darboux-Pöschl Teller-I model) and the model decsribed by the
formulas above by DDPT-II model.

Like in the continuous case of (DPT) potentials and the DDPT1-model, we
have the invariance of the DDPT2-model by the transformations m → −m − 1,
and n → −n − 1. The potential gm,n(x) is expressed by means of vnm(x) of our
article as follows

gm,n(x) = vnm(x)vnm(x + h)

In particular for λ = 2 cosh(2(m + n + 2)qh), special solution of (54) (with
g(x) and b(x) decribed above is given by the formula

F1(x, m, n) =
m∏

k=0

c(x − kh) ·
n∏

k=0

s(x − kh), (55)

emphazizing the close link between DDPT-I and DDPT-2 models. The knowl-
edge of this particular solution enables one to construct the general solution of
(54) as it was done for DDPT-1 model (see [19] for details)
The potentials gm,n(x) and bm,n(x) defined above have the following asymp-
totics when h → 0,

gm,n(x) = 1 + 2h2
[
m(m + 1)(ln c(x))′′ + n(n + 1)(ln s(x))′′

] + O(h3), (56)

bm,n(x) = 2h2
[
m(m + 1)(ln c(x))′′ + n(n + 1)(ln s(x))′′

] + O(h3). (57)

Taking into account that (54) can be also written as,

h−2 [g(x) f (x + 2h) + f (x − 2h) − 2 f (x) + b(x) f (x)] = 2h−2 [k − 1] f (x),

(58)

with k = cosh(aqh), we see that in the limit, when h → 0, the equation (54)
with the potential g(x) = gm,n(x) and b(x) = bm,n(x) becomes,

− f ′′ +
(

−m(m + 1)q2

cosh2 qx
+ n(n + 1)q2

sinh2 qx

)
f = −(aq)2 f, (59)

which proves that (54) with the potentials (55) and (55) is also an integrable
deformation of DPT model.

Recently an elliptic analogue: of the potentials vn0(x), representing also
the functional difference generalization of the Lamé equation was considered
by Ruijenaars, Krichever, Zabrodin, Felder, and Varchenko (see for instance
[13, 14]).
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The related potential is obtained from vn0(x) simply by setting c(x) = θ1(qx),
where θ1(x) is one of the 4 Jacobi elliptic theta functions:3

θ3(x) = θ3(x |τ ) =
∞∑

−∞
eiπ (m2τ+2mx), 
τ > 0,

θ1(x) = ie−iπ (x−τ/4)θ3

(
x + 1 − τ

2

)
,

θ2(x) = e−iπ (x−τ/4)θ3

(
x − τ

2

)
,

θ4(x) = θ3

(
x + 1

2

)
.

There exists the beautiful 4 parametric generalization of the Lamé finite gap
elliptic potential, discovered first by Darboux, [2].4 It was rediscovered later
by Trebich and Verdier [17, 18] in a context of study of elliptic reductions of
the Its-Matveev formula [19] for the general finite gap potentials. Its difference
analogue until now was not discussed in the literature. The degenerate case,
considered above, suggests the following

Conjecture One of the posible difference integrable elliptic deformations of
the DVT potential has the form

v(x, n1, n2, n3, n4, q, h) =
4∏

j=1

c j (x − n j h)c j (x + (n j + 1)h)

c j (x)c j (x + h)
,

where

c j (x) = θ j (qx), j = 1, 2, 3, 4.

When n2 = n3 = n4 = 0, v(x, n1, n2, n3, n4) reduces to the Krichever-
Zabrodin-Ruijenaars-Felder-Varchenko difference Lamé potential. In the limit
h → 0, v(x, n1, n2, n3, n4) obviously has the following asymptotics

v = 1 + h2
4∑

j=1

n j (n j + 1)
d2

dx2
log θ j (qx) + 0(h3),

where the coefficient of h2 is exactly the famous Darboux-Verdier-Trebich
potential. It is clear, from the remarks made in the introduction, that the
related difference Schrödinger equation in a same limit transforms to the

3 Here we use the same definition as in [15] slightly different from those of [16]:replacing x by
x/π we obtain Jacobi θ -functions defined in [16] from those defined in [17].
4 Darboux proved its integrability via explicit construction of the related solutions of the Sturm-
Liouville equation.
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Schrödinger equation with the DVT potential. It is obvious that the poten-
tial v(x, n1, n2, n3, n4) represent a double periodic elliptic function with the
periods q−1 and q−1τ .

Introducing the notation ν = exp iπτ, ν
1
4 = exp iπτ/4 we have well known

expansions

θ1(x) = 2ν
1
4 sin xπ − 2ν

9
4 sin 3xπ + 2ν

25
4 sin 5xπ + · · · ,

θ2(x) = 2ν
1
4 cos xπ + 2ν

9
4 cos 3xπ + 2ν

25
4 cos 5xπ + · · · ,

θ3(x) = 1 + 2ν cos 2xπ + 2ν4 cos 4xπ + 2ν9 cos 6xπ + · · · ,
θ4(x) = 1 − 2ν cos 2xπ + 2ν4 cos 4xπ − 2ν9 cos 6xπ + · · · .

Using these expansions it is easy to show that, when I mτ → +∞, and q
is a real parameter, v(x, n1, n2, n3, n4) tends to the trigonometric version of
the potential vnm(x) with c(x) = cos qx, s(x) = sin qx . Replacing q by iq, in a
same limit, we obtain the hyperbolic potentials vnm(x) defined by (6).

In June 2003 I was informed by Professor Treibich about his article [20],
where the elliptic analogue of the model considered above was constructed
confirming the conjecture formulated above. In [20] also the elliptic analogues
of the DDPT-II model is discussed. The formulas for the elliptic anallogue
of b(x) in his article need somehow some further effectivization, precision of
the reality conditions etc. It will be interesting to recover our results from his
construction although technically it might be much more involved comparing
to our direct approach.
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Abstract The realization of the two-dimensional Poincare algebra in terms of the
noncommutative differential calculus on the algebra of functions A is
considered. A is the commutative algebra of functions generated by the
unitary irreducible representations of the isometry group of the De Sitter
momentum space. Corresponding space-time carries the noncommuta-
tive geometry (NG) [1–14]. The Gauge invariance principle consistent
with this NG is considered.

1 INTRODUCTION

The suggestions to consider the noncommutative space-time at small distances
are as old as quantum field theory itself. One of the first NG models goes back to
H. Snyder. The Snyder coordinates

∧
xμ are proportional to the boost generators

of the De Sitter or Anti-De Sitter space (see the footnote to the first Snyder
paper with this interpretation given by W. Pauli). The further development
of Snyder ideas took place in Former Sovjet Union (Lebedev’s Institute of
Physics (Moscow), and Joint Institute for Nuclear Research (Dubna)). The key
role in this new approach played the physical meaning of

∧
xμ (I.E. Tamm, Yu.A.

Golfand). It was stressed, that in fact the Snyder modification of the position
operators is a consequence of the modification of the geometry of momentum
space, when the standard quantum-mechanical position operators

∧
xμ = i h̄ ∂

∂xμ ,
i.e., the generators of the translations of the flat Minkowski momentum space
must be naturally substituted by the boosts of the curved (De Sitter or Anti-De
Sitter) momentum space

∧
xμ = il0

(
p4

∂

∂pμ
− pμ

∂

∂p4

)
,

[∧
xμ,

∧
x

ν

]
= −il2

0

∧
Mμν (1)
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The geometries of momentum and configurational spaces are closely connected.
As quantum mechanical operators of energy and momentum are the derivation
operators in space-time, it is clear that transfer to the noncommutative geometry
requires the modification of the geometry of momentum space. And vise versa.
It is not obvious which is prime. Choosing the momentum space with geometry
different from the standard Minkowsky one we obtain different (in general
noncommutative) geometry of space-time. The change of the geometry of the
momentum space leads to the modification of the procedure of extension of the
S-matrix off the mass shell, i.e., to a different dynamical description (Dubna
group, see review article [1] for the list of references to Russian papers on
Snyder theory). Establishing the geometry of the momentum space off the mass
shell is in fact an additional axiom of quantum field theory (QFT). Actually,
in the standard QFT, the axiom that the geometry of the momentum space off
the mass shell is the pseudo-euclidean (Minkowsky) is accepted as an evident
fact, without saying. We can think that some background interaction exists
which modifies the geometry of the momentum space [1]. In consequence of
the change of the geometry of the p-space the space-time becomes quantum
(noncommutative). We stress that the physical meaning of the geometry and
topology of the momentum space has no clear physical interpretation as yet. The
space-time groups considered in QFT as covariance groups are the isometry
groups of space-time.

The explicit character of Snyder’s approach to space-time quantization has a
remarkable consequence: we can define the common spectrum of a (complete)
set of four operators belonging to the centrum of the universal enveloping al-
gebra of the De Sitter Lie algebra and consider the points of this spectrum as
the points ξμ of the new quantum (and noncommutative in general) space-time.
It can be shown that a formulation of the generalized causality condition and
QFT in terms of this new numerical quantum space-time is as comprehensive
procedure as it is in the usual QFT with the Minkowskian space-time. In this
approach, the structure of the singular field theoretic functions is entirely recon-
structed as compared to the standard QFT, and the corresponding perturbation
theory is free of ultraviolet divergences [4].

Today it is commonly accepted that the most probable scale for these “small”
distances (cf. the proportionality coefficient in (1) having the dimension of
length) is that of Grand Unified Theories, i.e., the scale close to the Planck
one

l0 =
√

h̄G N

c3
� 10−33cm (2)

One of the most convincing arguments for this is that at this scale the curvature
radius of space-time is of the order of the De Broglie wavelength of a test
particle. Recently the possibility of noncommutative space to emerge in the
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framework of the string theory has been indicated first in [6]. More recently
Yang–Mills theories on noncommutative spaces have emerged in the context
of M-theory compactified on a torus in the presence of constant background
three-form field, or as a low-energy limit of open strings in a background
B-field describing the fluctuations of the D-brane world volume. (See the review
article [7] and references therein.)

It is worth mentioning a series of papers [5–8] where it has been shown
that the curved momentum space and the corresponding Snyder-like quantum
space naturally arise when considering the 2 + 1 model of gravity interacting
with the scalar field. The canonical momenta belong to the hyperboloid in
three-dimensional space, Lobachevsky space.

We would like to draw the attention of the reader to the recent paper [15]
where interesting details of the prehistory of the Snyder space quantization are
delivered.

2 NONCOMMUTATIVE CONFIGURATIONAL SPACE

Let us consider the two-dimensional momentum space of constant curvature
modeled by the two-dimensional surface embedded into the three-dimensional
pseudo-Euclidean space

pL pL = pμ pμ − p2
2 = −1 L = 0, 1, 2, μ = 0, 1 (3)

The “plane waves” in this case, i.e., the kernels of the Fourier transform
connecting the p-space and the new configurational space and at the same
time the state vectors describing the free motion of the particle are the matrix
elements of the unitary irreducible representations of the isometry group of
the space (3) 〈ξ | p〉. Or in other words, the surface (3) is the uniform space
of this group.1 To describe these matrix elements, we use the hyperspherical
coordinates

p0 = sinh ζ p1 = cosh ζ sin ω p2 = cosh ζ cos ω

−∞ < ζ < ∞ − π < ω < π
(4)

In the correspondence limit

p2 ≈ 1, p0 ≈ p1 ≈ 0, ζ → 0, ω → 0 (5)

1 Evidently, dimensional physical constants including the fundamental length l0 must enter
expression (3). We use the unit system h̄ = c = l. All relations of the theory must go over
into the standard ones when l0 can be considered as a small quantity. This will be called the
correspondence limit.
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the generalized plane waves 〈ξ | p〉 have the form

〈ξ | p〉 = 〈σ, n | ζ, ω〉 = 2σ+1κ(σ, n)√
2π cosh ζ

einωP
−(σ+ 1

2 )

n− 1
2

(ξ 0 tanh ζ ) (6)

where Pμ
ν (z) are the associated Legendre functions, ξ 0 is the sign of the discrete

time n, and

κ(σ, n) = 


(
σ + n + 2

2

)



(
σ − n + 2

2

)
(7)

Let us list some important properties of the generalized plane waves:

1. Behavior at the origin

〈ξ | 0〉 = 1 (8)

2. For principal series of the irreps

σ = i� − 1

2
, 0 ≤ � < ∞, or σ = k = 0, 1, 2, . . . , n = 0, ±1, ±2, . . .

(9)
We call the set ξ = (σ, n) a point of quantum space.

3. Orthogonality and completeness

1

(2π )2

∫
d�p〈ξ | p〉〈p |ξ ′〉=μ−1(σ )δξ 0ξ ′0δnn′δ(� − �′)

1

(2π )2

∫
d�ξ 〈p |ξ〉〈ξ | p′〉=δ(p(−)p′) = |p2|δ ( p̃ − p̃′) (10)

d�p = dp0dp1

|p2| ,

μ(σ, n) =

(
σ + 1

2

)
cot π

(
σ + 1

2

)
2

×



(
σ + n + 2

2

)



(−σ + n + 1

2

)




(
σ + n + 1

2

)



(−σ + n

2

)

The volume element d�ξ symbolizes the integration over the continuous
part of the proper time σ and summation over its discrete part as well as the
summation over the discrete time n (cf. [4]).
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4. The correspondence limit

ζ � p0, ω � p1, p2 � 1

n � x1,
√

σ 2 + n2 � |x0| (11)

〈ξ | p〉 → eipμxμ

Relations (11) suggest our identification of σ and n as quantum analogs of
the two-dimensional space-time coordinates (interval and time).

3 HOLOMORPHIC REALIZATION

Let us consider the holomorphic realization of the plane waves (6). We start
with the continuous part of the spectrum of the interval σ . Intoducing the new
variables

z = i� + n = σ + n + 1

2
and z̄ = −i� + n = −σ + n − 1

2
(12)

and using the connection between associated Legendre functions and hyperge-
ometric functions [16] we come to the following holomorphic representation
for the plane wave:

〈ξ | p〉 = 〈σ, n | ζ, ω〉 = 〈z, z̄ | ζ, ω〉

= 2
z−z̄+1

2 eiω
z+z̄

2√
2π cosh ζ

κ(z, z̄)P
−

( z−z̄
2

)
z+z̄−1

2

(
ξ 0 tanh ζ

)
(13)

= (cosh ζ )−
z−z̄+1

2 eiω
z+z̄

2 F

(
z + 1

2

2
,
−z̄ + 1

2

2
,

1

2
; tanh2 ζ

)

− 2ξ 0 tanh ζ · ζ (z, z̄)F

(
z + 3

2

2
,
−z̄ + 3

2

2
,

3

2
; tanh2 ζ

)

where

ζ (z, z̄) =



(
z + 3

2

2

)



(
−z̄ + 3

2

2

)




(
z + 1

2

2

)



(
−z̄ + 1

2

2

) (14)

As the hypergeometric function is the entire function of its first two parame-
ters we can easily prove that the plane wave 〈z, z̄ | ζ, ω〉 is an analytic function
in its first argument z and antianalytic in its second argument z̄. This function
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obeys as well as ζ (z, z̄) the symmetry condition

f̄ (z, z̄) = f (z̄, z) (15)

At the same time it is well-known fact that hypergeometric functions don’t
obey any differential relation in its parameters, but obey the recurrence relations
[16]. This makes them the subjects to the noncommutative differential calculus.
The holomorphic representation leads to the simplest form of such a calculus.
We introduce this calculus starting with basic relations

[z, dz] = dz, [z̄, dz̄] = dz̄, [z̄, dz] = 0,

[z, dz̄] = 0, [z, z̄] = 0 (16)

in which in contrast with the standard (commutative) calculus the coordinates
z, and z̄ commute between themselves but don’t commute with correspond-
ing differentials. It can be shown that the comprehensive differential calculus
based on the relations (16) exists [1]. We can introduce the generalized interior

derivatives right
−→
∂ and left

←−
∂ of the function f (z, z̄) as

dz f = [dz, f ] = −→
∂z f dz = dz

←−
∂z f (17)

and similar formulae for the noncommutative differentiation in z̄. The Leibnitz
rule is fulfilled for the exterior differentiations (17)

dz( f g) = (dz f )g + f (dzg) (18)

and in modified form for the interior derivatives

−→
∂z ( f g) = (

−→
∂z f )g + f (

−→
∂z g) + (

−→
∂z f )(

−→
∂z g)

←−
∂z ( f g) = (

←−
∂z f )g + f (

←−
∂z g) + (

←−
∂z f )(

←−
∂z g)

(19)

We refer the reader for the detailed theory of noncommutative differential forms
on the commutative algebra of functions to [1, 7, 14] and deliver here the only
information necessary for introducing the physical operators. Using right and
left noncommutative Hodge operators −→∗ and ←−∗ [1] we define the symmetrized
interior derivatives in the form

∂s
z = 1

2
(−→∗ + ←−∗ )dz ∂c

z = 1

2
(−→∗ − ←−∗ )dz + 1 (20)

It can be proved that noncommutative interior derivatives in our case can be
expressed as the finite-difference derivatives

−→
∂ f =

(
e

∂
∂z − 1

)
f (z, z̄),

←−
∂ f =

(
1 − e− ∂

∂z

)
f (z, z̄) (21)
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momentum operators

p+ = 1

(z − z̄)

{(
z + 1

2

)
e2

∂
∂z −

(
z̄ + 1

2

)
e2

∂
∂z

}

p− = 1

(z − z̄)

{(
z − 1

2

)
e−2

∂
∂z −

(
z̄ − 1

2

)
e−2

∂
∂z

}
(22)

p0 = −ξ 0 4

(z − z̄)
ζ (z, z̄) sinh

(
∂

∂z
− ∂

∂ z̄

)
p+ = p2 + i p1 p− = p2 − i p1

Operators pL mutually commute. Their common eigenfunctions are the
plane waves (6) with eigenvalues (4). Momentum operators obey the hermiticity
condition

μ−1(p+)†μ = p− μ−1
(

p0
)†

μ = p0 (23)

Now we write down the three generators

M12 = z + z̄

2
, M10 = 2ξ 0ζ (z, z̄)∂ (s)

z+z̄
2

, M20 = 2iξ 0ζ (z, z̄)∂ (c)
z+z̄

2
(24)

which are as well as (22) the noncommutative differential operators and com-
plete the set (22) up to the Lie algebra of the inhomogeneous two-dimensional
De Sitter group.

For ∂
(s)
z±z̄

2

and ∂
(c)
z±z̄

2

the following relations:

∂
(s)
z±z̄

2

= ∂ (s)
z ∂

(c)
z̄ ± ∂ (c)

z ∂
(s)
z̄ ∂

(c)
z±z̄

2

= ∂ (c)
z ∂

(c)
z̄ ± ∂ (s)

z ∂
(s)
z̄ (25)

are fullfilled.
Let us consider the gauge transformation localized in noncommutative space-

time

ψ ′(ξ ) = �(ξ )ψ(ξ ) �(ξ )† = �(ξ )−1 (26)

Unlike the usual theory the gauge transformation entangles the components
of momenta:

�−1(ξ )P L�(ξ ) = C L
K (ξ )P K (27)

For the sake of simplicity we write down the C L
K (z, z̄)-matrix separately

for the cases when it depends on only one of the variables z−z̄
2

or z+z̄
2

. For
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� = �( z−z̄
2

) we have

C L
K

(
z − z̄

2

)
=

[(
∂

(c)
z−z̄

2

�

(
z − z̄

2

))
− 2i

z − z̄

(
∂

(s)
z−z̄

2

�

(
z − z̄

2

))
�̂

]L

K

(28)

where

�̂ =
⎛
⎝ i

2
−M10 −M20

−M10 i
2

M12

−M20 −M12 i
2

⎞
⎠ (29)

For the case � = �( z+z̄
2

) = e
iλ

( z+z̄
2

)
, λ = −i ln �

C L
K (

z + z̄

2
) = e

i

⎛
⎝∂

(c)

z+z̄
2

λ(
z + z̄

2
)

⎞
⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

ei

((
∂c

z+z̄
2

− 1

)
λ

)
0 0

0 cos

(
∂s

z+z̄
2

λ

)
− sin

(
∂s

z+z̄
2

λ

)

0 sin

(
∂s

z+z̄
2

λ

)
cos

(
∂s

z+z̄
2

λ

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(30)

Also the following the following relations are true:

�−1(z, z̄)PL�(z, z̄) = PK C†K
L (z, z̄) C† = C−1 (31)

It is easily seen that in a consequence of (27) and (31) the De Sitter condition
(3) is invariant in respect to the gauge transformations (26). It can be easily
shown [4] that to make the theory gauge invariant we must introduce the com-
plex De Sitter vector ÂL of electromagnetic field and require that it transforms
similarly to (27) and (31):

�−1(z, z̄) ÂL�(z, z̄) = C L
K (z, z̄) ÂK

�−1(z, z̄) Â†
L�(z, z̄) = Â†

K C†K
L (z, z̄)

(32)

It follows from (32) that the components of electromagnetic field do not com-
mute with the gauge function and in a consequence do not commute between
themselves. Introducing the covariant derivatives

D̂L = −i
(

pL − ÂL
)

(33)
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we obtain the De Sitter invariant equations for the matter fields. The tensor of
electromagnetic field is given as

F̂ K L = [
D̂L , D̂K

] = [
p̂L , ÂK

] − [
p̂K , ÂL

] − [
ÂL , ÂK

]
(34)

The action of the electromagnetic field is

S = T r
∫

F̂KL F̂KL d�ξ (35)

and the noncommutative analog of the D’Alembert equation takes the form[
D̂K , F̂KL

] = 0 (36)
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A SOLVABLE MODEL OF
INTERACTING PHOTONS

Jan Naudts
Departement Natuurkunde, Universiteit Antwerpen,
Universiteitsplein 1, 2610 Antwerpen, Belgium

1 INTRODUCTION

It is a general belief that the relevant models of quantum field theory cannot
be solved analytically. It is even not clear how to formulate these models in a
mathematically consistent manner. Only free-field models are well understood.
These form the basis for the perturbative approach to interacting fields. But,
as is well known, convergence of the perturbation series is problematic. This
is the context in which to situate the present attempt to introduce interactions,
while keeping a solvable model.

Starting point is a Hilbert space H containing so-called classical wave func-
tions. It determines a C∗-algebra of canonical commutation relations [1], de-
noted �(H ). A class of quantum fields, which can be handled analytically, is
made up by the quasi-free states of �(H ). A subclass of these are the Fock
states. Their special property is that there exists a representation in a Hilbert
space H, together with field operators Â(φ), one for each classical wave func-
tion φ. Creation and annihilation operators Â±(φ) are defined in terms of the
field operators by

Â±(φ) = 1

2

(
Â(φ) ± i Â(iφ)

)
.

Moreover, there exists a vacuum vector � in H which is annihilated by the
annihilation operators

Â (φ)� = 0. (1)

Hence, the Hilbert space H has the structure of a Fock space.
Intuitively, it is obvious to consider quasi-free states as (trivial) examples of

integrable quantum fields. In the context of conformal field theory the notion
of integrability is usually associated with the existence of infinitely many local
conservation laws (see [2] for a recent account). These conservation laws are
then used to construct the state of the system. Here, the state of the system
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is given in an explicit form. The open question is then whether a dynamical
context exists in which conservation laws of this state do exist.

As their name suggests, quasi-free states describe rather trivial physics. Inter-
actions between fields are needed to produce non trivial theories. The prototype
of such a theory is quantum electrodynamics (QED). It describes the interaction
between photon and electron fields using the S-matrix formalism. The model,
discussed in the present paper, describes the interaction of a photon field with a
kind of background medium. It has been introduced by Czachor et al. [3–5]. In
this original version, it imagines a space-time filled with harmonic oscillators
carrying the electromagnetic field. In the reformulation of the model, found in
[6], the photons interact with a scalar boson field which is described in a semi
classical manner. The scalar field can have several possible interpretations, one
of which is that of quantized fluctuations of spacetime.

The model has some peculiar features. The representation of the photon
field is not irreducible, as one assumes usually. In particular, the commutation
relations differ from the canonical expression[

Â(φ), Â(ψ)
] = −2i Im〈φ|ψ〉.

They become [
Â(φ), Â(ψ)

] = i ŝ(φ|ψ), (2)

where ŝ(φ|ψ) is an operator belonging to the center of the representation.
This kind of commutation relations has been studied before, in the context of
generalized free fields – see e.g., Section 12.5 of [7].

Another feature is that the vacuum vector of the photon field depends on
the state of the scalar field. In particular, the vacuum is not invariant under
Poincaré transformations. Experimentally, there is a strong evidence that vac-
uum is locally Poincaré invariant. However, recently more and more research
papers investigate the possibility of breaking of Poincaré symmetry at very
small length scales, e.g. at the scale of Planck’s length. Therefore the scalar
bosons of the present model, if one would like to interpret them as part of
physical reality, should be active at small length scales, or, equivalently, at very
large wavevectors.

2 CORRELATION FUNCTION APPROACH

The vacuum-to-vacuum correlation functions

〈�| Â(φ1) Â(φ2) . . . Â(φn)�〉
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determine the vacuum state of the electromagnetic field [8]. It is sufficient [1, 9]
to know the functions

F(φ, ψ) = 〈Ŵ (ψ)∗�|Ŵ (φ)∗�〉,
with Weyl operators defined by Ŵ (φ) = exp (i Â(φ)). For the free electromag-
netic field is [10, 11]

F(φ; ψ) = exp(−iIm〈ψ |φ〉) exp

(
−1

2
〈ψ − φ|ψ − φ〉

)
(3)

with the (degenerate) scalar product given by

〈ψ |φ〉 = −
∫

R3
dk

1

2|k|ψ
μ(k)φμ(k). (4)

Positivity of the scalar product follows if one assumes that all classical wave
functions satisfy the Lorentz gauge condition

|k|φ0(k) =
3∑

α=1

kαφα(k).

Next consider a scalar boson described in the standard way by state vectors
in a Fock space. Select in this space a normalized element χ of the form

χ = χ (0) ⊕ χ (1) ⊕ 1√
2!

χ (2) ⊗ χ (2) ⊕ · · · . (5)

This state vector will be fixed throughout the paper. Instead of creation and
annihilation operators consider in this Fock space observables which are func-
tions of momenta. Such observables are denoted f̂ and act on the state vector
in the following way

f̂ χ (n)(k1, k2, . . . , kn) = f (n)(k1, k2, . . . , kn)χ (n)(k1, k2, . . . , kn). (6)

Clearly, by only allowing a state vector of the form (5), and by restricting
operators to functions of momenta, a semi-classical description of the boson
field is obtained. The only information that can be calculated are the quantum
expectation values

〈 f̂ 〉χ = 〈χ | f̂ χ〉

=
∞∑

n=0

1

n!

[
n∏

j=1

∫
R3

dk j
1

2| k j | |χ
(n)(k j )|2

]
f (n)(k1, k2, . . . , kn).

Finally, the interaction between the photon field and the scalar boson field is
introduced. The conventional way to do so is by specification of a Lagrangian
or a Hamiltonian. Then a difficult, if not impossible, calculation is needed to ob-
tain the correlation functions. Here an alternative path is followed. Correlation
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functions of the form

Fχ ( f ; φ; ψ) = 〈Ŵ (ψ)∗�| f̂ Ŵ (φ)∗�〉 (7)

are specified explicitly. Next, the properties of the state, determined by these
correlation functions, are studied in order to find out the kind of interactions
they describe.

The specific ansatz is [6]

Fχ ( f ; φ; ψ) = f (0)|χ (0)|2

+
∞∑

n=1

1

n!

[
n∏

j=1

∫
R3

dk j
1

2|k j | |χ
(n)(k j )|2

× exp

(
1

2n
(ψμ(k j ) − φμ(k j ))(ψμ(k j ) − φμ(k j ))

)]
× eis(n)(φ,ψ)(k1,k2,...,kn)/2 f (n)(k1, k2, . . . , kn). (8)

with

s(n)(φ, ψ)(k1, k2, . . . , kn) = 2

n

n∑
j=1

Imψμ(k j )φμ(k j ).

It is straightforward to verify that the sum converges. Standard techniques from
quasi-free state theory can be used to show that all properties, needed for being
the correlation functions of a state, are satisfied. A rather tedious calculation
shows that these correlation functions are exactly those of the model introduced
in [3–5].

3 PROPERTIES OF THE INTERACTING STATE

The generalized GNS-theorem [9] implies the existence of a Hilbert space
representation of the correlation functions (8). More precisely, there exists a
vacuum vector � in a Hilbert space H, and operators Ŵ (φ) and f̂ in H, such
that (7) holds. The properties of these operators can then be deduced from the
explicit form of the correlation functions (8).

First notice that the operators Ŵ (φ) satisfy the Weyl form of commutation
relations, modified to

Ŵ (φ)Ŵ (ψ) = Ŵ (φ + ψ)eiŝ(φ,ψ)/2. (9)

Next, standard arguments are used to show that the operators Ŵ (φ) can be
written into the form Ŵ (φ) = exp (i Â(φ)), and that the field operators Â(φ)
are real linear functions of φ. Expansion of (9) for small values of φ and ψ then
yields the generalized commutation relations (2). Finally one shows that the
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relation Â(φ)� = i Â(iφ)� holds. This relation is needed to conclude that the
vacuum vector is annihilated by the annihilation operators Â (φ)� = 0. One
concludes that the Hilbert space has the graded structure of a Fock space.

So far, the differences with the free field situation are small. In order to see
further differences, let us now calculate the vacuum fluctuations of the electric
field. For the free photon field is

〈Êα(q)Êβ(q ′)〉� = 1

(2π )4

∫
dk

1

2|k|ρ(k)
(
δαβ |k|2 − kαkβ

)
ei(q−q ′)μkμ,

with the usual convention k = (|k|, k), and with the spectral function ρ(k)
identically equal to 1. For the model described by the correlation functions (8)
the spectral function is given by

ρ(k) =
∞∑

n=1

1

n!
|χ (n)(k)|2

[∫
dk′ 1

2|k′| |χ
(n)(k′)|2

]n−1

.

Note that

|χ (0)|2 +
∫

dk
1

2|k|ρ(k) = 1

because of normalization of the state vector χ . The contribution to the vacuum
energy density in the point q is

1

2

∑
α

〈Êα(q)2〉� = 1

2

1

(2π )4

∫
dk|k|ρ(k).

For free photons this integral diverges. For the present model it converges under
mild conditions on the state vector χ . This shows that interactions can make
the energy density of the electromagnetic vacuum finite.

4 DISCUSSION

The model, described by the correlation functions (8), appears to describe
genuine interactions of the photon field with a background field of semiclassical
bosons. The model has not been derived from a Lagrangian or Hamiltonian
function. Therefore it is not easy to grasp the nature of these interactions. It is
e.g. not clear whether these interactions are local.

At first sight it might seem easy to generalize the present model, e.g., to
allow for a general scalar boson field instead of its semiclassical description.
However, the correlation functions (8) must satisfy conditions of positivity and
covariance. Both conditions are far from trivial. In this sense the existence of
the present model is comparable to the existence of soliton-like solutions of
nonlinear equations.
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The interacting photon field is better behaved than the free field. One feature
has been stressed here: finite energy density of the vacuum. Other interesting
properties can be found in [3, 4, 5, 6]. A further study of this and similar models
of interacting fields might one day indicate how to build a non perturbative
theory of QED, free of divergences.
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DISCRETIZATION OF A SINE-GORDON
TYPE EQUATION

Y. Ohta
Information Engineering, Graduate School of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

Abstract An integrable modification of the double sine-Gordon equation is dis-
cretized by using Hirota’s bilinear theory. The soliton solution is given in
terms of the discrete Gram type determinant and the bilinear equations
are reduced to the Jacobi formula for determinant.

1 INTRODUCTION

Hirota’s direct method is one of the most powerful tools to construct both
the integrable systems and their solutions. For instance, for a given integrable
equation, the bilinear method provides a simple and direct way to derive the
solutions through the bilinear form. For a given continuous integrable equation,
it also enables us to construct integrable discrete analogues which share the
common solutions with the original continuous equation. For a given function
which has desirable properties, by using the direct method we can also generate
integrable systems which allow that function as a solution.

In this paper, we shall demonstrate how the direct method works for the
purpose of constructing integrable system and discretizing it taking the dou-
ble sine-Gordon equation as an example. The double sine-Gordon equation is
one of the famous NON integrable equations.[1] It allows a double kink so-
lution as a traveling wave solution, but two double kinks do not have elastic
collision. In this sense, the double sine-Gordon equation is not a soliton equa-
tion. First, we shall give an integrable modification of the double sine-Gordon
equation so that it allows multi double kink solution. Next we will show the
integrable discretization of the modified double sine-Gordon equation by using
the bilinear theory. The solution is written in terms of the discrete Gram type
determinant.
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2 DOUBLE SINE-GORDON EQUATION

The double sine-Gordon equation has the following form

uxt = sin u + A

2
sin 2u

or equivalently

uxt = sin u + A sin u cos u (1)

where A is a nonzero constant. The above equation possesses a double kink
solution which is written by log of a rational function of exponential function.
The double sine-Gordon Eq. (1) itself does not have multi double kink solution
because the collision of two double kinks is not elastic. On the other hand,
for soliton equations, the τ functions of soliton solutions are given in terms
of determinant whose components are polynomials of exponential function.
Now we regard that the double kink solution of (1) is derived from a special
case of determinant (in fact 1 × 1 determinant) and by generalizing it to the
determinant of arbitrary size, we obtain the bilinear equations satisfied by the
determinant which will lead to the integrable modification of the original double
sine-Gordon equation. By using this procedure, we can integrablize the non
integrable Eq. (1).

3 MODIFIED DOUBLE SINE-GORDON EQUATION

The modified double sine-Gordon equation is given by

uxt = sin u + A
∫ x

(sin u)t dx cos u (2)

whose difference with (1) is just an integration by x and differentiation by t
of a term sin u. It is clear that the traveling wave solutions of (2) and (1) are
identical. Moreover (2) allows multi double kink solution.

By using the dependent variable transformation

u = i log
f ∗ f̄

f f̄ ∗

the modified double sine-Gordon Eq. (2) is bilinearized into the following
bilinear form

2Dx Dt f · f = f 2 − f̄ f

(
2

c
Dx − 1) f̄ ∗ · f + f̄ f ∗ = 0

(2cDt − 1) f ∗ · f + f̄ ∗ f = 0
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where f is an auxiliary variable, ∗ means the complex conjugate and A = c2.
The N double kink solution is given in the following Gram determinant form

f = det

(
δi j + i

Pi − c

Pi + Pj
eξi

)
1≤i, j≤N

f̄ = det

(
δi j − i

Pi + c

Pi + Pj
eξi

)
1≤i, j≤N

(3)

ξi = Pi x + Pi

P2
i − c2

t + ξ
(0)
i

where Pi and ξ
(0)
i are the wave number and phase constant of i-th double kink,

respectively. The Jacobi formula for the Gram determinants (3) reduces to the
above bilinear equations.

4 DISCRETE MODIFIED DOUBLE SINE-GORDON EQUATION

We apply the usual discretization procedure to the above modified double sine-
Gordon equation based on the bilinear theory. By introducing discrete indepen-
dent variables with keeping the structure of determinant solution, the discrete
analogues of bilinear equations automatically follow from the same algebraic
identities as continuous case. Let us denote the τ function of discrete case as fkl

instead of the continuous one f (x, t). Guided by the case of the sine-Gordon
equation and its discrete analogue (see appendix), we obtain the following
result.

In the discrete case, the τ functions are given as

fkl = det

(
δi j + i

Pi − c

Pi + Pj
eξi

)
1≤i, j≤N

f̄kl = det

(
δi j − i

Pi + c

Pi + Pj
eξi

)
1≤i, j≤N

which are completely same with the continuous ones (3). The difference be-
tween the continuous and discrete appears in the exponent ξi only

ξi = k log
1 + a(Pi − c)

1 − a(Pi + c)
+ l log

1 + b/(Pi − c)

1 − b/(Pi + c)
+ ξ

(0)
i

where a and b are the difference intervals for k and l, respectively. This means
that the space of solution is common for both continuous and discrete and
the compatible flows of continuous and discrete evolutions are introduced in
the space of solution. The discrete bilinear equations satisfied by the above τ



228 Y. Ohta

functions are

(1 − ab) fk+1,l+1 fkl = fk+1,l fk,l+1 − ab f̄k+1,l f
k,l+1

(1 − ac) f̄ ∗
k+1,l fkl − f̄ ∗

kl fk+1,l + ac f̄k+1,l f ∗
kl = 0

(c − b) f ∗
k,l+1 fkl − c f ∗

kl fk,l+1 + b f̄ ∗
kl f

k,l+1
= 0

By using the dependent variable transformation

ukl = 1

2i
log

f ∗
kl f̄k,l−1

fkl f̄ ∗
k,l−1

vkl = 1

2i
log

f ∗
kl f̄k+1,l

fkl f̄ ∗
k+1,l

we obtain the integrable discrete analogue of the integrable modification of
double sine-Gordon Eq. (2)

sin(uk+1,l+1 − uk+1,l − uk,l+1 + ukl + θkl)

= a
b − c

1 − ac
(cos ϕkl sin(uk+1,l+1 + uk,l+1) + cos ϕk,l+1 sin(uk+1,l + ukl))

uk+1,l + ukl = vkl + vk,l−1 + 1

2

k∑
j=−∞

(θ jl − θ j−1,l−1)

where θ and ϕ are defined in term of u and v by

θkl = arg
1 + ac(e−2ivkl − 1)

1 + ac(e2ivkl − 1)

ϕkl = uk+1,l + ukl +
l−1∑

j=−∞
(−1)l− j (2uk+1, j + 2uk, j+1 − θk j )

5 CONCLUDING REMARKS

The integrablization of the double sine-Gordon equation and its solution are
given by using Hirota’s direct method in soliton theory. We also gave the dis-
cretization of the modified double sine-Gordon equation and its solution in
terms of the discrete Gram type determinant. For a given non integrable sys-
tem, starting from a special solution and embedding it into a certain space of
solution of integrable equations, we can construct an integrablization of the
non integrable system. By introducing compatible discrete flows of evolution
on the space of solution, integrable discrete analogues of the original continuous
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equation can be derived. We expect that these integrablization and discretiza-
tion techniques are applicable for interesting and important systems in various
fields.

APPENDIX

The sine-Gordon equation

uxt = sin u

is bilinearized into the bilinear form

2Dx Dt f · f = f 2 − f ∗2

through the dependent variable transformation

u = 2i log
f ∗

f

The N kink solution is given by

f = det

(
δi j + i

pi + p j
eξi

)
1≤i, j≤N

ξi = pi x + 1

pi
t + ξ

(0)
i

where pi and ξ
(0)
i are the wave number and phase constant of i-th kink, respec-

tively.
Hirota proposed the integrable discrete analogue of the sine-Gordon equa-

tion[2]

sin (uk+1,l+1 − uk+1,l − uk,l+1 + ukl)

= ab sin (uk+1,l+1 + uk+1,l + uk,l+1 + ukl)

which is transformed into the bilinear form

(1 − ab) fk+1,l+1 fkl = fk+1,l fk,l+1 − ab f ∗
k+1,l f ∗

k,l+1

through the dependent variable transformation

ukl = 1

2i
log

f ∗
kl

fkl

where a and b are the difference intervals for k and l, respectively. The N kink



230 Y. Ohta

solution is given by

fkl = det

(
δi j + i

pi + p j
eξi

)
1≤i, j≤N

ξi = k log
1 + api

1 − api
+ l log

1 + b/pi

1 − b/pi
+ ξ

(0)
i

The structure of the determinant solutions is quite same for continuous and
discrete cases. Only the dispersion relations for the independent variables in
the exponent ξi are different between (x, t) and (k, l).
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HIERARCHY OF QUANTUM
EXPLICITLY SOLVABLE AND
INTEGRABLE MODELS

A.K. Pogrebkov
Steklov Mathematical Institute, Moscow, Russia

Abstract Realizing bosonic field v(x) as current of massless (chiral) fermions we
derive hierarchy of quantum polynomial interactions of the field v(x) that
are completely integrable and lead to linear evolutions for the fermionic
field. It is proved that in the classical limit this hierarchy reduces to
the dispersionless KdV hierarchy. Application of our construction to
quantization of generic completely integrable interaction is demonstrated
by example of the mKdV equation.

Keywords: Quantum integrable models, fermionization, dispresionless KdV
hierarchy

1 INTRODUCTION

Special quantum fields that first appeared in the literature (see, e.g., [1]) under
the name “massless two-dimensional fermionic fields,” are known for decades
to be useful tool of investigation of completely integrable models in quantum
(fermionization procedure [2–4]) and in classical (symmetry approach to KP
hierarchy [5]) cases. Already in [2] it was shown that when bosonic field of
the quantum version of some integrable model is considered as a composition
of fermions, the most nonlinear parts of the quantum bosonic Hamiltonian
becomes bilinear in terms of these Fermi fields. In [6–8] the same property was
proved for the nonlinear Schrödinger equation and some integrable models of
statistical physics, where fermionic fields naturally appeared in the so-called
limit of the infinite interaction, i.e., again as describing the most nonlinear part
of the Hamiltonian. Quantization of the KdV equation is based on analogy of the
Gardner–Zakharov–Faddeev (GZF) [9] and Magri [10] Poisson brackets with
the current and Virasoro algebras [4, 11, 12]. In [4] we proved that quantization
of any of these brackets for the KdV equation by means of fermionization
procedure can be performed on the entire x-axis and the Hamiltonian is given as
sum of two terms, bilinear with respect to either fermionic or current operators.
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We also proved that the quantum dispersionless KdV equation generates linear
evolution equation for the Fermi field. Thus this equation is explicitly and
uniquely solvable for any instant of time (in contrast to the classical case).

In this article we construct hierarchy of nonlinear interactions for the real
bosonic quantum field v(x) that obeys quantized version of the GZF bracket,
i.e., commutator relation (2.9) below. The hierarchy itself is determined by the
following conditions:

� All equations of this hierarchy are completely integrable in the sense that they
have infinite set of local, polynomial (with respect to v and its derivatives)
commuting integrals of motion.

� All equations of this hierarchy are explicitly solvable in the following sense.
Let v be realized as current of fermionic field ψ . Then all these nonlinear
equations for v lead to linear evolution equations for ψ .

We prove that these conditions uniquely determine hierarchy and that in
the limit h̄ → 0 this hierarchy reduces to the dispersionless KdV hierarchy.
The paper is as follows. In Section 2 we present some well-known results on
the “two-dimensional massless” fermions. In the Section 3 the hierarchy is
derived and its properties are studied. In Section 4 we demonstrate by means
of the modified KdV equation that results of our construction can be applied
to quantization of the generic integrable models. Discussion of the classical
limit of the hierarchy and some concluding remarks are given in the Section 5.
Preliminary version of this article see in [13], more detailed presentation will
be given in [14].

2 MASSLESS TWO-DIMENSIONAL FERMIONS

Here we introduce notations and list some standard properties of the massless
Fermi fields (see, e.g., [1]). Let H denote the fermionic Fock space generated
by operators ψ(k) and ψ∗(k), where ∗ means Hermitian conjugation, and that
obey canonical anticommutation relations,

{ψ∗(k), ψ(p)}+ = δ(k − p), {ψ(k), ψ(p)}+ = 0. (1)

Let � ∈ H denote vacuum vector and ψ(k < 0) and ψ∗(k > 0) be annihilation
operators,

ψ(k)�
∣∣∣
k<0

= 0, ψ∗ (k)�
∣∣∣
k>0

= 0 , (2)

whereas ψ(k > 0) and ψ∗(k < 0) are creation operators. Fermionic field is the
Fourier transform,

ψ(x) = 1√
2π

∫
dk eikxψ(k), (3)
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and obeys relations

{ψ∗(x), ψ(y)}+ = δ(x − y), {ψ(x), ψ(y)}+ = 0, (4)

(�, ψ(x)ψ∗(y)�) = (�, ψ∗(x)ψ(y)�) = −iε2

x − y − i0
, (5)

where we denoted ε = (
√

2π )−1. This notation is convenient as in order to
restore the Plank constant h̄ we need not only to substitute all commutators and
anticommutators [·, ·] → [·, ·] h̄−1, but also put

ε =
√

h̄

2π
. (6)

The current of the massless two-dimensional fermionic field is given by the
bilinear combination

v(x) = ε−1 : ψ∗ ψ : (x), (7)

where the sign : . . . : denotes the Wick ordering with respect to the fermionic
creation-annihilation operators, for example, : ψ∗(x)ψ(y) : = ψ∗(x)ψ(y) −
(�, ψ∗(x)ψ(x)�) and : ψ∗ψ : (x) = limy→x : ψ∗(x)ψ(y): , etc. Current is a
self-adjoint operator-valued distribution in the space H obeying the following
commutation relations:

[ψ(x), v(y)] = ε−1δ(x − y)ψ(x), (8)

[v(x), v(y)] = iδ′(x − y). (9)

The charge of the fermionic field, � = ∫
dx v(x), is self-adjoint operator with

spectrum
√

2π h̄Z.
Commutation relation (29) suggests interpretation of v(x) as bosonic field

that obeys quantized version of the GZF bracket ([9], see also (58) below). In
what follows, we use the decomposition

v(x) = v+(x) + v−(x) (10)

of this field, where positive and negative parts equal

v±(x) = ±1

2π i

∫
dy v(y)

y − x ∓ i0
(11)

and admit analytic continuation in the upper and bottom half-planes of variable
x, correspondingly. They are mutually conjugate and

v−(x)� = 0. (12)

Let

v(k) =
∫

dx e−ikxv(x), (13)
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so that v±(x) = (2π )−1
∫

dk eikxθ (±k)v(k), where θ(k) is step function. Then

v∗(k) = v(−k), v(k)�
∣∣
k<0

= 0. (14)

Thus v(k > 0) and v(k < 0) are bosonic creation and annihilation operators,
correspondingly, that are bilinear with respect to fermionic ones. One can intro-
duce the bosonic Wick ordering for the products of currents, which we denote
by the symbol

... . . .
..., that means that all positive components of the currents are

placed to the left from the negative components, for instance,

...v(x)v(y)
... = v+(x)v+(y) + v+(x)v−(y) + v+(y)v−(x) + v−(x)v−(y)

(15)

and again
...v2

...(x) = limy→x
...v(x)v(y)

.... We can also use equality

...v(x)v(y)
... = v(x)v(y) − (�, v(x)v(y)�), (16)

where

(�, v(x)v(y)�) =
(

iε

x − y − i0

)2

. (17)

Fermionization procedure is essentially based on the relation between these
two normal orderings. The bosonic ordering

... . . .
... can be extended for expres-

sions that include fermionic field:

...v(x)ψ(y)
... = v+(x)ψ(y) + ψ(y)v−(x). (18)

Then by (8) and (11),

...v(x)ψ(y)
... =: v(x)ψ(y) : + iε

ψ(x) − ψ(y)

x − y
, (19)

so that this expression as well as its derivatives w.r.t. x and y are well-defined in
the limit y → x . In this limit one uses the obvious fact that under the sign of the
fermionic normal product any expression of the kind : . . . ψ(x) . . . ψ(x) . . . :
equals to zero. In particular, we get relation

...vψ
...(x) = iεψx (x), (20)

that results in the bosonization of fermions [2–3]. More exactly, one can inte-
grate this equality and write (at least formally) that

ψ(x) = ...e−iε−1
∫ x

v(x) dx ... ≡ e−iε−1
∫ x

v+(x) dx e−iε−1
∫ x

v−(x) dx , (21)

where in the second equality definition of the bosonic normal product was used
for the exponent. Relation (21) needs special infrared regularization of the
primitive of the current,

∫ x
v(x) dx , and its positive and negative components.
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This procedure can be performed, say, like in [3], and it leads to a special
constant operator conjugated to the charge �, that must be included in the r.h.s.
of (21).

3 HIERARCHY OF EXPLICITLY SOLVABLE MODELS

Problems of interpretation of Eq. (21) do not appear if we deal with bilinear
combinations of fermionic fields of the type (7). In this case neither infrared reg-
ularization, nor the above-mentioned auxiliary operator are needed and product
of Fermi fields is given directly in terms of the current. An analog of such rela-
tion is known in the literature on the symmetries of the KP and KdV hierarchies
(see [5]) in the sense of formal series. Let us denote

F(x, y) = ε−1 : ψ∗(x + y)ψ(x − y) : . (22)

In [13, 14] it is proved that in the sense of operator-valued distribution with
respect to x we have equality

F(x, y) = ε

... exp
(

iε−1
∫ x+y

x−y dx ′ v(x ′)
) ... − 1

2iy
, (23)

where both sides are smooth, infinitely differentiable functions of y. In partic-
ular,

F(x, 0) = v(x). (24)

Let us introduce

Fn(x) ≡
(

ε∂y

2i

)n

F(x, y)
∣∣∣

y=0
= εn−1

(2i)n
Dn(: ψ∗ · ψ :)(x), (25)

where in the second equality we used notation for the Hirota derivative [5], that
in the generic case of two functions f (x) and g(x) reads as

Dn( f · g)(x) = lim
y→0

∂n

∂yn
f (x + y)g(x − y), n = 1, 2, . . . . (26)

In particular, by (24) we get that

F0(x) = v(x), (27)

F1(x) = 1

2i
D(: ψ∗ · ψ :)(x), (28)

that are current and energy–momentum density of the massless fermi-field,
correspondingly. Thus Eqs. (22) and (23) give relation of the Hirota derivatives
of the fermionic fields with polynomials of the current and its derivatives. All
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Fn(x) by (25) are self-adjoint operator-valued distributions on the Fock space
H and by (23) we get recursion relations

F2n+1(x) = 1

2n + 2

n∑
m=0

(−iε/2)2m(2n + 1)!

(2m)!(2(n − m))!

...v(2m)(x)F2(n−m)(x)
...,

n = 0, 1, 2, . . . , (29)

and

F2n(x) = 1

2n + 1

n−1∑
m=0

(−iε/2)2m(2n)!

(2m)!(2(n − m) − 1)!

...v(2m)(x)F2(n−m)−1(x)
...

+
( ε

2i

)n v(2n)(x)

2n + 1
, n = 1, 2, 3, . . . , (30)

where F0 is given in (27). The lowest simplest examples are as follows:

F1(x) = 1

2

...v2...(x), (31)

F2(x) = 1

3

...v3...(x) − ε2vxx (x)

12
, (32)

F3(x) = 1

4

...v4...(x) − ε2

4

...v(x)vxx(x)
..., (33)

F4(x) = 1

5

...v5...(x) − ε2

2

...v2(x)vxx(x)
... + ε4vxxxx(x)

80
. (34)

By definition (22) operator F(x, y) obeys commutation relation

[F(x, y), F(x ′, y′)] = −ε−1δ(x − x ′ + y + y′)F(x + y′, y + y′) (35)

+ ε−1δ(x − x ′ − y − y′)F(x ′ + y, y + y′)

+ i
δ(x − x ′ + y + y′) − δ(x − x ′ − y − y′)

y + y′ ,

that generates corresponding commutation relations for Fm (closely related
with a representation of the gl∞-algebra). Only the lowest terms, F0 and F1,
form closed subalgebras:

[F0(x), F0(x ′)] = iδ′(x − x ′), (36)[
F0(x), F1(x ′)

] = iδ′(x − x ′)F0(x ′), (37)[
F1(x), F1(x ′)

] = i{F1(x) + F1(x ′)}δ′(x − x ′) − iε2

12
δ′′′(x − x ′) (38)

while commutators of the type [Fm, Fn] include Fj ’s till Fm+n−1.
Operator F(x, y) admits integration with respect to x along the entire axis

and result of integration is well-defined operator in the fermionic Fock space
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H. Indeed, by (3) and (22)

∫
dx F(x, y) = 1

ε

∞∫
0

dk(e2ikyψ∗(−k)ψ(−k) − e−2ikyψ(k)ψ∗(k)), (39)

where expression in the r.h.s. is normally ordered and has creation × annihila-
tion form, so that thanks to (2)∫

dx F(x, y)� = 0 (40)

for any y. From here we derive that all operators

Hn ≡
∫

dx Fn(x) = 1

ε

∞∫
0

dk(εk)n(ψ∗(−k)ψ(−k) − (−1)nψ(k)ψ∗(k))

(41)

are well-defined and self-adjoint. For odd n they are positively defined. At the
same time by (35) we get[∫

dx F(x, y),

∫
dx ′F(x ′, y′)

]
= 0 (42)

for any y and y′. This means in particular that all

[Hm, Hn] = 0, m, n = 0, 1, . . . (43)

In other words, these operators define commuting flows on the space H and we
can introduce hierarchy of integrable time evolutions by means of commutation
relation

vtm (x) = i[Hm, v(x)], m = 0, 1, . . . , (44)

so that by (43): (∂tm ∂tn − ∂tn∂tm )v(x) = 0 for any m and n (we do not indicate
the time dependence in all cases where it is not necessary). On the other side,
by (35)[∫

dx F(x, y), v(x ′)
]

= ε−1[F(x ′ + y, y) − F(x ′ − y, y)] (45)

≡ 1

2iy

⎧⎪⎨
⎪⎩

... exp

⎛
⎜⎝iε−1

x ′+2y∫
x ′

dξv(ξ )

⎞
⎟⎠ ... − ... exp

⎛
⎜⎝iε−1

x ′∫
x ′−2y

dξ v(ξ )

⎞
⎟⎠ ...

⎫⎪⎬
⎪⎭ ,

that leads to highly nonlinear (polynomial) dynamic equations for v(x) in all
cases with exception to t0 and t1. Thanks to (25), (41), and (44) we have

vt0 (x) = 0, (46)

vt1 (x) = vx (x), (47)
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and in the generic situation

vtn (x) = ∂

∂x

[ n−1
2 ]∑

m=0

(iε/2)2mn! ∂2m
x Fn−2m−1(x)

(n − 2m − 1)!(2m + 1)!
, n = 1, 2, . . . (48)

The simplest examples are as follows:

vt2 (x) = ∂x
...v2...(x), (49)

vt3 (x) = ∂x

(
...v3...(x) − ε2

2
vxx (x)

)
, (50)

vt4 (x) = ∂x

(
...v4...(x) − 2ε2...vvxx

...(x) − ε2...v2
x

...(x)

)
. (51)

These polynomial interactions are closely related to the KdV hierarchy: the
second evolution is just dispersionless quantum KdV (cf. [4]), the third evolu-
tion coincide with the modified KdV equation for some specific value of the
interaction constant, and so on. In the next section we discuss the case of mKdV
equation in more detail. Here we emphasize that in spite of the highly nonlin-
ear form of all these equations in terms of the field v, all of them give linear
evolutions for fermions. Indeed, introducing the time dependence of ψ(x) in
analogy with (44) as ψtm = i[Hm, ψ], we get by (41)

ψtm (x) = 1

iε
(iε∂x )mψ(x), (52)

or by (3) ψtm (k) = (iε)−1(−εk)mψ(k). Let now ψ(tm, x), v(tm, x), and
F(tm, x, y) be operators with time evolution given by some Hm and deter-
mined by the condition that at tm = 0 they equal to ψ(x), v(x), and F(x, y),
correspondingly. Thanks to (40) the definitions of the both normal products
do not depend on time. This means that these operators are related at arbitrary
value of tm by means of the same Eqs. (7), (22), (23), and (27) as at tm = 0. In
particular, by (22)

F(tm, x, y) = 1

ε
: ψ∗(tm, x + y)ψ(tm, x − y) : . (53)

Then, thanks to (3), (22), and (52) we get explicit expression for F(tm, x, y) in
terms of its initial value F(x, y):

F(tm, x, y) = 2

(2π )2

∫
dx ′

∫
dy′

∫
dk

∫
dpF(x − x ′, y − y′) (54)

× exp(i(k − p)x ′ + i(k + p)y′ + iεm−1(km − pm)tm).
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Thanks to (25) and (27) we obtain for y = 0:

v(tm, x) = 2

(2π )2

∫
dx ′

∫
dy′

∫
dk

∫
dpF(x − x ′, y′) (55)

× exp(i(k − p)x ′ − i(k + p)y′ + iεm−1(km − pm)tm).

Substituting here F(x, y) by means of (23) we get solution of the m’s equation
of the hierarchy (3.23) in terms of the initial data v(x):

v(tm, x) = 1

(2π )2

∫
dx ′

∫
dy′

∫
dk

∫
dp

... exp
(

iε−1
∫ x−x ′+εy′

x−x ′−εy′ dx ′′v(x ′′)
) ... − 1

2iy′

× exp

(
ikx ′ − i py′ + i

tm
2mε

[(p + εk)m − (p − εk)m)]

)
. (56)

Generalization to the case where time evolution is determined by a linear com-
bination of Hamiltonians Hm is straightforward.

Thus we see, that all these models are not only completely integrable, but
also explicitly solvable in the fermionic Fock space H. On the other side, tak-
ing into account that thanks to (43) and (46) the charge operator � = H0/

√
2π

commutes with all Hamiltonians and v(x), one can reduce bosonic equations
to the zero (or any other, fixed) charge sector of H, that is exactly the standard
bosonic Fock space. In that case all relations of the type (23) and (55) re-
main valid and give explicit solution of the hierarchy (44) in the bosonic Fock
space.

4 THE MODIFIED KdV EQUATION

The modified Korteweg–de Vries (mKdV) equation

vt = ∂x

(
gv3 − vxx

2

)
(57)

for the real function v(t, x) is well-known example of the completely integrable
differential equation. Ifv(x) is a smooth real function that decays rapidly enough
when |x | → ∞, the inverse spectral transform (IST) method (see [15, 16] and
references therein) is applicable to Eq. (57). Constant g in this equation is an
arbitrary real parameter and properties of solutions essentially depend on its
sign. In particulary, the soliton solutions exist only if g < 0.

The mKdV equation is Hamiltonian system with respect to the GZF bracket
[9],

{v(x), v(y)} = δ′(x − y), (58)
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so that Eq. (57) can be written in the form vt = −{H, v}, where Hamiltonian

H = 1

4

∫
dx(gv4(x) + v2

x (x)) (59)

The direct quantization of the mKdV equation on the whole axis requires
some regularization (e.g., space cut-off) of the Hamiltonian in order to supply
it with operator meaning. Any such regularization is incompatible with the IST
already in the classical case: the continuous and discrete spectra of correspond-
ing linear (Zakharov–Shabat) problem become mixed and the most interesting,
soliton solutions cease to exist.

Here we show that realizing v(x) as in (7), i.e., as a composition of fermionic
fields we can avoid any cut-off procedure in (59), because the Hamiltonian
becomes well-defined in the fermionic Fock space H.

We choose the quantum Hamiltonian to be bosonically ordered expression
(59),

H = 1

4

∫
dx

...gv4(x) + v2
x (x)

.... (60)

Then, thanks to (33) we get

H = gH3 + 1 − gε2

4

∫
dx

...v2
x

...(x), (61)

where (41) for n = 3 was used. Thus, in analogy with the KdV case (see [4]),
the most singular part of the Hamiltonian (60) that was of the fourth order
with respect to bosonic operators is only of the second order with respect to
fermions. Taking into account that by (13)

∫
dx

...v2
x

...(x) = 2

∞∫
0

dk k2v(k)v(−k) (62)

we get that both terms in (61) are bilinear in either fermionic, or bosonic
creation–annihilation operators, they are normally ordered and have a diagonal
form, i.e., they include “creation×annihilation” terms only. Correspondingly,
both these terms are well-defined self-adjoint operators in H and under our
quantization procedure no any regularization of the Hamiltonian is needed. In
particular, by (14) and (40)

H� = 0 (63)

and by (41) and (62) the Hamiltonian (61) is positively defined when ε−2 ≥
g ≥ 0.
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It is clear that time evolution given by the Hamiltonian (60),

vt = i[H, v] ≡ ∂x

(
g

...v3... − vxx

2

)
, (64)

is exactly the quantum version of the Eq. (57) normally ordered with respect
to the bosonic operators. Thanks to (32) we can exclude the v3-term and get
the quantum bilinear form of the mKdV equation in terms of the fermionic
fields:

vt (x) = ∂

∂x

(
3gF2(x) + gε2 − 2

4
vxx(x)

)
, (65)

that can be considered as a quantum Hirota form of the mKdV equation.
In order to derive time evolution of the fermionic field ψ it is reasonable

to rewrite the second term of (61) by means of the fermionic normal ordering.
Omitting details we get by definitions of the both normal orderings and Eqs.
(7) and (22) the equality

...v(x)v(y)
... =: v(x)v(y) : +ε

F
( x+y

2
,

x−y
2

) − F
( x+y

2
,

y−x
2

)
i(x − y)

, (66)

that after differentiation gives in the limit y → x

...v2
x

... (x) =: v2
x : (x) + 1

2
∂2

x F1(x) + 2

3ε2
F3(x), (67)

where (25) was used and where by (7) : v2
x : (x) = 2ε−2 : ψ∗

x ψ∗ψxψ :. Thus we
can write (61) as

H = 5g + ε−2

6
H3 + ε−2 − g

2

∫
dx : ψ∗

x ψ∗ψxψ : (x), (68)

and thus time evolution of the fermionic field,ψt = i[H, ψ] is given by equation

ψt (x) = −5gε2 + 1

6
ψxxx(x) + gε2 − 1

2iε
: vxxψ : (x), (69)

that is, of course, nonlinear when g �= ε−2.
Investigation of the spectrum of the quantum Hamiltonian deserves the sep-

arate studying. But like in the [4] it can be shown that in the fermionic Fock
space H for g < 0 there exists one-soliton state, i.e., such state that the average
of the field v with respect to it equals to the classical one-soliton solution at
least at zero (or any fixed) instant of time. This state does not belong to the zero
charge sector of H, so it cannot exist in the standard (bosonic) quantization of
the mKdV equation. Again, like in [4] it can be shown that existence of this
state implies quantization of the soliton action variable.
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5 CONCLUSION

We derived hierarchy of nonlinear integrable and at the same time solvable
evolutions of the bosonic field v(x) realized as composition of the fermionic
fields–current. By (27) this means that F0(x) was chosen to be a dynamical
variable. But the closed subalgebra of commutation relations (36)–(37) is given
also by F0(x) and F1(x). Moreover, the linear combination

F̃(x) = F1(x) + a∂x F0(x) (70)

with real constant coefficient a also obeys closed commutation relation,

[F̃(x), F̃(x ′)] = i{F̃(x) + F̃(x ′)}δ′(x − x ′) − i

(
a2 + ε2

12

)
δ′′′(x − x ′),

(71)
as follows from (36)–(37). This means that F̃(x) gives another possible choice
of a dynamical variable. In [4] we proved that the dispersionless KdV in this
case is also solvable, while – in contrast to the above – it was v(x) that evolved
linearly. It is natural to expect that the same property is valid for the entire
hierarchy (48) generated by the quantum version (71) of the Magri bracket.

Coefficients of the R.H.S. of the bosonic equations of motion (47)–(51)
are uniquely (up to a common factor) fixed by recursion relations (29)–(30).
Indeed, transformation

v(x) → av(ax), (72)

is the only canonical scaling transformation that is unitary implemented in H.
Here constant a > 0 in order to preserve definition (11) of positive and negative
parts of v. This transformation generates

ψ(x) → √
aψ(ax), F(x, y) → aF(ax, ay), Fn(x) → an Fn(ax),

(73)

that is compatible with (27)–(30). Thus by (41) Hn → an−1 Hn , and thanks
to (48) transformation (72) can be compensated by rescaling of times: tn →
a1−ntn .

Flows given in (27)–(34) are close to the flows of the KdV hierarchy [15]:
they are polynomial with respect to v(x) and its derivatives and have the same
leading terms. On the other side, the lowest nontrivial example (32) shows
that some essential terms that are involved in the KdV case are absent in (48).
In fact, as it was natural to expect by [4], Eq. (32) is the dispersionless KdV
equation: the term vxxx(x) is absent. The higher equations, like (33), (34), and
so on already include terms with derivatives, so these equations are not the
dispersionless ones. On the other side, coefficients of all such terms of all
commuting flows introduced in Section 3 are proportional to powers of ε2, i.e.,
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of h̄ by (6). Thanks to (27) and (29), (30) it is easy to see that in the limit h̄ → 0

Fm(x) → vm+1(x)

m + 1
, (74)

so that by (48) we get in the classical limit equations

∂tm v(tm, x) = mvm−1(tm, x)vx (tm, x), (75)

i.e., the dispersionless KdV hierarchy. Solution of the initial problem for the
mth equation can be written in the parametric form as

x = s − mtmvm−1(s), v(tm, x) = v(s), (76)

where v(x) is initial data. This solution is known to describe overturn of the
front, so the initial problem for the Eqs. (75) has no global solution. On the
other side, Eq. (56) gives global solution of the quantum hierarchy (48). It is
easy to see that in the limit ε → 0 (i.e., h̄ → 0) we get from (56)

v(tm, x) = 1

(2π )2i

∫
dx ′

∫
dy′

∫
dk

∫
dp

eiy′v(x−x ′) − 1

y′ eikx ′−i py′+imtm kpm−1

,

so that for the classical limit of (56) we get representation

v(tm, x) =
∫

dp[θ (v(x + mtm pm−1) − p) − θ (−p)], (77)

where θ (p) denotes the step function. It is easy to check that (77) coincides
with the solution (76) of the classical equation (75) before the first overturn of
the front.

Summarizing, it is natural to call the hierarchy introduced in the Section 3 the
quantum dispersionless KdV hierarchy. Dispersionless limits of integrable
hierarchies attract now essential attention in the literature, see [17, 18].

Our construction here is essentially based on the equalities (22) and (23)
valid for the standard massless fermionic fields. Thanks to this relations we
got description of the quantum dispersionless KdV hierarchy. It is natural to
hypothesize that anyonic generalization [19] of the fermions leads to more
generic integrable bozonic systems.
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A TWO-PARAMETER ELLIPTIC
EXTENSION OF THE LATTICE
KdV SYSTEM

S.E. Puttock and F.W. Nijhoff
Department of Applied Mathematics, University of Leeds, Leeds
LS2 9JT, United Kingdom

1 INTRODUCTION

In [1] we presented a novel integrable lattice system given by the following
coupled system of equations:(

a + b + u − ˆ̃u
)

(a − b + û − ũ) = a2 − b2 + f (s̃ − ŝ )
(
ˆ̃s − s

)
(1a)(

ˆ̃s − s
)

(w̃ − ŵ) = [(a + u)s̃ − (b + u)ŝ]ˆ̃s − [
(a − ˆ̃u)ŝ − (b − ˆ̃u)s̃

]
s (1b)

(ŝ − s̃)
(

ˆ̃w − w
) = [

(a − ũ)s + (b + ũ )ˆ̃s
]

ŝ − [
(a + û)ˆ̃s + (b − û)s

]
s̃ (1c)(

a + u − w̃

s̃

) (
a − ũ + w

s

)
= a2 − P(ss̃ ) (1d)(

b + u − ŵ

ŝ

) (
b − û + w

s

)
= b2 − P(sŝ ) (1e)

in which

P(x) ≡ 1

x
+ 3e + f x,

with e and f being fixed parameters. We consider this system to be an “elliptic”
extension of the lattice KdV equation by virtue of the fact that it is naturally
associated with the elliptic curve y2 = P(x), where e and f are the moduli.
When the curve degenerates, i.e., when f = 0, one immediately notes that
the first equation (1a) decouples and we recover the lattice (potential) KdV
equation for the variable u. To explain the notation used in (1), we mention that
u = un,m, w = wn,m, s = sn,m are the dependent variables, depending on the
lattice variables n, m ∈ Z , and that the symbols ·̃ and ·̂ denote lattice shifts
in the n, m directions respectively, i.e., ũ = un+1,m, û = un,m+1, ˆ̃u = un+1,m+1

as indicated in Figure 1. Furthermore in (1) a and b denote lattice parameters,
i.e., parameters associated with the lattice variables n and m respectively, in
contrast to the parameters e and f (associated with the elliptic curve) which are
fixed.
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u

u

u

u a

a

b b

Figure 1. Elementary quadrilateral on which the lattice equation is defined

To explain the distinction between lattice parameters and fixed parameters,
we recall that the integrability of lattice equations such as the lattice KdV equa-
tion can be understood in the following way: the integrability seems to entirely
reside in a simple but deep combinatorial property, first described in the paper
[12]. This property amounts to the fact that these integrable two-dimensional
lattice equations should really be viewed as parameter-families (relative to the
lattice parameters) of compatible equations which can be consistently embed-
ded in a multidimensional lattice, on each two-dimensional sublattice of which
a copy of the lattice equation can be defined. As was shown in [2, 3], cf. also
[14], this property is powerful enough to derive subsequently Lax pairs for the
lattice equations, which can then be used to study the analytic properties of so-
lutions. A full classification of lattice equations of the type involving variables
around elementary plaquettes was recently given in [5]. The richest equation
in this classification is a lattice equation, first derived in [6], involving lattice
parameters on an elliptic curve, forming the natural discrete analogue of the
Krichever–Novikov equation, cf. [7].

In [1] we took a different position towards deriving latice systems associated
with elliptic curves, in that we aimed at starting from an underlying structure
expressed by means of an infinite matrix system. This is in the spirit of earlier
publications [8, 9], where similar structures were exhibited in connection with
the lattice KdV equation and other discrete systems. The extension of this
construction to the elliptic case, which involves the use of an elliptic Cauchy
kernel, was presented in [1]. We will not repeat the details here, but restrict
ourselves to highlighting the main results.

2 ELLIPTIC LATTICE SYSTEM

We will exhibit here a number of key properties of the system (1).

2.1 Lax Pair

The Lax pair, which customarily is considered to be a clear indication of the
integrability of the model, is given by the overdetermined set of linear discrete
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equations:

(a − k)φ̃ = L(K )φ (2a)

(b − k)φ̂ = M(K )φ (2b)

in which the Lax matrices L and M are given by:

L(K ) =

⎛
⎜⎝

a − ũ + f
K s̃w 1 − f

K s̃s

K + 3e − a2 + f s̃s a + u − f
K w̃s

+(a − ũ)(a + u) + f
K w̃w

⎞
⎟⎠ (3a)

M(K ) =

⎛
⎜⎝

b − û + f
K ŝw 1 − f

K ŝs

K + 3e − b2 + f ŝs b + u − f
K ŵs

+(b − û)(b + u) + f
K ŵw

⎞
⎟⎠ (3b)

with (k, K ) on the elliptic curve representing the spectral parameter. It is
straightforward to show that the discrete Lax equation arising from the com-
patibility condition of the linear system (2a), (2b),

L̃ M = M̂ L , (4)

gives rise to the set of equations (1a)–(1e). We observe that the matrices L and
M depend rationally on K only, and thus we have a rational dependence on the
spectral variable. Nevertheless, the solutions seem to depend essentially on the
elliptic curve as is apparet from the soliton type solutions presented in the next
subsection.

2.2 Soliton Type Solutions

It is relatively straightforward from the structure exhibited in [1] to construct
soliton solutions.

Introducing the N × N matrix M with entries

Mi j = 1 − f/(Ki K j )

ki + k j
ri , (i, j = 1, . . . , N ) (5)

where the parameters of the solution (ki , Ki ) are points on the elliptic curve:

k2 = K + 3e + f

K
(6)

and the column vector r = (ri )i=1,...,N with components

ri =
(

a + ki

a − ki

)n (
b + ki

b − ki

)m

r0
i , (7)

where the coefficients r0
i are independent of n, m.
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We note that although the dynamics itself (encoded in the wave factors ri )
does not involve the elliptic curve, the soliton solutions essentially depend on
the variables on the curve. In fact, it is easily verified by direct calculation that
the formulae (5) provide a solution to the lattice system (1) if and only if the
elliptic curve relation (6) holds between the parameters ki and the parameters
Ki .

To present the soliton type solutions of (1) we introduce an “elliptic” matrix
U with entries Ui, j where we have to distinguish between even and odd entries
in the following way:

U 2i,2 j = e · K i · (1 + M)−1 · K j · r (8a)

U 2i+1,2 j = e · K i · k · (1 + M)−1 · K j · r (8b)

U 2i,2 j+1 = e · K i · (1 + M)−1 · K j · k · r (8c)

U 2i+1,2 j+1 = e · K i · k · (1 + M)−1 · K j · k · r (8d)

in which we have employed the row vector e = (1, 1, . . . , 1) and the diagonal
matrices

K = diag (K1, K2, . . . , KN ), k = diag (k1, k2, . . . , kN ) .

where (ki , Ki ) are points on the elliptic curve (6). We note that the formulae (8)
can be thought of as introducing a quasi-gradation on the matrix U. Although
it is not manifest, it can be easily shown that the matrix U is symmetric.

If we now select the following entries:

u = U0,0, s = U−2,0, h = U−2,−2

v = 1 − U−1,0, w = 1 + U−2,1,

it can be shown that they obey the closed-form system of partial difference
equations (1a)–(1e) in terms of u, s, and w. Alternatively, we could just as
easily derive a lattice system in terms of h, s, and v which is equivalent to our
lattice system (1a)–(1e).

2.3 Consistency of the Lattice System

We now address the question of how to define a well-posed initial value prob-
lem (IVP) for the lattice system. Motivated by the work on the lattice KdV
equation, cf. [10], it is natural to investigate a local iteration scheme is given
on “staircases,” as in Figure 2, assigning initial values ui for u and si for s on
the vertices of this staircase, and to consider the discrete-time shift to be the
map (ui , si ) �→ (ûi , ŝi ).

We need in addition one “background” value w0 at a specific point on the
staircase.
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u2, s2

w0 u0, s0 u1, s1

u2, s2 u3, s3u0, s0

Figure 2. Staircase of initial values on the lattice

Setting the IVP up in this way is just a case of straightforward computation
to show that it is well-posed. In fact, from (1a)–(1c) one can solve ˆ̃u, ˆ̃s, and ˆ̃w
in a unique way, given the values of the other variables u, ũ, û as well as s, s̃, ŝ
and w, w̃, ŵ. Eqs. (1d) and (1e) link the variables w̃ and ŵ to w and to the
u,s-variables. Thus, it remains to be verified that the shifted forms (1̂d) and (1̃e)
trivialise through back-substitution of ˆ̃w which was already obtained. Also it
is easily checked that the two ways of calculating ˆ̃w from either (1d) followed
by (1̃e), or from (1e) followed by (1̂d) are consistent. Thus, by a simple unam-
biguous computation the lattice system (1a)–(1e) is shown to be consistent.

2.4 Associated Continuous Systems

As was demonstrated in the past for the lattice systems studied in [8, 11, 12],
there exist many compatible continuous systems associated with them. These
form, in fact, the continuous symmetries for the lattice systems (whilst the lattice
systems constitute the discrete symmetries for the corresponding continuous
flows). We will give here a few of the simplest of such associated continuous
flows for the purpose of identification of the associated lattice system.

We can derive a hierarchy of partial differential equations which are com-
patible with the discrete system (1). Thus, in [1] we derived the following set
of coupled relations for the first member of this hierarchy:

ut = 1

4
uxxx + 3

2
u2

x − 3

2
f s2

x (9a)

st = 1

4
sxxx + 3

2
sx ux − 3

2
f hx sx (9b)

ht = 1

4
hxxx + 3

2
s2

x − 3

2
f h2

x (9c)

vt = 1

4
vxxx + 3

4
f sx (hx + s2 − f h2)x + 3

2
vx ux (9d)

wt = 1

4
wxxx + 3

4
sx (ux + u2 − f s2)x − 3

2
f wx hx . (9e)
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where x and t are the variables associated with the first two nontrivial time flows
in the hierarchy. We can subsequently obtain a system solely in terms of u, s
and w, by eliminating dependent variables h and v, by introducing the quantity
A = −u + w/s, and noting that there is the additional constraint(

u + w

s

)
x
+

(
u − w

s

)2
= 1

s2
+ 3e + f s2 (10)

Thus, we obtain the following coupled systems of nonlinear evolution equations
solely in terms of s and A:

st = 1

4
sxxx + 3

2
sx

[
1

s2
+ 3e + f s2 − A2 + A

sx

s
− 1

2

sxx

s

]
(11a)

At = 1

4
Axxx − 3

2
A2 Ax + 3

2
Ax

(
1

s2
+ 3e + f s2

)
+ 3

4

sx

s

(
1

s2
+ 3e + f s2

)
x

(11b)

Alternatively, eqs. (11) can be obtained by a rather subtle continuum limit from
the lattice system (1). This system of PDEs is integrable in its own right and
admits a Lax pair.

3 DISCUSSION

In this paper we presented an integrable system of partial difference equations
associated with an elliptic curve. This system constitutes a two-parameter
deformation of the lattice KdV system which was investigated in numerous
papers e.g., [8, 13, 10, 3, 14], and which is recovered from (1) when the el-
liptic curve degenerates. The scheme for obtaining the elliptic extension was
presented in detail in [1]. We believe this elliptic lattice system serves as a
starting point for the derivation of a number of new discrete and continuous
systems, which arise from reductions, and which will be the subject of future
investigations.

We should mention that there exists an alternative way to extend the lattice
systems of KdV type such that there is an underlying elliptic curve. V. Adler
discovered in [6] a lattice version of the Krichever–Novikov equation, cf. [7].
The main difference between Adler’s equation and the system (1) is that the
lattice parameters for Adler’s equation are points of the elliptic curve, and
the Lax pair for it, presented in [3], has the spectral parameter living also on
the elliptic curve. Nonetheless, the formulae for soliton solutions discussed in
subsection 2.2, show the presence of the curve through the parameters (ki , Ki ),
which seems a clear indication that the elliptic curve is essential in system (1)
as well.
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TRAVELLING WAVES IN A PERTURBED
DISCRETE SINE-GORDON EQUATION
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Michal Feckan
Department of Mathematical Analysis, Comenius University, Mlynska dolina,
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Abstract The existence of traveling waves is studied analytical for discrete sine-
Gordon equation with an inter-site potential. The reduced functional
differential equation is formulated as an infinite dimensional differen-
tial equation which is reduced by a centre manifold method and to a
4-dimensional singular ODE with certain symmetries and with hetero-
clinic structure. The bifurcations of solutions from heteroclinic ones are
investigated for singular perturbed systems.

Keywords: lattice sine-Gordon, center manifold reduction, normal form theory,
bifurcations

1 INTRODUCTION

In recent years there has been a flurry of mathematical research arising from
condensed matter physics and physical chemistry, namely the study of localised
modes in anharmonic molecules and molecular crystals. Using classical approx-
imations, these are described by nonlinear lattice equations. Most nonlinear
lattice systems are not integrable even if the PDE model in the continuum limit
is; (see [1, 2] and references therein). Prototype models for such nonlinear
lattices take the form of various discrete NLS equations or systems, a partic-
ularly important class of solutions of which are so called discrete breathers
which are homoclinic in space and oscillatory in time. Other questions involve
the existence and propagation of topological defects or kinks which mathe-
matically are heteroclinic connections between a ground and an excited steady
state. Prototype models here are discrete version of sine-Gordon equations,
also known as known as Frenkel-Kontorova (FK) models. There are many

253
L. Faddeev et al. (eds.),
Bilinear Integrable Systems: From Classical to Quantum, Continuous to Discrete, 253–257.
C© 2006 Springer. Printed in the Netherlands.



254 Vassilis M Rothos and Michal Feckan

outstanding issues for such systems relating to the global existence and dynam-
ics of localised modes for general nonlinearities, away from either continuum
or anticontinuum limits [3]. The kinks solutions have applications to prob-
lems such as dislocation and mass transport in solids, charge-density waves,
commensurable-incommensurable phase transitions, Josephson transmission
lines etc.

In this paper, we consider a perturbed Hamiltonian chain of coupled oscil-
lators with an Hamiltonian

H =
∑
n∈Z

(
1

2
u̇2

n + 1

2ε2
(un+1 − un)2 + H (un) + μG(un+1 − un)

)
(1)

where ε > 0, μ are small parameters and h(x) = H ′(x) and g(x) = G ′(x).
H, G ∈ C2(R). For H (x) = G(x) = 1 − cos x we obtain the discrete sine-
Gordon equation with inter-site potential as perturbation. The Hamiltonian
H gives the nonlinear lattice eqn:

ün − 1

ε2
(un+1 − 2un + un−1) + h(un) + μ{g(un − un−1) − g(un+1 − un)} = 0

(2)

We suppose for (2) the following conditions

(A1) h, g ∈ C1(R) are odd, h is 2π -periodic, h(x − π ) = −h(x) and g is
globally Lipschitz on R.

(A2) h(0) = h(2π ) = 0, h′(0) = h′(2π ) = a2 > 0 and there is a heteroclinic
solution � of

ẍ − h(x) = 0 : �(t) = 2π − �(−t), �(t) → 2π as t → +∞.

The continuum limit of Eq. (2) for μ = 0

utt − uxx + h(u) = 0

admits travelling wave solutions

u(x, t) = �

(
x − νt√
1 − ν2

)
, 0 < ν < 1.

We consider for Eq. (2) travelling wave solutions of stationary profile in a
moving reference with constant velocity ν/ ε. One can write

un(t) = V
(

n − ν

ε
t
)

≡ V (z), z = n − ν

ε
t, 0 < ν < 1.
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Equation (2) is reduced to the following functional differential equation:

ν2V ′′(z) − V (z + 1) + 2V (z) − V (z − 1) + ε2h(V (z))

+ ε2μ (g(V (z) − V (z − 1)) − g(V (z + 1) − V (z))) = 0 (3)

where ′ represents differentiation with respect to z. In this paper, we review
the analytical results about the existence of solutions of Eq. (3) near � and
the relationship between traveling wave solutions of (2) and continuum sine-
Gordon for ε > 0, μ small.

2 PERIODIC TRAVELLING WAVES-BIFURCATION ANALYSIS

We apply center manifold theory to the study of existence of travelling wave
solution of Eq. (1.8) with small amplitude oscillations on infinite nonlinear
lattice.

We introduce a new variable v ∈ [−1, 1] and functions X (t, v) = x(t + v).
The notation U (t)(v) = (x(t), ξ (t), X (t, v)) indicates our intention to construct
V as a map from R into some function space living on the v-interval [−1, 1].
We introduce the Banach spaces H and D for U (v) = (x, ξ, X (v))

H = R
2 × C[−1, 1], D = {U ∈ R

2 × C1[−1, 1] | X (0) = x}
with the usual maximum norms. Then L ∈ L(D, H) and M ∈ C1(D, D).
Eqn (3) can be written as follows [4]

Ut = LU + ε2

ν2
M(U ) (4)

where

L =

⎛
⎜⎝

0 1 0

− 2

ν2
0

1

ν2
δ1 + 1

ν2
δ−1

0 0 ∂v

⎞
⎟⎠ , δ±1 X (v) = X (±1)

M(U ) = (
0, h(x) − μ

{
g(x − δ−1 X (v)) − g(δ1 X (v) − x)

}
, 0

)
The spectrum σ (L) is given by the resolvent equation (λI − L)U = F, F ∈
H, λ ∈ C, U ∈ D. The resolvent equation is solvable if and only if N (λ) :=
λ2 + 2

ν2 (1 − cosh λ) = 0. Clearly, σ (L) is invariant under λ → λ̄ and λ →
−λ. The central part σ0(L) = σ (L) ∩ ιR is determined by the equation q2 +
2
ν2 (cos q − 1) = 0, q ∈ R. We assume that ν1 < ν < 1 where ν = ν1 is the first
value from the left of 1 for which the equations

λ2 + 2

ν2
(cos λ − 1) = 0, λ − 1

ν2
sin λ = 0
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have a common nonzero solution λ 
= 0. Then equation N (ıq) = 0 has the
double root 0 and simple roots ±q. Hence we have σ0(L) = {0, ±ıq}.

The linear operator on the 4th-dimensional central subspace Hc has the
form Lc = L/Hc in the basis (ξ1, ξ2, ξ3, ξ4) which satisfies Lξ1 = 0, Lξ2 =
ξ1, Lξ3 = −qξ4, Lξ4 = qξ3. The projection PcH → Hc is given by Pc(U ) =
P1(U )ξ1 + P2(U )ξ2 + P3(U )ξ3 + P4(U )ξ4 [5]. Condition (A1) implies that M
is globally Lipschitz. We can apply the procedure of a center manifold method
to get for ε, μ small the reduced equation of (4) over Hc given by

u̇c = Lcuc + ε2

ν2
Pc(M(uc)) + O(ε4), (5)

where uc = u1ξ1 + u2ξ2 + u3ξ3 + u4ξ4. Introducing the appropriate scaling,
we consider the singularly perturbed system of the form:

ẍ + h(x) = f1(x, ẋ, y, ε ẏ, ε), ε2 ÿ + y = ε2g1(x, ẋ, y, ε ẏ, ε) (6)

Theorem 1 [5] For any k0 ∈ N there is an ε0 > 0 such that for any
0 < ε < ε0, |μ| ≤ ε0ε

1/4 and T = ε(k[ε−3/2]π + τ ) with k ∈ N, k ≤ k0, τ ∈
[π/3, π/6], system (6) has a 4T-periodic solution (xT,ε,1(t), yT,ε,1(t)) near
(φ(t), 0), −T ≤ t ≤ T and has a solution (xT,ε,2(t), yT,ε,2(t)) on R near
(φ(t), 0), −T ≤ t ≤ T , such that xT,ε,ı , yT,ε,ı are odd functions and

xT,ε,ı (t + 2T ) = (−1)ı xT,ε,1(t) + 2π (ı − 1),

yT,ε,ı (t + 2T ) = (−1)ı yT,ε,1(t), ı = 1, 2

Theorem 2 [5] If h,g satisfy the assumptions (A1 − A2) then traveling wave
solution u(x, t) = �( x−νt√

1−ν2
) for 0 < ν1 < ν < 1 of sine-Gordon can be ap-

proximated by the both rotational and librational travelling wave solutions of
(2) with very large periods and with the velocity ν for μ = o(ε1/4) small.

The central part of the spectrum σ (L) is {0, ± iq}, where 0 has multiplicity
two. We can perform a polynomial change of coordinates close to identity,
analytically depending on the parameter μ̃, uc = Y + �(Y, μ̃) such that the
reduced system (5) is equivalent in a neighborhood of the origin to

dY

dt
= N (Y, μ̃) + R(Y, μ̃) (7)

where N is the normal form of order 2 and R represents the new terms of order
greater or equal to 3, Y = (y1, y2, y3, y4) and the system (7) has the following
symmetry properties:

SN (Y, μ̃) = −N (SY, μ̃), S R(Y, μ̃) = −R(SY, μ̃)

with S(y1, y2, y3, y4) = (y1, −y2, y3, −y4).
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For studying the dynamics of the initial system near the origin, we perform
a polynomial change of coordinates for which the “linear and quadratic” part
N is as simple as possible. Next, we analyze the truncated system

dY

dt
= N (Y, μ̃),

its heteroclinic orbits close to the origin. We focus on the problem of the
persistence for the full system of the heteroclinic connections obtained for the
truncated system and emphasize the case of solutions tending to exponentially
small oscillations at infinity, (see 6).
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QUANTUM VS CLASSICAL
CALOGERO–MOSER SYSTEMS
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Abstract Calogero–Moser and Toda systems are best known examples of solv-
able many-particle dynamics on a line which are based on root systems.
At the classical level, the former (C–M) is integrable for elliptic poten-
tials (Weierstraß ℘ function) and their various degenerations. The latter
(Toda) has an exponential potential, which is obtained from the former
as a special limit of the elliptic potential. First, we discuss quantum C–M
systems based on any root system. For the models with degenerate po-
tentials, i.e., the rational with/without the harmonic confining force, the
hyperbolic and the trigonometric, we demonstrate the following: (i) Con-
struction of a complete set of quantum conserved quantities in terms of
a Lax pair. (ii) Triangularity of the quantum Hamiltonian and the entire
discrete spectrum. (iii) Equivalence of the quantum Lax pair method and
that of so-called differential-reflection (Dunkl) operators. (iv) Algebraic
construction of all excited states in terms of creation operators. Next,
we discuss the relationship/contrast between the quantum and classical
integrability as seen in the C–M systems.

1 INTRODUCTION

Calogero–Moser systems [1, 2, 3] are one-dimensional multiparticle dynamics
with long-range interactions. They are integrable at both classical and quan-
tum levels. In this lecture we discuss quantum C–M systems with degenerate
potentials, that is the rational with/without harmonic force, the hyperbolic and
the trigonometric potentials based on any root system [4–12]. The relationship/
contrast between quantum and classical integrability is also discussed in some
detail in the second half. The quantum Calogero systems having 1/q2 potential
and a confining q2 potential and the Sutherland systems with 1/sin2 q potentials
have “integer” energy spectra characterized by the root system �. We show that
the corresponding classical data, e.g., minimum energy, frequencies of small
oscillations, the eigenvalues of the classical Lax pair matrices, etc. at the equilib-
rium point of the potential are also “integers,” or they appear to be “quantized.”
To be more precise, these quantities are polynomials in the coupling constant(s)
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with integer coefficients [13]. The explanation of the highly organized nature
of the energy spectra of the spin exchange models (Haldane–Shastry model
and generalizations) [14–16] in terms of the Lax pairs at equilibrium is one of
the motivations of the present research [13].

For the Ar models, the Lax pairs, conserved quantities and their involu-
tion were discussed by many authors with varied degrees of completeness and
rigour, see for example [5, 17–26]. The point (iii) was shown by Wadati and col-
laborators [24] and point (iv) was initiated by Perelomov [18] and developed by
Brink and collaborators [23] and Wadati and collaborators [24]. Various prop-
erties of classical Ar Calogero and Sutherland systems at equilibrium were
discussed by Calogero and collaborators [27, 28]. A rather different approach
by Heckman and Opdam [29, 30] to C–M systems with degenerate poten-
tials based on any root system should also be mentioned in this connection.
For physical applications of the C–M systems with various potentials to lower
dimensional physics, ranging from solid state to particle physics and super-
symmetric Yang–Mills theory, we refer to recent papers [7–9] and references
therein.

This lecture is organized as follows. In Section 2 quantum C–M Hamiltonian
with degenerate potentials is introduced as a factorized form (4). Connection
with root systems and the Coxeter invariance is emphasized. Some rudimen-
tary facts of the root systems and reflections are summarized in Appendix A.
A universal Coxeter invariant ground state wavefunction and the ground-state
energy are derived as simple consequences of the factorized Hamiltonian. In
Section 3 we show that all the excited states are also Coxeter invariant and that
the Hamiltonian is triangular in certain bases. Complete sets of quantum con-
served quantities are derived from quantum Lax operator L in Section 4. Instead
of the trace, the total sum of Ln is conserved. That is Ts(Ln) = ∑

μ,ν∈R(Ln)μν ,
in whichR is a set of Rr vectors invariant under the action of the Coxeter group.
They form a single Coxeter orbit. In Section 5 the creation and annihilation
operators for the Calogero system are derived. In Section 6 the equivalence
of the Lax pair operator formalism with the so-called differential-reflection
(Dunkl) operators is demonstrated. Another form of the quantum conserved
quantities is given in terms of the differential-reflection (Dunkl) operators. In
Section 7 an algebraic construction of excited states in terms of the differential-
reflection (Dunkl) operators for the Calogero system is presented. In Section
8 we discuss the properties of classical equilibrium. We define integrable spin
exchange models at the equilibrium of the Calogero and Sutherland systems
for any root system. In Sections 9 and 10 we present the classical data of the
Calogero and Sutherland systems, respectively. Most of them are expressed
neatly in terms of roots and weights and provide interesting examples that the
classical data of integrable systems are “quantized.” The final section is for
summary, comments, and outlook.
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2 QUANTUM CALOGERO–MOSER SYSTEMS

A Calogero–Moser system is a multiparticle Hamiltonian system associated
with a root system � of rank r, which is a finite set of vectors in Rr with its
standard inner product. A brief review of the properties of the root systems
and the associated reflections together with explicit realisations of all the root
systems will be found in the Appendix A.

2.1 Factorized Hamiltonian

The dynamical variables of the quantum C–M system are the coordinates {q j }
and their canonically conjugate momenta {p j }, with the canonical commutation
relations:

[q j , pk] = iδ jk, [q j , qk] = [p j , pk] = 0, j, k = 1, . . . , r. (1)

These will be denoted by vectors in Rr :

q = (q1, . . . , qr ), p = (p1, . . . , pr ). (2)

The momentum operator p j acts as a differential operator p j = −i ∂
∂q j

, j =
1, . . . , r . As for the interactions we consider only the degenerate potentials,
that is the rational (with/without harmonic force), hyperbolic, and trigonometric
potentials, ρ ∈ �:

V (ρ · q) : 1/(ρ · q)2, a2/sinh2 a(ρ · q), a2/sin2 a(ρ · q), (3)

in which a is an arbitrary real positive constant, determining the period of the
trigonometric potentials. They imply integrability for all of the C–M systems
based on the crystallographic root systems. Those models based on the noncrys-
tallographic root systems, the dihedral group I2(m), H3, and H4, are integrable
only for the rational potential. The rational potential models are also integrable
if a confining harmonic potential ω2q2/2, ω > 0, is added to the Hamiltonian.
This case will be called the Calogero system and the trigonometric case will
be referred to as the Sutherland system hereafter.

The Hamiltonian for the quantum C–M system can be written in a “factorized
form”

H = 1

2

r∑
j=1

(
p j − i

∂W

∂q j

) (
p j + i

∂W

∂q j

)
, (4)

= 1

2

r∑
j=1

(
p2

j +
(

∂W

∂q j

)2
)

+ 1

2

r∑
j=1

∂2W

∂q2
j

. (5)
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Table 1. Functions appearing in the Lax pair and prepotential

Potential w(u) x(u) y(u)

Rational u 1/u −1/u2

Hyperbolic sinh au a coth au −a2/ sinh2 au

Trigonometric sin au a cot au −a2/ sin2 au

The simplest way to introduce the factorized form is through supersymmetry
[10, 31], in which function W is called a prepotential:1

W (q) =
∑
ρ∈�+

gρ ln |w(ρ · q)| +
(
−ω

2
q2

)
, gρ > 1, ω > 0. (6)

The real positive coupling constants gρ are defined on orbits of the correspond-
ing Coxeter group, i.e., they are identical for roots in the same orbit. That is,
for the simple Lie algebra cases one coupling constant gρ = g for all roots
in simply laced models and two independent coupling constants, gρ = gL for
long roots and gρ = gS for short roots in nonsimply laced models. The potential
V (u) (3) and the function w(u) are related by

y(u) ≡ d

du
x(u),

dw(u)

du
/w(u) ≡ x(u), (7)

V (u) = −y(u) = x2(u) + a2 ×
⎧⎨
⎩

0 rational,
−1 hyperbolic,

1 trigonometric.
(8)

Table 1 gives these functions for each potential, it should be noted that the
above factorized Hamiltonian (4) consists of an operator part Ĥ, which is the
Hamiltonian in the usual definition, and a constant E0 which is the ground-state
energy to be discussed later:

H = Ĥ − E0, (9)

Ĥ = 1

2
p2 + 1

2

∑
ρ∈�+

gρ(gρ − 1)|ρ|2V (ρ · q) +
(

ω2

2
q2

)
. (10)

For proofs that the factorized Hamiltonian (4) actually leads to the quantum
Hamiltonian (10) for any root system and potential see Refs.[5, 10, 17]. It is
easy to verify that for any potential V (u), the Hamiltonian is invariant under
reflection of the phase space variables in the hyperplane perpendicular to any
root

1 The dynamics of the prepotentials W (6), or rather that of −W , has been discussed by Dyson
[32] from a different point of view (random matrix model).
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H(sα(p), sα(q)) = H(p, q), ∀α ∈ � (11)

with sα defined by (A2).
The main problem is to find all the eigenvalues {λ} and eigenfunctions {ψ}

of the above Hamiltonian:

Hψ = λψ. (12)

For any root system and for any choice of potential (3), the C–M sys-
tem has a hard repulsive potential ∼1/(αq)2 near the reflection hyperplane
Hα = {q ∈ Rr , α · q = 0}. The strength of the singularity is given by the cou-
pling constant gα(gα − 1) which is independent of the choice of the normaliza-
tion of the roots. In other words, (12) is a second-order Fuchsian differential
equation with regular singularity at each reflection hyperplane Hα. That is any
solution of (12) is regular at all points except those on the union of reflection hy-
perplanes ∪α∈�+ Hα. Near the reflection hyperplane Hα, we choose the solution
behaving

ψ ∼ (α · q)gα (1 + regular terms),

for the square integrability. This reflects the fact that the repulsive potential
is classically and quantum mechanically insurmountable. Thus the motion is
always confined within one Weyl chamber, which we choose to be the principal
Weyl chamber (�: set of simple roots, see Appendix A)

PW = {q ∈ Rr |α · q > 0, α ∈ �}, (13)

without loss of generality. For the trigonometric potential, the configuration
space is further limited due to the periodicity of the potential to

PWT = {q ∈ Rr |α · q > 0, α ∈ �, αh · q < π/a}, (14)

where αh is the highest root.

2.2 Ground State Wavefunction and Energy

One straightforward outcome of the factorized Hamiltonian (4) is the universal
ground-state wavefunction which is given by �0(q) = eW (q). It is easy to see
that it is an eigenstate of the Hamiltonian (4) with zero eigenvalueH�0(q) = 0,
since it satisfies the condition

(p j + i∂W/∂q j )e
W (q) = 0, j = 1, . . . , r. (15)
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By using the decomposition of the factorized Hamiltonian into the operator
Hamiltonian (10) and a constant, we obtain

ĤeW ≡
(

1

2
p2 + 1

2

∑
ρ∈�+

gρ(gρ − 1)|ρ|2V (ρ · q) +
(

ω2

2
q2

))
eW = E0eW .

(16)
In other words, the above solution �0 = eW provides an eigenstate of the
Hamiltonian operator Ĥwith energyE0. The ground-state energy for the rational
potential case is vanishing and

E0 = ω

(
r/2 +

∑
ρ∈�+

gρ

)
(17)

for the Calogero system. The same for the hyperbolic and trigonometric po-
tential cases are

E0 = 2a2�2 ×
{−1 hyperbolic,

1 trigonometric,
(18)

in which

� = 1

2

∑
ρ∈�+

gρρ (19)

can be considered as a “deformed Weyl vector” [5, 30]. Again these formulas
are universal. A negative E0 for the obviously positive Hamiltonian of the hyper-
bolic potential model indicates that the wavefunction is not square integrable,
since it diverges as |q| → ∞ for the hyperbolic and the rational potential cases.
Obviously we have for the Calogero and Sutherland systems∫

PW (PWT )

e2W (q) dq < ∞ (20)

in which PW and PWT denote that the integration is over the regions defined
in (13) and (14). The universal ground-state wavefunction �0 and W are char-
acterized as Coxeter invariant:

šρ�0 = �0, šρW = W, ∀ρ ∈ �, (21)

in which šρ is the representation of the reflection in the function space.

3 COXETER INVARIANT EXCITED STATES, TRIANGULARITY
AND SPECTRUM

In this section we show that all the excited states wavefunctions are Coxeter
invariant, too. With the knowledge of the ground-state wavefunction eW , the
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other states of the C–M systems can be easily obtained as eigenfunctions of a
differential operator H̃ obtained from H by a similarity transformation:

H̃ = e−WHeW , H̃�λ = λ�λ ⇐⇒ H�λeW = λ�λeW . (22)

The transformed Hamiltonian H̃ takes a simple form:

H̃ = −1

2

r∑
j=1

(
∂2

∂q2
j

+ 2
∂W

∂q j

∂

∂q j

)
, (23)

which is also Coxeter invariant. Since all the singularities of the Fuchsian
differential equation (12) are contained in the ground-state wavefunction eW

the function �λ above must be regular at finite q including all the reflection
boundaries.

We introduce proper bases of Fock space consisting of Coxeter invariant
functions and show that the above Hamiltonian H̃ (23) is triangular in these
bases. This establishes the integrability universally2 and also gives the entire
spectrum of the Hamiltonian, see (28), (29), and (48).

3.1 Rational Potential with Harmonic Force

First, let us determine the structure of the set of eigenfunctions of the trans-
formed Hamiltonian H̃ for the Calogero system:

H̃ = ωq · ∂

∂q
− 1

2

r∑
j=1

∂2

∂q2
j

−
∑
ρ∈�+

gρ

ρ · q
ρ · ∂

∂q
. (24)

As remarked above, the eigenfunctions of H̃ have no singularities at finite q.
Thus we look for polynomial (in q) eigenfunctions P(q):

H̃P(q) = λP(q). (25)

The Coxeter invariance of H̃ (23) translates into a theorem [6] that the eigen-
functions are Coxeter invariant polynomials and that the Hamiltonian H̃ (24)
maps a Coxeter invariant polynomial to another.

An obvious basis in the space of Coxeter invariant polynomials is the homo-
geneous polynomials of various degrees. This basis has a natural order given
by the degree. For a given degree the space of homogeneous Coxeter invariant
polynomials is finite-dimensional. The explicit form of H̃ (24) shows that it
is lower triangular in this basis and the diagonal elements are ω × degree as

2 Triangularity of the Ar -type Hamiltonians was noted in the original papers of Calogero [1] and
Sutherland [2]. That of rank two models in the Coxeter invariant bases was shown in [30, 33].
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Table 2. The degrees f j in which independent Coxeter invariant
polynomials exist

� f j = 1 + e j � f j = 1 + e j

Ar 2, 3, 4, . . . , r + 1 E8 2, 8, 12, 14, 18, 20, 24, 30

Br 2, 4, 6, . . . , 2r F4 2, 6, 8, 12

Cr 2, 4, 6, . . . , 2r G2 2, 6

Dr 2, 4, . . . , 2r − 2; r I2(m) 2, m

E6 2, 5, 6, 8, 9, 12 H3 2, 6, 10

E7 2, 6, 8, 10, 12, 14, 18 H4 2, 12, 20, 30

given by the first term. Independent Coxeter invariant polynomials exist at the
degrees f j listed in Table 2:

f j = 1 + e j , j = 1, . . . , r, (26)

in which {e j }, j = 1, . . . , r , are the exponents of �. Let us denote them by

z1(q), . . . , zr (q); z j (κq) = κ f j z j (q). (27)

Thus we arrive at the quantum Calogero system is algebraically solvable for
any (crystallographic and noncrystallographic) root system �. (See [34] for
algebraic linearizability theorem of the classical C–M system.) The spectrum
of the operator Hamiltonian Ĥ is

ωN + E0, (28)

with a nonnegative integer N which can be expressed as

N =
r∑

j=1

n j f j , n j ∈ Z+, (29)

and the degeneracy of the above eigenvalue is the number of different solutions
of (29) for given N. This is generalization of Calogero’s original argument for
the Ar model [1] to the models based on any root system. Now let us denote by
�N the set of nonnegative integers in (29), �N = (n1, n2, . . . , nr ), and by φ �N (q)

the homogeneous Coxeter invariant polynomial determined by �N and the above
basis {z j } (27):

φ �N (q) =
r∏

j=1

z
n j

j (q). (30)

As shown above, there exists a unique eigenstate ψ �N (q) for each φ �N (q):

ψ �N (q) = φ �N (q) +
∑
�N ′< �N

d �N ′φ �N ′(q), d �N ′ : const, (31)

H̃ψ �N (q) = ωNψ �N (q). (32)
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It satisfies the orthogonality relation

(ψ �N , φ �N ′) = 0, �N ′ < �N , (33)

with respect to the inner product in PW:

(ψ, ϕ) =
∫

PW
ψ∗(q)ϕ(q)e2W (q)dq. (34)

These polynomials {ψ �N (q)} are generalizations of the multivariable Laguerre
(Hermite) polynomials [20] known for the Ar (Br , Dr ) root systems to any root
system.

The explicit example of the simplest root system of rank one would be
illuminating. For � = A1, the Hamiltonian H̃ can be rewritten in terms of a
Coxeter invariant variable u = ωq2 as

H̃ = ωq
d

dq
− 1

2

d2

dq2
− g

q

d

dq
= −2ω

{
u

d2

du2
+ (g + 1

2
− u)

d

du

}
.

(35)
The Laguerre polynomial satisfying the differential equation{

u
d2

du2
+

(
g + 1

2
− u

)
d

du
+ n

}
L

(g− 1
2 )

n (u) = 0, (36)

provides an eigenfunction with eigenvalue 2ωn, which corresponds to the eigen-
value 2ωn + E0 of Ĥ. This is a well-known result.

3.2 Trigonometric Potential

Here we consider those root systems associated with Lie algebras. In order to
determine the excited states of the Sutherland system, we have to consider the
periodicity. The prepotential W and the Hamiltonian H are invariant under the
following translation:

W (q ′) = W (q), H(p, q ′) = H(p, q), q ′ = q + l∨π/a, (37)

in which l∨ is an element of the dual weight lattice, that is

l∨ =
r∑

j=1

l j
2

α2
j

λ j , l j ∈ Z, α j ∈ �, α∨
j · λk = δ jk . (38)

Known as the Bloch wavefunctions in quantum mechanics with periodic poten-
tials, the wavefunctions diagonalizing the translation operators are expressed
as

e2iaμ·q
( ∑

α∈L(�)

bαe2iaα·q
)

eW , bα : const, L(�) : root lattice, (39)
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in which a vector μ ∈ Rr is as yet unspecified. In other words, up to the overall
phase factor e2iaμ·q , this is a Fourier expansion in terms of the simple roots. As
in the Calogero case, the eigenfunction of the Hamiltonian is Coxeter invariant.
This translates into the requirement that the unspecified vector μ in (39) should
be an element of the weight lattice

μ ∈ �(�), �(�) : weight lattice. (40)

Let us introduce a basis for the Coxeter invariant functions. Let λ be a
dominant weight

λ =
r∑

j=1

m jλ j , m j ∈ Z+, (41)

and Wλ be the orbit of λ by the action of the Weyl group:

Wλ = {μ ∈ �(�)|μ = g(λ), ∀g ∈ G�}. (42)

We define

φλ(q) ≡
∑
μ∈Wλ

e2iaμ·q, (43)

which is Coxeter invariant. The set of functions {φλ} has an order �:

|λ|2 > |λ′|2 ⇒ φλ � φλ′ . (44)

It is easy to show that the similarity transformed Hamiltonian H̃

H̃ = −1

2

r∑
j=1

∂2

∂q2
j

− a
∑
ρ∈�+

gρ cot (aρ · q)ρ · ∂

∂q
(45)

is lower triangular in this basis: Thus we have demonstrated the triangularity
of H̃:

H̃φλ = 2a2(λ2 + 2� · λ)φλ +
∑

|λ′|<|λ|
cλ′φλ′ . (46)

It is an eigenfunction of the initial Hamiltonian Ĥ

ĤφλeW = 2a2(λ + �)2φλeW +
∑

|λ′|<|λ|
cλ′φλ′eW , (47)

with the eigenvalue

2a2(λ + �)2. (48)
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In other words, for each dominant weight λ there exists an eigenstate of H̃
with eigenvalue proportional to λ(λ + 2�). Let us denote this eigenfunction
by ψλ(q):

ψλ(q) = φλ(q) +
∑

|λ|′<|λ|
dλ′φλ′(q), dλ′ : const, (49)

H̃ψλ(q) = 2a2λ(λ + 2�)ψλ(q), (50)

and call it a generalized Jack polynomial [35–38]. It satisfies the orthogonality
relation

(ψλ, φλ′) = 0, |λ|′ < |λ|, (51)

with respect to the inner product in PWT :

(ψ, ϕ) =
∫

PWT

ψ∗(q)ϕ(q)e2W (q) dq. (52)

In the Ar model, specifying a dominant weight λ is the same as giving a Young
diagram which designates a Jack polynomial.

Thus we arrive at the quantum Sutherland system is algebraically solvable
for any crystallographic root system �. The spectrum of the Hamiltonian Ĥ is
given by (48) in which λ is an arbitrary dominant weight. This is generalization
of Sutherland’s original argument [2] to the models based on any root system.
Some remarks are in order

1. The weights μ appearing in the lower order terms {φλ′ }’s are those weights
contained in the Lie algebra representation belonging to the highest weight
λ.

2. Let us consider the well-known case � = A1. By rewriting the Hamiltonian
H̃ in terms of the Coxeter invariant variable z = cos(aρq), we obtain

Ĥ = −1

2

d2

dq2
− agρ cot(aρq)

d

dq
= −a2|ρ|2

2

{
(1−z2)

d2

dz2
−(1+2g)z

d

dz

}
.

(53)

The Gegenbauer polynomials [5], a special case of Jacobi polynomials P (α,β)
n

provide eigenfunctions:

P
(g− 1

2 ,g− 1
2 )

n (cos(aρq)), E = a2|ρ|2(n + g)2/2, n ∈ Z+. (54)

They form orthogonal polynomials with weight e2W = | sin(aρq)|2g in the
interval q ∈ [0, π/aρ], (14).
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4 QUANTUM LAX PAIR AND QUANTUM
CONSERVED QUANTITIES

Historically, Lax pairs for C–M systems were presented in terms of Lie algebra
representations [3, 5], in particular, the vector representation of the Ar models.
However, the invariance of C–M systems is that of Coxeter group but not of
the associated Lie algebra. Thus the universal and Coxeter covariant Lax pairs
are given in terms of the representations of the Coxeter group.

4.1 General Case

The Lax operators without spectral parameter are [10]

L(p, q) = p · Ĥ + X (q), X (q) = i
∑
ρ∈�+

gρ(ρ̇ · Ĥ )x(ρ · q)ŝρ, (55)

M(q) = i

2

∑
ρ∈�+

gρ |ρ|2 y(ρ · q)(ŝρ − I ), (56)

in which I is the identity operator and {ŝα, α ∈ �} are the reflection operators of
the root system. They act on a set of Rr vectorsR = {μ(k) ∈ Rr , k = 1, . . . , D},
permuting them under the action of the reflection group. The vectors in R form
a basis for the representation space V of dimension D. The operator M satisfies
the sum up to zero relation:∑

μ∈R
Mμν =

∑
ν∈R

Mμν = 0, (57)

which is essential for deriving quantum conserved quantities. The matrix
elements of the operators {ŝα, α ∈ �} and {Ĥ j , j = 1, . . . , r} are defined as
follows:

(ŝρ)μν = δμ,sρ (ν) = δν,sρ (μ), (Ĥ j )μν = μ jδμν, ρ ∈ �, μ, ν ∈ R.

(58)

The form of the function x depends on the chosen potential, and the function y
are defined by (7), (8).

The underlying idea of the Lax operator L, (55), is quite simple. As seen
from (64), L is a “square root” of the Hamiltonian. Thus one part of L contains p
which is not associated with roots and another part contains x(ρ · q), a “square
root” of the potential V (ρ · q), which being associated with a root ρ is therefore
accompanied by the reflection operator ŝρ . Another explanation is the factorized
Hamiltonian H (4). We obtain, roughly speaking, L ∼ √

H ∼ p + i ∂W
∂q ŝ and

the property of reflection ŝ2 = 1 explains the sign change in the first term
in (4).



Quantum vs Classical Calogero–Moser Systems 271

It is straightforward to show that the quantum Lax equation

d

dt
L = i[H, L] = [L , M], (59)

is equivalent to the quantum equations of motion derived from the Hamiltonian
(4). From this it follows:

d

dt
(Ln)μν = i[H, (Ln)μν] = [Ln, M]μν

=
∑
λ∈R

(
(Ln)μλMλν − Mμλ(Ln)λν

)
, n = 1, . . . . (60)

Thanks to the sum up to zero property of the M operator (57), we obtain quantum
conserved quantities as the total sum (Ts) of all the matrix elements of Ln:

Qn = Ts(Ln) ≡
∑

μ,ν∈R
(Ln)μν, [H, Qn] = 0, n = 1, . . . . (61)

A universal proof of the involution of the quantum conserved quantities

[Qn, Qm] = 0, n, m = 1, . . . , (62)

can be found in [6]. See [12] for the classical Liouville integrability of the most
general C–M systems with elliptic potentials.

Independent conserved quantities appear at such power n that

n = 1 + e j , e j : exponent, j = 1, . . . , r, (63)

of each root system. See I. Thus we have r independent conserved quantities in
C–M systems. These are the degrees at which independent Coxeter invariant
polynomials exist. In fact, the j-th conserved quantity is a degree 1 + e j poly-
nomial in the momenta p. In particular, the power 2 is universal to all the root
systems and the quantum Hamiltonian (4) is given by

H = 1

2CR
Ts(L2) + const, (64)

where the constant CR is the quadratic Casimir invariant, which depends on the
representation. Lax pairs and the quantum conserved quantities Qn do depend
on the chosen representations.

4.2 Rational Potential with Harmonic Force

The quantum Lax pair for the Calogero system needs a separate formulation.
The canonical equations of motion are equivalent to the following Lax equations
for L±:

d

dt
L± = i[H, L±] = [L±, M] ± iωL±, (65)
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in which (see Section 4 of [8]) M is the same as before (56), and L± and Q are
defined by

L± = L ± iωQ, Q = q · Ĥ , (66)

with L , Ĥ as earlier (55), (56). They (L±) are a multiparticle analogue of
the creation-annihilation operators of the harmonic oscillator, as we will see
shortly. If we define hermitian operators L1 and L2 by

L1 = L+L−, L2 = L−L+, (67)

they satisfy Lax-like equations

d

dt
Lk = i[H,Lk] = [Lk, M], k = 1, 2. (68)

From these we can construct conserved quantities

Ts(Ln
j ), j = 1, 2, n = 1, 2, . . . , (69)

as before [22, 24]. It is elementary to check that the first conserved quantities
give the Hamiltonian

H ∝ Ts(L1) = Ts(L2) + const. (70)

5 ALGEBRAIC CONSTRUCTION OF EXCITED STATES I

In this section we show that all the excited states of the Calogero systems can be
constructed algebraically. Later in Section 7 we show the same results in terms
of the � operators to be introduced in Section 6. The main result is surprisingly
simple and can be stated universally:

Corresponding to each partition of an integer N which specify the energy
level (28) into the sum of the degrees of Coxeter invariant polynomials (29),
we have an eigenstate of the Hamiltonian Ĥ with eigenvalue ωN + E0:

r∏
j=1

(
B+

f j

)n j

eW, N =
r∑

j=1

n j f j , n j ∈ Z+, (71)

in which the integers { f j }, j = 1, . . . , r are listed in I. They exhaust all the
excited states. In other words the above states give the complete basis of the
Fock space. The creation operators B+

f j
and the corresponding annihilation

operators3 B−
f j

are defined in terms of the Lax operators L± (66) as follows:

B±
f j

= Ts(L±) f j , j = 1, . . . , r. (72)

3 We adopt the notation by Olshanetsky and Perelomov [5, 18].
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They are hermitian conjugate to each other(
B±

f j

)† = B∓
f j
. (73)

The creation (annihilation) operators commute among themselves:[
B+

k , B+
l

] = [
B−

k , B−
l

] = 0, k, l ∈ { f j | j = 1, . . . , r}, (74)

so that the state (71) does not depend on the order of the creation. The ground
state is annihilated by all the annihilation operators

B−
f j

eW = 0, j = 1, . . . , r. (75)

Some remarks are in order:

1. Reflecting the universality of the first exponent, f1 = 2, the creation and
annihilation operators of the least quanta, 2ω, exist in all the models. They
form an sl(2, R) algebra together with the Hamiltonian Ĥ:[

Ĥ, b±
2

] = ±2ωb±
2 ,

[
b+

2 , b−
2

] = −ω−1Ĥ, (76)

in which b±
2 are normalized forms of B±

2 . The sl(2, R) algebra was discussed
by many authors [18, 23, 29, 39]. The states created by B+

2 (b+
2 ) only can be

expressed by the Laguerre polynomial:

(b+
2 )neW = n!L (Ē0−1)

n (ωq2)?eW, Ẽ0 ≡ E0/ω. (77)

The Laguerre polynomial wavefunctions appear as “radial” wavefunctions
in all the cases [40].

2. The operators {Qn} and {B±
n } do not form a Lie algebra. They satisfy inter-

esting non-linear relations, for example,[[
B+

n , b−
2

]
, b+

2

] = nB+
n ,

[[
B−

n , b+
2

]
, b−

2

] = nB−
n . (78)

This tells, for example, that although B+
n and b+

2 create different units of
quanta n and 2, they are not independent[

B+
n , b−

2

] �= 0 �= [
B−

n , b+
2

]
.

6 � OPERATORS

In this section we will show the universal equivalence of the quantum conserved
quantities obtained in the Lax operator formalism of Section 4 and those derived
in the “commuting differential operators” formalism initiated by Dunkl [11].
We propose to call the operators in the latter approach simply “� operators,”
since they are essentially the same as the L operator in the Lax pair formalism
and that they are not mutually commuting, as we will show presently, when
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the interaction potentials are trigonometric (hyperbolic), (88). Although these
two formalisms are formally equivalent, the � operator formalism has many
advantages over the Lax pair one. Roughly speaking, the “vector-like” objects
�μ’s are easier to handle than the matrix Lμν .

Let us fix a representation R of the Coxeter group G� and define for each
element μ ∈ R the following differential-reflection operator

�μ = � · μ = p · μ + i
∑
ρ∈�+

gρ(ρ · μ)x(ρ · q)šρ, μ ∈ R, �†μ = �μ.(79)

The quantum conserved quantities Qn derived in the previous section (61) can
be expressed as polynomials in the � operators as follows:

Qnψ =
∑

μ,ν∈R
(Ln)μνψ =

(∑
μ∈R

�n
μ

)
ψ, (80)

in which ψ is an arbitrary Coxeter invariant state, šρψ = ψ .
Commutation relations among � operators can be evaluated in a similar

manner as those appearing in the Lax pair [8, 10]. We obtain

[�μ, �ν] = −a2
∑

ρ,σ∈�+

gρgσ (ρ · μ)(σ · ν)[šρ, šσ ] ×
⎧⎨
⎩

0 rational,
−1 hyperbolic,

1 trigonometric.
(81)

One important use of the � operators is the proof of involution of quantum
conserved quantities. For the rational potential models Heckman [29] gave a
universal proof based on the commutation relation (81):

[Qn, Qm]ψ =
∑

μ,ν∈R

[
�n

μ, �m
ν

]
ψ = 0, rational model. (82)

This was the motivation for the introduction of the commuting differential-
reflection operators by Dunkl [11]. In fact, Dunkl’s and Heckman’s operators
were the similarity transformation of �μ by the ground-state wavefunction eW :

�̃μ = e−W �μeW = p · μ + i
∑
ρ∈�+

gρ

(ρ · μ)

(ρ · q)
(šρ − 1). (83)

As for the Calogero system, we define �± corresponding to L± (66):

�±
μ = �± · μ = p · μ ± iω(q · μ) + i

∑
ρ∈�+

gρ

(ρ · μ)

(ρ · q)
šρ, μ ∈ R,

(
�±

μ

)† = �∓
μ.

(84)
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The conserved quantities are expressed as polynomials in �± operators:

Ts(Ln
1)ψ =

∑
μ,ν∈R

(L+L−)n
μνψ =

∑
μ∈R

(
�+

μ�−
μ

)n
ψ, (85)

Ts(Ln
2)ψ =

∑
μ,ν∈R

(L−L+)n
μνψ =

∑
μ∈R

(
�−

μ�+
μ

)n
ψ, (86)

Likewise the creation and annihilation operators B±
n (72) are expressed as

B±
n ψ = Ts(L±)nψ =

∑
μ,ν∈R

(L±)μνψ =
∑
μ∈R

(
�±

μ

)n
ψ. (87)

The commutation relations among �± operators are easy to evaluate, since
� operators commute in the rational potential models (81):

[
�+

μ, �+
ν

] = [
�−

μ, �−
ν

] = 0,
[
�−

μ, �+
ν

] = 2ω

(
μ · ν +

∑
ρ∈�+

gρ(ρ · μ)(ρ∨ · ν)šρ

)
.

(88)

From these it follows that the creation (annihilation) operators B±
n do commute

among themselves: [
B+

n , B+
m

]
ψ = [

B−
n , B−

m

]
ψ = 0. (89)

It is also clear that �±
μ/

√
2ω are the “deformation” of the creation (annihilation)

operators of the ordinary multicomponent harmonic oscillators. In fact we have

�+
μ?eW = 2iω(μ · q)?eW and �−

μ?eW = 0. (90)

In the next section we present an alternative scheme of algebraic construction
of excited states of the Calogero system by pursuing the analogy that �± are
the creation and annihilation operators of the unit quantum. This method was
applied to the Ar models by Brink et al. and others [21, 23, 24].

7 ALGEBRAIC CONSTRUCTION OF EXCITED STATES II

7.1 Operator Solution of the Triangular Hamiltonian

In Subsection 3.1, we have shown that an eigenfunction of H with eigenvalue
Nω is given by (

PN (q) + P̃N−2(q)
)

eW, (91)

in which PN (q) is a Coxeter invariant polynomial in q of homogeneous degree
N and P̃N−2(q) is a Coxeter invariant polynomial in q of degree N − 2 and
lower. The nonleading polynomial P̃N−2(q) is completely determined by the
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leading one PN (q) due to the triangularity. This solution can be written in an
operator form as follows.

Suppose PN (q) is expressed as

PN (q) =
∑
{μ}

c{μ}(q · μ1) · · · (q · μN ), μ j ∈ R, c{μ} : const. (92)

We obtain a Coxeter invariant polynomial in the creation operators �+ by re-
placing q · μ by �+

μ/(2iω):

PN (q) ⇒ 1

(2iω)N PN (�+).

This creates the above eigenfunction of H from the ground state:

1

(2iω)N
PN (�+)eW = (

PN (q) + P̃N−2(q)
)

eW . (93)

The � operator formulas of higher conserved quantities (85) contain extra
terms:

Ts(Ln
1) =

∑
μ,ν∈R

(L+L−)n
μν =

∑
μ∈R

(�+
μ�−

μ )n + V T . (94)

Here VT stands for vanishing terms when they act on a Coxeter invariant state.
The same is true for most formulas derived in Section 6.

8 CLASSICAL EQUILIBRIUM AND SPIN EXCHANGE MODELS

Here we discuss the properties of the classical potential VC ,

VC = 1

2

r∑
j=1

(
∂W

∂q j

)2

, (95)

which is obtained from (5) by dropping the last term which is a quantum correc-
tion. (Hereafter we set the constant a determining the period of the trigonomet-
ric potential in (3) to be unity a = 1, for simplicity.) The classical equilibrium
point

p = 0, q = q̄ (96)

can be characterised by two equivalent ways. It is a minimal point of the classical
potential

∂VC

∂q j

∣∣∣∣
q̄

= 0, j = 1, . . . , r, (97)
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whereas it is a maximal point of the prepotential W and of the ground-state
wavefunction φ0 = eW :

∂W

∂q j

∣∣∣∣
q̄

= 0, j = 1, . . . , r. (98)

Note that the condition (15) (p + i∂W/∂q j )eW = 0 is also satisfied classically
at this point. In the Lax representation it is a point at which two Lax matrices
commute:

0 = [L̄, M̄], 0 = [L̄(1,2), M̄], (99)

in which L̄ = L(0, q̄), M̄ = M(q̄) etc and d L̄/dt = 0, etc at the equilibrium
point. The value of a quantity A at the equilibrium is expressed by Ā.

By differentiating (95), we obtain

∂VC

∂q j
=

r∑
l=1

∂2W

∂q j∂ql

∂W

∂ql
. (100)

Since ∂2W/∂q j ∂qk is negative definite everywhere, the above two conditions
(97) and (98) are in fact equivalent. By differentiating (100) again, we obtain

∂2VC

∂q j ∂qk
=

r∑
l=1

∂2W

∂q j∂ql

∂2W

∂ql∂qk
+

r∑
l=1

∂3W

∂q j ∂qk ∂ql

∂W

∂ql
.

Thus at the equilibrium point of the classical potential VC , the following relation
holds:

∂2VC

∂q j ∂qk

∣∣∣∣
q̄

=
r∑

l=1

∂2W

∂q j ∂ql

∣∣∣∣
q̄

∂2W

∂ql ∂qk

∣∣∣∣
q̄

. (101)

If we define the following two symmetric r × r matrices Ṽ and W̃ ,

Ṽ = Matrix

[
∂2VC

∂q j ∂qk

∣∣∣∣
q̄

]
, W̃ = Matrix

[
∂2W

∂q j ∂qk

∣∣∣∣
q̄

]
, (102)

we have

Ṽ = W̃ 2, (103)

and

Eigenvalues(Ṽ ) = {w2
1, . . . , w

2
r },

Eigenvalues(W̃ ) = {−w1, . . . , −wr }, w j > 0, j = 1, . . . , r. (104)

That is Ṽ is positive definite and the point q̃ is actually a minimal point of VC .
As shown in the following two sections, the matrices at equilibrium, W̃ , L̄, L̄,
and M̄ have “integer” eigenvalues and in most cases with high multiplicities.
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Next let us briefly summarize the basic ingredients of the spin exchange
models associated with the Calogero and Sutherland systems based on the root
system � and with the set of vectorsR, [15]. They are defined at the equilibrium
points (96) of the corresponding classical systems. Here we call each element
μ of R a site to which a dynamical degree of freedom called spin is attached.
The spin takes a finite set of discrete values. In the simplest, and typical case,
they are an up (↑) and a down (↓). The dynamical state of the spin exchange
model is represented by a vector ψSpin which takes values in the tensor product
of D = #R copies of a vector space V whose basis consists of an up (↑) and a
down (↓):

ψSpin ∈ D⊗Vμ. (105)

The Hamiltonian of the spin exchange model HSpin is

HSpin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

∑
ρ∈�+

gρρ
2 1

(ρ · q̄)2
(1 − P̂ρ),

1

2

∑
ρ∈�+

gρρ
2 1

sin2(ρ · q̄)
(1 − P̂ρ),

(106)

in which {P̂ρ}, ρ ∈ �+ are the dynamical variables called spin exchange op-
erators. The operator P̂ρ exchanges the spins of sites μ and sρ(μ), ∀μ ∈ R. In
terms of the operator-valued Lax pairs

LSpin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i
∑
ρ∈�+

gρ(ρ · Ĥ )
1

ρ · q̄
P̂ρ ŝρ,

i
∑
ρ∈�+

gρ(ρ · Ĥ ) cot (ρ · q̄)P̂ρ ŝρ,
(107)

MSpin =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− i

2

∑
ρ∈�+

gρρ
2 1

(ρ · q̄)2
P̂ρ(ŝρ − I ),

− i

2

∑
ρ∈�+

gρρ
2 1

sin2(ρ · q̄)
P̂ρ(ŝρ − I ),

(108)

the Heisenberg equations of motion for the trigonometric spin exchange model
can be written in a matrix form

i[HSpin, LSpin] = [LSpin, MSpin]. (109)

Since the MSpin matrix enjoys the sum up to zero property,∑
μ∈R

(MSpin)μν =
∑
ν∈R

(MSpin)μν = 0, (110)
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one obtains conserved quantities via the total sum of Lk
Spin:[

HSpin, Ts(Lk
Spin)

]
= 0, Ts

(
Lk

Spin

)
≡

∑
μ,ν∈R

(
Lk

Spin

)
μν

, k = 3, . . .

(111)
These are necessary ingredients for complete integrability.

The rational spin exchange model needs some modification similar to those
for the Calogero systems. We define

L±
Spin = LSpin ± iωQ̄, Q̄ = q̄ · Ĥ , (112)

then the Heisenberg equations of motion in a matrix form read

i[HSpin, L+
SpinL−

Spin] = [L+
SpinL−

Spin, MSpin] (113)

and conserved quantities are given by

Ts

((
L+

SpinL−
Spin

)k
)

≡
∑

μ,ν∈R

(
L+

SpinL−
Spin

)k

μν
, k = 3, . . . , .

Let us emphasize that the current definition of completely integrable spin ex-
change models is universal, in the sense that it applies to any root system � and
to an arbitrary choice of the set of vectorsR. It contains all the known examples
of spin exchange models as subcases. For the Ar root system and for the set
of vector weights, R = V (vector weights), the trigonometric spin exchange
model reduces to the well-known Haldane–Shastry model [14], the rational
spin exchange model reduces to the so-called Polychronakos model [21].

As is clear from the formulation, the dynamics of spin exchange models
depends on the details of the classical potential VC or W at the equilibrium
point and on R. It is quite natural to expect that the highly organized spectra of
the known spin exchange models [14, 16] are correlated with the remarkable
properties of the W̃ and L̄, L̄, M̄ , the Lax matrices at the equilibrium point—the
integer eigenvalues and their high multiplicities.

9 CLASSICAL DATA I: CALOGERO SYSTEMS

9.1 Minimum Energy

The equations (97) and (98) determining the classical equilibrium read:

∂VC

∂q j

∣∣∣∣
q̄

= 0 ⇒
∑
ρ∈�+

g2
ρ

ρ2ρ j

(ρ · q̄)3
= ω2q̄ j , (114)

j = 1, . . . , r.
∂W

∂q j

∣∣∣∣
q̄

= 0 ⇒
∑
ρ∈�+

gρ

ρ j

(ρ · q̄)
= ωq̄ j , (115)
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By multiplying q̄ j to both equations, we obtain the virial theorem for the clas-
sical potential VC ∑

ρ∈�+

g2
ρ

ρ j

(ρ · q̄)2
= ω2q̄2, (116)

and a relationship

ωq̄2 =
∑
ρ∈�+

gρ

ρ · q̄

(ρ · q̄)
=

∑
ρ∈�+

gρ. (117)

We arrive at the minimal value of the classical potential (95):

VC (q̄) = ω2q̄2 = ω

( ∑
ρ∈�+

gρ

)
= Ẽ0, (118)

which has the general structure of a coupling constant(s) times an integer:

Ẽ0 =
{

ωg × #�/2, simply laced,

ω (gL × #�L + gs × #�S)/2, nonsimply laced.
(119)

Here, #� is the total number of roots, #�L (#�S) is the number of long (short)
roots, and #� = #�L + #�S .

9.2 Equilibrium Point and Eigenvalues of W̃

9.2.1 Ar

Calogero and collaborators discussed this problem about quarter of a century
ago [4, 27]. The Eq. (115) read

r+1∑
k �= j

1

q̄ j − q̄k
= ω

g
q̄ j , j = 1, . . . , r + 1. (120)

These determine {x̄ j =
√

ω
g q̄ j }, j = 1, . . . , r + 1 to be the zeros of the Hermite

polynomial Hr+1(x) (Stieltjes) [41]. We obtain

Ar : Spec(W̃ ) = −ω{1, 2, . . . , r + 1}. (121)

9.2.2 Br (Dr )

The Eq. (115) read (assuming q̄ j �= 0)

r∑
k �= j

1

q̄2
j − q̄2

k

+ gS/2gL

q̄2
j

= ω

2gL
, j = 1, . . . , r, (122)
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and determine {q̄2
j }, j = 1, . . . , r , as the zeros of the associated Laguerre poly-

nomial L (α)
r (cx), with α = gS/gL − 1, c = ω/gL , [4, 41]. The spectrum of W̃

for Br and Dr are

Br : Spec(W̃ ) = −ω{2, 4, 6, . . . , 2r − 2, 2r}, (123)

Dr : Spec(W̃ ) = −ω{2, 4, 6, . . . , 2r − 2, r}. (124)

9.2.3 Exceptional Root Systems

In each of these cases we have calculated the equilibrium position numerically,
and evaluated the spectrum of W̃ . The results are

F4 : Spec(W̃ ) = −ω{2, 6, 8, 12}, (125)

E6 : Spec(W̃ ) = −ω{2, 5, 6, 8, 9, 12}, (126)

E7 : Spec(W̃ ) = −ω{2, 6, 10, 12, 14, 18}, (127)

E8 : Spec(W̃ ) = −ω{2, 8, 12, 14, 18, 20, 24, 30}. (128)

The eigenvalues of W̃ are the numbers listed in I, i.e., 1 + exponent, as expected
from the spectrum (28).

9.2.4 Universal Spectrum of M

Let us denote by v0 a special vector in RD with each element unity:

v0 = (1, 1, . . . , 1)T ∈ RD, D = #R, or v0μ = 1, ∀μ ∈ R. (129)

The condition for classical equilibrium (115) and sum up to zero conditions
(57) can be expressed neatly in matrix–vector notation as

L̄−v0 = 0, vT
0 L̄+ = 0, M̄v0 = 0, vT

0 M̄ = 0, (130)

inspiring the idea that v0 is the classical (Coxeter invariant) ground state of
a matrix counterpart of the Hamiltonian (M̄) and that L̄− is an annihilation
operator. The analogy goes further when we evaluate the Lax equation for L±

(65) at the classical equilibrium to obtain

[M̄, L̄±] = ±iωL̄±. (131)

The relation (131) simply means that the eigenvalues of M̄ are integer spaced
in units of iω. We obtain

M̄v0 = 0, M̄ L̄+v0 = iωL̄+v0, . . . , M̄(L̄+)nv0 = inω(L̄+)nv0,

(132)
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implying L̄+ is a corresponding creation operator. This also means there is a
universal formula:

Spec(M̄) = iω{0, 1, 2, . . . , }, (133)

with possible degeneracies. Here is the summary of the spectrum of M̄ with
[multiplicity] for the classical root systems and choices of R:

Ar : (V) Spec(M̄) = iω{0, 1, . . . , r − 1, r}, (134)

Br : (�S) Spec(M̄) = iω{0, 1, 2, . . . , 2r − 1}, (135)

Dr : (V) Spec(M̄) = iω{0, 1, 2, . . . , r − 1[2], . . . , 2r − 2}, (136)

D4 : (S) Spec(M̄) = iω{0, 1, 2, 3 [2], 4, 5, 6}. (137)

The above results and those for E6 with 27 and E7 with 56, the eigenvalue with
[multiplicity] can be neatly expressed as the heights of the vectors in R:

Spec(M̄) = iω{δ · μ + hmax|μ ∈ R}, hmax ≡ max(δ · R), (138)

in which δ is the Weyl vector δ = ∑
ρ∈�+ ρ/2 as obtained from (19) by setting

all the coupling constant(s) to unity gρ = 1. The eigenvalues and multiplicities
of M̄ in the root type Lax pairs of simply laced crystallographic root systems
can also be understood as the height and multiplicities of �:

Spec(M̄) =
{

δ · α + hmax, for δ · α < 0
δ · α + hmax − 1, for δ · α > 0

∣∣∣α ∈ �(�L )

}
. (139)

10 CLASSICAL DATA II: SUTHERLAND SYSTEMS

10.1 Minimum Energy

The classical minimum energy of the Sutherland system, 2�2 (18) is, in
fact, “quantised.” If all the coupling constants are unity gρ = 1 ⇒ � = δ, the
Freudenthal-de Vries (“strange”) formula leads to

2�2 = dim(g�)ρ2
h h∨/12. (140)

10.2 Equilibrium Point and Eigenvalues of W̃

The equations determining the equilibrium position (98) read∑
ρ∈�+

gρ cot(ρ · q̄)ρ j = 0, j = 1, . . . , r, (141)

and they can be expressed in terms of the L , M matrices at equilibrium:

L̄v0 = 0 = vT
0 L̄, M̄v0 = 0 = vT

0 M̄ . (142)
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10.2.1 Ar

In this case the equilibrium position is “equally-spaced” q̄ = π (0, 1, . . . , r −
1, r )/(r + 1) + ξv0, ξ ∈ R. This is the reason why the Haldane–Shastry model
is better understood than the other spin exchange models. We have

Ar : Spec(W̃ ) = −2g{r, . . . , (r + 1 − j) j, . . . , , r} ∝ Spec(M̄)(V), (143)

Ar (V) : Spec(L̄) = g

{
0[2], ±2, ±4, . . . , ±(r − 1) r: odd
0, ±1, ±3, . . . , ±(r − 1) r: even

}
. (144)

10.2.2 BCr and Dr

In terms of x̄ j ≡ cos 2q̄ j , the equation determining equilibrium (141) read

r∑
k �= j

1

x̄ j − x̄k
+ gS + gL

2gM

1

x̄ j − 1
+ gL

2gM

1

x̄ j + 1
= 0, j = 1, . . . , r,

(145)

which are the equations satisfied by the zeros {x̄ j } of Jacobi polynomial

P (α,β)
r (x) [41] with α = (gL + gS)/gM − 1, β = gL/gM − 1.
The problem of finding the maximal point of the Dr prepotential W is the

same as the classical problem of maximizing the van der Monde determinant

V d M(x1, . . . , xr ) =
r∏

j<k

(x j − xk), (146)

under the boundary conditions, 1 = x1 > x2 > · · · > xr−1 > xr = −1.
The spectrum of W̃ and M̃ are

Dr : Spec(W̃ ) = −g{4(r − 1), 4(2r − 3), . . . , 2 j(2r − 1 − j), . . . ,

2(r − 2)(r + 1), r (r − 1)[2]}, (147)

Dr (V) : Spec(M̄) = ig{0, 4(r − 1)[2], . . . , 2 j(2r − 1 − j)[2], . . . ,

2(r − 2)(r + 1)[2], r (r − 1)[2], 2r (r − 1)}. (148)

For more results on the other root systems including the exceptional ones, see
[13].

11 SUMMARY, COMMENTS AND OUTLOOK

Various issues related to quantum vs classical integrability of C–M systems
based on any root system are presented. These are construction of involu-
tive quantum conserved quantities, the relationship between the Lax pair and
the differential-reflection (Dunkl) operator formalisms, construction of excited
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states by creation operators, properties of the classical potentials and Lax pair
operators at equilibrium, etc. They are mainly generalizations of the results
known for the models based on A-type root systems. Integrability of the mod-
els based on other classical root systems and the exceptional ones including the
noncrystallographic models are also discussed in [42, 43–46].

Among the interesting recent developments of the related subjects which
could not be covered in this lecture are the quadratic algebras [47, 48] for
the superintegrable systems [19] with the rational potential and quantum In-
ozemtsev systems [49] as multiparticle Quasi-Exactly Solvable systems and
multivariable N -fold supersymmetry.

There are still many interesting problems to be addressed to: The structure
and properties of the eigenfunctions of the trigonometric potential models,
which are generalizations of the Jack polynomials [35–38]. Comprehensive
treatment of Liouville integrability of the Calogero systems. Understanding the
roles of supersymmetry and shape invariance in C–M systems [47, 50]. For-
mulation of various aspects of quantum C–M systems with elliptic potentials;
Lax pair, the differential-reflection operators [51, 52], conserved quantities,
supersymmetry, and excited states wavefunctions.

APPENDIX A: ROOT SYSTEMS

In this appendix we recapitulate the rudimentary facts of the root systems and
reflections to be used in the main text. The set of roots � is invariant under
reflections in the hyperplane perpendicular to each vector in �. In other words,

sα(β) ∈ �, ∀α, β ∈ �, (A1)

where

sα(β) = β − (α∨ · β)α, α∨ ≡ 2α/|α|2. (A2)

The set of reflections {sα, α ∈ �} generates a group G�, known as a Coxeter
group, or finite reflection group. The orbit of β ∈ � is the set of root vectors
resulting from the action of the Coxeter group on it. The set of positive roots
�+ may be defined in terms of a vector U ∈ Rr , with α · U �= 0, ∀α ∈ �, as
those roots α ∈ � such that α · U > 0. Given �+, there is a unique set of r
simple roots � = {α j , j = 1, . . . , r} defined such that they span the root space
and the coefficients {a j } in β = ∑r

j=1 a jα j for β ∈ �+ are all nonnegative.

The highest root αh , for which
∑r

j=1 a j is maximal, is then also determined
uniquely. The subset of reflections {sα, α ∈ �} in fact generates the Coxeter
group G�. The products of sα, with α ∈ �, are subject solely to the relations

(sαsβ)m(α,β) = 1, α, β ∈ �. (A3)
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The interpretation is that sαsβ is a rotation in some plane by 2π/m(α, β). The
set of positive integers m(α, β) (with m(α, α) = 1, ∀α ∈ �) uniquely specify
the Coxeter group. The weight lattice �(�) is defined as the Z-span of the
fundamental weights {λ j }, j = 1, . . . , r , defined by

α∨
j · λk = δ jk, α j ∈ �. (A4)

The root systems for finite reflection groups may be divided into two types:
crystallographic and noncrystallographic. Crystallographic root systems satisfy
the additional condition

α∨ · β ∈ Z, ∀α, β ∈ �, (A5)

which implies that the Z-span of � is a lattice in Rr and contains all roots in �.
We call this the root lattice, which is denoted by L(�). These root systems
are associated with simple Lie algebras: {Ar , r ≥ 1}, {Br , r ≥ 2}, {Cr , r ≥
2}, {Dr , r ≥ 4}, E6, E7, E8, F4, and G2. The Coxeter groups for these root sys-
tems are called Weyl groups. The remaining noncrystallographic root systems
are H3, H4, whose Coxeter groups are the symmetry groups of the icosahedron
and four-dimensional 600-cell, respectively, and the dihedral group of order
2m, {I2(m), m ≥ 4}.

Here we give the explicit examples of root systems. In all cases but the
Ar , {e j } denotes an orthonormal basis in Rr , e j ∈ Rr , e j · ek = δ jk . The crys-
tallographic root systems are:

Ar : � = {±(e j − ek), j �= k = 1, . . . , r + 1|e j ∈ Rr+1, e j · ek = δ jk},
� = {e j − e j+1, j = 1, . . . , r}, (A6)

Br : � = {±e j ± ek, ±e j , j �= k = 1, . . . , r},
� = {e j − e j+1, j = 1, . . . , r − 1} ∪ {er }, (A7)

Cr : � = {±e j ± ek, ±2e j , j, k = 1, . . . , r},
� = {e j − e j+1, j = 1, . . . , r − 1} ∪ {2er }, (A8)

Dr : � = {±e j ± ek, j �= k = 1, . . . , r},
� = {e j − e j+1, j = 1, . . . , r − 1} ∪ {er−1 + er }, (A9)

E6 : � = {±e j ± ek, j �= k = 1, . . . , 5}

∪
{

1

2
(±e1 . . . ± e5 ±

√
3e6), (even+)

}
,

� =
{

1

2
(e1−e2−e3−e4 + e5−

√
3e6), e4 − e5, e3 − e4, e4 + e5,

1

2
(e1 − e2 − e3 − e4 − e5 +

√
3e6), e2 − e3

}
, (A10)



286 Ryu Sasaki

E7 : � = {±e j ± ek, j �= k = 1, . . . , 6} ∪ {±
√

2e7}

∪
{

1

2
(±e1 · · · ± e6 ±

√
2e7), (even +)

}
, (A11)

� =
{

e2 − e3, e3 − e4, e4 − e5, e5 − e6,

1

2
(e1 − e2 − e3 − e4 − e5 + e6 −

√
2e7),

√
2e7, e5 + e6

}
, (A12)

E8 : � = {±e j ± ek, j �= k = 1, . . . , 8} ∪
{

1

2
(±e1 · · · ± e8), (even +)

}
,

� =
{

1

2
(e1 − e2 − e3 − e4 − e5 − e6 − e7 + e8), e7 + e8

}
∪ {e j − e j+1, j = 2, . . . , 7}, (A13)

F4 : � =
{

± e j ± ek, +e j ,
1

2
(±e1 · · · ± e4), j �= k = 1, . . . , 4

}
,

� =
{

e2 − e3, e3 − e4, e4,
1

2
(e1 − e2 − e3 − e4)

}
, (A14)

G2 : � =
{

(±
√

2, 0),

(
±

√
3

2
, ± 1√

2

)
,

(
0, ±

√
2

3

)
,

(
± 1√

2
, ± 1√

6

)}
,

� =
{

(
√

2, 0),

(
− 1√

2
,

1√
6

)}
. (A15)

The noncrystallographic root systems are:

1. I2(m): This is a symmetry group of a regular m-gon. For odd m � consists
of a single orbit, whereas for even m it has two orbits. In both cases we have
a representation in which all the roots have length unity

� = {(cos(( j − 1)π/m), sin(( j − 1)π/m)), j = 1, . . . , m},
� = {(1, 0), (cos((m − 1)π/m), sin((m − 1)π/m)))} (A16)

2. H4: Define a ≡ cos π/5 = (1 + √
5)/4, b ≡ cos 2π/5 = (−1 + √

5)/4.
Then the H4 roots are generated by the following simple roots [53]:

α1 =
(

a, −1

2
, b, 0

)
, α2 =

(
−a,

1

2
, b, 0

)
. (A17)

α3 =
(

1

2
, b, −a, 0

)
, α4 =

(
−1

2
, −a, 0, b

)
.
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The full set of roots of H4 in this basis may be obtained from (1,0,0,0),
( 1

2
, 1

2
, 1

2
, 1

2
), and (a, 1

2
, b, 0) by even permutations and arbitrary sign changes

of coordinates. These 120 roots form a single orbit.
3. H3: A subset of (A17), {α1, α2, α3} is a choice of simple roots for the H3

root system. In this basis, the full set of roots for H3 results from even
permutations and arbitrary sign changes of (1,0,0) and (a, 1

2
, b). These 30

roots also form a single orbit.
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GEOMETRICAL DYNAMICS OF AN
INTEGRABLE PIECEWISE-LINEAR
MAPPING

Daisuke Takahashi and Masataka Iwao
Department of Mathematical Sciences, Waseda University,
3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract A special type of piecewise-linear mapping is discussed. It is obtained
by ultradiscretizing the Quispel–Robert–Thompson system. In a special
case of a parameter, it becomes a periodic mapping with a constant period
for any initial data. In a general case, it becomes an integrable mapping
and a period of solution is constant for each solution orbit. We show a
structure of solutions discussing the dynamics in a phase plane from a
viewpoint of the integrable system theory.

1 INTRODUCTION

There have been many studies using a piecewise-linear mapping in the area of
dynamical system theory [1]. The standard form of one-dimensional mapping
is

xn+1 = f (xn)

where f (x) is linear in each local region of x. For example, the tent
map f (x) = 2x (0 ≤ x ≤ 1/2), 2(1 − x) (1/2 < x ≤ 1) and the Bernoulli shift
f (x) = 2x (0 ≤ x ≤ 1/2), 2x − 1(1/2 < x ≤ 1) are often used in the chaotic
system theory to explain the typical dynamics of chaos. One of the advantages
to study a piecewise-linear mapping is that we can analyze its dynamics exactly
utilizing the local linearity.

Recently, piecewise-linear mappings appear together with the ultradiscretiz-
ing method in the integrable system theory [2]. For example, consider the dis-
crete Painlevé equation [3],

xn+1 = (1 + αλnxn)/xn−1,

which is integrable because it has a conserved quantity. If we use a transfor-
mation of variable xn and constants α, λ,

xn = eXn/ε, α = eA/ε, λ = eL/ε,
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and take a limit ε → +0, we obtain an ultradiscrete Painlevé equation

Xn+1 = max (0, Xn + A + L) − Xn−1. (1)

Note that the max function is defined by

max (A, B) =
{

A (A ≥ B)
B (A < B),

and we use the following formula in the derivation,

lim
ε→+0

ε log(eA/ε + eB/ε + · · ·) = max (A, B, . . .) .

The remarkable features of (1) are (i) It is also integrable, that is, it has a
conserved quantity, (ii) X can be discrete, that is, Xn is always integer if A, L
and initial values of Xn are all integer.

In this paper, we discuss a structure of solutions to an integrable piecewise-
linear mapping from a viewpoint of the integrable system theory. The mapping
is obtained by ultradiscretizing an integrable difference system, the Quispel–
Robert–Thompson (QRT) system. The general form of the QRT system gives
a wide range of difference equations [4]. However, when we ultradiscretize the
equations, positivity of solution is necessary. Therefore, we restrict its form to
the following special one in this paper,

xn+1 = 1 + axn

xσ
n xn−1

, (2)

where a is a constant and σ = 0, 1 or 2. Using transformations, xn = eXn/ε and
a = eA/ε, and taking a limit ε → +0, we obtain

Xn+1 = max (0, Xn + A) − σ Xn − Xn−1, (3)

from the above equation[3]. Note that (3) with σ = 0 is equivalent to (1) with
L = 0.

First we consider a case of A = 0. We show (3) is linearizable in that case by
a transformation of variable and its solutions are obtained in an explicit form.
Second we consider a case of A �= 0 and discuss a structure of solutions.

2 PERIODIC CASE

In this section, we assume A = 0 in (3) (or a is positive definite in (2)). Then
we obtain

Xn+1 = max (0, Xn) − σ Xn − Xn−1. (4)

We can easily show that any solution to this equation is always periodic with a
constant period. For example, in the case of σ = 0, X2 ∼ X6 are expressed by
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initial values X0 and X1 as follows:

X2 = max (0, X1) − X0, X3 = max (0, X0, X1) − X0 − X1,

X4 = max (0, X0) − X1, X5 = X0, X6 = X1,
(5)

where max (A, B, C, . . .) denotes the maximum value among A, B, C, . . . .
We use the following formulae on max function in the derivation of the above
solution,

max (A, B) = max (B, A),

max (A, max (B, C)) = max (max (A, B), C) = max (A, B, C),

max (A, B) + X = max (A + X, B + X ).

For example, X3 is expressed by X0 and X1 through the following calcula-
tion,

X3 = max (0, X2) − X1 = max (0, max (0, X1) − X0) − X1

= max (X0, max (0, X1)) − X0 − X1 = max (0, X0, X1) − X0 − X1.

Since (5) gives X5 = X0 and X6 = X1 and (4) is of the second order, any
solution from arbitrary X0 and X1 other than X0 = X1 = 0 is always periodic
with period 5. The case of X0 = X1 = 0 is exceptional and Xn is always 0 in
that case. Similarly, any solution is periodic with period 7 and 8 in the case of
σ = 1 and 2 respectively.

Equation (4) is derived from (2) through the ultradiscretization. If we assume
σ = 0 and a = 1 in (2), solutions to (2) are also periodic with a constant period
[5]. We obtain the following pattern of solution,

x2 = 1 + x1

x0
, x3 = 1 + (1 + x1)/x0

x1
= 1 + x0 + x1

x0x1
,

x4 = 1 + (1 + x0 + x1)/x0x1

(1 + x1)/x0
= (1 + x0)(1 + x1)

(1 + x1)x1
= 1 + x0

x1
,

x5 = 1 + (1 + x0)/x1

(1 + x0 + x1)/x0x1
= (1 + x0 + x1)x0

1 + x0 + x1
= x0,

x6 = 1 + x0

(1 + x0)/x1
= x1.

(6)

Therefore, a solution from any positive x0 and x1 is always periodic with period
5. Moreover, every solution in (6) is transformed to that in (5) through the above
ultradiscretization. It means that both the difference equation and its solution
can be transformed consistently through the ultradiscretization.
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Figure 1. 5 fan areas in the phase plane

3 LINEARIZABILITY OF PERIODIC
PIECEWISE-LINEAR MAPPING

Equation (4) can be rewritten by the following piecewise-linear mapping,{
Xn+1 = Yn

Yn+1 = max (0, Yn) − σYn − Xn.
(7)

The only nonlinearity of this mapping is the term max (0, Yn). Therefore a
different type of linear mappings are applied to the upper and the lower half
plane in a phase plane (Xn, Yn),

(
Xn+1

Yn+1

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
0 1

−1 1 − σ

) (
Xn

Yn

)
(Yn ≥ 0)

(
0 1

−1 −σ

) (
Xn

Yn

)
(Yn < 0).

We can easily see the periodicity of this mapping by the following geometric
dynamics in a phase plane. In the case of σ = 0, let us consider a sequence
of mappings of a point P0(c, 0) (c > 0) in the phase plane (Xn, Yn). Then, we
obtain a periodic sequence of points,

P0(c, 0) → P1(0, −c) → P2(−c, 0) → P3(0, c) → P4(c, c) → P0 → · · · .
Since the parameter c is an arbitrary positive number, the phase plane is divided
into 5 local “fan” areas as shown in Figure 1. Each area is linearly mapped each
other in the following order,

I → II → III → IV → V → I → · · ·,
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Figure 2. 5 fan areas mapped by a rotation by −2π/5

and segments Pj Pj+1 are mapped as follows,

P0 P1 → P1 P2 → P2 P3 → P3 P4 → P4 P0 → P0 P1 → · · · .
Though this mapping is nonlinear, it is equivalent to a linear mapping defined
by a rotation by an angle −2π/5, through a combination of local affine trans-
formations. Figure 2 shows corresponding 5 fan areas mapped by this linear
mapping in a phase plane (Un, Vn).

The transformation from (Un, Vn) to (Xn, Yn) is again expressed by the max
function as follows,

Xn = max

(
sin

2π

5
· Un +

(
1 − cos

2π

5

)
· Vn, sin

π

5
· Un + cos

π

5
· Vn,

sin
2π

5
· Un + cos

2π

5
· Vn

)
. (8)

Note that we omit an expression of Yn since Yn = Xn+1. Since Un = r0 cos (θ0 −
2nπ/5) and Vn = r0 sin (θ0 − 2nπ/5), we can get a general solution of Xn as
follows,

Xn = r · max

(
− sin

(
θ0 − 2n + 2

5
π

)
+ sin

(
θ0 − 2n

5
π

)
,

− sin

(
θ0

2n + 4

5
π

)
, sin

(
θ0 − 2n + 8

8
π

))
,

where r (> 0) and θ0 are arbitrary constants.
We can obtain a general solution of (4) for σ = 1 and 2 similarly. Thus

we show that the mapping (7) equivalent to (4) is a linearizable mapping
and solutions are obtained by the linearizability. Note that the mapping,
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the transformation and the solutions are all expressed by the max function
consistently.

4 INTEGRABLE CASE

In the previous sections, we discussed the ultradiscrete QRT system (3) with a
special parameter A = 0. In this section, we analyze the system with a parameter
A �= 0. For simplicity, let us assume σ = 0. Moreover, if we use a scaling of
variable |A|Xn → Xn , then Xn follows

Xn+1 = max (0, Xn ± 1) − Xn−1, (9)

where Xn + 1 is chosen when A > 0 and Xn − 1 when A < 0. Therefore,
solutions to (3) for A = ±1 and 0 give those for general A through the scaling.
Below we consider only the case of A = +1,

Xn+1 = max (0, Xn + 1) − Xn−1,

or {
Xn+1 = Yn

Yn+1 = max (0, Yn + 1) − Xn.
(10)

It is a well known fact that there exists a conserved quantity for (2). In the
case of σ = 0, the quantity is

h = 1

xnxn+1
(a + (1 + a2)(xn + xn+1) + a(x2

n + x2
n+1)

+ xnxn+1(xn + xn+1)).

Using transformations xn = eXn/ε and a = e1/ε and defining H by lim
ε→+0

ε log h,

we obtain a conserved quantity for (10),

H = max (1 − Xn − Yn, 2 − Xn, 2 − Yn,

1 + Xn − Yn, 1 − Xn + Yn, Xn, Yn).

Orbits of solutions in the phase plane (Xn, Yn) are given by contour lines ob-
tained by H = const. Figure 3 shows some contour lines of H . The point P(1, 1)
is a fixed point of the mapping, that is, Xn = Yn = 1 for any n if X0 = Y0 = 1.
Positions of vertices of the hexagon � are (3, 3), (3, 1), (1, −1), (−1, −1), (−1,
1), and (1, 3).

In an inner region of �, any solution other than the fixed point P is always
periodic with period 6. Since Xn ≥ −1 and Yn ≥ −1 in that region, the mapping
(10) becomes a linear mapping and the periodicity is due to this linearity.
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Figure 3. Contour lines of H

In the outer region of �, behavior of solutions becomes more complicated.
Solution is still periodic but its period depends on an orbit. Figure 4 shows
a solution from (X0, Y0) = (4, 4) which is periodic with period 17. Since all
segments connecting two neighboring Pj ’s are included in a region defined by
Yn ≥ −1 or Yn ≤ −1, the segment P0 P6 is mapped linearly in the following
sequence,

P0 P6 → P1 P7 → · · · → P10 P16 → P11 P0 → · · · → P16 P5 → P0 P6 → · · · .

It means that a solution from any point on the polygon shown in Figure 4
is always periodic with period 17. However, if we change the orbit, the period
becomes different. For example, the period of a solution from (X0, Y0) = (5, 5)
is 11 and that from (9/2,9/2) is 39.

Figure 4. Solution from (X0, Y0) = (4, 4)
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Figure 5. General orbit of (10) in the outer region of �(c > 3)

5 PERIOD OF ORBIT

Next we discuss a relation between the period of a solution to (10) and its orbit.
Figure 5 shows a general orbit in the outer region of �(c > 3). Every point on
AC comes back to AC after a certain times of mapping. Any point on AB comes
back to AC after 6 mappings and that on BC after 5 mappings. Figure 6 (a)
shows a typical mapping of the former and (b) the latter. Assume that k counts
the number of cycles of mapping and Pk denotes a point on AC at the k-th cycle
of a solution from an initial point P0. Moreover, define rk by

rk = APk/AC.

By this definition, 0 < rk < 1 holds for any k. Moreover, rk satisfies the fol-
lowing recurrence formula,

rk+1 =

⎧⎪⎨
⎪⎩

rk + 1 − 2

c − 1
(rk <

2

c − 1
)

rk − 2

c − 1
(otherwise).

Figure 6. A sequence of mappings of a point on (a) AB, (b) BC



An Integrable Piecewise-Linear Mapping 299

This is a simple one-dimensional dynamical system and we can easily see the
solution is

rk =
{

r0 − 2

c − 1
k

}
,

where {x} denotes a fractional part of x . If rk = r0, that is, Pk = P0, k must
satisfy {

2

c − 1
k

}
= 0 ⇔ 2

c − 1
k is an integer.

Therefore, if c is a rational number, k satisfying the above condition exists
and the solution from P0 becomes periodic. If not, rk �= r0 (Pk �= P0) holds for
any k.

Moreover, we can derive a period of solution from a value of c. If c is
irrational, the period is ∞ according to the above discussion. If c is rational
and is expressed by p/q where p and q are relatively prime integers, the period
of solution is {

(5p − 3q)/2 (p ≡ q mod 2)
5p − 3q (otherwise).

Similar results can be obtained for other cases, (9) with A = −1 and (3) with
σ = 1 and 2. A period of solution is decided by each orbit and does not depend
on the initial position of solution on the orbit. Solutions to (3) with σ = 2 are
reported in the reference [5]. They are derived by ultradiscretizing the solutions
to the original QRT system (2) including an elliptic function and the function
taking fractional part also appears. Comparing with our results suggests there
is a strong relation between geometric piecewise-linear dynamics and elliptic
functions through ultradiscretization.

6 CONCLUDING REMARKS

We studied integrable piecewise-linear mappings (3) obtained by ultradiscretiz-
ing the QRT system. In the case of A = 0, all solutions have the same pe-
riod other than the fixed point. The mapping is expressed by a max function
and is linearizable through the transformation of variables including a max
function. Explicit solutions are also expressed by a max function using this
linearizability.

In the case of A �= 0, we showed a period of any solution on the same orbit
is the same and it depends on the orbit. We can calculate the period from a
parameter of the orbit by the function taking fractional part.

Finally we propose the following future problems. (i) Does a general class
exist for linearizable piecewise-linear mappings? (ii) Can we obtain such a
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class by ultradiscretization of difference mappings? (iii) Is there an integrable
piecewise-linear mapping with different periods depending on initial points on
the same orbit?
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FREE BOSONS AND DISPERSIONLESS
LIMIT OF HIROTA TAU-FUNCTION

Leon A. Takhtajan
Department of Mathematics, Suny at Stony Brook, Stony Brook, NY 11794-3651, USA

1 INTRODUCTION

1.1 The Tau-Function

Let

F =
⊕
p∈Z

Fp

be the Fock space of charged fermions, ψ(z) and ψ̄(z) be the fermion fields,
and

J (z) =: ψ̄(z)ψ(z) :=
∑
n∈Z

Jnz−n−1dz

be the fermion current operator.
For every element Ũ of the charge zero sector in the principal C

∗-bundle
ŨGM over the universal Grassmannian manifold UGM, Hirota’s τ -function is
defined by

τ (T, Ũ ) = 〈0|eH (T)|Ũ 〉,
where |Ũ 〉 is the image of Ũ in F0 under the Plücker embedding, and

H (T) =
∞∑

n=1

tn Jn.

Corresponding wave functions

�(z, T, U ) = 〈−1|eH (T)ψ(z)|Ũ 〉
τ (T, Ũ )

,

�̄(z, T, U ) = 〈1|eH (T)ψ̄(z)|Ũ 〉
τ (T, Ũ )

,

where U ∈ U G M , satisfy the bilinear relation

Resz=∞�(z, T, U )�̄(z, T
′, U ) = 0.
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The Hirota bilinear equation for the τ -function is a direct consequence of the
bilinear relation. The Hirota equation characterizes that τ -function is associated
with an element in ŨGM, and it is equivalent to the KP hierarchy (see [1–4],
and the exposition in [5]).

The difference analog of the KP hierarchy is the 2D Toda hierarchy. Cor-
responding τ -function depends on times t0, tn, t̄n, n ∈ N, and satisfies Hirota
equations [6]

z1e(∂0−D(z1))τ · e−D(z2)τ − z2e(∂0−D(z2))τ · e−D(z1)τ

= (z1 − z2)e−(D(z1)+D(z2))τ · e∂0τ,

and

z1 z̄2e−D(z1)τ · e−D̄(z̄2)τ − e(D̄(z̄2)+D(z1))τ · τ

= e−(∂0+D(z1))τ · e(∂0+D̄(z̄2))τ,

where ∂0 = ∂/∂t0 and

D(z) =
∞∑

n=1

z−n

n

∂

∂tn
, D̄(z̄) =

∞∑
n=1

z̄−n

n

∂

∂ t̄n
.

1.2 Dispersionless Limit

Introducing parameter h̄—the lattice spacing, and rescaling

t0 	→ t0/h̄, tn 	→ tn/h̄, t̄n 	→ t̄n/h̄, τ 	→ τh̄,

one obtains the τ -function of dispersionless 2D Toda hierarchy [7]

F = log τ = lim
h̄→0

h̄2 log τh̄,

which is a special case of Krichever’s universal Whitham hierarchy [8, 9]. The
τ -function satisfies dispersionless Hirota equations

(z1 − z2)eD(z1)D(z2)F

= z1e−∂0 D(z1)F − z2e−∂0 D(z2)F ,

and

z1 z̄2

(
1 − eD(z1)D̄(z̄2)F

)
= e∂0(∂0+D(z1)+D̄(z̄2)F

—a semiclassical limit of differential Fay identity [10]. Dispersionless
Hirota equations imply that the free energy F satisfies WDVV equations
[11].
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2 SPACES OF CONTOURS

2.1 Definitions

Let Diff+(S1) be the group of orientation preserving diffeomorphisms of S1,
let S1 be the subgroup consisting of rigid rotations and let Diff+(S1)/S1 be
the corresponding homogeneous space. It is an infinite-dimensional complex
Frechet manifold isomorphic to the Frechét manifold of univalent functions
on the unit disk D which are smooth up to the boundary and normalized by
the conditions f (0) = 0 and f ′(0) = 1 (see [12]). It is also isomorphic to the
space of closed smooth curves on the complex plane C of conformal radius 1
encompassing 0.

Let C1 be the space of closed smooth curves on the complex plane C of Eu-
clidean area 1 encompassing 0. It is an infinite-dimensional complex manifold
with complex coordinates given by classical harmonic moments of the exterior
of the contour C ∈ C1,

tn = 1

2π in

∫
C

z̄−ndz, n ∈ N

(see [13] and references therein).
Let T (1) = Homeoqs(S1)/Möb(S1) be Bers’ universal Teichmüller space—

the space of normalized “fractal” contours of conformal radius 1. It is
an infinite-dimensional complex Banach manifold and the inclusion map
Diff+(S1)/Möb(S1) ↪→ T (1) is holomorphic (see [14, 15]).

2.2 Deformation Theory

Let � be simply connected domain in C containing 0 and bounded by a smooth
contour C, and let G be the conformal map G : C\� → C\D, normalized by
G(∞) = ∞ and G ′(∞) > 0. The Faber polynomials associated with G are
defined by the Laurent expansion at z = ∞

zG ′(z)

G(z) − w
=

∞∑
n=0

Fn(w)z−n, |G(z)| > |w|,

obtained by substituting Laurent series for G(z)

G(z) = b−1z + b0 + b1

z
+ · · ·

into the geometric series for (G(z) − w)−1. In terms of the inverse map g =
G−1,

Fn(w) = [gn(w)]+,
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and Faber polynomials are uniquely characterized by the property

Fn(G(z)) = zn + O(z−1) as z → ∞.

The deformation theory describes the tangent vector space TCC to the man-
ifold C at the contour C in terms of the data associated with C.

Deformation of the contour C is a smooth family of contours {Ct}t∈(−ε,ε)

such that C0 = C ; i.e., Ct = {z(σ, t), σ ∈ R/2πZ} for every |t | < ε, where
z(σ, t) ∈ C∞(R/2πZ × (−ε, ε)). Corresponding infinitesimal deformation is
the vector field v = ż(σ )d/dσ along C, where dot stands for d/dt |t=0. A trivial
deformation Ct consists of reparameterizations of the contour C, so that the
vector field v is tangential to C. The tangent vector space TCC is a real vector
space of normal vector fields to C.

With every infinitesimal deformation there is associated 1-form on C

ω̇C = ¯̇zdz − żd z̄

—a restriction to C of a d−1 of the Lie derivative Lv of the standard 2-form
dz̄ ∧ dz on �. It satisfies the “calculus formula.”

d

dt

∣∣∣∣
t=0

∫
Ct

f (z, z̄, t)dz =
∫

C
( ḟ dz + ∂ f

∂ z̄
ω̇C ).

In classical terms,

δnds = 1

2i
ω̇C ,

where ds := |z′(σ )|dσ, n(σ ) is the outer normal to C, and δn(σ ) ∈
C∞(R/2πZ, R) defines the infinitesimal deformation of the contour C.

Theorem 1 (“Krichever’s lemma”, [16, 17])

(i) Any deformation Ct of C which does not change the area π t0 of � and
harmonic moments of exterior tn is infinitesimally trivial. The parameters
{t0 − t0(C), tn − tn(C), t̄n − t̄n(C)} are local coordinates on C near C.

(ii) The following 1-forms on C

ω̇
(n)
C = ∂ z̄

∂tn

∣∣∣∣
tn=tn(C)

dz − ∂z

∂tn

∣∣∣∣
tn=tn(C)

dz̄,

extend to meromorphic (1, 0)-forms on the double P
1
C of the exterior do-

main P
1\� with a single pole at ∞ of order n + 1 if n ∈ N, and simple

poles at ∞ and ∞ with residues 1 and −1 if n = 0. Explicitly,

ω̇
(n)
C = d(Fn ◦ G), ω̇

(0)
C = d log G

in the domain P
1\�, and

ω̇
(n)
C = d(Fn ◦ 1/G), ω̇

(0)
C = d log 1/G

in the domain P1\�.
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(iii) The 1-forms ẇ
(n)
C satisfy the property

1

2π i

∫
C

z−m

m
ω̇

(n)
C = δmn,

and can be identified with the vector fields ∂/∂tn. For every a > 0 the
holomorphic tangent vector space T ′

CCa to Ca at C is canonically identified
with the complex vector space M1,0(P1

C ) of meromorphic (1, 0)-forms on
P

1
C with a single pole at ∞ of order ≥ 2.

(iv) The holomorphic cotangent vector space T
′∗

C Ca to Ca at C is naturally
identified with the complex vector spaceH1,0(P1\�) of holomorphic (1, 0)-
forms on P

1\� which are smooth up to the boundary, and the pairing

(, )C : T ′
CCa ⊗ T ′∗

C Ca → C

is given by

(ω, u)C = 1

2π i

∫
C

d−1uω.

Differentials dtn correspond to (1, 0)-forms

dtn(z) = d(z−n/n) = −z−n−1dz.

3 BOSONIC PARTITION FUNCTION

For ϕ ∈ C∞(P1, R) consider the action

S0(ϕ) = i

4

∫∫
P1

∂ϕ ∧ ∂̄ϕ,

which describes the standard theory of free bosons on the Riemann sphere P
1.

For every C ∈ C define the “topological term” by

Stop(ϕ) =
∫∫

C

(A(�)δ0 − χ�) ϕd2z

= A(�)ϕ(0) −
∫∫

�

ϕd2z,

where χ� is a characteristic function of �, and δ0 is a Dirac delta-function at
0 with respect to the Lebesgue measure d2z. The total bosonic action

SC (ϕ) = S0(ϕ) + Stop(ϕ)

describes the theory of free bosons on P
1 in the presence of a contour C, and

defines a family of field theories parameterized by C.
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For every C ∈ C the partition function of the corresponding quantum field
theory is defined by

〈1〉C =
∫

C∞(P1,R)/R

[Dϕ]e− 1
π

SC (ϕ).

Specifically, approximate χ� and δ0 by smooth functions χ
(ε)
� and δ

(ε)
0 with

compact supports satisfying∫∫
C

(
A(�)δ(ε)

0 − χ
(ε)
�

)
d2z = 0,

and define

〈1〉C = lim
ε→0

exp

{
A2(�)

π2

∫∫
C

∫∫
C

log |z − w|δ(ε)
0 (z)

δ
(ε)
0 (w)d2zd2w

} ∫
C∞(P1,R)/R

[Dϕ]e− 1
π

S(ε)
C (ϕ),

where

S(ε)
C (ϕ) = S0(ϕ) +

∫∫
C

(
A(�)δ(ε)

0 − χ
(ε)
�

)
ϕd2z.

The τ -function τ = τ (C) of a smooth contour C is defined as the normalized
expectation value of C,

τ = 〈〈C〉〉 = 〈1〉C

〈1〉0
,

where 〈 〉 stands for expectation value in the standard theory of free bosons on
P

1 with the action functional S0 (it corresponds to the case C = ∅—the empty
set).

The τ -function is well-defined and

log τ = − 1

π2

∫∫
�

∫∫
�

log |z − w|d2zd2w

+ 2

π2
A(�)

∫∫
�

log |z|d2z

= − 1

π2

∫∫
�

∫∫
�

log

∣∣∣∣1

z
− 1

w

∣∣∣∣d2zd2w,

which is −1/π2 times a regularized energy of the pseudo-measure dμ = d2z −
A(�)δ0 on the domain � [17]. Also, τ = τMWZ (see [13, 18]).
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4 CURRENT WARD IDENTITIES

Let j = ∂ϕ and j̄ = ∂̄ϕ be holomorphic and anti-holomorphic components of
the bosonic field current dϕ. By definition,

〈X〉 =
∫

C∞(P1,R)/R

[Dϕ]X e− 1
π

SC (ϕ),

where X = j(z1) . . . j(zm)j̄(w1) . . . j̄(wn). Correlation functions for the theory
on P

1\� with action functional

Sext(ϕ) = i

4

∫∫
P1\�

∂ϕ ∧ ∂̄ϕ,

and Dirichlet boundary condition, are defined similarly and are denoted by
〈· · ·〉DBC .

4.1 1-Point Correlation Functions

Set

〈〈j(z)〉〉 = 〈j(z)〉
〈1〉C

.

Then

〈〈j(z)〉〉 = ∂�(z)

∂z
dz,

where �(z) satisfies

−∂2�(z)

∂z∂ z̄
=

{
χ�(z) − A(�)δ0(z) if z ∈ �,

0 if z ∈ C\�,

is continuous on C and is normalized by �(∞) = 0. The function � is a
logarithmic potential of the pseudo-measure dμ = d2z − A(�)δ0 on �. At
z = ∞

∂�(z)

∂z
= −

∞∑
n=1

vnz−n−1,

where

vn = 1

2π i

∫
C

zn z̄dz, n ∈ N,

are the harmonic moments of interior of the contour C.
Using deformation theory (calculus formula and Theorem 1) and an explicit

form of Stop, one gets the following (cf. [13, 18]).
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Theorem 2 For every a > 0 the normalized 1-point current correlation func-
tions of free bosons on P

1 parameterized by C ∈ Ca satisfy the Ward identities,
given by the following Laurent expansions at z = ∞

〈〈j(z)〉〉 = −
∞∑

n=1

z−n−1 ∂ log τ

∂tn
dz = d′ log τ,

and

〈〈j̄(z)〉〉 = −
∞∑

n=1

z̄−n−1 ∂ log τ

∂ t̄n
dz = d′′ log τ.

Corollary 3 ([13, 16, 18]) The function log τ ∈ C∞(C, R) is a generating
function for the harmonic moments of interior,

v0 = ∂ log τ

∂t0
and vn = ∂ log τ

∂tn
, n ∈ N,

where

v0 = 2

π

∫∫
�

log |z|z̄d2z.

Corollary 4 (“Explicit formula” for the conformal map G, [13, 18])

log G(z) = log z − 1

2

∂2 log τ

∂t2
0

−
∞∑

n=1

z−n

n

∂2 log τ

∂t0∂tn
.

4.2 2-Point Correlation Functions

Set

〈〈j(z)j(w)〉〉 = 〈j(z)j(w)〉
〈1〉C

− 〈〈j(z)〉〉〈〈j(w)〉〉

and

〈〈j(z)j(w)〉〉DBC = 〈j(z)j(w)〉DBC

〈1〉DBC
.

Clearly,

〈〈j(z)j(w)〉〉 = −dz ⊗ dw

(z − w)2
,

and

〈〈j(z)j(w)〉〉DBC = − G ′(z)G ′(w)

(G(z) − G(w))2
dz ⊗ dw.

Using Ward identity for the 1-point function, deformation theory and prop-
erties of Faber polynomials, one gets the following (cf. [18]).
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Theorem 5 For every a > 0 normalized reduced 2-point current correlation
functions for free bosons on P

1 parameterized by C ∈ Ca satisfy the Ward
identities, given by the following Laurent series expansions at z = w = ∞

〈〈j(z)j(w)〉〉 − 〈〈j(z)j(w)〉〉DBC

=
(

G ′(z)G ′(w)

(G(z) − G(w))2
− 1

(z − w)2

)
dz ⊗ dw

=
∞∑

m,n=1

z−m−1w−n−1 ∂2 log τ

∂tm∂tn
dz ⊗ dw,

and

〈〈j(z)j̄(w)〉〉 − 〈〈j(z)j̄(w)〉〉DBC

= G ′(z)G ′(w)

(1 − G(z)G(w))2
dz ⊗ dw̄

=
∞∑

m,n=1

z−m−1w̄−n−1 ∂2 log τ

∂tm∂ t̄n
dz ⊗ dw̄

= d′d′′ log τ.

All higher reduced multipoint current correlation functions vanish.

Corollary 6 For every a > 0 the Hermitian metric H on Ca defined by

H

(
∂

∂tm
,

∂

∂tn

)

− 1

(2π i)2

∫
C+

∫
C+

zmw̄n K (z, w̄)dzdw̄,

where C+ is an arbitrary contour containing C inside, and K is the Bergman
reproducing kernel for the domain P

1\�, is Kähler with the Kähler potential
log τ .

Corollary 7 ([13, 18])

log
G(z) − G(w)

z − w
= −1

2

∂2 log τ

∂t2
0

+
∞∑

m,n=1

z−mw−n

mn

∂2 log τ

∂tm∂tn
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and

log

(
G(z)G(w)

G(z)G(w) − 1

)
=

∞∑
m,n=1

z−mw̄−n

mn

∂2 log τ

∂tm∂ t̄n
.

From Corollary 3 one immediately gets dispersionless Hirota equations [19].
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Abstract Using a particular class of symmetries of Hirota bilinear soliton equations
we reduce them into bilinear ordinary differential equations. We convert
these bilinear equations into nonlinear forms. By this process we obtain
a class of higher order equations of Painlevé type.

1 INTRODUCTION

Symmetry analysis is very useful to find a class of particular solutions of
linear and nonlinear equations. The underlying invariances of the given partial
differential equations (PDEs) are widely used to reduce PDEs of higher to lower
dimensions in terms of a new independent variable, called similarity variable
[1]. In the case of soliton equations these reduced ordinary differential equations
(ODEs) are identified with one of the Painlevé equations [2]. It is well-known
that soliton equations can be expressed in terms of Hirota’s bilinear forms and
their Painlevé properties have also been studied [3, 4]. The symmetries of these
equations have been studied for large class of equations in [5].
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A natural question arises whether the similarity reductions of these bilinear
equations can be identified with bilinear forms of Painlevé equations [6–8]. In an
exploratory approach in this paper, we consider only simple symmetries of the
bilinear equations and reduce them to bilinear ODEs. Our analysis also includes
bilinear soliton equations of higher degree [5]. The similarity reductions of
these bilinear equations result in higher order ODEs of Painlevé type. This is
important since there is considerable activity around the study of higher order
Painlevé equations [9]. We present both bilinear and nonlinear forms of these
ODEs. We illustrate the above method with many interesting examples.

2 LIE POINT SYMMETRY APPROACH TO HIROTA
BILINEAR EQUATIONS

KdV-type Hirota bilinear equations are given in the following form:

A(D)F · F = 0

where A(D) is a polynomial in Hirota differential operators and is always even.
The symbol D is defined as

Dm
x Dn

y . . . F · G = (∂x − ∂
′
x )m(∂y − ∂

′
y)n F(x, y, . . .)G(x, y, . . .)|x=x ′

,y=y′
...

We consider the infinitesimal Lie one-parameter point transformation which is
given by [1]

x̄ i = xi + εξ i (x) + O(ε2) i = 1, 2, . . . , p

F̄α = Fα + εηα(x, F) + O(ε2), α = 1, 2, . . . , q

where x = (x1, . . . , x p) and F = (F1, . . . Fq) with corresponding infinitesi-
mal generator

V =
p∑
i

ξ (x)
∂

∂xi
+

q∑
α

ηα(x, F)
∂

∂ Fα

Then the invariant condition becomes

PrV (n)[A(D)F · F]|A(D)F ·F=0 = 0

PrV (n)V = V +
q∑
α

∑
J

ηJ
α (x, F (n))

∂

∂ Fα
J

where J = ( j1 · · · jk) with 1 ≤ jk ≤ p, 1 ≤ k ≤ n. The coefficient of ηJ
α of

Pr(n)V are given by

ηJ
α (x, F (n)) = DJ

(
ηα −

p∑
i=1

ξ i Fα
i

)
+

p∑
i=1

ξ i Fα
J,i
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where DJ = D j1 . . . D jk and D j is a total differential operator. The correspond-
ing Lie equations and characteristic systems are

dx̄ i

dε
= ξ i (x̄), x̄ i

∣∣
ε=0

= xi , i = 1, 2, . . . n

dx1

ξ 1
= dx2

ξ 2
= · · · = dxn

ξ n

3 SIMILARITY REDUCTION OF THE KdV FAMILY

3.1 KdV equation

First we consider KdV equation in bilinear form(
D4

x − 4Dx Dt
)
F · F = 0 (1)

Following the approach explained in the above section, we can obtain algorith-
mically the underlying Lie point symmetries. The infinitesimal generators of
the symmetry group are given by

ξ = γ x/3 + 12εt + α

τ = γ t + β

θ = (εx2/2 + δx + A(t))F

The corresponding vector fields are

V1 = ∂x

V2 = ∂t

V3 = x

3
∂x + t∂t

V4 = x F∂F

V5 = x2

2
F∂F + 12t∂t

V6 = A(t)F∂F

We take a simple vector field corresponding to the scaling symmetry V3 and
get the similarity variable

z = x

t1/3
(2)

Also expanding the bilinear Eq. (1) we get

Fxxxx F − 4Fxxx Fx + 3Fxx Fxx − 4Fxt F + 4Fx Ft = 0
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On using the similarity variable (2) this equation reduces to

Fzzzz F − 4Fzzz Fz + 3Fzz Fzz + 4/3zFzz F + 4/3Fz F − 4/3zFz Fz = 0

Again this can be written in the bilinear form as(
D4

z + 4/3zD2
z + 4/3 ∂z

)
F · F = 0

which is the bilinear form of Painlevé 34. We convert this bilinear equation into
nonlinear form by using the Hirota transformation:

u = (2 log F)zz

and finally we get

uzz + 3u2 + 4/3zu + 4/3(2 log F)z = 0

Differentiating the above equation once and using the dependent variable trans-
formation, we get

uzzz + 6uuz + 4/3zu + 8u = 0

We can show this equation is equivalent to Painlevé 34

2uuzz − u2
z + 4u3 − 8zu2 + 16α2 = 0

We should remark that if we consider other invariances we will get other types
of reductions.

3.2 Boussinesq Equation

Next we consider the Boussinesq equation in bilinear form(
D4

x + 3D2
t

)
F · F = 0

One can find easily the scaling symmetry corresponding to this bilinear equation
which gives the similarity variable

z = x

t1/2

the corresponding vector field of which is

V = 2t∂t + x∂x

The reduced equation in bilinear form becomes(
D4

z + 3/4z2 D2
z + 9/4z ∂z

)
F · F = 0

By introducing the nonlinear variable

u = (2 log F)zz
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finally we get

uzz + 3u2 + 3/4z2u + 9/4z(2 log F)z = 0

By using the nonlinear variable

u = 2wz

we obtain

wzzz + 6w2
z + 3

4
z2wz + 9

4
zw = 0

3.3 Sawada–Kotera Equation

Following the same approach described above, for Sawada–Kotera equation(
D6

x + Dx Dy
)
F · F = 0 (3)

we find the similarity variable

z = x

y1/5

which corresponds to the vector field

V = 5y∂y + x∂x

Reducing the Sawada-Kotera equation (3) in the bilinear form leads to(
5D6

z − zD2
z − 1/2 ∂z

)
F · F = 0

Substituting

u = (2 log F)zz

in the bilinear form we get the nonlinear form

uzzzz + 15uzzu + 15u3 − zu

5
− 1

5
(2 log F)z = 0

In order to avoid log term we differentiate once and again use the nonlinear
variable transformation. We finally get

uzzzzz + 15uzzzu + 15uzzuz + 45u2uz − z

5
uz − 2

5
u = 0

This equation can be identified with the classification of Cosgrove for fifth
order nonlinear ODEs of Painlevé type [9].
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3.4 5-Reduced BKP Equation

The bilinear form of 5-reduced BKP equation is given as(
D6

x + 5D3
x Dt − 5D2

t

)
F · F = 0

By using the similarity variable

z = x

t1/3

which corresponds to the vector field

V = 3t∂t + x∂x

the reduced equation in the bilinear form becomes(
D6

z − 5/3zD4
z − 5/9z2 D2

z − 5 ∂z D2
z − 20/9z ∂z

)
F · F = 0

Substituting

u = (2 log F)zz

in the bilinear form we get the nonlinear form

(uzzzz + 15uzzu + 15u3) − 5/3z(uzz + 3u2) − 5/9z2u − (5/F2∂z D2
z )F · F

−20/9z(2 log F)z = 0

Some care should be taken for the term ∂z D2
z F · F . Now

∂z D2
z F · F

F2
= 2

(Fzz F − Fz Fz)z

F2
= 2

(
Fzzz

F
− Fz

F

Fz

F

)

= uz + 4

(
Fzz

F

Fz

F
−

(
Fz

F

)3
)

= uz + 2u
Fz

F

where we have used the dependent variable transformation. Let 2wz = u. In
order to avoid a log term we differentiate once and again use the nonlinear
variable transformation, we finally get

wzzzzz + 30wzzzwz + 60w3
z − 5/3zwzzz − 10zw2

z − 5wzz

− 5/9z2wz − 20/9zw = 0

3.5 Hietarinta Equation

The bilinear form of the Hietarinta equation is given by(
D4

x + D3
t Dx

)
F · F = 0



Similarity Reductions 319

By using the similarity variable

z = x

t

which corresponds to the vector field

V = t∂t + x∂x

the reduced equation in the bilinear form becomes

((1 − z3)D4
z − 9z2 ∂z D2

z − 12zD2
z − 3z ∂2

z − 3 ∂z)F · F = 0

Substituting

u = (2 log F)zz

in the bilinear form and using the same analysis as in the previous example
with 2wz = u, we get the nonlinear form

(1 − z3)(wzzz + 6w2
z ) − 9z2wzz − 18z2wwz − 15zwz − 6zw2 − 3w = 0

3.6 Ito Equation

The bilinear form of Ito equation is(
D3

t + D3
x Dt

)
F · F = 0

Using the similarity variable

z = x

t1/3

which corresponds to the vector field

V = 3t ∂t + x ∂x

the reduced equation in the bilinear form becomes(
D4

z + 3

z
∂z D2

z − 1/3zD2
z − 4/3 ∂z

)
F · F = 0

Substituting

u = (2 log F)zz

in the bilinear form and using the same analysis as in the previous example, we
get the nonlinear form

wzzz + 3

z
wzz + 6w2

z + 6

z
wwz − z

3
wz − 8/3w = 0

where 2wz = u.
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4 SIMILARITY REDUCTIONS OF THE mKdV FAMILY

4.1 mKdV Equation

It is straightforward to generalize the similarity analysis implemented above to
the case of more than one τ function. In this section, we consider the case of
mKdV-type Hirota bilinear Equations

A(D)F · G = 0

B(D)F · G = 0

As a simple example, we consider the mKdV bilinear equation in the form of

D2
x G · F = 0(

D3
x + Dt

)
G · F = 0

This bilinear equation can be transformed into

D2
x g · f = 0(

D3
x + Dt + α

t

)
g · f = 0

under the gauge transformation G = tαg, F = f . Now in this case the simi-
larity variable is given by

z = x

t1/3

which corresponds to the vector field

V = 3t ∂t + x ∂x

Then the reduced bilinear equation becomes

D2
z g · f = 0(

D3
z − z

3
Dz + α

)
g · f = 0

which is the bilinear equation of PII. The above bilinear equations become

(log(g f ))zz + (log(g/ f ))2
z = 0

(log(g/ f ))zzz + 3(log(g/ f ))z(log(g f ))zz + (log(g/ f ))3
z

− z

3
(log(g/ f ))z + α = 0

Eliminating (log((g f )))zz in the second equation using the first we get

(log(g/ f ))zzz − 2(log(g/ f ))3
z − z

3
(log(g/ f ))z + α = 0
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By introducing the nonlinear variable

u = (log(g/ f ))z

we obtain

u′′ = 2u3 + z

3
w − α = 0

which is PII.

4.2 3-Reduced mKP Equation

The bilinear form of 3-Reduced mKP equation is given by(
D2

x − Dy
)
G · F = 0(

D3
x + 3Dx Dy

)
G · F = 0

Under the gauge transformation G = yαg, F = f these bilinear equations be-
come (

D2
x − Dy − α

y

)
g · f = 0

(
D3

x + 3Dx Dy + 3
α

y
Dx

)
g · f = 0

The similarity variable in this case is

z = x

y1/2

Then the reduced equations assume the form(
D2

z + z

2
Dz − α

)
g · f = 0(

D3
z − 3/2zD2

z − 3/2 ∂z + 3αDz
)

g · f = 0

which can easily be identified as the bilinear form of PIV. We introduce the
nonlinear variable transformation

u = (log(g/ f ))z

Then the bilinear equations becomes

(log(g/ f ))zz + u2 + z

2
u − α = 0

uzz +3(log(g f ))zzu+u3−3/2z((log(g f ))zz +u2)−3/2(log(g f ))z +3αu = 0



322 K.M. Tamizhmani et al.

Differentiate once and eliminate the log terms by using the dependent variable
transformation, finally, we get

uzzz − 6u2uz − 3zuuz + 6αuz + 3/4z2uz + 9/4zu − 3α = 0

To integrate this equation we multiply the above equation by u and z and subtract
one from the other and integrating, we get

(2u − z)uzz − u2
z − 3u4 + 6αu2 + 9

4
z2u2 + uz − 6αzu − 3

4
z3u + 3

2
αz2 = β

Let u = z

2
+ v. Finally we get

vzz = vz

2v
+ 3/2v3 + (9/8z2 − 3α)v + 3zv2 + β − 1/4

2v

which is PIV equation.

5 CONCLUDING REMARKS

We described the method to derive similarity reductions of PDEs in Hirota
bilinear form. As a consequence we have obtained the bilinear form of the
reduced ODEs. In certain cases these ODEs are identified directly with Painlevé
equations. In many other cases we have presented higher order Painlevé-type
equations both in bilinear and nonlinear forms.
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ON FUNDAMENTAL CYCLE OF
PERIODIC BOX-BALL SYSTEMS
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3-8-1 Komaba, Tokyo 153-8914, Japan

Abstract We review the novel properties of the fundamental cycle of periodic
Box-Ball systems (PBBSs). According to integrable nature of the PBBS,
the explicit formula for the fundamental cycle exists and its asymptotic
behaviour can be estimated when the system size N goes to infinity. The
upper and lower bounds for the maximum fundamental cycle is given
and almost all fundamental cycle is shown to be of order of N log N .

1 INTRODUCTION

The periodic Box-Ball system (PBBS) is a dynamical system of balls in a one
dimensional array of boxes with periodic boundary condition [1, 2]. The PBBS
is obtained from the discrete Toda equation [3], which is a well known inte-
grable partial difference equation, with a periodic boundary condition through
a limiting procedure called ultradiscretization [4, 5]. Using inverse ultradis-
cretization, the initial value problem of PBBS is solvable by inverse scattering
transform [6]. Hence, the PBBS may be called an integrable dynamical system.
On the other hand, an important feature of an integrable dynamical system is
that its trajectry in the phase space is restricted to a low dimensional subspace
determined by the conserved quantities [7]. In particular, it does not have ergod-
icity. Accordingly its Poincaré section in two-dimensional plane locates on one
dimensional curves and quite different from that of non integrable (or chaotic)
systems. However, since the PBBS is composed of a finite number of boxes and
balls, it can only take on a finite number of patterns. In other words, the phase
space of the PBBS consists of only finite number of points. For dynamical sys-
tems with such phase spaces, it is not clear to specify the difference between
integrable and nonintegrable systems from the trajectry. Recently Yoshihara
et al. have obtained the formulae to determine the fundamental cycle, i.e., the
shortest period of the discrete periodic motion of the PBBS [8]. Mada and the
author examined integrability of the PBBS from its fundamental cycle based
on their results [9]. If the PBBS is ergodic, the fundamental cycle T is of order
of the volume (number of points) of the phase space. However, it is proved to
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be qualitatively smaller than that of the ergodic system and the PBBS may be
regarded as an integrable dynamical system. In this article, we review these
recent results about the fundamental cycle of the PBBS.

2 PERIODIC BOX-BALL SYSTEM AND ITS
FUNDAMENTAL CYCLE

Let us consider a one-dimensional array of N boxes. To be able to impose a
periodic boundary condition, we assume that the Nth box is the adjacent box
to the first one. The box capacity is one for all the boxes, and each box is either
empty or filled with a ball at any time step. We denote the number of balls by
M, such that M ≤ N

2
. The balls are moved according to a deterministic time

evolution rule.

1. In each filled box, create a copy of the ball.
2. Move all the copies once according to the following rules.
3. Choose one of the copies and move it to the nearest empty box on the right

of it.
4. Choose one of the remaining copies and move it to the nearest empty box

on the right of it.
5. Repeat the above procedure until all the copies have moved.
6. Delete all the original balls.

A PBBS has conseved quantities which are characterized by a Young diagram
with M boxes. The Young diagram is constructed as follows. We denote an
empty box by “0” and a filled box by “1”. Then the PBBS is represented as a 0, 1
sequence in which the last entry is regarded as adjascent to the first entry. Let p1

be the number of the 10 pairs in the sequence. If we eliminate these 10 pairs, we
obtain a new 0, 1 sequence. We denote by p2 the number of 10 pairs in the new
sequence. We repeat the above procedure until all the “1” s are eliminated and
obtain p2, p3, . . . , pl . Clearly p1 ≥ p2 ≥ · · · ≥ pl and

∑l
i=1 pi = M . These

{pi }l
i=1 are conserved in time evolution. Since {p1, p2, . . . , pl} is a weakly

decreasing series of positive integers, we can associate it with a Young diagram
with p j boxes in the j-th column ( j = 1, 2, . . . , l). Then the lengths of the rows
are also weakly decreasing positive integers, and we denote them

{L1, L1, . . . , L1,︸ ︷︷ ︸
n1

L2, L2, . . . , L2,︸ ︷︷ ︸
n2

· · · , Ls, Ls, . . . , Ls}︸ ︷︷ ︸
ns

where L1 > L2 > · · · > Ls . The set {L j , n j }s
j=1 is an alternative expression

of the conserved quantities of the system. In the limit N → ∞, L j means the
length of j-th largest soliton and n j is the number of solitons with length L j .
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Figure 1. Time evolution rule for PBBS

The following Proposition and Theorem for the fundamental cycle
of the PBBS are essential. Let �0 := N − 2M = N − ∑l

j=1 2p j = N −∑s
j=1 2n j L j , N0 := �0, Ls+1 := 0, and

� j := L j − L j+1, ( j = 1, 2, . . . , s) (1)

N j := �0 + 2n1(L1 − L j+1) + 2n2(L2 − L j+1) + · · · + 2n j (L j − L j+1)

= �0 +
j∑

k=1

2nk(Lk − L j+1). (2)

Then, for a fixed number of boxes N and conserved quantities {L j , n j }, the
number of possible states of the PBBS �(N ; {L j , n j }) is given by the following
formula.

Proposition 1

�(N ; {L j , n j }) = N

�0

(
�0 + n1 − 1

n1

)(
N1 + n2 − 1

n2

)(
N2 + n3 − 1

n3

)

× · · · ×
(

Ns−1 + ns − 1

ns

)
(3)

The fundamental cycle T is given as:
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Theorem 2 Let T̃ be defined as

T̃ := L .C.M.

(
Ns Ns−1

�s�0
,

Ns−1 Ns−2

�s−1�0
, . . . ,

N1 N0

�1�0
, 1

)
, (4)

where L .C.M.(x, y) := 2max[x2,y2]3max[x3,y3]5max[x5,y5] . . . for x = 2x23x35x5 . . .

and y = 2y23y35y5 . . . . Then T is a divisor of T̃. In particular, when there is no
internal symmetry in the state T = T̃ .

The definition of internal symmetry in the above Proposition is rather
complicated and we refer to the original article [8]. However, for given number
of conserved quantities, we can always construct initial states which do not
have any internal symmetry, in particular, if ∀i, ni = 1 the PBBS never has
internal symmetry and T = T̃ . Hereafter we consider the asymptotic behavior
of the fundamental cycle using the above Theorem.

3 MAXIMUM VALUE OF THE FUNDAMENTAL CYCLE

To take an appropriate limit, we fix the ball densty ρ := M/N . The volume of
the phase space V (N ; ρ) is

V (N ; ρ) =
(

N

M

)
∼ 1√

2πρ(1 − ρ)N
RN , (R := (1 − ρ)ρ−1ρ−ρ). (5)

Thus the volume of the phase space increases exponentially with respect to the
system size N. On the other hand, for a given number of balls M, there are PM

different Young diagrams which correspond to conserved quantities. Here PM

is the number of partitions of M. The following estimation of PM is well known
[10].

PM = exp[π
√

2M/3]

4
√

3M

(
1 + O

(
log M

M1/4

))
.

Since M = ρN , we have PM ∼ exp [π
√

2ρ/3
√

N ]/(4
√

3ρN ). The restricted
phase space determined by the conserved quantities has the volume
V (N ; ρ)/PM in average. This average volume still grows exponentially with
respect to the system size and we cannot see an integrable nature of PBBS
as a dynamical system from these conserved quantities. So detailed analy-
sis in the fundamental cycle is important to reveal the integrability of the
PBBS.

Now we present the estimation of the maximum fundamental cycle Tmax :=
max[T ].
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Figure 2. An example of triangular Young diagram

Theorem 3 For N 
 1 and M = ρN (0 < ρ < 1/2), the maximum value of
the fundamental cycle Tmax ≡ Tmax(N ; ρ) satisfies

exp

[
2

(
1 − max [

√
2 − 4ρ − 1, 0]

) √
N

(
1 − c

log N

)]

< Tmax < exp
[
2
√

2ρ
√

N log N
]
. (6)

Here c is a positive integer and c ∼ 0.1 for N ≥ 1016.

From the Theorem 3, we find that log Tmax(N ; ρ) �
√

N . On the other hand
log V (N ; ρ) ∼ N , and we can conclude that the PBBS does not have ergodic
property.

Although formula (6) is rather rough estimation for the maximum fund-
mental cycle. It seems a difficult problem to obtain sharper bound for Tmax

analytically because of its number theoretical aspects. From the above argu-
ments and numerical calculation however, we expect that the fundamental cycle
of the initial state, which has the conserved quantities determined by the tri-
angular Young diagram for the partition (s, s − 1, s − 2, . . . , 2, 1), is almost
of order of Tmax. In this case, all the solitons have different length and the
fundamental cycle is given as

T (t)(N , ρ) = L.C.M.

(
Ns Ns−1

�0
,

Ns−1 Ns−2

�0
, . . . ,

N1 N0

�0
, 1

)
(7)

where Nk = �0 + k(k + 1) and �0 = N − 2M = (ρ−1 − 2)s(s + 1)/2.
The number of possible states for the triangular Young diagram �(t)(N , ρ)

is given as

�(t)(N , ρ) =
s∏

k=1

(�0 + k(k + 1)), (8)
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where M = ρN = s(s + 1)/2 and �0 = (1 − 2ρ)N . By putting γ := �0/s2, we
have

�(t)(N , ρ) = s2s
s∏

k=1

[
γ +

(
k

s

) (
k + 1

s

)]

� s2s exp

[
s

(
log(1 + γ ) − 2 + 2

√
γ arctan

1√
γ

)]

Since γ = −1 + 1/(2ρ), by putting α(ρ) := log(1 + γ ) − 2 + 2
√

γ arctan
1√
γ

+ log(2ρ), we have

�(t)(N , ρ) � exp
[√

2ρ
√

N (log N + α(ρ))
]
. (9)

Thus �(t)(N , ρ) ∼ e(
√

2ρ)
√

N log N and

log �(t)(N , ρ)

log V (N , ρ)
∼ log N√

N
.

Hence the number of possible states for the triangular Young diagram is
much smaller than the volume of the phase space. Figure 3 show the ratio
T (t)(N , ρ)/�(t)(N , ρ) obtained numerically. The results show that the funda-
mental cycle T (t) is much smaller than the number of states �(t). Although
the results are not enough to estimate the asymptotic value of T (t), we see
in this example that, even if we restrict ourselves to the phase space deter-
mined by the conserved quantities, an trajectry does not have ergodicity in
the sence that it will never visit most of the states with the same conserved
quantities.

Figure 3. Results of numerically calculated log [T (t)(N , ρ)/�(t)(N , ρ)]
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4 ASYMPTOTIC BEHAVIOR OF FUNDAMENTAL
CYCLE FOR GENERIC INITIAL STATES

In the preceding section, we have proved that log Tmax ∼ √
N . For a generic

initial state, however, we expect that its fundamental cycle is qualitatively much
smaller. For example, initital states which correspond to rectangular Young
diagram have the fundamental cycle less than or equal to the system size N.
The number of these initial states grows exponentially with respect to N, while
that of the initial states correspond to triangular diagrams grows much slowly
like (9).

To examine the asymptotic behavior for a generic initial state, we define the
generating function as

F(N , K , �0; x) := N

�0

⎛
⎝ K∏

j=1

∞∑
n j =0

⎞
⎠ (

�0 + nK − 1

nK

)

×
(

�0 + 2nK + nK−1 − 1

nK−1

)(
�0 + 4nK + 2nK−1 + 2nK−2 − 1

nK−2

)
· · ·

×
(

�0 + (
�K

i=22(i − 1)ni
) + n1 − 1

n1

)
x�K

i=1ini . (10)

From Proposition 1, we find

Proposition 4 Let N, M and �0 be the number of boxes of a PBBS,
that of balls and �0 = N − 2M respectively. Then the coefficient of x M of
F(N , K , �0; x), f (N , K ; M), is the number of initial states whose largest soli-
tons have length less than or equal to K.

The function F(N , K , �0; x) has the following expression:

Proposition 5

F(N , K , �0; x) = N

�0
(YK (x))�0, (11)

where YK (x) is recursively defined as

X1(x) := 1

1 − x

Yk(x) := X1(x)X2(x) · · · Xk(x) (k = 1, 2, . . .)

Xk(x) := 1

1 − {Y1(x)Y2(x) · · · Yk−1(x)}2xk
(k = 1, 2, . . .) (12)
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Now we introduce

ak(x) :=
[ k+1

2

]∑
j=0

(
k + 1 − j

j

)
(−1) j x j (k ≥ −1, k ∈ Z) (13)

For polynomials ak(x), we have the following Lemma.

Lemma 6 Let ak(x) be as above, then

ak+1(x) = ak(x) − xak−1(x) (k = 0, 1, 2, . . .). (14)

ak+1(x)ak−1(x) = ak(x)2 − xk+1 (k = 0, 1, 2, . . .) (15)

ak(x) = α(x)k+2 − β(x)k+2

α(x) − β(x)
(k = 0, 1, 2, . . .) (16)

where α(x) and β(x) are two distinct roots of the quadratic equation

t2 − t + x = 0.

Note that α(x) and β(x) are explicitly given as

α = 1 + √
1 − 4x

2
, β = 1 − √

1 − 4x

2
, (17)

and α(x)β(x) = x, α(x) + β(x) = 1.

Proposition 7

Yk(x) = ak−1(x)

ak(x)
(18)

= α(x)k+1 − β(x)k+1

α(x)k+2 − β(x)k+2
(k = 1, 2, 3 . . .) (19)

From Propositions 5 and 7, we have an explicit form of the generating func-
tion F(N , K , �0; x). Then the coefficient f (N , K ; M) is given by the contour
integral

f (N , K ; M) = 1

2π i

∮
|z|=ε�1

F(N , K , �0; z)

zM+1
dz. (20)

Asymptotic behavior of the right hand side of (20) may be estimated with, for
example, the method of steepest decent. However, (20) is still complicated and
we shall try to obtain a simpler expression.

The following Lemma is easily obtained by induction.

Lemma 8(
1

α(x)

)m

=
∞∑

r=0

m · (2r + m − 1)!

(r + m)!r !
xr (m = 1, 2, . . .). (21)
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Then we obtain an explicit formula for f (N , K ; M) defined in Proposition 4
as

Proposition 9

f (n, K ; M) := N

�0

�0∑
j=0,(K+1) j+(K+2)i≤M

∞∑
i=0

(
�0

j

)(
�0 + i − 1

i

)
(−1) j

× (�0 + 2(K + 1) j + 2(K + 2)i) · (2M + �0 − 1)!

(M + �0 + (K + 1) j + (K + 2)i)!(M − (K + 1) j − (K + 2)i)!
, (22)

where �0 = N − 2M.

Finally we obtain

Theorem 10 The coefficient f (N , K ; M) is given by the Cauchy integral

f (N , K ; M) = N

2π i�0

∮
C

dz

zM+1

(
1 − zK+1

1 − zK+2

)�0

(1 + z)2M+�0−1(1 − z).

(23)
Here C denotes the contour |z| = x0(< 1).

We evaluate (23) by the method of steepest decent and we obtain

Theorem 11 For sufficiently large K,

f (N , K ; M) ∼ N

�0

√
2π t0 N

(1 − t0)
(1 + t0)N

t M
0

(
1 − t K+1

0

1 − t K+2
0

)�0

(N → +∞),

(24)
where �0 = N − 2M, M = Nρ and ρ = t0

1+t0
(0 < t0 < 1).

Utilizing the Theorem 11, the asymptotic behavior of fundamental cycle for
generic initial states are given by the theorem

Theorem 12 Let V̄ (N ; ρ) be the number of initial states which have the

fundamental cycle less than exp
[

2(log N )2

− log t0

]
Then

lim
N→∞

V̄ (N ; ρ)

V (N ; ρ)
= 1. (25)

5 CONCLUDING REMARKS

We have reviewed integrability of PBBS in terms of asymptotic behavior of
its fundamental cycles. As a dynamical system, PBBS is shown to have no
ergodicity in the sence that a trajectry does not visit most of the states in the phase
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space. Although the maximum fundamental cycle Tmax�e
√

N (Theorem 3), a
generic state has fundamental cycle T �e(log N )2

(Theorem 12). To obtain more
sharp estimation, we may have to invoke some number theoretical technique,
which is a problem we wish to address in the future.
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1 INTRODUCTION

Since Russel’s horse back journey along the canal from Glasgow to Edinburg
in 1834, since the birth of the Korteweg-de Vries equation in 1895 and since
the remarkable renaissance initiated by M. Kruskal and coworkers in the late
60’s, the field of integrable systems has emerged as being at the crossroads of
important new developments in the sciences.

Integrable systems typically have many different solutions. Besides the soli-
ton and scattering solutions, other important solutions of KdV have arisen,
namely rational and algebro-geometrical solutions. This was the royal road to
the infinite-dimensional Grassmannian description of the KP-solutions, leading
to the fundamental concept of Sato’s τ -function, which enjoys Plücker rela-
tions and Hirota bilinear relations. In this way, the τ -function is a far reaching
generalization of classical theta functions and is nowadays a unifying theme in
mathematics: representation theory, curve theory, symmetric function theory,
matrix models, random matrices, combinatorics, topological field theory, the
theory of orthogonal polynomials and Painlevé theory all live under the same
hat! This general field goes under the somewhat bizarre name of “integrable
mathematics.”

This lecture illustrates another application of integrable systems, this time, to
unitary matrix integrals and ultimately to combinatorics and probability theory.
Unitary matrix integrals, with an appropriate set of time parameters inserted
to make it a τ function, satisfy a new lattice, the Toeplitz lattice, related to
the 2d-Toda lattice for a very special type of initial condition. Besides, it also
satisfies constraints, which form a very small subalgebra of the Virasoro algebra
(Section 2).
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Along a seemingly different vein, certain unitary matrix integrals, developed
in a series with respect to a parameter, have coefficients which contain infor-
mation concerning random permutations, random words and random walks.
Turned around, the generating function for certain probabilities turns out to be
a unitary matrix integral (Section 3).

The connection of these combinatorial problems with integrable systems is
precious: it enables one to find differential and difference equations for these
probabilities! This is explained in Section 4. The purpose of this lecture is to
explain these connections. For a more comprehensive account of these results,
including the ones on random matrices, see [1].

2 A UNITARY MATRIX INTEGRAL: VIRASORO
AND THE TOEPLITZ LATTICE

In this section, we consider integrals over the unitary group U (n) with regard
to the invariant measure dM. Since the spectrum z1, . . . , zn of M lies on the
circle S1 and since the integrand only involves traces, it is natural to integrate
out the “angular part” of dM and to keep its spectral part1 |�n(z)|2dz1 . . . dzn .
For ε ∈ Z, define the following integrals, depending on formal time parameters
t = (t1, t2, · · ·) and s = (s1, s2, · · ·), with τ0 = 1,

τ ε
n (t, s) =

∫
U (n)

(det M)εe�∞
1 Tr(t j M j −s j M̄ j )d M

= 1

n!

∫
(S1)n

|�n(z)|2
n∏

k=1

(
zε

ke�∞
1 (t j z

j
k −s j z

− j
k ) dzk

2π i zk

)

= det

(∮
S1

dz

2π i z
z�−m+εe�∞

1 (t j z j −s j z− j )

)
1≤�,m≤n

, (1)

the latter being a Toeplitz determinant. The last equality follows from the fact
that the product of two Vandermonde’s can be expressed as sum of determinants:

�n(u)�n(υ) =
∑
σ∈Sn

det
(
u�−1

σ (k)υ
k−1
σ (k)

)
1≤�,k≤n

, (2)

and from distributing the factors in the product (in (1)) over the columns of
the matrix, appearing in the last formula of (1). Now, the main point is that
the matrix integrals above satisfy two distinct systems of equations. These
equations will be useful for the combinatorial problems discussed in Section 3.

1 with the Vandermonde determinant �n(z) = 
1≤i< j≤n(zi − z j ).
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2.1 Unitary Matrix Integrals and the Virasoro Algebra

Proposition 1 (See [2]) The integrals (1) satisfy the Virasoro constraints,

V
ε
k(t, s, n)τ ε

n (t, s) = 0, for k = −1, 0, 1 (3)

where V
ε
k := V

ε
k(t, s, n) are the operators

V
ε
−1 =

∑
i≥1

(i + 1)ti+1
∂

∂ti
−

∑
i≥2

(i − 1)si−1
∂

∂si
+ nt1 + (n − ε)

∂

∂s1

V
ε
0 =

∑
i≥1

(
i ti

∂

∂ti
− isi

∂

∂si

)
+ εn = 0 (4)

V
ε
1 = −

∑
i≥1

(i + 1)si+1
∂

∂si
+

∑
i≥2

(i − 1)ti−1
∂

∂ti
+ ns1 + (n + ε)

∂

∂t1
.

Remark Note that the generators V
ε
k are part of an ∞-dimensional Virasoro

algebra; the claim here is that the integrals above satisfy only these three con-
straints, unlike the case of Hermitian matrix integrals, which satisfy a large
subalgebra of constraints!

Proof For the exponent ε �= 0, the proof is a slight modification of the case
ε = 0; so, we stick to the case ε = 0. The Virasoro operators Vk := V

ε
k

∣∣
ε=0

are

generated by the following vertex operator2

X(t, s; u) := ��e�∞
1 (ti ui −si u−i )e

−�∞
1

(
u−i

i
∂

∂ti
− ui

i
∂

∂si

)
. (5)

This means they are a commutator realization of differentiation:

∂

∂u
uk+1 X(t, s; u)

u
=

[
Vk(t, s),

X(t, s; u)

u

]
. (6)

Then the following operator, obtained by integrating the vertex operator (5),

Y(t, s) =
∮

S1

du

2π iu
X(t, s; u, u−1) (7)

has, using (6), the commutation property

[Y, Vk] = 0.

2 The operator � is the semi-infinite shift matrix, with zeroes everywhere, except for 1’s just
above the diagonal, i.e., (�v)n = vn+1 and (��v)n = vn−1.
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Then one checks that the integrals In = n!τ (0)
n in (1) (for n ≥ 1) are fixed points

for Y(t, s); namely, taking into account the shift �� in (5), one computes

Y(t, s)In(t, s) =
∮

S1

du

2π iu
e�∞

1 (ti ui −si u−i )e
−�∞

1

(
u−i

i
∂

∂ti
− ui

i
∂

∂si

)

∫
(S1)n−1

�n−1(z)�n−1(z̄)
n−1∏
k=1

e�∞
1 (ti zi

k−si z
−i
k ) dzk

2π i zk

=
∮

S1

du

2π iu
e�∞

1 (ti ui −si u−i )

∫
(S1)n−1

�n−1(z)�n−1(z̄)

×
n−1∏
k=1

(
1 − zk

u

) (
1 − u

zk

)
e�∞

1 (ti zi
k−si z

−i
k ) dzk

2π i zk

=
∫

(S1)n

|�n(z)|2
n∏

k=1

(
e�∞

1 (ti zi
k−si z

−i
k ) dzk

2π i zk

)
= In(t, s)

Using this fixed point property and the fact that (��)n In = I0, we have for
Y := Y(t, s),

0 = [Vk, Y
n]In

= VkY
n In − Y

n
Vk In

= Vk In − Y
n
Vk In.

= Vk In −
∮

S1

du

2π iu
e�∞

1 (ti ui −si u−i )e
−�∞

1

(
u−i

i
∂

∂ti
− ui

i
∂

∂si

)

. . .

∮
S1

du

2π iu
e�∞

1 (ti ui −si u−i )e
−�∞

1

(
u−i

i
∂

∂ti
− ui

i
∂

∂si

)
Vk I0.

Now one checks visually that for I0 = 1,

Vk I0 = 0 for k = −1, 0, 1,

ending the proof of Proposition 1. The details of the proof can be found in
Adler-van Moerbeke [2]. �

2.2 The Toeplitz Lattice

Considering the integral τ ε
n (t, s), as in (1), and setting, for short,

τn := τ (0)
n , τ±

n := τ±1
n ,

define the ratios

xn(t, s) = (−1)n τ+
n (t, s)

τn(t, s)
and yn(t, s) := (−1)n τ−

n (t, s)

τn(t, s)
, (8)
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and the semi infinite matrices (they are not “rank 2,” but try to be!)

L1 :=

⎛
⎜⎜⎜⎜⎜⎝

−x1 y0 1 − x1 y1 0 0
−x2 y0 −x2 y1 1 − x2 y2 0
−x3 y0 −x3 y1 −x3 y2 1 − x3 y3

−x4 y0 −x4 y1 −x4 y2 −x4 y3

. . .

⎞
⎟⎟⎟⎟⎟⎠

and

L2 :=

⎛
⎜⎜⎜⎜⎜⎝

−x0 y1 −x0 y2 −x0 y3 −x0 y4

1 − x1 y1 −x1 y2 −x1 y3 −x1 y4

0 1 − x2 y2 −x2 y3 −x2 y4

0 0 1 − x3 y3 −x3 y4

. . .

⎞
⎟⎟⎟⎟⎟⎠ (9)

Throughout the paper, set3

hn = τn+1

τn
and vn := 1 − xn yn

∗= hn

hn−1
= τn+1τn−1

τ 2
n

. (10)

One checks that the quantities xn and yn satisfy the following commuting
Hamiltonian vector fields, introduced by Adler and van Moerbeke in [2],

∂xn

∂ti
= (1 − xn yn)

∂Gi

∂yn

∂yn

∂ti
= −(1 − xn yn)

∂Gi

∂xn

∂xn

∂si
= (1 − xn yn)

∂ Hi

∂yn

∂yn

∂si
= −(1 − xn yn)

∂ Hi

∂xn
, (11)

(Toeplitz lattice)

with Hamiltonians

Gi = −1

i
Tr Li

1, Hi = −1

i
Tr Li

2, i = 1, 2, 3, . . . (12)

and symplectic structure

ω :=
∞∑
1

dxk ∧ dyk

1 − xk yk
.

One imposes initial conditions xn(0, 0) = yn(0, 0) = 0 for n ≥ 1 and bound-
ary conditions x0(t, s) = y0(t, s) = 1. The Gi and Fi are functions in involu-
tion with regard to the Hamiltonian vector fields (11). Setting h := diagonal

3 The proof of equality
∗= hinges on associated bi-orthogonal polynomials on the circle, intro-

duced later.
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(h0, h1, . . .), with hi as in (10), we conjugate L1 with a diagonal matrix so as
to have 1’s in the first superdiagonal:

L̂1 := hL1h−1 and L̂2 := L2.

The Hamiltonian vector fields (11) imply the 2-Toda lattice equations for the
matrices L̂1 and L̂2,

∂ L̂ i

∂tn
=

[(
L̂n

1

)
+ , L̂ i

]
and

∂ L̂ i

∂sn
=

[(
L̂n

2

)
− , L̂ i

]
i = 1, 2 and n = 1, 2, . . . .

(two-Toda Lattice) (13)

Thus the particular structure of L1 and L2 is preserved by the 2-Toda Lattice
equations. In particular, this implies that the τn’s satisfy the KP-hierarchy.

Other equations for the τn’s are obtained by noting that the expressions
formed by means of the matrix integrals (1) above4

p(1)
n (t, s; z) = zn τn(t − [z−1], s)

τn(t, s)
and p(2)

n (t, s; z) = zn τn(t, s + [z−1])

τn(t, s)

are actually polynomials in z, with coefficients depending on t, s; moreover,
they are bi-orthogonal polynomials on the circle for the following (t, s)-
dependent inner product5,

〈 f (z), g(z)〉t,s :=
∮

S1

dz

2π i z
f (z)g(z−1)e�∞

1 (ti zi −si z−i ). (15)

Using bi-orthogonality one shows that the variables xn and yn , defined in (8),
equal the z0-term of the bi-orthogonal polynomials,

xn(t, s) = p(1)
n (t, s; 0) and yn(t, s) = p(2)

n (t, s; 0) . (16)

(i) This fact implies the following identity for the hn’s:(
1 − hn+1

hn

) (
1 − hn

hn−1

)
= − ∂

∂t1
log hn

∂

∂s1
log hn . (17)

(ii) The mere fact that L1 and L2 satisfy the two-Toda lattice implies that
the integrals τn(t, s) satisfy, besides the KP-hierarchy in t and s (sep-
arately), the following equations, combining (t, s)-partials and nearest

4 For α ∈ C, define [α] := (
α, 1

2
α2, 1

3
α3, . . .

) ∈ C
∞.

5 For this inner-product, we have (zk)� = z−k , i.e.,

〈zk f (z), g(z)〉t,s = 〈 f (z), z−k g(z)〉t,s . (14)



Combinatorics and Integrable Geometry 341

neighbors τn±1,

∂2

∂s1∂t1
log τn = −τn−1τn+1

τ 2
n

,

∂2

∂s2∂t1
log τn = −2

∂

∂s1
log

τn

τn−1
· ∂2

∂s1∂t1
log τn − ∂3

∂s2
1∂t1

log τn. (18)

3 MATRIX INTEGRALS AND COMBINATORICS

3.1 Largest Increasing Sequences in Random Permutations and Words

Consider the group of permutations of length k

Sk = {permutaions π of {1, . . . , k}}
=

{
πk = π =

(
1 . . . k

π (1) . . . π (k)

)
, for distinct 1 ≤ π ( j) ≤ k

}
,

equipped with the uniform probability distribution

Pk(πk) = 1/k!. (19)

Also consider words of length k, taken from an alphabet 1, . . . , p,

S p
k = {words σ of length k from an alphabet {1, . . . , p}}

=
{
σ = σk =

(
1 2 . . . k

σ (1) σ (2) . . . σ (k)

)
, for arbitrary1 ≤ σ ( j) ≤ p

}
(20)

and uniform probability P p
k (σ ) = 1/k p on S p

k .
An increasing subsequence of πk ∈ Sk or σk ∈ S p

k is a sequence6 1 ≤ j1
< · · · < jα ≤ k, such that π ( j1) ≤ · · · ≤ π ( jα). Define

Lk(πk)
Lk(σk)

}
= length of the longest increasing subsequence of

{
πk

σk
(21)

We shall be interested in the probabilities

Pk(Lk(π ) ≤ n, π ∈ Sk) and P p
k (Lk(σ ) ≤ n, σ ∈ S p

k ).

Examples :

⎧⎨
⎩

for π7 = (3, 1, 4, 2, 6, 7, 5) ∈ S7, we have L7(π7) = 4.

for π5 = (5, 1, 4, 3, 2) ∈ S5, we have L5(π5) = 2.

for σ7 = (2, 1, 3, 2, 1, 1, 2) ∈ S3
7 , we have L7(σ7) = 4.

6 For permutations one automatically has strict inequalities π ( j1) < · · · < π ( jα).
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In 1990, Gessel [3] considered the generating function (22) below and
showed that it equals a Toeplitz determinant (determinant of a matrix, whose
(i, j)th entry depends on i − j only). By now, Theorem 2 below has many dif-
ferent proofs; at the end of Section 3.3, we sketch a proof based on integrable
ideas. See also Section 4.2.

Theorem 2 (Gessel [3]) The following generating function has an expression
in terms of a U(n)-matrix integral7

∞∑
k=0

ξ k

k!
Pk(Lk(π ) ≤ n) =

∫
U (n)

e
√

ξ Tr(M+M̄)d M

= 1

n!

∮
(S1)n

|�n(z)|2
n∏

k=1

(
e
√

ξ (zk+z̄k ) dzk

2π i zk

)

= det

(∮
S1

dz

2π i z
z�−me

√
ξ (z+z−1)

)
1≤�,k≤n

(22)

Theorem 3 (Tracy-Widom [4]) We also have8

∞∑
k=0

(pξ )k

k!
P p

k (Lk(σ ) ≤ n) =
∫

U (n)

eξT r M̄ det(I + M)pd M

= det

(∮
S1

dz

2π i z
zk−�eξ z−1

(1 + z)p

)
1≤k,�≤n

.

Consider instead the subgroups of odd permutations, with 2kk! elements, the
hyperoctahedral group,

Sodd
2k =

{
π2k ∈ S2k, π2k : (−k, . . . , −1, 1, . . . , k)�
with π2k(− j) = −π2k( j), for all j

}
⊂ S2k

Sodd
2k+1 =

{
π2k+1 ∈ S2k+1, π2k : (−k, . . . , −1, 0, 1, . . . , k)�
with π2k+1(− j) = −π2k+1( j), for all j

}
⊂ S2k

Then, according to Rains [5] and Tracy-Widom [4], the following generating
functions, again involving the length of the longest increasing sequence, are
related to matrix integrals:

7 The expression (22) is a determinant of Bessel functions, since Jn(u) is defined by eu(t−t−1) =
�∞

−∞tn Jn(2u) and thus

e
√

ξ (z+z−1) = e
√−ξ ((−i z)−(−i z)−1) =

∑
(−i z)n Jn(2

√
−ξ ).

8 The functions appearing in the contour integration are confluent hypergeometric functions 1 F1.
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Theorem 4 For π2k ∈ Sodd
2k and π2k+1Sodd

2k , one has the following generating
functions:

∞∑
0

(2ξ )k

k!
P(L(π2k) ≤ n for π2k ∈ Sodd

2k ) =
∫

U (n)

e
√

ξ Tr(M2+M̄2)d M

∞∑
0

(2ξ )k

k!
P(L(π2k+1) ≤ n for π2k+1 ∈ Sodd

2k )

= 1

4

(
∂

∂t

)2 ∫
U (n)

d M
(

eTr(t(M+M̄)+√
ξ (M2+M̄2) + eTr(t(M+M̄)−√

ξ (M2+M̄2))
) ∣∣∣∣

t=0

Generating functions for other combinatorial quantities related to integrals
over the Grassmannian Gr(p, R

n) and Gr(p, C
n) of p-planes in R

n or C
n have

been investigated by Adler-van Moerbeke [6].

3.2 Combinatorial Background

The reader is reminded of a few basic facts in combinatorics. Standard refer-
ences to this subject are MacDonald, Sagan, Stanley, Stanton and White [7–10].

� A partition λ of n (noted λ � n) or a Young diagram λ of weight n is
represented by a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λ� ≥ 0, such that
n = |λ| := λ1 + · · · + λ�; n = |λ| is called the weight. A dual Young dia-
gram λ� = (λ�

1 ≥ λ�
2 ≥ · · ·) is the diagram obtained by flipping the diagram

λ about its diagonal; clearly |λ| = |λ�|. Define Yn := {all partitions λ with
|λ| = n}.

A skew-partition or skew Young diagram λ\μ, for λ ⊃ μ, is defined as the
shape obtained by removing the diagram μ from λ.

� The Schur polynomial sλ(t) associated with a Young diagramλ � n, is defined
by

sλ(t1, t2, . . .) = det (sλi −i+ j (t))1≤i, j≤�

in terms of elementary Schur polynomials si (t), defined by

e�∞
1 ti zi =:

∑
i≥0

si (t)z
i , and si (t) = 0 for i < 0.

The skew Schur polynomial sλ\μ(t), associated with a skew Young diagram
λ\μ, is defined by

sλ\μ(t) := det (sλi −i−μ j + j (t))1≤i, j≤n. (23)

The sλ’s form a basis of the space of symmetric functions in x1, x2, . . . , via
the map ktk = ∑

i≥1 xk
i .
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� A standard Young tableau P of shape λ � n is an array of integers 1, . . . , n
placed in the Young diagram, which are strictly increasing from left to right
and from top to bottom. A standard skew Young tableau of shape λ\μ � n
is defined in a similar way. Then, it is well-known that

f λ := #

{
standard tableaux of shape λ � n
filled with integers 1, . . . , n

}
= |λ|!

u|λ| sλ(t)

∣∣∣∣
ti =uδi1

f λ\μ := #

{
standard skew tableaux of shape
λ\μ � n filled with integers 1, . . . , n

}
= |λ\μ|!

u|λ\μ| sλ\μ(t)

∣∣∣∣
ti =uδi1

(24)

� A semi standard Young tableau of shape λ � n is an array of integers 1, . . . , p
placed in the Young diagram λ, which are non-decreasing from left to right
and strictly increasing from top to bottom. The number of semi-standard
Young tableaux of a given shape λ � n, filled with integers 1 to p for p ≥ λ�

1 ,
has the following expression in terms of Schur polynomials:

#

{
semi standard tableaux of shape λ

filled with numbers from 1 to p

}
= sλ

(
p,

p

2
,

p

3
, . . .

)
. (25)

� Robinson-Schensted-Knuth (RSK) correspondence: There is a 1-1 correspon-
dence

Sk ←→
⎧⎨
⎩

pairs of standard Young tableaux (P, Q),
both of same arbitrary shape λ, with
|λ| = k, filled with integers 1, . . . , k

⎫⎬
⎭ (26)

Given a permutation π = (i1, . . . , ik), the RSK correspondence constructs
two standard Young tableaux P, Q having the same shape λ. This construc-
tion is inductive. Namely, having obtained two equally shaped Young dia-
grams Pj , Q j from i1, . . . , i j , with the numbers (i1, . . . , i j ) in the boxes of
Pj and the numbers (1, . . . , j) in the boxes of Q j , one creates a new diagram
Q j+1, by putting the next number i j+1 in the first row of P, according to the
rules:

(i) if i j+1 ≥ all numbers appearing in the first row of Pj , then one creates a
new box containing i j+1 to the right of the first column,

(ii) if not, place i j+1 in the box (of the first row) with the smallest higher
number. That number then gets pushed down to the second row of Pj

according to the rules (i) and (ii), as if the first row had been removed.

The diagram Q is a bookkeeping device; namely, add a box (with the number
j + 1 in it) to Q j exactly at the place, where the new box has been added to
Pj . This produces a new diagram Q j+1 of same shape as Pj+1.



Combinatorics and Integrable Geometry 345

The inverse of this map is constructed by reversing the steps above. The
Robinson-Schensted-Knuth correspondence has the following properties:

� length (longest increasing subsequence of π ) = # (columns in P)
� length (longest decreasing subsequence of π ) = # (rows in P)
� π �→ (P, Q), then π−1 �→ (Q, P) (27)

So-called Plancherel measure P̃k on Yk is the probability induced from the
uniform probability Pk on Sk (see (19)), via the RSK map (26). For an arbitrary
partition λ � k, it is computed as follows:

P̃k(λ) := Pk(permutations π ∈ Sk leading to λ ∈ Yk by RSK)

= #{ permutations leading to λ ∈ Yk by RSK}
k!

=
#

{
pairs of standard tableaux (P, Q), both
of shape λ, filled with numbers 1, . . . , k

}
k!

= ( f λ)2

k!
, using(24).

Note that, by the first property in (27), we have

Lk(π ) ≤ n ⇐⇒ (P, Q) has shape λ with |λ| = k and λ1 ≤ n.

These facts prove the following Proposition:

Proposition 5 Let Pk be uniform probability on the permutations in Sk and
P̃k Plancherel measure on Yk := {partitions λ � k}. Then:

Pk(Lk(π ) ≤ n) = 1

k!
#

{
pairs of standard Young tableaux (P, Q), both of
same arbitrary shape λ, with|λ| = k and λ1 ≤ n

}

= 1

k!

∑
|λ|=k
λ1≤n

( f λ)2

= P̃k(λ1 ≤ n). (28)

From a slight extension of the RSK correspondence for “words,” we have

S p
k ←→

⎧⎨
⎩

semi-standard and standard Young tableaux
(P, Q) of same shape λ and |λ| = k, filled

resp., with integers (1, . . . , p) and (1, . . . , k),

⎫⎬
⎭ ,

and thus the uniform probability P p
k on S p

k induces a probability measure P̃ p
k

on

Y
p
k = {partitions λ such that |λ| = k, λ�

1 ≤ p},
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namely

P̃ p
k (λ) = P p

k {words σ ∈ S p
k leading to λ ∈ Y

p
k by RSK}

= f λsλ

(
p,

p
2
,

p
3
, . . .

)
pk

, λ ∈ Y
p
k .

Proposition 6 Let Pk be uniform probability on words in S p
k and P̃ p

k the
induced measure on Y

p
k . Then:

P p
k (L(σ ) ≤ n) = 1

pk
#

⎧⎨
⎩

semi-standard and standard Young tableaux (P,Q)
of same shape λ, with|λ| = k and λ1 ≤ n, filled
resp., with integers (1, . . . , p) and (1, . . . , k),

⎫⎬
⎭

= 1

pk

∑
|λ|=k
λ1≤n

f λsλ

(
p,

p

2
,

p

3
, . . .

)

= P̃ p
k (λ1 ≤ n) . (29)

Example For permutation π =
(

1 2 3 4 5
5 1 4 3 2

)
∈ S5, the RSK algo-

rithm gives

P ⇒ 5 1 1 4 1 3 1 2
5 5 4 3

5 4
5

Q ⇒ 1 1 1 3 1 3 1 3
2 2 2 2

4 4
5

Hence

π �→ (P, Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2︷ ︸︸ ︷⎛
⎜⎜⎝

1 2
3
4
5

⎞
⎟⎟⎠

standard

,

⎛
⎜⎜⎝

1 3
2
4
5

⎞
⎟⎟⎠

standard

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the sequence 1,3, underlined in the permutation above is a longest
increasing sequence, and so L5(π ) = 2; of course, we also have

L5(π ) = 2 = #{columns of P or Q}.
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3.3 A Probability on Partitions and Toeplitz Determinants

Define yet another “probability measure” on the set Y of Young diagrams

P(λ) = Z−1sλ(t)sλ(s), Z = e
∑

i≥1 i ti si . (30)

Cauchy’s identity9 guarantees that P(λ) is a probability measure, in the sense∑
λ∈Y

P(λ) = 1,

without necessarily 0 ≤ P(λ) ≤ 1. This probability measure has been
introduced and extensively studied by Borodin, Okounkov, Olshanski and oth-
ers; see [11, 12] and references within. In the following Proposition, the Toeplitz
determinants appearing in (1) acquire a probabilistic meaning in terms of the
new probability P:

Proposition 7 Given the probability (30), the following holds

P(λ with λ1 ≤ n) = Z−1det

(∮
S1

dz

2π i z
zk−�e− ∑∞

1 (ti zi +si z−i )

)
1≤k,�≤n

(31)

and

P(λ with λ�
1 ≤ n) = Z−1det

(∮
S1

dz

2π i z
zk−�e

∑∞
1 (ti zi +si z−i )

)
1≤k,�≤n

with Z given by (31).

Proof Consider the semi infinite Toeplitz matrix

m∞(t, s) = (μk�)k,�≥0, with μk�(t, s) =
∮

S1

zk−�e
∑∞

1 (t j z j −s j z− j ) dz

2π i z
.

Note that

∂μk�

∂ti
=

∮
S1

zk−�+i e
∑∞

1 (t j z j −s j z− j ) dz

2π i z
= μk+i,�

∂μk�

∂si
= −

∮
S1

zk−�−i e
∑

(t j z j −s j z− j ) dz

2π i z
= −μk,l+i (32)

9 Cauchy’s identity takes on the following form in the t and s variables:∑
λ∈Y

sλ(t)sλ(s) = e
∑∞

1 i ti si .
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with initial condition μk�(0, 0) = δk�. In matrix notation, this amounts to the
system of differential equations10

∂m∞
∂ti

= �i m∞ and
∂m∞
∂si

= −m∞(��)i ,

with initial condition m∞(0, 0) = I∞. (33)

The solution to this initial value problem is given by the following two expres-
sions:

(i) m∞(t, s) = (μk�(t, s))k,�≥0, (34)

as follows from the differential equation (32), and

(ii) m∞(t, s) = e
∑∞

1 ti �i
m∞(0, 0)e− ∑∞

1 si �
�i

, (35)

upon using (∂/∂tk)e
∑∞

1 ti �i = �ke
∑∞

1
ti �

i

. Then, by the uniqueness of solutions
of ode’s, the two solutions coincide, and in particular the n × n upper-left blocks
of (34) and (35), namely

mn(t, s) = En(t)m∞(0, 0)E�
n (−s) , (36)

where

En(t) =

⎛
⎜⎜⎜⎜⎜⎝

1 s1(t) s2(t) s3(t) . . . sn−1(t) . . .

0 1 s1(t) s2(t) . . . sn−2(t) . . .
...

s1(t) . . .

0 . . . 0 1 . . .

⎞
⎟⎟⎟⎟⎟⎠ = (s j−i (t)) 1≤i<n

1≤ j<∞

is the n × n upper-left blocks of

e
∑∞

1 ti �i =
∞∑
0

si (t)�
i =

⎛
⎜⎜⎜⎜⎜⎝

1 s1(t) s2(t) s3(t) . . .

0 1 s1(t) s2(t) . . .

0 0 1 s1(t) . . .

0 0 0 1
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎠ = (s j−i (t)) 1≤i<∞

1≤ j<∞
.

Therefore the determinants of the matrices (36) coincide:

det mn(t, s) = det(En(t)m∞(0, 0)E�
n (−s)) . (37)

10 The operator � is the semi-infinite shift matrix defined in footnote 2. Also I∞ is the semi-
infinite identity matrix.
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Moreover, from the Cauchy-Binet formula11, applied twice, one proves the
following: given an arbitrary semi-infinite initial condition m∞(0, 0), the ex-
pression below admits an expansion in Schur polynomials,

det(En(t)m∞(0, 0)E�
n (−s)) =

∑
λ,ν

λ�
1 ,ν�

1 ≤n

det(mλ,ν)sλ(t)sν(−s), for n > 0,

(38)

where the sum is taken over all Young diagrams λ and ν, with first columns
≤ n (i.e., λ�

1 and ν�
1 ≤ n) and where mλ,ν is the matrix

mλ,ν := (
μλi −i+n,ν j − j+n(0, 0)

)
1≤i, j≤n. (39)

Applying formula (39) to m∞(0, 0) = I∞, we have

det mλ,ν = det (μλi −i+n,ν j − j+n)1≤i, j≤n �= 0 if and only if λ = ν, (40)

in which case det mλ,λ = 1. Therefore,

∑
λ∈Y

λ�
1 ≤n

sλ(t)sλ(−s) = det

(∮
S1

dz

2π i z
zk−�e

∑∞
1 (ti zi −si z−i )

)
1≤k,�≤n

. (41)

But, we also have, using the probability P, defined in (30), that

P (λ with λ�
1 ≤ n) = Z−1

∑
λ∈Y

λ�
1 ≤n

sλ(t)sλ(s) (42)

Comparing the two formulas (41) and (42) and changing s �→ −s in (41),
yield

P(λ with λ�
1 ≤ n) = Z−1det

(∮
S1

dz

2π i z
zk−�e

∑∞
1 (ti zi +si z−i )

)
1≤k,�≤n

= Z−1
∑
λ∈Y

λ�
1 ≤n

sλ(t)sλ(s). (43)

11 Given two matrices A
(m,n)

, B
(n,m)

, for n large ≥ m

det(AB) = det

(∑
i

a�i bik

)
1≤k,�≤m

=
∑

1≤i1<...<im≤n

det(ak,i� )1≤k,�≤m det(bik ,�)1≤k,�≤m .
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Using sλ(−t) = (−1)|λ|sλ�(t), one easily checks

P(λ with λ1 ≤ n) = Z−1
∑
λ∈Y

λ1≤n

sλ(t)sλ(s), by definition

= Z−1
∑
λ∈Y

λ�
1 ≤n

sλ�(t)sλ�(s)

= Z−1
∑
λ∈Y

λ�
1 ≤n

sλ(−t)sλ(−s)

= Z−1det

(∮
S1

dz

2π i z
zk−�e− ∑∞

1 (ti zi +si z−i )

)
1≤k,�≤n

,

using (43) in the last equality, with Z as in (30). This establishes
Proposition 7. �

Proof of Theorem 2 For real ξ > 0, consider the locus

L1 = {all sk = tk = 0, except t1 = s1 =
√

ξ} (44)

Indeed, for an arbitrary λ ∈ Y, the probability (30) evaluated along L1 reads:

P(λ)
∣∣∣L1

= e− ∑
k≥1 ktk sk sλ(t)sλ(s)

∣∣∣ ti =
√

ξδi1
si =

√
ξδi1

= e−ξ ξ |λ|/2 f λ

|λ|!ξ
|λ|/2 f λ

|λ|! , using (24),

= e−ξ ξ |λ|

|λ|!
( f λ)2

|λ|! .

Therefore

P(λ1 ≤ n)|L1
=

∑
λ∈Y

λ1≤n

e−ξ ξ |λ|

|λ|!
( f λ)2

|λ|!

= e−ξ
∞∑
0

ξ k

k!

∑
|λ|=k
λ1≤n

( f λ)2

k!

= e−ξ
∞∑
0

ξ k

k!
Pk(Lk(π ) ≤ n), by Proposition 3.4. (45)
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The next step is to evaluate (31) in Proposition 3.5 along the locus L1,

P(λ1 ≤ n)

∣∣∣∣∣L1
= e− ∑

i≥1 i ti si det

(∮
S1

dz

2π i z
zk−�e− ∑∞

1 (ti zi +si z−i )

)
1≤k,�≤n

∣∣∣∣∣
L1

= e−ξ det

(∮
S1

dz

2π i z
zk−�e−√

ξ (z+z−1)

)
1≤k,�≤n

= e−ξ det

(∮
S1

dz

2π i z
zk−�e

√
ξ (z+z−1)

)
1≤k,�≤n

, (46)

by changing z �→ −z. Finally, comparing (45) and (46) yields (22), ending the
proof of Theorem 2. �

Proof of Theorem 3 The proof of this theorem goes along the same lines,
except one uses Proposition 3.4 and one evaluates (31) along the locus

L2 = {tk = δk1ξ and ksk = p},
instead of L1; then one makes the change of variable z �→ −z−1 in the
integral. �

3.4 Non Intersecting Random Walks

Consider n walkers in Z, walking from x = (x1 < x2 < · · · < xn) to y = (y1 <

y2 < · · · < yn), such that, at each moment, only one walker moves either one
step to the left, or one step to the right, with all possible moves equally likely.
This section deals with a generating function for the probability

P(k, x, y) := P

(
that n walkers in Z go from x1, . . . , xn to
y1, . . . , yn in k steps, and do not intersect

)
= b(k)

xy

(2n)k

We now state a Theorem which generalizes Theorem 3.1; the latter can be
recovered by assuming close packing x = y = (0, 1, . . . , n − 1). In Section
4.3 discrete equations will be found for P(k; x, y).

Theorem 8 (Adler-van Moerbeke [13]) The generating function for the
P(k; x, y) above has the following matrix integral representation:

∑
k≥0

(2nz)k

k!
P(k; x, y) =

∫
U (n)

sλ(M)sμ(M̄)ezTr(M+M̄)d M =: aλμ(z)

= det

(∮
S1

du

2π iu
uλ�−�−μk+kez(u+u−1)

)
1≤k,�≤n

,
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where sλ and sμ are Schur polynomials12 with regard to the partitions λ and μ,
themselves determined by the initial and final positions x and y,

λn−i+1 := xi − i + 1, μn−i+1 := yi − i + 1. for i = 1, . . . , n. (47)

Remark The partitions λ and μ measure the discrepancy of x and y from
close packing 0, 1, . . . , n − 1!

Remark Connections of random walks with Young diagrams have been
known in various situations in the combinatorial literature; see R. Stanley [9]
(p. 313), P. Forrester [14], D. Grabiner & P. Magyar [15, 16] and J. Baik [17].

Proof Consider the locus

L1 = {all tk = sk = 0, except t1 = z, s1 = −z}.
Then, since

e
∑∞

1 (ti ui −si u−i )
∣∣
L1

= ez(u+u−1),

we have, combining (38) and (37),∫
U (n)

ezTr(M+M̄)e
∑∞

1 Tr(ti Mi −si M̄i )d M =
∑

λ,μ such that

λ�
1 ,μ�

1 ≤n

aλμ(z)sλ(t)sμ(−s), (48)

with (for definitions and formulas for skew Schur polynomials and tableaux,
see (23) and (24))

aλμ(z)
(i)= det

(∮
S1

uλ�−�−μk+kez(u+u−1) du

2π iu

)
1≤�,k≤n

(i i)=
∫

U (n)

sλ(M)Sμ(M̄)ezTr(M+M̄)d M

(i i i)=
∑
ν with
ν�
1 ≤n

Sν\λ(t)sν\μ(−s)
∣∣
L1

(iv)=
∑

ν with ν⊃λ,μ

ν�
1 ≤n

z|ν\λ|

|ν\λ|! f ν\λ z|ν\μ|

|ν\μ|! f ν\μ

12 Given a unitary matrix M, the notation sλ(M) denotes a symmetric function of the eigenvalues
x1, . . . , xn of the unitary matrix M and thus in the notation of the present paper sλ(M) :=
sλ(Tr M, 1

2
Tr M2, 1

3
Tr M3, . . .).
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(v)=
∞∑

k=0

zk

k!

k!

k1! k2!

∑
ν with ν⊃λ,μ

|ν\λ|=k1|ν\μ|=k2
ν�
1 ≤n

f ν\λ f ν\μ,

where k{ 1
2

} = 1

2
(k ∓ |λ| ± |μ|),

=
∑
k≥0

zk

k!
#

⎧⎪⎪⎨
⎪⎪⎩

ways that n non intersecting
walkers in Z move in k steps
from x1 < x2 < · · · < xn

to y1 < y2 < · · · < yn

⎫⎪⎪⎬
⎪⎪⎭ =

∑
k≥0

(2nz)k

k!
P(k; x, y).

Equality (i) follows from (40) and (38). The Fourier coefficients aλμ(z)
of (48) can be obtained by taking the inner-product13 of the sum (48) with
sα(t)sβ(−s). Equality (iii) is the analogue of (43) for skew-partitions and also
follows from the Cauchy-Binet formula. Equality (iv) follows from formula
(24) for skew-partitions. Equality (v) follows immediately from (iv), whereas
the last equality follows from an analogue of RSK as is now explained.

Consider, as in the picture below, the two skew-tableaux P and Q of shapes
ν\λ and μ\λ, with integers 1, . . . , |ν\λ| and 1, . . . , |ν\μ| inserted respectively
(strictly increasing from left to right and from top to bottom). The integers
ci j in the tableau P provide the instants of left move for the corresponding
walker (indicated on the left), assuming they all depart from (x1, . . . , xn), which
itself is specified by ν. This construction implies that, at each instant, only
one walker moves and they never intersect. That takes an amount of time
|ν\λ| = 1

2
(k − |λ| + |μ|) = k1, at which they end up at a position specified

by ν. At the next stage and from that position, they start moving right at the
instants k − c′

i j , where the c′
i j are given by the second skew tableau and forced

to end up at positions (y1, . . . , yn), itself specified by μ; see (47). Again the
construction implies here that they never intersect and only one walker moves
at the time. The time (of right move) elapsed is |ν\μ| = 1

2
(k + |λ| − |μ|) = k2.

So, the total time elapsed is k1 + k2 = k.
The final argument hinges on the fact that any motion, where exactly one

walker moves either left or right during time k can be transformed (in a canonical
way) into a motion where the walkers first move left during time k1 and then
move right during time k2. The precise construction is based on an idea of
Forrester [14]. This map is many-to-one: there are precisely k!

k1!k2!
walks leading

13

〈sα, sλ〉 := sα

(
∂

∂t1

,
1

2

∂

∂t2

, . . .

)
sλ(t)

∣∣∣
t=0
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to a walk where walkers first move left and then right.

This sketches the proof of Theorem 8. �

4 WHAT DO INTEGRABLE SYSTEMS TELL US
ABOUT COMBINATORICS?

The fact that the matrix integrals are related to the Virasoro constraints and the
Toeplitz lattice will lead to various statements about the various combinatorial
problems considered in Section 3.

4.1 Recursion Relations for Unitary Matrix Integrals

Motivated by the integrals appearing in Theorems 2, 3, and 4, consider the
integrals, for ε = 0, ±, (different from the In introduced before)

I ε
n := 1

n!

∫
(S1)n

|�n(z)|2
n∏

k=1

zε
ke

∑N
j=1

u j
j (z j

k +z− j
k ) dzk

2π i zk
. (49)

They enjoy the following property:

Theorem 9 The integral In := I 0
n can be expressed as a polynomial in I1 and

the expressions x1, . . . , xn−1,

In = (I1)n
n−1∏

1

(1 − x2
k )n−k, (50)

with the xk’s satisfying rational 2N + 1-step recursion relations in terms of
prior xi ’s; to be precise((

N∑
1

ui Li
1

)
k+1,k+1

+
(

N∑
1

ui Li
1

)
k,k

− 2

(
N∑
1

ui Li−1
1

)
k+1,k

)
= kx2

k

1 − x2
k

,

(51)
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where L1 is the matrix14 defined in (9) and the ui ’s appear in the in-
tegral (49). The left hand side of this expression is polynomial in the
xk−N , . . . , xk, . . . , xk+N and linear in xk+N and the parameters u1, . . . , uN .
This implies the recursion relation

xk+N = F(xk+N−1, . . . , xk, . . . , xk−N ; u1, . . . , uN ),

with F rational in all arguments.

Remark Note the xn’s are the same ratios as in (8) but for the integrals (4.1.1),
i.e.,

xn = (−1)n I +
n

In
, with In := I ε

n

∣∣∣∣
ε=0

and I +
n := I ε

n

∣∣∣∣
ε=+1

,

Example 1 Symbol et(z+z−1).

This concerns the integral in Theorem 2, expressing the generating function
for the probabilities of the length of longest increasing sequences in random
permutations. Setting u1 = u, ui = 0 for i ≥ 2 in the equation (51), one finds
that

xn =

∫
(S1)n |�n(z)|2

n∏
k=1

zkeu
(

zk+z−1
k

)
dzk

2π i zk∫
(S1)n |�n(z)|2

n∏
k=1

eu
(

zk+z−1
k

)
dzk

2π i zk

(52)

satisfies the simple three-step rational relation,

u(xk+1 + xk−1) = kxk

x2
k − 1

. (53)

This so-called MacMillan equation [18] for xn was first derived by Borodin
[19] and Baik [20], using Riemann-Hilbert methods. In [13], we show this is
part of the much larger system of equations (51), closely related to the Toeplitz
lattice. This map (53) is the simplest instance of a family of area-preserving
maps of the plane, having an invariant, as found by McMillan, and extended by
Suris [21] to maps of the form ∂2

n x(n) = f (x(n)), having an analytic invariant
of two variables �(β, γ ). The invariant in the case of the maps (53) is

�(β, γ ) = t(1 − β2)(1 − γ 2) − nβγ,

which means that for all n,

�(xn+1, xn) = �(xn, xn−1).

14 Note in the case of an integral the type (49), we have xn = yn , and thus L2 = L�
1 .
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For more on this matter, see the review by B. Grammaticos, F. Nijhoff, A.
Ramani [21].

Example 2 Symbol et(z+z−1)+u(z2+z−2).
These symbols appear in the longest increasing sequence problem for the hy-
peroctahedral group; see Theorem 3.3. Here we set u1 = t, u2 = u, ui = 0 for
i ≥ 3 in the equation (51); one finds

xn =

∫
(S1)n |�n(z)|2

n∏
k=1

zket(zk+z−1
k )+u(z2+z−2) dzk

2π i zk∫
(S1)n |�n(z)|2

n∏
k=1

et(zk+z−1
k )+u(z2+z−2)

dzk

2π i zk

(54)

satisfies the five-step rational relation, (vn := 1 − x2
n )

0 = nxn + tvn(xn−1 + xn+1) + 2uvn

× (xn+2vn+1 + xn−2vn−1 − xn(xn+1 + xn−1)2). (55)

Also here the map has a polynomial invariant

�(α, β, γ, δ) = (
t + 2u(α(δ − β) − γ (δ + β))

)
(1 − β2)(1 − γ 2) − nβγ ;

that is for all n,

�(xn−1, xn, xn+1, xn+2) = �(xn−2, xn−1, xn, xn+1).

Proof of Theorem 9 Formula (50) follows straightforwardly from the identity
(10). Moreover Proposition 2.1 implies the integrals

τ ε
n (t, s) = 1

n!

∫
(S1)n

|�n(z)|2
n∏

k=1

zε
ke

∑∞
1

(
ti zi

k−si z
−i
k

)
dzk

2π i zk
(56)

satisfy the Virasoro constraints (3). Thus, setting Vn := V
ε
n

∣∣
ε=0

and V
+
n :=

V
ε
n

∣∣
ε=1

, we have

0 = V
+
0 τ+

n

τ ε
n

− V0τn

τn

=
∑
i≥1

(
i ti

∂

∂ti
− isi

∂

∂si

)
log xn + n, where xn = (−1)n τ+

n

τn

= 1 − x2
n

xn

∂

∂xn

∑
i≥1

(i ti Gi − isi Hi ) + n, using (2.2.4)

= 1 − x2
n

x2
n

∑
i≥1

{
i ti (−(Li

1)n+1,n+1 + (Li−1
1 )n+1,n)

+isi ((Li
2)nn − (Li−1

2 )n,n+1)

}
+ n.
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Setting

i ti = −isi =
{

ui for 1 ≤ i ≤ N
0 for i > N ,

leads to the claim (51). Relations (53) and (55) are obtained by speciali-
zation. �

4.2 The Painlevé V Equation for the Longest Increasing
Sequence Problem

The statement of Theorem 2 can now be completed by the following Theorem,
due to Tracy-Widom [23]. The integrable method explained below captures
many other situations, like longest increasing sequences in involutions and
words; see Adler-van Moerbeke [2].

Theorem 10 For every n ≥ 0, the generating function (22) for the probability
of the longest increasing sequence can be expressed in terms of a specific
solution of the Painlevé V equation:

∞∑
k=0

ξ k

k!
Pk(Lk(π ) ≤ n) = exp

∫ ξ

0

log

(
ξ

u

)
gn(u)du; (57)

the function gn = g is the unique solution to the Painlevé V equation, with the
following initial condition:

{
g′′ − g

′2
2

(
1

g−1
+ 1

g

)
+ g′

u + 2
u g(g − 1) − n2

2u2
g−1

g = 0

with gn(u) = 1 − un

(n!)2 + O(un+1), near u = 0.
(58)

Proof For the sake of this proof, consider the locus

L = { all ti = si = 0, except t1, s1 �= 0}.

From (4), we have on L,

0 = V0τn

τn

∣∣∣
L

=
(

t1
∂

∂t1
− s1

∂

∂s1

)
log τn

∣∣∣
L

0 = V0τn

τn
− V0τn−1

τn−1

∣∣∣
L

=
(

t1
∂

∂t1
− s1

∂

∂s1

)
log

τn

τn−1

∣∣∣
L

0 = ∂

∂t1

V−1τn

τn

∣∣∣
L

=
(

−s1
∂2

∂s2∂t1
+ n

∂2

∂t1∂s1

)
log τn

∣∣∣
L

+ n.
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Then combining with identities (18) and (17), one finds after some computations
that

gn(x) = − ∂2

∂t1∂s1
log τn(t, s)

∣∣∣
L

= d

dx
x

d

dx

(
log τn(t, s)

∣∣∣ ti =δi0
√

x
si =−δi0

√
x

)
(59)

satisfies equation (58). The initial condition follows from the combina-
torics. �

4.3 Backward and Forward Equation for Nonintersecting
Random Walks

Consider the n random walkers, walking in k steps from x = (x1 < x2 < · · · <

xn) to y = (y1 < y2 < · · · < yn), as introduced in Section 3.4. These data define
difference operators15 for k, n ∈ Z+, x, y ∈ Z,

A1 :=
n∑

i=1

(
k

2n
�−1

k ∂+
2yi

+ xi∂
−
xi

+ ∂+
yi

yi − (xi − yi )

)

A2 :=
n∑

i=1

(
k

2n
�−1

k ∂+
2xi

+ yi∂
−
yi

+ ∂+
xi

xi − (yi − xi )

)
(61)

With these definitions, we have

Theorem 11 [13] The probability

P(k; x, y) = b(k)
xy

(2n)k
= P

⎛
⎜⎜⎜⎜⎝

that n non-intersecting walkers in Z move during
k instants from x1 < x2 < · · · < xn to y1 < y2

< · · · < yn, where at each instant exactly one
walker moves either one step to the left, or one
step to the right

⎞
⎟⎟⎟⎟⎠

(62)

satisfies both a forward and backward random walk equation,

Ai P(k, x, y) = 0, (63)

Remark “Forward and backward,” because A1 essentially involves the end
points y, whereas A2 involves the initial points x.

15 in terms of difference operators, acting on functions f (k, x, y), with k ∈ Z+, x, y ∈ Z:

∂+
αxi

f := f (k, x + αei , y) − f (k, x, y)

∂−
αxi

f := f (k, x, y) − f (k, x − αei , y)

�−1
k f := f (k − 1, x, y). (60)
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Proof The unitary integral below is obtained from the integral τ 0
n (t, s), ap-

pearing in (1), by means of the shifts t1 �→ t1 + z, s1 �→ s1 − z. Thus it satisfies
the Virasoro constraints for k = −1, 0, 1, with the same shifts inserted. This
integral has a double Fourier expansion in Schur polynomials; see (48). So we
have, with Vk defined in (4),

0 = Vk

∣∣∣
t1 �→t1+z
s1 �→s1−z

∫
U (n)

ezTr(M+M̄)e
∑∞

1 Tr(ti Mi −si M̄i )d M

= Vk

∣∣∣
t1 �→t1+z
s1 �→s1−z

∑
λ,μ such that

λ�
1 ,μ�

1 ≤n

aλμ(z)sλ(t)sμ(−s)

∗=
∑
λ�

1 ≤n

μ�
1 ≤n

sλ(t)sμ(−s)L(aλμ(z)),

To explain the equality
∗= above, notice the Virasoro constraints Vk act on the

terms sλ(t)sμ(−s) in the expansion. Since the constraints (4) decouple as a
sum of a t-part and an s-part, it suffices to show Vk(t)sλ(t) can be expanded
in a Fourier series in sμ(t)’s; this is done below. Therefore Vksλ(t)sμ(−s) can
again be expanded in double Fourier series, yielding new coefficientsL(aλμ(z)),
depending linearly on the old ones aλμ(z). Thus we must compute Vk(t)sλ(t)
for

Vk(t) = 1

2

∑
i+ j=k

∂2

∂ti∂t j
+

∑
−i+ j=k

i ti
∂

∂t j
+ 1

2

∑
−i− j=k

(i ti )( j t j ). (64)

This will generalize the Murnaghan-Nakayama rules,

ntn sλ(t) =
∑

μ

μ\λ∈B(n)

(−1)ht(μ\λ)sμ(t)

∂

∂tn
sλ(t) =

∑
μ

λ\μ∈B(n)

(−1)ht(λ\μ)sμ(t). (65)

To explain the notation, b ∈ B(i) denotes a border-strip (i.e., a connected skew-
shape λ\μ containing i boxes, with no 2 × 2 square) and the height ht b of a
border strip b is defined as

ht b := #{rows in b} − 1. (66)

Indeed in [14] it is shown that

V−nsλ(t) =
∑

μ

μ\λ∈B(n)

d (n)
λμsμ(t) and Vnsλ(t) =

∑
μ

λ\μ∈B(n)

d (n)
μλsμ(t) (67)
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with the same precise sum, except the coefficients are different: (n ≥ 1)

d (n)
λμ =

∑
i≥1

∑
⎧⎪⎨
⎪⎩

ν such that
λ\ν ∈ B(i)
μ\ν ∈ B(n + i)
λ\ν ⊂ μ\ν

⎫⎪⎬
⎪⎭

(−1)ht(λ\ν)+ht(μ\ν)

+ 1

2

n∑
i=1

∑
{

ν such that
ν\λ ∈ B(i)
μ\ν ∈ B(n − i)

}(−1)ht(ν\λ)+ht(μ\ν). (68)

In view of the infinite sum in the Virasoro generators (64), one would expect
Vnsλ to be expressible as an infinite sum of Schur polynomials. This is not so:
acting with Virasoro Vn leads to the same precise sum as acting with ntn (resp.
∂/∂tn), except the coefficients in (67) are different from the ones in (65). This
is to say the two operators have the same band structure or locality! Then
setting

aλμ(z) =
∑
k≥0

b(k)
xy

zk

K !
,

leads to the result (63), upon remembering the relation (47) between the λ, μ’s
and the x,y’s. �
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Abstract A few 2 + 1-dimensional equations belonging to the KP and modi-
fied KP hierarchies are shown to be sufficient to provide a unified pic-
ture of all the integrable cases of the cubic and quartic Hénon–Heiles
Hamiltonians.

1 INTRODUCTION

The Hénon–Heiles (HH) Hamiltonian [1] with a generalized cubic potential is
defined as

HH3 : H = 1

2
(p2

1 + p2
2 + c1q2

1 + c2q2
2 ) + αq1q2

2 − β

3
q3

1 + c3

q2
2

, (1)

in which α, β, c1, c2, c3 are constants.
The corresponding equations of motion pass the Painlevé test for only three

sets of values of the ratio β/α, which are also the only three cases for which an
additional first integral K has been found [2–4]. These three cases have been
integrated [5, 6] with genus-two hyperelliptic functions. Moreover, they are
equivalent [7] to the stationary reduction of three fifth-order soliton equations,
called fifth-order Korteweg de Vries (KdV5), Sawada–Kotera (SK), and Kaup–
Kupershmidt (KK) equations, belonging respectively to the KP, BKP, and CKP
hierarchies whose Hirota bilinear forms can be found in [8].
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If the potential is taken as the most general cubic polynomial in (q1, q2),
there exists a fourth Liouville integrable case,

V = q3
1 + 1

2
q2

2 q1 + i

6
√

3
q3

2 , (2)

detected by Ramani et al. [9], but up to now its general solution is unknown.
Another Hénon–Heiles-type Hamiltonian with an extended quartic potential

has been considered,

HH4 : H = 1

2
(P2

1 + P2
2 + aQ2

1 + bQ2
2) + C Q4

1 + B Q2
1 Q2

2 + AQ4
2

+ 1

2

(
α

Q2
1

+ β

Q2
2

)
+ μQ1, (3)

in which A, B, C, α, β, μ, a, b are constants. Again, the equations of motion
pass the Painlevé test for only four values of the ratios A : B : C [9–11], which
happen to be the only known cases of Liouville integrability. However, it is not
yet completely settled whether, in all four cases, the quartic Hamiltonian (3)
displays the same pattern as the cubic Hamiltonian (1), i. e.

the equations of motion can be integrated with hyperelliptic functions of
genus two,
there exists an equivalence with the stationary reduction of some partial
differential equation (PDE) belonging to the KP, BKP, and CKP hierarchies.

In this paper, we first summarize the results already established for the
systems (1) and (3). We then establish new links between the coupled KdV (c-
KdV) systems considered in [12] and some other ones [8, 13, 14] belonging to
the BKP and CKP hierarchies. These links could be useful to find the explicit
general solution without any restriction on the parameters other than those
generated by the Painlevé test.

2 ALREADY INTEGRATED CASES

The four cases for which the quartic Hamiltonian passes the Painlevé test
are,

1. A : B : C = 1 : 2 : 1, μ = 0. The system is then equivalent to the stationary
reduction of the Manakov system [15] of two coupled nonlinear Schrödinger
(NLS) equations and has been integrated [16] with genus two hyperelliptic
functions.

2. A : B : C = 1 : 6 : 1, a = b, μ = 0,
3. A : B : C = 1 : 6 : 8, a = 4b, α = 0,
4. A : B : C = 1 : 12 : 16, a = 4b, μ = 0.
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Table 1. All the cases of HH3 and HH4 which pass the Painlevé test, with the extra
terms c3 or α, β, μ. First column indicates the cubic or quartic case. Second column
is the value of β/α (if cubic) or the ratio A : B : C (quartic), followed by the values
selected by the Painlevé test. Third column indicates the polynomial degree of the
additional constant of the motion K in the momenta (p1, p2). Next column displays
the PDE system connected to the HH case. Last column shows the reference to the
general solution and the not yet integrated cases. When the general solution is known,
it is a single-valued rational function of genus-two hyperelliptic functions

HH case deg K PDE General solution

3 −1, c1 = c2 4 SK [6]

3 −6, c1, c2 arb. 2 KdV5 [5]

3 −16, c1 = 16c2 4 KK [6]

4 1 : 2 : 1 2 c-NLS [16]
μ = 0

4 1 : 6 : 1 4 c-KdV2, Lax order 4 α = β [18], α �= β?
a = b, μ = 0

4 1 : 6 : 8 4 c-KdV1, Lax order 4 βμ = 0 [18], βμ �= 0?
a = 4b, α = 0

4 1 : 12 : 16 4 c-KdVb Lax order 5 αβ = 0 [19], αβ �= 0?
a = 4b, μ = 0

Each of the last three cases is equivalent [12] to the stationary reduction of
a coupled KdV system possessing a fourth or fifth order Lax pair. Canonical
transformations have been found [12,17] which allow us [18,19] to define the
separating variables of the Hamilton–Jacobi equation, however with additional
restrictions on α, β, μ, as showed in Table 1.

3 LINK BETWEEN KP HIERARCHIES AND INTEGRABLE
HH CASES

Let us consider the following three systems of the KP and modified KP hierar-
chies [8],{(

D4
1 − 4D1 D3 + 3D2

2

)
(τ0 · τ0) = 0,((

D3
1 + 2D3

)
D2 − 3D1 D4

)
(τ0 · τ0) = 0,

(4)

{(
D4

1 − 4D1 D3 + 3D2
2

)
(τ0 · τ0) = 0,(

D6
1 − 20D3

1 D3 − 80D2
3 + 144D1 D5 − 45D2

1 D2
2

)
(τ0 · τ0) = 0,

(5)

⎧⎪⎨
⎪⎩

(
D2

1 + D2

)
(τ0 · τ1) = 0,(

D6
1 − 20D3

1 D3 − 80D2
3 + 144D1 D5

+ 15
(
4D1 D3 − D4

1

)
D2

)
(τ0 · τ1) = 0,

(6)
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Figure 1. Reductions from (2+1)-dimensional PDEs to (1+1)-dimensional PDEs, then
to ODEs (the notation F-xxx denotes the autonomous case of the ODE denoted F-xxx in
citeCos2000a) or to Hamiltonian systems. The symbol c-NLS represents the Manakov
cite Manakov 1973 system of two coupled NLS equations

in which the subscripts of the bilinear operators correspond to the components
of the vector �x = (x1, x2, . . . , xn), while τ0 and τ1 are functions of �x . By further
putting some symmetry constraint on τ0 and τ1, let us define as follows four
(2+1)-dimensional PDEs (see line “2+1” in Figure 1).

1. With the system (4), one defines by D4 = 0 [20] the (2+1)-dim PDE labeled
“KP-1” in Figure 1.

2. With the system (5), one defines by D2 = 0 the (2+1)-dim PDE-labeled
“KP-2” in Figure 1.

3. With the system (6) and the B∞ symmetry constraint [8, p. 968]⎧⎪⎪⎨
⎪⎪⎩

τ0(x) = f (xodd) + x2 g(xodd) + 1

2
x2

2 h1(xodd) + x4h2(xodd) + · · · ,

τ1(x) = f (xodd) − x2 g(xodd) + 1

2
x2

2 h1(xodd) − x4h2(xodd) + · · · ,
(7)

one defines the (2+1)-dim BKP equation

9zx1,x5
− 5z2x3

+ (
z5x1

+ 15zx1
z3x1

+ 15(zx1
)3 − 5z2x1,x3

− 15zx1
zx3

)
x1

= 0, (8)

in which z = ∂x1
log τ0(�x)|x2=x4=···=0 and z2x3

≡ zx3x3···.
4. With (5) and the C∞ symmetry constraint [8, p. 968]

τ0(x) = f (xodd) + 1

2
x2

2 g(xodd) + 1

2
x2

4 h(xodd) + . . . , (9)
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one defines the (2+1)-dim CKP equation

9zx1,x5
− 5z2x3

+
(

z5x1
+ 15zx1

z3x1

+ 15(zx1
)3 − 5z2x1,x3

− 15zx1
zx3

+ 45

4
(z2x1

)2

)
x1

= 0, (10)

in which z = ∂x1
Log τ0(�x)|x2=x4=···=0.

Next, from these (2 + 1)-dimensional PDEs, one performs the follow-
ing natural reductions to (1 + 1)-dimensional PDEs (see line “1 + 1” in
Figure 1).

1. In KP-1, the C∞ symmetry constraint (9) defines{(
D4

1 − 4D1 D3

)
( f · f ) + 6 f g = 0,(

D3
1 + 2D3

)
( f · g) = 0,

(11)

which we call bi-SH [20] for reasons explained in next section.
2. In KP-1, the constraint

τ0(x) = f (xodd) + x2g(xodd) + 1

2
x2

2 h1(xodd) + x4h2(xodd) + · · · , (12)

defines {(
D4

1 − 4D1 D3

)
( f · f ) − 6g2 = 0,(

D3
1 + 2D3

)
( f · g) = 0,

(13)

which is called coupled KdV system of Hirota–Satsuma (HSS) [20].
3. In KP-2, the elimination of x3 [8, p. 962] yields the potential KdV5

equation

zt + zxxxxx + 5z2
xx + 10zx zxxx + 10z3

x = 0, (14)

with the notation x ≡ x1, t ≡ −x5/16, z = 2∂x logτ0.
4. In BKP (8), the reduction zx3

= 0 defines the potential SK equation [21]

zt + zxxxxx + 15zx zxxx + 15(zx )3 = 0, (15)

with the notation x5 ≡ 9t, x1 ≡ x .
5. In BKP (8), the reduction zx5

= 0 defines the 1+1-dimensional bi-SK or
Ramani equation [22](

zxxxxx + 15zx zxxx + 15(zx )3 − 15zx zt − 5zxxt
)

x − 5ztt = 0, (16)

with the notation x3 ≡ t, x1 ≡ x .
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6. In CKP (10), the reduction ∂x3
τ0 = 0 defines the fifth-order potential KK

equation [23]

zt + zxxxxx + 15zx zxxx + 15(zx )3 + 45

4
(zxx )2 = 0, (17)

with the notation x1 ≡ x, x5 ≡ 9t .
7. In CKP (10), the reduction ∂x5

τ0 = 0 defines the sixth-order bi-KK equation
[24](

zxxxxx + 15zx zxxx + 15(zx )3 − 15zx zt − 5zxxt + 45

4
(zxx )2

)
x

− 5ztt = 0,

(18)

with the notation x1 ≡ x, x3 ≡ t .

Finally, the stationary reduction (x, t) → x − ct of these (1+1)-dimensional
PDEs leads directly to the Hamiltonian systems or the ODE listed in the line
“0 + 1” of Figure 1.

The four ODEs F-III, F-IV, F-V, F-VI have a single-valued general solution,
obtained by the Jacobi postmultiplier method [24], which is expressed with
genus-two hyperelliptic functions. Three of them (F-III, F-IV, F-V), which are
the stationary reductions of respectively (17), (15), and (14), have been shown
[7] to have a one-to-one correspondence with the q1 component of the three
integrable cases of HH3. Therefore the chain of reductions generated from the
systems (5) and (6) contains the full information for the integration of HH3.

Let us now show that Figure 1 also contains the full information for the
integration of HH4. This will involve two kinds of coupled KdV (c-KdV)
systems: some with a fourth-order Lax pair, some with a fifth-order Lax pair.

4 LINK OF COUPLED KdV SYSTEMS WITH HH4

In the variables u = ∂2
x log f, v = 4g/ f , the bilinear system (11) is rewritten as

the c-KdV system [8, 13, 20, 26]{−4ut + (
6u2 + uxx + 3v

)
x = 0,

2vt + 6uvx + vxxx = 0,
(19)

with the notation x3 ≡ t, x1 ≡ x . This system possesses the fourth-order Lax
pair [20]⎧⎪⎨

⎪⎩
(
∂4

x + 4u ∂2
x + 4ux ∂x + 2uxx + 4u2 + v

)
ψ = λψ,(

∂3
x + 3u ∂x + 3

2
ux

)
ψ = ∂tψ,

(20)
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Figure 2. Path from an already integrated ODE (autonomous F-VI) to the quartic
cases 1:6:1 and 1:6:8. All 1 + 1-dimensional systems involved (on the top line) have
fourth-order Lax pairs. The dashed vertical line from the level “1 + 1-system” to
the level “1 + 1-single” represents the elimination of one dependent variable. All the
other vertical lines represent the stationary reduction. The horizontal lines represent
Miura transformations at the level “1 + 1-system” and canonical transformations at
the Hamiltonian level “0 + 1-system.” The systems are defined as (22) for c-KdV1,
(13) for c-KdV2, cite [p. 79] Baker Thesis for c-KdV3, (19) for the bi-SH system. The
Miura maps M1, M2 can be found in cite(Eq. (5.3)) Baker Thesis and cite (Eq. (5.8))
Baker Thesis

Under the Miura transformation denoted M3 in Figure 2{
4u = 2G − Fx − F2,

2v = 2Fxxx + 4F Fxx + 8G Fx + 4FGx + 3F2
x − 2F2 Fx − F4 + 4G F2,

(21)

the system (19) is mapped to the following c-KdV system (denoted c-KdV1 in
Figure 2) given in [12,17]:⎧⎪⎨

⎪⎩
4Ft = ( − 2Fxx − 3F Fx + F3 − 6FG

)
x ,

8Gt = 2Gxxx + 12GGx + 6FGxx + 12G Fxx + 18Fx Gx − 6F2Gx

+ 3Fxxxx + 3F Fxxx + 18Fx Fxx − 6F2 Fxx − 6F F2
x ,

(22)
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with the Lax pair⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂4

x + (
2G − Fx − F2

)
∂2

x + (
2G − Fx − F2

)
x
∂x

+ (FG)x + Gxx + G2
)
ψ = λψ,(

∂3
x + 3

4

(
2G − Fx − F2

)
∂x + 3

8

(
2G − Fx − F2

)
x

)
ψ = ∂tψ,

(23)

The stationary reduction of this c-KdV1 system happens to be the case 1:6:8
of HH4 for arbitrary values of (β, μ).

The field z = ∫
udx of (19) satisfies the sixth-order PDE [27],

−8ztt + zxxxxxx − 2zxxxt + 18zx zxxxx + 36zxx zxxx + 72z2
x zxx = 0, (24)

which is of second order in time and which for this reason we call bidirectional
Satsuma-Hirota (bi-SH) equation. Its stationary reduction is identical to the
autonomous case of the F-VI nonlinear ODE, integrated [25] with genus-two
hyperelliptic functions.

Therefore, since there exists a path from the (not yet integrated in its full
generality) 1:6:8 HH4 case and the (integrated) autonomous F-VI ODE, the
general solution of the 1:6:8 can in principle be obtained, this will be addressed
in future work.

All the links between the system (19) and other c-KdV systems considered
by S. Baker and which reduce to the integrable cases 1:6:1 and 1:6:8 of HH4
are displayed in Figure 2.

Finally, let us explain the link between the 1:12:16 integrable case of HH4
and two c-KdV systems possessing a fifth-order Lax pair, systems respectively
equivalent to the bi-SK equation (16) and the bi-KK equation (18).

The following coupled system [13]:⎧⎪⎪⎨
⎪⎪⎩

ut =
(

−2auxx − bu2 + 9a2

5b
v

)
x

,

vt = avxxx − buxxxxx − 5b2

3a
uuxxx − 5b2

3a
ux uxx + buvx − buxv,

(25)

where a, b are nonzero constants, arises from the compatibility condition of
the fifth-order Lax pair⎧⎨

⎩
(

∂5
x + 5b

3a
u∂3

x + 5b

3a
ux∂

2
x + v∂x

)
ϕ = λϕ,(

a∂3
x + bu∂x

)
ϕ = ∂tϕ.

(26)

The field z = ∫
udx of (25) satisfies the sixth-order PDE

5ztt +
(

5zxxt + 5
b

a
zt zx − azxxxxx − 5bzx zxxx − 5b2

3a
z3

x

)
x

=0, (27)

identical to the bi-SK equation (16) for a = 1, b = 3.
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Similarly, the coupled system [13]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut =
(

−7

2
auxx − bu2 + 9a2

5b
v

)
x

,

vt = 5

2
avxxx − 19

4
buxxxxx − 25b2

6a
uuxxx − 5b2

a
ux uxx

+ buvx − buxv,

(28)

arises from the compatibility condition of the other fifth-order Lax pair⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂5

x + 5b

3a
u ∂3

x + 5b

2a
ux ∂2

x + v ∂x + 1

2
vx − 5b

12a
uxxx

)
ϕ = λϕ,(

a ∂3
x + bu ∂x + b

2
ux

)
ϕ = ∂tϕ.

(29)

The field z = ∫
u dx satisfies the sixth-order PDE

5ztt + a

(
5zxxt + 5

b

a
zt zx − azxxxxx − 5bzx zxxx − 5b2

3a
z3

x − 15b

4
z2

xx

)
x

= 0,

(30)

identical to the potential bi-KK equation (18) for a = 1, b = 3. The property
of these two systems which is of interest to us is the existence of two mappings,
respectively (setting a = 5), for the system (25) the Miura transformation de-
noted Mb ⎧⎨

⎩ubi−SK = 3

b

(
2G + 3Fx − F2

)
,

vbi−SK = Fxxx + Gxx − F Fxx + G Fx − FGx + G2,

(31)

and, for the system (28), the transformation denoted Ma⎧⎨
⎩ubi−KK = 3

b

(
2G − 2Fx − F2

)
,

vbi−KK = −Fxxx + 3Gxx − F Fxx + 2FGx − F2
x + G2,

(32)

to a common coupled KdV-type system [17, p. 65] (denoted c-KdVa in
Figure 3)⎧⎪⎪⎨

⎪⎪⎩
Ft = (−7Fxx − 3Gx − 3F Fx − 9FG + 2F3

)
x ,

Gt = 3Fxxxx + 2Gxxx + 3FGxx − 3F2 Fxx − 3F2Gx − 3F F2
x

+ 3FG Fx + 9Fx Fxx + 9Fx Gx + 3G Fxx + 3GGx .

(33)
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Figure 3. Path from an already integrated ODE (autonomous F-III or F-IV, which are
ODEs for q1 in the HH3-KK and HH3-SK cases) to the quartic case 1:12:16. All 1
+ 1-dimensional systems involved (on the top line) have fifth-order Lax pairs. The
dashed vertical line from the level “1 + 1-system” to the level “1 + 1-single” repre-
sents the elimination of one dependent variable. All the other vertical lines represent
the stationary reduction. The horizontal lines represent Miura transformations at the
level “1 + 1-system” and birational canonical transformations at the Hamiltonian level
“0 + 1-system.” The Miura maps Ma, Mb, are given in the text, Md is given in cite [p.
95] Baker Thesis, Me = Mb Mc, in which Mc is the Miura transformation from c-KdVa
to c-KdVc given in cite [p. 95] Baker Thesis. The systems are defined as cite (Eq. (6.9))
Baker Thesis for c-KdVb, and cite [p. 95] Baker Thesis for c-KdVc

This system also possesses a fifth-order Lax pair, which can be written in
two different ways, either

{(
∂2

x + F∂x + Fx + G
)
∂x

(
∂2

x − F∂x + G
)
ϕ = λϕ,(

5∂3
x + 3

(
2G − 2Fx − F2

)
∂x + 3 (Gx − Fxx − F Fx )

)
ϕ = ∂tϕ

(34)

or {(
∂2

x − F∂x + G
) (

∂2
x + F∂x + Fx + G

)
∂xϕ = λϕ,(

5∂3
x + 3

(
2G + 3Fx − F2

)
∂x

)
ϕ = ∂tϕ.

(35)

It happens that the stationary reduction of (33), which is an unphysical
Hamiltonian system [17, pp. 98, 103], is mapped by a canonical transformation
to the 1:12:16 case of HH4.

In Figure 3, we display the link between c-KdV systems possessing a fifth-
order Lax pair and the 1:12:16 integrable Hamiltonian.
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5 CONCLUSION

We have linked each of the three not yet integrated quartic Hénon–Heiles cases
to fourth-order ODEs recently integrated by Cosgrove, via a path involving,
on one hand canonical transformations between Hamiltonian systems, and on
the other hand Bäcklund transformations between coupled KdV systems. This
proves that these three cases have a general solution expressed with hyperelliptic
functions of genus two. Their explicit closed form expression will be given in
future work.

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the Tournesol grants T99/040
and T2003.09. MM and RC thank the organizers of this ARW for invitation.
CV is a research assistant of the FWO.

REFERENCES
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1 INTRODUCTION

Equations in Hirota’s bilinear form appear naturally whenever one needs to
write integrable differential equations in terms of “nice” functions. In the case
of soliton equations nice typically means polynomials of exponentials with lin-
ear exponents, whereas in the context of Painlevé equations nice often means
entire functions. The natural or original dependent variables of the equation
are usually not the best in this respect and a change of the dependent vari-
ables is necessary. This dependent variable transformation can be somewhat
involved.

Since the solutions of Painlevé equations are meromorphic by definition
(the movable singularities can be at worst poles) it is natural to express them as
ratios of entire functions, and this leads to homogeneous equations and often to
equations in Hirota’s bilinear form. Indeed, bilinear forms were already derived
by Painlevé himself [1]. It should be noted, however, that the converse of the
above is not necessarily true: a bilinear form does not by itself imply that the
independent functions are regular in any sense, in fact bilinear forms exist even
for non integrable equations.

In the field of integrable partial differential equations, the so-called τ -
functions play a major role. These functions actually provide a huge pool of
such “nice” functions, in both of the aforementioned interpretations, and they
also possess an extremely rich algebraic and algebro-geometric structure. This
is the main theme of Sato-theory, one of the great unifying theories for the
description of integrable systems.

The relevance of τ -functions for the study of the Painlevé equations has been
recognized ever since the seminal work of Jimbo and Miwa on isomonodromy
deformations [2] and in particular since the results obtained by Okamoto,
regarding the algebro-geometric properties of the Painlevé equations [3].
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Recently [4], Noumi and Yamada provided a nearly complete description of the
symmetry properties of the PI I , PI V , and PV equations and their higher order
generalizations [5], in terms of their τ -function descriptions, i.e., in terms of
their bilinear representations.

Here we want to place the above bilinear descriptions, and especially the
Okamoto, Noumi–Yamada-type description of the symmetry properties of
the Painlevé equations, in a more general setting: that of the Kadomtsev–
Petviashvili (KP) hierarchy. For brevity we shall restrict our discussion to
the Painlevé IV equation. First we shall explain how a bilinearization of this
equation, based on an expression of its solutions in terms of entire functions,
can be related to a bilinearization in terms of genuine τ -functions (in the
sense of Sato-theory). We then explain how, yet another, bilinearization of
this Painlevé equation is related to a reduction of a Darboux chain for KP τ -
functions. This approach is inspired by Adler’s results on reductions of dressing
chains [6].

It will also be shown that in this reduction the fundamental Bäcklund trans-
formations for KP τ -functions give rise to Bäcklund transformations for the
Painlevé IV equation, which correspond to the full automorphism group of
the A(1)

2 root lattice [7]. These transformations are well known [6–8] but apart
from the Weyl group, extended with rotations of the Dynkin diagram [9], a
description of such transformations in terms of τ -functions was still lacking.
All results pertaining to periodic reductions of Darboux chains, including the
discussion of their Bäcklund transformations, can be extended to the case of
general periods. This will be the topic of a future publication.

2 BILINEARIZING THE PAINLEVÉ IV EQUATION

2.1 Solution in Terms of Entire Functions
and the Implied Bilinearization

We will start by describing a bilinearization of the Painlevé IV equation (PIV ) in
terms of entire functions. Its connection to τ -functions will be described later.

PIV in its canonical form is given by

d2 y

dz2
= 1

2y

(
dy

dz

)2

+ 3

2
y3 + 4zy2 + 2(z2 − a)y + b

y
. (1)

It is well known that its solution can have movable poles, and around such poles
the expansion is [10]

y = ±1

z − z0
− z0 + 1

3
(−4 ± (2a + z2

0))(z − z0) + d(z − z0)2 + . . . , (2)

where z0 and d are the two required free parameters.
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The question we want to address is how to express y in terms of entire func-
tions, or from a different point of view, how to construct entire functions from y.
This problem was studied in [10] with an algorithmic answer for most Painlevé
equations. (For a similar approach that works for all Painlevé equations, see
[11].) The idea is to first construct an expression which has a double pole with
coefficient one and no single poles or other singularities, and then by integrat-
ing twice and by exponentiating the result, to construct an entire function. In
the case of PI V this approach leads to the definition

F(z) := exp

{
−

∫
dz

∫
dz[y(z2) + 2zy(z) + γ ]

}
. (3)

It is now easy to verify that the function F indeed has a simple zero at the
singularities of y, given in (2). Furthermore, this observation implies that

G(z) := y(z)F(z). (4)

is another entire function. Thus we have constructed two entire functions from
y, but at the same time we have obtained an expression for y in terms of entire
functions: y = G/F .

The definitions (3, 4) imply the bilinear relation

(D2
z − 2γ )F · F + 2(G2 + 2zFG) = 0, (5)

where we have used the bilinear derivative operator Dz , defined by

Dn
z A(z) · B(z) = (∂z1

− ∂z2
)n A(z1)A(z2)

∣∣
z=z1=z2

.

In order to obtain a second bilinear equation, thus fully determining the two
functions F and G, one can substitute y = G/F into PI V . The result is not
bilinear—it is in fact quadrilinear—but by suitable application of (5) one can
derive [10]

(D4
z − 4(3γ 2 − 4b)F · F + 4(zD2

z + 2Dz + 10γ z)G · F

− 2(3D2
z + 16a − 18γ )G · G = 0. (6)

Equations (5, 6) then offer a bilinear description of the PI V equation. Note that
the parameter γ is arbitrary (in [10] γ = 0).

2.2 PIV as a Similarity Reduction of the Modified
Classical Boussinesq Equation

In relation to the above bilinear formulation there exists an alternative bilin-
earization of the PI V equation, where the τ -functions that appear in it can
be explicitly related to the τ -functions of the 2-component KP hierarchy (see
e.g., [12] for a definition of this hierarchy and for examples of the equations
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contained in it). To see how this comes about, let us note that the similarity
reduction (for arbitrary constants α1, α2 and with ε �= 0)

dy = α1 − εxdx , vy = −α2 − εxvx , (7)

of the so-called modified classical Boussinesq system [13],{
dy = d2x + dx (dx + 2vx ),
vy = −v2x + vx (vx + 2dx ),

(8)

yields (with g1 = dx , g2 = vx ,
′ = d

dx ) a Hamiltonian formulation of PI V :

g′
1 = ∂ H

∂g2

, g′
2 = ∂ H

∂g1
, (9)

H = g1g2
2 + g2g2

1 + εxg1g2 + α2g1 − α1g2. (10)

Eliminating g2 from (9, 10) and introducing

y(z) = κg1(x), x = κz, κ2 = 2/ε, (11)

one obtains (1) with parameters a = 1 + (α1 + 2α2)/ε and b = −2α2
1/ε

2.
Modified classical Boussinesq (8) is in fact an alternative version of the well

known Chen–Lee–Liu system [13] and it is known to bilinearize as [14]

(Dy + D2
x ) f · g = 0, D2

x g · g̃ + Dx f · f̃ = 0, (12)

(Dy + D2
x ) f · g̃ = 0, Dx g · g̃ + f f̃ = 0, (13)

where the new variables f, g, and g̃ are connected to d and v by

v = log
g

f
, d = log

g̃

g
. (14)

It is also well known that this bilinear system is a so-called (1, 1)-reduction
of the 2-component KP hierarchy [12]. One may therefore conclude that the
τ -functions f, f̃ , g, and g̃ that appear in it are indeed “genuine” (in the sense
of Sato-theory) reduced, 2-component KP τ -functions. Implementing the sim-
ilarity reduction (7) on the τ -functions (α2 ≡ c1 − c2, α1 ≡ c4 − c2)

fy = c1 f − εx fx , gy = c2g − εxgx , (15)

f̃ y = c3 f̃ − εx f̃ x, g̃y = c4g̃ − εx g̃x , (16)

we obtain the following bilinear system for the Hamilton equations (9, 10) and
hence for the Painlevé IV equation:

(D2
x − εx Dx + α2) f · g = 0, (17)

(D2
x − εx Dx + α2 − α1) f · g̃ = 0, (18)

D2
x g · g̃ + Dx f · f̃ = 0, (19)

Dx g · g̃ + f f̃ = 0, (20)
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with the connection to g1, g2 given by

g2 = ∂x log(g/ f ), g1 = ∂x log(g̃/g) ≡ Dx g̃ · g

g̃g
. (21)

How are the bilinearizations (5, 6) and (17–20) related? The answer lies in
the form of g1, which is basically y. Indeed, if we define

F = g̃g, G = κ Dx g̃ · g (22)

we obtain the desired correspondence. In detail: Solve f̃ and fx from Eqs.
(20) and (19), respectively, and then g̃ and gx from (22). Then a suitable linear
combination of Eqs. (18, 17) leads to (5). Using (5) and its derivatives we finally
get from either one—after changing coordinates as in (11)—the other Eq. (6)
for the choice γ = 2α1/ε, and with the previous parameter identifications.

3 PAINLEVÉ EQUATIONS AND THE KP HIERARCHY

3.1 The Dressing Chain and PIV

Since Adler’s seminal paper [6] it is known that the Painlevé equations (PI I

through PV I ) can be obtained from periodic reductions of chain equations which
result from repeated application of particular Darboux transformations. A well
known result is that the PI V equation (1) is obtained as a period 3 reduction of
the dressing chain [15]. Here we shall first recall Adler’s construction of PI V ,
which we shall then implement on the level of KP τ -functions. A systematic
approach to the problem of constructing chain equations related to Schrödinger-
type linear problems has been developed in [16].

3.1.1 The Dressing Chain

The following infinite chain of equations for the functions Fj ( j = 0, 1, . . .)

Fj (x)′ + Fj+1(x ′) = Fj (x)2 − Fj+1(x)2 + ν j+1 − ν j . (23)

is called the dressing chain (the ν j are arbitrary constants). It is associated with
the spectral problem for the Schrödinger operator

L j (u, λ)ψ j (λ, x) = 0, where L j (u, λ) := ∂2
x + u j (x) − λ, (24)

(j indexes a sequence of eigenproblems with eigenvalue λ).
The operator

G j (x) := (∂x − Fj (x)), (25)
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can be used to define new functions

ψ j+1(λ, x) := G j (x)ψ j (λ, x), (26)

for each eigenfunction ψ j of the original problem. The new functions ψ j+1 are
eigenfunctions of a new operator L j+1 that satisfies

L j+1G j (x) = G j (x)L j (u, λ). (27)

In fact, one has

L j+1 = L j (u j+1, λ), (28)

u j+1(x) = u j (x) + [2Fj (x)]′, (29)

Fj (x)′ + Fj (x)2 + u j (x) − λ = μ j (λ), (30)

where μ j is an integration constant (as before, ′ denotes d
dx ).

The transformation from ψ j to ψ j+1 is called a Darboux transformation iff
the operator G j is such that it annihilates some chosen eigenfunction ϕ j of (24)
with eigenvalue ν j . This implies that Fj (x) = (log ϕ j )x and that it satisfies the
equation

Fj (x)′ + Fj (x)2 + u j (x) − ν j = 0. (31)

Hence we have μ j (λ) = ν j − λ in (30) and subsequent elimination of the po-
tentials u from (30) yields the dressing chain (23).

3.1.2 PI V as a Reduction of the Dressing Chain

Closing this chain periodically (with period N) by imposing

ϕ j+N (ν j+N ) = ϕ j (ν j ), ν j+N = ν j − ε, (32)

for some non zero constant ε, yields trivial systems at N = 1 and 2. At N = 3
however, introducing the variables

g1 = (log ϕ1ϕ2)x ,

g2 = (log ϕ2ϕ3)x , (33)

g3 = (log ϕ3ϕ1)x ,

we obtain ⎧⎨
⎩

g′
1 = g1(g3 − g2) + α1,

g′
2 = g2(g1 − g3) + α2,

g′
3 = g3(g2 − g1) + α3,

(34)

with α1 = ν2 − ν1, α2 = ν3 − ν2, and α3 = ν1 − ν3 − ε. Obviously we have a
conserved quantity (g1 + g2 + g3)′ = −ε and this allows us to reduce the order
of (34), e.g., by eliminating g3 in terms of the other variables. This gives rise
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to the Hamiltonian form (9, 10) of the PI V equation. The system (34) (which
first appeared in [17]) is often referred to as the symmetric form of the PI V

equation [9]. We shall now proceed to show that this symmetric form for PI V

possesses a bilinear formulation in terms of KP τ -functions (see [16] for a
direct bilinearization of the dressing chain).

3.2 KP τ -Functions

We shall describe the PI V equation in terms of (this time, single component)
KP τ -functions. This approach can be generalized to include all the higher
order Painlevé equations introduced in [5].

3.2.1 The KP Hierarchy and Its Symmetries

Denote the infinite set of coordinates x1, x2, . . . by the vector x = (x1, x2, . . .),
then τ (x) ∈ C[x1, x2, . . .] (the space of formal power series in x1, x2, . . .) is
called a KP τ -function iff it satisfies

Resλ

[
τ (x − ελ)τ (x′ + ελ) eξλ(x−x′)

]
= 0 ∀x, x′. (35)

The operation Resλ is defined by Resλ[
∑+∞

n=−∞ anλ
n] = a−1, ξλ(x) denotes the

formal power series ξλ(x) = ∑∞
n=1 xnλ

n and ελ denotes the infinite vector ελ =
(1/λ, 1/(2λ2), 1/(3λ3), . . .). Relation (35) actually encodes all the equations in
the KP hierarchy, expressed in bilinear form. An extensive list of such equations
can be found in [12], to which we also refer for a detailed account of the algebraic
machinery underlying the KP hierarchy and its solutions.

We also define the KP vertex operators

�±
λ := e±ξλ(x) e∓ξλ(∂̃), (36)

where ∂̃ denotes the vector ∂̃ = ( ∂
∂x1

, 1
2

∂
∂x2

, . . .) as well as the so-called solitonic
vertex operator:

�λμ := eξλ(x)−ξμ(x) e−ξλ(∂̃)+ξμ(∂̃). (37)

Note that �±
λ [τ (x)] = τ (x ∓ ελ)e±ξλ(x) and also that the solitonic vertex operator

is intimately related to the fundamental symmetry of the equations in the KP
hierarchy. Expanding

�λμ − 1

λ − μ
=

+∞∑
i, j=−∞

Zi jλ
iμ− j−1, (38)

then {∑i, j ai j Zi j | ai j = 0 for |i − j | 
 0} is nothing but the well-known
vertex representation of the Lie algebra gl(∞) (see e.g., [12, 18, 19]). The
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bilinear relation (35) expresses the fact that the τ -function τ (x) lies on the orbit
GL(∞) · 1 of the Lie group GL(∞) generated by gl(∞).

Of particular interest are certain elements of this symmetry group, express-
ible in terms of solutions to the linear problem that underlies the KP hierarchy.
Consider the following formulation of the Zakharov–Shabat equations for the
KP hierarchy (and their formal adjoints):

∀n ≥ 2 : pn(−∂̃)�+ = �+[pn−1(−∂̃)(log τ )x1
], (39)

∀n ≥ 2 : pn(∂̃)�− = −�−[pn−1(∂̃)(log τ )x1
], (40)

where the pn(z) in some general argument z = (z1, z2, . . .) denote the Schur
polynomials generated by exp [

∑∞
n=1 znλ

n] = ∑∞
n=0 pn(z)λn . We shall call the

solutions �+ (�−) to these linear equations KP eigenfunctions (or adjoint
eigenfunctions) for the τ -function τ (x). The equations in the KP hierarchy
are of course obtained as the compatibility conditions of the above linear equa-
tions (expressed in terms of the field (log τ )2x ). As for the eigenfunctions and
adjoint eigenfunctions for a particular τ (x), they can be expressed in terms of
the vertex operators (36):

�±(x) =
∫
Cλ

dλ

2π i
h±(λ)

�±
λ [τ (x)]

τ (x)
, (41)

for spectral densities h±(λ) = 1
λ
�±(x′ ± ελ)

�±
λ [τ (x′)]
τ (x′) (for some arbitrary x′) and

a contour Cλ around λ = ∞ that does not enclose any of the other singularities
of the density h±(λ) [20].

Whereas gl(∞) is the fundamental symmetry algebra for the KP hierarchy,
this symmetry is restricted to the affine algebra A(1)

�−1 for the so-called �-reduced
KP hierarchies. We define an �-reduced τ -function as a KP τ -function that,
besides relation (35), also satisfies

Resλ

[
λ�τ (x − ελ)τ (x′ + ελ)eξλ(x−x′)

]
= 0 ∀x, x′. (42)

These τ -functions are all x j�-independent ( j = 1, 2, . . .) and gl(∞) is reduced
to the direct sum of a Heisenberg algebra H�, formed by j x j� and ∂/∂x j�( j =
1, 2, . . .), and an algebra isomorphic to A(1)

�−1. When dealing with �-reduced
τ -functions we shall always restrict the coordinate set to {xn|n �= 0 mod �},
whereby effectively eliminating H�.

3.2.2 Darboux Transformations for KP τ -Functions

Let τ (x) be a KP τ -function. We can then define a Darboux transformation for
τ (x) as a mere multiplication by an eigenfunction �+ (for that τ ):

τ −→ τ̃ = τ × �+. (43)
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As this transformation has its origin in a particular action of GL(∞), the
new function τ̃ (x) is also a KP τ -function [20]. Eigenfunctions for this τ̃ are
produced from those for τ by means of the operator (25) defined in terms of
F = (log �+)x1

(as explained in Section 3.1.1).
Repeated application of such a Darboux transformation to a particular τ (x)

yields KP τ -functions at every step and moreover the, say, kth Darboux iterate
τ[k] and the “seed” τ -function τ (x) satisfy the defining relation for the so-called
kth-modified KP hierarchy:

Resλ

[
λkτ[k](x − ελ)τ (x′ + ελ) eξλ(x−x′)

]
= 0 ∀x, x′. (44)

The basic member of the 1st-modified KP hierarchy (obtained from (44) at k =
1) is the following very simple bilinear equation, which will be used extensively
in the next sections:

(Dx2
− D2

x1
) τ[1] · τ = 0. (45)

In fact, as this equation expresses a relation between τ and its Darboux transfor-
mation τ̃ ≡ τ[1], i.e., between τ and an eigenfunction �+ = τ[1]/τ associated
to it, (45) is nothing but the Hirota form of the Zakharov–Shabat equation for
this particular �+, obtained from (39) at n = 2.

Similarly, we define an adjoint Darboux transformation τ → τ = τ × �− in
terms of an adjoint eigenfunction �− = τ/τ for τ . This adjoint eigenfunction
will satisfy the adjoint Zakharov–Shabat equations (40), and in particular at
n = 2 one has

(Dx2
+ D2

x1
) τ · τ = 0. (46)

Note that due to the symmetry properties of the Hirota operators, Eq. (46) can
also be written as

(Dx2
− D2

x1
) τ · τ = 0, (47)

suggesting that the ratio τ/τ is in fact an eigenfunction for τ . This is indeed the
case: In general we have that if �− is an adjoint eigenfunction for a τ -function
τ , then its reciprocal 1/�− is an eigenfunction for the τ -function τ ≡ τ ×
�−. It is self-evident that the converse statement (i.e., for eigenfunctions) also
holds.

We can also define a so-called binary Darboux transformation [20]

τ −→ τ̂ = τ × �(�+, �−), (48)

as multiplication by an eigenfunction potential �(�+, �−). This potential is
defined in terms of an eigenfunction and an adjoint eigenfunction for τ (x),
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through the exact differential

d�(�+, �−) :=
∞∑

n=1

Andxn, (An)xm = (Am)xn , (49)

An := n�− pn−1(∂̃)�+ −
n−1∑
k=1

(
�− pn−k−1(∂̃)�+)

xk
. (50)

Its x1 and x2 derivatives are: �x1
≡ A1 = �+�− and �x2

≡ A2 = �+
x �− −

�+�−
x .

A binary Darboux transformation generalizes the action of the solitonic
vertex operator (37) [20]. More precisely:

�(�+, �−) = 1

τ

∫
Cλ

dλ

2π i

∫
Cμ

dμ

2π i
h+(λ)h−(μ)

�λμ[τ ]

λ − μ
, (51)

for contours and spectral densities as defined in connection to (41). A binary
Darboux transformation can therefore be thought of as the equivalent of a
general action of GL(∞) (remember relation (38)).

Furthermore, a binary Darboux transformation τ → τ̂ ≡ τ × �(�+, �−) is
always associated with a “Bianchi diagram” for Darboux transformations

and vice versa (arrows indicate Darboux transformations involving the eigen-
functions indicated). This diagram is unique for given �+ and �−, up to mul-
tiplication of the τ -functions by a constant:

�̂− ≡ �−

�(�+, �−)
, �̂+ ≡ �+

�(�+, �−)
. (52)

Note that this property of binary Darboux transformations generalizes the well
known Bianchi permutation theorem for Bäcklund transformations for 1 + 1
dimensional integrable systems.

3.2.3 Periodic Darboux Chains and Self Similarity

Consider a chain of KP τ -functions generated by successive Darboux transfor-
mations:

τ[0] = τ, τ[n+1] = τ[n] × �+
n , n = 0, 1, . . . (53)
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where �+
n denotes an eigenfunction for τ[n]. We wish to discuss the case where

such a Darboux chain closes periodically. However, we shall only treat the
period 3 case (an extension of the analysis below to general periods is possi-
ble and will be reported in a forthcoming publication), i.e., we shall consider
the periodic Darboux chain:

τ[0]
�+

0−→ τ[1]
�+

1−→ τ[2]
�+

2−→ τ[3] ≡ τ[0]. (54)

From now on indices referring to particular τ -functions or eigenfunctions etc.
are to be understood modulo 3.

It can be shown that the τ -functions in the chain (54) are all 3-reduced τ -
functions and vice versa that, starting from an arbitrary 3-reduced τ -function,
one can always construct such a periodic Darboux chain.

As to a description of such chains by means of specific equations, since
every pair (τ[n+1], τ[n]) satisfies the 1st-modified KP hierarchy, each such pair
satisfies (45) and we find that the following system of Hirota equations⎧⎨

⎩
(Dx2

− D2
x1

) τ[1] · τ[0] = 0
(Dx2

− D2
x1

) τ[2] · τ[1] = 0
(Dx2

− D2
x1

) τ[0] · τ[2] = 0
(55)

completely characterizes the Darboux chain (54).
If we now require the τ -functions (which do not depend on the x3 j variables,

j = 1, 2, . . .) in the chain to be self-similar, i.e., to be “eigenvectors” for the
operator L:

L :=
∞∑
k=1

k �=0 mod 3

kxk
∂

∂xk
, (56)

∀n = 0, 1, 2, ∃cn : L[τ[n](x)] = cnτ[n](x), (57)

we can reduce (55) to a system of ordinary differential equations. It suffices to
restrict the coordinates by means of

P : x1 → x, x2 → − 3

2ε
, xn>3 → 0, (58)

for an arbitrary non zero constant ε, to obtain:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
D2

x − εx

3
Dx − κ0

)
τ1 · τ0 = 0(

D2
x − εx

3
Dx − κ1

)
τ2 · τ1 = 0(

D2
x − εx

3
Dx − κ2

)
τ0 · τ2 = 0

. (59)



386 R. Willox and J. Hietarinta

In this system, the τ -functions τn := τ[n](P[x]) only depend on a single variable
(x, ε being treated as a mere parameter). The constants κn are expressed in terms
of the weights cn associated to each τ[n]:

κn = ε

3
(cn − cn+1). (60)

If we now introduce the variables

gn := ([log
τ[n+1]

τ[n−1]
)x − εx

3
(61)

and parameters

αn := κn − κn−1 − ε

3
≡ ε

3
(2cn − cn+1 − cn−1 − 1), (62)

we recover the symmetric form (34) of the PIV equation from (59). Thus, system
(59) is nothing but yet another Hirota bilinear form of the PIV equation [21, 9,
16], this time expressed in terms of 3-reduced, self similar (singlecomponent)
KP τ -functions. Note that the dependent variable transformation (61) is again
a logarithmic derivative of the type (21). Note also that the operator L used to
select self similar τ -functions among the 3-reduced ones is quite a well known
object: it is related to the Virasoro energy operator

∑∞
k=1 kxk∂xk and is in fact

located in a Cartan subalgebra of A(1)
2 [19].

3.3 Bäcklund Transformations for PIV

From the Bianchi diagram in Section 3.2.2 it is easily seen [22] that a bi-
nary Darboux transformation applied to one of the τ -functions in the periodic
Darboux chain (54), using its neighbours to construct appropriate eigenfunc-
tions and adjoint eigenfunctions, produces again a periodic Darboux chain.
Furthermore, it can be shown that there always exists an eigenfunction poten-
tial such that the self similarity of the τ -functions in the Darboux chains is
preserved by such a transformation. The following diagram summarizes this
construction:

n

n

n+1

n+1

n--1 n--1

n --1 +  
e
3

n --  
e
3

n

This is essentially the Bianchi diagram of Section 3.2.2, with τ = τn, τ
′ =

τn−1, τ̃ = τn+1, and τ̂ = τn × �(�+
n , �−

n ), with �+
n = τn+1

τn
and �−

n = τn−1

τn
but
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for an additional arrow as the chains {τn−1, τn, τn+1} and {τn−1, τ̂n, τn+1} close
periodically. Next to the arrows, the “eigenvalues” κn in (59) are indicated
instead of the relevant eigenfunctions.

In the generic case, i.e., when αn (62) is non zero, the eigenfunction potential
used in the above diagram can be written explicitly:

�(�+
n , �−

n ) ≡ 1

αn

[
(�+

n )x�
−
n − �+

n (�−
n )x − εx

3
�+

n �−
n

]
. (63)

Using this expression, we then define the following 3 transformations, denoted
as Bn , that map the chain (59) onto a new chain (n = 0, 1, 2):

Bn : Bn(τn) = τn × �(
τn+1

τn
,
τn−1

τn
), Bn(τn±1) = τn±1. (64)

The resulting τ̂n = B(τn) are self similar (or rather, their preimages τ̂[n] w.r.t.,
the projection P are) with weights

ĉn = cn+1 + cn−1 − cn + 1. (65)

This allows us to lift the action of Bn to the weights cn

Bn(cn) = cn+1 + cn−1 − cn + 1, Bn(cn±1) = cn±1. (66)

It should be clear that a binary Darboux transformation which maps τ[n] to τ̂[n]

(and which, after restricting the coordinates by P , gives rise to a particular
Bn) actually corresponds to an element of A(1)

2 , in the sense of (51). We can
therefore represent τ̂[n] as τ̂[n] = �[n][τ[n]], for some element �[n] in the vertex

representation of A(1)
2 . In terms of this operator, relation (63) can be shown to

be equivalent to (
[L , �[n]]− + 3αn

ε
�[n]

)
[τ[n]] = 0. (67)

As L is located in the Cartan subalgebra of A(1)
2 , this last relation suggests that

the αn are proportional to the L-components of certain roots of A(1)
2 . Indeed,

using (62, 66), the action of the Bn on the αn’s

Bn(αn) = −αn, Bn(αn±1) = αn±1 + αn, (68)

is seen to be that of the (affine) Weyl group W (A(1)
2 ) on the simple roots of A(1)

2 .
When αn happens to be zero, i.e., when κn − κn−1 = ε

3
, one immediately

notices that the eigenvalues in the two chains in the above diagram coincide
pair-wise, such that the two Darboux chains can actually be taken to be iden-
tical. Hence, when αn = 0 we define the transformation Bn to be the identity,
compatible with the Weyl action (68).
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The action of these transformations on the fields gn (61) that appear in the
symmetric form (34) of PI V is

B(gn) = gn, Bn(gn±1) = gn±1 ∓ αn

gn
. (69)

There exist also symmetry transformations expressible in terms of mere
Darboux or adjoint Darboux transformations. These can be seen to correspond
to automorphisms of the Dynkin diagram of A(1)

2 .
First of all there is the transformation

S : S(τn) = τn+1 (≡ τn × �+
n ) (70)

which merely “rotates” the Darboux chain and which can be thought of as a
succession of Darboux transformations, as can be seen from the definition (70).
Obviously, S(cn) = cn+1 and hence we have

S(gn) = gn+1, S(αn) = αn+1. (71)

This last relation tells us that S acts as a cyclic permutation on the roots αn and
thus corresponds to a rotation of the Dynkin diagram for A(1)

2 .
A second type of transformation is slightly more involved (n = 0, 1, 2):

Rn : τ j (x) −→ τ2n− j (i x), κ j −→ −κ2n− j−1. (72)

It arises from the fundamental symmetry of the 1st-modified KP equations
(in bilinear form), already commented upon in Section 3.2.2: Eq. (47) can
obviously be cast into the form (46) if we transform x → ±i x . Under this
transformation any eigenfunction for a particular τ -function is transformed into
an adjoint eigenfunction for that τ and vice versa. Hence, any local permutation
of two τ -functions in the Darboux chain can be “compensated” by changing the
x-variable to ix and hence system (59) is covariant under Rn . On the symmetric
form of PI V this transformation acts as:

Rn : g j (x) −→ −i g2n− j (i x), α j −→ α2n− j . (73)

The transformations Rn , together with the S j ( j = 1, 2, 3), form the dihedral
group D3 which exhausts the automorphisms of the Dynkin diagram for A(1)

2 .
Hence, together with the Bn , these transformations generate the full automor-
phism group of the root lattice for A(1)

2 .

4 SUMMARY

We have explained, on the example of the Painlevé IV equation, how different
bilinearizations give insight into different aspects of the “integrability” of this
equation. In particular it was shown how a bilinearization in terms of entire
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functions relates to integrable equations obtained from Sato-theory and, vice-
versa, how a systematic study of particular reductions of equations in the KP-
hierarchy yields insight into the structure of the Bäcklund transformations for
the PI V equation. Extending the above scheme to the PIII and PVI equations
remains a challenging problem.
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